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ABSTRACT

MACHINE LEARNING AND NETWORK EMBEDDING METHODS
FOR GENE CO-EXPRESSION NETWORKS

by
Niloofar AghaieAbiane

High-throughput technologies such as DNA microarrays and RNA-seq are used

to measure the expression levels of large numbers of genes simultaneously. To

support the extraction of biological knowledge, individual gene expression levels

are transformed into Gene Co-expression Networks (GCNs). GCNs are analyzed

to discover gene modules. GCN construction and analysis is a well-studied topic, for

nearly two decades. While new types of sequencing and the corresponding data are

now available, the software package WGCNA and its most recent variants are still

widely used, contributing to biological discovery.

The discovery of biologically significant modules of genes from raw expression

data is a non-typical unsupervised problem; while there are no training data to

drive the computational discovery of modules, the biological significance of the

discovered modules can be evaluated with the widely used module enrichment metric,

measuring the statistical significance of the occurrence of Gene Ontology terms within

the computed modules. WGCNA and other related methods are entirely heuristic

and they do not leverage the aforementioned non-typical nature of the underlying

unsupervised problem.

The main contribution of this thesis is SGCP, a novel Self-Training Gene

Clustering Pipeline for discovering modules of genes from raw expression data.

SGCP almost entirely replaces the steps followed by existing methods, based on

recent progress in mathematically justified unsupervised clustering algorithms. It

also introduces a conceptually novel self-training step that leverages Gene Ontology



information to modify and improve the set of modules computed by the unsupervised

algorithm.

SGCP is tested on a rich set of DNA microarrays and RNA-seq benchmarks,

coming from various organisms. These tests show that SGCP greatly outperforms all

previous methods, resulting in highly enriched modules. Furthermore, these modules

are often quite dissimilar from those computed by previous methods, suggesting the

possibility that SGCP can indeed become an auxiliary tool for extracting biological

knowledge. To this end, SGCP is implemented as an easy-to-use R package that is

made available on Bioconductor.
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CHAPTER 1

GENE CO-EXPRESSION NETWORKS

High-throughput technologies such as DNA microarrays and RNA-seq are used

to measure the expression levels of large numbers of genes simultaneously. To

support the extraction of biological knowledge, individual gene expression levels are

transformed into Gene Co-expression Networks (GCNs). In a GCN, nodes correspond

to genes, and the weight of the connection between two nodes is a measure of similarity

in the expression behavior of the two genes. GCN construction and analysis is

a well-studied topic. In general, GCNs construction and analysis consists of three

steps; (i) construct a fully connected weighted using gene expression data as GCN,

(ii) perform network clustering to find clusters of genes commonly called modules.

(iii) perform gene ontology enrichment to evaluate the module quality. The specific

implementation of these three steps can significantly impact the final output and the

downstream biological analysis.

In this chapter, the necessary background on the biological information relevant

to this dissertation is provided. This information will be presented in Section 1.1.

Following this, a detailed explanation of gene expression is given in Section 1.2,

gene expression networks are described in Section 1.3, and popular frameworks for

analyzing these networks are discussed in Section 1.4.

1.1 Biological Background

Deoxyribonucleic acid (DNA) and Ribonucleic acid (RNA) are two fundamental

molecules in cells. Figure 1.1 shows a molecule of DNA and RNA. DNA consists of

a long strand of polymers of nucleotide bases (small molecules) each made of sugars

and phosphate groups. These bases are referred to as Adenine (A), Guanine (G),
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Cytosine (C), and Thymidine (T). DNA may be single or double-stranded (well-known

double helix). In double-stranded DNA, one of the strands is called a complementary

DNA strand and is shown with cDNA. And for any bases in one of the strands,

there is a complementary base in the other strand; Adenine always binds (only) with

Thymine and Guanine always binds (only) with Cytosine [69, 98]. RNA is a single

strand, a polymer of nucleotides. Like DNA it consists of the three bases Adenine

(A), Guanine (G), and Cytosine(C), but instead of the Thymine (T), it contains its

resemblance, Uracil (U) which is not found in DNA. RNA has multiple types and

roles in cells, like transport RNA (tRNA), messenger RNA (mRNA), and ribosomal

RNA (rRNA) [69, 98], and mRNA is a type of RNA involved in protein synthesis.

The correspondence between DNA and RNA is stated by the “Central Dogma of

Molecular Biology” [69] (see Figure 1.2 )

gene

Figure 1.1 A double-stranded DNA and a single-stranded RNA molecule. Two
strands of the DNA molecule are called DNA and cDNA (complementary DNA). A
DNA molecule consists of Adenine (A), Guanine (G), Cytosine (C), and Thymidine
(T) bases. RNA molecule consists of Adenine (A), Guanine (G), Cytosine (C), and
Uracil (U) bases. A continuous stretch of nucleotides in DNA is called a gene. Genes
carry the information for protein-encoding.
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The chromosome, a complete DNA molecule, is very long. In humans, for

instance, there are 22 chromosome pairs along with chromosome X and Y with a

total 3.1 billion nucleotides. Almost 10% of the chromosome regions are occupied

by genes [69, 98]. Genes are a continuous stretch of nucleotides in DNA that code

for essential information in the cells. This information is transcribed to produce a

functional RNA, commonly proteins [69, 98].

1.2 Gene Expression

Gene expression is the process by which the information from a gene resulted in a

gene product, commonly proteins [69, 98]. The correspondence between DNA and

a protein is stated by the Central Dogma of Molecular Biology (see Figure 1.2).

Proteins are complex molecules that play many critical roles in cells’ survival, fitness,

and functionality [13, 98]. A cell may need thousands of particular proteins which

means that some particular gene information needs to be expressed many times.

This in turn increases the abundance of the corresponding mRNA. Therefore, by

measuring the levels of mRNA, one can get an understanding of the intensity of the

gene expression [98, 68]. There are two major technologies to quantify the intensity

of gene expression; DNA Microarrays and RNA-sequencing (RNA-seq) [43, 98, 68].

The general workflow of these technologies is illustrated in Figure 1.3.

1.2.1 DNA microarrays

DNA microarray is a tool to measure the intensity of the RNA transcripts of

genes in given cells. Throughout this method, the process of hybridization is used;

hybridization is the process where DNA and its complementary are combined into a

single molecule by binding each nucleotide to each complementary nucleotide [98].

A DNA microarray consists of a solid surface on which strands of polynu-

cleotides, called probes, have been attached or synthesized in a fixed position, called
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DNA RNA Protein
Transcription

Translation

Replication
The Centeral Dogma  Of Molecular Biology

Reverse Transcription

Figure 1.2 The Central Dogma of Molecular Biology. A DNA molecule results
through the replication process. An RNA molecule results from DNA through the
transcription process, and reversely, DNA results from RNA through the reverse
transcription process. Protein results from RNA through the translation process.
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spots. In other words, probs are gene-specific DNA fragments and spots that represent

a known DNA sequence or gene. The general workflow of DNA microarray is depicted

in Figure 1.3a. (i) the mRNAs are collected from a set of experiment samples and a set

of reference samples. These mRNAs are called targets. (ii) targets are converted into

their corresponding cDNA. (iii) cDNAs in each sample are labeled with a fluorescent

dye of a specific color. For example, the experimental cDNAs are labeled with a red

fluorescent dye, whereas the reference cDNAs are labeled with a green fluorescent

dye. (vi) cDNAs are passed through the probes for hours. The targets bind by

hybridization to the probes on the array with which they share sufficient sequence

complementary. (v) The array then is washed which eliminates the cDNA which has

not hybridized. At this point, each prob on the microarray may be bound to a certain

quantity of target that, following our basic assumptions, should be proportional to

the level expression of the gene represented by that probe. (vi) A laser light is

used to determine the number of cDNAs hybridized in the probes. (vii) A scanner

captures the light and then it produces an image so that there is a grid of shined

spots corresponding to each probe. (viii) The image is transformed into a number

showing the expression of each gene [98].

These gene expression numbers are raw data, and it needs to undergo prepro-

cessing steps, background correction, and normalization, to obtain the final ready gene

expression profiles. Background correction means removing signals due to non-specific

hybridization. Throughout the DNA microarray process, some signals may occur due

to the binding of the small quantity of the sample to non-complementary chains. In

background correction, these signals will be removed. Normalization is the process

in which non-biological variation in measures signal intensity levels is removed, so

the biological differences in gene expression can be appropriately detected. Typically

normalization attempts to remove global effects [98, 48].
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Several methods have been proposed for DNA microarray normalization,

and among them, global normalization (i.e., scaling), quantile methods, intensity-

dependent normalization, and robust multi-array average (RMA) are the most

popular [83, 15, 89, 45]. Global normalization uses a global factor, mainly the

median of log intensity ratios, to normalize the expression values. Multiplying

expression by this factor equalizes the mean (median) intensity among compared

chips [83]. The goal of the quantile method is to make the distribution probs

intensities for each array in a set of arrays the same [15]. Intensity-dependent

methods compensate for intensity-dependent biases. For example, locally weighted

linear regression (lowess) analysis has been proposed as a normalization method that

can remove intensity-dependent effects in the log2 ratio values [89]. RMA assumes

that all chips have the same background distribution of values. It fits an additive

model by iteratively reweighted least-squares or median polish.

1.2.2 RNA-sequencing

RNA sequencing (RNA-seq), also called next-generation sequencing (NGC), is

another quantitative measurement of gene expression through massively parallel

RNA-sequencing. This technology relies on a sequence of DNA instead of an RNA

sequence. The general workflow of RNA-seq is depicted in Figure 1.3b. (i) The RNA

molecules, mainly consisting of mRNA and long non-coding RNA (lncRNA), must

be captured. During this process, ribosomal RNA (rRNA) must be eliminated. (ii)

RNA molecules must be converted into double-stranded cDNAs with a defined size

range. To this end, captured RNA is subject to RNA fragmentation in a certain size

range. The reverse transcription (RT) will be used to produce the double-stranded

cDNAs using RNA fragmentations. RT is a mechanism that produces cDNA from

RNA molecules. Alternatively, intact RNAs can be reverse transcribed and then

the full-length cDNA can be fragmented. (iii) cDNAs form a library. (iv) The
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library is sequenced to read depth of 10 − 30 million reads per sample on high

throughput platforms. (v) An adapter sequence on the cDNA ends should be placed

for amplification on sequencing. Aligning and/or assembling the sequence reads to

a transcriptome, quantifying that overlap transcripts and filtering reads that overlap

transcripts. This results in count data also called raw count data [43, 108].

Raw count data need to undergo a normalization step to reduce the systematic

technical effect such as depth of sequencing and gene length [2, 63, 94]. This is because

more sequencing depth produces more read count for a gene expressed at the same

level and differences in gene length generate unequal read count for genes expressed

at the same level (longer the gene more the read count). Normalized expression units

help to remove batch effects [43, 2, 63, 94, 28, 123, 23]. To this end, several methods

have been proposed mainly based on standardizing the data between samples by

scaling the number of reads in a given library to a common value across all sequenced

libraries in the experiment [94]. Method preference must rely on the type of the

data, RNA-seq platform, data scale, and the downstream analysis [2]. Additionally,

it has been shown that various methods almost have similar results [63]. Among

the methods, differential expression analysis for sequence (DESeq) [6], relative log

expression (RLE) [70] (also called DESeq2), trimmed mean of M-values (TMM) [94],

reads per kilobase per million mapped reads (RPKM) [79], fragments per kilobase of

exon per million mapped fragments (FPKM) [112], reads/counts per million mapped

(R/CPM) [23], and transcripts per million (TPM) [61] are the most popular.

DESeq and DESeq2 are based on the negative binomial distribution, with

variance and mean linked by local regression, and present an implementation that also

gives scale factors [6, 70, 63]. TMM method estimates scale factors between samples

using the weighted trimmed mean of the log expression ratios and can be incorporated

into currently used statistical methods for differential expression analysis [94, 63].

RPKM is widely used in single-end RNA-seq normalization which rescales gene counts
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to correct for differences in both library size and gene length [63, 79]. FPKM is similar

to RPKM but is used for paired-end RNA-seq experiments [112]. TPM is independent

of the mean expressed transcript length and is thus more comparable across samples

and species [61]. All these methods have advantages and disadvantages. RPKM is

not recommended for differential expression analysis [28]. DESeq and TMM methods

are more robust to different library sizes [123]. It has been shown that RPKM,

FPKM, and TMM normalize the sequencing depth which can differ significantly

between samples and perform poorly when the transcript distribution differs between

samples [23]. CPM is a basic gene expression unit that normalizes only for sequencing

depth (depth-normalized counts). The RPM is biased in some applications where the

gene length influences gene expression, such as RNA-seq.

1.2.3 DNA microarrays versus RNA-sequencing

It has been shown that both methods have their own advantages and disadvantages

and they can serve as complementary to each other [73]. RNA-seq is capable

of measuring the non-coding RNA while these areas are not measurable by DNA

microarrays [115, 122] and it has been turned out that these regions have a paramount

role in disease [47]. On the other hand, DNA microarrays are more reliable and

cost-effective than RNA-seq [73]. RNA-seq has higher accuracy for a low number of

transcripts [115] but they are more sensitive in comparison with DNA microarray [26].

Although both measures enable the identification of a large number of differentially

expressed genes (DEG) and almost 78% of DEGs identified by DNA microarray have

overlap with RNA-seq, using RNA-seq one can potentially identify more differentially

expressed protein-coding genes compared to DNA microarray [91]. More details of

their advantages, disadvantages, and differences can be found in [115, 26, 91, 73].
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Gm×n =


g1,1 g1,2 . . . g1,n
g2,1, g2,2 . . . g2,n

...
...

. . .
...

gm,1 gm,2 . . . gm,n



Figure 1.4 Gene expression data set. Gm,n shows the gene expression matrix where
m and n are the number of genes and samples, respectively and the entry gi,j is the
expression intensity of gene i in sample j.

1.2.4 Gene expression public database

One of the public libraries available for gene expression data is NCBI Gene Expression

Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/ (2022)) [9]. This database

contains both DNA microarray and RNA-seq data, and each data set is identified

by a unique accession code. For example, gene expression data with accession code

GSE7636 identifies a DNA microarray of “Arabidopsis thaliana” with 4 samples. It

also contains additional information like the summary of the data, type of data (DNA

microarray), overall design of the experiment, contributor(s), citation, submission

date, last update, and gene expression platform. In the following web page you

can find the information of GSE7636; https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE7636 (2022).

In this dissertation, all gene expression data has been downloaded from the

NCBI database. We use both DNA microarray and RNA seq. DNA microarrays

were normalized using the robust multi-array average method, and all RNA-seq had

been already normalized and published by other research. The RNA-seq units used

are RPKM, FPKM, TMM, CPM, and RLE ( see Chapter 3). Here, we use matrix

Gm×n as the gene expression input where m and n are the number of genes and

samples, respectively as it is seen in Figure 1.4.

1.3 Gene Co-expression Networks

Gene co-expression networks (GCNs) are undirected weighted/unweighted graphs in

which nodes correspond to genes, and the strength of the link between each pair
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of nodes is a measure of similarity in the expression behavior of the two genes [111].

GCNs are used to perform tasks such as gene functional annotations [101, 72], raveling

the biological process of plant organisms [30] and essential genes microalgae [82],

assigning unknown genes to biological functions [72, 116], and recognizing disease

mechanisms [84] e.g., for coronary artery disease [65]. The goal is to group the genes

in a way that those with similar expression patterns fall within the same cluster,

commonly called module. GCNs analysis consists of three main steps [34, 115].

i Network Construction : The adjacency matrix of GCNs is constructed by
applying a similarity measure on the expression values of gene pairs. It includes
the following sub-steps.

(a) Similarity Function Calculation : It applies a similarity function on
the input gene expression data and returns a similarity matrix.

(b) Adjacency Matrix Computation : It uses the similarity matrix to
produce the adjacency matrix of the network.

ii Network Clustering : Genes are clustered using unsupervised network
clustering algorithms and produce modules.

iii Module Evaluation : Modules are analyzed and interpreted for gene functionality
using gene ontology enrichment.

1.3.1 Network construction

Network Construction step may consist of two main steps; Similarity Function

Calculation , and Network Adjacency Matrix Calculation . In the end, this

step produces an adjacency matrix of Am×m where m is the number of genes and

entry 0 ≤ ai,j ≤ 1 indicates the pairwise association between gene i and gene j.

Similarity function calculation In this step, a similarity function must be used

to capture the pairwise association of genes. The output is a matrix Sm×m where m is

the number of genes, and entry si,j = si,j indicates the similarity value between gene i

and j. Figure 1.5 shows this matrix. So far multiple methods have been proposed [66]

with their own advantages and disadvantages [102], and among them, correlation and

mutual information functions have paid the most attention [109, 74, 18, 106].

Majority of studies have used correlation functions [106, 44, 55, 109, 56, 121].

Pearson correlation is the most widely used method. This measure is unable to detect
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Sm×m =


s1,1 s1,2 . . . s1,m
s2,1, s2,2 . . . s2,m

...
...

. . .
...

sm,1 sm,2 . . . sm,m


Figure 1.5 Similarity matrix Sm,m where m is the number of genes. Value si,j shows
the relationship between gene i and gene j.

nonlinear relationships [118] meaning that possibly some meaningful relationships

remain uncovered [100] and also it is susceptible to outliers [55, 118]. If the

relationship of two genes is nonlinear, (e.g., the joint distribution is Gaussian), then

the corresponding Pearson coefficient is a small number approaching zero. Non-

parametric correlations like Spearman or Kendall correlations can capture nonlinear

associations and are less susceptible to outliers [113]. However, these correlations

are less powerful than Pearson correlation [102]. These methods can be the Pearson

correlation alternatives [100]. Mutual information (MI), on the other hand, is another

method based on information theory. MI is a measure of mutual dependence [104]

that captures the nonlinear relationships as well [106, 5]. Several studies have used

MI or modifications of MI for pairwise relationships [18, 109, 24, 11, 74], like [31, 74].

Several studies have compared correlation and MI-based similarity functions. In

a comparative study, it is shown that computing the MI between each pair of genes

is expensive [106] and it is required to discretize the data [106, 118]. It is also shown

that correlation methods have advantages over MI; first, with a few sample sizes,

the correlation coefficient can be estimated precisely while MI is underpowered [106].

Additionally, MI is more susceptible to outliers than correlation and in the case

of linear relationships, correlation methods are more precise. [106]. Finally, it has

been shown that MI is not superior to correlation functions [57]. Nevertheless,

in another study, it is shown that both correlation-based methods and MI-based

methods perform well in global network construction in both simulation and real

data application [5]. Maximal information coefficient (MIC), an extension of the MI,

also has an inferior performance to correlation and MI [93, 106, 105, 52]. Finally, it

turned out that the vast majority of the gene pairwise associations are linear [109, 106]

justifying the high application of the Pearson correlation as the measure of similarity.

Recently a new similarity measure,“CCor”, has been proposed [44]. To compute

the association between each pair of gene i, j, CCor uses the information across all the
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genes. The authors have compared the performance of their method with Pearson

Correlation, Partial Correlation, and topological overlap matrix (TOM) [121]. It

is shown that CCor has a similar performance to TOM, and it also has a higher

performance than the other methods. The author suggests that the CCor measure

can better capture the association between gene pairs and find more meaningful

clusters of genes by using information across all the genes [44]. Wang et al. [118] have

proposed two association measures, W1 and W2, for detecting local dependencies

throughout the expression data using count statistics, in particular, time series data.

The authors have suggested that with comparison to Pearson Correlation, Spearman

Correlation, Renyi Correlation, Hoeffding’s D, Distance Covariance, MI, and MIC,

measure W1 has more power for detecting local dependencies, whereas W2 detect

more general associations, and it is more sensitive to noise [118].

Several functions have been proposed and used as the similarity function.

Each of these methods is based on a statistical assumption(s) and has different

computational costs [66]. In essence, the core of these measures is to detect a

direct association between the observed values [104]. However, selecting the correct

similarity function may not be clear, since the underlying biological relationships of

the genes are blind [113].

Adjacency matrix computation This step involves generating the final network

for the GCN. The network is represented as an m×m matrix, known as the adjacency

matrix A, where m is the number of genes. The values of A satisfy the condition

0 ≤ ai,j = aj,i ≤ 1, for i, j = 1, 2, . . . ,m. If the similarity matrix S doesn’t already

have the properties of an adjacency matrix, it undergoes a conversion process to

obtain an adjacency matrix. Otherwise, S is used directly as the adjacency matrix.

This ensures that the resulting matrix represents the relationships between the genes

in the network accurately Figure 1.6 shows the output of this step.

Networks can be categorized into two types: unweighted and weighted. Various

methods have been proposed to binarize the similarity matrix S and create an

unweighted GCN. Some studies calculate the adjacency matrix by assessing the

statistical significance of hypothesis testing [100]. Other studies use direct p-values

to binarize the adjacency matrix, assuming that the correlation coefficients are based

on a t-distribution for a small number of samples [114]. Hard threshold τ can also be
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Am×m =


a1,1 a1,2 . . . a1,m
a2,1, a2,2 . . . a2,m

...
...

. . .
...

am,1 am,2 . . . am,m


Figure 1.6 Adjacency matrix Am,m where m is the number of genes. This
matrix represents either a weighted or unweighted fully connected network of gene
co-expression networks. Either is ai,j = 0 or ai,j = 0 if the network is unweighted.
0 ≤ ai,j ≤ 1 if the network is weighted.

utilized to binarize the adjacency matrix, such as in the “ARACNE” algorithm [74].

However, unweighted networks only indicate the presence or absence of an interaction

between two genes, losing information on the strength of the connection. Finding an

appropriate hard threshold value can also be challenging. A large value of τ may

result in fewer node connections and loss of noise in the network, making it less likely

to find modules. In contrast, a small value of τ can lead to a dense network with

more noise and meaningless modules [121].

Weighted GCNs have been demonstrated to outperform unweighted GCNs and

exhibit greater robustness [121]. To create an adjacency matrix A from the similarity

matrix S, various techniques have been proposed [100, 115]. One such method involves

converting Pearson correlation coefficients r to z values via Fisher transformation, as

shown in Equation (1.1).

zi,j =
1

2
ln

(
1 + ri,j
1 − ri,j

)
= arctanh(ri,j)

(1.1)

where ri,j is the Pearson correlation coefficient between gene i and j. The

resulting z values can then be standardized using Equation (1.2)

ai,j =
zi,j − µi

σi

(1.2)

where µi, and σi are the expected value and variance over the gene i, respectively.

This transformation guarantees that for a given gene the underlying distribution is

standard normal with defined variance proportional to the size of the samples [99, 103].

Final values of the adjacency matrix range from −1 and +1.
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As was discussed, correlation functions are the most popular similarity functions

for similarity matrix calculation. Correlation functions range from −1 to +1 where

−1 and +1 indicate the perfect negative and positive correlation, respectively. In [121]

two methods have been proposed to convert the correlation coefficient similarity

matrix into an adjacency matrix. In the first approach, it is suggested to supersede

the absolute value of the negative coefficients using Equation (1.3), where si,j is the

correlation coefficient between gene i and j. These networks are called unsigned

gene co-expression networks . This approach results in clustering the genes that

have high negative and positive correlation coefficients in the same cluster, while these

genes must not be placed in the same module. Let g1,2 and g2,3 be a large negative and

positive correlation coefficients between g1 with g2 and g2 with g3, respectively. If g1,2

is replaced by its absolute value, then g1, g2, g3 may be clustered in the same module

which leads to disrupting the structure of the networks [121]. Additionally, the use of

absolute transformation makes it impossible to distinguish between gene repression

and activation [115]. In the second approach, known as signed gene co-expression

network , the coefficients are transformed using Equation (1.4). And, since min

and max values in a correlation-based network are −1 and +1 [106], respectively,

this results in Equation (1.5). Therefore, values less than and greater than .5

indicate the negative and positive coefficients, respectively. In signed GCNs genes

that have positively similar co-expressed patterns are clustered in the same module

while this never happens for those that have negatively co-expressed patterns. This

transformation replaces the negative coefficient by some small number and therefore

eliminates the negative co-expressed gene interactions. It is shown that signed

GCNs have a better performance in comparison with unsigned GCNs [75].

ai,j = | si,j | (1.3)

ai,j = | si,j − min

max−min
| (1.4)

ai,j =
1 + si,j

2
(1.5)
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1.3.2 Network clustering

The goal of GCNs is to group the genes in a way that those with similar expression

patterns fall within the same network cluster, commonly called module. The

underlying assumption is based on guilt by association (GBA) which states that

genes with similar expression patterns are more likely to have similar biological

functions [115, 35]. So, it is possible to infer the functionality of unknown genes

based on known genes that fall in the same module. Modules are identified using

unsupervised graph algorithms. Clustering is the process of grouping a set of objects

such that those within a single cluster are highly similar to one another, while objects

in different clusters are maximally dissimilar [27]. Different clustering methods use

different similarity measures to identify how much two objects are alike. The most

widely used similarity measure is the Euclidean distance, which calculates the distance

between two points in a multidimensional space. If Xn and Yn are two vectors of size

n, then their Euclidean distance is given by Equation (1.6). The lesser the distance,

the closer the two objects are. Clustering is completely a blind task meaning that

there is no prior information about the belonging of an object to a particular cluster

nor is there information about the number of the clusters. And, clusters can be in any

arbitrary shape and size. Details of the network clustering on unweighted graphs can

be found in [62]. Clustering algorithms generally can be categorized into two classes;

hard clustering (or non-fuzzy clustering) and soft clustering (or fuzzy clustering). In

hard clustering, each data point must be assigned to at most one cluster while in soft

clustering a data point may be assigned to more than one cluster. In other words, for

each node, the probability assigned to each cluster is calculated [29].

dX,Y =

√√√√ n∑
1

(Xi − Yi)2 (1.6)

In GCNs, the similarity between two genes i and j is calculated during the

network construction step and is denoted as the weight ai,j = aj,i of the network.

The network clustering step by itself has a fundamental role in downstream GCN

performance. Different clustering may result in different modules of different shapes

and sizes. Additionally, a single clustering algorithm with different parameter values

also may lead to different modules of different shapes and sizes. Thus, the clustering
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algorithm along with its setting must be chosen with consideration [115, 27]. So far

several algorithms have been proposed and used to detect modules in the network

and among them, hierarchical clustering, partitioning, and neural networks have paid

the most attention [115]. A comprehensive overview of clustering methods used in

gene expression data sets can be found in [46]. Figure 1.7 illustrates these methods.

Hierarchical clustering has two main versions; divisive and agglomerative.

Divisive hierarchical clustering is a top-down algorithm in which at the beginning all

the genes are considered to be in a single cluster. This cluster then is subdivided

into smaller clusters and this process successively continues until the predefined

desired number of clusters is produced. Agglomerative hierarchical clustering is

the reverse of divisive hierarchical clustering and it is a bottom-up algorithm. In

this clustering algorithm, in the beginning, every gene is considered a single cluster.

Then the two clusters that are the most similar are merged into a single cluster and

this process successively continues until the predefined desired number of clusters

are produced [80, 27]. Divisive and agglomerative hierarchical clustering can split

or merge clusters based on three approaches; single linkage, average linkage, and

complete linkage. In single linkage, two clusters C1 and C2 are merged if the pairwise

similarity value, one gene in C1 and the other is in C2, is the highest in comparison

with all other pairwise similarities in other clusters. In average linkage, two clusters

C1 and C2, are merged if the average over pairwise similarity values, one gene in C1

and the other are C2 is the highest in comparison with all other pairwise similarities in

other clusters. In complete linkage, two clusters C1 and C2 are merged if the smallest

over pairwise similarity values, one gene in C1 and the other from C2, is the highest in

comparison with all other pairwise similarities in other clusters. Merging the clusters

also can be done by comparing the centroids per cluster. Two clusters are merged

if their pairwise centroids similarity value is the highest in comparison with other

pairwise values in other clusters. Centroid is a gene that represents the cluster and

there are several ways that describe how to identify the centroids [80, 27, 35].

In partitioning methods, at first, the whole genes are subdivided into a

predefined number of clusters. Next, the algorithm tries to gather the genes that

are the most similar in the same cluster in a way that those genes have the most

dissimilarity with the other genes. kmeans is the most popular version of the

partitioning clustering method. It takes the network along with k as the predefined
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number of clusters. It then randomly generates k centroids. Next, for each gene, it

calculates the distance to each centroid and assigns the gene to the cluster that has

the highest similarity value. Afterward, the centroid of each cluster is recomputed

by considering the new genes which have been assigned to the cluster, and by

default is the average over the genes belonging to the same cluster. This process

is successively continuous until the genes cluster assignment is not changed. Initial

centroids have a significant role in clustering performance. Different initial centroids

lead to different clusters and as a consequence different performances. Therefore it

is strongly recommended to run the kmeans algorithm several times. Defining the

number of clusters in advance also is an essential challenge in this algorithm [80, 27].

Self-organizing map (SOM) is an unsupervised learning algorithm based on

artificial neural networks that can also be used for clustering. This algorithm, like

k-means, requires the number of clusters k to be specified in advance. SOM starts by

randomly choosing k centroids that are linked in a grid structure. In each iteration,

a gene is chosen and then the closest centroids along its neighbor are moved toward

the gene. This process continues until the movement of the centroids is negligible or

it is almost zero [27].

Figure 1.7 compares hierarchical, partitioning, and SOM clustering algorithms

on a data set of 40 genes with 2 expression values. The expression intensities are

shown by the Experiment 1 and Experiment 2 panel on the right of each figure.

Genes in this data are divided into four correct labels. (a) Shows the original

genes with their corresponding correct labels. x-axis and y-axis show the expression

intensities, Experiment 1 and Experiment 2, colorfully. The panels on the right show

the two expression values and their corresponding label. For example, genes with

both expression value green are labeled red, or genes with a red value of Experiment

1 and a green value of Experiment 2 value are labeled green. From top to down labels

are red, green, blue, and purple. (b) Illustrates hierarchical clustering. The panel on

the right shows the hierarchical clustering dendrogram with two expression values.

Dendogram cut produces four clusters. As it is seen, hierarchical clustering failed

to capture the clusters correctly. Some of the points in clusters blue and purple in

the original data ( part (a)) have been considered in the single purple cluster by this

algorithm. Similarly, some points in cluster red in the original data are considered

in the single with green genes by hierarchical clustering. (c) Illustrates the kmeans
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clustering. The number of clusters is four, and stars show the cluster centroid. The

panel on the right shows the two expression values with the corresponding cluster

centroid. For example, genes with both green expression values are assigned to the

cluster with centroid red. As it is seen, kmeans failed to capture all the clusters

correctly. Some of the points in clusters blue and purple in the original data ( part

(a)) have been considered in the single purple cluster by kmeans. Similarly, some

points in cluster green and red in the original data are considered in the single green

cluster by kmeans. (d) Illustrates the SOM algorithm that organized the clusters

into a grid structure. The panel on the right shows the expression value with the

corresponding cluster label. For example, genes with both green expression values

are assigned to cluster red. SOM also failed to capture the clusters correctly. In

cluster blue, a few points in cluster red are mislabeled by SOM, and cluster purple is

absolutely correct [27].

Hierarchical clustering is the most widely unsupervised algorithm used in

GCNs [58]. However, it is shown that kmeans approach performs the best on gene

expression data sets while hierarchical clustering algorithms tend to produce worse

than random results [35, 27, 36, 46, 81]. There are advantages of kmeans that

makes a superior solution for an unsupervised method to hierarchical clustering.

In kmeans, the assignment of the genes to modules is reexamined multiple times

based on the information of the gene to the centroids. Whereas, in hierarchical

clustering, the assignment of genes to a module examines only for one time based

on local information of the genes’ pairwise distance [81]. Both approached are

sensitive to outliers [27, 36, 81], and generally kmeans is more sensitive to number

of cluster [36, 27, 81]. Finally, it has been shown that the enrichment of the cluster

tends to be higher at a lower number of clusters [36].

1.3.3 Module evaluation

Once the modules (cluster of genes) are produced, their quality needs to be

determined. The quality of the modules can be determined either internally by

using statistical analysis of the clusters or externally by using additional information

that was not used in the clustering process itself [27]. The latter is an attempt to

find functional relationships among the genes in a module to better elucidate the

underlying biology [33].
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How does gene expression clustering work?
Patrik D’haeseleer

Clustering is often one of the first steps in gene expression analysis. How do clustering algorithms work, which ones 
should we use and what can we expect from them?

Our ability to gather genome-wide expression 
data has far outstripped the ability of our puny 
human brains to process the raw data. We can 
distill the data down to a more comprehensible 
level by subdividing the genes into a smaller 
number of categories and then analyzing those. 
This is where clustering comes in.

The goal of clustering is to subdivide a set 
of items (in our case, genes) in such a way that 
similar items fall into the same cluster, whereas 
dissimilar items fall in different clusters. This 
brings up two questions: first, how do we 
decide what is similar; and second, how do we 
use this to cluster the items? The fact that these 
two questions can often be answered indepen-
dently contributes to the bewildering variety 
of clustering algorithms.

Gene expression clustering allows an open-
ended exploration of the data, without get-
ting lost among the thousands of individual 
genes. Beyond simple visualization, there are 
also some important computational applica-
tions for gene clusters. For example, Tavazoie 
et al.1 used clustering to identify cis-regulatory 
sequences in the promoters of tightly coex-
pressed genes. Gene expression clusters also 
tend to be significantly enriched for specific 
functional categories—which may be used to 
infer a functional role for unknown genes in 
the same cluster.

In this primer, I focus specifically on clus-
tering genes that show similar expression pat-
terns across a number of samples, rather than 
clustering the samples themselves (or both). I 
hope to leave you with some understanding 
of clustering in general and three of the more 
popular algorithms in particular. Where pos-

sible, I also attempt to provide some practical 
guidelines for applying cluster analysis to your 
own gene expression data sets.

A few important caveats
Before we dig into some of the methods in 
use for gene expression data, a few words of 

caution to the reader, practitioner or aspiring 
algorithm developer:

•  It is easy—and tempting—to invent yet 
another clustering algorithm. There are hun-
dreds of published clustering algorithms, 
dozens of which have been applied to gene 

Patrik D’haeseleer is in the Microbial Systems 
Division, Biosciences Directorate, Lawrence 
Livermore National Laboratory, PO Box 808,
L-448, Livermore, California 94551, USA.
e-mail: patrikd@llnl.gov
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Figure 1  A simple clustering example with 40 genes measured under two different conditions. 
(a) The data set contains four clusters of different sizes, shapes and numbers of genes. Left: each 
dot represents a gene, plotted against its expression value under the two experimental conditions. 
Euclidean distance, which corresponds to the straight-line distance between points in this graph, was 
used for clustering. Right: the standard red-green representation of the data and corresponding cluster 
identities. (b) Hierarchical clustering finds an entire hierarchy of clusters. The tree was cut at the level 
indicated to yield four clusters. Some of the superclusters and subclusters are illustrated on the left.
(c) k-means (with k = 4) partitions the space into four subspaces, depending on which of the four 
cluster centroids (stars) is closest. (d) SOM finds clusters, which are organized into a grid structure
(in this case a simple 2 × 2 grid).
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Figure 1.7 Result of clustering algorithms on a dataset of 40 genes with two
expression values, shown by Experiment 1 and Experiment 2. (a) Shows the original
genes with their corresponding correct labels. x-axis and y-axis show the expression
intensities, Experiment 1 and Experiment 2, colorfully. The panels on the right show
the two expression values and their corresponding label. (b) Result for hierarchical
clustering. Dendogram cut produces 4 clusters. (c) Result for kmeans clustering with
4 predefined number of clusters. Stars show the cluster centroid. (d) Result for SOM
algorithm. The panels on the right show the expression value with corresponding
cluster label [27].

19



Internal evaluation methods use cluster geometry and statistical information.

There are measures that compare the variance within the cluster with between the

clusters, some check the stability of the clusters with respect to noise. More detail is

available in [27, 38]. The unsupervised clustering method also may try to optimize

this internal method. kmeans clustering, for instance, optimizes the variance within

the clusters whereas complete linkage hierarchical clustering minimizes the radius

within the clusters [27, 38].

In GCNs, the quality of modules is assessed by considering information beyond

what was used in the clustering process. The most well-grounded quality

measure for a module is the biological relevance of the module . The

commonly used approach to evaluate the module quality is gene ontology (GO)

enrichment analysis. This includes the enrichment of genes in a module for

known pathways or interactions. GO enrichment uses external information such

as gene ontology (GO). GO has two components; GO ontologies which define GO

terms and their relationships (graph structure) and GO annotation which defines

the associations between the gene products and the terms [120]. Typically, GO

enrichment analysis can be utilized to identify which biological processes, functions,

or locations are significantly over-or-under-represented. This analysis can also provide

insights into new functions that can be inferred from the data and how the genes of

interest are distributed across predefined biological categories.

GO is a hierarchical classification of genes and gene products organized in

a directed acyclic graph (DAG) structure similar to a tree but unlike the tree,

a node may have multiple parents. Nodes are the GO terms and edges that

determine the relationships between the nodes which are either “is a” or “part of”,

or ”regulate” [120, 50, 124] and all the nodes and edges along their relationships

are well-defined [7]. Each GO term has a unique identifier and has a specific

biological function [7]. GO terms are categorized into three ontologies; cellular

component ontologies (CCO), molecular function ontologies (MFO), and biological

process ontologies (BPO). CCO refers to the place in the cell and extracellular in

which gene product is active. MFO is defined as the biochemical activity of a gene

product at the molecular level. This definition also applies to the capability that

a gene product (or gene product complex) carries as a potential. BPO refers to

a biological objective to which the gene or gene product contributes. A process is
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accomplished via one or more ordered assemblies of molecular functions [7, 124].

Each ontology consists of a set of GO terms that are organized in a hierarchy order

in the GO graph [124]. The relationships between a gene product (or gene product

group) to cellular component, molecular function, and biological process ontologies are

one-to-many, reflecting the biological reality that a particular protein may function in

several processes in multiple alternatives interactions with other proteins, organelles,

or locations in the cell [7]. In other words, depending on the functional characteristics

of the particular gene, the gene is assigned to a set of predefined GO terms and

therefore each gene is assigned to at least three GO terms with respect to the three

categories. A gene can be described with multiple GO terms and additionally, several

genes may be assigned to a particular GO term. In the hierarchical structure of

the GO graph, the GO terms parent nodes are more general than its children and

therefore more genes are assigned to them. Additionally, a GO term in the graph

inherits all the properties of its ancestors which are located on every path from the

GO terms back to the root. It should be noted that in the GO graph, a term may

have multiple parent nodes. Having a GO graph, it is possible to retrieve all the GO

terms associated with a particular gene, or conversely, retrieve all the genes annotated

to a particular GO term [120, 50]. The characteristics of the GO structure enable

powerful grouping, searching, and analysis of genes [120, 7].

Figure 1.8 illustrates a snapshot of the GO. In this figure, the GO term

identifiers have been listed at the right. For example, identifiers “GO:0043473”

and “GO:0048066” denote the “pigmentation” and “developmental pigmentation”,

respectively. “Pigmentation” is more general than “developmental pigmentation” and

there are more genes assigned to it, and “developmental pigmentation” inherits all the

properties of the “pigmentation”. Additionally, these two terms are connected by the

edge “is a” which indicates that “developmental pigmentation” is a “pigmentation” or

equivalently “developmental pigmentation” is a subtype of “pigmentation” [124]. GO

has three roots; “GO:0005575” for CCO, “GO:0003674” for MFO, and “ GO:0008150”

for BPO.

Two types of questions can be addressed using GO annotation; if a specific GO

term is enriched or depleted in a module (hypothesis-generating-query) or which GO

terms are significant in a module (hypothesis-driven-query) [120]. Here we emphasize

the latter question and this technique is called GO enrichment. GO enrichment
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Zhao et al. GO Based Gene Function Prediction

updated, has more affiliated functional annotations, and is more
widely used. Therefore, we focus on function predictionmethods
using GO.

GO is composed of three ontologies: molecular functional
ontology (MFO), biological process ontology (BPO), and cellular
component ontology (CCO) (Ashburner et al., 2000). MFO
describes the elemental activities of a gene product at the
molecular level (i.e., binding and catalysis); BPO captures the
beginning and end, pertinent to the functioning of integrated
living units: cells, tissues, organs, and organisms; CCO describes
the parts of cells and their extracellular environments. Each
ontology consists of a set of ontological terms (GO terms), which
are organized in a hierarchy, or directed acyclic graph (DAG), as
shown in Figure 1. This DAG can be generated from the ontology
file with moderate scripts (i.e., Matlab, R, and Python). In the
Supplementary Material, we provide some exemplar codes for
generating an association matrix from GO and to visualize the
Ontology. Each GO term is defined by a unique alphanumeric
identifier and can be viewed as a vertex of the graph, and the
function is described using controlled words. The edge encodes
the relationships (is a, part of, and regulate) between GO terms.
For example, “GO:0043473” represents the pigmentation, and
“GO:0048066” describes the developmental pigmentation; the
two terms are connected by a line with “I,” which means that
the developmental pigmentation is a subtype of pigmentation.

GO annotation is another component of GO, and it stores
the currently known functional knowledge of gene products.
Each positive annotation relates a gene with a GO term, and
indicates the gene product carries out the function described
by this term. Similarly, each negative annotation indicates the
gene product does not perform the function described by this
term. The GO consortium (Ashburner et al., 2000) independently
or collaboratively annotate genes with GO terms from model

GO:0005575 GO:0008150 GO:0003674

GO:0043473 GO:0050789

GO:0043474 GO:0048066 GO:0048519 GO:0048518

GO:0043324 GO:0048070 GO:0006856

GO:0048087GO:0048086

GO:0048080 GO:0048074 GO:0048081 GO:0048075

GO:0005575 -> cellular_component

GO:0003674 -> molecular_function

GO:0008150 -> biological_process

GO:0043473 -> pigmentation

GO:0050789 -> regulation of biological process

GO:0043474 -> pigment metabolic process involved in pigmentation

GO:0048066 -> developmental pigmentation

GO:0048519 -> negative regulation of biological process

GO:0048518 -> positive regulation of biological process

GO:0043324 -> pigment metabolic process involved in developmental pigmentation

GO:0048070 -> regulation of developmental pigmentation

GO:0006856 -> eye pigment precursor transport

GO:0048086 -> negative regulation of developmental pigmentation

GO:0048087 -> positive regulation of developmental pigmentation

GO:0048080 -> negative regulation of cuticle pigmentation

GO:0048074 -> negative regulation of eye pigmentation

GO:0048081 -> positive regulation of cuticle pigmentation

GO:0048075 -> positive regulation of eye pigmentation
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FIGURE 1 | Snapshot of a directed acyclic graph from Gene Ontology. Each ontological term is represented by an alphanumeric identifier, and its biological function

is described by controlled words. These GO terms are hierarchically connected with different types of directed edges. The level of a GO term in the DAG is determined

by its furthest distance to the root GO term (“GO:0008150” in BPO, “GO:0005575” in CCO, and “GO:0003674” in MFO). For example, “GO:0048087” is a direct child

and also a grandson of “GO:0048066,” and its furthest distance to the root term is 5, while “GO:0006856” is another direct child of “GO:0048066” and its furthest

distance to the root is 4, so “GO:0006856” is plotted at a higher level than “GO:0048087”.

organisms (or species) of wide interest among biologists, such
as Homo sapiens, Mus musculus, Arabidopsis thaliana, and
so on. However, our current knowledge about the functional
taxonomy of gene products is still immature. Therefore, both
the GO hierarchy and annotations are regularly updated with
new knowledge and archived for reference. The collected GO
annotations are still quite incomplete, imbalanced, and rather
shallow (Rhee et al., 2008; Thomas et al., 2012; Dessimoz and
Škunca, 2017). For example, different species have different
distributions of GO annotations; zebrafish is heavily studied in
terms of developmental biology and embryogenesis, while rat
is the standard model for toxicology (Dessimoz and Škunca,
2017). The portion of negative annotations is much smaller than
positive ones, because a negative result may be due to inadequate
experimental conditions and is often deemed as less useful
and publishable than a positive annotation. By December 2019,
GO included more than 45,000 terms, and each gene was only
annotated with several or dozens of these terms. Therefore, it is
rather difficult to accurately infer the associations between the
genes and the many GO terms.

Each GO term can be modeled as a semantic label and, thus,
the gene function prediction task can be treated as a classification
problem to determine whether the label is positive for the gene or
not. Early gene function prediction solutions simply utilized this
annotation information (Schwikowski et al., 2000; Hvidsten et al.,
2001; Raychaudhuri et al., 2002; Schug et al., 2002; Troyanskaya
et al., 2003; Karaoz et al., 2004), and converted the problem
into a plain binary (or multi-class) classification task (Hua and
Sun, 2001; Lanckriet et al., 2003; Leslie et al., 2004). Such
methods ignored the correlations between the GO terms and
the imbalanced characteristics of terms; therefore, their accuracy
was low. Since a gene is often simultaneously annotated with a
set of structurally organized GO terms, some researchers model
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Figure 1.8 Snapshot of Gene ontology graph. CCO, BPO, and MFO denote cellular
component ontology, biological process ontology, and molecular function ontology,
respectively. In GO unlike the tree structure, a node may have multiple parents
and a parent node is more general than its children therefore more genes have been
assigned gene [124].

methods take the entire genes in the gene expression data, called gene universe, and

a module as the input. Then, for each GO term in the gene universe, it performs a

hypergeometric test to see if the term is significant in the module or not. Finally,

it returns the significant GO terms along with their corresponding hypergeometric

test. The p-value associated with the GO term determines how much the GO term

is significant in the module. As usual, the smaller the p-value the more significant

the GO term is. The null hypothesis is that there is no relationship between the GO

term and the module. Rejecting null means that there is an association between the

module and the GO term [50]. Let N and M be the number of genes in the universe

and modules, respectively. Let n be the number of genes associated with a GO term

GO1, and m of these genes are found in the module. The p-value associated with the

GO1 is calculated using Equation (1.7).

p(X = m) =

(
n
m

)(
M−n
N−m

)(
M
N

) (1.7)

The main idea of calculating the p-values is to assign significance to the GO

terms by comparing the number of observed genes in a specific category with the

number of genes that might appear in the same category if a selection performed

from the same pool were completely random [50]. In other words, GO enrichment

determines among the list of GO terms, which of them appear more frequently than
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would be expected by chance when examining the set of terms annotated to the input

module genes [50]. To this end, an unbiased search for significant GO associations

can be done with a bottom-up approach as follows; for every leaf term, calculate the

p-value with the genes directly associated with it. If any term is significant, do not

propagate its gene above. This would provide the most specific node that is significant

in that particular branch. If a term is not significant, propagate the annotations to its

parents and recalculate with the parent terms. The genes will propagate upwards until

a significant node is found or until the root is reached [120]. Correction for multiple

experiments is a crucial factor in GO enrichment since performing multiple tests in

parallel may greatly increase the false positive [50, 120]. There are several methods

for correction and among them, Bonferroni is the simplest such that it multiplies the

p-values of all terms with the number of parallel tests performed [50, 120], the more

detail of the correction can be found in [50]. If genes are propagated all the way up

to the root node, the number of tests is equal to the number of terms in the GO

hierarchy. In practice, a term would need to have a raw p-value less than 4 ∗ 10−7

for it to be significant at the 1% significance level. Hence, as a general rule, one

can increase the power of the statistical analysis by performing the fewest possible

number of tests [120].

1.4 Popular Frameworks

Several frameworks and algorithms have been developed for GCNs construction and

analysis such as [121, 56, 86, 37, 119, 16, 96]. Among them, Weighted Correlation

Network Analysis (WGCNA) [121, 56], is still the most widely accepted and used

framework for module detection in GCNs [3, 16, 96, 65, 42]. In recent years,

there has been a growing interest to enhance WGCNA and multiple frameworks

have been proposed as a modification of this framework. These pipelines mainly

utilize an additional step in the form of either pre-processing or post-processing to

WGCNA. Among them, CoExpNets [16], K-Module [42], and Co-Expression Modules

identification Tool (CEMiTool) [20], have paid the most attention [3, 4].
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1.4.1 Weighted gene co-expression network analysis (WGCNA)

Weighted Gene Co-expression Network Analysis (WGCNA) initially was proposed in

2005 [121]. In 2008, authors developed a R [90] package for this pipeline. It consists

of the following steps [56].

i Calculates Pearson correlation over the input gene expression Gm×n, and
produces the similarity matrix Sm×m.

ii Converts the negative coefficient into positive using Equation (1.5).

iii Raises the matrix S so that the underlying network confirms to be scale-free.

iv Adds the second-order neighborhood information of the node to the network in
the form of topological overlap measure [121] using Equation (1.8).

v Uses hierarchical clustering to produce the final module.

A network is scale-free if the degree of its nodes fall off as a power law p(k) ∼ k−γ

where k is a non-negative real number indicating the weights of the network. The

scale-freeness criteria of a network can be measured using the R2 fitting index of

the linear model of log(p(k)) that regresses on log(k). If R2 approaches 1, then the

scale-freeness criteria is held for the network [121].

TOM formula is as follows.

ωi,j =
li,j + si,j

min (ki, kj) + 1 − si,j
(1.8)

where li,j =
∑

u ai,uau,j, and si,j is the similarity value between gene i and j

from previous step, and ki =
∑

u aiu is the degree of node i. In fact, for every pair

of genes i and j, TOM adds the information about the second-order neighborhood of

those genes to the network.

WGCNA has proposed the “Dynamic Tree Cut” [58] package for hierarchical

clustering that dynamically cuts the dendrogram depending on its shape. The authors

have suggested that this results in more flexibility in cluster identification. And, their

method is capable of identifying nested clusters, and also in addition to hierarchical

clustering it can utilize the advantages of the partitioning method to give better

detection of outliers. It is also claimed that the resulting clusters are more enriched

with known gene ontologies in comparison with standard hierarchical clustering.

Dynamic Tree Cut has two functions. “Dynamic Tree” cut, the first function, is based
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on divisive hierarchical clustering that relies solely on a dendrogram. It is shown that

this version is capable of producing enriched clusters in terms of gene ontologies. This

algorithm iteratively divides and combines the clusters that have been returned by the

static tree cut and stops whenever the number of clusters becomes fixed. “Dynamic

Hybrid”, the second function, is based on agglomerative hierarchical clustering and

performs in two steps; (i) it finds preliminary clusters (ii) it assigns unassigned objects

to the closest preliminary cluster if the distance is small enough [58].

1.4.2 CoExpNets and K-Modules

CoExpNets have utilized kmeans clustering [39] as a post-processing step to the

output of WGCNA to produce the final modules.

i Performs WGCNA on the gene expression Gm×n and produces final modules
m1,m2, · · · ,mk, where k is the number of clusters.

ii Performs kmeans clustering [39] with k number clusters, and set eigengene of
the clusters as the initial centroids.

Eigengene of a cluster C is the first component of the singular value decompo-

sition (SVD) factorization over the expression matrix of the genes that belong to C.

The authors have shown that their pipeline results in higher module enrichment [16].

Similar to CoExpNets, K-Module also performs an additional kmeans clustering [39]

as an extra step to WGCNA output [42].

1.4.3 Co-Expression modules identification tool (CEMiTool)

Co-Expression Modules Identification Tool (CEMiTool) is a pipeline that incorporates

an extra pre-processing step to filter the genes using the inverse gamma distri-

bution [20]. It then performs WGCN to produce the final modules.
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CHAPTER 2

A NOVEL PREPROCESSING STEP TOWARD THE GENE
CO-EXPRESSION NETWORK CONSTRUCTION

High-throughput technologies such as DNA microarrays and RNA-sequencing are

used to measure the expression levels of large numbers of genes simultaneously. To

support the extraction of biological knowledge, individual gene expression levels are

transformed into Gene Co-expression Networks (GCNs). In a GCN, nodes correspond

to genes, and the weight of the connection between two nodes is a measure of similarity

in the expression behavior of the two genes. In general, GCN construction and

analysis includes three steps; (i) Network Construction, (ii) Network Clustering,

(iii) Module evaluation. The specific implementation of these three steps can

significantly impact the final output and the downstream biological analysis. GCN

construction is a well-studied topic. But given its widespread use and applicability,

the possibility of improving existing frameworks is tantalizing and motivates further

research. Currently, the software package WGCNA (see Subsection 1.4.1) appears to

be the most widely accepted standard. Existing algorithms rely on relatively simple

statistical and mathematical tools to implement these steps. We hypothesize that

the raw features provided by sequencing data can be leveraged to extract modules of

higher quality. A novel preprocessing step of the gene expression data set is introduced

that in effect calibrates the expression levels of individual genes, before computing

pairwise similarities. Further, the similarity is computed as an inner product

of positive vectors. In experiments, this provides a significant improvement over

WGCNA, as measured by aggregate p-values of the gene ontology term enrichment

of the computed modules.

Manuscript for this section is published in [3].

2.1 Introduction

The availability of high-throughput technologies like DNA microarrays [93] or

RNA-sequencing [43] (RNA-seq) has motivated several approaches for developing

a computational understanding of genes and their functionalities. A prominent

example is gene co-expression networks (GCNs) that are used to perform tasks such
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as functional annotations [101, 72], biological process [30], pathway analysis [72, 116],

and disease mechanism understanding [84]. In a GCN, nodes correspond to genes,

and the weight of the connection between two nodes is a measure of similarity in the

expression behavior of the two genes [111].

In general, given a gene expression data set (provided by DNA microarray or

RNA-seq) a GCN pipeline includes the following steps; 1-Network Construction:

Computation of the adjacency matrix of the GCN. This includes two sub-steps of

Similarity

Calculation of a similarity value for each pair of genes, 2-Adjacency: Further

processing of these similarity values to construct a network encoded by its adjacency

matrix, 3-Clustering: Computation of clusters of genes in the network, commonly

called modules [100, 115], and 4-Evaluation: Evaluation of the modules based on

measuring their enrichment with Gene Ontology (GO) terms [50]. Modules can later

divulge significant biological intuition.

The specific implementation of these steps can significantly impact the final

output and the downstream biological analysis. In particular, the similarity and

adjacency steps can be implemented in various ways. For example, framework

Petal [86] instantiates them as follows: (i) Similarity: Computation of the Spearman

correlation, (ii) Adjacency: Construction of an initial network using the signum

function and further modification so that it follows certain scale-free and small-world

criteria [8]. On the other hand, WeiGhted Correlation Network Analysis (WGCNA)

which is the most widely accepted framework for GCN construction takes the following

steps: (i) Similarity : Computation of the Pearson correlation, (ii) Adjacency :

Conversion of the negative correlation values into positive, further powering the

coefficients so that the resulting network follows the scale-free criteria and adding

information about second-order neighborhoods of the network, in the form of what is

called the Topological Overlap Measure (TOM) of the network [121, 56].

GCN construction and analysis is well studied, for over a decade. But given

its widespread use and applicability, the possibility of improving existing frameworks

is tantalizing and motivates further research. We hypothesize that the raw features

provided by sequencing data can be leveraged to extract modules of higher quality. To

this end, we introduce a novel step that precedes the steps of the standard pipeline and

is performed directly on the gene expression data set. This is further processing of the
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level of the expression provided by the DNA microarrays: this in effect calibrates the

expression levels of individual genes, before computing pairwise similarities. Further,

we deviate from standard frameworks that use statistical measures for the similarity

computation [66], and instead use a geometric measure, cosine similarity. Specifically,

we compute similarity as a simple inner product of vectors of positive numbers. This

is appropriate for our context, since expression levels are positive numbers, and avoids

complications related to the interpretation of negative coefficients that are artificially

inserted in the analysis via correlation measures. While simple, these steps have

not been considered in earlier literature, to the best of our knowledge. As WGCNA

appears to be the most widely accepted standard, we implement the proposed steps

as modifications to the WGCNA framework, so that they can be easily incorporated

into the current GCN construction and analysis workflow. The rest of the process for

network construction is the same as WGCNA, to make things comparable. In multiple

experiments, our modifications seem to provide an overall significant improvement

over WGCNA on real data, as measured by aggregate p-values of the gene ontology

(GO) term enrichment of the computed modules. Specifically, we ran a set of

experiments on six different data sets with sample sizes between 44 up to 438 and we

found that in all but one case, calibration combined with geometric similarity resulted

in more enriched modules.

2.2 Methods

2.2.1 Proposed steps

We describe the two novel steps that constitute our proposed modification to the

standard pipeline.

Calibration step Let G be an m × n gene expression matrix where m and n are

the number of samples and genes, respectively, and the entry gi,j is the value of the

expression gene j in sample i, as shown in Section 2.2.1.
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G =


g1,1 g1,2 . . . g1,n

g2,1, g2,2 . . . g2,n
...

...
. . .

...

gm,1 gm,2 . . . gm,n

 (2.1)

In the calibration step, we filter the raw level of the expressions provided in G.

Concretely, let Gj denote the jth column of G that contains the expression of gene j.

Also, define µj and σ2
j as the mean and variance of gene vector Gj. Then for every

gene j and sample i we calculate a calibrated expression si,j as follows:

si,j =
1

1 + exp (− 1
σ2
j
(gi,j − µj))

(2.2)

It should be noted that si,j ≥ 0. In the sequel, we denote by S = [si,j] the gene

expression matrix after the calibration step, and Sj the jth column of S.

Similarity We consider two variants of a similarity measure based on computing

simple inner products between positive vectors.

In the first variant, we initially set S ′ = STS. Note that s′i,j is the inner product

between the calibrated expression levels of genes i and j. These similarity values s′i,j

may not be in the interval (0, 1). Therefore, in order to compute similarity values in

the range (0, 1) we compute the final similarities mi,j via the following normalization:

mi,j =
s′i,j − mini,j

maxi,j −mini,j

(2.3)

where mini,j and maxi,j denote the minimum and maximum entry over row i

and column j of S ′.

In the second variant, we let

mi,j =
ST
i Sj

||Si||2||Sj||2
(2.4)

where Si denotes the ith column of S, and || · ||2 denotes the Euclidean norm of a

vector. This is precisely the cosine similarity between the two vectors Si and Sj.
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In both variants we have mi,j = mj,i and 0 ≤ mi,j ≤ 1.

2.2.2 Adjacency

As we discussed earlier, the main goal of this study is to compare the effectiveness

of the proposed steps with WGCNA. Let us summarize the WGCNA pipeline.

In Subsection 1.4.1 gives more detail of WGCNA:

WGCNA

i Calculate the Pearson correlation on gene expression.

ii Convert the negative values to positive using Equation (2.3).

iii Power the similarity matrix (element-wise) so that the network becomes scale-
free.

iv Add topological information (TOM) to the network using Equation (2.5).

Two remarks are due here.

• A network is scale-free if the degree of its nodes follow a power law p(k) ∼ k−Γ

where k is a non-negative real number. The scale-freeness criteria of a network can

be measured using the R2 fitting index of the linear model of log(p(k)) that regresses

on log(k). If R2 approaches 1, then the scale-freeness criteria hold for the network.

• The topological overlap measure (TOM) calculates the weight ωi,j between

genes i and j in the adjacency matrix by including second-order neighborhood

information in gene interactions. For instance, if for two genes i and j there are

multiple genes k showing a strong interaction with both i and j, then that adds extra

strength in the weight ωi,j. More formally the weight is given in Equation (2.5) [121].

ωi,j =
li,j + ai,j

min (ki, kj) + 1 − ai,j
(2.5)

where li,j =
∑

u ai,uau,j, and ai,j is the similarity value between gene i and j

from previous step, and ki =
∑

u aiu is the degree of node i.

2.2.3 Calibration-based pipeline variants

We now describe three pipelines for constructing a network from the raw expression

data. They all use steps described in subsections Subsection 2.2.1 and Subsection 2.2.2.

We name the variants and specify them as follows:
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Alpha

i Apply the calibration step and calculate matrix S according to Equation (2.2).

ii Compute similarities according to Equation (2.3).

iii Power the similarity matrix so that the network becomes scale-free.

Beta

i Apply the calibration step and calculate matrix S according to Equation (2.2).

ii Compute similarities according to Equation (2.4).

iii Power the similarity matrix so that the network becomes scale-free.

Gamma

i Follow steps 1-3 of Beta.

ii Add TOM to the network, according to Equation (2.5).

All three variants include the calibration step and will be compared against

the standard pipeline of WGCNA. We include Alpha to contrast it with the pure

cosine similarity measure used in Beta and Gamma. Gamma includes TOM and its

comparison with Beta shows that including second-order neighborhood information

remains an effective tool in synergy with our proposed steps.

2.2.4 Clustering

Several algorithms for detecting modules in the network have been proposed; among

them, hierarchical clustering, partitioning, and neural networks have received the

most attention [115]. In this study we used the ‘Dynamic Tree Cut’ [58] package in

R [90], which is the de facto standard and used with WGCNA. Dynamic Tree Cut is

a version of hierarchical clustering that dynamically cuts the dendrogram depending

on its shape which results in more flexibility in cluster identification. The authors

have suggested that their method is capable of identifying nested clusters, and the

resulting modules are more enriched with known GO [58].
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2.3 Data, Evaluation, and Results

In this section we discuss the evaluation of our three calibration-based pipelines and

their comparison against WGCNA. We use 6 real datasets. For each dataset, we

compute modules with the four different pipelines and then compare their quality.

The only differentiation in these four different computations is in the construction of

the network, as described in the previous section, and all other steps remain the same

as in WGCNA.

2.3.1 Data sets

The gene expression data sets have been downloaded from NCBI Gene Expression

Omnibus GEO [9]. They are distinguished by their unique GEO Series (GSE)

number. The first data set is the gene expression data of Drosophila melanogaster

GSE34400 [71], and it contains 44 samples. The second data set is the gene expression

data of kidney transplantation in human being patients GSE129166 [117], and it

contains 212 samples. The third data set is the gene expression data of transcriptional

consequences of pharmacologic PPAR a, d, & g agonist administration in the murine

liver, heart, kidney, and skeletal muscle in mus musculus organism GSE279481, and

it contains 300 samples. The fourth data set is the gene expression data of PAXgene

allergic asthma patients at baseline GSE13739 [21] and it contains 309 samples. The

fifth data set is the gene expression data of livers of F2 mice (C57BL/6 X DBA/2)

deficient in leptin receptor (db/db) of mus musculus GSE30140 [25] and it contains

435 samples. The last (sixth) data set is the gene expression data of changes in HK-2

cells following exposure to nephrotoxic compounds of homo sapiens GSE272112 and

it contains 438 samples. The data sets are ordered by size, and their results are

presented accordingly.

2.3.2 GO enrichment and module quality

The quality of the computed modules is evaluated by measuring their enrichment

with respect to GO annotation, following a methodology that was established and

used in previous works, among others [106, 44].

1https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27948, (2022)
2https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27211, (2022)
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Concretely, for each computed module we perform a number of non-conditional

hypergeometric tests using function hyperGTest of GOstats [32]. To be more

specific, we note that GOstats provides an option to choose among three GO

ontologies (“Biological Process”, “Cellular Component”, “Molecular Function”), and

also an option to choose a ‘test direction’, i.e., checking for overrepresented or

underrepresented terms. Collectively, there are six different ways of calling the

non-conditional hyperGTest. We perform all these six tests on each module.

These tests return a set of terms and corresponding p-values for each module.

As usual, smaller p-values indicate a higher statistical significance. Following previous

works [106, 44], we keep the five smaller p-values for each module, and their geometric

mean is viewed as a measure of module quality.

More precisely, let pi,j be the ith-order p-value calculated for module j. We

define the quality of module j to be the negative logarithm of the geometric mean of

the 5 best p-values for module j:

Qj = −(
5∑

j=1

log10 pi,j)/5 (2.6)

2.3.3 Pipeline evaluation and comparison

Average cluster quality. Following previous conventions and methodology [106,

44], we evaluate the performance of each pipeline by calculating an average

module quality over all modules computed by the pipeline. More precisely,

suppose that pipeline x outputs a number nx of different modules. Then, given

definition Equation (2.6) the average module quality is defined as

Q̄ = (
nx∑
j=1

Qj)/nx (2.7)

Figure 2.1 depicts in bars the average quality Q̄ ( Equation (2.7)) for each

pipeline. It can be seen that Gamma yields better average module quality in all 6

data sets, with the exception of GSE30140. In the same Figure, we also observe that
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Figure 2.1 Gene ontology enrichment analysis comparing Alpha, Beta, Gamma with
WGCNA in six real data sets. The five best GO enrichment p-values from all modules
are log-transformed, averaged, and shown as bar plots. Higher is better. Error bars
indicate the 95% confidence intervals that have been calculated based on the standard
deviation of the p-values.
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in half of the data sets Alpha outperforms Beta, and Alpha performs better on data

sets with larger sample sizes.

Ordered Cluster Quality. It has been observed in [35] that expression-based

clustering methods produce multiple clusters of relatively low enrichment. In view of

this, we take a more detailed look at the p-values for each module individually. To

this end, we calculate the quality (as defined in Subsection 2.3.2) for each module,

then sort the modules according to their quality and plot up to 20 corresponding

values, whenever available. As shown in Figure 2.2, the difference between the four

pipelines is more pronounced for the higher-quality modules and it becomes less clear

for the lower-quality modules that are presumably less important from a biological

point of view due to their lower quality.

Figure 2.3 is similar to Figure 2.2, except that it focuses on the 3 best modules

for each pipeline, for reading clarity. It can be seen that, in all data sets, Gamma

returns the module with the highest enrichment, with the exception of GSE34400 and

GSE30140. We note that GSE34400 has the least number of samples which is 44. In

GSE30140, as discussed earlier, WGCNA is better on average ( Figure 2.1) but even

in this, case Beta produces a module of higher quality relative to WGCNA. Notably,

in GSE30140, Beta’s top cluster is by far better than those of Gamma and WGCNA.

This demonstrates a case where TOM leads to lower quality in the top module. The

dominance of calibration-based methods, in general, extends to the order-2 module

and, while still present in some data sets, diminishes in the order-3 module.

Other comparisons. Besides comparing the enrichment of the computed

clusters, multiple other related questions can be considered. Here we perform two

additional types of comparisons in order to demonstrate that the modules computed

by the calibration-based methods can be significantly different than those computed

by WGCNA.

The clustering algorithm used in WGCNA has a number of parameters that

can affect the clustering outcome, but in this work, we use the default settings for all

four pipelines. With these default settings, the algorithm rejects a number of trivial

clusters of small size, and the corresponding genes do not appear in the clustering

output. In Table 2.1, we wish to highlight the percentage of such genes that are

not assigned to any module. In general, WGCNA leaves unassigned nodes relative to

calibration methods, and in particular Gamma. For example, in GSE30140, WGCNA
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Figure 2.2 Gene ontology enrichment analysis of clusters produced by Alpha, Beta,
Gamma with WGCNA in six empirical data sets. For each data set the sorted quality
values of the modules are plotted. The x-axis and y-axis indicate the module indices
and the module quality, respectively.
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Figure 2.3 Gene ontology enrichment analysis of 10 best modules produced by Alpha,
Beta, Gamma, and WGCNA in 6 real data sets. The mean over the 5 best GO
enrichment p-values from the 10 top modules of each pipeline is compared. The x-axis
and y-axis indicate the 10 best modules and the module performance, respectively.
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Table 2.1 A Clustering Summary for six datasets on the four pipelines; Alpha (A),
Beta (B), Gamma (Γ), WGCNA (W).

Data Set Pipeline # clusters % of unassigned genes

GSE34400 A B Γ W : 34 42 27 39 0.58 32.0 13.0 22.0

GSE129166 A B Γ W : 60 35 8 9 0.01 15.5 2.13 6.50

GSE27948 A B Γ W : 58 60 24 41 2.4 4.5 0.0 29.2

GSE137394 A B Γ W : 29 53 48 40 0.8 62.3 56.00 74.1

GSE30140 A B Γ W : 22 60 3 11 1.3 0.45 18.0 91.1

GSE27211 A B Γ W : 31 66 51 84 0.56 50.0 32.0 38.13

Note: The number of modules and percentages of unassigned genes for the four pipelines
Alpha (A), Beta (B), Gamma (Γ), WGCNA (W).

ignores over 90% of the genes for the clustering, i.e., these genes are not included in

any module; in comparison, Gamma assigns 82% of the genes to modules. We also

observe that there is a significant variance in the number of clusters computed by

the four pipelines and that WGCNA has a tendency to produce more clusters than

Gamma (with the ‘slight’ exception of GSE137394). These two facts combined imply

that the sizes of the clusters computed by our pipeline are on average bigger than

the standard WGCNA pipeline. The precise cluster sizes can be found along with

the code and data in the public code repository. We also note that the very recent

work in [42] has also identified the issue with unassigned genes in WGCNA, and

introduced an additional clustering step that assigns all genes to an appropriately

selected module, claiming higher module enrichment. The tendency of our pipeline

to automatically do much of what [42] does in a ‘forced’ way, is an interesting feature

of our pipeline.

Recall that in the computation of the quality measures, we kept the 5 GO terms

with the smallest p-values for each module. In Table 2.2 we focus on the top module,

and report how many of these 5 GO terms are shared between each pair of methods.

We see that in two datasets (GSE129166 and GSE27211) the overlap between Gamma

and WGCNA is significant (five and four, respectively). In other datasets, it can be

as low as zero. This indicates that the computed clusters are potentially different

(relative to WGCNA) in terms of their biological meaning and significance.
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Table 2.2 Overlapping In The Five GO Terms of The Top Module For Each Pair Of
Pipelines

Data Set Alpha Beta Gamma WGCNA

GSE34400

GSE129166

Alpha 3 1 0
Beta 2 0 0
Gamma 4 3 0
WGCNA 4 3 5

GSE27948

GSE137394

Alpha 2 0 0
Beta 0 0 0
Gamma 0 2 0
WGCNA 0 0 2

GSE30140

GSE27211

Alpha 5 0 0
Beta 5 0 0
Gamma 0 5 4
WGCNA 0 4 4

Note: Each table contains two data sets: the first data set is shown in the upper-triangular
part of the table, and the second in the lower-triangular part. For instance, the number
of GO terms shared between WGCNA and Gamma in GSE27211 can be found in the
corresponding cell of the lower part of the third table (=4 in this case).

2.4 Discussion

WGCNA is a widely used software package for identifying biologically meaningful

clusters of genes. As highlighted in the title of the original work [121], WGCNA

is in fact a versatile general framework that can be instantiated in multiple ways

into concrete data-processing pipelines. The research community has adopted the

GO enrichment of the computed modules as a proxy of the biological utility of a

pipeline [106, 44]. Indeed, several research articles have been devoted to studying

individual algorithmic components of WGCNA and their impact on GO enrichment,

up until recently [42]. For example, the current practice of using Pearson correlation

as a similarity measure for pairs of genes has been influenced by the outcome of an

extensive study that considered various other similarity measures [106].

In this work, we go beyond modifying the existing WGCNA components and

propose an ‘architectural’ change with the inclusion of a novel calibration layer that

precedes the computation of pairwise similarities between the genes. The proposed

calibration is a sigmoid transformation of the raw gene expressions that are applied

separately to each gene. In addition, we replace Pearson correlation as a similarity

measure with an even simpler geometric measure (cosine similarity) that –somewhat
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curiously– has not been considered before, possibly due to “cultural” reasons related

to the background of the research groups that undertook earlier efforts [106]. As

discussed in Section 2.3, calibration appears to help the clustering algorithm capture

modules with a higher average enrichment in Gene Ontology terms, with the effect

being more pronounced for the modules of highest enrichment. It also appears to

result in modules that can be qualitatively quite different than those computed by

WGCNA.

Ultimately the biological utility of a specific pipeline can only be confirmed by

applied biological discovery. While we are encouraged by our results in terms of the

GO enrichment, we do not regard our methods as antagonistic to WGCNA but rather

as alternatives that can be easily incorporated into existing WGCNA-based pipelines

and hopefully provide an additional tool to biologists. For that reason, we provide

code that can work directly with the existing WGCNA codebase.

2.4.1 Future considerations

We wish to highlight an additional interesting fact. Topological Overlap (TOM), i.e.,

the formation of the final network based not on just pairwise similarities but also

on second-order neighborhoods of the genes, appears to yield more enriched modules

in our calibrated setting, as it has also been observed for other pipelines that are

markedly different. This independent confirmation leads to the natural question

of whether higher-order neighborhoods can enhance cluster quality as it has been

observed recently in other types of datasets (e.g., see [88]); we feel that this is a topic

worthy of more exploration. We have also found (although not reported in this paper)

that dropping the scale-freeness step from our pipeline reduces module quality, as it

does in the standard WGCNA pipeline. Interestingly, the single dataset (GSE30140)

where TOM leads to a deterioration in module enrichment for the top module is also

the only dataset where powering the network does not yield in practice a good fit to

the scale-freeness criterion used by WGCNA. The notion of scale-freeness in biological

networks has received significant criticism (e.g., see [17]) and indeed the existence of

datasets where scale-freeness is not present may provide a very interesting lead for

further research on graph-theoretic alternatives to scale-freeness, especially in terms

of its synergy with topological overlap. We leave these questions open for future

research.
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CHAPTER 3

SGCP: A SEMI-SUPERVISED PIPELINE FOR GENE CLUSTERING
USING THE SELF-TRAINING APPROACH IN GENE

CO-EXPRESSION NETWORKS

A widely used approach for extracting information from gene expression data employs

the construction of a gene co-expression network and the subsequent application of

algorithms that discover network structure. In particular, a common goal is the

computational discovery of gene clusters, commonly called modules. When applied

to a novel gene expression dataset, the quality of the computed modules can be

evaluated automatically, using Gene Ontology enrichment, a method that measures

the frequencies of Gene Ontology terms in the computed modules and evaluates

their statistical likelihood. In this work, we propose SGCP as a novel pipeline

for gene clustering based on relatively recent seminal work in the mathematics of

spectral network theory. SGCP consists of multiple novel steps that enable the

computation of highly enriched modules in an unsupervised manner. But unlike all

existing frameworks, it further incorporates a novel step that leverages Gene Ontology

information in a semi-supervised clustering method that further improves the quality

of the computed modules. Compared with already well-known existing frameworks,

we show that SGCP results in higher enrichment in real data. In particular, in 12

real gene expression datasets, SGCP outperforms all except one.

3.1 Introduction

High throughput gene expression data enables gene functionality understanding

in fully systematic frameworks. Gene module detection in Gene Co-expression

Networks (GCNs) is a prominent such framework that has generated multiple insights,

from unraveling the biological process of plant organisms [30] and essential genes

in microalgae [82], to assigning unknown genes to biological functions [72] and

recognizing disease mechanisms [84], e.g., for coronary artery disease [65].

GCNs are graph-based models where nodes correspond to genes and the strength

of the link between each pair of nodes is a measure of similarity in the expression

behavior of the two genes [111]. The goal is to group the genes in a way that those
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with similar expression pattern fall within the same network cluster, commonly called

module [34, 115]. GCNs are constructed by applying a similarity measure on the

expression measurements of gene pairs. Genes are then clustered using unsupervised

graph clustering algorithms. Finally, the modules are analyzed and interpreted for

gene functionality [3].

The de facto standard automatic technique for module quality analysis is Gene

Ontology (GO) enrichment. This method reveals if a module of co-expressed genes

is enriched for genes that belong to known pathways or functions. Enrichment is

a measure of module quality and the module-enriching GO terms can be used to

discover biological meaning [50, 3, 16, 96]. Statistically, in a given module, this

method determines the significance of the GO terms for a test query by associating

p-values . The query includes the test direction, either “underrepresented” (under)

or “overrepresented” (over), and three ontologies; “biological process” (BP), “cellular

component” (CC), and “molecular function” (MF). p-values are derived based on the

number of observed genes in a specific query with the number of genes that might

appear in the same query if a selection performed from the same pool was completely

random. In effect, these values identify if the GO terms appear more frequently

than would be expected by chance [50]. As usual the smaller the p-value the more

significant the GO term.

3.1.1 Background on existing GCN frameworks

Several frameworks and algorithms have been developed for GCNs construction and

analysis such as [121, 56, 86, 37, 119, 16, 96]. Among them, Weighted Correlation

Network Analysis (WGCNA) [56], is still the most widely accepted and used

framework for module detection in GCNs [3, 16, 96, 65, 42]. WGCNA uses the Pearson

correlation of gene expressions to form a ‘provisional’ network and then powers the

strength values on its links so that the network conforms with a “scale-freeness”

criterion. The final network is constructed by adding to the provisional network

additional second-order neighborhood information, in the form of what is called

topological overlap measure (TOM). Finally, WGCNA uses a standard hierarchical

clustering (HC) algorithm to produce modules [58].

In recent years, there has been a growing interest to enhance WGCNA and

multiple frameworks have been proposed as a modification of this framework. These
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pipelines mainly utilize an additional step in the form of either pre-processing or

post-processing to WGCNA. Co-Expression Modules Identification Tool (CEMiTool)

is a pipeline that incorporates an extra pre-processing step to filter the genes using

the inverse gamma distribution [96]. Another study shows that a calibration pre-

processing step in raw gene expression data results in increased GO enrichment [3].

Two other frameworks, the popular CoExpNets [16] and K-Module [42] have utilized

k-means clustering [39] as a post-processing step to the output of WGCNA. Finally, in

a comparative study, it is revealed that CEMiTool has advantages over WGCNA [20].

3.1.2 Our framework: self-trained gene clustering

We have developed Self-training Gene Clustering Pipeline (SGCP), a user-friendly

R package (see https://github.com/na396/SGCP for the latest version) for GCNs

construction and analysis. Its integration with Bioconductor makes it easy to

incorporate into existing workflows. SGCP differentiates itself from WGCNA and

other pipelines in three key ways: (i) It constructs a network without relying on

the scale-freeness criterion which has been controversial [100, 49, 64, 17, 22]. (ii)

It clusters the network using a variant of spectral graph clustering that has been

proposed relatively recently in seminal work [59]. (iii) It incorporates ‘self-training’,

a supervised clustering step that GO enrichment information obtained from the

previous step and further enhances the quality of the modules. To our knowledge,

SGCP is the first pipeline that uses GO enrichment information as supervision.

3.1.3 SGCP: the workflow

The workflow of SGCP is illustrated in Figure 3.1; in what follows we give an overview

of SGCP and also point to the corresponding sections containing more details. SGCP

takes as input a gene expression matrix GE with m genes and n sample and performs

the following five main steps:

Network Construction. Each gene vector, i.e., each row in matrix GE is

normalized to a unit vector; this results in a matrix G. Next, the Gaussian kernel

function is used as the similarity metric to calculate S in which 0 ≤ si,j = sj,i ≤ 1

and si,j shows the similarity value between gene i and j. Then, the second-order

neighborhood information will be added to the network as topological overlap
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Figure 3.1 The SGCP pipeline for gene clustering in gene co-expression networks.
SGCP takes the gene expression matrix GE and outputs clusters and their refinements
to modules after the semi-supervised classification steps. The steps for determining
the number of clusters k is drawn below the main pipeline.

measure (TOM) [121]. The result of this step is an m × m symmetric adjacency

matrix A (see Subsection 3.4.1).

Network Clustering. Matrix A is used to define and solve an appropriate

eigenvalue problem. The eigenvalues are used to determine three potential values

(kag, krg, ksg) for the number of clusters k (see Subsection 3.4.2). For each such value

of k, SGCP computes a clustering of the network, by applying the kmeans algorithm

on an embedding matrix Y generated from 2k eigenvectors. In each clustering, it
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finds a test cluster, defined as the cluster with the smallest conductance index. The

three test clusters are evaluated for GO enrichment, and SGCP picks the clustering

that yielded the test cluster with the highest GO enrichment. This clustering is

the output of the Network Clustering step, and its clusters are the initial clusters

(see Subsection 3.4.2).

Gene Ontology Enrichment. GO enrichment analysis is carried out on the initial

clusters individually (see Subsection 3.4.3).

Gene Semi-Labeling . Genes are categorized into remarkable genes and unremarkable

genes using information derived from the GO enrichment step. For each cluster,

remarkable genes are those that have contributed to GO terms that are more

significant relative to a baseline. Remarkable genes are labeled according to their

corresponding cluster label. Not all clusters contain remarkable genes, and thus a new

number k′ ≤ k of clusters is determined, and accordingly, k′ labels are assigned to the

remarkable genes and to the corresponding geometric points in the embedding matrix

Y computed in the Network Clustering step. This defines a supervised classification

problem.

Semi-Supervised Classification. The supervised classification problem is solved

with an appropriately selected and configured machine learning algorithm (either

k-nearest neighbors [14], or one-vs-rest logistic regression [14]) with the remarkable

genes as the training set. The supervised classification algorithm assigns labels to

unremarkable genes. At the end of this step, all the genes are fully labeled, and

the final clusters called modules are produced. SGCP returns two sets of modules,

those obtained by the unsupervised Network Clustering step, and those produced

by the Semi-supervised classification step. For clarity, in this study, the former

and the latter are called clusters and modules and we denote the corresponding

methods with pSGCP (prior to semi-supervised classification) and SGCP, respectively

(see Subsection 3.4.5).

Remark. Computing the Gene Ontology Enrichment is a computationally time-

expensive task. The process for selecting k, described in the Network Clustering step,
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is meant to reduce the amount of computation for the GO enrichment. However,

whenever the amount and time of computation are not of concern, multiple other

values of k can be evaluated (whenever possible independently, by parallelly running

computing processes). This has the potential to produce even better modules. Indeed,

in the single case when our method does not outperform the baselines (see Section 3.2),

a different choice of k does produce a ‘winning’ output for our framework.

3.1.4 A comparison of SGCP with existing frameworks

SGCP deviates from commonly used existing pipelines for GCNs in three key ways:

(i) Network Construction: While existing pipelines employ a procedure that relies

on a controversial scale-freeness criterion, SGCP employs a Gaussian kernel whose

computation relies on simple statistics of the dataset that are not related to scale-

freeness considerations. To the extent that SGCP is effective in practice reveals that

scale-freeness is not fundamental in GCNs, affirming the findings of multiple other

works on biological networks.

(ii) Unsupervised Clustering: Most existing pipelines employ hierarchical clustering

algorithms as the main tool for the unsupervised learning step. SGCP first computes

a spectral embedding of the GCN and then applies kmeans clustering on it. Crucially,

the embedding algorithm is based on a recent breakthrough in the understanding of

spectral embeddings of networks.

(iii) GO-based supervised improvement: Existing frameworks do not make any use

of GO information, except for providing it in the output. This includes methods

that work on improving the quality of a first set of ‘raw’ clusters. SGCP is the first

framework that explicitly uses GO information to define a semi-supervised problem

which in turn is used to find more enriched modules.

3.2 Results

We present experiments that demonstrate that SGCP outperforms three competing

state-of-the-art methods on a wide variety of datasets.

Experimental Setting. We compare pSGCP (i.e., SGCP without semi-supervised

cluster improvement) and SGCP with three pipelines (WGCNA, CoExpNets, and

CEMiTool) on 12 gene expression datasets: four DNA-microarray datasets [41, 110,
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107, 12] and eight RNA-sequencing datasets [95, 60, 51, 19, 87, 77, 78, 92]. These

include expression arrays with a wide range of samples from five to 511, various

organisms, along with different units [1].1 The datasets were downloaded from the

NCBI Gene Expression Omnibus (GEO) database [10]. Details on the datasets are

available in Table 3.1. We note that raw DNA-microarray datasets are normalized

using robust multiarray analysis (RMA) [45] which is the most popular preprocessing

step for Affymetrix [67] expression arrays data [76]. The Principal component analysis

(PCA) of the 12 dataset is available in Appendix B.

1Expression units provide a digital measure of the abundance of genes or transcripts.
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Table 3.1 Benchmark Datasets And Summary Statistics Of Applying Pipelines WGCNA, CoExpNets, CEMiTool, PSGCP,
SGCP On them

.
WGCNA CoExpNets CEMiTool pSGCP SGCP

Data Type Organism #Samples Unit sft k #GO Terms k #GO Terms k #GO Terms k #GO Terms k #GO Terms mth % UNR Genes % CH Label

GSE181225 [95] RNA Hs 5 RLE 26 48 7462 75 9027 32 6252 2 2598 2 2598 ag,rg 1% 0%
GSE33779 [41] DNA Dm 90 probes 14 22 5631 19 6213 17 5299 10 4144 7 3821 ag 56% 47.1%
GSE44903 [110] DNA Rn 142 probes 30 18 3298 27 4705 14 3303 4 987 4 1059 rg 29% 5%
GSE54456 [60] RNA Hs 174 RPKM 30 31 9386 46 14473 22 11056 3 6004 3 600 ag,rg 1% 1%
GSE57148 [51] RNA Hs 189 FPKM 14 45 13296 36 14110 33 12027 9 2833 5 2383 sg 46% 24%
GSE60571 [19] RNA Dm 235 FPKM 9 21 7107 19 8622 16 5564 2 2969 2 2971 ag,rg 21% 2%
GSE107559 [87] RNA Hs 270 FPKM 3 26 10915 20 12499 80 15952 14 5257 12 4913 sg 6% 48.4%
GSE28435 [107] DNA Rn 335 probes 22 51 7331 47 7769 31 6566 2 2052 2 2053 sg 12% 0%
GSE104687 [77] RNA Hs 377 FPKM 18 31 10339 28 1193 23 11369 2 6426 2 6426 ag,rg 0% 0%
GSE150961 [78] RNA Hs 418 TMM 5 9 3619 18 606 17 4856 2 2111 2 2111 ag,rg 9% 0%
GSE115828 [92] RNA Hs 453 CPM 12 51 12611 10 7693 10 5231 3 1934 3 1926 sg 33% 0%
GSE38705 [12] DNA Mm 511 probes 16 8 3320 12 4123 7 3308 6 2824 4 2610 sg 39% 62%

The first 6 columns contain dataset information. Possible dataset types are DNA-microarray (DNA) or RNA-seq (RNA). Datasets come
from the following organisms: Homo sapiens (Hs), Drosophila melanogaster (Dm), Rattus norvegicus (Rn), Mus musculus (Mm). Units
are Relative Log Expression (RLE), Reads Per Kilobase of transcript per Million mapped reads (RPM), Fragments Per Kilobase of
exon per Million mapped fragments (FKPM), Trimmed Mean of M-values (TMM). The “sft” column indicates softpower used by tested
benchmarks to enforce the network to be scale-free. For each of the 5 pipelines, k is the number of clusters and #GO Terms indicated the
number of gene ontology terms found in all modules collectively by the pipeline; in particular, a single #GO term will appear once for
each cluster where its presence exceeds a threshold of significance in term of its p-value. In the case of SGCP, “mth” denotes the method
ultimately used for selecting k, “ag”: additive gap, “rg”: relative gap, and sg: second-order gap. %UNR Genes show the percentage of
the entire genes at are unremarkable. %CH Label shows the percentage of the unremarkable genes whose labels have changed after the
semi-labeling step.
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We look at the following metrics of quality. The log-transformed p-values of

GO terms identified in modules for each pipeline are explained in Appendix C.

Average Cluster Quality. We follow the previous convention and methodology [106,

44], and evaluate performance by comparing the p-values returned by pipelines. Let

pi,j be the ith order p-value calculated for module j. Then, the quality of module j

is defined as qj = −(
∑

j=1 log10 pi,j)/nj where nj is the number of GO terms found

in module j. Finally, the quality of framework f is defined as Qf = (
∑k

i=1 qi)/k

where k is the number of modules in f . The results are shown in Figure 3.2. SGCP

outperforms the three baselines on all datasets, and the same is true for pSGCP, with

the exception of GSE38705. We can also see that SGCP is at least as good as pSGCP

on all datasets, and in six out of 12 of the datasets, it improves the module quality.

Most significant GO terms. The summary evaluation includes all p-values for

the GO terms, as reported by GOstats, but here we focus on the top 100 p-values

for each pipeline. Figure 3.3 reports these p-values in the form of ‘violin’ plots.

The y-axis indicates the significance of each GO term in terms of the p-value. The

top GO terms in pSGCP and SGCP have a higher p-value than the corresponding

top terms of the other frameworks except for datasets GSE44903 and GSE57148; in

GSE57148 only CEMiTool does better than SGCP. It can be also observed that in

five datasets (GSE181225, GSE54456, GSE107559, GSE28435, GSE104687), SGCP

is dominant to other frameworks, as the least significant GO term found by SGCP is

more significant than the majority of GO terms founds by the other frameworks. In

datasets (GSE150961, GSE11582, GSE60571, and GSE38705) the ‘violin’ for pSGCP

and SGCP tends to be higher relative to the other frameworks. In two datasets

(GSE33779, GSE38705) the three pipelines have similar performance.

GO terms of most significant module. We consider as most significant or

prominent, the module that contains the GO term containing the highest p-value. We

then consider the ten most significant GO terms in the prominent module and we show

their p-values in Figure 3.4. We observe that, even when restricted to the prominent

module, pSGCP, and SGCP report more significant terms than other methods, on

all datasets except GSE44903 and GSE57148; in GSE57148 only CEMiTool is better
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Figure 3.2 Gene ontology enrichment analysis comparing WGCNA, CoExpNets,
CEMiTool, pSGCP, and SGCP in 12 real datasets. p-values are log-transformed.
The order of the pipelines from left to right is WGCNA (purple), CoExpNets(yellow),
CEMiTool (orange), pSGCP(green), and SGCP (blue). All p-values from all modules
are pooled, averaged, and shown as a barplot. Error bars indicated the 95% confidence
intervals that have been calculated based on the standard deviation of the p-values.

than SGCP. In six of the datasets, pSGCP and SGCP are astonishingly better than

the other frameworks.

3.2.1 Observations

Overlap in significant GO terms. It is interesting to investigate the overlap

of GO terms reported by the different frameworks. To this end, we report two
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Figure 3.3 Gene ontology enrichment analysis comparing WGCNA, CoExpNets,
CEMiTool, pSGCP, and SGCP in 12 real datasets. p-values are log-transformed. The
order of the pipelines from left to right is WGCNA (purple), CoExpNets(yellow),
CEMiTool (orange), pSGCP(green), and SGCP (blue). Top 100 most significant
p-values from all modules are shown as a violin plot.

different measures for overlap, in Figure 3.5. Not surprisingly, pSGCP and SGCP

show significant overlaps with each other, as is the case with WGCNA, CEMiTool

and CoExpNets, which also share algorithmic components. The overlaps between

SGCP and the other three frameworks are smaller, indicating that SGCP reports GO

terms that are not reported by the other frameworks. This is even more prominent

when focusing on the most significant GO terms, reported in Figure 3.5.
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Figure 3.4 Gene ontology enrichment analysis comparing WGCNA, CoExpNets,
CEMiTool, pSGCP, and SGCP in 12 real datasets. p-values are log-transformed. The
order of the pipelines from left to right is WGCNA (purple), CoExpNets(yellow),
CEMiTool (orange), pSGCP(green), and SGCP (blue). Top ten most significant
p-values for the prominent module for each pipeline

It is also interesting to consider the information that is implied by the different

sizes of the circles in symmetric positions (p, q) and (q, p). In Figure 3.5a, the circles in

the lower-triangular part of the 12 arrays are larger than their symmetric counterparts.

This shows that when considering all modules the number of GO terms reported by

SGCP is smaller. On the other hand, when considering the prominent module (defined

as the module containing the GO term with the most significant p-value), Figure 3.5b

shows that the prominent module for SGCP contains a higher number of statistically
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significant GO terms, relative to the prominent module of other methods. Overall,

these two observations show that SGCP produces a prominent module with a higher

density of statistically significant GO terms.
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Figure 3.5 Overlaps GO terms reported by WGCNA, CoExpNets, CEMiTool,
pSGCP, and SGCP in 12 real datasets. In both Figures (a) and (b), for pipeline
p in the x-axis and pipeline q in the y-axis, position (p, q) shows the number of
unique GO terms reported by both p and q, divided by the number of terms reported
by q. Figure (a) accounts for GO terms reported in all modules, while Figure (b)
accounts for GO terms reported in the prominent (most significant) modules. The
bigger and darker a circle the higher the percentage.

The conductance measure. Spectral clustering targets the computation of

clusters with a small conductance index as defined in Section 3.4.2 [59]. Thus,

when optimizing for conductance, we implicitly hypothesize that smaller conductance

should correspond to higher module enrichment. Figure 3.6 shows this corre-

spondence.

We indeed have observed that there is correspondence between the cluster

conductance index and cluster enrichment. Figure 3.6 shows the conductance index of

the modules computed by SGC, along with their corresponding enrichment; here we

focus on the cases when k > 2. It can be seen that in all six data except GSE54456,

clusters with smaller conductance indices have higher enrichment. In particular, in

GSE107559, the modules with smaller conductance indexes were in order the clusters
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with label 5, 1, 13, 8, 10, 14, 4, 13 (see Figure 3.6a). Interestingly, from Figure 3.6b, it

can be seen that these clusters have higher enrichment.

(a) (b)

Figure 3.6 Conductance index and log-transformed p-values analysis in six real
datasets. For each data, the conductance index for the clusters (on the left) along
with its corresponding log-transformed p-values distribution (on the right) is depicted.
(a) Conductance index for each module per data. The smaller the bar, the better the
cluster. (b) log-transformed p-values for each module per data. The higher the point,
the more enriched the GO term.

As discussed in Section 3.1, our framework relies on this connection of cluster

conductance with enrichment to automatically compute a value of k before computing

the final clustering and the GO enrichment for the modules. In particular, the

method computes the enrichment of three test clusters that were picked based on their

conductance. These clusters’ conductance and enrichment are reported in Figure 3.7,

where the general correlation between conductance and enrichment is evident.

Semi-supervised re-classification. Once initial clusters by kmeans are produced,

SGCP carries out an additional semi-supervised re-classification of genes to return

final modules, as described in Section 3.1. A summary of the impact of this final

step is given in Table 3.1 in the SGCP column. “%UNR Genes” indicates the

percentage of the total genes that are unremarkable, and “% CH Label” specifies

the percentage of unremarkable genes whose label changed after the re-classification.
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Figure 3.7 Conductance index and log-transformed p-values analysis for additive gap
(“ag”), relative gap (“rg”), and second-order gap (“sg”) clusters in 12 real datasets.
(a) Conductance index for the best cluster of each method on the 12 datasets.
(b) log-transformed p-values of the selected clusters for “ag”, “rg”, and “sg” are
shown. The higher the point, the more significant the GO term.

Generally, when the percentage of unremarkable genes is small, the final modules

agree with pSGCP clusters; this happens in GSE104687, GSE181225, GSE54456,

GSE107559, and GSE150961. In contrast, for a higher percentage of unremarkable

genes, SGCP assigns new labels to unremarkable genes and changes significantly the

clusters’ shape and size. The highest unremarkable gene percentages occurred in

GSE33779, GSE57148, and GSE38705. The difference in enrichment between the

clusters (pSGCP) and modules (SGCP) for these data is shown in Figure 3.8. It

can be seen that, in all cases, the number of clusters gets reduced and the overall

enrichment of the modules increases. In GSE107559 the percentage of unremarkable

genes is relatively low, but re-classification has wiped out two clusters. In general,

if there are clusters that are not enriched the re-classification step eliminates these

clusters

3.3 Discussion

We have proposed a novel framework for gene co-expression network analysis. Our

pipeline integrates multiple novel elements that deviate from existing frameworks

in various ways. The GCN construction relies on a similarity measure that unlike
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Figure 3.8 Comparing pSGCP clusters and SGCP modules in four real datasets.
In all cases, re-classification has resulted in a smaller number of modules relative to
clusters. The labels of the eliminated clusters are 3, 4, 6, in GSE33779, 1, 3, 4, 10 in
GSE57148, 9, 14 in GSE107559, and 3, 5 in GSE38705.

previous works does not take into account network scale-freeness. The clustering

algorithm departs from the currently used paradigm of Hierarchical Clustering and

makes use of recent progress in spectral clustering. The framework also includes

a novel semi-supervised re-clustering step that takes into account gene ontology

information, unlike previous frameworks that include it only as an end result for

module evaluation. We also make the observation that the conductance index,

i.e., the optimization objective of spectral clustering is empirically correlated with

high module enrichment, providing experimental support to our choice of spectral

clustering. Our framework produces modules that have been found to be of superior

quality on a comprehensive set of experiments with real datasets.
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3.4 Methods

The input is a matrix GEm×n containing the gene expressions. In GE, rows and

columns correspond to genes and samples, respectively. Each entry gei,j is an

expression value for gene i in sample j. SGCP does not perform any normalization

or correction for batch effects and it is assumed that these preprocessing steps have

been already performed. SGCP is based on 5 main steps. Each step offers parameters

that can be adjusted by the user.

3.4.1 Step I: Network construction

Gene-level Normalization. In this step, each gene expression vector, i.e., each

row of the matrix GEm×n is divided by its Euclidean norm which is calculated as

∥GEi,.∥2 =
√

ge2i,1, . . . , ge
2
i,n, (3.1)

where GEi,. =< gei,1, . . . , gei,n > is the expression vector of gene i. The result

of this step is matrix Gm×n.

Similarity Calculation. We calculate the variance γ2 over all m2/2 pairwise

Euclidean distances ∥gi − gj∥22. We then calculate the following type of Gaussian

kernel for each pair of genes.

si,j = k(gi, gj) = exp(
−∥gi − gj∥22

2γ2
). (3.2)

The result is a similarity matrix Sm×m where m is the number of the genes. Note

that S is a symmetric square matrix that ranges from 0 for the most dissimilar to 1

for the most similar genes.

Topological Overlap Enhancement. The adjacency of the network is derived by

adding second-order neighborhood information to Sm×m in the form of the topological

overlap measure (TOM) [121, 56]. The adjacency strength between gene i and j is

calculated by the following formula:

ai,j =
li,j + si,j

min (ki, kj) + 1 − si,j
, (3.3)
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where li,j =
∑

u si,usu,j, and si,j is the similarity coefficient between gene i and

j from matrix S of the previous step, and ki =
∑

j sij is the degree of node i. The

output is a symmetric adjacency matrix Am×m with values in [0, 1] where m is the

number of genes. Note that the diagonal elements of A are zero.

3.4.2 Step II: Network clustering

Eigenvalues and Eigenvectors. Let A be the adjacency matrix from the previous

step. Let D be the diagonal matrix containing the degrees of the nodes in the

similarity matrix, i.e., dii =
∑

j aij. We perform the following steps:

• Compute the eigenvalues and the corresponding eigenvectors of D−1A. Let
λ1, . . . , λm be the eigenvalues, and Y1, . . . , Ym be the corresponding eigenvectors
2 .

• For eigenvector Yi defines the scalar ai = 1TDYi/m, where 1 is the all-ones
vector. Then subtract ti from each entry of Yi.

• Let Yi := Yi/(Y T
i DYi).

• Drop the first column of Y .

The output of this step consists of the eigenvalues λ1, . . . , λm, and of the matrix

of eigenvectors Ym−1×m, where eigenvector Yi is the ith column of Y .

Determining the Number of Clusters. Three potentially different values for the

number of clusters are calculated, kag, krg, ksg using, respectively what we call the

additive gap, relative gap, and the second-order gap methods. These are calculated

as follows:

kag = arg max
i

(λi+1 − λi) for i = 2, . . . ,m− 1 (3.4)

krg = arg max
i

(
1 − λi+1

1 − λi

)
for i = 2, . . . ,m− 2 (3.5)

ksg = arg max
i

(
1 − λi+1

1 − λi

− 1 − λi+2

1 − λi+1

)
for i = 2, . . . ,m (3.6)

2The number of eigenvectors that are practically needed for the rest of the pipeline never
exceeds m′ = 50. With an appropriate method, one can calculate at most m′ eigenvectors,
resulting in a faster method.
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Calculation of Conductance Index. For each of the three possible values of k

(i.e., kag, krg, ksg), We set Y ′ to consist of the 2k columns (i.e., eigenvectors) of Y .

Each row in Y ′ is then divided by its Euclidean norm so that length of each row

becomes 1. Next, the kmeans clustering algorithm [39] is applied on Y ′ to find k

clusters using the default kmeans() R function. By default, the maximum number of

iterations is set to 108 and the number of starts is set to 1000. Then, for each cluster,

the conductance index is computed. Let Ci be one of the clusters. The conductance

index for cluster Ci is defined in Equation (3.7).

conduct(Ci) =

∑
u∈Ci,v ̸∈Ci

au,v∑
u∈Ci

deg(u)
(3.7)

where deg(u) =
∑

j Au,j which indicates the degree node u (sum of all the weights

associated to node u), and au,v is the pairwise association between node u and v in

adjacency matrix A. For each method, the cluster that has the minimum conductance

index is chosen and passed to the next level. Let cag, crg, and csg denote the clusters

with minimum conductance index for the three aforementioned methods, respectively.

Gene Ontology Validation. In this step, the enrichment of clusters cag, crg, and

csg are calculated using the GOstats [32] R package individually for all six possible

queries (“underBP”, “overBP”, “underCC”, “overCC”, “underMF”, “overMF‘”)

combined. To this end, a conditional “hyperGTest” test is performed and the entire

set of genes in the data is considered for the “universeGeneIds”. For each cluster

c ∈ {cag, crg, csg}, GOstats returns the GO terms found in c along with a p-value for

each term. Let Pi denote the p-value associated with a GO term i found in c. Then

the quality of a cluster c is determined by:

∑
j∈c

− log10(Pj). (3.8)

This measure is then used to pick the cluster of best quality among {cag, crg, csg}.

Each of these three clusters was produced by kmeans with a specific choice of k:

kag, krg, ksg, respectively. Then the cluster of best quality directly determines what

value of k will be used. For example, if cag is the best cluster, then k = kag. After
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determining k, the clusters computed earlier by kmeans for that value of k are returned

as output, along with embedding matrix Y ′
m×2k.

3.4.3 Gene ontology enrichment

The GOstats R package [32] is applied to each cluster returned in the GO Validation

step. The settings of GOstats are the same as in the GO validation step. GOstats

reports answers on user-specified queries including “id”, “term”, “p-value”, “odds”

“ratio”, “expected count”, “count”, and “size”. SGCP reports this information for

each cluster separately. Additionally, for each cluster SGCP reports the GO terms

that have been found in the cluster.

3.4.4 Gene Semi-labeling

In the default setting, SGCP picks the top 10% GO terms according to their associated

p-values, and consider their corresponding genes as remarkable. All other genes are

considered unremarkable. That percentage is user-adjustable.

With this definition, some clusters may not contain any remarkable genes. Then,

each remarkable gene inherits the label of its parent cluster. The unremarkable genes

remain unlabeled.

3.4.5 Semi-supervised Classification

Labeled and unlabeled gene sets along with their corresponding 2k-dimensional

points given by the rows of Y ′ (obtained in the Network clustering step) define a

semi-supervised classification problem. We adopt a simple solution that uses the

embeddings of the labeled genes as training points, and we train a simple classifier

such as k-nearest neighbors (kNN) [40] or logistic regression [85]. Then the trained

classifier is used to classify the unlabeled points and their corresponding genes. Note

that k is the number of clusters determined in the Network Clustering step, but the

actual number of clusters returned in this step is equal to the number of clusters

found to contain remarkable genes in the Gene Semi-labeling step. The default model

is kNN and the number of neighbors is ranging from 20 : (20 + 2 ∗ k) if 2 ∗ k ≤ 30

otherwise 20 : 30 depending on accuracy metric using [53] R-package.
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3.4.6 Final remark

The proposed pipeline is flexible. In particular, SGCP enables the user to define

their preferred number f clusters k. For example, we have found that in the case

of dataset GSE44903, SGCP outperforms the baselines significantly with a different

value of k that is not automatically produced by our pipeline. SGCP also includes a

user-defined threshold about the percentage of GO terms used for finding remarkable

genes and clusters.

3.4.7 Settings in baseline pipelines

As discussed earlier, all the baseline pipelines use soft-powering (sft) to make the

GCNs scale-free. We use the same soft-power methods across all pipelines and the

specific powers used for each dataset are reported in Table 3.1. The functions that

are used for GCN construction and analysis in WGCNA, CoExpNets, and CEMiToo,

are “blockwiseModules”, “getDownstreamNetwork” and “cemitool”, respectively.
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APPENDIX A

SIMILARITY FUNCTIONS

In this appendix, you find mathematical and statistical information on the similarity

functions used in the network construction phase of gene co-expression networks, as

described in Subsection 1.3.1. The similarity functions for two vectors of X =<

x1, · · · , xn > and Y =< y1, · · · , yn > are described in this section. Let R =<

r1, · · · , rn > and Q =< q1, · · · , qn > are the rank vectors of X and Y respectively.

A.1 Assumptions

Let A and B be vectors of random variables a1, · · · , an and b1, · · · , bn. Throughout

this appendix, we make the following assumptions.

• var(A) is the variance of random variable A.

• cov(A,B) indicates the covariance value between random variable A and B.

• cor(A,B) indicates the Pearson correlation value between random variable A
and B.

• Ā and σ̂A denote the sample mean and sample standard deviation of A.

• The rank of A is a random variable C where c1, · · · , cn is the non-decreasing
permutation of the a1, · · · , an.

• E[A] is the expectation value of A.

• med(A) denote the median of A.

• mad(A) is the median absolute deviation of A.

• < A,B > is the scalar product between A and B.

• I(b) is the indicator that takes 1 value if b > 0 and 0 otherwise.

• Entropy(A) is the entropy of A.

• det(M) denotes the determinant of matrix M .

• ΣA,B =

(
Σ1,1 Σ1,2

Σ2,1 Σ2,2

)
is the covariance matrix between variables A and B such

that Σ1,1 = var(A),Σ2,2 = var(B),Σ1,2 = Σ2,1 = cov(A,B).
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A.2 Pearson Correlation

Equation (A.1) denotes the Pearson Correlation and its coefficients are always −1 ≤
ρX,Y ≤ +1 where −1 and +1 indicate the perfect negative and positive correlation,

respectively. This is a parametric association method and it captures the linear

dependencies.

ρX,Y =
cov(X, Y )

σ̂X σ̂Y

(A.1)

The Pearson Correlation assumes the data is normally distributed and there is

a linear relationship between the two variables. This association method is sensitive

to outliers and has great power [55].

A.3 Spearman (Rank) Correlation

Equation (A.2) denotes the Spearman (Rank) Correlation and its coefficient is always

−1 ≤ ρR,Q ≤ +1 where −1 and +1 indicate the perfect negative and positive

correlation, respectively. This is a non-parametric association method and it captures

the non-linear monotonic dependencies.

ρR,Q =
cov(R,Q)

σRσQ

=
6
∑n

i=1 d
2

n(n2 − 1)

(A.2)

Where di is the difference between ranks of the ith observations of the two

variables. Spearman (Rank) Correlation does not require the data to be measured

on interval or ratio scale and it has less power than Pearson Correlation [55, 66].

A.4 Kendall (Rank) Correlation

Equation (A.3) denotes the Kendall (Rank) Correlation and its coefficient is always

−1 ≤ τ ≤ +1 where −1 and +1 indicate the perfect negative and positive correlation,

respectively. This is a non-parametric association method and it captures non-linear

monotonic dependencies. Kendall (Rank) Correlation has less power than Pearson

Correlation.
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τ =
nc − nd(

n
2

) (A.3)

Where nc and nd indicate the number of concordant and discordant pairs,

respectively. For any pair of (xi, yi) and (xj, yj) where 1 ≤ i, j ≤ n are to be said

concordant if both xi > xj and yi > yj or if both xi < xj and yi < yj and they are

said to be discordant of xi > xj and yi < yj or xi < xj and yi > yj [55, 66].

A.5 Biweight Midcorrelation

Equation (A.4) denotes the biweight Midcorrelation and its coefficient −1 ≤
bicorX,Y ≤ +1 where −1 and +1 indicate the perfect negative and positive correlation,

respectively. This is a parametric association method and it captures the linear

dependencies.

bicorX,Y =

∑n
i=1(xi −med(X))wi

(X)(yi −med(Y ))wi
(Y )√∑n

j=1[(xj −med(X))wj
(X)]2

√∑n
k=1[(yk −med(Y ))wk

(Y )]2

where

wi
(X) = (1 − ui

2)2I(1− | ui |)

wi
(Y ) = (1 − vi

2)2I(1− | vi |)

where

ui =
xi −med(X)

9mad(X)

vi =
yi −med(X)

9mad(Y )

(A.4)

Biweight Midcorrelation is more robust to outlier and its power is higher than

Spearman and Kendall Correlation [106, 55, 66]

A.6 Weighted Rank Correlation

Equation (A.5) denotes the Weighted Rank Correlation and its coefficient is bounded

by −1 ≤ rw ≤ +1 where −1 and +1 indicate the perfect negative and positive
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correlation, respectively. This method is non-parametric and captures the non-linear

monotonic dependencies [55].

rw = 1 − 6
∑n

i=1(ri − qi)
2((n− ri + 1) + (n− qi + 1))

n4 + n3 − n2 − n
(A.5)

A.7 Renyi Correlation

Equation (A.6) denotes the Rényi Correlation and its coefficient 0 ≤ ρmax{X,Y } ≤ +1

where −1 and +1 indicate the perfect negative and positive correlation, respectively.

It captures the non-linear monotonic dependencies

ρmax{X,Y } =∆ sup
E[f(X)]=E[g(Y )]=0

E[f2(X)]=E[g2(Y )]=1

E[f(X)g(Y )] (A.6)

If ρmax{X,Y } = +1, then there exists functions such that f(X) = g(Y ). If X

and Y are jointly Gaussian, then ρmax{X,Y } =| ρX,Y | where ρX,Y is the Pearson

Correlation Coefficient [97] (https://web.mit.edu/18.338/www/2016s/projects/

makur_slides.pdf).

A.8 Partial Correlation

Equation (A.7) denotes the Partial Correlation and its coefficient −1 ≤ ρXY.Z ≤ +1

where −1 and +1 indicate the perfect negative and positive correlation, respectively.

Formally, the Partial Correlation between X and Y given a set of n controlling

variables Z = {z1, z2, · · · , zn}, written ρXY.Z is the correlation between the residuals

ϵX and ϵY resulting from the linear regression of X with Z and Y with Z, respectively.

The first-order Partial Correlation (i.e., when n = 1) is the difference between a

correlation and the product of the removable correlations divided by the product of

the coefficients of alienation of the removable correlations https://en.wikipedia.

org/wiki/Partial_correlation.
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ρXY.Z =
n
∑n

i=1 ϵxi
· ϵyi√

n
∑n

i=1 ϵ
2
xi

√
n
∑n

i=1 ϵ
2
yi

where

ϵxi
= xi− < wX , zi >

ϵyi = yi− < wY , zi >

where

wX = arg min
w

n∑
i=1

(xi− < w, zi >)2

wY = arg min
w

n∑
i=1

(yi− < w, zi >)2

(A.7)

Where ϵ’s are the residuals after calculating the linear regression of X with Z

and Y with Z.

A.9 CCor Correlation

Equation (A.8) denotes the “CCor” Correlation and its coefficient −1 ≤ CCorX,Y ≤
+1 where −1 and +1 indicate the perfect negative and positive correlation, respec-

tively. CCor between genes i and j represented by Xi and Yj, respectively is defined

as the Pearson Correlation ( see Appendix A.2) between correlation coefficients Xi

versus genes except i, j and Xj versus genes except i, j [44].

CCorXi,Yj
=∆ cor(Ui, Vj)

where

ui = (x1, x2, · · · , xi−1, xi+1, · · · , xj−1, xj+1, · · · , xn)

vj = (y1, y2, · · · , yi−1, yi+1, · · · , yj−1, yj+1, · · · , yn)

(A.8)

A.10 Blomqvist Correlation

Equation (A.9) denotes the Blomqvist Correlation and its coefficient −1 ≤ βX,Y ≤ +1

where −1 and +1 indicate the perfect negative and positive correlation, respectively.

This is a non-parametric association method and it captures the non-linear monotonic

dependencies.
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Let “x− y”-plane be divided into four regions by the median lines of X̃ and Ỹ .

The relationship of X and Y can be obtained from the number of sample points in

the four quadrants.

βX,Y =
n1 − n2

n1 + n2

(A.9)

Where n1 and n2 denote the number of data in the first or third and second or

fourth quadrant, respectively [66].

A.11 Kernel Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) and Kernel Canonical Correlation Analysis

(KCCA) are statistical techniques used to find linear and nonlinear relationships

between two sets of variables. CCA finds the linear combination of variables from

each set that has the highest correlation with the linear combination of variables from

the other set. KCCA extends CCA to non-linear relationships using kernel functions.

In Equation (A.10), CCA finds the maximum correlation between linear

combinations of X and Y by solving for the optimal weight vectors a and b. The

correlation coefficient is the correlation between the linear combinations of variables.

CCAX,Y = sup
a,b

cor(U, V )

where

cor(U, V ) =
aTΣ1,2b√

aTΣ1,1a
√
bTΣ2,2b

(A.10)

In Equation (A.11), KCCA uses a kernel function Φ to map the variables X and

Y into a higher-dimensional space before computing the linear combinations. KCCA

then finds the optimal weight vectors α and β to maximize the correlation between

the linear combinations of variables in the higher-dimensional space.

KX =
n∑

i=1

Φ(xi)
TΦ(xi)

KY =
n∑

i=1

Φ(yi)
TΦ(yi)

(A.11)

The Kernel Canonical Correlation Analysis (KCCA) is Equation (A.12) [66].
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kccaX,Y = sup
α,β

cor(U, V )

where

cor(U, V ) =
αTKXKY β√

αTKXKY α
√
αTKXKY β

(A.12)

Both CCA and KCCA can be used for dimensionality reduction, feature

extraction, and pattern recognition. CCA has been used in many fields, such as

biology, finance, and image analysis, while KCCA has been used in natural language

processing, speech recognition, and bioinformatics.

A.12 Distance Covariance and Correlation

Equation (A.13) denotes the squared Distance Covariance of X and Y and its

coefficient is 0 ≤ dCov2X,Y ≤ 1. It captures non-linear dependencies.

Let A be the pairwise Euclidean distance matrices of X with ai,j =| xi − xj |
as the (i, j)th entry and similarly let B the pairwise Euclidean distance matrices of

Y with bi,j =| yi − yj | as the (i, j)th entry for i, j = 1, 2, · · · , n. Then Ac and Bc

are derived by centralizing the matrices A and B. That is, the (i, j)th entry of Ac is

ai,j
c = ai,j− āi.− ā.j + ā.. where āi. is the ith row mean, ā.j is the jth column mean, and

ā.. is the grand mean of A. Similarly the (i, j)th entry of Bc is bi,j
c = bi,j− b̄i.− b̄.j + b̄..

where b̄i. is the ith row mean, b̄.j is the jth column mean, and b̄.. is the grand mean of

B [55, 66].

dCov2X,Y =
1

n2

∑
i,j

Ai,j
cBi,j

c (A.13)

Equation (A.14) denotes the squared Distance Correlation of X and Y and its

coefficient is 0 ≤ dCor2X,Y ≤ 1. It captures non-linear dependencies.

dCor2X,Y = R2

=
dCov2X,Y

dCovX dCovY

(A.14)
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A.13 Wilks’ Statistic

Equation (A.15) denotes the Wilks’ Statistics and its coefficient 0 ≤ WX,Y ≤ 1. It

captures linear bivariate associations [66].

WX,Y = 1 − det(Σ)

det(Σ11) det(Σ22)
(A.15)

A.14 Hoeffding’s Dependence

Equation (A.16) denotes the Hoeffding’s Dependence and its coefficient −1 ≤
DX,Y ≤ +1. This is a non-parametric association method and it captures non-linear

dependencies.

DX,Y =
(n− 2)(n− 3)D1 + D2 − 2(n− 2)D3

n(n− 1)(n− 2)(n− 3)(n− 4)

where

D1 =
n∑

i=1

si(si − 1)

D2 =
n∑

i=1

(ri − 1)(ri − 2)(qi − 1)(qi − 2)

D3 =
n∑

i=1

(ri − 2)(qi − 2)S

(A.16)

Where S is the bivariate rank which is the number of both X and Y values less

than the ith point and can be calculated as si =
∑n

j=1 ∅(xj, xi)∅(yj, yi), where ∅(a, b) =

1 if a < b and 0 otherwise. So it returns the number of bivariate observations for

which xi < xj and yj < yi [55, 66].

A.15 Goodman and Kruskal Dependence

Equation (A.17) denotes the Goodman and Kruskal Dependence measure and its

coefficient −1 ≤ γX,Y ≤ +1. This is a non-parametric association method and it

captures the non-linear monotonic dependencies.

γX,Y =
ps − pd
ps + pd

(A.17)
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Where ps and pd are the probabilities that a randomly selected pair of

observations will relocate in the same opposite order, respectively, when ranked by

both variable [66].

A.16 Copula-Based Maximum Mean Discrepancy

A copula is a multivariate probability distribution function defined on the unit

hypercube with known uniform marginals. It is popular in high-dimensional statistics

for describing the relationships between variables. Specifically, the copula of two

random gene variables X and Y is defined as a function Equation (A.18).

copula(U, V ) = copula(FX(x), FY (y)) (A.18)

Where FX(x) = P (X ≤ x), FY (y) = P (Y ≤ y), and FXY (x, y) = P (X ≤
x, Y ≤ y) are the two marginal distributions and the joint distribution.

Copula-Based Maximum Mean Discrepancy (CMMD) is a copula-based kernel

association measure between random variables. It extends the maximum mean

discrepancy (MMD) method of measuring dependence to the copula of the joint

distribution. Suppose two copula transformations have been implemented on the

original variables, i.e., U = F1(X) and V = F2(Y ). F1 and F2 are the empirical

cumulative distribution functions for X and Y , respectively. CMMD defines the

relationship between X and Y as

cmmdX,Y = mmd[F1(X), F2(Y )]

=
1

n(n− 1)

n∑
i ̸=j

K(ui, vj)
(A.19)

Where K(ui, vj) = Φ(ui, uj) + Φ(vi, vj)−Φ(ui, vj)−Φ(uj, vi), and Φ s a specific

kernel function, e.g., Gaussian kernel.
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A.17 Theil-Sen Estimator

The coefficient β̂1 of the linear regression of form Yi = β0 + β1Xi + ϵi, i = 1, 2, · · · , n
demonstrates the relationship between X and Y . Equation (A.20) denotes the Theil-

Sen Estimator which is a median of the slopes determined by all pairs of (xi, yi) i =

1, 2, · · · , n [55].

β̂1 = median{mi,j =
yi − yj
xi − xj

: xi ̸= xj, 1 ≤ i ≤ j ≤ n} (A.20)

A.18 Rank Theil-Sen Estimator

It is the same as the Theil-sen ( see section A.17) but it uses R and Q instead of X

and Y [55],.

A.19 W1 and W2 measure of count statistics

The Equation (A.21) notes measures of co-expression, W1 and W2, btained by

aggregating interactions across all sub-samples of k ≤ n. The coefficients W1 and

W2 are bounded 0 and ∞, and the method is non-parametric, capturing the strength

of the non-parametric association between two variables.

W1 =
n−k+1∑
i=1

{I(∅(xi, · · · , xi+k−1) = ∅(yi, · · · , yi+k−1))

+ I(∅(xi, · · · , xi+k−1) = ∅(−yi, · · · ,−yi+k−1))}

W2 =
∑

1≤i1<···<ik≤n

{I(∅(xi1, · · · , xik) = ∅(yi1, · · · , yik))

+ I(∅(xi1, · · · , xik) = ∅(−yi1, · · · ,−yik))}

(A.21)

Here ∅ is the rank function, which returns a vector of indices of the sorted

elements. W1 counts the number of contiguous subsequences of length k with

matching and reverse rank patterns, indicating positive and negative associations,

respectively. W2 is equal to the number of increasing (and decreasing) subsequences

of length k in a suitably permuted sequence [118, 66].
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A.20 Randomized Dependence Coefficient

Based on the previous kernel CCA and copulas, ( see section A.11 and section A.16

), the randomized dependence coefficient (RDC) provides computationally efficient

association measures between multivariate random variables. In detail, it is defined

as

rdc(X, Y, k, s) = sup
α,β

cor{αTΦ[F1(X); k, s], βTΦ[F2(Y ); k, s]} (A.22)

Where the functions are the same as the former ones, k ∈ N+ and s ∈ R+ are

the parameters which are often set as 20 and .6, respectively. RDC is proven to be

capable of discovering a wide range f functional association patterns in multiple data

sets [66].

A.21 Mutual Information Association

Let X and Y correspond to a discrete or categorical random variables. Each entry

xi i = 1, 2, · · · , n equals to one of the predefined binX . The mutual information (MI)

coefficient is defined as Equation (A.23) [106].

MIX,Y =

binX∑
i=1

binY∑
j=1

p(NXi, NYj) log(
p(NXi, NYj)

p(NXi)p(NYj)
) (A.23)

Where p(NXi) and p(NXj) are the frequency of level i and j of X and Y ,

respectively, and log is the natural logarithm. MIX,Y is always non-negative and it

captures non-linear dependencies. it has an upper bound given by Equation (A.24).

MI is the same as the Kullback-Leibler divergence [54, 106].

MIX,Y ≤ max{Entropy(X), Entropy(Y )}

MIX,Y ≤ Entropy(X) = Entropy(Y )

2

MIX,Y ≤ min{Entropy(X), Entropy(Y )}

(A.24)

A.22 CLR Coefficient

Equation (A.25) denotes the CLR coefficient which is a modification of MI [31].
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zi,j =
√

z2i + z2j

where

zi = max(0,
MI(xi, yj) − X̄i

σ̂Xi

)

(A.25)

Where MI(xi, yj) is the MI coefficient ( see Section A.21).

A.23 ARACNE Algorithm

Equation (A.26) hows how the ARACNE algorithm utilizes the data processing

inequality from theoretical information theory. For any three random variables X, Y ,

and Z, if X and Y interact only through Z, and if the Equation (A.26) holds for these

three random variables, then the association between X and Y will be 0. In other

words, if for the three vectors of gene expression X, Y , and Z the Equation (A.26)

holds, then the edge between X and Y will be removed [74].

MI(X, Y ) ≤ min(MI(X,Z),MI(Z, Y )) − ϵ (A.26)

A.24 Maximal Information Coefficient

Equation (A.27) denotes the Maximal Information Coefficient and its coefficient is

given by 0 ≤ MIC(D) ≤ 1. It can capture non-linear dependencies. Let D be a set

of ordered pairs of X and Y . The xi’s and the yi’s of D can be partitioned into x and

y bins, respectively. Such a pair of partitions is called an x-by-y gird. Given a gird

G, let D | G be the distribution induced by the points in D on the cells of G; that

is, the distribution on the cells of G obtained by letting the probability mass in each

cell be the fraction of points in D falling in that cell.

MIC(D) = max
xy<B(n)

{M(D)x,y}

where

M(D)x,y =
I∗(D, x, y)

log min{x, y}

where

I∗(D, x, y) = max I(D | G)

(A.27)
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Where ω(1) < B(n) < O(n1−ϵ) for some 0 < ϵ < 1. In practice, B(n) =

n0.6 [93, 66].
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APPENDIX B

PRINCIPAL COMPONENT ANALYSIS OVER THE 12 DATASETS

This appendix provides information on PCA applied to the 12 datasets discussed in

Section 3.2. Each section is named after a dataset, and every figure displays the PCA

of the data. The color-coding of points in the plots reflects the cluster assignment

produced by the pipelines in the benchmark (as described in Section 3.2), with the

pipeline name serving as the title of the plot. The SGCP clusters and modules denote

the initial clusters and final modules, respectively. The two plots on the bottom row

depict the PCA over the spectral embedding of the data. The table in the lower right

corner presents the pipelines and their corresponding number of clusters.

B.1 PCA of GSE181225

Figure B.1 displays the results of applying PCA to GSE181225 using four different

pipelines: WGCNA, CoExpNets, CEMiTool, and SGCP. Each point in the plot is

color-coded based on the module label assigned by each pipeline, and the pipeline

name is displayed in the plot title. The two plots in the bottom row show the PCA

over the spectral embedding of the data, and the table in the lower right corner lists

the number of clusters generated by each pipeline.

B.2 PCA of GSE33779

Figure B.2 displays the results of applying PCA to GSE33779 using four different

pipelines: WGCNA, CoExpNets, CEMiTool, and SGCP. Each point in the plot is

color-coded based on the module label assigned by each pipeline, and the pipeline

name is displayed in the plot title. The two plots in the bottom row show the PCA

over the spectral embedding of the data, and the table in the lower right corner lists

the number of clusters generated by each pipeline.

B.3 PCA of GSE44903

Figure B.3 displays the results of applying PCA to GSE44903 using four different

pipelines: WGCNA, CoExpNets, CEMiTool, and SGCP. Each point in the plot is

75



Figure B.1 PCA of GSE181225 for WGCNA, CoExpNets, CEMiTool, and SGCP.
Colors denote the module labels defined by the pipeline. SGCP clusters and SGCP
modules represent the initial clusters and final labels, respectively. The two plots on
the bottom row show the PCA over the spectral embedding of the data. The table
in the bottom right denotes the number of clusters per pipeline.

color-coded based on the module label assigned by each pipeline, and the pipeline

name is displayed in the plot title. The two plots in the bottom row show the PCA

over the spectral embedding of the data, and the table in the lower right corner lists

the number of clusters generated by each pipeline.

B.4 PCA of GSE54456

Figure B.4 displays the results of applying PCA to GSE54456 using four different

pipelines: WGCNA, CoExpNets, CEMiTool, and SGCP. Each point in the plot is

color-coded based on the module label assigned by each pipeline, and the pipeline

name is displayed in the plot title. The two plots in the bottom row show the PCA
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Figure B.2 PCA of GSE33779 for WGCNA, CoExpNets, CEMiTool, and SGCP.
Colors denote the module labels defined by the pipeline. SGCP clusters and SGCP
modules represent the initial clusters and final labels, respectively. The two plots on
the bottom row show the PCA over the spectral embedding of the data. The table
in the bottom right denotes the number of clusters per pipeline.

over the spectral embedding of the data, and the table in the lower right corner lists

the number of clusters generated by each pipeline.

B.5 PCA of GSE57148

Figure B.5 displays the results of applying PCA to GSE57148 using four different

pipelines: WGCNA, CoExpNets, CEMiTool, and SGCP. Each point in the plot is

color-coded based on the module label assigned by each pipeline, and the pipeline

name is displayed in the plot title. The two plots in the bottom row show the PCA

over the spectral embedding of the data, and the table in the lower right corner lists

the number of clusters generated by each pipeline.
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Figure B.3 PCA of GSE44903 for WGCNA, CoExpNets, CEMiTool, and SGCP.
Colors denote the module labels defined by the pipeline. SGCP clusters and SGCP
modules represent the initial clusters and final labels, respectively. The two plots on
the bottom row show the PCA over the spectral embedding of the data. The table
in the bottom right denotes the number of clusters per pipeline.

B.6 PCA of GSE60571

Figure B.6 displays the results of applying PCA to GSE60571 using four different

pipelines: WGCNA, CoExpNets, CEMiTool, and SGCP. Each point in the plot is

color-coded based on the module label assigned by each pipeline, and the pipeline

name is displayed in the plot title. The two plots in the bottom row show the PCA

over the spectral embedding of the data, and the table in the lower right corner lists

the number of clusters generated by each pipeline.
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Figure B.4 PCA of GSE54456 for WGCNA, CoExpNets, CEMiTool, and SGCP.
Colors denote the module labels defined by the pipeline. SGCP clusters and SGCP
modules represent the initial clusters and final labels, respectively. The two plots on
the bottom row show the PCA over the spectral embedding of the data. The table
in the bottom right denotes the number of clusters per pipeline.

B.7 PCA of GSE107559

Figure B.7 displays the results of applying PCA to GSE107559 using four different

pipelines: WGCNA, CoExpNets, CEMiTool, and SGCP. Each point in the plot is

color-coded based on the module label assigned by each pipeline, and the pipeline

name is displayed in the plot title. The two plots in the bottom row show the PCA

over the spectral embedding of the data, and the table in the lower right corner lists

the number of clusters generated by each pipeline.
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Figure B.5 PCA of GSE57148 for WGCNA, CoExpNets, CEMiTool, and SGCP.
Colors denote the module labels defined by the pipeline. SGCP clusters and SGCP
modules represent the initial clusters and final labels, respectively. The two plots on
the bottom row show the PCA over the spectral embedding of the data. The table
in the bottom right denotes the number of clusters per pipeline.

B.8 PCA of GSE28435

Figure B.8 displays the results of applying PCA to GSE28435 using four different

pipelines: WGCNA, CoExpNets, CEMiTool, and SGCP. Each point in the plot is

color-coded based on the module label assigned by each pipeline, and the pipeline

name is displayed in the plot title. The two plots in the bottom row show the PCA

over the spectral embedding of the data, and the table in the lower right corner lists

the number of clusters generated by each pipeline.
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Figure B.6 PCA of GSE60571 for WGCNA, CoExpNets, CEMiTool, and SGCP.
Colors denote the module labels defined by the pipeline. SGCP clusters and SGCP
modules represent the initial clusters and final labels, respectively. The two plots on
the bottom row show the PCA over the spectral embedding of the data. The table
in the bottom right denotes the number of clusters per pipeline.

B.9 PCA of GSE104687

Figure B.9 displays the results of applying PCA to GSE104687 using four different

pipelines: WGCNA, CoExpNets, CEMiTool, and SGCP. Each point in the plot is

color-coded based on the module label assigned by each pipeline, and the pipeline

name is displayed in the plot title. The two plots in the bottom row show the PCA

over the spectral embedding of the data, and the table in the lower right corner lists

the number of clusters generated by each pipeline.
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Figure B.7 PCA of GSE107559 for WGCNA, CoExpNets, CEMiTool, and SGCP.
Colors denote the module labels defined by the pipeline. SGCP clusters and SGCP
modules represent the initial clusters and final labels, respectively. The two plots on
the bottom row show the PCA over the spectral embedding of the data. The table
in the bottom right denotes the number of clusters per pipeline.

B.10 PCA of GSE150961

Figure B.10 displays the results of applying PCA to GSE150961 using four different

pipelines: WGCNA, CoExpNets, CEMiTool, and SGCP. Each point in the plot is

color-coded based on the module label assigned by each pipeline, and the pipeline

name is displayed in the plot title. The two plots in the bottom row show the PCA

over the spectral embedding of the data, and the table in the lower right corner lists

the number of clusters generated by each pipeline.
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Figure B.8 PCA of GSE28435 for WGCNA, CoExpNets, CEMiTool, and SGCP.
Colors denote the module labels defined by the pipeline. SGCP clusters and SGCP
modules represent the initial clusters and final labels, respectively. The two plots on
the bottom row show the PCA over the spectral embedding of the data. The table
in the bottom right denotes the number of clusters per pipeline.

B.11 PCA of GSE115828

Figure B.11 displays the results of applying PCA to GSE115828 using four different

pipelines: WGCNA, CoExpNets, CEMiTool, and SGCP. Each point in the plot is

color-coded based on the module label assigned by each pipeline, and the pipeline

name is displayed in the plot title. The two plots in the bottom row show the PCA

over the spectral embedding of the data, and the table in the lower right corner lists

the number of clusters generated by each pipeline.

83



Figure B.9 PCA of GSE104687 for WGCNA, CoExpNets, CEMiTool, and SGCP.
Colors denote the module labels defined by the pipeline. SGCP clusters and SGCP
modules represent the initial clusters and final labels, respectively. The two plots on
the bottom row show the PCA over the spectral embedding of the data. The table
in the bottom right denotes the number of clusters per pipeline.

B.12 PCA of GSE38705

Figure B.12 displays the results of applying PCA to GSE38705 using four different

pipelines: WGCNA, CoExpNets, CEMiTool, and SGCP. Each point in the plot is

color-coded based on the module label assigned by each pipeline, and the pipeline

name is displayed in the plot title. The two plots in the bottom row show the PCA

over the spectral embedding of the data, and the table in the lower right corner lists

the number of clusters generated by each pipeline.
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Figure B.10 PCA of GSE150961 for WGCNA, CoExpNets, CEMiTool, and SGCP.
Colors denote the module labels defined by the pipeline. SGCP clusters and SGCP
modules represent the initial clusters and final labels, respectively. The two plots on
the bottom row show the PCA over the spectral embedding of the data. The table
in the bottom right denotes the number of clusters per pipeline.
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Figure B.11 PCA of GSE115828 for WGCNA, CoExpNets, CEMiTool, and SGCP.
Colors denote the module labels defined by the pipeline. SGCP clusters and SGCP
modules represent the initial clusters and final labels, respectively. The two plots on
the bottom row show the PCA over the spectral embedding of the data. The table
in the bottom right denotes the number of clusters per pipeline.
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Figure B.12 PCA of GSE38705 for WGCNA, CoExpNets, CEMiTool, and SGCP.
Colors denote the module labels defined by the pipeline. SGCP clusters and SGCP
modules represent the initial clusters and final labels, respectively. The two plots on
the bottom row show the PCA over the spectral embedding of the data. The table
in the bottom right denotes the number of clusters per pipeline.
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APPENDIX C

SIGNIFICANCE OF GENE ONTOLOGY TERM PER PIPELINE

This appendix provides information on the gene ontology (GO) terms identified

by five different pipelines: WGCNA, CoExpNets, CEMiTool, pSGCP, and SGCP,

as discussed in Section 3.2. The significance of the GO terms is determined by

their corresponding p-value, which is log-transformed and displayed as a jitter plot.

The x-axis and y-axis represent the cluster label and the log-transformed p-value,

respectively. Higher values on the y-axis indicate greater significance. The points are

color-coded based on their cluster assignment. Each plot corresponds to the result

of a single pipeline, which is indicated by the plot title. The labels ”pSGCP” and

”SGCP” respectively denote the initial clusters and final modules.

C.1 GO terms of GSE181225

Figure C.1 displays the significant gene ontology (GO) terms identified by each

pipeline. Each point in the plot is color-coded based on the module label assigned by

the corresponding pipeline, and the title of the plot identifies the pipeline name. The

p-values of the GO terms are log-transformed and presented as a jitter plot.

C.2 GO terms of GSE33779

Figure C.2 displays the significant gene ontology (GO) terms identified by each

pipeline. Each point in the plot is color-coded based on the module label assigned by

the corresponding pipeline, and the title of the plot identifies the pipeline name. The

p-values of the GO terms are log-transformed and presented as a jitter plot.

C.3 GO terms of GSE44903

Figure C.3 displays the significant gene ontology (GO) terms identified by each

pipeline. Each point in the plot is color-coded based on the module label assigned by

the corresponding pipeline, and the title of the plot identifies the pipeline name. The

p-values of the GO terms are log-transformed and presented as a jitter plot.
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Figure C.1 Significance of gene ontology (GO) terms associated with modules
identified by the WGCNA, CoExpNets, CEMiTool, pSGCP, and SGCP pipelines on
the GSE181225 dataset. The p-values of the GO term significance for each module are
log-transformed and presented as a jitter plot, with higher points indicating greater
significance. The colors used in the plot correspond to the module labels. pSGCP
and SGCP represent the initial clusters and final modules, respectively.

C.4 GO terms of GSE54456

Figure C.4 displays the significant gene ontology (GO) terms identified by each

pipeline. Each point in the plot is color-coded based on the module label assigned by

the corresponding pipeline, and the title of the plot identifies the pipeline name. The

p-values of the GO terms are log-transformed and presented as a jitter plot.

C.5 GO terms of GSE57148

Figure C.5 displays the significant gene ontology (GO) terms identified by each

pipeline. Each point in the plot is color-coded based on the module label assigned by
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Figure C.2 Significance of gene ontology (GO) terms associated with modules
identified by the WGCNA, CoExpNets, CEMiTool, pSGCP, and SGCP pipelines on
the GSE33779 dataset. The p-values of the GO term significance for each module are
log-transformed and presented as a jitter plot, with higher points indicating greater
significance. The colors used in the plot correspond to the module labels. pSGCP
and SGCP represent the initial clusters and final modules, respectively.

the corresponding pipeline, and the title of the plot identifies the pipeline name. The

p-values of the GO terms are log-transformed and presented as a jitter plot.

C.6 GO terms of GSE60571

Figure C.6 displays the significant gene ontology (GO) terms identified by each

pipeline. Each point in the plot is color-coded based on the module label assigned by

the corresponding pipeline, and the title of the plot identifies the pipeline name. The

p-values of the GO terms are log-transformed and presented as a jitter plot.
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Figure C.3 Significance of gene ontology (GO) terms associated with modules
identified by the WGCNA, CoExpNets, CEMiTool, pSGCP, and SGCP pipelines on
the GSE44903 dataset. The p-values of the GO term significance for each module are
log-transformed and presented as a jitter plot, with higher points indicating greater
significance. The colors used in the plot correspond to the module labels. pSGCP
and SGCP represent the initial clusters and final modules, respectively.

C.7 GO terms of GSE107559

Figure C.7 displays the significant gene ontology (GO) terms identified by each

pipeline. Each point in the plot is color-coded based on the module label assigned by

the corresponding pipeline, and the title of the plot identifies the pipeline name. The

p-values of the GO terms are log-transformed and presented as a jitter plot.

C.8 GO terms of GSE28435

Figure C.8 displays the significant gene ontology (GO) terms identified by each

pipeline. Each point in the plot is color-coded based on the module label assigned by
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Figure C.4 Significance of gene ontology (GO) terms associated with modules
identified by the WGCNA, CoExpNets, CEMiTool, pSGCP, and SGCP pipelines on
the GSE54456 dataset. The p-values of the GO term significance for each module are
log-transformed and presented as a jitter plot, with higher points indicating greater
significance. The colors used in the plot correspond to the module labels. pSGCP
and SGCP represent the initial clusters and final modules, respectively.

the corresponding pipeline, and the title of the plot identifies the pipeline name. The

p-values of the GO terms are log-transformed and presented as a jitter plot.

C.9 GO terms of GSE104687

Figure C.9 displays the significant gene ontology (GO) terms identified by each

pipeline. Each point in the plot is color-coded based on the module label assigned by

the corresponding pipeline, and the title of the plot identifies the pipeline name. The

p-values of the GO terms are log-transformed and presented as a jitter plot.
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Figure C.5 Significance of gene ontology (GO) terms associated with modules
identified by the WGCNA, CoExpNets, CEMiTool, pSGCP, and SGCP pipelines on
the GSE57148 dataset. The p-values of the GO term significance for each module are
log-transformed and presented as a jitter plot, with higher points indicating greater
significance. The colors used in the plot correspond to the module labels. pSGCP
and SGCP represent the initial clusters and final modules, respectively.

C.10 GO terms of GSE150961

Figure C.10 displays the significant gene ontology (GO) terms identified by each

pipeline. Each point in the plot is color-coded based on the module label assigned by

the corresponding pipeline, and the title of the plot identifies the pipeline name. The

p-values of the GO terms are log-transformed and presented as a jitter plot.

C.11 GO terms of GSE115828

Figure C.11 displays the significant gene ontology (GO) terms identified by each

pipeline. Each point in the plot is color-coded based on the module label assigned by
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Figure C.6 Significance of gene ontology (GO) terms associated with modules
identified by the WGCNA, CoExpNets, CEMiTool, pSGCP, and SGCP pipelines on
the GSE60571 dataset. The p-values of the GO term significance for each module are
log-transformed and presented as a jitter plot, with higher points indicating greater
significance. The colors used in the plot correspond to the module labels. pSGCP
and SGCP represent the initial clusters and final modules, respectively.

the corresponding pipeline, and the title of the plot identifies the pipeline name. The

p-values of the GO terms are log-transformed and presented as a jitter plot.

C.12 GO terms of GSE38705

Figure C.12 displays the significant gene ontology (GO) terms identified by each

pipeline. Each point in the plot is color-coded based on the module label assigned by

the corresponding pipeline, and the title of the plot identifies the pipeline name. The

p-values of the GO terms are log-transformed and presented as a jitter plot.
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Figure C.7 Significance of gene ontology (GO) terms associated with modules
identified by the WGCNA, CoExpNets, CEMiTool, pSGCP, and SGCP pipelines on
the GSE107559 dataset. The p-values of the GO term significance for each module are
log-transformed and presented as a jitter plot, with higher points indicating greater
significance. The colors used in the plot correspond to the module labels. pSGCP
and SGCP represent the initial clusters and final modules, respectively.
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Figure C.8 Significance of gene ontology (GO) terms associated with modules
identified by the WGCNA, CoExpNets, CEMiTool, pSGCP, and SGCP pipelines on
the GSE28435 dataset. The p-values of the GO term significance for each module are
log-transformed and presented as a jitter plot, with higher points indicating greater
significance. The colors used in the plot correspond to the module labels. pSGCP
and SGCP represent the initial clusters and final modules, respectively.
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Figure C.9 Significance of gene ontology (GO) terms associated with modules
identified by the WGCNA, CoExpNets, CEMiTool, pSGCP, and SGCP pipelines on
the GSE104687 dataset. The p-values of the GO term significance for each module are
log-transformed and presented as a jitter plot, with higher points indicating greater
significance. The colors used in the plot correspond to the module labels. pSGCP
and SGCP represent the initial clusters and final modules, respectively.
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Figure C.10 Significance of gene ontology (GO) terms associated with modules
identified by the WGCNA, CoExpNets, CEMiTool, pSGCP, and SGCP pipelines on
the GSE150961 dataset. The p-values of the GO term significance for each module are
log-transformed and presented as a jitter plot, with higher points indicating greater
significance. The colors used in the plot correspond to the module labels. pSGCP
and SGCP represent the initial clusters and final modules, respectively.
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Figure C.11 Significance of gene ontology (GO) terms associated with modules
identified by the WGCNA, CoExpNets, CEMiTool, pSGCP, and SGCP pipelines on
the GSE115828 dataset. The p-values of the GO term significance for each module are
log-transformed and presented as a jitter plot, with higher points indicating greater
significance. The colors used in the plot correspond to the module labels. pSGCP
and SGCP represent the initial clusters and final modules, respectively.
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Figure C.12 Significance of gene ontology (GO) terms associated with modules
identified by the WGCNA, CoExpNets, CEMiTool, pSGCP, and SGCP pipelines on
the GSE38705 dataset. The p-values of the GO term significance for each module are
log-transformed and presented as a jitter plot, with higher points indicating greater
significance. The colors used in the plot correspond to the module labels. pSGCP
and SGCP represent the initial clusters and final modules, respectively.
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Jeanmougin, Nicolas Servant, Céline Keime, Guillemette Marot, David Castel,
Jordi Estelle, Gregory Guernec, Bernd Jagla, Luc Jouneau, Denis Laloë,
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