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ABSTRACT 

PBM AND DEM SIMULATIONS OF LARGE-SCALE CLOSED-CIRCUIT  

CONTINUOUS BALL MILLING OF CEMENT CLINKER 

 

by 

Nontawat Muanpaopong 

Cement milling is known to be inefficient and energy-intensive. Thus, even small 

improvements in cement milling’s performance could significantly reduce operation costs. 

This dissertation aims to develop a simulation tool for dry milling and generate a 

fundamental process understanding, which enables process optimization. To this end, a 

true unsteady-state simulator (TUSSIM) for continuous dry milling is developed and 

applied to model various processes: (a) open circuit continuous mills, (b) closed-circuit 

continuous mills, and (c) vertical roller mills. TUSSIM is based on the solution of the cell-

based population balance model (PBM) for continuous milling, which consists of a set of 

differential algebraic equations (DAEs). Moreover, air classifier parameters and ball size 

distribution for the closed-circuit operation are tailored to maximize production capacity 

while achieving desirable cement product qualities. Discrete element method (DEM) and 

PBM are coupled to simulate lab-scale batch milling of cement clinker to gain fundamental 

understanding of the roles of ball size and material (steel vs. alumina). 

First, dynamic simulations are performed to investigate the impact of ball mill 

operation parameters on the full-scale open-circuit ball milling of cement clinker without 

an external air classifier. Parameters for the simulation are taken from the literature. 

Simulation results suggest that a single-compartment mill produces the desired cement 

size, but it requires pre-milled fresh feed. Depending on the ball sizes used, a two-



compartment mill produces cement sizes similar to those produced by a three-compartment 

mill. A uniform mass of balls achieves an 8% higher specific surface area (SSA) compared 

to a uniform number of balls. The classifying liners have negligibly finer cement products 

compared to a uniform mass distribution.  

TUSSIM is also incorporated with a variable Tromp curve model for classification 

to simulate full-scale closed-circuit ball milling with an air classifier. The simulation results 

suggest that a faster rotor speed or lower air flow rate leads to a finer cement product and 

increases the dust load of the classifier feed. Integrating air classifiers into open-circuit ball 

milling increases the production rate by 15% or cement SSA by 13%. Operation failure 

due to overloading of the entire circuit is detected when dust load is too high. Process 

optimization with a global optimizer−DAE solver is performed to identify either the air 

classifier’s parameters or the ball size distributions that yield desirable cement quality 

while maximizing production rate. Optimization results show that the production rate can 

be increased by 7% compared to the baseline process. Unlike open circuits, a two-

compartment mill produces a finer cement product than a three-compartment mill. Optimal 

ball mixtures are identified in a two-compartment mill, suggesting a 14% increase in 

production rate at a desirable cement quality.  

A global optimizer-based back-calculation method, based on PBM, is used to 

determine the breakage kinetics parameters of cement clinker in a lab-scale ball mill loaded 

with steel or alumina balls of three single ball sizes and their mixtures. The motion of the 

balls in the mill is simulated via the DEM. The results show that steel balls achieve faster 

breakage of clinker than alumina balls, which is explained by the higher total–mean energy 

dissipation rates of the steel balls. The particle size distribution (PSD) becomes finer as 



smaller balls are used. The ball mixture is the most effective overall. Significant energy 

can be saved if steel balls are replaced with alumina balls, but the slower breakage with the 

alumina balls needs to be accounted for. 

 Finally, steady-state cement PSD obtained from a full-scale vertical roller mill is 

fitted with TUSSIM. The fitted results show good agreement compared to the experimental 

PSD. Overall, this dissertation has provided a novel process simulator, TUSSIM, and many 

fundamental insights into the continuous milling of cement clinker and its optimization. 
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kg/min and open circuit: ṁFF = 640 kg/min) .…………………………………….. 

 

205 

 

5.7 Differential PSD in cell 10 (in front of discharge diaphragm) and cement product 

of a single-compartment mill at steady state or at 120 min (max. operation time 

simulated): (a)−(c) various single ball sizes (Runs 4−6) and (d)−(f) quinary and 

ternary ball mixtures (Runs 7−9) ..……………………………………………….. 

 

209 

 

5.8 Differential PSD at steady state or at 120 min (max. operation time simulated) for 

a single-compartment mill (Runs 7–9) and two-compartment mill (Run 11):  

(a) in cell 10 (in front of discharge diaphragm) and (b) cement product after air 

classifier .………………………………………………………………………… 

 

210 

 

5.9 Blaine surface area and specific surface area of cement products obtained from 

steady-state operation of (a) a two-compartment mill and (b) a three-compartment 

mill with various ball mixtures in the respective compartments. Ball size 

distribution was based on uniform mass distribution …………………………….. 

 

215 

 

5.10 Steady-state cement products from a two-compartment ball mill with various ball 

size distributions (see Table 5.4): (a) characteristic particle sizes (10% passing 

size, median size, and 90% passing size) and (b) the Blaine surface area and 

specific surface area ...……………………………………………………………. 

 

219 

 

5.11 Steady-state cumulative PSDs around air classifier for a two-compartment ball 

mill with optimized ball mixtures in both compartments and industrial ball 
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1 

CHAPTER 1 

INTRODUCTION 

 

1.1 Background Information 

Cement is a fundamental building material; it is an essential binder in concrete production. 

Concrete consists of cement, aggregate, and water. It can be cast in desired shapes and 

becomes a structure once hardened. The growing construction industry has continuously 

increased global cement production. International Energy Agency forecasted that it will 

reach 4.40 billion metric tons by 2050 (IEA and WBCSD, 2009). As shown in Figure 1.1, 

the cement manufacturing process consists of three main processes: raw material 

preparation (e.g., quarrying raw material, crushing raw material, milling raw meal), clinker 

burning, and cement milling. Different raw materials (e.g., limestone and clay) are mixed 

and milled into a homogeneous powder and placed in high-temperature kiln to produce 

clinker. The clinker is then milled with gypsum and admixtures to produce cement. The 

strength of cement mainly depends on cement size: the higher the strength class needed, 

the finer the cement product size should be. 

The average energy consumption in cement manufacturing is 111 kWh per metric 

ton of cement (IEA and WBCSD, 2009). The cement milling department consumes about 

40% of all energy in the manufacturing process (IEA and WBCSD, 2009; Su et al., 2013). 

Although there are other milling technologies, such as the vertical roller mill (VRM), the 

conventional ball mill is still the most widely used milling technology because it is easier 

to operate, and it produces smaller product at a lower capital expense. Ball milling can be 

performed under batch, continuous open-circuit, and continuous closed-circuit grinding 



 

2 

modes. While batch milling is used in laboratories, continuous processes are used at 

industrial scale to achieve the high production rates (King, 2001).  

 

 

Figure 1.1 A schematic of the cement manufacturing process, from raw material 

preparation to cement storage. 

Source: IEA and WBCSD (2009) 

 

 A ball mill is a type of comminution equipment that has a rotating, horizontal tube. 

The tube is filled with grinding balls and, when the mill is operated, these balls break down 

particles (Napier-Munn et al., 1996; King, 2001). The mill shell is protected by liners. In 

continuous open-circuit milling, materials are fed at the inlet and ground inside the mill. 

Particles are air-swept and ground products are discharged at the end of the mill. The 

diaphragms (partitions) are located inside and at the discharge of the mill. While the 

intermediate diaphragm separates two milling processes (coarse milling and fine milling) 
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into different compartments, the discharge diaphragm mainly prevents the grinding balls 

from leaving the mill.  

 Continuous ball milling can also be performed as a closed-circuit operation, in 

which ground materials are fed through an external classifier. Although open-circuit 

operation is easier to handle than the closed-circuit operation, it produces over-milling of 

fine particles as a result of consuming more energy (FLSmidth, 2014). This over-milling 

causes wider product particle size distribution (PSD), which severely affects product 

quality (i.e., lower cement strength). To achieve the desired fineness of product size when 

using an open-circuit mill, the mill needs to be long, with multiple compartments. This 

limits the open-circuit ball mill’s production rate. For that reason, the closed-circuit ball 

mill operation is widely used in the cement manufacturing process (Shimoide, 2016). 

While Figure 1.2 presents a flow diagram of the closed-circuit ball milling process, Figure 

1.3 presents a detailed view of the ball mill and the air classifier used in closed-circuit 

operations. Particles are transported by an air stream generated by a mill fan. This air 

stream pulls particles through the compartments toward the discharge end. The mill 

collector (see Figure 1.2) is used to clean exhausted gases to prevent drastic wear of the 

collector fan’s impellers because of the dust. An air classifier is equipped with a rotor (the 

rotating part), driven by a separate motor, and guide vanes (which are stationary). The 

separation area of the air classifier is the space between the rotor cage and the guide vanes. 

Particles are subjected to drag, centrifugal, and gravitational forces. Depending on the 

magnitude and direction of these forces, particles move along different trajectories. The 

desired product size can be adjusted by changing the airflow rate and/or the rotor speed. 

The higher the airflow rate, the coarser the product size; the slower the rotor speed, the 
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coarser the product size (Gao et al., 2013; Shimoide, 2016). Fine product is collected at a 

filter, while the coarse reject is combined with feed material and then re-milled.  

 

Figure 1.2 A general schematic of closed-circuit ball milling; it consists of a ball mill and 

an external air classifier. 

Source: FLSmidth (2014) 

 

  

Figure 1.3 A general view of a ball mill (left) and an air classifier (right). The ball mill has 

two compartments and intermediate and discharge diaphragms. 

Source: FLSmidth (2014) 
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 Milling performance is affected by several factors, including process operation 

parameters, mill geometry, and shape of milling media. There is extensive experimental 

research on the impact on dry ball milling performance of process parameters such as ball 

filling ratio J, rotation speed, and ball size distribution (BSD) (e.g., Deniz and Onur, 2002; 

Deniz, 2003; Deniz, 2004; Kiangi and Moys, 2008; Deniz, 2011; Deniz, 2012). Rotation 

speed is typically reported as a percentage of critical speed Nc, where critical speed is 

defined as the speed of rotation when centrifugal and gravitational forces are equal. At that 

critical speed, the balls do not fall away from the mill shell. Critical speed Nc (expressed in 

rpm) and ball filling ratio J are given by  

 

c

M B

42.3
N

D d
=

−
 (1.1) 

 

( )
B

B B M1

m
J

V 
=

−
 (1.2) 

 

where DM is ball mill diameter, dB is ball size, mB is ball mass, VM is mill volume, B is 

ball density, B is void fraction of grinding balls at rest. In general, product size is evaluated 

on the basis of specific surface area (SSA), median size (d50), and 80% passing size (d80) 

of cumulative PSD. SSA is calculated as 
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where p is particle density and d32 is Sauter mean diameter, which in turn is calculated as 
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1
N

i

i i

d
M

x=

=


 

(1.4) 

 

 Here, Mi is mass fraction of particles in size class i, and xi is size of particles in class 

i. Size class i extends from size class 1, representing the coarsest particles, to size class N, 

representing the finest particles. 

 Using a lab-scale batch mill (diameter 200 mm), Cayirli (2018) thoroughly 

investigated the impact of various operational parameters in batch dry ball milling. The 

material he used was calcite (poly-dispersed feed with d50 = 0.6 mm), with stainless steel 

cylpebs as milling media and a milling time of 10 min. To begin, the impact of rotation 

speed on products was experimentally investigated. The results showed that the product 

became finer (smaller d50, smaller d80, and higher SSA) when rotation speed was increased 

from 60% of Nc to 70% of Nc. Rotation speeds faster than 70% of Nc led to coarser product 

in terms of d50 and d80 but did not affect product SSA. Note that unlike d50 and d80, SSA 

takes account of effects on all size classes. Cayirli’s finding can be explained by the fact 

that increasing rotation speed beyond a certain level causes the milling media (in this case, 

stainless steel tapered cylindrical media, also known as cylpebs) to be centrifuged inside 

the mill, so reducing milling action. In a ball mill study using steel ball media for cement 

clinker milling, Deniz (2004) investigated the impact of rotation speed on breakage kinetics 

and identified an optimum rotation speed of 85% of Nc.  
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 In his batch milling study, Cayirli (2018) also investigated the impact of ball filling. 

Based on the optimum identified in his previous experiment, rotation speed was set at 70% 

of Nc. A change of ball filling from 0.20 to 0.35 was observed to produce finer products, 

but a further increase in ball filling to 0.40‒0.45 adversely affected product size—that is, 

product sizes became coarser. Cayirli’s explanation for these results was that in conditions 

of underfilling (low ball filling), the cushioning action of the material powder contributed 

to inefficient collisions between the balls. At optimum ball filling, however, the collision 

spaces between balls were properly filled, leading to efficient breakage. Overfilling of balls 

increased mill hold-up, but the collision zone was saturated, leading to lower breakages. 

Similarly, Deniz’s (2012) observations indicated that the optimum ball filling for barite is 

0.35.  

 Experimental studies of continuous milling commonly examine the extent of 

particle mixing in terms of the Péclet number NPe, which is defined as the significance of 

particle transport by convection relative to dispersion. As the Péclet number decreases, 

mixing converges to perfect mixing. In their experimental study of material transport in a 

ball mill, Swaroop at al. (1981) observed that NPe increased as feed rate increased. They 

also investigated ball filling ratio. Their results showed that NPe decreased as ball filling 

increased. However, NPe became saturated at about 40% ball filling, as the interaction 

between particle and ball did not increase for higher levels of ball filling. Unlike ball filling 

ratio, rotation speed did not significantly affect mixing degree. As rotation speed increased 

from 25% to 50% of Nc, NPe decreased from 11 to 7. Note that their results were based on 

open-end discharge. Their results also showed that, for a given feed rate, material hold-up 

increased as ball filling increased. The continuous increase in material hold-up can be 
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explained by an increase of resistance due to the ball media. It was also observed that for 

a given ball filling, increased feed rate led to higher hold-up.   

 Ball size is known to have an important effect on milling performance. In the 

milling literature, the impact of ball size on product size has been extensively studied using 

batch ball milling at laboratory scale (e.g., Erdem and Ergun, 2009). For application to 

industrial-scale continuous ball milling operations, experimental results for small batch 

mill process operations were augmented using the scale-up rule (Austin et al., 1984; 

Morrell and Man, 1997; Chimwani et al., 2014; Mulenga, 2017). The impacts of ball size 

and BSD are briefly detailed here. In an experiment investigating ball size in a batch mill 

(diameter 120 cm, length 60 cm), Erdem and Ergun (2009) used six single ball sizes (dB = 

70, 60, 50, 40, 30, and 20 mm). Samples were taken from the batch mill at milling times 

of 2, 5, 10, 15, 20, 30, 45, and 60 min; the cement clinker feed size had a d80 of 1.7 mm. 

Their results showed that, for a given single ball size, the product size became finer as 

milling time increased. While a bigger ball size was more efficient for breakage into coarser 

particles, a smaller ball size was better for breakage into smaller particles. They also found 

that the particle size at which maximum breakage occurs related to ball size. It should be 

noted that the correlation between mono-dispersed feed size and single ball size have been 

widely reported (e.g., Napier-Munn et al., 1996; Kanda et al., 1999; Kotake et al. 2002, 

Deniz 2003). Cayirli (2018) also studied the impact of BSD. Using ball sizes of 40, 32, 20, 

and 12 mm, six selected BSDs were assessed. Cayirli found that while a coarser BSD is 

not effective for particle breakage, a finer BSD produces higher product SSA (finer 

product) but is not effective for breaking coarser particles. The experiment indicated that 

the best BSD was a combination of coarse and fine ball sizes. 
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 In closed-circuit operation, the classifier’s operation parameters have a significant 

influence on product size (e.g., Gao et al., 2013; Yu et al., 2014). Classifier cut size, which 

is defined as the particle size that has an equal probability of being collected as fine product 

or classified as coarse reject, directly affects product size. In their classification 

experiments involving calcium carbonate, Yu et al. (2014) observed that classifier cut size 

is process-dependent. They investigated the impacts of rotor speed, feed rate, and air inlet 

velocity on cut size using an air classifier with a rotor radius of 106 mm. Their experimental 

results were as follows. (i) For a given rotor speed and feed rate to classifier, cut size 

became smaller with lower air inlet velocity. (ii) For a given air inlet velocity and feed rate 

to classifier, cut size became smaller as rotor speed increased. (iii) For a given air inlet 

velocity and rotor speed, cut size became smaller as feed rate to classifier decreased. These 

results clearly show the significance of air classification operation parameters for cut size. 

 Despite its importance and overwhelming experimental studies mentioned, dry ball 

milling process, especially continuous dry ball milling process, is not fully understood and 

requires high level of empiricism in process development and scale-up. As the ball milling 

is energy-inefficient (Fuerstenau and Abouzeid, 2002), any optimization of the existing 

mills could significantly reduce energy consumption for a given throughput or increase the 

product for a given energy consumption. The development of advanced simulation tools 

could help engineers gain fundamental insights about the ball milling and enable them to 

optimize the process. For example, optimal operational conditions that achieve maximum 

production rate at a desired product fineness, considering production cost, for the closed-

circuit ball mills can be identified by simulating the cement mills and elucidating the 

impact of different ball size distribution/ configurations and air-classifier parameters. 
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Hence, in the subsequent sections, various facets of the modeling tools used for ball milling 

are introduced. 

 

1.2 Population Balance Modeling (PBM) 

1.2.1 PBM for batch ball milling 

1.2.1.1 Linear PBM for batch ball milling.  Particles are broken by application of 

mechanical forces that induce deformation–stresses in a mill. Although breakage of 

individual particles is regarded as “events,” the breakage of multi-trillion particles can be 

regarded as a “rate process,” akin to the rate of chemical processes. The population balance 

model (PBM) is used to simulate the spatio-temporal evolution of the PSD during milling 

processes (Varinot, 1997; Hounslow, 1998; Hennart et al., 2009), and it can also reveal 

breakage mechanisms. Material properties, process parameters, mill type/geometry, etc. 

affect the breakage kinetics. A common assumption in the PBM for batch milling is perfect 

mixing. This assumption is accurate for mills with small mill length to mill diameter ratios 

(Yildirim et al., 1999; Weedon, 2001). The size-discrete continuous-time PBM for a batch 

milling process is given by 
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j

dM t
S M t b S M t
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−

=

= − +   (1.5) 

 

where 1N i j    and 0(0)i iM M= . The size class indices i and j extend from size class 

1, which represents the coarsest particles, to size class N, which represents the finest 

particles in a mill. Mi is the mass fraction in size class i and t is the milling time. Si 
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represents the specific breakage rate of particle size xi. The breakage distribution 

parameter, bij, describes the fraction of broken particles in size class j that appears in size 

class i. Due to the conservation of mass, the specific breakage rate and the breakage 

distribution parameter have the following constraints: 

 

0NS = , 
1

1
N

ij

i j

b
= +

= , and 0iib =        (1.6) 

 

 On the right-hand side of Equation (1.5), the first term represents the disappearance 

rate at which particles in size class i are broken into smaller particles, while the second 

term represents summed rate at which particles in all j size classes (j < i) are broken into 

size class i. First-order breakage kinetics are assumed in traditional linear PBMs, which 

means that the specific breakage rate Si is time-invariant and dependent only on size xi 

during milling. In view of this, Equation (1.5) is referred to as the linear, time-invariant or 

shortly linear PBM. 

 Clearly, both Si and bij, are size-dependent functions. Smaller particles are more 

difficult to break due to the fact that less flaws (e.g., cracks) are affected by an impact. For 

example, the following expressions have been commonly used to describe the first-order 

specific breakage rate Si = ki and the cumulative breakage distribution parameter Bij (Austin 

and Luckie, 1972; Klimpel and Austin, 1977): 
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 Readers are referred to Prasher (1987) and Diemer and Olson (2002) for other ki 

and bij functions. The specific breakage rate and the breakage distribution parameters can 

be experimentally determined using the procedure proposed by Austin and Bhatia (1972) 

for batch mill processes. This method requires tedious milling experiments on numerous 

mono-dispersed feeds (narrow sieve cuts). In addition, Austin and Luckie (1972) outlined 

the BI, BII, and BIII methods to determine the breakage distribution parameters. These 

methods involve many assumptions such as the small extent of re-breakage of particles 

during a short milling period. Another major approach is the so-called back-calculation 

method based on coupled use of Equation (1.5) along with an optimizer to estimate the 

parameters (see Klimpel and Austin, 1970; Capece et al., 2011b). The optimization-based 

back-calculation method is fast and efficient and it does not require the preparation of 

mono-dispersed feeds in experiments.  

 Regarding ball milling, two major models for the first-order specific breakage rate 

ki were used: the Austin model (Austin et al., 1984) and the Kotake−Kanda model (Kotake 

et al., 2002). Both models successfully capture the physics in that there exists an optimal 

ball size for a given feed size or vice versa. Finer particles are more difficult to break due 

to the fact that fewer internal flaws are affected by an impact, while coarser particles are 

more difficult to efficiently nip between grinding balls. The Austin model, in which the 

impact of the process parameters (ball filling J, powder filling ratio U, and ball size dB) are 

involved, is given by  
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(1.8) 

 

 Here, a0, µ, , and  are specific breakage rate parameters. A1 and A2 are correction 

factors. c is the ratio of the operating rotation speed to the critical speed Nc. While ball 

filling J can be determined using 
( )

B

B B M1

m
J

V 
=

−
 in Equation (1.2), the interstitial 

filling ratio can be calculated by 

 

( )
P

P M B B1

m
U

V J  
=

−
 (1.9) 

 

where mp is the mass of the powder, p is the powder density, VM is the mill volume, and 

B is the void fraction of grinding balls at rest.  

 In the ball milling of various materials (silica glass, limestone, and gypsum) 

performed by Kotake et al. (2002), various feed particle sizes (narrow sieve cuts) and 

grinding ball sizes were investigated to experimentally determine their effect on the 

specific breakage rate parameter. The Kotake−Kanda model is given by 
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 Here, k1 is the specific breakage rate for a given mono-dispersed feed xf, and dB is 

a single ball size. The coefficients A3‒A7 are fitting parameters. Figure 1.4 shows the 

specific breakage rate parameter as determined by an empirical equation that Kotake et al. 

(2002) developed specifically to describe the influence of feed and ball sizes for this set of 

experiments. Note that k1 in the Equation (1.10) is K1 in Figure 1.4. As Kotake et al.’s 

experimental result show, a maximum of the specific breakage rate parameter is obtained 

at about 3 mm for this particular milling condition using a 30-mm ball size. Particle sizes 

finer than and coarser than 3 mm have a lower specific breakage rate corresponding to 

slower breakage rates. 

 

 

Figure 1.4 Experimental specific breakage rate of silica glass for various feed and ball 

sizes. K1 refers to the specific breakage rate for mono-dispersed feed xf.  

Source: Kotake et al. (2002) 
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 In the milling literature, the specific breakage rates for various materials were 

determined using lab-scale mills. However, these specific breakage rates cannot be applied 

directly to commercial mills due to the different breakage capabilities of mills of different 

sizes. Therefore, the specific breakage rates need to be scaled up. The rule for scaling up 

models to determine specific breakage rates, which was developed by Austin et al. (1984), 

is given by   
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x x
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(1.11) 
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where aT and µT are specific breakage rate parameters in which experiments were 

performed in a mill diameter DT with a ball size dB,T, a ball filling ratio JT, a powder filling 

ratio UT, and a rotation speed C,T, which is expressed as a fraction of the critical speed. 

Parameters N0‒N4 are correction factors. Then, the specific breakage rate for the ball mill 

(diameter D) operating with ball size dB, ball filling ratio J, powder filling ratio U, and 

rotation speed c can be determined using the scale-up rule in Equations (1.11)‒(1.16). In 

Equation (1.15), c = 1.2 for dry ball milling.  

1.2.1.2 Nonlinear PBM for batch milling processes.  Unfortunately, the predictive 

capability of the linear, time-invariant model, i.e., Equation (1.5), for the evolution of PSD 

deteriorates for prolonged milling during which significant amounts of fines are produced 

in a dense particle bed (Austin and Bagga, 1981; Austin et al., 1981a; Gutsche and 

Fuerstenau, 1999), typical of ball milling processes. Figure 1.5 displays three types of 

deviations from the linear PBM. Note that m in Figure 1.5 is mass fraction. Type I 

deviation occurs during the milling of a mono-dispersed feed. Considering only topmost 

size class (i = 1), solution of Equation (1.5) for the topmost size class is given by  

 

( ) ( )1 10 1expM t M S t= −  (1.17) 

 

 With a semi-log plot (horizontal axis is m1/m10 and vertical axis is t), the constant 

slope is equal to ‒S1/2.3. The slope is invariant to the initial mass fraction for topmost size 
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class (i = 1) for linear breakage kinetics (single curve for any M10). For a short milling of 

mono-sized feed (t < t*), the specific breakage rate is constant, which is compliant with the 

first-order breakage kinetics. However, for prolonged milling time (t > t*), the specific 

breakage accelerates or decelerates (Type I deviation). The time, t*, after which the 

deviation becomes significant, depends on the mode of operation, milling conditions, and 

properties of the material being ground. Type II and III deviations occur when a binary 

feed, comprising coarse and fine particles, is ground. The specific breakage rate of the 

coarse particles may increase (Type II) or decrease (Type III) upon the initial addition of 

fine particles, unlike linear breakage kinetics. These deviations from linear breakage 

kinetics were experimentally observed by Fuerstenau and Abozeid (1991) (Type II 

deviation) and Austin and Bagga (1981) (Type III deviation). Both deviations reveal the 

significant impact of the initial feed mixture or PSD on the specific breakage rate, which 

is a manifestation of complex nonlinear effects. 
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Figure 1.5 A schematic demonstrating the following characteristic deviations from linear 

PBM: breakage of a mono-dispersed feed (Type I deviation) and breakage of a binary feed 

comprising coarse and fine particles (Type II and Type III deviation). 

Source: Bilgili and Scarlett (2005a) 

 

 To address this complex milling behavior, a linear, time-variant (LTVAR) model 

was proposed (Austin and Bagga, 1981; Austin et al., 1981a). According to the model, the 

specific breakage rate was time-dependent and modulated by an appropriate acceleration–

deceleration function of time, ( )t . The specific breakage rate for all size classes was 

assumed to vary in the same way as the milling environment changed according to the 

acceleration–deceleration function. The LTVAR model is expressed by the following 

equation: 
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where 1N i j    and 0(0)i iM M= . Here, ( ) 1t = , ( ) 1t  , and ( ) 1t   refer to the 

constant specific breakage rate, acceleration, and deceleration, respectively. Also, by 

defining a transformed time 𝜃 as an effective first order milling time via 
0

( )

t

t dt =   and 

( )d dt t =  with  (0) = 0, t can be replaced with  and solved it in the domain of , as 

expressed by 
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 Although the LTVAR model can explain the acceleration or deceleration of the 

breakage, it cannot explain nonlinear effects associated with a wide, evolving PSD during 

milling or different feed PSDs (Type II and Type III deviations) because it assumes that 

(0) = 1 by definition. In other words, it cannot account for nonlinearities that arise from 

multi-particle interactions in a wide feed/initial PSD. Hence, a general nonlinear PBM 

theory is needed to describe the complex nonlinear effects in ball milling. 

 The complex nonlinear breakage behavior observed in batch milling experiments 

was successfully described by a nonlinear PBM framework formulated by Bilgili and 

Scarlett (2005a). Their nonlinear framework was also extended to continuous milling 

(Bilgili and Scarlett, 2005b), which is detailed in the next section. In their approach, the 

specific breakage rate of particles of size x is affected by the surrounding population with 
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generic particle size z  x. The specific breakage rate S is dependent on the particle 

population density; therefore, it can phenomenologically account for the impact of 

evolving PSD and mechanical multi-particle interactions. With these considerations, the 

specific breakage rate was composed of the first-order specific breakage rate function k(x) 

and the nonlinear function 
0

( , ) ( ) zF W x z M z d

 
 
 
 , a.k.a., the effectiveness factor, which 

expresses the contribution of generic size 𝑧 particles to the disappearance rate of size x 

particles due to multi-particle interactions. Note that both F[ ]and k(x) depend on the mill 

type, design variables, operation mode, operating variables, and material properties. The 

size-discrete continuous-time PBM for batch milling is represented by the following 

equation: 
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where 1N i j    and 0(0)i iM M= . 

 The set of coupled nonlinear ordinary differential equations (ODEs) in Equation 

(1.20) can account for occasional accelerated (Fi[ ] > 1) and decelerated (Fi[ ] < 1) breakage 

depending on the instantaneous PSD. This equation can also be simplified by assuming 

that the specific breakage rate of size x particles is primarily affected by the mass fraction 

of particles of size z  x, which can be written as 
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 Bilgili et al. (2015) discriminated different PBMs in their capability to fit the 

experimental data from Austin et al. (1990) on the fine, dry ball milling of quartz. Various 

PBMs were used in the fitting: time-continuous linear PBM (TCL-PBM, Equation (1.5)), 

linear time-variant PBM (LTVAR-PBM, Equation (1.19), and time-continuous nonlinear 

PBM (TCNL-PBM, Equation (1.21)) with two different effectiveness factors F (refer to 

EF1 and EF2 in Equations (1.22) and (1.23), respectively).  In all PBMs, ki and Bij were 

assumed to follow Equation (1.7).  
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 In the context of LTVAR PBM (Equation (1.19)), various forms of ki(t) can be 

used; the following specific function has been used to account for the deceleration of 

breakage rate due to presence of fines (Austin et al., 1984): 
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where ki is the (time-independent) specific breakage rate parameter, (t) is a time-

dependent deceleration factor, x80 is the temporally evolving 80%-passing size of the 

cumulative PSD, and 0, 
*
80x , and  are model parameters to be estimated. The slowing-

down factor 0 (0 < 0 < 1) scales the overall deceleration of the breakage rate, while *
80x  

and  modulate the change of (t) with x80. 

 Figure 1.6 illustrates the fit of all models to the experimental data, while Table 1.1 

presents the fitted parameters, sum of squared residuals (SSR), standard error of the 

residuals (SER), and standard error of the parameter (SEP). The coefficient of variation 

(COV) and p-value for each parameter were calculated (not shown for brevity). After 15 

min milling, the most commonly used form of the PBM, TCL-PBM, exhibits marked 

deviation from the cumulative PSD data (Figure 1.6), which can also be inferred from the 

relatively high SSR and SER. Note that even the slightest systematic deviation from 

experimental data in cumulative representation of the PSD is regarded significant because 

cumulative PSDs tend to mask random noise (Das, 2001). TCL-PBM was the least capable 

of fitting the experimental data among all models. The best fit, i.e., the lowest SSR and SER 

with all statistically significant parameters (p < 0.05), was achieved with the nonlinear 

PBM, TCNL-PBM with EF2 (see Table 1.1). If 99% confidence level (p < 0.01) is intended 

for the fitted parameters, only the nonlinear PBMs are capable of achieving that objective 

among all models. The LTVAR-PBM with 0 = 0 also performed well with similar fitting 

capability to that of TCNL-PBM2. This is not very surprising as the LTVAR-PBM with 
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Equation (1.19) is actually a specific form of the nonlinear PBM with the lumped kinetics 

assumption (see Bilgili et al., 2006). Overall, these results clearly demonstrate the 

superiority of the nonlinear framework over the traditional TCL-PBM for dense-phase fine 

milling of materials. Recent multi-scale modeling efforts (Capece et al., 2014; Capece et 

al., 2015), which will be detailed in the next section, have provided a mechanistic basis for 

the superiority of the TCNL-PBM for modeling dense-phase dry milling. 
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Figure 1.6 Fitting of the experimental ball milling data via various population balance 

models. Fitted parameters are presented in Table 1.1. TCNL-PBM1 and TCNL-PBM2 uses 

the effectiveness factors EF1 (Equation (1.22)) and EF2 (Equation (1.23)), respectively. 

Source: Experimental data (Austin et al., 1990) and fitted parameters (Bilgili et al., 2015)



 

Table 1.1 Estimated Parameters for Various Models Fit to the Batch Milling Data 

 
Parameter TCL-PBM LTVAR-PBM LTVAR-PBMb  TCNL-PBM1 TCNL-PBM2 

Estimated 

Value 

SEP Estimated 

Value 

SEP Estimated 

Value 

SEP Estimated 

Value 

SEP Estimated 

Value 

SEP 

A (min−1) 1.082 0.342 5.482 1.173 2.551 0.099 1.369 0.277 1.200 0.089 

m 1.136 0.012 1.118 0.015 0.316 0.128 1.091 0.015 0.812 0.027 

ϕ 0.737 0.267 0.615 0.138 0.313 0.132 0.522 0.187 0.395 0.099 

µ 1.053 0.094 0.779 0.074 1.327 0.081 0.816 0.085 0.979 0.031 

ν 5.122 2.348 3.151 0.641 7.400 0.202 3.195 0.500 3.768 0.124 

α ── ── ── ── ──  ── 7.327 2.763 0.320 0.073 

λa ── ── ── ── ── ── 3.382 1.307 3.604 0.064 

κo ── ── 0.155 1.121 ── ── ── ── ── ── 

Δ ── ── 7.635 1.188 0.969 0.059 ── ── ── ── 

𝑥80
∗ (µm) ── ── 824.193 0.369 792.580 0.244 ── ── ── ── 

SSR 1.40510−1 

3.18010−2 

6.78010−2 

2.23310−2 

3.47710−2 

1.59310−2 

5.76810−2 

2.05210−2 

2.84210−2 

1.44010−2 SER 

a λ is dimensionless for TCNL-PBM1 (with EF1) and has units of µmα for TCNL-PBM2 (with EF2) 
b with κo = 0 
Source: Batch milling data of Austin et al. (1990) and table 1.1 was excerpted from Bilgili et al. (2015) 
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1.2.2 PBM for open-circuit continuous ball milling 

Similar to batch mill, perfect mixing was usually assumed to describe mixing degree in 

continuous milling (e.g., Whiten 1974; Weedon, 2001). The linear PBM for continuous 

mill operated at steady state is given by 

 

1

,in ,out

1

0
i

i i i i ij j j

j

M M S M b S M 
−

=

= − − +   (1.25) 

 

where Mi,in and Mi,out represents mass fraction in size class i at inlet and outlet, respectively. 

 is the space-time or average residence time defined as the ratio of total mass hold-up to 

the mass flow rate of the feed. Weedon (2001) stated that perfect mixing model was 

assumed to avoid the consideration of residence time distribution in the mill and it seems 

to be adequate for ball mill having appropriate length. 

 Bilgili and Scarlett (2005b) investigated the impact of nonlinear breakage kinetics 

in continuous open-circuit milling in which the mixing degrees were ideal (i.e., perfect 

mixing and plug flow (no axial back-mixing)). It should be noted that unsteady state 

operations and internal separations that occurred in the mill were not considered in their 

study. For steady-state continuous milling operation, the size-discrete form of the nonlinear 

PBM assuming perfect mixing and plug flow are expressed in the following equations, 

respectively: 
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 In Equation (1.27), L = where η is the axial position from the inlet and L is the 

total length of the mill. Solutions to Equations (1.26) and (1.27) yield steady-state product 

PSDs. Figure 1.7 compares the product PSDs for the two idealized mixing regimes, i.e., 

perfect mixing and plug flow with otherwise identical conditions: the same  and inlet PSD; 

Gaussian mean = 600 𝜇m, standard deviation = 100 𝜇m. Bilgili and Scarlett (2005b) used 

nonlinear function  

1

1 1
N

q

i q

q i i

x
F M

x





−

=

  
 = + − 
   

 in their study. A higher λ signifies that 

the fine particles have a more significant deceleration effect on the coarse particles. For 

any given λ, the size distribution shifts monotonically toward finer sizes with an increase 

in average residence time . For any given , the PSD becomes coarser with increased 𝜆 

(16 vs. 0). For a given 𝜆 and , the plug flow produces a finer PSD than perfect mixing for 

sizes ranging from 100 to 800 𝜇m due to the absence of axial back-mixing. 
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Figure 1.7 A comparison of the PSDs for perfect mixing (CSTM) and plug flow (PFTM) 

for various values of average residence time  and multi-particle interaction parameter λ. 

Source: Bilgili and Scarlett (2005b) 
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 The above models did not consider non-ideal mixing regimes in the mill. 

Experimental studies based on tracer studies in the mills suggest that finite axial back-

mixing takes place. In these studies, residence time distribution (RTD) was measured. 

Analogous to the determination of conversions in chemical reactors, the degree of the 

particles’ mixedness in the mill can be quantifiably assessed using RTD function, which 

can be experimentally obtained from the pulse injection of an inert chemical (i.e., tracer) 

(Austin et al., 1971; Shoji et al., 1973; Fuerstenau et al., 1986). The tracer pulse is injected 

at the mill inlet and the concentration of the tracer is measured at the mill outlet. The RTD 

function can be determined as expressed in Equation (1.28). 

 

0

( )
( )

( )d

C t
E t

C t t


=



 
(1.28) 

 

where E(t) and C(t) are the RTD function and the concentration of tracer leaving the mill 

between time t and t+dt, respectively. Figure 1.8 compared experimental RTD and 

computed RTD using convective-dispersion model, showing a good agreement. In Figure 

1.8,  refers to inverse of Peclect number which describes particle transport by convection 

relative to dispersion. 
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Figure 1.8 Comparison of dimensionless RTDs between experimental and convective-

dispersion model. 

Source: Austin et al. (1971) 

 

 The convection-dispersion model assumes that particles are well-mixed in the 

radial direction and that the hold-up did not significantly change throughout the length of 

the mill. The size- and time-continuous convective dispersion PBM proposed by Mihalyko 

et al. (1998) is expressed by the following equation:  
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 Md(x,y,t) is the mass density of size x particles at longitudinal location y and time t. 

Moreover, D and u denote the dispersion coefficient and the average velocity. Mihalyko et 

al. (1998) demonstrated the impact of the extent of mixing on the PSD; however, they did 

not consider the complex nonlinear kinetics effects observed in the literature. Their result 

showed that lower uL/D led to coarser product size. Also, the impact of internal 

classification within the mill was not modeled. Bilgili and Scarlett (2005b), however, did 

account for this. Unfortunately, neither theoretical study validated their simulations with 

any experimental results in continuous open-circuit ball milling. 

 The tanks-in-series model, which assumes perfect mixing in each tank (cell), 

accounts for finite axial mixing effects in both open- (Genc, 2016) and closed-circuit ball 

milling (Austin et al., 1975; Benzer, 2005). In this model, there is no back-flow of materials 

between the tanks. While this class of PBMs shows promising results in accounting for the 

finite axial mixing effects and fitted experimental data for a given set of process conditions 

well, there are many caveats and unresolved issues. Before delving into such issues, it 

should be mentioned that the tanks-in-series model is the reduced form of the cell-based 

PBM, which does consider axial back-flow between adjacent cells. The schematic of cell-

based model for the open-circuit continuous milling equipped with discharge screen is 

showed in Figure 1.9. 
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Figure 1.9 Schematic model of a continuous mill represented as a series of n well-mixed 

cells with a discharge screen at the end. Cells exchange particles at the rate 𝑅̇ (axial back-

flow rate). The mill has the effective length L. ṁin and ṁout refer to feed and production 

rates, respectively.  

Source: Adapted from Kwade and Schwedes (2007) 

 

 In addition, Kwade and Schwedes (2007) demonstrated that the cell-based model 

could be more accurate than the convection-dispersion model when describing the mixing 

degree in a wet stirred media mill. It is critical to note that no cell-based PBM approach 

has been applied dry ball milling yet. Finally, all of the PBMs mentioned considered 

steady-state operation. Hence, they do not allow for the analysis of unsteady-state operation 

and impact of various disturbances. None of these studies considered nonlinear breakage 

kinetics commonly observed in dry ball milling; they all assumed traditional linear 

breakage kinetics in their models. 

1.2.3 Classification modeling 

An air classifier is an important machine in the cement milling process. In a cement plant, 

closed-circuit ball milling is a conventional milling system. The performance of an air 

classifier can be examined using a Tromp curve, which is defined as the fraction of the 

classifier’s feed stream sent to the classifier’s reject stream. Austin and Klimpel (1981) 

proposed a three-parameter Tromp curve, which is expressed as: 
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where Ti is the mass fraction of particles in size class i in the classifier’s feed sent to the 

reject stream. d50c, , and  are parameters describing the corrected cut size, bypass 

fraction, and sharpness. It is critical to note that the classification model in Equation (1.30) 

cannot explain the fish-hook phenomenon which has been observed experimentally.  

 Napier-Munn et al. (1996) formulated a classification model in terms of an 

efficiency curve. They defined the efficiency curve Eoa,i as the mass fraction of particles in 

size class i in the classifier’s feed sent to the product stream, i.e., Eoa,i = 1‒ Ti. The five-

parameter efficiency curve (Napier-Munn et al., 1996) is given by 
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 (1.31) 

 

where C is defined as 1‒bypass fraction, i.e., 1‒;  is the sharpness parameter, and  is 

the fish-hook parameter. * is a parameter that ensures Eoa,i = C/2 for xi = d50c, thus 

preserving the definition of d50c. The classification model in Equation (1.31) accounts for 

the bypass fraction, sharpness, and the fish-hook phenomenon. It should be noted that the 

classification model in Equation (1.31) was also applied to account for air-sweeping action, 

i.e., internal separation, (Benzer, 2005; Genc, 2016).  
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 Besides fitting Tromp parameters using experimental data (Ergun at al., 2004; 

Benzer, 2005; Altun, 2018), there have been a few attempts to correlate the parameters in 

Equation (1.31) with the operation parameters in closed-circuit ball milling. Those efforts 

can be divided into two groups: (i) fixed classification models according to which the 

classification function (Tromp curve or efficiency curve) of an air classifier depends solely 

on the classifier parameter (Altun et al., 2016), and (ii) variable classification models 

according to which the classification function also depends on the incoming PSD and dust 

loading (Altun and Benzer, 2014). Altun et al. (2016) performed a lab-scale experiment 

with the Alpine 100 MZR. This classifier can be operated with rotor speeds in the range of 

1,000‒15,000 rpm and airflow rates of 5‒50 m3/h. They reported the following correlations 

between the parameters of the classification model and the classifier operation parameters 

for a cement clinker: 

 

( )
0.9165

rpm274.95 AF RS =  (1.32) 

 

( )rpm136.5 1.4362AF RS = − +  (1.33) 

 

( )rpm23.8ln 199.21C AF RS= +  (1.34) 

 

( )50c rpm2727 1.7929d AF RS= −  (1.35) 
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where AF is airflow in m3/h, RSrpm is rotor speed in rpm, d50c is corrected cut size in 𝜇m. It 

should be mentioned that the classification model using the correlations in Equations 

(1.32)‒(1.35) have not been applied to closed-circuit ball milling. Experiments have been 

performed to find only the correlation between the classifier’s operation parameters 

(airflow rate and rotor speed) and the parameters for an efficiency curve in the lab-scale 

experiments.  

 While Altun et al. (2016) studied a fixed classification model based on a lab-scale 

classifier, Altun and Benzer (2014) proposed a variable classification model considering 

the large-scale operation parameters of the classifier and the separator feed properties. 

Their correlations for cement clinker are expressed as follows: 

 

( )
1.2679
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1.41710.4417 0.1293DL = −  (1.37) 
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where D is the diameter of the classifier’s chamber in m. DL is dust loading in m3/kg, which 

is defined as the ratio of the mass flow rate at the mill outlet to AF. RS is rotor speed in 

m/h, and 
'F  is the mass flow rate at the mill outlet having sizes between 3 𝜇m and 36 𝜇m 

in kg/h. Interestingly, the variable classification models (Equations (1.36)‒(1.40)) have not 

been coupled with a PBM to predict the PSD from a closed-circuit ball mill operating under 

milling conditions that are different from those used to estimate the parameters in the 

classifier model. 

1.2.4 PBMs for closed-circuit continuous ball milling 

There have not been many studies of simulations of closed-circuit cement clinker ball 

milling. While perfect mixing was generally assumed to describe the mixedness degree of 

particles in the mill (e.g., Jankovic et al., 2004), some researchers applied the tanks-in-

series model to account for the mixing degree in the mill (Austin et al., 1975; Benzer, 2005; 

Altun, 2018). Austin et al. (1975) concluded that the tanks-in-series model could explain 

the mixing degree in the mill based on their earlier residence time distribution study (Austin 

et al., 1971). By fitting the residence time distribution in the large-scale mill with the tanks-

in-series model, they showed that the 10-tank model could explain the mixing degree in 

the mill. A total average residence time  of 5.58 min was reported. In their study, the 

classification model in Equation (1.30) was applied. They also used a constant scale-up 

factor of 2.75 to project the specific breakage rate from the lab mill’s diameter of 200 mm 

to a commercial mill’s diameter of 4000 mm. However, their model could examine the 

influences on the product PSD only during the steady-state operation. 

 While Austin et al. (1975) did not consider air-sweeping action, Benzer (2005) 

proposed a fully air-sweeping model for steady-state operation. He used the classification 
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model in Equation (1.31) and determined the classification parameters by fitting the 

classification model into existing performances of air classifier (for external separation) 

and ball mill (for internal separation which is air-sweeping) in a cement plant. He also 

analyzed the PSDs of samples taken along the axial direction of the mill during a sampling 

survey. He concluded that the classification model in Equation (1.31) could be used for 

both air classification and air-sweeping action. The simulation results (i.e., product PSD 

and reject rate) were validated with plant data, showing good agreement. However, it is 

critical to mention that the modeling proposed by both Austin et al. (1975) and Benzer 

(2005) cannot account for (i) unsteady-state operation, (ii) complex nonlinear breakage 

kinetics, (iii) internal separation by intermediate and discharge screens (mechanical 

separation), and (iv) classification induced by air-sweeping action in a single, integrated 

model. Also, the most important gap in their models is that they did not fully couple the 

ball mill with the classifier, i.e., the classification performance of the air classifier did not 

depend on the ball mill’s performance. 

1.2.5 PBMs for vertical roller mill 

Vertical roller mills (VRM) have been used for cement milling since the 1980s (Tamashige 

et al., 1991). It has been reported that the specific energy consumption of VRMs is lower 

than that of a traditional ball mill (Tamashige et al., 1991; Xu et al., 2015). A VRM 

combines particle breakage and classification processes into a single-unit operation. 

Figure 1.10 presents a general flow diagram of the VRM milling process. Figure 1.11 

presents a detailed view of VRM operations (Strohmeyer, 2013).  
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Figure 1.10 A general schematic of VRM operations. 

Source: Strohmeyer (2013) 

 

 A simplified process operation can be briefly explained as follows. First, fresh 

particles are continuously fed to the VRM by a feeder. These fresh feed particles are mixed 

with coarse particles on the milling table, which are recycled from the built-in air classifier 

on top of the VRM. The milling pressure is transferred from the hydraulic cylinder to rollers 

for particle breakage. The particles retained on the rotating table due to the dam ring at the 

table’s edge are broken by rollers. The rollers are rotated according to the motion of the 

rotating table. Therefore, both compression and shear forces from the rollers are applied 

for particle breakage (Strohmeyer, 2013). Sufficiently fine particles are lifted to the air 

classifier by air flow induced by an external mill fan, and fine products passing through the 

air classifier are collected as the final product. Finally, coarse particles are recycled back 
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to the table and mixed with fresh feed particles. This process takes place continuously 

inside the VRM. 

 

 

Figure 1.11 A detailed view of VRM operations. 

Source: Strohmeyer (2013) 
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In the context of the PBM, only a limited number of studies on VRM for cement 

milling (Shahgholi et al., 2017; Fatahi and Barani, 2020; Fatahi et al., 2022) are available 

in the literature. All these works were conducted by the research group in Iran. The 

modeling approach from this group can be summarized as follows. Cumulative breakage 

distribution parameters used in the PBM were obtained from lab-scale data using a 

compression piston (Shahgholi et al., 2017), where the shear force could not be accounted 

for. The cumulative breakage distribution parameter was assumed to be material dependent 

and did not vary with the operation conditions. The experimentally obtained RTD data of 

full-scale VRM for cement mills was fitted with various RTD models. Their results (Fatahi 

and Barani, 2020) showed that the 5-tanks-in-series model could be accurately fitted with 

the experimental RTD of VRM. The average residence time (space time) was reported to 

be 1.12 min. However, when their PBM simulation was performed, they assumed ideal 

perfect mixing (i.e., one tank), which contradicts their RTD study (Fatahi and Barani, 

2020). These previous modeling studies applied a steady-state, perfect mixing PBM for a 

continuous mill to fit the experimental cement product PSD at steady state. Their model 

considered only breakage kinetics while disregarding particle classification in the VRM. 

Neglecting classification could lead to an erroneous interpretation of the breakage kinetics 

and erroneous specific breakage rate parameters (falsified kinetics). Given the limitations 

of prior work, there is a need to develop a robust model of VRM that accounts for particle 

classification. 
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1.3 Discrete Element Modeling (DEM) 

While the PBM can provide insight into the milling process at the process-length scale, it 

yields a limited understanding of milling at the particle-length scale. In PBM, the specific 

breakage rate parameter and the breakage distribution parameters are fitting parameters, 

which do not model the actual particle breakage. Moreover, most PBMs in the literature do 

not associate the specific breakage rate to material parameters and machine–process 

parameters explicitly. To gain further insight into the breakage at the particle ensemble 

scale, the discrete element method (DEM), developed by Cundall and Strack (1979), which 

models the mechanical inter-particle interactions, can be used. DEM solves the 

translational and rotational motion of particles using Newton’s law of motion. The particle 

motion and the force of the contact between particle and particle or particle and geometry 

are resolved and updated every timestep. The mechanical interaction between particles can 

be described by various contact models. For the sake of brevity, only the most common 

model, the Hertz–Mindlin (no-slip) model, is detailed here. The normal force Fn and the 

tangential force Ft are expressed in Equations (1.41) and (1.42): 
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 On the right-hand side of Equations (1.41) and (1.42), the first term represents 

elastic force, and the second term represents the damping force. E*, G*, R*, and m* are, 

respectively, the equivalent Young’s modulus, equivalent shear modulus, equivalent 

radius, and equivalent mass. n is normal particle overlap, and t is tangential particle 

overlap. rel

nv  and rel

tv  are the normal and tangential components of the relative velocity 

between two generic particles at contact. 

 The DEM approach is mechanistic and deterministic, in which the interaction and 

motion of particles is tracked. Therefore, it is highly computationally expensive, and often 

unsuitable for industrial applications. DEM was first utilized in the mineral field to 

simulate the motion of the balls in the mill by Mishra and Rajamani (1992). Initially, DEM 

was used for qualitative studies; for example, to study granular motion in the mill (Mishra, 

2003; Zhu et al., 2008). An application of DEM used in rotating drum as example is showed 

in Figure 1.12 as a spatial distribution. Various parameters (e.g., number of collisions and 

collision velocity) can be tracked by DEM. Since then, the method has been rapidly 

developed to predict breakage efficiency through the specific breakage rate parameter via 

simulation of particle interactions obtained by DEM (e.g., Datta and Rajamani, 2002; 

Tavares and Carvalho, 2009; Wang et al., 2012; Capece et al., 2014). 
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Figure 1.12 Spatial distribution of (from left to right and from top to bottom) porosity, 

coordination number, force network, total force, collision velocity, and number of 

collisions in rotating drum at rotation speed of 20 rpm. 

Source: Yang et al. (2003) and Zhu et al. (2008) 
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1.4 Research Gaps and Challenges 

This critical review has helped to identify various challenges and knowledge gaps in the 

modeling of closed-circuit dry ball milling and the need for model-guided process 

optimization for an industry, i.e., the cement industry, that heavily relies on empirical work 

and guidance from mill manufacturer’s best practices. The need for mechanistic modeling 

such as PBM, DEM, and their combinations as opposed to statistically-based models is 

clear; there is great opportunity to optimize existing milling plants via optimization of e.g. 

ball size distribution and classifier parameters. This literature review revealed that there is 

not a single, integrated PBM for dry ball milling that can account for (i) unsteady-state 

operation, (ii) variable classification performance, (iii) finite back-mixing, (iv) internal 

separations, (v) optimal distribution of multi-sized balls in different compartments of the 

mill, (vi) optimal operation parameters of the air classifier, and (vii) a scale-up factor of 

the specific breakage rate. More specifically, the following features in the closed-circuit 

ball mill have not been addressed in any study, to the best knowledge of the author: 

• A PBM approach in which an external air classifier is fully coupled with the 

performance of a ball mill. No variable classification model has been used along 

with the PBM for the mill considering dust loading and the amount of fine 

particles that are fed from the mill to the air classifier. 

• Ball size distribution optimization 

• Air classifier’s operation optimization 

 To address all these gaps, a more advanced and integrated PBM framework is 

needed, and that is the primary concern of this dissertation. As a large-scale operation (ball 

mill and VRM) is in our interest, the challenge is also to formulate an approach that couples 

PBM and DEM to bring the physics of particle breakage into the models and make the 

approach more mechanistic.  
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1.5 Objective and Dissertation Outline 

The main goal of this dissertation is to develop a credible simulation tool that can provide 

fundamental insights into and process understanding of ball milling and, ultimately, 

suggest manipulated process variables for process optimization. To achieve these goals, a 

true unsteady-state simulator (TUSSIM), which is based on cell-based PBM, was 

developed (Chapter 2). With TUSSIM, comprehensive parametric studies of ball milling 

of cement clinker were performed to investigate the impact of various operation parameters 

on the ball milling of cement clinker operating in open circuit (Chapter 3) and closed 

circuit (Chapters 4 and 5). Breakage kinetics parameters of pre-milled cement clinker 

were determined using data obtained from a lab-scale batch ball mill with traditional steel 

balls and alternative alumina balls (Chapter 6). In the same chapter, DEM was used to 

simulate ball motion and determine the impact energy spectra of ball–ball collisions to 

develop mechanistic understanding of collision-induced breakage. Finally, TUSSIM was 

used in an inverse framework to determine the breakage kinetics of full-scale VRM for 

cement milling (Chapter 7). This dissertation consists of eight chapters, including 

Chapter 1: Introduction. 

In Chapter 2, the study formulates a cell-based PBM simulator (TUSSIM) that 

accounts for internal classification due to the discharge screen and the cushioning action 

of finer particles on coarser ones (nonlinear breakage kinetics) during continuous dry 

milling. The model is capable of simulating the spatio-temporal evolution of the particle 

size distribution (PSD) in mill content, total mass hold-up, and product PSD. Moreover, 

the cell-based PBM realistically accounts for the degree of non-ideal mixing and associated 

residence time distribution in the continuous mills. 
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In Chapter 3, the TUSSIM developed from Chapter 2 is utilized to simulate full-

scale, multi-compartment cement ball milling to gain fundamental insights into the impacts 

of ball size distribution (BSD), the number of milling compartments, and classifying liners 

on cement size distribution during open-circuit continuous ball milling. 

Chapter 4 presents the incorporation of a variable Tromp curve model for the air 

classifier into the TUSSIM to simulate a full-scale closed-circuit cement ball mill and 

optimize the operation. The impacts of the air flow rate and rotor tip speed on the PSD and 

mass flow rate in the circuit, as well as the Tromp curve, were examined. Process 

optimization using a combined global optimizer−differential algebraic equation (DAE) 

solver was implemented. This approach enables the identification of optimal circuit 

operation by considering the quality attributes of the cement product and the production 

rate simultaneously. 

Chapter 5 discusses the use of the coupled TUSSIM with the variable Tromp curve 

model described in Chapter 4 and examines the impact of ball mixture and BSD, sheds 

light on the selection of the number of compartments, and assesses the impact of ball 

classification due to the classifying liner. Further, process optimization for BSD was 

performed to identify the optimal BSD using a combined global optimizer−DAE solver. 

Chapter 6 discusses the results of the breakage kinetics of pre-milled cement 

clinker in a lab-scale batch ball mill loaded with steel or alumina balls, as well as their 

mixtures. The specific breakage rate and breakage distribution parameters of the cement 

clinker were determined using a global optimizer-based back-calculation method. DEM 

simulations were performed to obtain microdynamic behavior of ball–ball collisions and 

explain the impacts of the ball size–type experimentally observed. Moreover, the findings 
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are expected to guide the feasibility of the replacement of traditional steel balls with 

alumina balls in continuous ball milling circuits, which could significantly reduce the 

energy consumption and cost of manufacturing of cement products. 

In Chapter 7, the feasibility of modeling a full-scale VRM for cement milling via 

TUSSIM is examined. Two process configurations (open circuit with internal classification 

and closed circuit with external classification) were tested. 

Chapter 8 provides the conclusions and recommendations for future work. 
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CHAPTER 2 

A CELL-BASED PBM FOR CONTINUOUS OPEN-CIRCUIT DRY MILLING: 

IMPACT OF AXIAL MIXING, NONLINEAR BREAKAGE, AND SCREEN SIZE 

 

This theoretical study examined the impact of the degree of mixing, nonlinear particle 

breakage, and screen opening size on the particle size distribution (PSD) and mass hold-up 

in continuous dry mills with internal classification. A cell-based population balance model 

(PBM) incorporating a non-ideal screen model was formulated, wherein the back-mixing 

ratio and number of cells modulated the extent of axial mixing. The set of differential–

algebraic equations (DAEs) was solved for the spatio-temporal evolution of the PSD in the 

mill and the product stream. The simulation results suggest that a smaller screen opening 

delayed the attainment of the steady state, increased the hold-up, and yielded a finer product 

PSD. The cushioning action of fines resulted in a coarser product PSD; however, a screen 

with a smaller opening mitigated this effect. The cell-based PBM predicted various features 

of experimental milling observations while providing insights into the mixing–nonlinear 

breakage–classification interplay. 

 

2.1 Introduction 

Particles with a higher specific surface area usually exhibit more desirable functional 

responses, such as higher reactivity (Vikesland et al., 2007), faster dissolution (Kim et al., 

2021), better content uniformity (Rohrs et al., 2006), and higher compressive strength 

(Tsivilis et al., 1990; Zhang and Napier-Munn, 1995) in final products. Milling, which has 

been commonly used in a multitude of industries (Prasher, 1987), reduces the size of the 

particles, thereby increasing their specific surface area, for downstream processing or end 
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use. Practically, milling processes operate in either batch or continuous mode (Prasher, 

1987). While batch mode is suited to bench-scale, laboratory or small-scale operation, 

continuous mode is commonly used in pilot scale and large-scale operations (King, 2001).  

 

 

Figure 2.1 Sketches of the continuous dry milling process incorporating an internal 

discharge screen: (a) ball mill and (b) conical screen mill. 
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 In the continuous mode, coarse feed particles are continuously fed into the inlet and 

through the mill body and then ground by grinding media or various rotating milling tools. 

The fine product particles passing through a discharge screen exit at the outlet in the open-

circuit operation, where there is no external classifier. Depending on the specific design of 

the continuous mill, the discharge screen retains the milling media such as balls or rods as 

well as some oversized particles (Figure 2.1a) or restricts the passage of oversized particles 

completely in the absence of milling media (Figure 2.1b). The oversized particles retained 

in the milling chamber are subjected to further impact–deformation and breakage until they 

pass through the screen opening and get discharged as product. 

 Earlier studies (Reid, 1965; Austin, 1971/1972; Marchand et al., 1980; Mihalyko 

et al., 1998; King, 2001; Cho and Austin, 2002) have revealed that the degree of particle 

mixing affects the particle size distribution (PSD) of the product. Analogous to the analysis 

of degree of mixing in chemical reactors (Fogler, 2006), the degree of the particles’ 

mixedness in continuous mills can be quantifiably assessed using a residence time 

distribution (RTD) function. The RTD can be experimentally obtained from the pulse 

injection of an inert chemical, i.e., a tracer (Austin et al., 1971; Shoji et al., 1973; Abouzeid 

et al., 1974; Gardner et al., 1977; Rogers and Gardner, 1979; Swaroop et al., 1981; Austin 

et al., 1983; Fuerstenau et al., 1986; Rogovin et al., 1988; King, 2001). A tracer pulse is 

injected at the mill inlet and the concentration of the tracer is measured at the mill outlet. 

Although the RTD data clearly indicate that finite axial back-mixing takes places in many 

continuous open-circuit mills (Gardner and Sukanjnajtee, 1973; Gardner et al., 1977; 

Abouzeid et al., 1980; de Oliveira and Tavares, 2018), many researchers assumed idealized 

mixing regimes, i.e., perfect mixing (Morrell and Man, 1997; Yildirim et al., 1999, 
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Weedon, 2001; Jankovic et al., 2004) or plug flow (Reid, 1965; Horst, 1967; Furuya et al., 

1971; Luckie and Austin, 1972; King, 2001), for the sake of simplicity in their population 

balance models (PBMs). Other researchers used the convective dispersion model (Horst, 

1967; Austin et al., 1971; Mika, 1976; Austin et al., 1983; Austin et al., 1984; Mihalyko et 

al., 1998) and the tanks (mixers)-in-series model (Gardner and Sukanjnajtee, 1973; Austin  

et al., 1975; Austin and Luckie, 1984; Benzer et al., 2001a; Benzer et al., 2001b; Genc et 

al., 2013; Wang et al., 2015; de Oliveira and Tavares, 2018) to describe the finite mixing 

in continuous mills and fit the RTD data. The convective dispersion model assumes that 

particles are well-mixed in the radial direction; the hold-up does not significantly change 

throughout the length L of the mill, and the axial dispersion coefficient D and average axial 

velocity u of the powder are constant. Readers are referred to Appendix A.1, where the 

size- and time-continuous convective dispersion PBM (Mihalyko et al., 1998) for 

continuous milling is reported. The significance of particle transport by convection relative 

to dispersion is indicated by the Péclet number NPe; i.e., NPe = uL/D, which is obtained 

through fitting of the convection–dispersion model to experimental RTD data. The 

domains of particle size, axial distance from the feed section, and time in Equation (A.1) 

were discretized, and the resulting system of equations were solved (Mihalyko et al., 1998). 

The simulations suggest that the product PSD becomes coarser as the extent of axial mixing 

increases, i.e., lower NPe, corresponding to higher D. Although that study (Mihalyko et al., 

1998) presented the unsteady-state convective dispersion PBM, the unsteady-state 

solutions for a continuous open-circuit mill were not provided. Moreover, possible 

nonlinear breakage kinetics and internal classification effects were not considered either. 



 

52 

 In the tanks-in-series PBM approach, the mill content is idealized as a series of 

well-mixed tanks without any back-mixing between adjacent tanks. The size-discretized 

form of the tanks-in-series PBM for steady-state operation is described as follows (Austin 

et al., 1975): 
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1

, , , , 1 ,

1

0
i

i i z i j j j z i z i z

j

n
k M b k M M M



−

−

=

= − + + −  (2.1) 

 

with Mi(0) = Mi,0, where i and j are the size class indices. Size classes 1 and N contain the 

largest and smallest particles, respectively. z is the index for the tanks; tank 1 represents 

the first tank at the entrance and n refers to the last tank at the discharge. If only one tank 

is considered, Equation (2.1) turns into the continuous stirred tank mill (CSTM) model. 

The first-order specific breakage rate is ki, while the breakage distribution parameter is 

denoted as bi,j. The mass fraction in size class i is Mi, and τ denotes the space-time or mean 

residence time (ratio of the total mass hold-up to the mass flow rate). The tanks can have 

identical average residence time as implied in Equation (2.1) or variable residence time 

(hold-up) with some modification of Equation (2.1). Gardner and Sukanjnajtee (1973) 

performed an RTD study using a radioactive tracer in a continuous ball mill sized 12 in in 

diameter and 12 in in length. Their results showed that a 3-tanks-in-series model can 

describe the experimental RTD for two feed rates. A similar result was obtained by Oliveira 

and Tavares, but with different mean residence time in each tank (de Oliveira and Tavares, 

2018). Austin et al. (1975) reported that a 10-tank model fit the experimentally measured 

RTD of industrial dry cement ball mills. Furthermore, based on a sampling survey for 

commercial mills, Benzer et al. (2001b) applied a 4-tanks-in-series model for a dry ball 
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mill.  

 The cell-based PBM approach, which was originally formulated by Whiten (1974), 

has been used to describe the extent of back-mixing and particle breakage in continuous 

wet stirred media milling (Lira and Kavetsky, 1990; Berthiaux et al., 1996; Kwade and 

Schwedes, 1997; Fadhel et al., 1999; Varinot et al., 1999; Frances, 2004; Kwade and 

Schwedes, 2007). In this approach, the mill is idealized to consist of well-mixed cells 

(Figure 2.2). Unlike the tanks-in-series model, an axial recirculation rate Ṙ of particles 

between adjacent cells is explicitly considered. The dimensionless form of Ṙ, i.e., the axial 

back-mixing ratio R is the ratio of the recirculation rate between cells Ṙ to the mass flow 

rate through a cell ṁin. The tanks-in-series model is clearly a subset of the cell-based PBM 

and recovered when R is set to 0. Kwade and Schwedes (2007) found for a wet stirred 

media mill that the cell-based model accurately describes the mixedness degree of particles 

in a horizontal wet stirred media mill. In their study, the number of cells was set to be equal 

to the number of stirrer discs. Therefore, only one parameter—the back-mixing ratio R—

was fitted to the measured RTD. Although they estimated R by fitting the cell-based model 

to the RTD, the evolution of the PSD using the cell-based approach was not reported. 

Furthermore, Fadhel et al. (1999) and Frances (2004) used the cell-based PBM approach 

with some modifications to fit experimental steady-state PSDs in wet stirred media mills.  
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Figure 2.2 Schematic model of a continuous mill represented as a series of n well-mixed 

cells with a discharge screen at the end. Cells exchange particles at the rate 𝑅̇. The mill has 

the effective length L. 

Source: Adapted from Kwade and Schwedes (2007) 

  

 Besides the degree of mixedness, as one can intuitively expect, the breakage 

kinetics of particles tremendously affects the product PSD obtained from the continuous 

mills. Linear (first-order) breakage kinetics is the fundamental assumption in most of the 

milling studies (Reid, 1965; Mika, 1976; Austin et al., 1983; Mihalyko et al., 1998; Varinot 

et al., 1999; Weedon, 2001). However, this assumption has been shown to be invalid 

especially for prolonged fine milling of materials and/or dense-phase milling processes, 

wherein particles encounter enduring multi-particle mechanical interactions (Bilgili et al., 

2006; Bilgili et al., 2017). In fact, since the mid-70s, many researchers (Shoji and Austin, 

1974; Austin and Bagga, 1983; Lytle and Prisbrey, 1984; Fuerstenau and Abouzeid, 1991; 

Verma and Rajamani, 1995; Fuerstenau et al., 2004; Tavares and de Carvalho, 2009) have 

criticized the linear PBMs because they evidently deviated from the experimental 

observations. To address such deviations, for example, Austin and Bagga (1981) proposed 

a time-dependent PBM that was formulated for well-mixed batch milling. Although their 

proposed model can precisely explain the acceleration or deceleration of the breakage of a 

mono-dispersed feed, it cannot explain the nonlinear breakage of a binary feed 

(combination of coarse and fine particles). Bilgili et al. (2006) and Bilgili and Scarlett 
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(2005a) proposed a nonlinear PBM framework in which the specific breakage rate is the 

product of the first-order specific breakage rate ki and the nonlinear functional Fi[ ], which 

phenomenologically describes the impact of multi-particle interactions among particles of 

different sizes. The impact of such multi-particle mechanical interactions on the breakage 

kinetics in batch dry milling was elucidated via combined PBM–DEM (discrete element 

method) simulations (Capece et al., 2015; Capece et al., 2018). The nonlinear PBM fitted 

the experimental PSD evolution of quartz in a laboratory tumbling ball mill (Austin et al., 

1990) better than the linear PBM and the time-dependent PBM (Capece et al., 2011a; 

Bilgili et al., 2017). The PBM–DEM simulations (Capece et al., 2015) elucidated the 

cushioning action of the finer particles on the slower breakage of the coarser particles in a 

particle population during dry ball milling. That study (Capece et al., 2015) demonstrated 

that finer particles in a particle bed increase mechanical energy loss and distribute inter-

particle forces more extensively thereby preventing or reducing the breakage of the coarser 

particles.   

 Surprisingly, there is limited investigation as to how and to what extent nonlinear 

particle breakage kinetics affect PSD evolution during continuous dry milling. PBMs with 

the convection dispersion model and the tanks-in-series model, as well as the 

abovementioned cell-based PBMs do not consider nonlinear breakage kinetics. Moreover, 

most of the aforementioned models assume steady state, and others do not consider the 

process dynamics. Hence, there is a need for a better understanding of the factors that affect 

the attainment of a steady state milling operation. Bilgili and Scarlett (2005b) extended 

their nonlinear PBM to open-circuit steady-state continuous milling processes assuming 

two ideal mixing regimes: well-mixed (perfect or infinite axial back-mixing) and plug flow 
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(zero axial mixing). Their simulation results for a well-mixed CSTM and a plug flow tube 

mill (PFTM) revealed that the PFTM produces finer particles than the CSTM. However, 

they did not consider finite axial mixing, the internal separation caused by a discharge 

screen, and unsteady-state operation. Based on our review of the continuous open-circuit 

dry milling literature, it is fair to assert that the impacts of finite axial back-mixing, 

nonlinear breakage kinetics, and internal classification on the spatio-temporal evolution of 

the PSD inside the mill and the product PSD have not been investigated holistically in a 

single study before.  

 The aim of this theoretical study is to gain insights into the impact of finite axial 

mixing, the nonlinear breakage kinetics, and the opening size of the discharge screen on 

the product PSD, total mass hold-up, and attainment of steady-state in open-circuit 

continuous mills via simulations. To achieve this objective, we have formulated a cell-

based PBM that accounts for the internal classification due to the discharge screen and the 

cushioning action of finer particles on the coarser ones (nonlinear kinetics). As another 

novelty, the cell-based PBM consists of a system of differential–algebraic equations 

(DAEs), which were solved efficiently and accurately using a variable order–step-size 

ordinary differential equation (ODE) solver. Our model is capable of simulating the spatio-

temporal evolution of the PSD in the mill content, total mass hold-up, and the product PSD. 

First, the consistency of the cell-based PBM was established theoretically by reproducing 

the steady-state PSDs in the limiting cases of perfect mixing and plug flow (no axial 

mixing). Then, simulations were performed to examine the impact of the final axial mixing, 

as characterized by the number of cells and the back-mixing ratio. Reasonably accurate 

parameter values were used in the simulations considering the fitting of the experimental 
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RTD data on various continuous mills. The impact of nonlinear breakage kinetics was also 

examined by considering the experimentally observed cushioning action of finer particles 

on the coarser ones during dry ball milling (Austin and Bagga, 1981; Austin et al., 1990; 

Bilgili et al., 2017). While a screen opening size larger than or equal to 1700 µm was 

considered to emulate negligible classification action of the screen, other values of the 

screen opening size (100, 300, and 500 µm) were simulated to discern the impact of the 

screen size along with that of the nonlinear breakage kinetics. The simulations with the 

proposed cell-based PBM are expected to provide significant insights into the roles of the 

mixing–nonlinear breakage–classification and allow us to develop better process 

understanding of continuous open-circuit mills. 

 

2.2 Theoretical 

2.2.1 A size-discrete cell-based PBM 

In this study, a PBM was formulated based on the multi-cell mass balance approach 

(Whiten, 1974; Whiten and Kavetsky, 1984; Lira and Kavetsky, 1990; Kwade and 

Schwedes, 2007), which considers finite axial mixing/dispersion. Physically, the axial 

particle mixing/dispersion is caused by the random motion of particles in the longitudinal 

axis of a mill of effective length L or radial velocity variations. In addition to finite axial 

mixing and nonlinear breakage kinetics, the model also considers a discharge screen to 

examine the impact of the internal classification of the particles. A schematic model of a 

continuous mill with n well-mixed cells is depicted in Figure 2.2. The model does not 

consider particle segregation in the mill; all particles move with a constant bulk velocity u.  

Limiting cases of zero axial back-mixing (i.e., plug flow) and perfect mixing can be 
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analyzed by considering the limiting scenarios of a large number of cells and a single well-

mixed cell (n = 1), respectively.  

 The general size-discretized, time-continuous PBM for the first cell (feed), 

intermediate cells, and the last cell (discharge) without any classification action of the 

discharge screen are mathematically expressed by Equation (2.2). Readers are referred to 

Appendix A.2 for details.  
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(2.2) 

 

with mi,z(0) = 0. Here, t is milling time. 𝑚̇𝑖,in and 𝑚̇𝑖,out denote the inlet mass flow rate and 

outlet mass flow rate, respectively, of the particles in size class i. The size classes range 

from size class 1 (coarsest) to size class N (finest) with a geometric progression of sizes. 

The particle size in each size class is represented by the upper edge of the size class. The 

mass fraction in size class i is given by 
, , ,

1

N

i z i z i z

i

M m m
=

=  with mi denoting the mass of 

particles in size class i and cell z. On the right-hand side of Equation (2.2), the first term 

refers to the death rate caused by breakage within size class i. The second term describes 
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the birth rate in size class i due to the transport of broken particles from all size classes, 

with j < i. The last term accounts for the bulk transport of particles as well as the 

recirculation between the cells. The number of cells n and the axial back-mixing 

(recirculation) ratio R =  Ṙ/ṁin modulate the degree of axial mixedness within the context 

of the cell-based PBM. They can be determined by an RTD study on the specific continuous 

mill similar to Austin et al. (1975), Fadhel et al. (1999) and Kwade and Schwedes (2007). 

Note that the consideration of a small number of cells, similar to that in tanks-in-series 

models, also introduces axial dispersion. In Equation (2.2), Fi[ ] is the population-

dependent functional for nonlinear breakage kinetics (Bilgili and Scarlett, 2005a; Bilgili et 

al., 2006), which describes the acceleration–deceleration impact of mechanical multi-

particle interactions between all generic size classes q with the particles in size class i; i.e., 

,

1

N

i i q q

q

F W M
=

 
 
 
 . Wi,q expresses the influence of each i–q size class interaction on the 

specific breakage rate of the particles in size class i.  

 We consider the internal classification during the continuous open-circuit milling 

by a screen classification function. The product rate equals the rate of discharge through 

the discharge screen, as modulated by the screen’s classification function Pc, i.e., 

ṁi,product = ṁi,outPc,i. The coarser particles that are prevented from leaving the mill by the 

discharge screen are recycled to the last cell (King, 2001). This relationship can be 

mathematically expressed as ṁi,oversize = ṁi,out(1−Pc,i). Unlike that of the first and 

intermediate cells, the space time in the last cell is expressed by 
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where mhold-up,n is the total mass of material in cell n. The model equation of the last cell (z 

= n) considering the classification action from the discharge screen is expressed as follows: 
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with mi,n(0) = 0. The oversized return rate is time-dependent and unknown during the 

transient period. Hence, the space time of the last cell is unknown and must be solved along 

with Equations (2.2) and (2.4). In general, Equations (2.2)–(2.4) constitute a set of DAEs. 

Interestingly, such DAEs have never been solved for continuous open-circuit milling 

directly, which is yet another novelty of the present work. For continuous open-circuit mills 

with discharge screens, an iterative solution method for the steady-state solution was 

commonly employed in the literature (King, 2001; de Oliveira and Tavares, 2018).  

 Experimental observations suggest that the prediction of PSD using a linear PBM 

is perfectly valid for a mono-dispersed feed, i.e., a feed with a narrow PSD, milled for a 

short milling time or a poly-dispersed (natural) feed is milled under operating conditions 

conducive to processing with limited enduring contacts among the particles (Gutsche and 

Fuerstenau, 1999; Bilgili and Scarlett, 2005a; Bilgili et al., 2006; Capece et al., 2011b). In 

fact, there are matrix-based analytical solutions to the PBM for various batch and 
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continuous milling processes (see e.g., Herbst and Fuerstenau, 1980; Diemer, 2021). Note 

that the analytical solutions are strictly valid when classification functions do not depend 

on the operating conditions (fixed and linear) and (ii) breakage kinetics is linear. As a 

general simulator, TUSSIM, was developed in this thesis study for use with all possible 

breakage kinetics and classification functions, the numerical solution of the cell-based 

PBM was implemented. In view of the above experimental observations, the following 

constraints on the nonlinear functional in Equations (2.2) and (2.4) can be imposed (Bilgili 

et al., 2006): 

 

  1as ( ) 0i qF M q i→   →  (2.5) 

 

 Moreover, the conservation of total mass dictates that the first-order specific 

breakage rate and the breakage distribution parameter in Equations (2.2) and (2.4) are 

restricted by the following constraints: 
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2.2.2 Specific functional forms used in the simulations 

Representative values of the breakage parameters for our simulations were based on dry 

ball milling experiments conducted by Austin et al. (1990). Quartz was milled in a 

laboratory ball mill measuring 194 mm in diameter and 175 mm in length filled with steel 

balls in batch mode. Their experimental PSD data after milling were successfully fitted to 
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the nonlinear PBM for batch mill with the assumption of perfect mixing by Bilgili et al. 

(2017). The nonlinear optimizer “fmincon” from the optimization toolbox in MATLAB 

was employed to minimize the sum of squared residuals (SSR) between the model 

predictions (i.e., the PBM solution) and the experimental data. Bilgili et al. (2017) reported 

the fitted PBM parameters (e.g., ki and Fi[ ]) for various models. In the present study, the 

PBM parameters in Equations (2.7) and (2.8) were obtained from the fitting results in 

Bilgili et al. (2017). A power-law function and a normalized function were selected (see 

Equation (2.7)) for ki and the cumulative breakage distribution parameter Bi,j, respectively. 

Equation (2.8) expresses the form of Fi[ ] and Wi,q that capture phenomenologically the 

slowing-down or cushioning action of the finer particles on the coarser particles.  
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 The breakage rate constant A, normalizing reference particle size x0, and the 

breakage rate exponent m were obtained from Bilgili et al. (2017) as 1.2 min–1, 1000 µm, 

and 0.812, respectively. The breakage distribution constant  and the breakage distribution 

exponents µ and v were 0.395, 0.979, and 3.768, respectively (Bilgili et al., 2017). On the 

basis of the chosen form of Fi[ ], the traditional linear PBM was recovered for λ = 0. The 
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slowing-down phenomenon (cushioning effect) can be predicted with λ > 0. A larger λ 

signifies a greater extent of the retardation effect of the finer particles on the breakage of 

the coarser ones. Fi[ ] varies in the range of 0–1. An  value of 0.32 and  value of 3.604 

µm0.32 were taken from Bilgili et al. (2017). 

 An ideal screen with opening size ds will let all particles with size xi ≤ ds pass. 

However, such a model is too simplistic. Hence, a non-ideal screen classification function 

was taken from Barrasso et al. (2013) to describe classification action of the discharge 

screen. The critical screen size parameter  was taken as 0.4 based on fitting to 

experimental data (Barrasso et al., 2013). Note that the internal classification could 

originate from the physical presence of the screen; however, there are other physical 

mechanisms such as air-sweeping induced classification (Benzer, 2005) in air-swept mills, 

which is not explained by Equation (2.9). Of course, more complicated classification 

functions can be used in such cases (Benzer, 2005); but this is beyond the scope of this 

theoretical study as our objective is not to model a specific mill type/size.  

 

( )
( )

( )

s

s

c, s s

s

s

0 if

1
1 if 1

1 if 1

i

i

i i

i

x d

x d
P d x d

d

x d








 


− −
= − −  


  −

 (2.9) 

  

2.2.3 Simulation study 

Table 2.1 presents the overall design of the simulation study with 20 runs. Interestingly, 

the cell-based PBM has not been applied to dry continuous ball milling before. Hence, 

reasonable values of n and R were obtained by fitting the cell-based PBM to the 
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experimental RTD data from the literature and estimating R for various cell numbers (n). 

In Runs 14–20, n = 5 was set as a baseline to examine the impact of nonlinear breakage 

kinetics and screen opening size. The transient operation of continuous dry mills is often 

neglected in most studies (Austin et al., 1975; Benzer et al., 2001a; Benzer et al., 2001b; 

Genc et al., 2013). A study of the transient behavior in the continuous open-circuit mills 

could help predict the time-scale of the attainment of a steady-state and influence of 

possible process fluctuations such as the feed rate and/or PSD on the fluctuations of the 

product PSD. Moreover, transient models can be used for process control purposes. Hence, 

the temporal evolution of the PSD and hold-up was also assessed, and results are presented 

for selected runs.  

 To validate the consistency of the cell-based PBM approach, n was varied from 1 

to 60 (Runs 1–5), and the solutions were compared with those obtained from PBMs with 

idealized (extreme) mixing regimes, which corresponded to the CSTM (perfect mixing) 

and the PFTM (zero axial mixing). In all simulations, we set a  value of 10 min, which 

was experimentally obtained in open-circuit continuous ball mills (Mori et al., 1964; 

Fuerstenau et al., 1986), and the feed mass flow rate of 10 g/min. In Runs 1−5, λ value was 

set as 0 (linear breakage kinetics). The other parameters were obtained from Bilgili et al. 

(2017). The solutions of the CSTM model (refer to Equation (2.1) with one tank only) and 

the PFTM model (Equation (A.4)) were obtained by the steady-state PBM solvers, as 

described by Bilgili and Scarlett (2005b).  
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Table 2.1 Cell-based Simulation Parameters Employed in Determining the PSD and the 

Total Mass Hold-up for the Open-circuit Continuous Mill 

 

Run no. No. of cells,  

n 

Back-mixing 

ratio, R 

Interactions  

parameter, λ (µm0.32)  

Screen size,  

ds (µm)a 

1 1 0 0  1700 

2 3 0 0  1700 

3 5 0 0  1700 

4 15 0 0  1700 

5 60 0 0  1700 

6 5 0.1 0  1700 

7 5 0.5 0  1700 

8 5 1 0  1700 

9 5 2.5 0  1700 

10 15 0.1 0  1700 

11 15 0.5 0  1700 

12 15 1 0  1700 

13 15 2.5 0  1700 

14 5 0 3.604  1700 

15 5 0 0 100 

16 5 0 0 300 

17 5 0 0 500 

18 5 0 3.604 100 

19 5 0 3.604 300 

20 5 0 3.604 500 

a The screen opening size values of 1700 µm and above lead to identical simulation results as there is no 

classification for the assumed Gaussian feed PSD with a mean size of 600 µm and a standard deviation (SD) 

of 100 µm. 

 

 After the consistency of the cell-based approach was established in view of the 

numerical solutions for the idealized mixing regimes, the impact of the extent of finite axial 

mixing, which was characterized by n and R, was examined without considering the 

nonlinear breakage kinetics and the classification action from the discharge screen (ds  

1700 µm) in Runs 2–13. Based on the selected feed PSD and the screen function in 

Equation (2.9), ds  1700 µm will not have any classification effect. Furthermore, the 

cushioning action of the finer particles on the coarser particles on the steady-state product 

PSD was studied via Runs 3 and 14 (λ = 0 and 3.604 µm0.32). The milling operation was 
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assumed to attain a steady-state product PSD when the total absolute deviation, over all 

320 size classes, between two subsequent cumulative product PSDs was less than or equal 

to 10–1. Although the evolution of the PSD was recorded at each minute over 120 min, the 

simulation results were sampled at various times to demonstrate the evolution of the PSD 

and the attainment of the steady-state product PSD. With the incorporation of the 

classification action from the discharge screen, the simulation with the finest screen size 

(100 µm) was chosen to examine the impact of the screen opening size on the spatio-

temporal evolution of the PSD in the mill content and temporal evolution of the product 

PSD (Run 15). The role and impact of the screen sizes (ds = 100, 300, and 500 µm) were 

examined in Runs 15–17. Finally, the impact of the various screen opening sizes (ds = 100, 

300, and 500 µm) with nonlinear breakage kinetics (λ = 3.604 µm0.32) was studied in Runs 

18–20. The temporal evolution of the hold-up from the starting time of operation (t = 0 

min) to the steady-state hold-up was also examined. The milling operation was deemed to 

attain a steady-state hold-up when the percentage deviation of the total mass hold-up 

between consecutive time steps was less than 0.05%.  

 In all numerical simulations, the number of size classes N and the geometric 

progression ratio were set as 320 and 21/16, respectively, which yields grid-independent 

simulation results. The upper edge of the topmost size class was 1000 µm. Both the initial 

and feed PSDs were taken as Gaussian with a mean size of 600 µm and a standard deviation 

(SD) of 100 µm. The Gaussian PSD was generated using the function “normpdf” in 

MATLAB version 9.7. The set of nonlinear DAEs in Equations (2.2)–(2.4) with the 

constraints in Equations (2.5) and (2.6) and the expressions in Equations (2.7)–(2.9) was 

solved using the function “ode15s” in MATLAB, which is a highly accurate, variable 
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order–step-size ODE solver that can also handle DAEs (Shampine et al., 2003). The 

relative error tolerance and the absolute error tolerance were set as 10–4 and 10–6, 

respectively. 

 

2.3 Results and Discussion 

2.3.1 Establishing the theoretical consistency of the cell-based PBM 

The consistency of the transient cell-based PBM was established by predicting the product 

PSD at prolonged milling times (steady-state) for two idealized mixing regimes in the 

continuous mill, namely, perfect mixing (CSTM: NPe → 0 as D → ∞) and plug flow 

(PFTM: zero axial mixing, NPe → ∞ as D → 0). To this end, the steady-state product PSD 

(cumulative mass fraction undersize) was determined by solving the cell-based PBM with 

n = 1 (to compare with CSTM solution) and n = 60 (to compare with PFTM) for sufficiently 

long times. These solutions were compared with the CSTM and the PFTM model solutions 

obtained via the steady-state PBM solvers presented in Bilgili and Scarlett (2005b). In these 

simulations, R and λ were set as 0, and the classification action of the screen was not 

considered. The simulations were also performed with various n values to assess the impact 

of the extent of axial mixing on the product fineness and to demonstrate convergence to 

the PFTM model’s solution with an increase in n (Runs 1–5 in Table 2.1). 
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Figure 2.3 Impact of axial mixing, modulated by n (R = 0), on the steady-state cumulative 

PSD of the product for a continuous milling process (Runs 1–5). There is no classification 

action of the screen (ds  1700 µm). The cushioning action of the fines was not considered 

(λ = 0 µm0.32).  

 

 A comparison of the current cell-based PBM prediction and the PBM with the two 

idealized mixing results for a CSTM and a PFTM is illustrated in Figure 2.3 under identical 

conditions, namely the same feed PSD (Gaussian distribution, with a mean size of 600 µm 

and an SD of 100 μm) and  = 10 min. Figure 2.3 illustrates that, as n increases from 1 to 

60, which corresponds to a lower extent of axial back-mixing, the product PSD becomes 

finer. While the lower tail of the product PSD (<30 µm) is not considerably affected, the 

effect of n is significant in the particle size domain from 30 to 600 µm. The cell-based 

PBM with n = 1 reproduces the CSTM model solution without any deviation, justifying 



 

69 

the high temporal numerical accuracy of the solver (ode15s). Although the plug flow (zero 

axial mixing) solution for the PFTM theoretically entails n →∞ in the cell-based PBM, 

practically, even n = 60 of the cell-based PBM converges to the PFTM solution. These 

theoretical results establish that the cell-based PBM is a consistent method that reproduces 

or converges to the steady-state PSDs under idealized mixing regimes. The finite mixing 

impact on the product PSD is most notable for n < 15. As will be shown in Subsection 

2.3.2, the cell-based PBM with n > 1, but without the breakage terms, accurately captures 

the RTD data in various continuous tumbling ball mills and stirred media mills. Our 

simulations and the RTD data in the literature suggest that the finite axial mixing effects 

must be considered in the PBMs for accurate prediction of product PSD and its evolution. 

Therefore, the cell-based PBM that factor in the finite mixing effects, as described by the 

RTD data for a specific continuous mill, will predict any experimentally observed PSD 

more accurately than the widely used CSTM and PFTM models. 

 The product PSD obtained from the cell-based PBM with n = 60 deviates by a small 

percentage from that of the PFTM model solution. Obviously, the use of higher n could 

allow us to perfectly match the PFTM model solution; however, we have not attempted to 

do this so for several reasons: (i) the convergence of the cell-based PBM with the increase 

of n to the PFTM solution is apparent from Figure 2.3; (ii) the RTD studies on continuous 

ball mills suggest that there is always finite axial mixing (Gardner and Sukanjnajtee, 1973; 

Austin et al., 1975) that would necessitate the use of 3–10 cells (with R = 0); thus, a plug 

flow solution (n →∞) is unrealistic; (iii) n > 15 increases the computational effort/time 

significantly even for simulations (forward problem). If the breakage parameters were to 

be estimated from the continuous milling data via optimization-based back-calculation 
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methods (Bilgili et al., 2017) for a specific continuous mill, then the cell-based PBM with 

n > 15 as well as the convection–dispersion model would be computationally expensive. 

Nonetheless, practically, neither fitting of the RTD nor back-calculation of the breakage 

parameters would warrant the use of n > 15, as will be seen from fits to real experimental 

RTD data in the next section. This is also why we considered n = 5 in most of the 

simulations.  

2.3.2 Impact of n and R on the spatio-temporal variation of PSD  

First, n = 5 (Run 3) and n = 60 (Run 5), with R = 0, were selected to examine the impact 

of the axial dispersion, as modulated by n, on the PSD of the mill content at L/5, 3L/5, and 

L in the mill. The classification action of the discharge screen in these simulations was not 

considered (ds  1700 µm) as all particles of the assumed Gaussian feed PSD pass through 

this screen size. Therefore, the PSD at the axial location L in the mill is the same as the 

product PSD at the mill outlet. Cells 1 and 12, Cells 3 and 36, and Cells 5 and 60 correspond 

to the identical axial locations of L/5, 3L/5, and L in the mill, respectively. The other 

parameters were kept the same as in the previous simulations (λ = 0 and  = 10 min). 

Figure 2.4 depicts a comparison of the steady-state PSD at the axial locations of L/5, 3L/5, 

and L for n = 5 and n = 60. For a given n, the PSD shifts monotonically toward finer sizes 

from the inlet to the outlet. The PSD for n = 60 is finer than that for n = 5 at any axial 

location in the mill. The higher extent of axial mixing (n = 5 vs. 60) leads to a coarser PSD, 

which is consistent with what Figure 3 depicts.  

 Figure 2.5 illustrates the temporal evolution of the PSD in Cells 1, 3, and 5 (at the 

axial locations of L/5, 3L/5, and L) of a continuous mill with n = 5 cells and the attainment 

of the steady-state product PSD. As the milling continues, the PSD shifts to finer particles, 
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as expected intuitively, and a steady-state PSD emerges within 26 min in all cells. 

However, the attainment of steady-state PSD takes longer for the cell at the discharge (n = 

5, also product PSD) than that at the inlet (n = 1). Both the transient and steady-state PSDs 

suggest that the extent of size reduction increases monotonically as the particles move 

along the mill axis from the feeding section to the outlet (Cell 5). This finding agrees with 

the survey results of PSD at different locations of continuous dry mills (Benzer et al., 

2001b; Genc, 2016). 

 

 

Figure 2.4 Steady-state spatial variation of the cumulative PSD along the axial direction 

of a continuous mill for n = 5 and n = 60 with R = 0 (Runs 3 and 5). There is no 

classification action of the screen (ds  1700 µm). The cushioning action of the fines was 

not considered (λ = 0 µm0.32).  Cells 1 and 12, Cells 3 and 36, and Cells 5 and 60, 

respectively, correspond to the axial location L/5, 3L/5, and L. 
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Figure 2.5 Spatio-temporal variation of the cumulative PSD along the axial direction of a 

continuous mill (Run 3). There is no classification action of the screen (ds  1700 µm). The 

cushioning action of the fines was not considered (λ = 0 µm0.32).  Other parameters used in 

simulations are n = 5 and R = 0. Cell 1, Cell 3 and Cell 5, respectively, correspond to the 

axial location L/5, 3L/5, and L of the mill. 
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Figure 2.6 Deviation of the prediction by the CSTM model and the PFTM model as well 

as the fit by the cell-based PBM (without the breakage terms) from the experimentally 

measured RTD data on two tumbling ball mills and a stirred media mill.  

 

 Experimentally measured RTD data on two tumbling ball mills (Austin et al., 1975; 

Gardner et al., 1977) and a stirred media mill (Kwade and Schwedes, 2007) were fitted by 

the cell-based PBM (without the breakage terms) with various n and R values that 

minimized the sum-of-squared residuals (see Figure 2.6 and Table 2.2). The RTD was 

also predicted using the CSTM model and the PFTM model for the two idealized mixing 

regimes, i.e., the perfect mixing and the zero axial mixing, respectively (refer to Fogler 

(2006)). Figure 2.6 depicts that the cell-based PBM fits the experimental RTD in the mills 

very well, and indeed the RTD data for the mills notably deviate from those predicted with 

idealized mixing regimes. A novel insight from these fitting results is that the stirred mill 

has at least an order of magnitude higher R than the two tumbling ball mills, which can be 

attributed to the presence of high-speed mixing elements (stirrer discs) in the stirred media 

mills, which favors recirculation among the cells. The continuous tumbling ball mills do 
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not have moving, internal mixing elements; so, recirculation rate between adjacent cells is 

expected to be rather low as compared with the bulk axial transport rate of the material, 

thus justifying the lower value of the fitted R. 

  

Table 2.2 Deviation of the Prediction of the CSTM model and the PFTM Model as well as 

the Fit by the Cell-based PBM (without the Breakage Terms) from the Experimentally 

Measured RTD Data on Two Tumbling Ball Mills and a Stirred Media Mill  

 
Source of experimental 

data 

Model Back-mixing 

ratio, R 

Sum of squared residuals, 

SSR 

Austin et al. (1975) CSTM − 8.68 

 10-cell PBMa 8.01  10−3 2.92  10−3 

 PFTM − 7.53 

Gardner et al. (1977) CSTM − 2.03 

 3-cell PBMa 2.05  10−1 4.89  10−2 

 PFTM − 15.0 

Kwade and  

Schwedes (2007) 

CSTM − 1.34 

6-cell PBMb 2.52a 1.52  10−2 

PFTM − 17.1 
a Value for the lowest SSR indicated. 
b Taken from Kwade and Schwedes (2007) directly as n corresponds to the number of impeller elements.  

 

 We investigated the impact of the back-mixing (recirculation) ratio R from 0 to 2.5 

on the product PSD for two different number of cells: n = 5 and n = 15 (Runs 3, 4, and 6–

13) in view of the above RTD fits and associated R values. Figure 2.7 presents the steady-

state product PSDs corresponding to several R values. For both n = 5 and n = 15, a higher 

R results in a coarser product PSD. The PSD shifts away from that of the PFTM and gets 

closer to that of the CSTM at higher R. As before, for a given R, the product PSD is finer 

for n = 15 than that for n = 5. Hence, in the cell-based PBM, the extent of axial back-mixing 

and the product PSD are modulated by both n and R. In practice, the range of likely n values 

is determined by prior knowledge on similar mills and/or operational characteristics of a 
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particular mill (e.g., number/type of stirrer elements on the shaft of a stirred mill) or n is 

fitted with R to the RTD data of the mill in a sequential manner. 

 

 

Figure 2.7 Impact of axial mixing, as modulated by the back-mixing ratio R, on the steady-

state cumulative PSD of the product for n = 5 and n = 15 (Runs 3, 4, and 6–13). There is 

no classification action of the screen (ds  1700 µm). The cushioning action of the fines 

was not considered (λ = 0 µm0.32).  
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 Since n is an integer while R is a real number, the use of R could afford better fitting 

capability to the RTD data by the cell-based model without the breakage terms, as 

compared with the tanks-in-series model with n being the sole parameter. Even more 

interestingly, Kwade and Schwedes (2007) reported that a 6-cell PBM with R = 2.52 fitted 

their experimental RTD slightly better than the convective dispersion model with the fitted 

NPe = 2.33 (Kwade and Schwedes, 2007). But, more importantly, the numerical solution of 

the convection–dispersion model (see Appendix A.1), upon spatio-temporal discretization 

(Mihalyko et al., 1998), typically entails a high number of node points and very small time 

step for accuracy and grid-independence, which renders it much more computationally 

demanding than the cell-based PBM with n = 3–15. This issue will be exacerbated if the 

inverse problem of parameter estimation is considered. Hence, the cell-based RTD, with n 

and R as its two parameters, can capture a wide range of non-ideal mixing regimes between 

the two idealized mixing regimes and allow for better or similar prediction of the RTD and 

the product PSD in continuous open-circuit mills, yet most likely at a smaller 

computational cost than the convection–dispersion model. 

2.3.3 Impact of cushioning effect on PSD without the classification action of the 

discharge screen 

 

As thoroughly discussed for batch milling (Bilgili and Scarlett, 2005a; Bilgili et al., 2006), 

the specific breakage rate is a function of the evolving PSD through mechanical multi-

particle interactions when fine milling of materials in a dense-phase is carried out such as 

in ball mills. With the form chosen of the nonlinear functional in Equation (2.8), the 

traditional linear breakage kinetics is recovered when λ = 0. The impact of the cushioning 

action of fines on the particle breakage dynamics (λ = 3.604 µm0.32) and the PSD was 

examined in comparison with the traditional linear breakage kinetics, which disregards the 



 

77 

experimentally observed cushioning effect of the finer particles on the coarse ones. The 5-

cell PBM was chosen to simulate the spatial variation of the PSD of the mill content and 

the product at the steady state.  

 

 

Figure 2.8 The impact of the cushioning action of the fines, as modulated by the multi-

particle interaction parameter λ, on the spatial variation of the cumulative PSD along the 

axial direction of a continuous mill at the steady-state (Runs 3 and 14). There is no 

classification action of the screen (ds  1700 µm). Other parameter used in simulations are 

n = 5 and R = 0. Cell 1, Cell 3 and Cell 5, respectively, correspond to the axial location 

L/5, 3L/5, and L of the mill. 

 

 As can be seen in Figure 2.8, for both the traditional linear breakage kinetics (Run 

3) and nonlinear breakage kinetics (Run 14), the particle sizes in the mill monotonically 

decrease and shift to finer sizes from the inlet to the outlet. With the cushioning action of 

the fines on the breakage of the coarser particles considered in the context of the nonlinear 
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PBM (λ = 3.604 µm0.32), the PSD is coarser at each location in the mill. This nonlinear 

impact becomes more pronounced as the PSD gets finer along the axial direction and 

generation of finer particles. This cushioning effect of the finer particles is one reason for 

the inefficiency in dry fine ball milling processes (Austin and Bagga, 1981; Austin et al., 

1990; Gutsche and Fuerstenau, 1999). 

2.3.4 Impact of screen opening size on classification and milling 

In the previous simulations, we assumed a relatively large screen opening size (ds  1700 

µm); this opening size had no classification action at the discharge because all particles 

were much smaller than (1–δ)ds = 1020 µm, in accordance with Equation (2.9). In this 

section, we consider discharge screens with smaller opening sizes that could significantly 

impact the classification and milling. To better illustrate the classification effect of the 

screen, we reported the PSDs in differential form (Figures 2.9–2.12) in this section. The 

impact of ds was first examined with the assumption of linear breakage kinetics (λ = 0). In 

Run 15, the classifying action of a continuous mill incorporating a discharge screen with 

ds = 100 µm was simulated using a non-ideal screen function along with the cell-based 

PBM with n = 5. The spatio-temporal evolution of the PSD at various axial mill locations 

(L/5, 3L/5, and L) and the mill discharge at the outlet (product PSD) is depicted in Figure 

2.9. Along the axial direction of the mill from the feed (with the modal/mean size of 600 

µm) to Cell 5 and the discharged product, the modal size gets smaller at any given time. 

The PSD shifts to finer particle sizes as the milling continues; a finer PSD is produced until 

the steady state is attained.  
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Figure 2.9 Spatio-temporal variation of the differential PSD along the axial direction of a 

continuous mill with a screen opening size ds = 100 µm (Run 15). The cushioning action 

of the fines was not considered (λ = 0 µm0.32). Other parameters used in simulations are n 

= 5 and R = 0. Cell 1, Cell 3 and Cell 5, respectively, correspond to the axial location L/5, 

3L/5, and L of the mill.  
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Figure 2.10 Impact of the opening size of the discharge screen ds on the attainment of a 

steady-state differential PSD in the last cell of the continuous mill (Runs 3 and 15–17). The 

cushioning action of the fines was not considered (λ = 0 µm0.32). Other parameters used in 

simulations are n = 5 and R = 0.  
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Figure 2.11. Impact of the opening size of the discharge screen ds on the temporal 

evolution of the differential PSD of the product (Runs 3 and 15–17). The cushioning action 

of the fines was not considered (λ = 0 µm0.32). Other parameters used in simulations are n 

= 5 and R = 0.  
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Figure 2.12 Impact of the opening size of the discharge screen ds and the cushioning action 

of the fines (λ = 0 and 3.604 µm0.32) on the differential PSD in Cell 5, corresponding to the 

axial location L of the mill, and the differential PSD of the product at the steady state (Runs 

15–20). Other parameters used in simulations are n = 5 and R = 0.  
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 The classifying action of the discharge screen can be seen by the drastically finer 

PSD of the product than the PSD in Cell 5. The attainment of steady-state PSD occurs later 

in Cell 5 (30 min), where the screen resides, than Cell 3 (within 18 min) and Cell 1 (within 

18 min). This can be largely attributed to the classification action of the screen and the 

build-up particles xi > (1–δ)ds. Note that the PSD of the mill discharge (product PSD) is 

somewhat insensitive to the milling time after 18 min, and it is largely controlled by the 

screen’s classification function.  

 A comparison of Figure 2.9 (Run 15: ds = 100 µm) and Figure 2.5 (Run 3: ds  

1700 µm) reveals that a smaller ds delays the attainment of a steady-state PSD (30 min vs. 

26 min) and leads to a finer PSD in the discharged material, which signifies the criticality 

of internal classification for continuous fine dry milling. The examination of the screen 

opening size effect, without nonlinear breakage kinetics, is expanded to 300- and 500-µm-

sized screens (Runs 16 and 17). Figures 2.10 and 2.11 illustrate the impact of ds on the 

evolution of the PSD in Cell 5 and in the discharged product, respectively. Both figures 

show identical PSDs in Cell 5 and in the discharged product for ds  1700 µm because this 

screen does not have any classifying action on the mill content. The use of a screen with a 

lower ds led to removal of coarse particles with xi > (1–δ)ds and all particles with xi > ds, 

which is signified by the drastic reduction of the maximum particle size of the PSD in 

Figure 2.11. A lower ds also results in longer milling time to attain a steady-state PSD. 

This can be best explained by the accumulation of particles coarser than (1–δ)ds  depending 

on their size and breakage rate. Compared with the screen with ds  1700 µm, which had 

no classification action, the screens with smaller opening sizes led to finer product PSDs 

with a lower fraction of >200 µm particles because the classification action, in view of 
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Equation (2.9), applies to finer particles in Cell 5 content upon a decrease in ds and thus 

(1–δ)ds. Overall, all these results accord well with the experimentally observed general 

trends regarding the impact of screen opening size for various continuous conical screen 

mills and hammer mills with a discharge screen (Barrasso et al., 2013; Vanarase et al., 

2015; Capece, 2018). We also note an intriguing interplay between the breakage kinetics 

and the feed PSD–screen opening size in Figures 2.10 and 2.11. When the feed particles 

(here, with a mean/modal size of 600 µm with SD = 100 µm) are much coarser than the 

screen size (note the ds = 100 and 300 µm cases), the steady-state modal size of the mill 

content in Cell 5 occurs at ds and that of the product at (1–δ)ds. Obviously, if the particles 

break at a rate much faster into size classes with xi < ds than what the currently assumed 

kiFi[ ]bij values entail and/or if the feed PSD is such that more particles become smaller 

than ds in the mill right before Cell 5, then the modal size will occur below ds. With the 

same kiFi[ ]bij values and Fi[ ] = 1 in these simulations (Figures 2.10 and 2.11), the latter 

situation is observed here for the ds = 500 and  1700 µm cases, where the modal size 

occurs at ~140 and 120 µm, respectively, well below ds.    

 We hypothesize that there exists an interplay also exists between the nonlinear 

breakage kinetics stemming from the cushioning action of finer particles and the 

classification action of the discharge screen, which has not been theoretically investigated 

in the milling literature. For the discharge screen with no classification action (ds  1700 

µm), the cushioning action of the finer particles on the breakage kinetics and the product 

PSD is quite notable and significant; the product PSD is coarser when such nonlinear 

breakage occurs (refer to Figure 2.8). To examine the impact of the classification action 

of the screen, new simulations were performed with and without the cushioning action of 
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the finer particles (λ = 3.604 µm0.32 and λ = 0 µm0.32, respectively) for various screen 

opening sizes: 100, 300, and 500 µm (Runs 15–20). As illustrated in Figure 2.12 in general, 

the product PSD at the steady-state is finer in the absence of the cushioning effect of the 

finer particles (λ = 0) than that with the cushioning effect (λ = 3.604 µm0.32). Our 

simulations suggest that the smaller the size of the screen opening, the smaller the impact 

of the cushioning action on the product PSD. The cushioning effect on the product PSD is 

most remarkable when there is no particle classification in the mill for the largest screen 

opening size (ds  1700 µm) (Figure 2.8). On the other hand, this does not mean that the 

cushioning action has no impact on the mill performance when a small screen opening size 

is used. As seen from Figure 2.12, for ds = 100 µm, while the cushioning action has no 

impact on the product PSD, the mill content in Cell 5 becomes considerably coarser. Thus, 

while the nonlinear breakage kinetics does not manifest itself remarkably in the product 

PSD of a continuous dry milling process due to the classifying action, the PSD of the mill 

content is still influenced by such nonlinear effects significantly. Finally, Figure 2.12 

highlights confirms the previously observed result for ds = 100 µm: when the modal size 

of the mill content right before discharge (Cell 5) occurs at ds, the modal size of the product 

occurs at (1–δ)ds. Interestingly, for the given feed PSD and ds = 500 µm, the modal sizes 

of the Cell 5 content and the product occur at ds = 500 µm and (1–δ)ds = 300 µm, 

respectively, when the cushioning effect of the finer particles is considered (λ = 3.604 

µm0.32). In the absence of this nonlinear slowing-down effect (λ = 0 µm0.32), they both 

occur at ~150 µm (below ds and (1–δ)ds), pointing out to the aforementioned interplay 

between the breakage kinetics and the feed PSD–screen opening size.  
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 Additional insights can be gained from these simulations: if the inverse problem 

(identification of the breakage parameters) is to be solved considering the product PSD 

only, the nonlinear effects will probably be harder to discern; the negligence of nonlinear 

effects could cause falsified kinetics, as demonstrated earlier in batch milling studies 

(Klimpel and Austin, 1977; Capece et al., 2011a; Bilgili et al., 2017). To distinguish and 

separate impacts and possible bias of the nonlinear kinetics vs. classification action of the 

discharge screen, one could use the existing simulation results with exactly known 

parameter values as 'simulated experiments' for subsequent parameter estimation. While 

this approach will expose the extent of bias and confounding of the nonlinear kinetics vs. 

classification action of the discharge screen, it will not resolve this challenging inverse 

problem. Our current simulations suggest that the measurement and analysis of the 

evolving PSD in the mill content or, at least, at the steady-state PSD at various locations 

besides the evolving product PSD could help to mitigate the bias and confounding because 

the nonlinear kinetics have a notable impact on the PSD of the mill content, while the 

product PSD at the steady-state is largely affected by the screen’s classification function 

(refer to Figure 2.12). Hence, for elucidating such nonlinear effects in continuous dry 

milling, ideally, the evolving PSD of the mill content at various locations must be 

determined. However, either for practical reasons and/or for its laborious/costly nature, this 

practice has not been generally adopted in the literature although such measurements are 

quite feasible to perform at the steady-state operation (Benzer, 2005; Genc et al., 2013). In 

fact, the nonlinear effects have rarely been examined or even mentioned for continuous dry 

milling processes, with exceptions such as Kolacz and Sandvik (1996) and Yildirim et al. 

(1999). There are several reasons for this: impact of nonlinear breakage on the PSD may 
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be genuinely weak depending on the specific mill–discharge screen design, material 

flow/transport mechanisms inside the mill, and the properties of the material being ground 

(Bilgili and Scarlett, 2005a; Capece et al., 2015; Capece et al., 2018). However, the 

nonlinear effects are also likely masked or confounded by the discharge screen action as 

implied by this study and/or by air sweeping action in the mill (if it is part of the operation) 

(Kolacz and Sandvik, 1996). Also, in most continuous milling studies, the PSD of the mill 

content have not been analyzed or reported at all; only product PSDs have been analyzed 

and reported, e.g., as in (Barrasso et al., 2013; Vanarase et al., 2015; Capece, 2018), which 

makes the discernment of any nonlinear effects separately from the classification more 

difficult. 

 The impact of the various screen sizes and the cushioning action of the fines was 

also scrutinized in view of the total mass hold-up in the mill. As seen in Figure 2.13, as 

milling proceeds, the total mass hold-up gradually increases from 0 (empty mill) mass at t 

= 0 min until the attainment of the steady-state hold-up, which is defined as a <0.05% 

percentage deviation of the total mass hold-up between consecutive time steps. Without 

classification action from the discharge screen (ds  1700 µm), the total mass hold-up at 

the steady-state hold-up is 100 g (i.e., no mass accumulation due to the screen), as expected. 

However, when the classification takes places upon use of a smaller screen opening size 

(ds = 100, 300, and 500 µm), accumulation of particles coarser than (1–δ)ds  becomes 

evident. The smaller the screen size is, the higher the level of total mass hold-up in the mill 

is. As experimentally observed (Shoji et al., 1980; Shoji et al., 1982), the breakage kinetics 

could be affected when the total mass hold-up is higher than a certain level. However, our 

current model does not include this impact. 
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Figure 2.13 Impact of the opening size of the discharge screen ds and the cushioning action 

of the fines (λ = 0 and 3.604 µm0.32) on the attainment of a steady-state hold-up (Runs 3 

and 14–20). Other parameters used in simulations are n = 5 and R = 0. 
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 Figure 2.13 clearly shows that the smaller opening size prolongs the attainment of 

the steady-state hold-up. While the 1700 µm screen opening requires 25 min to attain a 

steady-state hold-up, the screens with 500, 300, and 100 µm opening sizes require 25, 26, 

and 46 min, respectively. When the cushioning action of the fines is present, the steady-

state hold-up is attained at 25, 26, 30, and 55 min, respectively, for 1700 µm, 500, 300, 

and 100 µm opening sizes. Hence, for a given ds except for ds  1700 µm, the total mass 

hold-up is higher when the cushioning action of the fine particles is present (λ = 3.604 

µm0.32) than it is absent (λ = 0). Finally, we record that the occurrence of the modal size of 

the product at ds (Figure 2.12) coincides with discernible mass accumulation (deviation 

from 100 g baseline: >1%) in the mass hold-up at the steady-state.   

 

2.4 Conclusions and Outlook 

In this theoretical study, we have developed a cell-based PBM for the transient, open-

circuit continuous operation of a dry mill with a discharge screen to study the impact of the 

extent of axial particle mixing, the cushioning action of fine particles on coarse ones, and 

the classifying action of a non-ideal discharge screen. Extensive computer simulations have 

been performed to gain fundamental insights into and enhance our understanding of the 

classification–milling interplay. The cell-based PBM has been shown to reproduce or 

converge to the steady-state product PSDs for continuous mills with two idealized mixing 

regimes: perfect mixing (CSTM) and plug flow (PFTM). Our simulation results suggest 

that the number of cells n and back-mixing ratio R modulate the extent of axial mixing; a 

higher n and lower R reduce the extent of axial mixing, leading to a finer product PSD. The 

fitting of the RTD using the cell-based PBM reveals that stirred media mills have much 
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higher R, on the order O(100), than the continuous tumbling ball mills O(10–3–10–1). The 

cushioning action (nonlinear breakage) of the finer particles leads to a coarser product than 

that predicted by the traditional linear PBM. A screen with a smaller opening size yields a 

finer product PSD while taking longer to achieve a steady-state PSD. With the assumed 

non-ideal classification function for the screen, the modal size of the product and the modal 

size of the mill content near the discharge may occur at (1–δ)ds and ds, respectively. This 

occurrence is dependent upon the interplay between the breakage kinetics and the feed 

PSD–screen opening sizes. For a small screen opening size with respect to the given feed 

PSD coupled to slow breakage kinetics, a continuous milling process will be more likely 

to exhibit this occurrence. A small screen size also leads to a higher level of total mass 

hold-up due to the accumulation of particles coarser than (1–δ)ds, thus delaying the 

attainment of a steady-state hold-up. When the cushioning action of the finer particles on 

the coarser ones is present, the simulations predict a coarser product PSD. While this 

cushioning impact on the product PSD weakens upon use of a screen with a smaller 

opening size, the mill content near the discharge becomes coarser due to this impact as 

well. Overall, this theoretical study demonstrates the versatility of the cell-based PBM in 

representing a wide range of axial dispersion (RTD data) and the significant interplay 

between the classifying action of the discharge screen and the impact of nonlinear breakage 

kinetics on the product PSD and the PSD of the mill content during open-circuit dry milling 

with an internal classifier. Future research should address various issues associated with 

the inverse problem considering the interplay between the nonlinear breakage and the 

classification action.   
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CHAPTER 3 

IMPACT OF BALL SIZE DISTRIBUTION, COMPARTMENT 

CONFIGURATION, AND CLASSIFYING LINER ON CEMENT PARTICLE 

SIZE IN A CONTINUOUS BALL MILL 

 

A true unsteady-state simulator (TUSSIM), based on a cell-based Population Balance 

Model (PBM) with a differential algebraic equation (DAE) solver, was used for modeling 

a full-scale open-circuit cement ball mill for better understanding the industry best 

practices of employing number of mill compartments, classifying liners, and ball mixtures. 

Model parameters for the particle breakage and classification action with/without the 

classifying liner were obtained from the available literature for cement clinker. 

Experimental residence time distribution data for a full-scale cement ball mill was fitted 

by the cell-based PBM to determine the number of cells and axial back-mixing ratio. 

Dynamic simulations, conducted to determine the temporal evolution of the particle size 

distribution and mass hold-up, demonstrate that milling with a ball mixture outperforms 

milling with a single ball size. Single-compartment milling can achieve desirable product 

fineness if the feed is pre-milled. Having the same length, a two-compartment mill obviates 

the need for pre-milling and performs similarly or better than a three-compartment mill, 

depending on the ball sizes used. For a given set of ball sizes, a distribution with uniform 

mass of balls, as opposed to that with a uniform number of balls, achieves 8% increase in 

cement specific surface area. The use of a classifying liner achieves a negligibly finer 

cement product compared to uniformly mixed balls. Overall, these results agree with 

experimental observations, lending credence to TUSSIM, while providing rationale to best 

practices in the cement industry, offering various process insights and a toolbox to optimize 

existing open-circuit continuous ball mills. 
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3.1 Introduction 

Performing controlled, scientific experiments on the impact of process and design 

parameters on product particle size distribution (PSD) in full-scale continuous ball milling 

can be quite laborious, expensive, time-consuming, and sometimes infeasible. In fact, it is 

hard to find any scientific study that examines the impact of number of compartments, ball 

sizes–distributions, and use of classifying liners on cement fineness in full-scale continuous 

ball mills in the open literature. In this context, modeling of full-scale continuous balls 

mills could provide significant insights and help process design (King, 2001). Ball milling, 

where balls hit and grind particles in a rotating horizontal tube, is reported to be an 

inefficient unit operation (von Seebach et al., 1996; Fuerstenau and Abouzeid, 2002). 

Mechanical energy is lost via heat dissipation and sound energy (Duda, 1985). Although 

more efficient milling technologies such as vertical roller mills have been introduced to the 

field of cement milling since the 1980s (Tamashige et al., 1991), ball milling is still a 

dominant technology used by cement manufacturers owing to its legacy status, simple 

operation, and relatively low investment cost (Xu et al., 2015).  

 In the open-circuit continuous operation of a ball mill (Figure 3.1), raw materials 

are continuously fed to the mill and continuously discharged from the mill (King, 2001). 

Feed particles become progressively finer along the axial direction due to repeated 

breakage by balls hitting the particle bed. Particles are transported by an air stream 

generated by a mill fan. This air stream pulls particles axially through the milling 

compartments toward the discharge end, i.e., air sweeping, which also causes the axial 

dispersion of particles in the mill. Practically, the industrial-scale ball mills consist of 

multiple compartments separated by partition diaphragms. Multi-compartment mills allow 
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the use of different ball sizes in each compartment. Diaphragms prevent grinding balls from 

slipping out of the mill and oversized particles from passing to the next milling 

compartment, where the particles are subject to further breakage until the particle size is 

fitted to the diaphragm slot. The fineness of the final cement product discharged from the 

mill has a specific surface area (SSA) in the range of 300–500 m2/kg depending on the 

intended cement quality (Saleh and Rahman, 2018). Specific applications require specific 

cement sizes. For example, Zhang (2011) stated that the SSA of Portland cement should 

exceed 300 m2/kg. Even a small difference in SSA can significantly influence the quality 

of the cement product. An increase in cement SSA results in an increase of the surface for 

reaction, leading to higher cement quality (cement strength). Troxell et al. (1968) reported 

that each percent increase in SSA leads to nearly double the percent increase in cement 

compressive strength. 

 

 

Figure 3.1 Sketch of a continuous three-compartment cement ball mill incorporating two 

intermediate diaphragms and one discharge diaphragm. 
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 Ball size selection is a general problem encountered in optimizing ball mills. Such 

selection is a complicated nonlinear problem because it depends on several factors, 

including the initial feed size, evolution of particles during milling, and required final 

product fineness. Various efforts have been exerted to investigate the influence of ball size 

on the particle size distribution (PSD) in laboratory ball mills, but most studies (e.g., 

Katubilwa et al., 2011; Nava et al., 2020; Camalan, 2021a) used various single-ball sizes 

to mill multiple mono-dispersed feeds (narrow sieve cuts). Experimental observations 

(Kotake et al., 2002; Deniz, 2003; Kotake et al., 2004) have shown that an optimal particle 

size exists for a given ball size because a large ball size effectively breaks coarse particles 

only, while a small ball size is more effective for fine particle breakage. A power-law 

correlation relates the optimal mono-dispersed feed size to a given single ball size (Austin 

et al., 1976; Deniz, 2003; Trumic et al., 2007). 

 For a natural (poly-dispersed) feed to be ground, where coarse and fine particles 

coexist, the use of a mixture of ball sizes is the common practice (Austin et al., 1984). A 

few experimental studies (Erdem and Ergun, 2009; Cayirli, 2018) have considered the 

impact of ball size distribution (BSD) on the evolution of PSD during milling. For example, 

using a laboratory batch ball mill, Cayirli (2018) found that an increase in the mass fraction 

of smaller balls yields a finer product with higher SSA. Moreover, an excessive number of 

ball sizes does not always yield a finer product. Clearly, the ball selection task becomes 

more complicated for a natural feed, where fine and coarse particles coexist. It is critical to 

mention that the above studies of ball size were experimentally performed under batch 

mode, whereas the industry operates ball mills in continuous mode. In the context of full-

scale continuous cement ball milling, there is no exact rule for ball selection; rather, the 
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cement industry designs the mixture of ball sizes and BSD on the basis of their experience 

along with recommendations from the mill machine suppliers (e.g., FLSmidth, 2012; 

FLSmidth, 2014) and (empirical) Bond’s approach (Bond, 1958), in which top ball size 

can be estimated from 80% passing size of mill feed, i.e., whole feed PSD is not considered. 

Commonly, up to four ball sizes with different mass fractions have been used in industry 

(Duda, 1985; Deolalkar, 2009). As of now, unfortunately, only rough guidance for ball 

selection in full-scale ball mills is available. Therefore, there is a need to develop a better 

understanding of how to properly select BSD in continuous full-scale ball milling 

operations, which will benefit industry practitioners in optimizing the milling process. 

 Regarding ball mill design, the full-scale cement mill obviously differs from the 

laboratory mills in various respects. While the former commonly consists of multiple 

compartments and multiple diaphragms (Seebach and Schneider, 1987; Ozer et al., 2006; 

Genc, 2015a), the latter uses a single compartment without partition diaphragms. Thus, 

experiments performed with a lab mill alone cannot predict the complex milling−internal 

classification behavior in a full-scale mill. A multi-compartment mill is reasonably 

expected to provide a finer product because it has the flexibility to contain different 

mixtures of ball sizes in each compartment. Surprisingly, only one study (Genc, 2016) has 

attempted to investigate the impact of the number of milling compartments in an open-

circuit cement ball mill operation. With a steady-state population balance model (PBM), 

their simulation results (Genc, 2016) suggested that for a given cement product fineness, 

the two-compartment mill yielded approximately 10% higher mill capacity compared to 

the three-compartment mill, which contradicts the traditional design in the cement industry 

of operating three-compartment ball mills in open circuit (Beke, 1981; Lynch and 



 

96 

Rowland, 2005; Deolalkar, 2009). However, it is critical to mention that the number of 

compartments and BSD were simultaneously adjusted in their simulations (Genc, 2016). 

The BSD in the two-compartment simulation was much smaller than that of the three-

compartment mill, so the interpretation of the results could be somewhat confounded. 

Clearly, a comprehensive study on the impact of the number of milling compartments using 

various ball combinations could shed light on the above controversy regarding the number 

of compartments. 

 Another obvious difference in design between the full- and lab-scale ball mills is 

the lining plates, also known as liners. The main role of liners is to protect the mill shell 

from possible damage resulting from collisions with the balls. Unlike in laboratory ball 

mills, various designs in liner shape, including lifting and classifying liners, have been 

developed to increase milling performance in full-scale production mills. For example, a 

classifying liner provides an appropriate classification of different ball sizes along the axial 

mill length, i.e., a spatially varying ball mixture. Larger balls are retained at the 

compartment entrance, and ball sizes become progressively smaller toward the 

compartment end (Benzer, 2005; Genc, 2015b; Altun, 2018). Since particles become 

progressively finer along the axial length of the milling compartment, a classifying liner is 

reasonably expected to lead to more effective particle breakage. However, limited data 

regarding the comparison of a ball mill’s performance with/without classifying liner was 

available in the literature. Fortsch (2006), based on the actual performance of various full-

scale cement ball mills, reported that the specific power consumption of the ball mill 

process is equal to or higher with a classifying liner than without one; no performance 

improvement with a classifying liner was observed. Although a classifying liner has been 
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widely used in cement ball mills (e.g., Duda, 1985; Genc, 2008; Altun, 2018), no attempt 

within the context of a PBM has been made to quantitatively determine the improvement 

in product fineness when a specific liner design is used. 

 Among various simulation approaches, only PBM can describe the spatio-temporal 

evolution of PSD during milling at the process length scale. Since the 2000s, most PBM 

simulation studies on a cement ball mill in full-scale production (e.g., Benzer et al., 2001b; 

Dundar et al., 2011; Genc et al., 2013; Genc, 2016; Altun, 2018) have been carried out 

using the perfect mixing with discharge function approach developed by Whiten (1974). 

They only simulated steady-state operation. The major limitation of this approach is that 

the operation-dependent model parameter, i.e., the ratio of specific breakage rate parameter 

to discharge rate parameter, must be back-calculated from the measured PSD data obtained 

from sampling campaigns in actual production-scale mills. Therefore, the model 

parameters cannot be directly transferred to different operating conditions, limiting the 

predictive capability of this approach. Extensive data collection from full-scale milling 

circuits is required to predict PSDs with different process variables including BSD (Dundar 

et al., 2011). Based on a review of the literature and to the best of our knowledge, no study 

has explored the impact of BSD, number of milling compartments, and use of a classifying 

liner on cement product fineness via an unsteady-state PBM holistically. 

 The aim of this theoretical study is to gain fundamental insights into the impacts of 

BSD, number of milling compartments, and classifying liner on cement size distribution 

during open-circuit continuous ball milling. To this end, the recently developed true 

unsteady-state simulator (TUSSIM) (Muanpaopong et al., 2021; Muanpaopong et al., 

2022a), based on a cell-based PBM with a differential algebraic equation (DAE) solver, 
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was employed for full-scale cement ball milling simulations. A recent strategy for scale-

up (Bilgili, 2023) was adopted in which Kotake−Kanda’s specific breakage rate model was 

integrated with the Austin’s scale-up methodology. Moreover, experimental residence time 

distribution (RTD) data for a full-scale cement ball mill was fitted by the cell-based PBM 

to determine the number of cells and axial back-mixing ratio. Simulations were performed 

to investigate how the continuous ball milling process attained steady-state operation. First, 

spatio-temporal evolution of the PSD and the attainment of steady-state operation of a full-

scale cement mill were simulated to verify if our methodology could simulate the 

production of a realistic open-circuit cement production process. Then, simulations for a 

continuous mill with one, two, and three compartments containing various ball sizes and 

BSDs were carried out. Finally, the advantage of employing a classifying liner, leading to 

ball classification along axial mill length, in fine milling compartments was explored, as 

compared to the case in which different ball sizes are uniformly mixed. The simulation 

results are expected to provide fundamental insights into the feed size–compartment 

configuration interplay, resolve the controversy around two- vs. three-compartment mills, 

elucidate effects of the BSD and classifying liner, and rationalize some of the industry 

practices. 

 

3.2 Theoretical 

3.2.1 Model description of TUSSIM for a three-compartment ball mill 

TUSSIM was customized for an open-circuit three-compartment ball mill incorporating 

two intermediate diaphragms and one discharge diaphragm. Readers are referred to 

Muanpaopong et al. (2022a) for the derivation and details of the cell-based PBM, which 



 

99 

forms the core of TUSSIM. The essence of the cell-based PBM is presented here (refer to 

Figure 3.2).  

 

 

Figure 3.2 Model representation of a continuous ball mill with an effective axial length L 

consisting of ten well-mixed cells with three diaphragms. The axial exchange between 

adjacent cells occurs at the rate Ṙ. 

 

 Let z be the cell index ranging from 1, which is the first cell located at the mill inlet, 

running up to n, which refers to the last cell located at the mill outlet. The cell-based PBM 

was fitted to the experimental RTD data on a full-scale cement ball mill; the total number 

of well-mixed cells n = 10 and the axial back-mixing ratio R = 8.01  10−3 best fitted the 

data. The RTD data and the cell-based PBM parameters suggest that the mixedness of the 

mill content is far from the idealized mixing regimes of perfect mixing and plug flow, 

which are widely used in the literature. Hence, the first, second, and third compartments 

were modeled using three, two, and five cells, respectively, which were set based on the 

fraction of mill length for each compartment to the total mill length of the referenced mill 

(see details of the referenced mill in Subsection 3.2.2). The model equations can be 

categorized into four groups: (i) cell at the mill inlet receiving fresh feed particles (z = 1); 

(ii) intermediate cells (z = 2, 7, 8, 9); (iii) cells connecting to the diaphragm, which keeps 

the balls in the compartment and prevents oversized particles from leaving the 

compartment (z = 3, 5, 10); and (iv) cells receiving particles passing through the diaphragm 
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(z = 4, 6). The size-discretized, time-continuous form of the cell-based PBM for n = 10 is 

given by 
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 (3.1) 

 

with mi,z(0) = 0, i = 1, 2, …, N, and j = 1, 2, …, N. In Equation (3.1), i and j denote size 

class indices that extend from size class 1 (the coarsest particles) to size class N (the finest 

particles) in a geometric progression; t is milling time. Mass of particles of size class i in 

cell z is denoted as mi,z. The first-order specific breakage rate parameter of particles with 

size xi in cell z is ki,z, which describes how quickly particles of size class i in cell z is broken. 

The breakage distribution parameter is bi,j, representing the mass fraction of particles in 

size class j broken down to size class i. ṁin,i is the fresh feed rate of particles in size class i 

into the mill inlet (z = 1). z is the average residence time (space time) of cell z, which is 

defined as the ratio of total mass hold-up in cell z to mass flow rate through cell z, i.e., 

H, in,

1

N

z z i

i

m m
=

=  with mH,z being the total mass hold-up in cell z. Mass flow rate of 
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particles of size class i passing through the diaphragm connected to cell z is denoted as 

ṁout,i,z. The following constraints were imposed to satisfy the conservation of total mass: 
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where ṁoversize,i,z is the mass flow rate of particles in size class i of cell z that do not pass 

through the diaphragm, which can be determined by 

 

( )oversize, , , ,1i z i z i z zm P m = −  (3.4) 

 

where Pi,z is the fraction of particles in size class i passing through the diaphragm connected 

to cell z due to air-sweeping action. It is critical to mention that ṁoversize,i,z  is time-

dependent and unknown during unsteady-state operation. Therefore, Equations (3.3) and 

(3.4) must be solved simultaneously along with Equation (3.1), which forms a set of DAEs. 

It should be noted that in this chapter and following chapters, possible nonlinear 

breakage kinetics have not been considered. First and foremost, largely due to its 

complexity, nonlinear breakage kinetics have been disregarded in a great majority of the 

milling studies; no study on cement milling has considered nonlinear breakage. This 

prevented us from using the nonlinear breakage theory developed by Bilgili and Scarlett 
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(2005a) and Bilgili et al. (2006) as there was no experimental data for cement milling. 

Second, elucidation of nonlinear effects in milling entails collecting dense data sets. Even 

our late-phase and limited experimental batch milling study in Chapter 6 did not have such 

dense data, and it shows that the linear kinetics assumptions led to a decent 

fitting/prediction of the data. Hence, we assumed linear breakage kinetics for cement 

clinker in view of existing literature and our limited study. Whether batch cement milling 

truly exhibits nonlinear breakage entails a detailed future investigation, and this aspect has 

been indicated in Future Work of this dissertation report. Finally, air sweeping in 

continuous ball mills prevents any cushioning action due to accumulation of fines (Austin 

et al., 1981b; Kolacz and Sandvik, 1996), which is a major reason for nonlinear breakage. 

In other words, even when some nonlinear effects are present in batch milling of cement 

clinker (somewhat speculative), such effects are not likely prevalent in full-scale 

continuous ball milling operations due to air sweeping. No nonlinear effect has been 

reported for cement milling in either batch or continuous ball milling processes. 

3.2.2 Specific functions and parameters used in the simulations 

All functions and parameters of cement clinker were taken from the relevant milling 

literature, as described below. The Kotake−Kanda kinetic model (Kotake et al., 2002; 

Kotake et al., 2004) was augmented with Austin’s scale-up methodology (Austin et al., 

1984) to determine the scaled-up specific breakage rate for the full-scale milling 

simulations: 
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where dB is a single ball size represented by its ball diameter, C1−C5 are model parameters, 

and K1−K4 are scaled-up factors (refer to Appendix B.1). Representative values of the 

specific breakage rate parameters for cement clinker in a laboratory ball milling test (i.e., 

C1−C5) were taken from Deniz (2003), wherein steel balls were used as the grinding media. 

Density of cement clinker c was taken from Deniz (2003) as 3000 kg/m3. The mill had a 

diameter DT of 0.2 m and was operated at the speed c,T of 0.75. Ball filling JT and powder 

filling UT were 0.2 and 0.525, respectively. According to Deniz (2003), C1, C2, C3, C4, and 

C5 for the cement clinker were 12.86 min−1mm−0.274, 50 mm0.217, −0.736, 1.01, and 1.217, 

respectively. 

 The plant scale operation and specification of the referenced industrial cement ball 

mill were taken from Genc (2016). The full-scale mill had a diameter D of 3.5 m and a 

length L of 9.3 m, with individual lengths of 2.94, 1.7, and 4.66 m for the compartments 1, 

2, and 3, respectively. The fresh feed rate to the mill ṁin  was set to 640 kg/min, 

corresponding to a mass flow rate of cement clinker of 38.42 t/h, taken from Genc (2016). 

The mass flow rates of gypsum and admixture were neglected. This minor adjustment 

resulted in a more realistic cement product size distribution in the Run 1 simulation (base 

case) in comparison with the actual cement reported by Genc (2016). Natural feed PSD 

was taken from Genc (2016) for all simulations, unless stated otherwise. The mill with a 

top ball size of 90 mm was rotated at the speed of 16.55 rpm. The ball filling ratios J for 

compartments 1, 2, and 3 were 0.318, 0.318, and 0.290, respectively. The total average 

residence time without classification action  was taken from Austin et al. (1975) as 14 

min. 
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 When a mixture of ball sizes was used, the specific breakage rate was determined 

by the weighted average from the individual specific breakage rate of a single ball size and 

its mass fraction MB (Austin et al., 1976). Let Q be the number of different single ball sizes 

and q the ball size index ranging from 1 to Q. The specific breakage rate parameter for the 

mixture of Q different ball sizes is given by 

 

, B, , ,

1

Q

i z q i z q

q

k M k
=

=   (3.6) 

 

 Three different BSDs were considered for a given set of Q ball sizes: uniform mass 

(UM) of balls, uniform number (UN) of balls, and uniform surface area (USA) of balls. 

The mass fraction of ball size index q (MB,q) based on UM, UN, and USA were calculated 

respectively by 

 

B, 1qM Q= , 
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B, B,

1

B,

Q

q q

q

qM dd
=

=  , and B, B,

1

B,

Q

q q

q

qM dd
=

=   (3.7) 

 

 Unlike the specific breakage rate parameter, the breakage distribution parameter is 

assumed to be material-dependent (Fuerstenau et al., 1991; Ozkan et al., 2009), and it does 

not largely depend on the operational parameters. Hence, the breakage distribution 

parameter obtained in a lab-scale experiment was directly used at the large scale (similar 

to Chimwani et al., 2014). An expression for the non-normalizable cumulative breakage 

distribution parameter Bi,j is given by (Austin and Luckie, 1972): 
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 (3.8) 

 

 By definition, bi,j can then be determined from bi,j = Bi,j − Bi+1,j and bN,j = BN,j. The 

model parameters x0, 0, , µ, and  for the cement clinker ground in a ball mill were taken 

from Austin et al. (1975) as 26.9 mm, 0.1755, 0.15, 0.84, and 4.5, respectively. 

 The function used for internal classification (air-sweeping action) is based on the 

efficiency curve model (Napier-Munn et al., 1996), which has been commonly used in the 

literature for internal classification due to diaphragms in cement ball mills (Benzer et al., 

2001b; Farzanegan et al., 2014; Altun, 2018). The fraction of particles in size class i passing 

through the diaphragm connected to cell z is given by 
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     

 (3.9) 

 

 Here,  is the bypass fraction,  is the sharpness parameter, and  is the fish-hook 

parameter. d50c is the corrected cut size, which is defined as the particle size that has equal 

probability to pass through or be recycled from the diaphragm. * is a parameter conserving 

the definition of the corrected cut size. As presented in Table 3.1, the model parameters 

for each diaphragm for the full-scale mill were based on Genc (2016). These parameters 

were assumed to be invariant with the milling operation conditions. The details of the size-

discretization and the numerical method used to solve the DAEs are covered in Appendix 

B.2.  
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Table 3.1 Parameters of the Classifier Model for the Intermediate and Discharge 

Diaphragms in Full-scale Cement Ball Milling Operation 

 

Cell index, 

z 

Bypass 

fraction,  (−) 

Sharpness 

parameter,  

(−) 

Fish-hook 

parameter,  

(−) 

Corrected cut 

size, d50c (mm) 

3 0 3 0 0.70 

5 0 3 0 0.16 

10 0 2 0 0.15 
By definition, parameter * was calculated using Equation (3.9). 

Source: Genc (2016) 

 

3.2.3 Some practical caveats considered in the simulations 

The simulation studies were restricted with some practical rules of thumb that consider 

industry limitations and concerns. Fortsch (2006) stated that, as a rule of thumb in the 

cement industry, the smallest ball sizes are limited by the opening slot of the diaphragm, 

and ball sizes smaller than twice the diaphragm’s slot are not typically selected. As the 

opening slot of the diaphragm is between 6 and 8 mm (Ozer et al., 2006), the smallest ball 

size in each ball mixture in the current work was set to be greater than or equal to 15 mm, 

which is in line with industry practice. Practically, the difference in size between the 

maximum and minimum ball sizes varies in certain ranges. In numerous cement ball mill 

operations (Genc, 2008; Tsakalakis and Stamboltzis, 2008; Altun, 2018; Ghalandari and 

Iranmanesh, 2020), the ratio of maximum ball size to minimum ball size for coarse milling 

compartments lies between 1.3 and 2.0, while a wider range has been indicated for the fine 

milling compartments. In most of the cases, we restricted the ball size ratio to 2.0 for all 

milling compartments. The largest ball size was selected as 90 mm in line with the 

referenced mill (Genc, 2016) and the size of the next largest ball size was reduced by 10−20 
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mm based on the available commercial ball sizes. These considerations were used as the 

basic rationale for the selection of the ball sizes presented in Table 3.2. 

 

3.3 Results and Discussion 

3.3.1 Spatio-temporal variation of cumulative PSD in a three-compartment ball mill 

We first simulated the spatio-temporal evolution of PSD along the axial direction and 

product cement PSD to determine whether the product can attain typical cement particle 

sizes, as a base case (Run 1). A quaternary ball mixture, which is also considered an 

overlapping mixture, was selected. The first, second, and third compartments contained 

90−60, 60−30, and 30−15 mm size range of four balls, respectively (see Run 1 in Table 

3.2). A steady state in terms of product PSD is reached at 33 min. Figure 3.3 demonstrates 

the temporal evolution of cumulative PSD in cells 3, 5, and 10, corresponding to axial 

lengths 3L/10, L/2, and L, respectively, and attainment of steady-state product PSD. These 

three cells were connected to diaphragms (see schematic in Figure 3.2) and were selected 

to demonstrate the possible accumulation of particles due to internal classification action. 

Figure 3.3 illustrates that the PSD becomes progressively finer and narrower along the 

axial length from the first compartment (cell 3) to the last compartment (cell 10) and are 

discharged as a product at the mill outlet.  
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Table 3.2 Ball Mixtures and Compartment Configurations Investigated in the Simulations. 

All Simulation Scenarios were Based on Uniform Mass (UM) of Balls except for the 

Compartments with a Classifying Liner 

 
Run 

no. 

Designation of  

the balls 

Number of 

compartmentsa 

Ball size, dB (mm) 

First  

compartment 

Second 

compartment 

Third 

compartment 

1 Quaternary mixture Three 90, 80, 70, 60 60, 50, 40, 30 30, 25, 20, 15 

2 Single ball size One 90 − − 

3 Single ball size One 50 − − 

4 Single ball size One 15 − − 

5 Ternary mixture One 90, 50, 15 − − 

6 Ternary mixture One 90, 70, 50 − − 

7 Ternary mixture One 50, 30, 20 − − 

8b Ternary mixture One 50, 30, 20 − − 

9 Ternary mixture Two 90, 70, 50 50, 30, 20 − 

10 Ternary mixture Three 90, 80, 70 70, 60, 50 40, 30, 20 

11 VNBSc Three 90, 80, 70, 60 50, 40, 30 20, 15 

12 Ternary mixture Three 90, 80, 70 60, 50, 40 30, 20, 15 

13 Binary mixture Three 90, 60 60, 30 30, 15 

14 Single ball size Three 90 60 30 

15 Quaternary mixture Two 90, 80, 70, 50 30, 25, 20, 15 − 

16 VNBS−Ic Two 90, 80, 70, 50 40, 30, 20 − 

17 VNBS−IIc Two 90, 80, 70, 50 30, 20, 15 − 

18 Ternary mixture−I Two 90, 70, 50 40, 30, 20 − 

19 Ternary mixture−II Two 90, 70, 50 30, 20, 15 − 

20 Binary mixture−I Two 90, 50 40, 20 − 

21 Binary mixture−II Two 90, 50 30, 15 − 

22 Single ball size Two 90 30 − 

23 Quaternary−Binary Three 90, 80, 70, 60 60, 50, 40, 30 Class. linerd 

24 Quaternary−Binary Two 90, 80, 70, 50 Class. linerd − 

25 Quaternary−Binary Three 90, 80, 70, 60 60, 50, 40, 30 30, 15 

26 Quaternary−Binary Two 90, 80, 70, 50 30, 15 − 
a All compartment configurations have the same total length; b Pre-milled feed; c VNBS: variable number of 

ball sizes in different compartments; d Ball pattern was determined using Equation (3.10) with dB,Max of 30 

mm and dB,Min of 15 mm. 
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Figure 3.3 Spatio-temporal evolution of cumulative PSD along the axial direction and 

product PSD in a full-scale continuous cement ball mill (Run 1). Cells 3, 5, and 10 

correspond to axial positions 3L/10, L/2, and L of the mill. 
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 This is in agreement with the actual cement ball milling operation observed in 

Dundar et al. (2011), Genc et al. (2013), Genc et al. (2015a), and Altun (2018). Similar 

PSDs between cell 10 and cement product were observed, which is in line with 

experimental observation in full-scale ball mills (Benzer et al., 2001b). This finding 

suggests that the internal classification (air-sweeping) action from the discharge diaphragm 

was weaker than from that of the intermediate diaphragms.  

 At each axial length (cell), as milling proceeds, the PSD first shifts to a finer size 

initially. However, PSD becomes coarser after a certain milling time as particles continue 

to accumulate in each cell. In fact, total mass hold-up inside the mill increases as milling 

time increases until a steady state is reached within 33 min. The general trend of attainment 

of the steady-state mass hold-up inside the mill can be seen in Figure 3.4a. As we factor 

in the impact of powder filling U on the specific breakage rate parameter in the simulations 

(see scale-up factor K3 in Equation (B.2)), the specific breakage rate becomes lower when 

U exceeds UT and the PSD thus becomes coarser until a steady-state operation is reached. 

This explanation accords well with the experimental observations by Shoji et al. (1980, 

1982) in that once total mass hold-up goes beyond a certain limit (i.e., powder filling U > 

UT), the specific breakage rate drops. In comparison with an actual cement PSD obtained 

from the referenced mill (Figure 3.3), although simulated cement product PSD at steady-

state operation (t = 33 min) does not exactly match with actual cement PSD in Turkey 

(Genc, 2016), it is still in the common range of cement size. It is critical to mention that 

the model parameters used in the simulations were taken from multiple sources from the 

cement milling literature (Austin et al., 1975; Deniz, 2003; Genc, 2016). Hence, the 
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simulations were not expected to predict the exact product PSD of the referenced mill taken 

from Genc (2016).  

 

 

Figure 3.4 Temporal evolution of total mass hold-up during continuous operation of (a) a 

three-compartment ball mill with a quaternary ball mixture and a single-compartment ball 

mill with (b) top ball size of 90 mm and (c) top ball sizes of 50 and 15 mm.  
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 Experimental data of Genc (2016) also suggest that the extent of size reduction of 

particles in the last few meters inside the ball mill became smaller, compared to the front 

section of the mill. Specifically, the percent decrease of median particle size d50 at 4.64 m 

(in front of intermediate diaphragm) to that at 7.64 m was 46%, while the percent decrease 

of d50 was 10% when the PSD data was compared between 7.64 m to 9.3 m. A similar trend 

was observed in this simulation study. For example, based on Run 1 simulation at steady 

state, the percent decrease of simulated d50 from cell 5 (L = 4.65 m, in front of intermediate 

diaphragm) to cell 8 (L = 7.44 m) was 78%, while that from cell 8 (L = 7.44 m) to cell 10 

(L = 9.3 m) was 26%. Based on the simulation results of product PSD, it is fair to assert 

that the recently developed TUSSIM, a PBM-based simulator (Muanpaopong et al., 2021; 

Muanpaopong et al., 2022a), is reasonably accurate for predicting general trends observed 

during full-scale cement ball milling. 

3.3.2 Advantages of ball mixtures and multi-compartment mill configurations 

Studies of BSDs can be categorized into two groups: (i) mixture of different ball sizes 

based on UM, hereafter known as “study of ball mixture,” and (ii) mixture of different 

mass fraction (UM, UN, and USA) of a selected ball mixture, hereafter referred to as “study 

of BSD.” To explore any advantages of ball mixtures along with the use of multi-

compartment configurations, simulations with a single ball size, a ball mixture with natural 

cement feed, and a ball mixture with pre-milled feed were performed in one-, two-, and 

three-compartment mills (Runs 2−10). For a direct comparison, the total effective length 

of the mill for three configurations (one, two, and three compartments) was kept the same. 

Two intermediate diaphragms were eliminated in the one-compartment mill, while the 

second diaphragm was eliminated in the two-compartment mill. 
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3.3.2.1 Advantages of ball mixtures vs. single size balls.  For direct comparison of the 

impact of ball mixture without the influence of multi-compartment configuration, 

simulations were performed considering single ball sizes (Runs 2−4) as well as mixtures 

of different ball sizes (Runs 5−7) in a single-compartment mill. Figures 3.4(b) and (c) 

illustrate the total mass hold-up as a function of time. When only a large ball size (90 mm) 

is used, total mass inside the mill gradually builds up and attains a steady state (Figure 

3.4b). The profile is similar when 90 mm is used in a mixture with two other ball sizes. On 

the other hand, in operations with smaller ball sizes, i.e., 50 mm, 15 mm, or a mixture of 

50–30–20 mm, for both single balls and the ball mixture, total mass in the mill gradually 

builds up without limit (Figure 3.4c), and steady-state operation could not be attained 

during the 120 min milling time simulated. The smaller the top ball size is, the higher the 

level of total mass hold-up in the mill is. In actual operation, a ball mill cannot function 

continuously with the operational features shown in Figure 3.4c, as it will have to be shut 

down. Table 3.3 reports details of cement product fineness in terms of characteristic sizes 

(10% passing size d10, median size d50, and 90% passing size d90), span of product PSD, 

and SSA for the single-compartment mill. Even though a single ball size of 90 mm (Run 

2) attains steady-state operation, the product is too coarse (SSA = 182 m2/kg) and it thus 

does not satisfy general cement specifications (Saleh and Rahman, 2018). A ball mixture 

of 90, 50, and 15 mm balls (Run 5) may not be practically used in actual operation because 

the smallest balls (15 mm) can be damaged /worn out significantly by the largest balls (90 

mm). Regardless, this mixture of ball sizes is effective for breaking both coarse and fine 

particles in the feed, and thus it yields wider (larger span value of PSD) and finer product 

size compared to both the single ball size (Run 2: dB = 90 mm) and the coarse ball mixture 
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(Run 6: dB = 90, 70, and 50 mm). In short, all three operations mentioned above are unlikely 

to satisfy cement specifications (Saleh and Rahman, 2018). 

  

Table 3.3 Characteristic Particle Sizes d10, d50, and d90, Span of the PSD, and Specific 

Surface Area SSA for a Single-Compartment Mill with Single Ball Size and Ternary 

Mixtures of Different Ball Sizes 

 
Run 

no. 

Simulated product in single-compartment mill at steady state 

10% passing 

size, d10 (m) 

Median size, 

d50 (m) 

90% passing 

size, d90 (m) 

Span 

(−) 

Specific surface 

 area, SSA (m2/kg) 

2 6.84 51.4 153 2.85 182 

3a − − − − − 

4a − − − − − 

5 3.67 29.2 103 3.42 291 

6 5.62 43.3 135 2.99 211 

7a − − − − − 

8b 2.69 20.6 141 3.41 359 

a Steady-state operation was not attained during 120 min milling; b Pre-milled feed. 
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Figure 3.5 Differential PSD at cell 10 corresponding to axial length L and product at mill 

outlet in a continuous, single-compartment ball mill: (a) dB = 90 mm, (b) dB = 50 mm, (c) 

dB = 15 mm, (d) dB = 90, 50, and 15 mm, (e) dB = 90, 70, and 50 mm, and (f) dB = 50, 30, 

and 20 mm. 
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 Figure 3.5, illustrating differential PSD of cell 10 at axial length L and product at 

mill outlet, suggests why small top ball sizes could not attain a steady-state operation in a 

single-compartment mill. Note that the PSD for Runs 2, 5, and 6 is for the steady-state 

operation, whereas the PSD for Runs 3, 4, and 7 corresponds to a PSD at t = 120 min (the 

final milling time) because a steady state operation is not reached. The runs that do not 

attain a steady state (Runs 3, 4, and 7) are associated with a strong bi-modal distribution 

and a significant fraction of coarse particles when the maximum ball size is 50 mm. For 

example, a bimodal PSD with peaks at ~40 mm and ~0.1 mm is observed in cell 10 at L 

when a top ball size of 50 mm is used alone. It is clear that a small top ball size cannot 

effectively break coarse particles, and they accumulate in the mill; therefore, a large portion 

of coarse particles remain in the mill, which is consistent with experimental observations 

from Erdem and Ergun (2009). The modality at the coarse particle domain disappears or 

gets drastically depressed when 90 mm balls are used alone (Run 2) or in two different 

mixtures (Runs 5 and 6).  

 In cement industry, single-compartment mills have been commonly used in cement 

ball milling circuits with fine feed particles, i.e., a pre-milled feed. Figure 3.6 compares 

differential PSD at cell 10 and product PSD at mill outlet when a ternary ball mixture of 

50, 30, and 20 mm is used to mill two different feed PSDs: natural or raw feed (Run 7) and 

pre-milled feed (Run 8). The pre-milled feed data from a hydraulic roller press was taken 

from Genc and Benzer (2016). Unlike with a raw feed, milling with a pre-milled feed leads 

to much finer particles in cell 10 and small fraction of coarse particles accumulating inside 

the mill, and thus, product fineness is satisfactory for cement specifications; see Run 8 in 

Table 3 for characteristic product sizes and SSA. This is in line with industry practice: by 
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incorporating full-scale hydraulic roller press for pre-milling, ball mills are commonly 

modified from two-compartment to single-compartment mills (Strasser, 2002). 

3.3.2.2 Advantages of multi-compartment mills vs. single-compartment mills.     To 

investigate the advantages of using multiple versus single compartments, additional 

simulations with ternary ball mixtures having a 90-mm top ball size in two compartments 

(Run 9) and three compartments (Run 10) were performed. In the two-compartment mill, 

the first compartment contained a large ball mixture (90−50 mm) and the second 

compartment contained a small ball mixture (50−20 mm). Figure 3.7 depicts that a two-

compartment mill yields a much finer product compared to a single-compartment mill, and 

no particles coarser than 0.5 mm were observed inside the mill in cell 10. A two-

compartment mill enables engineers to fully benefit from the diverse ball sizes needed for 

fine milling of cement clinker: coarser balls in compartment 1 and smaller balls in 

compartment 2. This wide variation of balls sizes is not feasible in a single-compartment 

mill as 90 mm balls could cause dramatic damage on the smaller, e.g., 20 mm balls.  

 In the three-compartment mill, the first compartment contained a large ball mixture 

(90−70 mm), the second compartment contained an intermediate ball mixture (70−50 mm), 

and the last compartment contained a small ball mixture (i.e., 40−20 mm). Interestingly, as 

shown in Figure 3.8, significant improvements (both cell 10 and product) for the three-

compartment mill compared to the two-compartment mills are not observed. The main 

notable difference in Figure 3.8 is that either mill configuration leads to finer particles 

when 15 mm balls vs. 20 mm balls is used in the last compartment; that is, 14.8% and 

16.8% increase in SSA for the three-compartment (Runs 1 and 10) and the two-

compartment mills (Runs 9 and 15), respectively. The upshot of the results presented in 
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Figures 3.6–3.8 is the notable improvement of product fineness when a two-compartment 

mill is used as opposed to a single-compartment mill. Although a three-compartment mill 

could provide more flexibility in using more ball sizes/combinations, there is no 

improvement when switching from a two-compartment mill to a three-compartment mill 

for the specific set of ball sizes used here. Obviously, the simulations also imply that there 

is no need for a four-compartment mill from a product fineness perspective. 
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Figure 3.6 Differential PSD in a continuous, single-compartment ball mill with natural and 

pre-milled feed: (a) cell 10 corresponding to axial length L and (b) product at mill outlet. 
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Figure 3.7 Differential PSD in a continuous ball mill with a single compartment and two-

compartments: (a) cell 10 corresponding to axial length L and (b) product at mill outlet. 
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Figure 3.8 Differential PSD in a continuous two-compartment and three-compartment 

mills with ternary–quaternary ball mixtures: (a) cell 10 corresponding to axial length L, 

and (b) product at mill outlet. The initial PSD is not shown for proper discernment of 

difference. 

 

3.3.3 Impact of various ball mixtures in multi-compartment ball mills 

The next set of simulations was performed to investigate the impact of various ball 

mixtures such as quaternary, ternary, and binary ball mixtures and variable number of ball 

sizes (VNBS) along with single ball size in a three-compartment mill (Runs 1, 10−14) and 

two-compartment mill (Runs 15−22) (see Table 3.2). In general, we factored in the 

constraint of the ratio between the biggest and smallest balls, which was set to less than or 

equal to 2.0. All simulations were performed under the BSD with uniform mass (UM); that 

is, the mass fraction of each ball size is equal. Unlike the quaternary ball mixture, VNBS 

is considered a non-overlapping ball mixture because it does not have common ball sizes 

in different compartments (Table 3.2). Furthermore, the number of ball sizes is reduced by 

one in the next milling compartment. To cover the same range of ball sizes between two 
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different configurations, the ball combinations of VNBS, ternary mixture, and binary 

mixture in the two-compartment mill are considered in two scenarios: with the smallest 

ball sizes of 20 and 15 mm for scenarios I and II, respectively. The only difference between 

these scenarios was that ball sizes in the last compartment in scenario I were between 20 

and 40 mm, while scenario II contained ball sizes between 15 and 30 mm (smaller balls). 

 Figure 3.9 illustrates the impact of various types of ball mixtures on the cement 

product fineness in a three-compartment ball mill. A single ball size in each compartment 

(Run 14) produces a much coarser cement product than the binary ball mixture: 22.4%, 

22.1%, 17.7% higher d10, d50, d90 and 21.4% lower SSA. The binary ball mixture yields a 

slightly finer product than the quaternary and ternary ball mixtures. Among the quaternary, 

ternary, and binary ball mixtures, the differences between the best scenario (binary 

mixture) and worst scenario (quaternary mixture) were 2.8%, 2.8%, 2.1%, and 2.1% with 

respect to d10, d50, d90, and SSA. As stated earlier, the choice of ball mixture is infinite, and 

a credible simulator can be customized for any ball combination to find the optimum 

condition of ball selection. Here, VNBS ball mixture was shown to be more effective 

compared to other mixtures. VNBS yielded the finest final product, which had a ~7% 

higher SSA than the product of the binary ball mixture, which could lead to significant 

improvement in cement strength (Troxell et al., 1968). This result points to a need for a 

comprehensive BSD optimization using a simulator like TUSSIM, which is out of the 

scope of this study. 

 It is inferred from the binary vs. ternary/quaternary ball mixture simulation results 

that an excessive number of ball sizes does not always yield a finer product, which is in 

line with past experimental results (Cayirli, 2018). However, this outcome contradicts 
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common industry practice wherein the combination of up to four ball sizes is commonly 

used (Duda, 1985; Deolalkar, 2009). Although binary mixtures perform slightly better than 

other mixtures in terms of breakage kinetics, a caveat to the use of binary mixtures (large 

and small ball sizes) is that smaller balls may break or wear due to their collisions with the 

much larger balls (Meulendyke and Purdue, 1989; Chenje, 2007). The wear rate of balls 

may also be a potential issue that needs to be considered, which is largely disregarded in 

small-scale, laboratory ball milling studies. While the breakage kinetics of the binary 

mixture is slightly higher than that of the ternary and quaternary mixtures, it may not be 

practical in terms of ball wear. This may explain why a mixture of three or four ball sizes 

is commonly used. The simulations were also performed for ball mixtures in a continuous 

two-compartment mill; the details for each ball combination are shown in Runs 15−22 

(Table 3.2). Figure 3.10 illustrates a result similar to the simulation result with the three-

compartment mill, where the single ball size produced the coarsest product. Among the 

ball mixture scenarios, ternary mixture−II yielded the finest product, producing a finer 

product than the single ball size (the worst-case scenario), as signified by 23.0%, 23.0%, 

and 19.1% lower d10, d50, and d90, respectively. Figure 10 also depicts that for a given ball 

mixture, the operation containing 15 mm balls (scenario II) yielded a finer product size 

compared with the operation that contained the minimum ball size of 20 mm (scenario I), 

with the difference in SSA reaching approximately 50 m2/kg. It is asserted that with the 

proper selection of ball sizes for the two-compartment mill, the product can be slightly 

coarser than the best scenario of the three-compartment mill (VNBS in Run 11). However, 

it should be kept in mind that the product fineness is sensitive to ball selection in the two-

compartment mill and ball wear must also be considered. 
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Figure 3.9 Simulated product fineness reported as characteristic sizes and specific surface 

area for various ball mixtures along with the use of single ball size in a three-compartment 

ball mill. Ball size distribution is based on the uniform mass (UM) of balls for all simulation 

runs.  
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Figure 3.10 Simulated product fineness reported as characteristic sizes and specific surface 

area for various ball mixtures along with the use of single ball size in a two-compartment 

ball mill. Ball size distribution is based on the uniform mass (UM) of balls for all simulation 

runs. 
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 Although the ball mill configuration with a higher number of compartments yields 

a finer product and provides more flexibility in the designation of ball sizes, resulting in 

less sensitivity to ball selection, using an excessive number of diaphragms leads to several 

concerns in actual operation. A caveat is that using a higher number of diaphragms 

increases the possibility that worn balls will block the diaphragm’s slot, and thus, particles 

cannot be transported properly to the next compartment. In practice, a higher number of 

diaphragms leads to a higher pressure drop across the mill, due to longer mill (300 mm 

longer per diaphragm) (Duda, 1985), and heavier weight of the total ball mill unit. This 

outcome leads to higher capital costs as well as higher operating costs in terms of specific 

power consumption when more compartments are used. For these reasons, the use of an 

excessive number of diaphragms (and compartments) may not be practical besides the fact 

that a fourth compartment is not expected to yield a much finer product, in view of the 

discussion in Subsection 3.3.2 Overall, the controversial finding of Genc (2016) in that a 

two-compartment mill outperforms as compared to a three-compartment mill is shown to 

be feasible by our simulation study; but, as also implemented by Genc (2016), the two mills 

would have to use different ball sizes. One major difference between a three-compartment 

mill and a two-compartment mill appears to be the specific ball sizes used. The 

performance of the mills is also closely related to the screening efficiency of the 

intermediate diaphragms, which is modeled by the internal classification function, and this 

could also contribute to the above-mentioned findings. 
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Table 3.4 Simulations in which Various Quaternary Mixtures of Balls were Distributed 

based on UM, UN, and USA Approaches 

 
Run no. Ball size distribution and mean ball size (mm) 

First compartment Second compartment Third compartment 

27 UM (75.0) UN (52.3) UM (22.5) 

28 UM (75.0) USA (47.8) UM (22.5) 

29 UN (79.7) UM (45.0) UM (22.5) 

30 UN (79.7) UN (52.3) UM (22.5) 

31 UN (79.7) USA (47.8) UM (22.5) 

32 USA (76.7) UM (45.0) UM (22.5) 

33 USA (76.7) UN (52.3) UM (22.5) 

34 USA (76.7) USA (47.8) UM (22.5) 

35 UM (75.0) UM (45.0) UN (26.1) 

36 UM (75.0) UM (45.0) USA (23.9) 

37 UN (79.7) UN (52.3) UN (26.1) 

UM: uniform mass, UN: uniform number, and USA: uniform surface.  

Compartment 1: 90, 80, 70, and 60 mm balls; compartment 2: 60, 50,  

40, and 30 mm balls; compartment 3: 30, 25, 20, and 15 mm balls. 

 

3.3.4 Impact of ball size distribution in three-compartment ball mills 

A quaternary ball mixture was chosen to examine the impact of BSD, namely, UM, UN, 

and USA distribution of the four balls (see Run 1 in Table 3.2 and Runs 27−37 in Table 

3.4). The mass fraction for each ball size, based on UM, UN, and USA, was calculated 

using Equation (3.7). Generally, for a given set of ball sizes, the UM-BSD contains a higher 

mass fraction of the smaller balls compared to the UN-BSD and the USA-BSD. A 

comparison of simulated product fineness in terms of characteristic sizes obtained from all 

ball combinations is shown in Figure 3.11, where the last compartment was based on UM 

(Runs 1, and 27−34). In general, the different distributions of the 4 ball sizes (UM, UN, 

USA) in the first two compartments do not affect product fineness significantly. The impact 



 

128 

of three BSDs in the last compartment, where compartments 1 and 2 were assigned with 

UM-BSD, was also investigated.  

 

 

Figure 3.11 Impact of ball size distribution on characteristic particle sizes of the product. 

Ball size distribution (BSD) in the first two compartments is based on uniform mass (UM), 

uniform number (UN), and uniform surface area (USA) of the balls, whereas the last 

compartment is based on UM except Run 37 (UN-BSD). A quaternary ball mixture is used 

in each compartment. 

 

 Simulation results suggest that the combination ending in UM (Run 1) yields the 

finest product (SSA = 341 m2/kg), while the BSDs ending in UN (Run 35) and ending in 

USA (Run 36) yielded SSAs of 320 and 333 m2/kg, respectively. Among the BSD 

scenarios (Runs 1, 27−37), the difference in terms of SSA between the best scenario (Run 

1: UM−UM−UM, SSA = 341 m2/kg) and worst scenario (Run 37: UN−UN−UN, SSA = 

314 m2/kg) was 8%, which could significantly impact cement quality (Troxell et al., 

1968). These simulation results agree well with those of past experimental studies (Lynch 

et al., 2000; Cayirli, 2018), where the higher fraction of the smallest ball yielded a finer 
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final product. In addition, Katubilwa and Moys (2009) suggested that a full-scale ball mill 

should be operated with UM-BSD, which in their study is referred to as the original 

equipment manufacturer recommended BSD. 

3.3.5 Ball classification action by classifying liner in fine milling compartment  

In the final set of simulations, the impact of ball classification, owing to the presence of a 

classifying liner along the axial mill length in the last compartment, was investigated in the 

context of a PBM. Both three- and two-compartment configurations were studied. A 

classifying liner, which leads to spatially varying balls along the axial length, was used in 

the last compartment: the third compartment in the three-compartment mill and the second 

compartment in the two-compartment mill. For both configurations, the maximum and 

minimum ball sizes of 30 mm and 15 mm, respectively, were used in the compartment 

fitted with classifying lining plates (see Runs 23 and 24 in Table 3.2).  

 A simple empirical model was developed to describe the mean ball size dB,Mean as 

a function of axial location l by fitting it to the ball distribution pattern obtained 

experimentally by Altun (2018). In this simple analysis, we have not considered the impact 

of the width of the BSD, mainly because such detailed experimental data were not 

available. In the simulations, a quaternary ball mixture based on UM was used for all 

compartments, except the compartment with the classifying liner. The proposed model is 

given by 

 

( )B,Min B,Max B,Min

B,Mean 2

3 1 3

exp
d d d

d A l
A A A

 
= + − − 

 
 (3.10) 
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 Here, A1, A2, and A3 are model parameters that characterize the pattern of ball 

classification, with dB,Max and dB,Min denoting the maximum and minimum ball sizes used 

in the ball mixture, respectively. The axial location is l, ranging from 0 (inlet of the 

classifying liner’s compartment) to LF (outlet of the classifying liner’s compartment). 

 Table 3.5 shows the parameters used to predict the mean ball size in the 

simulations. Indeed, the variation of the mean ball size along the axial position in Altun’s 

study (Figure 3.12(a)) and that in the simulations (Runs 23 and 24) was kept similar. The 

simulations (Runs 23 and 24) were designed for a direct comparison with the case of 

uniformly mixed balls based on UM-BSD in Runs 25 and 26 for three- and two-

compartment mills, respectively, where the last compartment contained binary mixtures of 

30 mm and 15 mm balls. When a classifying liner was considered, the mean ball size dB,Mean 

in the last compartment was calculated for each cell using Equation (3.10). After dB,Mean 

was calculated, the mass fraction of each ball size at any axial length (cell) was determined, 

which allowed us to estimate the ball mixture’s specific breakage rate parameter via 

Equation (3.6). 



 

Table 3.5 Estimated Parameters of the Empirical Model, Equation (3.10), that Describe the Ball Classification Pattern Resulting from 

a Classifying Liner 

 
Source of experimental data  

and simulation descriptor (Run no.) 

Classifying liner’s  

compartment length, LF (m) 

Max. ball size, 

dB,Max (mm) 

Min. ball size, 

dB,Min (mm) 

Parameter in Equation (3.10) 

A1 (−) A2 (m−1) A3 (−) 

Full-scale ball mill data (Altun, 2018) 8.40 50 17 1.35 0.163 1.11 

3-compartment ball mill (Run 23) 4.66 30 15 1.10 0.294 0.899 

2-compartment ball mill (Run 24) 6.36 30 15 1.10 0.215 0.899 

 

1
3
1
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Figure 3.12 Mean ball size variation along the axial position in the compartment with the 

classifying liner: (a) experimental data and model fit by Equation (3.10) and (b) predicted 

mean ball size for three- and two-compartment configurations. 
Source: Experimental data (Altun, 2018) 

 

 As Figure 3.13 illustrates, the use of the classifying liner (Run 23) increased the 

product SSA by 1.5% over the SSA of 347 m2/kg (Run 25) of the uniform BSD based on 

UM. The same simulation approach was repeated for the two-compartment mill, where the 

last compartment was modeled with seven cells. Figure 3.13 also shows that the product 

SSA increased to 373 m2/kg with ball classification (Run 24) compared to the SSA of 368 

m2/kg (Run 26) of the uniform BSD. Specifically, product SSA increased by 1.5%. Overall, 

compared to the spatially uniform distribution of the ball mixture, significant improvement 

was not observed when using a classifying liner in both three-compartment and two-
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compartment mills. These results agree with those in Fortsch (2006), who reported no 

performance improvement with a classifying liner. 

 

 

Figure 3.13 Impact of the use of a classifying liner in the last compartment for different 

compartment numbers (three- vs. two-compartment configurations) on specific surface 

area (SSA) of the cement product. For the other compartments, the ball size distribution is 

based on the uniform mass (UM) of balls, and the ball mixture is based on a quaternary 

ball mixture. 
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3.3.6 Limitations of TUSSIM and future improvements  

Chemical grinding aids help reduce the agglomeration of fine particles in cement ball mills 

(Sottili and Padovani, 2000). Previous experimental studies (Toprak et al., 2014; Toprak et 

al., 2020) reported improvements in milling when a grinding aid was used. For example, 

Toprak et al. (2020) demonstrated that the cement products in a continuous cement ball 

mill became finer as the dosage of the grinding aid increased. They also reported that the 

average residence time, which is one of the input parameters of the PBM, decreased with 

an increase in the dosage of the grinding aid. The current study does not investigate the 

impact of the grinding aids. In fact, currently, there is no unsteady-state PBM-based 

simulator that takes into account rheological effects directly. In the future, the impact of 

grinding aids on the rheology could be simulated when TUSSIM and other simulators 

integrate the Nomura model (Nomura, 2013; de Oliveira and Tavares, 2018) for modeling 

of material transport and calibration of relevant parameters. Such coupling will also enable 

realistic simulation of the impact of fresh feed rates on the open- and closed-circuit 

operation. Moreover, the impact of grinding aid on internal classification action (and 

external classification action in the case of closed-circuit operation) must be described by 

the respective classification functions. Besides the rheological effects of the grinding aids, 

TUSSIM does not currently consider the breakage of multicomponent mixtures, 

temperature effects on milling, media wear as well as power consumption–energy 

expenditures. 
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3.4 Conclusions 

In this study, the recently developed TUSSIM, an unsteady-state PBM-based simulator 

with a DAE solver, was utilized to model full-scale continuous cement ball milling in an 

open-circuit operation. The simulations of the spatio-temporal variation of PSD in a three-

compartment ball mill with a typical quaternary ball mixture demonstrated the attainment 

of a steady-state operation and acceptable range of cement particle size. The simulation 

results with TUSSIM rationalized various practices in the cement industry; and they are 

also supported by past experimental studies on dry ball milling, giving credence to 

TUSSIM as a simulation tool. The main conclusions are as follows:  

• The use of a single ball size is not desirable: A large single ball size leads to 

unsatisfactory cement size, while a small single ball size leads to the accumulation 

of unbroken coarse particles, thus preventing the attainment of a feasible steady-

state operation.  

• For a natural feed PSD, a mixture of ball sizes produces a finer product than a single 

ball size in a single-compartment mill; however, the cement product is still coarser 

than standard, desirable cement size.  

• Pre-milling of the feed is required to attain a steady-state operation in a single-

compartment mill to produce desirable cement products with acceptable fineness.  

• While an increase in the number of compartments from one to two yields a 

significantly finer product and obviates the need for pre-milling of the feed, 

switching to a three-compartment mill has diminished value. Both two-

compartment and three-compartment mills could perform similarly depending on 

the ball sizes selected. The difference between these configurations is likely due to 

differences in the ball sizes and their distribution as well as the internal 

classification of the diaphragms. 

• In a ball mixture, an increase in the fraction of smaller balls, especially in the last 

compartment, yields a higher product fineness. 

• For a quaternary mixture, UM/USA/UN distributions of ball sizes in the first two 

compartment do not affect product PSD significantly, while those in the third 

compartment have a notable impact on the product PSD.  

• The binary ball mixture yields a finer product than the ternary and quaternary 

mixtures, but it may not be practical for use when the ball wear rate is considered.  
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• The use of a classifying liner results in spatially varying BSD and yields a 

negligibly finer product (approximately 1.5%) in comparison with the spatially 

uniform BSD in the last compartment.  

 TUSSIM can help engineers to optimize the existing, specific full-scale open-

circuit continuous ball mills besides providing various processing insights. For example, 

TUSSIM can be coupled to a global optimizer to determine the composition of various ball 

sizes in each compartment of multi-compartment ball mills for a given feed PSD and 

desired cement product fineness. 
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CHAPTER 4 

 MODELING OF CLOSED-CIRCUIT BALL MILLING OF CEMENT 

CLINKER VIA A PBM WITH A VARIABLE TROMP CURVE FOR 

CLASSIFICATION 

 

Full-scale closed-circuit cement ball milling was modeled using a true unsteady-state 

simulator (TUSSIM), based on a transient cell-based population balance model (PBM) 

with a set of differential algebraic equations (DAEs). As a major novelty, the PBM for the 

mill was coupled with a dust load-dependent, variable Tromp curve for the air classifier. 

Results from the dynamic simulations suggest that lower air flow rate or higher rotor speed 

of the classifier not only led to a finer product but also increased the dust load of the 

classifier feed. When the dust load was too high, operational failure due to overloading of 

the whole circuit was detected. Finally, TUSSIM was used for process optimization with a 

global optimizer−DAE solver to identify the air classifier’s parameters that yielded 

desirable cement quality while maximizing production rate. We have demonstrated that the 

optimization could increase production rate by 7% compared to the baseline process. 

 

4.1 Introduction 

Improving the performance of a closed-circuit ball mill for cement milling, where a 

tumbling ball mill is integrated with a dynamic air classifier, is a complicated task because 

of the fully coupled interplay between the two unit operations. In cement plants, process 

parameters are usually set based on operators’ experience gained from trial and error, along 

with suggestions from credible engineering companies (FLSmidth, 2012; Shimoide, 2016). 

It seems that the existing knowhow largely resides within the expertise of the engineering 

companies, the equipment vendors, and the cement manufactures. Such knowhow is not 
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easily accessible in the public domain, or the limited information shared does not allow for 

reproducibility (e.g., Fernandez and Hui (2017)). Even an empirical understanding of the 

impact of process–design parameters of a full-scale continuous ball mill on product quality 

attributes entails performing well-controlled, scientific experiments that are quite 

laborious, expensive, time-consuming, and sometimes infeasible (Muanpaopong et al., 

2022b). In general, without thorough process understanding, trial and error must be 

repeatedly performed with changes in the operating conditions. In view of these 

considerations, a credible population balance model (PBM) and computer simulations 

could yield fundamental insights about the process and ultimately provide operational 

guidance for process optimization (Napier-Munn et al., 1996; Muanpaopong et al., 2022a; 

Muanpaopong et al., 2022b). 

 Closed-circuit ball mills have been operated for cement milling for decades (Austin 

et al., 1975; Brugan, 1988; Yardi, 2005). Figure 4.1 shows the process flow of a closed-

circuit, two-compartment cement ball mill. The closed-circuit operation helped to reduce 

overmilling of particles (Duda, 1985), resulting in lower specific power consumption 

(Genc, 2008) in comparison with open-circuit operation, where the ball mill is operated 

without the external air classifier. For the sake of brevity, only a brief introduction to the 

operation and key parts of the dynamic air classifier are described here, while the detailed 

operational aspects of the ball mill can be found elsewhere (Labahn and Kohlhaas, 1983; 

Duda, 1985). The dynamic air classifier is specifically referred to as a cage wheel classifier 

with guide vanes, also known as the third-generation high-efficiency air classifier. An air 

classifier continuously receives milled particles discharged from the ball mill. The air flow 

generated by an external fan pulls particles through guide vanes and a rotating cage (rotor),  
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Figure 4.1 Sketch of a two-compartment continuous ball mill integrated with an air 

classifier in a closed-circuit operation. 

 

where the classification of particles takes place. Fine particles passing through the rotor are 

collected by the dust collector as the final product, whereas coarse particles are rejected 

and recycled back to the ball mill for further milling. The balance between the centrifugal 

force acting on the particles and the drag force imposed by air determines the cut size of 

classification (Sander and Droop, 2019). Hence, during air classification, product fineness 

can be changed by adjusting the air flow rate (Yardi, 2005; Altun and Benzer, 2014) and 

the rotor speed (Brugan, 1988; Yardi, 2005; Altun and Benzer, 2014). 
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 Air classification performance can be described by a Tromp curve (Brugan, 1988), 

a.k.a. the selectivity curve (Austin and Klimpel, 1981; Klumpar, 1992). The Tromp curve 

represents the fraction of particles in the classifier feed that reports to the coarse reject 

stream. Analysis of the Tromp curve provides information about the particle classification, 

such as bypass fraction (Brugan, 1988; Klumpar, 1992; Onuma, 1995), wherein 

classification does not take place (Klumpar, 1992), and sharpness of classification 

(Klumpar, 1992; Onuma, 1995). Ample experimental data on full-scale closed-circuit 

cement ball mills reported by Altun and Benzer (2014) indicated that classification 

performance worsened when an air classifier had to deal with a higher dust load of classifier 

feed, defined as the ratio of the mass flow rate in the classifier feed stream to the air flow 

rate.  

 Tromp curve models can be broadly categorized into (i) a fixed Tromp curve model 

(e.g., Altun, 2018; Lynch et al., 2000; Boulvin et al., 2003; Huusom et al., 2005; 

Farzanegan et al., 2014) and (ii) a variable Tromp curve model (Zhang et al., 1988; Benzer 

et al., 2001a; Altun and Benzer, 2014). A fixed Tromp curve is typically developed for a 

standard set of operational parameters of the closed-circuit ball mill at the steady-state; 

hence, it has fixed parameters. Unlike the fixed Tromp curve, model parameters of the 

variable Tromp curve are correlated with a wide variety of the operational parameters of 

the air classifier at steady state. Therefore, it is capable of capturing the impact of variable 

dust load of the classifier feed (or mass flow rate fed to the classifier) on classification 

performance. In this paper, the variable Tromp curve specifically refers to the Altun and 

Benzer model (2014). Their model parameters characterizing air classification 

performance are explicitly connected to the operational parameters and dust load. It is 
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superior to earlier models (Zhang et al., 1988; Benzer et al., 2001a) that assume the 

invariance of the classification parameters such as the sharpness parameter with the 

operation parameters.  

 PBM has been used to simulate the evolution of particle size distribution (PSD) 

during milling (Austin, 1971/1972). A majority of PBM studies in the context of full-scale 

cement ball mills have considered only steady-state operation (Austin et al., 1975; Zhang 

et al., 1988; Genc, 2008; Dundar et al., 2011; Farzanegan et al., 2014; Altun, 2018), while 

only a few research groups have developed an elaborate unsteady-state PBM (Boulvin et 

al., 2003; Huusom et al., 2005; Muanpaopong et al., 2022b). The latter group performed a 

perturbation analysis (Boulvin et al., 2003; Huusom et al., 2005) and elucidated the 

evolution of the PSD and mass hold-up to attain steady state (Muanpaopong et al., 2022b), 

which could also be useful for process control. All PBM simulations for closed-circuit 

cement ball mills have used the fixed Tromp curve. Although fitting a PBM incorporating 

a fixed Tromp curve for the external air classification could provide good fitting results 

(Farzanegan et al., 2014; Altun, 2018), such a coupled PBM offers little to no predictive 

capability. When such a PBM is used either for a different set of operating conditions 

within the context of optimization or for simulation of the transient operation, it would give 

erroneous predictions because whenever dust loading and feed rate vary, the classification 

performance would vary, but the fixed Tromp is not able to capture these effects. Based on 

the literature review, and to the best of our knowledge, an unsteady-state PBM for 

continuous ball milling has never been coupled with a variable Tromp curve (Altun and 

Benzer, 2014) for simulating the closed-circuit ball mill operation and its optimization. 
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 One of the ultimate goals of any modeling study is to develop fundamental process 

insights and reliable simulation capability to optimize existing milling operations, thus 

helping industry practitioners. In the dry milling literature, studies focusing on process 

optimization using a PBM with an optimization algorithm have been limited (Austin et al., 

1975; Kis et al., 2005). For example, an unsteady-state convective dispersion PBM was 

augmented with a fixed Tromp curve to simulate (Kis et al., 2002; Kis et al., 2005) and 

optimize (Kis et al., 2005) a closed-circuit continuous mill. Although their model is 

mathematically rigorous and numerically correct simulations are presented, the model is 

for a generic continuous mill that has low fidelity to closed-circuit ball milling. They used 

a power-law specific breakage rate function for ball milling, disregarded internal 

classification in the ball mill, and used a jump function for the external classification. All 

these choices for the specific functional forms of the PBM are not applicable to dry ball 

milling and internal–external classification. As importantly, no realistic model parameter 

was used because the simulations did not consider a specific material. Their optimization 

did not suggest how adjustable operation parameters should be set to achieve the optimal 

conditions, which is a barrier for practitioners in optimizing actual ball mills. A similar 

issue was found in optimization work using the steady-state PBM with a fixed classification 

function (Austin et al., 1975). The cut size of the air classifier was used as the variable of 

optimization; however, it is unclear how this cut size would translate into manipulated 

variables such as the rotor speed and the air flow rate of the air classifier. It is important to 

mention that previous studies (Austin et al., 1975; Kis et al., 2005) that focused on the 

optimization of the closed-circuit ball milling disregarded the variable nature of the Tromp 

curve. Therefore, in the context of PBM, there is a need to develop a process optimization 
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scheme with an explicit connection between model parameters and process operation 

parameters that allows one to achieve the targeted product size, improve product quality, 

and maximize the production rate of the circuit by changing the operation parameters. 

 The aim of this theoretical study is to better understand the complex interplay 

between ball milling and air classification in full-scale two-compartment ball mills for 

cement clinker milling. To this end, we modified the true unsteady-state simulator 

(TUSSIM) for a full-scale open-circuit cement ball mill (Muanpaopong et al., 2022b) by 

coupling the PBM for the mill with a variable Tromp curve for the air classifier (Altun and 

Benzer, 2014). The cell-based PBM for the mill can address realistic mixedness degree of 

particles and internal classification caused by possible accumulation of coarse particles due 

to presence of diaphragms (refer to Figure 4.1) (Muanpaopong et al., 2022a; Muanpaopong 

et al., 2022b). The combined ball mill−air classifier model, consisting of a set of differential 

algebraic equations (DAEs), poses a challenging numerical problem as the variable Tromp 

curve increases the degree of two-way coupling and the nonlinearity. The model 

parameters were obtained from the relevant experimental cement milling literature. To 

justify the simulation approach along with selected model parameters, simulation of a 

baseline process was performed to investigate whether the evolution of PSD in the circuit 

could attain a steady state and provide a realistic cement PSD. Other metrics, such as the 

PSDs around the air classifier and characteristic information of the Tromp curve at steady 

state, were also examined. Subsequently, the impacts of the air flow rate and rotor tip speed 

on the PSD and mass flow rate in the circuit, as well as the Tromp curve, were examined. 

Yet another novel contribution of this work is that process optimization using a combined 

global optimizer−DAE solver was implemented. This approach, despite its computational 
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burden and complexity, enables identification of optimal circuit operation by considering 

the quality attributes of the cement product and the production rate simultaneously. 

 

4.2 Theoretical 

4.2.1 Model description 

A recently developed process simulator, TUSSIM, for a full-scale cement ball mill 

(Muanpaopong et al., 2022b) was augmented with a variable Tromp curve model (Altun 

and Benzer, 2014) for simulating closed-circuit ball milling. For the sake of brevity, only 

key aspects of the model are described here. The readers are referred to (Muanpaopong et 

al., 2022a) for derivation of the cell-based PBM within TUSSIM (Muanpaopong et al., 

2022a). Briefly, TUSSIM is based on the solution of a cell-based PBM; the mixedness 

degree of particles in the ball mill is modulated by two dimensionless parameters: number 

of cells n and axial back-mixing ratio R, defined as the ratio of the axial recirculation rate 

Ṙ between adjacent cells to the mass flow rate through the cell. Values of n = 10 and R = 

8.01  10−3 were taken from (Muanpaopong et al., 2022b), where the residence time 

distribution data on the full-scale two-compartment cement ball mill reported in Austin et 

al. (1975) were fitted by a cell-based PBM without breakage terms. Figure 4.2 shows the 

schematic of the mill model with compartments 1 and 2 consisting of 3 and 7 cells, 

respectively. The number of cells for each milling compartment was estimated according 

to the ratio of the individual compartment length to the mill length (Gelpe et al., 1985; 

Muanpaopong et al., 2022b). 



 

 

 

Figure 4.2 Schematic model of a continuous ball mill of length L, with two diaphragms, represented by 10 perfect mixing cells in series. 

The axial recirculation rate Ṙ is exchanged between adjacent cells. The coarse particles rejected from the dynamic air classifier is 

returned to the mill, whereas the fines are taken as the product.
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 The size-discrete time-continuous form of a cell-based PBM for n = 10 is expressed 

by the following equation: 
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 (4.1) 

 

mi,z(0) = 0 with i, j = 1, 2, …, N. In Equation (4.1), i and j are size class indices extending 

from size class 1 containing the coarsest particles of size x1 to size class N containing the 

finest particles of size xN with geometric progression. t is the milling time. mi,z is the mass 

of particles in size class i in cell z, ranging from cell 1 (ball mill inlet) to cell n (ball mill 

outlet). Si,z is the specific breakage rate parameter of particle size xi in cell z. bi,j is breakage 

distribution parameter with its cumulative counterpart Bi,j. The constraints in Equation (4.2) 

were applied to satisfy mass conservation: 
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 The mass flow rate of particles in size class i feeding the ball mill inlet is denoted 

by ṁ
MI,i

. Based on a mass balance, it is calculated from ṁ
MI,i = ṁ

FF,i + ṁ
R,i

, where ṁ
FF,i

 and ṁ
R,i

 

are the mass flow rates of particles in size class i in the fresh feed stream and the coarse 

reject stream, respectively. The mass flow rate of particles in size class i passing through 

the diaphragm connected to cell z =3 and 10 is denoted by ṁU,i,z. In correlation with the 

value of the Tromp curve value Ti for size class i, the mass flow rate of particles in size 

class i in the coarse reject stream ṁR,i and fine product stream ṁP,i can be determined by 

ṁR,i = ṁU,i,10Ti and ṁP,i = ṁU,i,10(1−Ti), respectively. 

 The average residence time in cell z (z), defined as the ratio of the mass in cell z 

(mH,z) to the total mass flow rate through that cell, i.e., 
H, MI,

1

N

z z i

i

m m
=

=  , can be 

determined from z = /n. Here,  is the average residence time in the mill without 

considering the accumulation of coarse particles due to diaphragms, and it was taken from 

Austin et al. (1975) as  = 14 min. When the possible accumulation of particles in cells 

connected to the diaphragms, i.e., cells z = 3 and 10, is considered, the definition of z for 

these cells is defined by the following expression (King, 2001): 

 

1

H, MI, O, ,

1 1

N N

z z i i z

i i
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−
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   (4.3) 

 

 Here, ṁO,i,z is the mass flow rate of particles in size class i of cell z that does not 

pass through the diaphragm, and it was calculated using the following equation: 
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( )O, , ,1i z i i z zm P m = −  (4.4) 

 

where 0  Pi  1 is the fraction of particles in size class i passing through the diaphragm. 

It is important to mention that ṁR,i and ṁO,i,z are time-dependent, and they are unknown 

during a transient operation. Therefore, Equations (4.3) and (4.4) must be solved 

simultaneously with Equation (4.1), which forms a set of DAEs. A steady state was deemed 

to be attained when the sum of the absolute difference between the cumulative PSDs of 

subsequent time steps for all N size classes was equal to or less than 10−2 (Muanpaopong 

et al., 2022b). Cumulative PSDs in each stream around the air classifier (classifier feed, 

fine product, and coarse reject streams) and inside the ball mill (cells 3 and 10) must satisfy 

this criterion for the steady state. Readers are referred to Appendix C.1 for size 

discretization and details of the PBM simulations. 

4.2.2 Specific functional forms and model parameters used in the PBM 

This theoretical study did not attempt to model a specific cement ball mill; therefore, the 

model parameters for simulations were taken from available and relevant cement milling 

studies. For the referenced full-scale cement mill, operation data (e.g., ball size 

distribution) and mill dimensions were taken from Altun (2018) because they reported 

sufficient operation data and model parameters for the internal classification of the 

diaphragm. Briefly, the ball mill consists of two compartments, with a mill length L of 12.3 

m. Ball sizes of 60−90 mm and 17−50 mm were used in the first and second compartments, 

respectively. The fresh feed rate ṁ
FF

 was 1723 kg/min. Readers are referred to Appendix 

C.2 for all details of the referenced full-scale mill (Altun, 2018). 
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4.2.2.1 Breakage kinetics model of ball milling.  Altun (2018) directly fitted the PBM 

with the perfect mixing assumption along with a discharge function (Whiten, 1974) to the 

actual industrial-scale data, which is a common practice for cement milling simulations 

(Lynch et al., 2000; Benzer et al., 2001a; Dundar et al., 2011). Only the operation-

dependent lump parameter, i.e., the ratio of the specific breakage rate to the discharge rate 

from the mill was reported. In other words, breakage parameters (Si and Bi,j) were not 

calculated separately. For this reason, the breakage kinetic parameters for the ball milling 

of cement clinker were obtained from small-scale ball milling of cement clinker (Deniz, 

2003; Dave et al., 2022; Muanpaopong et al., 2023). We applied the Austin’s celebrated 

and well-established scale-up rules (Austin et al., 1984), to scale up Si obtained from a 

laboratory ball mill to the full-scale ball mill considered in Section 2.2 (similar to 

Muanpaopong et al. (2022b)). It is well-known that Si varies significantly with the 

operation conditions (Austin et al., 1984; de Carvalho and Tavares, 2013) and mill size 

(Rogers et al., 1986). The methodology to represent the full-scale Si was taken from Bilgili 

(2023): Si obtained from a lab-scale ball mill using the Kotake−Kanda (KK) model (Bilgili, 

2023) was scaled up by the Austin scale-up factors K1, K2, K3, and K4 (Austin et al., 1984) 

to represent Si of industrial-scale ball mills, as expressed by the following equation:  
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 (4.5) 

 

 In Equation (4.5), dB,z is a single ball size represented by its ball diameter in cell z. 

Since our approach does not consider the breakage of multicomponent mixtures, it was 
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assumed that breakage parameters for cement milling were based solely on cement clinker 

(similar to Austin et al. (1975)). Note that cement clinker is the main component of ordinary 

Portland cement (Vuk et al., 2001; Zhang, 2011). For the lab-scale ball milling of the 

cement clinker, the model parameters C1, C2, C3, C4, and C5 in the KK model were taken 

from Deniz (2003) as 12.86 mm−0.274/min, 50 mm0.217, −0.736, 1.01, and 1.217, 

respectively. All details of the lab-scale ball mill (Deniz, 2003) and its scale-up can be 

found in Appendix C.2.  

 The specific breakage rate parameter in Equation (4.5) applies to a single ball size. 

When the ball mill is operated with a mixture of different ball sizes, which is the prevalent 

industry practice, the specific breakage rate parameter Si,z is replaced by S̅i,z. The latter is 

determined by the weighted average of individual Si,z,g of single ball sizes, indexed by g 

ranging from 1 to G, with their corresponding ball mass fractions MB,g (Austin et al., 1976) 

as follows: 

 

, B, , ,

1

G

i z g i z g

g

S M S
=

=   (4.6) 

 

 Unlike the specific breakage rate parameter, the cumulative breakage distribution 

parameter Bi,j was assumed to be invariant to the operating conditions (similar to Chimwani 

et al. (2014)). The normalized, single-term Bi,j expressed in Equation (4.7) with breakage 

distribution exponent  = 8.097  10−1 was used to simulate cement clinker milling in a 

ball mill (Dave et al., 2022; Muanpaopong et al., 2023).  
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 (4.7) 

 

Using Equation (4.7), bi,j can be determined from Bij through bi,j = Bi,j−Bi+1,j. 

4.2.2.2 External particle classification model of the air classifier.  Among the available 

models for particle classification (Austin and Klimpel, 1981; Finch, 1983; Zhang et al., 

1988; Napier-Munn et al., 1996), the Whiten model (Napier-Munn et al., 1996) has been 

widely used in cement milling simulations (e.g., Altun and Benzer, 2014; Altun, 2018) to 

represent external classification action due to the dynamic air classifier. The Whiten model 

can be written in the form of a variable Tromp curve (Altun and Benzer, 2014), as 

expressed by the following equation:  
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 (4.8) 

 

where a is sharpness parameter, a is fish-hook parameter, a is bypass parameter, and 

x50c,a is corrected cut size. a
* is a parameter that preserves the definition of x50c,a. Model 

parameters a, a, a, and x50c,a were correlated to the air classifier’s operational parameters 

(i.e., rotor tip speed v and air flow rate Q), the classifier’s chamber diameter Dc, ball mill 

performance (i.e., mass flow rate of classifier feed at 3−36 m range FCF), and particle dust 

loading of the classifier feed (DLCF) (Altun and Benzer, 2014). Using the Tromp curve 

approach, classification performance can be evaluated by bypass fraction * and sharpness 

of classification . The former parameter is defined as the minimum value of the Tromp 
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curve (Klumpar, 1992) and the latter one is defined as the ratio of xi at Ti = 0.25 to xi at Ti 

= 0.75 (Klumpar, 1992). The ideal classification corresponds to * = 0 and  = 1. Readers 

are referred to Appendix C.3 for the details of the variable Tromp curve model taken from 

Altun and Benzer (2014). Note from Equations (C.3) and (C.4) that a, a, a, and x50c,a 

vary with DLCF,  FCF,  v, and Q; hence, our PBM with the variable Tromp curve is capable 

of predicting the transient behavior of the circuit and enabling process optimization based 

on classifier parameters.  

 An operation setting with a higher air flow rate may require a larger air classifier 

size (Altun and Benzer, 2014). The air classifier’s chamber diameter (Dc) affects a variable 

Tromp curve via sharpness parameter a. For this reason, we formulated the following step 

function to determine Dc for each interval value of Q based on data available from the air 

classifier manufacturer (FLSmidth, 2021). 

 

3

3

c 3

3

3.55 m if 135700 m h

3.75 m if 135700 154400 m h

4.00 m if 154400 179600 m h

4.25 m if 179600 206600 m h

Q

Q
D

Q

Q

 


 
= 

 
  

 (4.9) 

 

4.2.2.3 Internal particle classification model of diaphragms.  The Whiten model has 

also been used to model the internal classification action caused by diaphragms (Ozer et 

al., 2006; Farzanegan et al., 2014; Altun, 2018). The fraction of particles in size class i 

passing through diaphragm Pi is expressed by the following equation: 
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 (4.10) 

 

 The model parameters for the internal classification were taken from Altun (2018). 

Specifically, the parameters were as follows: sharpness parameter d = 0.1, fish-hook 

parameter d = 0.1, bypass parameter d = 0.05, the corrected cut size x50c,d = 0.5 mm, and 

the parameter d
* = 1.23. It was assumed that the internal classification actions for the 

intermediate diaphragm and the discharge diaphragm were identical and invariant to the 

mass flow rate through the diaphragms. 

4.2.3 Process optimization 

Our objective was to identify the operation conditions of the air classifier to yield desirable 

cement quality with a maximum production rate. Therefore, air flow rate Q, rotor tip speed 

v, and fresh feed rate ṁ
FF

 were variables of optimization. Unlike the earlier optimization 

studies, where variables of optimization cannot be directly manipulated (Austin et al., 

1975; Kis et al., 2005), these variables can be directly manipulated in an actual milling 

plant. Rather than controlling the full PSD of cement products, mill operators have 

practically adjusted cement quality based on cement Blaine surface area (Touil et al., 

2008), as measured by the Blaine air-permeability apparatus (ASTM C-204, 2019). An 

approximation of Blaine surface area fB is referred to in Appendix C.4. It is well established 

that the PSD of the cement product also affects the development of compressive strength 

(Tsivilis et al., 1990; Tsakalakis and Stamboltzis, 2008; Celik, 2009). For example, Tsivilis 

et al. (1990) showed that, at the same cement Baine fineness, a higher mass fraction of 

3−32 m (M3−32) of cement led to higher 28-day cement strength. A similar observation 
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was made in Celik (2009). Considering the factors impacting the cement quality, i.e., fB 

and M3−32, and the operational aspects, the following objective function (OF) was 

formulated for process optimization (minimization): 

 

Mod Tar Mod

1 B B 2 3 32 3 FFOF 1w f f w M w m−= − + − +  (4.11) 

 

 Here, the weighting factors w1 = 1 g/cm2, w2 = 1, and w3 = 1000 kg/min were set to 

properly scale the impact of each of the three terms on the objective function value. 

Superscripts Mod and Tar refer to the model predicted value at the steady state and the 

targeted value, respectively. The first term on the right-hand side is to minimize the 

difference in Blaine surface area between the model prediction at steady state and the 

targeted value fB
Tar of the cement product. The second and the last terms are introduced to 

achieve maximal values of the cement product’s mass fraction of 3−32 m in size and 

production rate at the steady state, respectively. Another important point to mention is that 

we assumed that the mass hold-up at the steady state was invariant to the fresh feed rate 

(Austin et al., 1975). Nomura’s transport model (Nomura, 2013; de Oliveira and Tavares, 

2018) correlates feed rate with the mass hold-up, and it could be integrated with TUSSIM 

and other simulators in the future. However, its model parameters must be obtained by 

fitting to mass holdup data, and such information is not available for the full-scale cement 

ball mills (Nomura, 2020). 

 The OF in Equation (4.11) was minimized using a coupled global optimizer−DAE 

solver. Although a global optimization scheme in MATLAB (The MathWorks, 2022) was 

employed, it did not guarantee that the global minimum of objective function could be 
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obtained. This approach required the number of trial points NT as one of the inputs, 

affecting the solutions obtained from the optimizer. Our previous studies (Dave et al., 2022; 

Muanpaopong et al., 2023) demonstrated that a global minimum could be attained at a 

sufficiently high NT value. Therefore, we performed process optimization with three 

variables (Q, v, and ṁ
FF

) for various NT values to determine whether an NT-independent 

solution could be obtained from the optimizer. Solution was deemed to be NT-independent 

when the percent relative error of each variable and objective function value between two 

subsequent NT values was less than or equal to 10−1. Such a solution was deemed to be the 

global minimum within the context of this study. Readers are referred to Appendix C.1 for 

all the details of the process optimization, including the functions used and the tolerances 

set. 
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Table 4.1 Design of a Full-factorial Simulation Study on the Impact of Rotor Tip Speed v 

and Air flow Rate of Q on the Steady-state Values of Mass Flow Rate of the Reject Stream 

ṁR, Dust Load of the Classifier Feed DLCF, Blaine Surface Area of the Product fB, Bypass 

Fraction *, Sharpness of Classification , and Cut Size x50a 

 
Run 

no. 

Air classifier operation Simulation result at the steady state 

v  

(m/s) 

Q  

(m3/h) 

Dc 

(m) 
ṁR 

(kg/min) 

DLCF  

(kg/m3) 

fB  

(cm2/g) 
*  

(−) 

 

(−) 

x50a 

(m) 

1 17.0 103978 3.55 602 1.34 3528 7.86  10−2 5.80  10−1 52.0 

2 17.0 114376 3.55 436 1.13 3465 5.67  10−2 6.26  10−1 59.7 

3 17.0 98779 3.55 734 1.49 3567 9.41  10−2 5.52  10−1 47.5 

4 17.0 88381 3.55 1366 2.10 3722 1.47  10−1 4.72  10−1 35.0 

5 17.0 83182 3.55 −a −a −a −a −a −a 

6 23.8 114376 3.55 945 1.40 3707 8.51  10−2 5.68  10−1 39.8 

7 23.8 103978 3.55 −a −a −a −a −a −a 

8 23.8 98779 3.55 −a −a −a −a −a −a 

9 23.8 88381 3.55 −a −a −a −a −a −a 

10 23.8 83182 3.55 −a −a −a −a −a −a 

11 22.1 114376 3.55 762 1.30 3622 7.49  10−2 5.88  10−1 44.4 

12 22.1 103978 3.55 1264 1.72 3773 1.16  10−1 5.15  10−1 35.1 

13 22.1 98779 3.55 −a −a −a −a −a −a 

14 22.1 88381 3.55 −a −a −a −a −a −a 

15 22.1 83182 3.55 −a −a −a −a −a −a 

16 18.7 114376 3.55 521 1.18 3518 6.14  10−2 6.15  10−1 54.1 

17 18.7 103978 3.55 743 1.42 3590 8.72  10−2 5.65  10−1 46.3 

18 18.7 98779 3.55 937 1.62 3636 1.06  10−1 5.32  10−1 41.5 

19 18.7 88381 3.55 −a −a −a −a −a −a 

20 18.7 83182 3.55 −a −a −a −a −a −a 

21 13.6 114376 3.55 308 1.07 3363 4.97  10−2 6.43  10−1 73.8 

22 13.6 103978 3.55 407 1.23 3410 6.67  10−2 6.04  10−1 65.6 

23 13.6 98779 3.55 480 1.34 3438 7.81  10−2 5.81  10−1 61.1 

24 13.6 88381 3.55 714 1.65 3513 1.09  10−1 5.26  10−1 50.8 

25 13.6 83182 3.55 935 1.92 3568 1.32  10−1 4.93  10−1 44.4 

26b 23.8 124774 3.55 651 1.14 3608 5.79  10−2 6.23  10−1 46.8 

27b 23.8 135171 3.55 495 9.84  10−1 3548 4.22  10−2 6.64  10−1 52.5 

28b 25.5 135171 3.55 577 1.02 3593 4.57  10−2 6.54  10−1 48.7 

29b 25.5 145569 3.75 438 8.91  10−1 3535 2.72  10−2 7.08  10−1 54.0 

30c 21.8 126752 3.55 818 1.26 3528 7.07  10−2 5.96  10−1 47.4 

a Operational failure was detected. 
b Additional runs for high rotor speed and high air flow rate outside the domain of the original design of 

simulations. 
c Optimal operation with an ṁFF = 1847 kg/min. All other runs had ṁFF = 1723 kg/m 
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4.3 Results and Discussion 

4.3.1 Spatio-temporal evolution of PSDs and mass hold-up: baseline process 

We first simulated a full-scale closed-circuit cement milling process considering a set of 

baseline conditions: v = 17 m/s and Q = 103978 m3/h (see Run 1 in Table 4.1). This will 

provide us a basis of comparison with actual cement PSDs and help to validate the 

simulation approach indirectly. Note that the value of baseline v = 17 m/s was in the middle 

of the tip speed range of the air classifier (Altun and Benzer, 2014), while baseline Q = 

103978 m3/h was also taken from Altun and Benzer (2014) on the condition that the air 

classifier in Altun and Benzer (2014) had a similar production rate to the referenced ball 

mill from Altun (2018). Figure 4.3 demonstrates the simulated temporal evolution of PSD 

inside the ball mill for three axial positions: mill inlet, in front of the intermediate 

diaphragm, and in front of the discharge diaphragm. Although the PBM simulation was 

run for 120 min milling with data logged every minute, only selected simulation results at 

t = 10, 20, and 30 min and steady-state PSD are shown. Run 1 attained a steady state at t = 

47 min. Figure 4.3 clearly shows that the PSD inside the ball mill progressively became 

finer along the mill length, starting from cell 1 (mill inlet) to cell 3 (in front of the 

intermediate diaphragm) until cell 10 (in front of the discharge diaphragm), corresponding 

to axial positions L/10, 3L/10, and L, respectively. This is consistent with experimental 

observations reported in Dundar et al. (2011) and Altun (2018).  

  



 

158 

 

Figure 4.3 Temporal evolution of the cumulative PSD at various axial positions inside the 

ball mill (Run 1). A steady state was attained at t = 47 min. Cells 1 (mill inlet), 3 (in front 

of intermediate diaphragm), and 10 (in front of discharge diaphragm) correspond to axial 

positions L/10, 3L/10, and L, respectively. 
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Figure 4.4 Temporal evolution of the cumulative PSD in various streams around the air 

classifier (Run 1). A steady state was attained at t = 47 min. 
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 While the PSD in cell 1 (mill inlet) became finer over time, the PSDs in cells 3 and 

10 became coarser. This can be explained by the fact that the mill inlet receives milled 

particles from a coarse rejected stream, which is much finer than the fresh feed PSD. Unlike 

PSD at the mill inlet, PSDs at cells 3 and 10 connecting to the diaphragms become coarser 

because of the accumulation of coarse particles through the classification action by the two 

diaphragms. 

 Figure 4.4 shows the temporal evolution of the PSDs in the classifier feed, fine 

product, and coarse reject streams around the air classifier. The classifier feed PSD, i.e., 

the mill discharge, was slightly finer than PSD in cell 10 (before discharge diaphragm), 

consistent with experimental observations in Altun (2018). Until a steady state was 

attained, as the classifier feed got coarser, the reject stream also got coarser while the 

product PSD did not change significantly except a notable reduction in 90% passing size 

x90. Although the parameters used in this study were not taken from a specific mill, the 

simulated cement median size (13 m) is in the range of typical cement median size 

(Lynch et al., 2000; Altun et al., 2011; Dundar et al., 2011). Our baseline simulation results 

at steady state (t = 47 min) revealed an almost identical shape of PSDs for all three main 

streams around the air classifier compared to the actual PSDs of the full-scale ball mill 

circuit reported in Altun et al. (2020). Table 4.1 also shows the simulated results for the 

mass flow rate of the coarse reject stream, the dust load of classifier feed, and the product 

Blaine surface area at steady-state operation (t = 47 min). As a measure of cement product 

fineness, the Blaine surface area was calculated to be 3528 cm2/g (refer to Equation (C.5)), 

which also falls in the typical range of cement Blaine values (Bentz et al., 2008; Touil et 

al., 2008; Deolalkar, 2009). The cement’s mass fraction of 3−32 m M3−32 was 0.6769, 
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which is similar to that of the actual cement reported by Tsakalakis and Stamboltzis (2008) 

as M3−32 = 0.693. The dust load of the classifier feed DLCF = 1.34 kg/m3 was also in line 

with actual operations (DLCF = 1.06−2.68 kg/m3) reported in Altun and Benzer (2014). The 

dust load of product, defined as the ratio of the mass flow rate in the product stream to the 

air flow rate, was 0.99 kg/m3 falling in the actual operation range of 0.49−1.00 kg/m3 

(Altun and Benzer, 2014). 

 

 

Figure 4.5 Temporal evolution of the air classification performance (Tromp curve, Run 1). 

A steady state was attained at t = 47 min. 
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 As can be seen from the Tromp curve in Figure 4.5, the air classifier initially 

exhibited a relatively sharp classification (* = 0.03 and  = 0.84) at t = 10 min. The 

simulated classification performance worsened (higher * and lower  values) as the mass 

flow rate of the classifier feed stream and the dust load of the classifier feed increased over 

time until a steady state was attained in terms of the PSDs (refer to Figure 4.4), the mass 

flow rates in the streams around the classifier, and the mass hold-up in the mill (see Figure 

4.6). The temporal evolution of the Tromp curve in Figure 4.5 is consistent with 

experimental observations from the actual full-scale cement mills: a higher classifier feed 

rate led to (i) a higher bypass fraction of the air classifier (Boulvin et al., 2003; Altun et al., 

2017), (ii) worse sharpness of classification (Boulvin et al., 2003), and (iii) a smaller cut 

size of classification x50a (Boulvin et al., 2003), which is xi at Ti = 0.5. These consistencies 

between simulated and experimentally observed Tromp curves demonstrated the variable 

Tromp curve model’s ability to capture experimental observations when it was integrated 

with our unsteady-state PBM simulator (TUSSIM). At the steady state (t = 47 min), the air 

classification parameters * = 0.08 and  = 0.58 are in the normal operational range—* = 

0.05−0.15 and  = 0.50−0.60—as reported by the air classifier manufacturer (FLSmidth, 

2012). Table 4.2 lists the variable Tromp curve’s model parameters for air classification 

in Equation (4.8) obtained from the simulation during the steady state in comparison to the 

normal ranges reported by Altun and Benzer (2014), with all simulated Tromp curve 

parameters (a, a, a
*, a, and x50c,a) falling in the normal operating ranges. Figure 4.6(b) 

shows the temporal evolution of the mass hold-up from t = 0 to t = 120 min. The mass 

hold-up increased (mH = 0 at t = 0) and reached a plateau at 25.4 t, corresponding to the 
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ball-to-cement ratio of 8.3 (assumed ball density B = 7800 kg/m3 and porosity  = 0.4), 

which falls within a normal range of 8.1−10.1 (Duda, 1985). 

 Overall, our baseline simulation results provide evidence that our simulation 

approach, along with the selected models and parameters of breakage kinetics, scaled-up 

factors, and classification actions (internal and external classifications), are capable of 

realistically simulating a closed-circuit cement ball mill in a full-scale operation. Extending 

the baseline simulation, the impact of air flow rate and rotor speed on PSDs in the circuit 

and Tromp curve is discussed next. 

 

Table 4.2 Tromp Curve Parameters at the Steady State of the Baseline Process (Run 1) 

 
Parameter Parameter value at 

steady state 

Operating rangea 
Minimum Maximum 

a 3.22 1.14 6.74 

a 5.13  10−1 1.00  10−3 1.69 

a
* 1.25 1.00 2.70 

a 1.52  10−1 6.00  10−2 4.40  10−1 

x50c,a (mm) 5.59  10−2 4.00  10−2 1.10  10−1 

a reported by Altun and Benzer (2014) for the classifier with a chamber diameter Dc of 3.55 m 
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Figure 4.6 Temporal evolution of (a) the mass flow rate of streams around the air classifier 

and (b) the total mass hold-up (Run 1). 

 

4.3.2 Impact of dynamic air classifier operation on cement size 

Table 4.1 lists the operation conditions simulated for the air classifier. A full factorial 

simulation design involving five conditions of air flow rate and rotor speed was used (Runs 

1−25). The air flow rate varied from 83182 to 114376 m3/h, corresponding to 80−110% of 
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baseline Q = 103978 m3/h. Furthermore, five conditions of rotor tip speed ranging from 

13.6 to 23.8 m/s, corresponding to 80−140% of baseline v = 17 m/s, were used in the 

simulations (Runs 1–25). Note that the air flow rate and rotor speed can be practically 

adjusted in a cement plant. For example, air flow rate can be set to an appropriate level by 

adjusting the damper position (i.e., modulating pressure drop in the circuit) or the classifier 

fan speed via a variable speed drive. All conditions of Q and v in Table 4.1 were in the 

normal range of the full-scale closed-circuit ball mill operation (Altun and Benzer, 2014).  

 Figure 4.7(a) presents the impact of the air flow rate, at a fixed rotor tip speed of v 

= 17 m/s, on the PSDs of three streams around the air classifier: classifier feed, fine product, 

and coarse reject. A decrease in air flow rate made product PSD slightly finer, as expected. 

A clear trend can be seen from Figure 4.8 and Table 4.1 data (Runs 1−4): a lower air flow 

rate resulted in a higher reject flow rate and ensuing higher dust load of the classifier feed 

because of the smaller cut size of classification (see the Tromp curve in Figure 4.7(b)), 

which is consistent with the simulation results of the full-scale cement ball mill in Austin 

et al. (1975). For this reason, the average residence time in the mill with a higher mass flow 

rate of the reject stream shortened. Hence, the PSD at the mill outlet stream, i.e., the 

classifier feed, became coarser (Figure 4.7(a)), which is the opposite trend to the product 

and reject PSDs. When the air flow rate was reduced from 114376 to 88381 m3/h, the 

bypass fraction * increased from 0.06 to 0.15 and the sharpness of classification  

decreased from 0.63 to 0.47 (Table 4.1). Hence, a consequence of a higher mass flow rate 

in the classifier feed stream is that air classification performance worsened due to the higher 

dust load of the classifier feed. This simulation observation is in line with the experimental 

observations in Brugan (1988), Ito (2000), and Yardi (2005).  
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Figure 4.7 Impact of air flow rate through air classifier with fixed value of rotor tip speed 

on (a) the cumulative PSD in the streams around the air classifier and (b) air classification 

performance (Tromp curve) at the steady state.
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Figure 4.8 Temporal evolution of the mass flow rate of the coarse reject stream from the 

air classifier. For Q = 83,182 m3/h, operational failure was detected at 33 min. 

 

 As can be seen in Figure 4.8, the reject flow rate increased as the air flow rate 

decreased. A drastic change was observed when Q was reduced from 98779 to 88381 m3/h. 

With further reduction to Q = 83182 m3/h, the reject flow rate increased sharply, and the 

simulator stopped at t = 33 min, without yielding a steady state solution. Mathematically, 

when the combined mass flow rate to the mill was too high, the average residence time of 

cell z became very low, overall breakage rate dropped, causing dramatic increase in mass 

hold-up, which ultimately lead to an unsolvable set of DAEs at τz ≈ 0. When such a 

condition occurs, even a highly accurate and efficient ODE integrator like ode15s could 

not meet integration tolerances without reducing the step size below the smallest value 

allowed (~10−13 min) at time t = 33 min. While this gives the appearance of a numerical 

method failure, it reflects the physical reality of unstable operation, or operational failure 
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when the milling circuit is overloaded under the specific classifier–mill conditions. In 

general, the poorer classifier performance at the lower air flow rate also meant a 

dramatically higher reject rate (see Table 4.1) and higher feed rate of cement clinker to the 

mill. This operation ultimately led to overloading of the mill. The overloading of the mill 

in turn resulted in higher dust load and poorer classifier performance, thus feeding each 

other’s negative impact on circuit performance, ultimately leading to the circuit failure. 

This finding points to the strong coupling and interplay between the classifier and the mill 

in the closed-circuit operation. Our findings also offer the first simulation-based evidence 

supporting Luckie and Austin’s assertion (Luckie and Austin, 1972): “There may be a very 

limited range available for resetting the classifier, and in addition a simulation at a high 

circulation ratio may not be realistic because the classifier would overload.” It should be 

mentioned that a previous simulation study (Kis et al., 2006) used an unsteady-state PBM 

with a fixed Tromp curve to demonstrate the operational failure due to overloading of a ball 

mill. They indicated that overloading occurred when the mass hold-up reached a certain 

value. However, this ball mill failure condition was arbitrarily set without any justification.  
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Figure 4.9 Impact of the rotor tip speed with fixed value of air flow rate through air 

classifier on (a) the cumulative PSD in the streams around the air classifier and (b) air 

classification performance (Tromp curve) at the steady state. 
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 At a fixed air flow rate Q = 103978 m3/h, simulation results when rotor tip speed 

varied from 13.6 to 22.1 m/s indicated that a faster rotor speed not only led to finer product 

PSD (Figure 4.9(a)), which is consistent with Mejeoumov (2007), but also increased the 

dust load of the classifier feed (see Runs 1, 12, 17, and 22 in Table 4.1), resulting in 

worsening air classification performance (Figure 4.9(b)), an observation in line with 

Brugan (1988), Ito (2000), and Yardi (2005). A similar result regarding operational failure 

was observed for the impact of rotor speed. Further increase in rotor speed to v = 23.8 m/s 

resulted in operational failure. An analysis of the simulation results with a full-factorial 

simulation design with the first 25 runs listed in Table 4.1 suggests that the operating range 

of a closed-circuit ball mill at a fixed fresh feed rate was limited and affected by the 

interplay between air flow rate and rotor tip speed in view of the operational failure. 

Operating with a lower air flow rate could lead to failure, even at slow rotor speeds. For 

example, v = 18.7 m/s caused the operational failure for Q = 88381 m3/h, while v can be 

up to 22.1 m/s for Q = 103978 m3/h without any failure. 

 Subsequently, the impact of the air classifier’s operation at a high rotor speed–high 

air flow rate was investigated (Runs 26−29 in Table 4.1). This set of simulations (Runs 

26–29) is outside the domain of the original design of the simulations (Runs 1−25). Similar 

trends in simulation results were obtained in Figure 4.10. For example, for a fixed value 

of a rotor tip speed of v = 25.5 m/s, a higher air flow rate Q led to slightly coarser PSD in 

fine product and coarser reject streams, but led to a finer classifier feed PSD. Additionally, 

analysis of the Tromp curve in Figure 4.10(b) shows that lower bypass fraction * and 

higher sharpness of classification  were achieved by operating the classifier at a higher 

air flow rate. More importantly, the Blaine surface area values in Table 4.1 for Runs 1–25 
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suggest that it is possible to produce cement product with a Blaine surface area of 3600 

cm2/g by setting the operation of the air classifier at a high rotor speed–high air flow rate 

without any operational failure and at a relatively high sharpness (* < 0.06 and  > 0.60), 

which cannot be achieved in Runs 1–25. 

 Simulated results (classification performance, cut size, and Blaine surface area) at 

a steady state are summarized in the last four columns of Table 4.1 and are plotted 

graphically using 3D scatter in Figure 4.11. Note that only simulation results from 15 out 

of 29 runs were plotted because data were not available due to operational failures in the 

other 14 runs (refer to Table 4.1). This is why we could not plot results in 3D mesh or 

contours, and some trends are difficult to visualize due to missing points. To help guide 

the visualization of the trends, we filled some data points and use arrows. It is apparent that 

when the air classifier was operated at a higher air flow rate or lower rotor tip speed, sharper 

classification (lower * and higher ) could be achieved, albeit at a higher cut size. With a 

larger cut size, cement products become coarser (lower Blaine surface area), and such 

products might be undesirable and unacceptable in relation to end users’ required 

specifications. Hence, overall, what matters in the end is the overall circuit performance, 

not the individual performance of the ball mill or the air classifier alone, and the impact on 

the cement quality attributes and production rate. In other words, one can manipulate the 

classifier’s operational parameters and fresh feed rate to optimize the process, as will be 

discussed next.   
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Figure 4.10 Closed-circuit operation at high rotor speed–high air flow rate: (a) the 

cumulative PSD in the streams around the air classifier and (b) air classification 

performance (Tromp curve) at the steady state.
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Figure 4.11 Impact of rotor tip speed and air flow rate on: (a) bypass fraction *, (b) 

sharpness of classification , (c) cut size x50a, and (d) Blaine surface area fB. Filled data 

points and arrows are intended to highlight the general trends. Purple: varying air flow rate 

at constant rotor speed, Green: varying rotor speed at constant air flow rate. Runs in which 

operational failure has been detected are excluded from the graphs.
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Table 4.3 Initial Guess and Bound Constraints for Each Parameter Used during the 

Global Optimizer-based Process Optimization 

 
Process parameter Initial guess Constraint 

Lower bound Upper bound 

Rotor speed,  (m/s) 20.0 12.5 30.0 

Air flow rate, Q (m3/h) 150000 100000 200000 

Fresh feed rate, ṁFF (kg/min) 1500 1000 2500 

 

4.3.3 Identifying the optimum operational conditions for the circuit 

We performed process optimization starting with the default minimum NT = 200 (The 

MathWorks, 2022) and increased the NT value to investigate whether the NT-independent 

solution to the optimization problem could be obtained. Table 4.3 lists the initial guesses 

and bound constraints (lower and upper limits) for each variable of optimization. Here, 

targeted Blaine surface area fB
Tar = 3528 cm2/g was taken from Run 1 simulation. Table 

4.4 shows the results at the steady state obtained from the global optimizer for NT = 200, 

500, 1000, and 1500. When NT was increased from 200 to 500, the optimized v and Q 

varied drastically while the objection function did not decrease notably. On the other hand, 

a significant decrease of the objection function occurred when NT was increased from 500 

to 1000 (the default value of MATLAB), with insignificant further decrease for NT = 1500. 

Most importantly, the optimized variables remained unchanged when NT was increased 

from 1000 to 1500. Specifically, in comparison to the solutions obtained from the 

preceding value of NT = 1000, percent relative error for all parameters and objective 

function was less than 10−1, justifying that global minimum was obtained. We did not 

attempt to run an optimization with an NT higher than 1500 because of the long 

computational time, requiring 9 days for NT = 1500. It is important to mention that the 
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global optimizer with NT = 200 and 500 returned an unreasonable value of ṁFF, which is 

even lower than that of the baseline condition ( ṁFF  = 1723 kg/min). The estimated 

parameters ṁFF and Q for NT = 200 and ṁFF for NT = 500 stuck around initial guess. The 

optimizer might have hit a local minimum or a flat parameter surface around the objective 

function (Kwon and Cho, 2021). 

 

Table 4.4 Air Classifier Operation Parameters, Fresh Feed Rate, and Cement Quality 

Metrics Obtained by the Global Optimizer-based Process Optimization for Various Values 

of NT 

 
Process variable and cement 

quality metrics 

Value obtained from global optimization 

NT = 200 NT = 500 NT = 1000 NT = 1500 

Rotor speed,  (m/s) 21.8 14.7 21.8 21.8 

Air flow rate, Q (m3/h) 150000 104902 126752 126752 

Fresh feed rate, ṁFF (kg/min) 1500 1502 1846 1847 

Predicted cement Blaine surface 

area, fB
Mod (cm2/g) 

3528 3528 3528 3528 

Predicted cement mass fraction 

at 3−32 m, M3−32
Mod (−) 

6.573  10−1 6.584  10−1 6.853  10−1 6.854  10−1 

Objective function value (−) 1.009 1.007 8.564  10−1 8.561  10−1 

 

 Figure 4.12 demonstrates the cumulative PSDs at the steady-state optimal 

operation (Run 30) with desirable cement fineness identified by the global optimizer at NT 

= 1500: v = 21.8 m/s, Q = 126752 m3/h, and ṁ
FF

 = 1847 kg/min. Based on NT = 1500 

simulation, the production rate of Run 30 was 7% higher than that of the baseline process 

(Run 1). Mass fraction of 3−32 m size range of the cement product in Run 30 was 0.6854, 

which was slightly higher than Run 1 (M3−32 = 0.6769). In view of the operation of the air 

classifier obtained from the global optimizer, air flow rate Q and rotor tip speed v at the 

optimum condition (Q = 126752 m3/h and v = 21.8 m/s) were higher than those of the 
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baseline (Q = 103978 m3/h and v = 17 m/s). As can be seen from Table 4.1, the classifier 

in the optimized process provided a slightly sharper classification and a smaller cut size 

than that of the baseline process despite the 7% increase in production capacity. 

 

 

Figure 4.12 Cumulative PSDs at the optimal steady-state operation, whose operational 

parameters were obtained using the global optimizer: v = 21.8 m/s, Q = 126752 m3/h, and 

ṁ
FF

 = 1847 kg/min. 

 

4.4 Conclusions 

Unlike all prior PBM studies of closed-circuit cement ball milling, this study has 

augmented a variable Tromp curve representing external classification action with our 

recently developed unsteady-state, cell-based PBM simulator (TUSSIM), which accounts 

for mixedness degree in the mill and internal classification action by the diaphragms. Using 
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representative values of actual full-scale classifier parameters and continuous ball milling 

operational parameters from existing literature as well as actual cement clinker breakage 

parameters, a baseline process simulation was performed. The obtained PSDs in the circuit 

were similar to those obtained from actual cement mill circuits reported in the literature, 

giving credibility to the simulation approach and the chosen functions and parameters. 

Subsequently, TUSSIM was used to investigate the impact of the air classifier’s operation 

(i.e., air flow rate and rotor tip speed). The simulation results suggested that for a fixed 

fresh feed rate, finer cement products could be achieved by decreasing the air flow rate 

and/or increasing the rotor tip speed. This study elucidated the mathematical and physical 

origin of the operational failure of the circuit operations. The overloading of the circuit 

occurs when the classifier is operated using too low an air flow rate or too fast a rotor speed. 

For this reason, there is a limit to product fineness adjustment at the fixed fresh feed rate 

by manipulating the classifier parameters. 

 Another novelty of this study is that TUSSIM was executed in the inverse problem 

framework to identify the optimum operation of the air classifier (air flow rate and rotor 

tip speed), along with the fresh feed rate, to produce a cement product that satisfy actual 

cement specifications using a global optimizer coupled with a DAE solver. We formulated 

an objective function considering cement quality (Blaine surface area and mass fraction of 

3−32 m) and the production capacity. The optimization results suggest that about 7% 

increase in circuit capacity could be achieved when higher air flow rates and rotor speeds 

were used in comparison to the baseline process. Overall, besides generating fundamental 

process insights, the use of TUSSIM augmented with a variable Tromp curve could help 

industrial practitioners optimize existing closed-circuit ball milling operations.  
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CHAPTER 5 

PBM SIMULATION AND OPTIMIZATION OF CLOSED-CIRCUIT CEMENT 

MILLS WITH VARIOUS COMPARTMENTS AND BALL SIZE 

DISTRIBUTIONS 

 

A true unsteady-state simulator (TUSSIM) for ball milling was integrated with a variable 

Tromp curve for classification to simulate and optimize closed-circuit, multi-compartment 

cement ball milling. Using realistic model–operational parameters from available 

literature, we first investigated the system dynamics for a two-compartment mill. Then, 

various simulations examined the impacts of closed-circuit vs. open-circuit operation, 

number of compartments, and various ball size distributions. Our results suggest that 

integrating an air classifier into an open-circuit ball mill can increase the production rate 

by 15% or increase the cement-specific surface area by 13%. A single-compartment mill 

entails a pre-milled feed for proper operation, whereas a two-compartment mill yields a 

finer cement product than a three-compartment mill. Uniform mass distribution of balls led 

to slightly finer product than uniform surface area or number distributions, while the impact 

of a classifying liner was negligibly small. Finally, we identified optimal ball mixtures in 

a two-compartment mill using a combined global optimizer−DAE solver, which suggests 

14% capacity increase with desirable cement quality. Overall, TUSSIM’s results are not 

only in line with limited, full-scale experimental studies and industry best practices, but 

also provide fundamental process insights, while enabling process optimization with 

tailored ball mixtures in different compartments. 
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5.1 Introduction 

Closed-circuit tumbling ball mills with dynamic air classifiers have been commonly 

operated as cement mills (Labahn and Kohlhaas, 1983; Jankovic et al., 2004; Deolalkar, 

2009). Figure 5.1 shows a process flow diagram of a closed-circuit, two-compartment ball 

mill with an air classifier. Two-compartment mills with an intermediate diaphragm provide 

the flexibility to use different mixtures of ball sizes in each milling compartment. 

Diaphragms also retain coarse particles within the compartment for further milling and 

keep grinding balls from leaving the compartment. The first compartment contains a large 

ball mixture for coarse particle breakage. The second compartment contains a small ball 

mixture for fine particle breakage. For example, based on Austin et al. (1975), 50−90 mm 

balls and 20−40 mm balls were loaded in the first and second compartments in full-scale, 

closed-circuit ball milling of cement, respectively. 

 Current knowledge of the process operation of cement ball milling is largely 

empirical. In general, performing well-controlled, scientific experiments at full-scale mills 

is difficult, time-consuming, and sometimes impractical. The process know-how and 

expertise have been built from trial-and-error learning, suggestions from engineering 

companies (Shimoide, 2016; Nowack, 2022), and manuals from machine suppliers 

(FLSmidth, 2012; FLSmidth, 2014). Scientific studies regarding the impact of the presence 

of air classifiers, ball size distribution, number of compartments, and classifying liners on 

cement size in closed-circuit ball mills are apparently limited (Austin et al., 1976). Rather, 

guidance for the operation and design of closed-circuit ball mills has been widely reported 

in cement handbooks (Labahn and Kohlhaas, 1983; Duda, 1985; Alsop, 2007; Deolalkar, 

2009) and magazines (Yardi, 2005; Fernandez and Hui, 2017). Although data from these 
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sources are valuable for industrial practitioners, a major issue is that details of the operation 

are missing, thus making reproducibility by others nearly impossible (e.g., Parkes, 1990; 

Van den Broeck, 1998; Fernandez and Hui, 2017). In view of all these challenges, 

computer simulations based on the population balance model (PBM) have been found to 

be a useful tool for gaining fundamental insights into cement ball milling (Austin et al., 

1975; Muanpaopong et al., 2022b). 

 

 

Figure 5.1 A simplified process flow diagram of a closed-circuit two-compartment ball 

mill with an air classifier. 
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 It is hard to find actual experimental evidence regarding the advantages of 

incorporating air classifiers with ball mill circuits. In fact, only one experimental work 

(Parkes, 1990) reported that a 43% increase in production rate was achieved after installing 

an air classifier into an existing full-scale open-circuit ball mill in the UK. However, this 

significant improvement was partially due to the use of softer cement clinker and higher 

ball filling fraction after converting to a closed circuit with an air classifier. The author 

(Parkes, 1990) speculated that, of the 43% observed increase in production rate, 25% was 

due to the presence of air classifiers, but no evidence was provided to justify their 

speculation. Therefore, it is fair to assert that the actual advantage of air classifiers in terms 

of capacity improvement for open-circuit to closed-circuit operation remains unknown.  

 One of the most common tasks for ball milling operations is the selection of 

grinding ball sizes. However, only a few studies (Lynch et al., 2000; Dundar et al., 2011; 

Genc, 2015c) tackled the ball selection problem for closed-circuit cement ball milling in 

full-scale operations. For example, the actual production rate was reported to have 

increased in the range of 12.7−20.5% by optimizing the ball size distribution (BSD) along 

with modifying the slot size of the intermediate diaphragm (Dundar et al., 2011). This 

actual improvement agreed well with results obtained from a steady-state PBM simulation 

that suggested 10−17% improvement of production rate (Dundar et al., 2011). However, 

the details about BSD and slot size before and after optimization were not mentioned. The 

impact of the BSD could not be decoupled from the impact of the slot size of the diaphragm. 

A similar issue was found in another study that reported the combined impact of BSD and 

the ball-filling fraction (Genc, 2015c). Regarding PBM simulation, previous studies 

provide insufficient details of mathematical descriptions of steady-state PBM simulations 
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(Lynch et al., 2000; Dundar et al., 2011; Genc, 2015c). Specifically, approaches for 

translating parameters such as the ratio of specific breakage rate parameter to discharge 

rate parameter from one BSD to other BSDs are unclear, because none of the reported 

parameters was explicitly expressed as a function of ball size. Given the limitations of the 

currently available works, there is a need to develop a robust PBM framework for closed-

circuit ball mills to comprehensively examine the impact of BSD and ball mixture.  

 Regarding the selection of the number of compartments to be used, a cement 

handbook (Deolalkar, 2009) suggests that a three-compartment mill configuration is 

suitable for open-circuit ball milling, while a two-compartment mill configuration is 

sufficient for closed-circuit ball milling with an air classifier. Although this suggestion is 

consistent with the current best practice (e.g., Genc, 2016; Altun, 2018), no rationale or 

justification was given as to why the number of compartments should be reduced for 

closed-circuit operation (Deolalkar, 2009). In the scientific literature, only a few studies 

(Genc, 2016; Muanpaopong et al., 2022b) have investigated the impact of the number of 

compartments on cement product fineness. However, these studies (Genc, 2016; 

Muanpaopong et al., 2022b) considered open-circuit ball mills without air classifiers. To 

the best of our knowledge, no attempts have been made to elucidate the impact of the 

number of milling compartments in closed-circuit ball mill operations.  

 A classifying liner fitted with the internal mill shell in the fine milling compartment 

leads to proper ball classification along the axial position of the mill length. Larger balls 

are retained at the entrance of the compartment. The mean ball size becomes smaller toward 

the discharge end of the compartment (Benzer, 2005; Altun, 2018). Classifying liners are 

commonly used in cement ball mills to provide a suitable spatial variation of ball sizes to 



 

183 

match particle sizes along the axial position (Fortsch, 2006; Altun, 2018; Ghalandari and 

Iranmanesh, 2020). Interestingly, only a single experimental study (Fortsch, 2006) reported 

that an improvement in specific power consumption at the same product fineness was not 

observed when classifying liners were used, based on experimental data from various 

closed-circuit cement mills. There is no prior PBM study that explored the impact of ball 

classification originating from classifying liners on the cement product fineness in closed-

circuit multi-compartment mills. 

 PBM can simulate the temporal evolution of particle size distribution (PSD) 

(Austin, 1971/1972) in the full-scale milling process. PBM simulations have been 

commonly performed for steady-state operations of full-scale cement ball mills (e.g., 

Austin et al., 1975; Ergin and Ercelebi, 1999; Lynch et al., 2000; Jankovic et al., 2004; 

Dundar et al., 2011; Genc, 2015c; Genc, 2016; Altun, 2018). Only a few PBM studies 

(Boulvin et al., 2003; Huusom et al., 2005; Muanpaopong et al., 2022b) have considered 

the transient operation. For example, attainment of steady-state operation in terms of PSD 

and temporal evolution of total mass hold-up were previously examined for an open-circuit 

ball mill simulation (Muanpaopong et al., 2022b). Huusom et al. (2005) demonstrated the 

dynamic response of mass flow rate in coarse reject and fine product streams by 

introducing a step change in the fresh feed rate. Simulating the entire closed-circuit 

operation requires an external classification function of the air classifier represented by a 

Tromp curve model. The Tromp curve represents the fraction of particles in the classifier 

feed stream reporting to coarse reject stream for further ball milling (see Figure 5.1). 

Ample experimental data reported in (Onuma and Furukawa 1984; Ito, 2000; Altun and 

Benzer, 2014) indicate that classification performance worsens when the dust load of the 
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classifier feed (defined as ratio of classifier feed to air flow rate) is higher. Depending on 

the capability to capture the impact of dust load, the Tromp curve model can be classified 

as a fixed Tromp curve model (e.g., Austin et al., 1975; Ergin and Ercelebi 1999; Altun, 

2018) and a variable Tromp curve model (Altun and Benzer, 2014). Here, the variable 

Tromp curve model is specifically referred to the Altun and Benzer model (Altun and 

Benzer, 2014). Unlike the fixed Tromp curve model, parameters in the variable Tromp 

curve model (Altun and Benzer, 2014) were obtained from various mills with wide 

operation conditions of dust loading during a steady state. The classification parameters 

were explicitly expressed as a function of dust load of the classifier feed and manipulated 

parameters of the air classifier (rotor tip speed and air flow rate). Therefore, the variable 

Tromp curve model can accurately capture the impact of dust loading on classification 

performance. Based on the literature review, none of the published PBM studies coupled 

PBM with the variable Tromp curve model. 

 In the context of full-scale closed-circuit ball mills for cement milling, only Austin 

et al. (1975) performed process optimization using an optimizer with the steady-state PBM 

with a fixed Tromp curve model. In their study, the air classifier’s cut size and production 

rate were used as the variables to achieve a desirable cement specification. However, no 

suggestions were offered regarding how the air classifier’s parameters should be set to 

reach that optimal condition. Moreover, Austin et al. (1975) did not consider optimization 

of the BSD inside the mill. To the best of our knowledge, no study has performed process 

optimization using an optimizer for full-scale cement ball milling to suggest the optimum 

ball size distribution in each compartment that maximizes production rate and improves 

cement quality.  
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 This comprehensive theoretical simulation study of a full-scale ball mill with an air 

classifier aims to (i) elucidate the advantages of an air classifier, (ii) holistically examine 

the impact of ball mixture and BSD, (iii) shed light on the selection of the number of 

compartments, (iv) assess the impact of ball classification due to the classifying liner, and 

(iv) develop a process optimization scheme to identify the optimal BSD. To achieve these 

goals, our recently developed true unsteady-state simulator (TUSSIM) for ball milling 

(Muanpaopong et al., 2022b) was coupled with a variable Tromp curve model (Altun and 

Benzer, 2014) of classification for simulating a closed-circuit ball mill. The mathematical 

model of TUSSIM for closed-circuit simulation forms a set of differential algebraic 

equations (DAEs), which were numerically solved by a DAE solver. The comprehensive 

set of simulations will allow us to gain fundamental process insights into the impacts of 

closed-circuit vs. open-circuit operation, number of compartments, and various ball size 

distributions. Most importantly, for the first time in literature, the combined global 

optimizer−DAE solver method (Dave et al., 2022; Muanpaopong et al., 2023) will identify 

optimal BSD to achieve desired cement specification at maximized production rate in a 

full-scale closed-circuit ball mill. 

 

5.2 Theoretical 

5.2.1 Mathematical description of TUSSIM for a closed-circuit, multi-compartment 

ball mill 

 

A recently developed simulator, TUSSIM (Muanpaopong et al., 2022a; Muanpaopong et 

al., 2022b), was coupled with the state-of-the-art variable Tromp curve model of 

classification (Altun and Benzer, 2014). The detailed derivation of TUSSIM can be found 
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in Muanpaopong et al. (2022a). Figure 5.2 shows a model representation of a two-

compartment ball mill with an air classifier.  

 

 

Figure 5.2 Model representation of a two-compartment ball mill in a closed-circuit 

operation. The ball mill is segmented into 10 perfectly mixed cells in series with axial 

recirculation rate Ṙ exchanging between cells. 

 

 

 The degree of mixedness of particles inside the ball mill can be modeled by the 

number of cells n and axial back-mixing ratio R. Representative values of n = 10 and R = 

8.01  10−3 were taken from Muanpaopong et al. (2022a) and Muanpaopong et al. (2022b). 

These values were obtained from the best fit of the cell-based PBM without breakage terms 

on the experimental residence time distribution data of the full-scale two-compartment 

cement ball mill reported in Austin et al. (1975). A size-discrete, time-continuous form of 

the TUSSIM with n = 10 is given as follows: 
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 (5.1) 

 

with mi,z(0) = 0. In Equation (5.1), i and j are size class indices ranging from 1 to N (sink 

size class) in geometric progression. Also, t is the milling time, z is an index used for cells 

ranging from 1 to n, mi,z is the mass of particles in size class i of cell z, Si,z is the specific 

breakage rate parameter of particles size xi in cell z, and bi,j is breakage distribution 

parameter. Mass flow rate in size class i of mill inlet stream ṁMI,i is the summation of mass 

flow rate in size class i of fresh feed stream ṁFF,i and coarse reject stream ṁR,i. The mass 

flow rate of undersized particles in size class i passing through the diaphragm connected 

with cell index z is denoted as ṁU,i,z. The mass flow rate in size class i in the reject stream 

and product stream can be obtained from the Tromp curve value in size class i Ti as follows: 

ṁR,i = ṁU,i,10Ti and ṁP,i = ṁU,i,10(1−Ti), respectively. 

 The average residence time of cell z (z) is the ratio of the total mass hold-up of cell 

z (mH,z) to the mass flow rate through cell z, as mathematically expressed by 
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H, MI,

1

N

z z i

i

m m
=

=  . z is determined by z = /n with  being total average residence time 

without consideration of accumulation of particles retained by diaphragm. Here,  = 14 min 

was taken from Austin et al. (1975) and was previously used in Muanpaopong et al. 

(2022b). For cells z connected to a diaphragm, the mass flow rate of oversized particles in 

size class i ṁO,i,z can be determined from ṁO,i,z = (1−Pi,z)mi,z/τz, where Pi,z is the fraction 

of particles in size class i passing through the diaphragm connecting to cell z. In 

consideration of ṁO,i,z that cannot pass through the diaphragm and is recycled to cell index 

z (see Figure 5.2), the definition of z must be modified to King (2001): 

 

H, MI, O, ,

1 1

N N

z z i i z

i i

m m m
= =

 
= + 

 
   (5.2) 

 

 Si and bi,j parameters must satisfy mass conservation through the following 

constraints: SN = 0, bi,i = 0, and ∑ bi,j
N
i=j+1  = 1. The set of DAEs in Equations (5.1) and (5.2) 

were simultaneously solved by the DAE solver because ṁR,i and ṁO,z,i are time-dependent. 

The steady-state operation was attained when the sum of the absolute difference of PSD in 

cumulative form over all size classes between two subsequent time steps was less than 10−2 

(Muanpaopong et al., 2022b). This criterion must be satisfied for all cumulative PSDs of 

cells connecting to the diaphragm inside the ball mill and all streams around the air 

classifier, i.e., classifier feed, coarse reject, and fine product. The details of the PBM 

simulations are provided in Appendix D.1. The simulation results are reported as full PSD 

in cumulative and differential forms, characteristic sizes (10% passing size x10, median size 
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x50, and 90% passing size x90), specific surface area (SSA), and Blaine surface area (fB). 

Readers are referred to Appendix D.2 for detailed calculations of SSA and fB. 

 Besides the two-compartment configuration illustrated in Figures 5.1 and 5.2, 

three- and single-compartment configurations were also simulated. The total length of the 

mill was kept the same, L = 9.3 m (Genc, 2016), for all compartment configurations for a 

fair comparison. For the three-compartment mill, the length of each compartment was L1 

= 2.94 m, L2 = 1.70 m, and L3 = 4.66 m for compartments 1, 2, and 3, respectively (Genc, 

2016). For the two-compartment mill, we set L1 = 2.94 m and L2 = 6.36 m. The same degree 

of mixedness (n = 10 and R = 8.01  10−3) was assumed for all compartment configurations.  

5.2.2 Selected functions and values of parameters used in PBM simulations 

All functions and parameters were taken from the available cement milling literature 

(Austin et al., 1975; Deniz, 2003; Altun and Benzer, 2014; Genc, 2016). Breakage kinetics 

parameters (Austin et al., 1975; Deniz, 2003) and internal classification parameters (Genc, 

2016) are identical to those used in Muanpaopong et al. (2022b) for open-circuit ball 

milling without an air classifier. For the modeling of external air classification, the variable 

Tromp curve model was taken from Altun and Benzer (2014). With these purposeful 

selections of functions and parameters, the simulation results of the closed-circuit operation 

in this paper can be directly compared to those of the open-circuit operation without air 

classifier reported in Muanpaopong et al. (2022b) to elucidate the benefits of the air 

classifier. 

5.2.2.1 Breakage kinetics parameters.  The methodology for translating the Si 

parameters obtained from lab-scale tests to full-scale ball milling has been extensively 

discussed in Bilgili (2023) for the integration of the Kotake−Kanda (KK) kinetics model 



 

190 

(Kotake et al., 2002) with the Austin’s scale-up factors (Austin et al., 1984), given as 

follows: 

 

3 4

5

2
1 B 2 3 4

1 B

exp
C C i

i i C

C x
S C d x K K K

K d

 
= − 

 
 (5.3) 

 

 Here, dB is the ball size represented by the diameter of the grinding ball. Parameters 

C1−C5 were obtained from a lab-scale ball milling of cement clinker in Dezni (2003) as C1 

= 12.86 min−1mm−0.274, C2 = 50 mm0.217, C3 = −0.736, C4 = 1.01, and C5 = 1.217. Austin’s 

scale-up factors K1−K4 were used to translate Si estimated from lab-scale data (Deniz, 2003) 

to full-scale ball mill operation (Genc, 2016). The current work did not address multi-

component breakage; that is, only cement clinker was considered. Readers are referred to 

Appendix D.3 for all details of the lab-scale experimental conditions, full-scale cement ball 

milling operations, and calculations of the scale-up factors K1−K4. The above specific 

breakage rate parameter Si was calculated based on a single ball size. When a mixture of P 

different ball sizes was used, Si was replaced by S̅i, which was determined by the weighted 

average of individual Si,p (calculated from single ball size index p) and mass fraction of 

ball size with index p (MB,p) (Austin et al., 1976), expressed as follows: 

 

, B,
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P

i i p p

p

S S M
=

=   (5.4) 
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 Three theoretical spatially uniform BSDs were considered: uniform mass (UM), 

uniform number (UN), and uniform surface area (USA) of balls. MB,p for the UM, UN, and 

USA approaches was calculated using the following expressions, respectively: 

 

B, 1pM P= , 
3 3

B, B, B,

1

P

p p p

p

M d d
=

=  , and  B, B, B,

1

P

p p p

p

M d d
=

=   (5.5) 

 

 Unlike the above spatially uniform ball distribution, the use of a classifying liner 

causes spatially varying ball classification along the axial length of the mill. The mass 

fraction of each ball size varied along the mill’s axial position in the compartment. All 

details regarding the variation of ball mass fraction caused by a classifying liner are covered 

in Appendix D.4.  

 Regarding the cumulative breakage distribution parameter Bi,j, the non-normalized 

form of Bi,j expressed in Equation (5.6) was used. 

 

( ) ( ) ( ) ( ), 0 0 1 0 0 11i j j i j j i jB x x x x x x x x
   

 − −
 = + −
  

 

with bi,j = Bi,j−Bi+1,j and bN,j = BN,j 

(5.6) 

 

 The following values of parameters estimated from lab-scale data for cement 

clinker ball milling (Austin et al., 1975) were used: 0 = 0.1755,  = 0.15,  = 0.84,  = 

4.5, and x0 = 26.9 mm. Bi,j parameter was assumed to be material dependent and invariant 

to the operation conditions (similar to Austin et al., 1975; Austin et al., 1976; Chimwani et 

al., 2014). 
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5.2.2.2 Internal classification action by diaphragms.  The Whiten model (Napier-Munn 

et al., 1996) has been commonly used to simulate the internal classification of particles due 

to the diaphragm(s) in cement ball milling (e.g., Lynch et al., 2000; Ozer et al., 2006; Altun, 

2018). The fraction of particles in size class i passing through the diaphragm that connects 

to cell index z (Pi,z) is expressed as: 
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+ −  

 (5.7) 

 

 Here,  is the bypass parameter,  is the sharpness parameter,  is the fish-hook 

parameter, and x50c is the corrected cut size. Parameter * is introduced to satisfy the 

definition of corrected cut size x50c. Subscript d refers to the diaphragm. We set d = 0 and 

d
* = 1 (no fish-hook) and d = 0 (no bypass fraction) for all diaphragms based on Genc 

(2016). The values of the parameters d and x50c,d for simulating internal classification are 

listed in Table 5.1. It was assumed that the parameters for internal classification were 

invariant to the operation conditions.  
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Table 5.1 Parameters Used in the Whiten Model for Simulating Internal Classification 

Action due to Diaphragms 

 
Number of 

compartments 

Position of 

diaphragm 

Cell index, z 

(−) 

Corrected cut 

size, x50c,d (mm) 

Sharpness 

parameter, d (−) 

One Discharge 10 0.15 2 

Two Intermediate 3 0.70 3 

Two Discharge 10 0.15 2 

Threea First  3 0.70 3 

Threea Second 5 0.16 3 

Threea Discharge 10 0.15 2 

a Taken from Genc (2016). 

 

5.2.1.3 External classification action by air classifier: A variable Tromp curve model.  

A variable Tromp curve model, based on the Whiten model, was developed in Altun and 

Benzer (2014). The Whiten model (Napier-Munn et al., 1996) can be written in the form 

of the Tromp curve model using the following expression: 
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 (5.8) 

 

 Subscript a refers to the air classifier. In Equations (5.9) and (5.10), the variable 

Tromp curve model (Altun and Benzer, 2014) explicitly expressed all Whiten model 

parameters as a function of the air classifier’s operation parameters (rotor tip speed v and 

air flow rate Q), dust load of classifier feed DLCF, size of classifier Dc, and the mass flow 

rate of the classifier feed in 3−36 m size range (FCF).  
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( )
1.26791.4171

a CF a c CF0.10467 , 0.905DL D DL = =  (5.9) 

( )
0.77751.4171

a CF 50c,a CF0.4417 0.1293, 2.47DL x Q vF = − =  (5.10) 

 

 Parameter 
a

∗
 is solved at every time step during simulation by setting Ti = 

1−(1−a)/2 at xi = x50c,a. We also set the minimum value of DLCF = 4.203  10−1 kg/m3 to 

satisfy a  0 based on data reported in Altun and Benzer (2014). The classification 

performance of the air classifier can be evaluated by the bypass fraction * and sharpness 

of the classification . The bypass fraction is defined as the minimum Tromp curve value 

(Klumpar, 1992; FLSmidth, 2012). The sharpness of classification (Klumpar, 1992; 

FLSmidth, 2012) is defined as the ratio of the particle size corresponding to a Tromp curve 

value of 0.25 to the particle size corresponding to a Tromp curve value of 0.75.  

 A rotor tip speed of v = 17 m/s was selected considering the range of actual 

operations of v = 12.5−24.5 m/s (Altun and Benzer, 2014). Air flow rate Q = 45000 m3/h 

was estimated from recommended value of dust load of product (defined as ratio of 

production rate to air flow rate) of 0.85 kg/m3 (FLSmidth, 2012). Based on FLSmidth 

(2021), classifier size Dc = 2.36 m is suitable for Q = 45000 m3/h. In this study, the values 

of rotor tip speed and air flow rate were kept constant. Readers are referred to 

Muanpaopong et al. (2021) for a comprehensive investigation of the impact of v and Q in 

the closed-circuit ball milling of cement clinker. 

5.2.3 Optimization of ball milling: a combined global optimizer−DAE solver method 

The objective of process optimization is to find the best ball size distribution in each milling 

compartment that provides the maximum production rate with improved cement product 

quality from a two-compartment mill circuit. A coupled global optimizer−DAE solver has 
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been recently developed to determine the breakage parameters and calibrate a PBM for 

batch milling (Dave et al., 2022; Muanpaopong et al., 2023), and it has been adapted in this 

study for process optimization. All details about the global optimizer-based process 

optimization are presented in Appendix D.1. The objective function (OF) to be minimized 

by the global optimizer was formulated by considering both cement quality and operational 

perspectives. Although the mill operator considers the Blaine surface area fB as an indicator 

of cement quality (Touil et al., 2008), from the end users’ point of view, cement quality, is 

particularly related to the actual cement performance measures such as cement compressive 

strength. It has been established that cement strength increases with an increase in the 

fraction of 3−32 m size range in cement product (M3−32) (Tsivilis et al., 1990; Tsakalakis 

and Stamboltzis, 2008). Therefore, the following OF was formulated to achieve the 

targeted Blaine surface area of cement product fB and maximize M3−32 as a cement quality 

metric, as well as maximizing the production rate, which is equal to the fresh feed rate ṁFF 

at steady-state operation: 

 

Mod Tar Mod

1 B B 2 3 32 3 FFOF 1w f f w M w m−= − + − +  (5.11) 

 

 The weighting factors were w1 = 1 g/cm2, w2 = 1, and w3 = 1000 kg/min. 

Superscripts Mod and Tar refer to the model predicted value at steady-state and targeted 

value, respectively. We set fB
Tar = 3181 cm2/g, referring to the Blaine surface area of the 

Run 1 simulation (baseline simulation). Blaine surface area of 3181 cm2/g (Run 1 

simulation) was chosen as the targeted Blaine value fB
Tar for the process optimization 

because it is in the typical range of actual cement’s Blaine (Deolalkar, 2009; Ghalandari 
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and Iranmanesh, 2020). Setting the value of fB
Tar too high will likely require an adjustment 

of the air classifier’s parameters (rotor speed and air flow rate), which is beyond the scope 

of this study. Ball sizes involved in the optimization are referred to as quaternary ball 

mixtures (the same as Run 1). The independent search variables were the fresh feed rate 

and mass fraction of each ball size in the quaternary ball mixture in each of the two 

compartments. Therefore, the total number of variables to be searched was nine. The 

constraint B,

P
k

p

p

M = 1 must also be applied during optimization to ensure that the sum of 

mass fraction from all ball sizes in compartment index k is exactly 1.  

 The global optimizer from MATLAB’s global optimization toolbox (The 

MathWorks, 2022) requires a number of trial points NT as one of the inputs. It is important 

to mention that there is no guarantee that a global minimum of the objective function will 

be attained (The MathWorks, 2022). Our previous studies (Dave et al., 2022; 

Muanpaopong et al., 2023) suggest that solutions obtained from the global optimizer do 

not change when the number of trial points is sufficiently high. The following values of NT 

were used: NT = 200 (default minimum value), 500, 1000 (default value suggested by 

MATLAB (The MathWorks, 2022)), and 1500. The objective function is assumed to attain 

a global minimum when the absolute value of the percent relative error between two 

subsequent NT values was less than or equal to 10−1 for each variable and objective 

function. 
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5.3 Results and Discussion 

5.3.1 Spatio-temporal evolution of PSDs in the entire circuit 

The dynamic simulation of Run 1 was performed as a baseline process simulation. The 

results were compared with experimental data reported in the cement milling literature to 

verify whether our simulation approach and the selected model parameters in Subsection 

5.2.2 could lead to a reasonable cement product size at steady-state operation. The 

simulation was performed for 120 min, and the results were saved every 1 min. The 

temporal evolution of the PSDs was selectively presented at t = 10, 20, and 30 min, along 

with a steady-state PSD. For Run 1, a steady-state operation was attained at t = 50 min. 

 Figure 5.3 demonstrates the temporal evolution of cumulative PSDs inside the ball 

mill at the mill inlet (cell 1), in front of the intermediate diaphragm (cell 3), and in front of 

the discharge diaphragms (cell 10). PSDs in front of diaphragms were selected to 

demonstrate the possible accumulation of coarse particles retained by diaphragms. 

Generally, the PSD inside the ball mill shifted to a finer size along the mill axial position 

from the mill inlet to the mill outlet, which is in line with experimental observations in 

actual cement ball mills (Dundar et al., 2011; Ghalandari and Iranmanesh, 2020). The width 

of the PSD at the discharge end (cell 10 at L) was narrower than that of the mill inlet (cell 

1 at L/10), consistent with past experimental observations (Dundar et al., 2011). In the first 

10 min, PSD in the mill inlet stream was almost the same as PSD in the fresh feed stream 

(not shown in Figure 5.3) because the mass flow rate of the coarse reject stream ṁR was 

only 3 kg/min at t = 10 min. In cell 1 at the axial position L/10, particles were quickly 

broken at the initial milling time. The median size x50 decreased from 5.73 mm (fresh feed 

PSD) to 1 mm at t = 10 min in cell 1. As milling continued, the cumulative PSD shifted 
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to the finer size until the steady state was reached at t = 50 min. Whereas fine particles 

were drastically increased at a milling time of t = 10 min until the steady state (at t = 50 

min), the variation of coarse particles was relatively insensitive. For example, the 80% 

passing size (x80) reduced from 6.21 mm at t = 10 to 4.71 mm at the steady state. As shown 

in Figure 5.4, particles less than 200 m were recycled from the air classifier for further 

milling in the ball mill. The mass flow rate of the coarse reject stream increased over time 

and became saturated when the circuit reached a steady state: ṁR = 283 kg/min at t = 50 

min. Unlike the PSD in cell 1 at L/10, an opposite trend was observed for PSDs in front of 

the diaphragms (cell 3 at 3L/10 and cell 10 at L). In the case of the PSD in front of the 

intermediate diaphragm, the PSD became coarser over time until steady-state operation. 

Some particles coarser than 10 mm were unbroken and accumulated in the first 

compartment, due to classification by the intermediate diaphragm. The accumulation of 

coarse particles in the first compartment was also experimentally observed in actual cement 

ball mills (Dundar et al., 2011).  
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Figure 5.3 Temporal evolution of cumulative PSD in cells 1, 3, and 10 inside the ball mill 

corresponding to axial positions L/10, 3L/10, and L, respectively, during Run 1. A steady-

state operation was reached at t = 50 min. 
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Figure 5.4 Temporal evolution of cumulative PSD in air classifier feed, cement product, 

and coarse reject streams during Run 1. A steady-state operation was reached at t = 50 min. 
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 As shown in Figure 5.3, the simulated median size (x50) of particles in cell 10 at L 

at the steady state was 29.2 m, which falls within the experimentally measured median 

size ranging from 20 m (Farzanegan et al., 2014) to 35 m (Dundar et al., 2011) of 

cement. Figure 5.4 demonstrates the temporal evolutions of cumulative PSD in streams 

around the air classifier (i.e., classifier feed, coarse reject, and fine product streams). In 

comparison with the PSD at cell 10 in Figure 5.3, the PSD in the classifier feed stream, 

i.e., the mill outlet stream after the discharge diaphragm, was slightly finer for t > 10 min 

until the steady state. This simulation result is consistent with experimental observations 

in closed circuits (Altun, 2018). Based on the simulation results depicted in Figures 5.3 

and 5.4, the degree of internal classification action of the discharge diaphragm was 

remarkably smaller than that of the intermediate diaphragm.  

 Figure 5.5 presents the temporal evolution of the Tromp curve for the air classifier. 

At t = 10 min, classification performance evaluated by bypass fraction and sharpness of 

classification was relatively sharp: * = 3.065  10−2 and  = 7.465  10−1. As the milling 

operation continued, the classification performance deteriorated, i.e., higher bypass 

fraction and lower sharpness of classification, until the steady state was reached. At the 

steady state, the classification was less sharper: * = 1.248  10−1 and  = 4.336  10−1. 

These values are similar to the classification performance of actual full-scale circuit 

operation reported in Ergin and Ercelebi (1999) as * = 9.002  10−2 and  = 4.001  10−1. 

The variable Tromp curve model’s parameters in Equation (5.8) obtained from the PBM 

simulation at steady state were: x50c,a = 6.386  10−2 mm, a = 2.081, a = 4.588  10−1, a
* 

= 1.354, and a = 1.394  10−1. These values are all in the actual operating ranges reported 

in Altun and Benzer (2014). The classification performance worsened over time because 
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the dust loading of the air classifier increased over time. Figure 5.4 also shows that the 

product PSD did not change significantly after t = 10 min. This insensitivity might be 

attributed to the presence of the air classifier. At the steady state, the product Blaine surface 

area fB was 3181 cm2/g, falling in the range of actual cement’s Blaine reported in Deolalkar 

(2009) and Ghalandari and Iranmanesh (2020). The product median size x50 at the steady 

state was 17.5 m (similar to x50 of actual cement reported by Dundar et al. (2011) and 

Ghalandari and Iranmanesh (2020)). Overall, these findings establish that the coupling of 

TUSSIM with a variable Tromp curve model with the specific functions mentioned in 

Subsection 5.2.2 led to reasonably realistic simulations of the PSDs in the entire closed-

circuit ball milling and the quality metrics of the cement product. 

 

 

Figure 5.5 Temporal evolution of the Tromp curve of the air classifier during Run 1. A 

steady-state operation was reached at t = 50 min. 
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5.3.2 Advantages of air classifier: closed circuit vs. open circuit 

We examined the advantages of incorporating an air classifier into an open-circuit ball mill 

from two perspectives: (a) product fineness improvement and (b) production rate (capacity) 

improvement. For a fixed fresh feed rate of ṁFF  = 640 kg/min, which is equal to the 

production rate at the steady state, Figure 5.6(a) demonstrates the PSDs at the steady state 

for three streams around the air classifier. The simulated product PSD of the open circuit 

was taken from Muanpaopong et al. (2022b) under identical ball mill operation conditions. 

Therefore, a fair comparison can be made to evaluate the actual impact of the air classifier. 

The simulated cement product fineness of the closed-circuit operation was quantified by 

SSA = 408 m2/kg and fB = 3181 cm2/g. The open-circuit operation led to SSA = 361 m2/kg 

and fB = 2735 cm2/g. That is, for a fixed fresh feed rate, fineness improvement was 13% 

and 16% for SSA and fB, respectively. A similar finding was reported in a previous steady-

state PBM simulation with a fixed Tromp curve (Ergin and Ercelebi, 1999), in which the 

cement SSA obtained from a closed circuit was higher than that of an open circuit, ranging 

from 3% to 15% depending on production rate. Further, as shown in Figure 5.6(a), the 

simulated width of the product PSD for the closed circuit was smaller than that of the open 

circuit. This simulation observation is also consistent with those in Duda (1985), Ergin 

(1994), Ergin and Ercelebi (1999) and Muller-Pfeiffer et al. (2000). 

 To identify capacity improvement, closed-circuit simulations were performed by 

increasing the fresh feed rate every 1% from the baseline simulation (ṁFF = 640 kg/min) 

until the simulated SSA of the product was similar to that of the open circuit (SSA = 361 

m2/kg) (Muanpaopong et al., 2022b). Based on the selected operation parameters of the air 

classifier (v = 17 m/s and Q = 45000 m3/h), the fresh feed rate was increased up to 736 



 

204 

kg/min with an SSA of 369 m2/kg. A further increase in the fresh feed rate to 742 kg/min 

would cause TUSSIM to stop, which first appears to be a purely mathematical problem. 

However, a detailed analysis suggests that this is an operational failure, an overload of the 

circuit at this fresh feed rate for the specified air classifier parameters. Specifically, the 

mass flow rate of the coarse reject stream increased when a higher fresh feed rate was used. 

This resulted in a smaller average residence time. Once the mass flow rate in the mill inlet 

stream reaches a certain value, z will approach zero. This behavior is referred to as 

operation failure. Based on the above discussion, the closed-circuit operation had a 15% 

higher production rate than the open circuit for a similar product SSA. 
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Figure 5.6 Steady-state cumulative PSD of the closed-circuit operation (this work) and 

open-circuit operation in two operational scenarios: (a) both operations had identical fresh 

feed rate at ṁFF = 640 kg/min and (b) both operations achieved a similar cement-specific 

surface area but at a different ṁFF (closed circuit: ṁFF = 736 kg/min and open circuit: ṁFF 

= 640 kg/min). 

Source: Parameters adopted from Muanpaopong et al. (2022b). 
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Table 5.2 Ball Sizes Used in Various Compartment Configurations of the Simulated 

Cement Ball Milling 

 
Run 

no. 

Ball designationa Number of 

compartmentsb 

Ball size, dB (mm) 

First  

compartment 

Second 

compartment 

Third 

compartment 

1 Quaternary mixture Two 90, 80, 70, 50 30, 25, 20, 15 − 

2b Quaternary mixture Two 90, 80, 70, 50 30, 25, 20, 15 − 

3b Quaternary mixture Two 90, 80, 70, 50 30, 25, 20, 15 − 

4 Single ball size One 90 − − 

5 Single ball size One 50 − − 

6 Single ball size One 15 − − 

7 Quinary mixture One 90, 70, 50,  

30, 20 

− − 

8 Ternary mixture One 90, 70, 50 − − 

9 Ternary mixture One 50, 30, 20 − − 

10c Ternary mixture One 50, 30, 20 − − 

11 Ternary mixture Two 90, 70, 50 50, 30, 20 − 

12 Ternary mixture−I Two 90, 70, 50 40, 30, 20 − 

13 Ternary mixture−II Two 90, 70, 50 30, 20, 15 − 

14 Binary mixture−I Two 90, 50 40, 20 − 

15 Binary mixture−II Two 90, 50 30, 15 − 

16 Single ball size Two 90 30 − 

17 Quaternary mixture Three 90, 80, 70, 60 60, 50, 40, 30 30, 25, 20, 15 

18 Ternary mixture Three 90, 80, 70 60, 50, 40 30, 20, 15 

19 Binary mixture Three 90, 60 60, 30 30, 15 

20 Single ball size Three 90 60 30 

21 Quaternary−Binary Two 90, 80, 70, 50 30, 15d − 

22 Quaternary−Binary Two 90, 80, 70, 50 30, 15 − 

a Ball size distribution was based on uniform mass distribution, except for the compartment with a classifying 

liner. 
b Fresh feed rate of 736 kg/min (Run 2) and 742 kg/min (Run 3). Other runs had a fresh feed rate of 640 

kg/min (Muanpaopong et al., 2022b). 
c Pre-milled feed. 
d With a classifying liner. 
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Figure 5.6(b) presents the cumulative PSDs of these conditions. It is important to mention 

that the above findings are based on the selected values of Q = 45000 m3/h and v = 17 m/s. 

A similar conclusion was reported by Ergin (1994) in that the closed-circuit operation has 

11−18% higher capacity than the open-circuit operation. 

5.3.3 Rationalizing the current best practices in the cement industry 

5.3.3.1 Advantages of ball mixtures of different sizes.  The next set of simulations 

(Runs 4−10 in Table 5.2) was designed to investigate the advantage of the use of a ball 

mixture over a single ball size. A single-compartment mill was considered to eliminate the 

influence of having multiple compartments. Three separate single ball sizes (dB = 90, 50, 

and 15 mm) were considered (Runs 4–6) along with ternary ball mixtures. Table 5.3 shows 

simulated cement fineness, reported as characteristic sizes (x10, x50, and x90), Blain surface 

area fB, and specific surface area SSA and Figure 5.7(a)–5.7(c) depict the PSDs. The 

cement product prepared with a ball size of dB = 90 mm was coarser than the actual cement, 

based on the Blaine surface area (Deolalkar, 2009). When small ball sizes (dB = 50 and 15 

mm) were used, a steady state could not be attained. This can be explained as follows: 

when a single ball size of 90 mm was used, no particles coarser than 2 mm were retained 

in cell 10 in front of the discharge diaphragm. Unlike for 90 mm balls, a bimodal PSD with 

one of the peaks in the coarse size range (2–60 mm) emerged in cell 10 for 50 and 15 mm 

balls. This suggests continuous accumulation of the coarse cement particles and 

deterioration of the milling effectiveness when 50 mm and 15 mm balls were used. 

Although a quinary mixture of 90, 70, 50, 30, and 20 mm balls can produce a cement 

product at the steady-state (Figure 5.7(d)), the use of such a ball mixture is not feasible 

because of potentially high ball wear/damage with a high max. ball size to min. ball size 
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ratio (9:2) in the single-compartment mill (Muanpaopong et al., 2022b). In the case of the 

coarse ternary mixture of 90, 70, and 50 mm balls, the product Blaine surface area was 

smaller than the actual cement (Deolalkar, 2009) and the product PSD was coarser (Figure 

5.7(e) vs. Figure 5.7(d)). A steady state was not reached when a ternary mixture of 50, 30, 

and 20 mm balls was used because of the accumulation of >10 mm particles in cell 10 of 

the mill (Figure 5.7(f)).



 

 

 

Figure 5.7 Differential PSD in cell 10 (in front of discharge diaphragm) and cement product of a single-compartment mill at steady 

state or at 120 min (max. operation time simulated): (a)−(c) various single ball sizes (Runs 4−6) and (d)−(f) quinary and ternary ball 

mixtures (Runs 7−9). 
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Figure 5.8 Differential PSD at steady state or at 120 min (max. operation time simulated) for a single-compartment mill (Runs 7–9) and 

two-compartment mill (Run 11): (a) in cell 10 (in front of discharge diaphragm) and (b) cement product after air classifier.
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 When a small top ball size (50 and 15 mm balls) was used, total mass hold-up 

continued to increase without limit. It is important to mention that the impact of total mass 

hold-up on Si was addressed through the scale-up factor K3 with the void filling fraction U 

(refer to Appendix D.3). When U is higher than the void filling fraction of the lab-scale 

test (UT), breakage kinetics slow down. As a result, coarser particles accumulate more, and 

a steady state cannot be attained. In an actual mill, the ball mill will probably choke and 

eventually shut down. In fact, a single-compartment mill is commonly used by integrating 

a ball milling circuit with a pre-milling unit, such as a hydraulic roller press (HRP) 

(Strasser, 2002; Altun, 2016). Hence, we performed another simulation with a ternary 

mixture of 50, 30, and 20 mm balls, but this time, the fresh feed PSD was pre-milled by 

HRP, i.e., a finer fresh feed PSD (Run 10). Here, the pre-milled fresh feed PSD was taken 

from Genc and Benzer (2016). The simulation results show that the Blaine surface area of 

the cement product was 3234 cm2/g and a steady state was attained at t = 59 min. A small 

portion of particles coarser than 10 mm accumulated in cell 10 at the steady state when the 

pre-milled fresh feed by HRP was used.  

 Overall, the current simulations for a single-compartment mill in a closed-circuit 

operation suggest a similar conclusion to that for the open-circuit operation (Muanpaopong 

et al., 2022b): a single-compartment mill entails a pre-milled feed for proper steady-state 

operation for producing a desirable cement product. 

5.3.3.2 Advantages of multi-compartment mill configurations.  Actual ball sizes used 

in industrial mills maintain a certain ratio between the largest and smallest balls to prevent 

damage when small balls are hit by large balls (see Muanpaopong et al. (2022b) and 

references therein). For example, it may not be practical to load a quinary mixture of 90, 
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70, 50, 30, and 20 mm balls to the same milling compartment (refer to Run 7). A multi-

compartment mill provides flexibility in loading different ball combinations into different 

compartments while minimizing the max. ball size to min. ball size ratio, thus mitigating 

ball wear. In this section, a multi-compartment mill refers to a two-compartment mill, as it 

has been commonly used in closed-circuit operations (Deolalkar, 2009; Altun, 2018). To 

compare the performance of single vs. two-compartment mills, the coarser ternary ball 

mixture (dB = 90, 70, and 50 mm) of Run 8 and the finer ternary ball mixture (dB = 50, 30, 

and 20 mm) of Run 9 were placed into the first and second compartments of a two-

compartment mill, respectively (Run 11). Note that Run 7 (single compartment) and Run 

11 (two-compartment) have identical ball sizes. 

 Figure 5.8 compares the differential PSDs in cell 10 (in front of the discharge 

diaphragm) and the cement product after the air classifier. Operations using a single-

compartment mill with a ternary mixture of coarse ball sizes (Run 8) could not produce a 

desirable cement fineness, and a ternary mixture of fine ball sizes could not attain steady-

state operation (Run 9). When a ball mill has two compartments with ternary coarse and 

fine ball mixtures (Run 11), the ball mill operation yielded a finer product PSD than a 

single-compartment mill with a quinary mixture of identical ball sizes (Run 7), while 

producing the actual cement Blaine SSA. In the two-compartment operation, no particles 

coarser than 600 m were retained in cell 10 in front of the discharge diaphragm, and a 

steady state was attained at t = 53 min. On the other hand, a bimodal PSD was observed in 

cell 10 for all single-compartment operations. These simulation results demonstrate the 

advantage of a two-compartment mill over a single-compartment mill: finer PSD and 
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flexibility to locate a wide range of ball sizes in two compartments, thus mitigating ball 

wear/damage significantly.  

5.3.3.3 Rationales for selecting the number of compartments in a multi-compartment 

mill.  Although a three-compartment mill is a suggested design for open-circuit operation 

(Deolalkar, 2009), a two-compartment mill can produce a cement product fineness similar 

to that of a three-compartment mill, as demonstrated by Genc (2016) and Muanpaopong et 

al. (2022b). The previous work (Muanpaopong et al., 2022b) highlighted that this similarity 

in product fineness originated from the ball sizes used. In this section, we performed 

simulations with various ball combinations using two- and three-compartment 

configurations (Runs 1, 12−20). The total length was kept the same for both mill 

configurations for a fair comparison. A wide range of ball mixtures (quaternary, ternary, 

and binary mixtures) along with a single ball size were simulated. It should be mentioned 

that ball mixtures in a two-compartment mill could not be designed to have the same ball 

sizes as those used in a three-compartment mill. For this reason, we proposed two 

designations of ternary and binary ball mixtures for a two-compartment mill. Ternary 

mixture−I and binary mixture−I had the smallest ball size of 20 mm, while ternary 

mixture−II and binary mixture−II had the smallest ball size of 15 mm. As shown in Figure 

5.9(a) for the two-compartment mill and Figure 5.9(b) for the three-compartment mill, 

operation with ball mixtures produced a finer product (higher SSA and fB) in comparison 

with single ball size, as expected. Considering the two-compartment mill, the ternary 

mixture−II with 15 mm balls yields a finer product than the ternary mixture−I with 20 mm 

balls. Similarly, binary mixture−II with 15 mm balls yielded a finer product than binary 

mixture−I with 20 mm balls. Comparing ball mixtures with 15 mm balls, the product 
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fineness from the binary and ternary mixtures was finer than the quaternary mixture. A 

similar simulation result was reported in Muanpaopong et al. (2022b). 

 The analysis of Figure 5.9 and Table 5.3 suggests that a two-compartment mill 

yielded a finer product than that of a three-compartment mill for all ball combinations, with 

the smallest ball being 15 mm. These simulation results rationalize why the design of an 

industry mill operating in a closed-circuit operation is suggested to be a two-compartment 

mill (Deolalkar, 2009). As per comprehensive simulations with various choices of ball 

mixtures, there is no gain in having a three-compartment mill in terms of the product 

fineness perspective. In view of actual operation, having a lower number of milling 

compartments not only leads to lower capital cost, but also lower operating cost because 

of lower pressure loss across the ball mill due to the presence of one less diaphragm. 

Overall, our simulation results with various ball combinations justify the best industry 

practice reported by Deolalkar (2009): closed-circuit operation is optimal with two 

compartments.  
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Figure 5.9 Blaine surface area and specific surface area of cement products obtained from 

steady-state operation of (a) a two-compartment mill and (b) a three-compartment mill with 

various ball mixtures in the respective compartments. Ball size distribution was based on 

uniform mass distribution. 
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Table 5.3 Characteristic Particle Sizes, Specific and Blaine Surface Areas at the Steady-

State Operation 

 
Run 

no. 

Number of 

compartments 

10% 

passing 

size, x10 

(m) 

Median 

size, x50 

(m) 

90% 

passing 

size, x90 

(m) 

Specific 

surface area, 

SSA (m2/kg) 

Blaine 

surface 

area, fB 

(cm2/g) 

1 Two 2.41 17.5 49.8 408 3181 

2 Two 2.78 19.2 49.5 369 3155 

3 Two −a −a −a −a −a 

4 One 5.72 39.0 93.6 212 2339 

5 One −b −b −b −b −b 

6 One −b −b −b −b −b 

7 One 3.07 22.0 60.0 339 2896 

8 One 4.71 32.6 81.1 245 2516 

9 One −b −b −b −b −b 

10c One 2.36 16.6 48.7 407 3234 

11 Two 2.93 21.0 57.2 352 2959 

12 Two 2.83 20.4 55.7 361 2999 

13 Two 2.33 17.0 48.7 418 3218 

14 Two 2.77 20.0 54.9 367 3023 

15 Two 2.34 17.0 48.8 418 3215 

16 Two 3.01 21.6 58.2 345 2930 

17 Three 2.60 18.7 51.8 386 3106 

18 Three 2.59 18.7 51.7 387 3109 

19 Three 2.53 18.3 50.9 394 3137 

20 Three 3.24 23.1 60.7 326 2859 

21 Two 2.30 16.8 48.2 423 3234 

22 Two 2.35 17.1 49.0 416 3208 

a Operational failure was detected;  

b Steady-state operation was not reached during 120 min of simulation. 

c Pre-milled feed.  
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5.3.4 Impact of ball size distribution: uniform mass, number, and surface area of balls 

Table 5.4 lists the design of the simulation (Runs 1, 23−30) to examine the impact of 

various theoretical BSDs in the two-compartment mill. A quaternary ball mixture (first 

compartment: dB = 90, 80, 70, 50 mm and second compartment: dB = 30, 25, 20, 15 mm) 

was used for each compartment, and only the ball mass fraction was changed based on 

UM, UN, and USA approaches (refer to Equation (5.5)). Generally, for a given ball 

mixture, UM has the smallest mean ball size, while UN has the largest mean ball size. 

Figure 5.10 shows cement product fineness as characteristic sizes (x10, x50, and x90), SSA, 

and the Blaine surface area. An obvious trend is that similar product fineness was obtained 

when the same ball distribution in the second compartment remained the same. That is, 

product fineness may be modulated by BSD in the second compartment. In comparison 

with the coarsest product (UN−UN distribution), the product obtained from the UM−UM 

distribution as the best BSD yielded a 9% higher product SSA. A similar result was 

reported in an open-circuit operation (Muanpaopong et al., 2022b). However, considering 

all 9 BSDs, the mean product SSA was calculated as 3124 cm2/g with a relative standard 

deviation of ~2%. We note that these theoretical ball size distributions did not lead to 

markedly different product fineness, thus justifying optimization of ball size distributions, 

as will be discussed in Subsection 5.3.6. 
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Table 5.4 Theoretical Ball Size Distributions Used in the Simulations for the Two-

Compartment Mill Configuration 

 
Run 

no. 

Ball size distributiona Mean ball size, dB,Mean (mm) 

First 

compartmentb 

Second 

compartmentc 

First 

compartmentb 

Second 

compartmentc 

1 UM UM 72.5 22.5 

23 UN UM 80.1 22.5 

24 USA UM 75.7 22.5 

25 UM UN 72.5 26.1 

26 UN UN 80.1 26.1 

27 USA UN 75.5 26.1 

28 UM USA 72.5 23.9 

29 UN USA 80.1 23.9 

30 USA USA 75.5 23.9 

a UM: uniform mass, UN: uniform number, and USA: uniform surface area.  

b First compartment: dB = 90, 80, 70, and 50 mm. 

c Second compartment: dB = 30, 25, 20, and 15 mm. 
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Figure 5.10 Steady-state cement products from a two-compartment ball mill with various 

ball size distributions (see Table 5.4): (a) characteristic particle sizes (10% passing size, 

median size, and 90% passing size) and (b) the Blaine surface area and specific surface 

area. 
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5.3.5 Impact of ball classification on cement fineness 

Classifying liners fitted with internal mill shells have been used in the second (fine) milling 

compartments of cement milling (Altun, 2018; Ghalandari and Iranmanesh, 2020). This 

liner type leads to a spatially varying ball mixture along the axial position of the mill. In a 

two-compartment mill, a binary ball mixture of 15 mm and 30 mm balls was considered in 

the second compartment, with the quaternary mixture used in the first compartment (Run 

21). A wide BSD was not considered here because of the insufficient data reported in the 

literature. For this reason, an additional simulation with a binary ball mixture of 15 and 30 

mm based on UM (Run 22) was performed as a basis for comparison. The spatial variation 

pattern due to the classifying liner was kept similar to the actual data reported in Altun 

(2018). Table D.2 reports the mass fractions of 30 mm and 15 mm balls in the second 

compartment for each axial position, taken from Muanpaopong et al. (2022b). The 

simulation results of the cement product fineness with a classifying liner (Run 21) were 

SSA = 423 m2/kg and fB = 3234 cm2/g. Based on the UM distribution (Run 22), the 

simulated cement fineness was SSA = 416 m2/kg and fB = 3208 cm2/g. Our simulation 

results suggest that the impact of ball classification on cement product fineness was 

insignificant in comparison with uniformly mixed balls based on UM. The percent 

improvement with a classifying liner was 1.7% and 0.81% for SSA and fB, respectively. 

This result is in line with actual data obtained from a full-scale cement ball mill in a closed 

circuit (Fortsch, 2006). 
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5.3.6 Process optimization: optimal ball mixtures in the first and second 

compartments 

 

Process optimization was performed using TUSSIM in the inverse problem framework. 

Table 5.5 lists the initial guess, lower bound, and upper bound used during optimization 

for each of the nine independent search variables, along with the solution obtained from 

the global optimizer for various values of NT. For all NT values, the predicted Blaine surface 

area of the cement product at steady state was the same as the targeted Blaine value. It is 

apparent that as the value of NT was increased, the objective function value (refer to 

Equation (5.11)) became smaller. By increasing NT from 200 to 500, the mass fraction of 

90 mm balls changed from 7.789  10−1 to 3.797  10−2. In the case of NT = 200, the 

obtained solution of ṁR= 501 kg/min was stuck at around initial guess value of 500 kg/min. 

When the NT value was high enough (NT = 1500), the objective function value did not 

change in comparison to the solution obtained from the preceding NT value, i.e., NT = 1000. 

The maximum absolute value of percent relative error between solutions of NT = 1000 and 

NT = 1500 was 4.723  10−7, occurring at the mass fraction of 15 mm balls. Therefore, the 

global minimum was deemed to be reached when NT = 1000, according to the criterion 

mentioned in Subsection 5.2.3. The analysis of %MB values in the two compartments 

(Table 5.5) suggests that the mean ball size in the first compartment was 78.2 mm (slightly 

finer than the value for a UN distribution of different ball sizes: 80.1 mm), while the mean 

ball size in the second compartment was 21.0 mm (slightly finer than the value for a UM 

distribution of different ball sizes: 22.5 mm). In comparison with baseline (Run 1) 

simulation, capacity was improved by 14% (optimum condition: 732 kg/min vs. Run 1 

simulation: 640 kg/min). The mass fraction in the 3−32 um size range (M3−32) of the 
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optimum condition was 0.6168, which slightly improved by ~1% in comparison with the 

Run 1 simulation (M3−32 = 0.6159). 

 We performed the last simulation with ball mixtures from an industrial cement mill 

reported in Altun (2018) and compared its performance to the optimal ball mixtures 

identified in our study. Based on Altun (2018), in the first compartment, a quaternary 

mixture of 90, 80, 70, and 60 mm balls was used with mass fractions of 0.25, 0.30, 0.25, 

and 0.20, respectively. In the second compartment, a senary mixture of 50, 40, 30, 25, 20, 

and 17 mm balls was used with mass fractions of 0.08, 0.10, 0.20, 0.24, 0.23, and 0.15, 

respectively. For a fair comparison, the fresh feed rate was kept the same as that obtained 

from the global optimizer (ṁFF = 732 kg/min). As shown in Figure 5.11, the product PSD 

simulated for the ball mixtures obtained from the global optimizer was finer than that for 

the ball mixtures from Altun (2018). The ball mixtures from Altun (2018) yielded product 

Blaine surface area fB = 3042 cm2/g, SSA = 343.7 m2/kg, and M3−32 = 0.5871), whereas the 

optimal ball mixtures in this work yielded Blaine surface area fB = 3181 cm2/g (5% higher), 

SSA = 380.5 m2/kg (11% higher), and M3−32 = 0.6212 (6% higher). Overall, our process 

optimization scheme using the combined global optimizer−DAE solver has clearly 

demonstrated the opportunity for optimizing BSD to obtain a higher production rate or a 

finer cement product with a higher mass fraction in 3−32 m range at a fixed capacity.



 

 

Table 5.5 Solutions Obtained from the Global Optimizer for Various Values of the Number of Trial Points NT along with the 

Predicted Cement Quality Metrics at the Steady-state Operation of a Two-compartment Ball Mill 

 
Variable and predicted cement 

quality metrics 

Initial 

guess 

Bound constraint Solution obtained from the global optimizer 

Lower bound Upper bound NT = 200 NT = 500 NT = 1000 NT = 1500 

%MB of dB = 90 mm (–)a  25 0 100 78.89 3.797 46.06 46.06 

%MB of dB = 80 mm (–)a  25 0 100 10.75 8.897 10.21 10.21 

%MB of dB = 70 mm (−)a  25 0 100 6.860 4.108 33.40 33.40 

%MB of dB = 50 mm (−)a  25 0 100 3.497 83.20 10.33 10.33 

%MB of dB = 30 mm (−)b  25 0 100 90.06 4.646 19.29 19.29 

%MB of dB = 25 mm (−)b  25 0 100 0.7894 53.17 20.39 20.39 

%MB of dB = 20 mm (−)b  25 0 100 1.300 7.818 22.09 22.09 

%MB of dB = 15 mm (−)b  25 0 100 7.856 34.37 38.23 38.23 

Fresh feed rate, ṁFF (kg/min) 500 100 1500 501.0 662.8 732.0 732.0 

Predicted cement Blaine surface 

area, fB
Mod (cm2/g) 

   3181 3181 3181 3181 

Predicted cement mass fraction 

at 3−32 m, M3−32
Mod (−) 

   0.6117 0.6168 0.6212 0.6212 

Objective function value (−)    2.384 1.892 1.745 1.745 

a First compartment. 

b Second compartment. 

2
2
3
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Figure 5.11 Steady-state cumulative PSDs around air classifier for a two-compartment ball 

mill with optimized ball mixtures in both compartments and industrial ball mixtures. Fresh 

feed rate ṁFF  = 732 kg/min, obtained from global optimization, was used for both 

simulations. 
Source: Industrial ball mixtures taken from Altun (2018) 

 

5.4 Conclusions 

Simulation of full-scale closed-circuit ball milling of cement clinker was performed by 

TUSSIM with a variable Tromp curve model for classification. Parameters were obtained 

from the cement milling literature. The dynamic simulation results are not only consistent 

with experimental observations in full-scale operation but also provide simulation-based 
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evidence to explain the current best practices in the cement industry. Some of the principal 

results from this comprehensive simulation study include the following: 

• Integrating an air classifier into a continuous ball mill can increase a product’s 

specific surface area by 13% at a fixed production rate. Alternatively, the 

production rate can be increased by 15% at a similar specific surface area of the 

cement product.  

• A single-compartment ball mill entails a pre-milled feed for proper, steady-state 

operation, meeting the salient cement product quality attributes.  

• In a closed-circuit operation, a two-compartment mill outperforms a three-

compartment mill. 

• A closed-circuit mill operation may fail due to overload especially at high fresh 

feed rates; hence, capacity improvement initiatives must carefully examine 

optimization of the ball size distributions, ball materials, and/or air classifier 

parameters.   

• The use of different theoretical BSDs and classifying liner do not lead to significant 

improvement of product fineness. 

 As a major novelty, a combined global optimizer−DAE solver method was used to 

identify optimal BSD in each milling compartment that yielded a maximum production 

rate with desirable cement quality attributes. The production rate with optimal BSD was 

14% higher than the baseline condition with a slightly higher mass fraction in 3−32 um 

range of cement product (M3−32), reflecting a higher cement compressive strength. 

Interestingly, our optimal ball mixtures yielded a finer cement product and a much higher 

M3−32 value, compared with the actual BSD used in a full-scale cement ball mill for a fixed 

production rate. Overall, the TUSSIM for ball milling coupled with the variable Tromp 

curve model for classification could help industry practitioners gain fundamental insights 

into the complicated behavior of their specific closed-circuit ball mills and optimize their 

existing operations. 
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CHAPTER 6 

A COMPARATIVE ANALYSIS OF STEEL AND ALUMINA BALLS IN FINE 

MILLING OF CEMENT CLINKER VIA PBM AND DEM 

 

This study explored the breakage kinetics of cement clinker in a lab-scale ball mill loaded 

with steel or alumina balls of 20, 30, and 40 mm sizes and their mixtures. The temporal 

evolution of the particle size distribution (PSD) was measured by sieving and laser 

diffraction. A global optimizer-based back-calculation method, based on a population 

balance model (PBM), was developed to estimate the breakage parameters. The ball motion 

in the mill was simulated via discrete element method (DEM). Our results show that steel 

balls achieved faster breakage of clinker into finer particles than alumina balls, which was 

explained by the higher total–mean energy dissipation rates of the steel balls. The PSD 

became finer as smaller balls were used. This study suggests that replacement of steel balls 

with alumina balls in continuous ball mills could provide significant energy savings if one 

accounts for the slower breakage with the alumina balls.  

 

6.1 Introduction 

Tumbling ball mill, which is a horizontally rotating cylinder that contains milling media as 

balls to break particles during its operation, is known as an energy-intensive and inefficient 

unit operation (Fuerstenau and Abouzeid, 2002). Over the past decades, considering the 

milling media as an integral design element of these mills, impact of ball size (Austin et 

al., 1976; Kotake et al., 2002; Deniz, 2003; Kotake et al., 2004), ball size distribution 

(BSD) (Erdem and Ergun, 2009; Oksuzoglu and Ucurum 2016; Cayirli, 2018), and ball 

material type (Umucu et al., 2014; Umucu and Deniz, 2015) have been investigated. In 
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modern cement milling plants, ball mill is not solely operated but is usually coupled with 

a hydraulic roller press (HRP) (Aydogan et al., 2006; Altun et al., 2011), with the latter 

acting as a pre-milling unit. A combined ball mill−HRP circuit results in lower total 

specific power consumption (Patzelt, 1992; Aydogan and Benzer, 2011). Briefly, HRP 

consists of two rollers with one roller being movable. During the operation of the HRP, 

these two rollers rotate in different directions. Hydraulic pressure is transferred to press the 

cement clinker from hydraulic cylinders through the moveable roller. The HRP not only 

reduces the size of raw materials before they are fed to the subsequent ball mill but also 

generates extra flaws and cracks inside particles (Fuerstenau et al., 1999; Valery and 

Jankovic, 2002; Celik and Oner, 2006; Yin et al., 2017; Aminalroaya and Pourghahramani, 

2022) because of the high pressure it applies. As a result, pre-milled cement clinker 

obtained from HRP breaks more easily than raw cement clinker (Camalan and Hosten, 

2015). 

 One of the current topics in the cement industry for reducing power consumption 

in cement ball milling is to properly replace conventional steel balls with alternative types 

of ball materials, including ceramic balls (Fernandez and Hui, 2017; Nowack, 2022). The 

rationale for this replacement is that, in comparison to steel balls, ceramic balls have 

significantly lower ball density (approximately half the density of steel balls) (Nowack, 

2022) and lower wear rate (Fang et al., 2022). According to the power consumption model 

(Brochot et al., 2006), the power draw of a ball mill is directly proportional to the ball 

density. Therefore, a drastic reduction in the power draw of ball mill may be achieved with 

ceramic balls. Fernandez and Hui (2017) recently compared the actual performance of a 

full-scale cement ball mill by replacing steel balls with alumina balls in the fine milling 
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compartment. Based on various process configurations of cement ball mill (e.g., open 

circuit, closed circuit, and closed circuit with HRP), their experimental results (Fernandez 

and Hui, 2017) showed that the electric current of the ball mill can be reduced in the range 

of 20%−40%, with the production rate changing between −5% and +10%. Unfortunately, 

only the electric current data of the mills were reported; detailed operation conditions such 

as ball size, BSD, feed size, and most importantly, the product particles’ sizes were not 

reported. Clearly, the results in this trade article cannot be reproduced or verified. 

Moreover, it is unclear whether the difference in performance originated from the use of 

alumina balls or other factors that were not even reported. Data available in the milling 

literature are rather limited regarding the use of ceramic balls (Umucu and Deniz, 2015), 

specifically alumina balls (Umucu et al., 2014; Fernandez and Hui, 2017; Rivera-Madrid 

et al., 2019), in dry tumbling ball milling, while most studies have widely applied ceramic 

balls in other types of mills, such as stirred media mills (e.g., Rule et al., 2008; Hassall et 

al., 2016; Zhang et al., 2021; Zhang et al., 2022; Patino et al., 2022). 

 A quantitative understanding of the impacts of the ball sizes and ball material type 

such as steel vs. ceramic during ball milling warrants the use of a population balance model 

(PBM). PBM has been widely used to describe the timewise evolution of particle size 

distribution (PSD) for various particulate processes, including ball milling (Prasher, 1987; 

King, 2001). It is fundamentally based on two parameters: (i) specific breakage rate 

parameter Si and (ii) breakage distribution parameter bi,j with its cumulative form Bi,j. For 

a well-mixed batch ball mill, the time-continuous, size-discrete form of the PBM assuming 

first-order (linear) breakage is given as follows (Austin, 1971/1972): 
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 In Equation (6.1), i and j are size class indices that extend from size class 1, which 

contains the coarsest particles of size x1, to size class N, which contains the finest particles 

of size xN. t is milling time, and Mi is mass fraction in size class i. Mi,ini is the mass fraction 

of feed material in size class i. 

 Several methods have been proposed to determine the breakage parameters, i.e., Si 

and Bi,j, from experimentally obtained milling data from laboratory-scale or pilot-scale ball 

mills. These methods can be broadly categorized as direct measurement method (e.g., 

Kanda et al., 1999; Katubilwa and Moys, 2009; Gupta et al., 2012; Petrakis et al., 2017; 

Nava et al., 2021) and back-calculation method (Klimpel and Austin, 1977; Gupta et al., 

1981; Purker et al., 1086; Capece et al., 2011a; Gupta et al., 2012), the latter of which is 

used in the current study. Both methods have unique disadvantages. The direct 

measurement method entails separate milling of multiple narrowly-sized feed samples 

covering the whole size range of interest; hence, it is experimentally time-consuming 

(Devaswithin et al., 1988). For the detailed experimental procedure of direct measurement 

methods, readers can refer to Austin and Bhatia (1971/1972) for the determination of Si 

using the so-called one-size fraction method, and Austin and Luckie (1971/1972) for the 

determination of Bi,j using multiple methods referred to as the BI, BII, and BIII. Practically, 

the ratio of the upper sieve size to the lower sieve size is either 21/2 or 21/4 (Austin and 

Bhatia, 1971/1972); consequently, the narrowly-sized feeds significantly deviate from 

ideal “monodispersed samples.” Finally, narrow fractions of fine particles are hard to 

prepare based on commercially available sieve sizes (Jillavenkatesa et al., 2001). 



 

230 

Therefore, extrapolation from coarser particles to fine particles of interest is required, 

which may cause additional errors, especially for fine milling applications. Most of these 

issues have been circumvented by the back-calculation method, wherein a local optimizer 

along with the analytical or numerical solution of the PBM is used to estimate the PBM 

parameters via direct fitting to the temporal evolution of the PSD (Klimpel and Austin, 

1977). However, finding a realistic set of PBM parameters has been a major challenge 

since the early inception of the back-calculation method (Klimpel and Austin, 1977). The 

local optimizer could get stuck with a local optimum, leading to an erroneous set of 

parameters; therefore, the use of a global optimization scheme in the back-calculation is 

warranted. 

 Our literature review revealed that the comparison of breakage kinetics between 

steel balls and alumina balls in ball milling within the context of PBM is rather limited and 

while DEM has been widely used for simulating dry tumbling ball mills (e.g., Mishra and 

Rajamani, 1992; Weerasekara et al., 2013; Weerasekara et al., 2016; Li et al., 2022); to the 

best knowledge of the authors, there exists no comparative DEM study of ball material 

impact in direct connection with the PBM parameters and breakage kinetics. In one study, 

the breakage parameters were estimated via a direct measurement method, wherein only 

four narrow sieve sizes were used, with the smallest sieve size of −63+45 m, along with 

30 mm balls (Umucu et al., 2014). The timewise evolution of whole PSD predicted from 

the PBM parameters was not compared with the experimental data. Thus, the prediction 

capability of PBM parameters obtained from Umucu et al. (2014) to model the timewise 

evolution of PSD during milling is still unknown. Raw cement clinker without pre-milling 

was used as a material of interest in most PBM studies of ball milling (Austin et al., 1981a; 
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Deniz, 2003; Deniz, 2012; Camalan, 2021b). In another study (Camalan and Hosten, 2015), 

breakage parameters of the raw cement clinker and pre-milled cement clinker obtained 

from a full-scale HRP was compared. The parameters were estimated using a direct 

measurement method with three narrow sieve cuts, with −850+600 m being the smallest 

particle size. It is well known that specific cement quality is influenced by a specific size 

range. For example, mass fraction of 3−32 m range contributes most to cement strength 

(Tsivilis et al., 1990). Hence, the PBM parameters obtained from Camalan and Hosten 

(2015) must be extrapolated to the fine particle size range of cement, which could cause 

errors in the actual use of PBM for predicting the evolution of PSD in cement ball milling. 

Our literature review suggests that none of these studies has examined the impact of the 

ball material–size on the breakage parameters of pre-milled cement clinker with a natural 

PSD, which was obtained from an industrial HRP, within the context of a global optimizer-

based back-calculation method. 

 The aim of this study was to examine the breakage kinetics of pre-milled cement 

clinker in a lab-scale ball mill loaded with steel or alumina balls of 20, 30, and 40 mm sizes 

as well as their mixtures. In each milling experiment, samples of the milled clinker were 

collected at various time intervals, and the temporal evolution of the PSD was measured 

by a combination of sieving followed by laser diffraction. The specific breakage rate and 

breakage distribution parameters of the cement clinker were determined by a global 

optimizer-based back calculation method in which an ordinary differential equation (ODE) 

solver generates the model solution while the optimizer minimizes the sum-of-squared 

residuals. Before the actual parameter estimation, we tested the accuracy of this novel back-

calculation method on synthetic (artificial) batch milling data without/with random errors. 
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Subsequently, as a first step to understanding the role of ball material properties and getting 

insights that are yet not found in the literature, we resorted to DEM simulations and 

determined the collisional energy spectra considering the steel and alumina balls separately 

and related the findings to the observed breakage kinetics. It is expected that this 

comprehensive, combined experimental–modeling study provides powder technologists 

and industry practitioners with a new global optimizer-based back–calculation 

methodology and will generate various insights into the impacts of ball material–sizes on 

the breakage kinetics of pre-milled cement clinker. In the end, we will also discuss about 

the feasibility of the replacement of conventional steel balls with alumina balls in full-scale 

continuous ball mills considering the impacts on the power consumption and breakage 

kinetics.  

 

6.2 Experimental 

6.2.1 Materials 

Cement clinker was pre-milled by a full-scale HRP (SCG Cement, Bangkok, Thailand) and 

used in dry ball milling experiments. Pre-milled cement clinker, i.e., the HRP product, was 

taken from a ball milling circuit at a point in the conveying line before it was fed to the ball 

mill. Steel balls and alumina balls were purchased from Magotteaux Co., Ltd. (Saraburi, 

Thailand) and Hira Ceramics Co., Ltd. (Toyota, Aichi, Japan), respectively. 

6.2.2 Methods 

6.2.2.1 Dry ball milling.  A laboratory ball mill, 30 cm in diameter and 30 cm in length, 

was operated batchwise with a fixed rotation speed of 71 rpm, corresponding to 92% of the 

critical speed (similar to Aras et al. (2012)). Its steel lining plate is smooth, without a lifter. 
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Steel and alumina balls of 20, 30, and 40 mm sizes were selected for our experiments 

because such sizes were used in the fine-milling compartment of a full-scale continuous 

ball mill. Each ball size was used in separate milling experiments to yield information about 

the ball size impact. In the experiments, total mass of steel balls and alumina balls were 

29.8 and 13.4 kg, respectively, corresponding to the bulk ball filling fraction of 0.3 for both 

cases (same as Umucu et al., 2014; Umucu and Deniz, 2015). The mass of pre-milled 

cement clinker was 1.6 kg, corresponding to the bulk powder interstitial filling fraction of 

0.35 (similar to Austin et al., 1981a; Kotake et al., 2002). The PSD was measured at the 

milling times of 0 (initial feed PSD), 2, 4, 8, 12, 20, and 28 min. As pointed out by Klimpel 

and Austin (1970), back-calculation from experimental data with too short milling does not 

provide accurate back-calculated parameters in the fine particle size domain. Here, the 

clinker was milled for 28 min, yielding a fine powder, which is approximately in the range 

of general cement product PSD. 

 Two model validation experiments were conducted using a mixture of 20, 30, and 

40 mm ball sizes with uniform mass BSD for steel balls and alumina balls separately. 

Mixtures of different ball types were not considered. Feed PSD of the cement clinker was 

different from that used in the back-calculation procedure mentioned above. We loaded 

balls layer-by-layer into the mill starting with 40 mm balls followed by 30 mm and then 

20 mm balls. In these two ball-mixture experiments, all other operational conditions were 

kept the same as those in the milling experiments with single ball sizes. The samples taken 

at different times were subjected to particle size analysis. 
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6.2.2.2 Particle size measurements.  PSD of the pre-milled cement clinker was measured 

for various milling times using sieve opening sizes of 9.5, 4.75, 2.34, 1.18, and 0.6 mm. 

Sieving was performed using an AS 200 control vibratory sieve shaker (Retsch GmbH, 

Haan, Germany). We took the entire amount of cement clinker sample for sieving. After 

sieving, the cement clinker was returned to the ball mill for further milling. Five grams 

were taken only of particle sizes less than 0.6 mm on the pan to be measured via laser 

diffraction using a Malvern Panalytical particle size analyzer (model Mastersizer 3000) 

(Malvern, UK) in dry dispersion mode with an air pressure of 3 bar (gauge). PSD was 

determined based on the Mie scattering theory. A refractive index of 1.68 and imaginary 

refractive index (absorption index) of 0.01 were used for gray cement clinker based on data 

from the vendor. It is a reasonable assumption that the particles with different sizes have 

the same particle density. Therefore, the volume-based PSD and the mass-based PSD are 

assumed to be identical. With this common assumption, the PSDs obtained from the laser 

diffraction and the sieving were properly merged. A similar approach was used by Austin 

et al. (1990). Specifically, the sieve data of coarse fraction (0.6 mm) was combined with 

the laser diffraction data for <0.6 mm fraction, in which the particle size was measured 

down to 1.8 m, to represent the full PSD. 
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6.3 Theoretical 

6.3.1 Specific functional forms used in the PBM 

In the back-calculation method to estimate breakage parameters, the lower the number of 

parameters to be estimated, the higher the accuracy of the back-calculated results (Klimpel 

and Austin, 1977; Kwon and Cho, 2021). Although most PBM studies have used the Austin 

model for the specific breakage rate parameter Si (e.g., Austin et al., 1976; Katubilwa and 

Moys, 2009; Bwalya et al., 2014; Chimwani et al., 2014), we selected the Kotake−Kanda 

(KK) kinetic model (Kotake et al., 2002) (see Equation (6.2)) as the KK model is similar 

to the Austin model with the advantage of having one less parameter (Bilgili, 2023).  
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 Here, the milling operation−material dependent parameters are C1 > 0 and C2 > 0; 

m and n > 0 are the ball size exponents, while  > 0 is the particle size exponent. Ball size 

dB is represented by its diameter. Surprisingly, only a few studies have determined Si via 

the KK model (Kotake et al., 2002; Deniz, 2003; Kotake et al., 2004). Moreover, they 

determined Si by the direct measurement method; hence, as another novelty of this study, 

parameters of the KK model were estimated via the back-calculation method for the first 

time. KK model (Kotake et al., 2002; Deniz, 2003; Kotake et al., 2004) and Austin model 

(Bwalya et al., 2014) predict that (i) a maximum specific breakage rate Sm exists during the 

milling with abnormal breakage and that (ii) Sm is either monotone increasing function of 

dB with or without approach to a plateau or a non-decreasing function of dB. Within the 
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context of the KK model, Sm can be expressed as a function of dB by Sm = 

C1e−(/C2)

dB

αn+m
 (Bilgili, 2023). In view of the overwhelming experimental evidence 

(Kotake et al., 2002; Deniz, 2003; Kotake et al., 2004; Erdem and Ergun, 2009), we 

constrain the ball size exponent in the following form: n+m  0 during back-calculation. 

 The following non-normalized cumulative breakage distribution parameter Bi,j was 

chosen, which contains four non-negative model parameters, i.e., 0, , , and  (see e.g.  

Austin and Luckie, 1971/1972; Austin et al., 1981a). 
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 (6.3) 

 

 We assumed that Bi,j depends on the ball material used, but is invariant to the ball 

sizes although it may change with ball sizes owing to the different impact forces during 

collisions (Austin et al., 1982). We justified this assumption based on Deniz (2012) for the 

cement clinker: the Bi,j parameter did not drastically vary in a certain range of ball sizes (dB 

= 20−41 mm), which was also the range used in this study. Note that Bi,j reduces to the 

commonly used, normalized (self-similar) form for  = 0. To ensure 0 ≤ Bi,j ≤ 1 in view of 

xi−1/xj ≤ 1, we invoked 0 ≤ 0(x0xj) ≤ 1 and derived the following inequality constraint: 
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which restricts the values of  and 0. For example, based on Austin et al. (1975) with 

referenced size x0 = 1 mm and minimum size xmin = 110−3 mm,  = 0.15 and 0 = 0.288 

(determined from 1 = 0.1755 with x1 = 26.9 mm) satisfy the inequality constraint in 

Equation (6.4). Without going into details, we found that fitting without constraint in 

Equation (6.4), 0 and  values for steel ball and 0 and  values for alumina ball reached 

the upper bound and some Bi,j values were greater than 1, which is physically implausible. 

By definition, the breakage distribution parameters were calculated by bi,j = Bi,j − Bi+1,j and 

bN,j = BN,j. 

 When a mixture of different ball sizes is used in ball milling, Si of the ball mixture 

represented by Si̅ can be calculated by the mass fraction of individual single ball size (MB,g) 

and its individual Si,g, with g being the index for single ball size ranging from 1 to G (Austin 

et al., 1976). Si̅ is given by  
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 Owing to the conservation of mass, the following constraints must be imposed on 

Si and bi,j: 
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6.3.2 Parameter estimation via back-calculation/optimization 

The currently available back-calculation method in the context of PBM makes use of a 

coupled local optimizer−ODE solver with a single set of initial guesses for the parameters 

(e.g., Klimpel and Austin, 1977; Capece et al., 2011a). A common issue with the back-

calculation method is that the obtained solution may correspond to a local optimum (Zhang 

and Kavetsky, 1993) or a flat surface around an objective function (Kwon and Cho, 2021). 

As a result, the solution obtained from back-calculation may depend on the initial guess 

for the parameters significantly. Our exploratory work suggested that the combined local 

optimizer−ODE solver method (Capece et al., 2011a) was not suitable when the KK model 

and non-normalized Bi,j were used, which contains 9 parameters to be estimated —except 

when a normalized Bi,j was justified with only 6 parameters. Specifically, the solution was 

strongly dependent on the particular initial guess for the parameters.  

 To mitigate the aforementioned issues in this study, we developed a global 

optimizer-based back-calculation method in which the optimizer is coupled with the ODE 

solver and coded in MATLAB using the global optimization toolbox (The MathWorks, 

2022). Similar to (Capece et al., 2011a), the optimizer requires a set of initial guess and 

number of trial points (NT) as an input (The MathWorks, 2022). Readers are referred to 

Appendix B for the details of the coupled global optimizer−ODE solver including functions 

used and tolerances set. The sum of squared residuals (SSR) was used as the objective 

function to be minimized. SSR is based on cumulative fraction undersize F, which is 

consistent with previous studies (Capece et al., 2011a; Kwon and Cho, 2021), and is 
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expressed as 
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 Here, k is the experimental size class ranging from 1 to K, and z running up to Z 

represents the milling time index for the sampling. Superscripts Mod and Exp denote model 

fitted value and experimental value, respectively. To account for the degrees of freedom 

for the different model fits, the standard error of the residuals (SER) presented in Equation 

(6.8) was also determined. SER indicates how well the model fits the experimental data. 

 

( )CSER SSR D E= −  (6.8) 

 

where DC is the total number of comparisons between the experimental data and the model 

predictions. E is the total number of model parameters. 

 During each iteration of the optimizer, the PBM in Equation (6.1) consisting of a 

set of ODEs along with the KK model for Si in Equation (6.2), the non-normalized function 

for Bi,j in Equation (6.3), and constraints in Equations (6.4) and (6.6), is solved using an 

ODE solver (see details in Appendix E.1). The solution of the PBM yields mass fraction, 

which was then converted to cumulative PSD via Equation (6.9). Subsequently, cumulative 

PSDs belonging to simulation size class i are interpolated to experimental size class k for 

the SSR calculation. 

 



 

240 

N

i r

r i

F M
=

=   (6.9) 

  

6.3.2.1 Assessing the accuracy of the global optimizer-based back-calculation method. 

Before fitting our own experimental data, we generated synthetic data on the PSD evolution 

in a ball mill and fitted it using the global optimizer-based back-calculation method to 

assess its accuracy. Here, synthetic data were treated as experimental data during the back-

calculation. First, we generated error-free synthetic PSD evolution by solving the PBM in 

Equation (6.1) with the KK model and the normalized Bi,j (i.e., setting  = 0 in Equation 

(6.3)), along with the constraints in Equation (6.6). Specifically, parameters of Si were 

taken from Bilgili (2023): C1 = 1.075  102 mm0.4944min−1, C2 = 3.706  102 mm1.364, m = 

−1.444, n = 2.364, and  = 9.496  10−1, while parameters of Bi,j were taken from Katubilwa 

et al. (2011): 0 = 5.100  10−1,  = 5.300  10−1, and  = 3.200. These PBM parameters 

refer to the South African coal milling data reported in Katubilwa et al. (2011). For all 

synthetic batch ball milling data, a Gaussian PSD with a mean size of 20 mm and a standard 

deviation of 2 mm was used as the initial PSD, in which the Gaussian PSD was generated 

using the function “normpdf” in MATLAB version 9.12, which is consistent with Bilgili 

(2023). The timewise evolution of the PSD was generated for t = 0.5, 1, 2, 4, and 8 min. 

 We also generated synthetic batch ball milling data with two different random 

errors: 5% and 10%. The solution obtained from Equation (6.1) with the above-mentioned 

parameters for the mass fraction in size class Mi is referred to as the error-free mass 

fraction. The mass fraction with random error for size class i (Mi
*) at milling time t except 
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initial feed (t = 0) was determined via the following equation (same as Capece et al., 

2011b): 

( )*

r1i i iM M r= +  (6.10) 

 

 Here, ri is the random number of particles in size class i. In this study, ri was 

generated using the function “randn” in MATLAB, which provides a random number 

drawn from the standard normal distribution. Random error parameter r of 0.05 and 0.10 

were used to generate synthetic data with 5% and 10% random errors, respectively. When 

r = 0, Mi
* is equal to Mi as in error-free data. After introduction of random error into the 

error-free data, Mi
* was re-normalized by the sum of Mi

* to ensure that the sum of the mass 

fraction for all size classes was exactly 1. The re-normalized Mi
* was subsequently 

converted to its cumulative form for further use in the objective function during 

optimization. In all model fits of synthetic data, the number of trial points NT was set to 

200 as the default minimum value, unless stated otherwise. Readers are referred to 

Appendix E.2 for size discretization and all back-calculation details for synthetic batch ball 

milling data without and with 5% and 10% random errors. 

6.3.2.2 Fitting the experimental data on ball milling.  Experimental data on ball milling 

for pre-milled cement clinker obtained for each ball material type (i.e., steel balls and 

alumina balls) were separately fitted using the global optimizer-based back-calculation 

method. The initial PSD obtained from the experiments was interpolated to the simulation 

size class as the initial condition of the PBM in Equation (6.1). PSDs at six milling times 

(t = 2, 4, 8, 12, 20, and 28 min) for three different single ball sizes (dB = 20, 30, and 40 

mm) were simultaneously fitted. The referenced particle size x0 and minimum particle size 
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xmin were set to 1 and 1  10−3 mm, respectively (see Subsection 6.3.1). The optimization 

was executed for three different numbers of trial points NT: 200 as the default minimum, 

103 as the default (The MathWorks, 2022), and 104 to ensure a global optimum was 

obtained. Appendix E.3 presents details of size discretization and the back-calculation of 

the PBM parameters from the actual experimental data. 

6.3.3 Model validation: predicting the PSD evolution for the ball mixtures 

We explored whether the PBM parameters estimated could be used to predict the timewise 

evolution of the PSD of pre-milled cement clinker in milling conditions that were not used 

during the model calibration in Subsection 6.3.2.2. To this end, a separate PBM simulation 

was performed to predict the timewise evolution of PSD for a mixture of 20, 30, and 40 

mm balls for an initial clinker feed PSD that was different from the one used in the model 

calibration. Si associated with the ball mixture of three ball sizes (G = 3), based on the 

uniform mass of BSD (i.e, MB,p = 1/G), was determined via Equation (6.5). We chose 

uniform mass of BSD because it has been shown to cause faster milling than uniform 

number of BSD for the same ball material (Katubilwa and Moys, 2009; Muanpaopong et 

al., 2022b). Therefore, in the steel ball mixture, 9.93 kg of each ball size was used, whereas 

4.47 kg of each ball size was used in the alumina ball mixture. So, Unlike Si, Bi,j was 

directly taken for simulation of the ball mixture based on the assumption that the Bi,j was 

not sensitive to the ball sizes in the range 20–40 mm. 

6.3.4 Discrete element method 

DEM, as a mechanistic simulation approach, was used to study the ball motion and 

collisional energy spectra in the ball mill, which could give some insights about the 

observed impact of ball material–size. Here, the commercial software EDEM (Altair 
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EDEM, UK) was used. We performed a simple ball mill simulation in the absence of 

clinker particles (similar to Bian et al., 2017; Kime, 2017; Chimwani and Bwalya, 2020; 

AmanNejad et al., 2021). With the limited computational capability, the actual feed PSD 

of the cement clinker cannot be simulated without major simplifications and excessively 

long computation. Hence, in this investigation, we restricted our simulations to ball motion 

and ball–ball impacts only. All dimensions of the ball mill (diameter and length) and 

rotation speed were identical to those in the experiments (refer to Subsection 6.2.2.1). For 

the simulation of the ball mixture case, different ball sizes were generated layer by layer in 

the order of 40, 30, and 20 mm balls, consistent with the experimental procedure. Each 

DEM simulation was run for 20 s ball rotation, and data were logged every 10−1 s of ball 

motion. Although the balls were completely generated within the ball mill within 2 s, we 

did not include data in the first 5 s to eliminate data during the start-up period. The DEM 

simulation results in Subsection 6.4.4 were based on time-averaging between 5 and 20 s. 

 The Hertz−Mindlin (no slip) model (Hertz, 1882; Mindlin, 1949) was selected to 

resolve ball interactions because of its accurate and efficient calculation of force (DEM 

Solutions, 2014) and common use in simulating a ball mill (e.g., Powell et al., 2011; Li et 

al., 2013; Jiang et al., 2018). Readers are referred to DEM Solutions (2014) and Cundall 

and Strack (1979) for a detailed description of the DEM. The Hertz−Mindlin (no slip) 

model requires input parameters for material properties and contact coefficients. While the 

actual values of the material properties for both steel and alumina balls were used, all 

contact coefficients were taken from the available milling literature (Auerkari, 1996; Hou, 

2014; Bian et al., 2017). Readers are referred to Appendix E.4 for details of the parameters 

used in this DEM simulation. As the calibration of all coefficients is beyond the scope of 
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this study, the results should be treated as a relative comparison between steel and alumina 

balls. Dissipation energy was used as a measure of the collision/impact energy that 

occurred during ball milling, in line with earlier reports (Wang et al., 2012; Capece et al., 

2014). 

 

6.4 Results and Discussion 

6.4.1 Feasibility of the global optimizer-based back-calculation method 

Table 6.1 shows the results of the PBM parameters that were fitted to the error-free 

synthetic data, along with the initial guess and bound constraints. The global optimization 

even with NT = 200, which is the default minimum, converged to the same Si and Bi,j 

parameters as those taken from Bilgili (2023) and Katubilwa and Moys (2011) for South 

African coal milling, which were used to generate the error-free synthetic data. Practically 

speaking, the back-calculation method was error-free when error-free synthetic data were 

used in the parameter estimation. As experimental data always contain errors, a more 

realistic assessment of the capability of the optimizer was performed by subsequently 

fitting synthetic data imposed with two different levels of random errors, namely 5% and 

10%. Table 6.2 presents the results of the optimization with the synthetic data with 5% and 

10% random errors. A set of initial guesses and bound constraints was identical to that for 

the error-free data fitting. Table 6.2 shows that the higher the level of random error, the 

higher the SSR, and the fitting quality slightly deteriorated. The maximum absolute errors 

occurred for the breakage distribution exponent : 5.482% and 11.13% for the synthetic 

data with 5% and 10% random errors, respectively. Even at 10% random error added, most 

estimated parameters had less than 0.6% error. Figure 6.1 illustrates the model fit to the 
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temporal evolution of synthetic data with 10% random error, representing a cumulative 

form of PSD; the small deviation between the model fit and the synthetic data with 10% 

random error was not even notable. The default NT value of 103 was also used to in the fit 

to the synthetic data with 10% random error. PBM parameters obtained by the back-

calculation from NT = 103 were identical to those obtained from NT = 200, indicating that 

there is no need for a higher value of NT in the search for a global optimum for the estimated 

parameters. Overall, we proved the accuracy and feasibility of our newly developed global 

optimizer-based back-calculation method by showing excellent agreement between the 

synthetic data (without random error and with 5% and 10% random errors) and the model 

fit.



 

 

Table 6.1 PBM Parameters Obtained by the Back-calculation for Synthetic Batch Ball Milling Data without Random Error 

 
Parameter Actual 

parameter valuea 

Initial guess Constraint  Back-calculated valueb % Absolute error 

Lower bound Upper bound 

C1 (mm−(m+)min−1) 1.075  102 1.0 0  1.075  102 1.144  10−4 

C2 (mmn−1) 3.706  102 1.0 0  3.706  102 1.049  10−5 

m −1.444 −2.0 −2.5 1.5 −1.444 7.659  10−6 

n 2.364 0.5 0.2 2.5 2.364 5.212  10−6 

 9.496  10−1 1.0 0.3 3.0 9.500  10−1 4.214  10−2 

0 5.100  10−1 0.3 0.01 1.0 5.100  10−1 4.477  10−5 

 5.300  10−1 1.0 0.1 2.0 5.300  10−1 8.100  10−6 

 3.200 4.0 2.0 15.0 3.200 2.936  10−4 

SSR     3.898  10−13  

SER     1.565  10−8  

a actual parameter values used to generate the synthetic batch ball milling data without random error. These parameter values were taken 

from Bilgili (2023) and Katubilwa and Moys (2011) for South African coal data. 

b based on NT of 200. 
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Table 6.2 PBM Parameters Obtained by the Back-calculation for Synthetic Batch Ball Milling Data with 5% and 10% Random 

Errors 

 
Parameter Actual 

parameter 

valuea 

Initial 

guess 

Constraint Data with 5% random error Data with 10% random error 

Lower 

bound 

Upper 

bound 

Back-calculated 

valueb 

% Absolute 

error 

Back-calculated 

valueb 

% Absolute 

error 

C1 (mm−(m+)min−1) 1.075  102 1.0 0  1.074  102 1.308  10−2 1.074  102 3.914  10−2 

C2 (mmn−1) 3.706  102 1.0 0  3.706  102 3.450  10−4 3.706  102 6.350  10−4 

m −1.444 −2.0 −2.5 1.5 −1.443 7.480  10−2 −1.442 1.282  10−1 

n 2.364 0.5 0.2 2.5 2.360 1.778  10−1 2.356 3.176  10−1 

 9.496  10−1 1.0 0.3 3.0 9.506  10−1 1.014  10−1 9.500  10−1 3.911  10−2 

0 5.100  10−1 0.3 0.01 1.0 5.057  10−1 8.448  10−1 5.005  10−1 1.869 

 5.300  10−1 1.0 0.1 2.0 5.289  10−1 2.166  10−1 5.271  10−1 5.515  10−1 

 3.200 4.0 2.0 15.0 3.025 5.482 2.844 11.13  

SSR     2.250  10−3  8.666  10−3  

SER     1.189  10−3  2.333  10−3  

a actual parameter values used to generate the synthetic batch ball milling data without random error. These parameter values were taken 

from Bilgili (2023) and Katubilwa and Moys (2011) for South African coal data. 

b based on NT of 200. 

2
4
7
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Figure 6.1 Comparison of synthetic batch ball milling data with an initial Gaussian PSD 

(mean size: 20 mm, standard deviation: 2 mm) augmented with 10% random error and the 

PBM fit to the data. The parameters estimated and fit statistics are given in the last two 

columns of Table 6.2. 
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Figure 6.2 Experimental timewise evolution of the cumulative PSD of the cement clinker 

and its PBM fit for a single ball size: (a)−(c) steel balls and (d)−(f) alumina balls. Results 

are based on normalized single-term Bi,j with NT = 104. The parameters estimated and fit 

statistics are given in the last column of Tables 6.4 (steel balls) and 6.5 (alumina balls). 
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6.4.2 Experimental results using single ball sizes and parameter estimation 

Figure 6.2 shows the timewise evolution of the cumulative PSD experimentally obtained 

from the laboratory batch ball mill with different single ball sizes (i.e., dB = 20, 30, and 40 

mm) using steel balls and alumina balls. As milling progressed and finer particles were 

generated by breakage, the PSD shifted to the left monotonically even in the fine particle 

size domain (1–100 µm). The median size d50 decreased fast within the first 5 min as the 

feed consisted of pre-milled, damaged cement clinker particles, which were easy to break 

(Figure 6.3). The overall breakage rate, signified by the slope of the d50–t, decreased during 

the milling as finer clinker particles were generated, which were relatively more difficult 

to break and get captured by the balls. A holistic analysis of the evolution profiles in 

Figures 6.2 and 6.3 suggests the following trends regarding the impact of ball materials–

sizes: (i) The large beads (40 mm) led to slow breakage, but no unbroken clinker particles 

remained after 28 min milling; (ii)  20 mm balls yielded the finest clinker particles while 

this effect was more notable for the steel balls than for the alumina balls; (iii) some 

unbroken coarse clinker particles were observed clearly when milling with 20 mm alumina 

and steel balls; but the extent was higher for the alumina balls; and (iv) for a given ball 

size, the steel balls caused faster breakage of the cement clinker than the alumina balls. 

Note that Erdem and Ergun (2009) also observed unbroken, coarse cement clinker particles 

in dry ball milling when small balls were used. 
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Figure 6.3 Experimental timewise evolution of the median size of the cement clinker and 

its PBM fit for a single ball size: (a)−(c) steel balls and (d)−(f) alumina balls. Results are 

based on normalized single-term Bi,j with NT = 104. The parameters estimated and fit 

statistics are given in the last column of Tables 6.4 (steel balls) and 6.5 (alumina balls). 
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 To quantify the impact of the ball size–material on the breakage kinetics of the pre-

milled cement clinker, the parameters of the PBM were estimated by the newly developed 

global optimizer-based back calculation method. The optimizer coupled with an ODE 

solver fitted the PSD evolution data obtained from the milling experiments (Figure 6.2). 

Experimental data for three single ball sizes were simultaneously fitted for each ball 

material type. Overall, the PBM fitted the temporal evolution of the cement clinker PSD 

reasonably well. The deviations of the PBM fits to the experimental profiles were most 

notable during the first 8 min of 28 min milling. This could be partly related to the fast, 

initial breakage dynamics of the pre-milled cement clinker besides the relatively crude and 

infrequent measurement of the PSD by sieving. The accuracy could have been improved if 

more frequent sampling were carried out during this period with more than 3 ball sizes.  

 It is important to mention that the global optimization scheme does not guarantee 

convergence to the global minimum of the objective function (SSR) (The MathWorks, 

2022), which is ultimately determined by NT and the available computational resources. 

Table 6.3 lists a set of initial guesses and bound constraints used during the back-

calculation. Tables 6.4 and 6.5 report the estimated PBM parameters, along with the SSR 

values, for steel ball milling and alumina ball milling, respectively. First, we set the number 

of trial points NT to 200 (default minimum). Interestingly, for both ball materials, the 

estimated Bi,j parameters 0 ≈ 1 and  ≈ 0 suggest that the two-term, non-normalized Bi,j 

function with four parameters is too elaborate, which justifies the normalized single-term 

form Bi,j = (xi−1/xj) and allows for a reduction of the total number of parameters to estimate 

from 9 to 6. Note that a single-term normalized Bi,j has been successfully used in earlier 

studies (Berthiaux and Varinot, 1996; Boulvin et al., 2003; Capece, 2018). To investigate 
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whether the global optimizer converged to the global minimum, we then increased NT to 

103 and 104 (see the solutions in Tables 6.4 and 6.5). When NT was increased from 200 to 

103, all parameters remained unchanged within 3 significant figures, except the notable 

relative change in . But, again, we note that  ≈ 0 and the absolute change to  upon an 

increase in NT was negligible. Overall, these findings give us confidence that a global 

minimum was obtained, and the parameters estimated are realistic. Note that with NT = 104, 

a long execution (real) time was required to complete this optimization run, with the longest 

execution time being six days. 

 

Table 6.3 Initial Guess and Bound Constraints for Each Parameter of the PBM Used during 

Back-calculation with the Experimental Data on the Ball Milling of Cement Clinker 

 
Parameter Initial 

guess 

Constraint 

Lower bound Upper bound 

C1 (mm−(m+)min−1) 1.0 0  

C2 (mmn−1) 1.0 0  

m −2.0 −2.5 1.5 

n 0.5 0.2 2.5 

 1.0 0.3 3.0 

0 0.3 0.01 1.0 

 1.0 0.1 2.0 

 4.0 2.0 15.0 

 0.01 0 0.3 
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Table 6.4 PBM Parameters Obtained by the Back-calculation with the Experimental Data 

on the Ball Milling of Cement Clinker Using Steel Balls for Various NT Values 

 
Parameter Back-calculated value 

 NT = 200 NT = 103 NT = 104 NT = 104 a 

C1 (mm−(m+)min−1) 1.940  103 1.939  103 1.939  103 1.939  103 

C2 (mmn−1) 31.46 31.45 31.45 31.45 

m −1.717 −1.717 −1.717 −1.717 

n 1.101 1.101 1.101 1.101 

 1.559 1.559 1.559 1.559 

0 1.000 1.000 1.000 1a 

 8.096  10−1 8.097  10−1 8.097  10−1 8.097  10−1 

 11.42 11.37 11.36 − 

 1.465  10−5 5.844  10−7 5.841  10−7 0a 

SSR 4.291  10−1 4.291  10−1 4.291  10−1 4.291  10−1 

SER 2.488  10−2 2.488  10−2 2.488  10−2 2.483  10−2 

a based on a normalized single-term Bi,j with one fitting parameter only, i.e., µ. 

 

Table 6.5 PBM Parameters Obtained by the Back-calculation with the Experimental Data 

on the Ball Milling of Cement Clinker Using Alumina Balls for Various NT Values 

 
Parameter Back-calculated value 

 NT = 200 NT = 103 NT = 104 NT = 104 a 

C1 (mm−(m+)min−1) 2.849  103 2.849  103 2.849  103 2.849  103 

C2 (mmn−1) 36.55 36.55 36.55 36.55 

m −1.810 −1.810 −1.810 −1.810 

n 1.055 1.055 1.055 1.055 

 1.715 1.715 1.715 1.715 

0 1.000 1.000 1.000 1a 

 8.509  10−1 8.509  10−1 8.509  10−1 8.509  10−1 

 11.49 11.48 11.55 − 

 3.424  10−6 6.844  10−7 1.376  10−7 0a 

SSR 4.669  10−1 4.669  10−1 4.669  10−1 4.669  10−1 

SER 2.596  10−2 2.596  10−2 2.596  10−2 2.590  10−2 

a based on a normalized single-term Bi,j with one fitting parameter only, i.e., µ. 
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Figure 6.4 The variation of the estimated specific breakage rate with cement clinker 

particle size for three single ball sizes and a ball mixture (based on uniform mass 

distribution of 20–30–40 mm balls) when steel and alumina balls were used in the ball mill. 

Results are based on normalized single-term Bi,j with NT = 104. 
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Figure 6.5 The variation of the estimated cumulative breakage distribution with relative 

particle size of the cement clinker for steel balls and alumina balls. Results are based on 

normalized single-term Bi,j with NT = 104. 

 

 We also ran the optimizer using NT = 104 again, but this time we used Bi,j = (xi−1/xj) 

with one parameter as opposed to the four-parameter Bi,j. As can be seen in Tables 6.4 and 

6.5, there is no difference between the fitting results of the four-parameter Bi,j and the 

single-term Bi,j with a single parameter. However, the execution time with the single-term 

Bi,j was significantly reduced from six days to less than one day. Note that all figures in the 

main text were based on normalized single-term Bi,j with a single parameter estimated with 
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NT = 104. The fitted PSDs using the normalized single-term Bi,j with a single parameter did 

not differ from the non-normalized Bi,j with four parameters. 

6.4.2.1 Analysis of specific breakage rate and cumulative breakage distribution.  Si of 

steel balls and alumina balls for three ball sizes: dB = 20, 30, and 40 mm were compared 

(Figure 6.4). All Si profiles exhibited a maximum (Sm) at a cement clinker size xm. The 

profile shifted right, to coarser particle size domain (higher xm), when the ball size dB was 

increased from 20 to 40 mm, which is in line with Austin et al. (1976) and Katubilwa and 

Moys (2009).  For xi << dB, the Si profile is governed by the traditional power law: Si = 

C1dB
mxi

. As xi increases, but still with xi < dB, such relatively large particles may not get 

nipped between the balls effectively, thus requiring much higher impact energies, and Si 

starts deviating from the power-law and exhibits a maximum and fall-off behavior, which 

is commonly known as abnormal breakage (Austin et al., 1984). 

 Our comparative analysis of the Si profiles in Figure 6.4 suggests that for a given 

ball material type, the large balls (40 mm) led to higher Si for coarser clinker particles, 

while the small balls (20 mm) led to higher Si for smaller particles. This finding agrees well 

with Deniz (2003) and Katubilwa and Moys (2009), but contradicts with Kotake et al. 

(2002) and Kotake et al. (2004). It is critical to mention that the parameters related to 

various materials reported in Kotake et al. (2002) and Kotake et al. (2004) suggest that for 

some raw materials, larger balls always have higher Si value in comparison with smaller 

balls for the whole particle size range. Another general trend in Figure 6.4 is that for a 

given ball size, steel balls had higher Si than alumina balls for the entire range of particle 

sizes, which is consistent with Umucu et al. (2014). For both steel and alumina balls, Sm is 

invariant with ball size dB. Previous studies (Kotake et al., 2002; Kotake et al., 2004; 
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Bwalya et al., 2014) had similar findings for limestone, gypsum, talc, and coal. We also 

note that xm of alumina balls is smaller than xm of steel balls at the same ball size. The 

particle size xm can be expressed as a function of dB by xm=( C2⁄ )dB
n

 (Bilgili, 2023). Using 

this equation, xm for 20, 30, and 40 mm balls was calculated as 1.34, 2.10, and 2.88 mm, 

respectively, in the case of steel balls, and 1.11, 1.70, and 2.30 mm, respectively, in the 

case of alumina balls. Figure 6.4 also shows the ball mixture’s Si for steel and alumina ball 

mixtures. The ball mixture’s Si profile was similar to the Si profile of 30 mm balls, with 

two distinct differences: it is slightly wider and has a slightly lower Sm. Figure 6.5 shows 

that the breakage distribution function Bi,j; the steel balls produce finer particles than the 

alumina balls, which is in line with Umucu and Deniz (2015) for the steel vs. ceramic ball 

milling of ignimbrite. 

6.4.3 Model validation: prediction of timewise evolution of PSD using the ball mixture 

In a separate set of experiments, pre-milled cement clinker with a smaller median size of 

d50 = 164 m was milled with a 20–30–40 mm ball mixture, and the experimental PSD and 

d50 evolution as well as their PBM predictions are presented in Figures 6.6 and 6.7. Note 

that this finer initial feed PSD and the ball mixture were not used in the model calibration; 

thus, the PBM was truly used in the predictive mode here. Figures 6.6 and 6.7 illustrate 

that the PBM, whose parameters were obtained from the global optimizer-based back-

calculation method, predicted the temporal evolution of the PSD and d50 well for both the 

steel ball mixture and the alumina ball mixture. SER values of the steel ball mixture and 

the alumina ball mixture were 1.451  10−2 and 2.466  10−2, respectively, which were 

even lower than the SER values for the PBM fits in the model calibration (see Tables 6.4 

and 6.5).  
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Figure 6.6 PBM prediction of the timewise evolution of the cumulative PSD of the cement 

clinker for a ball mixture (based on uniform mass distribution of 20–30–40 mm balls): (a) 

steel ball mixture and (b) alumina ball mixture. Feed PSD of the cement clinker was 

different from that used in the model fitting. Results are based on normalized single-term 

Bi,j with NT = 104. 
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Figure 6.7 PBM prediction of the timewise evolution of the median size of the cement 

clinker for a ball mixture (based on uniform mass distribution of 20–30–40 mm balls). Feed 

PSD of the cement clinker was different from that used in the model fitting. Results are 

based on normalized single-term Bi,j with NT = 104. 
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 Note that the initial feed PSD in the validation experiments was finer than the 

calibration experiments in Subsection 6.4.2. This could explain the observed lower SER 

because most deviation occurred during the initial 8 min milling in the calibration 

experiments. Again, the PBM with the normalized, single term Bi,j predicted identical PSD 

and d50 evolutions (Figures 6.6 and 6.7) as compared with the PBM with the non-

normalized Bi,j. 

 For the validation experiments, a notable deviation occurred for clinker particles 

coarser than 0.1 mm with alumina balls at t = 2 and 4 min. These notable deviations from 

the experimental data were also observed for the fitting (refer to Figure 6.2) when 30 mm 

and 40 mm alumina balls were used. Note that the PSD above 0.6 mm was experimentally 

obtained by sieving (5 sieves), whereas the PSD below 0.6 mm was obtained from laser 

diffraction with (34 size channels). Hence, the PSD of the particles above 0.6 mm were 

rather crudely measured by the sieving, and interpolation (refer to Appendix D) did not 

resolve this error. On the other hand, the PSD below 0.6 mm had 34 data points. Since most 

coarse particles above 0.6 mm existed during the first 4 min of ball milling, the errors 

during the fitting and the prediction were most prevalent during the milling times when a 

notable fraction of the particles were coarse (>0.6 mm). In other words, the notable 

deviations that occurred during the first 4 min of alumina ball milling mostly originated 

from the relatively crude measurement of the PSD by sieving. This sieving-related 

deviation was not as pronounced after 4 min. Since the steel balls milled the particles faster 

than the alumina balls, the coarse particles above 0.6 mm, which were measured by sieving, 

disappeared more quickly, and the sieving-related error was less pronounced for the steel 

balls. Overall, this experimental error coupled with errors associated with the calibration 
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of the model parameters could have been reduced by using a laser diffraction equipment 

that can measure particle sizes up to ~3 mm rather than 0.6 mm. However, the abrasive 

nature of the clinker particles could limit the use of measuring such coarser particles in 

laser diffraction. Finally, as mentioned in Subsection 6.4.2, the accuracy could have been 

improved if more frequent sampling were carried out during this initial period with more 

than 3 ball sizes. 

6.4.3.1 Elucidating the advantage of ball mixture with various ball sizes. We rationalize 

the use of ball mixture commonly used in ball mills in the cement industry (e.g., Austin et 

al., 1975; Genc, 2008; Altun, 2018) via a separate PBM simulation with parameters 

obtained from the back-calculation in Subsection 6.4.2. Numerous past studies (e.g., Teke 

et al., 2002; Deniz, 2003; Magdalinovic et al., 2012; Mulenga et al., 2019; Haner, 2020) 

investigating the influence of ball size on particle breakage relied on multiple single ball 

sizes in their milling experiments, while only a few studies (Erdem and Ergun, 2009; 

Katubilwa and Moys, 2009; Oksuzoglu and Ucurum, 2016; Cayirli, 2018) used ball 

mixtures. Although ball mixtures are commonly used in full-scale cement ball mills (Austin 

et al., 1975; Genc, 2008; Altun, 2018), the role of a mixture with different ball sizes has 

not been thoroughly studied. Analysis of Si values of a single ball size in Section 4.2 and 

earlier studies (Deniz, 2003; Katubilwa and Moys, 2009; Deniz, 2012) highlights the 

generally accepted notion that larger balls are effective in breaking coarser particles while 

smaller balls are effective in breaking finer particles. Unfortunately, when ball mixtures 

were studied (Erdem and Ergun, 2009; Katubilwa and Moys, 2009; Oksuzoglu and 

Ucurum, 2016; Cayirli, 2018), there was no attempt to elucidate why and how a ball 

mixture was superior to the individual single ball sizes. 
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 For a head-to-head comparison of the ball mixture to the single balls, we performed 

a PBM simulation with the ball mixture. To this end, here we used the same initial feed 

PSD that was used during the model calibration in Subsection 6.4.2 for both single ball 

sizes and the ball mixture. Figures 6.8 and 6.9 respectively illustrate the timewise 

evolution of the PSD and d50 for both steel balls and alumina balls. We represented PSD in 

differential form to highlight and emphasize any bimodality in the initial feed PSD and the 

evolving PSD. We selectively demonstrated simulation results for three milling times (i.e., 

t = 2, 12, and 28 min). We did not include the differential PSD of initial feed for proper 

scaling of Figure 6.8. 

 A cursory look at Figure 6.8 for steel balls reveals that coarse particles (> 2 mm) 

were rapidly broken with large ball size (dB = 40 mm) at t = 2 min compared to other ball 

sizes. With steel balls, particles coarser than 0.3 mm completely disappeared within t = 12 

min for dB of 30 and 40 mm, while in the case of 20 mm balls, some coarse particles 

remained unbroken. At 28 min of milling time, 20 mm balls clearly yielded finer PSD than 

the 30 mm and 40 mm balls. However, a portion of unbroken coarse particles remained in 

the product (i.e., bimodal PSD), which was not observed for 30 and 40 mm steel balls and 

40 mm alumina balls. This simulation result suggests that although small balls yield finer 

PSD, some coarse particles cannot be properly broken by 20 mm balls. On the other hand, 

unlike the use of a single small ball size (20 mm), the use of the ball mixture enabled 

complete breakage of the coarse particles similar to the 30 and 40 mm balls alone, but the 

ball mixture yielded a slightly finer PSD than the 30 mm balls. Similar results were 

obtained for the alumina ball. Figure 6.9 illustrates that the ball mixture was only second 

to 20 mm balls in yielding a fine PSD, but without any remaining unbroken cement clinker 
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particles. Again, the PBM with the normalized, single term Bi,j predicted identical PSD and 

d50 evolutions (Figures 6.8 and 6.9) as compared with the PBM with the non-normalized 

Bi,j. 

 

 

Figure 6.8 PBM simulation of the timewise evolution of the differential PSD for a single 

ball size and a ball mixture (based on uniform mass distribution of 20–30–40 mm balls): 

(a)–(c) steel balls and (d)–(f) alumina balls. Results are based on normalized single-term 

Bi,j with NT = 104. The same feed PSD of the cement clinker was used in all simulations for 

a head-to-head comparison.  
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Figure 6.9 PBM simulation of the median size of the cement clinker for a single ball size 

and a ball mixture (based on uniform mass distribution of 20–30–40 mm balls). Results are 

based on normalized single-term Bi,j with NT = 104. The same feed PSD of the cement 

clinker was used in all simulations for a head-to-head comparison.  
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6.4.4 Some insights from the DEM simulations 

DEM simulations were performed separately for the steel and alumina balls in a rotating 

ball mill. Figure 6.10 illustrates the front view of the simulated ball mill and balls’ position 

at the final simulated time of 20 s for both ball types. Color refers to different levels of 

dissipated energy resulting from ball collisions, with red and blue representing high and 

low dissipated energy levels, respectively. Analysis based on the graphical representation 

in Figure 6.10 shows a cascading motion of balls inside the ball mill. A cursory look at 

Figure 6.10 shows that the dissipated energy from the steel ball simulation had higher 

portions of the high-energy level (red) in comparison with alumina balls of the same ball 

size.  

 

 

Figure 6.10 Front view of the ball mill simulated by DEM (clockwise rotation) for three 

single ball sizes and a ball mixture (based on uniform mass distribution of 20−30−40 mm 

balls): (a)−(d) steel balls and (e)−(h) alumina balls. 

  

 



 

 

Table 6.6 Characteristic Information about the Collision Frequencies and Impact Energies Obtained from the DEM Simulations of the 

Ball Motion for Various Ball Sizes–Types 

 
Characteristic informationa Steel ball milling Alumina ball milling 

 dB = 20 mm dB = 30 mm dB = 40 mm Ball  

mixtureb 

dB = 20 mm dB = 30 mm dB = 40 mm Ball 

mixtureb 

Total collision frequency,  

fcol (s−1) 

5.611  105 1.019  105 2.957  104 2.333  105 1.552  106 2.867  105 8.803  104 7.574  105 

Collision frequency per ball,  

fcol,n (s−1) 

6.159  102 3.776  102 2.594  102 5.401  102 1.704  103 1.062  103 7.722  102 1.753  103 

Specific collision frequency per  

unit mass of balls,  

fcol,m (s−1kg−1) 

1.883  104 3.421  103 9.922  102 7.830  103 1.159  105 2.139  104 6.569  103 5.652  104 

Total energy dissipation rate,  

Ė (Js−1) 

95.45 89.14 84.24 144.3  12.12 10.86 9.544 14.98 

Mean dissipation energy rate,  

Ė ̅ (Js−1) 

1.701  10–4 8.744  10–4 2.849  10–3 6.183  10–4 7.805  10–6 3.789  10–5 1.084  10–4 1.978  10–5 

a Disregarded collisions with impact energies <10–8 J. 

b Uniform mass distribution of 20−30−40 mm balls.

2
6
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Figure 6.11. DEM-simulated dissipated energy distribution during the ball–ball collisions inside the mill with various ball sizes: (a) dB 

= 20 mm, (b) dB = 30 mm, (c) dB = 40 mm, and (d) mixture with a uniform mass distribution of 20−30−40 mm balls. 

2
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 Table 6.6 presents some characteristic information about the impact energy spectra 

for three single ball sizes and ball mixtures, while Figure 6.11 presents the dissipated 

energy distribution as a representative measure of collisional energy spectra. The 

dissipation energy distribution was wide, spanning values from ~10−8 J to ~1 J. It is known 

that ball collisions that result in too low impact energies could not result in breakage due 

to the fact a threshold (minimum) impact energy is required to break the particles (Vogel 

et al., 2003; Vogel and Peukert, 2005; Capece et al., 2014). The DEM analysis presented 

in Table 6.6 and Figure 6.11 neglects the collisions with impact energies below 10−8 J. 

Obviously, a more elaborate analysis is warranted to elucidate the impact of threshold 

impact energy, which entails simulation of actual cement particles besides the balls. The 

threshold energy is material and particle size dependent; it can be determined either by 

single particle impact tests (see Vogel et al., 2003; Vogel and Peukert, 2005) or by fitting 

a combined PBM–DEM, which considers actual particles to be ground, to the experimental 

PSD evolution (Capece et al., 2014). In this study, we did not consider such an elaborate 

and computationally expensive approach; instead, we considered only the ball motion 

without the clinker particles, which was also adopted in other studies (Datta and Rajamani, 

2002; Clearly, 2009; de Carvalho and Tavares, 2013; Bian et al., 2017). In the absence of 

the threshold impact energy for the cement clinker, we disregarded collisions with <10–8 J 

as they may not cause any breakage, and they typically constituted much less than 1% of 

the collisions. A separate analysis was also conducted wherein we disregarded collisions 

with <10–6 J. The microdynamic parameters obtained from this new analysis were 

obviously different. However, the general trends regarding the impact of the ball sizes and 

the ball material on the microhydrodynamic parameters remained the same in both cases. 
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Considering that the microdynamic information obtained from the DEM was solely used 

to interpret the PBM findings and breakage kinetics, we can safely conclude that the choice 

of <10−8 J vs. <10−6 J did not affect DEM-based explanation of the observed breakage 

kinetics. 

 A general trend observed in Figure 6.11 is that the large balls (40 mm) were 

associated with a higher frequency of high-energy collisions (>10–2 J) than the other balls, 

whereas the small balls (20 mm) yielded a much higher frequency of collisions with <10−4 

J. Apparently, the steel balls produced a greater collision frequency at the relatively high 

energy levels than the alumina balls for all single ball sizes and the ball mixture. DEM 

sensitivity analysis for balls with different density and shear modulus indicated that 

dissipation energy distribution was mainly affected by the ball density, and to a lesser 

extent by the shear modulus; so, the different collisional energy spectra and breakage 

kinetics associated with the steel vs. alumina balls are mainly determined by the higher 

density of the steel balls as compared with the alumina balls. 

 For a given ball material, the total collision frequency fcol, the collision frequency 

per ball fcol,n, and the specific collision frequency per unit mass of balls fcol,m increased 

when smaller balls (higher in number) were used, whereas the mean energy dissipation rate 

Ė ̅ increased when coarser balls were used (Table 6.6). These two counteracting effects of 

the ball size on the collision frequency and the impact energy somewhat balanced each 

other, leading to a higher, albeit to a much smaller extent, increase in the total energy 

dissipation rate Ė when smaller balls were used, which could explain the “overall” faster 

breakage with the smaller balls (refer to Figures 6.2 and 6.3). The Si profiles in Figure 6.4 

and the exponents m < 0 (governing xi << dB) and n > 0 (governing xi < dB) suggest that 
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the smaller balls were more effective breaking the smaller clinker particles and the bigger 

balls were more effective breaking the coarser clinker particles, causing a rightward shift 

of xm when the coarser balls were used. This could be explained as follows: a high collision 

frequency could be important for the breakage of relatively small clinker particles while a 

high impact energy could be important for breaking the coarse clinker particles. While the 

mass-specific threshold impact energy of the particles to be ground inversely varies with 

particle size xi (Vogel et al., 2003; Vogel and Peukert, 2005), the threshold impact energy 

increases with the square of the particle size (Capece et al., 2014). In view of these 

considerations, the drastically higher fcol, fcol,n, and fcol,m make small balls (20 mm) 

advantageous for breaking the finer clinker particles, while the higher Ė ̅ of the large balls 

(40 mm) make them advantageous for breaking the coarser clinker particles. This could 

fundamentally explain the Si profiles in terms of the ball size impact (refer to Figure 4). As 

expected intuitively, when a ball mixture (uniform mass) of 20–30–40 mm balls were used, 

the fcol and Ė ̅fell in between those of 20 mm and 30 mm balls, which could explain the Si 

profiles in Figure 6.4. Interestingly, the ball mixtures had higher Ė than 20 mm and 30 mm 

balls alone. This finding could explain why the ball mixture performed second to the 20 

mm balls alone in terms of producing the finest clinker particles, albeit without any 

unbroken cement clinker particles (refer to Figures 6.2 and 6.8) and rationalize the practice 

of ball mixtures vs. mono-sized balls in industrial applications.    

 Finally, Figure 6.11 and Table 6.6 data show that for the same ball size, the steel 

balls had 22–26-fold higher Ė ̅ than the alumina balls, whereas the alumina balls had about 

3-fold higher fcol than the steel balls. Overall, the steel balls had about 8–9-fold higher Ė 

than the alumina balls, which could explain the higher Si values (refer to Figure 6.4), 
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generation of finer cement clinker upon primary breakage (refer to Figure 6.5), and faster 

milling with the steel balls (refer to Figures 6.2 and 6.3) as compared with the alumina 

balls.  

6.4.5 On the replacement of steel balls with alumina balls in full-scale continuous ball 

mills 

 

One of the drivers for this study was to assess the feasibility of the replacement of the 

traditional media, i.e., steel balls of density B = 7800 kg/m3, with ceramic balls such as 

alumina of B = 3500 kg/m3 in continuous ball mills during the production of cement 

clinker. As can be seen from Equation (6.11) (Brochot et al., 2006), the power consumption 

P in a continuous ball mill is proportional to the ball density B and J(3.2–3J) with J 

denoting fractional ball loading; hence, the direct replacement with the same J may lead to 

a 55% reduction in power and energy consumption.  

 

( )
C

2.3

B C 9 10

0.1
4.879 0.6 3.2 3 1

4 2
P D L J J




 

−

   
= − −   

   
 (6.11) 

 

 Here, D, L, and C denote the mill diameter, the mill length, and the fraction of 

operating rotation speed compared to the critical speed. However, as established in this 

study, due to the slower breakage kinetics associated with the alumina balls as compared 

with the steel balls, such a power/energy reduction is impossible to achieve if the product 

fineness and the fresh feed rate (equals production rate at the steady-state) to the continuous 

ball mill are to be kept the same. In this context, one can increase J of the alumina balls 

with the goal of increasing Si and keeping the same product fineness. To examine the 
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potential improvement in Si when alumina balls are used, let us consider a typical set of 

operating conditions of full-scale continuous ball mill operation, based on Genc (2008), 

Altun (2018), and Nomura (2020): J = 0.27, fractional powder loading fc = 0.097, porosity 

 = 0.40, and interstitial powder filling fraction U = 0.90 (note: U = fc/J). This selected 

operating condition is in the common range of full-scale cement ball mills operating in the 

closed-circuit mode (Nomura, 2020). These values were taken as the base case, and then J 

was increased from 0.27 to 0.30, 0.34, and 0.37 keeping the same fc and , which we refer 

to new cases. By using the celebrated scaling rules of Austin (Austin et al., 1984), one can 

find the ratio of Si in the new case to that in the base case: 
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 The ratio K3 was calculated, and the results are presented in Table 6.7. The K3 

values suggest that up to 7% increase in Si is possible upon an increase in J from 0.27 to 

0.34, corresponding to a 26% increase in alumina ball loading. In the absence of any scale-

up work with alumina balls for the pre-milled cement clinker, it is difficult to know if this 

7% increase in Si at the full-scale would be able to compensate for the drop in Si observed 

at the lab-scale when the steel balls were replaced with the alumina balls (refer to Figure 

6.4). More importantly, with this increase in J from 0.27 to 0.34, even the total replacement 

of the steel balls with the alumina balls could only reduce power/energy consumption by 

48%, not 55%, per Equation (6.11).  
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Table 6.7 Potential Improvements to the Specific Breakage Rate Si at Typical Full-scale 

Continuous Ball Milling Conditions upon an Increase in Fractional Ball Loading J 

 
Operation condition and improvement in 

Si 

Base case New case 1 New case 2 New case 3 

Fractional ball loading, J (−) 0.27 0.30 0.34 0.37 

Fractional powder loading, fc (−) 0.097 0.097 0.097 0.097 

Interstitial powder filling fraction, U (−) 0.90 0.81 0.72 0.66 

Ratio of Si,new to Si,base, K3 (−) − 1.04 1.07 1.06 

 

 Another important consideration is that in a full-scale two-compartment continuous 

ball mill operating in the closed-circuit mode, for an unmilled cement clinker feed, it is 

customary to load ~50–90 mm steel balls in the first compartment with length L1 and ~20–

40 mm steel balls in the second (fine milling) compartment with length L2 (Austin et al., 

1975; Clearly, 2009). In our study, due to their lower impact energies (refer to Subsection 

6.4.4), the 20–30–40 mm alumina ball mixture led to slower breakage than the 20–30–40 

mm steel ball mixture, with unbroken coarse particles in the mill at 12 min even for a pre-

milled cement clinker unlike the steel ball mixture (refer to Figure 6.8). This fact and along 

with the concern about potential breakage of large alumina balls (50–90 mm) inform 

engineers to keep 50–90 mm steel balls in the first compartment and replace the 20–40 mm 

steel balls in the second compartment by the 20–40 mm alumina balls, with ensuing partial 

replacement of the steel balls. Having steel balls in the first compartment along with an 

increase in J from 0.27 to 0.34 as well as additional potential adjustments to the external 

classifier parameters will likely compensate for the slower breakage associated with the 

partial replacement of the steel balls and help to keep a similar product fineness. Obviously, 

full-scale testing is required to confirm this aspect. Based on Equation (6.11) and 

representative values of L1 = 3.9 m and L2 = 8.4 m (Altun, 2018), we find that the partial 
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replacement of the steel balls with the alumina balls in the second compartment along with 

an increase in J from 0.27 to 0.34 will reduce the power/energy consumption by 28%. An 

alternative approach is to utilize the novel concept of mixtures of different ball materials 

demonstrated for a stirred ball mill (Guner et al., 2021). A mixture of steel and alumina 

balls in the second compartment of the continuous ball mill can also reduce the power 

consumption, albeit to a smaller extent than the full replacement, but potentially without 

causing significant drop of the breakage rate associated with the alumina balls. This 

approach warrants further experimental and modeling investigation. 

 

6.5 Conclusions 

This study demonstrated the impacts of ball material type (steel vs. alumina) and ball size 

on the breakage kinetics of a pre-milled cement clinker in a lab-scale ball mill. The newly 

developed global optimizer-based back-calculation method was proven accurate and 

reliable. Predicted timewise evolution of PSD with the ball mixture demonstrated 

reasonably good agreement with the experimental data for both steel and alumina balls, 

showing the prediction capability of the PBM. The estimated Si and Bi,j suggest that the 

feed clinker particles were broken into coarser particles slowly when the alumina balls 

were used as the media in lieu of the steel balls. For the same ball material, the estimated 

Si values suggest that the smaller balls were more effective for breaking the smaller clinker 

particles, while the bigger balls were more effective milling the coarser clinker particles. 

Hence, the ball mixture of 20 mm, 30 mm, and 40 mm balls was the most effective overall: 

it was ranked second to the 20 mm balls in generating the finest PSD, but without having 

any unbroken particles in the milled product unlike the case for the 20 mm balls. The 
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preliminary DEM study considered only the ball motion, without the clinker particles, and 

yielded the dissipated energy spectra of the balls. The DEM provided significant physical 

insights into the observed breakage kinetics when various ball sizes and ball materials were 

used. We have also assessed the feasibility of power reduction and potential energy savings 

by replacing the conventional steel balls with the alumina balls in full-scale continuous ball 

mills. Our analysis suggests that (i) the reduction in power consumption is limited by the 

slower breakage associated with the alumina balls and the need to use the alumina balls in 

the fine milling compartment, and (ii) it is possible to make significant power/energy 

reduction with partial replacement of the conventional steel balls with the alumina balls; 

however, it is unrealistic to expect more than ~30% in energy savings.  
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CHAPTER 7 

SIMULATION OF A VERTICAL ROLLER MILL 

 

Our recently developed true unsteady-state simulator (TUSSIM) for continuous milling 

was used to model a full-scale vertical roller mill (VRM) for cement milling. TUSSIM is 

based on a cell-based population balance model with internal classification. Its 

mathematical model consists of a set of differential algebraic equations. TUSSIM can be 

modified to model closed circuits by incorporating an external classification model (Tromp 

curve model) of air classifiers. Constructing a Tromp curve requires particle size 

distribution (PSD) of three streams—classifier feed, coarse reject, and fine product 

streams. VRM combines particle breakage and classification in a single-unit operation. 

Thus, the PSDs of coarse reject and classifier feed streams cannot be sampled. It is 

challenging to obtain a credible Tromp curve that represents particle classification by an 

air classifier. In this work, two different models with particle classification were tested to 

determine whether they could represent VRM operation realistically. The first model 

(Model A) treated VRM as an open-circuit continuous mill with internal classification, 

whereas the second, more elaborate model (Model B) treated it as a closed-circuit 

continuous mill with external classification. A realistic degree of mixedness of the particles 

inside the mill was used based on the residence time distribution data. Model fitting was 

performed using a global optimizer-based back-calculation method to determine the 

unknown model parameters of breakage kinetics and classification. Our results suggest that 

both models could be used to simulate the product PSD during VRM of cement clinker. 

The cut size of classification, 1.6 µm, is somewhat unrealistic, which could explain the 
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high specific breakage rate parameter (Model A: the open-circuit model with internal 

classification). In the case of the closed circuit with an external classification model (Model 

B), a decent value for the specific breakage parameter was obtained, which aligned well 

with the realistic cut size of 34 µm for air classifier. Model B requires a credible Tromp 

curve, which is hard to obtain since particle classification takes place inside the VRM. 

 

7.1 Introduction 

Vertical roller mills (VRM) have been used for cement milling since the 1980s (Tamashige 

et al., 1991). It has been reported that the specific energy consumption of VRMs is lower 

than that of traditional ball mills (Tamashige et al., 1991; Xu et al., 2015). A VRM 

combines particle breakage and classification processes into a single-unit operation. 

Figure 7.1 presents a general flow diagram of the VRM milling process. Figure 7.2 

presents a detailed view of VRM operations (Strohmeyer, 2013).  

 

 

Figure 7.1 A general schematic of VRM operations. 

Source: Strohmeyer (2013) 
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 A simplified process operation can be briefly explained as follows. First, fresh 

particles are continuously fed to the VRM by a feeder. These fresh feed particles are mixed 

with coarse particles on the milling table, which are recycled from the built-in air classifier 

on top of the VRM. The milling pressure is transferred from the hydraulic cylinder to rollers 

for particle breakage. The particles retained on the rotating table due to the dam ring at the 

table’s edge are broken by rollers. The rollers are rotated according to the motion of the 

rotating table. Therefore, both compression and shear forces from the rollers are applied 

for particle breakage. Sufficiently fine particles are lifted to the air classifier by air flow 

induced by an external mill fan, and fine products passing through the air classifier are 

collected as the final product. Finally, coarse particles are recycled back to the table and 

mixed with fresh feed particles. This process takes place continuously inside the VRM.  

Constructing a Tromp curve for classification requires particle size distributions 

(PSDs) of three streams around the air classifier—classifier feed, coarse reject, and fine 

product streams. Unlike ball milling in closed-circuit operations, the PSDs of classifier 

feed and coarse reject streams could not be sampled separately because the PSDs of these 

streams are mixed inside the mill. Recent works (Aydogan, 2015; Altun et al., 2017) have 

demonstrated a mass balance method to determine the PSDs of the classifier feed and 

coarse reject streams that cannot be experimentally sampled. In Altun et al. (2017), the 

PSD in front of the roller was assumed to be the PSD of the mill inlet, which is the 

combination of fresh feed and coarse reject PSDs. The PSD after roller was assumed to be 

the PSD of the mill outlet. With these assumptions, the PSDs of all streams can be 

estimated. As a result, the Tromp curve of the air classifier of the VRM can be 
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approximated. However, the Tromp curve reported in Altun et al. (2017) was not coupled 

with the PBM to simulate the evolution of PSD during the milling of full-scale VRM. 

 

 

Figure 7.2 A detailed view of VRM operations. 

Source: Strohmeyer (2013) 
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In the context of the population balance model (PBM), only a limited number of 

studies on VRM for cement milling (Shahgholi et al., 2017; Fatahi and Barani, 2020; Fatahi 

et al., 2022) are available in the literature. All these works were conducted by the research 

group in Iran. The modeling approach from this group can be summarized as follows. 

Cumulative breakage distribution parameters used in the PBM were obtained from lab-

scale data using a compression piston (Shahgholi et al., 2017), where the shear force could 

not be accounted for. The cumulative breakage distribution parameter was assumed to be 

material dependent and did not vary with the operation conditions. The experimentally 

obtained residence time distribution (RTD) data of full-scale VRM for cement mills was 

fitted with various RTD models. Their results (Fatahi and Barani, 2020) showed that the 

5-tanks-in-series model could be accurately fitted with the experimental RTD of VRM. 

The average residence time (space time) was reported to be 1.12 min. However, when their 

PBM simulation was performed, they assumed ideal perfect mixing (i.e., one tank), which 

contradicts their RTD study (Fatahi and Barani, 2020). These previous modeling studies 

applied a steady-state, perfect mixing PBM for a continuous mill to fit the experimental 

cement product PSD at steady state. Their model considered only breakage kinetics while 

disregarding particle classification in the VRM. Neglecting classification could lead to an 

erroneous interpretation of the breakage kinetics and erroneous specific breakage rate 

parameters (falsified kinetics). Given the limitations of prior work, there is a need to 

develop a robust model of VRM that accounts for particle classification. 

As advanced from the currently available models, our recently developed true 

unsteady-state simulator (TUSSIM) with two different approaches for particle 

classification was used to fit the steady-state cement product PSD of the VRM using a 
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global optimizer-based back-calculation method. All the parameters used in the simulation 

were taken from the VRM literature. We first tested whether the VRM circuit could be 

represented by open-circuit milling with internal classification (Model A). Subsequently, 

a more elaborate model (Model B) representing closed-circuit milling with external 

classification requiring a Tromp curve model was assessed. While this was our first attempt 

to simulate VRM, the model structure was obviously advanced from all prior studies as 

particle classification in the VRM was explicitly accounted for. 

 

7.2 Theoretical 

7.2.1 Model description 

TUSSIM was developed based on cell-based PBM, where the degree of mixedness can be 

modulated by the number of cells n and the axial back-mixing ratio R. The derivation of 

TUSSIM can be found in Muanpaopong et al. (2022a). Based on Fatahi and Barani (2020), 

the 5-tanks-in-series model accurately represented the experimental RTD of full-scale 

VRM. Therefore, n = 5 and R = 0 were used to represent the realistic mixing of the VRM 

in TUSSIM. Two representation models (Models A and B) were tested to determine 

whether they could represent particle classification and overall VRM operation well. 

7.2.1.1 Model A: Continuous open-circuit mill with internal classification.  The first 

model treats VRM as a continuous open-circuit mill with an internal classification action 

(discharge screen). A schematic of Model A is shown in Figure 7.3. A size-discretized, 

time-continuous PBM for five cells with discharge screen is expressed by 
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with mi,z(0) = 0. Here, i and j are size class indices. The size classes ranged from size class 

1 (containing the coarsest particles of size x1 = 80 mm) to size class N = 160 (containing 

the finest particle of size xN) with a geometric progression of 21/8.5. The particle size in each 

size class was represented by the upper edge of the size class. t is the milling time. ṁi,FF 

and ṁi,out denote the inlet mass flow rate and outlet mass flow rate, respectively, of the 

particles in size class i. z is the index used for the cell. Si is the specific breakage rate 

parameter of particle size xi. The breakage distribution parameter is denoted as bi,j with the 

cumulative form of Bi,j.  

The average residence time of cell z is denoted as z, defined as the ratio of the mass 

in cell z (mH,z) to the total mass flow rate through that cell, and z was determined from z 

= /n. Here,  = 1.12 min was taken from Fatahi and Barani (2020) based on their RTD 

data. The production rate equals the rate of discharge through the discharge screen, as 

modulated by the screen’s classification function P, i.e., ṁi,P = ṁi,outPi. The coarser 

particles that are prevented from leaving the mill by the discharge screen are recycled to 

the last cell (King, 2001). This relationship was mathematically expressed as ṁi,oversize = 
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ṁi,out(1−Pi). Unlike that of the first and intermediate cells, the average residence time in 

the last cell (z = n) connecting to the discharge screen was expressed by: 

 

hold-up,

,FF ,oversize

1 1

n

n N N

i i

i i

m

m m



= =

=

+ 
 

(7.2) 

 

where mhold-up,n is the total mass of material in cell n. Note that ṁoversize,i is time-dependent 

and unknown during a transient operation. Therefore, Equation (7.2) was solved 

simultaneously with Equation (7.1), forming a set of differential algebraic equations 

(DAEs). A steady state was attained when the sum of the absolute difference between the 

cumulative PSDs of the subsequent time steps for all size classes was equal to or less than 

10−2. This criterion must be satisfied for all PSDs inside the mill and product streams. The 

conservation of mass dictates that the Si and bi,j parameters must satisfy mass conservation 

through the following constraints: SN = 0, bi,i = 0, and ∑ bi,j
N
i=j+1  = 1. 

 

 

Figure 7.3 Schematic of Model A: Open-circuit mill with internal classification. Mill is 

represented by five perfect mixing cells in a series. The axial recirculation rate Ṙ  is 

exchanged between adjacent cells. 

 

7.2.1.2 Model B: Continuous closed-circuit mill with external classification. The 

second model represents the VRM as a continuous closed-circuit mill with an external 
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classification action. A schematic of Model B is shown in Figure 7.4. Here, the internal 

classification was neglected, i.e., Pi = 1 for all i size classes. In the case of closed-circuit 

milling with external classification, ṁi,FF in Equations (7.1) and (7.2) was replaced by the 

mass flow rate of the mill inlet stream of size class i (ṁi,MI), which is the combination of 

ṁi,FF and the mass flow rate of the coarse reject stream in size class i (ṁi,R). In correlation 

with the Tromp curve value of particles in size class i (Ti), the mass flow rates of product 

(ṁi,P) and reject (ṁi,R) streams were determined from ṁi,P = ṁi,out(1−Ti) and ṁi,R = ṁi,outTi, 

respectively. 

 

 

Figure 7.4 Schematic of Model B: closed-circuit mill with external classification. Mill is 

represented by five perfect mixing cells in a series. The axial recirculation rate Ṙ  is 

exchanged between adjacent cells. The coarse particles rejected from the dynamic air 

classifier are returned to the mill, whereas the fine particles are obtained as the final 

product. 
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7.2.2 Selected functional forms used in the PBM 

A power-law function was selected for the specific breakage rate parameter Si, and the one-

parameter normalized function was selected for the cumulative breakage distribution 

parameter Bi,j, as expressed by 

 

i iS Ax = , ( ), 1i j i jB x x


−=  with , , 1,i j i j i jb B B += −  (7.3) 

 

 In Equation (7.3), A is the breakage rate constant,  is the breakage rate exponent, 

and  is the breakage distribution exponent. In the case of discharge screen for Model A, 

internal classification parameter Pi, based on the Whiten model (Napier-Munn et al., 1996) 

in Equation (7.4), assumes absence of bypass and fish hook effects. 
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(7.4) 

 

 Here,  is the sharpness parameter and x50c is the corrected cut size. The subscript 

d refers to the discharge screen. In the case of the Tromp curve for external particle 

classification in Model B, the Whiten model (Napier-Munn et al., 1996) was also used for 

external classification, as expressed by: 
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 (7.5) 
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where  is the bypass parameter,  is the fish–hook parameter, and * is a parameter that 

preserves the definition of x50c. The subscript a refers to the air classifier. Note that different 

models for particle classification, Equations (7.4) and (7.5), were used in Models A and B, 

respectively. Model A used Equation (7.4) with two parameters only because it would be 

impossible to calibrate the model if it had more parameters in the absence of PSD data 

from a reject stream. Model B used Equation (7.5) with 4 adjustable parameters as the 

fitting of Model B entails consideration of two different PSDs, as will be elaborated below. 

7.2.3 Model fit and parameter estimation 

The combined global optimizer−DAE solver was used to estimate unknown breakage 

kinetic parameters and classification parameters. The number of trial points was set to 200 

as the minimum default from MATLAB. The objective function to be minimized by the 

global optimizer was the sum of the square residuals (SSR) between the experimental and 

simulation results of steady-state PSDs in cumulative form. The MATLAB function 

“GlobalSearch” was used to generate a set of initial guesses for the next trial point using 

the scatter method (Glover, 1998). The stopping criteria of the optimizer were taken from 

Capece et al. (2011), where termination tolerances on constraint violation, function value, 

and parameter were all set to 10−9. For the DAE solver, relative and absolute tolerances of 

10−4 and 10−6, respectively, were also taken from Capece et al. (2011).  

 

7.3 Results and Discussion 

We began by performing the model fitting of the open-circuit mill with internal 

classification (Model A). The parameters to be estimated were breakage kinetics 

parameters (3 parameters: A,  , and ) and classification parameters (2 parameters: d and 
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x50c,d). Here, fresh feed PSD was taken from Fatahi and Barani (2020). For Model A, only 

the cement product PSD was considered in the objective function. Table 7.1 lists the upper 

bound and lower bound along with the initial guess value of each parameter and the 

solution returned from the global optimizer. As shown in Figure 7.5, the simulated PSD 

using parameters obtained from the global optimizer was almost identical to the 

experimental cement product PSD taken from Fatahi and Barani (2020). As can be seen in 

Figure 7.6, Si values were very high—up to ~4800 min−1 at a particle size of 40 mm and 

Si dropped dramatically with decreasing particle size. A similarly high value of Si was 

reported in Fatahi and Barani (2020), where classification was disregarded during fitting. 

Although almost identical results of simulated cement product PSD at steady state were 

obtained in comparison with experimental product PSD, we suspect that this high value of 

Si may be caused by improper modeling of the air classifier as a discharge screen (internal 

classification). Note that x50c,d = 1.59 µm is highly realistic for particle classification in the 

VRM, and such a value suggests that there is no classification of particles with a size above 

a few microns. Considering the fact that the product PSD had ~80% particles above ~4 µm, 

majority of the particles were not even subjected to particle classification. As the fitting of 

Model A did not consider any PSD other than of the product stream, it was not possible to 

identify a good classification model, which probably led to the extremely high Si values. 
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Table 7.1 Parameters Obtained from the Global Optimizer 

 
Parameter Initial guess Constraint Solution from global optimizer 

  Lower bound Upper bound Model A Model B 

A (min−1) 5 0 40 14.2 1.67 

 0.1 0 5 1.58 4.43  10−1 

 0.5 0 5 7.26  10−1 7.46  10−2 

d 0.5 0 10 1.06  10−2 − 

x50c,d (mm) 0.5 0 1 1.59  10−3 − 

SSR    2.36  10−3 1.01  10−1 

 

The next model fitting was performed for the closed-circuit mill with external 

classification (Model B). Before performing the model fitting of the PSDs in the VRM 

circuit, we first fitted Equation (7.5) with the experimental Tromp curve reported in Altun 

et al. (2017) by minimizing the SSR between the experimental Tromp curve value and the 

fitted Tromp curve value. In other words, particle classification was decoupled and fitted 

separately. The obtained parameters for simulating the Tromp curve were a = 1.28, a = 

2.92, a = 0.704, and x50c,a = 33.5 m (see Figure 7.7). The x50c,a = 33.5 m is quite realistic 

considering the typical air classifiers used in cement manufacturing.  In Altun et al. (2017), 

the PSD and mass flow rates of cement clinker, gypsum, and limestone were reported 

individually. In our study, we estimated the fresh feed stream PSD to be fed to the VRM 

by weighted average using the reported PSD and mass flow rate of each component. Unlike 

Model A, where only cement product PSD at steady state was considered, steady-state 

PSDs of the cement product and mill inlet were considered in the objective function for 

Model B. Table 7.1 also lists the solution of model fitting using Model B. Figure 7.8 

depicts a comparison between experimental PSDs (Altun et al., 2017) and fitted PSDs 

performed by this work, showing reasonably good agreement. As can be seen in Figure 
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7.9, a value of ~12 min−1 for Si at a particle size of 80 mm was obtained, which is in the 

same range as full-scale ball milling. As signified by the low exponent (µ = 0.07) in Model 

B (Table 7.1), the Bi,j parameter was slightly dependent on the particle size ratio, 

suggesting a relatively uniform distribution of broken particles’ masses. As mentioned 

earlier, prior work (Shahgholi et al., 2017) determined the Bi,j parameter by compression 

piston, which disregards shear forces. However, both compression and shear forces are 

imposed on the particle bed during milling using the VRM. 

 

 

Figure 7.5 A comparison of cement products at steady state between experimental and 

fitted Model A. 
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Figure 7.6 Specific breakage rate parameter of Model A: A = 14.2 mm−1.58min−1 and  = 

1.58. 

 

 
Figure 7.7 Experimental Tromp curve and fitted Tromp curve (a = 1.28, a = 2.92, a = 

0.704, and x50c,a = 33.5 m). 
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Figure 7.8 A comparison of various PSDs at steady state between experimental and fitted 

Model B.  

 

 

 
Figure 7.9 Specific breakage rate parameter of Model A: A = 1.67 mm−0.443min−1 and  = 

4.43  10−1. 
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7.4 Conclusions 

TUSSIM was used to represent a full-scale VRM for cement milling, where particle 

breakage and particle classification were combined in a single-unit operation. Unlike 

previous PBM studies in which particle classification was disregarded, we assessed the 

feasibility of using two representative models of particle classification to simulate VRM at 

steady state—(i) an open-circuit mill with internal classification (Model A) and (ii) a 

closed-circuit mill with external classification (Model B). A realistic degree of mixedness 

of particles inside the VRM was used during the simulation, based on experimental RTD 

data in full-scale operation. The simulation results suggest that both models mentioned 

above could be used to represent VRM. Although the open circuit with internal 

classification provided an almost perfect model fit with experimental cement product PSD 

at steady state, its particle classification function appears to be unrealistic, leading to an 

erroneous interpretation of specific breakage rate parameters. The obtained value of the 

specific breakage rate parameter is similar to those estimated from a prior PBM study that 

neglected particle classification. On the other hand, a more elaborated closed circuit with 

external classification (Model B) provides decent values for the particle classification and 

specific breakage kinetics. However, a realistic Tromp curve is required for external 

classification. Overall, we successfully demonstrated the capability of TUSSIM to 

represent VRM operation using two different models incorporating the classification of 

particles, which is advanced from the currently available literature. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

 

8.1 Conclusions 

In this dissertation, a true unsteady-state simulator (TUSSIM) was developed for 

continuous dry milling. TUSSIM is based on a cell-based population balance model (PBM) 

that can address the degree of nonideal mixedness of particles inside the mill and the 

internal classification of particles. TUSSIM’s mathematical model consists of a set of 

differential algebraic equations (DAEs), which were numerically solved. In Chapter 2, 

TUSSIM was used to simulate the spatio-temporal evolution of the particle size distribution 

(PSD) in the mill and the product stream of continuous open-circuit dry milling with a 

discharge screen. The simulation results suggest that a smaller screen opening not only 

delayed the attainment of the steady state but also increased the total mass hold-up and led 

to a finer product PSD. The cushioning action of fines resulted in a coarser product PSD. 

However, a smaller opening of the discharge screen mitigated this effect. 

Subsequently, in Chapters 3−5, TUSSIM was employed to perform comprehensive 

parametric studies for full-scale ball milling of cement clinker to gain a fundamental 

process understanding. All parameters were obtained from the available literature on 

cement clinker. In Chapter 3, TUSSIM was used to model a full-scale open-circuit ball 

milling. The simulation results suggest that milling with a ball mixture outperformed 

milling with a single ball size. Single-compartment milling produced desirable product 

fineness when the feed was pre-milled. A two-compartment mill performed similarly to or 

better than a three-compartment mill, depending on the ball sizes used. For a given set of 
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ball sizes, a theoretical distribution with a uniform mass of balls, as opposed to that with a 

uniform number of balls, achieved an 8% increase in the cement product’s specific surface 

area. The use of a classifying liner achieved a negligibly finer cement product compared to 

a uniform mass of balls. 

In Chapters 4 and 5, TUSSIM was modified to model full-scale closed-circuit 

cement ball milling. Unlike all prior works, the PBM for the mill was coupled with a dust 

load-dependent variable Tromp curve for the air classifier. In Chapter 4, the impact of the 

air classifier’s operation parameters was investigated. The simulation results suggest that 

a lower air flow rate or higher rotor speed of the classifier not only led to a finer product 

but also increased the dust load of the classifier feed. When the dust loading of the classifier 

feed was too high, operational failure due to overloading of the whole circuit was detected. 

For the first time, TUSSIM was used for process optimization with a global 

optimizer−differential algebraic equation (DAE) solver to identify the air classifier’s 

parameters that yielded desirable cement quality while maximizing production rate. At 

optimum operation conditions, the production rate could be increased by 7% compared to 

the baseline process. 

In Chapter 5, the impact of ball mill’s operation was investigated, similar to Chapter 

2, but this chapter considers closed-circuit operation. The simulation results suggest that a 

single-compartment mill entailed a pre-milled feed for proper operation, whereas a two-

compartment mill yielded a finer cement product than a three-compartment mill. The 

uniform mass distribution of balls led to a slightly finer product than uniform surface area 

or number distributions, while the impact of a classifying liner was negligibly small. In 

comparison to the simulation results in Chapter 2, integrating an air classifier into an open-
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circuit ball mill increased the production rate by 15% or the cement-specific surface area 

by 13%. Finally, optimal ball mixtures in a two-compartment mill were identified using a 

combined global optimizer−DAE solver, suggesting that 14% production rate increase with 

desirable cement quality was feasible. 

In Chapter 6, the breakage kinetics parameters of the pre-milled cement clinker 

were explored via experiments and PBM–DEM simulations. A global optimizer-based 

back-calculation method based on PBM was newly developed to estimate the breakage 

parameters of cement clinker in a lab-scale ball mill loaded with steel or alumina balls of 

20, 30, and 40 mm and their mixtures. The ball motion in the mill was simulated using the 

discrete element method (DEM). The experimental−modeling results show that steel balls 

achieved faster breakage of clinker into finer particles than alumina balls, which was 

explained by the higher total–mean energy dissipation rates of the steel balls. The PSD 

became finer as smaller balls were used. The ball mixture of 20, 30, and 40 mm balls was 

the most effective overall. It was ranked second to the 20 mm balls in generating the finest 

PSD; however, the mixture did not result in any unbroken particles in the milled product, 

unlike the case for the 20 mm balls. 

In the last chapter (Chapter 7), efforts were made to model a vertical roller mill 

(VRM). It must be mentioned that VRM simulation is complicated since milling and 

classification processes take place within the VRM. Two model structures (open circuit 

with internal classification and closed circuit with external classification) were evaluated 

to determine whether they could be fitted with cement produced from a full-scale VRM. 

The simulation results showed that both model structures successfully fit the product PSD 

at the steady state of the VRM operation. 
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8.2 Future Work 

8.2.1 Breakage kinetics parameters for multicomponent formulations 

In actual cement milling operations, various raw materials such as cement clinker, gypsum, 

limestone, and fly ash are milled to produce cement powder. However, simulation studies 

for full-scale ball milling in Chapters 3−5 only considered cement clinker, which is the 

main component of ordinary Portland cement, which is the most widely used cement type. 

Future studies should treat breakage of multicomponent formulations as each material can 

break at different rates and they can accelerate/decelerate the breakage of the other 

materials, which cannot be treated by the currently available PBMs rigorously. 

8.2.2 Modification of Austin’s scale-up rule for specific breakage rate parameters 

A credible Austin’s scale-up rule was used in Chapters 3−5 to translate specific breakage 

rate parameters estimated from lab-scale data to full-scale operation. The Austin’s scale-

up factors are based on various experimental data. However, as for any scale-up rule with 

particulate systems, they are far from excellent. The accuracy of the scale-up factor could 

be improved by introducing a correction factor that can specifically consider the energy 

dissipation rates of the colliding balls at different scales. Future studies should focus on 

modifying Austin’s scale-up factors by incorporating information at the particle ensemble 

scale (e.g., energy dissipation during ball collisions) obtained from mechanistic DEM 

simulations for different mill scales. 

8.2.3 Determination of total mass hold-up 

Total mass hold-up is directly reflected in the average residence time, which is one of the 

input parameters in PBM. In Chapters 4 and 5, the total mass hold-up was assumed to be 

invariant with the fresh feed rate, within the range studied. The available model for 
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estimating mass hold-up is apparently limited (e.g., Nomura’s transport model). Future 

studies should focus on developing a robust modeling framework for determining 

variations in mass hold-up with process operations. 

8.2.4 Mixture of different types of grinding balls 

A mixture of different materials of balls (beads) was used in a lab-scale wet stirred media 

mill successfully demonstrated. However, such an approach has not been adopted in dry 

tumbling ball milling. In Chapter 6, the breakage kinetics of traditional steel balls and 

alternative alumina steels were explored. To compensate for the slower breakage of the 

alumina ball, a mixture of alumina balls and steel balls could be used. Future studies should 

focus on determining the proper operation conditions for this mixture of different ball 

types. A caveat is that alumina balls could be damaged by collisions with steel balls during 

dry ball milling; however, considering the significant energy savings, such investigation of 

such ball mixtures is warranted.  

8.2.5 Elucidation of nonlinear effects in batch and continuous milling of cement 

Unfortunately, there is no information about nonlinear effects in cement milling. Chapter 

2 has already mentioned how to characterize the nonlinear kinetics in continuous ball 

milling. Moreover, in Chapter 6, batch milling of cement clinker in a lab-scale ball mill has 

been performed with 3 different sizes of alumina and steel balls. The purpose was to mainly 

compare alumina and steel balls; nonlinear kinetics was not studied. To this end, batch 

milling experiments with multiple feed size distributions (at least three widely different 

PSDs) and multitude of ball sizes (at least 5 different sizes) with prolonged milling (down 

to a cement clinker media particle size below 10 m) should be carried out. This will enable 
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one to generate a dense data set, which in turn will allow for estimation of the nonlinear 

breakage parameters accurately. 

8.2.6 DEM simulations with cements clinker particles 

In Chapter 6, DEM simulations were performed considering the balls without the cement 

clinker particles. A more rigorous simulation, albeit computationally expensive and time-

consuming, entails considering the actual cement clinker particles and their size evolution 

during the milling. Such simulations will enable estimation of size-dependent minimum 

impact energy and a thorough analysis of the impact energy spectrum of the cement clinker 

particles. They will also enable to assess energy utilization during milling with alumina vs. 

steel balls. 

8.2.7 Physics of particle classification 

In this report, particle classification has been described by a Tromp curve model, which 

provides a phenomenological description of classification within the context of PBM. On 

the other hand, a coupled CFD–PBM could help to identify the roles of dust loading, rotor 

speed, and air flow rate on the classification selectivity and bypass fraction. 

8.2.8 Process optimization with economic considerations 

Our process optimization in this report has factored in quality metrics of the cement product 

as well as production capacity, but without considering the operational costs. To the extent 

realistic cost estimations can be formulated, the objective function of the optimizer can 

include operational costs.  
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APPENDIX A 

SUPPLEMENTARY DATA FOR CHAPTER 2 

The supplementary materials of Chapter 2 are shown in this section. 

 

A.1 Convection−Dispersion PBM 

The size- and time-continuous convective dispersion PBM for continuous milling 

(Mihalyko et al., 1998) is  
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where md and t are the mass density and the milling time, respectively. The specific 

breakage rate function is k, and the breakage distribution function is b. D and u denote the 

dispersion coefficient and the average velocity, respectively. The left-hand side of Equation 

(A.1) refers to the accumulation rate of the mass density md(x,y,t) of size x particles at 

longitudinal location y and time t. The first term on the right-hand side represents the death 

rate due to the breakage of the size x particles, whereas the second term describes the birth 

rate of size x particles due to the transport of broken particles from size l particles. The 

third term refers to the dispersive transport of particles due to their random motion, and the 

fourth term corresponds to the convective bulk transport of the size x particles. The initial 
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condition specifies that the mill contains mass density md,0 at t = 0. The first boundary 

condition assumes that the mass flow density 𝑚̇in,d, which is fed to the mill—a flow that is 

characterized by convective flow—, is equal to the mass flow density at the mill inlet (y = 

0), which is driven by convective flow and dispersion. The second boundary condition 

states that the mass density does not change at the mill outlet (y = L). Both boundary 

conditions were formulated by Danckwerts (1953). 

 

A.2 Details of the Cell-based PBM 

The derivation of cell-based PBM equations is based on the conservation of mass for 

particles in each cell z, the rate of particle transport between cells and the rate of 

appearance–disappearance of particles in size class i in each cell. To construct the model 

equations, each cell is considered to be the control volume (CV). For the sake of brevity, 

only the generic equation for intermediate cells is derived and explained step by step. 

Consider cell z for all integer z (1 < z < n) as CV; the equation for the mass balance in size 

class i in the CV is expressed as Equation (A.2): 
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(A.2) 

 

where mcv represents the mass hold-up in the CV. The left-hand side of Equation (A.2) 

refers to the accumulation rate of the mass in size class i in the CV. On the right-hand side 

of Equation (A.2), the first and second terms express the death rate and birth rate of the 

particles in size class i in the CV, respectively. The third group of terms expresses the mass 

flow rate of particles with size xi into the CV from the neighboring cells, whereas the fourth 

group of terms expresses the mass flow rate of particles with size xi out of the CV into the 

neighboring cells. By definition, the average residence time  is the ratio of the total mass 

hold-up to the mass flow rate (i.e., cv innm m = ) and the back-mixing ratio R is the ratio 

of the mass back-flow rate to the bulk mass flow rate (i.e., 
inR R m= ). With the variables 

 and R, Equation (A.2) can be rewritten as Equation (A.3). 
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At time t = 0 min, the mass hold-up in the mill was assumed to be zero (empty mill). The 

initial condition is mi,z(0) = 0. Model equations for the first cell (z = 1) and the last cell (z 

= n) can be derived using the same approach as formulated for the intermediate cells. The 

final form of equations is expressed in Equations (2.2) and (2.4) of the main text. 

 It should be noted if one considers only one cell, removes the last term, sets Fi[ ] = 

1, and replaces time t with contact time t* = y/u for any axial position y in the mill, while 

making use of 
, , ,

1

N

i z i z i z

i

M m m
=

=  , then Equation (A.3) turns into the classical PFTM 

model with the linear breakage kinetics: 
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 Solving Equation (A.4) gives the steady-state product PSD at t* =  = L/u for the 

feed PSD Mi,0.  
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APPENDIX B 

SUPPLEMENTARY DATA FOR CHAPTER 3 

The supplementary materials of Chapter 3 are shown in this section. 

 

B.1 Scale-up of Specific Breakage Rate 

Scale-up factors K1, K2, K3, and K4 depend on the diameter and operation parameters of the 

full-scale mill and the small-scale test mill (T), as expressed by Equations (B.1) and (B.2) 

(Austin et al., 1984). 
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 A recent study (Bilgili, 2023) established that (i) the Kotake–Kanda kinetic model 

and the traditional Austin kinetic model provide similar PSD evolution upon scale-up, (ii) 

the modification of the Austin’s scale-up exponents N1 and N2 is not warranted, and (iii) 

the Austin’s scale-up methodology is applicable to the Kotake–Kanda model as well as the 
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Austin model.  Hence, N1 and N2 were taken as 0.5 and 0.2, respectively, along with N3 = 

0.2. Here, subscript T is the test condition in the laboratory mill. D is the diameter of the 

ball mill. J is the ball filling ratio, which is defined as the fraction of the mill volume filled 

by balls. For any cell z, the powder filling U was calculated using 

 

( )H, c c b1z z z zU m J V  = −    (B.3) 

 

where the total mass hold-up of the cement clinker in cell z (mH,z) can be determined by 

summation of mass in cell z over all N size classes, i.e., 
H, ,

1

N

z i z

i

m m
=

=  . Vz is the mill 

volume in cell z. c and B denote the void fraction of cement clinker and steel balls, 

respectively, which were taken as 0.4, similar to Deniz (2012). c is the fraction of actual 

rotation speed compared to the critical speed Nc, which is defined as the theoretical rotation 

speed where the centrifugal force of the ball is equal to the gravitational force of the ball 

at the mill shell. Nc was determined using  

 

( )
1/2

3

c B42.3 10N D d
−

= −    (B.4) 

 

 For a mixture of ball sizes, the ball size dB (in mm) was replaced by the maximum 

ball size dB,Max (Kasim et al., 1996). 
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B.2 Details of the Size-discretization and the Solution of the DAEs 

In all simulations, the size class is represented by its upper edge progressing downward 

according to a geometric progression ratio. The number of size classes N was set to 320, 

and the geometric progression ratio was set to 21/17, which yields grid-independent 

simulation results. The upper edge of the topmost size class x1 was set to 80 mm according 

to the natural feed PSD taken from Genc (2016). While the evolution of PSD was recorded 

every minute over a total milling time of 120 min, PSDs at various milling times were 

sampled to assess attainment of steady-state operation. The operation was deemed to reach 

a steady state when the summation of absolute difference of cumulative product PSDs over 

all 320 size classes between two subsequent time points was less than or equal to 10−2. 

Simulated product fineness at steady state was described by characteristic PSD values such 

as d10, d50, and d90, span calculated from (d90−d10)/d50, and SSA. The mass fraction of 

particles in size class i of the product passing the discharge diaphragm connected to cell n 

(Mout,i), the Sauter mean diameter d32, and the SSA were calculated by 

 

out, out, , out, ,

1

N

i i n i n

i

M m m
=

=  ,  
out,

32

1

1
N

i

i i

M
d

x=

=  , and ( ) ( )3

c 32SSA 6 10d=    (B.5) 

 

where x̅i is the geometric average size of particles in size class i. The set of DAEs in 

Equations (3.1), (3.3), and (3.4) was solved simultaneously using the function “ode15s” in 

MATLAB version 9.9, which is a highly accurate, variable order−step-size ordinary 

differential equation (ODE) solver that can efficiently handle DAEs (Shampine et al., 
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2003). The relative error tolerance was set to 10−4, and the absolute error tolerance was set 

to 10−6. 
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APPENDIX C 

SUPPLEMENTARY DATA FOR CHAPTER 4 

The supplementary materials of Chapter 4 are shown in this section. 

 

C.1 Details of the Numerical Solutions of the DAE and the Optimization Problem 

The topmost size class x1, representing the coarsest particles, was set to 50 mm, according 

to the fresh feed size taken from Altun (2018). A geometric discretization of particle size 

was employed with a progression ratio of 21/9.5.  The number of size classes N was set to 

160. The set of DAEs was numerically solved using the MATLAB function ode15s 

(Shampine et al., 2003) with the relative error tolerance and the absolute error tolerance 

taken from Capece et al. (2011a) as 10−4 and 10−6, respectively. 

 Optimized values were obtained from the global optimizer-based process 

optimization written in MATLAB version 9.12. The optimizer, fmincon, within the global 

optimization toolbox (The MathWorks, 2022) via the function GlobalSearch, was used to 

minimize the objective function and find the global minimum. At each iteration of the 

optimizer, the objective function was evaluated by finding the solution of the PBM using 

the MATLAB function ode15s.  GlobalSearch generates a set of trial points using the 

scatter search method (Glover, 1998). The optimizer’s stopping criteria, i.e., tolerances for 

function values and parameters were all set to 10−9 (Capece et al., 2011a). The number of 

size classes, geometric progression, and tolerances of the solver for each iteration were 

kept the same as in the forward simulations reported above. All simulations and 
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optimizations were executed by a Dell Precision 7820 Tower Workstation with Intel(R) 

Xeon(R) Gold 6254 CPU @ 3.10 GHz and 3.09 GHz. 

 

C.2 Referenced Full-scale and Laboratory-scale Cement Ball Mills and Scale-up 

The mill dimensions and operation conditions of the full-scale cement ball mill were taken 

from Altun (2018). The ball mill consisted of two milling compartments. Ball mill diameter 

D was 4.0 m, and the length of ball mill L was 12.3 m, with the first and the second 

compartment lengths of 3.9 and 8.4 m, respectively. Ball filling fractions J were 0.267 and 

0.301 for compartments 1 and 2, respectively. Ball sizes used in compartment 1 were 90, 

80, 70, and 60 mm, with mass fractions of 0.25, 0.30, 0.25, and 0.20, respectively. In 

compartment 2, the ball sizes used were 50, 40, 30, 25, 20, and 17 with mass fractions of 

0.08, 0.10, 0.20, 0.24, 0.23, and 0.15, respectively. 

 In the case of a laboratory ball mill for cement clinker milling, the mill dimensions 

and operation data were taken from Deniz (2003). The ball mill’s diameter DT was 0.2 m, 

and the length LT was 0.2 m. Ball filling fraction JT was 0.2, and void filling fraction UT 

was 0.525. The ball mill rotated at a fractional speed C,T of 0.75. Note that since the mill 

speed of the referenced full-scale mill C was not mentioned in Altun (2018), it was 

assumed to be identical to a laboratory ball mill (C = C,T). 

 The scale-up factors K1, K2, K3, and K4 translate Si obtained from the lab-scale ball 

mill into the industrial-scale ball mill of interest. These scale-up factors are related to the 

mill dimensions and the operating conditions. The scale-up of Si from the lab-scale test 

(with subscript T) to the full-scale mill of interest was performed using the following K1, 

K2, K3, and K4 expressions (Austin et al., 1984): 
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 According to Bilgili (2023), the Si values obtained with the Kotake−Kanda model 

(Kotake et al., 2002) at the lab-scale can be scaled up using N1 = 0.5, N2 = 0.2, and N3 = 

0.2 in the above Austin’s scale-up factors (Austin et al., 1984). 

 

C.3 Variable Tromp Curve Model 

The parameters used in the variable Tromp curve in Equation (4.8) were obtained from 

Altun and Benzer (2014). All air classification parameters were correlated with the 

operating conditions of the classifier and the continuous ball mill, i.e., air flow rate of air 

classifier Q, rotor tip speed v, dust load of the classifier feed DLCF, and mass flow rate of 

classifier feed at 3−36 m fraction FCF. These correlations were obtained from various full-

scale cement ball mills operating in the closed-circuit mode at the steady state. The 

parameters for the variable Tromp curve model are given by  
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( )
1.2679

a c CF
0.905 D DL = , 

1.4171

a CF0.4417 0.1293DL = −  (C.3) 

  

1.4171

a CF0.10467DL = , ( )
0.7775

50c,a CF 2.47x Q vF =    (C.4) 

 

 By definition of the corrected cut size, the function “fsolve” was used to determine 

a
* (refer to Equation (4.8)) at each time step while solving the set of DAEs. We set a  0 

based on published data (Altun and Benzer, 2014)); hence, a minimum value of DLCF was 

set to 4.203  10−1 kg/m3 to satisfy a  0. Setting the minimum value of DLCF also resolved 

the problem of singularity of a at the initial simulation (refer to Equation (C.3)) because 

of DLCF = 0 kg/m3 at t = 0 min. 

 

C.4 Approximation of Blaine Surface Area 

An empirical correlation of Blaine surface area fB (in cm2/g) with 80% passing size of the 

cement product x80 is expressed by (Shimoide, 2016): 
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(C.5) 

 

 

 Equation (C.5) was assessed in comparison with the experimental data available in 

the literature. Based on published experimental data (Tsakalakis and Stamboltzis, 2008), 

x80 = 41 m corresponds to fB = 3000 cm2/g. Substituting x80 = 41 m to Equation (C.5) 
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results in fB = 3044 cm2/g, showing good approximation with a deviation of roughly 1% 

compared to the experimentally obtained results. 
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APPENDIX D 

SUPPLEMENTARY DATA FOR CHAPTER 5 

The supplementary materials of Chapter 5 are shown in this section. 

 

D.1 Details of the PBM Simulation and Optimization 

The number of size classes N was set to 160, providing grid-independent results. The 

topmost size x1 was 80 mm, as per the fresh feed PSD (Genc, 2016). Geometric progression 

ratio for the size classes was 21/8.5. The PBM was coded in MATLAB version 9.12. A set 

of DAEs in Equations (5.1) and (5.2), along with the selected functions and parameters in 

Section 2.2, were solved using the function ode15s. The values of relative error and 

absolute error tolerances were 10−4 and 10−6, respectively (Muanpaopong, 2022b). 

 In the case of process optimization, the function GlobalSearch, as part of the global 

optimization toolbox of MATLAB, was used to generate a set of trial points. The function 

fmincon was used as a nonlinear optimizer. The function ode15s was used as a DAE solver. 

Optimizer’s stopping criteria as tolerances on the functions, constraints, and parameters 

were taken from Capece et al. (2011a) as 10−9. Dell Precision 7820 Tower Workstation 

with Intel(R) Xeon(R) Gold 6254 CPU @ 3.10 GHz and 3.09 GHz was used to perform all 

PBM simulations and optimizations. 

 

D.2 Calculation of the Specific Surface Area and the Blaine Surface Area 

Sauter mean diameter d32 and specific surface area SSA (m2/kg) of cement product at 

steady state are, respectively, expressed as 
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 In Equation (D.1), x̅i is the geometric average size of particles in size class i. MP,i is 

the mass fraction of cement product in size class i at the steady state. The density of cement 

clinker c was taken from Deniz (2003) as 3000 kg/m3. The above SSA calculation assumes 

spherical particles. 

 Blaine surface area fB (cm2/g) of cement product can be empirically approximated 

from 80% passing size x80 (m) of the cumulative PSD of cement product at steady state 

(Shimoide, 2016), as given by 
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 The predictive capability of the empirical Blaine surface area of Equation (D.2) was 

assessed using a wide range of x80−fB pairs reported in the cement handbook (Deolalkar, 

2009). Table D.1 presents a comparison of the Blaine surface area values reported by 

Deolalkar (2009) and those calculated by Equation (D.2). Accurate prediction of the Blaine 

surface area using x80 value by Equation (D.2) was demonstrated, with the maximum 

absolute value of the relative error is less than 0.8%. 
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Table D.1 Assessment of Empirical Correlation Between 80% Passing Size of Cement 

Product and Blaine Surface Area of Cement Product 

 

80% passing size, x80 

(m)a 

Blaine surface area, fB (cm2/g) Absolute value of the 

percent relative error Corresponding 

Blaine valuea 

Calculated 

Blaine valueb 

62.4 2520 2520 7.994  10−3 

53.6 2700 2696 1.656  10−1 

45.7 2880 2882 7.971  10−2 

40.7 3060 3055 1.691  10−1 

37.6 3150 3173 7.235  10−1 

28.2 3600 3601 3.193  10−2 

a Taken from Deolalkar (2009). 

b Calculated from Equation (D.2). 

  

D.3 Details of the Laboratory Ball Mill, Full-scale Ball Mill, and Scale-up Factors 

The specific breakage rate parameter Si for cement clinker was obtained from a laboratory 

tumbling ball mill (Deniz, 2003) operating in the batch mode. The mill diameter DT was 

0.2 m, and the mill length LT was 0.2 m. Experimental conditions were as follows: ball 

filling fraction JT = 0.2, void filling fraction UT = 0.525, and fraction of operating rotation 

to critical speed c,T = 0.75. 

 Mill size, along with the operating condition of a full-scale, continuous tumbling 

ball mill for cement milling, was taken from Genc (2016). This ball mill with a total length 

L = 9.3 m was operated in an open circuit without an air classifier. The length of each 

compartment was L1 = 2.94 m, L2 = 1.70 m, and L3 = 4.66 m for compartments 1, 2, and 3, 

respectively. Mill diameter D was 3.5 m. Ball filling fraction J was 0.318, 0.318, and 0.290 

for compartments 1, 2, and 3, respectively. The ball mill was rotated at 16.55 rpm. A 
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theoretical critical speed Nc was calculated from Nc = 42.3(D−dB/103)−1/2. When a mixture 

of different ball sizes was used, dB was replaced by dB,Max (Kasim et al., 1996). Based on 

the prior work for a three-compartment mill (Muanpaopong et al., 2022b), two intermediate 

diaphragms were removed to simulate a single-compartment mill. The second intermediate 

diaphragm was removed to simulate the two-compartment mill. 

 Austin’s scale-up factors K1−K4 (Austin et al., 1984) were used to translate Si 

obtained from the lab test condition (with subscript T) to the full-scale operation (without 

subscript), and are expressed as 
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 (D.4) 

 

 Based on the analysis presented in Bilgili (2023), it was established that the scale-

up exponents N1 = 0.5, N2 = 0.2, and N3 = 0.2 of Austin’s scale-up factors are suitable for 

use with the KK kinetic model. 
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D.4 Calculations Regarding the Classifying Liner 

An empirical model was developed in Muanpaopong et al. (2022b) to determine mean ball 

size (dB,Mean) for axial position l in the second compartment of a ball mill with a classifying 

liner as follows: 

 

( ) ( )B,Mean B,Min 3 B,Max 1 B,Min 3 2expd d A d A d A A l= + − −  (D.5) 

 

 Maximum and minimum ball sizes of the ball mixture used in the classifying liner 

compartment are denoted as dB,Max and dB,Min, respectively. Based on Run 21, dB,Max = 30 

mm and dB,Min = 15 mm. The parameters used to characterize ball classification patterns 

were taken from Muanpaopong et al. (2022b) as A1 = 1.10, A2 = 0.215 m−1, and A3 = 0.899. 

These values of A1−A3 provide a similar ball pattern as experimentally observed in Altun 

(2018). 

 The mean ball size for axial position l (dB,Mean,l) calculated from Equation (D.5) was 

used to determine the mass fraction of balls in the binary ball mixture using the following 

equation: 

 

B,Max B,Max, B,Min B,Min, B,Mean,l l ld M d M d+ =  (D.6) 

 

 Using the correlation MB,Min,l = 1−MB,Max,l and rearranging to determine the mass 

fraction of 30 mm balls MB,Max,l, the following equation was obtained: 
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( )B,Max, B,Mean, 15 1l lM d= −  (D.7) 

 

 The mass fraction of 15 mm balls at axial position l (MB,Min,l) can be calculated via 

MB,Min,l = 1−MB,Max,l. Table D.2 lists the mass fraction of each ball size at each axial 

position, taken from Muanpaopong et al. (2022b). Table D.2 clearly shows the gradient of 

30 mm balls along the axial direction in the second compartment: highest near the entry of 

second compartment to minimum near the outlet, whereas 15 mm balls exhibit vice versa. 

 

Table D.2 Mass Fraction of 30 mm Balls (MB,Max) and Mass Fraction of 15 mm Balls 

(MB,Min) for Each Axial Position l of the Second Compartment with a Classifying Liner 

 

Axial 

position, l (m) 

Ball mass fraction 

MB,Max (−) MB,Min (−) 

0.909 0.697 0.303 

1.82 0.594 0.406 

2.73 0.508 0.492 

3.63 0.438 0.562 

4.54 0.380 0.620 

5.45 0.333 0.667 

6.36 0.294 0.706 

Source: Muanpaopong et al., (2022b) 
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APPENDIX E 

SUPPLEMENTARY DATA FOR CHAPTER 6 

The supplementary materials of Chapter 6 are shown in this section. 

 

E.1 Details of the Global Optimizer-based Back-calculation Method 

A newly developed code was written in MATLAB version 9.12. Nonlinear constrained 

optimizer “fmincon” was coupled with ODE solver “ode15s” within the global 

optimization toolbox (The MathWorks, 2022), which minimizes SSR as the objective 

function. The MATLAB function “GlobalSearch” was used to generate the next set of 

initial guesses for the next trial point using the scatter method (Glover, 1998). The stopping 

criteria of the optimizer were taken from Capece et al. (2011a), where termination 

tolerances on constraint violation, function value, and parameter were all set to 10−9. For 

the ODE solver, relative and absolute tolerances of 10−4 and 10−6, respectively, were also 

taken from Capece et al. (2011a). The optimization was run by a Dell Precision 7820 Tower 

with Intel(R) Xeon(R) Gold 6254 CPU @ 3.10 GHz and 3.09 GHz. 

 

E.2 Details of the Use of the Back-calculation Method with the Synthetic  

Milling Data 

 

The number of size classes N and geometric progression ratio were taken from Bilgili 

(2023) as 320 and 21/13, respectively. The synthetic data were regarded as experimental 

data during the back-calculation; hence, the total number of experimental size classes K 

(refer to Equation (6.7)) was 320 (i.e., K = N). The topmost size x1 was 30 mm, which was 

taken from Bilgili (2023). The particle size was represented by its upper edge. Synthetic 
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data were generated for five milling times (i.e., t = 0.5, 1, 2, 4, and 8 min) with dB = 38 

mm. A Gaussian feed with a mean size of 20 mm and a standard deviation of 2 mm was 

used as the initial feed at t = 0, as explained in Subsection 6.3.2.1. In each iteration of the 

global optimizer, the PBM solution, which is the mass fraction, was converted to the 

cumulative PSD (see Equation (6.9)). The simulated cumulative PSD obtained from the 

ODE solver was subsequently compared with the synthetic (experimental) cumulative PSD 

to determine SSR. 

 

E.3 Details of the Use of the Back-calculation Method with the Experimental 

Cement Clinker Ball Milling Data 
 

The number of size classes N and geometric progression were set to 160 and 21/10, 

respectively. The topmost size x1 was 25 mm. Here, a lower number of size classes, 

compared to the synthetic data fit, was chosen to reduce execution time because 480 ODEs 

must be simultaneously solved for three ball sizes (dB = 20, 30, and 40 mm). Additionally, 

a number of trial points NT up to 104 was chosen, resulting in a long execution time. 

 Experimental initial feed data, in cumulative PSD form with 39 sizes (K = 39), were 

first interpolated into simulation size classes (N = 160) using the function “pchip” in 

MATLAB. Subsequently, cumulative PSD with 160 size classes was converted to mass 

fraction, in which the mass fraction with 160 size classes was used as the initial condition 

at t = 0 for the ODE solver. Once the PBM solution, which is the mass fraction in each 

simulation size class (N = 160), was obtained, the cumulative PSD could then be calculated 

(refer to Equation (6.9)). Using the function “pchip,” the cumulative PSD under the 

simulation size class was then again interpolated into the experimental size classes (K = 
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39) to determine SSR. 

 

E.4 Details of the DEM Simulation Setup 

Table E.1 lists the parameters used in the DEM simulation. For the material properties, the 

shear modulus was 7.8  1010 Pa for steel balls (Hou, 2014) and 1.3  1011 Pa for alumina 

balls (Auerkari, 1996), while the Poisson’s ratio was 0.28 for steel balls (Hou, 2014) and 

0.25 for alumina balls (Auerkari, 1996). A simulation time step corresponding to 20% of 

the Rayleigh time step, which depends on the ball material type and ball size, was chosen 

(similar to Capece et al. (2014)). 

 

Table E.1 Coefficients Used in the DEM Simulations 

 

Parameter Contact type 

Steel−Steela Steel−Ceramicb Ceramic−Ceramicb 

Coefficient of restitution 0.5 0.5 0.5 

Coefficient of static friction 0.5 0.2 0.5 

Coefficient of rolling friction 0.01 0.01 0.01 

a taken from Bian et al. (2017); b taken from Hou (2014). 
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