

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

TRUSTWORTHY MACHINE LEARNING
THROUGH THE LENS OF PRIVACY AND SECURITY

by
Thi Kim Phung Lai

Nowadays, machine learning (ML) becomes ubiquitous and it is transforming society.

However, there are still many incidents caused by ML-based systems when ML is deployed

in real-world scenarios. Therefore, to allow wide adoption of ML in the real world, especially

in critical applications such as healthcare, finance, etc., it is crucial to develop ML models

that are not only accurate but also trustworthy (e.g., explainable, privacy-preserving, secure,

and robust). Achieving trustworthy ML with different machine learning paradigms (e.g.,

deep learning, centralized learning, federated learning, etc.), and application domains (e.g.,

computer vision, natural language, human study, malware systems, etc.) is challenging, given

the complicated trade-off among utility, scalability, privacy, explainability, and security.

To bring trustworthy ML to real-world adoption with the trust of communities, this study

makes a contribution of introducing a series of novel privacy-preserving mechanisms in

which the trade-off between model utility and trustworthiness is optimized in different

application domains, including natural language models, federated learning with human

and mobile sensing applications, image classification, and explainable AI. The proposed

mechanisms reach deployment levels of commercialized systems in real-world trials while

providing trustworthiness with marginal utility drops and rigorous theoretical guarantees.The

developed solutions enable safe, efficient, and practical analyses of rich and diverse user-

generated data in many application domains.

TRUSTWORTHY MACHINE LEARNING
THROUGH THE LENS OF PRIVACY AND SECURITY

by
Thi Kim Phung Lai

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Information Systems

Department of Informatics

May 2023

Copyright © 2023 by Thi Kim Phung Lai

ALL RIGHTS RESERVED

APPROVAL PAGE

TRUSTWORTHY MACHINE LEARNING
THROUGH THE LENS OF PRIVACY AND SECURITY

Thi Kim Phung Lai

Hai Phan, Dissertation Advisor Date
Assistant Professor of Data Science, NJIT

Yi-fang Brook Wu, Committee Member Date
Associate Professor of Informatics, NJIT

Yi Chen, Committee Member Date
Professor of Business Data Science, NJIT

Tong Sun, Committee Member Date
Director of Document Intelligence Labs, Adobe Inc., San Jose, California

Xiong Li, Committee Member Date
Professor of Computer Science and Biomedical Informatics, Emory University, Atlanta, GA

BIOGRAPHICAL SKETCH

Author: Thi Kim Phung Lai

Degree: Doctor of Philosophy

Date: May 2023

Undergraduate and Graduate Education:

• Ph.D. in Information Systems
New Jersey Institute of Technology, Newark, NJ, 2023

• Master of Science in Computer Science
Oregon State University, Corvallis, OR, 2018

• Bachelor of Science in Electronics and Telecommunications
DaNang University of Science and Technology, Da Nang, Viet Nam, 2013

Major: Information Systems

Presentations and Publications:

Truc Nguyen∗, Phung Lai∗, Hai Phan, My Thai, “XRAND: Differentially Private
Defense against Explanation-Guided Attacks,” Association for the Advancement
of Artificial Intelligence (AAAI) Conference on Artificial Intelligence, 2023 (AAAI
2023 Distinguished Paper (12 selected/8,777) - Oral presentation) (∗ Equal
contribution)

Truc Nguyen, Phung Lai, Khang Tran, Hai Phan, and My Thai, “Active Membership
Inference Attack under Local Differential Privacy in Federated Learning”,
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023

Phung Lai, Tong Sun, Rajiv Jain, Franck Dernoncourt, Jiuxiang Gu, Nikolaos Barmpalios,
Han Hu, and NhatHai Phan, “User-Entity Differential Privacy in Natural Language
Modeling,” IEEE International Conference on Big Data (IEEE BigData), pp. 1465
– 1474, 2022 (Oral presentation)

Xiaopeng Jiang, Han Hu, Thinh On, Phung Lai, Vijaya Mayyuri, An Chen, Devu Shila,
Adriaan Larmuseau, Ruoming Jin, Cristian Borcea, Hai Phan, “FLSys: Toward
an Open Ecosystem for Federated Learning Mobile Apps”, IEEE Transactions on
Mobile Computing (IEEE TMC), 2022

iv

Khang Tran, Phung Lai, Hai Phan, Issa Khalil, Yao Ma, Abdallah Khreishah, My Thai,
Xintao Wu, “DPGNN: Differential Privacy Preservation in Graph Neural Networks”,
IEEE International Conference on Big Data (IEEE BigData), pp. 1582 – 1587,
2022 (Oral presentation)

Phung Lai, Hai Phan, Han Hu, Ruoming Jin, My Thai, An Chen, “Lifelong DP: Consistently
Bounded Differential Privacy in Lifelong Learning”, Conference on Lifelong
Learning Agents (CoLLAs) in Proceedings of Machine Learning Research (JMLR),
pp. 778 – 797, 2022

Pradnya Desai∗, Phung Lai∗, NhatHai Phan, and My Thai, “Continual Learning with
Differential Privacy,” International Conference on Neural Information Processing
(ICONIP), 2021 pp. 334 – 343, 2021 (Oral presentation) (∗ Equal contribution).

Pelin Ayranci∗, Phung Lai∗, NhatHai Phan, David Newman, Alexander Kolinowski, and
Deijing Dou, “OnML: An Ontology-based Approach for Interpretable Machine
Learning,” Journal of Combinatorial Optimization (JOCO - Springer), vol. 44(1),
pp. 770 – 793, 2022 (∗ Equal contribution)

Phung Lai, NhatHai Phan, David Newman, Han Hu, Anuja, and Dejing Dou, “Ontology-
based interpretable machine learning with learnable anchors,” International Joint
Conference on Neural Networks (IJCNN), 2020

Trung Vu∗, Phung Lai∗, Raviv Raich, Anh Pham, Xiaoli Z Fern, and UK Arvind Rao, “A
Novel Attribute-based Symmetric Multiple Instance Learning for Histopathological
Image Analysis,” IEEE Transactions on Medical Imaging (IEEE T-MI), 39(10),
3125–3136, 2020 (∗ Equal contribution)

Phung Lai, NhatHai Phan, David Newman, Han Hu, Anuja, and Dejing Dou, “Ontology-
based interpretable machine learning with learnable anchors,” Conference on Neural
Information Processing Systems (NeurIPS) workshop – Knowledge Representation
and Reasoning Meets Machine Learning (KR2ML-NeurIPS workshop), 2019.

Phung Lai, Raviv Raich, and Molly Megraw, “ConvMD: Convolutive matrix decomposition
for classification of matrix data,” IEEE Statistical Signal Processing (SSP) Workshop,
368–372, 2018.

Tam Nguyen, Raviv Raich, and Phung Lai, “Jeffreys prior regularization for logistic
regression,” IEEE Statistical Signal Processing (SSP) Workshop, 1–5, 2016.

Phung Lai and Tuan Pham, “Gaussian mixture model based object segmentation for fall
detection,” International Workshop on Industrial IT Convergence, 2014.

Phung Lai, Khue Tra, and Tuan Pham, “An ultra-low power consumption wireless ECG
monitoring system,” International Symposium on Research and Development of
E-health Systems, 117–122, 2014.

v

Khue Tra, Phung Lai, and Tuan Pham, “Combination of analog and digital solutions for
wireless ECG monitor,” International Conference on BioSciences and BioElectronics,
63–67, 2014.

Y Ngo, Phung Lai, and Tuan Pham, “A single-camera fall detection using neural network,”
UK Vietnam Advance Surveillance Systems workshop, 270–280, 2012.

Patents:

Phung Lai, Tong Sun, Rajiv Jain, Franck Dernoncourt, Jiuxiang Gu, and Nikolaos
Barmpalios, “Privacy-Aware Language Models Training,” Non-provisional US
Patent, 2023.

Phung Lai, Tong Sun, Rajiv Jain, Franck Dernoncourt, Jiuxiang Gu, and Nikolaos
Barmpalios, “Privacy-Aware Language Models Training,” Provisional Adobe Patent,
2022.

Phung Lai, Tong Sun, Rajiv Jain, Franck Dernoncourt, Jiuxiang Gu & Nikolaos Barmpalios,
“Preserving User-Entity Differential Privacy in Natural Language Modeling,” Non-
provisional US Patent, 2021 (To be published in 2023).

Phung Lai, Tong Sun, Rajiv Jain, Franck Dernoncourt, Jiuxiang Gu & Nikolaos Barmpalios,
“User-Entity Differential Privacy in Natural Language Modeling,” Provisional Adobe
Patent, 2021.

Personal Biography:

Thi Kim Phung Lai’s research interests focus on trustworthy machine learning with the
core of privacy and security. There are various applications, such as human sensing,
mobile computing, healthcare, social goods, etc. Lai has authored 13 publications
and some forthcoming work in the field. Her work has been published at leading
venues, including AAAI, AISTATS, IEEE BigData, IEEE transactions, etc. Lai
is a recipient of the AAAI 2023 Distinguished Paper Award. In addition, Lai is a
holder of several patents in privacy preservation in NLP. The NSF and industrial
partners, including Adobe, Qualcomm, and Wells Fargo, have funded her work. After
graduation, Lai will join the College of Emergency Preparedness, Homeland Security
& Cybersecurity, University at Albany, SUNY as a tenure-track Assistant Professor.
That position also belongs to the Albany Artificial Intelligence Supercomputing
Initiative (Albany AI).

vi

vii

ACKNOWLEDGMENT

I am greatly indebted to Dr. Hai Phan for his exceptional guidance, patience, kindness, and

tremendous support. He introduced me to the world of trustworthiness machine learning,

particularly differential privacy, and consistently nurtured my passion for this field, which

forms the basis of my current and future work. His dedication, passions, interests, and

achievements to the professional life have deeply impressed and motivated me to pursue

my academia aspirations. I was particularly struck by his remark, “Students’ success is my

success,” which underscores his commitment to supporting and inspiring students. Always

trying his best to support and encourage students made a big impression on me. He has

always been there for me, even in the darkest of times, to give me wise, thorough, and

timely advice. I am forever grateful for everything he has done for me. I am determined

to uphold this admirable philosophy in my own academic career and when mentoring my

future students. Once again, I extend my sincere appreciation to Dr. Phan for being an

outstanding and supportive advisor.

I express my gratitude to the other members of my dissertation committee, namely Dr.

Brook Wu, Dr. Li Xiong, and Dr. Li Chen, for their participation in my dissertation defense.

I would also like to acknowledge the contributions of my former committee members, Dr.

David Shaohua Wang, who served on my dissertation proposal committee, and Dr. Xinyue

Ye, who served on my qualifying exam committee. Their valuable time, helpful guidance,

and thoughtful feedback greatly aided in enhancing both my research study and my skills.

During my internship at Adobe, I had the honor of working with Dr. Tong Sun and

Adobe’s Document Intelligence Labs (DIL) on developing privacy-preserving mechanisms

for language models. Dr. Sun acted as my supervisor, and we continue to collaborate on

privacy-preserving research. As my first industrial experience, I initially struggled to adapt,

but thanks to Dr. Sun’s patience, friendliness, and comprehensive guidance, I received

invaluable support and feedback when needed. She is brilliant and hard-working, and I

viii

have learned a lot from working with her. I would also like to express my gratitude to other

members of DIL, including Jiuxiang Gu, Franck Dernoncourt, Rajiv Jain, and Nikolaos

Barmpalios, for their valuable guidance and feedback throughout my work.

I appreciate the research funding from the National Science Foundation (NSF), Adobe

Systems, and Qualcomm Inc. for during the Ph.D. program (grant numbers: NSF IIS-

2041096, NSF CNS-1747798, NSF CNS-1935928, NSF CNS-1850094, Adobe Unrestricted

Gift, and Qualcomm Inc. funding). I am especially grateful for my collaborators, including

Dr. My Thai, Dr. Li Xiong, Dr. Issa Khalil, Dr. Xintao Wu, and Dr. Ruoming Jin, for their

support and encouragement to keep pushing the research boundaries.

In addition, I would like to express my appreciation to my labmates, Han Hu, Pelin

Ayranci, Khang Tran, and Khang Dang, for their support and collaboration during my

graduate study. Their encouragement, enthusiasm, and constructive feedback have been

instrumental in my success and growth as a researcher. I am also grateful to my friends,

Truc Nguyen, Hieu Pham, Ngoc Nguyen, Dung Pham, Giang Ly, Danh Nguyen, Thang Bui,

Anh Tong, Tam Nguyen, Thang Hoang, Trang Nguyen, Ni Trieu, Khoi Nguyen, and Hai

Dao, for adding joy and making my life in the US more pleasant. I will always cherish the

memories we have created together.

Last but not least, I’d like to have a special thank to my family, who have been my

pillars of strength throughout my journey. My mom Thao Hoang, my dad Muoi Lai, my

older sisters Anh Lai and Loan Lai have always supported me with their selfless sacrifices,

unwavering encouragement, and unconditional love. Without them, I would not have had

the strength and motivation to pursue my dreams. I would also like to express my gratitude

to Tran’s family, who have become my second family in the US. Their tremendous support,

prayers, and well-wishes have been invaluable, and I feel blessed to have them in my life.

Once again, I want to reiterate my heartfelt appreciation for all of you who have been

the pillars of my success with your love, understanding, encouragement, and sacrifices. I

promise to continue making you proud of my future endeavors.

ix

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Technical Challenges . 2

1.3 Key Contributions . 6

1.4 Organization . 9

2 USER-ENTITY DIFFERENTIAL PRIVACY IN
LEARNING NATURAL LANGUAGE MODELS 10

2.1 Preamble . 10

2.2 Background . 10

2.2.1 Next Word Prediction . 10

2.2.2 Sensitive Entities and Sentences 11

2.2.3 Privacy Threat Models . 11

2.2.4 Different Levels of DP . 12

2.2.5 Sensitive Entities and User Membership 14

2.2.6 UeDP Definition . 15

2.3 Preserving UeDP in NLMs . 16

2.3.1 Misidentifying Sensitive Entities 16

2.3.2 Preserving UeDP . 17

2.4 Experimental Results . 20

2.5 Discussion . 28

3 SCALABLERR: DIMENSION-SCALABLE LOCAL DIFFERENTIAL PRIVACY
FOR FEDERATED LEARNING . 33

3.1 Preamble . 33

3.2 Background . 33

3.3 Dimension-Scalability . 36

x

TABLE OF CONTENTS
(Continued)

Chapter Page

3.4 Scalable Randomized Response . 41

3.4.1 Bit-aware Randomization . 45

3.4.2 Privacy Loss Bound . 47

3.4.3 Tighter Privacy Loss Bound . 50

3.4.4 Dimension-Scalability . 52

3.4.5 Privacy, Utility, Dimensionality Trade-off 54

3.5 Experimental Results . 57

3.6 Discussion . 66

4 XRAND: DIFFERENTIALLY PRIVATE DEFENSE AGAINST EXPLANATION-
GUIDED ATTACKS . 69

4.1 Preamble . 69

4.2 Background . 69

4.3 XAI-guided Attack Against MLaaS . 70

4.3.1 Exposing MLaaS via XAI . 70

4.3.2 XAI-guided Backdoor Attack against MLaaS 71

4.4 XRAND – Local DP Defense . 73

4.4.1 LDP-preserving Explanations 75

4.4.2 Privacy Guarantees of XRAND 76

4.5 Certified Robustness . 78

4.5.1 Training-time Certified Robustness 78

4.5.2 Inference-time Certified Robustness 79

4.6 Experiments . 81

4.7 Discussion . 85

5 LIFELONG DP: CONSISTENTLY BOUNDED DIFFERENTIAL PRIVACY IN
LIFELONG MACHINE LEARNING . 86

5.1 Preamble . 86

xi

TABLE OF CONTENTS
(Continued)

Chapter Page

5.2 Background . 86

5.3 Privacy Risk and Lifelong DP . 88

5.4 Preserving Lifelong DP . 92

5.5 Scalable and Heterogeneous Training 98

5.6 Experiments . 99

5.7 Discussion . 106

6 ADDITIONAL WORK: ONTOLOGY-BASED INTERPRETABLE MACHINE
LEARNING FOR TEXTUAL DATA . 108

6.1 Preamble . 108

6.2 Background and Problem Definition . 108

6.2.1 Interpretable Machine Learning 109

6.2.2 Ontology-based Approaches . 112

6.2.3 Information Extraction . 112

6.3 Ontology-based Interpretable Machine Learning for Textual Data 113

6.3.1 Ontology-based Tuples . 113

6.3.2 Ontology-based Sampling Technique 115

6.3.3 Learnable Anchor Text . 116

6.3.4 Generating Semantic Explanations 118

6.4 Experiment . 120

6.4.1 Datasets and Domain Ontologies 120

6.4.2 Baseline Approaches . 122

6.4.3 Experimental Settings . 123

6.4.4 Experimental Results and Analysis 127

6.5 Discussion . 132

7 CONCLUSION AND FUTURE WORK . 133

7.1 Conclusion . 133

xii

TABLE OF CONTENTS
(Continued)

Chapter Page

7.2 Future Work . 134

APPENDIX A . 138

A.1 Sensitive Entity Recognition and Tool-kits 138

A.2 UeDP without Considering Extended Sensitive Entities 139

A.3 Datasets and Data Processing . 141

A.4 Revisiting Word-level LDP Analysis in [120] 142

A.5 Supplemental Experimental Results for UeDP 146

A.6 Proof of Lemma 2 . 146

A.7 Lemma 4 and Its Proof . 148

A.8 Proof of Theorem 2 . 149

A.9 Proof of Theorem 3 . 150

A.10 Proof of Theorem 4 . 156

A.11 Proof of Theorem 5 . 157

A.12 Extended Analysis for Interested Readers 158

A.13 Dimension-Scalability Analysis of LDP-based Approaches 158

A.13.1 Duchi’s Mechanism (DM) [51, 201] 158

A.13.2 Piecewise Mechanism (PM) [201] 160

A.13.3 Hybrid Mechanism (HM) [201] 162

A.13.4 Three Outputs Mechanism [226] 162

A.13.5 OME [121] . 164

A.14 Adaptive Privacy Budget in OME . 167

A.15 Adaptive Privacy Budget in LATENT 170

A.16 RMSE Comparison in Mean Estimation 173

A.16.1 Supplementary Theoretical Results for ScalableRR 174

A.17 Expected Error at The Bit-Level . 175

xiii

TABLE OF CONTENTS
(Continued)

Chapter Page

A.18 Supplementary Experimental Results for ScalableRR 176

A.19 Revisiting Randomized Response Mechanisms for LDP 180

A.20 Proof of Theorem 6 . 182

A.21 A Primer on Certified Robustness . 182

A.22 Proof of Theorem 8 . 185

A.23 Certified Robustness Bound using boosting randomized smoothing. 188

A.24 Experimental settings and results . 189

A.25 Visualizing XRAND . 191

A.26 Proof of Theorem 9 . 192

A.27 Proof of Theorem 10 . 192

A.28 L2DP-ML with Streaming Batch Training 195

A.29 HARW Dataset . 195

A.30 Hyper-parameter Grid-Search and Supplemental Results 198

References . 213

xiv

LIST OF TABLES

Table Page

2.1 Description of Sensitive Entity Categories 30

2.2 Breakdown of CONLL-2003, AG, and SEC Datasets 32

3.1 Dataset Breakdown . 60

3.2 Macro-model Performance for HAR-Wild for Different Types of Privacy
Protection Mechanisms and Different Parameters 67

5.1 Average Forgetting Measure . 101

5.2 Average Forgetting Measure on Random Orders of HARW Tasks 103

6.1 Data Statistical Analysis . 126

6.2 AC and SC in Drug Abuse . 126

A.1 Summarizing (γ, γϵ)-Dimension-Scalability of LDP-preserving RR Mechanisms . . 166

A.2 Several Empirical Values of α in Equation A.59 as a Function of ϵX when
l = 10, r = 1, 000, and δ = 1e− 4 . 170

A.3 Results of LDP-FL without Privacy Accumulation on the AG Dataset 177

A.4 Statistics of the HARW Dataset . 197

A.5 Baseline Results On The HARW Dataset 198

A.6 Average Accuracy (%) in Hyper-parameter Grid-search of NaiveGaussian
Mechanism Given the Permuted CIFAR-10 Dataset 199

A.7 Average Forgetting Measure . 200

A.8 Average Forgetting of the Order of [20Hz, 5Hz, 10Hz, 50Hz] 200

xv

LIST OF FIGURES

Figure Page

2.1 User-Entity DP framework. 12

2.2 Next word prediction results using the GPT-2 model. 21

2.3 Text classification results on the AG dataset using the BERT model. 25

2.4 Privacy budget of UeDP-Alg fE , UeDP-Alg fE+ , and User-level DP as a
function of iterations in CONLL-2003, AG, and SEC datasets. 26

2.5 Next word prediction results using the GPT-2 model with varying extended
sensitive entities sampling rate qs in training. 26

2.6 Next word prediction results with AWD-LSTM model. 26

2.7 Next word prediction results using the AWD-LSTM model with varying
extended sensitive entities sampling rate qs in training. 27

3.1 a) Privacy threat from the curious server in FL, b) Data reconstruction attacks
from gradients, and c) from embeddings. 34

3.2 Binary representation. 42

3.3 Randomization probability qi as a function of α with ϵX = 1.0 and r = 10, 000. 48

3.4 Different measurements for comparing dimension-scalability among LDP-
based techniques. 50

3.5 Expected error for an embedding feature as a function of: (a) user-predefined
budget ϵX , (b) expansion factor d. 54

3.6 Expected error at the bit-level (ϵX = 1.0, r = 10, 000) 55

3.7 Randomization probability qi as a function of d. 56

3.8 Randomization probability qi at the bit-level (r = 10, 000, ϵX = 1). 57

3.9 AUC values of LDP algorithms applied on the embedding features e in the AG,
SEC, and FEMNIST datasets. 60

3.10 AUC values of LDP algorithms applied on the embedding features e in the
CelebA dataset. 61

3.11 AUC values of LDP algorithms applied applied on the gradients△θut with the
anonymizer [191]. 63

3.12 AUC values of LDP algorithms applied on the gradients △θut with the
anonymizer [191] in the CelebA dataset. 63

xvi

LIST OF FIGURES
(Continued)

Figure Page

3.13 AUC values of ScalableRR and Adaptive OME when varying the factor d
(r = 1) in the AG dataset. 64

3.14 ScalableRR v.s. reconstruction attacks. 65

3.15 Comparison of FL HAR-Wild Versions, with and without Data Augmentation,
and with and without Privacy Protection. 66

4.1 System model of a cloud-hosted malware classifier that leverages crowdsourced
data for model training. 72

4.2 Attack success rate as a function of privacy budget ε and the portion of poisoned
samples on LightGBM and EmberNN. 82

4.3 Attack success rate as a function of trigger size and privacy budget ε. 83

4.4 Log-odds score of the explanations of 20,000 goodware and malware samples. 83

4.5 Visualizing the SHAP explanation and our XRAND explanation of a test sample. 84

5.1 Network design of L2DP-ML. 93

5.2 Gradient update in L2DP-ML. 93

5.3 Average accuracy in the a) Permuted MNIST (20 tasks), b) Permuted CIFAR-10
(17 tasks), and c) HARW. 101

5.4 Average accuracy with random task orders: a) HARW 50Hz - 20Hz - 10Hz
- 5Hz, b) HARW 20Hz - 50Hz - 5Hz - 10Hz, and c) HARW 20Hz - 5Hz -
10Hz - 50Hz. 102

6.1 A flow chart of the OnML approach. 113

6.2 Drug abuse ontology. 114

6.3 Visualization of a drug abuse experiment. 119

6.4 Visualization of a consumer complaint experiment. 120

6.5 Consumer complaint ontology. 123

6.6 Average score changes in consumer complaint. 127

6.7 AMT results for drug abuse dataset. 128

6.8 AMT results for consumer complaint dataset. 129

6.9 Head-to-head comparison results. 130

xvii

LIST OF FIGURES
(Continued)

Figure Page

6.10 Length of complaints. 131

6.11 Prediction probabilities groups. 131

A.1 Distribution of users and sentences. 146

A.2 Privacy budget of UeDP-Alg fE , UeDP-Alg fE+ , and User-level DP as a
function of iterations in CONLL-2003, AG, and SEC datasets. 147

A.3 Illustrating for the root of Eq. A.59. 171

A.4 Impacts of r and l on ϵadaptive
ϵ

in LATENT (ϵX = 0.1). 174

A.5 Accuracy of ScalableRR and Adaptive OME when varying the factor d (r = 1)
in the AG dataset. 178

A.6 AUC values of each algorithm applied on the gradients △θut in the CelebA
dataset. 201

A.7 Randomization probability q (p = 1− q) as a function of r with fixed ϵX . . . 202

A.8 Randomization probability qi (pi = 1− qi) as a function of l with fixed r and ϵ. 203

A.9 RMSE comparison as a function of ϵX . 204

A.10 Expected error comparison between ScalableRR and OME. 204

A.11 Expected error at the bit-level as a function of ϵX with r = 10, 000. 204

A.12 Expected error at the bit-level as a function of d with ϵX = 1.0. 205

A.13 Expected error at the bit-level (e.g., the sign bit (highest important bit) and the
lowest fraction bit (lowest important bit) as a function of d with r = 1. . . 205

A.14 Randomization probability qi given r = 10, 000. 205

A.15 Accuracy of LDP algorithms applied on the embedding features e in the AG,
SEC, and FEMNIST datasets. 206

A.16 Accuracy of LDP algorithms applied on the gradients△θut in the AG, SEC, and
FEMNIST datasets. 206

A.17 Accuracy of LDP algorithms applied on the gradients△θut with the anonymizer
[191]. 206

A.18 Accuracy of each mechanism applied on labels. 206

A.19 AUC values of LDP algorithms applied on the gradients△θut in the AG, SEC,
and FEMNIST datasets. 207

xviii

LIST OF FIGURES
(Continued)

Figure Page

A.20 AUC values of each mechanism applied on labels in the AG, SEC, and
FEMNIST datasets. 207

A.21 SSE values as a function of ϵ and τ . 207

A.22 Attack success rate as a function of privacy budget ε and the portion of poisoned
samples on the Contagio PDF and Drebin datasets. 208

A.23 Certified robustness at the training time. The smaller privacy budget ε, the
higher certified accuracy. 208

A.24 Visualizing the SHAP explanation and our XRAND explanation of test sample 1.209

A.25 Visualizing the SHAP explanation and XRAND explanation of test sample 2. 209

A.26 Visualizing the SHAP explanation and XRAND explanation of test sample 3. 210

A.27 p value for 2-tail t-tests on the (a) Permuted MNIST (20 tasks), b) Permuted
CIFAR-10 (17 tasks), and (c) HARW (5Hz - 10Hz - 20Hz - 50Hz). 210

A.28 p value for 2-tail t-tests on the HARW dataset with random task orders: (a)
HARW 50Hz - 20Hz - 10Hz - 5Hz, (b) HARW 20Hz - 50Hz - 5Hz - 10Hz,
and (c) HARW 20Hz - 5Hz - 10Hz - 50Hz. 212

A.29 Average accuracy in the (a) Split MNIST (5 tasks), and b) Split CIFAR-10 and
CIFAR-100 (11 tasks). 212

xix

CHAPTER 1

INTRODUCTION

1.1 Motivation

Machine learning (ML) has gained significant attention in research due to its essential role in

many recent scientific and technological breakthroughs [34,44,103,105,158]. Among these,

the proliferation of ML systems in real-world applications has brought about important

considerations regarding the trustworthiness of ML-based systems, including explanability,

privacy preservation, security, and robustness. Many ML models remain black-box and

are severely vulnerable to privacy attacks, therefore, it is critical to 1) understand how ML

models work, 2) whether the trained models reveal about training data, and 3) how robust

the model outcomes are. Answering these questions helps to bring trustworthy ML closer to

real-world adoption with the trust from communities. Our main goal is to provide rigorous

trustworthy ML models by addressing fundamental trustworthiness challenges in ML, i.e.,

privacy and security, explanability, and robustness, to allow broad applicability of ML-based

systems and gain trust of end-users on using these systems.

Recent data privacy and security regulations, e.g., HIPAA/HITECH, pose major

challenges in collecting and using personally sensitive data in ML applications. Federated

learning (FL) is a promising technique to tackle the challenges by enabling clients to

jointly train ML models via sharing and aggregating gradients computed from clients’

local data through a server without sharing their data. Technically, recent attacks have

shown that 1) deployed ML models can be used to accurately extract sensitive entities in

private training data and to identify a data owner by the extracted names or unique phrases,

and 2) clients’ training data can be perfectly extracted from the shared gradients in FL.

Furthermore, to improve transparency of ML systems, explanations are typically provided

along with model predictions, such as in Machine-Learning-as-a-Service (MLaaS) systems.

1

Importantly, explanations also open a door for adversaries to gain insights into the black-box

models in MLaaS, thereby making the models more vulnerable to several attacks. A recent

explanation-guided backdoor attack (XBA) [178] was successfully carried out to misclassify

a targeted label by exploiting the correlation between the model prediction and explainability

to poison the data. These attacks underscore privacy risks in ML-based systems.

In addition to solve privacy and security issues of a single ML task, we also work with

lifelong learning (L2M), which is crucial for machine learning (ML) to acquire new skills

through continual learning, pushing ML toward a more human learning in reality. Given a

stream of different tasks and data, a deep neural network (DNN) can quickly learn a new

task, by leveraging the acquired knowledge after learning previous tasks, under constraints

in terms of the amount of computing and memory required [30]. As a result, it is quite

challenging to train an L2M model with a high utility. Orthogonal to this, L2M models are

vulnerable to adversarial attacks, i.e., privacy model attacks [70, 146, 183, 203], when DNNs

are trained on highly sensitive data, e.g., clinical records [33, 135], user profiles [171, 207],

and medical images [83, 156].

1.2 Technical Challenges

Addressing the aforementioned problems is a non-trivial task, since: First, there is still

a lack of scientific studies on how to effectively protect privacy for both users and their

confidential information, i.e., sensitive entities in users’ textual data, with an optimized

trade-off between privacy loss and model utility; Second, existing privacy preserving

mechanisms in FL typically suffer from the curse of dimensionality, rooted in the excessive

privacy budget consumption proportional to the large dimensions of input features, gradients,

and communication rounds between clients and the server, causing loose privacy protection

or inferior model accuracy. This is challenging for these techniques to achieve good model

utility under tight privacy guarantees given complex models and tasks, especially when

deploying the models in practice; Third, there has not been scientific studies on protecting

2

explanations meanwhile maintaining the faithfulness of explanations without affecting

model performance; and Fourth, there is a lack of study offering privacy protection to the

training data in L2M, in which memorizing previous tasks while learning new tasks further

exposes private information in the training set, by continuously accessing the data from the

previously learned tasks (i.e., data stored in an episodic memory [30,167,193]); or accessing

adversarial examples produced from generative memories to imitate real examples of past

tasks [144, 180, 205].

To address these challenges, first to protect users’ data privacy, the naive solution is

to anonymize (i.e., removing) sensitive entities. Heuristically, this technique is insufficient

since the anonymized entities can be matched with non-anonymized data records in

a different dataset [60]. While secure multi-party computation [75, 79, 200, 214] and

homomorphic encryption [7, 25, 72, 74, 168, 200] can be applied to protect privacy, these

techniques usually come with a huge computation and resource overhead. Thus, we

proposed to apply differential privacy [58], one of the most adequate solutions, given

its formal privacy protection without undue sacrifice in computation efficiency and model

utility. Differential privacy (DP) provides rigorous privacy protection as a probabilistic

term, limiting the knowledge about a data record a ML model can leak while learning

features of the whole training set [4, 66, 110, 137, 152, 153, 181, 190, 219]. Principally,

existing DP levels of protection, including sample-level DP [4, 20, 60, 170, 208], user-level

DP [128, 162], element-level DP [15], and local feature-level DP [51, 63, 120, 121], do not

provide the privacy protection level demanded to solve the privacy implication of both users

and sensitive entities. Given training data: 1) Sample-level DP protects privacy of a single

sample. 2) User-level DP protects privacy of a single data owner, also called a single user,

who may contribute one or more data samples. 3) Element-level DP partitions data owners’

contribution to the training data into sensitive elements, e.g., a curse word, which will be

protected. Element-level DP does not provide privacy protection to data owners. And 4)

Local (feature-level) DP protects true values of a data sample from being inferred. There is

3

a demand for a new level of DP to protect privacy simultaneously for both sensitive entities

in the training data and the participation information of data owners in learning natural

language modeling (NLM).

Second, to offer rigorous privacy protection without computational overheads, local

differential privacy (LDP) [21, 39, 51, 63, 112, 142, 174, 204, 224] has emerged as a crucial

component in a variety of FL applications [27, 116, 121, 176, 191, 196, 226] in both cross-

device [26, 97, 99, 197, 218] and cross-silo [53, 82, 97, 220] settings. In cross-device FL,

clients jointly train an FL model. existing LDP-preserving approaches can be categorized

into two lines: (1) clients add noise to local gradients using RR mechanisms to protect the

values of the local gradients [116, 191, 201, 226], and (2) clients add noise into each training

sample using RR mechanisms to protect the value of each training sample [13, 121, 210],

then the clients use these perturbed samples to derive local gradients. For both approaches,

clients send LDP-preserved local gradients to the server for model updates in each training

round. Unlike the classical survey applications of RR [96,204], in which one-time collection

for a survey question could be sufficient to estimate the population statistics accurately, a

gradient perturbation-based RR mechanism in FL needs to be repeatedly applied over the

training rounds [116,191]. Consequently, the LDP guarantee for a local training data sample

of a client significantly degrades (i.e., consumes a larger privacy budget) proportional to the

number of communication rounds between the client and the coordinating server [201, 226].

In addition, when the number of elements in the local gradient vector (or the number of

embedding features in data perturbation-based RR mechanisms) increases, the privacy

budget has to increase accordingly to maintain utility [201, 226]. Mitigating the curse of

dimensionality is non-trivial and remains an open problem. Existing approaches, such as

anonymizers (assumed to be trusted), i.e., shuffler [32, 115] or anonymity approaches (e.g.,

faking source IP, VPN, mixnets, etc. [40, 191]), and dimension reduction approaches [116,

226], lessen the problem but also have limitations. The anonymizers could be compromised

or collude with the server to extract sensitive information from local gradients [62]. Applying

4

RR mechanisms on reduced sets of embedding features or gradients using dimension

reduction can work well with lightweight models [116, 201, 226]. Empirically, it becomes

challenging for these techniques to achieve good utility under rigorous LDP guarantees

with complex models and tasks, such as deep neural networks (DNNs). In complex models,

the dimensions of the features, gradients, and training rounds are still large even after

dimensionality reduction for acceptable model performance.

Third, despite the great potential of explainers to improve the transparency and

understanding of ML models in MLaaS, they open a trade-off in terms of security.

Specifically, they allow adversaries to gain insights into black-box models, essentially

uncovering certain aspects of the models that make them more vulnerable. Such an

attack vector has recently been exploited by the research community to conduct several

explanation-guided attacks [134, 138, 178, 182, 225]. It was shown that an explainer may

expose the top important features on which a black-box model is focusing, by aggregating

over the explanations of multiple samples. An example of utilizing such information is

the recent highly effective explanation-guided backdoor attack (XBA) against malware

classifiers investigated by [178]. The authors suggest that SHAP can be used to extract the

top-k goodware-oriented features. The attacker then selects a combination of those features

and their values for crafting a trigger; and injects trigger-embedded goodware samples

into the training dataset of a malware classifier, with an aim of changing the prediction of

malware samples embedded with the same trigger at inference time. To prevent an adversary

from exploiting the explanations, we need to control the information leaked through them,

especially the top-k features. Since the explanation on each queried sample is returned

to the end users, a viable defense is to randomize the explanation such that it is difficult

for attackers to distinguish top-k features while maintaining valuable explainability for

the decision-making process. A well-applied technique to achieve this is preserving local

differential privacy (LDP) [63, 202] on the explanations. Technically, existing LDP-based

approaches [63, 191, 209, 226] are not designed to protect the top-k features aggregated over

5

the returned explanations on queried samples. Therefore, optimizing the trade-off between

defenses against explanation-guided attacks and model explainability is an open problem.

Fourth, to preserve DP in L2M, one can employ the moments accountant [4] to train

the model by injecting Gaussian noise into clipped gradients. The post-processing property

in DP [59] can be applied to guarantee that gradients are also DP. To optimize this naive

approach, one can adapt the management policy [109] to redistribute the privacy budget

across tasks while limiting the total privacy budget ϵ to be smaller than a predefined upper

bound, that is, the training will be terminated when ϵ reaches the predefined upper bound.

Importantly, the challenge in bounding the privacy risk is still the same, centering around

the growing number of tasks m and the heterogeneity among tasks: (1) The larger the

number of tasks, the larger the privacy budget will be consumed by the
∑

function. It is

difficult to identify an upper bound privacy budget given an unlimited number of streaming

tasks in L2M; (2) Different tasks may require different numbers of training steps due to the

difference in terms of the number of tuples in each task; thus, affecting the privacy budget ϵ;

and (3) The order of training tasks also affect the privacy budget, since computing gref by

using data in the episodic memory from one task may be more than other tasks. Therefore,

bounding the DP budget in L2M is non-trivial.

1.3 Key Contributions

To overcome these aforementioned challenging issues, this study is structured around the

following key contributions:

In our first work (Chapter 2), we propose a novel notion of user-entity adjacent

databases (Definition 2), leading to formal guarantees of user-entity privacy rather than

privacy for a single user or a single sensitive entity. To preserve UeDP, we introduce a novel

algorithm, called UeDP-Alg, which leverages the recipe of DP-FEDAVG [128] to protect

both sensitive entities and user membership under DP via the moments accountant [4].

Moments accountant was first developed to preserve DP in stochastic gradient descent

6

(SGD) for sample-level privacy. Our federated averaging approach groups multiple SGD

updates computed from a two-level random sampling process, including a random sample

of users and a random sample of sensitive entities. That enables large-step model updates

and optimizes the trade-off between privacy loss and the model utility through a tight

noise scale bound (Lemma 1 and Theorem 1). Through theoretical analysis and rigorous

experiments conducted on benchmark datasets, we show that our UeDP-Alg outperforms

baseline approaches in terms of model utility on fundamental tasks, i.e., next word prediction

and text classification, under the same privacy budget consumption.

In the second work (Chapter 3), we we formally study the impact of dimensions

for LDP and propose ScalableRR as a novel mechanism for mitigating the curse of

dimensionality in LDP for FL settings. Different from existing approaches, ScalableRR

integrates dimensionality, data utility, and LDP into a unified framework for optimized

randomization probabilities. As a result, ScalableRR can i) derive tighter privacy loss

bounds and ii) achieve small expected error (i.e., measuring the expected change of a feature

before and after the randomization). Smaller expected errors indicate better data utility

under the same privacy loss. Hence, ScalableRR effectively addresses the trade-off between

data utility, privacy, and dimensionality. In other words, ScalableRR achieves strong

LDP guarantees of the clients’ data without undue sacrifice in utility as dimensionality

increases. To demonstrate that, we first introduce the notion of dimension-scalability to

capture the correlation between randomization probabilities, dimensionality, and the ϵ-LDP

guarantee of a training data sample. We define dimension-scalability as the ability of an

approach to maintain marginal to no degradation in the randomization probabilities and

the level of ϵ-LDP guarantee when the dimensionality increases, resulting in better data

utility. We quantify, with increasing dimensionality: (1) the magnitude of degradation in

the randomization probabilities (i.e., causing more noisy data for model training), given a

fixed level of ϵ-LDP protection; and (2) the magnitude of degradation in the level of ϵ-LDP

guarantee (i.e., causing looser privacy protection), given fixed randomization probabilities.

7

We show that ScalableRR is a dimension-scalable approach. In other words, it can work

with large numbers of features and large models combined with an unlimited number of

training rounds with only a marginal impact on the level of ϵ-LDP guarantee and data utility.

ScalableRR can be used as a pre-processing step to create “noisy” local data that can be

stored and reused in place of the original local data. This feature makes ScalableRR a

permanent RR mechanism, which provides longitudinal LDP protection [63].

In the third work (Chapter 4), we introduce 1) a new concept of achieving LDP in

model explanations that simultaneously protects the important features from being exploited

by attackers while maintaining the faithfulness of the explanations. Based on this principle,

we propose a defense against explanation-guided attacks on MLaaS, called XRAND, by

devising a novel two-step LDP-preserving mechanism. First, at the aggregated explanation,

we incorporate the explanation loss into the randomized probabilities in LDP to make

important features indistinguishable to the attackers. Second, at the sample-level explanation,

guided by the first step, we minimize the explanation loss on each sample while keeping

the features at the aggregated explanation intact. 2) Then, we theoretically analyze the

robustness of our defense against the XBA in MLaaS by establishing two certified robustness

bounds in both training time and inference time. 3) Finally, we evaluate the effectiveness of

XRAND in mitigating the XBA on cloud-hosted malware classifiers.

The fourth work (Chapter 5) is to preserve differential privacy (DP) [58], a rigorous

formulation of privacy in probabilistic terms, in L2M. We introduce a new definition of

lifelong differential privacy (Lifelong DP), in which the participation of any data tuple in any

tasks is protected under a consistently bounded DP guarantee, given the released parameters

in both learning new tasks and memorizing previous tasks (Definition 9). This is significant

by allowing us to train and release new versions of an L2M model, given a stream of tasks

and data, under DP protection. Based upon this, we propose a novel L2DP-ML algorithm

to preserve Lifelong DP. In L2DP-ML, privacy-preserving noise is injected into inputs and

hidden layers to achieve DP in learning private model parameters in each task (Alg. 3).

8

Then, we configure the episodic memory as a stream of fixed and disjoint batches of data, to

efficiently achieve Lifelong DP (Theorem 10). The previous task memorizing constraint is

solved, by inheriting the recipe of the well-known A-gem algorithm [30], under Lifelong

DP. To our knowledge, our study establishes a formal connection between DP preservation

and L2M given a growing number of learning tasks compared with existing works [67, 150].

Rigorous experiments, conducted on permuted MNIST [101], permuted CIFAR-10 datasets,

and an L2M task on our collected dataset for human activity recognition in the wild show

promising results in preserving DP in L2M.

1.4 Organization

In the next chapter, we present our user-entity DP mechanism, i.e., UeDP on simultaneously

preserving for both sensitive entities in the training data and the participation information

of data owners in learning NLMs. In Chapter 3, we introduce our dimension-scalable

mechanism, called ScalabelRR, which mitigates the curse of dimensionality in LDP

preservation in federated learning. Chapter 4 is to establish the connection between

explainable AI, privacy, and robustness. Chapter 5 is to preserve DP in lifelong machine

learning in a consistenly bounded privacy budget, given the heterogeneity in terms of data

sizes and the training order of tasks, without affecting DP protection of the private training

set. An extra work in interpretability, i.e., OnML to generate semantic explanations is

presented in Chapter 6. Chapter 7 consists of concluding remarks and some potential future

work following our current work.

9

CHAPTER 2

USER-ENTITY DIFFERENTIAL PRIVACY IN
LEARNING NATURAL LANGUAGE MODELS

2.1 Preamble

In this chapter, we introduce a novel concept of user-entity differential privacy (UeDP) to

provide formal privacy protection simultaneously to both sensitive entities in textual data

and data owners in learning natural language models. To preserve UeDP, we developed a

novel algorithm, called UeDP-Alg, optimizing the trade-off between privacy loss and model

utility with a tight sensitivity bound. An extensive theoretical analysis and evaluation show

that our UeDP-Alg outperforms baseline approaches in terms of model utility under the

same privacy budget consumption on several NLM tasks, using benchmark datasets.

2.2 Background

In this section, we revisit NLM tasks, privacy risk, and differential privacy. For the sake of

clarity, let us focus on the next word prediction, and we will extend it to text classification in

Section 2.4. A list of sensitive entity categories is summarized in Table 2.1.

2.2.1 Next Word Prediction

Let D be a private training data containing U users (data owners) and a set of sensitive

entities E. Each user u ∈ U consists of nu sentences. Given a vocabulary V , each sentence

is a sequence of words, presented as x = x1x2 . . . xmu , where xi ∈ V , (i ∈ [1,mu]) is

a word in x and mu is the length of x. In next word prediction, the first j words in x,

i.e., x1, x2, . . . , xj (∀j < mu), are used to predict the next word xj+1. Here, xj+1 can be

considered as a label in the next word prediction task. Perplexity PP = 2−
∑

x∈D p(x) log2 p(x)

is a measurement of how well a model predicts a sentence and is often used to evaluate

10

language models, where p(x) is a probability to predict the next word xj+1 in x [132]. A

lower perplexity indicates a better model.

2.2.2 Sensitive Entities and Sentences

Each sensitive entity e ∈ E consists of a word or consecutive words that must be protected.

For instance, personal identifiable information (PII) related to an identifiable person, such

as person names, locations, and phone numbers, can be considered sensitive entities. If a

sentence x consists of a sensitive entity e, x is considered as a sensitive sentence; otherwise,

x is a non-sensitive sentence.

For instance, in Figure 2.1, “David Johnson,” “Maine,” “September 18,” and “Main

Hospital” are considered sensitive entities, correspondingly categorized into PII, geopolitical

entities (GPE) (i.e., countries, cities, and states), time, and organization names. The first

and second sentences consisting of the sensitive entities are considered sensitive sentences.

Meanwhile, the third and fourth sentences are non-sensitive since they do not contain any

sensitive entities.

2.2.3 Privacy Threat Models

It is well-known that trained ML model parameters can disclose information about training

data [28, 55], especially in NLMs [28, 128]. Given a data sample and model parameters,

by using a membership inference attack [172, 183, 216], adversaries can infer whether the

training used the sample or not. In NLMs, adversaries can accurately recover individual

training examples, such as names, email addresses, and phone numbers of individuals, using

training data extracting attacks [28]. Accessing to these can lead to severe privacy breaches.

11

Sensitive
entity

identification

Local trainer

Local
data

Parameter server

…

Figure 2.1 User-Entity DP framework.

2.2.4 Different Levels of DP

To avoid these privacy risks, DP guarantees restriction on the adversaries in what they can

learn from the training data given the model parameters by ensuring similar model outcomes

with and without any single training sample. Let us revisit the definition of DP, as follows:

Definition 1. (ϵ, δ)-DP [58]. A randomized algorithm A fulfills (ϵ, δ)-DP, if for any two

adjacent datasets D and D′ differing by at most one sample, and for all outcomes O ⊆

Range(A):

Pr[A(D) = O] ≤ eϵPr[A(D′) = O] + δ (2.1)

with a privacy budget ϵ and a broken probability δ.

The privacy budget ϵ controls the amount by which the distributions induced by D and

D′ may differ. A smaller ϵ enforces a stronger privacy guarantee. The broken probability δ

means the highly unlikely “bad” events, in which an adversary can infer whether a particular

data sample belongs to the training data, happen with the probability ≤ δ.

There are different levels of DP protection in literature categorized into four research

lines, including sample-level DP, user-level DP, element-level DP, and local (feature-level)

12

DP. They are different from our goal since we focus on providing simultaneous protections

to data owners and sensitive entities in textual data. Let us revisit these DP levels and

distinguish them with our goal.

Sample-level DP Traditional DP mechanisms [60,145,170] ensure DP at the sample-level,

in which adjacent datasets D and D′ are different from at most a single training sample.

Sample-level DP does not protect privacy for users. That is different from our goal. We aim

at protecting privacy for users and sensitive entities, which are different from data samples.

User-level DP To protect privacy for users, who may contribute more than one training

sample, rather than a single sample, [128] proposed a user-level DP, in which neighboring

databases D and D′ are defined to be different from all of the samples associated with an

arbitrary user in the training set. Several works follow this direction [97, 162]. User-level

DP differs from our goal, since it does not provide privacy protection for sensitive entities in

the training set.

Element-level DP [15] introduce element-level DP, in which users are partitioned based

on sensitive elements, which are protected in a way that an adversary cannot infer whether

a user has a sensitive element in her/his data, e.g., if a user has ever sent a curse word in

his/her messages or not. Similar to sample-level DP, element-level DP is different from our

goal, since it does not provide DP protection for users.

Local (feature-level) DP [120] proposed word-level local DP for a sentence’s embedding

features, in which two adjacent sentences x and x′ are different at most one word:

Pr[A(f(x)) = O] ≤ eϵPr[A(f(x′)) = O] (2.2)

where f(x) extracts embedded features of x and A is a randomized algorithm, such as

a Laplace mechanism [60]. In a similar effort, [121] applied a randomized response

13

mechanism [13, 63, 202] on top of binary encoding of embedded features’ real values

to achieve local DP feature embedding. The approaches proposed in [120, 121] are different

from our goal, since they do not offer either user-level DP or word-level DP.

In this section, we focus on answering the question: “Could we protect sensitive

entities and user membership simultaneously by leveraging existing levels of DP and how?”

Based upon that, we propose our user-entity DP notion.

2.2.5 Sensitive Entities and User Membership

To protect sensitive entities and user membership, a potential approach is to decouple them

into separated protection levels offering by existing DP notions. Heuristically, this approach

has limitations as discussed next.

Let us consider a sentence consisting of one or more than one sensitive entities. We

can leverage sample-level DP to protect the sentence, i.e., each sentence could be a sample,

covering all the sensitive entities under DP. If each user has only one sentence, then this

approach can also protect the user membership. In practice, one user may contribute many

sentences to the training data. To address this issue, we can utilize group privacy [60]

resulting in an amplification of the privacy budget proportional to the number of sentences a

user may have in the training data.

Instead of group privacy, another potential solution is applying user-level DP on top

of the sample-level DP to protect both sentence and user membership. In the sample-level

DP, we can clip and inject Gaussian noise into the gradient derived from each sentence [4].

Meanwhile, in the user-level DP, an additional Gaussian noise is injected into the aggregation

of gradients, each of which derived from a single user [128]. Although this combination

of sample - user levels can cover both sensitive entities and user membership under DP

protection, it has disadvantages. First, some sentences are sensitive and other sentences

are not. Protecting all (sensitive and non-sensitive) sentences or removing all the sensitive

sentences from the training data may cause significant model utility degradation. Second,

14

different sentences may consist of different types and numbers of sensitive entities. Under

the same sampling probability for training as in [4] for sample-level DP, these sentences

expose different privacy risks to user identity and sensitive entities.

To address these issues, instead of the sentence level, one can work at the word level

by extracting embedded features for every words in the training data. Embedded features of

sensitive entities are randomized by local DP-preserving mechanisms [13]. The randomized

embedded features are aggregated with embedded features of non-sensitive words to train

NLMs. Then, user-level DP can be applied to clip gradients derived from each user’s data

with adding Gaussian noise into the aggregation of these gradients. Fundamentally, this

approach suffers from a remarkable model utility degradation. Local DP provides rigorous

privacy protection but it comes with a cost in terms of utility [200]. Then, adding the

user-level DP adversely affects the utility.

The root cause of these limitations is that the combination of sentence-level DP and

user-level DP notions does not capture the correlation between sensitive entities and user

membership in unifying notion of DP. Meanwhile, working with word-level embedded

features under local DP introduces expensive model utility costs. Therefore, there is a

demand for a unifying notion of DP and an optimal approach to protect both sensitive

entities and user membership in training NLMs.

2.2.6 UeDP Definition

To preserve privacy for both users and sensitive entities in NLMs, we propose a new

definition of user-entity adjacent databases, as follows: Two databases D and D′ are

user-entity adjacent if they differ in a single user and a single sensitive entity; that is, one

user u′ and one sensitive entity e′ are present in one database (i.e., D′) and are absent in

the other (i.e., D). Together with the absence of all sentences from the user u′ in D, all

sentences (across users) consisting of the sensitive entity e′ are also absent in D. This is

15

because one user can have multiple sentences, and one sensitive entity can exist in multiple

sentences for training. The definition of our user-entity adjacent databases is as follows:

Definition 2. User-Entity Adjacent Databases. Two databases D and D′ are called user-

entity adjacent if: ∥U − U ′∥1 ≤ 1 and ∥E −E ′∥1 ≤ 1, where U and E are the sets of users

and sensitive entities in D, and U ′ and E ′ are the sets of users and sensitive entities in D′.

Given the user-entity adjacent databases, we present UeDP in the following definition.

Definition 3. (ϵ, δ)-UeDP. A randomized algorithm A is (ϵ, δ)-UeDP if for all outcomes

O ⊆ Range(A) and for all user-entity adjacent databases D and D′, we have:

Pr[A(D) = O] ≤ eϵPr[A(D′) = O] + δ (2.3)

with a privacy budget ϵ and a broken probability δ.

2.3 Preserving UeDP in NLMs

UeDP provides rigorous privacy protection to both users and sensitive entities; however, the

practicability of UeDP preservation depends on the reliability of sensitive entity detection

from the training text data. In practice, misidentifying sensitive entities can introduce extra

privacy risks. In addition to addressing this challenge, we focus on bounding the sensitivity

of an NLM under UeDP and addressing the trade-off between privacy loss and model utility.

2.3.1 Misidentifying Sensitive Entities

Identifying all the sensitive entities typically requires intensive manual efforts [212]. We

are aware of this issue in real-world applications. Fortunately, there are several ways to

automatically identify sensitive entities in textual data, such as: 1) Using Named Entity

Recognition (NER) [45, 173]; and 2) Using publicly available toolkits for detecting named

entities or PII in text, e.g., spaCy [85], Stanza [157], and Microsoft Presidio1. These

1https://microsoft.github.io/presidio/

16

https://microsoft.github.io/presidio/

approaches and toolkits are user-friendly and reliable to reduce manual efforts in identifying

sensitive entities and information. We found that the results from spaCy cover over 94% of

sensitive information identified by Amazon Mechanical Turk (AMT) workers in a diverse

set of datasets used in our experiments. More information about identifying sensitive entities

is available in Appendix A.1.

Although effective, the small error rate (i.e., ≊ 6%) from these techniques introduces

a certain level of privacy risk, that means, some sensitive entities may be misidentified to be

non-sensitive, and vice-versa. Classifying non-sensitive entities to be sensitive entities does

not incur any extra privacy risk. Meanwhile, classifying one (or more than one) sensitive

entity to be non-sensitive in a sentence introduces two issues, as follows: (1) There may be

sensitive sentences misidentified to become non-sensitive sentences. In order words, given a

set of non-sensitive sentences detected by NER tools, we do not know which sentence is

truly non-sensitive; and (2) Given a sensitive sentence x, some sensitive entities in x may

not be identified by NER tools. Preserving UeDP in NLMs by directly using the results of

NER tools will expose these misidentifying sensitive sentences and entities unprotected.

2.3.2 Preserving UeDP

To address the problem of sensitive entity misidentification in preserving UeDP, our key

idea is:

(1) Extending UeDP by considering each sentence, identified to be non-sensitive using

NER tools [85, 157], in the private training dataset as a single type of sensitive entity. We

denote this extended set of sensitive entities as S. The private dataset D now consists of U

users and a (sufficient) set of sensitive entities E ∪ S that will be protected.

(2) Upon forming the sufficient set of sensitive entities, we propose a two-step

sampling approach to strictly preserve UeDP in NLMs. In our approach, at a training

round t, we sample a set of users from U and a set of sensitive entities from E ∪ S. We

use sentences in the training data of the sampled users consisting of the sampled sensitive

17

entities to train NLMs. In this sampling approach: (i) If a sensitive sentence x is not sampled

for training, i.e., due to the fact that some sensitive entities in x are not identified by NER

tools, x is not used for training at the round t; thus avoiding privacy risks exposed by x; and

(ii) If the sensitive sentence x is sampled for training, then the sensitive entities in x, which

are not identified by NER tools, are protected since x is protected under DP.

By covering all possible cases of sensitive entity misidentification, we strictly preserve

UeDP without having additional privacy risks. The pseudo-code of UeDP is in Alg. 4.

At each iteration t, we randomly sample U t users from U , Et detected sensitive

entities from E, and St extended sensitive entities from S, with sampling rates qu, qe, and

qs, respectively (Lines 8 and 10). Then, we use all sensitive sentences in Et
u ∪ St

u consisting

of the sensitive entities in Et and St belonging to the selected users in U t for training.

Like [128], we leverage the basic federated learning setting in [127] to compute gradients

of model parameters for a particular user, denoted as ∆t+1
u,E (Line 11). Here, we clip the

per-user gradients so that its l2-norm is bounded by a predefined gradient clipping bound

β (Lines 20 - 29). Next, a weighted-average estimator fE+ is employed to compute the

average gradient ∆t+1 using the clipped gradients ∆t+1
u,E gathered from all the selected users

(Line 13). Finally, we add random Gaussian noise N (0, Iσ2) to the model update (Line 15).

During the training, the moments accountantM is used to compute the T training steps’

privacy budget consumption (Lines 16 - 18).

To tighten the sensitivity bound, our weighted-average estimator fE+ (Line 13) is:

fE+(U
t, Et) =

∑
u∈Ut wu∆

t+1
u,E

quWu(qeWe + qsWs)
(2.4)

where ∆t+1
u,E =

∑
e∈Et

u
we∆u,e +

∑
s∈St

u
ws∆u,s, and wu, we, and ws ∈ [0, 1] are weights

associated with a user u, a detected sensitive entity e, and an extended sensitive entity s.

These weights capture the influence of a user and sensitive entities to the model

outcome. ∆u,e and ∆u,s are the parameter gradients computed using the sensitive entities

e ∈ E and s ∈ S. In addition, Wu =
∑

u∈U wu, We =
∑

e∈E we, and Ws =
∑

s∈S ws.

18

Since E[
∑

e∈Et
u
we +

∑
s∈St

u
ws] = qeWe + qsWs, the estimator fE+ is unbiased. The

sensitivity of the estimator S(fE+) is computed as: S(fE+) = maxu′,e′∥fE+({U t ∪ u′, (Et ∪

St) ∪ e′})− fE+({U t, Et ∪ St})∥2. S(fE+) is bounded in the following lemma.

Lemma 1. If for all users u we have ∥∆t+1
u,E ∥2 ≤ β, then S(fE+) ≤ (qu|U |+1)max(wu)β

quWu(qeWe+qsWs)
.

Proof. If for all users ∥∆t+1
u,E ∥2 ≤ β, then

S(fE+) =

∑
u∈Ut∪u′ wu

(∑
e∈Et

u
we(

∑
s consists of e∆u,s)

)
quWu(qeWe + qsWs)

+

∑
u∈Ut∪u′ wu

(∑
s∈St

u
ws∆u,s

)
quWu(qeWe + qsWs)

+

∑
u∈Ut∪u′ wu

[
we′(

∑
s consists of e′ ∆u,s)

]
quWu(qeWe + qsWs)

−

∑
u∈Ut wu

(∑
e∈Et

u
we(

∑
s consists of e∆u,s)

)
quWu(qeWe + qsWs)

−

∑
u∈Ut wu

(∑
s∈St

u
ws∆u,s

)
quWu(qeWe + qsWs)

≤
∑

u∈Ut∪u′ [(wu)β]

quWu(qeWe + qsWs)
≤ (qu|U |+ 1)max(wu)β

quWu(qeWe + qsWs)
(2.5)

Consequently, Lemma 1 holds.

Once the sensitivity of the estimator fE+ is bounded, we can add Gaussian noise

scaled to the sensitivity S(fE+) to obtain a privacy guarantee. By applying Lemma 1, the

noise scale σ becomes:

σ = zS(fE+) =
z(qu|U |+ 1)max(wu)β

quWu(qeWe + qsWs)
(2.6)

The noise scale σ in Equation 2.6 is tighter than the noise scale in existing works

[128, 162] proportional to the number of sensitive entities used in the training process (i.e.,

qeWe + qsWs). Therefore, we can inject less noise into our model under the same privacy

budget while improving our model utility.

In extreme cases, that is also true: (1) E is empty, which means there are no detected

sensitive entities. Given a fixed set of training data, while E is empty, S becomes larger

(i.e., covering the whole dataset), resulting in a larger value of Ws. Therefore, we obtain

19

a larger value of qsWs (with a pre-defined qs), enabling us to reduce the noise scale under

the same UeDP guarantee. That is an advantage compared with the naive approach that

only uses detected sensitive entities E in the training process (i.e., ignoring the term qsWs in

Equation 2.6). If E is empty, the naive approach will have no sentences for training; and (2)

S is empty, that is, every sentence in the data consists of at least one detected sensitive entity

e ∈ E. Similarly, given a fixed set of training data, if S is empty, then E and We become

larger. It enables us to obtain a larger value of qeWe (with a pre-defined qe), which results in

smaller noise scale while maintaining the high model utility.

UeDP Guarantee. Given the bounded sensitivity of the estimator, the moments

accountantM [4] is used to get a tight bound on the total UeDP privacy consumption of T

steps of the Gaussian mechanism with the noise N (0, Iσ2) (Line 15).

Theorem 1. For the estimator fE+ , the moments accountant of the sampled Gaussian

mechanism correctly computes UeDP privacy loss with the scale z = σ/S(fE+) for T

training steps.

Proof. At each step, users, detected sensitive entities in E, and extended sensitive entities

in S are selected randomly with probabilities qu, qe, and qs, respectively. For fE+ , if the

l2-norm of each user’s gradient update, using the sampled sensitive entities in Et
u ∪ St

u, is

bounded by S(fE+), then the moments accountant can be bounded by that of the sampled

Gaussian mechanism with sensitivity 1, the scale z = σ/S(fE+), and sampling probabilities

qu, qe, and qs. Thus, we can apply the composability as in Theorem 2.1 [4] to correctly

compute the UeDP privacy loss with the scale z = σ/S(fE+) for T steps.

2.4 Experimental Results

We conducted extensive experiments, both in theory and on benchmark datasets, to shed light

on understanding 1) the integrity of sensitive entity identification, 2) the interplay among the

UeDP privacy budget (ϵ, δ), different types of sensitive entities (i.e., organization, location,

20

and miscellaneous entities), and model utility, and 3) whether considering the extended set

of sensitive entities S will improve model utility under the same UeDP protection.

((a)) CONLL-2003 dataset ((b)) AG dataset ((c)) SEC dataset

Figure 2.2 Next word prediction results using the GPT-2 model.

Baseline Approaches We evaluate our UeDP-Alg in comparison with both noiseless and

privacy-preserving mechanisms (either user level or entity level), including: (1) User-level

DP [128], which is the state-of-the-art DP-preserving model closely related to our work;

(2) De-Identification [46], which is considered as a strong baseline to protect privacy

for sensitive entities. Although sensitive entities are masked to hide them in the training

process, De-Identification does not offer formal privacy protection to either the data owners

or sensitive entities; and (3) A Noiseless model, which is a language model trained without

any privacy-preserving mechanisms. In addition, we consider the naive approach, which is a

variation of our algorithm, called UeDP-Alg fE . As a baseline, the estimator fE is computed

without taking the extended set of sensitive entities S into account (Appendix A.2). This is

further used to comprehensively evaluate our proposed approach. In our experiment, our

algorithms and baselines, i.e., UeDP-Alg, User-level DP, and De-Identification, are applied

on the noiseless model in the training process. As in the literature review [15,120], there are

no other appropriate DP-preserving baselines for UeDP protection.

Evaluation Tasks and Metrics Our experiment considers two tasks: (1) next word

prediction and (2) text classification. For the next word prediction, we employ the

21

widely used perplexity [133]. The smaller perplexity is, the better model is. For the

text classification, we use the test error rate as in earlier work [87]. Test error rate implies

prediction error on a test set, so it is 1 - the test set’s accuracy. The lower the test error rate

is, the better model is.

Data and Model Configuration For the reproducibility sake, all details about our datasets

and data processing are included in Appendix A.3. We carried out our experiment on three

textual datasets, including the CONLL-2003 news dataset [173], AG’s corpus of news

articles2, and our collected Security and Exchange Commision (SEC) financial contract

dataset. The data breakdown is in Table 6.1.

For the next word prediction, we employ a GPT-2 model [160], which is one of the

state-of-art models. To make the work easily reproducible, we use a version of the pretrained

GPT-2 that has 12-layer, 768-hidden, 12-heads, 117M parameters, and then fine-tune with

the aforementioned datasets as our Noiseless GPT-2 model. For the text classification, we

fine-tune a Noiseless BERT (i.e., BERT-Base-Uncased3) pre-trained model [48] that has

12-layer, 768-hidden, 12-heads, and 110M parameters with an additional softmax function

on top of the BERT model. Adam optimizer is used with the learning rate is 10−5. Gradient

clipping bound β = 0.1 and the scale z = 2.5. The sampling rates for users, detected

sensitive entities, and extended sensitive entities qu, qe, and qs are 0.05, 0.5, and 1.0.

To test the effectiveness and adaptability of our mechanism across models, we

also conducted experiments with an AWD-LSTM model [130], which has a much fewer

parameters compared with GPT-2 and BERT. In AWD-LSTM model, we use a three-layer

LSTM model with 1, 150 units in the hidden layer and an embedding input layer of size 100.

Embedding weights are uniformly initialized in the interval [−0.1, 0.1] with dimension

d = 100 and other weights are initialized between [− 1√
H
, 1√

H
], where H is the size

of all hidden layers. The values used for dropout on the embedding layer, the LSTM

2Retrieved on 01/01/2020 from http://groups.di.unipi.it/˜gulli/AG_corpus_of_news_articles.html
3Retrieved on 01/01/2020 from https://huggingface.co/transformers/pretrained_models.html

22

http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
https://huggingface.co/transformers/pretrained_models.html

hidden-to-hidden matrix, and the final LSTM layer’s output are 0.1, 0.3, and 0.5, respectively.

Gradient clipping bound β = 0.1 and the scale z = 2. The sampling rates qu, qe, and qs

are 0.05, 0.5, and 1.0 (note that qs is 0.6 in the text classification task). SGD optimizer is

used. In the text classification with the AG dataset, a softmax layer is applied on top of

the AWD-LSTM with the output dimension is 4, corresponding to four classes in the AG

dataset. The same sets of sensitive entity categories are used for all models in the next word

prediction and the text classification tasks.

Evaluation Results We conducted the following experiments: (1) examining how

the sensitive entities detected by the entity recognition spaCy [85] covers the sensitive

information clarified by AMT workers, (2) comparing estimators fE , fE+ , and User-level

DP; (3) investigating the interplay between privacy budget and model utility; (4) studying

the impacts of different sensitive entity categories in E on the privacy budget and model

utility; and (5) confirming our results in the text classification task.

Our result is as follows:

• Integrity of sensitive entities. Our work utilizes spaCy [85], one of the state-of-

the-art large-scale entity recognition systems, to identify sensitive entities for evaluation

purposes on datasets that do not have ground-truth sensitive entities, including the AG

and SEC datasets. For CONLL-2003, we consider the labels of four sensitive entity types

(i.e., location, person, organization, and miscellaneous) from NER as the ground truth. To

evaluate the integrity of identified sensitive entities, we conducted a clarification on AMT.

We found that the results from spaCy cover over 94% of sensitive information as identified

by AMT workers. We recruited master-level AMT workers for a high quality of results, and

we provided detailed guidance before AMT workers conducted the task. Each sentence was

assigned to 3 workers to mitigate bias and subjective views. Consequently, our experiments

using the spaCy identified sensitive entities are solid.

23

• Comparing Estimators fE , fE+ , and User-level DP. We set qu = 0.05, qe = 0.5,

qs = 1, z = 2, and compute privacy budget ϵ at δ = 10−5 (a typical value of δ in DP) as a

function of the training steps T . Figure 2.4 shows curves of using different estimators and

the User-level DP with all entities in CONLL-2003, AG, and SEC datasets.

Our UeDP-Alg with fE+ achieves a notably tighter privacy budget compared with fE

and the User-level DP in all scenarios in CONLL-2003, AG, and SEC datasets. The key

reason is that typically detected sensitive entities in E appear rarely in a dataset compared

with extended sensitive entities. Thus, using only sensitive entities in E identified by the

spaCy in training will cause information distortion, which can damage model utility and a

loose privacy budget.

User-level DP consumes a much higher privacy budget ϵ compared with both of our

estimators fE+ and fE . For instance, at T = 50, the values of ϵ in all entities of fE+ and fE ,

and the value of ϵ of the User-level DP in: (1) the CONLL-2003 dataset are 0.52, 0.62, and

1.18; (2) the AG dataset are 0.50, 0.75, and 1.48; and (3) the SEC dataset are 0.40, 0.71, and

1.40, respectively.

Significantly, the privacy budget (ϵ) gap between User-level DP, fE , and fE+ is

proportionally increased to the number of steps T . That means the more training steps T ,

the larger ϵ our model can save compared with User-level DP. That is a promising result

in the context that our model provides DP protection for both users and sensitive entities,

compared with only protection for users in User-level DP. We observe a similar phenomenon

on different sensitive categories.

• Privacy Budget (ϵ, δ)-UeDP and Model Utility. From our theoretical analysis,

fE+ is better than the estimator fE . Therefore, for the sake of simplicity, we only consider

UeDP-Alg fE+ instead of showing results from both estimators. From now, UeDP-Alg

is used to indicate the use of our estimator fE+ . Figure 2.3 illustrates the perplexity as

a function of the privacy budget ϵ for an GPT-2 model trained on a variety of sensitive

entity categories in UeDP, User-level DP, and De-Identification. The noiseless GPT-2 (for

24

((a)) AG dataset ((b)) SEC dataset

Figure 2.3 Text classification results on the AG dataset using the BERT model.

the next word prediction) and BERT (for the text classification) models are considered an

upper-bound performance mechanism without offering any privacy protection.

In the CONLL-2003 dataset (Figure 2.2(a)), there are NER labels for person, location,

organization, and miscellaneous entities; therefore, we choose these types as sensitive entity

categories to protect in UeDP-Alg. UeDP-Alg achieves a better perplexity compared with

User-level DP under a tight privacy budget ϵ ∈ [0.18, 0.20]. Also, from ϵ = 0.185 (a

tight privacy protection), our UeDP-Alg achieves a better perplexity than De-Identification.

In fact, at ϵ = 0.185, our UeDP-Alg achieves 35.09 for person, 35.34 for organization,

35.57 for miscellaneous, and 36.79 for location entities, compared with 52.01 in User-level

DP. When spending more privacy budget (ϵ ≥ 0.195), both UeDP-Alg and User-level DP

converge at a very competitive perplexity level, approaching the Noiseless GPT-2. For

instance, at ϵ = 0.20, there are significant perplexity drops given UeDP-Alg and User-level

DP mechanisms, i.e., our UeDP-Alg is 29.24 for person, 29.35 for miscellaneous, 29.58 for

organization, and 29.75 for location entities. Meanwhile, the perplexity values of User-level

DP, De-Identification, and the noiseless GPT-2 model are 30.15, 38.30, and 27.13.

Results on AG and SEC datasets (Figures 2.2(b) and 2.2(c)) further strengthen

our observations. In AG and SEC datasets, we applied spaCy to identify different

sensitive entity categories, such as GPE, location, organization, and PII (i.e., person

and location information). UeDP-Alg achieves better results compared with User-level

25

((a)) CONLL-2003-all entities ((b)) AG-all entities ((c)) SEC-all entities

Figure 2.4 Privacy budget of UeDP-Alg fE , UeDP-Alg fE+ , and User-level DP as a function
of iterations in CONLL-2003, AG, and SEC datasets.

((a)) CONLL-2003 dataset ((b)) AG dataset ((c)) SEC dataset

Figure 2.5 Next word prediction results using the GPT-2 model with varying extended
sensitive entities sampling rate qs in training.

((a)) CONLL-2003 dataset ((b)) AG dataset ((c)) SEC dataset

Figure 2.6 Next word prediction results with AWD-LSTM model.

26

((a)) CONLL-2003 ((b)) AG ((c)) SEC

Figure 2.7 Next word prediction results using the AWD-LSTM model with varying extended
sensitive entities sampling rate qs in training.

DP in all considering sensitive entity categories and privacy budgets, and outperforms

De-Identification in most cases. That is promising and consistent with our previous analysis.

For instance, in the AG dataset, at ϵ = 0.19, our UeDP-Alg achieves 25.33 for location, 25.72

for PII, 25.77 for organization, and 26.01 for GPE entities, compared with 36.05 in User-level

DP. De-Identification obtains 35.90, and the upper bound result in the noiseless GPT-2 model

is 24.98. Similarly, in the SEC dataset (Figure 2.2(c)), at ϵ = 0.19, UeDP-Alg achieves

perplexity of 20.98 in GPE, 21.12 in PII, 21.22 in location, 21.50 in organization, and 21.33

in all entities, compared with 36.07 in User-level DP, and 34.07 in De-Identification. In

AG and SEC datasets, at a tight privacy budget, i.e., ϵ = 0.19, our UeDP-Alg has better

perplexity values than the De-Identification, approaching the noiseless GPT-2 model.

• Sensitive Entity Categories. In all datasets (Figures 2.3 and A.2, Appendix A.5,

Supplementary4), the more sensitive sentences to protect, the higher the privacy budget

is needed, and the lower performance the model achieves (i.e., higher perplexity values).

For instance, in the SEC dataset, the number of sensitive sentences in each category is as

follows: 60 in GPE, 273 in location, 357 in PII, 1, 955 in organization, and 2, 166 in all

entities. After 500 steps, the values of ϵ are 0.19 in GPE, 0.24 in location, 0.26 in PII, 0.73

in organization, 0.81 in all entities, and 4.08 in User-level DP (Figure 2.4). At ϵ = 0.18

(Figure 2.2(c)), we obtain perplexity values of 42.63 in GPE, 43.21 in location, 43.30 in PII,

43.70 in organization, 43.77 in all entities, and a 583.06 in User-level DP.

27

• Text classification. Figure 2.3(a) shows that our UeDP-Alg achieves lower test

error rates in terms of text classification on the AG dataset than baseline approaches in

most cases across different types of sensitive entities under a very tight UeDP protection

(ϵ ∈ [0.18, 0.19]). This is a promising result. When ϵ is higher, the test error rates of both

UeDP-Alg and User-level DP drop, approaching the noiseless BERT model’s result.

• Extended Sensitive Entities. To shed light into the impact the extended sensitive

entity sampling rate qs on model utility under UeDP protection, we varied the value of qs

from 0 to 1 in all datasets and tasks. Figures 2.3(b), 2.5, and 2.7 show that considering

extended sensitive entities (i.e., qs > 0) significantly improves model utility (i.e., perplexity

or test error rate) compared with only considering sensitive entities e ∈ E (i.e., qs = 0).

Technically, different tasks on different datasets may have different optimal values of qs.

This opens a new research question on how to theoretically approximate the optimal value

of qs.

Results on the AWD-LSTM model (Figures 2.6 and 2.7) further strengthen our

observations. In our experiments, the AWD-LSTM model generally obtains comparable

results with the GPT-2 model for next word prediction at a higher privacy budget range (i.e.,

ϵ ∈ [0.5, 3.0] in the AWD-LSTM model compared with ϵ ∈ [0.18, 0.2] in the GPT-2 model).

This is because the GPT-2 model is pretrained on large-scale datasets, so that it is easily

adapted to the idiosyncrasies of a target task (i.e., next word prediction) compared with the

AWD-LSTM model trained from scratch.

2.5 Discussion

We developed a novel notion of user-entity DP (UeDP), protecting users’ participation

information and sensitive entities in NLMs. By incorporating user and sensitive entity

sampling in the training process, we addressed the trade-off between model utility and

privacy loss with a tight bound of model sensitivity. Theoretical analysis and rigorous

28

experiments show that UeDP-Alg outperforms baselines in next word prediction and text

classification under UeDP protection.

In practice, the list of sensitive entities and users can grow over time. Periodically

updating the list of users and sensitive entities may incur extra privacy and computational

cost. Therefore, we will focus on preserving UeDP given a growing list of users and sensitive

entities in our future work.

Note that UeDP offers the privacy protection in the setting of centralized training,

which requires to have a trusted coordinating server. We will present in the next chapter our

proposed privacy-preserving mechanism for federated learning and there is no need of a

trusted coordinating server.

29

Table 2.1 Description of Sensitive Entity Categories

Type Description

Person Person, i.e., people, including fictional

Loc Location, i.e., non-GPE locations, mountain ranges, bodies of water

Org Organization, i.e., companies, agencies, institutions, etc.

Misc Miscellaneous, i.e., entities that do not belong to the person,

location, and organization in CONLL-2003

GPE Geopolitical entity, i.e., countries, cities, states

PII Personal identification information, i.e., name, location, phone, etc.

Date Absolute or relative dates or periods

NoRP Nationalities or religious or political groups

Fac Buildings, airports, highways, bridges, etc.

Product Objects, vehicles, foods, etc. (Not services.)

Event Named hurricanes, battles, wars, sports events, etc.

Law Named documents made into laws

Language Any named language

Work of art Titles of books, songs, etc.

Time Times smaller than a day

Percent Percentage, including “%”

Money Monetary values, including unit

Quantity Measurements, as of weight or distance

Ordinal “First”, “second”, etc.

Cardinal Numerals that do not fall under another type

30

1: Input: Dataset D, set of sensitive entities E, extended set of sensitive entities S, sampling rates

qu, qe, and qs, clipping bound β, a hyper-parameter z, and number of iterations T

2: Initialize model θ0 and moments accountantM

3: wu ← min(nu
ŵu

, 1) for all users u and we ← min(ne
ŵe

, 1) for all sensitive entities in E

4: ws ← min(ns
ŵs

, 1) for all extended sensitive entities in S

5: where nu, ne, and ns are the number of sentences in user u, the number of sentences containing

sensitive entities e ∈ E, the number of sensitive entities in S, and ŵu, ŵe, and ŵs are per-user

sentence cap, per-entity sentence cap, and per-entity entity cap.

6: Wu ←
∑

u∈U wu, We ←
∑

e∈E we, Ws ←
∑

s∈S ws

7: for t ∈ T do

8: U t ← sample users with probability qu

9: for each user u ∈ U t do

10: Et
u ∪ St

u ← sensitive entities (belonging to the user u) consisting of sensitive entities Et

sampled from E with probability qe and extended sensitive entities St sampled from S with

probability qs

11: ∆t+1
u,E ← Local-Update(u,Et

u ∪ St
u, θ

t,ClipFn)

12: end for

13: ∆t+1 ←
∑

u∈Ut wu∆
t+1
u,E

quWu(qeWe+qsWs)

14: σ ← z(qu|U |+1)max(wu)β
quWu(qeWe+qsWs)

15: θt+1 ← θt +∆t+1 +N (0, Iσ2)

16: M.accum_priv_spending(z)

17: end for

31

18: printM.get_priv_spent()

19: Output: (ϵ, δ)-UeDP θ,M

20: Local-Update(u,Et
u ∪ St

u, θ
0, ClipFn):

21: θ ← θ0

22: B ← u’s data split into size B batches

23: for batch b ∈ B do

24: ∀e ∈ Et
u : ∆u,e ←

∑
sentence s (∈b) consists of e▽l(θ, s)

25: ∀s ∈ St
u ∩ b : ∆u,s ←▽l(θ, s)

26: ∆u,E ←
∑

e∈Et
u
we∆u,e +

∑
s∈St

u
ws∆u,s

27: θ ← θ0 − η∆u,E

28: end for

29: return ClipFn(θ − θ0, β)

30: ClipFn(∆, β): return π(∆, β)← ∆ ·min
(
1, β
∥∆∥

)
Algorithm 1: UeDP-Alg

Table 2.2 Breakdown of CONLL-2003, AG, and SEC Datasets

Dataset |V| # of sentences # of users # of sensitive sentences

CONLL-2003 8,882 14,040 946
Org Loc Person Misc All

5,187 5,433 4,406 3,438 11,176

AG 30,000 112,000 7,536
Org Loc GPE PII All

58,177 39,988 18,506 42,683 67,157

SEC 12,651 5,188 1,592
Org Loc GPE PII All

1,955 273 60 357 2,166

32

CHAPTER 3

SCALABLERR: DIMENSION-SCALABLE LOCAL DIFFERENTIAL PRIVACY
FOR FEDERATED LEARNING

3.1 Preamble

Local differential privacy (LDP) is one of the most viable options to protect the privacy of

training data in federated learning systems. Briefly, existing LDP-preserving mechanisms

usually suffer from the curse of dimensionality. In other words, increasing the number of

features causes an increase in privacy budget or randomization probabilities, which in turn

leads to either loose privacy protection or poor utility.

In this chapter, we mitigate the impact of increasing the dimension of the feature

vector on the trade-off between privacy and data utility by designing Scalable Randomized

Response (ScalableRR), a novel dimension-scalable and data utility-aware randomized

response technique. ScalableRR integrates dimensionality, data utility, and privacy

guarantees in a unified framework that is jointly optimized for better randomization

probabilities. The key idea that enables ScalableRR to maintain a good privacy-utility

balance for high-dimensional feature input is the use of variable randomization probabilities

at the binary level representation of every feature as opposed to the use of uniformly

distributed randomization probabilities.

Through extensive theoretical analysis and a wide set of experiments using federated

learning, especially a trial in a real-world mobile-cloud federated learning system for human

activity recognition, we show that ScalableRR can train deep neural networks with large

numbers of features in an unlimited number of training rounds under modest privacy budgets

while retaining high utility.

3.2 Background

This section briefly reviews FL, privacy threat models, existing defenses, and the curse of

dimensionality.

33

((a)) Privacy threat from the curious server in FL ((b)) From the gradients ((c)) From the embeddings

Figure 3.1 a) Privacy threat from the curious server in FL, b) Data reconstruction attacks
from gradients, and c) from embeddings.

Federated Learning. FL is a multi-round communication protocol between a

coordination server and a set of N clients to jointly train a ML model f , e.g., a neural

network. At round t, the server sends the latest model weights θt to a randomly sampled

subset of clients St. Upon receiving θt, client u in St uses θt to train its local model, and

generates model weights θut . Client u computes its local gradient△θut = θut − θt, and sends

it back to the server. After receiving all the local gradients from all the clients in St, the

server updates the model weights by aggregating all the received local gradients using an

aggregation function G : R|St|×n → Rn where n is the size of△θt. The aggregated gradient

is added to θt:

θt+1 = θt + λG({△θit}i∈St) (3.1)

where λ is the server’s learning rate. A typical aggregation function G is the (federated)

weighted averaging, dubbed FedAvg, which is widely applied in FL [97].

By joining the FL protocol, the clients try to minimize the average of their

loss functions (i.e., client u does not know losses from other clients) as follows:

argminθ
1
N

∑N
u=1 Lu(θ). Lu is the loss function of a client u on a local training dataset Du

penalizing the mismatch between the predicted values f(x, θ) and the ground-truth label

y, as follows: Lu(θ) =
1
|Du|

∑
x∈Du

L
(
f(x, θ), y

)
, where |Du| denotes the number of data

samples in the local training dataset Du.

34

Privacy Threat Model. Although having many applications, recent attacks [43, 49,

223,227] underscore privacy risks in FL by showing that the server can precisely reconstruct

the original sample x from the shared local gradients. That imposes a severe privacy risk if

the data sample x is sensitive, such as medical images, health records, etc.

The server is assumed to follow the training procedure in the FL protocol but is curious

about the clients’ training data Du. This is a practical threat model since service providers

always aim at providing the best services to the clients [78, 195]. Clients compute their

local gradients by using one of two approaches: (1) Directly using the data sample x; and

(2) Using embedding features1 extracted from x given a pre-trained model. In both cases,

clients need to send their local gradients△θut to the server for federated training.

In the former case, the server can apply gradient-based attacks [223, 227] to precisely

reconstruct the original data sample x from the observed local gradients (Figure 3.1). In the

latter case, the server can infer the embedding features from the local gradients by applying

gradient-based attacks [223, 227]. Then, the server feeds the inferred embedding features

to a reconstruction attack [43, 49, 143] to accurately reconstruct the original data sample x.

Both approaches are efficient in reconstructing x (Figure 3.1b,c).

LDP in FL. An effective way to protect clients’ local training data is to preserve LDP

in FL [191, 196]. LDP-preserving mechanisms [8, 19, 52, 63, 202] generally build on the

ideas of RR [204], which was initially introduced to allow survey respondents to provide

their inputs while maintaining their confidentiality. The definition of ϵ-LDP is as follows:

Definition 4. ϵ-LDP. A randomized algorithmM fulfills ϵ-LDP, if for any two inputs x and x′,

and for all possible outputs O ∈ Range(M), we have: Pr[M(x) = O] ≤ eϵPr[M(x′) =

O], where ϵ is a privacy budget and Range(M) denotes every possible output ofM.

The privacy budget ϵ controls the amount by which the distributions induced by

inputs x and x′ may differ. A smaller ϵ enforces a stronger privacy guarantee. Existing

1Embedding features are typically used to represent a data sample in ML since it is necessary to reduce input dimensions while enriching
the information captured from inputs.

35

LDP-preserving approaches preserve privacy in FL by either randomizing the local data

before the training process [13,121,210] or by randomizing the local gradients before sending

them to the server [116, 201, 226]. In this paper, we tailor ScalableRR to FL, motivated by

the explosive growth and significant impacts of FL in real-world applications [11, 97, 111].

Fundamentally, these prior LDP-privacy preserving approaches do not address the

trade-off between dimensionality, privacy, and data utility. In this work, we close this gap

by developing a dimension-scalable RR mechanism, the first of its kind, that integrates

dimensionality, data utility, and ϵ-LDP protection into a unified framework with optimized

randomization probabilities.

3.3 Dimension-Scalability

To understand the curse of dimensionality and how we measure the magnitude of degradation

in the randomization probabilities and privacy protection, we consider an essential and

widely-used feature extraction setting in ML. That is: given a data sample x, we use a

mechanismH to extract a vector of numerical features e ∈ Rr from x, denoted as e = H(x),

where r is the number of features in e.

The extracted features e = H(x) can be used in different ways in practice and offer

great benefits (e.g., dimension reduction, model utility improvement, being learnable and

reusable [10, 31, 77, 98, 164, 169, 188, 221]). Technically, directly using the feature vector e

without appropriate privacy protection can incur privacy risk to the original data sample x

as illustrated in Figure 3.1 [43, 223, 227].

To ensure that using the feature vector e does not expose the original data sample

x against the privacy threat model (Figure 3.1), one can repeatedly apply an existing

LDP-preserving mechanism, e.g., [201], to randomize every feature a in the feature vector e.

According to the strong privacy composition Theorem [59], if randomizing a single feature

a consumes a privacy budget ϵa, randomizing the whole feature vector e consumes a total

privacy budget ϵ =
∑

a ϵa (= r× ϵa when using a uniform privacy budget for the r features).

36

The Curse of Dimensionality. The curse of dimensionality occurs when we increase

the number of features r in the feature vector e by an expansion factor d, where d ∈ R+,

d > 1, and the new number of features d× r must be an integer. The increase could be, for

example, to enrich the extracted embedding features or enlarge the size of local gradients

derived from the data sample x for better data and model utility. Given the randomization

probabilities of every feature a and the total privacy budget ϵ as the most critical factors

affecting data utility and privacy protection, we seek a quantitative answer to the following

question: What is the impact of increasing the dimension of the feature vector on the total

privacy budget ϵ and the randomization probabilities of every feature a?

There are three possible answers for this question: (1) keep the total privacy budget

ϵ the same and degrade the randomization probabilities of every feature a. This makes

the features noisier proportional to the value of d and degrades model utility; (2) keep the

randomization probabilities of every feature a the same and increase the total privacy budget

from ϵ to d × ϵ (guided by the strong privacy composition Theorem [59] in existing RR

mechanisms). This leads to a proportional reduction in privacy guarantees; and (3) finding

new randomization probabilities and a new privacy budget adapted to the value of d. The first

two cases are directly applicable to most existing LDP-preserving mechanisms [51, 52, 201].

Meanwhile, the approaches proposed in [13, 121] follows the third direction.

Dimension-Scalability Measure. In all the cases, we need to quantify the changes in

the new randomization probabilities and the new total privacy budget. Such quantification,

dubbed the measure of dimension-scalability, informs how much an LDP-preserving

mechanism is affected when the dimension of the feature vector e is increased by an

expansion factor d. Intuitively, smaller changes indicate a better dimension-scalability of an

LDP-preserving mechanism since its randomization probabilities and total privacy budget

are less affected when the dimension of the vector e increases. Conversely, more significant

changes indicate a worse dimension-scalability of an LDP-preserving mechanism.

37

To capture the dimension-scalability given the worst impact of increasing the

dimension of the feature vector e by the expansion factor d, we quantify the change in

the randomization probabilities, denoted γ, when the total privacy budget ϵ in the new

feature vector is kept the same (i.e., fixed). Similarly, we quantify the change in the total

privacy budget, denoted γϵ, when the randomization probabilities of every feature a in the

new feature vector are kept the same (i.e., fixed).

General Form of an RR Mechanism. We consider a general form of an ϵ-LDP-

preserving RR mechanismM to formulate (γ, γϵ)-dimension-scalability for all existing ones.

A mechanismM randomizes every feature a in the feature vector e creating a randomized

feature vector e′, as follows:

M(e) : e→ e′ ∈ Rr (3.2)

The key concept is to chop the output range Range(M) of a mechanism M into

a set of sub-ranges. Each sub-range Rj is associated with a probability Pr(aj|a, ·) to

decide whether we report a random value aj in the range Rj given the original feature

a. For generalizability, the sub-ranges can be discrete (e.g., in Duchi’s or Three-outputs

mechanisms [51, 201, 226]) or continuous (e.g., in Piecewise mechanism [201]) and the

values inside a subset Rj can be either uniformly or non-uniformly distributed depending on

an RR mechanism.
For each feature a,M reports a randomized value a′ ∈ Range(M) with the randomization

probabilities:

∀a ∈ e : a′ = {aj ∈ Rj with a probability Pr(aj|a, e, ϵ)}

with
∑
j

Pr(aj|a, e, ϵ) = 1 (3.3)

where the set of output sub-ranges {Rj} is disjoint (i.e., ∩jRj = ∅) and the union of all

the sub-ranges fully cover the output range of the mechanism (i.e., ∪jRj = Range(M)),

and aj is a (random) value in the output sub-range Rj .

38

By doing that, the general form can be directly and equivalently mapped to existing

RR mechanisms and vice-versa. The output range Range(M), the sub-ranges {Rj}, and

their associated randomization probabilities in Equation 3.3 can be instantiated for different

mechanisms.

For example, in Piecewise mechanism [201], the output range is Range(M) =

[−C,C] which can be divided into two sub-ranges R1 = [−C,L)∪ (R,C] and R2 = [L,R],

where C = exp(ϵ/2)+1
exp(ϵ/2)−1 , L = C+1

2
a−C−1

2
, and R = L+C−1. In Duchi’s mechanism [51,201],

the output is finite with R1 = − exp(ϵ)+1
exp(ϵ)−1Cr and R2 = + exp(ϵ)+1

exp(ϵ)−1Cr, where Cr =
2r−1(
(r−1)

(r−1)/2

) if

r is odd and Cr =
2r−1+ 1

2

(
r

r/2

)(
(r−1)
r/2

) if r is even. The probability that the output falls inside the

range R1 is exp(ϵ/2)
1+exp(ϵ/2)

and in another range R2 is 1
1+exp(ϵ/2)

. Interested readers can refer to

our extended analysis2 for details regarding all existing RR mechanisms.

Dimension-Scalability Definition. Our definition of (γ, γϵ)-dimension-scalability

is as follows. We increase the dimension of the feature vector e by d to create a new

feature vector ed and compute its randomized version e′d by applying the mechanismM,

i.e., M(ed) : ed → e′d ∈ Rd×r with a total privacy budget ϵd. We then apply different

distance measures, denoted D, such as Kullback–Leibler (KL) divergence and Lp-norms,

to measure the changes in the randomization probabilities {Pr(aj|a, ·)} given the original

feature vector e and the new one ed.

2Section A.13, https://www.dropbox.com/s/ythoyiq243lb24g/ExtendAL.pdf?dl=0

39

https://www.dropbox.com/s/ythoyiq243lb24g/ExtendAL.pdf?dl=0

Definition 5. (γ, γϵ)-Dimension-scalability. A randomized mechanismM(e) : e→ e′ ∈

Rr is (γ, γϵ)-dimension-scalable if when the dimension of the feature vector e ∈ Rr

increases by a factor d (d× r ∈ N+ and d > 1), we have:

(1) Given a fixed level of LDP protection, i.e., ϵ = ϵd, the change γ in the randomization

probabilities is quantified as follows:

γ =
∑
j

D
(
Pr(Rj|a, e, ϵ)∥Pr(Rj|a, ed, ϵd)

)
(3.4)

(2) Given fixed randomization probabilities, i.e., γ = 0 or ∀j : Pr(aj|a, e, ϵ) =

Pr(aj|a, ed, ϵd), the change γϵ in the total privacy budget is quantified as follows:

γϵ = ϵd − ϵ (3.5)

Considering the aforementioned distance measures in Equation 3.4: 1) If D is KL-

divergence, we have D(·) =
∫
aj∈Rj

Pr(aj|a, e, ϵ) log(Pr(aj |a,e,ϵ)
Pr(aj |a,ed,ϵd)

)daj; and 2) If D is

L2-norm, we have D(·) = [
∫
aj∈Rj

(Pr(aj|a, e, ϵ)− Pr(aj|a, e, ϵd))daj]
1
2 .

By measuring the dimension-scalability, we provide a guideline for end-users about

the flexibility of LDP-preserving RR mechanisms to decide the best mechanism to handle

their privacy and data utility trade-offs when the dimensionality increases. A detailed

theoretical analysis of dimension-scalability of existing LDP-preserving RR mechanisms

in FL, such as the Duchi’s mechanism (DM) [51, 52], Piecewise mechanism (PM) [201],

Hybrid mechanism (HM) [201], Three-outputs [226], OME3 [121] and LATENT4 [13] is

available for interested readers4.

In these mechanisms, if we fix the privacy budget (i.e., ϵ = ϵd or γϵ = 0), the

randomization probabilities for each feature are notably affected leading to large values of γ

under KL-divergence and L2-norm measures (Figure 3.4) and, consequently, data utility

3When we adapt OME, which reports randomized binary vectors as its final outputs, to our setting by using extra information on how the
binary vector is created, it causes extra privacy risk. To address the problem, we apply Newton-Raphson method [22] to find new values
of the temperature α that can match the new privacy budget, which is forced to be bounded by a user-predefined privacy budget.
4There exists no temperature α in LATENT to address the privacy budget exploding. Therefore, we do not consider LATENT in our
experiments.

40

degradation (Figure 3.5). On the other hand, if we use the same randomization probabilities

Pr(aj|a, ·) (i.e., γ = 0), the privacy budget is accumulated over the expanded vector ed.

That is, the privacy budget increases by the factor d (ϵd = d× ϵ and γϵ = (d− 1)ϵ). This

causes privacy risk exaggeration when d is large.

Having either small γ or small γϵ is sufficient to mitigate the curse of dimensionality.

Accordingly, there are two potential approaches to achieve this goal. The first is to find a

tighter privacy loss bound to overcome the strong composition Theorem. That would help

us to achieve small changes γϵ in the total privacy budget. An example is the well-known

moments accountant [4], an instance of adaptive composition, or numerical composition [76].

Unfortunately, the moments accountant and the numerical composition are not directly

applicable to RR mechanisms.

An alternative and feasible approach is to keep the total privacy budget ϵ fixed and

focus on finding new randomization probabilities with small changes γ to lessen the impact

of the expansion factor d. Our mechanism follows this approach to mitigate the curse of

dimensionality by integrating dimension-scalability, data utility, and privacy protection

into a unified framework to find optimal randomization probabilities. This fundamental

difference from existing works helps ScalableRR significantly improve the trade-off among

privacy, utility, and dimensionality.

3.4 Scalable Randomized Response

To develop a dimension-scalable RR mechanism, one can simply inject a considerable

amount of noise into the randomization probabilities such that the noise countermeasures

the impact of dimension expansion. Empirically, such treatment degenerates data utility

and could even completely damage it. Alternatively, one can significantly reduce the noise

so that the dimension increase does not affect the randomization probabilities. In this way,

the privacy protection provided to the clients’ local data degenerates. Therefore, providing

41

Figure 3.2 Binary representation.

a better understanding of the connection between dimension-scalability, data utility, and

privacy protection, will enable us to achieve better data utility and privacy trade-offs.

To shed light on this connection, we consider a basic representation of a numerical

feature a in the feature vector e, its binary representation. By doing that, we can assess the

data utility through the influences of different binary bits on the value of the feature a. We

represent the feature a using an l-binary bit vector v consisting of 1 sign bit, m exponent

bits, and l−m−1 fraction bits (Figure 3.2) as

∀i ∈ [0, l − 1] : vi = ⌊2i−m|a|⌋ mod 2 (3.6)

where vi ∈ {0, 1} is the binary value of v at the bit i. For instance, IEEE 754 standard

binary32 includes 32 bits (l = 32) with 1 sign bit, 8 exponent bits (m = 8), and 23

fraction bits. In this study, we observe that with only 10 bits (l = 10), 1 sign bit, 5

exponent bits (m = 5), and 4 fraction bits, we can achieve nearly lossless model utility.

Therefore, we use these numbers of bits as constants in the rest of the paper. Technically,

our theoretical analysis shows that one can use larger numbers of bits without affecting

the privacy-utility-dimensionality trade-offs as long as the value domain of the feature a is

sufficiently covered.

Lossless Representation. Given a real-value of a, an l-binary bit vector may not

be sufficient to represent a, that is, decoding the binary vector v introduces a tiny error:

a = E(v) + φ, where φ is a tiny error and E(·) is the decoding function associated with

Equation 3.6. We dismiss the tiny error φ by replacing a with E(v), i.e., a = E(v). This can

42

be done as a data preprocessing step without incurring any privacy risk or notable utility

loss.

Overview of ScalableRR. The pseudo-code of our mechanism is in Alg. 1.

ScalableRR randomizes every bit in the binary vector representation v to create an

LDP-preserving binary vector v′, which will be decoded, based on the binary encoding in

Equation 3.6, to generate a randomized feature a′. We apply ScalableRR to independently

randomize every feature a in the feature vector e to create an LDP-preserving feature vector

e′, which is the final outcome of ScalableRR. One can use the LDP-preserving feature

vector e′ as a permanent replacement of the training data sample x in downstream tasks,

such as computing the local gradients in FL. That enables us to significantly reduce the

model size (i.e., r embedding features) compared with using the randomized binary vector

representation v′ (i.e., r × l binary bits) in training the model f .

The entire process of ScalableRR takes an input e = H(x) and outputs e′ =

E
(
M(v)

)
∈ Rr is formulated as follows:

ScalableRR(x) : e = H(x)→ e′ = E
(
M(v)

)
∈ Rr (3.7)

whereM is a mechanism we use to randomize every bit in the binary vector v derived from

the feature vector e.

By working at the binary bit level, we can integrate dimensionality, data utility, and

privacy protection to optimize randomization probabilities. We introduce a bit-aware term

for better data utility and a control parameter for better control of the randomization

probabilities. The bit-aware term ensures that more influential bits on the data utility,

such as sign bits and exponent bits, have better (less noisy) randomization probabilities,

and vice-versa. In addition, when the dimension r of the feature vector e increases, one

can always find a suitable control parameter such that the changes in the randomization

probabilities and in the total privacy budget are marginal. As a result, ScalableRR achieves

better dimension-scalability and data utility under the same privacy protection.

43

A Simple RR Mechanism. To provide insights into key components in ScalableRR,

let us start with simple probabilities [204] to randomize every bit i in the binary vector v

creating a randomized binary vector v′, as follows:

∀i ∈ [0, l − 1] :

pi ← P (v′i = vi) =

exp(ϵX)

1 + exp(ϵX)

qi ← P (v′i = vi) =
1

1 + exp(ϵX)

(3.8)

where vi is the complement of vi, ϵX is a user-predefined privacy budget, and A ← B

denotes B is assigned to A. In this work, we use pi and qi as the randomization probabilities,

in which pi is the probability to keep the bit i and qi is the probability to flip the bit i.

The total privacy budget to randomize the binary vector v of the feature a is ϵ = l×ϵX .

If we apply these randomization probabilities on every feature in the feature vector e, the

total privacy budget will be linear to the dimension r of the feature vector e: ϵ = rl × ϵX

(the strong privacy composition Theorem [59]). It is obvious that this simple RR suffers

from the curse of dimensionality for two reasons: (1) Every bit has the same randomization

probabilities (the flat line in Figure 3.3(a)); and (2) Every bit randomization mandates the

same privacy budget ϵX .

These issues motivate the following question: Is there any different distribution of the

randomization probabilities across the bits in v that could result in the same or less total

privacy budget?

To answer this question, we look into the probability qi, which essentially is a

sigmoid function of ϵX . To control the sigmoid function, one can use a scale factor s

and a temperature α, as follows:

qi =
s

1 + exp (−αϵX)
(3.9)

Since all the probabilities are bounded, i.e., qi, pi ∈ (0, 1), the scale factor s must

be fixed to 1 to maximize the search space for all the probabilities irrespective of the

dimensionality increase (decrease) of v or the feature vector e. Therefore, we focus on

44

finding the temperature α as the control parameter of the randomization probabilities

such that the randomization is bit-aware and dimension-scalable for better privacy-utility

trade-offs. That is a challenging problem since the temperature α can have different forms.

3.4.1 Bit-aware Randomization
We tackle the problem of finding the appropriate temperature step by step. In this section,

we focus on integrating the bit-aware term into the temperature α. We first introduce the

concept of bit-influence.

Bit-Influence. Under the same LDP guarantee, the smaller the difference between a

and its randomized version a′, the more information is preserved through the randomization

process; that is, less noise and better data utility. Hence, we need to understand the impact of

randomizing the binary vector v on the LDP-preserving feature a′ by bounding the amount

of information that can be changed via randomizing different bits in v in the worse case (i.e.,

all bits flip).

In fact, each bit i has a different influence associated with its location in v. For

example, flipping the sign bit in v, e.g., v = 1010.010101, to create a randomized vector

v′ = 0010.010101, results in the randomized feature a′ = −2.328125 (i.e., derived from

decoding v′), which is significantly different from the original feature a = 2.328125.

Meanwhile, flipping the least significant fraction bit in v to create v′ = 1010.010100 results

in a much smaller distance between a and its randomized version a′, i.e., a′ = 2.3125 ≃ a.

Flipping different bits introduces different data utility and privacy risks. The closer the

randomized version a′ to its original value a, the better the data utility and the greater the

privacy risk; and vice-versa.

To address this trade-off, we quantify the influence of each bit i in the binary vector

v by capturing the magnitude by which bit i changes the LDP-preserving feature a′ in the

worse case. The influence of a bit i is bounded as follows:

45

Lemma 2. Bit-Influence. Consider the two binary vectors v and v ̸=i such that v ̸=i differs

from v only at bit i, the l1-norm influence Ii is computed as follows:

∀i ∈ [0, l − 1] : Ii = max
v
∥E(v)− E(v ̸=i)∥1 (3.10)

∀i ∈ [0, l − 1], Ii is bounded as follows:

Ii ≤

2m+1, if i is a sign bit

2m−i, if i is an exponent or fraction bit
(3.11)

Proof of Lemma 2 is Appendix A.6.

Given the bit-influence in Lemma 2, we introduce a bit-aware term as part of the

temperature control such that more influential bits on the model utility (e.g., sign and

exponent bits) have smaller probabilities (qi) to be flipped. In other words, more influential

bits on data utility receive less perturbation and vice-versa. Since the bounded bit-influences

are associated with the locations of the bits, we can formulate the bit-aware term to reflect

the influential location of bit i in the binary vector v. That results in different randomization

probabilities for different bits, as follows:

∀i ∈ [0, l − 1] :

pi ← P (v′i = vi) =

1

1 + α exp
(
i× ϵX

)
qi ← P (v′i = vi) =

α exp
(
i× ϵX

)
1 + α exp

(
i× ϵX

) (3.12)

In Equation 3.12, we move α outside of the exp(·) to better control the probability of

the sign bit (i = 0) without affecting the generality of the sigmoid function. We can always

find an α such that qi ≤ pi satisfying LDP (i.e., similar to typical RR definition [204]).

Figure 3.3(a) depicts the distributions of the randomization probabilities (qi) across the

bits of v for different values of the temperature α in Equation 3.12. Given fixed values of ϵX

and α ∈ R+, Figure 3.3(a) clearly shows that the probability (qi) to flip more influential bits

is smaller, e.g., i = 0 for the sign bit resulting in q0 =
α

1+α
, compared with less influential

46

bits, e.g., i = l−1 for the least important fraction bit resulting in ql−1 =
α exp

(
(l−1)ϵX

)
1+α exp

(
(l−1)ϵX

) . In

fact, q0 < ql−1. The analysis is true for all the bits in v, i.e., ∀i, j ∈ [0, l− 1], i < j : qi < qj .

Such variable randomization probabilities enable us to achieve better data utility compared

with the uniform randomization probability (qi in Equation 3.8).

ScalableRR. If we apply our bit-aware randomization probabilities on every bit in the

binary vector v, which has r × l bits created by concatenating the binary representations of

all features in the feature vector e, Equation 3.12 becomes:

Randomization mechanismM:

∀i ∈ [0, rl − 1] :

pi ← P (v′i = vi) =

1

1 + α exp(i%l
l
ϵX)

qi ← P (v′i = vi) =
α exp(i%l

l
ϵX)

1 + α exp(i%l
l
ϵX)

(3.13)

where the bit-aware term becomes il
l

(or i%l
l

in short) for ∀i ∈ [0, rl − 1] to reflect the

influential location of the bit i of each feature a in v.

After obtaining the randomized binary vector v′ = M(v), as in Equation 3.7,

ScalableRR decodes v′ to create the LDP-preserving feature vector e′ = E(v′). ScalableRR

focuses on optimizing α such that ϵX becomes the total privacy budget as in Theorems 2

and 3.

3.4.2 Privacy Loss Bound

The main challenge is to obtain good data utility while bounding the privacy loss to maintain

acceptable level of protection. Therefore, ScalableRR searches the value of α that produces

the distribution of randomization probabilities with the best LDP guarantee.

Intuitively, this α can be computed from Equation 3.13 under the constraint that

the total privacy loss in randomizing the binary vector v is bounded by ϵX as in previous

works [13, 121], such that P (M(v)=vz)
P (M(ṽ)=vz)

≤ exp(ϵX) where two vectors v and ṽ that could be

different in any number of their bits and vz ∈ Range(M). Importantly, we need to train

47

((a)) qi (ϵX is NOT the total privacy budget) ((b)) qi (ϵX becomes the total privacy budget as in
ScalableRR, Theorems 2-3)

Figure 3.3 Randomization probability qi as a function of α with ϵX = 1.0 and r = 10, 000.

a significantly larger model f taking the randomized binary vector v′ =M(v) (i.e., r × l

bits) as an input. This approach is not scalable when the number of embedding features r

increases by the factor d.

To address this problem, as in Equation 3.7, ScalableRR decodes the randomized

binary vector to extract randomized embedding features e′ = E
(
M(v)

)
. One can use

the randomized embedding features e′ to train their local model f . By working with the

randomized embedding features e′, our mechanism scales better by reducing the model size.

The challenge is to bound the privacy loss given the final outcome of ScalableRR, i.e., the

randomized embedding features: P (E(M(v))=E(vz))
P (E(M(ṽ))=E(vz)) . This is because the decoding function

uses extra information about the bits, that is, different bits have different influences on the

randomized embedding features.

In this section, we derive a new and tighter privacy loss bound of ScalableRR. The

key idea is to ensure that the privacy loss in randomizing every bit in the binary vector v is

upper-bounded by the privacy loss incurred given the randomized embedding features.

First, we quantify the sensitivity of ScalableRR. By following [59], the maximum

amount of change in the output of ScalableRR caused by changing bit i in the input vector v

is considered as the l1-sensitivity of ScalableRR at the bit i. Therefore, the l1-sensitivity is

quantified as follows:

∀i ∈ [0, rl − 1] : ∆i = max
v
|E
(
M(v, i)

)
− E

(
M(v ̸=i, i)

)
|

48

whereM(v, i) implies thatM is applied to randomize only bit i while keeping all other

bits in v unchanged.

Given a deterministic decoding function E , upon bounding the l1-sensitivity ∆i in

Lemma 4 (Appendix A.7), for the LDP condition to hold in randomizing a single bit i, the

ratio is bounded as follows:

P (E(M(v, i)) = E(vz))
P (E(M(v ̸=i, i)) = E(vz))

=
P (M(vi) = vz,i)

P (M(v ̸=i
i) = vz,i)

×
∏

j ̸=i,j∈[0,rl−1]

P (M(vj) = vz,j)

P (M(v ̸=i
j) = vz,j)

(3.14)

=
P (M(vi) = vz,i)

P (M(v ̸=i
i) = vz,i)

≤ exp(ϵi
|E(M(v, i))− E(M(v ̸=i, i))|

∆i
)

where ϵi is the privacy loss for the bit i. For all the bits j different from the bit i, P (M(vj) =

vz,j) = P (M(v ̸=i
j) = vz,j) since all these bits j are the same in the binary vectors vj and

v ̸=i
j , i.e., vj = v ̸=i

j .

We then apply the strong composition Theorem [59] to expand the privacy loss bound

of a single bit in Equation 3.14 into the total loss over the whole binary vector v, as follows:

P (E(M(v)) = E(vz))
P (E(M(ṽ)) = E(vz))

=

rl−1∏
i=0

P (M(vi) = vz,i)

P (M(v ̸=i
i) = vz,i)

(3.15)

≤ exp
(rl−1∑

i=0

ϵi|E(M(v, i))− E(M(v ̸=i, i))|
∆i

)
≤ exp(

rl−1∑
i=0

ϵi)

If we force the total privacy loss ϵ =
∑rl−1

i=0 ϵi to be equal to the user-predefined budget

ϵX , we can identify a closed form solution of the temperature α by solving the inequality:

P (E(M(v)) = E(vz))
P (E(M(ṽ)) = E(vz))

=

rl−1∏
i=0

P (M(vi) = vz,i)

P (M(v ̸=i
i) = vz,i)

≤ exp (ϵX) (3.16)

Theorem 2. Given α = exp(ϵX−rϵX(l−1)
2rl

), ScalableRR preserves ϵX-LDP by satisfying

Equation 3.16, where v and ṽ can be different in any number of bits, and vz ∈ Range(M).

The proof of Theorem 2 is in Appendix A.8.

49

((a)) KL-divergence (r = 10, ϵX = 1) ((b)) KL-divergence (r=10, d=10, 000)

((c)) L2-norm (r = 10, ϵX = 1) ((d)) L2-norm (r = 10, d = 10, 000)

Figure 3.4 Different measurements for comparing dimension-scalability among LDP-based
techniques.

3.4.3 Tighter Privacy Loss Bound

The privacy loss bound in Equation 3.16 is not tight enough since there is a gap between

the actual bound, exp
(∑rl−1

i=0
ϵi|E(M(v,i))−E(M(v ̸=i,i))|

∆i

)
, and the user-predefined budget, ϵX

(=
∑rl−1

i=0 ϵi), since exp(
∑rl−1

i=0 ϵi) − exp
(∑rl−1

i=0
ϵi|E(M(v,i))−E(M(v ̸=i,i))|

∆i

)
≥ 0. In other

words, the current bound does not utilize all the user-predefined privacy budget. That may

affect data utility given the solution of α in Theorem 2.

The root cause of the gap is the proportion |E(M(v, i))− E(M(v ̸=i, i))|/∆i ≤ 1. To

close this gap, we revisit the privacy loss bound P (M(v,i)=vz)
P (M(v ̸=i,i)=vz)

in Equation 3.14. There are

two possible cases: (1) P (M(v,i)=vz)
P (M(v ̸=i,i)=vz)

≥ 1, and (2) 0 < P (M(v,i)=vz)
P (M(v ̸=i,i)=vz)

< 1. Let us consider

here the first case, while the second case is covered in Appendix A.95.

5We obtain the same closed form solution of α for the two cases.

50

Since ∆i is the l1-sensitivity, we have ∆i/|E(M(v, i)) − E(M(v ̸=i, i))| ≥ 1.

Therefore, for the first case, we have:

P (M(vi) = vz,i)

P (M(v ̸=i
i) = vz,i)

≤
(P (M(vi) = vz,i)

P (M(v ̸=i
i) = vz,i)

) ∆i
|E(M(v,i))−E(M(v ̸=i,i))| ≤ exp(ϵi) (3.17)

Finding α such that
(

P (M(vi)=vz,i)

P (M(v ̸=i
i)=vz,i)

) ∆i
|E(M(v,i))−E(M(v ̸=i,i))| ≤ exp(ϵi) always guarantees

that the randomization of the bit i is ϵi-LDP, i.e., P (M(vi)=vz,i)

P (M(v ̸=i
i)=vz,i)

≤ exp(ϵi). The key

advantage is that
(

P (M(vi)=vz,i)

P (M(v ̸=i
i)=vz,i)

) ∆i
|E(M(v,i))−E(M(v ̸=i,i))| is closer to exp(ϵi) than the privacy

loss P (M(vi)=vz,i)

P (M(v ̸=i
i)=vz,i)

; hence, it offers a tighter privacy loss bound. As a result, we can derive a

better value of the temperature α offering better randomization probabilities and data utility.

We directly extend Equation 3.17 to derive a tighter privacy loss bound covering all

the bits in the binary vector v, as follows:

P (E(M(v)) = E(vz))
P (E(M(ṽ)) = E(vz))

≤
rl−1∏
i=0

(P (M(vi) = vz,i)

P (M(v ̸=i
i) = vz,i)

) ∆i
|E(M(v,i))−E(M(v ̸=i,i))| ≤ exp(

rl−1∑
i=0

ϵi)

(3.18)

Similarly, if we force the total privacy budget ϵ =
∑rl−1

i=0 ϵi to be equal to a user-

predefined budget, we can identify a closed form solution of the temperature α by solving

the following inequality:

P (E(M(v)) = E(vz))
P (E(M(ṽ)) = E(vz))

≤
rl−1∏
i=0

(P (M(vi) = vz,i)

P (M(v ̸=i
i) = vz,i)

) ∆i
|E(M(v,i))−E(M(v ̸=i,i))| ≤ exp(ϵ) = exp(ϵX)

(3.19)

Theorem 3. Given α =
√

rl+(1−ρ)ϵX
2r

∑l−1
i=0 exp(2ϵX

i
l
)
, ScalableRR preserves ϵX-LDP, v and ṽ can

be different in any number of bits, and vz ∈ Range(M), ρ = 2
√
− ln(δ)

2r
with a broken

probability l × δ.
The proof of Theorem 3 is in Appendix A.9.

51

A typical value of the broken probability is l× δ = 1e− 5 [4]. As we can observe, the

temperature α derived from Theorem 3 is smaller than the one from Theorem 26, resulting

in a smaller probability qi for a bit i to be flipped under the same ϵX (Figure 3.3(b)). Thus,

ScalableRR retains higher data utility outperforming existing RR mechanisms.

3.4.4 Dimension-Scalability

This section sheds light on the trade-off among dimension-scalability, data utility, and privacy

guarantees. It is challenging to achieve a good trade-off among dimension-scalability, data

utility, and privacy. Injecting a large amount of noise cause poor utility or injecting little

noise results in loose privacy. Dimension-scalability is only meaningful when it results in

better data utility under the same privacy guarantees.

ScalableRR achieves significantly better (γ, ·)-dimension-scalability than existing

mechanisms by limiting the impact of increasing the dimension of the feature vector e on the

randomization probabilities and the total privacy budget through appropriate computation

of the temperature α. To elaborate on this, let us consider the closed-form solution of α

in Theorem 3, which is the only factor affecting the randomization probabilities qi and pi

(Equation 3.13). Given a fixed user-predefined privacy budget ϵX (i.e., γϵ = 0), the term∑l−1
i=0 exp(2ϵX

i
l
) is a constant7, denoted as C. Hence, we have α =

√
(2l + (1−ρ)ϵX

r
)/(C).

Given a typical value of r in practice, such as a hundred or more features in the feature

vector e, the term (1−ρ)ϵX
r

(≊ 0.0) is tiny compared with the number of bits l and the constant

C since ϵX is usually small to provide rigorous privacy protection. Therefore, when the

dimension r increases by the factor d, the impact of either the term (1−ρ)ϵX
r

or the term

(1−ρ)ϵX
d×r on the temperature α is minimal. As a result, the impact of the expansion factor d

on the randomization probabilities is marginal.

In other words, when the dimension r of the feature vector e is increased, one can

always find a new temperature α such that the randomization probabilities are marginally

6
√

(rl + (1− ρ)ϵX)/[2r
∑l−1

i=0 exp(2ϵX
i
l
)] < exp(

ϵX−rϵX (l−1)
2rl

) (lδ = 1e− 5 and r ≥ 1).
7The number of bits l to represent a single numerical feature a is a constant.

52

affected under the same total privacy budget. That ability is fundamentally different from

existing mechanisms. On the other hand, fixing the randomization probabilities (γ = 0)

while expanding r by the factor d results in a total privacy budget of d× ϵX . This is similar

to existing LDP-preserving RR mechanisms due to the strong composition Theorem.

From the definition of dimension-scalability, we can compute and bound the impact of

the expansion factor d on the randomization probabilities given a fixed user-predefined ϵX

by employing KL-divergence and Lp-norms to measure the changes in the randomization

probabilities. Similarly, we can compute the impact of the factor d on the total privacy

budget given fixed randomization probabilities.
Theorem 4. (γ, γϵ)-dimension-scalability of ScalableRR. When the dimension of the

feature vector e ∈ Rr increases by a factor d (d × r ∈ N+ and d > 1), given a user-

predefined privacy budget ϵX , ScalableRR achieves (γ, γϵ)-dimension-scalability where γ

and γϵ are calculated as follows:

• γ =

l−1∑
i=0

log
(1 + αdti
1 + αti

)
+

l−1∑
i=0

qi log
α

αd

,

for KL-divergence√√√√ l−1∏
i=0

Ai +
l−1∏
i=0

Ai
d − 2

l−1∏
i=0

Bi, for L2-norm

• γϵ = (d− 1)× ϵX

where α and αd are the temperature parameters as in Theorem 3 for e and its expanded

version ed, respectively; ti = exp(i%l
l
ϵX), Ai =

1+α2t2i
(1+αti)2

, Ai
d =

1+α2
dt

2
i

(1+αdti)2
, and Bi =

1+ααdt
2
i

(1+αti)(1+αdti)
.

The proof of Theorem 4 is in Appendix A.10.

In Figure 3.4, given a rigorous privacy budget, i.e., ϵX = 1.0, when the expansion

factor d increases (e.g., d ∈ [5, 104]), thanks to the bit-aware term and the temperature

α derived from a tighter privacy loss bound, ScalableRR achieves the best dimension-

scalability with significantly smaller changes γ of the randomization probabilities in KL-

53

Figure 3.5 Expected error for an embedding feature as a function of: (a) user-predefined
budget ϵX , (b) expansion factor d.

divergence and L2-norm than existing approaches. We observe similar results across a

wide-range of ϵX . Among the baselines, the adaptive OME obtains a much better dimension-

scalability; technically, at much higher changes γ compared with ScalableRR, and is

followed by PM mechanism and other baseline approaches.

3.4.5 Privacy, Utility, Dimensionality Trade-off

In addition to the bit-aware property and a tighter privacy loss bound, achieving good

dimension-scalability enables us to significantly improve utility-privacy trade-off while

handling bigger feature vectors e. To provide insights, we analyze the privacy-utility

trade-off of ScalableRR, compared with existing approaches. We compute (1) the expected

error as defined in the following Theorem 5, and (2) the randomization probabilities defined

in Equation 3.13 as a function of (i) the total privacy budget, and (ii) the the feature expansion

factor d. Note that all statistical tests are 2-tail t-tests.

Expected Error. We use the expected error, denoted as ξa, as a proxy for the

degradation in data utility. The expected error is measured as the expected change of an

embedding feature a represented by a binary vector v after applying ScalableRR: ξa =

54

Figure 3.6 Expected error at the bit-level (ϵX = 1.0, r = 10, 000)

E|E(M(v))− E(v)|. The smaller the expected error is, the better data utility a mechanism

could achieve.
Theorem 5. The ScalableRR expected error is quantified by ξa = E|E(M(va))−E(va)| =∑

i∈[0,l−1] qi ×∆i.

The proof of Theorem 5 is in Appendix A.11.

Theorem 5 can be directly applied to quantify the expected error of different

variants of ScalableRR, including ScalableRR without the bit-aware property i%l
l

in

Equation 3.13, ScalableRR without the tighter privacy loss bound (Theorem 2) and

adaptive OME5. For existing mechanisms that utilize the numerical feature a, including

Duchi’s mechanism (DM) [51], Piecewise mechanism (PM) [201], Hybrid mechanism

(HM) [201], Three-outputs mechanism [226], Suboptimal mechanism (PM-SUB) [226],

Gaussian and Laplace [59], we derive a general form of the expected error ξa as:

ξa = E|M(a)− a| ≊ 1/r
∑

a∈e |M(a)− a|, whereM is an LDP preserving mechanism,

since limr→∞ E|M(a)− a| = 1/r
∑

a∈e |M(a)− a|.

Expected Error v.s. Privacy Budget. Figure 3.5a depicts the expected error as a

function of the user-predefined total privacy budget ϵX . The figure shows that ScalableRR

achieves significantly better-expected error than the baselines under a wide range of privacy

budgets, given large numbers of embedding features, e.g., r = 10, 000, (p = 0.02). In other

55

Figure 3.7 Randomization probability qi as a function of d.

words, ScalableRR retains better data utility compared with the baselines. The improvement

of ScalableRR over the baselines is more significant for bigger privacy budgets ϵX .

Expected Error v.s. Dimensionality. Figure 3.5b illustrates the expected error of

each mechanism as a function of the expansion factor d. Thanks to the dimension-scalability,

ScalableRR obtains notably smaller expected error compared with the baselines under a

wide range of the factor d. This shows that ScalableRR can offer better data utility compared

with the baselines. When d increases, the expected error of the numerical value-based

approaches, including DM, HM, Three-outputs, Gaussian, and Laplace mechanisms, grows

significantly, thus, negatively affecting data utility.

Expected Error at the Bit-Level. Our analysis of the expected error at the bit-level

shows that, in all the 2l (i.e., l = 10) possible values of the binary vector for a feature,

ScalableRR achieves better expected error than the adaptive OME, the only baseline working

at the bit-level (Figure 3.6). In addition, ScalableRR achieves smaller values of expected

error for most significant bits (the sign bit and exponent bits) compared with adaptive OME,

and comparable expected error for least significant (fraction) bits.

Randomization Probabilities v.s. Privacy Budget and Dimensionality. The unique

bit-aware property of ScalableRR enables us to achieve lower randomization probabilities

(qi) across almost all the bits compared with the adaptive OME under a wide range of

56

Figure 3.8 Randomization probability qi at the bit-level (r = 10, 000, ϵX = 1).

user-predefined privacy budgets (ϵX ∈ {0.1, 1, 2}) (ϵX = 1 in Figure 3.8). Importantly,

given ϵX in ScalableRR, varying d ∈ [5, 104] marginally affects qi for all the bits in v (Figure

3.7). Meanwhile, qi noticeably changes in OME when d increases. In addition, ScalableRR

achieves smaller values of qi, resulting in less perturbations in the significant bits (e.g., the

sign bit, the highest and lowest exponent bits, and the highest fraction bit), and hence better

utility. Only at the lowest fraction bit, which is the least important bit to the data utility,

ScalableRR has comparable values of qi with OME when d is large. The bit-aware term and

the temperature derived from the tighter privacy loss bound allow ScalableRR to achieve

significantly better dimension-scalability given γ.

3.5 Experimental Results

In this paper, we evaluate ScalableRR in the FL setting. The pseudo-code is in Alg. 1. For a

single input x and its label y in the local training data Du, the client u extracts embedding

features e from the input x using a pre-trained model H (line 4). The pre-trained model

can be trained on public datasets to avoid extra privacy risks. To defend against the privacy

threat model stated in Section 3.2: (1) We apply ScalableRR to protect the privacy of the

embedding features e with ϵX-LDP guarantees; and (2) We apply Label-DP [73] to achieve

ϵY -LDP guarantee of the label y (lines 5-8). In addition to randomizing e, the randomization

57

Algorithm 1 ScalableRR for clients. The server side is the same with a typical FL protocol

(FedAvg) [126].

1: Input: Training model f(θ), pre-trained modelH, loss function L, privacy budgets ϵX

and ϵY , round t

2: At client u ∈ [1, N]:

3: for each data sample (x, y) ∈ Du do

4: Extract embedding features: e = H(x)

5: v ← BinaryEncoding(e) # using Equation 3.6

6: Randomize v: v′ ←M(v, ϵX) # using Equation 3.13 with α in Theorem 3

7: e′ ← E(v′) # decoding function associated with Equation 3.6

8: Randomize y: y′ ← label-DP(y, ϵY)

9: end for

10: ClientUpdate(u, θt):

11: θu∗t ← argminθt
1
nu

∑
(e′,y′)∈D′u

L
(
f(e′, θt), y

′)
12: Return△θut ← θu∗t − θt

of the label y allows us to achieve a complete LDP protection of each local training sample

(e, y). All the randomized samples (e′, y′) are used as permanent replacements for the

original training samples in computing the local gradients △θut at every training round t

(lines 9-11). Hence, privacy protection is not affected by the size of the local gradients and

the number of communication rounds.

For reproducibility, the implementation of ScalableRR with model hyper-parameter

configuration is available8.

We conduct extensive experiments on benchmark datasets for text and image

classification to shed light on (1) the interplay between privacy and model utility, (2)

the effectiveness of the dimension-scalability and bit-aware properties, and (3) different

settings of applying RR to preserve LDP.

8https://anonymous.4open.science/r/ScalableRRcode/

58

https://anonymous.4open.science/r/ScalableRRcode/

Datasets, Metrics, and Models. We carry out our experiments on two textual datasets

and two image datasets, including the AG dataset [194], our collected Security and Exchange

Commission (SEC) financial contract dataset, the large-scale celebFaces attributes (CelebA)

dataset [117], and the Federated Extended MNIST (FEMNIST) dataset [26] (Table 3.1). We

use the test accuracy and the test area under the curve (AUC) as evaluation metrics. Higher

values of test accuracy and AUC are better. To extract embedding features, i.e., e = H(x),

we use the BERT-Base (Uncased) pre-trained model [48] for the AG and SEC datasets and

the ResNet-18 pre-trained model [81] for the CelebA and FEMNIST datasets. For text and

image classification tasks, we use two fully connected layers on top of embedding features,

each consisting of 1,500 neurons with ReLU activation.

Baselines. We consider a variety of LDP-preserving baselines: (1) the Adaptive OME

[121]; (2) LDP-FL [191]; (3) Duchi’s mechanism (DM) [51]; (4) Piecewise mechanism

(PM) [201]; (5) Hybrid mechanism (HM) [201]; (6) Three-Outputs mechanism [226]; (7)

Suboptimal mechanism (PM-SUB) [226]; and (8) Label-Laplace [149]. Note that [24]

is considered as the newer version of DM; in this way, the privacy budget consumption

is large in FL, i.e., ϵX ≥ 100, indicating a loose privacy protection [140]. Therefore,

we do not consider it in our experiments. Each baseline is applied to randomize (when

applicable): (i) Embedding features e; (ii) Gradients △u
θt

; and (iii) Gradients △u
θt

with

a recent anonymizer [191] to reduce the privacy budget consumption. We include the

Noiseless FL model trained on the original data Du to show upper-bounds and a Random

guess model to better understand the impact on model utility.

These settings are widely used; hence, offering a comprehensive view of LDP

preservation in FL. Note that Adaptive OME and ScalableRR are only applied on embedding

features; while LDP-FL is only applied on the local gradients with or without the anonymizer.

59

Table 3.1 Dataset Breakdown

Dataset
Train Test

clients

Samples

per client C

samples # samples (Average)

AG 120, 000 7, 600 2, 800 43 4

SEC 5, 188 1, 021 1, 592 3 2

CelebA 155, 529 19, 962 6, 733 22
40

(binary)

FEMNIST 734, 033 71, 230 3, 550 207 62

Figure 3.9 AUC values of LDP algorithms applied on the embedding features e in the AG,
SEC, and FEMNIST datasets.

Evaluation Results. Without loss of generality, we report AUC results while the

accuracy results are available for interested readers9. Experimental results show that

ScalableRR offers stronger privacy protection with better model utility, compared with

baseline approaches, as discussed next.

LDP-preserving Embedding Features. Figure 3.9 shows that baseline approaches

do not work well when applied on embedding features. In SEC, AG, and FEMNIST

datasets, ScalableRR achieves the highest model utility compared with the best baseline

(i.e., adaptive OME) under a tight privacy budget ϵX = 1. In terms of accuracy and AUC

values, ScalableRR (ϵY =∞ means no protection for the label) achieves an improvement

over the baselines of 46.03% and 38.51% in the AG dataset (p = 2.7e− 22), 13.69% and

9Section A.18 in our extended analysis.

60

((a)) ϵX = 1.0 ((b)) ϵX = 5.0

((c)) ϵX = 10.0

Figure 3.10 AUC values of LDP algorithms applied on the embedding features e in the
CelebA dataset.

13.79% in the SEC dataset (p = 4.1e − 12), and 21.62% and 13.42% in the FEMNIST

dataset (p = 5.6e − 11), respectively. In the CelebA dataset (Figure 3.10), ScalableRR

outperforms the best baseline (i.e., PM-SUB) with an average improvement of 1.66% across

all 40 attributes in terms of AUC measure (p = 1.2e− 2). Since the CelebA dataset is highly

imbalanced, we use the AUC measure instead of the model accuracy. The gaps between

ScalableRR and the baselines are wider when ϵX is larger. In addition to ϵX = 1, with a

small privacy budget for the labels ϵY ∈ {1, 2.5}, ScalableRR still outperforms the baselines

in most of the cases, offering stronger privacy protection with better model utility, i.e., LDP

at both embedding feature and label levels instead of only LDP on the embedding features

as in the baselines.

The reason is that, in the baseline approaches, the model utility is notably affected

by the size of the embedding features. Thanks to the dimension-scalable and bit-aware

61

properties, ScalableRR can achieve high model accuracy and AUC values under rigorous

privacy budgets. In addition, ScalableRR achieves the highest improvement in the AG

dataset, since it is a balanced dataset compared with the highly imbalanced CelebA dataset,

in which ScalableRR achieves the least improvement. Addressing imbalanced data in FL

under DP [89] is out-of-scope of this study.

LDP-preserving Gradients and the Anonymizer [191]. We observe the same

phenomenon when baseline approaches are applied on gradients without and with the

anonymizer [191], even though the gaps between ScalableRR and the baselines are

(marginally) smaller. Without using the anonymizer in the baselines, ScalableRR (ϵX ,ϵY =

1) achieves accuracy and AUC improvements of 44.95% and 37.52% in the AG dataset

(p = 3.9e − 20), 12.82% and 12.92% in the SEC dataset, 24.17% and 13.40% in the

FEMNIST dataset (p = 4.1e− 11), respectively, over the best baseline PM-SUB.

When the anonymizer is applied in the baseline approaches (Figure 3.11), ScalableRR

achieves accuracy and AUC improvements of 39.38% and 32.75% in the AG dataset (p =

1.2e−16), 13.59% and 13.69% in the SEC dataset (p = 2.1e−10), and 23.12% and 37.02%

in the FEMNIST dataset (p = 2.8e− 11), respectively, over HM. In the case of the CelebA

dataset (Figure 3.12), ScalableRR outperforms the best baselines (i.e., Three-outputs and

HM) with AUC (p = 3.1e − 2) improvements of 1.28% and 0.3%, with and without the

anonymizer, across all the 40 attributes. On the other hand, the model utility in the baselines

is affected by the size of gradients and the training rounds (when the anonymizer is not

applied) and their finite numbers of randomization outputs of the gradients [226].

Expansion Factor. On the one hand, increasing the feature vector dimensionality leads

to better utility as it enriches the representation of the input domain in general. On the other

hand, the increase in dimensionality can degrade the utility given fixed privacy guarantees

(i.e., more noise is introduced in randomizing each embedding feature). Technically,

our approach benefits from the increase in the dimensionality due to better control of

its impact on utility. Hence, Figure 3.13 shows that when we expand the embedding

62

Figure 3.11 AUC values of LDP algorithms applied applied on the gradients△θut with the
anonymizer [191].

feature vector by the factor d under the same total privacy budget, the model utility of

ScalableRR is significantly improved, especially given rigorous privacy budgets. Given

ϵX = 1, ScalableRR registers an improvement of 27.64% in AUC and 32.70% in accuracy

when d increases from 100 to 768 compared with almost no improvement of adaptive OME,

the best baseline. This observation strengthens our theoretical analysis that ScalableRR

achieves better dimension-scalability and data utility than the baselines.

((a)) ϵX = 1.0 ((b)) ϵX = 5.0

((c)) ϵX = 10.0

Figure 3.12 AUC values of LDP algorithms applied on the gradients △θut with the
anonymizer [191] in the CelebA dataset.

63

Figure 3.13 AUC values of ScalableRR and Adaptive OME when varying the factor d
(r = 1) in the AG dataset.

Defending Against Data Reconstruction Attacks. Figure 3.14 illustrates examples

of reconstructed images in no-protection environment (Column 2) and under protection

of ScalableRR correspondingly. We found that ScalableRR prevents the attacker from

reconstructing the original images (Columns 3-6). Up to the privacy budget ϵX = 5, the

reconstructed images are very noisy. Importantly, we achieve high model utility under this

level of LDP protection. Therefore, ScalableRR is effective in defending the attacks without

sacrificing model utility. Up to a very high budget ϵX = 10, parts of the original images

start to appear informing noticeable privacy risk.

ScalableRR is Tested in a Real-world Mobile-Cloud Federated Learning System.

To show how our proposed ScalableRR adopt in real-world scenarios, we incorporated

ScalableRR into a data collection module of a FLSys [95], which is one of the state of the

art real-world mobile-cloud FL systems, to protect local data in training a human activity

recognition system.

FLSys is designed to work on smart phones with mobile sensing data. It balances

model performance with resource consumption, tolerates communication failures, and

achieves scalability. In FLSys, different DL models with different FL aggregation methods

can be trained and accessed concurrently by different apps. Furthermore, FLSys provides

advanced privacy preserving mechanisms and a common API for third-party app developers

64

((a)) Defending data reconstruction attack [143].

((b)) Defending data reconstruction attack [49].

Figure 3.14 ScalableRR v.s. reconstruction attacks.

to access FL models. FLSys adopts a modular design and is implemented in Android

and AWS cloud. The FLSys is tested with a human activity recognition (HAR) model.

HAR sensing data was collected in the wild from 100+ college students during a 4-month

period. In HAR-Wild, a CNN model is tailored to mobile devices, with a data augmentation

mechanism to mitigate the problem of non-Independent and Identically Distributed data.

For privacy protection mechanisms, we train the HAR-Wild with many DP

mechanisms, including User-level DP mechanism, Duchi mechanim (DM), Piecewise

mechanism (PM), Three-outputs, and ScalableRR. Then, we evaluated the trade-offs

between model utility and privacy budget for different versions of HAR-Wild with privacy

mechanisms, as shown in Table 3.2. As expected, the model utility decreases as privacy

budget ϵX tightens. From this table, we select the best User-DP model (i.e., the one with

ϵX = 8) and the best LDP model (i.e., ScalableRR with ϵX = ϵY = 8) in terms of accuracy,

and compare them with the models with and without augmentation in Figure 3.15. The

results show that HAR-Wild with User-DP achieves a model accuracy of 69.70%, which

is just 2.11% lower than the model without privacy protection. HAR-Wild with LDP

65

Figure 3.15 Comparison of FL HAR-Wild Versions, with and without Data Augmentation,

and with and without Privacy Protection.

(ScalableRR) achieves an accuracy of 69.43%, which is just 2.38% lower than the noiseless

model. Note that our defense successfully prevents the server to reconstruct recognizable

sensor signals and infer its associated ground-truth labels. One of the reasons is that it is

more challenging to infer whether a time series of sensor signals belongs to a particular client

than other domain applications. When using a tighter privacy budget, e.g., ϵX = ϵY = 4

or 2, the gap between ScalableRR and Noiseless model becomes bigger. This is due to the

fact that ScalableRR has not been designed for imbalanced data and cannot work well with

significantly imbalanced data as the HAR dataset, especially when reducing the privacy

budget ϵY for protecting the labels. It is noted that both privacy protection mechanisms offer

rigorous privacy guarantees in FLSys without significant computational overhead.

3.6 Discussion

In this chapter, we proposed ScalableRR, a novel dimension-scalable and bit-aware

RR mechanism. To optimize the trade-off among dimensionality, data utility, and

privacy protection, ScalableRR introduces a bit-aware term for better data utility and

a dimension-scalable temperature for better control of the randomization probabilities. Our

key idea is that when the dimension of a feature vector increases, one can always find a

suitable temperature such that the changes in the randomization probabilities and in the total

66

Table 3.2 Macro-model Performance for HAR-Wild for Different Types of Privacy

Protection Mechanisms and Different Parameters

DP Mechanism Privacy Budget Accuracy Precision Recall F1-score

Noiseless ϵX →∞ 0.7181 0.7464 0.7419 0.7378

User-level DP ϵX = 2 0.5399 0.5264 0.5797 0.5259

User-level DP ϵX = 4 0.5973 0.5603 0.6297 0.5502

User-level DP ϵX = 8 0.6970 0.6333 0.7264 0.6523

SCALABLERR ϵX = ϵY = 2 0.4251 0.3667 0.3715 0.3277

SCALABLERR ϵX = ϵY = 4 0.5193 0.4607 0.5110 0.4416

SCALABLERR ϵX = ϵY = 8 0.6943 0.6885 0.7359 0.7031

DM ϵX = 2 0.4846 0.4286 0.5233 0.4201

DM ϵX = 4 0.5122 0.4307 0.4998 0.4360

PM ϵX = 2 0.4857 0.4086 0.4267 0.3944

PM ϵX = 4 0.5065 0.4245 0.4686 0.4222

HM ϵX = 2 0.4791 0.3961 0.3714 0.3714

HM ϵX = 4 0.5353 0.4521 0.4508 0.4431

Three-Outputs ϵX = 2 0.2906 0.2662 0.2348 0.0192

Three-Outputs ϵX = 4 0.2946 0.3288 0.2424 0.2386

privacy budget are marginal. Hence, ScalableRR achieves better dimension-scalability and

utility under rigorous LDP protection than existing mechanisms. Theoretical analysis and

experiments, especially real-worl trials on the real-world mobile-cloud FLSys, show that

ScalableRR outperforms baselines in text and image classification using several benchmark

datasets and in real-world applications. The results also show that ScalableRR is effective in

defending against data reconstruction attacks in FL.

ScalableRR opens several fundamental research directions. An exciting and

challenging future work is developing a new adaptive composition that could be integrated

67

into ScalableRR to enhance privacy-dimensionality-utility trade-offs. In addition, we can

further investigate other non-linear functions, such as tanh, which may offer sharper curves

to further optimize the randomization probabilities across bits.

Furthermore, one can adapt ScalableRR to randomize sparse data distribution. In

certain scenarios, some features consist of more non-zero highly influential bits (sign and

exponent bits); while other features consist of more non-zero low influential bits (fractions).

In this case, we can use multiple encoding schemes (i.e., varying m) to encode the features.

We can directly apply ScalableRR on each encoding scheme without affecting the total

privacy budget consumed across all bits and features.

Given categorical data, one can advance the concept of ScalableRR to offer

heterogenous protection across major classes (higher probability to be randomized) and

minor classes (lower probability to be randomized). In addition, we can extract embedding

features from discrete features, such as age, and apply ScalableRR on top. That means

ScalableRR has a great potential to better balance privacy-utility trade-offs in applications

using heterogeneous data. It is important to note that ScalableRR does not intend to defend

against property inference attacks [129]. For instance, an accurate data reconstruction may

not be needed to infer the gender or age group of the users. We will need to optimize

the utility-privacy trade-offs further, and we call for future efforts from the community to

address these specific settings.

68

CHAPTER 4

XRAND: DIFFERENTIALLY PRIVATE DEFENSE AGAINST
EXPLANATION-GUIDED ATTACKS

4.1 Preamble

Recent development in the field of explainable artificial intelligence (XAI) has helped

improve trust in Machine-Learning-as-a-Service (MLaaS) systems, in which an explanation

is provided together with the model prediction in response to each query. Technically, XAI

also opens a door for adversaries to gain insights into the black-box models in MLaaS,

thereby making the models more vulnerable to several attacks. For example, feature-based

explanations (e.g., SHAP) could expose the top important features that a black-box model

focuses on. Such disclosure has been exploited to craft effective backdoor triggers against

malware classifiers. To address this trade-off, we introduce a new concept of achieving local

differential privacy (LDP) in the explanations, and from that we establish a defense, called

XRAND, against such attacks. We show that our mechanism restricts the information that

the adversary can learn about the top important features, while maintaining the faithfulness

of the explanations.

4.2 Background

Local explainers. The goal of model explanations is to capture the importance of each

feature of a given point of interest with respect to the decision made by the classifier and

which class it is pushing that decision toward. Given a sample x ∈ Rd where xj denotes the

jth feature of the sample, let f be a model in which f(x) is the probability that x belongs to

a certain class. An explanation of the model’s output f(x) takes the form of an explanation

vector wx ∈ Rd where the jth element of wx denotes the degree to which the feature xj

influences the model’s decision. Generally, higher values of wxj
imply a higher impact.

69

Perturbation-based explainers, such as SHAP [119], obtain an explanation vector wx

for x via training a surrogate model of the form g(x) = wx0 +
∑d

j=1 wxj
xj by minimizing a

loss function L(f, g) that measures how unfaithful g is in approximating f .

• Sample-level explanation. In the context of this paper, we refer to wx as a sample-level

explanation.

• Aggregated explanation. We denote an aggregated explanation w as the sum of

explanation vectors across samples in a certain set X , i.e., wX =
∑

x∈X wx. When X

is clear from the context, we shall use a shorter notation w.

Local Differential Privacy (LDP). LDP is one of the state-of-the-arts and provable

approaches to achieve individual data privacy. LDP-preserving mechanisms [8, 19,52, 63,

202] generally build on the ideas of randomized response (RR) [204].

Definition 6. ε-LDP. A randomized algorithm A satisfies ε-LDP, if for any two inputs x and

x′, and for all possible outputs O ∈ Range(A), we have: Pr[A(x) = O] ≤ eεPr[A(x′) =

O], where ε is a privacy budget and Range(A) denotes every possible output of A.

The privacy budget ε controls the amount by which the distributions induced by inputs

x and x′ may differ. A smaller ε enforces a stronger privacy guarantee.

4.3 XAI-guided Attack Against MLaaS

We discuss how XAI can be used to gain insights into MLaaS models, and establish the

threat model for our work.

4.3.1 Exposing MLaaS via XAI

From a security viewpoint, releasing additional information about a model’s mechanism

is a perilous prospect. As a function of the model that is trained on a private dataset, an

explanation may unintentionally disclose critical information about the training set, more

70

than what is needed to offer a useful interpretation. Moreover, the explanations may also

expose the internal mechanism of the black-box models. For example, first, the behavior

of explanations varies based on whether the query sample was a member of the training

dataset, making the model vulnerable to membership inference attacks [182]. Second, the

explanations can be coupled with the predictions to improve the performance of generative

models which, in turn, strengthens some model inversion attacks [225]. Furthermore,

releasing the explanations exposes how the black-box model acts upon an input sample,

essentially giving up more information about its inner workings for each query, hence, model

extractions attacks can be carried out with far fewer queries, as discussed in [134, 138].

Finally, [178] argues that the explanations allow an adversary to gain insight into

a model’s decision boundary in a generic, model-agnostic way. The SHAP values can

be considered as an approximation of the confidence of the decision boundary along each

feature dimension. Hence, features with SHAP values that are near zero infer low-confidence

areas of the decision boundary. On the other hand, features with positive SHAP values imply

that they strongly contribute to the decision made by the model. As a result, it provides

us with an indication of the overall orientation for each feature, thereby exposing how the

model rates the importance of each feature.

4.3.2 XAI-guided Backdoor Attack against MLaaS

The XBA on malware classifiers [178] suggests that explanations make the model vulnerable

to backdoor attacks, as they reveal the top important features. Thus, it is natural to mount

XBA against a black-box model in MLaaS where an explanation is returned for each query.

System Model. Figure 4.1 illustrates the system model for our work. We consider an

MLaaS system where a malware classifier is deployed on a cloud-based platform. For

training, the system crowdsources threat samples via user-submitted binaries to assemble a

71

Figure 4.1 System model of a cloud-hosted malware classifier that leverages crowdsourced
data for model training.

set of outsourced data. This set of outsourced data is then combined with a set of proprietary

data to construct the training data to train the malware classifier.

We denote D = {(xn, yn)}Nn=1 as the set of proprietary training data. The dataset

contains sample xn ∈ Rd and its ground-truth label yn ∈ {0, 1}, where yn = 0 denotes a

goodware sample, and yn = 1 denotes a malware sample. On input x, the model f : Rd → R

outputs the score f(x) ∈ [0, 1]. This score is then compared with a threshold of 0.5 to obtain

the predicted label for x.

During inference time, given a query containing a binary sample x, the system returns

the predicted label with a SHAP explanation wx for the decision (wx ∈ Rd). We consider an

adversary who plays the role of a user in this system and can send queries at his discretion.

The adversary exploits the returned explanations to craft backdoor triggers that will be

injected to the system via the crowdsourcing process, thereby poisoning the outsourced data.

Threat Model. The attacker’s goal is to alter the training procedure by injecting poisoned

samples into the training data, generating poisoned training data such that the resulting

72

backdoored classifier differs from a clean classifier. An ideal backdoored classifier has the

same response to a clean input as the clean classifier, but it gives an attack-chosen prediction

when the input is embedded with the trigger.

Our defense assumes a strong adversary such that he can tamper with the training

dataset at his discretion without major constraints. To prevent the adversary from setting

arbitrary values for the features in the trigger, the set of values that can be used is limited to

the ones that exist in the dataset. This threat model promotes a defense under worst-case

scenarios from the perspective of the defender.

Crafting backdoor triggers. To craft a backdoor trigger in XBA, the adversary tries to

obtain the top goodware-oriented feature by querying classifier f with samples {x}x∈A from

their dataset A and obtaining the SHAP explanation wx for each of them. The sum of the

SHAP values across all queried samples wA =
∑

x∈Awx indicates the importance of each

feature, and whether it is goodware- or malware-oriented. Then, the attacker greedily selects

a combination of the most goodware-oriented features to create the trigger [178].

4.4 XRAND – Local DP Defense

This section describes our defense, XRAND, a novel two-step explanation-guided

randomized response (RR) mechanism. Our idea is to incorporate the model explainability

into the randomization probabilities in XRAND to guide the aggregated explanation while

minimizing the difference between the perturbed explanation’s surrogate model g′(x) and

the model f(x) at the sample-level explanation. We call the difference between g′(x) and

f(x) an explanation loss L, quantified as follows:

L =
∑

z∈N(x)

(g′(z)− f(z))
2
exp

(
−∥z − x∥2

σ2

)
(4.1)

73

Algorithm 2 XRAND: Explanation-guided RR mechanism
Input: model f , dataset D, aggregated explanation w, ε, k, τ , test sample x

Output: S, ε-LDP w′x

1: Step 1 - At aggregated explanation:

2: for xn ∈ D do

3: Compute L(xn) # using Equation 4.1

4: for i ∈ [1, k], j ∈ [k + 1, k + τ] do

5: Compute L(xn)(i, j) # using Equation 4.1

6: Compute ∆L(i, j) # using Equation 4.3

7: end for

8: end for

9: Randomizing w:

10: w′ ← XRAND(w, ε, k, τ,∆L(i, j)) # using Equation 4.2

11: Return S

12: Step 2 - At sample-level explanation:

13: wx ← SHAP explanation for x

14: w′x ← Solve the optimization problem in (4.5)

15: Return w′x

where x is an input, its neighborhood N(x) is generated by the explainer’s sampling method.

This function captures the difference between the modified explainer’s linear surrogate

model g′(x) and f(x), essentially measuring how unfaithful g′ is in approximating f .

To defend against explanation-guided attacks that utilize the top-k features of the

aggregated explanation (e.g., XBA exploits the top-k goodware-oriented features), our idea

is to randomly disorder some top-k features under LDP guarantees, thereby protecting the

privacy of those features. This raises the following question: What top-k features and which

data samples should be randomized to optimize the explainability of data samples while

guaranteeing that the attackers cannot infer the top-k features?

74

Algorithm Overview. To answer this question, we first integrate the explanation loss

caused by potential changes of features in the aggregated explanation into the randomized

probabilities to adaptively randomize each feature in the top-k. Then, we minimize the

explanation loss on each sample while ensuring the order of the features at the aggregated

explanation follows the results of the first step. By doing so, we are able to optimize the

trade-off between the model explainability and the privacy budget ε used in XRAND, as

verified both theoretically (Section 4.4.2) and experimentally (Section 4.6). The pseudo-code

of XRAND is shown in Alg. 2.

4.4.1 LDP-preserving Explanations

Step 1 (Alg. 2, lines 1-10). We first compute the aggregated explanation w over the

samples of the proprietary dataset w =
∑

x∈D wx. Then we sort w in descending order and

retain a mapping v : N→ N from the sorted indices to the original indices. Given that τ is a

predefined threshold to control the range of out-of-top-k features that some of top-k features

can swap, and β is a parameter bounded in Theorem 6 under a privacy budget ε, XRAND

defines the probability of flipping a top-k feature i to an out-of-top-k feature j as follows:

∀i ∈ [1, k], j ∈ [k + 1, k + τ], τ ≥ k :

i =

i, with probability pi =

exp(β)

exp(β) + τ − 1
,

j, with probability qi,j =
τ − 1

exp(β) + τ − 1
qj

(4.2)

where qj =
exp(−∆L(i,j))∑

t∈[k+1,k+τ] exp(−∆L(i,t))
and ∆L(i, j) is the aggregated changes of L (Equation

4.1) when flipping features i and j, which is calculated as follows:

∆L(i, j) =
1

N

N∑
n=1

(|L(xn)− L(xn)(i, j)|) (4.3)

where L(xn) is the original loss L of a sample xn ∈ D and L(xn)(i, j) is the loss L of the

sample xn after flipping features i and j (Alg. 2, lines 3,5).

75

After randomizing the aggregated explanation, we obtain the set S of features that

need to be flipped in the aggregated explanation, as follows:

S = {(i, j)|i and j are flipped, i ∈ [1, k], j ∈ [k + 1, k + τ]} (4.4)

Step 2 (Alg. 2, lines 11-14). For each input test sample x, we proceed with sample-level

explanation for finding the noisy explanation w′x. First, we generate a set of constraints

Q = {(i, j)|w′xi
≤ w′xj

} that is sufficient for S. In particular, for each pair (i, j) ∈ S, we add

the following pairs to Q:

(v(i+ 1), v(j)); (v(j), v(i− 1)); (v(i), v(j − 1)); (v(j + 1), v(i))

Given wx as the SHAP explanation of x, we aim to find ϕ ∈ Rd such that w′x = wx + ϕ

satisfies the constraints in Q while minimizing the loss L. To obtain ϕ, we solve the

following optimization problem:

min
ϕ

∑
z∈N(x)

(
(wx + ϕ)T z − f(z)

)2
exp

(
−∥z − x∥2

σ2

)
+ λ∥ϕ∥ (4.5)

s.t. wxi + ϕi ≤ wxj + ϕj , ∀(i, j) ∈ Q

ϕi = 0 ∀i /∈ Q

where λ is a regularization constant.

The resulting noisy explanation will be w′x = wx + ϕ. This problem is convex and

can be solved by convex optimization solvers [42, 100].

4.4.2 Privacy Guarantees of XRAND

To bound privacy loss of XRAND, we need to bound β in Equation 4.2 such that the top-k

features in the explanation w′ preserves LDP, as follows:

Theorem 6. Given two distinct explanations w and w̃ and a privacy budget ϵi, XRAND

satisfies εi-LDP in randomizing each feature i in top-k features of w, i.e., P (XRAND(wi)=z|w)
P (XRAND(w̃i)=z|w̃)

≤

76

exp(εi), if:

β ≤ εi + ln(τ − 1) + ln(min
exp(−∆L(i, j))∑k+τ

t=k+1 exp(−∆L(i, t))
)

where z ∈ Range(XRAND). Proof: See Appendix A.20.

Based on Theorem 6, the total privacy budget ε to randomize all top-k features is

the sum of all the privacy budget ϵi, i.e., ε =
∑k

i=1 εi, since each feature i is randomized

independently. From Theorem 6 and Equation 4.2, it can be seen that as the privacy budget

ε increases, β can increase and the flipping probability qi,j decreases. As a result, we switch

fewer features out of top-k.

Privacy and Explainability Trade-off. To understand the privacy and explainability

trade-off, we analyze the data utility of XRAND mechanism through the sum square error

(SSE) of the original explanation w and the one resulting from XRAND w′. The smaller the

SSE is, the better data utility the randomization mechanism achieves.

Theorem 7. Utility of XRAND: SSE =
∑

x∈D
∑d

i=1(w
′
xi
− wxi

)2 =
∑

x∈D
∑k+τ

i=1 (w
′
xi
−

wxi
)2, where d is the number of features in the explanation.

Proof. It is easy to see that we only consider the probability of flipping the top-k features to

be out-of-the-top-k up to the feature k+ τ . Thus, all features after k+ τ , i.e., from k+ τ +1

to d are not changed. Hence the theorem follows.

From the theorem, at the same ε, the smaller the τ , the higher the data utility that

XRAND achieves. Intuitively, if τ is large, it is more flexible for the top-k features to be

flipped out, but it will also impair the model explainability since the original top-k features

are more likely to be moved far away from the top k. With high values of ε, we can obtain a

smaller SSE, thus, achieving better data utility. The effect of ε and τ on the SSE value is

illustrated in Figure A.21 (Appendix).

77

4.5 Certified Robustness

Our proposed XRAND can be used as a defense against the XBA since it protects the top-k

important features. We further establish the connection between XRAND with certified

robustness against XBA. Given a data sample x: 1) In the training time, we guarantee that

up to a portion of poisoning samples in the outsourced training data, XBA fails to change the

model predictions; and 2) In the inference time, we guarantee that up to a certain backdoor

trigger size, XBA fails to change the model predictions. A primer on certified robustness is

given in Appendix A.21.

4.5.1 Training-time Certified Robustness

We consider the original training data D as the proprietary data, and the explanation-

guided backdoor samples Do as the outsourced data inserted into the proprietary data. The

outsourced data Do alone may not be sufficient to train a good classifier. In addition, the

outsourced data inserted into propriety data can lessen the certified robustness bound of the

propriety data. Therefore, we cannot quantify the certified poisoning training size of the

outsourced data Do directly by applying a bagging technique [93]. To address this problem,

we quantify the certified poisoning training size r of Do against XBA by uncovering its

correlation with the poisoned training data D′ = D ∪Do.

Given a model prediction on a data sample x using D, denoted as f(D, x), we ask

a simple question: “What is the minimum number poisoning data samples, i.e., certified

poisoning training size rD, added into D to change the model prediction on x: f(D, x) ̸=

f(D+, x)?” After adding Do into D, we ask the same question: “What is the minimum

number poisoning data samples, i.e., certified poisoning training size rD′ , added into D′ =

D∪Do to change the model prediction on x: f(D′, x) ̸= f(D′+, x)?” The difference between

rD and rD′ provides us a certified poisoning training size on Do. Intuitively, if Do does not

consist of poisoning data examples, then rD is expected to be relatively the same with rD′ .

78

Otherwise, rD′ can be smaller than rD indicating that Do is heavily poisoned with at least

r = rD − rD′ number of poisoning data samples towards opening backdoors on x.

Theorem 8. Given two certified poisoning training sizes r∗D = argminrD rD and r∗D′ =

argminrD′
rD′ , the certified poisoning training size r of the outsourced data Do is:

r = r∗D − r∗D′ (4.6)

Proof: Refer to Appendix A.22 for the proof and its tightness.

4.5.2 Inference-time Certified Robustness

It is not straightforward to adapt existing certified robustness bounds at the inference-time

into XRAND, since there is a gap between model training as in existing approaches [93,

108, 149] and the model training with explanation-guided poisoned data as in our system.

Existing approaches can randomize x and then derive certified robustness bounds given the

varying output. This process does not consider the explanation-guided poisoned data that

can potentially affect certified robustness bounds in our system. To address this gap, note

that we can always find a mechanism to inject random noise into the data samples x such

that the samples achieve the same level of DP guarantee as the explanations. Based on this,

we can generalize existing certified bounds against XBA at the inference time in XRAND.

When explanation-guided backdoor samples are inserted into the training data, upon

bounding the sensitivity that these samples change the output of f , there always exists a

noise α that can be injected into a benign sample x, i.e., x + α, to achieve an equivalent

ε-LDP protection. Given the explanation wx of x, we focus on achieving a robustness

condition to Lp(µ)-norm attacks, where µ is the radius of the norm ball, as follows:

∀α ∈ Lp(µ) : fl(x+ α|wx) > f¬l(x+ α|wx) (4.7)

where l ∈ {0, 1} is the true label of x and ¬l is the NOT operation of l in a binary

classification problem.

79

There should exist a correlation among α and wx that needs to be uncovered in order

to bound the robustness condition in Equation 4.7. Fundamentally, it is challenging to find

a direct mapping functionM : wx → α so that when we randomize wx, the change of α is

quantified. We address this challenge by quantifying the sensitivity of α given the average

change of the explanation of multiple samples x ∈ X , as follows:

∆α|w =
1

|X |d
∑
x∈X

|wx − w′x|1 (4.8)

where |X | is the size of X .

∆α|w can be considered as a bounded sensitivity of XRAND given the input x since:

(1) We can achieve the same DP guarantee by injecting Laplace or Gaussian noise into

the input x using the sensitivity ∆α|w; and (2) The explanation perturbation happens only

once and is permanent, that is, there is no other bounded sensitivity associated with the

one-time explanation perturbation. The sensitivity ∆α|w establishes a new connection

between explanation perturbation and the model sensitivity given the input sample x. That

enables us to derive robustness bounds using different techniques, i.e., PixelDP [108, 152]

and (boosting) randomized smoothing (RS) [37, 86], since we consider the sensitivity ∆α|w

as a part of randomized smoothing to derive and enhance certified robustness bounds.

The rest of this section only discusses the bound using PixelDP, we refer the readers

to Appendix A.23 for the bound using boosing RS. Given a randomized prediction f(x)

satisfying (ε, δ)-PixelDP w.r.t. a Lp(µ)-norm metric, we have:

∀l ∈ {0, 1},∀α ∈ Lp(µ) : Efl(x) ≤ eεEfl(x+ α) + δ (4.9)

where Efl(x) is the expected value of fl(x), ε is a predefined privacy budget, and δ is a

broken probability. When we use a Laplace noise, δ = 0.

We then apply PixelDP with the sensitivity ∆α|w and a noise standard deviation

σ =
∆α|wµ

ε
for Laplace noise, or σ =

∆α|wµ
√

2 ln (1.25/δ)

ε
for Gaussian noise. From that, when

maximizing the attack trigger’s magnitude µ: µmax = maxµ∈R+ µ such that the generalized

80

robustness condition (Equation 4.9) holds, the prediction on x using XRAND is robust

against the XBA up to µmax. As a result, we have a robustness certificate of µmax for x.

4.6 Experiments

To evaluate the performance of our defense, we conduct the XBA proposed by [178]

against the explanations returned by XRAND to create backdoors on cloud-hosted malware

classifiers. Our experiments aim to shed light on understanding (1) the effectiveness of

the defense in mitigating the XBA, and (2) the faithfulness of the explanations returned

by XRAND. The experiments are conducted using LightGBM [12] and EmberNN [178]

classification models that are trained on the EMBER [12] dataset. A detailed description of

the experimental settings can be found in Appendix A.24. We quantify XRAND using:

Attack success rate. This metric is defined as the portion of trigger-embedded malware

samples that are classified as goodware by the backdoored model. Note that we only embed

the trigger into malware samples that were classified correctly by the clean model. The

primary goal of our defense is to reduce this value.

Log-odds. To evaluate the faithfulness of our XRAND explanation, we compare the

log-odds score of the XRAND explanations with that of the ones originally returned by SHAP.

Based on the explanation of a sample, the log-odds score is computed by identifying the top

20% important features that, if erased, can change the predicted label of the sample [184].

Then we obtain the change in log-odd of the prediction score of the original sample and the

sample with those features erased. The higher the log-odds score, the better the explanation

in terms of identifying important features. To maintain a faithful explainability, the XRAND

explanations should have comparable log-odds scores as the original SHAP explanations.

Attack Mitigation. We observe the attack success rate of XBA when our XRAND

explanations are used to craft backdoor triggers. We set k to be equal to the trigger size of

the attack, and fix the predefined threshold τ = 50. Figure 4.2 highlights the correlation

81

100.0 50.0 20.0 10.0 1.0 0.1
Privacy budget ε

25

50

75
A

tt
ac

k
su

cc
es

s
ra

te
(%

)

0.25% poisoned

1% poisoned

2% poisoned

((a)) LightGBM

100.0 50.0 20.0 10.0 1.0 0.1
Privacy budget ε

0

25

50

75

A
tt

ac
k

su
cc

es
s

ra
te

(%
)

0.5% poisoned

1% poisoned

2% poisoned

((b)) EmberNN

Figure 4.2 Attack success rate as a function of privacy budget ε and the portion of poisoned
samples on LightGBM and EmberNN.

between the attack success rate and the privacy budget ε in our defense. Intuitively, the

lower the ε, the more obfuscating the top goodware-oriented features become. Hence, Figs.

4.2(a) and 4.2(b) show that the attack success rate is greatly diminished as we tighten the

privacy budget, since the attacker has less access to the desired features. Moreover, in a

typical backdoor attack, injecting more poisoned samples into the training data makes the

attack more effective. Such behavior is exhibited in both LightGBM (Figure 4.2(a)) and

EmberNN (Figure 4.2(b)), though EmberNN is less susceptible to the increase of poisoned

data. Empirically, the attacker wishes to keep the number of poisoning samples relatively

low to remain stealthy. At a 1% poison rate, our defense manages to reduce the attack

success rate from 77.8% to 10.2% with ε = 1.0 for LightGBM. It performs better with

EmberNN where the attack success rate is reduced to 5.3% at ε = 10.0.

Additionally, we examine the effect of the trigger sizes on our defense. The trigger

size denotes the number of features that the attacker modifies to craft poisoned samples. We

vary the trigger size consistently with previous work [178]. In backdoor attacks, a larger

trigger makes the backdoored model more prone to misclassification, thus improving the

attack success rate. Figure 4.6 shows that the attack works better with large triggers on both

models, technically, as aforementioned, the attacker would prefer small trigger sizes for the

sake of stealthiness. This experiment shows that, for the trigger sizes that we tested, our

82

100.0 50.0 20.0 10.0 1.0 0.1
Privacy budget ε

0

50

100

A
tt

ac
k

su
cc

es
s

ra
te

(%
)

Trigger size 5

Trigger size 10

Trigger size 15

((a)) LightGBM

100.0 50.0 20.0 10.0 1.0 0.1
Privacy budget ε

0

50

100

A
tt

ac
k

su
cc

es
s

ra
te

(%
)

Trigger size 16

Trigger size 32

Trigger size 64

((b)) EmberNN

Figure 4.3 Attack success rate as a function of trigger size and privacy budget ε.

SHAP ε = 1.0 ε = 10.0 ε = 20.0

0

5

10

15

L
og

-o
dd

s
sc

or
e

Figure 4.4 Log-odds score of the explanations of 20,000 goodware and malware samples.

proposed defense can successfully maintain a low attack success rate given a wide range of

the privacy budget ε ∈ [0.1, 10] (Figure 4.2(a), 4.2(b)).

We refer the readers to Appendix A.24 for more experimental results on additional

malware datasets and the evaluation of our robustness bounds. In short, regarding the

training-time bound, we observe that a smaller privacy budget ε ∈ [0.1, 10] results in a

more robust model against the XBA. As for the inference-time bound, we obtain high

certified accuracy (Equation A.90) under rigorous privacy budgets, i.e., 89.17% and 90.42%

at ε ∈ [0.1, 1.0]. We notice that the PixelDP-based bound attains a stronger performance

83

((a)) SHAP explanation (without XRAND)

((b)) XRAND explanation

Figure 4.5 Visualizing the SHAP explanation and our XRAND explanation of a test sample.

than using boosting RS. This is because boosting RS is not designed for models trained on

backdoored data like XRAND.

Faithful Explainability. From the previous results, we observe that a wide range of

the privacy budget ε ∈ [0.1, 10] provides a good defense against the XBA. The question

remains whether the explanations resulting from these values of ε are still faithful. Figure

4.4 shows the log-odds score of the original explanations returned by SHAP and of the ones

after applying our XRAND mechanism. The XRAND explanations at ε = 1.0, 10.0 have

comparable log-odds scores to those of SHAP. This is because our defense works with small

values of k (e.g., k = 10). Therefore, XRAND only randomizes the SHAP values within

a small set of top goodware-oriented features. As a result, XRAND can still capture the

important features in its explanations.

Furthermore, we visualize the explanation of a test sample before and after applying

XRAND in Figs. 4.5(a) and 4.5(b), respectively. As can be seen, the SHAP values of the

two explanations largely resemble one another, except for minor differences in less than 10

84

features (out of 2,351 features). Importantly, the XRAND explanation evidently manifests

similar sets of important malware and goodware features as the original explanation by

SHAP, which also explains the comparable log-odds score in Figure 4.4. More visualizations

on XRAND can be found in Appendix A.25.

4.7 Discussion

In this chapper, we have shown that, although explanations help improve the understanding

and interpretability of black-box models, they also leak essential information about the

inner workings of the models. Therefore, the black-box models become more vulnerable

to attacks, especially in the context of MLaaS where the prediction and its explanation

are returned for each query. With a novel two-step LDP-preserving mechanism, we have

proposed XRAND to protect the model explanations from being exploited by adversaries via

obfuscating the top important features, while maintaining the faithfulness of explanations.

85

CHAPTER 5

LIFELONG DP: CONSISTENTLY BOUNDED DIFFERENTIAL PRIVACY IN
LIFELONG MACHINE LEARNING

5.1 Preamble

In this chapter, we show that the process of continually learning new tasks and memorizing

previous tasks introduces unknown privacy risks and challenges to bound the privacy loss.

Based upon this, we introduce a formal definition of Lifelong DP, in which the participation

of any data tuples in the training set of any tasks is protected, under a consistently bounded

DP protection, given a growing stream of tasks. A consistently bounded DP means having

only one fixed value of the DP privacy budget, regardless of the number of tasks. To preserve

Lifelong DP, we propose a scalable and heterogeneous algorithm, called L2DP-ML with

a streaming batch training, to efficiently train and continue releasing new versions of an

L2M model, given the heterogeneity in terms of data sizes and the training order of tasks,

without affecting DP protection of the private training set. An end-to-end theoretical analysis

and thorough evaluations show that our mechanism is significantly better than baseline

approaches in preserving Lifelong DP.

5.2 Background
Let us first revisit L2M with A-gem and DP. In L2M, we learn a sequence of tasks T =

{t1, . . . , tm} one by one, such that the learning of each new task will not forget the models

learned for the previous tasks. Let Di be the dataset of the i-th task. Each tuple contains data

x ∈ [−1, 1]d and a ground-truth label y ∈ ZK , which is a one-hot vector of K categorical

outcomes y = {y1, . . . , yK}. A single true class label yx ∈ y given x is assigned to only

one of the K categories. All the training sets Di are non-overlapping; that is, an arbitrary

input (x, y) belongs to only one Di, i.e., ∃!i ∈ [1,m] : (x, y) ∈ Di (x ∈ Di for simplicity).

On input x and parameters θ, a model outputs class scores f : Rd → RK that map inputs

x to a vector of scores f(x) = {f1(x), . . . , fK(x)} s.t. ∀k ∈ [1, K] : fk(x) ∈ [0, 1] and

86

∑K
k=1 fk(x) = 1. The class with the highest score is selected as the predicted label for x,

denoted as y(x) = maxk∈K fk(x). A loss function L(f(θ, x), y) presents the penalty for

mismatching between the predicted values f(θ, x) and original values y.

Lifelong Learning. Given the current task τ (≤ m), let us denote Tτ = {t1, . . . , tτ−1}

is a set of tasks that have been learnt. Although there are different L2M settings, i.e., episodic

memory [6, 61, 118, 161, 165, 167, 193] and generative memory [144, 180, 205], we leverage

one of the state-of-the-art algorithms, i.e., A-gem [30], to demonstrate our privacy-preserving

mechanism, without loss of the generality of our study. A-gem avoids catastrophic forgetting

by storing an episodic memory Mi for each task ti ∈ Tτ . When minimizing the loss on

the current task τ , a typical approach is to treat the losses on the episodic memories of

tasks i < τ , given by L(f(θ,Mi)) =
1
|Mi|

∑
x∈Mi

L(f(θ, x), y), as inequality constraints. In

A-gem, the L2M objective function is:

θτ = argmin
θ

L
(
f(θ,Dτ)

)
s.t. L

(
f(θτ ,Mτ)

)
≤ L

(
f(θτ−1,Mτ)

)
(5.1)

where θτ−1 are the values of model parameters θ learned after training the task tτ−1, Mτ =

∪i<τMi is the episodic memory with M1 = ∅, L
(
f(θτ−1,Mτ)

)
=

∑τ−1
i=1 L

(
f(θτ−1,Mi)

)
/(τ−

1). Equation 5.1 indicates that learning θτ given the task τ will not forget previously

learned tasks {t1, . . . , tτ−1} enforced by the memory replaying constraint L
(
f(θτ ,Mτ)

)
≤

L
(
f(θτ−1,Mτ)

)
.

At each training step, A-gem [30] has access to only Dτ and Mτ to compute the

projected gradient g̃ (i.e., by addressing the constraint in Equation 5.1), as follows:

g̃ = g − g⊤gref
g⊤refgref

gref (5.2)

where g is the updated gradient computed on a batch sampled from Dτ , gref is an episodic

gradient computed on a batch sampled from Mτ , and g̃ is used to update the model

parameters θ in Equation 5.1.

87

Differential Privacy (DP). DP guarantees that the released statistical results,

computed from the underlying sensitive data, is insensitive to the presence or absence

of one tuple in a dataset. Let us briefly revisit the definition of DP, as:

Definition 7. (ϵ, δ)-DP [58]. A randomized algorithm A is (ϵ, δ)-DP, if for any two

neighboring databases D and D′ differing at most one tuple, ∀O ⊆ Range(A), we have:

Pr[A(D) = O] ≤ eϵPr[A(D′) = O] + δ (5.3)

where ϵ controls the amount by which the distributions induced by D and D′ may differ, and

δ is a broken probability. A smaller ϵ enforces a stronger privacy guarantee.

DP has been preserved in many ML models and tasks [5, 147, 152]. Technically,

existing mechanisms have not been designed to preserve DP in L2M under a fixed and

consistently bounded privacy budget given a growing stream of learning tasks. That differs

from our goal in this study.

5.3 Privacy Risk and Lifelong DP
In this section, we focus on analyzing the unknown privacy risk in L2M and introduce a

new concept of Lifelong DP.

Privacy Risk Analysis. One benefit of L2M is that end-users can use an L2M model

after training each task τ , instead of waiting for the model to be trained on all the tasks.

Thus, in practice, the adversary can observe the model parameters θ1, . . . , θm after training

each task t1, . . . , tm. Note that the adversary does not observe any information about the

(black-box) training algorithm. Another key property in an L2M model is the episodic

memory, which is kept to be read at each training step incurring privacy leakage. Therefore,

the training data D and episodic memory M need to be protected together across tasks.

Finally, in L2M, at each training step for any task ti (i ∈ [1,m]), we only have access to Di

and Mi, without a complete view of the cumulative dataset of all the tasks ∪i∈[1,m]Di and

Mm = ∪i∈[1,m−1]Mi. This is different from the traditional definition of a database in both

88

DP (Def. 7) and in a model trained on a single task. To cope with this, we propose a new

definition of lifelong neighboring databases, as follows:

Definition 8. Lifelong Neighboring Databases. Given any two lifelong databases datam =

{D,M} and data′m = {D′,M′}, where D = {D1, . . . , Dm}, D′ = {D′1, . . . , D′m},M =

{M1, . . . ,Mm},M′ = {M′1, . . . ,M′m}, Mi = ∪j∈[1,i−1]Mj , and M′i = ∪j∈[1,i−1]M ′
j . datam

and data′m are called lifelong neighboring databases if, ∀i ∈ [1,m]: (1) Di and D′i differ at

most one tuple; and (2) Mi and M ′
i differ at most one tuple.

A Naive Mechanism. To preserve DP in L2M, one can employ the moments

accountant [4] to train the model f by injecting Gaussian noise into clipped gradients

g and gref (Equation 5.2), with privacy budgets ϵDτ and ϵMτ on each dataset Dτ and on the

episodic memory Mτ , and a gradient clipping bound C. The post-processing property [59]

can be applied to guarantee that g̃, computed from the perturbed g and gref , is also DP.

Let us denote this mechanism as A, and denote Aτ as A applied on the task τ . A naive

approach [47] is to repeatedly apply A on the sequence of tasks T. Since training data is

non-overlapping among tasks, the parallel composition property in DP [56] can be applied

to estimate the total privacy budget consumed across all the tasks, as follows:

Pr[A(datam) = {θi}i∈[1,m]] ≤ eϵPr[A(data′m) = {θi}i∈[1,m]] + δ (5.4)

where ϵ = maxi∈[1,m](ϵDi
+ ϵMi

), and ∀i, j ∈ [1,m] : δ is the same for ϵDi
and ϵMj

.

A(datam) indicates that the model is trained from scratch with the mechanism A,

given randomly initiated parameters θ0, i.e., A(θ0, datam). Intuitively, we can achieve the

traditional DP guarantee in L2M, as the participation of a particular data tuple in each

dataset Dτ is protected under the released (ϵ, δ)-DP {θi}i∈[1,m]. In principle, this approach

introduces unknown privacy risks in each task and in the whole training process, as discussed

next.

Observing the intermediate parameters {θi}i<τ turns the mechanism Aτ into a list

of adaptive DP mechanisms A1, . . . , Aτ sequentially applied on tasks t1, . . . , tτ , where

89

Ai : (
∏i−1

j=1Rj) × Di → Ri. This is an instance of adaptive composition, which we can

model by using the output of all the previous mechanisms {θi}i<τ as the auxiliary input of

the Aτ mechanism. Thus, given an outcome θτ , the privacy loss c(·) at θτ is as follows:

c(θτ ;Aτ , {θi}i<τ , dataτ , data
′
τ) = log

Pr[Aτ ({θi}i<τ , dataτ) = θτ]

Pr[Aτ ({θi}i<τ , data
′
τ) = θτ]

(5.5)

The privacy loss is accumulated across tasks, as follows:

Theorem 9. ∀τ > 1 : c(θτ ;Aτ , {θi}i<τ , dataτ , data
′
τ) =

∑τ
i=1 c(θ

i;Ai, {θj}j<i, datai, data
′
i).

As a result of the Theorem 9, the privacy budget at each task τ cannot be simply

bounded by maxτ∈[1,m](ϵDτ + ϵMτ), given δ (Equation 5.4). This problem might be

addressed by replacing the max function in Equation 5.4 with a summation function:

ϵ =
∑

τ∈[1,m](ϵDτ + ϵMτ), to compute the upper bound of the privacy budget for an entire

of the continual learning process. To optimize this naive approach, one can adapt the

management policy [109] to redistribute the privacy budget across tasks while limiting the

total privacy budget ϵ to be smaller than a predefined upper bound, that is, the training will

be terminated when ϵ reaches the predefined upper bound.

Technically, the challenge in bounding the privacy risk is still the same, centering

around the growing number of tasks m and the heterogeneity among tasks: (1) The larger

the number of tasks, the larger the privacy budget will be consumed by the
∑

function. It

is hard to identify an upper bound privacy budget given an unlimited number of streaming

tasks in L2M; (2) Different tasks may require different numbers of training steps due to the

difference in terms of the number of tuples in each task; thus, affecting the privacy budget ϵ;

and (3) The order of training tasks also affect the privacy budget, since computing gref by

using data in the episodic memory from one task may be more than other tasks. Therefore,

bounding the DP budget in L2M is non-trivial.

Lifelong DP. To address these challenges, we propose a new definition of ϵ-Lifelong

DP to guarantee that an adversary cannot infer whether a data tuple is in the lifelong training

90

dataset datam, given the released parameters {θi}i∈[1,m] learned from a growing stream of

an infinite number of new tasks, denoted ∀m ∈ [1,∞), under a consistently bounded DP

budget ϵ (Equation 5.6). A consistently bounded DP means having only one fixed value of

ϵ, regardless of the number of tasks m. In other words, it does not exist an i ≤ m and an

ϵ′ < ϵ, such that releasing {θj}j∈[1,i] given training dataset datai is ϵ′-DP (Equation 5.7). A

consistently bounded DP is significant by enabling us to keep training and releasing an L2M

model without intensifying the end-to-end privacy budget consumption. Lifelong DP can be

formulated as follows:

Definition 9. ϵ-Lifelong DP. Given a lifelong database datam, a randomized algorithm A

achieves ϵ-Lifelong DP, if for any of two lifelong neighboring databases (datam, data′m), for

all possible outputs {θi}i∈[1,m] ∈ Range(A), ∀m ∈ [1,∞) we have that

P
[
A(datam) = {θi}i∈[1,m]

]
≤ eϵP

[
A(data′m) = {θi}i∈[1,m]

]
(5.6)

∄(ϵ′ < ϵ, i ≤ m) : P
[
A(datai) = {θj}j∈[1,i]

]
≤ eϵ

′
P
[
A(data′i) = {θj}j∈[1,i]

]
(5.7)

where Range(A) denotes every possible output of A.

In our Lifelong DP definition, the episodic memory (data)M can be an empty set ∅

in the definition of lifelong neighboring databases (Def. 8) given L2M mechanisms that do

not need to accessM [80, 125, 159, 215, 217].

To preserve Lifelong DP, we need to address the following problems: (1) The privacy

loss accumulation across tasks; (2) The overlapping between the episodic memoryM and

the training data D; and (3) The data sampling process for computing the episodic gradient

gref given the growing episodic memoryM. The root cause issue of these problems is

that in an L2M model, the episodic memoryM, which accumulatively stores data from

all of the previous tasks, is read at each training step. Thus, using the moments account

to preserve Lifelong DP will cause the privacy budget accumulated, resulting in a loose

privacy protection given a large number of tasks or training steps. Therefore, designing a

mechanism to preserve Lifelong DP under a tight privacy budget is non-trivial.

91

Algorithm 3 L2DP-ML Algorithm
Input: ϵ1, ϵ2,T={ti}i∈[1,m], {Di}i∈[1,m]

Output: (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2)-Lifelong DP parameters {θi}i∈[1,m] = {θi1, θi2}i∈[1,m]

1: Draw Noise χ1 ← [Lap(
∆R̃
ϵ1

)]d, χ2 ← [Lap(
∆R̃
ϵ1

)]β , χ3 ← [Lap(
∆L̃
ϵ2

)]|hπ |

2: Randomly Initialize: θ0 = {θ01, θ02}, M1 = ∅, ∀τ ∈ T : Dτ = {xr ← xr +
χ1

|Dτ |}xr∈Dτ ,

hidden layers {h1 +
2χ2

|Dτ | , . . . ,hπ}

3: for τ ∈ [1,m] do

4: if τ == 1 then

5: g ← {∇θ1RDτ
(θτ−11),∇θ2LDτ

(θτ−12)} with the noise χ3

|Dτ |

6: else

7: Mτ ←Mτ−1 ∪ {Dτ−1}

8: Randomly Pick a dataset Dref ∈Mτ

9: g ← {∇θ1RDτ
(θτ−11),∇θ2LDτ

(θτ−12)} with the noise χ3

|Dτ |

10: gref ← {∇θ1RDref
(θτ−11),∇θ2LDref

(θτ−12)} with the noise χ3

|Dref |

11: g̃ ← g − g⊤gref
g⊤refgref

gref

12: end if

13: Descent: {θτ1 , θτ2} ← {θ
τ−1
1 , θτ−12 } − ϱg̃ # learning rate ϱ

14: Release: {θτ1 , θτ2}

15: end for

5.4 Preserving Lifelong DP

To overcome the aforementioned issues, our idea is designing a L2M mechanism such that

the privacy budget will not accumulate across training steps while memorizing previously

learned tasks. More precisely, we design our network as a multi-layer neural network

92

Figure 5.1 Network design of L2DP-ML.

Figure 5.2 Gradient update in L2DP-ML.

stacked on top of a feature representation learning model. Then, we propose a new Laplace

mechanism-based Lifelong DP algorithm, called L2DP-ML (Alg. 3), in computing the

gradients g, gref , and g̃. Finally, to overcome expensive computation cost and heterogeneity

among tasks, we develop a scalable and heterogeneous algorithm through a streaming batch

training (Alg. 7), to efficiently learn Lifelong DP parameters (Theorem 10).

Network Design. In our Alg. 3 and Figure 5.1, a DNN is designed as a stack of an

auto-encoder for feature representation learning and a typical multi-layer neural network, as

follows: f(x) = G(a(x, θ1), θ2) where a(·) is the auto-encoder and G(·) is the multi-layer

neural network. The auto-encoder a(·) takes x as an input with model parameters θ1;

meanwhile, the multi-layer neural network G(·) takes the output of the auto-encoder a(·) as

its input with model parameters θ2 and returns the class scores f(x).

93

This network design allows us to: (1) Tighten the sensitivity of our model, since it

is easy to train the auto-encoder using less sensitive objective functions, given its small

sizes; (2) Reduce the privacy budget consumption, since the computations of the multi-layer

neural network is DP when the output of the auto-encoder is DP; and (3) Provide a better

re-usability, given that the auto-encoder can be reused for different predictive models.

Given a dataset Dτ , the objective functions of the auto-encoder and the multi-layer

neural network can be the classical cross-entropy error functions for data reconstruction

at the input layer and for classification at the output layer, denoted RDτ (θ1) and LDτ (θ2)

respectively. Without loss of generality, we define the data reconstruction functionRDτ (θ1)

and the classification function LDτ (θ2) as follows:

RDτ (θ1) =
∑

xr∈Dτ

d∑
s=1

[
xrs log(1 + e−θ1shr)

]
+

∑
xr∈Dτ

d∑
s=1

[
(1− xrs) log(1 + eθ1shr)

]
(5.8)

LDτ (θ2) = −
∑

xr∈Dτ

K∑
k=1

[
yrk log(1 + e−hπrWT

πk) + (1− yrk) log(1 + ehπrWT
πk)

]
(5.9)

where the transformation of xr is hr = θ⊤1 xr, the hidden layer h1 of a(x, θ1) given Dτ is

h1Dτ = {θ⊤1 xr}xr∈Dτ , x̃r = θ1hr is the reconstruction of xr, and hπr computed from the xr

through the network with Wπ is the parameter at the last hidden layer hπ.

Our L2M objective function is defined as:

{θτ1 , θτ2} = argmin
θ1,θ2

[RDτ (θ1) + LDτ (θ2)]

s.t. RMτ (θ
τ
1) ≤ RMτ (θ

τ−1
1) and LMτ (θ

τ
2) ≤ LMτ (θ

τ−1
2) (5.10)

where {θ1, θ2} are the model parameters; while, {θτ1 , θτ2} are the values of {θ1, θ2} after

learning task τ .

At each training step on the current task τ , to update the model parameters {θτ1 , θτ2}

minimizing Equation 5.10, we need to compute the gradients g and gref , and then follow

Equation 5.2 to compute the projected gradient g̃ for the model parameters {θτ1 , θτ2} (Figure

94

5.2). Given the projected g̃, we can update {θτ1 , θτ2} by applying typical descent operation,

as follows.

Gradient Update g. To compute the gradient g for {θτ1 , θτ2} on the current task τ , we first

derive polynomial forms of RDτ (θ1) and LDτ (θ2), by applying the 1st and 2nd orders of

Taylor Expansion as follows:

R̃Dτ (θ1) =
∑

xr∈Dτ

d∑
s=1

[
θ1s

(1
2
− xrs

)
hr

]
(5.11)

L̃Dτ

(
θ2
)

=
K∑
k=1

∑
xr∈Dτ

[
hπrWπk − (hπrWπk)yrk

]
−

K∑
k=1

∑
xr∈Dτ

[1
2
|hπrWπk|+

1

8
(hπrWπk)

2
]

(5.12)

To preserve ϵ1-DP in learning θ1, we leverage Functional Mechanism [222] to inject a

Laplace noise into polynomial coefficients of the function R̃Dτ (θ1), which are the input x and

the first transformation h1. Laplace mechanism [59] is well-known in perturbing objective

functions to prevent privacy budget accumulation in training ML models [151, 154, 155]. As

in [151], the global sensitivity ∆R̃ is bounded as follows: ∆R̃ ≤ d(|h1|+2), with |h1| is the

number of neurons in h1. The perturbed R̃ function becomes:

RDτ
(θ1) =

∑
xr∈Dτ

[d∑
s=1

(
1

2
θ1shr)− xrx̃r

]
(5.13)

where xr = xr +
1
|Dτ |Lap(

∆R̃
ϵ1
), hr = θ⊤1 xr, hr = hr +

2
|Dτ |Lap(

∆R̃
ϵ1
), x̃r = θ1hr, hr is

clipped to [−1, 1], and ϵ1 is a privacy budget.

Importantly, the perturbation of each example x turns the original data Dτ into a

(ϵ1/γx)-DP dataset Dτ = {xr}xr∈Dτ with γx = ∆R̃/|Dτ | by following Lemma 2 in [151]

(Alg. 3, line 2). Based upon that, all the computations on top of the (ϵ1/γx)-DP dataset

Dτ , including hr, hr, x̃r, and the computation of gradients g of the model parameters θ1

are shown to be (ϵ1/γx)-DP without accessing any additional information from the original

data Dτ , i.e., ∀s ∈ [1, d] : ∇θ1sRDτ
(θ1) =

δRDτ
(θ1)

δθ1s
=

∑|Dτ |
r=1 hr(

1
2
− xrs). This follows the

95

post-processing property of DP [59]. Consequently, the total privacy budget used to perturb

R̃ is (ϵ1 + ϵ1/γx), by having
Pr
(
RDτ

(θ1)
)

Pr
(
R

D
′
τ
(θ1)

) × Pr
(
Dτ

)
Pr
(
D
′
τ

) ≤ (ϵ1 + ϵ1/γx). Details are available

in our proof of Theorem 10, Appendix A.27.

A similar approach is applied to perturb the objective function L̃Dτ (θ2) at the output

layer with a privacy budget ϵ2. The perturbed function of L̃ is denoted as LDτ
(θ2). As

in Lemma 3 [151], the output of the auto-encoder, which is the perturbed transformation

h1Dτ
= {θ⊤1 xr +

2
|Dτ |Lap(

∆R̃
ϵ1
)}xr∈Dτ

, is (ϵ1/γ)-DP, given γ =
2∆R̃

|Dτ |∥θ1∥1,1
and ∥θ1∥1,1 is the

maximum 1-norm of θ1’s columns1. As a result, the computations of all the hidden layers

of the multi-layer neural network G(·) that takes the output of the auto-encoder h1Dτ
as

its input, is (ϵ1/γ)-DP, since h1Dτ
is (ϵ1/γ)-DP, following the post-processing property of

DP [59] (Alg. 3, line 2).

That helps us to (1) avoid extra privacy budget consumption in computing the multi-

layer neural network G(·); (2) tighten the sensitivity of the function LDτ
(i.e., ∆L̃ ≤ 2|hπ|);

and (3) achieve DP gradient update for θ2. The total privacy budget used to perturb L̃ is

(ϵ1/γ+ϵ2), i.e., Pr
(
LDτ

(θ2)
)
/Pr

(
LD

′
τ
(θ2)

)
≤ (ϵ1/γ+ϵ2). Consequently, the total privacy

budget in computing the gradient updates g, i.e., {∇θ1RDτ
(θτ−11),∇θ2LDτ

(θτ−12)}, for the

current task τ is (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2)-DP (Alg. 3, lines 5 and 10).

Episodic and Projected Gradients gref and g̃. Now, we are ready to present our approach

in achieving Lifelong DP, by configuring the episodic memory at the current task τ (i.e.,

Mτ) as a fixed and disjoint set of datasets from previous tasks, i.e., Mτ = {D1, . . . , Dτ−1}

(Alg. 3, line 7); such that, at each training step, the computation of episodic gradients gref

for the model parameters {θ1, θ2} using a randomly picked dataset Dref ∈ Mτ (Alg. 3,

lines 8 and 11), is (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2)-DP, without incurring any additional privacy

budget consumption for the dataset Dref . The projected gradients g̃ is computed from g

and gref (Equation 5.2) is also (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2)-DP, following the post-processing

property [59].

1https://en.wikipedia.org/wiki/Operator_norm

96

https://en.wikipedia.org/wiki/Operator_norm

Hence, we reformulate the L2M objective function in Equation 5.10, as follows:

{θτ1 , θτ2} = argmin
θ1,θ2

[RDτ
(θ1) + LDτ

(θ2)]

s.t. RMτ (θ
τ
1) ≤ RMτ (θ

τ−1
1),LMτ (θ

τ
2) ≤ LMτ (θ

τ−1
2)

where Mτ = {D1, . . . , Dτ−1} (5.14)

By using the perturbed functionsR and L, the constrained optimization of Equation

5.14 can be addressed similarly to Equation 5.2, when the projected gradient g̃ is computed

as: g̃ = g − (g⊤gref)/(g
⊤
refgref)gref , where g is the gradient update on the current task τ ,

and gref is computed using a dataset Dref randomly selected from the episodic memory

Mτ .

Lifelong DP Guarantee. Given the aforementioned network f(x) as the stack of the

auto-encoder and the multi-layer neural network, and privacy budgets ϵ1 and ϵ2, the total

Lifelong DP privacy consumption in learning the model parameters {θ1, θ2} at each task is

computed in Theorem 10.

Theorem 10. Alg. 3 achieves (ϵ1+ϵ1/γx+ϵ1/γ+ϵ2)-Lifelong DP in learning {θi1, θi2}i∈[1,m].

Theorem 10 shows that Alg. 3 achieves ϵ-Lifelong DP in learning the model

parameters at each task {θi1, θi2}i∈[1,m], where ϵ = (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2). There are

three key properties in the proof of Theorem 10 (Appendix A.27):

(1) For every input x in the whole training set D = {Di}i∈[1,m], x is included in one

and only one dataset, denoted Dx ∈ D (Equation A.93). Hence, the DP guarantee to x in D

is equivalent to the DP guarantee to x in Dx (Equations A.95 and A.96).

(2) If we randomly sample tuples from the episodic memory to compute the episodic

gradients gref , the sampling set and its neighboring set can have at most i − 1 different

tuples (i ∈ [1,m]), since each Di and its neighboring dataset D
′
i can have at most 1 different

97

tuple. In addition, a random sampling set of tuples in the episodic memory can overlap with

more than one datasets Di, which is used to compute the gradient g. Importantly, different

sampling sets from the episodic memory can overlap each other; thus, a simple data tuple

potentially is used in multiple DP-preserving objective functions using these overlapping

sets to compute the episodic gradients gref . These issues introduce additional privacy risk by

following the group privacy theory and overlapping datasets in DP. We address this problem,

by having the episodic memory as a fixed and disjoint set of datasets across T training tasks

(Equation A.94). As a result, we can prevent the additional privacy leakage, caused by: (i)

Differing at most i− 1 tuples between neighboring Mi and M′i for all i ∈ (1,m]; and (ii)

Generating new and overlapping sets of data samples for computing the episodic gradient

(which are considered overlapping datasets in the parlance of DP) in the typical training.

Thus, the optimization on one task does not affect the DP protection of any other tasks, even

the objective function given one task can be different from the objective function given other

tasks (Equation A.97).

(3) Together with the results achieved in (1) and (2), by having one and only one

privacy budget for every task, we can achieve Equations 5.6 and 5.7 in Lifelong DP (Def. 9).

We present these steps in Equations A.103 and A.105.

5.5 Scalable and Heterogeneous Training
Although computing the gradients given the whole dataset Dτ achieves Lifelong DP, it

has some shortcomings: (1) consumes a large computational memory to store the episodic

memory; (2) computational efficiency is low, since we need to use the whole dataset Dτ and

Dref to compute the gradient update and the episodic gradient at each step; This results in a

slow convergence speed and poor utility.

Scalability. To address this, we propose a streaming batch training (Alg. 7, Appendix

A.28), in which a batch of data is used to train the model at each training step, by the

following steps.

(1) Slitting the private training data Dτ into disjoint and fixed batches (Alg. 7, line 4).

98

(2) Using a single draw of Laplace noise across batches (Alg. 7, lines 1-2). That

prevents additional privacy leakage, caused by: (i) Generating multiple draws of noise (i.e.,

equivalent to applying one DP-preserving mechanism multiple times on the same dataset);

(ii) Generating new and overlapping batches (which are considered overlapping datasets in

the parlance of DP); and (iii)For any example x, x is included in only one batch. Hence,

each disjoint batch of data in Alg. 7 can be considered as a separate dataset in Alg. 3.

(3) For each task, we randomly select a batch to place in the episodic memory (Alg. 7,

line 17).

(4) At each training step, a batch from the current task is used to compute the gradient

g, and a batch randomly selected from the episodic memory is used to compute the episodic

gradient gref (Alg. 7, lines 11-14). Thus, Alg. 7 still preserves (ϵ1 + ϵ1/γx + ϵ1/γ +

ϵ2)-Lifelong DP (Theorem 10).

By doing so, we significantly reduce the computational complexity and memory

consumption, since only a small batch of data is stored in the episodic memory.

Heterogeneity. Based upon this, our algorithm can be applied to address the

heterogeneity in terms of data sizes among tasks, which differs from multi-modal tasks [114].

We can train one task with multiple epochs, without affecting the Lifelong DP protection in

Alg. 7, by 1) keeping all the batches fixed among epochs, and 2) at the end of training each

task, we randomly select a batch of that task to place in the episodic memory. The order of

the task does not affect the Lifelong DP, since the privacy budget is not accumulated across

tasks. These properties enable us to customize our training, by having different numbers of

training epochs for different tasks and having different training orders of tasks. Tasks with

smaller numbers of data tuples can have larger numbers of training epochs. This helps us to

achieve better model utility under the same privacy protection as shown in our experiments.

5.6 Experiments
Our validation focuses on understanding the impacts of the privacy budget ϵ and the

heterogeneity on model utility. For reproducibility, our implementation is available.

99

Baseline Approaches. We consider A-gem [30] as an upper bound in terms of model

performance, since A-gem is a noiseless model. We aim to show how much model utility is

compromised for the Lifelong DP protection. Also, we consider the naive algorithm [47],

called NaiveGaussian, as a baseline to demonstrate the effectiveness of our L2DP-ML

mechanism. It is worth noting that there is a lack of a precise definition of adjacent databases

resulting in an unclear or not well-justified DP protection for L2M in existing works [67,150].

Therefore, we do not consider them as baselines in our experiments.

To evaluate the heterogeneity, we further derive several versions of our algorithm

(Alg. 7), including: (1) Balanced L2DP-ML, in which all the tasks have the same number

of training steps, given a fixed batch size. This is also true for a Balanced A-gem algorithm;

(2) L2DP-ML with the same number of epochs for all the tasks; and (3) Heterogeneous

L2DP-ML, in which a fixed number of training epochs is assigned to each task. The

numbers of epochs among tasks can be different. For instance, 5 epochs are used to train

tasks with 5Hz, 10Hz, and 20Hz data, and 1 epoch is used to train the task with a larger

volume of 50Hz data. The number of epochs is identified by the data size of each task, since

the search space of the number of epochs for each task is exponentially large.

Datasets. We evaluate our approach using permuted and split MNIST [101], permuted

and split CIFAR-10 [91], split CIFAR-100 datasets2, and our human activity recognition in

the wild (HARW) dataset. Permuted MNIST is a variant of MNIST [107] dataset, where each

task has a random permutation of the input pixels, which is applied to all the images of that

task. We adopt this approach to permute the CIFAR-10 dataset, including the input pixels

and three color channels. Our HARW dataset was collected from 116 users, each of whom

provided mobile sensor data and labels for their activities on Android phones consecutively

in three months. HARW is an ultimate task for L2M, since different sensor sampling rates,

e.g., 50Hz, 20Hz, 10Hz, and 5Hz, from different mobile devices are considered as L2M

tasks. The classification output includes five classes of human activities, i.e., walking, sitting,

2Datasets were downloaded and evaluated by Phung Lai, Han Hu, and NhatHai Phan.

100

((a)) ((b)) ((c))

Figure 5.3 Average accuracy in the a) Permuted MNIST (20 tasks), b) Permuted CIFAR-10
(17 tasks), and c) HARW.

Table 5.1 Average Forgetting Measure

L2DP-ML NaiveGaussian A-gem

Permuted MNIST

ϵ = 0.5 0.305 ± 0.00886 0.012 ± 0.00271

0.162 ± 0.01096ϵ = 1 0.278 ± 0.00907 0.015 ± 0.00457

ϵ = 2 0.237 ± 0.00586 0.017 ± 0.00385

Permuted CIFAR-10

ϵ = 4 0.033 ± 0.00896 0.138 ± 0.00582

0.133 ± 0.00859ϵ = 7 0.062 ± 0.01508 0.174 ± 0.01149

ϵ = 10 0.034 ± 0.00184 0.181 ± 0.01956

L2DP-ML Balanced L2DP-ML (ϵ = 0.2) A-gem

HARW

(5Hz - 10Hz

- 20Hz - 50Hz)

ϵ = 0.2 0.1133 ± 0.0003

0.1309 ± 0.002 0.1269 ± 0.00045ϵ = 0.2 (2 epochs) 0.1639 ± 0.00074

ϵ = 0.2 (5 epochs) 0.2031 ± 0.0013

ϵ = 0.5 0.1124 ± 0.00029 Heterogeneous L2DP-ML (ϵ = 0.2) Balanced A-gem

ϵ = 1 0.1106 ± 0.00026 0.1920 ± 0.00034 0.1593 ± 0.00021

in car, cycling, and running. The data collection and processing of our HARW dataset is in

Appendix A.29. The setting of split CIFAR-10 and CIFAR-100, and split MNIST datasets

are in Appendix A.30.

Model Configuration. In the permuted MNIST dataset, we used three convolutional

layers (32, 64, and 96 features). In the permuted CIFAR-10 dataset, we used a Resnet-18

network (64, 64, 128, 128, and 160 features) with kernels (4, 3, 3, 3, and 3). In the HARW

dataset, we used three convolutional layers (32, 64, and 96 features). Detailed model

configurations are in the Appendix A.30. To conduct a fair comparison, we applied a

101

((a)) ((b)) ((c))

Figure 5.4 Average accuracy with random task orders: a) HARW 50Hz - 20Hz - 10Hz -
5Hz, b) HARW 20Hz - 50Hz - 5Hz - 10Hz, and c) HARW 20Hz - 5Hz - 10Hz - 50Hz.

grid-search for the best values of hyper-parameters, including the privacy budget ϵ ∈ [4, 10],

the noise scale z ∈ [1.1, 2.5], and the clipping bound C ∈ [0.01, 1], in the NaiveGaussian

mechanism. Based on the results of our hyper-parameter grid-search (Table A.6), we set

z = 2.2 for ϵ = 4.0, z = 1.7 for ϵ = 7.0, and z = 1.4 for ϵ = 10.0, and C = 0.01 is used

for all values of ϵ.

Evaluation Metrics. We employ the well-applied average accuracy and forgetting

measures after the model has been trained with all the batches up to task τ [29, 30],

defined as follows: (1) average accuracyτ = 1
τ

∑τ
t=1 aτ,n,t, where aτ,n,t ∈ [0, 1] is the

accuracy evaluated on the test set of task t, after the model has been trained with the

nth batch of task τ , and the training dataset of each task, Dτ , consists of a total n

batches; (2) average forgettingτ = 1
τ−1

∑τ−1
t=1 f

τ
t , where f τ

t is the forgetting on task t

after the model is trained with all the batches up till task τ . f τ
t is computed as follows:

f τ
t = maxl∈{1,...,τ−1}(al,n,t − aτ,n,t); and (3) We measure the significant difference between

two average accuracy curves induced by models A and B after task τ , using a p value (2-tail

t-tests) curve: p value =
(
{1
i

∑i
t=1 a

(A)
i,n,t}i∈[1,τ], {1i

∑i
t=1 a

(B)
i,n,t}i∈[1,τ]

)
. All statistical tests

are 2-tail t-tests.

Results in Permuted MNIST. Figure 5.3(a) and Table 5.1 illustrate the average

accuracy and forgetting measure of each model as a function of the privacy budget ϵ on

the permuted MNIST dataset. It is clear that the NaiveGaussian mechanism does not work

102

Table 5.2 Average Forgetting Measure on Random Orders of HARW Tasks

L2DP-ML (ϵ = 0.2) L2DP-ML (ϵ = 0.5) L2DP-ML (ϵ = 1)

0.1016 ± 0.0002 0.1012 ± 0.0001 0.098 ± 0.0001

HARW (50Hz - A-gem Balanced A-gem Balanced L2DP-ML (ϵ = 0.2)

20Hz - 10Hz - 5Hz) 0.1029 ± 0.0002 0.1241 ± 0.0002 0.1274 ± 0.0008

L2DP-ML (ϵ = 0.2, 2 epochs) L2DP-ML (ϵ = 0.2, 5 epochs) Heterogeneous L2DP-ML (ϵ = 0.2)

0.1148 ± 0.0002 0.1012 ± 0.0014 0.1442 ± 0.0003

L2DP-ML (ϵ = 0.2) L2DP-ML (ϵ = 0.5) L2DP-ML (ϵ = 1)

0.0769 ± 2.07e-5 0.0761 ± 3.88e-5 0.0772 ± 6.7e-5

HARW (20Hz - A-gem Balanced A-gem Balanced L2DP-ML (ϵ = 0.2)

50Hz - 5Hz - 10Hz) 0.0781 ± 2.28e-5 0.14 ± 3.26e-4 0.1248 ± 0.0013

L2DP-ML (ϵ = 0.2, 2 epochs) L2DP-ML (ϵ = 0.2, 5 epochs) Heterogeneous L2DP-ML (ϵ = 0.2)

0.0775 ± 8.45e-5 0.099 ± 0.0015 0.1268 ± 0.00028

well under a tight privacy budget ϵ ∈ [0.5, 2] given a large number of tasks m = 20. This is

because each task can consume a tiny privacy budget ϵ/m resulting in either a large noise

injected into the clipped gradients or a lack of training steps to achieve better model utility.

By avoiding the privacy budget accumulation across tasks and training steps, our L2DP-ML

models significantly outperform the NaiveGaussian mechanism. Our L2DP-ML model

achieves 47.73% compared with 10.43% of the NaiveGaussian after 20 tasks given ϵ = 0.5

(p < 6.81e− 15).

Regarding the upper bound performance, there is a small average accuracy gap

between the noiseless A-gem model and our L2DP-ML models given a small number of

tasks. The gap increases when the number of tasks increases (23.3% at ϵ = 0.5 with 20

tasks). The larger the privacy budget (i.e., ϵ = 2.0), the higher the average accuracy we

can achieve, i.e., an improvement of 9.92% with p < 2.83e− 14, compared with smaller

privacy budgets (i.e., ϵ = 0.5). Also, our L2DP-ML models have a relatively good average

forgetting with tight privacy protection (ϵ = 0.5, 1, and 2), compared with the noiseless

A-gem model.

103

Results in Permuted CIFAR-10. Although permuted CIFAR-10 tasks are very

difficult (Figure 5.3(b) and Table 5.1), even with the noiseless A-gem model, i.e.,

35.24% accuracy on average, the results on the permuted CIFAR-10 further strengthen our

observation. Our L2DP-ML models significantly outperform the NaiveGaussian mechanism.

Our L2DP-ML model achieves an improvement of 8.84% in terms of average accuracy over

the NaiveGaussian after 17 tasks given ϵ = 4 (p < 4.68e− 7). We further observe that the

NaiveGaussian mechanism has a remarkably larger average forgetting compared with our

L2DP-ML (Table 5.1).

Interestingly, the gap between A-gem and our L2DP-ML models is notably shrunken

when the number of tasks increases (from 16.47% with 1 task to 9.89% with 17 tasks,

at ϵ = 4). In addition, the average forgetting values in our L2DP-ML are better than

the noiseless A-gem. This is a promising result. We also registered that the larger the

privacy budget (i.e., ϵ = 10), the higher the average accuracy that we can achieve, i.e., an

improvement of 4.73% with p < 1.15e− 9, compared with smaller budgets (i.e., ϵ = 4).

Heterogeneous Training. We now focus on shedding light into understanding the

impacts of heterogeneity and privacy on model utility given different variants of our L2DP-

ML mechanisms and the noiseless A-gem model. The p value curves are in Figures A.27

and A.28, Appendix A.30.

On the HARW task (Figure 5.3(c) and Table 5.1), our L2DP-ML model achieves

a very competitive average accuracy, given a very tight DP budget ϵ = 0.2 (i.e., 61.26%)

compared with the noiseless A-gem model (i.e., 62.27%), across four tasks. Our model

also achieves a better average forgetting, i.e., 11.33, compared with 12.69 of the noiseless

A-gem model. That is promising. Increasing the privacy budget modestly increases the

model performance. The differences in terms of average accuracy and forgetting are not

significant. This is also true, when we randomly flip the order of the tasks (Figure 5.4 and

Table 5.2). The results showed that our model effectively preserves Lifelong DP in HARW

tasks.

104

Heterogeneous training, with customized numbers of epochs and task orders, further

improves our model performance, under the same Lifelong DP protection. Figure A.27

illustrates the p values between the average accuracy curves of our L2DP-ML, given 1)

heterogeneous training with different numbers of epochs, 2) task orders, and 3) privacy

budgets, over its basic settings, i.e., ϵ = 0.5 for the permuted MNIST dataset, ϵ = 4 for the

permuted CIFAR-10 dataset, and ϵ = 0.2 for the HARW dataset, with one training epoch.

• In the permuted MNIST dataset (Figures 5.3(a) and A.27(a)), when our L2DP-ML

model is trained with 2 or 3 epochs per task, the average accuracy is improved, i.e., 2.81%,

4.8% given 2, 3 epochs, respectively, with p < 8.44e − 9. In the permuted CIFAR-10,

using larger numbers of training epochs shows significant performance improvements over

a small number of tasks (Figure A.27(b)). When the number of tasks becomes larger, the

p values become less significant (even insignificant), compared with the p value curves of

larger DP budgets (i.e., ϵ = 2 and ϵ = 10 in the permuted MNIST and permuted CIFAR-10).

Meanwhile, training with a larger number of epochs yields better results with small numbers

of tasks (i.e., fewer than 6 tasks), compared with larger DP budgets.

• In the HARW tasks, the improvement is more significant (Figures 5.3(c) and

A.27(c)). Heterogeneous and Balanced L2DP-ML models outperform the basic settings

with uniform numbers of training epochs, i.e., 1, 2, and 5 epochs. On average, we registered

an improvement of 1.93% given the Balanced L2DP-ML and an improvement of 5.14%

given the Heterogeneous L2DP-ML, over the basic setting (1 training epoch). The results

are statistically significant (Figure A.27(c)). The average forgetting values of the Balanced

L2DP-ML (0.1593) and the Heterogeneous L2DP-ML (0.1920) are higher than the basic

setting (0.1133), with p < 2.19e− 5 (Table 5.1). This is expected as a primary trade-off in

L2M, given a better average accuracy. In fact, the average forgetting values are also notably

higher given larger uniform numbers of epochs, i.e, 2 and 5 epochs, and the Balanced A-gem.

We do not address this fundamental issue in L2M since it is out-of-scope of this study. We

focus on preserving Lifelong DP.

105

•We observe similar results in randomly flipping the order of the tasks (Figures 5.4

and A.28, Table 5.2). Among all task orders, our Heterogeneous L2DP-ML achieves the

best average accuracy (66.4%) with the task order [5Hz, 10Hz, 20Hz, 50Hz] (Figure 5.3(c))

compared with the worse order [20Hz, 50Hz, 5Hz, 10Hz] (56.69%) (Figure 5.4(b)), i.e.,

p < 9.9e− 5. More importantly, in both average accuracy and forgetting, our Balanced and

Heterogeneous L2DP-ML models achieve a competitive performance compared with the

noiseless Balanced A-gem, which is considered to have the upper bound performance, and a

better performance compared with having the uniform numbers of epochs across tasks. This

obviously shown that the distinct ability to offer the heterogeneity in training across tasks

greatly improves our model performance, under the same Lifelong DP protection.

Results in Split Tasks. We observe similar results on split CIFAR-10, CIFAR-100,

and MNIST datasets as L2DP-ML achieves competitive average accuracy approaching the

noiseless A-gem model under rigorous privacy budgets (Figure A.29, Appendix A.30). After

5 tasks of the split MNIST dataset, L2DP-ML achieves 73.54% and 81.83% in average

accuracy at the privacy budgets 0.5 and 1 respectively, compared with 79.71% of the

noiseless A-gem. Interestingly, our L2DP-ML has slightly higher average accuracy than

the noiseless A-gem after 11 tasks of the split CIFAR-10 and CIFAR-100 dataset (14.83%

in L2DP-ML at ϵ = 4 compared with 13.44% in the noiseless A-gem). One reason is that

Lifelong DP-preserving noise can help to mitigate the catastrophic forgetting. As showed in

Table A.7 (Appendix A.30), our L2DP-ML obtains a significantly lower average forgetting

(2.7% at ϵ = 4) than the noiseless A-gem (19.5%).

5.7 Discussion

In this chapter, we showed that L2M introduces unknown privacy risk and challenges in

preserving DP. To address this, we established a connection between DP preservation and

L2M, through a new definition of Lifelong DP. To preserve Lifelong DP, we proposed the

first scalable and heterogeneous mechanism, called L2DP-ML. Our model shows promising

106

results in several tasks with different settings and opens a long-term avenue to achieve better

model utility with lower computational cost, under Lifelong DP.

107

CHAPTER 6

ADDITIONAL WORK: ONTOLOGY-BASED INTERPRETABLE MACHINE
LEARNING FOR TEXTUAL DATA

6.1 Preamble

In this chapter, we introduce a novel interpreting framework that learns an interpretable

model based on an ontology-based sampling technique to explain agnostic prediction

models. Different from existing approaches, our interpretable algorithm considers contextual

correlation among words, described in domain knowledge ontologies, to generate semantic

explanations. To narrow down the search space for explanations, which is exponentially

large given long and complicated text data, we design a learnable anchor algorithm to better

extract local and domain knowledge-oriented explanations. A set of regulations is further

introduced, combining learned interpretable representations with anchors and information

extraction to generate comprehensible semantic explanations. To carry out an extensive

experiment, we first develop a drug abuse ontology (DAO) on a drug abuse dataset on the

Twitter sphere, and a consumer complaint ontology (ConsO) on a consumer complaint

dataset, especially for interpretable ML. Our results show that our approach generates more

precise and more insightful explanations compared with a variety of baseline approaches.

6.2 Background and Problem Definition

In this section, we revisit IML, ontology-based approaches, and information extraction

algorithms, which are often used to generate explanations. We further discuss the relation to

previous frameworks and introduce our problem definition.

Let D be a database that consists of N samples, each of which is a sample x ∈ Rd

associated with its label y. Each y is a one-hot vector of K categories y = {y1, y2, . . . , yK}.

A classifier outputs class scores f : Rd → RK that maps an input x to a vector of scores

f(x) = {f1(x), f2(x), . . . , fK(x)} s.t. ∀k ∈ [1, K] : fk(x) ∈ [0, 1] and
∑K

k=1 fk(x) = 1.

108

The highest-score class is selected as the predicted label for the sample. By minimizing a

loss function L(f(x), y) that penalizes a mismatching between the prediction f(x) and the

original value y, an optimal classifier is selected.

6.2.1 Interpretable Machine Learning

Let us revisit IML, starting with the spirit of interpreting either a model behavior or a model

outcome, given an input. Conventional approaches focus on measuring the impacts of

input features or components, e.g., a word, a sentences, a super-pixel, on each predicted

outcome [113, 122, 166]. Given this common goal, IML algorithms can be classified

into several research lines, based on their techniques, as follows: (1) Feature attribution

approaches; (2) Backpropagation methods; and (3) Attention networks.

Feature attribution approaches One of the oldest models in IML is based on Shapley

value [179]. Shapley value is the average contribution of a specific feature value to the

prediction in different coalition scenarios. To obtain an explanation for each feature, Shapley-

based methods [113, 189] generally require training models with and without the feature

over all possible combinations of other features, and then take the weighted average as the

explanation for that feature. SHAP [119] is another mechanism that applies Shapley value

on local interpretability. In this way, Shapley-based approaches have several limitations,

as follows: (1) expensive computation, since there are an exponential number of possible

coalitions of features; (2) potential misinterpretation, as they return a simple value per

feature, and cannot make statements about changes in prediction for manipulating in the

input; and (3) not covering correlated features.

Sharing a similar idea of manipulating and measuring as Shapley-based approaches,

LIME [166] focuses on training local surrogate models that can explain individual

predictions of an instance. Given an interpretable model g, which provides insights and

qualitative understanding about the prediction model f given an input x, there are two

important criteria in learning g: (1) local fidelity, which implies the ability of interpretable

109

models to approximate the prediction model in a vicinity of the input, and (2) interpretability,

which is a sufficiently low complexity of interpretable models that makes it easier for humans

to understand the explanations. In textual data, the complexity, denoted as T (g), usually

is the number of important words [123, 166], based upon what users can easily handle, to

evaluate the generated explanations.

Let z be a sample of x, where z is generated by randomly selecting or removing

features or words in x. ϕx(z) is a similarity function to measure the proximity between x

and z. Given a d′-dimensional binary vector z′ ∈ {0, 1}d′ , z′i = 1 indicates that the feature

i-th (∈ x) is present in z, and vice-versa. To achieve the interpretability and local fidelity,

Ribeiro et al. [166] minimize a loss function L(f, g, ϕx), with a low complexity T (g), by

solving the following problem:

g∗ = argmin
g

L(f, g, ϕx) + T (g) (6.1)

where L(f, g, ϕx) =
∑

z ϕx(z)(f(z)− g(z′))2,

ϕx(z) = exp(−D(x, z)2/σ2) is an exponential kernel with D(x, z) is a distance

function (e.g., cosine distance for textual data) with a width σ, and g(z′) = wgz
′.

To obtain the data z for learning g in Equation 6.1, sampling approaches are employed.

In LIME, the authors draw nonzero elements of the original data x uniformly at random.

Similar to this approach, a number of works follow [9, 94, 139]. In summary, in these

approaches, data is sampled while ignoring the correlation among features, which might

not be practical in real-world scenarios, since features usually are highly and semantically

correlated.

Backpropagation methods Layer-wise relevance propagation (LRP) [16] and Deep

Learning Important Features (DeepLIFT) [184] rely on model decomposition through

a backpropagation process, in which a prediction f(x) is decomposed into individual

contributions of input neurons. The main idea behind LRP is that, for each output class

110

separately, the prediction score is reallocated from upper-layer neurons to the input space

(e.g., words in text or pixels in images) via a backpropagation procedure [14]. In the same

line of work, DeepLIFT is a recursive prediction explanation for deep learning to assign

importance scores to the input variables. DeepLIFT aims at examining the difference of the

activation of each neuron given the original input compared with its reference activation

from some reference inputs. Then, the difference is used to explain the importance of the

original input. In spite of easily applying to many domains and data types, backpropagation

approaches can be unstable since they mainly rely on gradients which can be noisy and

unsteady. In fact, given adversarial examples, a tiny perturbation of the input x can cause the

output score f(x) and then the gradient to change significantly, which can lead to a noisy

and wobbly backpropagation procedure.

Attention Networks Facilitating attention networks in interpretability has been an

emerging trend in deep learning nowadays [92, 124, 211]. The attention mechanism [198]

is to selectively focus on relevant and important components to the model outcome, while

ignoring other irrelevances in a network. Hierarchical Attention Network (HAN) [213]

is one of the promising approaches for document-level classification since it not only

results in better predictive performance, but also provides insight into which words and

sentences contribute to the classification. HAN uses stacked bidirectional GRUs [17] on

the word-level, followed by an attention network to extract words that are critical to the

meaning of a sentence, and then to aggregate the words to form a sentence vector. The

same mechanism is applied to the generated sentence vectors to obtain important sentences

which contribute to the classification of the document. As in [71], HAN is typically slow

to train, due to its complex architecture; and so, gradients are very expensive to compute.

Technically, this shortcoming does not impede practical applications of HAN in textual data;

therefore, we use it as one of the comparisons with our proposed method. The key difference

between HAN and OnML is that, OnML leverages domain knowledge to tie the explanations

111

up to the predicted label and considers correlations among words in textual data to generate

semantic explanations from the text; whereas HAN does not leverage domain knowledge.

6.2.2 Ontology-based Approaches

To capture semantic correlations among input features, an ontology can be applied.

Ontology is used in [69] to filter and rank concepts from selected data points to conduct

informative explanations. The explanations are derived in ontological forms. For

example, the information, “a 30-year-old individual, with an operation that occurred in

1989,” can be conveyed by the representation, “TheSilentGeneration ⊓ OperationIn1980s.”

(TheSilentGeneration denotes people in the age range of 30-39.) Heuristically, building a rich

contextual ontology is expensive; so, typically, ontology only captures a limited number of

core concepts and their correlations. This is the reason why ontological forms cannot capture

all common sense knowledge in the textual information. In reality, humans generally use

natural languages in a variety of text presentations. Therefore, an appropriate combination of

a single-form ontology with other approaches to generate semantic explanations is necessary.

In [38], Confalonieri et al. use ontology to learn an understandable decision tree, which

is an approximation of a neural network classifier. Explanations are in a non-syntactic form,

and they are not designed to explain a single and independent data point. Different from [38],

we aim at generating semantic explanations for each input x. In this paper, generating

semantic explanations is defined as a process of mapping a text to a representation of

important information in a syntactic and understandable form.

6.2.3 Information Extraction

Apart from IML, information extraction (IE) is another direction to capture contextual

information semantically. The first Open IE algorithm is TextRunner [64], which identifies

arbitrary relation phrases in English sentences by automatically labeling data using heuristics

for training the extractor. Following [64], a number of Open IE [65,186,206] were introduced.

112

Figure 6.1 A flow chart of the OnML approach.

Unfortunately, these approaches ignore the context. OLLIE [175] includes contextual

information; and extracts relations mediated by nouns, adjectives, and verbs; and outputs

triplexes (subject, predicate, object). Compared with Open IE approaches, our algorithm

mainly focuses on generating semantic explanations associated with the prediction label.

6.3 Ontology-based Interpretable Machine Learning for Textual Data

In this section, we formally present our proposed OnML framework (Figure . 6.1). Alg. 4

presents the main steps of our approach. Given an input x, an ontology O, and a set of all

concepts C in O, we first present the notion of ontology-based tuples (Line 3), which will

be used in an ontology-based sampling technique to learn the interpretable model g (Lines

4-6). Next, we learn potential anchor texts using the input x and the model f(x) (Line 7).

Meanwhile, OLIIE [175] is applied to extract triplexes, which have high confident scores,

in x (Line 8). After learning g, learning anchor texts A, and extracting triplexes T , we

introduce a set of regulations to combine them together to generate semantic explanations

(Line 9). Let us first present the notion of ontology-based tuples as follows.

6.3.1 Ontology-based Tuples

Given concepts A and B, A 7→ B is used to indicate that A has a directed connection to B.

In considerably correlated domains, such as text data, it is observed that 1) words appearing

near to each other in a sentence have the same contextual information, and 2) different

sentences usually have different contextual information. To encode the observations, we

113

Figure 6.2 Drug abuse ontology.

introduce a contextual constraint, as follows:

λxk
(xl) ≤ γ (6.2)

where xk and xl are two words in x, γ is a predefined threshold, and λxk
(xl) measures the

distance between the positions of xk and xl in x. In text data, if xk and xl belong to two

sentences, they are considered to be violating the contextual constraint. Intuitively, the

constraint is used to connect words 1) that appear near to each other in a sentence (that

are contextually correlated); and 2) that belong to connected concepts in the ontology (that

are conceptually correlated). If there is no contextual constraint, there can be mismatched

information between the domain knowledge and the explanation extracted in the text.

Definition 10. Ontology-based tuple. Given xk and xl in x, (xk, xl) is called an ontology-

based tuple, if and only if: (1) ∃A,B ∈ C s.t. xk ∈ A and xl ∈ B; (2) A 7→ B; and (3)

λxk
(xl) ≤ γ.

Since ontology has directed connections among its concepts, ontology-based tuples are

asymmetric; i.e., (xk, xl) and (xl, xk) are different. For the sake of clarity without affecting

the generality of the approach, we use a drug abuse ontology as an example (Figure 6.2).

114

Algorithm 4 OnML approach
1: Input: Input x; ontology O, and user-predefined anchor A0

2: Classify x by a prediction model f : Rd → RK

3: Find ontology-based tuples (xi, xj) in x based on concepts and relations in O

4: Sample x, based on ontology-based tuples found by our sampling technique to obtain

sampled data z ∈ Z

5: Generate vectors of predictive scores f(z) with z ∈ Z

6: Learn an interpretable model g based on f(z) and g(z′) by Equation 6.1

7: Learn anchor text by our anchor learning algorithm (Alg. 5)

8: Extract triplexes in x using an existing Open IE technique

9: Combine ontology-based tuples, learned anchors, and extracted triplexes by our

proposed regulations

10: Output: Semantic explanation E

Given the drug abuse ontology and x as “She uses orange juice and does not like weed. She

knows that smoke causes addiction and headache”, a list of ontology-based words can be

found {use, weed, smoke, addiction, headache}. These words are in “Abuse Behavior” (use

and smoke), “Drug” (weed), “Side Effect” (addiction), and “Symptom” (headache) concepts.

Following the aforementioned conditions (Equation 6.2 with γ = 3), two ontology-based

tuples are found, which are (smoke, addiction) and (smoke, headache). In the meantime,

(addiction, headache) and (weed, smoke) are not ontology-based tuples, since there is no

directed connection between the “Side Effect” concept and the “Symptom” concept, and

since “weed” and “smoke” are in different sentences. By using the contextual constraint, we

can eliminate “use weed,” which is contextually incorrect, from the explanation.

6.3.2 Ontology-based Sampling Technique

To integrate ontology-based tuples into learning g, we introduce a novel ontology-based

sampling technique. To learn the local behavior of f in its vicinity (Equation 6.1), we

115

approximate L(f, g, ϕx) by drawing samples based on x, with the proximity indicated by

ϕx. A sample z can be sampled as:

z =
(
∪xi∈x,i ̸=k,i̸=l R(xi)

)
∪R({xk, xl}) (6.3)

whereR(xi) andR({xk, xl}) are probabilities randomly drawn for each word xi ∈ x(i ̸=

k, l) and words xk, xl ∈ x together, respectively. IfR is greater than a predefined threshold,

then the word(s) will be included in z.

In our sampling process, xk and xl, i.e., an ontology-based tuple, are sampled together

as a single element. This aims to integrate the semantic correlation between xk and xl,

captured in an ontology-based tuple into the sampling process. In fact, we are sampling

the semantic correlation, but not sampling each word/feature xk or xl independently. This

enables us to measure the impact of this semantic correlation on f(x). In addition, words,

which are not in any ontology-based tuple, are sampled independently. After sampling x

(Equation 6.3), we obtain the dataset Z that consists of sampled data points z associated

with its label f(z). Z is used to learn g∗ by solving Equation 6.1.

6.3.3 Learnable Anchor Text

Before presenting our anchor mechanism, we introduce an importance score notion, which

is to choose the best anchor and to calculate the importance of generated explanations.

Importance Score To get insights into the importance of generated explanations and

their impacts upon the model outcome, we calculate an importance score (IC) for each

explanation. Intuitively, the higher the importance score, the more important the explanation

is. IC is calculated as:

IC(r) = c̄r

(
f(x)− f(x/r)

)
(6.4)

where x/r is the original text x excluding words in the explanation r and c̄r is average

coefficients of g∗ associated with all words in r.

116

Algorithm 5 Anchors learning algorithm
1: Input: Input x; prediction model f ; number of sentences in x, denoted as M ; user-

predefined anchors A0

2: A ← ∅ (A : set of anchors for x)

3: for i ∈M do

4: if any A0 appears in the sentence i then

5: Denote DA as a set of ordered words appearing after A0 in the sentence i in x

6: An ← ∅ (An is a set of candidate anchors)

7: Fn ← ∅ (Fn is a set of importance scores, associated with each candidate anchor)

8: for xj ∈ DA do

9: An ← A0 ∪ xj; A0 ← An; Fn ← Fn ∪ IC(An)

10: end for

11: Choose the best anchor for sentence i: Ai = argmaxAn Fn

12: else

13: Ai ← ∅

14: end if

15: end for

16: A ← A∪Ai

17: Output: A

Anchor Text Learning Mechanism It is challenging to work with long and poor data, e.g.,

a large number of words, or misspelled text, since the contextual information is generally rich

and complicated. Building an ontology to adequately represent such data is expensive, and

insufficient in many cases. That results in a large undercovered search space for explanations.

To address this problem, we introduce a learnable anchor mechanism to narrow down the

search space.

The learning anchor technique is presented in Alg. 5. The anchor is initialized with

an empty set (Line 2). A set of user-predefined anchors A0 is provided, which consists of

117

starting-words that are further expanded by incrementally adding words to the end of the

sentence. Then, the importance score of each candidate anchor is calculated, following

Equation 6.4. The top-1 anchor A, which has the highest important score, for each sentence

is then chosen.

6.3.4 Generating Semantic Explanations

We further apply OLLIE [175] to extract triplexes T (subject, predicate, and object) to

identify the syntactic structure in a sentence, which can shape our explanations in a readable

form. To generate semantic explanations E , we introduce a set of regulations to combine g∗,

A, and T together:

1) E ⊆ Dx with Dx is a set of all words in x.

2) If there is no ontology-based tuple found, E will only consist of the learned anchor texts.

3) In a sentence, if there are two or more ontology-based tuples, we introduce four rules to

merge them together:

• Simplification:

– Given (xk, xl) and (xk, xm), if xl and xm are in the same concept, then the

ontology-based explanation is {xk, xl and/or xm}.

– Given (xk, xm) and (xl, xm), if xk and xl are in the same concept, then the

ontology-based explanation is {xk and/or xl, xm}.

– Given (xk, xl) and (xl, xm), then the ontology-based explanation is {xk, xl, xm}.

• Union: Given (xk, xl), (xk, xm), (xl, xm), and {xk, xl, xm}, the ontology-based

explanation is {xk, xl, xm}.

• Adding Causal words: Semantic explanation can be in the form of a causal relation.

Thus, if a causal word, e.g., “because,” “since,” “therefore,” “while,” “whereas,” “thus,”

“thereby,” “meanwhile, “however,” “hence,” “otherwise,” “consequently,” “when,” or

118

“whenever” appears between any words in ontology-based tuples/explanations, we

add the word to the explanation, following its position in x.

• Combining with anchor texts A and triplexes T : After having ontology-based

explanations, we combine them with A and T based on their positions in x. Then, the

semantic explanation is generated from the beginning towards the end of all positions

of words found in the ontology-based explanations, A, and T . For example, in the

sentences, “We were filling out all the forms in the application. However, there is

a letter, saying, Loss mitigation application denied for not sending information to

us.”, after the learning process, we obtain: 1) ontology-based explanation is (loss,

application); 2) anchor text is “not sending information;” and 3) triple is “a letter;

denied; mitigation application.” The explanation E is “a letter saying loss mitigation

application denied for not sending information.”

4) If different ontology-based tuples are in different sentences in x, due to the contextual

constraint in Equation 6.2, the explanation for each sentence follows the 3rd regulation.

It is worth noting that we use the aforementioned regulations to combine ontology-

based tuples to form a longer ontological term. This makes the ontology used a much better

representation rather than independent and direct connections A 7→ B.

Figure 6.3 Visualization of a drug abuse experiment.

119

Figure 6.4 Visualization of a consumer complaint experiment.

6.4 Experiment

We have conducted extensive experiments on two real-world datasets, including drug

abuse (Twitter-sphere [88]) and consumer complaint analysis from the Consumer Financial

Protection Bureau1. Our evaluation will focus on shedding light into these assertions: (1)

Our OnML approach can be applied on different agnostic predictive models; and (2) Our

approach can generate better explanations, compared with baseline approaches, in both

quantitative and qualitative measures. Our code and data are available on Github2.

6.4.1 Datasets and Domain Ontologies

In this study, we have developed two different domain ontologies, which are drug abuse

ontology (Figure 6.2) and consumer complaint ontology (Figure 6.5). These ontologies

were constructed for certain domains, e.g., drug abuse and consumer complaint, since it is

necessary to capture specific semantic and causal relations among components. As default in

Protégé [102], each arrow in a particular color demonstrates a certain type of causal relation

1https://www.consumerfinance.gov/data-research/consumer-complaints/
2https://github.com/PhungLai728/OnML

120

https://www.consumerfinance.gov/data-research/consumer-complaints/
https://github.com/PhungLai728/OnML

in which its tail represents a domain and its head represents a range of the relation. For

example, in the drug abuse ontology (Figure 6.2), a purple arrow signifies “is involved with,”

where domain is “Drug” and range is “Abuse Behavior”; while green arrows are for “suffer

from.” These ontologies were semi-manually generated, in which concepts were grouped

and collected from the dataset by a K-means clustering algorithm [68], and then judged by

humans to reduce inappropriate concepts.

Drug Abuse Dataset We will use the term “drug abuse” in the wider sense, including

abuse and use of Schedule 1 drugs, which are drugs with a high potential for abuse and

presently with no recognized medical use, whether obtained legally, (e.g. legal painkillers)

or illegally (e.g. getting drugs without prescription or even from black market); and misuse

of Schedule 2 drugs, which have medical uses, yet have a potential for severe addiction, and

which can be life-threatening [18]. Main concepts of the drug abuse ontology (DrugAO)

(Figure 6.2) capture correlation among key concepts, including “abuse behaviors”, “drug

types”, “drug sources”, “drug users”, “symptoms”, “side effects”, and “medical condition”

when using drugs. The “ abuse behaviors” concept is about behaviors of abusers, such as

abuse, addict, blunt, etc. Drug types consists of different types of legal and illegal drugs, e.g.,

narcotics, cocaine, and weed. “The Drug sources” concept categorizes where drug users,

who are the main objects of the ontology, obtain their drugs. “Symptoms” and “side effects”

are about different negative short-term and long-term effects of drugs on users. “Medical

condition” contains terms about expression of disease and illness caused by using drugs. In

total, DrugAO has 506 drug-abuse related terms, and 18 relations.

The drug abuse dataset (Table 6.1) consists of 9, 700 tweets labelled by [88] with a

high agreement score. Among them, 3, 043 tweets are drug abuse tweets, labeled positive

and the rest are non drug abuse tweets, labeled negative.

Consumer Complaint Dataset A consumer complaint is defined, here, as a complaint

about a range of consumer financial products and services, sent to companies for response.

121

In complaints, consumers typically talk about their mortgage-related issues, such as:

(1) Applying for a mortgage or refinancing an existing mortgage (application, credit

decision, underwriting); (2) Closing on a mortgage (closing process, confusing or missing

disclosures, cost); (3) Trouble during payment process (loan servicing, payment processing,

escrow accounts); (4) Struggling to pay mortgage (loan modification, behind on payments,

foreclosure); (5) Problem with credit report or credit score; (6) Problem with fraud alerts or

security freezes, credit monitoring or identity theft protection services; and (7) Incorrect

information on consumer’s report or improper use of consumer’s report. The main concepts

of the consumer complaint ontology (ConsO) (Figure 6.5)) encode the relation among

different entities pertaining to the consumer complaint: for instance, who is complaining;

what happened to make consumers unhappy and then complain; etc. There are six major

concepts in ConsO, which are “thing in role”, “complaint,” “event”, “event outcome”,

“property”, and “product”. “Thing in role” identifies the people and organizations related

to the complaint, such as buyers, investors, dealers, etc. “Event” and “event outcome” are

about negative events that happened that caused consumer complaints. “Property” denotes

things belonging to consumers, and “product” denotes substances of some parties (e.g.,

banks) offeredto consumers. In total, ConsO has 572 finance and product-related terms and 9

relations. The consumer complaint dataset consists of 33, 635 mortgage-related complaints,

labeled with 16 categories. These complaints were used for learning a model to predict the

issue regarding each complaint.

6.4.2 Baseline Approaches

Our OnML approach is evaluated in comparison with traditional approaches: (1)

interpretable model-agnostic explanation, i.e., LIME [166]; (2) information extraction,

i.e., OLLIE [175]; and (3) Hierarchical attention network, i.e., HAN [213]. LIME is one of

the well-applied approaches in IML, especially for textual data, in which the predictions

of any model are explained in a local region near the sample being explained. There are

122

Figure 6.5 Consumer complaint ontology.

other algorithms sharing the same spirit as LIME, in terms of generating explanations

[16, 119, 177, 184, 187, 192]. For the sake of clarity, we use LIME as a representative

baseline regarding this line of work. OLLIE focuses more on grammatical analysis to

extract triples from the text. HAN is one of the popular frameworks in attention networks in

which such words and sentences with high attention weights are expected to be influential

to the classification and to be good candidates for explanation. The key differences among

OnML, LIME, OLLIE, and HAN are (a) that OnML leverages domain knowledge to tie

the explanations to the predicted label and (b) that OnML considers correlations among

words in textual data to generate semantic explanations. Meanwhile, no domain knowledge

is applied in LIME, OLLIE, or HAN.

6.4.3 Experimental Settings

To achieve our goal, we carry out our evaluation through three approaches. First, by

employing SVM [41] and LSTM [84], we aim to illustrate that OnML works well with

different agnostic predictive models. HAN is also used as a predictive model and its

sentence-level attention components are used as an explanation to compare with the other

approaches. Second, we leverage the word deleting approach [14] as a quantitative evaluation.

Third, we apply qualitative evaluation with Amazon Mechanical Turk (AMT).

123

Model Configurations In the drug abuse dataset, tweets were vectorized by TF-IDF [163]

and then classified by a linear kernel SVM model. We achieved 83.6% accuracy. Tweets are

short, i.e., the average and maximum numbers of words in a tweet are 12 and 37 (Table 6.1).

Therefore, it is not necessary to apply the anchor learning algorithm and information

extraction, which are designed to tighten down the search space and syntactically connect

for long text data.

In the consumer complaint dataset, Word2vec [131] is applied for feature vectorization.

Then, an LSTM is trained as a prediction model. In LSTM, we used an embedding input

layer with d = 300, one hidden layer of 64 hidden neurons, and a softmax output layer with

16 outputs. In HAN, we used Glove embedding [148] with d = 300 for an embedding input

layer, one hidden layer of 150 hidden neurons, and a softmax output layer with 16 outputs.

An efficient ADAM optimization algorithm [100] with learning rate 0.01 was employed to

train LSTM and HAN. For the prediction models, we used 33, 635 samples and observed

the accuracy increasing to 60% compared with 13, 965 samples resulting in 53% accuracy

as in our previous experiment [106]. We registered this accuracy increase to be in line with

our expectations. For sufficiently learning anchors in consumer complaints, we have chosen

a set of negative terms as user-predefined anchors A0 = {not, no, illegal, against, without}.

Importance scores in LIME are weights of the linear interpretable model. With OLLIE,

importance scores of extracted triplexes are calculated in the same way as in our method (as

shown in Equation 6.4). LIME and OLLIE settings are used as default in [166,175]. We only

show OLLIE rules which have the confidence score greater than 0.7 and top-5 words from

LIME to ensure that the best explanations from OLLIE and LIME are shown. The contextual

constraint γ in Equation 6.2 is 3 for drug abuse and 10 for consumer complaint dataset. The

pre-defined threshold in Equation 6.3 is 0.5. Note that, from previous experiments [106], it

is shown that OLLIE did not work well, especially in complicated and lengthy texts, as in

consumer complaints. In addition, OLLIE tends to be well-suited to information extraction,

rather than an IML approach. Therefore, in this study, we drop the comparison with OLLIE,

124

and add a comparison with HAN in the consumer complaint dataset. To compare with

other approaches, we take the top-3 highest importance score sentences from HAN, since

importance scores after third sentences tend to be negligibly small. For short complaints

that consist of two or three sentences, we put constraints on the HAN-based explanation

algorithm to have a one sentence explanation. In addition, another variation of our algorithm

is to combine ontology-based terms and anchors, called an Ontology algorithm. This is

further used to comprehensively evaluate our proposed approach.

Quantitative Evaluation In this article, we propose two metrics for quantitative

evaluation, which are accuracy changes (AC) and prediction score changes (SC). These

metrics are based on the word deleting approach [14], which deletes a sequence of words

from a text and then re-classifies the text with missing words. By computing the differences

between the original text and the missing text, we examine the importance of the explanation

to the prediction. Intuitively, the higher values of AC and SC indicate the more important

explanations derived. AC and SC are computed as follows.

AC = Original accuracy−
∑|test|

i=1 Updating accuracy
|test|

SC =

∑|test|
i=1 IC(top-k explanations of i-th sample)

|test|

where “Original accuracy” is the average testing accuracy of all original texts; “Updating

accuracy” is the accuracy of each missing text; and |test| is the number of testing examples.

In our experiment, we deleted the top-k highest importance score explanations in

OnML, OLLIE (for drug abuse experiment only), Ontology, and HAN approaches and

the top-m highest weighted words in LIME. To be impartial, m is the number of words

in the k-deleted explanations in OnML. In drug abuse, k = 1 since the tweet is typically

short, and so there are not many explanations generated. In consumer complaint classifying,

k ∈ {1, 2, 3}.

125

Table 6.1 Data Statistical Analysis

Statistics

Dataset
Drug abuse Consumer complaint

of samples 9,700 33,635

of categories 2 16

Max # of words/sample 37 5,852

Mean # of words/sample 12 317

Table 6.2 AC and SC in Drug Abuse

Accuracy changes (%) Score changes (%)

LIME 15.04 26.98

OLLIE 15.47 23.52

OnML 25.52 33.48

Qualitative Evaluation We recruit human subjects on Amazon Mechanical Turk (AMT).

This is a common means of evaluation of the needs for qualitative investigation by humans

[122, 177]. Detailed guidance is provided to users before they conduct the task.

We asked AMT workers to choose the best explanation by seeing side-by-side (in

drug abuse) or head-to-head (in consumer complaint) explanation algorithms. To be more

specific, head-to-head comparison is employed in consumer complaint in this version since

we observed that choosing one over two algorithms helps to increase the reliability and

to reduce the incidental confusions of choices that AMT workers made, compared with

asking them to make a decision based on multiple algorithms. On top of each visualization,

we provided the original tweet or complaint associated with their labels and prediction

results. It is important to note that, in our real experiment, to avoid bias, the name of each

algorithm is hidden, and their positions in the visualization are randomized.

We were recruiting 4 users per tweet in the drug abuse experiment, and 3 users per

complaint in each head-to-head consumer complaint experiment. To quantify the voting

126

Figure 6.6 Average score changes in consumer complaint.

results from AMT users, we use: (1) Count the total number of votes, called normal count,

i.e., the best algorithm is chosen over all 1, 200 votes (4 users/tweet × 300 tweets); and (2)

Count the majority number of votes, called majority count, i.e., the best algorithm for each

tweet is the algorithm with the largest number over 4 votes. Majority count is not used in

head-to-head comparison. Relying on these voting results, we also investigate the effect of

confidence levels of prediction probability and effect of text complication, i.e., length of

text, on generated explanations.

6.4.4 Experimental Results and Analysis

To evaluate the interpretability of each approach, 300 positive tweets and 2, 000 consumer

complaints, randomly selected, were used.

Drug Abuse Explanation As in Table 6.2, the accuracy is decreased significantly, and the

predictive score changes the most in OnML. In fact, the values of AC and SC are 25.52% and

33.48% given OnML, compared with 15.47% and 23.52% given OLIIE, and 15.04% and

26.98% given LIME. This demonstrates that the explanations generated by our algorithm

are more significant, compared with the ones generated by baseline approaches. In the

127

Figure 6.7 AMT results for drug abuse dataset.

evaluation by humans using AMT (Figure 6.7), OnML clearly outperforms LIME and

OLLIE. Text in the tweet is generally short and can be represented by several key words.

Therefore, individual words learned by LIME can be sufficient to generate more insightful

explanations. Meanwhile, OLLIE tends to extract all possible triplexes in the text, which

can be redundant and wordy explanations.

Consumer Complaint Explanation The results on the consumer complain dataset

further strengthen our results. Figure 6.6 shows SC after deleting top-1, top-2, and top-3

explanations from OnML, Ontology, and OLLIE, as well as after deleting the most important

words in LIME. In all three cases, score changes in OnML have the highest values, indicating

that the explanations generated by OnML are the most significant to the prediction. In the

evaluation by humans using AMT (Figure 6.8), OnML algorithm outperforms baseline

approaches. Ontology approach achieves higher results than LIME and comparable results

with HAN. LIME does not consider semantic correlations among words, resulting in a poor

outcome in all cases.

128

Figure 6.8 AMT results for consumer complaint dataset.

Completeness and Concision In Figure 6.4 (top), OnML generates “i smoking weed,”

which provides concise and complete information about why it is predicted as a drug

abuse tweet (smoking weed) and who was doing it (i) in a syntactic form. Meanwhile, 1)

LIME derives relevant words to drug abuse (i.e., weed, smoking) without considering the

correlation among these words; and 2) OLLIE generates lengthy and somewhat irrelevant

explanations, e.g., “chinese food; be eating on; a roof.” In Figure 6.4 (bottom), OnML

derived semantic explanations for consumer complaints, which tell us that consumers were

facing issues in loan refinance, e.g., “called fha and they claim that fha does not review loans.”

Compared with OnML, Ontology generates laconic explanations, e.g., “fha loan” that give

no sense of why the consumer complained. LIME provides a set of fragmented words, and

OLLIE generates wordy explanations, both of which are difficult to follow. HAN-selected

129

Figure 6.9 Head-to-head comparison results.

sentences do not describe key issues of the complaint, e.g., “fha loan refinance initiated on

NUMBER” does not present why the consumer complained.

Text Complication and Confidence Levels We further investigate how text complication

(i.e., lengths of text/document) and confidence levels of prediction (i.e., prediction scores)

affect evaluation results. In this investigation, we only use OnML and HAN since the

results of LIME are poor, as shown previously. As shown in Figure 6.10, OnML results are

significantly higher than HAN in different lengths of text. Especially when lengths of text are

between 90 and 150 words, OnML obtained nearly 400 more votes than HAN. For different

confidence levels of prediction, as shown in Figure 6.11, with low confidence explanations

(i.e., prediction score < 0.5), both OnML and HAN have poor results; meanwhile, with

high confidence explanations (i.e., prediction score ≥ 0.5), OnML outperforms HAN. We

used the 2-tail t-test to determine if there is a significant difference between the means of

130

Figure 6.10 Length of complaints.

Figure 6.11 Prediction probabilities groups.

the two algorithms. For both text complication and confidence levels of prediction analysis,

we obtained p < 0.05, which means the difference between HAN and OnML is significant.

Our key observations are: (1) Combining ontology-based tuples, learnable anchor

texts, and information extraction can generate complete, concise, and insightful explanations

to interpret the prediction model f ; (2) Our OnML model outperforms other baseline

approaches in both the quantitative and qualitative experiments, showing a promising result;

and (3) Our OnML model outperforms HAN, which is one of the popular approaches

in attention networks and can be used for explanations, across different levels of text

complication and confidence levels.

131

6.5 Discussion

We proposed a novel ontology-based IML to generate semantic explanations, by integrating

interpretable models, ontologies, and information extraction techniques. A new ontology-

based sampling technique was introduced, to encode semantic correlations among

features/terms in learning interpretable representations. An anchor learning algorithm was

designed to limit the search space of semantic explanations. Then, a set of regulations

for connecting learned ontology-based tuples, anchor texts, and extracted triplexes is

introduced, to produce semantic explanations. Our approach achieves a better performance,

in terms of semantic explanations, compared with baseline approaches, illustrating a better

interpretability into ML models and data. Our approach paves an early brick on a new road

towards gaining insights into machine learning using domain knowledge.

132

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this study, we develop a trustworthy machine learning model in connection to privacy,

security, explainable AI, and robustness. The proposed methods are widely applicable across

machine learning paradigms and application domains.

First, we develope a novel notion of user-entity DP (UeDP), providing protection

to both the participation information of users and sensitive entities in learning NLMs.

By incorporating non-sensitive samples in the training process, we address the trade-off

between model utility and privacy loss with a tight bound of model sensitivity. In addition,

considering non-sensitive samples into our UeDP estimators notably improves model utility

under the same UeDP protection. The more number of sensitive entities is, the lower the

model utility will be; and vice-versa.

Second, wee propose ScalableRR, a novel dimension-scalable and bit-aware RR

mechanism. To optimize the trade-off among dimensionality, data utility, and privacy

protection, ScalableRR introduces a bit-aware term for better data utility and a dimension-

scalable temperature for better control of the randomization probabilities. Our key idea is that

when the dimension of a feature vector increases, one can always find a suitable temperature

such that the changes in the randomization probabilities and in the total privacy budget

are marginal. Hence, ScalableRR achieves better dimension-scalability and utility under

rigorous LDP protection than existing mechanisms. Theoretical analysis and experiments

show that ScalableRR outperforms baselines in text and image classification using several

benchmark datasets. The results also show that ScalableRR is effective in defending against

data reconstruction attacks in FL.

133

Third, we show that, although explanations help improve the understanding and

interpretability of black-box models, they also leak essential information about the inner

workings of the models. Therefore, the black-box models become more vulnerable to attacks,

especially in the context of MLaaS where the prediction and its explanation are returned

for each query. With a novel two-step LDP-preserving mechanism, we propose XRAND to

protect the model explanations from being exploited by adversaries via obfuscating the top

important features, while maintaining the faithfulness of explanations.

Fourth, we show that L2M introduces unknown privacy risk and challenges in

preserving DP. To address this, we establish a connection between DP preservation and

L2M, through a new definition of Lifelong DP. To preserve Lifelong DP, we proposed the

first scalable and heterogeneous mechanism, called L2DP-ML. Our model shows promising

results in several tasks with different settings and opens a long-term avenue to achieve better

model utility with lower computational cost, under Lifelong DP.

In an additional work on explainable AI, we propose a novel ontology-based IML,

called OnML, to generate semantic explanations, by integrating interpretable models,

ontologies, and information extraction techniques. A new ontology-based sampling

technique was introduced, to encode semantic correlations among features/terms in learning

interpretable representations. An anchor learning algorithm was designed to limit the

search space of semantic explanations. Then, a set of regulations for connecting learned

ontology-based tuples, anchor texts, and extracted triplexes is introduced, to produce

semantic explanations.

7.2 Future Work

We propose a series of privacy-preserving mechanisms in training ML models, across

learning paradigms and application domains. Technically, there are still fundamental

problems in order to bring trustworthy ML through the lens of privacy and security towards

practical applications, which opens several prospective research directions.

134

Recent attacks have demonstrated that private information about clients’ training

data can be inferred via the shared gradients in FL. The jointly trained ML models can

be poisoned by a small set of compromised clients, causing significant model integrity

degradation. In addition, model’s explanations can leak information about the model and

data, which can be exploited to conduct attacks. The diversity of non-independent and

identically distributed (non-iid) data across clients further exacerbates these vulnerabilities

in real-world applications. Existing FL mechanisms have not been designed to be robust to

such privacy and integrity risks given different levels of non-iid. I will develop PROXFL, the

first Private, Robust, and EXplainable FL framework that provides robustness guarantees

against privacy and model integrity attacks, without undue sacrifice in model utility and

explanations’ faithfulness. To put PROXFL to work, fundamental challenges in connecting

DP, robustness in FL, and explainability given non-iid data need to be synergistically

overcome. Specifically, I will explore a new surface of non-iid-based attacks to discover

unrevealed vulnerabilities of FL systems. By either imitating the gradients from tail-clients,

who usually have distorted gradients or exploiting different data densities among clients, a

smaller number of compromised clients and a dishonestly curious server can carry out model

integrity attacks and privacy inference attacks respectively, with guarantees of successful

rates even under existing DP protection. In addition, I will theoretically connect FL and

DP-preserving given non-iid data by introducing new concepts of Proactive and Personalized

Local DP along with a new set of rigorous theories to address utility-privacy trade-offs.

By uncovering the correlation among the number of compromised clients, the malicious

input perturbation, and proactive and personalized LDP protection in a unified robustness

condition for the first time, I will provide theoretical foundations to derive tighter and more

reliable certified robustness bounds. Furthermore, I will explore the correlation between

the explanation-guided attacks with DP, given different levels of non-iid. Finally, I will

integrate the solutions into a unified FL framework with adaptive grouping algorithms to

135

further optimize utility-privacy trade-offs while providing rigorous and reliable certified

robustness and faithful explanations.

Another future direction is to create a secure and robust lifelong learning with certified

defenses. Lifelong learning is important in ML to acquire new skills quickly without

forgetting knowledge obtained from the preceding tasks. That exposes new and severe

vulnerabilities in which deployed L2M models can be exploited 1) to reveal sensitive

information in private training data, 2) to make the models misclassify with adversarial

examples, and 3) to poison the training data for backdoor attacks. Technically, existing L2M

mechanisms have not been designed to be robust to such privacy and integrity attacks. Such

lack of protection and efficacy: 1) Significantly degrades the performance of CL systems

and 2) Puts sensitive data at risk, thereby exposing service providers to legal actions under

HIPAA/HITECH law. Furthermore, existing L2M works are still facing a catastrophic

forgetting problem, resulting in a poor model utility when the number of tasks is large even

without privacy-preserving mechanisms. The root cause is the gap between L2M and actual

human learning, which diminishes L2M from effectively and efficiently learning over time.

I will develop SECUREL2M to advance and seamlessly integrate different key techniques,

including L2M, neuroscience, differential privacy, and adversarial learning offering tight

and reliable robustness against both privacy and integrity attacks, while achieving superior

model utility and less forgetting. To achieve the goals, first I will establish the connection

between Neuroscience and ML to mimic the learning process of human learning into L2M.

The connection can bridge the L2M-human learning gap, lessening the forgetting problems

and improving model utility over time. Next, for training, I will establish a foundation for

adversarial learning to improve the robustness of L2M models. To theoretically connect

adversarial learning and DP in a DP Adversarial Lifelong learning, I will introduce a new

concept of Weighted DP Adversarial Examples along with a new set of rigorous theories

to address the trade-off between model utility, catastrophic forgetting, and privacy loss. In

the inference phase, I will introduce a new theory of Adaptive Composition Robustness to

136

establish robustness bounds against adversarial examples. A customized noise redistribution

will be proposed to balance the trade-off among model utility, catastrophic forgetting,

privacy, and robustness.

These projects will improve the trustworthiness of ML from different important

aspects, i.e., privacy, robustness, explainability, and model utility. They enable safe, efficient,

and deep analyses of data in many application domains, e.g., healthcare, social network,

recommendation, etc.

137

APPENDIX A

A.1 Sensitive Entity Recognition and Tool-kits

If a training set does not have sensitive entity indicators, we suggest several ways to identify

sensitive entities in textual data, as follows.

Using Named Entity Recognition (NER) datasets. NER datasets [45, 173] refer to

textual data in which entities in a text are labeled based on several predefined categories.

NER typically makes it easy for individuals and systems to identify and understand the

subject of the given text quickly. Therefore, extracted entities are critical and should be

protected. For instance, in the CONLL-2003 dataset [173], there are four entity types, i.e.,

location, person, organization, and miscellaneous.

Using Publicly Available Tool-kits. For textual datasets that do not have NER labels

or sensitive entity indicators, there are publicly available tool-kits for detecting named

entities or PII in text, for example, Spacy [85], Stanza [157], and Microsoft Presidio3. Spacy

and Stanza deploy pre-trained NER models based on statistical learning methods to identify

eighteen categories of named entities, including person, nationality or religious groups,

facility, etc. (Table 2.1). Microsoft Presidio is another toolbox for PII detectors and NER

models based on Spacy and regular expression1. For instance, Spacy is used as a sensitive

entity identification in Fig. 2.1 to detect “David Johnson” a person entity, “Main” a GPE

entity, “September 18” a date entity, and “Main Hospital” an organization entity.

We present descriptions of different sensitive entity categories in the CONLL-2003,

AG, and SEC datasets in Table 2.1. The descriptions are from [173] and spaCy, supporting

eighteen different entity types. In the current work, we play with four different types and

their combinations. Note that, in UeDP, providing the name of an algorithm and a sensitive

entity means we consider that type of entity as sensitive entities in the training process.

For instance, in Fig. 2.4, UeDP-Alg fE+ (Org) means we use all organization entities as

1https://github.com/google/re2/

138

https://github.com/google/re2/

sensitive entities in the UeDP-Alg algorithm. “All entities” means all types of sensitive

entities considered for the dataset are used. For example, “all entities” in the CONLL-2003

dataset means all person, location, organization, and miscellaneous entities are regarded

as sensitive entities. Meanwhile, in the AG and SEC datasets, “all entities” means that all

organization, location, GPE, and PII entities are considered sensitive entities. More entity

types are also presented in Table 2.1 so that users can have more choices when identifying

sensitive entities.

A.2 UeDP without Considering Extended Sensitive Entities

At each iteration t, we randomly sample U t users from U and Et sensitive entities from E,

with sampling rates qu and qe, respectively. Then, we use all sensitive sentences consisting

of the sensitive entities in Et belonging to the selected users in U t for training. Like [128],

we leverage the basic federated learning setting in [127] to compute gradients of model

parameters for a particular user, denoted as ∆t+1
u,E . Here, we clip the per-user gradients so that

its l2-norm is bounded by a predefined gradient clipping bound β. Next, a weighted-average

estimator fE is employed to compute the average gradient ∆t+1 using the clipped gradients

∆t+1
u,E gathered from all the selected users. Finally, we add random Gaussian noiseN (0, Iσ2)

to the model update. During the training, the moments accountantM is used to compute

the T training steps’ privacy budget consumption.

In this process, we need to bound the sensitivity of the weighted-average estimator

fE for per-user gradients ∆t+1
u,E . We first consider the following simple estimator, with both

sampling rates qu for the user-level and qe for the sensitive entity-level:

fE(U
t, Et) =

∑
u∈Ut wu∆

t+1
u,E

quWuqeWe

s.t. ∆t+1
u,E =

∑
e∈Et

u

we(
∑

s consists of e

∆u,s) (A.1)

where wu and we ∈ [0, 1] are weights associated with a user u and with a sensitive entity e.

These weights capture the influence of a user and a sensitive entity to the model outcome.

139

∆u,s is the parameter gradients computed using a sensitive sentence s consisting of the

sensitive entity e. In addition, Wu =
∑

uwu and We =
∑

ewe.

The estimator fE is unbiased to the sampling process; since E[
∑

u∈Ut wu] = quWu

and E[
∑

e∈Et
u
we] = qeWe. The sensitivity of the estimator fE can be computed as: S(fE) =

maxu′,e′∥fE({U t∪u′, Et∪e′})−fE({U t, Et})∥2, where the added user u′ can have arbitrary

data and e′ is an arbitrary sensitive entity.

Given that ∆t+1
u,E is l2(β)-norm bounded, where β is the radius of the norm ball by

replacing ∆t+1
u,E with ∆t+1

u,E ·min
(
1, β

∥∆t+1
u,E ∥

)
, the sensitivity of S(fE) is also bounded.

Lemma 3. If for all users u we have ∥∆t+1
u,E ∥2 ≤ β, then S(fE) ≤ (qu|U |+1)max(wu)β

quWu×qeWe
.

Proof. If for all users u we have ∥∆t+1
u,E ∥2 ≤ β, then S(fE)

=

∑
u∈Ut∪u′ wu[(

∑
e∈Et we(

∑
s∈St

ue
∆u,s))]

(quWu × qeWe)
+

∑
u∈Ut∪u′ wu[we′(

∑
s∈St

ue′
∆u,e′)]

(quWu × qeWe)

−
∑

u∈Ut wu[
∑

e∈Et we(
∑

s∈St
ue
∆u,s)]

(quWu × qeWe)

≤
∑

u∈Ut∪u′ wuβ

quWu × qeWe

≤ (qu|U |+ 1)max(wu)β

quWu × qeWe

(A.2)

Consequently, Lemma 3 holds.

By applying Lemma 3, given a hyper-parameter z, the noise scale σ for fE is:

σ = zS(fE) =
z(qu|U |+ 1)max(wu)β

quWu × qeWe

(A.3)

We show that this approach achieves (ϵ, δ)-UeDP, by applying the moments accountant

M to bound the total privacy loss of T steps of the Gaussian mechanism with the noise

N (0, Iσ2) in Theorem 1. However, this mechanism only uses sensitive entities detected by

automatic toolkits to train the model ignoring a large number of extended sensitive entities.

As a result, it introduces a loose sensitivity bound (Lemma 3) and affects our model utility.

140

A.3 Datasets and Data Processing

CONLL-2003 consists of Reuters news stories published between August 1996 and August

1997. CONLL-2003 is an NER dataset, where there are labels for four different types of

named entities, including location, organization, person, and miscellaneous entities. These

types of named entities are considered sensitive entities. In the CONLL-2003 dataset, there

is no obvious user information; hence, we consider each document as a user consisting of

multiple sentences in the next word prediction task.

AG dataset is a collection of news articles gathered from more than 2, 000 news

sources by ComeToMyHead academic news search engine2. It is categorized into four

classes: world, sport, business, and science/technology. Similar to the CONLL-2003 dataset,

there is no user information in AG. To imitate a user indicator, we randomly divide news

into different users based on Gaussian distribution. There are no named entities; thus, we

apply pre-trained Spacy to find named entities and PII in the dataset. We choose different

types of these named entities to be sensitive entities: organization, GPE (i.e., countries,

cities, and states), location, and PII entities.

Our SEC dataset consists contract clauses collected from contracts submitted in SEC

filings3. Since the contracts can be associated with a company ID, we use the ID as a user

indicator. Similar to the AG dataset, we consider organization, GPE, location, and PII

entities as sensitive entities to protect.

In addition, we conducted text classification on the AG dataset to further strengthen

our observations. For text classification, the number of labels is not sufficient in the SEC

dataset, and the labels do not exist in the CONLL-2003 dataset. Therefore, we do not utilize

CONLL-2003 and SEC datasets for text classification in this study.

For data preprocessing, we changed all words to lower-case and removed punctuation

marks. Fig. A.1 shows the distribution of the number of users and sentences in the

CONLL-2003, AG, and SEC datasets. In the CONLL-2003 dataset, there is no obvious user

2http://newsengine.di.unipi.it/
3https://www.sec.gov/edgar.shtml

141

http://newsengine.di.unipi.it/
https://www.sec.gov/edgar.shtml

information; hence, we consider each document as a user consisting of multiple sentences.

Like the CONLL-2003 dataset, in the AG dataset, there is no user information. Therefore,

to imitate a user indicator, we randomly divide news into different users. The number of

sentences per user follows a Gaussian distribution N (15, 22), i.e., there are 15 sentences

per user on average, and the standard deviation is 2 sentences. In the SEC dataset, since

the contracts can be associated with a company ID, we use the ID as a user indicator. The

document related to the ID is considered to be that user’s data.

A.4 Revisiting Word-level LDP Analysis in [120]

This section aims at revisiting privacy protection in [120] and describes a privacy

accumulation issue over the embedding dimension. Then, we revise Theorems 1 and

2 in [120] and compare them with our approaches.

In [120], the authors aim at preserving the privacy of the extracted test representation

from users while maintaining the good performance of the classifier, which is trained at

a server by the data collected from users. To achieve the goal, they consider a word-level

DP, that is, two inputs x and x′ are adjacent if they differ by at most 1 word. Additionally,

they introduce a DP noise layer r after a predefined feature extractor f(x). To train a robust

classifier at the server, they add the same level of noise as the test phase in the training

process and optimize the classifier by minimizing the loss function as follows:

L(x, y) = X (C(f(x) + r), y) (A.4)

where C is the classifier, y is the true label, and X is the cross entropy loss function.

The Laplace noise layer r is injected into the embedding f(x) in which its coordinates

r = {r1, r2, . . . , rk} are random variables drawn from the Laplace distribution defined by

Lap(b) with b =
∆f

ϵ
, ϵ is the privacy budget, and ∆f is the sensitivity of the extracted

representation. Here, k is the dimension of f(x).

142

Algorithm 6 describes how to derive DP-preserving representation from the feature

extractor f . Note that xs in the Algorithm 6 is a sentence (equivalent to x in our notation),

which is considered to be sensitive and needs to be protected.

Revisting Theorems 1 and 2 in [120]. In the paper, the authors consider adjacent

sentences differing by one word. Changing one word in x may change the entire embedding

vector f(x). Each element of f(x) is normalized into the range [0, 1] (Line 5, Algorithm 6),

hence each element sensitivity of f(x) is ∆f = 1, the noise is Lap(∆f/ϵ). Therefore, each

element of the embedding f(x) consumes a privacy budget ϵ. Since the k elements of the

embedding are derived from a single sensitive input x, applying the LDP mechanism A(.),

i.e., Lap(b), k times will consume the privacy budget k × ϵ. This follows the composition

property in DP. Note that the k elements cannot be treated by using the parallel property in

DP [57], since all of them are derived from a single (data) input x, NOT from k different

inputs (k different data samples). Consequently, the privacy guarantees in Theorems 1 and 2

of [120] is kϵ-DP, instead of ϵ-DP as reported.

In their experimental results, e.g., Table 2 of [120], the approach could achieve almost

the same (and even better) model utility with noiseless model given the extremely low

ϵ = 0.05 using BERT embeddings. As our analysis, the privacy budget in Theorems 1 and

2 is kϵ, instead of ϵ. Therefore, the proper privacy budget is at least 0.05 × 768 = 38.4.

Similar results were reported through out the all in experiments. With this high value of the

privacy budget, the word-level DP in [120] provides loose privacy protection.

Revisting Element-level DP in [120]. During our discussion with the authors of [120],

the authors mentioned that their approach preserves a new notion of (ϵ, 0)-element-level

DP, i.e., two embeddings differ from one element, instead of a word-level DP. However,

for the element-DP to hold, all the elements in the embedding f(x) must be independent

from each other, that is, changing one element will not result in changing any other element.

If changing one element results in changing all the remaining elements, then element-DP

will be suffered from the dimension of the embedding by following group privacy. In the

143

Algorithm 6 Differentially Private Neural Representation (DPNR) [120]

1: Input: Each sensitive input xs ∈ Rd, feature extractor f

2: Parameters: Dropout vector In ∈ {0, 1}d

3: Word dropout: x̃s ← xs ⊙ In, where ⊙ performs a word-wise multiplication.

4: Extraction: xr ← f(x̃s)

5: Normalization: xr ← xr −min(xr)/(max(xr)−min(xr))

6: Perturbation: x̂r ← xr + r, ri ∼ Lap(b)

7: Output: Perturbed representation x̂r.

current approach, changing one element means there is a change in the input data x to occur.

Equivalently, using BERT, any change in the input data x will result in changing the whole

embedding (all elements). Therefore, the condition of two neighboring embeddings only

differing in only one element does NOT hold in theory and practice. Consequently, the

introduced element-level DP does NOT hold at the level of (ϵ, 0)-DP.

Our revising Theorems 1 and 2 in [120]. Based upon our analysis, we introduce

revised versions of the Theorems 1 and 2 in [120], as follows.

Theorem 11. Revised Theorem 1 in [120]. Let the entries of the noise vector r be drawn

from Lap(b) with b =
∆f

ϵ
. The Algorithm 6 is kϵ-word-level DP, where k is dimension of the

embedding f(x).

Proof. Each element of the embedding f is bounded in [0, 1], so ∆f = 1 for each element.

By adding random noise variables drawn from the Laplace Lap(b) with b =
∆f

ϵ
into each

element of f , each element consumes ϵ/k privacy budget. Since the k elements of the

embedding are derived from a single sensitive input x, applying the mechanism Lap(b) k

times on the k elements will consume the privacy budget kϵ. Therefore, the Algorithm 6 is

kϵ-word-level DP.

Theorem 12. Given an input x ∈ D, suppose A(x) = f(x) + r is kϵ-word-level DP, let

In with dropout rate µ be applied to x: x̃ = x⊙ In, then A(x̃) is ϵ′-word level-DP, where

ϵ′ = ln[(1− µ) exp(kϵ) + µ].

144

Proof. Suppose there are two adjacent inputs x1 and x2 that differ only in the i-th coordinate

(word), say x1i = v, x2i ̸= v. For arbitrary binary vector In, after dropout, x̃1 = x1 ⊙ In,

x̃2 = x2 ⊙ In, there are two possible cases, i.e., Ini = 0 and Ini = 1.

If Ini = 0: Since x1 and x2 differ only in i-th coordinate, after dropout x̃1i = x̃2i = 0,

hence x1 ⊙ In = x2 ⊙ In. Then Pr{A(x1 ⊙ In) = S} = Pr{A(x2 ⊙ In) = S}.

If Ini = 1: Since x1 and x2 differ only in i-th coordinate, after dropout x̃1i = v, and

x̃2i ̸= v. SinceA(x) is kϵ-word level-DP, then Pr{A(x1⊙In) = S} ≤ exp(kϵ)Pr{A(x2⊙

In) = S}.

Combining these two cases, and Pr[Ini = 0] = µ, we have:

Pr{A(x1 ⊙ In) = S}

= µPr{A(x1 ⊙ In) = S}+ (1− µ)Pr{A(x1 ⊙ In) = S}

≤ µPr{A(x2 ⊙ In) = S}+ (1− µ) exp(kϵ)Pr{A(x2 ⊙ In) = S}

= [(1− µ) exp(kϵ) + µ]Pr{A(x2 ⊙ In) = S}

= exp
(
ln[(1− µ) exp(kϵ) + µ]

)
Pr{A(x2 ⊙ In) = S} (A.5)

Therefore, after dropout, the privacy budget is ϵ′ = ln[(1− µ) exp(kϵ) + µ].

Comparison with UeDP. Apart from the privacy accumulation over the embedding

dimension, in [120], during training the model, the Laplace or Gaussian noise is drawn

at every training iteration. Therefore, the model accesses the raw data at every iteration.

As a result, the privacy budget at the training phase is accumulated over the number of

training iterations, which can be a large number causing an exploded privacy budget in

training. [120] focuses on protecting privacy at the inference time and use the noise in the

training phase to obtain a more robust model without considering training data privacy. This

is different from our goal to protect users and sensitive entities of training data, which is

a more challenging task. Our UeDP-preserving model can be deployed to the end-users

for a direct use in the inference phase, without demanding that the end-users send their

145

((a)) CONLL-2003 dataset ((b)) AG dataset ((c)) SEC dataset

Figure A.1 Distribution of users and sentences.

data embedding to our server; therefore offering a more rigorous privacy protection and

better usability. In addition to this, our approach offers more rigorous DP budget bounds

compared with the DPNR algorithm in [120], since DPNR consumes large DP budgets that

is proportional to the commonly large dimension of the embedding k.

A.5 Supplemental Experimental Results for UeDP

A.6 Proof of Lemma 2

Proof. Let v be the l-bit binary vector representation of a numerical feature a in the feature

vector e. Given two neighboring vectors v and v ̸=i that differ only at a bit i, the l1-norm

influence Ii of the bit i captures the magnitude by which the bit i can change the LDP-

preserving feature a′ in the worst case. We quantify Ii as follows.

Let us denote v0v1 . . . vl−1 as the binary representation v of a, where v0 is the value

of a sign bit (v0 = 0 if a ≥ 0 and v0 = 1 if a < 0), and {vj}l−1j=1 ∈ {0, 1} is the value of

exponent bits and fraction bits. Since we consider the encoding function is lossless, the

decoded feature of v is:

a = E(v) = (2v0 − 1)
l−1∑
j=1

vj × 2m−j (A.6)

Similarly, the decoded feature of v ̸=i is a′ = E(v ̸=i) = (2v′0 − 1)
∑l−1

j=1 v
′
j × 2m−j .

Note that, v and v ̸=i differ at the bit i; or, ∀i, j ∈ [0, l − 1], j ̸= i, vj = v′j and vi ̸= v′i. Let

us consider different locations of the bit i to quantify its influence.

146

((a)) CONLL-2003-organization entities ((b)) AG-organization entities ((c)) SEC-organization entities

((d)) CONLL-2003-location entities ((e)) AG-location entities ((f)) SEC-location entities

((g)) CONLL-2003-person entities ((h)) AG-GPE entities ((i)) SEC-GPE entities

((j)) CONLL-2003-miscellanous entities ((k)) AG-PII entities ((l)) SEC-PII entities

Figure A.2 Privacy budget of UeDP-Alg fE , UeDP-Alg fE+ , and User-level DP as a function
of iterations in CONLL-2003, AG, and SEC datasets.

147

• If i is an exponent or a fraction bit (i ∈ [1, l − 1]), we have v′j = vj with j ̸= i.

Therefore, Ii = maxv ∥ E(v) − E(v ̸=i) ∥1= maxv ∥(2v0 − 1)
(∑l−1

j=1,j ̸=i vj2
m−j +

vi2
m−i

)
−(2v′0−1)

(∑l−1
j=1,j ̸=i v

′
j2

m−j+v′i2
m−i

)
∥1 = maxv ∥(2v0−1)(vi−v′i)2m−i∥1 ≤

maxv

(
|(2v0 − 1)|∥vi − v′i∥12m−i

)
. Since v0, vi, v

′
i ∈ {0, 1} and vi and v′i are different,

maxv

(
|(2v0 − 1)|∥vi − v′i∥12m−i

)
= 2m−i. Therefore, Ii ≤ 2m−i if i is an exponent or a

fraction bit.

• If i is a sign bit (i = 0), we have Ii = maxv ∥ E(v) − E(v ̸=0) ∥1= maxv ∥(2v0 −

2v′0)
∑l−1

j=1 vj2
m−j∥1 ≤ maxv

(
|2v0 − 2v′0|∥

∑l−1
j=1 vj2

m−j∥1
)

. Since ∀j ∈ [1, l − 1] :

v0, vj, v
′
j ∈ {0, 1} and v0 and v′0 are different, maxv

(
|2v0 − 2v′0|∥

∑l−1
j=1 vj2

m−j∥1
)
=

2
∑l−1

j=1 2
m−j . Since 21 + . . . + 2l−2 = 2l−1 − 2 [3], 2

∑l−1
j=1 2

m−j = 2 × 2m−(l−1)(20 +

21 + . . .+ 2l−2) = 2m+1−(l−1)(2l−1 − 1) ≤ 2m+1. Therefore, Ii ≤ 2m+1 if i is a sign bit.

Consequently, Lemma 2 holds.

A.7 Lemma 4 and Its Proof

Lemma 4. ScalableRR l1-sensitivity. Given two neighboring vectors v and v ̸=i that differ

only at a bit i, the l1-sensitivity ∆i captures the magnitude by whichM(v, i) can change v

given the decoding function E(·) in the worst case, as follows:

∀i ∈ [0, l − 1] : ∆i = max
v
∥E

(
M(v, i)

)
− E

(
M(v ̸=i, i)

)
∥1 (A.7)

whereM(v, i) implies that ScalableRR is applied to randomize the bit i while keeping all

other bits in v unchanged.

∀i ∈ [0, l − 1], ∆i is bounded as follows:

∆i ≤

2m+1, if i is a sign bit

2m−i, if i is an exponent or fraction bit
(A.8)

148

Proof. Randomizing a bit i given v and v ̸=i results in a smaller l1-distance compared with

|E(v) − E(v ̸=i)|, i.e., |E(M(v, i)) − E(M(v ̸=i, i))| ≤ |E(v) − E(v ̸=i)|. This condition

satisfies for all i in v and v ̸=i; therefore, we have |E(M(v, i)) − E(M(v ̸=i, i))| ≤ ∆i ≤

|E(v)− E(v ̸=i)| ≤ Ii. Consequently, ∆i ≤ Ii and from Ii in Lemma 2, Lemma 4 holds.

A.8 Proof of Theorem 2

Proof. For LDP condition to hold, we have:

P (M(v) = vz)

P (M(ṽ) = vz)
≤

rl−1∏
i=0

P (M(vi) = vz,i)

P (M(v ̸=i
i) = vz,i)

=
rl−1∏
i=0

P (M(vi) = 0|vi = 1)P (M(vi) = 1|vi = 0)

P (M(vi) = 1|vi = 1)P (M(vi) = 0|vi = 0)

=
rl−1∏
i=0

(
α2 exp(2ϵX

i%l

l
)
)
=

l−1∏
i=0

(
α2 exp(2ϵX

i

l
)
)r

⇔ ln
(P (M(v) = vz)

P (M(ṽ) = vz)

)
≤

l−1∑
i=0

ln
[(

α2 exp(2ϵX
i

l
)
)r]

=
l−1∑
i=0

r ln
(
α2 exp(2ϵX

i

l
)
)
= 2rl lnα + 2rϵX

l−1∑
i=0

i

l
= 2rl lnα + rϵX(l − 1)

To satisfy the ϵX-LDP condition, ln
(

P (M(v)=vz)
P (M(ṽ)=vz)

)
needs to be bounded by ϵX .

Therefore, we have:

2rl lnα + rϵX(l − 1) = ϵX ⇔ α = exp(
ϵX − rϵX(l − 1)

2rl
) (A.9)

149

A.9 Proof of Theorem 3

Proof. In this section, we aim at finding a closed-form solution of α so that v′ preserves

ϵX-LDP given v. In other words, we need to find α in Eq. 3.13 so that LDP condition holds

given the total privacy budget ϵX , as follows.

Let us denote va as the binary encoding vector of the feature a. We first consider the

privacy loss of bits i across all features a ∈ [1, r], as follows:

∀i ∈ [0, l − 1] :
∏

a∈[1,r]

P (M(va,i) = vz,i)

P (M(v ̸=i
a,i) = vz,i)

≤ exp(
∑

a∈[1,r]

ϵi|E(M(va, i))− E(M(v ̸=i
a , i))|

∆i

)

(A.10)

= exp
(rϵi
∆i

× 1

r

(∑
a∈[1,r]

|E(M(va, i))− E(M(v ̸=i
a , i))|

))

It is challenging to find a closed-form solution of α to satisfy Eq. A.10, since it is

infeasible to precisely quantify the average term 1
r

(∑
a∈[1,r] |E(M(va, i))−E(M(v ̸=i

a , i))|
)
.

Different features a may have different values of |E(M(va, i))− E(M(v ̸=i
a , i))|. In other

words, the average term is data-dependent. To address this problem, we use Hoeffding’s

inequality [2] to upper-bound the average term using its expectation value, denoted E,

given a positive error term ρi with a broken probability δ for the bits i. Let us denote

Xa,i = |E(M(va, i)) − E(M(v ̸=i
a , i))| where Xa,i ∈ [0,∆i]. The Hoeffding’s inequality

with ρiE(Xa,i) ≥ 0 is as follows:

∀i ∈ [0, l − 1] : P
((1

r

r∑
a=1

Xa,i

)
− E(Xa,i) ≥ ρiE(Xa,i)

)
= P

(1
r

r∑
a=1

(Xa,i − E(Xa,i)
)
≥ ρiE(Xa,i)

)
≤ exp

(
−

2r
(
ρiE(Xa,i)

)2
1
r

∑r
a=1 ∆

2
i

)
= exp

(
− 2rρ2i (E(Xa,i))

2

∆2
i

)
= δ (A.11)

150

From Eq. A.11, for the bits i we have: 1
r

∑
a∈[1,r] |E(M(va, i)) − E(M(v ̸=i

a , i))| <

E|E(M(va, i))− E(M(v ̸=i
a , i))|(1 + ρi) with the broken probability δ. From that, we can

derive a closed-form solution for α to effectively and precisely bound the privacy loss of the

bits i across all features a. From Eq. A.10, we have ∀i ∈ [0, l − 1] :

∏
a∈[1,r]

P (M(va,i) = vz,i)

P (M(v ̸=i
a,i) = vz,i)

< exp
(rϵi
∆i

× E|E(M(va, i))− E(M(v ̸=i
a , i))|

(
1 + ρi

))
(A.12)

There are two possible cases: (1) P (M(va,i)=vz,i)

P (M(v ̸=i
a,i)=vz,i)

≥ 1, and (2) 0 <
P (M(va,i)=vz,i)

P (M(v ̸=i
a,i)=vz,i)

< 1.

Since ∆i is the l1-sensitivity, we have ∆i/E|E(M(va, i))− E(M(v ̸=i
a , i))| ≥ 1.

In the first case, we have ∀i ∈ [0, l − 1]:

∏
a∈[1,r]

(P (M(va,i) = vz,i)

P (M(v ̸=i
a,i) = vz,i)

)
≤

∏
a∈[1,r]

(P (M(va,i) = vz,i

P (M(v ̸=i
a,i) = vz,i)

) ∆i

E|E(M(va,i))−E(M(v
̸=i
a ,i))|

< exp
(
(1 + ρi)rϵi

)
(A.13)

In the second case, ∀i ∈ [0, l − 1] we have:

∏
a∈[1,r]

(P (M(va,i) = vz,i

P (M(v ̸=i
a,i) = vz,i)

)
≤

∏
a∈[1,r]

(P (M(v ̸=i
a,i) = vz,i)

P (M(va,i) = vz,i)

)
≤

∏
a∈[1,r]

(P (M(v ̸=i
a,i) = vz,i)

P (M(va,i) = vz,i

) ∆i

E|E(M(va,i))−E(M(v
̸=i
a ,i))| < exp

(
(1 + ρi)rϵi

)
(A.14)

From Eqs. A.13 and A.14, for the whole vector, we have:

P (E(M(v)) = E(vz))
P (E(M(ṽ)) = E(vz))

=
∏

i∈[0,l−1]

∏
a∈[1,r]

P (M(va,i) = vz,i)

P (M(v ̸=i
a,i) = vz,i)

(A.15)

≤
∏

i∈[0,l−1]

∏
a∈[1,r]

(P (M(va,i) = vz,i)

P (M(v ̸=i
a,i) = vz,i)

) ∆i

E|E(M(va,i))−E(M(v
̸=i
a ,i))| < exp

(l−1∑
i=0

(1 + ρi)rϵi
)

The positive and tiny error term ρi is different across sign, exponent, and fraction bits.

Therefore, we simplify the search of α in Eq. A.15 by using the upper-bound of the error

151

terms across bits: ρ = ⌈ρi⌉, without notably affecting privacy-utility trade-offs, as follows:

∏
i∈[0,l−1]

∏
a∈[1,r]

(P (M(va,i) = vz,i

P (M(v ̸=i
a,i) = vz,i)

) ∆i

E|E(M(va,i))−E(M(v
̸=i
a ,i))| ≤ exp

(
(1− ρ)

l−1∑
i=0

rϵi
)

(A.16)

A temperature α that satisfies the LDP condition in Eq. A.16 will also satisfy the LDP

condition in Eq. A.15 since exp
(
(1− ρ)

∑l−1
i=0 rϵi

)
< exp

(∑l−1
i=0(1 + ρi)rϵi

)
. Note that

0 < (1 − ρ) ≤ 1 with typical numbers of features r ≥ 100 and small broken probability

δ = 1e− 5. Eq. A.16 is equivalent to

∏
i∈[0,l−1]

∏
a∈[1,r]

(
P (M(va,i)=vz,i

P (M(v
̸=i
a,i

)=vz,i)

) ∆i

(1−ρ)E|E(M(va,i))−E(M(v
̸=i
a ,i))| ≤ exp

(l−1∑
i=0

rϵi
)
= exp (

rl−1∑
i=0

ϵi)

(A.17)

If we force the total privacy loss ϵ =
∑rl−1

i=0 ϵi to be equal to a user-predefined budget

ϵX , we can identify a closed form solution of the temperature α guaranteeing that the

randomization of the vector v is ϵX-LDP, i.e., P (E(M(v))=E(vz))
P (E(M(ṽ))=E(vz)) ≤ exp(

∑rl−1
i=0 ϵi) = exp(ϵX),

with a small broken probability l × δ (i.e., there are l error terms ρi and each of which has a

broken probability δ).

To find α satisfying Eq. A.17, first, we need to calculate E|E(M(v, i))−E(M(v ̸=i, i))|.

Given the worse case of v and v ̸=i, there are four possible cases of |E(M(v, i)) −

E(M(v ̸=i, i))|:

• IfM(vi) = 1 andM(v ̸=i
i) = 1, then |E(M(v, i))− E(M(v ̸=i, i))| = 0.

• IfM(vi) = 0 andM(v ̸=i
i) = 0, then |E(M(v, i))− E(M(v ̸=i, i))| = 0.

• IfM(vi) = 1 andM(v ̸=i
i) = 0, then |E(M(v, i))− E(M(v ̸=i, i))| = ∆i. This happens

with the probability P (M(vi) = 1,M(v ̸=i
i) = 0). To compute this probability, we use

marginal probability and Bayes’ theorem, as:

152

P (M(vi) = 1,M(v ̸=i
i) = 0) = P

(
M(vi) = 1,M(v ̸=i

i) = 0, vi = 1, v ̸=i
i = 0

)
+ P

(
M(vi) = 1,M(v ̸=i

i) = 0, vi = 0, v ̸=i
i = 1

)
= P

(
M(vi) = 1|vi = 1

)
P (M(v ̸=i

i) = 0|v ̸=i
i = 0)P (v ̸=i

i = 0)

+ P
(
M(vi) = 1|vi = 0

)
P (M(v ̸=i

i) = 0|v ̸=i
i = 1)P (v ̸=i

i = 1)

= p2iP (v ̸=i
i = 0) + q2i P (v ̸=i

i = 1) (A.18)

• IfM(vi) = 0 andM(v ̸=i
i)) = 1, then |E(M(vi)) − E(M(v ̸=i

i))| = ∆i. This happens

with the probability P (M(vi) = 0,M(v ̸=i
i) = 1). To compute this probability, we use

marginal probability and Bayes’ theorem, as:

P (M(vi) = 0,M(v ̸=i
i) = 1) = P

(
M(vi) = 0,M(v ̸=i

i) = 1, vi = 1, v ̸=i
i = 0

)
+ P

(
M(vi) = 0,M(v ̸=i

i) = 1, vi = 0, v ̸=i
i = 1

)
= q2i P (v ̸=i

i = 0) + p2iP (v ̸=i
i = 1) (A.19)

Consequently, the expectation E|E(M(v,i))−E(M(v ̸=i,i))| is computed as follows:

E|E(M(v, i))− E(M(v ̸=i, i))|

=
(
p2iP (v ̸=i

i = 0) + q2i P (v ̸=i
i = 1)

)
∆i +

(
q2i P (v ̸=i

i = 0) + p2iP (v ̸=i
i = 1)

)
∆i

= (p2i + q2i)∆i (A.20)

From Eqs. A.16, and A.20, we have:

153

P (E(M(v)) = E(vz))
P (E(M(ṽ)) = E(vz))

≤
rl−1∏
i=0

(P (M(vi) = vz,i)

P (M(v ̸=i
i) = vz,i)

) ∆i
E|E(M(v,i))−E(M(v ̸=i,i))|

=
rl−1∏
i=0

(
P (M(vi)=0|vi=1)P (M(vi)=1|vi=0)

P (M(vi)=1|vi=1)P (M(vi)=0|vi=0)

) 1
(1−ρ)(p2

i
+q2

i
)
=

l−1∏
i=0

(
α2 exp(2ϵX

i

l
)
) r

(1−ρ)(p2
i
+q2

i
) (A.21)

Taking the natural logarithm of two sides of Eq. A.21:

ln
P (E(M(v)) = E(vz))
P (E(M(ṽ)) = E(vz))

≤
l−1∑
i=0

ln
(
α2 exp(2ϵX

i

l
)
) r

(1−ρ)(p2
i
+q2

i
)

=
l−1∑
i=0

(r

(1− ρ)(p2i + q2i)
ln
(
α2 exp(2ϵX

i

l
)
))

(A.22)

Let us bound the logarithm in Eq. A.22 using the inequality:

ln(X) ≤ X − 1 for X > 0 (A.23)

The proof of Eq. A.23 is as follows. Let X > 0, we define h(X) = ln(X)−X + 1.

We have: h′(X) = 1
X − 1 = 0 ⇔ X = 1, and since h′′(X) = − 1

X 2 < 0,∀X > 0, we

get the maximal point at X = 1. We also have: limX→0+ h(X) = −∞ = limX→∞ h(X).

Therefore, X = 1 is the global maximal point and than ∀X > 0, h(X) ≤ h(X = 1) = 0, so

ln(X)−X + 1 ≤ 0. Therefore, Eq. A.23 does hold.

Note that, to simultaneously satisfy the randomization probabilities pi = 1

1+α exp(i%l
l
ϵX)
≥

0 and qi =
α exp(i%l

l
ϵX)

1+α exp(i%l
l
ϵX)
≥ 0 in Eq. 3.13, we need to have: (i) 1 + α exp(i%l

l
ϵX) ≥ 0 and

(ii) α exp(i%l
l
ϵX) ≥ 0. Since exp(i%l

l
ϵX) ≥ 0 is always true, from (i), α ≥ − exp(− i%l

l
ϵX),

and from (ii), α ≥ 0. Therefore, α ≥ 0 is necessary to satisfy the condition pi ≥ 0 and

qi ≥ 0. To apply Eq. A.23 into Eq. A.22, we need to have a = α2 exp(2ϵX
i
l
) > 0⇒ α ̸= 0.

As a result, we have that

α > 0 (A.24)

Applying Eq. A.23 into Eq. A.22 where X = α2 exp(2ϵX
i
l
):

154

ln
P (E(M(v)) = E(vz))
P (E(M(ṽ)) = E(vz))

≤
l−1∑
i=0

(r

(1− ρ)(p2i + q2i)
ln
(
α2 exp(2ϵX

i

l
)
))

≤
l−1∑
i=0

rα2 exp(2ϵX
i
l)

(1− ρ)(p2i + q2i)
−

l−1∑
i=0

r

(1− ρ)(p2i + q2i)
(A.25)

To bound the logarithm in Eq. A.25, we use: p2i + q2i = p2i + (1 − pi)
2 =(

1

1+α exp(i%l
l
ϵX)

)2
+
(

α exp(i%l
l
ϵX)

1+α exp(i%l
l
ϵX)

)2
=

1+

(
α exp(i%l

l
ϵX)

)2(
1+α exp(i%l

l
ϵX)

)2 ≤ 1, and p2i +q2i = p2i +(1−pi)
2 ≥

(pi+1−pi)2
2 = 1

2 (In fact, ∀a, b : a2 + b2 ≥ (a+b)2

2
⇔ (a − b)2 ≥ 0, which is true). Note

that, from Eq. A.20, we have that ∆i

E|E(M(va,i))−E(M(v ̸=i
a ,i))|

= 1
p2i+q2i

≥ 1. Applying these

inequalities in Eq. A.25, we obtain:

ln
P (E(M(v)) = E(vz))
P (E(M(ṽ)) = E(vz))

≤
l−1∑
i=0

rα2 exp(2ϵX
i
l)

(1− ρ)(p2i + q2i)
−

l−1∑
i=0

r

(1− ρ)(p2i + q2i)

≤
l−1∑
i=0

2rα2 exp(2ϵX
i
l)

1− ρ
−

l−1∑
i=0

r

1− ρ
=

l−1∑
i=0

2rα2 exp(2ϵX
i
l)

1− ρ
− rl

1− ρ
(A.26)

For LDP condition to hold under the user-predefined privacy budget ϵX , from Eq. A.26

we have that

l−1∑
i=0

2rα2 exp(2ϵX
i
l)

1− ρ
− rl

1− ρ
= ϵX ⇔ α2 =

rl + (1− ρ)ϵX

2r
∑l−1

i=0 exp(2ϵX
i
l)

⇔α =

√
rl + (1− ρ)ϵX

2r
∑l−1

i=0 exp(2ϵX
i
l)

(since α > 0 as in Eq. A.24) (A.27)

Next, we need to find the upper-bound of ρi. From Eqs. A.11 and A.20, then we have:

exp
(
− 2rρ2i (EXa,i)

2

∆2
i

)
= δ ⇔ exp

(
− 2rρ2i (p

2
i + q2i)

2
)
= δ ⇔ ρi =

1

p2i + q2i

√
− ln δ

2r
(A.28)

Since ∀i, p2i + q2i ≥ 1
2 , we have that

ρ = ⌈ρi⌉ = 2

√
− ln δ

2r
(A.29)

155

With lδ = 1e− 5: for r = 1, 000, ρ = 0.16 and for r = 10, 000, rho = 0.05. Therefore, we

can consider ρ is a tiny and upper-bounded term, given a modest broken probability δ. Note that, the

broken probability for the whole rl-bit vector is lδ.

In summary, we have that given α =

√
rl+(1−ρ)ϵX

2r
∑l−1

i=0 exp(2ϵX
i
l
)
, the ScalableRR mechanism satisfies

ϵX -LDP and ρ ≤ 2
√
− ln δ
2r is a tiny and upper-bound term, with a small broken probability l × δ.

Consequently, Theorem 3 holds.

A.10 Proof of Theorem 4

Proof. ScalableRR (i.e.,M) can be mapped to the general form (Eq. 3.3), as follows:

∀a ∈ e : P (a′|a) = P (v′|v) =
l−1∏
i=0

P (v′i|vi) (A.30)

where v′i =M(vi) and P (v′i|vi) is given by Eq. 3.13.

As shown in Theorem 3, α =
√

rl+(1−ρ)ϵX
2r

∑l−1
i=0 exp (2ϵX

i
l
)
. Given a privacy budget ϵX , when r

increases, α decreases.

Let P (a′|a) and Pd(a
′|a) be the randomization probabilities when the number of

features are r and d× r, respectively. Let α and αd be the values of α when the number of

features are r and d× r, respectively. We denote ti = exp
(
ϵX

i%l
l

)
.

KL-divergence. Following Eq. 3.13, for each bit i, we have:

KL(P ||Pd)i =
∑
a

P (a) log
P (a)

Pd(a)
= pi log

1 + αdti
1 + αti

+ qi log
(αti
αdti
× 1 + αdti

1 + αti

)
= log

(1 + αdti
1 + αti

)
+ qi log(

α

αd

) (A.31)

Therefore, at the feature level, the KL-divergence is:

KL(P ||Pd) =
l−1∑
i=0

(
log

(1 + αdti
1 + αti

)
+ qi log(

α

αd

)
)

(A.32)

L2-norm. We have the L2-norm between P and Pd:

156

L2
2(P, Pd) =

∫
a′
(P (a′|a)− Pd(a

′|a))2da′

=

∫
v′0

· · ·
∫
v′l−1

(l−1∏
i=0

p(v′i|vi)−
l−1∏
i=0

pd(v
′
i|vi)

)2

dv′0 . . . dv
′
l−1

=

∫
v′0

· · ·
∫
v′l−1

(l−1∏
i=0

p(v′i|vi)2 − 2
l−1∏
i=0

p(v′i|vi)pd(v′i|vi) +
l−1∏
i=0

pd(v
′
i|vi)2

)
dv′0 . . . dv

′
l−1

=
l−1∏
i=0

∫
v′i

p(v′i|vi)2dv′i +
l−1∏
i=0

∫
v′i

pd(v
′
i|vi)2dv′i − 2

l−1∏
i=0

∫
v′i

p(v′i|vi)pd(v′i|vi)dv′i (A.33)

We separately consider each integral in Eq. A.33. The first two integrals can be calculated in

general as follows:

Ai =

∫
v′i

p(v′i|vi)2dv′i =
∑
v′i

p(v′i|vi)2 =
1 + α2t2i
(1 + αti)2

(A.34)

Therefore, the first and second integrals in Eq. A.33 are A =
1+α2t2i
(1+αti)2

and Ad =

1+α2
dt

2
i

(1+αdti)2
, respectively. The third integral in Eq. A.33 is Bi =

∫
v′i
p(v′i|vi)pd(v′i|vi)dv′i =∑

v′i
p(v′i|vi)pd(v′i|vi) =

1+ααdt
2
i

(1+αti)(1+αdti)
. Therefore, the L2-norm is calculated as:

L2
2(P, Pd) =

l−1∏
i=0

Ai +
l−1∏
i=0

Ai
d − 2

l−1∏
i=0

Bi (A.35)

A.11 Proof of Theorem 5

Proof. We have ξa = E|E(M(va))−E(va)| =
∑

i∈[0,l−1](pi×0+qi×∆i) =
∑

i∈[0,l−1] qi×

∆i. Therefore, Theorem 5 holds.

157

A.12 Extended Analysis for Interested Readers

A.13 Dimension-Scalability Analysis of LDP-based Approaches

In this section, we analyze the dimension-scalability of existing LDP-based approaches and

ScalableRR. Given a user-predefined privacy budget ϵX , we quantify the changes of the

randomization probabilities when the number of dimensions increases from r to dr. For

each mechanism, we consider two widely used quantitative measurements to calculate the

changes, including KL-divergence and L2-norm. The summary is in Table A.1.

A.13.1 Duchi’s Mechanism (DM) [51, 201]

We consider DM for multidimensional numerical data as in [201]. The input is the vector

e ∈ [−1, 1]r (each feature a ∈ [−1, 1]). The output of DM [52] is e′ ∈ {−B,B}r (each

randomized feature a′ ∈ {−B,B}), where B = exp(ϵX)+1
exp(ϵX)−1Cr and Cr is calculated as:

Cr =

2r−1(
(r−1)

(r−1)/2

) , if r is odd

2r−1 + 1
2

(
r

r/2

)
(

(r−1)
r/2

) , if r is even

(A.36)

The DM can be mapped to the general form (Eq. 3.3), as:

∀a ∈ e :

a′ = −B, with a probability P (−B|a)

a′ = B, with a probability P (B|a)
(A.37)

First, if r is odd, let t = r − 1, we have:

Cr =
2r−1(
(r−1)

(r−1)/2

) =
2t(
t

t/2

) =
2t(t

2
!)2

t!
⇔ lnCr = t ln 2 + 2 ln(

t

2
!)− ln(t!) (A.38)

Using Stirling’s approximation [54], Eq. A.38 becomes:

158

lnCr ≈ t ln 2 + 2
t

2
ln(

t

2
)− 2

t

2
− t ln t+ t+Θ(ln t) = Θ(ln t)

→ ∂

∂r
lnCr = Θ(

1

t
) > 0,∀r ≥ 1 (A.39)

Second, if r is even, we have:

Cr =
2r−1 + 1

2

(
r

r/2

)
(

(r−1)
r/2

) =
2r + r!

(r
2
!)2

2
(

(r−1)!
(r
2
!)(r

2
−1)!

) = 2r
(r/2!)2

r!
+ 1

Let I =
2r(r

2
!)2

r!
and use the Stirling’s approximation, we have:

ln I = r ln 2 + 2 ln
(r
2
!
)
− ln(r!) ≈ Θ(ln(r))→ ∂

∂r
ln I = Θ(

1

r
) > 0,∀r ≥ 1 (A.40)

From Eqs. A.39 and A.40, Cr increases when r increases.

When the number of features r increases to d × r, the new privacy budget will be

ϵX
d

to maintain the total privacy budget as the user-predefined privacy budget ϵX . Consider

J =
exp (

ϵX
d

)+1

exp (
ϵX
d

)−1 , we have ∂
∂d
J = 2ϵX

(exp (
ϵX
d

)−1)2d2 > 0, hence, B increases as r increases.

Let k = eϵX
eϵX+1

. Following DM in [201], given a feature a ∈ [−1, 1], DM samples v

where v = 1 with probability 1+a
2

and v = −1 with probability 1−a
2

. Then, DM samples

u ∼ Bernoulli(k), if u = 1 then DM will return a′ = B or a′ = −B such that a′ × v > 0.

Therefore, the probabilities in Eq. A.37 are calculated as follows:

P (B|a) = P (v = −1)P (u = 0) + P (v = 1)P (u = 1) =
1− a

2
+ ka

P (−B|a) = P (v = −1)P (u = 1) + P (v = 1)P (u = 0) =
1 + a

2
− ka (A.41)

Theorem 13. When the dimension of the feature vector e ∈ Rr increases by a factor d,

where d × r ∈ N+ and d > 1, given a user-predefined privacy budget ϵX , the change γ

in the randomization probabilities quantified by KL-divergence and L2-norm of Duchi’s

Mechanism are as follows:

159

(1) KL(P ||Pd) = +∞ (N.A.)

(2) L2(P, Pd) =
√

2k22a
2 − 2k2a2 + 2k21a

2 − 2k1a2 + a2 + 1

Proof. KL-divergence. Let P (a′|a) and Pd(a
′|a) be the randomization probabilities when

the number of features are r and d×r, respectively. Let B1 and B2 be the values of parameter

B when the number of feature is r and d × r. We have shown that B is an increasing

function, so B2 > B1, since d× r > r (d¿1). Considering the discrete distributions in DM,

KL-divergence between P (a′|a) and Pd(a
′|a) is calculated as:

KL(P ||Pd) =
∑
a′

P (a′|a) log
(P (a′|a)
Pd(a′|a)

)
(A.42)

When a′ = −B1 or a′ = B1, P (a′|a) ̸= 0 and Pd(a
′|a) = 0, therefore, KL(P ||Pd) is

infinity (N.A.).

L2-norm. Considering the L2-norm between P (a′|a) and Pd(a
′|a) we have:

L2(P, Pd) =

√∑
a′

(P (a′|a)− Pd(a′|a))2

=
√
Pd(−B2|a)2 + P (−B1|a)2 + P (B1|a)2 + Pd(B2|a)2

=
√

2k2
2a

2 − 2k2a2 + 2k2
1a

2 − 2k1a2 + a2 + 1 (A.43)

where k1 =
eϵX

eϵX+1
and k2 =

eϵX/d

eϵX/d+1
.

A.13.2 Piecewise Mechanism (PM) [201]

Given a user-predefined privacy budget ϵX , we consider a feature a ∈ [−1, 1] of a feature

vectors e ∈ [−1, 1]r. The output of Piecewise mechanism (PM) [201] is a′ ∈ [−C,C],

where C = eϵX/2+1
eϵX/2−1 . In addition, let L = l(a) = C+1

2
a− C−1

2
and R = r(a) = L+ C − 1.

160

The PM can be mapped to the general form (Eq. 3.3), as:

∀a ∈ e :

a′ ∼ U([L,R]), with probability

1

eϵX/2 + 1

a′ ∼ U([−C,L) ∪ (R,C]),with probability e
ϵX
2

e
ϵX
2 +1

where U(·) is a uniform distribution.

Similar to DM, when r increases to d× r, the new privacy budget is ϵX
d

to preserve

the same ϵX as before. Consider I =
exp (

ϵX
2d

)+1

exp (
ϵX
2d

)−1 , we have ∂
∂d
I = ϵ

(exp (
ϵX
2d

)−1)2d2 > 0, hence,

C increases as r increases.

Let k = exp(ϵX/2)
exp(ϵX/2)+1

, PM works as follows: first, we sample x ∼ U([0, 1]); if x < k

then return a′ ∼ U([−C,L) ∪ (R,C]) and if x ≥ k then return a′ ∼ U([L,R]). Therefore,

we have:

P (a′|a) =
∫
x

P (a′|x)P (x|a)dx =

∫
x

P (a′|x)P (x)dx

=

∫ k

0

P (a′|x)P (x)dx+

∫ 1

k

P (a′|x)P (x)dx

=
1

R− L
k +

1

2C + L−R
(1− k) =

k

C − 1
+

1− k

C + 1
=

2k + C − 1

C2 − 1

We denote A1 = 2k1+C1−1
C2

1−1
and A2 = 2k2+C2−1

C2
2−1

, where k1 =
exp(

ϵX
2

)

exp(
ϵX
2

)+1
, C1 =

exp(
ϵX
2

)+1

exp(
ϵX
2

)−1 ,

k2 =
exp(

ϵX
2d

)

exp(
ϵX
2d

)+1
, and C2 =

exp(
ϵX
2d

)+1

exp(
ϵX
2d

)−1 .

Theorem 14. When the dimension of the feature vector e ∈ Rr increases by a factor d,

where d × r ∈ N+ and d > 1, given a user-predefined privacy budget ϵX , the change γ

in the randomization probabilities quantified by KL-divergence and L2-norm of Piecewise

Mechanism are as follows:

(1) KL(P ||Pd) = 2A1C1 log (A1/A2)

(2) L2(P, Pd) =
√

2A2
2C2 + 2A2

1C1 − 4C1A1A2

Proof. KL-divergence. Let P (a′|a) and Pd(a
′|a) be the randomization probabilities when

the number of features are r and d × r, respectively. In addition, let C1 and C2 be the

161

values of parameter C when the number of feature is r and d × r. Since C increases as

r increases, C2 > C1. Considering the continuous distribution in PM, the KL-divergence

between P (a′|a) and Pd(a
′|a) is as follow:

KL(P ||Pd) =

∫
a′
P (a′|a) log

(P (a′|a)
Pd(a′|a)

)
da′ =

∫ C1

−C1

P (a′|a) log
(P (a′|a)
Pd(a′|a)

)
da′

=

∫ C1

−C1

A1 log
(A1

A2

)
da′ = 2C1A1 log (A1/A2) (A.44)

L2-norm. Considering the L2-norm between P (a′|a) and Pd(a
′|a) we have:

L2(P, Pd) =

√∫
a′
(P (a′|a)− Pd(a′|a))2da′

=
[∫ −C1

−C2

(P (a′|a)− Pd(a
′|a))2da′ +

∫ C1

−C1

(P (a′|a)− Pd(a
′|a))2da′

+

∫ C2

C1

(P (a′|a)− Pd(a
′|a))2da′

] 1
2

=
√
2A2

2(C2 − C1) + 2C1(A2 − A1)2 =
√

2A2
2C2 + 2A2

1C1 − 4C1A1A2 (A.45)

A.13.3 Hybrid Mechanism (HM) [201]

As in [201], HM can be considered as a combination of DM and PM. We simply report the

best case (smallest distance) of HM following DM and PM. Therefore, KL-divergence of

HM is 2A1C1 log
(
A1/A2

)
(following PM, since it is N.A. in DM) and L2-norm of HM is

the minimum L2-norm values of DM and HM.

A.13.4 Three Outputs Mechanism [226]

Given a user-predefined privacy budget ϵX , the input is a feature a ∈ [−1, 1] and the output

is a′ ∈ {−C, 0, C}, where C = exp(ϵX)+1
(exp(ϵX)−1)(1−P0←1)

.

162

This mechanism can be mapped to the general form (Eq. 3.3), as:

∀a ∈ e :

a′ = −C, with a probability P−C←a

a′ = 0, with a probability P0←a

a′ = C, with a probability PC←a

where P−C←a, P0←a, and PC←a are given by Eqs. 2− 8 in [226].

Theorem 15. When the dimension of the feature vector e ∈ Rr increases by a factor d,

where d× r ∈ N+ and d > 1, given a user-predefined privacy budget ϵX , the change γ in

the randomization probabilities quantified by KL-divergence and L2-norm of Three outputs

Mechanism are as follows:

(1) KL(P ||Pd) = +∞ (N.A.)

(2) L2(P, Pd) =
(
Pd(−C2|a)2 + P (−C1|a)2 + [P (0|a) − Pd(0|a)]2 + P (C1|a)2 +

Pd(C2|a)2
)1/2

Proof. KL divergence. Let P (a′|a) and Pd(a
′|a) be the randomization probabilities when

the number of features are r and d×r, respectively. Let C1 and C2 be the values of parameter

C when the number of feature is r and d × r. Similar to the analysis of DM, C2 > C1.

Considering the discrete distributions in DM, KL-divergence between P (a′|a) and Pd(a
′|a)

is calculated as:

KL(P ||Pd) =
∑
a′

P (a′|a) log
(P (a′|a)
Pd(a′|a)

)
(A.46)

When a′ = −C1 or a′ = C1, P (a′|a) ̸= 0 and Pd(a
′|a) = 0, therefore, KL(P ||Pd) is

infinity (N.A.).

L2-norm. We have:

L2(P, Pd) =

√∑
a′

(P (a′|a)−Q(a′|a))2 (A.47)

=
(
Pd(−C2|a)2 + P (−C1|a)2 +

(
P (0|a)− Pd(0|a)

)2
+ P (C1|a)2 + Pd(C2|a)2

)1/2

163

where P (a′|a) and Pd(a
′|a) following Eqs. 2− 8 as in [226].

A.13.5 OME [121]

Given a user-predefined privacy budget ϵX , we consider a feature a of a feature vectors

e ∈ Rr. Different from aforementioned numerical-based approaches, OME works at the

bit level in which each feature a is represented by a binary vector v = {vi}li=0 ∈ {0, 1}l

(l is the number of bits used to present a, then the output of OME is the noisy vector

v′ = {v′i}li=0 ∈ {0, 1}l. Let a′ be the decoded value of v′.

The OME mechanism can be mapped to the general form for a feature (Eq. 3.3), as:

∀a ∈ e : P (a′|a) = P (v′|v) =
l−1∏
i=0

P (v′i|vi) (A.48)

where P (v′i|vi) is given by Eq. A.52.

Let P (a′|a) and Pd(a
′|a) be the randomization probabilities when the number of

features are r and d×r, respectively. In OME, there are different randomization probabilities,

depending the value (i.e., 0 or 1) and position (i.e., even or odd) of the bit. In OME (and also

in this paper), we consider l is even; therefore, Peven = Podd =
1
2
, where Peven and Podd are

the probabilities that a bit is at a even and odd position, respectively. Therefore, we have:

P0e = Pi=2j(v
′
i = 0|vi) = Peven

(α exp(ϵX
rl
)

1 + α exp(ϵX
rl
)
+

1

1 + α

)
=

k1 + k2
2

P1e = Pi=2j(v
′
i = 1|vi) = Peven

(1

1 + α exp(ϵX
rl
)
+

α

1 + α

)
=

1

2
(1− k1 + 1− k2) = 1− k1 + k2

2

P0o = Pi=2j+1(v
′
i = 0|vi) = Podd

(α exp(ϵX
rl
)

1 + α exp(ϵX
rl
)
+

α3

1 + α3

)
=

k1 + k3
2

P1o = Pi=2j+1(v
′
i = 1|vi)Podd

(1

1 + α exp(ϵX
rl
)
+

1

1 + α3

)
= 1− k1 + k3

2
(A.49)

164

where k1 =
α exp(

ϵX
rl

)

1+α exp(
ϵX
rl

)
, k2 = 1

1+α
, and k3 = α3

1+α3 . We also denote k1d =
α exp(

ϵX
rld

)

1+α exp(
ϵX
rld

)
,

k2d = k2, and k3d = k3.

Theorem 16. When the dimension of the feature vector e ∈ Rr increases by a factor d,

where d× r ∈ N+ and d > 1, and given a user-predefined privacy budget ϵX , the change

γ in the randomization probabilities quantified by KL-divergence and L2-norm of OME

Mechanism are as follows:

(1) KL(P ||Pd) =
∑l−1

i=2j

(
P0e log

P0e

Pd0e
+ P1e log

P1e

Pd1e

)
+
∑l−1

i=2j+1

(
P0o log

P0o

Pd0o
+

P1o log
P1o

Pd1o

)
(2) L2(P, Pd) = A

l/2
1,2A

l/2
1,3 − 2B

l/2
1,2,dB

l/2
1,3,d + A

l/2
1d,2A

l/2
1d,3

Proof. KL-divergence.

KL(P ||Pd) =
∑
v′

P (v′|vi) log
P (v′|vi)
Pd(v′|vi)

(A.50)

=
l−1∑
i=0

(
P (v′i = 0|vi) log

P (v′i = 0|vi)
Pd(v′i = 0|vi)

+ P (v′i = 1|vi) log
P (v′i = 1|vi)
Pd(v′i = 1|vi)

)
=

l−1∑
i=2j

(
P0e log

P0e

Pd0e

+ P1e log
P1e

Pd1e

)
+

l−1∑
i=2j+1

(
P0o log

P0o

Pd0o

+ P1o log
P1o

Pd1o

)

L2-norm. We have: P (v′|v) = Πl−1
i=0P (v′i|vi). Therefore,

165

L2
2(P, Pd) =

∫
a′
(P (a′|a)− Pd(a

′|a))2da′

=

∫
v′0

· · ·
∫
v′l−1

[
Πl−1

i=0P (v′i|vi)−Πl−1
i=0Pd(v

′
i|vi)

]2
dv′0 · · · dv′l−1

= Πi=2j

[(k1 + k2)
2

4
+

(1− k1+k2
2)2

4

]
Πi=2j+1

[(k1 + k3)
2

4
+

(1− k1+k3
2)2

4

]
− 2Πi=2j

[1
4
(k1 + k2)(k1d + k2d) +

1

4
(1− k1 + k2

2
)(1− k1d + k2d

2
)
]

×Πi=2j+1

[1
4
(k1 + k3)(k1d + k3d) +

1

4
(1− k1 + k3

2
)(1− k1d + k3d

2
)
]

+Πi=2j

[1
4
(k1d + k2d)

2 +
1

4
(1− k1d + k2d

2
)2
]
×Πi=2j+1

[1
4
(k1d + k3d)

2 +
1

4
(1− k1d + k3d

2
)2
]

=
[

(k1+k2)
2

4
+

(1− k1+k2
2)2

4

]l/2[
(k1+k3)

2

4
+

(1− k1+k3
2)2

4

]l/2

−2
[

1
4
(k1+k2)(k1d+k2)+

1
4
(1− k1+k2

2
)(1− k1d+k2

2
)

]l/2

×
[1
4
(k1 + k3)(k1d + k3) +

1

4
(1− k1 + k3

2
)(1− k1d + k3

2
)
]l/2

+
[(k1d + k2)

2

4
+

(1− k1d+k2
2)2

4

]l/2[(k1d + k3)
2

4
+

(1− k1d+k3
2)2

4

]l/2
= A

l/2
1,2A

l/2
1,3 − 2B

l/2
1,2,dB

l/2
1,3,d +A

l/2
1d,2A

l/2
1d,3 (A.51)

where Ai,j =
1
4
(ki + kj)

2 + 1
4
(1− ki+kj

2
)2 and

Bi,j,d =
1

4
(ki + kj)(kid + kj) +

1

4
(1− ki + kj

2
)(1− kid + kj

2
)

Table A.1 Summarizing (γ, γϵ)-Dimension-Scalability of LDP-preserving RR Mechanisms

Technique γ (given γϵ = 0) γϵ
(given γ = 0)KL-divergence L2-norm

Duchi’s mechanism
(DM) [51, 52] N.A.

√
2k22a

2 − 2k2a2 + 2k21a
2 − 2k1a2 + a2 + 1

Piecewise mechanism
(PM) [201] 2A1C1 log

(
A1/A2

) √
2A2

2C2 + 2A2
1C1 − 4C1A1A2

Hybrid mechanism
(HM) [201] 2A1C1 log

(
A1/A2

)
min{DM,PM} (d− 1)× ϵ

Three-outputs [226] N.A. Theorem 15

Adaptive OME [121] Theorem 16
√

A
l/2
1,2A

l/2
1,3 − 2B

l/2
1,2,d

B
l/2
1,3,d

+ A
l/2
1d,2

A
l/2
1d,3

ScalableRR (Ours)
∑l−1

i=0 log
(

1+αdti
1+αti

)
+

∑l−1
i=0 qi log(α

αd
)

√∏l−1
i=0A

i +
∏l−1

i=0A
i
d − 2

∏l−1
i=0B

i

166

A.14 Adaptive Privacy Budget in OME

In this section, we aim at providing adaptive privacy budget for OME [121]. OME first

encodes embedding features e into an rl-bit binary vector v. Then, each bit i ∈ [0, rl − 1] is

randomized by the following fOME mechanism:

∀i ∈ [0, rl − 1] : P (v′i = 1) =

p1i =
α

1 + α
, if i ∈ 2j, vi = 1

p2i =
1

1 + α3
, if i ∈ 2j + 1, vi = 1

qi =
1

1 + α exp(ϵ
rl)

, if vi = 0

(A.52)

From Eq. A.52, we also have that P (v′i = 0) = 1− p1i =
1

1+α
if vi = 1 and i ∈ 2j,

P (v′i = 0) = 1− p2i =
α3

1+α3 if vi = 1 and i ∈ 2j+1, and P (v′i = 0) = 1− qi =
α exp(ϵ

rl
)

1+α exp(ϵ
rl
)

if vi = 0.

Theorem 17. OME with the randomization probabilities as in Eq. A.52 preserves ϵadaptive-

LDP, where ϵadaptive = (rl
Q1
− rl

Q2
) ln(α) + ϵ

2Q1
+ ϵ

2Q2
in which Q1 = α

1+α

α exp(ϵ
rl
)

1+α exp(ϵ
rl
)
+

1
1+α exp(ϵ

rl
)

1
1+α

and Q2 =
1

1+α3

α exp(ϵ
rl
)

1+α exp(ϵ
rl
)
+ 1

1+α exp(ϵ
rl
)

α3

1+α3 .

Proof. Similar to the analysis in Section A.9, we obtain:

P (fOME(v) = vz)

P (fOME(ṽ) = vz)
≤

rl−1∏
i=0

(P (fOME(vi) = vz,i)

P (fOME(v
̸=i
i) = vz,i)

) ∆i
E|E(fOME(v,i))−E(fOME(v ̸=i,i))| ≤ exp(ϵ)

(A.53)

and the expectation E|E(fOME(v, i))− E(fOME(v
̸=i, i))| is computed as follows:

E|E(fOME(v, i))− E(fOME(v
̸=i, i))| (A.54)

=

(
p1i(1− qi) + qi(1− p1i)

)
∆i = Q1∆i, if i ∈ 2j(

p2i(1− qi) + qi(1− p2i)
)
∆i = Q2∆i, if i ∈ 2j + 1

167

where Q1 = p1i(1 − qi) + qi(1 − p1i) =
α

1+α

α exp(ϵ
rl
)

1+α exp(ϵ
rl
)
+ 1

1+α exp(ϵ
rl
)

1
1+α

, and Q2 =

p2i(1− qi) + qi(1− p2i) =
1

1+α3

α exp(ϵ
rl
)

1+α exp(ϵ
rl
)
+ 1

1+α exp(ϵ
rl
)

α3

1+α3 .

From Eqs. A.53 and A.54, we have:

P (fOME(v) = vz)

P (fOME(ṽ) = vz)
≤

rl−1∏
i=0

(P (fOME(vi) = vz,i)

P (fOME(v
̸=i
i) = vz,i)

) ∆i
E|E(fOME(v,i))−E(fOME(v ̸=i,i))|

= ∏
i∈2j

(
P (fOME(vi)=1|vi=1)P (fOME(vi)=0|vi=0)

P (fOME(vi)=1|vi=0)P (fOME(vi)=0|vi=1)

) ∆i
Q1∆i

×
∏

i∈2j+1

(
P (fOME(vi)=1|vi=1)P (fOME(vi)=0|vi=0)

P (fOME(vi)=1|vi=0)P (fOME(vi)=0|vi=1)

) ∆i
Q2∆i

= α
rl
Q1
− rl

Q2 exp(
ϵ

2Q1

+
ϵ

2Q2

) (A.55)

Then, from Eq. A.55, we have:

ϵadaptive = ln
(
α

rl
Q1
− rl

Q2 exp(
ϵ

2Q1

+
ϵ

2Q2

)
)
= (

rl

Q1

− rl

Q2

) ln(α) +
ϵ

2Q1

+
ϵ

2Q2

(A.56)

Consequently, Theorem 17 does hold.

Following the experiment settings in OME [121], with the commonly used α = 100,

when changing r ∈ {10, 100, 1, 000, 10, 000} with a fixed l = 10, or when changing

l ∈ {5, 10, 20, 100, 1, 000} with a fixed r = 1, 000 and under a tight privacy budget ϵ = 0.1,

the proportion ϵadaptive/ϵ significantly changes among [4.6e+ 6, 4.6e+ 9]. In other words,

the ϵadaptive is extremely larger than ϵ, for most r and l values in practice.

In OME [121], when the randomized responses follow Eq. A.52, the privacy budget is

ϵ. However, when OME is adapted to our setting and privacy analysis, the privacy budget is

ϵadaptive = (rl
Q1
− rl

Q2
) ln(α) + ϵ

2Q1
+ ϵ

2Q2
, instead of ϵ. Given a privacy budget ϵX for the

embedding features, in other to adapt OME with our setting following our privacy budget

analysis, we need to find an α in Eq. A.56 so that we obtain the same privacy budget with the

conventional analysis of OME. In other words, we need to find α satisfying the condition:

ϵadaptive = (
rl

Q1

− rl

Q2

) ln(α) +
ϵX
2Q1

+
ϵX
2Q2

= ϵX (A.57)

168

Denote t = exp(ϵX
rl
), we compute Q2 −Q1, Q1 +Q2, and Q1Q2 as follows:

Q1 =
α

1 + α

α exp(ϵX
rl
)

1 + α exp(ϵX
rl
)
+

1

1 + α exp(ϵX
rl
)

1

1 + α
=

α2t+ 1

(1 + α)(1 + αt)

Q2 = p2i(1− qi) + qi(1− p2i) =
1

1 + α3

α exp(ϵX
rl
)

1 + α exp(ϵX
rl
)
+

1

1 + α exp(ϵX
rl
)

α3

1 + α3

=
α3 + αt

(1 + α3)(1 + αt)

Q2 −Q1 =
α3 + αt

(1 + α3)(1 + αt)
− α2t+ 1

(1 + α)(1 + αt)
=

α3 + αt− (α2t+ 1)(α2 + 1− α)

(1 + αt)(1 + α3)

Q1 +Q2 =
α3 + αt

(1 + α3)(1 + αt)
+

α2t+ 1

(1 + α)(1 + αt)
=

α3 + αt+ (α2t+ 1)(α2 + 1− α)

(1 + αt)(1 + α3)

Q1Q2 =
α3 + αt

(1 + α3)(1 + αt)

α2t+ 1

(1 + α)(1 + αt)
=

(α3 + αt)(α2t+ 1)

(1 + αt)2(1 + α3)(1 + α)
(A.58)

Now, substituting Eq. A.58 into Eq. A.57, we have:

rl lnα
Q2 −Q1

Q1Q2
+

ϵX
2

Q1 +Q2

Q1Q2
= ϵX

⇔ rl lnα

[
α3 + αt− (α2t+ 1)(α2 + 1− α)

]
(1 + αt)(1 + α3)

(1 + αt)2(1 + α3)(1 + α)

(α3 + αt)(α2t+ 1)

+
ϵX
2

[
α3 + αt+ (α2t+ 1)(α2 + 1− α)

]
(1 + αt)(1 + α3)

(1 + αt)2(1 + α3)(1 + α)

(α3 + αt)(α2t+ 1)
= ϵX

⇔ rl lnα

[
α3 + αt− (α2t+ 1)(α2 + 1− α)

]
(1 + αt)(1 + α)

(α3 + αt)(α2t+ 1)

+
ϵX
2

[
α3 + αt+ (α2t+ 1)(α2 + 1− α)

]
(1 + αt)(1 + α)

(α3 + αt)(α2t+ 1)
= ϵX

⇔ (1 + αt)(1 + α)

2(α3 + αt)(α2t+ 1)

[
2rl lnα

(
α3 + αt− (α2t+ 1)(α2 + 1− α)

)
+ ϵX

(
α3 + αt+ (α2t+ 1)(α2 + 1− α)

)]
= ϵX

⇔ (1 + αt)(1 + α)
[
2rl lnα

(
α3 + αt− (α2t+ 1)(α2 + 1− α)

)
+ ϵX

(
α3 + αt+ (α2t+ 1)(α2 + 1− α)

)]
− 2ϵX(α3 + αt)(α2t+ 1) = 0 (A.59)

Denoting f(α) as the left-hand side of Eq. A.59, f(α) is a continuous function in

(0,+∞) since every component of f(α) is continuous in (0,+∞). Therefore, for fixed

169

parameters (ϵX , r, l), if we can find 0 < a < b < +∞ such that f(a)f(b) < 0, there

exists solutions for Eq. A.59. Choosing a→ 0, b→ +∞, then we have f(a)→ +∞ and

f(b)→ −∞, so, f(a)f(b) < 0 results in the existence of solutions for Eq. A.59. As shown

in Fig. A.3, there is only one solution for Eq. A.59 since the plot of function f(α) only cross

the x-axis once.

Since solving Eq. A.59 is intractable, we apply Newton-Raphson method [22] to

find its solution. Given f(α), we find α∗ such that f(α∗) = 0 in a iterative way, as

follows: starting with an initial guess α0, we iteratively approximate the true solution by the

intercept of the tangent line at the current point and the domain space of α until we meet

the convergent condition. Formally, the approximated solution at iteration i is calculated

as αi = αi−1 − f(αi−1)/f
′(αi−1) and the process reaches convergence at iteration t if

|αt−αt−1| < δ for a predefined δ > 0. Then, the solution is approximate by α∗ = αt which

is different from the true solution by at most δ. Some empirical solutions α∗ of Eq. A.59 are

listed in Table A.2.

Privacy budget ϵX Solution α∗

0.01 1.01
0.1 1.02
0.5 1.04
1.0 1.05
5.0 1.08
10.0 1.1

Table A.2 Several Empirical Values of α in Equation A.59 as a Function of ϵX when l = 10,
r = 1, 000, and δ = 1e− 4

A.15 Adaptive Privacy Budget in LATENT

In this section, we aim at providing adapted privacy budget bounds for LATENT [13].

LATENT first encodes embedding features e into an rl-bit binary vector v. Then, each

bit i ∈ [0, rl − 1] is randomized by a RR mechanism (i.e., the MOUE algorithm for high

sensitivities in Theorem 3.3 [13]), denoted f -LT, as follows:

170

Figure A.3 Illustrating for the root of Eq. A.59.

∀i ∈ [0, rl − 1] : P (v′i = 1) =

pi =

1

1 + α
, if vi = 1

qi =
1

1 + α exp(ϵ
rl
)
, if vi = 0

(A.60)

From Eq. A.60, we also have that P (v′i = 0) = 1 − pi = α
1+α

if vi = 1, and

P (v′i = 0) = 1− qi =
α exp(ϵ

rl
)

1+α exp(ϵ
rl
)

if vi = 0.

Theorem 18. LATENT with the randomization probabilities as in Eq. A.60 preserves

ϵadaptive-LDP, where ϵadaptive =
(1+α)(1+α exp(ϵ

rl
))

α(1+exp(ϵ
rl
))

ϵ.

Proof. Similar to the analysis in Section A.9, we obtain:

P (fLT (v) = vz)

P (fLT (ṽ) = vz)
≤

rl−1∏
i=0

(P (fLT (vi) = vz,i)

P (fLT (v
̸=i
i) = vz,i)

) ∆i
E|E(fLT (v,i))−E(fLT (v ̸=i,i))| ≤ exp(ϵ) (A.61)

and E|E(fLT (v, i))− E(fLT (v ̸=i, i))| is computed as follows:

171

E|E(fLT (v, i))− E(fLT (v ̸=i, i))| =
(
pi(1− qi)P (v ̸=i

i = 0) + qi(1− pi)P (v ̸=i
i = 1)

+ (1− pi)qiP (v ̸=i
i = 0) + (1− qi)piP (v ̸=i

i = 1)
)
∆i =

(
pi(1− qi) + qi(1− pi)

)
∆i (A.62)

Furthermore, we have:

pi(1− qi) + qi(1− pi) =
α(1 + exp(ϵ

rl
))

(1 + α)(1 + α exp(ϵ
rl
))

(A.63)

From Eqs. A.61-A.63, we have that

P (fLT (v) = vz)

P (fLT (ṽ) = vz)
r ≤

rl−1∏
i=0

(P (fLT (vi) = vz,i)

P (fLT (v
̸=i
i) = vz,i)

) ∆i
E|E(fLT (v,i))−E(fLT (v ̸=i,i))|

=
rl−1∏
i=0

(P (fLT (vi) = 1|vi = 1)

P (fLT (vi) = 0|vi = 1)

) ∆i
(pi(1−qi)+qi(1−pi))∆i

×
rl−1∏
i=0

(P (fLT (vi) = 0|vi = 0)

P (fLT (vi) = 1|vi = 0)

) ∆i
(pi(1−qi)+qi(1−pi))∆i

=
rl−1∏
i=0

(
exp(

ϵ

rl
)
) 1

pi(1−qi)+qi(1−pi) (A.64)

Then, from Eq. A.64, we have:

ϵadaptive =
(1 + α)(1 + α exp(ϵ

rl
))

α(1 + exp(ϵ
rl
))

ϵ (A.65)

Consequently, Theorem 18 holds.

From Theorem 18, we show the proportion ϵadaptive/ϵ as a function of r and l in

Fig. A.4. Following the experiment settings in LATENT [13], with the commonly used

α = 7, when changing r ∈ {10, 100, 1, 000, 10, 000} with a fixed l = 10, or when changing

l ∈ {5, 10, 20, 100, 1, 000} with a fixed r = 1, 000 and under a tight privacy budget ϵX =

172

0.1, the proportion ϵadaptive/ϵ moderately changes among [4.57, 4.75]. In other words, the

ϵadaptive is remarkably larger than ϵ, for most r and l values in practice. Unlike LATENT, our

mechanism does not suffer from this problem, i.e., in ScalableRR, ϵadaptive/ϵ = 1, thanks to

our bit-aware randomization probabilities for LDP in binary encoding (Theorem 3).

In LATENT [13], when the randomized responses follow Eq. A.60, the privacy budget

is ϵ. However, when LATENT is adapted to our setting and privacy analysis, the privacy

budget is ϵadaptive =
(1+α)(1+α exp(ϵ

rl
))

α(1+exp(ϵ
rl
))

ϵ, instead of ϵ. Given a privacy budget ϵX for the

embedding features, for the adaptive LATENT, we need to find an α in Eq. A.65 so that we

obtain the same privacy budget with the conventional analysis of LATENT. In other words,

we need to find α satisfying Eq. A.65 as follows:

ϵadaptive =
(1 + α)(1 + α exp(ϵX

rl
))

α(1 + exp(ϵX
rl
))

ϵX = ϵX ⇔
(1 + α)(1 + α exp(ϵX

rl
))

α(1 + exp(ϵX
rl
))

= 1

⇔ 1 + α2 exp(
ϵX
rl

) = 0 (A.66)

Since α2 exp(ϵX
rl
) ≥ 0, then then 1 + α2 exp(ϵX

rl
) ≥ 1 > 0. Hence, we cannot

find any α satisfying Eq. A.66, and for all α ≥ 0, ϵadaptive ̸= ϵX . Specifically, since

∀α, 1 + α2 exp(ϵX
rl
) > 0, then ϵadaptive > ϵX . We call this a privacy risk exaggeration since

when using the randomized responses as in Eq. A.60 the actual privacy budget is larger than

ϵX . This problem can severely loosen the privacy protection. Therefore, we do not consider

LATENT in our experiments.

A.16 RMSE Comparison in Mean Estimation

To investigate how our proposed approach ScalableRR works with statistical query, we study

our ScalableRR and other baselines with a mean estimation. We created a synthetic data that

consists of N = 1, 000 data samples {xi}Ni=1, each of them has d = 768 dimensions. The

mean estimation is calculated over each dimension as fj(D) = 1
N

∑N
i=1 xij for j ∈ [1, d].

Root mean square error (RMSE) is used to evaluate the error between the original vector and

173

Figure A.4 Impacts of r and l on ϵadaptive
ϵ

in LATENT (ϵX = 0.1).

the randomized/estimated vector. The binary-encoding-based approaches (i.e., ScalableRR,

LATENT, and corrected OME) achieve a significantly small error compared with others.

As can be seen in Fig. A.9, ScalableRR obtains the smallest error, which further shows the

effectiveness of our proposed mechanism.

A.16.1 Supplementary Theoretical Results for ScalableRR

Computing Expected Error for Gaussian and Laplace mechanisms. The Gaussian and

Laplace mechanisms naturally apply an addition operation, which adds noise into the data

or embedding features. Hence, in our analysis of expected error bound comparison for

an embedding feature (Fig. 3.5), we add noise into the embedding feature following the

Gaussian and Laplace mechanisms. The sensitivity captures the magnitude by which an

embedding feature can change in the worst case. In our experiment and analysis, we use

l = 10 bits, i.e., 1 sign bit, 5 exponent bits, and 4 fraction bits. Therefore, the maximum the

embedding feature can be change, i.e., the sensitivity, is 2
∑4

i=−4 2
i. Note that, we multiply∑4

i=−4 2
i by 2 since when we flip the sign bit, it significantly changes the value of the

embedding feature from −a to a in which a =
∑4

i=−4 2
i.

174

More theoretical results for how randomization probabilities change when varying

r and l are shown in Figs. A.7 and A.8. A comparison of the randomization probability qi

between OME and ScalableRR for every bit is illustrated in Fig. A.14.

A.17 Expected Error at The Bit-Level

As in Theorem 5, for binary encoding mechanisms, i.e., ScalableRR and OME, the expected

error bound is quantified by ξa =
∑

i∈[0,l−1] qi×∆i where ∆i is as in Lemma 4. Now, let us

quantify their expected error and then compare these values, as follows.

Expected Error for ScalableRR.

ξa =
∑

i∈[0,l−1]

qi ×∆i =
∑

i∈[0,l−1]

α exp(i
l
ϵX)

1 + α exp(i
l
ϵX)
×∆i (A.67)

Expected Error for OME. In OME, there are different randomization probabilities

for bits 0 and 1 and for even and odd bits (Eq. A.52), the expected error of OME can vary

depending on the numbers and the positions of bits 0 and 1 that represents for a feature a.

From Eq. A.52, let us denote:

qeven10 = q(v′i = 0|vi = 1, i = 2j) =
1

1 + α
; qodd10 = q(v′i = 0|vi = 1, i = 2j + 1) =

α3

1 + α3

q01 = qeven01 = qodd01 = q(v′i = 1|vi = 0) =
α exp(ϵX

rl
)

1 + α exp(ϵX
rl
)

(A.68)

The general formulation for ξa in OME is as follows:

ξa =
∑

i∈[0,l−1]

qi ×∆i (A.69)

=
(∑
i=2j

Ivi=1q
even
01 + Ivi=0q

even
10 +

∑
i=2j+1

(Ivi=1q
odd
01 + Ivi=0q

odd
10

)
∆i

where Ivi=k (k = {0, 1}) is an indicator function in which Ivi=k = 1 if vi = k and Ivi=k = 0,

otherwise.

175

We use l binary bits to represent a feature a, and in OME, there are different

randomization probabilities depending on whether the bit is at the even or odd position and

whether the bit is 0 or 1. Therefore, we have 2l possible cases of the binary representation v

of the feature a. As shown in Fig. A.10, ScalableRR achieves a much better expected error

(i.e., smaller values) compared with all 2l = 210 = 1, 024 cases of the vector v of OME.

Now, we take a deeper look into a bit-level analysis by relaxing Theorem 5 into

(1) an expected error ξi = qi × ∆i for each bit i ∈ [0, l − 1], and (2) an average top-k

expected error ξtop−k = 1/k
∑k

i=1 ξi−1, ∀k ∈ [1, l]. Figs. A.11 and A.12 shows that, at the

bit-level, ScalableRR achieves smaller values of ξi for most important bits, especially the

sign bit and exponent bits, compared with adaptive OME, the only baseline working at

the bit-level, and comparable expected error ξi for least important bits, i.e., fraction bits.

Although the noise is less for the most important bits, the expected error is higher due to

the high influence of these important bits. The gap between ScalableRR and the baseline is

larger given the ξtop−k. We obtain smaller values of ξtop−k for all k ∈ [1, l], under a rigorous

privacy budget ϵX = 0.1 and large expansion factor d = 104. Importantly, when increasing

privacy budget ϵX (Figs. A.11b,c) and the expansion factor d (Figs. A.12 and A.13), the gap

between ScalableRR and the baselines is larger. In fact, the increase in the gap is mainly

due to increase in the expected error of the baselines as the expected error in ScalableRR is

marginally affected.

A.18 Supplementary Experimental Results for ScalableRR

Datasets and Data Processing. We carried out our experiments on two textual datasets and

two image datasets, including the AG dataset [194], our collected Security and Exchange

Commission (SEC) financial contract dataset, the large-scale celebFaces attributes (CelebA)

dataset [117], and the Federated Extended MNIST (FEMNIST) dataset [26]. The AG dataset

is a collection of news articles from more than 2, 000 news sources by [1]. It is categorized

into four classes, i.e., world, sport, business, and science/technology. Our SEC dataset

176

Table A.3 Results of LDP-FL without Privacy Accumulation on the AG Dataset

ϵX 1 2 3 4 5 6 7 8 9 10

LDP-FL 78.73 82.21 83.25 84.19 84.36 84.22 84.64 84.43 84.31 84.72

ScalableRR 72.46 79.72 81.42 79.35 81.11 79.84 79.50 80.05 81.20 82.72

Noiseless 87.59

consists of over 5, 000 contract clauses collected from contracts submitted in SEC filings4.

The CelebA dataset consists of 202, 599 celebrity images, each with 40 attributes, e.g.,

attractive face, big lips, big noses, etc., which are used as binary classes. The FEMNIST

dataset is built by partitioning the images in Extended MNIST [36] based on the writer of

62 handwritten digits and characters classes. For data preprocessing, we changed all words

in the AG and SEC datasets to lower-case and removed punctuation marks. The breakdown

of the datasets is in Table 3.1.

Model Configuration. We use the test accuracy and the test area under the curve

(AUC) as evaluation metrics. Models with higher values of test accuracy and AUC are better.

To extract embedding features, we use the pre-trained BERT-Base (Uncased) model [48] for

the AG and SEC datasets, and the ResNet-18 [81] for the CelebA and FEMNIST datasets.

Dimension of the extracted embedding features in the AG and SEC datasets is r = 768, and

in the CelebA and FEMNIST datasets is r = 512. For text and image classification tasks,

we use two fully connected layers on top of embedding features, each of which consists

of 1, 500 hidden neurons and uses a ReLU activation function. The output dimension is

corresponding to the number of classes, i.e., 4, 2, 40, and 62 in the AG, SEC, CelebA,

and FEMNIST datasets. SGD optimizer with the learning rate is 0.01 in the AG and SEC

datasets, and 0.1 in the FEMNIST and CelebA datasets.

Experimental Setting for Anonymization [191]. In LDP-FL [191], the authors

design a LDP mechanism to perturb the weights at the local client, then each local client

4https://www.sec.gov/edgar.shtml

177

https://www.sec.gov/edgar.shtml

Figure A.5 Accuracy of ScalableRR and Adaptive OME when varying the factor d (r = 1)
in the AG dataset.

applies a split and shuffle mechanism on the weights of local model and sends each weight

through an anonymous mechanism to the cloud. The purpose of the shuffling mechanism is

to break the linkage among the model weight updates from the same clients and to mix them

among updates from other clients, making it harder for the cloud to combine more than one

piece of updates to infer more information about any client. Therefore, the key idea of the

shuffle mechanism in LDP-FL is to mitigate the privacy degradation by high data dimension

and many training/query iterations. In other words, the client anonymity is preserved, and

the privacy budget will not accumulate.

When comparing with LDP-FL, we maintain their mechanism’s spirits of no privacy

accumulation over the training iterations. It is equivalent to the shuffling step that breaks the

linkage among the model weight updates with associated clients. We also used their RR

mechanism, which is Eq. 2 [191], to perturb the weight.

In the revision, we added an experiment that do not consider the privacy accumulation

over data dimension and training/query iterations. This completely follows the gist of

LDP-FL. In addition, the weights we used for LDP-FL without actual shuffling or splitting

can be considered a lossless process, therefore the results we reported here can be counted

as an upper-bound result for LDP-FL.

As in Table A.3, we obtained the slightly higher accuracy of LDP-FL compared with

ScalableRR on the AG dataset. LDP-FL can reduce the privacy accumulation issue by using

178

the shuffling mechanism. However, as pointed out in [62], in the real world, it is possible

that the anonymizers (i.e., shuffler) can either be compromised or collude with the server to

extract sensitive information. Even though there is a marginally lower trade-off between

privacy loss and model utility compared with LDP-FL, the advantage of ScalableRR is that

it perturbs the data only once, then used the perturbed data for training process without

facing an extra privacy risk potentially caused by the compromised or colluded anonymizer.

Data Reconstruction Attacks. It is shown in [223, 227] that the adversaries can

reconstruct embeddings from gradients with high confidences. To evaluate the effectiveness

of ScalableRR in the worse case against data reconstruction attacks, we consider that the

adversary can losslessly reconstruct the embedding features from the gradients by using

gradient-based attacks [223, 227]. Then, the adversary reconstructs original images from

the losslessly reconstructed embedding features using two directions: (1) Train a decoder

of the embedding features in which we extract the embedding features from a pre-trained

model, then apply the model to reconstruct an image [49]; and (2) Optimize an input variable

through backpropagation to create an image similar to the original image [143]. We carry

out our attacks by strictly following the directions as follows.

First, inspired by [49], for the attack model, we train a decoder of the embedding

features encoded by ResNet-50 [81]. To obtain the attack model, we consider an autoencoder

in which the encoder part is the pre-trained ResNet-50, which will be freezed from training

and only the decoder is trained. The decoder is a combination of two Conv2DTranspose

layers and a BatchNormalization layer with ReLU activation. Adam optimizer is

used. To conduct the attack, we train the attacks using the Labeled Faces in the Wild dataset

(LFW) [23] and test on the CelebA dataset. That ensure no extra privacy leakage in the

attack model.

Second, following the attack in [143], to reconstruct an image, we create a random

image and feed it into the model. Then we evaluate the loss between the embedding features

of the original image and the reconstructed image at the same layer, and update the input

179

image by gradient descent. The attack is directly applied to the embeddings feature. To

test the ability of ScalableRR, we apply ScalableRR with different privacy budgets ϵX and

compare with the privacy protection free-environment.

A.19 Revisiting Randomized Response Mechanisms for LDP

To preserve LDP given the client’s input x, we can apply existing RR mechanisms, such

as unary encoding-based approaches [63, 202], hash-based approaches [8, 19, 202], binary

encoding-based approaches [13, 121], etc. For instance, hash-based approaches such as

those of Google RAPPOR [63] and OLH [202] hash the client’s input x onto a bloom filter

B of size k using h hash functions. Then, for each client’s input x and a bit i ∈ B, RAPPOR

creates a perturbed binary value B′i from Bi with the following randomization probability:

B′i =

1, with probability p/2

0, with probability p/2

Bi, with probability 1− p

(A.70)

where p is a hyper-parameter. This B′ is reused as the basis for all future analysis, learning,

and reports on this distinct input x. This approach achieves ϵX-LDP, where ϵX = 2h ln((1−
p
2
)/p

2
), given that the sensitivity of every bit Bi is ∆Bi

= 1 [63].

To deal with numerical inputs, e.g., embedding features, generalized RR mechanisms

such as Duchi [24, 50], Piece-wise [201], Hybrid [201], Three-outputs [226], Suboptimal

[226], LDP-FL [191], LATENT [13], and OME [121] can be applied.

Asymmetric version of RAPPOR (e.g., [202]) designs different randomization

probabilities for different inputs. The technique is well-applied in the context of frequency

estimation and successfully reduce the communication cost from O(d) to O(log n) (d is data

dimension and n is the number of samples). However, simply applying the mechanism [202]

does not optimize the model utility and the privacy-utility trade-off when working with

machine learning or deep learning models.

180

Another line of work in LDP is [136], which addresses the floating-point arithmetic in

implementation of DP applications. The inconsistency between mathematical abstraction

of Laplace mechanism with sampling “uniform” floating-point numbers can be exploited

to carry out privacy attacks. Floating-point arithmetic is a leaky abstraction, which is

ubiquitous in computer systems and is difficult to argue about formally and hard to get right

in applications, including all the RR mechanisms.

However, different from the asymmetric version of RAPPOR and the floating-point

arithmetic, our proposed ScalableRR mechanism focuses on mitigating the privacy-utility

trade-off. To achieve that, besides the asymmetric nature of the randomization probabilities,

our designed ScalableRR consists of two key components: 1) The bit-aware term i%l/l,

which indicates the location of the bit i in each embedding feature associated with the

sensitivity of the bit at that location; and 2) The adjustable but bounded α, which takes into

account the correlation between privacy loss and the sensitivity of embedding features to

mitigate the privacy-utility trade-off and the curse of dimensionality.

The bit-aware property refers to the bits with a more substantial influence on the model

utility have smaller randomization probabilities, and vice-versa, under the same privacy

protection. By incorporating sensitivities of binary encoding bits into a generalized privacy

loss bound, we show that increasing the dimensions of embedding features r, encoding bits

l, and model outcomes C marginally affect the randomization probabilities in ScalableRR

under the same privacy budget. This dimension-scalable property is crucial to mitigate the

curse of dimensionality by retaining a high value of data transmitted correctly through our

randomization given large dimensions of r, l, and C.

181

A.20 Proof of Theorem 6

Proof. Let us denote wi as the SHAP score of feature i in the aggregated explanation. Given

the two explanations w and w̃ that can be different at any feature and any possible output

z ∈ Range(XRAND), where Range(XRAND) denotes every possible output of XRAND,

we have:

P (XRAND(wi) = z)

P (XRAND(w̃i) = z)
≤ maxP (XRAND(wi) = z)

minP (XRAND(w̃i) = z)
(A.71)

=

exp(β)
exp(β)+τ−1

min(exp(−∆L(i,j))∑
t∈[k+1,k+τ] exp(−∆L(i,t))

τ−1
exp(β)+τ−1)

=
exp(β)

(τ − 1)min(exp(−∆L(i,j))∑
t∈[k+1,k+τ] exp(−∆L(i,t))

)
≤ eεi

Taking a natural logarithm of Eq. A.71, we obtain:

ln(
exp(β)

(τ − 1)min(
exp(−∆L2 (i,j))∑k+τ

t=k+1 exp(−∆L2 (i,t))
)
) ≤ ln(exp(εi))

⇔ β ≤ εi + ln(τ − 1) + ln(min
exp(−∆L(i, j))∑k+τ

t=k+1 exp(−∆L(i, t))
)

Consequently, Theorem 6 holds.

A.21 A Primer on Certified Robustness

The ultimate goal of certified robustness is to guarantee consistency on the model

performance under data perturbation. In specific, it has to ensure that a small perturbation

in the input does not change the predicted label. Given a benign example x, the robustness

condition to lp(µ)-norm attacks can be stated as follows:

∀α ∈ lp(µ) : fi(x+ α) > max
j:j ̸=i

fj(x+ α) (A.72)

where i is the ground-truth label of the sample x. The condition essentially indicates that a

small perturbation α in the input does not change the predicted label i.

PixelDP [108]. To achieve the robustness condition in Eq. A.72, Lecuyer et al. [108]

introduce an algorithm, called PixelDP. By considering an input x as a database in DP

182

parlance, and individual features as tuples, PixelDP shows that randomizing the function

f(x) to enforce DP on a small number of features in the input sample guarantees the

robustness of predictions. To randomize f(x), random noise σr is injected into either input

x or an arbitrary hidden layer, resulting in the following (ϵr, δr)-PixelDP condition:

Lemma 5. (ϵr, δr)-PixelDP [108]. Given a randomized scoring function f(x) satisfying

(ϵr, δr)-PixelDP w.r.t. a lp-norm metric, we have:

∀i, ∀α ∈ lp(1) : Efi(x) ≤ eϵrEfi(x+ α) + δr (A.73)

where Efi(x) is the expected value of fi(x), ϵr is a predefined budget, δr is a broken

probability.

At the prediction time, a certified robustness check is implemented for each prediction:

Êlbfi(x) > e2ϵr max
j:j ̸=i

Êubfj(x) + (1 + eϵr)δr (A.74)

where Êlb and Êub are the lower and upper bounds of the expected value Êf(x) =

1
n

∑
n f(x)n, derived from the Monte Carlo estimation with an η-confidence, given n is the

number of invocations of f(x) with independent draws in the noise σr. Passing the check

for a given input guarantees that no perturbation up to lp(1)-norm (where 1 is the radius of

the lp-norm ball) can change the model’s prediction.

Boosting Randomized Smoothing [86]. Another state-of-the-art approach to certifying

robustness is boosting randomized smoothing (RS). In this scheme, an ensemble model f̄ of

M classifiers trained on the same dataset with different random seeds (same structures and

settings). We denote p1 as the success probability that the ground-truth label l is correctly

predicted. Let ci and cj,j ̸=i be the expected values of the clean model over the randomness

of the training process, such as ci = Ei(fi(x)) and cj,j ̸=i = Ej(fj(x)). Let ti =
ci−cj
σi(M)

and zi

be the probability distribution of the classification margin over class i, we have the following

183

robustness condition

p1 := P
(
f̄(x+ α) = i

)
≥ 1− P

(
|zi − (ci − cj)|

)
≥ tiσi(M) ≥ 1−

∑
j,j ̸=i

σ2
j (M)

(ci − cj)2
(A.75)

where σi(M) is the variance of the classification margin zi.

It is shown in [86] that when σ(M) decreases (i.e., a better certified robustness bound),

the number of ensemble models M increases, and the lower bound of the success probability

p1 approaches the ground-truth label l.

Given the success probability p1, confidence γ, number of samples N , and perturbation

variance σ2
α (up to an incorrect prediction), the probability distribution over the certified

radius (R) is defined as follows:

P
(
R = σαΦ

−1(p1(N1, N, α)
))

= B(N1, N, p1) (A.76)

where Φ−1 denotes the inverse Gaussian CDF, B(N1, N, p1) is the probability of drawing

N1 successes in N trials from a Binomial distribution with the success probability p1 and p1

is the lower bound to the success probability of a Bernoulli experiment given N1 success

in N trials with confidence α according to the Clopper-Pearson interval [35]. The certified

robustness bound is R∗ = argmaxR such that the condition in Eq. A.75 is satisfied.

Bagging ensemble learning. For the certified robustness at the training-time against

XBA, we leverage the bagging ensemble learning method-based certified robustness bounds,

which have been demonstrated to be effective in defending against backdoor data poisoning

attacks [93]. The ensemble learning approach trains a set of base models and leverages

a majority vote to quantify the difference between the lower bound of the class with the

highest probability and the upper bound of the class with the second highest probability.

Base upon that, one can identify the minimum number of poisoning data samples, called

certified poisoning training size, that can change the majority vote.

184

A.22 Proof of Theorem 8

Proof. Recall thatD,Do, andD′ = D∪Do are the proprietary data, the outsourced data, and

the poisoned training data, respectively. Given the model prediction on a data sample x using

D, denoted as f(D, x), we ask a simple question: “What is the minimum number poisoning

data samples, i.e., certified poisoning training size rD, added into D to change the model

prediction on x: f(D, x) ̸= f(D+, x)?” After adding Do into D, we ask the same question:

“What is the minimum number poisoning data samples, i.e., certified poisoning training size

rD′ , added into D′ = D ∪Do to change the model prediction on x: f(D′, x) ̸= f(D′+, x)?”

The difference between rD and rD′ provides us a certified poisoning training size on Do.

Intuitively, if Do does not contain poisoning data examples, then rD is expected to be

relatively the same with rD′ . Otherwise, rD′ can be significantly smaller than rD indicating

that Do is heavily poisoned with at least r = rD − rD′ number of poisoning data samples

towards opening backdoors on x. Now, our goal is to find rD, rD′ , and their connection to r.

Let us denote two sets of poisoned training datasets with at most rD′ poisoned training

samples in D′ and at most rD poisoned training samples in D, namely B(D′, rD′) and

B(D, rD), respectively, as follows:

B(D, rD) = {D+ s.t. |D+| − |D| ≤ rD} (A.77)

B(D′, rD′) = {D′+ s.t. |D′+| − |D′| ≤ rD′} (A.78)

We call s(D) as a random subsample data that are sampled from D with replacement

uniformly at random. We denote pl as the label probability, in which pl = Pr[f(s(D), x) =

l)] is the probability that the learned base model predicts label l for x. The ensemble

classifier h predicts the label with the largest label probability for x, as:

h(D, x) = arg max
l∈{0,1}

pl (A.79)

To prove the certified robustness of the mechanism h(D, x) against XBA, we need to

find certified poisoning training size, which is the minimum number of poisoning training

185

data such that the ensemble classifier changes the prediction for x. Formally, we find the

minimum rD such that the following inequality is satisfied for ∀D+ ∈ B(D, r):

h(D+, x) ̸= l⇔ p′l < p′¬l (A.80)

where l ∈ {0, 1} and ¬l is the NOT operation of l in the binary classification.

Finding exact values of p′l and p′¬l is difficult. Instead of that, we find the lower bound

of p′l and upper bound of p′¬l (l is the true label of x), we construct regions in the space

Ω, which is the joint space of X = s(D) and Y = s(D+), satisfying the conditions of the

Neyman-Pearson Lemma [141]. This enables us to derive the lower and upper bounds in

these regions. Suppose we have a lower bound p
l

of the largest label probability pl and an

upper bound p¬l of the second largest label probability p¬l when the classifier is trained on

the clean training dataset. Formally, p
l

and p¬l satisfy:

pl ≥ p
l
≥ p¬l ≥ p¬l (A.81)

Following Theorem 1 in [93], we can have the following certified poisoning training

size rD as follows:

Certified poisoning training size r∗D. Given a training dataset D, a model f(·), and a

testing sample x, the ensemble classifier h is defined in Eq. A.79. Suppose l is the label with

the largest probability predicted by h for x and ¬l is the NOT operation of l in the binary

classification. We also have p
l

and p¬l satisfy Eq. A.81. The h does not predict the label l

for x when the certified poisoning training size rD is bounded by r∗D, i.e., we have:

h(D+, x) ̸= l,∀D+ ∈ B(D, r∗D), (A.82)

where r∗D is the solution to the following optimization problem:

r∗D = argmax
rD

rD (A.83)

186

s.t. max
|D|−rD≤|D+|≤|D|+rD

(
|D+|
|D|

)k − 2
(max(|D, |D+|)− rD

|D|

)k

+ 1− (p
l
− p¬l − σl − σ¬l) < 0

(A.84)

where σl = p
l
− (⌊p

l
nk⌋)/nk and σ¬l = ⌈p¬lnk⌉/nk − p¬l.

Solving the problem in Eqs. A.83 and in Eq. A.84 [93], we obtain the results:

r∗D = ⌈|D|
(

k

√
1 + (p

l
− p¬l − σl − σ¬l)

)
− 1⌉ (A.85)

Certified poisoning training size r∗D′ . Similar to find the certified poisoning training

size r∗D, we obtain:

r∗D′ = ⌈|D′|
(

k

√
1 + (p′

l
− p′¬l − σ′l − σ′¬l)

)
− 1⌉ (A.86)

where σ′l = p′
l
− (⌊p′

l
n
′k⌋)/n′k and σ′¬l = ⌈p′¬ln

′k⌉/n′k − p′¬l.

Certified poisoning training size r. Intuitively, if Do does not consist of poisoning

data examples, then rD is expected to be relatively the same with rD′ . Otherwise, rD

can be significantly smaller than rD′ indicating that Do is heavily poisoned with at least

r = rD−rD′ number of poisoning data samples towards opening backdoors on x. Therefore,

after obtaining r∗D′ and r∗D, we have:

r = r∗D − r∗D′ (A.87)

Tightness of the certified poisoning training size r. The bound in Theorem 8 is tight

and there is no existing smaller value of r for the XBA to be successfully carried out. In

our bound for the poisoning training size, the propriety data D cannot be changed by XBA;

hence, r∗D is fixed. In addition, r∗D′ is the minimum value that the prediction can be changed,

so it is considered as a fixed value when the outsourced data D′ remains the same, and it can

be changed if the outsourced data is changed. For example, if one more poisoning sample

187

is added into Do, so r∗D′ becomes r∗D′ + 1, then the minimum value is also changed to be

r∗D′ + 1. As a result, the certified robustness bound derived in Eq. 4.6 is tight.

A.23 Certified Robustness Bound using boosting randomized smoothing.

Directly applying the boosting RS (Appx. A.21) to XRAND by only using the noise α that

is associated with ∆α|w may not be effective. In the boosting RS, different base models

(i.e., same structures and settings, just different random seeds when training), are trained on

clean data; meanwhile, in XRAND, the training data is backdoored data. As a result, the

backdoored (and noisy) data in XRAND along with different base models in the boosting

RS may increase the variance of the outputs and then narrows down the certified robustness

bound, which reduces the size of the bound. This results in a gap between the boosting RS

and XRAND. To close this gap, we add a smaller amount of noise, namely α1, into the input

in addition to the noise α associated with ∆α|w, as follows:

p1 := P
(
f̄(x+ α + α1) = l

)
≥ 1− σ2

new(M)

(cl − c¬l)2
(A.88)

Similarly, σ2
new is the variance of the classification margin, which is computed as

in [86] associated with the new noise (α + α1). Given the success probability p1 in

Eq. A.88 and the perturbation variance σ2
α+α1

(up to an incorrect prediction), the probability

distribution over the certifiable radius R is computed as follows:

P
(
R = σα+α1Φ

−1(p1(N1, N)
))

= B(N1, N, p1) (A.89)

where B(N1, N, p1) is the probability of drawing N1 successes in N trials from a Binomial

distribution with success probability p1 and p1(N1, N) is the lower bound of the success

probability of a Bernoulli experiment given N1 successes in N trials. The certified robustness

bound is R∗ = argmaxR such that the robustness condition in Eq. A.88 is satisfied.

188

A.24 Experimental settings and results

Platform. Our experiments in this paper are implemented using Python 3.8 and conducted

on a single GPU-assisted compute node that is installed with a Linux 64-bit operating system.

The allocated resources include 8 CPU cores (AMD EPYC 7742 model) with 2 threads per

core, and 100GB of RAM. The node is also equipped with 8 GPUs (NVIDIA DGX A100

SuperPod model), with 80GB of memory per GPU.

Dataset. We conduct the XBA on malware classifiers against XRAND explanations on

three malware datasets. EMBER [12] is a representative benchmark dataset containing

malicious and benign samples used for training malware classifiers. It consists of 2,351-

dimensional feature vectors extracted from 1.1M Portable Executable (PE) files. The

dataset contains 600, 000 training samples equally split between goodware and malware,

and 200, 000 test samples, with the same class balance.

We also test with malicious PDF files using the Contagio PDF dataset [185] which

contains 10,000 PDF files equally split between goodware and malware, each sample is

represented by a 135-dimensional feature vector. Finally, we evaluate our work on the

Drebin dataset [104] consisting of 5,560 malware and 123,453 goodware Android apps.

Each sample contains 545,333 features extracted from the applications.

As mentioned in our threat model, we do not restrict the set of features that can be

used by the attacker as backdoor triggers, so that our defense can be assessed against the

strongest adversary.

Models. For the EMBER dataset, we train two classifiers: LightGBM and EmberNN.

LightGBM is a gradient boosting model released together with the EMBER dataset.

It achieves good performance for malware binary classification with 98.61% accuracy.

Following Anderson et al. [12], we use default parameters for training LightGBM (100 trees

and 31 leaves per tree). EmberNN composes of four fully connected layers, in which the

189

first three layers use ReLU activation functions, and the last layer uses a sigmoid activation

function [178]. EmberNN attains 99.14% accuracy.

Experimental results on Contagio and Drebin. We conduct additional experiments on

the Contagio PDF [185] and Drebin [104] datasets. The Contagio PDF dataset contains

10,000 PDF files equally split between goodware and malware, each sample is represented

by a 135-dimensional feature vector. The Drebin dataset consists of 5,560 malware and

123,453 goodware Android apps. Each sample contains 545,333 features extracted from the

applications. We use a Random Forest classifier for Contagio and a Linear Support Vector

Machine for Drebin, and fix the trigger size to 30 features. The classifiers are released by

(Severi et al, 2021) and we keep the same experimental settings. Figure A.22 shows the

attack success rate of XBA using the explanations returned by XRAND.

On the Contagio and Drebin datasets, we observe similar behavior to our experiments

with the EMBER dataset. The attack success rate decreases as we tighten the privacy budget,

since the attacker has less access to the desired features. At 1% poison rate and ε = 10.0,

XRAND can maintain a low success rate of 9.6% in the Contagio dataset (Fig. A.22(a)) and

7% in the Drebin dataset (Fig. A.22(b)).

Certified Robustness. To evaluate the certified robustness mechanism, as in [93, 108] we

use the following metric:

certified accuracy =

|test|∑
n=1

isCorrect(Xn) & isRobust(Xn)

|test|
(A.90)

where |test| is the number of testing samples, isCorrect(·) returns 1 if the model makes a

correct prediction (else, returns 0), and isRobust(·) returns 1 if the robustness size is larger

than a given attack size L (else, returns 0). When running with PixelDP and Boosting RS,

we adopt the hyperparameter settings from the papers [108] and [86], respectively.

190

To verify the certified robustness at the training time, we conduct experiments with

a wide range of ε ∈ [0.1, 100.0]. In this setting, we create 6, 000 poisoned samples by

adding the trigger that follows the two-step LDP-preserving mechanism. From Fig. A.23,

we observe that the smaller privacy budget ε, the higher certified accuracy. In fact, the

smaller ε imposes more noise which provides a better LDP guarantee and the model

trained with noisier data is more robust against the backdoor attacks; hence, resulting

in higher certified accuracy. It is obvious that the certified accuracy decreases when the

threshold number of poisoning training samples rtr increases, since the term isRobust(·)

decreases. For the inference-time bound, with the boosting RS certified robustness, we also

conduct experiments with a wide range of privacy budget ε ∈ [0.1, 50.0], the noise level

σα+α1 ∈ [0.25, 1.0], and the radius r ∈ [0.25, 2.0]. We consider M = 5 base classifiers

in the ensemble model of the boosting RS. With PixelDP, we conduct experiments given

tight privacy budgets, i.e., ε ∈ [0.1, 1.0]. We obtain high certified accuracy for these tight

privacy budgets, i.e., 89.17% and 90.42% for ε ∈ [0.1, 1.0], compared with 50% obtained

with the boosting RS. Here, we are dealing with a binary classification problem; therefore,

the variance of the model output is smaller than a multi-class classification problem. That

potentially affects the effectiveness of the boosting RS.

A.25 Visualizing XRAND

Figures A.24, A.25, and A.26 visualize the explanations of some test samples before and

after applying XRAND. For the most part, the explanations from SHAP and XRAND largely

resemble one another.

191

A.26 Proof of Theorem 9

Proof. Let us denote A1:i as A1, . . . , Ai, we have:

c(θτ ;Aτ , {θi}i<τ , dataτ , data
′
τ) = log

Pr[Aτ ({θi}i<τ , dataτ) = θτ]

Pr[Aτ ({θi}i<τ , data
′
τ) = θτ]

= log
τ∏

i=1

Pr[Ai(θ
i−1, datai) = θi|A1:i−1({θj}j<i−1, data1:i−1) = θ1:i−1]

Pr[Ai(θi−1, data
′
i) = θi|A1:i−1({θj}j<i−1, data

′
1:i−1) = θ1:i−1]

=
τ∑

i=1

log
Pr[Ai(θ

i−1, datai) = θi|A1:i−1({θj}j<i−1, data1:i−1) = θ1:i−1]

Pr[Ai(θi−1, data
′
i) = θi|A1:i−1({θj}j<i−1, data

′
1:i−1) = θ1:i−1]

=
τ∑

i=1

c(θi;Ai, {θj}j<i, datai, data
′
i)

Consequently, Theorem 9 does hold.

A.27 Proof of Theorem 10

Proof. ∀τ ∈ T, let Dτ and D
′
τ be neighboring datasets differing at most one tuple xe ∈ Dτ

and x′e ∈ D
′
τ , and any two neighboring episodic memories Mτ and M′τ . Let us denote

Alg. 3 as the mechanism A in Definition 9. We first show that Alg. 3 achieves typical DP

protection. ∀τ and Dref , we have that

Pr
[
A({θi}i<τ , dataτ) = θτ

]
(A.91)

= Pr
(
RDτ

(θτ−11)
)
Pr

(
Dτ

)
Pr

(
LDτ

(θτ−12)
)
× Pr

(
RDref

(θτ−11)
)
Pr

(
Dref

)
Pr

(
LDref

(θτ−12)
)

Therefore, we further have

Pr
[
A({θi}i<τ , dataτ) = θτ

]
Pr

[
A({θi}i<τ , data

′
τ) = θτ

] (A.92)

=
Pr

(
RDτ

(θτ−11)
)

Pr
(
R

D
′
τ
(θτ−11)

) Pr
(
Dτ

)
Pr

(
D
′
τ

) Pr
(
LDτ

(θτ−12)
)

Pr
(
L
D
′
τ
(θτ−12)

) × Pr
(
RDref

(θτ−11)
)

Pr
(
R

D
′
ref

(θτ−11)
) Pr

(
Dref

)
Pr

(
D
′
ref

) Pr
(
LDref

(θτ−12)
)

Pr
(
L
D
′
ref

(θτ−12)
)

In addition, with D = {D1, . . . , Dm}, we also have that:

∃!Dτ ∈ D s.t. xe ∈ Dτ and ∃!D′τ ∈ D
′
s.t. x′e ∈ D

′
τ (A.93)

192

Together with Eq. A.93, by having disjoint and fixed datasets in the episodic memory,

we have that:

(xe ∈ Dτ or xe ∈ Dref), but (xe ∈ Dτ and xe ∈ Dref) (A.94)

Without loss of the generality, we can assume that xe ∈ Dτ : Eqs. A.92 - A.94⇒

Pr
[
A({θi}i<τ , dataτ) = θτ

]
Pr

[
A({θi}i<τ , data

′
τ) = θτ

] =
Pr

(
RDτ

(θτ−11)
)

Pr
(
RD

′
τ
(θτ−11)

) Pr
(
Dτ

)
Pr

(
D
′
τ

) Pr
(
LDτ

(θτ−12)
)

Pr
(
LD

′
τ
(θτ−12)

)
≤ (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2) (A.95)

This is also true when xe ∈ Dref and xe ̸∈ Dτ .

As a result, we have

∀τ ∈ [1,m] :
Pr

[
A({θi}i<τ , dataτ) = θτ

]
Pr

[
A({θi}i<τ , data

′
τ) = θτ

] ≤ (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2) (A.96)

After one training step, Dτ will be placed into the episodic memory Mτ to create

the memory Mτ+1. In the next training task, Dτ can be randomly selected to compute

the episodic gradient gref . This computation does not incur any additional privacy budget

consumption for the dataset Dτ , by applying the Theorem 4 in [151], which allows us

to compute gradients across an unlimited number of training steps using RDτ
(θτ−11) and

LDτ
(θτ−12). Therefore, if the same privacy budget is used for all the training tasks in T, we

will have only one privacy loss for every tuple in all the tasks. The optimization in one task

does not affect the DP guarantee of any other tasks. Consequently, we have

∄ϵ′ < (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2),∃i ≤ m

s.t. Pr
[
A({θj}j<i, datai) = θi

]
≤ eϵ

′
Pr

[
A({θj}j<i, data

′
i) = θi

]
(A.97)

Eq. A.97 can be further used to prove the Lifelong DP protection. Given datam where

Mt = Dt in Alg. 3, we have that

Pr
[
A(datam) = {θi}i∈[1,m]

]
=

m∏
i=1

Pr
[
A({θj}j<i, datai) = θi

]
(A.98)

193

Therefore, we have

Pr
[
A(datam) = {θi}i∈[1,m]

]
Pr

[
A(data′m) = {θi}i∈[1,m]

] =

m∏
i=1

Pr
[
A({θj}j<i, datai) = θi

]
Pr

[
A({θj}j<i, data

′
i) = θi

] (A.99)

=
m∏
i=1

[Pr
(
RDi

(θi−11)
)

Pr
(
R

D
′
i
(θi−11)

) Pr
(
Di

)
Pr

(
D
′
i

) Pr
(
LDi

(θi−12)
)

Pr
(
L
D
′
i
(θi−12)

) × Pr
(
R

D
i
ref

(θi−11)
)

Pr
(
R

D
i′
ref

(θi−11)
) Pr

(
D

i
ref

)
Pr

(
D

i′

ref

) Pr
(
L
D

i
ref

(θi−12)
)

Pr
(
L
D

i′
ref

(θi−12)
)]

where data′m = {D, {M ′
i}i∈[1,m]}, and M ′

i = D
′
i in Alg. 3.

Since all the datasets are non-overlapping, i.e., ∩i∈[1,m]Di = ∅, given an arbitrary

tuple xe, we have that

∃!Dτ ∈ D s.t. xe ∈ Dτ and ∃!D′τ ∈ D
′
s.t. x′e ∈ D

′
τ (A.100)

Thus, the optimization of {θi1, θi2} = argminθ1,θ2 [RDi
(θi−11) + LDi

(θi−12)] for any

other task i different from τ does not affect the privacy protection of xe in D. From Eqs.

A.99 and A.100, we have

Pr
[
A(datam) = {θi}i∈[1,m]

]
Pr

[
A(data′m) = {θi}i∈[1,m]

] (A.101)

=
Pr

(
RDτ

(θτ−11)
)

Pr
(
R

D
′
τ
(θτ−11)

) Pr
(
Dτ

)
Pr

(
D
′
τ

) Pr
(
LDτ

(θτ−12)
)

Pr
(
L
D
′
τ
(θτ−12)

) × m∏
i=1

Pr
(
R

D
i
ref

(θi−11)
)

Pr
(
R

D
i′
ref

(θi−11)
) Pr

(
D

i
ref

)
Pr

(
D

i′

ref

) Pr
(
L
D

i
ref

(θi−12)
)

Pr
(
L
D

i′
ref

(θi−12)
)

The worse privacy leakage case to xe is that Dτ is used in every D
i

ref , i.e., τ = 1 and

∀i ∈ [2,m] : D
i

ref = Dτ , with D
1

ref = ∅. Meanwhile, the least privacy leakage case to xe is

that Dτ is not used in any D
i

ref , i.e., ∀i ∈ [2,m] : D
i

ref ̸= Dτ , with D
1

ref = ∅. In order to

bound the privacy loss, we consider the worse case; therefore, from Eq. A.101, we have

Pr
[
A(datam) = {θi}i∈[1,m]

]
Pr

[
A(data′m) = {θi}i∈[1,m]

] ≤ m∏
i=1

Pr
(
RDτ

(θi−11)
)

Pr
(
RD

′
τ
(θi−11)

) Pr
(
Dτ

)
Pr

(
D
′
τ

) Pr
(
LDτ

(θi−12)
)

Pr
(
LD

′
τ
(θi−12)

) (A.102)

Eq. A.102 is equivalent to the continuously training of our model by optimizing R

and L with Dτ used as both the current task and the episodic memory, across m steps. By

following the Theorem 4 in [151], the privacy budget is not accumulated across training

194

steps. Therefore, we have that

∀m ∈ [1,∞) :
Pr

[
A(datam) = {θi}i∈[1,m]

]
Pr

[
A(data′m) = {θi}i∈[1,m]

] ≤ m∏
i=1

Pr
(
RDτ

(θi−11)
)

Pr
(
RD

′
τ
(θi−11)

) Pr
(
Dτ

)
Pr

(
D
′
τ

) Pr
(
LDτ

(θi−12)
)

Pr
(
LD

′
τ
(θi−12)

)
=

Pr
(
RDτ

(θ1)
)

Pr
(
RD

′
τ
(θ1)

) Pr
(
Dτ

)
Pr

(
D
′
τ

) Pr
(
LDτ

(θ2)
)

Pr
(
LD

′
τ
(θ2)

) ≤ (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2) (A.103)

In the least privacy leakage case, with ∀τ ≤ m, we have that

Pr
[
A(dataτ) = {θi}i∈[1,τ]

]
Pr

[
A(data′τ) = {θi}i∈[1,τ]

] ≥ Pr
[
A({θi}i<τ , dataτ) = θτ

]
Pr

[
A({θi}i<τ , data

′
τ) = θτ

] ≥ (ϵ1 +
ϵ1
γx

+
ϵ1
γ
+ ϵ2)

(A.104)

As a result, we have that

∄(ϵ′ < ϵ, τ ≤ m) : Pr
[
A(dataτ) = {θi}i∈[1,τ]

]
≤ eϵ

′
Pr

[
A(data′τ) = {θi}i∈[1,τ]

]
(A.105)

where ϵ = (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2).

From Eqs. A.103 and A.105, we have that Alg. 3 achieves (ϵ1 + ϵ1/γx + ϵ1/γ +

ϵ2)-Lifelong DP in learning {θi}i∈[1,m] = {θi1, θi2}i∈[1,m]. Theorem 10 does hold.

A.28 L2DP-ML with Streaming Batch Training

A.29 HARW Dataset

Data Collection. We utilize Android smartphones to collect smartphone sensor data “in

the wild” from university students as subjects for the following reasons: (1) University

students should have relatively good access to the smartphones and related technologies; (2)

University students should be more credible and easier to be motivated than other sources

(e.g., recruiting test subjects on crowd-sourcing websites); and (3) It will be easier for

our team to recruit and distribute rewards to students. We launched two data collection

runs at two universities for three months each. During the course of three months, we let

the participants to collect data and labels by themselves (in the wild), and only intervene

through reminding emails if we saw a decline in the amount of daily activities. A total of

116 participants were recorded after the two data collection runs.

195

Data Processing. For the demonstration purpose of this paper, we use only

accelerometer data. Our data processing consists of the following steps: (1) Any duplicated

data points (e.g., data points that have the same timestamp) are merged by taking the average

of their sensor values; (2) Using 300 milliseconds as the threshold, continuous data sessions

are identified and separated by breaking up the data sequences at any gap that is larger than

the threshold; (3) Data sessions that have unstable or unsuitable sampling rates are filtered

out. We only keep the data sessions that have a stable sampling rate of 5Hz, 10Hz, 20Hz, or

50Hz; (4) The label sessions that are associated with each data session (if any) are identified

from the raw labels. Note that the label sessions are also filtered with the following two

criteria to ensure good quality: (a) The first 10 seconds and the last 10 seconds of each label

session are trimmed, due to the fact that users were likely operating the phone during these

time periods; (b) Any label session longer than 30 minutes is trimmed down to 30 minutes,

in order to mitigate the potential inaccurate labels due to users’ negligence (forgot to turn

off labeling); and (5) We sample data segments at the size of 100 data points with sliding

windows. Different overlapping percentages were used for different classes and different

sampling rates. The majority classes have 25% overlapping to reduce the number of data

segments, while the minority classes have up to 90% overlapping to increase the available

data segments. The same principle is applied to sessions with different sampling rates. We

sample 15% of data for testing, while the rest are used for training (Table A.4).

Data Normalization. In our L2DP-ML models, we normalize the accelerometer data

with the following steps: (1) We compute the mean and variance of each axis (i.e., X , Y ,

and Z) using only training data to avoid information leakage from the training phase to the

testing phase. Then, both training and testing data are normalized with z-score, based on

the mean and variance computed from training data; (2) Based on this, we clip the values

in between [min,max] = [−2, 2] for each axis, which covers at least 90% of possible data

values; and (3) Finally, all values are linearly scaled to [−1, 1] to finish the normalization

process, as x = 2× [x−min
max−min

− 1/2].

196

Table A.4 Statistics of the HARW Dataset

Class Description N training N testing

Walking Walking 49376 8599

Sitting Exclude in vehicle 52448 8744

In-Vehicle, Car Driving, sitting 49536 8586

Cycling 14336 2537

Workout, Running 1984 319

*All classes exclude phone position = “Table”

In the HARW dataset, each data tuple includes 100 values × 3 channels of the

accelerometer sensor, i.e., 300 values in total as a model input. The classification output

includes five classes of human activities, i.e., walking, sitting, in car, cycling, and running

(Table A.4, Appx. A.29). Given 20Hz, 5Hz, 10Hz, and 50Hz tasks, we correspondingly

have 881, 7553, 621, and 156,033 data points in training and 159, 1,297, 124, and 27,134

data points in testing.

Baseline Model Performance. We conducted experiments on the HARW dataset

in a centralized training on the whole dataset including all the data sampling rates using

following baselines: 1) CNN-based model with the numbers of convolution-channels set to

32, 64, 128, denoted as CNN-32, CNN-64, CNN-128, respectively; 2) Bidirectional LSTM

(BiLSTM); and 3) CNN-based models proposed by [90], with additional features (CNN-Ig)

and without additional features (CNN-Ig-featureless) using the Ignatov’s recommended

settings in [90].

As in Table A.5, our model trained on each task independently achieves competitive

results with these baselines under a rigorous DP budget (ϵ = 0.2), i.e., 77%, 76%, 75%,

58%, on the 5Hz, 10Hz, 20Hz, and 50Hz learning tasks respectively. Although the number

of 50Hz training data points is larger than other tasks, the data labels are noisy and collected

197

Table A.5 Baseline Results On The HARW Dataset

Model Accuracy (%)

CNN-32 81.86

CNN-64 82.49

CNN-128 82.62

BiLSTM 78.68

CNN-Ig 76.39

CNN-Ig-featureless 77.08

in short-time periods due to the limited computational resources on mobile devices; thus,

the model performance in the 50Hz learning task is lower.

A.30 Hyper-parameter Grid-Search and Supplemental Results

Model Configuration. In the permuted MNIST and the Split MNIST datasets, we used

three convolutional layers (32, 64, and 96 features). Each hidden neuron connects with

a 5x5 unit patch. A fully-connected layer has 512 units. In the permuted CIFAR-10 and

the Split CIFAR-10/100 datasets, we used a Resnet-18 network (64, 64, 128, 128, and 160

features) with kernels (4, 3, 3, 3, and 3). One fully-connected layer has 256 neurons. In the

HARW dataset, we used three convolutional layers (32, 64, and 96 features). Each hidden

neuron connects with a 2x2 unit patch. A fully-connected layer has 128 units.

In the Split CIFAR-10 and CIFAR-100 setting, there are 11 tasks, in which the first

task is the full CIFAR-10 classification task, and the remaining 10 tasks consist of splits

from the CIFAR-100 dataset. Each split contains 10 classes from the CIFAR-100. We adopt

this approach from [199]. In the Split MNIST setting, there are 5 tasks, in which each task

consists of 2 classes from the MNIST dataset. There is no overlapping classes between tasks

in the Split CIFAR-10 and CIFAR-100, and in the Split MNIST.

198

In order to be fair in comparison with the L2DP-ML and A-gem mechanisms, we

conducted experiments over a wide range of privacy hyper-parameters such as privacy budget

(ϵ), noise scale (z), and sensitivity to select the best hyper-parameters in NaiveGaussian

mechanism in our experiments. The search ranges and their results (i.e., average accuracy

over all tasks) are provided in Table A.6. We reported the best results, i.e., highest average

accuracy over all tasks, of the hyper-parameter grid-search experiments.

Table A.6 Average Accuracy (%) in Hyper-parameter Grid-search of NaiveGaussian
Mechanism Given the Permuted CIFAR-10 Dataset

Privacy budget (ϵ)
Noise scale (z)

Clipping bound 0.01 0.1 1.0

z = 2.5 13.68 11.23 10.26

ϵ = 4.0

z = 2.4 12.66 11.99 9.98
z = 2.3 11.56 11.40 10.09
z = 2.2 13.79 11.99 10.30
z = 2.1 13.50 11.39 10.11
z = 2.0 15.12 12.94 10.26

ϵ = 7.0

z = 1.9 14.67 12.39 10.34
z = 1.8 14.32 11.79 10.28
z = 1.7 15.26 12.55 11.33
z = 1.6 14.64 12.28 11.04
z = 1.5 14.79 12.23 10.80

ϵ = 10.0

z = 1.4 15.71 13.34 10.66
z = 1.3 15.12 12.96 11.49
z = 1.2 14.65 12.05 10.64
z = 1.1 11.42 11.15 10.14

199

Table A.7 Average Forgetting Measure

L2DP-ML A-gem

Split MNIST
ϵ = 0.5 0.056 ± 0.00324

0.195 ± 0.00941
ϵ = 1 0.019 ± 0.00526

Split CIFAR-10/100

ϵ = 4 0.027 ± 0.00264

0.195 ± 0.00688

ϵ = 4 (2 epochs) 0.033 ± 0.00276

ϵ = 4 (3 epochs) 0.046 ± 0.00307

ϵ = 7 0.027 ± 0.00165

ϵ = 10 0.021 ± 0.00429

Table A.8 Average Forgetting of the Order of [20Hz, 5Hz, 10Hz, 50Hz]

L2DP-ML (ϵ = 0.2) L2DP-ML (ϵ = 0.5) L2DP-ML (ϵ = 1)
0.0928 ± 5.34e-5 0.0921 ± 8.64e-5 0.089 ± 8.64e-5

HARW (20Hz - A-gem Balanced A-gem Balanced L2DP-ML (ϵ = 0.2)
5Hz - 10Hz - 50Hz) 0.0866 ± 1.1e-4 0.1723 ± 0.00066 0.144 ± 0.0031

L2DP-ML (ϵ = 0.2, 2 epochs) L2DP-ML (ϵ = 0.2, 5 epochs) Heterogeneous L2DP-ML (ϵ = 0.2)
0.1161 ± 0.0003 0.1792 ± 0.0017 0.1395 ± 0.00026

200

((a)) ϵX = 1.0 ((b)) ϵX = 5.0

((c)) ϵX = 10.0

Figure A.6 AUC values of each algorithm applied on the gradients △θut in the CelebA
dataset.

201

((a)) l = 5 and ϵX = 0.1 ((b)) l = 5 and ϵX = 1.0 ((c)) l = 5 and ϵX = 2.0

((d)) l = 20 and ϵX = 0.1 ((e)) l = 20 and ϵX = 1.0 ((f)) l = 20 and ϵX = 2.0

((g)) l = 100 and ϵX = 0.1 ((h)) l = 100 and ϵX = 1.0 ((i)) l = 100 and ϵX = 2.0

((j)) l = 1, 000 and ϵX = 0.1 ((k)) l = 1, 000 and ϵX = 1.0 ((l)) l = 1, 000 and ϵX = 2.0

Figure A.7 Randomization probability q (p = 1− q) as a function of r with fixed ϵX .

202

((a)) r = 10 and ϵX = 0.1 ((b)) r = 10 and ϵX = 1.0 ((c)) r = 10 and ϵX = 2.0

((d)) r = 100 and ϵX = 0.1 ((e)) r = 100 and ϵX = 1.0 ((f)) r = 100 and ϵX = 2.0

((g)) r = 1, 000 and ϵX = 0.1 ((h)) r = 1, 000 and ϵX = 1.0 ((i)) r = 1, 000 and ϵX = 2.0

((j)) r = 10, 000 and ϵX = 0.1 ((k)) r = 10, 000 and ϵX = 1.0 ((l)) r = 10, 000 and ϵX = 2.0

Figure A.8 Randomization probability qi (pi = 1− qi) as a function of l with fixed r and ϵ.

203

Figure A.9 RMSE comparison as a function of ϵX .

Figure A.10 Expected error comparison between ScalableRR and OME.

((a)) ϵX = 0.1 ((b)) ϵX = 1.0 ((c)) ϵX = 2.0

Figure A.11 Expected error at the bit-level as a function of ϵX with r = 10, 000.

204

((a)) d = 5 ((b)) d = 100 ((c)) d = 10, 000

Figure A.12 Expected error at the bit-level as a function of d with ϵX = 1.0.

((a)) ϵX = 0.1 ((b)) ϵX = 1.0 ((c)) ϵX = 2.0

Figure A.13 Expected error at the bit-level (e.g., the sign bit (highest important bit) and the
lowest fraction bit (lowest important bit) as a function of d with r = 1.

((a)) ϵX = 0.1 ((b)) ϵX = 1.0 ((c)) ϵX = 2.0

Figure A.14 Randomization probability qi given r = 10, 000.

205

Figure A.15 Accuracy of LDP algorithms applied on the embedding features e in the AG,
SEC, and FEMNIST datasets.

Figure A.16 Accuracy of LDP algorithms applied on the gradients△θut in the AG, SEC,
and FEMNIST datasets.

Figure A.17 Accuracy of LDP algorithms applied on the gradients△θut with the anonymizer
[191].

Figure A.18 Accuracy of each mechanism applied on labels.

206

Figure A.19 AUC values of LDP algorithms applied on the gradients△θut in the AG, SEC,
and FEMNIST datasets.

Figure A.20 AUC values of each mechanism applied on labels in the AG, SEC, and
FEMNIST datasets.

Figure A.21 SSE values as a function of ϵ and τ

207

100.0 50.0 20.0 10.0 1.0 0.1
Privacy budget ε

0

25

50

75

A
tt

ac
k

su
cc

es
s

ra
te

(%
)

1.0% poisoned

1.5% poisoned

2% poisoned

((a)) Contagio

100.0 50.0 20.0 10.0 1.0 0.1
Privacy budget ε

0

20

40

60

A
tt

ac
k

su
cc

es
s

ra
te

(%
)

1.0% poisoned

2.0% poisoned

4.0% poisoned

((b)) Drebin

Figure A.22 Attack success rate as a function of privacy budget ε and the portion of poisoned
samples on the Contagio PDF and Drebin datasets.

Figure A.23 Certified robustness at the training time. The smaller privacy budget ε, the
higher certified accuracy.

208

((a)) SHAP explanation (without XRAND)

((b)) XRAND explanation

Figure A.24 Visualizing the SHAP explanation and our XRAND explanation of test sample
1.

((a)) SHAP explanation (without XRAND)

((b)) XRAND explanation

Figure A.25 Visualizing the SHAP explanation and XRAND explanation of test sample 2.

209

((a)) SHAP explanation (without XRAND)

((b)) XRAND explanation

Figure A.26 Visualizing the SHAP explanation and XRAND explanation of test sample 3.

((a)) ((b)) ((c))

Figure A.27 p value for 2-tail t-tests on the (a) Permuted MNIST (20 tasks), b) Permuted
CIFAR-10 (17 tasks), and (c) HARW (5Hz - 10Hz - 20Hz - 50Hz).

210

Algorithm 7 L2DP-ML with Streaming Batch Training
Input: T={ti}i∈[1,m], {Di}i∈[1,m], batch size λ, privacy budgets: ϵ1 and ϵ2, learning rate ϱ

Output: (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2)-Lifelong DP parameters {θi}i∈[1,m] = {θi1, θi2}i∈[1,m]

1: Draw Noise χ1 ← [Lap(
∆R̃
ϵ1
)]d, χ2 ← [Lap(

∆R̃
ϵ1
)]β , χ3 ← [Lap(

∆L̃
ϵ2
)]|hπ |

2: Randomly Initialize θ = {θ1, θ2}, M1 = ∅, ∀τ ∈ T : Dτ = {xr ← xr +
χ1

λ
}xr∈Dτ ,

hidden layers {h1 +
2χ2

λ
, . . . ,hπ}, where hπ is the last hidden layer

3: for τ ∈ T do

4: B = {B1, . . . , Bn} s.t. ∀B ∈ B : B is a random batch with the size s, B1∩. . .∩Bn =

∅, and B1 ∪ . . . ∪Bn = Dτ

5: for B ∈ B do

6: if τ == 0 then

7: Compute Gradients:

8: g ← {∇θ1RB(θ
τ−1
1),∇θ2LB(θ

τ−1
2)} with the noise χ3

λ

9: Descent: {θτ1 , θτ2} ← {θτ−11 , θτ−12 } − ϱg

10: else

11: Select a batch Be randomly from a set of batches in episodic memory Mτ

12: Compute Gradients:

13: g ← {∇θ1RB(θ
τ−1
1),∇θ2LB(θ

τ−1
2)} with the noise χ3

λ

14: gref ← {∇θ1RBe(θ
τ−1
1),∇θ2LBe(θ

τ−1
2)} with the noise χ3

λ

15: g̃ ← g − g⊤gref
g⊤refgref

gref

16: Descent: {θτ1 , θτ2} ← {θτ−11 , θτ−12 } − ϱg̃

17: end if

18: end for

19: Randomly Select a batch B ∈ B

20: Mτ ←Mτ−1 ∪B

21: end for

211

((a)) ((b)) ((c))

Figure A.28 p value for 2-tail t-tests on the HARW dataset with random task orders: (a)
HARW 50Hz - 20Hz - 10Hz - 5Hz, (b) HARW 20Hz - 50Hz - 5Hz - 10Hz, and (c) HARW
20Hz - 5Hz - 10Hz - 50Hz.

((a)) ((b))

Figure A.29 Average accuracy in the (a) Split MNIST (5 tasks), and b) Split CIFAR-10 and
CIFAR-100 (11 tasks).

212

REFERENCES

[1] Cometomyhead academic news search engine (Retrieved on 01/01/2020). http://
newsengine.di.unipi.it.

[2] Hoeffding’s inequality (Retrieved on 01/01/2021). https://web.stanford.edu/
class/cs229t/2017/Lectures/concentration-slides.pdf.

[3] Induction proofs (retrieved on 01/01/2020). https://www.purplemath.com/
modules/inductn3.htm.

[4] M. Abadi, A. Chu, I. Goodfellow, H.B. McMahan, I. Mironov, K. Talwar, and L. Zhang.
Deep learning with differential privacy. In ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 308–318, 2016.

[5] M. Abadi, U. Erlingsson, I. Goodfellow, H.B. McMahan, I. Mironov, N. Papernot, K. Talwar,
and L. Zhang. On the protection of private information in machine learning systems:
Two recent approches. In IEEE Computer Security Foundations Symposium (CSF),
pages 1–6, 2017.

[6] D. Abati, T. Tomczak, J.and Blankevoort, S. Calderara, R. Cucchiara, and B.E. Bejnordi.
Conditional channel gated networks for task-aware continual learning. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 3931–3940,
2020.

[7] A. Acar, H. Aksu, A.S. Uluagac, and M. Conti. A survey on homomorphic encryption
schemes: Theory and implementation. ACM Computing Surveys (Csur), 51(4):1–35,
2018.

[8] J. Acharya, Z. Sun, and H. Zhang. Hadamard response: Estimating distributions privately,
efficiently, and with little communication. In International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 1120–1129, 2019.

[9] A. Adhikari. Example and feature importance-based explanations for black-box machine
learning models. 2018.

[10] M.G. Alaslani. Convolutional neural network based feature extraction for iris recognition.
International Journal of Computer Science & Information Technology (IJCSIT) Vol,
10, 2018.

[11] M. Aledhari, R. Razzak, R. M. Parizi, and F. Saeed. Federated learning: A survey on
enabling technologies, protocols, and applications. IEEE Access, 8:140699–140725,
2020.

[12] H.S. Anderson and P. Roth. Ember: an open dataset for training static pe malware machine
learning models. arXiv preprint arXiv:1804.04637, 2018.

213

http://newsengine.di.unipi.it
http://newsengine.di.unipi.it
https://web.stanford.edu/class/cs229t/2017/Lectures/concentration-slides.pdf
https://web.stanford.edu/class/cs229t/2017/Lectures/concentration-slides.pdf
https://www.purplemath.com/modules/inductn3.htm
https://www.purplemath.com/modules/inductn3.htm

[13] P. C. M. Arachchige, P. Bertok, I. Khalil, D. Liu, S. Camtepe, and M. Atiquzzaman.
Local differential privacy for deep learning. IEEE Internet of Things Journal,
7(7):5827–5842, 2019.

[14] L. Arras, F. Horn, G. Montavon, K. R. Müller, and W. Samek. “What is relevant in a text
document?”: An interpretable machine learning approach. PloS one, 12(8):e0181142,
2017.

[15] H. Asi, J. Duchi, and O. Javidbakht. Element level differential privacy: The right granularity
of privacy. arXiv preprint arXiv:1912.04042, 2019.

[16] S. Bach, A. Binder, G. Montavon, F. Klauschen, K. R. Müller, and W. Samek. On pixel-wise
explanations for non-linear classifier decisions by layer-wise relevance propagation.
PloS one, 10(7):e0130140, 2015.

[17] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473, 2014.

[18] S. Barlas. Prescription drug abuse hits hospitals hard: Tighter federal steps aim to deflate
crisis. Pharmacy and Therapeutics, 38(9):531, 2013.

[19] R. Bassily and A. Smith. Local, private, efficient protocols for succinct histograms. In ACM
Symposium on Theory of Computing (STOC), pages 127–135, 2015.

[20] R. Bassily, A. Smith, and A. Thakurta. Private empirical risk minimization: Efficient
algorithms and tight error bounds. In IEEE Annual Symposium on Foundations of
Computer Science (FOCS), pages 464–473, 2014.

[21] B. Bebensee. Local differential privacy: a tutorial. arXiv preprint arXiv:1907.11908, 2019.

[22] A. Ben-Israel. A newton-raphson method for the solution of systems of equations. Journal
of Mathematical analysis and applications, 15(2):243–252, 1966.

[23] Gary B.H., Manu R., Tamara B., and Erik L.M. Labeled faces in the wild: A database for
studying face recognition in unconstrained environments. Technical Report 07-49,
University of Massachusetts, Amherst, October 2007.

[24] A. Bhowmick, J. Duchi, J. Freudiger, G. Kapoor, and R. Rogers. Protection against
reconstruction and its applications in private federated learning. arXiv preprint
arXiv:1812.00984, 2018.

[25] S. Bian, T. Wang, M. Hiromoto, Y. Shi, and T. Sato. Ensei: Efficient secure inference
via frequency-domain homomorphic convolution for privacy-preserving visual
recognition. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 9403–9412, 2020.

[26] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečnỳ, H. B. McMahan, V. Smith, and
A. Talwalkar. Leaf: A benchmark for federated settings. arXiv preprint:1812.01097,
2018.

214

[27] H. Cao, S. Liu, R. Zhao, and X. Xiong. Ifed: A novel federated learning framework for local
differential privacy in power internet of things. International Journal of Distributed
Sensor Networks, 16(5):1550147720919698, 2020.

[28] N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee, A. Roberts,
T. Brown, D. Song, U. Erlingsson, et al. Extracting training data from large language
models. In USENIX Security Symposium, volume 6, pages 2633–2650, 2021.

[29] A. Chaudhry, P.K. Dokania, T. Ajanthan, and P.H.S. Torr. Riemannian walk for incremental
learning: Understanding forgetting and intransigence. In European Conference on
Computer Vision (ECCV), pages 532–547, 2018.

[30] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny. Efficient lifelong learning with
a-gem. International Conference on Learning Representations (ICLR), 2019.

[31] F. Chen, Y.C. Wang, B. Wang, and C.C.J Kuo. Graph representation learning: a survey.
Asia-Pacific Signal and Information Processing Association (APSIPA) Transactions
on Signal and Information Processing, 9, 2020.

[32] A. Cheu, A. Smith, J. Ullman, D. Zeber, and M. Zhilyaev. Distributed differential privacy
via shuffling. In International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), pages 375–403, 2019.

[33] E. Choi, A. Schuetz, W.F. Stewart, and J. Sun. Using recurrent neural network models for
early detection of heart failure onset. Journal of the American Medical Informatics
Association, 24(2):361–370, 2017.

[34] H. Choi and S. Park. A survey of machine learning-based system performance optimization
techniques. Applied Sciences, 11(7):3235, 2021.

[35] C.J. Clopper and E.S. Pearson. The use of confidence or fiducial limits illustrated in the
case of the binomial. Biometrika, 26(4):404–413, 1934.

[36] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik. Emnist: Extending mnist to handwritten
letters. In International Joint Conference on Neural Networks (IJCNN), pages
2921–2926, 2017.

[37] J. Cohen, E. Rosenfeld, and Z. Kolter. Certified adversarial robustness via randomized
smoothing. In International Conference on Machine Learning (ICML), pages 1310–
1320, 2019.

[38] R. Confalonieri, F. M. delPrado, S. Agramunt, D. Malagarriga, D. Faggion, T. Weyde, and
T. R. Besold. An ontology-based approach to explaining artificial neural networks.
arXiv preprint arXiv:1906.08362, 2019.

[39] G. Cormode, S. Jha, T. Kulkarni, N. Li, D. Srivastava, and T. Wang. Privacy at scale: Local
differential privacy in practice. In International Conference on Management of Data,
pages 1655–1658, 2018.

215

[40] G. Cormode, T. Kulkarni, and D. Srivastava. Marginal release under local differential
privacy. In International Conference on Management of Data, pages 131–146, 2018.

[41] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297,
1995.

[42] Steven D. and Stephen B. CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

[43] D. Danon, M. Arar, D. Cohen-Or, and A. Shamir. Image resizing by reconstruction from
deep features. Computational Visual Media, 7(4), 2021.

[44] K. Das and R.N. Behera. A survey on machine learning: concept, algorithms and
applications. International Journal of Innovative Research in Computer and
Communication Engineering, 5(2):1301–1309, 2017.

[45] L. Derczynski, E. Nichols, M. van Erp, and N. Limsopatham. Results of the WNUT2017
shared task on novel and emerging entity recognition. In Workshop on Noisy
User-generated Text (WNUT), pages 140–147, 2017.

[46] F. Dernoncourt, J.Y. Lee, O. Uzuner, and P. Szolovits. De-identification of patient notes with
recurrent neural networks. Journal of the American Medical Informatics Association,
24(3):596–606, 2017.

[47] P. Desai, P. Lai, N.H. Phan, and M.T. Thai. Continual learning with differential privacy.
In International Conference on Neural Information Processing (ICONIP), pages
334–343, 2021.

[48] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[49] A. Dosovitskiy and T. Brox. Inverting visual representations with convolutional networks.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
4829–4837, 2016.

[50] J. Duchi and R.n Rogers. Lower bounds for locally private estimation via communication
complexity. In Conference on Learning Theory, pages 1161–1191, 2019.

[51] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local privacy and statistical minimax rates.
In IEEE Protocols for secure computations, pages 429–438, 2013.

[52] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Minimax optimal procedures for locally
private estimation. Journal of the American Statistical Association, 113(521):182–
201, 2018.

[53] A. Durrant, M. Markovic, D. Matthews, D. May, J. Enright, and G. Leontidis. The role of
cross-silo federated learning in facilitating data sharing in the agri-food sector. arXiv
preprint arXiv:2104.07468, 2021.

216

[54] J. Dutka. The early history of the factorial function. Archive for history of exact sciences,
pages 225–249, 1991.

[55] C. Dwork. Differential privacy: A survey of results. In Theory and Applications of Models
of Computation, pages 1–19, 2008.

[56] C. Dwork and J. Lei. Differential privacy and robust statistics. In ACM Symposium on
Theory of Computing, pages 371–380, 2009.

[57] C. Dwork and J. Lei. Differential privacy and robust statistics. In ACM Symposium on
Theory of Computing, pages 371–380, 2009.

[58] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private
data analysis. In Theory of cryptography conference, pages 265–284, 2006.

[59] C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Foundations
and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

[60] C. Dwork, A. Roth, et al. The algorithmic foundations of differential privacy. FnT-TCS,
9:211–407, 2014.

[61] S. Ebrahimi, F. Meier, R. Calandra, T. Darrell, and M. Rohrbach. Adversarial continual
learning. In European Conference on Computer Vision (ECCV), pages 386–402,
2020.

[62] Ú. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan, K. Talwar, and A. Thakurta.
Amplification by shuffling: From local to central differential privacy via anonymity.
In ACM-SIAM Symposium on Discrete Algorithms, pages 2468–2479, 2019.

[63] U. Erlingsson, V. Pihur, and A. Korolova. Rappor: Randomized aggregatable privacy-
preserving ordinal response. In ACM SIGSAC Conference on Computer and
Communications Security, pages 1054–1067, 2014.

[64] O. Etzioni, M. Banko, S. Soderland, and D.S. Weld. Open information extraction from the
web. Communications of the ACM, 51(12):68–74, 2008.

[65] A. Fader, S. Soderland, and O. Etzioni. Identifying relations for open information extraction.
In Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1535–1545, 2011.

[66] L. Fan. Image pixelization with differential privacy. In IFIP Annual Conference on Data
and Applications Security and Privacy, pages 148–162, 2018.

[67] S. Farquhar and Y. Gal. Differentially private continual learning. Privacy in Machine
Learning and AI workshop at ICML, 2018.

[68] E. W. Forgy. Cluster analysis of multivariate data: efficiency versus interpretability of
classifications. Biometrics, 21:768–769, 1965.

[69] L. Freddy and W. Jiewen. Semantic explanations of predictions. arXiv:1805.10587v1, 2018.

217

[70] M. Fredrikson, S. Jha, and T. Ristenpart. Model inversion attacks that exploit confidence
information and basic countermeasures. In ACM SIGSAC Conference on Computer
and Communications Security, pages 1322–1333, 2015.

[71] S. Gao, M.T. Young, J.X. Qiu, H.J. Yoon, J.B. Christian, P.A. Fearn, G.D. Tourassi, and
A. Ramanthan. Hierarchical attention networks for information extraction from
cancer pathology reports. Journal of the American Medical Informatics Association,
25(3):321–330, 2018.

[72] C. Gentry et al. A fully homomorphic encryption scheme, volume 20. 2009.

[73] B. Ghazi, N. Golowich, R. Kumar, P. Manurangsi, and C. Zhang. On deep learning with
label differential privacy. arXiv preprint arXiv:2102.06062, 2021.

[74] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing.
Cryptonets: Applying neural networks to encrypted data with high throughput
and accuracy. In International Conference on Machine Learning (ICML), pages
201–210, 2016.

[75] O. Goldreich. Secure multi-party computation. Manuscript. Preliminary version, 1998.

[76] S. Gopi, Y.T. Lee, and L. Wutschitz. Numerical composition of differential privacy.
Conference on Neural Information Processing Systems (NeurIPS), 34, 2021.

[77] S. Grollmisch, E. Cano, C. Kehling, and M. Taenzer. Analyzing the potential of pre-trained
embeddings for audio classification tasks. In European Signal Processing Conference
(EUSIPCO), 2021.

[78] A. Haeberlen, B. C. Pierce, and A. Narayan. Differential privacy under fire. In USENIX
Security Symposium, volume 33, 2011.

[79] J. Hamm, Y. Cao, and M. Belkin. Learning privately from multiparty data. In International
Conference on Machine Learning (ICML), pages 555–563, 2016.

[80] J. He and F. Zhu. Online continual learning via candidates voting. In IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 3154–3163, 2022.

[81] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778,
2016.

[82] M. A. Heikkilä, A. Koskela, K. Shimizu, S. Kaski, and A. Honkela. Differentially private
cross-silo federated learning. arXiv preprint arXiv:2007.05553, 2020.

[83] M. Helmstaedter, K.L. Briggman, S.C. Turaga, V. Jain, H.S. Seung, and W. Denk.
Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature,
500(7461):168–174, 2013.

[84] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–
1780, 1997.

218

[85] M. Honnibal and I. Montani. Spacy 2: Natural language understanding with bloom
embeddings, convolutional neural networks and incremental parsing. To appear,
7(1):411–420, 2017.

[86] M.Z. Horváth, M.N. Mueller, M. Fischer, and M. Vechev. Boosting randomized smoothing
with variance reduced classifiers. In International Conference on Learning
Representations (ICLR), 2022.

[87] J. Howard and S. Ruder. Universal language model fine-tuning for text classification. ACL,
page 328–339, 2018.

[88] H. Hu, N.H. Phan, J. Geller, S. Iezzi, H.T. Vo, D. Dou, and S.A. Chun. An ensemble deep
learning model for drug abuse detection in sparse twitter-sphere. In MedInfo, pages
163–167, 2019.

[89] X. Huang, Y. Ding, Z. L. Jiang, S. Qi, X. Wang, and Q. Liao. DP-FL: a novel differentially
private federated learning framework for the unbalanced data. World Wide Web,
23(4):2529–2545, 2020.

[90] A. Ignatov. Real-time human activity recognition from accelerometer data using
convolutional neural networks. Applied Soft Computing, 62:915–922, 2018.

[91] C. Ivan. Convolutional neural networks on randomized data. In CVPR Workshops, pages
1–8, 2019.

[92] M. James, W. Sarah, D. Jon, S. Jimeng, and E. Jacob. Explainable prediction of medical
codes from clinical text. CoRR, abs/1802.05695, 2018.

[93] J. Jia, X. Cao, and N. Z. Gong. Intrinsic certified robustness of bagging against data
poisoning attacks. AAAI Conference on Artificial Intelligence, 35(9):7961–7969,
2021.

[94] Y. Jia, J. Bailey, K. Ramamohanarao, C. Leckie, and M.E. Houle. Improving the quality of
explanations with local embedding perturbations. In ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 875–884, 2019.

[95] X. Jiang, H. Hu, T. On, P. Lai, V.D. Mayyuri, A. Chen, D.M. Shila, A. Larmuseau, R. Jin,
and C. Borcea. Flsys: Toward an open ecosystem for federated learning mobile apps.
IEEE Transactions on Mobile Computing, 2022.

[96] P. Kairouz, K. Bonawitz, and D. Ramage. Discrete distribution estimation under local privacy.
In International Conference on Machine Learning (ICML), pages 2436–2444, 2016.

[97] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz,
Z. Charles, G. Cormode, et al. Advances and open problems in federated learning.
Foundations and Trends in Machine Learning, 2021.

[98] B. Kieffer, M. Babaie, S. Kalra, and H.R. Tizhoosh. Convolutional neural networks for
histopathology image classification: Training vs. using pre-trained networks. In
IPTA, pages 1–6, 2017.

219

[99] H. Kim, J. Park, M. Bennis, and S. L. Kim. Blockchained on-device federated learning.
IEEE Communications Letters, 24(6):1279–1283, 2019.

[100] D.P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[101] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A.A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. National Academy of Sciences, 114(13):3521–3526,
2017.

[102] H. Knublauch, R.W. Fergerson, N.F. Noy, and M.A. Musen. The protégé owl plugin: An
open development environment for semantic web applications. In International
Semantic Web Conference (ISWC), pages 229–243, 2004.

[103] K. Kourou, T.P. Exarchos, K.P. Exarchos, M.V. Karamouzis, and D.I. Fotiadis. Machine
learning applications in cancer prognosis and prediction. Computational and
structural biotechnology journal, 13:8–17, 2015.

[104] R. Kumar, Z. Xiaosong, R.U. Khan, J. Kumar, and I. Ahad. Effective and explainable
detection of android malware based on machine learning algorithms. In International
Conference on Computing and Artificial Intelligence (ICCAI), pages 35–40, 2018.

[105] S. Laghmati, A. Tmiri, and B. Cherradi. Machine learning based system for prediction
of breast cancer severity. In International Conference on Wireless Networks and
Mobile Communications (WINCOM), pages 1–5, 2019.

[106] P. Lai, N.H. Phan, H. Hu, A. Badeti, D. Newman, and D. Dou. Ontology-based interpretable
machine learning for textual data. International Joint Conference on Neural
Networks (IJCNN), 2020.

[107] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[108] M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana. Certified robustness to
adversarial examples with differential privacy. In IEEE Symposium on Security and
Privacy (SP), pages 656–672, 2019.

[109] M. Lécuyer, R. Spahn, K. Vodrahalli, R. Geambasu, and D. Hsu. Privacy accounting and
quality control in the sage differentially private ml platform. In ACM Symposium on
Operating Systems Principles, pages 181–195, 2019.

[110] J. Lee and D. Kifer. Concentrated differentially private gradient descent with adaptive per-
iteration privacy budget. In ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1656–1665, 2018.

[111] L. Li, Y. Fan, M. Tse, and K.Y. Lin. A review of applications in federated learning.
Computers & Industrial Engineering, 149:106854, 2020.

220

[112] N. Li and Q. Ye. Mobile data collection and analysis with local differential privacy. In IEEE
International Conference on Mobile Data Management (MDM), pages 4–7, 2019.

[113] S. Lipovetsky and M. Conklin. Analysis of regression in game theory approach. Applied
Stochastic Models in Business and Industry, 17(4):319–330, 2001.

[114] H. Liu, F. Sun, and B. Fang. Lifelong learning for heterogeneous multi-modal tasks. In
International Conference on Robotics and Automation (ICRA), pages 6158–6164,
2019.

[115] R. Liu, Y. Cao, H. Chen, R. Guo, and M. Yoshikawa. Flame: Differentially private federated
learning in the shuffle model. In Conference on Artificial Intelligence (AAAI), pages
8688–8696, 2021.

[116] R. Liu, Y. Cao, M. Yoshikawa, and H. Chen. Fedsel: Federated sgd under local differential
privacy with top-k dimension selection. In International Conference on Database
Systems for Advanced Applications, pages 485–501, 2020.

[117] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In IEEE
International Conference on Computer Vision (ICCV), pages 3730–3738, 2015.

[118] D. Lopez-Paz and M.A. Ranzato. Gradient episodic memory for continual learning.
Conference on Neural Information Processing Systems (NeurIPS), 30, 2017.

[119] S.M. Lundberg and S.I. Lee. A unified approach to interpreting model predictions. In
Conference on Neural Information Processing Systems (NeurIPS), pages 4768–4777,
2017.

[120] L. Lyu, X. He, and Y. Li. Differentially private representation for nlp: Formal guarantee and
an empirical study on privacy and fairness. Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2020.

[121] L. Lyu, Y. Li, X. He, and T. Xiao. Towards differentially private text representations. In
ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 1813–1816, 2020.

[122] D. Martens, B. Baesens, T. Van G., and J. Vanthienen. Comprehensible credit scoring
models using rule extraction from support vector machines. European journal of
Operational Research (EJOR), 183(3):1466–1476, 2007.

[123] D. Martens and F. Provost. Explaining data-driven document classifications. 2013.

[124] A. Martins and R. Astudillo. From softmax to sparsemax: A sparse model of attention and
multi-label classification. In International Conference on Machine Learning (ICML),
pages 1614–1623, 2016.

[125] B. Maschler, T.T.H. Pham, and M. Weyrich. Regularization-based continual learning for
anomaly detection in discrete manufacturing. Procedia CIRP, 104:452–457, 2021.

221

[126] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-
efficient learning of deep networks from decentralized data. In Artificial Intelligence
and Statistics, pages 1273–1282, 2017.

[127] H.B. McMahan, E. Moore, D. Ramage, and B.A. y Arcas. Federated learning of deep
networks using model averaging. arXiv:1602.05629, 2016.

[128] H.B. McMahan, D. Ramage, K. Talwar, and L. Zhang. Learning differentially private
recurrent language models. International Conference on Learning Representations
(ICLR), 2017.

[129] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov. Exploiting unintended feature
leakage in collaborative learning. In 2019 IEEE Symposium on Security and Privacy
(SP), pages 691–706, 2019.

[130] S. Merity, N. S. Keskar, and R. Socher. Regularizing and optimizing LSTM language
models. International Conference on Learning Representations, 2018.

[131] T. Mikolov, K. Chen, G. S. Corrado, and J. A. Dean. Computing numeric representations of
words in a high-dimensional space, 2015. US Patent 9,037,464.

[132] T. Mikolov, A. Deoras, S. Kombrink, L. Burget, and J. Černockỳ. Empirical evaluation and
combination of advanced language modeling techniques. In International Speech
Communication Association, 2011.

[133] T. Mikolov, S. Kombrink, L. Burget, J. Černockỳ, and S. Khudanpur. Extensions of recurrent
neural network language model. In IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 5528–5531, 2011.

[134] S. Milli, L. Schmidt, A.D. Dragan, and M. Hardt. Model reconstruction from model
explanations. In Conference on Fairness, Accountability, and Transparency (FAccT),
pages 1–9, 2019.

[135] R. Miotto, L. Li, B.A. Kidd, and J.T. Dudley. Deep patient: an unsupervised representation
to predict the future of patients from the electronic health records. Scientific reports,
6(1):1–10, 2016.

[136] I. Mironov. On significance of the least significant bits for differential privacy. In ACM
Conference on Computer and Communications Security (CCS), pages 650–661,
2012.

[137] I. Mironov. Rényi differential privacy. In Computer Security Foundations Symposium, pages
263–275, 2017.

[138] T. Miura, S. Hasegawa, and T. Shibahara. Megex: Data-free model extraction attack against
gradient-based explainable ai. arXiv preprint arXiv:2107.08909, 2021.

[139] S. Nagrecha, J. Z. Dillon, and N. V. Chawla. Mooc dropout prediction: lessons learned from
making pipelines interpretable. In International Conference on World Wide Web
Companion, pages 351–359, 2017.

222

[140] M. Nasr, S. Song, A. Thakurta, N. Papernot, and N. Carlini. Adversary instantiation: Lower
bounds for differentially private machine learning. arXiv preprint arXiv:2101.04535,
2021.

[141] J. Neyman and E.S. Pearson. Ix. on the problem of the most efficient tests of statistical
hypotheses. Philosophical Transactions of the Royal Society of London. Series A,
Containing Papers of a Mathematical or Physical Character, 231(694-706):289–337,
1933.

[142] T. T. Nguyên, X. Xiao, Y. Yang, S. C. Hui, H. Shin, and J. Shin. Collecting and analyzing data
from smart device users with local differential privacy. arXiv preprint:1606.05053,
2016.

[143] H. Oh and Y. Lee. Exploring image reconstruction attack in deep learning computation
offloading. In International Workshop on Deep Learning for Mobile Systems and
Applications, 2019.

[144] O. Ostapenko, M. Puscas, T. Klein, P. Jahnichen, and M. Nabi. Learning to remember: A
synaptic plasticity driven framework for continual learning. In IEEE / CVF Computer
Vision and Pattern Recognition Conference (CVPR), pages 11321–11329, 2019.

[145] X. Pan, M. Zhang, S. Ji, and M. Yang. Privacy risks of general-purpose language models.
In IEEE SP, pages 1314–1331, 2020.

[146] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman. Towards the science of security and
privacy in machine learning. arXiv preprint arXiv:1611.03814, 2016.

[147] N. Papernot, S. Song, I. Mironov, A. Raghunathan, K. Talwar, and Ú. Erlingsson. Scalable
private learning with pate. International Conference on Learning Representations
(ICLR), 2018.

[148] J. Pennington, R. Socher, and C.D. Manning. Glove: Global vectors for word representation.
In Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1532–1543, 2014.

[149] H. Phan, M.T. Thai, H. Hu, R. Jin, T. Sun, and D. Dou. Scalable differential privacy with
certified robustness in adversarial learning. In International Conference on Machine
Learning (ICML), pages 7683–7694, 2020.

[150] N.H. Phan, T. My, M.S. Devu, and R. Jin. Differentially private lifelong learning. In Privacy
in Machine Learning (PriML), NeurIPS’19 Workshop, 2019.

[151] N.H. Phan, M.T. Thai, H. Hu, R. Jin, T. Sun, and D. Dou. Scalable differential privacy with
certified robustness in adversarial learning. In International Conference on Machine
Learning (ICML), pages 7683–7694, 2020.

[152] N.H. Phan, M. Vu, Y. Liu, R. Jin, D. Dou, X. Wu, and M.T. Thai. Heterogeneous gaussian
mechanism: Preserving differential privacy in deep learning with provable robustness.
International Joint Conference on Artificial Intelligence (IJCAI), 2019.

223

[153] N.H. Phan, Y. Wang, X. Wu, and D. Dou. Differential privacy preservation for deep
auto-encoders: an application of human behavior prediction. In Association for the
Advancement of Artificial Intelligence Conference on Artificial Intelligence (AAAI),
volume 16, pages 1309–1316, 2016.

[154] N.H. Phan, X. Wu, and D. Dou. Preserving differential privacy in convolutional deep belief
networks. Machine learning, 106(9):1681–1704, 2017.

[155] N.H. Phan, X. Wu, H. Hu, and D. Dou. Adaptive laplace mechanism: Differential privacy
preservation in deep learning. In IEEE International Conference on Data Mining
(ICDM), pages 385–394, 2017.

[156] S.M. Plis, D.R. Hjelm, R. Salakhutdinov, E.A. Allen, H.J. Bockholt, J.D. Long, H.J. Johnson,
J.S. Paulsen, J.A. Turner, and V.D. Calhoun. Deep learning for neuroimaging: a
validation study. Frontiers in neuroscience, 8:229, 2014.

[157] P. Qi, Y. Zhang, Y. Zhang, J. Bolton, and C.D. Manning. Stanza: A python natural language
processing toolkit for many human languages. ACL System Demonstration, 2020.

[158] J. Qiu, Q. Wu, G. Ding, Y. Xu, and S. Feng. A survey of machine learning for big data
processing. EURASIP Journal on Advances in Signal Processing, 2016(1):1–16,
2016.

[159] H. Qu, H. Rahmani, L. Xu, B. Williams, and J. Liu. Recent advances of continual learning
in computer vision: An overview. arXiv preprint arXiv:2109.11369, 2021.

[160] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[161] J. Rajasegaran, S. Khan, M. Hayat, F.S. Khan, and M. Shah. itaml: An incremental
task-agnostic meta-learning approach. In IEEE / CVF Computer Vision and Pattern
Recognition Conference (CVPR), pages 13588–13597, 2020.

[162] S. Ramaswamy, O. Thakkar, R. Mathews, G. Andrew, H.B. McMahan, and F. Beaufays.
Training production language models without memorizing user data. arXiv, 2020.

[163] J. Ramos et al. Using TF-IDF to determine word relevance in document queries. In iCML,
volume 242, pages 133–142, 2003.

[164] L. Rasmy, Y. Xiang, Z. Xie, C. Tao, and D. Zhi. Med-bert: pretrained contextualized
embeddings on large-scale structured electronic health records for disease prediction.
NPJ digital medicine, 4(1):1–13, 2021.

[165] S.A. Rebuffi, A. Kolesnikov, G. Sperl, and C.H. Lampert. icarl: Incremental classifier and
representation learning. In IEEE / CVF Computer Vision and Pattern Recognition
Conference (CVPR), pages 2001–2010, 2017.

[166] M.T. Ribeiro, S. Singh, and C. Guestrin. ”Why should i trust you?” explaining the predictions
of any classifier. In ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1135–1144, 2016.

224

[167] M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, and G. Tesauro. Learning to learn
without forgetting by maximizing transfer and minimizing interference. International
Conference on Learning Representations (ICLR), 2019.

[168] R. L. Rivest, L. Adleman, M. L. Dertouzos, et al. On data banks and privacy homomorphisms.
Foundations of secure computation, 4(11):169–180, 1978.

[169] M. Roman, A. Shahid, S. Khan, A. Koubaa, and L. Yu. Citation intent classification using
word embedding. IEEE Access, pages 9982–9995, 2021.

[170] A. Roth. Buying private data at auction: the sensitive surveyor’s problem. ACM SIGecom
Exchanges, 11(1):1–8, 2012.

[171] M. Roumia and S. Steinhubl. Improving cardiovascular outcomes using electronic health
records. Current cardiology reports, 16(2):1–6, 2014.

[172] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and M. Backes. Ml-leaks: Model and
data independent membership inference attacks and defenses on machine learning
models. Network and Distributed System Security, 2019.

[173] E.F. Sang and F. De Meulder. Introduction to the conll-2003 shared task: Language-
independent named entity recognition. CoNLL, 2003.

[174] A. D. Sarwate and L. Sankar. A rate-disortion perspective on local differential privacy. In
Annual Allerton Conference on Communication, Control, and Computing, pages
903–908, 2014.

[175] M. Schmitz, R. Bart, S. Soderland, O. Etzioni, et al. Open language learning for information
extraction. In Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, pages 523–534, 2012.

[176] M. Seif, R. Tandon, and M. Li. Wireless federated learning with local differential privacy.
In IEEE International Symposium on Information Theory, pages 2604–2609, 2020.

[177] R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-cam:
Visual explanations from deep networks via gradient-based localization. In IEEE
International Conference on Computer Vision (ICCV), pages 618–626, 2017.

[178] G. Severi, J. Meyer, S. Coull, and A. Oprea. Explanation-guided backdoor poisoning attacks
against malware classifiers. In USENIX Security Symposium, 2021.

[179] L.S. Shapley. Notes on the n-Person Game — II: The Value of an n-Person Game. Santa
Monica, CA: RAND Corporation, 1951.

[180] H. Shin, J.K. Lee, J. Kim, and J. Kim. Continual learning with deep generative replay.
Conference on Neural Information Processing Systems (NeurIPS), 30, 2017.

[181] R. Shokri and V. Shmatikov. Privacy-preserving deep learning. In ACM Conference on
Computer and Communications Security (CCS), 2015.

225

[182] R. Shokri, M. Strobel, and Y. Zick. On the privacy risks of model explanations. In AAAI/ACM
Conference on AI, Ethics, and Society, pages 231–241, 2021.

[183] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks against
machine learning models. In IEEE Symposium on Security and Privacy (SP), pages
3–18, 2017.

[184] A. Shrikumar, P. Greenside, and A. Kundaje. Learning important features through
propagating activation differences. In International Conference on Machine Learning
(ICML), pages 3145–3153, 2017.

[185] C. Smutz and A. Stavrou. Malicious PDF detection using metadata and structural features.
In Annual Computer Security Applications Conference, pages 239–248, 2012.

[186] S. Soderland, B. Roof, B. Qin, S. Xu, O. Etzioni, et al. Adapting open information extraction
to domain-specific relations. AI magazine, 31(3):93–102, 2010.

[187] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for simplicity: The
all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

[188] J. Stremmel and A. Singh. Pretraining federated text models for next word prediction. In
Future of Information and Communication Conference, pages 477–488, 2021.

[189] E. Štrumbelj and I. Kononenko. Explaining prediction models and individual predictions
with feature contributions. Knowledge and information systems, 41(3):647–665,
2014.

[190] L. Sun and L. Lyu. Federated model distillation with noise-free differential privacy.
arXiv:2009.05537, 2020.

[191] L. Sun, J. Qian, and X. Chen. LDP-FL: Practical private aggregation in federated
learning with local differential privacy. International Joint Conference on Artificial
Intelligence (IJCAI), 2021.

[192] M. Sundararajan, A. Taly, and Q. Yan. Gradients of counterfactuals. arXiv preprint
arXiv:1611.02639, 2016.

[193] X. Tao, X. Hong, X. Chang, S. Dong, X. Wei, and Y. Gong. Few-shot class-incremental
learning. In Conference on Computer Vision and Pattern Recognition (CVPR), pages
12183–12192, 2020.

[194] Gulli et al. Ag’s corpus of news articles. http://groups.di.unipi.it/˜gulli/
AG_corpus_of_news_articles.html, 2012.

[195] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang, and Y. Zhou. A hybrid
approach to privacy-preserving federated learning. In ACM Workshop on Artificial
Intelligence and Security, 2019.

[196] S. Truex, L. Liu, K. H. Chow, M. E. Gursoy, and W. Wei. Ldp-fed: Federated learning with
local differential privacy. In ACM EdgeSys, pages 61–66, 2020.

226

http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html

[197] M. H. ur Rehman, A. M. Dirir, K. Salah, E. Damiani, and D. S. Center. Trustfed: A
framework for fair and trustworthy cross-device federated learning in iiot. IEEE
Transactions on Industrial Informatics, 2021.

[198] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. In Conference on Neural Information
Processing Systems (NeurIPS), pages 5998–6008, 2017.

[199] J. Von Oswald, C. Henning, J. Sacramento, and B.F. Grewe. Continual learning with
hypernetworks. International Conference on Learning Representations (ICLR),
2020.

[200] S. Wagh, X. He, A. Machanavajjhala, and P. Mittal. Dp-cryptography: marrying differential
privacy and cryptography in emerging applications. Communications of the ACM,
64(2):84–93, 2021.

[201] N. Wang, X. Xiao, Y. Yang, J. Zhao, S. C. Hui, H. Shin, J. Shin, and G. Yu. Collecting
and analyzing multidimensional data with local differential privacy. In IEEE
International Conference on Data Engineering (ICDE), pages 638–649, 2019.

[202] T. Wang, J. Blocki, N. Li, and S. Jha. Locally differentially private protocols for frequency
estimation. In USENIX Security Symposium, pages 729–745, 2017.

[203] Y. Wang, C. Si, and X. Wu. Regression model fitting under differential privacy and model
inversion attack. In International Joint Conference on Artificial Intelligence, 2015.

[204] S. L. Warner. Randomized response: A survey technique for eliminating evasive answer
bias. Journal of the American Statistical Association, 60(309):63–69, 1965.

[205] C. Wu, L. Herranz, X. Liu, J. van de Weijer, B. Raducanu, et al. Memory replay gans:
Learning to generate new categories without forgetting. Conference on Neural
Information Processing Systems (NeurIPS), 31, 2018.

[206] F. Wu and D. S. Weld. Open information extraction using wikipedia. In Association for
Computational Linguistics, pages 118–127, 2010.

[207] J. Wu, J. Roy, and W.F. Stewart. Prediction modeling using ehr data: challenges, strategies,
and a comparison of machine learning approaches. Medical care, pages S106–S113,
2010.

[208] X. Wu, F. Li, A. Kumar, K. Chaudhuri, S. Jha, and J. Naughton. Bolt-on differential privacy
for scalable stochastic gradient descent-based analytics. In ACM International
Conference on Management of Data, pages 1307–1322, 2017.

[209] X. Xiong, S. Liu, D. Li, Z. Cai, and X. Niu. A comprehensive survey on local differential
privacy. Security and Communication Networks, 2020.

[210] C. Xu, J. Ren, L. She, Y. Zhang, Z. Qin, and K. Ren. Edgesanitizer: Locally differentially
private deep inference at the edge for mobile data analytics. IEEE Internet of Things
Journal, 6(3):5140–5151, 2019.

227

[211] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Bengio.
Show, attend and tell: Neural image caption generation with visual attention. In
International conference on machine learning (ICML), pages 2048–2057, 2015.

[212] Z. Yang and Z. Liang. Automated identification of sensitive data from implicit user
specification. Cybersecurity, 1(1):1–15, 2018.

[213] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy. Hierarchical attention networks
for document classification. In Conference of the North American chapter of the
Association for Computational Linguistics: human language technologies, pages
1480–1489, 2016.

[214] A. C. Yao. Protocols for secure computations. In IEEE Symposium on Fundations of
Computer Science, pages 160–164, 1982.

[215] F. Ye and A.G. Bors. Learning latent representations across multiple data domains using
lifelong vaegan. In European Conference on Computer Vision (ECCV), pages
777–795, 2020.

[216] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha. Privacy risk in machine learning:
Analyzing the connection to overfitting. In Computer Security Foundations
Symposium (CSF), pages 268–282, 2018.

[217] S.W. Yoon, D.Y. Kim, J. Seo, and J. Moon. Xtarnet: Learning to extract task-adaptive
representation for incremental few-shot learning. In International Conference on
Machine Learning (ICML), pages 10852–10860, 2020.

[218] H. Yu, Z. Liu, Y. Liu, T. Chen, M. Cong, X. Weng, D. Niyato, and Q. Yang. A sustainable
incentive scheme for federated learning. IEEE Intelligent Systems, pages 58–69,
2020.

[219] L. Yu, L. Liu, C. Pu, M.E. Gursoy, and S. Truex. Differentially private model publishing for
deep learning. In IEEE Symposium on Security and Privacy (SP), pages 332–349,
2019.

[220] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu. Batchcrypt: Efficient homomorphic
encryption for cross-silo federated learning. In USENIX Annual Technical
Conference, pages 493–506, 2020.

[221] C. Zhang, Z. Yang, X. He, and L. Deng. Multimodal intelligence: Representation learning,
information fusion, and applications. IEEE Journal of Selected Topics in Signal
Processing, pages 478–493, 2020.

[222] J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M. Winslett. Functional mechanism: regression
analysis under differential privacy. Very Large Data Bases (VLDB) Conference,
pages 21364—-1375, 2012.

[223] B. Zhao, K. R. Mopuri, and H. Bilen. arXiv preprint arXiv:2001.02610, 2020.

228

[224] P. Zhao, G. Zhang, S. Wan, G. Liu, and T. Umer. A survey of local differential privacy for
securing internet of vehicles. The Journal of Supercomputing, pages 8391–8412,
2020.

[225] X. Zhao, W. Zhang, X. Xiao, and B. Lim. Exploiting explanations for model inversion
attacks. In IEEE/CVF International Conference on Computer Vision (ICCV), pages
682–692, 2021.

[226] Y. Zhao, J. Zhao, M. Yang, T. Wang, N. Wang, L. Lyu, D. Niyato, and K. Y. Lam. Local
differential privacy based federated learning for internet of things. IEEE Internet of
Things Journal, 2020.

[227] L. Zhu, Z. Liu, and S. Han. Deep leakage from gradients. Conference on Neural Information
Processing Systems (NeurIPS), 32, 2019.

229

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 3)
	Biographical Sketch (2 of 3)
	Biographical Sketch (3 of 3)

	Acknowledgment (1 of 2)
	Acknowledgment (2 of 2)

	Table of Contents (1 of 5)
	Table of Contents (2 of 5)
	Table of Contents (3 of 5)
	Table of Contents (4 of 5)
	Table of Contents (5 of 5)
	Chapter 1: Introduction
	Chapter 2: User-Entity Differential Privacy in Learning Natural Language Models
	Chapter 3: Scalablerr: Dimension-Scalable Local Differential Privacy for Federated Learning
	Chapter 4: Xrand: Differentially Private Defense Against Explanation-Guided Attacks
	Chapter 5: Lifelong DP: Consistently Bounded Differential Privacy in Lifelong Machine Learning
	Chapter 6: Additional Work: Ontology-Based Interpretable Machine Learning for Textual Data
	Chapter 7: Conclusion and Future Work
	References
	Appendix A

	List of Tables
	List of Figures (1 of 4)
	List of Figures (2 of 4)
	List of Figures (3 of 4)
	List of Figures (4 of 4)

