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ABSTRACT

A SURVEY ON ONLINE MATCHING AND AD ALLOCATION

by
Ryan Lee

One of the classical problems in graph theory is matching. Given an undirected graph,

find a matching which is a set of edges without common vertices. In 1990s, Richard

Karp, Umesh Vazirani, and Vijay Vazirani would be the first computer scientists to

use matchings for online algorithms [8]. In our domain, an online algorithm operates

in the online setting where a bipartite graph is given. On one side of the graph there

is a set of advertisers and on the other side we have a set of impressions. During

the online phase, multiple impressions will arrive and the objective of the online

algorithm is to match incoming impressions to advertisers. The theory behind online

matching is not only fascinating but has a lot of practical applications. One example

is ridesharing platforms like Uber. An online algorithm can be used to assign incoming

requests to available Uber drivers in order to maximize profits and fairness.

This paper will conduct a survey of online matching and ad allocation by

focusing on four different problems: unweighted online matching, vertex weighted

online matching, edge weighted online matching, and fairness maximization. Each

problem will be discussed in three sections. In the first section, a detailed problem

statement and the experimental setting will be given. The second section will go over

different algorithms designed to tackle the problem. The third section will examine

how the experiments were implemented and present the results. After each problem

has been explored, a comparison of the four problems will be given.
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CHAPTER 1

INTRODUCTION

1.1 Overview of Online Matching and Ad Allocation

Online Matching is a fairly recent problem that has roots in classical fields like graph

theory which stretch back decades ago. Consider a bipartite graph G(A, I, E), where

A is the set of advertisers, I is the set of impressions, and E is the set of edges. One

can think of the impressions as agents who make requests and think of advertisers

as agents who take requests. The impressions will arrive one by one in sequential

fashion and must be immediately matched to an available advertiser in A by an

algorithm. The algorithm’s objective is to maximize the number of matchings and

this is known as the online bipartite matching problem. In order to evaluate an

algorithm’s performance, the competitive ratio is used which is the ratio between the

performance of the algorithm and the offline optimal.The first algorithm introduced

for this problem was the ranking algorithm created by Richard M. Karp, Umesh V.

Vazirani, and Vijay V. Vazirani in the 1990s [8]. The ranking algorithm achieved a

competitive ratio of approximately 1 − 1
e
. Since then a number of new algorithms

have been created with a higher competitive ratio.

Algorithms designed for online bipartite matching have a wide variety of

practical applications. The most notable application is ad allocation. Since the

rise of the internet, advertisers will pay websites or ad networks to display their ads

which is typically done through contracts or bids. This dynamic can be modeled

as a matching problem where the goal is to optimize the matching. Unfortunately,

traditional optimization techniques are not practical due to two reasons. The first

reason is that the size of online matching problems are too big to be handled by

a simple linear programming model. The second reason is that the order of the

1



(a) Undirected Graph. (b) Directed Graph.

Figure 1.1 Two simple graphs.

impressions are not known beforehand. Thus, new approaches had to be created in

order to deal with this issue. Other applications for online matching include ride

sharing platforms such as Uber or Lyft, where an algorithm has to match incoming

requests with available drivers. Fairness maximization is also another application,

where the goal is to make sure that the number of matchings is spread out between

different groups.

1.2 Graph Theory Basics

A graph G(V,E) is a discrete structure that contains points called vertices which are

denoted by V . Edges are lines that connect vertices together and are denoted by E.

A graph is called directed when the edges have a direction. The converse is called an

undirected graph. This means that in a directed graph, an algorithm can only move

in the direction that an edge is pointing towards. For undirected graph, an algorithm

can move in any direction for any given edge. Figure 1.1, shows an example. On the

left is a undirected graph which has no arrows on it’s edges. On the right is a directed

graph with arrows indicating direction.

Two vertices are called adjacent if there is an edge connecting them. Two edges

2



(a) Graph Cycle. (b) Graph Path.

Figure 1.2 An example of a cycle and a path.

are called adjacent if they share a vertex. A path is a finite or infinite sequences of

edges which connects a sequence of vertices. A cycle is path that starts and ends with

the same node. The length of a path or cycle is the number of edges in it. A simple

graph is a graph that does not have more than one edge between any two vertices

and does not contain cycles. Figure 1.2, contains an example of a cycle and path.

On the left is a cycle that goes from node one to node two to node three and back to

node one. On the right, is a path that goes from node one to node two to node three

and ends at node four.

A bipartite graph is an undirected graph that contains two sets of distinct

vertices such that there does not exist an edge between members in the same set.

Bipartite graphs contain no odd-numbered cycles, because if one did exist that would

imply an edge between two vertices of the same set. This would contradict the

definition of a bipartite graph. In undirected graphs, a matching is a set of edges that

share no common vertices. In other words, every edge in a matching is non-adjacent

and there are no cycles. A maximal matching is a matching that is not a subset of

any other matching. A maximum matching is a matching that contains the highest

number of edges. Every maximum matching is maximal, but the converse is not

3



(a) Bipartite Graph. (b) Maximum Matching.

Figure 1.3 An example of a bipartite graph and a maximum matching.

true. Additionally, a graph can contain multiple maximal matchings and multiple

maximum matchings. Figure 1.3 contains an example of a bipartite graph and a

maximum matching. On the left, there is a bipartite graph with six nodes. Each

node has two edges neighboring it, and the nodes are divided into two groups with

no edges between members of the same group. On the right is the same graph but

now there is a maximum matching which is colored red. This matching is maximum

because if anymore edges are colored red then some of the vertices will share an edge.

This would contradict the definition of a matching.

A flow network is a directed graph G(V,E) that contains a source node s and

a sink node t. Every edge has a capacity c which describes how much flow f can

go through that edge. The capacity c is a nonnegative real number but most of

the algorithms in this paper treat c as a nonnegative integer. The flow f can be

represented as the function f : V × V −→ Z+. If the flow for a particular edge is

0, it implies that the edge does not exist. Every flow network must satisfy three

properties:

4



1. The flow going through an edge cannot be greater than the capacity of the edge:

∀v1, v2 ∈ V , f(v1, v2) ≤ c(v1, v2).

2. The total flow going into a node must equal the total flow leaving the node:

∀v2 ∈ V ,
∑

(v1,v2)∈E f(v1, v2) =
∑

(v2,v3)∈E f(v2, v3).

3. The flow going from v1 into v2 is equal to the negative flow going from v2 to v1:

∀v1, v2 ∈ V , f(v1, v2) = −f(v2, v1).

The maximum flow problem is to find the maximum possible flow from the source

node s to the sink node t. Many different algorithms exist to solve this problem and

the most well known one is the Ford-Fulkerson algorithm. But this paper will use

the Preflow-Push algorithm instead, the details of which will be left out and instead

referenced.

5



CHAPTER 2

UNWEIGHTED ONLINE MATCHING

2.1 Problem Statement

Let G(A, I, E) be a bipartite graph where A is the set of advertisers, I is the set

of impressions, and E is the set of edges. In figure 2.1, an example of this graph

is given. The set of edges and vertices are unweighted and the impressions arrive

in sequential order. When an impression i ∈ I arrives, i has to be assigned to an

advertiser a ∈ A such that there exists an edge e ∈ E between i and a. The set

of advertisers A are fixed and known before an online algorithm is executed. Each

advertiser to only be assigned at most once. When it comes to I and E it largely

depends on the setting the online algorithm operates in. There are two settings that

are commonly examined: adversarial and iid. In the adversarial setting the online

algorithm will have no information about I and E beforehand. In the iid (identically

and independently distributed) setting, the edges E and the probability distribution

D will be known beforehand. The setting this section uses is iid.

The probability distribution D describes the likelihood an impression i ∈ I

will arrive. More formally, given a probability distribution D the probability that

an impression i will arrive is P (i) = ei
n
, where ei is the expected number of times

an impression i arrives and n is the total number of impressions that will arrive

[4]. Clearly n =
∑

i∈I ei. The objective of the algorithm will then be to maximize

the number of matchings on the realization graph Ĝ(Î) which is a graph that is

based on the probability distribution D. Formally, the realization graph Ĝ(Î) is a

bipartite graph Ĝ(A, Î, Ê) where Î = {̂ik : îk ∈ D(i), k = 1, 2, . . . , ei,∀i ∈ I} and

Ê = {(a, î) : a ∈ A, î ∈ Î}. For unweighted online matching there are two phases: the

offline phase and the online phase. These two phases largely depend on the algorithm

6



being used but one can think of the offline phase as the “planning phase” and the

online phase as the “execution phase.”

Figure 2.1 Example Graph.

Now the problem statement can be condensed. Let Γ = (G,D, n) be a particular

instance where G = (A, I, E) is bipartite graph, D is a probability distribution, and

n is the total number of impressions [4]. During the offline phase, construct the

realization graph Ĝ(̂i) and create a “plan.” During the online phase, the algorithm’s

objective is to attempt to assign each impression i to an advertiser a based on the

“plan.” The goal is the maximize the number of assignments, or in more mathematical

terms the goal is to have ALG(Î)

OPT (Î)
≥ α with high probability. ALG(Î)

OPT (Î)
is the competitive

7



ratio between the performance of the algorithm and offline optimal. α is the

approximation ratio [4].

2.2 Algorithms and Theoretical Results

There are two important mathematical facts that needs to be established:

1. Suppose n balls are thrown into n bins, i.i.d with uniform probability over the

bins. Let B be a particular subset of the bins, and S be a random variable that

equals the number of bins from B with at least one ball. For any ϵ > 0, the

probability that |B|(1− 1
e
)−ϵn ≤ S ≤ |B|(1− 1

e
+ 1

en
)+ϵn is at least 1−2e−ϵn/2.

2. Suppose n balls are thrown into n bins, i.i.d with uniform probability over

the bins. Let B1, B2,. . . , Bℓ be ordered sequences of bins, each of size c,

where no bin is in more than d such sequences. Fix some arbitrary subset

R ⊆ {1, . . . , c}. A bin sequence Ba = (b1, ...., bc) is considered ”satisfied” if (i)

at least one of its bins bi with i /∈ R has at least one ball in it; or, (ii) at least

one of its bins bi with i ∈ R has at least two balls in it. Let S be a random

variable that equals the number of satisfied bin sequences. The probability that

S ≥ ℓ(1− 2|R|

ec
)− ϵdn− 2|R|c2

ec
ℓ

n−c2
, is at least 1− 2e−ϵ2n/2.

The proofs of these two facts are not included and were proved in and established

in [4]. The first algorithm that this section examines is the “Suggested Matching”

Algorithm or SM Algorithm for short. It was introduced by Jon Feldman, Aranyak

Mehta, Vahab Mirrokni, S. Muthukrishnan. Below is the pseudocode for the SM

Algorithm:

In order to analyze the theoretical performance of the SM algorithm, the

competitive ratio ALG(Î)

OPT (Î)
must be bounded. The following is a reworded summary

of an analysis conducted in [4]. Let Γ = (G,D, n) be a particular instance of the

problem. Let Fa =
∑

i fai, where fai is the flow going from advertiser a to impression

8



Algorithm 1: “Suggested Matching” Algorithm (SM Algorithm) [4].

1 Offline Phase:

2 Let Γ = (G,D, n) be a particular instance of the problem.

3 Using Γ construct the flow network graph Gf as follows:

4 Create a new source node s and for every advertiser a ∈ A create a

directed edge with going from s to a with capacity 1.

5 Create a new sink node t and for every impression i ∈ I create a directed

edge going from i to t with capacity ei.

6 Orient all edges in G to go from A to I and let the capacity of these edges

be 1.

7 Find the max flow f on resulting graph.

8 Online Phase:

9 for t = 1, . . . , n do

10 Let an impression i′ arrive at time t according to the probability

distribution D.

11 Choose a random ad a′ with probability
fa′i
ei
.

12 If a′ is available match a′ with i′ otherwise reject i′.

i. Since each advertiser a can only be matched at most once, then Fa is either 0 or

1. In other words, Fa indicates whether a was matched. Let A∗ = {a ∈ A : Fa = 1},

which is the set of matched advertisers. For any a ∈ A∗, since at least fai = 1

then the probability the advertiser a gets chosen for that particular impression i is

1
ei
. The probability i gets chosen is ei

n
. Therefore the probability that a ∈ A∗ gets

chosen is 1
ei

· ei
n

= 1
n
. The probability that a ∈ A∗ gets chosen at least once is

(1− (1− 1
n
)n) ≈ 1− 1

e
. Clearly this can be modeled as a balls-in-bin problem so using

fact 1, the probability that ALG ≥ (1− 1
e
)|A∗| − ϵn is at least 1− e−Ω(n).

Let Gf be the flow network graph and Gr be the residual graph after finding

9



the max flow. S is the set of nodes reachable from s in the residual graph. T follows

a similar definition. Then AS = A ∩ S and define AT , IS, IT similarly. Let e′ ∈ E be

an edge that goes from some a′ ∈ AS to some i′ ∈ IT . Since a
′ ∈ AS and there is an

edge e′ that goes from a′ to i′, then i′ ∈ IS. But i
′ ∈ IT , which implies flow went from

i′ to t. This implies flow went from a′ to i′, which then implies flow went from s to a′.

If flow went from s to a′ then a′ should not be reachable in the residual graph. This

is a contradiction. Thus edges from AS to IT cannot exist. The only edges that can

exist are from s to AT and from IS to t. Therefore |A∗| =
∑

a Fa = |AT |+
∑

i∈IS ei.

Let Ĝ be the realization graph where the capacity of every edge is 1. Let

Ĝf be the network-flow graph on Ĝ. Define the s − t cut in Ĝf as follows:

ÎS = ∪i∈ISD(i), ÎT = ∪i∈ITD(i), Ŝ = AS ∪ ÎS, T̂ = AT ∪ ÎT . Using similar reasoning

for Gr, there are no edges from AS to ÎT in Ĝr. Therefore the size of this cut

is |ÎS| + |AT | and the probability an impression i is in ÎS is
∑

i∈IS
ei
n
. Since the

OPT is bounded by the size of this cut, using a Chernoff bound the probability that

OPT ≤ |AT |+
∑

i∈IS ei + ϵn = |A∗|+ ϵn is at least 1− e−Ω(n).

Since OPT ≤ |A∗| + ϵn and (1 − 1
e
)|A∗| − ϵn ≤ ALG then multiplying the

two inequalities give OPT · ((1 − 1
e
)|A∗| − ϵn) ≤ (|A∗| + ϵn) · ALG. Rearranging

the terms gives
(1− 1

e
)|A∗|−ϵn

|A∗|+ϵn
≤ ALG

OPT
. Let ϵ be a small number close to zero, then

(1− 1
e
)|A∗|−ϵn

|A∗|+ϵn
≈ (1− 1

e
)|A∗|

|A∗| = (1− 1
e
). Therefore with high probability, (1− 1

e
) ≤ ALG

OPT
.

The SM algorithm performs well with a approximation ratio of at least (1− 1
e
),

but the “Two Suggested Matchings” Algorithm, also known as the TSM algorithm,

builds upon the SM algorithm and improves the approximation ratio. Created by the

same authors who created the SM algorithm, the pseudo-code is given below.

It has been proved that the TSM algorithm achieves an approximation ratio

of roughly
1− 2

e2
4
3
− 2

3e

≈ 0.67029 [4]. This improves on the SM algorithm with an

approximately 0.04 boost in performance. This proof is similar to the analysis

10



Algorithm 2: “Two Suggested Matchings” Algorithm (TSM Algorithm)

[4].

1 Offline Phase:

2 Let Γ = (G(A, I, E), D, n) be a particular instance of the problem.

3 Using Γ construct the boosted flow network graph Gf as follows:

4 Create a new source node s and for every advertiser a ∈ A create a

directed edge with going from s to a with capacity 2.

5 Create a new sink node t and for every impression i ∈ I create a directed

edge going from i to t with capacity 2.

6 Orient all edges in G to go from A to I and let the capacity of these edges

be 1.

7 Find the max flow f on resulting graph.

8 Let Ef be the set of edges (a, i) ⊆ E with non-zero flow and treat these

edges as undirected.

9 Now color the edges of Ef with the coloring algorithm given in [4].

10 Online Phase:

11 for t = 1, . . . , n do

12 Let an impression i′ arrive at time t according to the probability

distribution D.

13 If this is the first time i′ is arriving, assign it to the advertiser on the

blue edge if that advertiser is available.

14 If this is the second time i′ is arriving, assign it to the advertiser on the

red edge if that advertiser is available.

15 Reject otherwise.

conducted above but also makes use of fact 2. Due to the length of the proof, the

proof has been left out and instead referenced.

11



2.3 Experimental Design and Results

Three experiments were done in this section. The first experiment fixes the number

of advertisers to be 100, and fixes the arrival size and impression size to both be equal

to 500. The number of neighbors, which is denoted by δ, will be varied from 1 to 6.

In the second experiment, the number of advertisers and the number of impressions

are both fixed to 100 and δ is fixed to 3. The arrival size will be varied using values

from this set {50, 100, 300, 500, 800, 1000}. The third experiment fixes the number of

impressions and the arrival size to be 300 and fixes δ to be 3. This time the number

of advertisers will be varied using values from the set {50, 100, 150, 200, 250, 300}.

For each experiment, a synthetic graph is generated along with a synthetic

arrival sequence. The synthetic graph is generated by randomly picking δ neighbors

for each advertiser in A. For each neighbor, an edge is generated between that

neighbor and the advertiser. An arrival sequence is generated by uniformly picking

|T | impressions from I with replacement. Afterwards, the probability distribution

is computed by counting the number of times each impression appears in the arrival

sequence. After all synthetic data is generated, the SM and TSM algorithms are run in

each experimental setting and the performance is recorded. The OPT is calculated

using the following linear program [5], where a ∼ i indicates i is a neighbor of a.

Then the competitive ratio is calculated by dividing the algorithm performance by

the OPT . The results are shown below.

max
∑
a∈A

∑
a∼i

Xai subject to: (2.1)

∀a ∈ A :
∑
a∼i

Xai ≤ 1 (2.2)

∀i ∈ I :
∑
i∼a

Xai ≤ 1 (2.3)

∀e ∈ E : 0 ≤ xe (2.4)
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Table 2.1 SM and TSM Algorithms on Varying δ with |A| = 100, |I| =
|T | = 500

DELTA δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = 6

SM 0.64 0.80 0.74 0.74 0.71 0.66

TSM 0.09 0.30 0.26 0.16 0.26 0.25

Figure 2.2 SM and TSM Algorithms on Varying δ with |A| = 100, |I| = |T | = 500.

The performance has a lot of variation. For the varying δ experiment, surprisingly

the SM algorithm is outperforming the TSM algorithm considerably. For the TSM

algorithm, increasing the number of neighbors from 1 to 2 increases the performance.

But the performance stops increasing as δ increases past 2. In the varying |T |

experiment, both the SM and TSM algorithms under perform initially. But as |T |

increases, the performance of the TSM algorithm increases substantially while the

performance of the SM algorithm increases initially and then starts to stagnate. For
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Table 2.2 SM and TSM Algorithms on Varying |T | with |A| = |I| = 100
and δ = 3

ARRIVALS t = 50 t = 100 t = 300 t = 500 t = 800 t = 1000

SM 0.30 0.45 0.44 0.44 0.46 0.46

TSM 0.39 0.64 0.92 0.93 0.95 0.97

Figure 2.3 SM and TSM Algorithms on Varying |T | with |A| = |I| = 100, δ = 3.

Table 2.3 SM and TSM Algorithms on Varying |A| with |I| = |T | = 300
and δ = 3

ADVERTISERS i = 50 i = 100 i = 150 i = 200 i = 250 i = 300

SM 0.74 0.64 0.67 0.52 0.50 0.42

TSM 0.39 0.45 0.57 0.63 0.64 0.65
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Figure 2.4 Varying |A| with |I| = |T | = 300, δ = 3.

the last experiment where |A| varies, the SM algorithm initially outperforms the

TSM algorithm. But as the number of the advertisers increase, the TSM algorithm

performance goes up while the SM algorithm performance goes down. Eventually

the TSM algorithm surpasses the SM algorithm performance. The reason for this

performance is not entirely clear but one possible explanation is that the SM algorithm

makes use of the probability distribution in the boosted flow graph, while the TSM

algorithm does not. This means when the number of impressions overwhelms the

number of advertisers, the TSM algorithm suffers because it does not make use of

the distribution. On the other hand, the SM algorithm is guided by the distribution

and can distribute resources better. This seems to be supported by the fact that as

the number of advertisers approaches the number of impressions, the TSM algorithm

performance increases and outperforms the SM algorithm in accordance with the

theoretical results.
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CHAPTER 3

EDGE WEIGHTED ONLINE MATCHING

3.1 Problem Statement

Let G(A, I, E) be a bipartite graph, where A is the set of advertisers, I is the set of

impressions, and E is the set of edges. Figure 2.1 contains an example of this graph

for visualization purposes. Similar to the unweighted setting, impressions arrive in

sequential order and must be assigned to an advertiser a ∈ A such that there exists

an edge e ∈ E between i and a. The key difference is that every edge e ∈ E has

a weight associated with it denoted by ω(e). The edge-weighted setting also can be

examined under the adversarial or iid model but this section will operate under iid.

This means that the impressions follow a distribution D where P (i) = ei
n
. Like the

unweighted setting ei is the expected number of times an impression i arrives and n

is the total number of impressions that will arrive with n =
∑

i∈I ei. Without loss

of generality, it is assumed that ∀i∈I ei = 1. For any advertiser a, Γ(a) is the set of

edges touching a. The same definition is used for impressions. This setting also has

identical definitions of “realization” graphs and competitive ratios as the unweighted

setting. The goal then is to maximize the weights of edges assigned by the algorithm.

3.2 Algorithms and Theoretical Results

Bernhard Haeupler, Vahab S. Mirrokni, and Morteza Zadimoghaddam developed new

algorithms to handle the edge-weighted setting, however this section will focus on two

particular algorithms [5]. Note that the authors did not name these algorithms so

they will be referred to as HMZ 1 and HMZ 2. Consider the following LP model
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based on the bipartite graph G given in the problem statement:

max wTp subject to: (3.1)

∀a′ ∈ A :
∑

e∈Γ(a′)

pe ≤ 1 (3.2)

∀i′ ∈ I :
∑

e∈Γ(i′)

pe ≤ 1 (3.3)

∀e ∈ E : 0 ≤ xe (3.4)

Algorithm 3: HMZ 1 [5].

1 Offline Phase:

2 Solve LP (3.1) and let p∗ be an optimal solution vector.

3 Online Phase:

4 for t = 1, . . . , n do

5 Let an impression i′ arrive at time t according to the probability

distribution D.

6 Take edge e ∈ Γ(i′) with probability p∗e.

7 Assign a to i′ if a is available.

The analysis of HMZ 1 is simple. The probability that i arrives is 1
n
. The

probability that for impression i the algorithm picks advertiser a is pe. The probability

that i does not arrive before time n is
∑n−1

t=1 (1 − 1
n
)t−1. Then the probability that

any edge e, i is successfully matched is a is at least:

n∑
t=1

p∗e
n
(1− 1

n
)t−1

Using geometric series identities, the above expression can be simplified to:

p∗e
n

1− (1− 1
n
)n

1− (1− 1
n
)
= p∗e(1− (1− 1

n
)n) ≥ p∗e(1−

1

e
)
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With this analysis it can be concluded that HMZ 1 achieves an approximation factor

of 1− 1
e
. HMZ 2 builds on HMZ 1 and improves the approximation factor even more.

Consider the following LP model based on the bipartite graph G given in the problem

statement:

max wTp subject to: (3.5)

∀a′ ∈ A :
∑

e∈Γ(a′)

pe ≤ 1 (3.6)

∀i′ ∈ I :
∑

e∈Γ(i′)

pe ≤ 1 (3.7)

∀e′ ∈ E : pe′ ≤ 1− 1

e
(3.8)

∀e ∈ E : 0 ≤ xe (3.9)

It has been shown that the expected value of the matching HMZ 2 outputs is at least

(1 − 1
e
)ω(Ms) + 0.095ω(M ′), where ω(Ms) is the sum of the weights of all edges in

Ms. The same definition is used for ω(M ′). Using this lemma, the authors were able

to prove that the expected value of HMZ 2 is at least 0.667 ·OPT where OPT is the

solution to the LP (3.4) [5].

3.3 Experimental Design and Results

Two experiments were conducted to assess the performance of HMZ 1 and HMZ 2.

In the first experiment |A| = 100 and |I| = |T | = 500 where T is the arrival sequence.

The arrival sequence is randomly generated using a uniform distribution which means

for every i ∈ I, P (i) = 1
n
where ei = 1 and n = |T |. Then for every a ∈ A, δ neighbors

are chosen from |I| where δ denotes the number of neighbors each advertiser has. For

each neighbor chosen, an edge is created between the advertiser and the neighbor

with a random weight between 0 and 1. Once the graph is finished, LP (3.1) and
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Algorithm 4: HMZ 2 [5].

1 Offline Phase:

2 Solve LP (3.4) and let p∗ be an optimal solution vector.

3 Compute matching Ms where the probability that edge e is in Ms is equal

to p∗e.

4 Compute the maximum weighted matching M1 of graph G.

5 Let M ′ be M1 \Ms.

6 Online Phase:

7 for t = 1, . . . , n do

8 Let an impression i′ arrive at time t according to the probability

distribution D.

9 If this is the first time i′ is arriving, assign it to it’s matched node in

Ms if such a node exists and is not taken.

10 If this is the second time i′ is arriving, assign it to it’s matched node in

M ′ if such a node exists and is not taken.

11 Otherwise reject.

LP (3.4) are solved using a linear program. HMZ 1 and HMZ 2 are executed using a

varying δ that takes values from {1, 2, 3, 4, 5, 6}. The competitive ratio is calculated

using the performance of HMZ 1 and HMZ 2 and the optimal values calculated from

the linear programs. The second experiment uses the exact same setting as the first

except that instead of varying the δ, the |T | arrivals are varied instead with δ is set

equal to 3. The results of both experiments are listed below.

Table 3.1 HMZ 1 and HMZ 2 Algorithms on Varying δ with |I| = 100, |J | =
|T | = 500

DELTA δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = 6

HMZ 1 0.55 0.65 0.59 0.71 0.66 0.64

HMZ 2 0.61 0.57 0.51 0.46 0.54 0.56
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Figure 3.1 HMZ 1 and HMZ 2 Algorithms on Varying δ with |U | = 100, |V | = |T | =
500.

Table 3.2 HMZ 1 and HMZ 2 Algorithms on Varying |T | with |I| = |J | =
100 and δ = 3

ARRIVALS t = 50 t = 100 t = 300 t = 500 t = 800 t = 1000

HMZ 1 0.40 0.74 0.88 0.90 0.93 0.86

HMZ 2 0.35 0.46 0.66 0.80 0.84 0.65

The performance of both algorithms are fairly good but what is interesting is how

HMZ 1 is outperforming HMZ 2 despite HMZ 2 having higher theoretical bounds. It

is not entirely clear why this is happening but one possible explanation is that HMZ

2 can only match every impression i ∈ I at most twice. HMZ 1 can hypothetically

match any impression more than two times. This means that if there are a lot of

repeated impressions in the arrival sequence, HMZ 2 will simply reject them instead

of trying to match them which can hurt performance. The only instance in which

20



Figure 3.2 HMZ 1 and HMZ 2 Algorithms on Varying |T | with |I| = |J | = 100, δ = 3.

HMZ 2 outperforms HMZ 1 is the case where the number of neighbors equals 1. This

behavior is puzzling and future investigation is needed to determine the reason.
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CHAPTER 4

VERTEX WEIGHTED MATCHING

4.1 Problem Statement

Let G(U, V,E) be a bipartite graph where U is the set of vertices each with a weight

bu, u ∈ U and V is the set vertices that arrive in sequential order. While the weights

of U are known the distribution of V is not known making this setting adversarial

rather than the usual iid setting. As vertices from V arrive in sequential order,

an irrevocable decision must be made. Each vertex v ∈ V must be matched to a

neighboring vertex u ∈ U that has not been matched yet. This decision cannot be

changed and if no such u exists then v will remain unmatched. Unmatched vertices

cannot be matched later. The goal of any algorithm operating in this setting is the

maximize the sum of vertex weights. This setting is very similar to edge-weighted

online matching except that vertex weights are used rather than edge weights.

4.2 Algorithms and Theoretical Results

One of the first algorithms developed for vertex weighted matching was the Ranking

algorithm created by Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani [8].

However, the ranking algorithm operates in a setting where ∀u∈U , bu = 1. In other

words, it operates in an unweighted setting. The psuedo-code is given in algorithm 5.

The following is a reworded proof from [1] that shows the Ranking algorithm achieves

a competitive ratio of at least (1 − 1
e
) in expectation. Let G(U, V,E) be a bipartite

graph similar to the one described in the problem statement. Suppose ∀u∈U , bu = 1,

that |U | = |V | = n, and G has a perfect matching. This means OPT = n which

is the optimal performance and the optimal matching is a perfect matching. Let

σ = (u1, . . . , un) be a permutation of U , where RANKING(σ) denotes the matching

made the algorithm operating on permutation σ, and σ(u) = t denotes the rank of
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Algorithm 5: Ranking [1].

1 Offline Phase:

2 Choose a random permutation σ of U uniformly from the space of all

permutations.

3 Online Phase:

4 for each arriving v ∈ V do

5 Match v to the unmatched neighbor in u which appears earliest in σ.

vertex u. Then let:

yσ,i =


1 if the vertex at rank i in σ is matched by RANKING(σ)

0 otherwise

(4.1)

Let Qt be the set of all matched vertices:

Qt = {(σ, t) : yσ,t = 1} (4.2)

Let Rt be the set of all unmatched vertices:

Rt = {(σ, t) : yσ,t = 0} (4.3)

Let xt =
|Qt|
n!

and 1− xt =
|Rt|
n!

. Then xt represents the probability that the vertex at

rank t is matched while 1 − xt represents the probability that it is unmatched. It is

easy to see that the expected value of the algorithm is E[ALG] =
∑

t xt. Next two

definitions and one lemma must be established.

Definition 1 Let σi
u be the permutation where vertex u from permutation σ is

moved and inserted into position i.

Definition 2 Let f(σ, t) be the charging map which is a map from bad events to good

events. Bad events are vertices that are unmatched while good evens are matched
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vertices. More precisely:

f(σ, t) = {(σi
u, s) : 1 ≤ i ≤ n, σ(u) = t, RANKING(σi

u) matches v∗ to u′ s.t. σi
u(u

′) = s}

(4.4)

Lemma 1 If vertex u at rank t in σ is unmatched by RANKING(σ), then for every

1 ≤ i ≤ n, v∗ is matching in RANKING(σi
u) to a vertex u′ s.t. σi

u(u
′) ≤ t.

To simplify this statement, it is saying that for every unmatched vertex in σ there

are other matched vertices in permutation σi
u. This lemma was proven in [1], and

will come in handy for the proof. Since the charging map f(σ, t) contains other

permutations with good events, or matched vertices, it is obvious that f(σ, t) is a

subset of Qt. Then for every (σ, t) ∈ Rt and for every s ≤ t:

⋃
(σ,t)∈Rt

f(σ, t) ⊆
⋃
s≤t

Qs (4.5)

Now let κ and ω be two permutations. Suppose (σ, s) ∈ f(κ, t) and (σ, s) ∈ f(ω, t).

Then (σ, s) = κiu for some u and i. And (σ, s) = ωi
u for some u and i. Then

σ = κiu = ωi
u. This implies κ = ω. Which means that the charging map f(σ, t) for a

particular t and σ is unique. Thus:

1− xt =
|Rt|
n!

=
1

n
·
|
⋃

(σ,t)∈Rt
f(σ, t)|

n!
(4.6)

1

n
·
|
⋃

s≤tQs|
n!

=
1

n

∑
s≤t

|Qs|
n!

=

∑
s≤t xs

n
(4.7)

Due to (4.5), it can be concluded that 1 − xt ≤ 1
n

∑
s≤t xs. Since the graph has a

perfect matching and OPT = n, then 1
n

∑
s≤t xs is the competitive ratio. The value of

this competitive ratio can be examined using recurrence relations. Let St =
∑

s≤t xs.
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Then 1− xt ≤ 1
n

∑
s≤t xs can be expressed as St(1 +

1
n
) ≥ 1 + St−1 [2]. The base case

is S0 = 0. Then:

S1 =
1

1 + 1
n

(4.8)

S2 =
1 + 1

1+ 1
n

1 + 1
n

=
1

1 + 1
n

+
1

(1 + 1
n
)2

(4.9)

S3 =
1 + 1

1+ 1
n

+ 1
(1+ 1

n
)2

1 + 1
n

=
1

1 + 1
n

+
1

(1 + 1
n
)2

+
1

(1 + 1
n
)3

(4.10)

This relation can be expressed as St =
∑t

s=1
1

(1+ 1
n
)s
. Then:

t∑
s=1

1

(1 + 1
n
)s

=
t∑

s=1

1

(n+1
n
)s

=
t∑

s=1

(
n

n+ 1

)s

(4.11)

t∑
s=1

(
n

n+ 1

)s

=
t∑

s=1

(
n+ 1

n+ 1
− 1

n+ 1

)s

=
t∑

s=1

(
1− 1

n+ 1

)s

(4.12)

Thus 1
n

∑
s≤t xs can be expressed as 1

n

∑t
s=1

(
1− 1

n+1

)s
. Using basic algebraic

manipulation the infinite sum can be expressed as:

1

n
·
1− 1

n+1

1− 1
n+1

·
t∑

s=1

(
1− 1

n+ 1

)s

=
1− 1

n+1

n
·

t∑
s=1

(
1− 1

n+ 1

)s−1

(4.13)

Using geometric series where a = 1 and r = (1− 1
n+1

), the expression evaluates to:

1− 1
n+1

n
·
1−

(
1− 1

n+1

)n
1−

(
1− 1

n+1

) =

(
1− 1

n+1

)
−
(
1− 1

n+1

)n+1

n
n+1

(4.14)
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This is equal to: (
1− 1

n+1

)
−
(
1− 1

n+1

)n+1

1− 1
n+1

= 1−
(
1− 1

n+ 1

)n

(4.15)

For the expression 1−
(
1− 1

n+1

)n
, as n approaches infinity the expression approaches

1 − 1
e
. The Ranking achieves a high competitive ratio, the issue is that Ranking

algorithm achieves this performance in a unweighted setting. For everyday e-

commerce, vertices will usually take on weights. Thus the Perturbed-Greedy

algorithm was proposed. The pseudo-code is detailed below where bu is the weight

for every vertex u ∈ U : As discussed in [1], the Perturbed-Greedy algorithm can be

Algorithm 6: Perturbed-Greedy [1].

1 Offline Phase:

2 For each u ∈ U , pick a number xu uniformly at random from [0, 1].

3 Define the function ψ(x) = 1− e−(1−x)

4 Online Phase:

5 for each arriving v ∈ V do

6 Match v to the unmatched neighbor in u ∈ U with the highest value

buψ(xu). Break ties with vertex id.

thought as a non-uniform version of the Ranking algorithm. In the instance where

each weight bu is perturbed identically and independently, let the weights be arranged

in decreasing order. If all weights are equal, then this turns into a random permutation

of U . In other words, the Ranking algorithm is the Perturbed-Greedy algorithm in

the case where all the weights are equal. In a very elegant proof that follows similar

techniques to the proof for Ranking, the authors show that Perturbed-Greedy achieves

a competitive ratio of 1− 1
e
and no other randomized algorithm can do better.
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4.3 Experimental Design and Results

The experiments uses synthetic data which means it was generated by an algorithm.

Two experiments are used, and in the first experiment the sets U , V , and T was set

to be 100, so |U | = |V | = |T | = 100. U and V are two distinct sets belonging to the

bipartite graph G, and T is the set of arrivals that arrive in the online phase. The

parameter δ denotes the number of neighbors each u ∈ U can have. This parameter

was tested on six values {1, 2, 3, 4, 5, 6}. For each u ∈ U , δ neighbors are picked

from V uniformly. Then a edge is constructed between u and every neighbor that

was picked. An arrival sequence of size |T | is generated uniformly from V . A linear

program is then used to find the OPT which is detailed below where a ∼ b indicates

b is a neighbor of a:

max
∑
u∈U

∑
u∼v

bu ·Xuv subject to: (4.16)

∀u ∈ U :
∑
u∼v

Xuv ≤ 1 (4.17)

∀v ∈ V :
∑
v∼u

Xuv ≤ 1 (4.18)

∀e ∈ E : 0 ≤ xe (4.19)

For the Ranking algorithm the weights bu are set to 1 and for greedy-perturbed

each weight is set to a random number between 0 and 10. Then the Ranking

and Perturbed-Greedy algorithm is run on the generated arrival sequence and the

competitive ratio is averaged over a 100 iterations. Both algorithms are run using

their respective weights which means that the Ranking algorithm will use bu = 1

while Greedy-Perturbed uses bu = (0, 10). The second experiment uses the same

exact setting as the first experiment except for two differences. The first difference is

that δ is fixed to 3. The second difference is the number of arrivals are varied using

these values {50, 60, 70, 80, 90, 100}. The results are shown below in table 4.1, table

4.2, figure 4.1, and figure 4.2.
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Table 4.1 Ranking and Greedy-Perturbed Algorithms on Varying δ with
|U | = |V | = |T | = 100

DELTA δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = 6

RANKING 0.82 0.75 0.79 0.83 0.85 0.89

GREEDY-
PERTURBED

0.63 0.74 0.80 0.90 0.89 0.93

Figure 4.1 Ranking and Greedy-Perturbed on Varying δ with |U | = |V | = |T | = 100.

For varying δ, the performance between Ranking and Perturbed-Greedy is close to

each other. As δ increases performance goes up, since the number of neighbors

increases for each u ∈ U . This increases the odds that u gets matched since it has more

options. The lowest competitive ratio achieved is 0.63 for δ = 1 on Perturbed-Greedy.

This is very close to the expected value for E[ALG
OPT

] ≥ 1− 1
e
which was proven earlier.

For varying |T |, the performance between Ranking and Perturbed-Greedy is

also close to each other. However, the performance does dip below the expected

competitive ratio unlike the varying δ setting. For value t = 50 and t = 60 both
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Table 4.2 Ranking and Greedy-Perturbed Algorithms on Varying |T | with
|U | = |V | = 100 and δ = 3

ARRIVALS t = 50 t = 60 t = 70 t = 80 t = 90 t = 100

RANKING 0.45 0.51 0.60 0.67 0.72 0.80

GREEDY-
PERTURBED

0.54 0.56 0.74 0.70 0.78 0.79

Figure 4.2 Ranking and Greedy-Perturbed on Varying |T | with |U | = |V | = 100

and δ = 3.
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Ranking and Perturbed-Greedy both dip below the expected competitive ratio. For

value t = 70, only Ranking dips below. Since these values of t are smaller than the

size of |U |, it is unlikely that every u ∈ U will be matched. Since there are unmatched

u ∈ U , the competitive ratio takes a hit. As t increases, it can be observed that the

competitive ratio increases and behaves more accordingly to the proven theoretical

bounds.
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CHAPTER 5

FAIRNESS MAXIMIZATION

5.1 Problem Statement

The previous sections have been focusing on hypothetical settings without any

applications to real world problems. This section will focus on using online algorithms

for maximizing fairness for real world applications. It is important to note that online

matching markets (OMMs) have gained popularity over the past couple of decades

with notable examples such as Uber, Google Advertising, and Amazon Mechanical

Turks. Online agents arrive dynamically and the goal is assign each online agent to an

offline agent such that profit is maximized. In the case of ridesharing platforms, like

Uber and Lyft, the offline agents would be the drivers and the online agents would be

the app users. Unfortunately, OMMs have been dealing with bias and discrimination

that ultimately lowers fairness. For example, in ridesharing platforms it has been

reported that black passengers have to wait on average 1 minute and 43 seconds

longer to be matched and that drivers are 4% more likely to cancel on them [6]. As

a result, researchers have been studying this area in an attempt to increase fairness

without compromising profits.

The setting for fairness maximization is as follows: Let G(I, J, E) be a bipartite

graph, where I represents the set of offline agents, J represents the set of online agents,

and E represents the set of edges between I and J . Let T be the number of rounds

during the online phase. During T , arrivals are sampled from J with replacement.

This forms a probability distribution D where P (j arrives) =
rj
|T | , where rj is the

number of times j was sampled in T . Clearly
∑

j∈J
xj

|T | = 1. As the online agents

arrive according to the distribution T , an irrevocable and irreversible decision must

be made which is to either match the online agent to an offline neighbor in I or to

reject it. Two assumptions are made in this sections, the first is that the setting

31



operates under KIID or known, independent, and identical distribution. The second

assumption is that each offline agent can only be matched once where Zi = 1 indicates

that offline agent i is matched. The goal is to maximize fairness which is defined as

mini∈I E[Zi]. This is also known as individual fairness maximization or IFM. This

section will also examine fairness maximization under VOM which shares the same

setting as IFM except that the weights for each vertex are weighted.

5.2 Algorithms and Theoretical Results

The algorithms in this section uses optimal value calculated from the following

benchmark linear program as a guide. Just like in the previous sections i ∼ j indicates

i is a neighbor of j and j ∼ i indicates j is a neighbor of i. Let Ni be the set of

neighbors of i, where Nj is defined similarly. xij is the expected number of times the

edge (i, j) is matched by the linear program [9].

IFM: max min
i∈I

∑
j∼i

xij (5.1)

VOM: max
∑
i∈I

wi ·
∑
j∼i

xij subject to: (5.2)

∀j ∈ J :
∑
i∼j

xij ≤ 1 (5.3)

∀i ∈ I :
∑
j∼i

Xij ≤ 1 (5.4)

∀i ∈ I,∀S ⊆ Ni, |S| = O(1) : 0 ≤
∑
j∈S

xij ≤ 1− e−|S| (5.5)

∀e ∈ E : 0 ≤ xe (5.6)

The first algorithm that this section examines is the SAMP-B algorithm from [9].

SAMP-B is a fairly straightforward algorithm that samples offline agents i using a

probability distribution that is constructed from the optimal solution {xij}. The

authors were able to show that SAMP-B achieves a competitive ratio of at least 0.725

on IFM which beats the 1 − 1
e
barrier. However, they also show that under the
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Algorithm 7: Sampling with Boosting (SAMP-B).

1 Offline Phase:

2 Solve LP (5.1) and let {xij} be an optimal solution.

3 Online Phase:

4 for t = 1, . . . , T do

5 Let online agent of type j arrive at the beginning of time t.

6 Let Nj,t = {i ∈ Nj, i is available at t}.
7 if Nj,t = ∅ then

8 Reject j.

9 else

10 Sample a neighbor i ∈ Nj,t with probability
xi′j∑

i′∈Nj,t
xi′,j

.

VOM setting SAMP-B can never break the 1− 1
e
barrier without attenuation. Thus

SAMP-AB was created [9] and it has been demonstrated that SAMP-AB achieves a

competitive ratio of at least 0.719 for VOM. The pseudo-code for SAMP-AB is in the

experimental section due to space constraints.

5.3 Experimental Design and Results

The experimental setting for IFM is as follows. A bipartite graph G(I, J, E) is

constructed where |I| = 100, |J | = |T |. For each offline agent i ∈ I, δ random

neighbors are chosen from J . An edge is constructed between each offline agent i and

each of it’s neighbors. Integral arrival rates are assumed which means rj = 1 for every

j. Then the set of arrivals T are uniformly generated since rj = 1. Then SAMP-B

is executed on T and the performance is compared against other algorithms. Four

other algorithms are used mainly Greedy, Ranking, BSSX, and MGS. The Greedy

algorithm is simple and assigns to each online agent j at arrival an available neighbor

where ties are broken randomly. For the Ranking algorithm, it assigns j an available

neighbor according to a uniform and random permutation that is created during the

offline phase. The details of BSSX and MGS will be left out and instead will be
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Algorithm 8: Sampling with Attenuation and Boosting (SAMP-AB).

1 Offline Phase:

2 Solve LP (5.1) and let {xij} be an optimal solution.

3 Initialization: Let βi,t = 1 for t = 1 and for all i ∈ I.

4 for t = 2, 3, . . . , T do

5 Use the Monte-Carlo method to simulate step 10 to step 16 for all

rounds t′ = 1, 2, . . . , t− 1 of the online phase to calculate the

probability αi,t that each offline agent i is active at the beginning t.

6 Set βi,t = min
(
1,

(1− 1
T
)t−1

αi,t

)
.

7 Online Phase:

8 Initialization: Label all offline vertices active at t = 1.

9 for t = 1, . . . , T do

10 Independently relabel each active offline agent i as active and inactive

with respective probabilities βi,t and 1− βi,t.

11 Let online agent of type j arrive at the beginning of time t.

12 Let Nj,t = {i ∈ Nj, i is available at t}.
13 if Nj,t = ∅ then

14 Reject j.

15 else

16 Sample a neighbor i ∈ Nj,t with probability
xi′j∑

i′∈Nj,t
xi′,j

.

referenced in [3] and [10]. respectively. Four experiments will be conducted where

in the first experiment the number of neighbors δ will be varied using values from

{2, 3, 4, 5, 6} and |I| = |J | = |T | = 100. In the second experiment, the number of

neighbors will be varied just like in the first experiment except that |I| = 100 and

|J | = |T | = 500. In the third experiment the number of arrivals T will be varied using

values from {50, 100, 300, 500, 1000} with δ = 2. In the last experiment, the number

of arrivals will be varied using the same values from the third experiment except

δ = 3. The experimental setting for VOM is almost identical to IFM except for three

differences. The first difference is two competitive ratios are used CR1 and CR2 which

34



are defined as mini
E[Zi]
x∗
i

and
∑

iwi · E[Zi] respectively. The second difference is that

two experiments are conducted instead of four. For varying δ the values are varied

from {2, 3, 4, 5, 6} with |I| = |J | = |T | = 100 for both competitive ratios. For varying

T the values are varied from {70, 80, 90, 100} with δ = 3 and |I| = |J | = |T | for both

competitive ratios. The last difference is that two new algorithms are added into the

experiments: SAMP-AB and JL from [7]. The results are shown below.

Table 5.1 Varying δ on IFM with fixed T , |I| = 100, |J | = |T | = 100

DELTA SAMP-B GREEDY RANKING BSSX MGS

δ = 2 0.78 0.30 0.37 0.62 0.48

δ = 3 0.76 0.29 0.42 0.43 0.47

δ = 4 0.75 0.38 0.44 0.55 0.46

δ = 5 0.74 0.50 0.50 0.53 0.47

δ = 6 0.78 0.52 0.48 0.45 0.56

Table 5.2 Varying δ on IFM with fixed T , |I| = 100, |J | = |T | = 500

DELTA SAMP-B GREEDY RANKING BSSX MGS

δ = 2 0.78 0.51 0.57 0.68 0.42

δ = 3 0.75 0.58 0.59 0.70 0.50

δ = 4 0.79 0.80 0.73 0.82 0.65

δ = 5 0.91 0.90 0.89 0.88 0.62

δ = 6 0.92 0.90 0.88 0.89 0.70
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Figure 5.1 Varying δ on IFM with fixed T, |I| = 100, |J | = |T | = 100.
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Figure 5.2 Varying δ on IFM with fixed T, |I| = 100, |J | = |T | = 500.

36



Table 5.3 Varying T on IFM with fixed δ = 2, |I| = 100, |J | = |T |

T SAMP-B GREEDY RANKING BSSX MGS

T = 50 0.70 0.30 0.27 0.48 0.39

T = 100 0.71 0.29 0.22 0.37 0.32

T = 300 0.73 0.54 0.52 0.58 0.42

T = 500 0.70 0.68 0.54 0.60 0.57

T = 1000 0.71 0.72 0.61 0.74 0.58

Table 5.4 Varying T on IFM with fixed δ = 3, |I| = 100, |J | = |T |

T SAMP-B GREEDY RANKING BSSX MGS

T = 50 0.71 0.21 0.28 0.32 0.31

T = 100 0.78 0.38 0.41 0.46 0.24

T = 300 0.72 0.61 0.53 0.63 0.42

T = 500 0.77 0.60 0.61 0.69 0.53

T = 1000 0.82 0.83 0.84 0.82 0.65
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Figure 5.3 Varying T on IFM with fixed δ = 2, |I| = 100, |J | = |T |.
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Figure 5.4 Varying T on IFM with fixed δ = 3, |I| = 100, |J | = |T |.
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Table 5.5 Varying δ on VOM CR1, |I| = |J | = |T | = 100

DELTA SAMP-B SAMP-
AB

GREEDY RANKING JL BSSX MGS

δ = 2 0.62 0.43 0.40 0.16 0.49 0.31 0.39

δ = 3 0.69 0.61 0.52 0.22 0.48 0.42 0.35

δ = 4 0.75 0.68 0.63 0.14 0.40 0.42 0.46

δ = 5 0.77 0.76 0.73 0.41 0.39 0.45 0.50

Table 5.6 Varying δ on VOM CR2, |I| = |J | = |T | = 100

DELTA SAMP-B SAMP-
AB

GREEDY RANKING JL BSSX MGS

δ = 2 0.82 0.64 0.85 0.64 0.69 0.73 0.68

δ = 3 0.83 0.72 0.84 0.65 0.71 0.75 0.66

δ = 4 0.80 0.73 0.83 0.65 0.73 0.81 0.67

δ = 5 0.83 0.78 0.86 0.65 0.72 0.84 0.68
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Figure 5.5 Varying δ on VOM CR1, |I| = |J | = |T | = 100.
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Figure 5.6 Varying δ on VOM CR2, |I| = |J | = |T | = 100.
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Table 5.7 Varying T on VOM CR1 with δ = 3, |I| = |J | = |T |

T SAMP-B SAMP-
AB

GREEDY RANKING JL BSSX MGS

t = 70 0.68 0.60 0.49 0.06 0.54 0.47 0.38

t = 80 0.64 0.58 0.54 0.18 0.48 0.42 0.36

t = 90 0.67 0.65 0.58 0.28 0.45 0.48 0.38

t = 100 0.66 0.60 0.56 0.19 0.35 0.54 0.37

Table 5.8 Varying T on VOM CR2 with δ = 3, |I| = |J | = |T |

T SAMP-B SAMP-
AB

GREEDY RANKING JL BSSX MGS

t = 70 0.83 0.72 0.88 0.69 0.78 0.73 0.65

t = 80 0.84 0.73 0.87 0.68 0.76 0.79 0.63

t = 90 0.81 0.71 0.85 0.64 0.77 0.77 0.65

t = 100 0.82 0.73 0.86 0.66 0.78 0.74 0.66
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Figure 5.7 Varying T on VOM CR1 with δ = 3, |I| = |J | = |T |.
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Figure 5.8 Varying T on VOM CR2 with δ = 3, |I| = |J | = |T |.

For Table 5.1 and Figure 5.1, SAMP-B performed the best maintaining a

competitive ratio of at least 0.74. Ranking, BSSX, and MGS were all around the

same performance and greedy performed the worst with ranking coming in as a close

second. As δ kept increasing Greedy, Ranking, BSSX, and MGS started having similar

performance. This is because with a larger δ it becomes easier to increase fairness

42



due to the larger number of neighbors each j has. The most likely explanation as

to why greedy performed so bad is that greedy simply assigns any online agent any

available offline agent. This strategy is very random and does not make use of the

optimal solution that was computed by the linear program. This could also explain

why ranking performs similarly to greedy since the ranking algorithm picks a random

permutation instead of using the optimal solution.

For Table 5.2 and Figure 5.2 performance is similar to before when δ = 2.

However as δ increases, the performance of all algorithms increases because each

algorithm has more neighbors to work with which makes it easier to optimize fairness.

Interestingly, the MGS algorithm performs fairly poor. One explanation is the MGS

algorithm makes use of two matchings which means when a request of type j appears

more than two times it gets rejected. Since The number of |T | has increased this can

increase the chance of repeats which can cause the MGS algorithm to take a hit.

For Table 5.3 and Figure 5.3, SAMP-B is the clear winner however as |T |

increases the Greedy algorithm and BSSX start approaching the performance of

SAMP-B. The MGS and Ranking algorithm trail behind the others. MGS is most

likely still suffering from the fact that it cannot assign any online agent j more

than once. The Ranking algorithm is deterministic because it acts accordingly to a

permutation that does not adapt or change which might be why it suffers in this case.

For Table 5.4 and Figure 5.4 the performance follows similar trends to Table 5.3

and Figure 5.3, except for one thing. The ranking algorithm performs a lot better.

Although the ranking algorithm is still a deterministic algorithm, the increase in the

number of neighbors from 2 to 3 means it will have more variety in it’s decision

making.

For Tables 5.5, 5.6 and Figures 5.5, 5.6, SAMP-B and SAMP-AB perform the

best on CR1 which is the competitive ratio that measures fairness. For small δ,

SAMP-B performs the best while the other algorithms trail behind. As δ increases,
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SAMP-AB and Greedy increase in performance and get close to the performance

of SAMP-B. The other four algorithms trail behind. For CR2 which measures

maximizing weight values, all algorithms perform well with SAMP-B and Greedy

having the best performance. Not surprisingly Greedy outperforms SAMP-B for

CR2 since the Greedy algorithm always picks the vertex with the largest weight.

For Tables 5.7, 5.8 and Figures 5.7, 5.8, in the case of CR1, SAMP-B is the

winner. But this is also the first time it performs below the theoretical lower bound

of 0.725. The low number of neighbors and low |T | sizes, makes it difficult for

all algorithms to optimize for fairness and as a result all algorithms take a hit in

performance. SAMP-AB is also clearly the second best performer with the ranking

performance having the lowest performance. For CR2, SAMP-B and Greedy are the

winners just like before. Greedy also outperforms SAMP-B for CR2.

44



CHAPTER 6

COMPARISON

6.1 Comparing Problem Statements

While problem statements between each section differ, there are a lot more similarities

between each section than differences. For instance, in edge-weighted online matching

the setting uses a bipartite graph G(A, I, E) where A is the set of advertisers, I is

the set of impressions and E is the set of edges. Impressions arrive in sequential

order and the goal of the algorithm is to match each impression to an advertiser such

that the weights of all edge matches is maximized. Additionally, it operates under

iid which means the distribution of I is known beforehand. This is identical to the

unweighted edge matching, the only difference is that the edges are not weighted. This

means unweighted edge matching can be modeled as a special case of edge weighted

matching where all weights w = 1. Vertex weighted matching is also fairly similar

to edge weighted matching and unweighted edge matching. The main difference is

instead of using edge weights it uses the weights of each vertex. VOM is also the

only problem setting where it operated in the adversarial setting which means the

algorithms know nothing about the distribution of V . Additionally instead of using

advertisers A and impressions I the setting used vertices U and V . However this

is just a difference in naming, overall the setting is very similar for the most part.

IFM is the most different one. Rather than maximizing the sum of some weights,

IFM focused on maximizing fairness which is defined as maxmini∈I E[Zi]. Besides

the objective function, IFM also uses bipartite graphs where the goal is the assign

incoming arrivals j ∈ J to an available neighbor i ∈ I. IFM also operates under the

non-adversarial setting which is known as KIID instead of iid.
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6.2 Comparing Algorithms and Theoretical Results

For unweighted edge matching, Jon Feldman, Aranyak Mehta, Vahab Mirrokni, and

Shan Muthukrishnan introduce simple algorithms that are designed to achieve a

competitive ratio of at least 1− 1
e
. Then they introduce more complicated algorithms

designed to break the 1− 1
e
barrier. In weighted edge matching, Bernhard Haeupler,

Vahab Mirrokni, and Morteza Zadimoghaddam follow the same procedure. The TSM

algorithm is supposed to achieve a ratio of at least 0.67 while HMZ 2 is supposed to

achieve a ratio of at least 0.667. What is interesting is that both algorithms make

use of a two matchings system where if any impression i arrives more than 2 times

then it should be rejected. Both algorithms also under perform in certain settings

to their simpler counterparts which are the SM algorithm and HMZ 1. They might

share weaknesses since they both use two matchings, such as being unable to deal

with a large number of repeats. However, the TSM algorithm never uses the optimal

solution calculated by the linear program and instead uses max flow instead. HMZ 2

differs in that it does.

The VOM setting is interesting in that the authors show that the 1− 1
e
barrier

can never be broken in the weighted setting. So rather than improving the competitive

ratio they simply introduce an algorithm that can work in a weighted setting and

achieve a ratio of 1 − 1
e
. The author also introduces a simple algorithm as a warm

up then moves on to the more complicated algorithm later. This seems to be a fairly

common practice.

SAMP-B is shown to have a competitive ratio of 0.725 and the ratio of

SAMP-AB is 0.719 which is a bigger leap in performance when compared to the

algorithms from other sections. SAMP-B and SAMP-AB use a probabilistic approach

rather than a deterministic approach like TSM or Ranking. SAMP-B, SAMP-AB,

Ranking, perturbed-greedy also seem the most robust and perform closer to their

theoretical bounds. On the other hand, the performance for TSM, SM, HMZ 1,
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and HMZ 2 have a lot more variation in performance and will under perform their

theoretical bounds in specific settings.

Out of the 8 algorithms that were surveyed, SAMP-B and SAMP-AB performed

the best and are the most robust. These algorithms are more oriented towards

practical applications, while the algorithms that were more oriented towards theoretical

applications were not as robust. The other 6 algorithms varied more in performance.

In general, it is better to use algorithms that are designed towards real world appli-

cations since these type of algorithms are usually extensively tested in experiments.

One area this survey struggled in is experimental design. Most of the papers that were

surveyed did not include any experiments. The papers that did include experiments

did not give much justification in how they set up their experiments.
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