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ABSTRACT

SPARSE METHODS FOR BLIND SOURCE SEPARATION OF
FREQUENCY HOPPING RF SOURCES

by
Anushreya Ghosh

Blind source separation (BSS) is performed on frequency hopping (FH) sources. These

radio frequency (RF) signals are observed by a uniform linear array (ULA) over a

Spatial Channel Model (SCM) in four different propagation environments: (i) line-of-

sight (LOS), (ii) single-cluster, (iii) multiple-cluster, and (iv) LOS with interference.

The sources are spatially sparse, and their activity is intermittent and assumed to

follow a hidden Markov model (HMM). BSS is achieved by utilizing direction of

arrival (DOA) of the sources and clusters. A sparse detection framework is applied

to obtain estimates of the sources’ FH and DOA patterns. The solutions are binned

according to a frequency grid and a DOA dictionary. A method is proposed to reduce

the effect of falsely detected active sources and mitigate the effects of interference,

by leveraging the activity model of the intermittent sources. The proposed method

is a state filtering technique, referred to as hidden state filtering (HSF), and is used

to improve BSS performance. Multiple activity patterns associated with different

DOAs are considered “similar” if they match over a prescribed fraction of the time

samples. A method pairing DOA and FH estimates associates the FH patterns to

specific sources via their estimated DOAs. Numerical results demonstrate that the

proposed algorithm is capable of separating multiple spatially sparse FH sources with

intermittent activity, by providing estimates of their FH patterns and DOA.
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Hope and curiosity about the future seemed better than
guarantees. The unknown was always so attractive to
me...and still is.

Hedy Lamarr,
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CHAPTER 1

INTRODUCTION

Frequency hopping (FH) spread spectrum signals have been widely studied and

adopted for wireless communications thanks to a multitude of advantages, such

as their low probability of detection and their inherent robustness to jamming

[1–3]. Estimating and tracking parameters of multiple FH signals have important

applications in both civilian and military fields, such as collision avoidance [4, 5],

cognitive radio [6,7], and interception of non-cooperative communications [8,9]. The

estimation of FH signal parameters for the purpose of intercepting non-cooperative

sources is the focus of this work.

The FH sources assumed in this work transmit at frequencies that change

pseudo-randomly within a block of spectrum. Parameters such as hop time, hopping

pattern, and frequencies are random and unknown at the receiver. The localization

and separation of multiple FH sources without knowledge of these parameters is posed

as a blind source separation (BSS) problem [10].

To perform BSS of multiple FH sources, it is not sufficient to produce a frequency

versus time map of the power of the observed signals, but also to associate the signals

to physical sources. We refer to the task of associating frequency hops to a source

as the problem of labeling of FH signals. Since frequency hop estimates cannot

determine which of several sources transmitted the signal, it is necessary to estimate

information that is source specific and extraneous to the FH pattern. To do so, one

can leverage the knowledge that all signals transmitted by a source via line-of-sight

(LOS) propagation have the same direction of arrival (DOA) information.

Estimating the DOAs of the sources is made more challenging if signals are

received via multipath propagation. Measurement data analysis in [11] demonstrates
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that nearby physical structures act as secondary sources, forming separable clusters

with narrow angular spread around them [12–14]. Several cluster-based channel

models can be found in the literature, such as the 3GPP Spatial Channel Model

(SCM) [15–17], WINNER II [18], and the 3GPP Clustered Delay Line (CDL) model

[19]. In [15–17], the SCM is defined for different scenarios, namely suburban macro,

urban macro and urban micro. The urban micro channel propagation environment

deals with LOS sources, and the other two propagation environments take the effects

of multipath propagation into account and deal with non line-of-sight (NLOS) sources.

In this work, signals are observed over channels that follow the SCM model for four

propagation environments: (i) LOS, (ii) single-cluster, (iii) multiple-cluster, and (iv)

LOS with interference.
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1.1 Related Work

Independent Component Analysis (ICA) [21] has been used to solve the BSS problem

in wireless networks [22, 23]. Reference [24] uses ICA in MIMO systems with

time-varying channels by changing the data block length of received signals. The

Equivariant Adaptive Separation using Independence (EASI) algorithm [25] that

utilizes ICA has been used to perform source separation under the assumption that

at any time instant the components of the source signals are mutually statistically

independent and have unit variance. Algorithms that use EASI as a basis have been

developed as well [26, 27]. However, ICA and ICA-based techniques assume equal

number of sources and sensors in the system, and further assume that the sources are

always active. ICA is not applicable in BSS problems where sources turn on and off

intermittently. Additionally, it is not possible to know the number of sources, and

number of sensors cannot be guaranteed to be equal to the number of sources.

Among other approaches used to solve the BSS problem of FH sources is time-

frequency analysis (TFA) [33–36]. TFA methods are applied to study representations

of the received FH signal in both time and frequency domains. However, as captured

by the uncertainty principle, it is not possible to reach good time and frequency

resolutions simultaneously [37]. TFA methods also suffer from cross-term interference

and spectral leakage, resulting in high SNR requirements [38].

TFA-based methods have been used as exploratory tools towards more refined

solutions to blind estimation of hop timings and frequencies. When only one FH signal

is present, authors in [39] proposes to first apply TFA to estimate the hopping pattern,

and, subsequently, a particle filter operates on the initial estimation. The initial

estimation of hopping patterns in [39] depends on TFA-based methods, and therefore

has high signal-to-noise (SNR) requirements. A blind maximum-likelihood (ML)-

based iterative algorithm is proposed in [40] that estimates hop timing and frequency

hops for a single-user. The ML-based algorithm has been shown to have lower SNR
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requirements than TFA-based approaches in [40]. However, the formulation in [40]

cannot be generalized to multiple FH signals.

For multiple FH signals, the method proposed in [41] implements a dynamic

programming-based ML estimator that yields estimates of joint hop timings and

frequencies. An approach based on sparse linear regression is introduced to estimate

the hop timings and frequencies of multiple FH signals in [21]. Each hop in [41,42] is

treated as a distinct source. This method is not suitable for grouping frequency hops

according to physical sources. To associate frequency hops to a source and label FH

signals, the DOAs of the sources are estimated as they are source specific extraneous

to the FH pattern.

A two-step approach is introduced to estimate DOA, hop timings, and frequency

hops for multiple sources in [43]. A TFA method is applied to signals received by a

uniform linear array (ULA) to identify a hop-free duration for DOA estimation. After

the DOAs are recovered, joint estimation of hop timings and frequencies is performed

for each signal originating from the same DOA. However, as mentioned earlier,

approaches such as [43] that rely on TFA-based approaches for initial estimations

suffer from cross-terms interference and high SNR requirements. The joint estimation

of FH parameters and DOA for multiple sources is studied in [44–47] under the

assumption that all sources are active throughout the entire observation interval.

Additionally, the hop periods are assumed uniform [47]. None of the approaches in

[44–47] are able to incorporate sources that are sparse spatially and have intermittent

activity, and probabilistic source models, such as Markov models.

BSS of spatially sparse sources that have intermittent activity has been studied

in [28] where the sources transmit over slow flat-fading channels, and in [29] where

the channel is flat-fading and time-varying. BSS of intermittent sources has also been

studied in [30] - [31] where the sources are frequency hopping, and transmit over LOS

channels. In [30], signals transmitting over LOS channels are received by an ULA
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of sensors, and their DOAs are used as the criterion of source separation; and [31]

studies three different channel propagation environments with LOS, single-cluster

and multiple-cluster propagation environments. Reference [32] considers how BSS of

intermittent sources will be affected in the presence of interference.
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1.2 Main Contributions

In this work, a BSS problem is solved in which source separation over LOS and

NLOS channels relies on determining FH and source activity jointly for sources that

are spatially sparse and have intermittent activity. Sources are spatially sparse in

the sense that only a fraction of the sources is active at a given time instant, and is

intermittent in the sense that the cumulative time over which a source is active is

only a fraction of the total period of observation [48]. Activity is also ”smooth”, i.e.,

on-off patterns of sources vary slowly.

An approach is proposed which consists of a FH estimation stage, a DOA

estimation stage, hidden state filtering (HSF) to refine DOA estimates, and a pairing

stage that combines information from the previous stages to associated FH patterns

with physical source. The FH and DOA estimation problems are formulated as

optimizations in a sparse representation framework. For the FH and DOA estimation

stages, dictionaries are formulated as grids of FH frequencies and DOAs, respectively.

Refined DOA estimates are obtained by applying HSF. HSF is performed by inferring

a hidden Markov model (HMM) state sequence from observed data. Two different

types of HSF are implemented in this work: (i) Most Probable Estimate (MPE) and

(ii) maximum a posteriori (MAP) estimate. The pairing stage extracts components

of the FH and DOA dictionaries that were found to be active in the FH and DOA

estimation stages, and creates a new dictionary of paired FH and DOA values. Using

the new dictionary, a sparse representation problem is formulated to pair the FH and

DOA estimates.

Four propagation environments are observed in this work. First, the FH sources

are assumed to be LOS sources. Second, the sources appear as single clusters.

Thirdly, the FH sources are observed under multipath conditions, where they appear

as multiple clusters. And lastly, an interfering jammer is assumed active during the

entire duration of observation of the sources. While the LOS sources of interest are
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spatially sparse and have intermittent activity. The jammer transmits from a fixed

but unknown DOA. Our goal is to use observations made by the ULA to separate the

sources of interest. The HMM, used to model the spatially sparse and intermittent

activity of the sources, is leveraged to enforce solutions that are “smooth”, to filter

out false alarms, effects of multipath, and to reduce the deleterious effect of the

interference.

The main contributions of this work are as follows:

1. A sparse representation framework is introduced to obtain estimates of the
frequency hops and DOA of spatially sparse RF sources with intermittent
activity. Four propagation environments are observed: LOS, single-cluster,
multiple-cluster and LOS with interference;

2. A method is developed to associate FH and DOA estimates of multiple sources,
thus effectively achieving blind source separation;

3. Two different HSF techniques are introduced and compared;

4. Leveraging the HMM activity model of the sources, HSF is used to mitigate the
effect of an interfering jammer;

5. An algorithm is developed that combines HSF with the estimation of HMM
parameters, implementing the filtering without a priori knowledge of the HMM
parameters.

The rest of the document is organized as follows. The system model with

aperiodic FH and the hidden Markov source model are presented in Chapter 2. In

Chapter 3, we propose the approach to separate FH, DOA and assign labels to signals

transmitted from different sources. In Chapter 4, simulation based numerical results

demonstrate the performance of the proposed approach and Chapter 5 reports our

conclusions.

Notation: The notation 1 : T denotes the sequence 1, 2, . . . , T . Vectors are

denoted by boldface lower case letters, such as x. All vectors are assumed to be

column vectors. Matrices, are denoted by boldface upper case letters, such as X.

The transpose of X is denoted as X′.
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CHAPTER 2

SYSTEM MODEL

Consider N sources capable of transmitting intermittent FH signals. These sources

switch the carrier frequency in a randomized fashion across multiple frequency hops.

Signals emitted by the sources are received at a uniform linear array (ULA) with J

receiving antenna sensors spaced at uniform d-intervals, as depicted in Figure 2.1.

J antenna sensors

1 2 J...

Figure 2.1 Uniform linear array with M sensors.

The total number of sources N may be larger than the number of sensors J , but,

the number of active sources at any given time is lower than the number of sensors.

The period of observation is T discrete time units, and, without loss of generality,

the sampling interval corresponds to one time unit. The cumulative time a source is

active is a small fraction of the period of observation. Sources’ activity is assumed to

be governed by a Markov model, as described below. On-off patterns of each source

change slowly, making transitions intermittent, but smooth. The intermittent activity

of the sources is discussed in Section 2.1.
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2.1 Source Model

In this work, the intermittent activity of the sources is assumed to be governed by an

hidden Markov model (HMM). This activity of the sources is illustrated in Figure 2.2.

The activity pattern of a source is represented by a binary state sequence s(t) which

indicates whether at time t a source is active (s(t) = 1) or not (s(t) = 0). Since as

discussed previously, a physical source may be observed over multiple DOAs, the term

“DOA pattern” is used here generically, and it refers either to a physical source or an

individual DOA. It is assumed that the individual DOA activity patterns associated

with a physical source are “similar”. Two activity patterns associated with different

DOAs are considered “similar” if they match over a prescribed fraction of the time

samples at which their values are 1.

Figure 2.2 Intermittent source activity. The filled blocks denote active sources at
different time instants.

A diagram representing the HMM of a source is shown in Figure 2.3. In the

figure, the sequence s(1 : T ) represents the hidden states, while the sequence z(1 : t)

represents the observed sequence. Like state symbols, observation symbols are binary,

z(t) ∈ {0, 1}, where z(t) = 1 indicates observed activity of the source at time t, and

z(t) = 0 indicates that source was inactive at time t. In addition to states and
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observations, an HMM is characterized by state transition probabilities, observation

symbol probabilities, and initial state probabilities [49]. These are specified below for

a source.

State transition probabilities are represented by the state transition matrix A =

{aij}, j = 0, 1 where the state transition probability distribution is given by aij =

P (s(t) = j|s(t − 1) = i). Observation symbols probabilities are represented by

the observation matrix B = {bj(k)}, j, k = 0, 1 where bj(k) denotes the observation

symbol probability distribution in state j, bj(k) = P (z(t) = k|s(t) = j). We use

the notation bj(z(t)) to indicate the probability of observed value z(t) conditioned

on s(t) = j, bj(z(t)) = P (z(t)|s(t) = j). The initial state probability distribution is

π = {π0, π1}, where π0 = P (s(1) = 0) and π1 = P (s(1) = 1). The parameters of an

HMM are succinctly denoted by Ω, where Ω = (A,B, π).

...

...

OFF ON

Figure 2.3 Hidden Markov Model (HMM) for a source.
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2.2 Observation Model

The N intermittent sources transmit FH signals. Frequency hopping (FH) is adopted

whereby sources switch the carrier frequency in a randomized fashion across multiple

frequency hops. Signals emitted by the sources are received at an ULA with M

receiving antenna sensors spaced at uniform d-intervals, as depicted in Figure 2.1.

On-off patterns of each source change slowly, making transitions intermittent, but

smooth.

Time

Fr
eq

ue
nc

y

Hop index k

DOA 

DOA 

Figure 2.4 Source activity of two FH sources depicted by filled blocks with distinct
shading. Time duration tk ≤ t < tk+1 denotes a single hop with hop index k where
sources with mean DOAs θi & θi+1 transmits with frequencies fi & fi, respectively.

In this FH system, a hop duration is defined as the period of time between

two consecutive switches of the carrier frequency of a source. The time of the k-th

frequency switch is denoted tk, and thus the duration of the corresponding hop is

(tk+1 − tk). When multiple sources are active, the hop duration is determined by the

source with the shortest time between frequency hops. An example is shown in Figure

2.4.
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Assuming synchronized sensors, the signal received at the j-th sensor in the

time interval tk ≤ t < tk+1 corresponding to the k-th hop is given by

y(j, t) =

Nk∑
i=1

{ Li∑
l=1

√
Pi,l

M

M∑
m=1

c
(m)
i,l (t)aj(θ

(m)
i,l )

}
ht(fi) + w(j, t) (2.1)

where, Nk is the number of active sources during the k-th hop (Nk ≪ N); Li is the

number of clusters for the i-th source; Pi,l is the power of the l-th cluster of the i-th

source which is normalized so that the total average power for all clusters is equal

to one; M is the number of unresolvable multipaths per cluster that have similar

characteristics. The variable h(fi) is the frequency mode of the l-th cluster of the

i-th source; and a(θ
(m)
i,l ) is the spatial mode of the m-th multipath of the l-th cluster

of the i-th source. aj(·) and ht(·) denote the corresponding j-th and t-th powers;

c
(m)
i,l (t) is the complex amplitude of the m-th multipath of the l-th cluster of the

i-th source; and w(m, t) is additive zero-mean complex Gaussian noise with variance

σ2
w. The frequency mode is given by h(fi) = ej2πfi , with fi ∈ [fmin, fmax] being the

carrier frequency of the i-th source during the k-th hop. The hop frequencies are

measured relative to the carrier frequency of the receiver. The spatial mode is given

by a(θ
(m)
i,l ) = ej2π(d/λ) sin(θ

(m)
i,l ), where d/λ is the spacing between antennae expressed in

units of wavelength λ, and θ
(m)
i,l is the DOA of the m-th multipath of the l-th cluster

of the i-th source. The DOA θ
(m)
i,l can be decomposed as θ

(m)
i,l = θi,l + ϑ

(m)
i,l , where θi,l

is the mean DOA of the l-th cluster of the i-th source, and ϑ
(m)
i,l is the deviation from

the mean DOA, which is modeled as an i.i.d. Gaussian random variable with zero

mean and variance σ2
θ .

For hop k and corresponding time interval, tk ≤ t < tk+1, the observations

y(j, t) are collected in a J × (tk+1− tk) matrix Yk. Combining observations across all

hops, matrices Yk are concatenated to form the J × T observations matrix Y.

12



Four different propagation environments are observed. Equation (2.1) addresses

the general formulation for all cases. The four observed propagation environments

are explained in detail in the following subsections. First, the LOS propagation

environment is discussed in Subsection 2.2.1. Second, the intermittent sources are

observed when they appear as a single cluster with an angular spread around them.

This is discussed in Subsection 2.2.2. Third, the sources are observed when they

are transmit over channels with multipath components which causes the sources to

appear as multiple clusters. This scenario is discussed in Subsection 2.2.3. Lastly, we

observe the LOS propagation environment with interference, which is in the form of

a jammer. The jammer is fixed at a particular DOA and does not undergo frequency

hopping. This is discussed in Subsection 2.2.4.

13



2.2.1 Line-of-Sight (LOS) propagation environment

These sources are point LOS sources which arrive at the ULA with a distinct DOA

for each source. The propagation environment for one LOS source (i = 1) is shown

in Figure 2.5.

Source

Antenna Elements

)

Figure 2.5 LOS propagation environment for one source.

Assuming synchronized sensors, the signal received at the j-th sensor in the

time interval tk ≤ t < tk+1 corresponding to the k-th hop is given by

y(j, t) =

Nk∑
i=1

{√
Pici(t)a

j(θi)

}
ht(fi) + w(j, t) (2.2)

where, Nk is the number of active sources during the k-th hop (Nk ≪ N); Pi is the

power of the i-th source. The variable h(fi) is the frequency mode of the l-th cluster

of the i-th source; and a(θi) is the spatial mode of the i-th source. aj(·) and ht(·)

denote the corresponding j-th and t-th powers; ci(t) is the complex amplitude of the

i-th source at time t; and w(j, t) is additive zero-mean complex Gaussian noise with

variance σ2
w. The frequency mode is given by h(fi) = ej2πfi , with fi ∈ [fmin, fmax]

being the carrier frequency of the i-th source during the k-th hop. The hop frequencies

are measured relative to the carrier frequency of the receiver. The spatial mode is

given by a(θi) = ej2π(d/λ) sin(θi), where d/λ is the spacing between antennae expressed

in units of wavelength λ, and θi is the DOA of the i-th source.

14



2.2.2 Single-cluster propagation environment

These FH sources are not point-LOS sources, but appear as clusters with multipath

components. The received signal from each source comes from the DOA which is

expressed as the sum of the DOA of the cluster and a deviation based on the angular

spread. The single-cluster propagation environment is depicted in Figure 2.6 for one

source (i = 1) with one cluster (Li = 1).

Source

Sub-path m

Cluster 1

)

Antenna Elements
)

Figure 2.6 Single-cluster propagation environment for one source.

Assuming synchronized sensors, the signal received at the j-th sensor in the

time interval tk ≤ t < tk+1 corresponding to the k-th hop is given by

y(j, t) =

Nk∑
i=1

{√
Pi,1

M

M∑
m=1

c
(m)
i,1 (t)aj(θi,1 + ϑ

(m)
i,1 )

}
ht(fi) + w(j, t) (2.3)

where, Nk is the number of active sources during the k-th hop (Nk ≪ N); the

number of clusters for the i-th source is one; Pi,1 is the power of the cluster of the

i-th source; M is the number of unresolvable multipaths per cluster that have similar

characteristics. The variable h(fi) is the frequency mode of the i-th source; and

a(θ
(m)
i,1 ) is the spatial mode of the m-th multipath of the cluster of the i-th source.
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aj(·) and ht(·) denote the corresponding j-th and t-th powers; c
(m)
i,1 (t) is the complex

amplitude of the m-th multipath of the one cluster of the i-th source; and w(j, t) is

additive zero-mean complex Gaussian noise with variance σ2
w. The frequency mode

is given by h(fi) = ej2πfi , with fi ∈ [fmin, fmax] being the carrier frequency of the i-th

source during the k-th hop. The hop frequencies are measured relative to the carrier

frequency of the receiver. The spatial mode is given by a(θ
(m)
i,1 ) = ej2π(d/λ) sin(θ

(m)
i,1 ),

where d/λ is the spacing between antennae expressed in units of wavelength λ, and

θ
(m)
i,1 is the DOA of the m-th multipath of the one cluster of the i-th source. The

DOA θ
(m)
i,1 can be decomposed as θ

(m)
i,1 = θi,1 + ϑ

(m)
i,1 , where θi,1 is the mean DOA of

the single cluster of the i-th source, and ϑ
(m)
i,1 is the deviation from the mean DOA,

which is modeled as an i.i.d. Gaussian random variable with zero mean and variance

σ2
θ .
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2.2.3 Multiple-cluster propagation environment

Physical structures in the channel act as secondary sources, forming separable clusters

[20]. The received signals from multiple-cluster source come from the DOAs of the

clusters which are expressed as the sum of the mean DOA of the cluster and a

deviation based on the angular spread. The multiple-cluster propagation environment

is depicted in Figure 2.7 for one source (i = 1) with Li = 2 clusters.

Source

Sub-path m

Cluster 1

)

Antenna Elements
)

Su
b-

pa
th

 m

)

Cluster

)

Figure 2.7 Multiple-cluster propagation environment for one source.

Assuming synchronized sensors, the signal received at the j-th sensor in the

time interval tk ≤ t < tk+1 corresponding to the k-th hop is given by

y(j, t) =

Nk∑
i=1

{ Li∑
l=1

√
Pi,l

M

M∑
m=1

c
(m)
i,l (t)aj(θ

(m)
i,l )

}
ht(fi) + w(j, t) (2.4)

17



where, Nk is the number of active sources during the k-th hop (Nk ≪ N); Li is the

number of clusters for the i-th source; Pi,l is the power of the l-th cluster of the i-th

source which is normalized so that the total average power for all clusters is equal

to one; M is the number of unresolvable multipaths per cluster that have similar

characteristics. The variable h(fi) is the frequency mode of the l-th cluster of the

i-th source; and a(θ
(m)
i,l ) is the spatial mode of the m-th multipath of the l-th cluster

of the i-th source. aj(·) and ht(·) denote the corresponding j-th and t-th powers;

c
(m)
i,l (t) is the complex amplitude of the m-th multipath of the l-th cluster of the

i-th source; and w(m, t) is additive zero-mean complex Gaussian noise with variance

σ2
w. The frequency mode is given by h(fi) = ej2πfi , with fi ∈ [fmin, fmax] being the

carrier frequency of the i-th source during the k-th hop. The hop frequencies are

measured relative to the carrier frequency of the receiver. The spatial mode is given

by a(θ
(m)
i,l ) = ej2π(d/λ) sin(θ

(m)
i,l ), where d/λ is the spacing between antennae expressed in

units of wavelength λ, and θ
(m)
i,l is the DOA of the m-th multipath of the l-th cluster

of the i-th source. The DOA θ
(m)
i,l can be decomposed as θ

(m)
i,l = θi,l + ϑ

(m)
i,l , where θi,l

is the mean DOA of the l-th cluster of the i-th source, and ϑ
(m)
i,l is the deviation from

the mean DOA, which is modeled as an i.i.d. Gaussian random variable with zero

mean and variance σ2
θ . n random variables with zero mean and variance σ2

θ .
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2.2.4 LOS propagation environment with interference

A jammer is assumed active at all time instants, in addition to the intermittent

FH sources. The jammer transmits from a fixed but unknown DOA; at a constant

frequency, not undergoing frequency hopping. In the presence of the jammer, the

activity of the sources is illustrated in Figure 2.8.
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Figure 2.8 Intermittent source activity along with interference. The color filled
blocks denote active sources at different time instants. The black block present at
all time instants denotes the activity of the interfering jammer.

Assuming synchronized sensors, the signal received at the j-th sensor in the

time interval tk ≤ t < tk+1 corresponding to the k-th hop (as shown in Figure 2.4) is

given by

y(j, t) =

Nk∑
i=1

{√
Pici(t)a

j(θi)

}
ht(fi)+

√
Pjamcjam(t)a

m(θjam)h
t(fjam)+w(j, t) (2.5)

where, Nk is the number of active sources during the k-th hop (Nk ≪ N); Pi is the

power of the i-th source. The variables a(θi) and h(fi) are, respectively, the spatial and

frequency modes of the i-th source, with aj(·) and ht(·) denoting the corresponding

j-th and t-th powers; ci(t) is the complex amplitude of the i-th source. The frequency
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mode is given by h(fi) = ej2πfi , with fi ∈ [fmin, fmax] being the carrier frequency of

the i-th source during the k-th hop. The hop frequencies are measured relative to the

carrier frequency of the receiver. The spatial mode is given by a(θi) = ej2π(d/λ) sin(θi),

where d/λ is the spacing between antennae expressed in units of wavelength λ, and

θi is the DOA of the i-th source. Pjam is the power of the jammer; cjam denotes the

complex amplitude of the jammer; fjam is the constant frequency of the jammer; and

θjam is the DOA of the jammer. w(j, t) is additive zero-mean complex Gaussian noise

with variance σ2
w.
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CHAPTER 3

SOURCE PARAMETER AND PATTERN ESTIMATION

The signal model in Equation (2.1) has three sets of unknowns, namely DOAs θ,

frequencies f , and complex amplitudes c. Each physical source may emit multiple

frequencies as part of a FH pattern, and it may be observed over multiple DOAs

for multipath channels. The goal of the process presented in this section is to

determine physical sources, and for each physical source to determine an activity

pattern and an FH pattern. Two main ideas are that even though a physical source

may be observed over many DOAs, the individual DOA activity patterns of a physical

source are “similar.” DOA information is paired with FH information to associate FH

patterns with physical sources. In the following, an approach is proposed that uses

the received signal matrix Y to estimate FH and activity patterns over the course of

the observation interval T . This approach includes a FH estimation stage, a DOA

estimation stage, hidden state filtering to refine DOA estimates, and a pairing stage

that combines information from the previous stages to associated FH patterns with

physical sources Figure 3.1 elucidates the relations between the signal processing tasks

developed in this section. Each of the processing tasks is detailed next.
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3.1 FH Estimation

The estimation of the frequency hops at each time instant 0 ≤ t ≤ T is posed as

a sparse representation problem. In the following, we define a dictionary matrix, a

matrix of unknowns, a measurement matrix, and a noise matrix. For setting up the

dictionary, let the set F = {f1, f2, . . . , fGf
}, with cardinality Gf ≫ N , comprise all

possible hop frequencies fi. The FH estimation stage samples the frequency by using

this grid of frequencies F . The frequency grid is used to define the Gf -length modal

vector h̃f (t) at sampling instant t

h̃f (t) = [ht(f1), h
t(f2), . . . , h

t(fGf
)] (3.1)

Next, this vector is expanded to include all T sampling instants in a TGf -length

vector

hf (t) = [0′
Gf
, . . . ,0′

Gf︸ ︷︷ ︸
t

, h̃′
f (t),0

′
Gf
, . . . ,0Gf︸ ︷︷ ︸
T−t−1

]′ (3.2)

where 0Gf
is a vector containing Gf zeros. The FH modal dictionary Hf is then

defined at the T × TGf matrix

Hf = [hf (1),hf (2), . . . ,hf (T )]
′ (3.3)

Let xf (j, t) be the Gf -length vector of unknown complex amplitudes associated

with the grid frequencies at time t and sensor j. This vector is then expanded to form

the TGf -length vector that includes all T time instants

x∗
f (j) = [x′

f (j, 1),x
′
f (j, 2), . . . ,x

′
f (j, T )]

′ (3.4)
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Across all J sensors and T time instants, the TGf × J matrix of complex

amplitudes is defined as Xf = [x∗
f (1),x

∗
f (2), . . . ,x

∗
f (J)]. The solution to the problem

being formulated relies on the assumption that the vector x(j, t) has sparsity. Sparsity

entails that the vector x(j, t) has non-zero entries corresponding only to the active

frequencies at each time instant t.

A sparse estimate of the frequency hopping pattern per source Xf (or

equivalently an estimate of xf (j, t) for all j and all t) is denoted X̂f (or x̂f (j, t)),

and it is found by solving the following optimization problem

X̂f = arg min
xf

∥Y′ −HfXf∥22 + λf

J∑
j=1

T∑
t=1

∥xf (j, t)∥1 (3.5)

The ℓ1-norm in Equation (3.5) enforces the sparsity constraint. The hyperparameter

λf controls the sparsity of the solution. A large λf increases the penalty of non-zero

elements of xf (j, t).
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3.2 DOA estimation

To formulate the problem of estimating the DOA of sources at each time instant

0 ≤ t ≤ T as a sparse representation problem, we again define a dictionary matrix

and a matrix of unknowns. A grid comprising Gd possible DOAs, Θ = [θ1, θ2, . . . , θGd
]

is used to define the J ×Gd DOA modal dictionary

Hd = [a(θ1), a(θ2), . . . , a(θGd
)] (3.6)

where a(θi) is the steering vector associated with DOA θi defined as a(θi) =

[1, a(θi), . . . , a
M−1(θi)]

′ (see (Equation 2.1) for other definitions).

Let xd(t) be the Gd-length vector of unknown complex amplitudes associated

with the grid DOAs at time t. Across all T sampling instants, the Gd × T matrix

of complex amplitudes is defined as Xd = [xd(1),xd(2), . . . ,xd(T )]. Given the

observationsY , a sparse estimate of the DOA patternXd (or equivalently an estimate

of xd(t) for all t) is denoted X̂d (or x̂d(t)), and it is found by solving the following

optimization problem

X̂d = arg min
xd

∥Y −HdXd∥22 + λd

T∑
t=1

∥xd(t)∥1 (3.7)

Similar to the optimization problem for estimating the frequency hops, the formu-

lation includes a hyperparameter λd that controls sparsity.
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3.3 Hidden State Filtering (HSF)

Let x̂d(t) denote a non-zero component of the solution x̂d(t) to the optimization

problem in Equation (3.7). Then x̂d(t) is associated with a single source, and it

represents the estimate of the complex amplitude (including the effect of the frequency

hop term) of the source at time t. If the state s(t) of the source were known, then

x̃d(t) = x̂d(t)·s(t) is a refined estimate of x̂d(t) in the sense that a spurious component

would be removed from the solution to Equation (3.7) if x̂d(t) ̸= 0 but s(t) = 0.

Conversely, the solution would stand if s(t) = 1. While the state s(t) is hidden to the

observer, it may be inferred from state observations. Let a set C = {x|x ̸= 0}, then

an observation z(t) of the state of a source is obtained as z(t) = 1C{x̂d(t)}, where

1C denotes the indicator function of the set C. Hidden state filtering (HSF) is the

problem of inferring a state sequence s(1 : T ) for each source, given an observation

sequence z(1 : T ) of the source and a HMM model parameter Ω. In the remainder

of this subsection, we discuss the forward-backward procedure, which is then used to

solve the HSF problem. The algorithms implementing these methods assume that

the HMM parameter Ω is known. The estimation of the parameter Ω, when it is not

known a priori, is addressed in a subsequent subsection.
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3.3.1 Forward-Backward procedure

The forward-backward procedure comprises of the iterative calculation of forward and

backward variables given the observed state sequence and the model parameter Ω.

The forward variable αj(t) is defined as the probability of a state at time t given the

observed state sequence up to and including time t

αj(t) ≜ P (s(t) = j|z(1 : t),Ω), j = 0, 1 (3.8)

Solving for αj(t) consists of the following steps [50]:

1. Initialization:

αi(1) = πibi(z(1)), i = 0, 1 (3.9)

2. Induction:

αj(t+ 1) =

[ ∑
i∈{0,1}

αi(t)aij

]
bj(z(t)),

j = 0, 1, 0 ≤ t ≤ T − 1 (3.10)

3. Termination:

P (z(1 : T )|Ω) =
∑
i=0,1

αi(T ) (3.11)

The backward variable βi(t) is defined as the probability of the observation

sequence from t+ 1 to the end of the sequence, conditioned on the state s(t) = i

βi(t) ≜ P (z(t+ 1 : T )|s(t) = i,Ω), i = 0, 1 (3.12)
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Solving for βi(t) consists of the following steps [50]:

1. Initialization:

βi(T ) = 1, i = 0, 1 (3.13)

2. Induction:

βi(t) =
∑

j∈{0,1}

aijbj(z(t+ 1))βj(t+ 1),

i = 0, 1, t = T − 1, T − 2, ..., 1 (3.14)

Hidden state filtering methods discussed next will use the forward and backward

variables.
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3.3.2 Individually most probable states

There are different ways of finding the “optimal” state sequence s(1 : T ) given the

observed sequence z(1 : T ) and the HMM parameter Ω. One reasonable criterion is

to choose at each time t, the state that is most probable, given the observed sequence

and the HMM parameters. Denote the belief state

γi(t) ≜ P (s(t) = i|z(1 : T ),Ω) (3.15)

It can be shown that the variable γi(t) may be expressed in terms of the forward-

backward variables [50]

γi(t) =
αi(t)βi(t)∑

j∈{0,1}
αj(t)βj(t)

(3.16)

The most probable estimate (MPE) to a state at time t is the solution to the

following problem

ŝMPE(t) = argmax
i=0,1

γi(t) (3.17)

Note that the MPE to a state may be computed directly from the forward-

backward variables. The MPE state sequence for a source is expressed

ŝMPE(1 : T ) = {ŝMPE(1), ŝMPE(2), . . . , ŝMPE(T )} (3.18)

Using the MPE state sequence, the matrix of complex amplitudes containing

the filtered vectors can be calculated as outlined in Algorithm 1.
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Algorithm 1. Hidden State Filtering (MPE)

1: Input: Matrix of complex amplitudes X̂d and HMM parameter Ω

2: Output: Inferred state sequence ŝMPE(1 : T )

3: for each non-zero row of X̂d do

4: for t = 1 : T do

5: z(t) = 1c{x̂d(t)}

6: Calculate ŝMPE(t) from Equation (3.17).

7: end for

8: end for

3.3.3 Most probable sequence of states

The most probable sequence of states given the observed state sequence of a source

is known as the maximum a posteriori (MAP) estimate and is given by

ŝMAP(1 : T ) = argmax
s(1:T )

P (s(1 : T )|z(1 : T )) (3.19)

The MAP estimate may be computed using the well-known Viterbi algorithm

[51]. The Viterbi algorithm is discussed in detail in Appendix A. The following brief

summary of the algorithm follows [50]. Define the quantity

ρi(t) ≜ max
s(1:t−1)

P (s(1 : t− 1), s(t) = i|z(1 : t),Ω) (3.20)

which represents the joint probability of reaching state i at time t and taking the most

probable path. A recursive expression for this probability is obtained noting that if

ρi(t− 1) is known, then ρj(t) may be computed by accounting for the transition from

state i at time t− 1 to a state j at time t. This probability may be computed using

quantities previously defined according to

30



ρj(t) = (max
i
ρi(t− 1))aij)bj(z(t)) (3.21)

The argument that maximizes Equation (3.21) is denoted as

ψj(t) ≜ argmax
i=0,1

(ρi(t− 1)aij) (3.22)

Following this procedure, the first state that can be determined as part of the

most probable path is the final state s(T ), since any earlier determination may be

affected by later times. This is summarized as follows

1. Initialization:

ρi(1) = πibi(z(1)), i = 0, 1 (3.23a)

ψi(1) = 0, i = 0, 1 (3.23b)

2. Recursion:

ρj(t) = (max
i
ρi(t− 1)aij)bj(z(t)), 2 ≤ t ≤ T, j = 0, 1 (3.24a)

ψj(t) ≜ argmax
i=0,1

(ρi(t− 1)aij), 2 ≤ t ≤ T, j = 0, 1 (3.24b)

3. Termination:

ŝMAP(T ) = argmax
i=0,1

(ρi(T )) (3.25)

4. MAP path:

ŝMAP(t) = ψŝ(t+1)(t+ 1), t = T − 1, T − 2, ..., 1 (3.26)
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Using the MAP path, the matrix of complex amplitudes containing the filtered vectors

can be calculated as outlined in Algorithm 2.

Algorithm 2. Hidden State Filtering (MAP)

1: Input: Matrix of complex amplitudes X̂d and HMM parameter Ω

2: Output: Inferred state sequence ŝMAP(1 : T )

3: for each non-zero row of X̂d do

4: for t = 1 : T do

5: z(t) = 1c{x̂d(t)}

6: Calculate ŝMAP(t) from Equation (3.26).

7: end for

8: end for
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3.3.4 Learning HMM parameters

The HSF methods discussed previously assume the HMM parameter Ω = (A,B, π)

are known. In practice, however, it cannot be assumed that the model is known

in a blind scenario. The goal here is to describe a method by which is estimated

based on the observed sequence. Here, the observed sequence refers to the observed

activity of sources based on their DOA estimates. The HMM parameters are learnt

from the observed sequences of the sources deemed active by the DOA estimation

step according to Ω̂ = argmax
Ω

P (z(1 : T |Ω). For the first (estimated) active source,

the HMM parameter Ω = (A,B, π) are randomly initialized. For the subsequent

estimated sources, the initial parameter is the Ω obtained from the previously

estimated active source. The parameter obtained from the last active source is then

used to calculate the hidden state sequences using the MPE and MAP methods. For

the purpose of estimating the HMM parameter Ω, the following quantity is defined

ξi,j(t) = P (s(t) = i, s(t+ 1) = j|z(1 : T ),Ω) (3.27)

It can be shown that the variable ξi,j(t) may be expressed in terms of the

forward-backward variables [50]

ξi,j(t) =
αi(t)aijbj(ẑ(t+ 1))βj(t+ 1)∑

i=0,1

∑
j=0,1

αi(t)aijbj(z(t+ 1))βj(t+ 1)
(3.28)

Utilizing the forward variable αj(t) defined in Equation (3.8), the backward variable

βi(t) defined in Equation (3.12), the belief state γi(t) defined in Equation (3.15) and

the quantity ξi,j(t) defined in Equation (3.27) , the HMM parameters are learnt in

the following steps:
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1. Initialization: Randomly initialize Ω = (A,B, π) for the first active source.

2. For each source deemed active by the DOA estimation step:

(a) Use Equations (3.9) - (3.11) to calculate αj(t) and Equations (3.13) - (3.14)
to calculate βi(t).

(b) Use Equation (3.16) to calculate γi(t) and Equation (3.28) to calculate
ξi,j(t).

(c) Update model parameters:

π̂i = γi(1) (3.29a)

âij =

T−1∑
t=1

ξi,j(t)

T−1∑
t=1

γi(t)

(3.29b)

b̂j(k) =

T∑
t=1

1(z(t) = k)γj(t)

T∑
t=1

γj(t)

(3.29c)

Here 1(a) is the indicator function, i.e., 1(a) = 1 if a is true and 0
otherwise.

(d) Set Ω̂ = (Â, B̂, π̂), and repeat step (2).

The last HMM parameters Ω̂ = (Â, B̂, π̂) obtained after running through the

observed state sequence of all sources is considered as the common model for all

sources. The HMM parameter learning is outlined in Algorithm 3.
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Algorithm 3. Learning HMM parameters

1: Input: Matrix of complex amplitudes X̂d

2: Output: Learnt HMM parameters Ω̂ = (Â, B̂, π̂)

3: Initialize Ω = (A,B, π).

4: for each non-zero row of X̂d do

5: for T = 1 : t do

6: z(t) = 1c{x̂d(t)}

7: while no convergence do

8: Obtain αj(t) and βi(t) using Forward-Backward procedure

9: Update Ω̂ = (Â, B̂, π̂) using Equations (3.29a)-(3.29c)

10: end while

11: Ω← Ω̂.

12: end for

13: end for

35



3.4 Pairing

Given the FH and DOA estimates, the final stage is to pair them. The goal is not to

physically localize the sources (or clusters), but to associate a DOA pattern with a FH

pattern. For each time instant t, the pairing stage is designed to pick a combination

of DOA and FH estimates that provide the best fit to the observed data.

To perform the pairing, two new dictionaries H̃d and H̃f are formed from

the original respective dictionaries Hd and Hf . The new dictionary H̃d is defined

as a submatrix of Hd, with elements corresponding to non-zero entries in X̂d.

Similarly, the new dictionary H̃f is defined as a submatrix of Hf , with elements

corresponding to non-zero entries in X̂f . The new dictionaries are introduced to

limit the computational cost of the pairing operation, and used to create a new

dictionary [52]. The Kronecker product of H̃d and H̃f defines this new dictionary H̃

H̃ = H̃d ⊗ H̃f (3.30)

This dictionary is a grid that contains all active frequencies for each active

DOA over the entire period of observation, after the activity of secondary sources has

been removed. The pairing stage utilizes this newly formed dictionary of frequencies

and DOAs H̃ to estimate the matrix X, which contains the complex amplitudes of

sources which are indexed by their hop frequencies and their DOAs. The following

optimization problem is solved

X̂ = arg min
x
∥Y − H̃X∥22 + λ

T∑
t=1

∥x(t)∥1 (3.31)

to obtain a sparse vector x(t) whose non-zero elements are the estimated complex

amplitudes. Here λ is the hyperparameter that controls the sparsity of x(t). The

pairing of FH estimates and DOA is outlined in Algorithm 4.
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Algorithm 4. Pairing of DOA and FH estimates

1: Input: Matrices of complex amplitudes X̂d, X̂f and dictionaries Hd, Hf

2: Output: Matrix of paired DOA and FH estimates X̂

3: Obtain new dictionary H̃d from Hd

4: Obtain new dictionary H̃f from Hf

5: Create dictionary H̃ using Equation (3.30)

6: Obtain X̂ from Equation (3.31)

Source separation is obtained by labeling the sources according to DOA

estimates. A source label may be associated with multiple frequency hops.

Furthermore, the pairing stage is also capable of reducing false alarms in the FH

and DOA estimation stages by allowing only solutions for which a source is active at

a given time instant only if produces a joint FH and DOA estimate.
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CHAPTER 4

NUMERICAL RESULTS

In this section, numerical results are presented to demonstrate the performance of the

proposed approach to separate intermittent FH signals. We assume that the activity

for each source is defined by an HMM with transition probabilities a01 = 0.02 and

a10 = 0.02. A modal dictionary for DOA estimation is considered with Gd = 36 bins,

each having a bin size of 5 degrees. The FH grid has Gf = 40 bins with a spacing

of 50 kHz for a 2 MHz total bandwidth. The signals being transmitted are slow

FH signals in which each hop contains one or more symbols. Frequency hops do not

violate the narrowband assumption for DOA estimation. The number of unresolveable

multipaths per cluster is set as M = 20 and the deviation from mean DOA of each

cluster has a variance of σ2
θ = 2 degrees [15–17]. In the following figures, we consider

two clusters per source while referring to multiple-cluster sources.

Figures 4.1 and 4.2 provide illustrative examples for the LOS propagation

environment. Figure 4.1 shows the true and estimated FH activity for two sources

for M = 10 sensors. Without the pairing stage, FH signals cannot be assigned source

labels. In such a case, each hop is treated as a distinct source and thus, the FH

estimation stage estimates five sources over the period of observation.

Figure 4.2 shows the true and estimated DOAs of two LOS sources with

intermittent activity. Figure 4.2(a) shows the DOA vs. time for the two sources.

Figure 4.2(b) shows the DOA estimates vs. time with no HSF. Many false alarms are

apparent. Figures 4.2(c) and 4.2(d) illustrate the ability of HSF in the form of MPE

and MAP filtering, respectively, to reduce false alarms.
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(b) FH Estimation

Figure 4.1 FH truth and estimation for two sources. (M = 10 sensors).
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(b) DOA estimation with no HSF
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(c) DOA estimation with HSF (MPE)
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(d) DOA estimation with HSF (MAP)

Figure 4.2 True DOA activity and estimation for two LOS sources with intermittent
source activity. (M = 10 sensors).
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The performance criterion chosen is the receiver operating characteristic (ROC),

in which the probability of correct detection Pd is plotted against the probability of

false alarm Pfa. The probability of correct detection for source activity is computed

as the ratio of the number of correctly detected sources to the number of true active

sources. A source activity is deemed a correct detection if it has a ”similar” source

activity over the total observation interval as a true active source. Multiple activity

patterns associated with different DOAs are considered “similar” if they match over

a prescribed fraction, ϱ, of the time samples at which their values are 1. Through

experimentation, this fraction is chosen to be ϱ = 0.95. The probability of false alarm

for source activity is the ratio of the number of spuriously detected sources over the

entire observation interval to the number of true active sources. A source activity is

spurious if a source is detected to be active when no true source is active. Analogous

definitions apply to Pd and Pfa of frequency hops and to paired activity.

Figure 4.3 shows the ROC of FH estimation for five sources with an SNR per

source of 10 dB. For Pfa = 0.3, the FH estimation has Pd = 0.98. The performance of

the FH estimation affects the source separation, as the pairing uses the estimations

from both the previous stages to pick a pair of DOA and FH pattern that best fits

the received signals at each time instant. This is demonstrated later, in the ROC of

paired activity.
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Figure 4.3 Pd versus Pfa of FH estimates (5 sources, J = 20 sensors, T = 1000
samples, SNR = 10 dB).

Figure 4.4 demonstrates the effect of HSF on the correct detection of activity

for five LOS sources with an SNR per source of 10 dB. The figure shows the ROC

performance with two HSF techniques. The ROC is obtained by solving Equation

(3.7), followed by thresholding of X̂d.The threshold ranges from the smallest to the

largest values in the matrix X̂d obtained by solving Equation (3.7). Each point of

the ROC, consisting of a pair of probability of correct detection and probability of

false alarm, corresponds to one of these threshold values. Without filtering, for Pfa of

activity = 0.3, Pd of activity = 0.67. For the same Pfa, with MPE applied, Pd = 0.86

when Ω is learnt, and Pd = 0.87 when Ω is known. With MAP applied, Pd = 0.96

when Ω is learnt, and Pd = 0.97 when Ω is known.
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Figure 4.4 Pd versus Pfa of activity with and without HSF for LOS propagation
environment (5 sources, J = 20 sensors, T = 1000 samples, SNR = 10 dB).

Figure 4.5 compares the performance for a source in the presence of stronger

sources. The one weak source has a SNR = 5 dB and the remaining four sources have a

SNR = 10 dB. The figure shows the ROC performance with two HSF techniques, MAP

and MPE with unknown Ω. The ROC is again obtained by solving Equation (3.7),

followed by thresholding of X̂d.The threshold ranges from the smallest to the largest

values in the matrix X̂d obtained by solving Equation (3.7). This ROC demonstrates

that as expected there is some degradation in performance, but that the proposed

approach can still provide reliable source separation.
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Figure 4.5 Pd versus Pfa of activity in presence of stronger sources for LOS
propagation environment (5 sources, J = 20 sensors, T = 1000 samples).

Figure 4.6 demonstrate the effect of HSF on the correct detection of activity for

five single-cluster sources. The same improvement in performance is observed in all

cases when HSF is applied. Without filtering, for Pfa of activity = 0.6, Pd of activity

= 0.63. For the same Pfa, with MPE applied after activity estimation, Pd = 0.76

when Ω is learnt, and Pd = 0.78 when Ω is known. With MAP applied, Pd = 0.85

when Ω is learnt, and Pd = 0.87 when Ω is known.
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Figure 4.6 Pd versus Pfa of activity with and without HSF for single-cluster
propagation environment (5 sources, J = 20 sensors, T = 1000 samples, SNR =
10 dB).

Figure 4.7 demonstrates the effect of HSF on the correct detection of activity

for five multiple-cluster sources for ϱ = 1. Similarly, Figures 4.9 and 4.8 demonstrate

the effect of HSF on the correct detection of activity for five multiple-cluster sources

for ϱ = 0.95 and ϱ = 0.9, respectively. Based on the value of the fraction ϱ chosen to

measure similarity of activity patterns, difference in performance is observed. When

selection of ϱ is too strict (as in Figure 4.7), changes in activity due to multipath causes

the algorithm to not identify clusters from the same source. On the other hand, when

selection of ϱ is too relaxed (as in Figure 4.8), activity patterns of clusters of different

sources are deemed ”similar”, which causes deterioration in performance. Based on
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Figure 4.7 Pd versus Pfa of activity with and without HSF for 2-cluster propagation
environment (5 sources, J = 20 sensors, T = 1000 samples, SNR = 10 dB, ϱ = 1).

source signal models, in our case, ϱ = 0.95 is the best choice. Also, improvement in

performance is observed in all cases when HSF is applied. For Pfa = 0.9, with MPE

applied after activity estimation, Pd = 0.74 when Ω is learnt, and Pd = 0.75 when Ω

is known. With MAP applied, Pd = 0.84 when Ω is learnt, and Pd = 0.85 when Ω is

known.
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Figure 4.8 Pd versus Pfa of activity with and without HSF for 2-cluster propagation
environment (5 sources, J = 20 sensors, T = 1000 samples, SNR = 10 dB, ϱ = 0.9).
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Figure 4.9 Pd versus Pfa of activity with and without HSF for 2-cluster propagation
environment (5 sources, J = 20 sensors, T = 1000 samples, SNR = 10 dB, ϱ = 0.95).
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Figure 4.10 shows the ROCs of paired activity for LOS, single-cluster and

multiple-cluster propagation environments. In this case, ROC is obtained by solving

Equation (3.7) followed by thresholding of X̂. For performance of pairing activity,

ϱ = 0.95 is used. For a probability of false alarm Pfa = 0.6, the probability of correct

detection of a paired activity with MAP is Pd = 0.81 and with MPE Pd = 0.7 for

multiple-cluster sources. For a probability of false alarm Pfa = 0.6, the probability of

correct detection of a paired activity with MAP is Pd = 0.84 and with MPE Pd = 0.74

for single-cluster sources. For a probability of false alarm Pfa = 0.6, the probability of

correct detection of a paired activity with MAP is Pd = 0.95 and with MPE Pd = 0.86

for LOS propagation environment.
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Figure 4.10 Pd versus Pfa of paired activity with and without HSF (5 sources,
J = 20 sensors, T = 1000 samples, SNR = 10 dB, ϱ = 0.95).

47



Figure 4.11 plots the probability of detection as a function of the number of

sources that are present during the period of observation of T = 1000 samples. The

sources are observed at an SNR per source of 10 dB, and have angular spread of

variance σ2
θ = 2. The detection threshold was set at a probability of false alarm

Pfa = 0.15. Pairing combined with HSF demonstrates its robustness to the mutual

interference between sources by showing the slowest decrease of Pd as a function of

the number of sources.
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Figure 4.11 Pd when Pfa = 0.15 versus number of intermittent sources detected
active during observation interval in the LOS propagation environment (J = 20
sensors, T = 1000 samples, SNR = 10 dB).
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Figure 4.12 demonstrates the effect of HSF on the correct detection of 5

intermittent sources of interest with an SNR per source of 10 dB; and a jammer that

is active at all time instants with an SNR of 20 dB. Without filtering, for a probability

of false alarm Pfa = 0.75, the probability of correct detection is Pd = 0.64. For the

samePfa, with MPE applied, Pd = 0.82 when Ω is learnt, and Pd = 0.84 when Ω

is known. With MAP applied, Pd = 0.94 when Ω is learnt, and Pd = 0.95 when Ω

is known. The results demonstrate that HMM parameter learning is very efficient.

MAP with learnt HMM parameter Ω performs almost similarly to the case where Ω

is known.
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Figure 4.12 Pd versus Pfa for activity for LOS propagation environment with
interference with and without HSF (5 intermittent sources with SNR = 10 dB, 1
jammer with SNR = 20 dB, J = 20 sensors, T = 1000 samples).
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The ratio of the jammer power to the power of the intermittent sources of

interest is referred to as Jammer to Signal Ratio (JSR). Figure 4.13 plots the

probability of false alarm as a function of JSR of the sources. As JSR increases,

the power of the jammer increases relative to the sources’ power. This causes the

accuracy of the activity estimates, and therefore source separation, to degrade. It is

observed that applying the HSF techniques improve source separation and probability

of false alarm reduces for the same JSR. This reduces the effect of the interference on

the source separation problem. It is also observed that MAP outperforms MPE, for

both known and unknown HMM parameter Ω.
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Figure 4.13 Pfa of activity when Pfa = 0.6 versus Jammer to Signal Ratio in dB
(5 intermittent sources with SNR = 10 dB, 1 jammer, J = 20 sensors, T = 1000
samples).

50



Figure 4.14 plots ROCs for correct detection of paired activity for the same

scenario as in Figure 4.12. Without filtering, for a probability of false alarm Pfa = 0.75

the probability of correct detection is Pd = 0.63. For the same Pfa, with MPE applied

after activity estimation, Pd = 0.81 when Ω is learnt, and Pd = 0.83 when Ω is known.

With MAP applied, Pd = 0.91 when Ω is learnt, and Pd = 0.93 when Ω is known.

The performance of both MAP and MPE filtering is implemented with learnt Ω. For

all propagation environments, it is observed that MAP filtering outperforms MPE

filtering.
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Figure 4.14 Pd versus Pfa for activity (5 intermittent sources with SNR = 10 dB, 1
jammer with SNR = 20 dB, J = 20 sensors, T = 1000 samples).
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Figure 4.15 plots the probability of correct detection as a function of the number

of intermittent sources of interest present during the period of observation of T = 1000

samples. The sources of interest are observed at an SNR per source of 10 dB; and the

jammer has an SNR = 20 dB. It is observed that the source separation performance

is dependant on the performance of the individual FH and DOA estimation steps.
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Figure 4.15 Pd when Pfa = 0.6 versus number of intermittent sources detected
active in LOS propagation environment with interference (J = 20 sensors, T = 1000
samples, SNR of jammer = 20 dB, SNR of sources = 10 dB).

52



CHAPTER 5

CONCLUSION

An approach is proposed to perform blind source separation of spatially sparse

frequency hopping RF sources with intermittent activity observed over a Spatial

Channel Model in the following propagation environments: (i) LOS, (ii) single-

cluster, (iii) multiple-cluster and (iv) LOS with interference.

In Chapter 1, the BSS problem of FH sources is introduced. The approaches

to tackle similar problems available in current literature are discussed, along with

the shortcomings of said approaches. ICA-based methods are not suitable for

intermittent sources, and for cases where number of sources and sensors are not

known. TFA-based methods suffer from spectral leakages, cross-term interference

and high SNR requirements. These make them more useful as exploratory tools

towards a more refined solution rather than a complete solution to estimate hop

timings and frequencies blindly. ML-based techniques have lower SNR requirements,

but are not scalable to multiple FH sources, making it a limited solution. These leads

us to explore alternate approaches to our problem. It is also mentioned that the BSS

problem with intermittent FH sources over LOS and NLOS channels has not been

discussed before in literature, and that the purpose of this dissertation is to seek a

way to bridge this gap.

In Chapter 2, the focus is on defining what is meant by spatially sparse and

intermittent activity of the FH sources of interest. On-off patterns of each source

change slowly but smoothly. The source activity is assumed to be governed by an

HMM. The activity of each source is modeled after an independent HMM, where

the hidden state at each time depends only on the hidden state preceding it. The

parameters of the HMM are defined in detail as well. Observation models are
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discussed for: (i) LOS model, (ii) single-cluster model, (iii) multiple-cluster model,

and, (iv) LOS model with interference. Problem formulations are included in this

chapter. Received signals in all propagation environments are defined mathematically,

accounting for differences in their observation models.

In Chapter 3, the set of unknowns which we aim to find are listed. The goal

of our work is to determine for each source, the activity pattern and the pattern

of frequency hops. The received signal matrix is used to estimate FHs and DOAs

(in the presence of angular spread, multipath components, and interference) over

the course of the period of observation. A source’s activity is estimated by using

observations to extract DOA information versus time, and is used as a criteria for

source separation. Our approach includes a FH estimation stage, a DOA estimation

stage and a pairing stage that combines information from the previous stages to label

the sources. The DOA and FH estimation stages exploit properties of intermittence

of the source signals. Due to presence of multipath and clusters, different DOAs

may be estimated corresponding to activity from one true source. Multiple activity

patterns associated with different DOAs are considered “similar” if they match over a

prescribed fraction of the time samples. The pairing stage uses the estimations from

the previous stages to pick a pair of DOA and FH pattern that best fits the received

signals at each time instant. The pairing assigns source labels to the signals and

is capable of reducing false alarms that arise in the individual stages. The filtering

process, termed HSF, is used to enhance the accuracy of the activity estimates, and

by extension, the accuracy of source separation.

In Chapter 4, the efficacy of the proposed approach is demonstrated through

numerical results, generated through simulations. The main performance criterion

is the receiver operating characteristic (ROC) in which the probability of correct

detection is plotted against the probability of false alarm. ROCs are plotted to

compare the performance of the FH estimation stage, DOA estimation stage and the
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pairing stage with and without HSF. Two different HSF techniques are discussed,

namely, MPE and MAP techniques. Performance is also plotted with respect to the

number of spatially sparse and intermittent FH sources, and with respect to varying

jammer to signal ratios. It is observed that the HSF techniques are successful in

reducing the amount of false alarms, thereby improving source separation. It is also

seen that the MAP based HSF outperforms the MPE based HSF in every case.
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APPENDIX A

VITERBI ALGORITHM

The Viterbi algorithm provides an efficient way of finding the most likely state

sequence in the maximum a posteriori probability of a state sequence of a finite-state

discrete-time Markov process. The Viterbi algorithm is a dynamic programming

approach whose purpose is to make an inference based on a HMMmodel and observed

data.

Consider a HMM with parameter Ω = (A,B, π) where A is the state transition

probability matrix, B is the observation probability matrix, and π is the initial

probability matrix. The hidden state sequence is denoted by s(1 : T ) and the observed

state sequence is denoted by z(1 : T ). State transition probabilities are represented by

the state transition matrix A = {aij}, j = 0, 1 where the state transition probability

distribution is given by aij = P (s(t) = j|s(t − 1) = i). Observation symbols

probabilities are represented by the observation matrix B = {bj(k)}, j, k = 0, 1

where bj(k) denotes the observation symbol probability distribution in state j,

bj(k) = P (z(t) = k|s(t) = j). We use the notation bj(z(t)) to indicate the probability

of observed value z(t) conditioned on s(t) = j, bj(z(t)) = P (z(t)|s(t) = j). The

initial state probability distribution is π = {π0, π1}, where π0 = P (s(1) = 0) and

π1 = P (s(1) = 1).

Define the joint probability of the most likely path that ends at state i at time

t, generating observations z(1 : t)

δi(t) ≜ max
s(1:t−1)

P (s(1 : t− 1), s(t) = i|z(1 : t),Ω) (A.1)

A recursive expression for this probability is obtained noting that if δi(t−1) is known,

then δj(t) may be computed by accounting for the transition from state i at time t−1
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to a state j at time t. This probability may be computed using quantities previously

defined according to

δj(t) = (max
i
δi(t− 1))aij)bj(z(t)) (A.2)

The argument that maximizes Equation (A.2) is denoted by

ψj(t) ≜ argmax
i=0,1

(ρi(t− 1)aij) (A.3)

Following this procedure, the first state that can be determined as part of the most

probable path is the final state s(T ), since any earlier determination may be affected

by later times.

The recursive Viterbi algorithm is described below

1. Initialization:

δi(1) = πibi(z(1)), i = 0, 1 (A.4)

ψi(1) = 0, i = 0, 1 (A.5)

2. Recursion:

δj(t) = (max
i
δi(t− 1)aij)bj(z(t)), 2 ≤ t ≤ T, j = 0, 1 (A.6)

ψj(t) ≜ argmax
i=0,1

(δi(t− 1)aij), 2 ≤ t ≤ T, j = 0, 1 (A.7)

3. Termination:

ŝ(T ) = argmax
i=0,1

(δi(T )) (A.8)
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