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ABSTRACT

ASSESSING STRUCTURAL AND FUNCTIONAL BRAIN ALTERATIONS AND 
WORK-RELATED FATIGUE IN NON-HYPOSMIC AND HYPOSMIC 

COVID-19 SURVIVORS

by
Rakibul Hafiz

In the year 2019, life began to change at the advent of a global pandemic caused by the 

novel coronavirus. Mask mandates and mass vaccinations have mitigated the effects 

significantly, yet cases keep rising with new variants, especially, in densely populated 

countries, like India. Recent neuroimaging evidence shows the virus can attack the central 

nervous system (CNS). However, exactly which brain regions undergo structural and 

functional changes remain largely unknown. Many patients experience ‘loss of/reduced 

sense of smell’ (i.e., hyposmic) and an alarming number of survivors develop persistent 

symptoms (‘long-COVID’) for several months after initial infection. Fatigue is the most 

reported symptom among several others that show signs of cognitive deficits. Therefore, 

how these brain alterations differ among healthy controls and patient subtypes (non-

hyposmic and hyposmic) and how they relate to fatigue need to be investigated.    

To address these gaps, 35 healthy controls and 47 COVID-19 survivors, two weeks 

after hospital discharge, are recruited from a single site located at Delhi, India. T1-weighted 

structural magnetic resonance imaging (MRI) and resting state functional MRI (RS-fMRI) 

are used to test our hypothesis that brain structure and function change across healthy, non-

hyposmic and hyposmic groups. Furthermore, correlations of structural and functional 

brain imaging metrics with self-reported fatigue at work are reported. Fatigue levels are 

higher in the COVID group (hyposmic and non-hyposmic) compared to the healthy group 



(p < 0.05). For the structural morphometry analysis, ANOVA reveals differences in global 

gray matter volume (GMV) across groups (F = 3.48, p < 0.05), which is observed to be 

higher in the hyposmic group from post-hoc tests. After controlling for age, sex and total 

intracranial volume (TIV), voxel-based morphometry (VBM) reveals four clusters (pFWE < 

0.05) from the ANOVA analysis comprising regions from the limbic system, 

occipitotemporal and cerebellar lobes. Post-hoc analysis on these clusters reveal that 

hyposmic patients have higher GMV compared to non-hyposmic and healthy control 

groups. Furthermore, the COVID group demonstrate stronger correlation of fatigue with 

GMV (ρ = 0.41, p <0.05) within precuneus, posterior cingulate cortex and superior 

parietal lobule. From functional data analysis, amplitude of low frequency fluctuations 

(ALFF) is higher in the hyposmic and non-hyposmic groups compared to the healthy 

controls, within the limbic system and basal ganglia. Functional connectivity (FC) derived 

from independent component analysis (ICA) is reduced in the hyposmic group, compared 

to both non-hyposmic and healthy groups with medial and orbito-frontal regions for the 

basal ganglia network. On the other hand, the hyposmic group show enhanced FC 

compared to healthy and non-hyposmic groups within the precuneus and somato-sensory 

networks, respectively. Moreover, the FC of the superior parietal lobule, is negatively 

correlated with work-related fatigue (ρ = -0.47, p <0.05)  for the precuneus network. The 

results indicate that COVID survivors demonstrate brain alterations at an early stage of 

recovery and more strongly correlate with work-related fatigue, which can be an early 

marker for ‘long-COVID’. Altered brain regions observed from this study also match with 

clinical MRI reports and current fMRI literature, suggesting these findings could have 

relevance to both clinical diagnosis and research related investigations.
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CHAPTER 1

INTRODUCTION

1.1 Objective

At the early stage of the COVID-19 pandemic, the medical communities put a 

significant amount of effort towards acute patients, focusing primarily on dealing with 

the respiratory damage done by the novel coronavirus. Understandably at that time, 

the primary target was saving lives of critical patients and as a result, a large portion 

of survivors who got discharged from the hospital remained neurologically 

uninvestigated. Some of the recovery stage symptoms experienced by these survivors 

over long term, tend to be cognitive in nature, therefore, the brain might play a 

considerable role in mediating them. Our objective was to study the brain at an early 

stage of recovery (2 weeks after discharge) by applying structural and functional 

neuroimaging in COVID survivors and comparing them with a group of healthy 

controls (HCs). Furthermore, we wanted to evaluate how these brain estimates 

correlate to self-reported fatigue levels during work. 

Multiple cerebro-vascular injuries have been found in acute COVID patients 

(Gulko et al., 2020). This can lead to changes in structural properties in the brain which 

can be estimated using T1-weighted magnetic resonance imaging (MRI) imaging. 

Similarly, damages in neurons and vasculature can also lead to local changes in 

metabolic activity which can be estimated using functional MRI (fMRI). Interestingly 

loss/reduction in sense of smell (hyposmia) is highly prevalent among COVID 

survivors (Logue et al., 2021; National Center for Immunization and Respiratory 
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Diseases (NCIRD), 2020; Peluso et al., 2021). How such brain alterations differ 

particularly in the COVID subtypes (hyposmic and non-hyposmic), and the healthy 

groups need to be investigated. This led to two broader research questions – do brain 

abnormalities persist in PCR negative survivors at an earlier point of recovery, 

particularly, two weeks after hospital discharge? Moreover, is work-related fatigue 

correlated to brain estimates in these groups? 

Based on recent neuroimaging evidence, we hypothesized that brain structure 

and function will be altered across these three groups and their brain estimates will 

demonstrate a significant relationship with work-related fatigue. Therefore, we 

performed T1-weighted high resolution structural MRI and resting state functional 

MRI (RS-fMRI) to obtain brain structural and functionality metrics in the three groups 

to test the two hypotheses. This has been laid out in three specific aims and briefly 

summarized, as follows – 

1. Assess alterations in gray matter volume using voxel-based morphometry 
(VBM) in hyposmic, non-hyposmic and healthy subjects. 

1.a Here, we quantified gray matter volume (GMV) using VBM and used a 
one-way analysis of variance (ANOVA) to first delineate global changes in 
GMV. We then performed a voxelwise search across the whole brain to identify 
brain regions with significant differences in GMV across the three groups in 
specific clusters obtained by a non-stationary cluster extent threshold. 

1.b Post-hoc tests were then performed on those specific clusters to evaluate 
differences in GMV across each group pair.
   

2. Estimate functional brain changes in hyposmic, non-hyposmic and healthy 
subjects.

2.a Local brain activity was estimated using amplitude of low frequency 
fluctuations (ALFF). One way ANOVA was performed voxelwise to identify 
brain regions with altered activity across the three groups.
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2.b Group level functional connectivity (FC), was estimated using 
independent component analysis (ICA) to identify distinct resting state 
networks (RSNs), followed by dual regression to obtain subject specific maps. 
Statistical analysis was performed to show differences between groups for 
specific RSNs.   

3. Evaluate the relationship of fatigue with structural and functional brain 
estimates across hyposmic, non-hyposmic and healthy subjects. 

3.a Fatigue scores from all three groups was used in a single multiple linear 
regression model to assess correlation with GMV. The individual effects of 
each group that drove the overall trend was assessed to show which group was 
more susceptible to fatigue.

3.b The same regression analysis was performed for the functional brain 
metrics: ALFF and FC of RSNs to assess functional correlates of fatigue in 
these groups.  
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CHAPTER 2

NEUROLOGICAL DAMAGE AND HYPOSMIA IN COVID-19

In Chapter 1, the overall objective of this study was presented. The research questions 

leading to the specific hypotheses were discussed. Furthermore, the three specific aims and 

the sub-aims designed to test the hypotheses of the study were also laid out. In this chapter, 

we briefly introduce COVID-19 in general and the development of cases that led to 

evidence of neurological signatures in COVID survivors. We also summarize the studies 

relevant to the research questions based on the most recent literature review.

2.1 Background

SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) is a highly contagious 

novel coronavirus that primarily uses respiratory droplets as a medium to spread rapidly 

across humans (National Center for Immunization and Respiratory Diseases (NCIRD), 

2020). As of February 2022, the number of confirmed cases have reached over 400 million, 

with nearly 6 million deaths around the world ((WHO), 2022). The alarming rate at which 

the virus spreads from person-to-person has delayed scientific investigations to understand 

and strategize against its attack on major biological systems (Puntmann et al., 2020; Zhao 

et al., 2020; Zubair et al., 2020). With the rapid production of vaccines, strict mask 

mandates and social distancing, the spread and severity of the viral attack have been 

mitigated significantly. However, the novel coronavirus has also evolved in a short time 

and the wave of new strains such as the ‘delta’ and ‘omicron’ variants have affected densely 

populated countries more severely, India, being a prime example. 
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The devastation led by the initial attack and the delta wave had almost paralyzed 

India. Due to a large influx of patients, supplies were depleting quickly, adding on to other 

complications. As a result, the primary interest was to save lives of critical patients with 

respiratory failure or severe damage to the respiratory system and to be fair, such was the 

case across most countries in the world. This led to a vast majority of hospital survivors 

whose brain alterations were not studied. With time, studies have begun to emerge 

identifying symptoms that last from a few weeks to several months after initial infection 

(del Rio et al., 2020; Logue et al., 2021). Importantly, three recent cohort studies point to 

the brain as one of the primary organs responsible for these symptoms: one such surveying 

177 patients up to 9 months after infection reported fatigue (13.6%) and loss in sense of 

smell (13.6%) as the most common symptoms (Logue et al., 2021); a second reported 

fatigue (92%), concentration and memory loss (74%), weakness (68%), headache (65%) 

and dizziness (64%) (Tabacof et al., 2020); and a third following 179 COVID patients 

(Peluso et al., 2021) at least 6.5 months after acute COVID infection noted fatigue, 

shortness of breath, concentration problems, headaches, trouble sleeping and 

anosmia/dysgeusia. 

Based on input data collected from 4 million patients across US, Sweden and UK, 

a recent article for primary care clinicians has classified subjects with symptoms lasting 

beyond 12 weeks as ‘chronic’ COVID-19 (Greenhalgh et al., 2020). The National Institutes 

of Health (NIH) have made a high priority of studies of this new condition and called it 

‘post-acute sequelae SARS-CoV-2 infection (PASC)’. Because the most common 

symptoms of the PASC patient (and of chronic fatigue syndrome or CFS) are fatigue and 

cognitive complaints and the most common sign is neurological – hyposmia or anosmia, 
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our initial hypothesis is that the brain is responsible for the survivors to experience these 

symptoms. What we do not know is whether there are any early recovery stage neurological 

manifestations (e.g., 2 weeks after hospital discharge) in the hospitalized survivors? Do 

these neurological alterations also relate to behavior, such as, work-related fatigue? This is 

exactly what we intend to investigate in this study.

2.2 Neurological Damage in COVID Survivors

If the brain plays a role modulating some of the symptoms that develop both during and 

after initial infection (PASC), then neuroimaging studies can non-invasively investigate 

where these alterations manifest (cross-sectionally) and develop over time (longitudinally). 

Early neurological investigations involving severely ill COVID patients have shown some 

evidence on the attack on the central nervous system (CNS). Increased cytokine levels have 

been found to play a crucial role in compromising the immune system in COVID-19 

patients (H. Li et al., 2020). A study consisting of eight severely ill patients showed that, 

serum from a single patient had elevated levels of IL (interleukin)-6 (Keller et al., 2020) 

suggesting that cytokines or inflammatory processes causing metabolic changes that 

transfer from peripheral blood to the CNS may be responsible for disturbances in the blood-

brain barrier and dysfunction in brain tissue. MRI of intracranial vessel wall revealed 

contrast enhancement of mid-to-large sized cerebral arteries which can be the cause of 

several inflammatory vascular pathologies (in 25% of patients) (Keller et al., 2020). Similar 

vascular abnormalities were reported from a single center from 4 COVID patients 

(Nicholson et al., 2020). A review consisting of twenty-two articles covering 5 

investigational studies, 6 case series, and 11 case reports on 126 patients from seven 
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different countries, report that brain MRI revealed acute infarct, posterior reversible 

encephalopathy syndrome, cortical fluid-attenuated inversion recovery (FLAIR) signal 

abnormality and microhemorrhages (Gulko et al., 2020).

Kremer et al., 2020 conducted a retrospective study on data collected over multiple 

centers (11 hospitals, n = 64). They report several neurological aberrations including high 

percentage ischemic strokes (27%) and encephalitis (13%, more common in younger 

patients) (Kremer et al., 2020). Structural MRI imaging showed abnormalities in 56% of 

the cohort. Irregularities in mental capabilities are also reported with highest cases of 

confusion (53%), impaired consciousness (39%) along with agitation (31%) and headaches 

(16%). They also report hyperintense brain regions from FLAIR and white matter (WM) 

abnormalities from diffusion weighted images (DWI) observed from individual patients. 

Another multicenter study found neurological alterations in 50 out of 235 ICU patients 

with severe COVID-19 symptoms (Kandemirli et al., 2020). They report hyperintensity 

observed from FLAIR MRI images in all major brain lobes in specific patients. Similar 

results were also reported in another study with 29 COVID-19 positive patients in 

individual patient’s FLAIR images (Paterson et al., 2020). Another study (Helms et al., 

2020) also reported frontotemporal hypoperfusion observed in all (n = 11) COVID patients 

who underwent MRI, most likely because of hypoxia induced from acute respiratory 

distress syndrome (ARDS) associated with COVID-19. Additionally, olfactory 

dysfunction or loss of sense of smell (hyposmia or anosmia) is also commonly reported 

among acute and PASC patients. The next section expands on the neurophysiology and 

current neuroimaging findings of olfactory dysfunction among COVID survivors, since the 

current study emphasizes on this subtype.
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2.3 Olfactory Dysfunction in COVID Survivors

Although the pathophysiology of how the novel coronavirus enters the brain and attacks 

the CNS is still under investigation, interestingly, its predecessors have been shown to 

travel across nerve synapses and attack the CNS (Dubé et al., 2018; Li et al., 2013). It is 

still unclear whether SARS-CoV-2 enters the brain using the same pathways, but previous 

reports in mice suggest that SARS-CoV-1 (immediate predecessor of SARS-CoV-2) 

invades the brain via a transcribrial route (Matsuda et al., 2004; McCray et al., 2007). This 

suggests that the virus enters the brain through the cribriform plate and then attacks the 

olfactory cortex producing pathology which can be detected with neuroimaging tools. To 

cite a few single patient reports in support of this statement: two MRI studies done on two 

acutely ill patients (age 27, male and age 25, female) showed bilateral olfactory edema with 

severe enlargement and abnormally high intensity (Laurendon et al., 2020) and 

hyperintense FLAIR uptakes (Politi et al., 2020). Abnormalities reported from these studies 

suggest possible structural and functional alterations in the olfactory system. But do these 

effects exist or persist in survivors? If so, how are the effects in the hyposmic group 

different from the non-hyposmic and healthy groups? 

Some evidence of altered neurophysiology among hyposmic/anosmic patients exist 

both from single case and cohort specific reports in the literature. The two studies cited in 

the previous paragraph (Laurendon et al., 2020; Politi et al., 2020) were among the early 

reports suggesting olfactory dysfunction. The first case of anosmia associated with 

COVID-19 in Taiwan was reported from a male patient, who demonstrated hyperintensity 

in the olfactory bulbs (C.-W. Li et al., 2020). Similar findings were also reported from a 

single patient (age 25, Female) with hyperintensity in the gyrus rectus, olfactory bulbs 
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which returned to normal when scanned again on day 28 (Politi et al., 2020). Asymmetry 

in olfactory bulb was also observed in postmortem study of 4 deceased COVID-19 patients 

(Coolen et al., 2020). A recent study (Esposito et al., 2022) has shown abnormally higher 

structural and functional connectivity in the hyposmic group (n = 27) compared to 

normosmic group (n = 18). Several brain regions with functional connections to the 

piriform cortex were compromised and more segregated in the hyposmic group. In a more 

clinical setting, another study (Niesen et al., 2021) investigated six patients with positron 

emission tomography and MRI (PET-MR) and showed blockage within the olfactory cleft. 

The patient sample in this study was unique in the sense that they had lost their sense of 

smell ‘suddenly’ and they make an interesting case that this is not a direct result of a 

neuroinvasive attack by SARS-CoV-2, rather, a residual effect of other related 

physiological processes in the olfactory system initiated by the virus. 

Indeed, the effects discussed so far need to be replicated over a larger sample and 

across different sites for reliability. Further investigation is also necessary to delineate the 

neuro-physiological processes in hyposmic, non-hyposmic and healthy subjects. 

Neuroimaging techniques provide an opportunity to assess this non-invasively. Our goal is 

to leverage this and systematically evaluate brain alterations in these groups using 

structural and functional neuroimaging metrics. 
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CHAPTER 3

STRUCTURAL ALTERATIONS IN COVID SURVIVORS

Chapter 2 broadly presented evidence of CNS attack by the novel coronavirus and depicted 

the neurophysiology of olfactory dysfunction. This chapter will focus on highlighting how 

structural alterations differ among hyposmic, non-hyposmic and healthy subjects. This 

chapter is addresses specific aim 1 and the sub-aims, which were laid out in Chapter 1. 

First, current findings in the literature are presented to provide the basis behind the 

hypothesis being tested in aim 1. Then, the method and analysis pertaining to the 

morphometry analysis is presented in sequence. Finally, the most relevant results are 

highlighted and discussed.

3.1 Introduction

3.1.1 Background

Most early COVID neuroimaging studies have investigated structural modulation among 

severely ill patients. Brain lesions, detected using FLAIR imaging, have been reported 

within frontal, parietal, occipital, temporal, and insular lobes (Kandemirli et al., 2020). 

Another study investigating three COVID patients with autoimmune and hemorrhagic 

encephalitis reported abnormal uptake on FLAIR imaging within the hypothalamus, 

temporal lobe, and the thalamus (Paterson et al., 2020). But these were mostly case studies, 

and investigators acknowledged the necessity to move from individual cases to cohort 

specific group effects. This helps in delineating structural brain alterations between 

COVID-19 survivors and healthy controls (HCs) with higher statistical power. 
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To address this gap in knowledge, a few neuroimaging studies have emerged with 

moderate (Duan et al., 2021; Qin et al., 2021) to large sample sizes (Douaud et al., 2021), 

including follow-up (Lu et al., 2020; Tu et al., 2021) and longitudinal designs (Douaud et 

al., 2021). Lu et al., 2020 (Lu et al., 2020) found neurological symptoms in over 68% 

(41/60) of hospitalized patients and after a 3 month-follow-up, reported persisting 

neurological symptoms in 55% (33/60) of patients. They had also used MRI imaging to 

assess both gray matter volume (GMV) and white matter (WM) structural alterations. They 

further showed significantly higher GMV in several regions of interest (ROIs) – Rolandic 

operculum, bilateral olfactory, insular, and hippocampal regions, as well as in the right 

cingulate gyrus and left Heschl’s gyrus. Another study with follow ups after 3 and 6 months 

showed increased GMV in bilateral hippocampus and amygdala (Tu et al., 2021). 

The effects could also be due to symptomatic severity such as fever or hypoxemic 

conditions. Such conditions can modulate the brain structure that could relate to clinical 

measures more locally despite no significant changes in GMV overall. For instance, a 

recent study has used Computed Tomography (CT) scans to show that the fronto-temporal 

network is more susceptible to fever and reduced oxygen levels in COVID patients, despite 

no overall difference in GMV between the COVID and control groups (Duan et al., 2021). 

There have also been cases, where the patients never showed any neurological 

manifestations in the acute stage. The question remains whether they can develop 

neurological symptoms during recovery. In that case, how are these developments different 

in mild and severe patients? A recent study has addressed this with two sub-types (mild 

and severe) who had no signs of any neurological manifestations during the acute stage 
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(Qin et al., 2021). However, after a 3 month-follow-up MRI scan, they reported reduced 

cortical thickness in the left insula, hippocampus, and superior temporal gyrus. 

How the neurophysiological changes develop in individuals before and after 

infection with COVID-19 can also reveal critical information on the progressive atrophy 

in brain structure. The UK Biobank COVID-19 reimaging study is among the first 

longitudinal studies to address this, leveraging a large sample of patients (N=785, nCOVID = 

401) (Douaud et al., 2021). They show reduced GM thickness and contrast in the 

orbitofrontal and parahippocampal gyrus, as well as, in insula, amygdala and the anterior 

cingulate cortex. In addition, they report increased tissue damage in brain regions 

functionally associated with the piriform cortex and the olfactory system, as well as higher 

volumes in CSF. Interestingly, the mixed evidence of increased GMV and contrarily, 

reduced GM thickness from these studies, reveal brain alterations in otherwise quite 

consistent anatomical locations. Our goal was to first assess, if the participants from this 

study, scanned after a much shorter interval from hospital discharge (2 weeks), 

demonstrated altered GMV in regions that are consistent with both acute stage single case 

reports and more recent group level neuroimaging reports from lengthy recovering (3 to 6 

months) patients. 

In the current study, we address this by recruiting a group of patients, hospitalized 

after a positive PCR test for COVID-19 with multiple symptoms. This group of patients 

was further divided into sub-types based on those who experienced a loss of sense of smell 

(hyposmic, also referred as ‘LOS’ group in this study) and those that did ‘not’ experience 

a loss of sense of smell (non-hyposmic, also referred as ‘nLOS’ group in this study). They 

were imaged two weeks after hospital discharge after converting to be PCR negative. One 
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expectation is that changes in brain tissue structure in COVID survivors can still cause 

changes in compartmental volumes that remain shortly after hospital discharge. 

Specifically, we hypothesized that the hyposmic (LOS) group would demonstrate gray 

matter volume (GMV) differences with the non-hyposmic (nLOS) and HC group. T1-

weighted MRI images can be utilized to estimate GMV differences between the groups 

using voxel-based morphometry (VBM) (Ashburner & Friston, 2000). 

VBM is a volumetric computational method that can quantify voxel-wise changes 

in tissue volume in the gray matter (GM)(Ashburner & Friston, 2000). It is a useful method 

to report group level differences in tissue volume between patients and healthy controls 

(HCs), using T1-weighted anatomical images. Its application in patient cohorts is quite 

popular with earliest reports for schizophrenia (Wright et al., 1999; Wright et al., 1995), 

autism (Abell et al., 1999), chronic depression (Shah et al., 1998) and epilepsy (Woermann 

et al., 1999) among several others (Krams et al., 1999; May et al., 1999; Vargha-Khadem 

et al., 1998). More recent reviews on VBM application across different neurological 

diseases can also be found, e.g., for  schizophrenia (Nemoto, 2017), autism spectrum 

disorder (Yamasue, 2017), epilepsy (Yasuda et al., 2010) and Alzheimer’s disease 

(Matsuda, 2016).

3.2 Materials and Method

3.2.1 Participants

The on-site team from the Indian Institute of Technology (IIT), Delhi, India, recruited 47 

COVID-negative patients and 35 HCs, where they were imaged following the Institutional 

Review Board (IRB) guidelines. All patients are local inhabitants of Delhi, India, who were 
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recruited from a much larger pool of patients. The patients were initially classified by the 

Metro Heart and Super-specialty Hospital, New Delhi, India based on illness severity data 

derived from a database of 2,538 COVID patients from May to December 2020. 24% of 

this sample did not require O2, 40% required O2, 22% required Continuous Positive Airway 

Pressure (CPAP); and 14% were intubated. This 14% of intubated patients were excluded 

from the recruitment process in the current study. 

Of the remaining patients, 333 needed CPAP to raise O2 levels; 333 needed nasal 

O2 to raise O2 levels; and 334 were admitted but did not need supplemental O2. The sample 

of 47 COVID subjects constituting the COVID group in this study were collected from this 

cohort (those who agreed to participate in this ongoing study so far). Patients were studied 

two weeks after discharge, after becoming PCR negative. Any subject from the healthy 

group who has experienced fever, cough, or flue like symptoms in the two weeks prior to 

scan or from past medical records based on self-report, were removed from the study. All 

healthy subjects also had to undergo a PCR test to prove that they had not been infected in 

the recent past. We used a questionnaire to record symptoms the survivors have 

experienced during hospitalization (see Figure 3.1) and an additional questionnaire to 

quantify fatigue levels (see Figure 3.2) which also included similar questions from the first 

questionnaire to identify if they experienced any persistent or new symptoms. 

To avoid confounding effects from comorbidities, we recruited subjects that were, 

otherwise, in excellent health conditions prior to hospitalization for COVID-19. For 

example, 16/47 (34.04%) of our patients were young adults who had no prior record of any 

comorbidities that could confound the COVID-19 effects. We only had 7/47 (14.89%) 

subjects with age between 50-54 years (capped at < 55 years as recruitment criteria to avoid 
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other comorbidities), some of whom had reported to have marginal diabetes. The rest 

(51.07%) in between also did not have any record of comorbidities from the hospital. 

Table 3.1 summarizes the clinical information from the 47 patients included in the 

current study. It shows percentages of patients in each category of symptom severity, 

medications administered and requiring additional oxygen support. Of these 47, 36.17% 

(17/47) patients were reported to be ‘mild’, 8.51% (4/47) to be ‘moderate’ and 36.17% 

(17/47) to be ‘severe’. Information from the rest of the 19.15% (9/47) was not provided 

from the hospital because those patients did not give consent to sharing their medical 

symptoms. Please note, we present percentages of affected patients as a ratio of both the 

available sample with information (‘% Out of Avail.’ in Table 3.1) and the total sample of 

patients including those patients who did not give consent to share their clinical data (‘% 

Out of Total’ in Table 3.1). Among the severe patients, 58.82% (10/17) were given 

Remdesivir and 29.41% (5/17) required additional oxygenation. One patient (1/17) was 

given a mix of Dexamethasone, Ceftriaxone and Clexane injections and another (1/17) was 

put in an Antibiotic and Steroid regime for 4 weeks (Progressively reduced). One other 

patient (1/17) was given Actemra 2 times, who was also administered Bilevel Positive Air 

Pressure (BiPap) for 4-5 days. On average these 47 patients stayed in the hospital for 

approximately 11 ± 3.30[SD] days. 

Before data analysis, six subjects (1 COVID and 5 HC) were removed during 

quality control assessment. The quality control step involved a visual assessment and it 

included – identifying subjects with major injuries in the brain, images without full brain 

coverage, abnormal segmentation and normalization and artifacts in the image among 

others. Effectively, T1-weighted images from 46 (31 males) COVID and 30 (23 males) 
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HCs were included in the study with mean age 33.5 years ± 9.74[SD] years (HC) and 34.63 

years ±11.54[SD] years (COVID). Please see Table 3.2 for more details on demographics. 

The most reported symptoms from the participants during hospitalization were - fever, 

cough, body ache, chills, difficulty breathing, bowel irritation, nausea, loss of sense of 

smell and loss of consciousness.

3.2.2 Clinical Assessment

The most frequently observed symptoms from the participants during hospitalization were 

- fever, cough, body ache, chills, difficulty in breathing, bowel irritation, nausea, loss of 

sense of smell and taste and loss of consciousness. From the day of discharge till the day 

of scan, we asked if the participants were experiencing any persistent or new symptoms. 

Work-related fatigue (86.84%), muscle pain (18.42%), lack of sleep (39.47%), lack of 

attention (36.84%), headache (36.84%), joint pain (50%), memory loss (34.21%), delayed 

recovery of sense of smell (44.74%) and/or taste (34.21%), bowel irritation (57.89%) and 

interestingly, hair loss (81.58%) were commonly reported. Please note, most survivors 

experienced multiple symptoms simultaneously, hence the ‘%’ represents symptoms that 

overlap within participants. For example, 36.84% of 27 post-COVID participants reporting 

with lack of attention also reported a work-related fatigue score > 2, with ‘work-related 

fatigue’ pointing exclusively to their daily professional work.  A point to note here is that 

fatigue was the highest reported symptom in this cohort (> 86% of COVID participants), 

which is a sign of cognitive decline, and this adds on to the rationale behind particularly 

investigating this symptom exclusively. 
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Figure 3.1 Participant recruitment questionnaire for symptoms during hospitalization. The 
figure shows the list of questions the participants were requested to answer to evaluate the 
development and duration of specific symptoms relating to COVID-19 during 
hospitalization.

3.2.3 MRI Imaging

A 3T GE scanner was used to acquire high-resolution T1-weighted images. The subjects 

were placed in a supine position and asked to remain still. The images were acquired using 
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a 32-channel head coil in 3D imaging mode with a fast BRAVO sequence. Imaging 

parameters include inversion time, TI = 450 ms; 244 x 200 matrix; flip angle = 12° and 

field of view, FOV = 256 mm, slice thickness of 1.00 mm and spatial resolution of 1.0 mm 

x 1.0 mm x 1.0 mm. The whole brain was scanned in the sagittal configuration to collect 

152 slices. Raw Digital Imaging and Communications in Medicine (DICOM) images were 

reconstructed into Neuroimaging Informatics Technology Initiative (NIfTI) format for data 

curation, pre-processing and sub-sequent analyses performed.

Figure 3.2 Fatigue and long-COVID related symptoms questionnaire. The ‘Part 1’ on the 
left is the fatigue questionnaire based on ‘Life Spheres Criteria’ shown in the bullet points. 
The participants were asked to grade their fatigue levels on a scale of 0-5 with increasing 
fatigue severity as the number approaches 5. A secondary, ‘Part 2: Symptoms Criteria’ 
questionnaire (on the right) was also provided to the surviving patients. This was done to 
identify persistent or new symptoms possibly relating to PASC development. We were 
particularly focused on the fatigue levels experienced during work and all results and 
evaluations are reported based on the fatigue scores at work.

Source: Natelson, B. H. (2019). Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Fibromyalgia: 
Definitions, Similarities, and Differences. Clinical Therapeutics, 41(4), 612-618. 
https://doi.org/https://doi.org/10.1016/j.clinthera.2018.12.016
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3.2.4 Image Pre-Processing

‘Pre-processing’ is a term typically associated with MRI and fMRI data. This entails a 

number of steps incorporated to condition the imaging data and remove unwanted noise 

and unrelated sources that may obscure the true effects. It is also important because without 

these steps, false positive results can be introduced during the statistical analysis. Since this 

chapter highlights estimates derived from anatomical MRI, only the pre-processing steps 

involved with this modality is depicted. In effect, the pre-processing steps described below 

is a sub-set of functional MRI data pre-processing, as it also relies on high resolution 

anatomical images for registration and spatial interpretation purposes. More information 

on  functional imaging data pre-processing can be found in Chapter 4.

SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) was primarily used for pre-processing 

the anatomical data. Custom scripts within the MATLAB environment (MathWorks Inc, 

Massachusetts, USA) were prepared to perform pre-processing on T1w MRI images. All 

anatomical images were visually inspected for artifacts, re-centered and reoriented to the 

anterior-posterior commissure (ac-pc) line. Each brain compartment was segmented into 

specific tissue classes mainly - gray matter (GM), white matter (WM), and cerebro-spinal 

fluid (CSF). A study-specific template was first generated using the fast diffeomorphic 

image registration algorithm (DARTEL) (Ashburner, 2007) which is representative of the 

average across all the participants included in the study (Ashburner & Friston, 2009; Yassa 

& Stark, 2009). Subject level maps were non-linearly warped to this reference template for 

relatively higher specificity and accuracy (Yassa & Stark, 2009). Finally, each map was 

normalized to the Montreal Neurological Institute (MNI) space using affine transformation 

and resampled to an isotropic voxel dimension of 1.5 mm x 1.5 mm x 1.5 mm. Modulated 
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images were obtained for each subject, which account for contractions and expansions from 

non-linear spatial transformations. The normalized modulated images were then spatially 

smoothed with a gaussian kernel of 8 mm. This increases the signal to noise ratio (SNR) 

by suppressing the noise in the image and reducing the inhomogeneities across neighboring 

voxels. The final output of this step from each subject was then used in subsequent 

statistical analysis. 

Table 3.1 Clinical Assessment of COVID Patients

Clinical
Assessment

No.
Aff.

No
Info.

Data
Avail.

No.
Tot.

% Out of
Avail.

% Out of
Total

Symptom Severity

Mild 17 9 38 47 44.74 36.17

Moderate 4 9 38 47 10.53 8.51

Moderate-Severe 17 9 38 47 44.74 36.17

Medications & Support

Remdesivir 10 9 38 47 26.32 21.28

Additional O2 5 9 38 47 13.16 10.64

BiPap & Actemra 1 9 38 47 2.63 2.13

Mix Medications* 1 9 38 47 2.63 2.13

Antibiotic & Steroid 1 9 38 47 2.63 2.13

Keys: No. Aff. = number of affected patients, No Info. = no information available because these patients 
did not give consent to share symptom information, Data Avail. = number of subjects with clinical 
assessment data available, No. Tot. = total number of patients including those with no information 
available, % Out of Avail. = proportion of patients affected vs patients with clinical assessment data 
available (n = 38) in percentages, % Out of Total = proportion of patients affected vs. total number of 
patients (n = 47) in percentages, O2 = oxygen supplied to support breathing, BiPap =  bilevel positive air 
pressure, Mix Medications* = a combination of medications – Dexamethasone, Ceftriaxone and Clexane 
injections   
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Table 3.2 Summary Statistics of Participant Demographics and Global VBM Metrics

Dem. /
G.VBM

Score (test),
p value

HC mean
 (SD)

nLOS mean
(SD)

LOS mean
 (SD)

Age
(years)

-0.93 (F)
0.399

33.50
 (9.74)

36.13
 (12.17)

31.81
 (10.02)

Sex†

(M/F)
1.04 (𝜒2)

0.59
23M
 7F

21M
 9F

10M
 6F

Fatigue
(0-5)

22.07 (𝜒2)
1.61e-05 **

0.65 
(0.79)

2.89
(1.18)

2.40
(1.35)

GMV
(ml)

3.48 (F)
0.036 *

629.59
 (44.17)

620.76
 (65.63)

671.18
 (86.09)

WMV
(ml)

1.95 (F)
0.95

394.44
 (42.51)

408.80
 (44.97)

420.47
(40.14)

CSFV
(ml)

1.01 (F)
0.37

246.49
 (59.72)

259.70
(52.19)

270.55
(58.34)

TIV
(ml)

3.09 (F)
0.05

1270.52
 (106.92)

1281.27
 (127.78)

1362.20
(147.87)

Keys: Dem. = participant demographics (first three rows), G.VBM = global VBM metrics (last four rows), 
HC = healthy control group, nLOS = no loss of smell (non-hyposmic) group, LOS = loss of smell 
(hyposmic) group, mean = mean across group, SD = standard deviation, Sex† = only frequency of male 
(M) and female (F) shown for the categorical variable ‘sex’ instead of mean and SD, F = F-statistic from 
ANOVA, 𝜒2 = chi-squared test on ‘sex’ and Kruskal-Wallis test on ‘Fatigue’, ** = significant with p < 
0.001, * = significant with p < 0.05, GMV =  gray matter volume, WMV = white matter volume, CSFV 
= cerebrospinal fluid volume, TIV =  total intracranial volume and  ml = milliliter.  

3.2.5 Voxel Based Morphometry (VBM)

VBM can be estimated from gray matter probability maps obtained from the 

‘segmentation’ stage of pre-processing described in Section 3.2.4. Each value in a tissue 

specific probability map represents the likelihood or probability of the voxel belonging to 

a brain compartment. By compartments, we primarily refer to three major tissues 

comprising the brain, namely, the gray matter (GM), white matter (WM) and cerebro spinal 
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fluid (CSF). The tissue volumes of a specific compartment can be estimated by summing 

over the product of each voxel’s dimension and the corresponding probabilities (Lüders et 

al., 2002). The volumes of each major compartment can be summed over to generate a 

global quantity of a specific brain called, the total intracranial volume (TIV). 

The compartmental volumes reported in this study are labelled as gray matter 

volume (GMV), white matter volume (WMV), and cerebro-spinal fluid volume (CSFV). 

These quantities were used to assess central tendency measures in each group. It should be 

noted that only the GMV is eventually used in the voxelwise analysis as this is the brain 

compartment of primary interest. To visualize the sample distributions and group average 

compartmental and total brain volumes, we customized and adopted a script in RStudio 

(RStudio, 2021) to generate a ‘raincloud’ figure, as depicted in a recent publication (Allen 

et al., 2021).  

3.2.6 Statistical Analysis

Once pre-processing was performed and VBM was estimated for each voxel within the 

GM, the next step was to analyze the data to identify any difference across the group. But 

an important prior step is to assess the participant demographics and make sure there were 

no differences being driven by factors like age and sex. These variables were controlled 

for in all brain metric analyses. To assess differences in participant demographics across 

groups, we performed a one-way ANOVA on age and a chi-squared test for differences in 

proportion of males and females (sex) across the three groups. 

Fatigue is a central quantitative variable of interest in our study. We also first 

assessed if there is any differences in fatigue across these three groups. For all parametric 

tests, we performed prior assumption tests involving deviation from normality and 
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homogeneity of variance. To test for deviations from normality, Shapiro-Wilk tests were 

performed to check if any p-value was less than 0.05. Deviation from homogeneity of 

variance was checked with Levene’s test and similarly, p-value less than 0.05 was assessed.    

Particularly, the fatigue scores deviated from normality (Shapiro-Wilk, p < 0.05). 

Therefore, we used Kruskal-Wallis test across groups and post-hoc Wilcoxon’s ranksum 

test to assess difference between group pairs among HCs and COVID subjects. 

We also performed a one-way ANOVA on global VBM metrics including GMV, 

WMV, CSFV and TIV. The results from all these tests are summarized into a data table, 

as shown in Table 3.2. The statistical tests depicted thus far, help with inference on global 

metrics. To obtain more localized effects, voxelwise analysis was performed and regions 

with significant effects across group was identified. 

To determine group level differences in GMV at a voxel level, we performed a one-

way ANOVA using the smoothed, modulated, and normalized GM tissue maps from the 

three groups. TIV of each subject was group-mean centered and added as a covariate along 

with age and sex to account for confounding effects. An implicit mask with absolute 

threshold of 20% above the group mean was set to exclude unwanted voxel quantities from 

the smoothed GM maps. In order to reduce multiple testing and only focus on relevant 

regions, the F-statistic map was conservatively thresholded at F > 9 (p < 0.001), and 

regions with significant difference in GMV across groups were identified using a non-

stationary cluster-based correction at a cluster extent threshold of 533 voxels and adjusted 

for multiple comparisons with family wise error (FWE) correction at pFWE < 0.05. The 

average GMV from these significant clusters was then extracted and a multiple linear 

regression analysis was performed using age, sex and TIV as covariates of no interest. The 
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mean across groups was then added back to the residuals and eventually post-hoc two-

sample t-tests were performed on these metrics to identify GMV differences between HC, 

Hyposmic (LOS) and non-Hyposmic (nLOS) groups.  

3.2.7 Visualization and Plotting

While statistical tests help making group level inferences, the main effects often get 

eclipsed by statistical thresholds such as t or F scores. While these scores are important, 

they are however, arbitrary and do not have units. Therefore, it is also important to assess 

the main effects through central tendency metrics. It is also important to look at the 

probability distributions that drive such effects. In order to keep all these effects intact, 

‘raincloud’ figures were generated, as depicted in a recent publication (Allen et al., 2021).  

The central tendency measures of GMV, WMV, CSF and TIV in each group was 

assessed and visualized using probability distributions and group average compartmental 

and total brain volumes. The purpose of computing central tendency measures was to 

visualize the probability distributions of the global volume metrics. While we only 

performed group level statistics on the GMV, assessing the central tendency measures also 

helps us appreciate the other tissue volumes in the two groups including WMV, CSFV and 

TIV. A customized script was generated from a package in RStudio (RStudio, 2021) to 

generate the raincloud figures. A similar method was also adopted to obtain a different 

variation of raincloud plots in MATLAB (MathWorks Inc, Massachusetts, USA) and show 

the distribution, dot and box plots within the same figure for better visual aesthetics. These 

figures help capturing the group differences in the significant clusters in a more 

‘statistically’ intuitive way by preserving each group’s main effects.
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3.3 Results

3.3.1 Participant Demographics and Global Metrics

In this section, we will report results from the demographics and global VBM metrics, as 

these tests were performed prior to voxel-wise analysis. The ‘global VBM metrics’ is 

meant to refer to the entire compartmental volumes for GM, WM and CSF, as well as the 

whole brain (TIV). Table 3.2 summarizes the results from the statistical tests on participant 

demographics (age, sex and fatigue) across each group, as well as global metrics including 

GMV, WMV, CSFV and TIV from the VBM analysis. The first three rows in the table 

summarizes the participant demographics. No significant differences were observed in age 

and sex across groups (p > 0.05). On the other hand, a Kruskal-Wallis test on fatigue scores 

(Table 3.2, 3rd row) revealed a significant effect (p = 1.61e-05) across the three groups. 

Post-hoc Wilcoxon Ranksum tests further revealed that the fatigue scores in the HC group 

were significantly lower compared to both nLOS (p = 1.12e-05, T = 175.50) and LOS (p 

= 5.11e-04, T = 191) groups. This demonstrates that fatigue levels observed among HC 

group is significantly lower than the COVID group in general. No significant difference 

was observed between the fatigue scores of nLOS and LOS groups. This indicates that the 

level of fatigue experienced by the hyposmic (LOS) and non-hyposmic (nLOS) groups is 

similar during daily work. 

Rows 4-7 in Table 3.2 summarizes the results from the global metrics computed 

from the VBM analysis. There was a significant difference in overall GMV across the 

groups (p = 0.036, df = (2,73), F = 3.48). Post-hoc two-sample t-tests with Bonferroni 

correction showed that the difference in overall GMV was between LOS and nLOS groups 

(t = 2.38, df = 44, p = 0.036). The significant results from the demographics (fatigue) and 



26

VBM global metrics (GMV) are presented with statistical results and corresponding 

‘raincloud’ plots in Figure 3.1. The figure shows estimated probability distributions, box 

plot with interquartile range and jittered dot plots representing individual participant 

values. This helps in not only interpreting the group level differences, but also appreciate 

the differences in main effects of across groups. Figure 3.1 (A) shows a significant gap in 

distributions between nLOS and HC and LOS and HC groups which is reflected in 

summarized statistics depicted in the previous paragraph. Similarly, Figure 3.1 (B) shows 

that the overall GMV of the LOS group was higher compared to nLOS group (significant 

at p < 0.05) and HC group (not significant as p > 0.05).

Figure 3.3 ‘Raincloud’ plots from the significant results from statistical analysis on 
participant demographics and global VBM metrics. The light pink represents the HC group, 
light purple the nLOS group and lime green the LOS group, respectively. The area plots 
(top) represents an estimated probability distribution plot from the data. The box and dot 
plots (bottom) represents interquartile range and individual participant data that reflects on 
the distribution plots above. (A) Higher fatigue levels observed in nLOS and LOS groups 
compared to HCs. This is apparent from the shift in the distribution plots to the right from 
both nLOS and LOS groups. Since the nLOS and LOS plots follow closely, no difference 
was observed between these groups. (B) Higher GMV observed in the LOS group 
compared to nLOS group. A shift in overall GMV distribution of the green plot (LOS) to 
the right is clearly observed. Keys: cdf = cumulative distribution function ml = milliliter.
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3.3.2 Voxelwise VBM 

In this section, the results from the voxelwise analysis will be presented focusing only on 

the GMV alterations. The voxelwise analysis helps to identify exactly which locations in 

the brain these abnormalities exist across groups. Figure 3.2 shows the results from the 

voxelwise one-way-ANOVA analysis, indicating, a difference in GMV across the three 

groups. Particularly, four clusters survived family-wise error correction (FWE) for 

multiple comparisons at a non-stationary cluster threshold of kE = 533 voxels. The clusters 

comprised of bilateral brain regions that are constituents of the limbic system, 

occipitotemporal and cerebellar lobes. The cluster details and relevant statistical 

parameters have been tabulated in Table 3.3. The anatomical regions listed in Table 3.3 

were identified based on data as provided by Neuromorphometrics, Inc 

(Neuromorphometrics) embedded within SPM. 

Figure 3.4 Voxelwise one-way ANOVA reveals significant differences in GMV across 
groups. The figure on the left shows four significant clusters in three orthogonal planes and 
a cut-to-depth volume rendered image for better interpretation of the spatial locations the 
clusters comprise of. The multi-slice axial view on the right shows the spatial extent of 
these clusters in finer slices (Z-slices = -35:5:0). More specifically, the clusters were 
majorly centered within bilateral hippocampal and parahippocampal gyri from the limbic 
system, exterior cerebellum and vermal lobules within the cerebellar lobe and lingual and 
fusiform gyri from the occipitotemporal lobe. The colorbar represents F-statistic values. 
The cluster peaks were located at MNI coordinates: [-24 -26 -20], [-15 -62 -14], [20 -40 6] 
and [24 -56 -16]. The peak F-scores and corresponding FWE corrected p-values were: Fpeak 
= [14.08, 13.74, 13.48, 13.31] and pFWE = [0.0002, 0.035, 0.001, 0.012], respectively. 
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 The results and tabulations in Figure 3.2 and Table 3.3 suggest that the GMV is 

altered across the three groups. However, it does not delineate which direction the 

differences exist. This was achieved by running post-hoc two-sample t-tests across pairs of 

groups. As mentioned in Section 3.2.5, to avoid multiple testing the post-hoc tests were 

performed only on the four significant clusters observed from the ANOVA analysis. Figure 

3.3 shows the binary masks of each cluster that were used to obtain the average GMV for 

all subjects in each group. A raincloud plot is also paired with each cluster’s binary map 

which shows the estimated probability distributions and corresponding dot and box plots. 

These plots help identifying which group distribution was more shifted compared to others, 

causing GMV differences between specific groups.

The post-hoc tests from cluster 1 revealed that GMV in the LOS group was 

significantly higher compared to both HC (t = 5.91, df = 44, p = 4.65e-07; where t = two 

sample t-test statistic, df = degrees of freedom and p = p-value) and nLOS (t = 5.63, df = 

44, p = 1.19e-06) groups. However, no significant difference in GMV was observed 

between HC and nLOS group (p > 0.05). This is also reflected in the raincloud plot of 

cluster 1 in Figure 3.3 (top left). The green distribution plot belongs to the LOS group, and 

it is shifted more to the right suggesting higher GMV in this group compared to the light 

pink and light purple plots representing HC and nLOS groups, respectively. The box plot 

with the green dots shows that the median in LOS group was more shifted to the right 

compared to the other groups, again, indicating higher GMV in this group.  It can also be 

noted that the HC and nLOS plots follow each other closely and therefore no GMV 

differences were observed between these two groups. 
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Table 3.3 Cluster Information from Voxelwise ANOVA on GMV

Peak MNI Co.Cl.
No.

Left /
Right

Anatomical Regions
(Neuromorphometrics) X Y Z

Cl. 
Size

Peak F,
(pFWE)

Parahippocampal Gyrus (PHG)

Hippocampus (Hc)

Fusiform Gyrus (FuG)

Planum Polare (PP)

1 Left

Posterior Insula (PIns)

-24 -26 -20 1580 14.08
(0.0002)

Cerebellum Exterior (CExt.)

Lingual Gyrus (LiG)

Cerebellar Vermal Lobules (CVL)
I-V

2 Left

Cerebellar Vermal Lobules (CVL)
VI-VII

-15 -62 -14 533 13.74
(0.035)

Parahippocampal Gyrus (PHG)

Hippocampus (Hc)

Posterior Cingulate Gyrus
 (PCgG)

Fusiform Gyrus (FuG)

3 Right

Thalamus Proper

20 -40 6 907 13.48
(0.001)

Cerebellum Exterior (CExt.)

Lingual Gyrus (LiG)

4 Right

Fusiform Gyrus (FuG)

24 -56 -16 1220 13.31
(0.012)

Keys: Cl. No. = cluster number, Left/Right = left or right hemisphere of the brain, MNI = Montreal 
Neurological Institute, Co. = coordinates, X Y Z = x, y and z MNI coordinates in mm, Cl. Size = cluster 
size in voxels, Peak F = peak voxel F-statistic value in x, y and z MNI coordinates, pFWE = FWE corrected 
exact p-value after multiple comparison correction.    

Similarly, for cluster 2, the LOS group demonstrated higher GMV compared to 

both HC (t = 4.96, df = 44, p = 1.11e-05) and nLOS (t = 4.67, df = 44, p = 2.81e-05) 

groups. This is also reflected on the raincloud plot shown in Figure 3.3 for cluster 2 (top 

right). The results from the two clusters presented in the top row of Figure 3.3 comprised 
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of brain regions from the left hemisphere. For cluster 1, the anatomical regions included 

the limbic system (PHG, Hc). For cluster 2, the anatomical regions were primarily from the 

cerebellar lobe (CExt).    

The bottom row of Figure 3.3 shows map-plot pairs from clusters 3 and 4, 

respectively. Post-hoc tests on cluster 3, revealed that LOS group had higher GMV 

compared to both HC (t = 5.56, df = 44, p = 1.48e-06) and nLOS (t = 4.88, df = 44, p = 

1.43e-05) groups within the right PHG and Hc from the limbic system. This can also be 

quite clearly followed from the raincloud plots in Figure 3.3 for cluster 3 (bottom left). 

Finally, cluster 4 comprised of right occipitotemporal and cerebellar brain regions (FuG, 

CExt) where, the LOS group demonstrated higher GMV compared to HC (t = 4.97, df = 

44, p = 1.05e-05) and nLOS (t = 5.01, df = 44, p = 9.33e-06) groups. A familiar trend of 

the green distribution plot shifting right can also be observed from the raincloud plot in 

Figure 3.3 (bottom right). To summarize, GMV was higher in all four clusters in the LOS 

group compared to both HC and nLOS, indicating GMV alterations in the hyposmic group. 

3.4 Discussion

The statistical results from the global morphometry metrics, particularly, GMV and 

voxelwise VBM analysis on GMV support our hypothesis that COVID survivors, now PCR 

negative, demonstrate altered GMV compared to HCs even 2 weeks after hospital 

discharge. Our results align with what is known from single case reports and group level 

effects available in the current literature. In this section, we expand on these findings and 

compare our results to interpret the results scientifically.
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Figure 3.5 Binary map and raincloud plot pairs of the four major clusters from the one-
way ANOVA analysis on which post-hoc tests were performed. The top row shows clusters 
from the left hemisphere and the bottom row shows the clusters from the right hemisphere. 
Cluster 1 is shown on the top left, which majorly comprised of PHG and Hc. This binary 
mask was used to obtain the average GMV within the cluster. The average GMV of all 
subjects from each group was then used to generate the raincloud plot right next to it. 
Similarly, pairs of binary map and raincloud plot are shown for cluster 2 (top right) 
comprising of CExt and LiG, cluster 3 (bottom left) of PHG and Hc and finally, for cluster 
4 (bottom right) consisting of FuG and CExt. The colorbar shows range of values between 
0 – 1 as the cluster maps shown are binarized and all red voxels have a value of 1. In the 
raincloud plots, the y-axis represents the estimated probability distribution values, and the 
x-axis represents the average GMV. The dot and box plots represents individual subject 
data and the interquartile range from each group. 

3.4.1 Demographics and Fatigue in COVID Survivors 

There was no significant differences in ‘age’ and ‘sex’ across the groups. We did our best 

to make sure the participant recruitment criteria already control for these demographics. It 

can be noted that the number of male participants was higher in the HC group. This was 

also true for the COVID group (NLOS and LOS). Therefore, we did not also observe any 
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difference in ‘sex’ across groups, nevertheless, the effects of ‘age’ and ‘sex’ were regressed 

out in all statistical analyses to remove any confounding effects. 

We observed that the level of ‘fatigue’ experienced by the non-hyposmic (nLOS) 

and hyposmic (LOS) groups was higher compared to the HC group. On the other hand, 

within the COVID subtypes, i.e., nLOS and LOS groups experienced similar levels of 

fatigue (see Figure 3.1 (A) and Table 3.2). This clearly indicates that the COVID group 

was more susceptible to fatigue during work compared to the HC group. What we do not 

know, is how the brain derived quantities from structural and functional imaging relate to 

fatigue and exactly where these effects are exhibited in the brain. We address these gaps in 

our third aim and more information on the brain correlates of fatigue can be found in 

Chapter 5.     

3.4.2 Higher Global VBM Metrics in Hyposmic Group

We observed higher overall compartmental GMV in the hyposmic (LOS) group compared 

to nLOS and HC groups (p < 0.05). Although not statistically significant (p > 0.05), it is 

interesting to note that the mean compartmental CSFV tended to be higher in the LOS 

group compared to nLOS and HC group (see Table 3.2). This seems to align with the recent 

UK-Biobank longitudinal study (n = 401), who reported increased CSFV after COVID 

infection (Douaud et al., 2021). Our data indicates more variation in brain volumes among 

the LOS patients, with higher standard deviation (SD) in GMV (see Table 3.2). This might 

arise from varying levels of tissue swelling due to acute infection among surviving patients. 

More importantly, olfactory alterations from case reports suggest neuro-invasion can lead 

to GMV abnormalities in regions associated with the olfactory system and beyond. For 

example, edema in the bilateral olfactory lobes led to severe enlargement and abnormally 
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high FLAIR intensity in a single acute patient (Laurendon et al., 2020). Similarly, abnormal 

intensities in the olfactory lobe were also observed from a clinical patient from a different 

site (C.-W. Li et al., 2020)  and hyperintensity in the gyrus rectus and olfactory bulbs were 

also observed in another study (Politi et al., 2020). Asymmetry in olfactory bulb was also 

observed in four dead COVID-19 patients (Coolen et al., 2020). 

However, the underlying neurophysiology that elicit such changes is still unclear. 

Highly prevalent acute stage neurological damage from CNS viral or vascular pathologies 

can cause local changes in tissue concentration. Transient reduction in cerebral blood flow 

(CBF) can also cause gray matter volume to increase due to change in hydration levels (Ge 

et al., 2017). Overall, continued brain swelling from neuro-vascular injuries may explain 

why we observed globally higher GMV in the LOS group even 2 weeks after being PCR 

negative.

3.4.3 Group Level Differences Align with Hyperintense FLAIR Reports

The first neuroimaging (mostly MRI) studies involving COVID-19 were clinical case 

reports of acutely ill patients. Since our patient cohort was hospitalized during the acute 

stage, we first tried to observe if the brain regions with GMV abnormalities replicate the 

hyperintense brain regions in those early reports. We observed higher GMV in the LOS 

group bilaterally in the left and right hippocampus (Hc) compared to both nLOS and HC 

groups. This aligns with a case report of hyperintense left Hc from FLAIR images in an 

older patient (Male, 56 years) (Kremer et al., 2020). Hyperintensity in FLAIR images can 

arise from several sources including ischemia, micro-hemorrhages, and damage to 

vasculature, commonly observed in acute COVID patients and these neurological 

disturbances can modulate tissue volumes. 
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We also observed higher GMV in posterior insula (PIns) regions indicating GMV 

alterations in insular lobes, which were reported to be hyperintense in specific patients 

(Kandemirli et al., 2020). We found higher GMV in the LOS group within lingual and 

fusiform gyri (LiG and FuG) which are constituent of occipito-temporal lobes. This aligns 

with case reports from Kandemirli and colleagues (Kandemirli et al., 2020) who also found 

hyperintensities in the occipital and temporal lobes in specific patients. Similarly, 

hyperintensities were reported in the temporal lobe and the thalamus in individual patient’s 

FLAIR images (Paterson et al., 2020). Our VBM results also show that the GMV within 

planum polare (PP) and thalamus proper (ThP) was higher in the LOS group. Higher GMV 

was also observed bilaterally in the exterior and several vermal layers within the 

cerebellum. A case report of a 47-year-old male described hyperintense bilateral cerebellar 

hemisphere and cerebellar vermis, which was also the first reported case of acute 

cerebellitis in COVID-19  (Fadakar et al., 2020). Another case of cerebellitis was also 

reported recently, adding on to the wide range of neurological disturbances in the CNS 

(Malayala et al., 2021). To summarize, our group level VBM analysis shows differences 

in GMV between LOS, nLOS and HC groups with higher GMV in brain regions that were 

found to be hyperintense in several acute patient reports.   

3.4.4 Group Level Differences Align with Group Level Neuroimaging Reports

Recent neuroimaging studies have also reported higher GMV among COVID cohorts, in 

the bilateral Hc after 3 month-follow-up (Lu et al., 2020), as well as, in bilateral Hc and 

Amg in another follow-up study (3 and 6 months) (Tu et al., 2021). Interestingly, Tu et al., 

2021 also report significant correlation of the left Hc and Amg with PCL-5 scores, 

demonstrating stress related structural changes in these regions. On the contrary, cortical 
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thickness was reported to be reduced in the left Hc after a 3 month-follow-up study (Qin et 

al., 2021) and in the Amg after infection with COVID-19 in a longitudinal study (Douaud 

et al., 2021). 

Similarly, higher GMV was also observed at the group level in the bilateral Ins (Lu 

et al., 2020), while, on the other hand, others reported reduced cortical thickness in insular 

lobes (Douaud et al., 2021; Qin et al., 2021). To summarize, the group level estimates from 

our VBM analysis converge with clinical findings from acutely ill ‘individual’ COVID 

patients. The results are also consistent with current neuroimaging reports from moderate 

to large samples of recovering COVID survivors.

3.4.5 Conclusion

In conclusion, our results highlight both global and local GMV alterations among hyposmic 

and non-hyposmic COVID patients and HCs. We have shown that GMV is significantly 

altered in hyposmic patients compared to both non-hyposmic and HC groups, in multiple 

brain regions which are commonly found to be abnormal in single patient case studies, as 

well as several neuroimaging studies from surviving COVID-19 cohorts. More 

importantly, these regions are also known to be modulated by neuronal damage and 

characterized from functional neuroimaging relating to fatigue, pain, emotion, attention, 

and somatosensory processing (Bornhövd et al., 2002; Inagaki et al., 2012; Sergeeva et al., 

2015; van Schouwenburg et al., 2015). These cognitive symptoms are also experienced by 

‘long-COVID’ patients; therefore, these findings could suggest some early indications of 

PASC that manifest much later in the recovery process.   
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CHAPTER 4

FUNCTIONAL ALTERATIONS IN COVID SURVIVORS

Chapter 3 presented evidence of structural abnormalities and higher fatigue levels in 

COVID survivors. This chapter will focus on highlighting how functional brain metrics 

differ among hyposmic, non-hyposmic and healthy subjects. This chapter addresses 

specific aim 2, discussed in Chapter 1. Similar to Chapter 3, we first present current 

findings in the literature that helped with a-priori information for the hypothesis being 

tested in aim 2. Then, the method and analysis pertaining to local brain activity and 

functional connectivity analysis is presented in sequence. The results from both analyses 

are also sequentially presented and discussed.

4.1 Introduction

4.1.1 Background

At the beginning of the pandemic, neuroimaging studies have mostly focused on structural 

MRI imaging to report brain abnormalities in acutely ill COVID-19 patients. It is not clear 

whether functional abnormalities co-exist with structural alterations in patients who have 

survived the infection and have been discharged from the hospital. A few recent studies 

have emerged which attempted to address the structural/functional alterations. However, 

further investigations across different sites are necessary for more conclusive inference. In 

this section, we try to address these gaps, by investigating functional imaging data from 

COVID survivors, now PCR negative, and healthy subjects. 
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In Chapter 3, CNS involvement suggested by early pandemic MRI reports from 

acutely ill patients with a wide range of cerebrovascular abnormalities were presented 

(Gulko et al., 2020; Kandemirli et al., 2020; Keller et al., 2020; Nicholson et al., 2020; 

Paterson et al., 2020). These single-case reports played a vital role in informing and shaping 

recent studies with primary focus on group level structural differences in moderate (Duan 

et al., 2021; Qin et al., 2021) to large sample groups (Douaud et al., 2021). Naturally, the 

initial neuroimaging investigations were targeted to brain abnormalities in severe patients. 

Therefore, a large sample of hospitalized survivors were not investigated, especially those 

with persistent symptoms. This led to a rise in follow-up studies on a span of 3 to 6 months 

after initial infection (Lu et al., 2020; Tu et al., 2021) and longitudinal designs (Douaud et 

al., 2021) where structural abnormalities were investigated before and after the pandemic. 

We have recently shown gray matter volume differences in survivors after a shorter interval 

(2 weeks after hospital discharge), as well as a stronger relation between  gray matter 

volume and self-reported fatigue at work in COVID participants (Hafiz, Gandhi, Mishra, 

Prasad, Mahajan, Di, et al., 2022) (in press).  It is still unclear, though, if such structural 

abnormalities are also accompanied by functional brain alterations in COVID-19 survivors. 

4.1.2 Functional Magnetic Resonance Imaging and Functional Connectivity

To identify functional brain alterations in COVID survivors, non-invasive functional brain 

imaging can be incorporated. A well-established imaging technique to detect brain function   

is functional magnetic resonance imaging (fMRI). fMRI captures 3-dimensional brain 

images across time, typically, using echo-planar sequences. This generates a time-series of 

brain signals that indirectly represents neuronal firing (Ogawa et al., 1990) due to some 

experimental condition imposed on the participant or from spontaneous fluctuations. The 
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response detected by fMRI is much slower than neuronal activity because it is convolved 

with hemodynamic processes, making fMRI sensitive to changes in blood oxygen level 

dependent (BOLD) signals (Ogawa et al., 1990). Cerebrovascular pathologies in 

hospitalized COVID patients can modulate blood flow and neural metabolism in the brain. 

This can lead to abnormal BOLD activity across brain regions, causing changes in temporal 

synchronization. Functional connectivity (FC) is a measure of how two or more brain 

regions are temporally synchronized (De Luca et al., 2006; Fox et al., 2005; Fox et al., 

2006; Friston, 1994; Friston et al., 1993; Greicius et al., 2003). FC has been estimated 

across multiple modalities (Horwitz, 2003) but perhaps more popularly related to resting 

state fMRI (RS-fMRI).

4.1.3 Resting State Functional Magnetic Resonance Imaging 

Resting state fMRI (RS-fMRI) studies derive information from spontaneous fluctuations 

of BOLD signals while the brain is metabolically and functionally active under resting state 

conditions (Glover, 2011). The earliest ‘resting state’ study was demonstrated by Biswal 

et al., in 1995 (Biswal et al., 1995) and subsequent studies have shown that spatially distinct 

regions that are temporally synchronized may share information with each other (Cole et 

al., 2010; De Luca et al., 2006; Fox et al., 2005; Fox et al., 2006; Greicius et al., 2003; 

Kalcher et al., 2012; Meier et al., 2012). RS-fMRI does not require the subjects to perform 

any active task. It places minimal constraint on the patient and eliminates task related 

confounds. Moreover, RS-fMRI scans provide the advantage of broader flexibility in 

investigating multiple brain regions and, the entire brain (Damoiseaux et al., 2006; Raichle 

& Mintun, 2006; Shulman et al., 2004).
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In RS-fMRI, the synchrony of the unconstrained intrinsic functional activity 

between segregated brain regions can be assessed using functional connectivity (FC) 

measures (Biswal et al., 1995; Lowe et al., 1998). FC is a measure of how two or more 

brain regions are temporally synchronized (De Luca et al., 2006; Fox et al., 2005; Fox et 

al., 2006; Greicius et al., 2003). FC, measured between a pair of brain regions, is used to 

reliably extract the baseline functional networks (FNs) of the human brain. FN can be 

defined as a network of multiple functionally connected brain regions that show similar 

temporal activation patterns. These quantities can be estimated quite effectively using RS-

fMRI imaging. Functional changes can occur across different networks among survivors, 

owing to a range of symptoms experienced during the recovery phase. Therefore, we 

applied a data driven approach to estimate FC differences between healthy controls (HCs) 

and surviving, now COVID-negative, patients using RS-fMRI.

4.1.4 Measures of Functional Connectivity

A popular voxel-wise method applied in RS-fMRI is investigating amplitude of low 

frequency fluctuations (ALFF) (Zang et al., 2007). Biswal and colleagues have previously 

shown that majority of the power in resting state fMRI signals is characterized by low 

frequency oscillations (Biswal et al., 1995). ALFF is a measure of the total power that lies 

within such low frequency bands. It is a data driven, functional segregation method that 

can quantify local activation at the voxel level. Local brain activation can be quantified 

using ALFF as depicted in (Zang et al., 2007). ALFF represents voxelwise ‘localized’ brain 

activity. Therefore, if there are local cerebro-vascular alterations in specific brain regions 

causing abnormal BOLD signal oscillations, change in ALFF can be representative of that 

difference between the two groups. 
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Among several methods to estimate functional connectivity, Independent 

Component Analysis (ICA) is a popular data driven technique that groups all voxels in the 

brain into distinct spatial networks based on the similarity of time courses (McKeown et 

al., 1998). The large-scale resting-state networks (RSNs) derived from ICA have been 

shown to have local and higher-level associative hierarchy (Yeo et al., 2011) and replicate 

highly reproducible activation maps across subjects (Smith et al., 2009). FC estimates from 

group ICA and dual regression  (C.F. Beckmann, 2009; Filippini et al., 2009) can be used 

to test our hypothesis that surviving COVID-negative patients would demonstrate altered 

FC in RSNs comprising cortical regions where hyperintensities have been reported from 

single cases and group level differences identified from recent neuroimaging studies. 

4.1.5 Current Literature Findings

Among the earliest pandemic literature, a task-based fMRI study reported loss in task 

activation in the orbito-frontal cortex (OFC) and strong BOLD activations in the piriform 

cortex (Ismail & Gad, 2021) from a single female (25 years) COVID patient with persistent 

olfactory dysfunction. They used a simple smell on/off block design task. A single case 

resting state fMRI (RS-fMRI) study from an unresponsive patient reported intact functional 

connectivity (FC) of the default mode network (DMN) (Fischer et al., 2020), which was a 

good prognosis for ultimate recovery. However, these studies were case reports, which 

leaves the question of whether there are generalizable group level functional brain 

alterations in COVID survivors. 

To that end, a few studies have emerged that report various functional abnormalities 

among COVID survivors. For example, the initial case report from (Fischer et al., 2020) 

has now been followed up with a group level report with specific focus on severe patients 
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who were initially unresponsive but recovered completely and were able to return (Fischer 

et al., 2021) to pre-COVID level behaviorally. When they compared the functional 

connectivity of these unresponsive patients with healthy controls, they found significantly 

reduced default mode network (DMN) connectivity and reduction in inter-network 

connectivity between DMN and salience (SAL) networks. Another study investigating 

dynamic functional connectivity reported that COVID-19 survivors spent abnormally 

longer time in a specific brain state involving sensorimotor and visual networks, as well as 

cerebellar and sensorimotor networks (Fu et al., 2021). 

Based on our structural analysis results and current literature findings, we focused 

on FC alterations primarily in four networks – the basal ganglia, precuneus and bilateral 

somatosensory networks. The Basal ganglia is a major hub for projections to and from the 

cortex and more importantly, it has direct neurological connections to the olfactory system 

(Amunts et al., 2005; Soudry et al., 2011). Precuneus is a major part of the DMN network, 

and the somatosensory networks are associated with multiple body related stimuli which 

could relate to symptoms experienced by survivors. 

4.2 Materials and Methods

4.2.1 Participants

We have previously described the participant demographics information in detail within 

Section 3.2.1 of Chapter 3. Please also check Table 3.1 for more information on 

medications, additional O2 support and Table 3.2 for statistical results from age, sex and 

fatigue.  The current analysis was performed on the same set of subjects. Therefore, the 

same descriptions are not repeated here to avoid redundancy. Please note, the number of 
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participants effectively used in the final analysis is not the same as the VBM analysis. 

Additional quality control steps are required for functional data. This includes checking for 

misregistration between each participant’s anatomical and functional data after 

coregistration, misalignment of the normalized functional files with MNI template and 

excessive head motion. 9 COVID and 4 HC subjects were removed during the quality 

control assessment, leaving with an effective sample of 38 (25 males) COVID and 31 (24 

males) HC.

4.2.2 Anatomical Magnetic Resonance Imaging

Imaging was performed in the Centre for Advanced Research in Imaging, Neuroscience & 

Genomics (CARING), Mahajan Imaging, New Delhi, India. High-resolution T1-weighted 

images were acquired on a 3T GE scanner with a 32-channel head coil in 3D imaging mode 

with a fast BRAVO sequence. The imaging parameters were TI = 450 ms; 244 x 200 

matrix; Flip angle = 12 and FOV = 256 mm. The subject was placed in a supine position 

and the whole brain was scanned in the sagittal configuration where 152 slices were 

collected, and each slice was 1.00 mm thick. The spatial resolution of all the anatomical 

scans was 1.0 mm x 1.0 mm x 1.0 mm.

4.2.3 Resting-State Functional Magnetic Resonance Imaging 

A gradient echo planar imaging (EPI) was used to obtain 200 whole-brain functional 

volumes. The parameters were: TR = 2000 ms; TE = 30 ms; Flip angle = 90, 38 slices, 

matrix = 64x64; FOV = 240 x 240 mm2; acquisition voxel size = 3.75 x 3.75 x 3 mm3. The 

participant was requested to stay as still and motionless as possible with eyes fixed to a 

cross on an overhead screen.
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4.2.4 Data Pre-Processing

The data preprocessing was performed primarily using Statistical Parametric Mapping 12 

(SPM12) toolbox (http://www.fil.ion.ucl.ac.uk/spm/) within a MATLAB environment 

(The MathWorks, Inc., Natick, MA, USA). However, some steps utilized useful tools from 

FSL (FMRIB Analysis Group, Oxford, UK) and AFNI (http://afni.nimh.nih.gov/afni) 

(Cox, 1996) for housekeeping, visual inspection and quality control purposes. At the 

beginning, first five time points were excluded from each subject to account for magnetic 

stabilization. The functional images were motion corrected for head movement using a 

least squared approach and 6 parameters (rigid body) spatial transformation with respect 

to the mean image of the scan. The subjects with excessive head motion were identified 

using framewise displacement (FWD) (Power et al., 2012). Additionally, time frames with 

high FWD crossing a threshold of 0.5 mm (Power et al., 2012) were identified along with 

the previous and the next two frames and added as regressors (Yan et al., 2016) during 

temporal regression of nuisance signals. If more than 50% of the time series data were 

affected due to regression of high motion frames the participant was removed from the 

analysis. Moreover, any participant with the maximum framewise translation or rotation 

exceeding 2 mm was removed from further analysis. Anatomical image from each subject 

was ‘co-registered’ to the mean functional image obtained from the motion correction step. 

T1-weighted image from each subject was segmented into gray matter (GM), white matter 

(WM), and cerebrospinal fluid (CSF) tissue probability maps and an average template 

including all participants was generated using DARTEL (Ashburner, 2007). This template 

was used to spatially normalize all functional images to the MNI space and resampled to 

isotropic voxel size of 3 mm x 3 mm x 3 mm. Time series, from brain compartments with 
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high physiological noise signals such as, CSF and WM was extracted by thresholding the 

probability maps from the segmentation stage above the 99th percentile, and first 5 

principial components were obtained using a COMPCOR based (Behzadi et al., 2007) 

principal component analysis (PCA) from both tissues. These 10 components along with 

Friston’s 24- parameter model (6 head motion parameters + 6 previous time point motion 

parameters + 12 corresponding quadratic parameters) (Friston et al., 1996) and time frames 

with high FWD (> 0.5 mm) were added as regressors in a multiple linear regression model 

to remove unwanted signals voxel-wise. The residuals from the regression step were then 

bandpass filtered between 0.01 to 0.1 Hz and finally, spatial smoothing was performed 

using a Gaussian kernel of 6 mm full width at half maximum (FWHM).

4.2.5 Head Motion Assessment

We performed in-scanner head movement assessment using mean Framewise 

Displacement (FWD) based on the methods depicted in (Power et al., 2012). This was 

performed between the COVID (LOS + nLOS) and the HC groups. A two-tailed two-

sample student’s t-test revealed no significant differences in mean FWD between the two 

groups (t = -1.57, p = 0.12, α = 0.05).

4.2.6 ALFF, ICA and Dual Regression

ALFF was quantified in a voxel-wise manner by applying methods depicted in (Zang et 

al., 2007). The total power within the typical resting state band: 0.01 – 0.1 Hz was 

computed by summing over the amplitudes after a Fourier decomposition of the functional 

data time series. The raw ALFF values were then standardized to z scores. This was 

achieved by first obtaining the global mean and standard deviation over the whole brain in 

each participant using a brain mask. This mean value was subtracted from the raw ALFF 



45

values at each voxel and divided by the standard deviation. These standardized maps were 

then used in the group statistical analyses.

Group level resting state networks were obtained by applying the ‘gica’ option of 

the ‘melodic’ module from FSL toolbox (FMRIB Analysis Group, Oxford, UK). All 

subjects’ 4D functional images after pre-processing were temporally concatenated into a 

2D matrix of  ‘space’ x ‘time’ as delineated in (C.F. Beckmann, 2009) and 25 spatial maps 

were obtained. Resting State Networks (RSNs) were identified by matching ICs with the 

1000 functional connectome project maps (Biswal et al., 2010) using Dice’s coefficient 

and spatial correlations obtained from AFNI’s ‘3dMatch’ program (Taylor & Saad, 2013). 

Further visual inspection was performed to make sure all network regions aligned with the 

functional network and ROIs depicted in (Altmann et al., 2015; Shirer et al., 2012). Dual 

regression (C.F. Beckmann, 2009; Filippini et al., 2009) was performed leveraging the 

standardized group ICA output from the ‘melodic’ step and applying it directly to the ‘fsl-

glm’ module in FSL to obtain subject specific RSN maps. The subject specific network 

maps were standardized to Z-scores before consequently applying them in statistical 

analysis to infer group level estimates.

4.2.7 Statistical Analysis

To identify differences in ALFF across the three groups, a multiple linear regression model 

was used where age and sex were added as covariates of no interest and F and t statistics 

were obtained by setting proper contrast levels for each group. This way all statistical 

results were obtained from a single model. A similar approach was also applied to 

investigate FC differences across the three groups. Age and sex were also regressed out in 

this analysis. For both models, significant clusters were identified and main effect of 
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interest from the corresponding contrast maps representing the difference in mean beta 

scores from two groups were obtained by thresholding the t-score map values that survived 

the corrected threshold. Cluster-based thresholding was applied at height threshold of punc 

< 0.01, with family wise error (FWE) correction at pFWE < 0.05 for multiple comparisons. 

The cluster extent threshold (kE) obtained from this step was used to generate corrected 

statistical maps for the contrasts with significant effects. Please note, the statistical analysis 

on demographics is already detailed in Chapter 3. These steps are therefore not listed here 

to avoid repetition. 

4.3 Results

4.3.1 Local Brain Activity Alterations in COVID Survivors

We observed higher local brain activity, represented by ALFF, in both LOS and nLOS 

groups when compared to HC group. Figure 4.1 shows the statistical maps and brain 

regions where ALFF was higher in these groups.  The LOS group demonstrated higher 

ALFF (Figure 4.1, Top row) in regions from the orbital gyrus – posterior orbital gyrus 

(POrG) and medial orbital gyrus (MOrG); limbic system – hippocampus (Hc), 

parahippocampal Gyrus (PHG) and amygdala (Amg); basal ganglia – pallidum (Pd), 

basal forebrain (BsF) and putamen (Pu); and also, the temporal lobe – entorhinal area 

(Ent) and temporal pole (TP). Similarly, the nLOS group also demonstrated higher ALFF 

when compared to HC group, however, no difference in ALFF was observed between LOS 

and nLOS groups. Brain regions where the nLOS group demonstrated higher ALFF (Figure 

4.1, Bottom row) include the right basal ganglia – Putamen (Pu), Caudate (Cd), basal 

forebrain (BsF) and Pallidum (Pd); and also the limbic system – hippocampus (Hc), 
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parahippocampal Gyrus (PHG) and amygdala (Amg). Since three tests were performed 

between three possible group pairs, the alpha value was Bonferroni corrected at α = 0.017 

(0.05/3).

Figure 4.1 Higher ALFF observed in the COVID subtypes compared to HCs. (Top row) 
The three orthogonal slices and a volume rendered image on the left shows the cluster 
where ALFF was higher in the LOS group, comprising of regions from the orbital gyrus, 
limbic system, basal ganglia and temporal lobe. The cluster peak was observed at MNI 
coordinates: [21 9 -24] with peak t-score of T = 4.12, and corrected p-value, pFWE  = 
0.00002. The cluster consisted of 147 voxels, and it was significant for a Bonferroni 
corrected alpha value of α = 0.017. The colorbar shows t-score values. The multi-slice 
axial view on the right shows the cluster extent over finer Z slices.  (Bottom row) Similarly, 
shows the cluster where nLOS group demonstrated higher ALFF compared to the HC 
group. The cluster was located in the left hemisphere, primarily comprising of regions from 
the basal ganglia and the limbic system. The cluster peak was observed at MNI coordinates: 
[-24 9 9] with peak t-score of T = 4.22, and corrected p-value, pFWE  = 0.001. The cluster 
consisted of 97 voxels, and it was significant for a Bonferroni corrected alpha value of α = 
0.017.
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4.3.2 Functional Connectivity Alterations in COVID Survivors

From the group level ICA analysis, we identified twenty-two large-scale resting state 

networks (RSNs) (see Figure 4.2). These images represent group level RSNs from which 

subject level RSNs were obtained to run statistical analysis on specific networks. The maps 

represent standardized Z-scores which were thresholded at Z > 3.3, p < 0.001, to show 

robust functional connectivity in each network. The networks are presented in an orderly 

fashion based on their spatial location and functional characteristics. For example, the first 

row of images (Figure 4.2, top row) show networks involved primarily with visual (MV1, 

LV,OCP, MV2) and visuo-spatial (DAN) processing. Particularly, PRN is a relevant 

network to our hypothesis, as it is involved with a variety of complex cognitive functions. 

From the second row, the VDMN and PDMN are primarily comprise the default 

mode networks and RFP and LFP constitute the central executive network associated with 

executive functions.  AUD, TPJN and LANG (Figure 4.2, third row) are networks consisting 

of brain regions from the temporal lobe, involved in auditory, speech and language 

processing. EXEC from the third row in Figure 4.2 is associated with executive control 

functions, INS in involved in autonomic function, emotion and decision making among 

several others. MSMN and VSMN are involved with sensorimotor functions and SSNR and 

SSNL (Figure 4.2, fourth row) are involved with various somatosensory processes that are 

particularly relevant to COVID related symptoms in survivors. BGN is another relevant 

network to our hypothesis that consists of regions from the subcortical system and has 

direct connections to the olfactory system involved with smell function. SCRB and PCRB 

are primarily networks from the cerebellar system. 
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Figure 4.2 Twenty-two Resting State Networks (RSNs) identified from group ICA using 
‘melodic’. Abbreviated names of each network are shown at the bottom of each image. 
Three orthogonal slices are shown for each network along with a volume rendered image 
to show depth and three-dimensional view of the RSNs. Statistical estimates (Z-scores) are 
embedded into a colorbar at the bottom-right. Keys: MV1 = Medial Visual 1, LV = Lateral 
Visual, OCP = Occipital Pole, MV2 = Medial Visual 2, PRN = Precuneus Network, DAN 
= Dorsal Attention, VDMN =  Ventral Default Mode Network (DMN), PDMN = Posterior 
DMN, RFP = Right Fronto Parietal, LFP = Left Fronto Parietal, AUD = Auditory, TPJN = 
Temporo-Parietal Junction Network, LANG = Language Network, EXEC = Executive 
Control Network, INS = Insular Network, MSMN = Medial Sensory-Motor Network 
(SMN), VSMN = Ventral SMN, SSNR = Somatosensory Network - Right, SMNL = 
Somatosensory Network - Left, , BGN = Basal Ganglia Network, SCRB = Superior 
Cerebellar Network, PCRB = Posterior Cerebellar Network.
 

Figure 4.3 shows the results from the group level analysis from three out of four 

specific RSNs that were statistically tested to identify FC differences across groups. From 

the top row, Figure 4.3 (A) demonstrates regions with significantly enhanced FC in the HC 

group when compared to the LOS group for the BGN network with right – gyrus rectus 

(GRe), medial frontal cortex (MFC) and middle orbital gyrus (MOrG).



50

Figure 4.3 ∆FC | Functional Connectivity differences between COVID survivors and 
healthy controls. [Top row] (A) HC > LOS: Enhanced FC in HC compared to LOS group 
observed for the BGN network (top row, left) with regions from the medial and orbital 
frontal gyrus. Three orthogonal slices along with a cut-to-depth volume rendered image 
show the effects in the cluster comprising of 92 voxels, with peak t-score of T = 4.01 and 
FWE corrected p-value of pfwe = 0.0003. The colorbar represents t – score values. (B) 
nLOS > HC: Enhanced FC in nLOS group compared to HCs observed for BGN network 
with regions from the calcarine cortex. The cluster size was 71 voxels, with peak T = 3.97 
and pfwe = 0.003. (C) nLOS > LOS: Enhanced FC in nLOS group compared to LOS 
observed for BGN network with regions from the medial and orbito-frontal gyrus. The 
cluster comprised of 66 voxels, with T = 3.61 and pfwe = 0.005. [Bottom row] (D) LOS > 
HC: FC within the PRC network (bottom row, left) was enhanced in the LOS group 
compared to the HC group with regions from the right superior parietal lobe. The cluster 
size was 96 voxels, with peak T = 4.05 and pfwe = 0.0003. (E) HC > COVID: Enhanced FC 
in LOS compared to nLOS observed in the SSNR (bottom row, third column) network with 
regions from the left superior parietal lobe. The cluster comprised of 49 voxels, with peak 
T = 3.57 and pfwe = 0.038. Note, the red-yellow colorbar represents Z-scores, representing 
group level large scale RSN from which the group differences were obtained.

For the BGN network, enhanced FC was also observed in nLOS group compared 

to HC group (Figure 4.3 (B)), with right – calcarine cortex (Calc), lingual gyrus (LiG) and 

cuneus (Cun). Interestingly, FC was also altered within COVID subtypes for the BGN 

network. Figure 4.3 (C) shows that FC was enhanced in the nLOS group when compared 

to LOS group with bilateral – medial frontal cortex (MFC), medial segment of the superior 



51

frontal gyrus (MSFG), middle orbital gyrus (MOrG) and gyrus rectus (GRe). Please note, 

the first image in the top row of Figure 4.3 represents the large-scale BGN network that 

was obtained from the group ICA. This is provided as a reference to show which network 

exhibited the FC alterations. 

The bottom row of Figure 4.3 shows LOS group had enhanced FC within the PRC 

and SSNR networks when compared to HC and nLOS groups, respectively. Particularly, 

within the PRC network (Figure 4.3, bottom row, left), FC was enhanced with left – 

superior parietal lobule (SPL), superior occipital gyrus (SOG) and precuneus (PCu). For 

the SSNR network (Figure 4.3, bottom row, third column), FC was enhanced with the right 

– SPL, angular gyrus (AnG) and supramarginal gyrus (SMG). 

The cluster details with relevant anatomical locations based on the standard MNI 

space have been tabulated in Table 4.1 for reference. Table 4.1 also provides statistical 

information pertaining to the cluster size, the peak t-score and corrected p-values after 

accounting for multiple comparisons. The direction of such changes between groups i.e., 

if FC is enhanced or reduced compared to the other group is provided in the ‘∆FC’ column. 

More information can be found from the ‘Keys’ provided at the bottom of the table.

4.4 Discussion

The statistical results from the functional data metrics, particularly, ALFF and FC support 

our hypothesis that hyposmic and non-hyposmic subtypes among COVID survivors, 

demonstrate altered local brain activity and FC compared to HCs. Interestingly, brain 

regions with altered BOLD activity and FC from our analysis match to single case reports 

with structural and functional alterations, as well as cohort specific group reports from 
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current literature. In this section, we expand on these findings and compare our results to 

interpret the results scientifically.

Table 4.1 List of Spatial Regions with Significant FC Differences Across Groups

MNI Co.∆FC RSN/
(R/L)

Anatomical
Locations

Cl.
Size X Y Z

Peak
t, pfwe

HC > 
LOS

Gyrus Rectus (GRe)

Middle Frontal Cortex (MFC)

BGN
(R)

Middle Orbital Gyrus (MOG)

92 6 51 -18 4.46,
0.004

Calcarine Cortex (Calc)

Lingual Gyrus (LiG)

nLOS > 
HC

BGN
(R)

Cuneus (Cun)

71 9 -87 3 3.97,
0.003

Middle Frontal Cortex (MFC)

Medial Segment of Superior
Frontal Gyrus (MSFG)

Middle Orbital Gyrus (MOG)

nLOS > 
LOS

BGN
(R-L)

Gyrus Rectus (GRe)

66 6 51 -12 3.61,
0.005

Superior Parietal Lobule (SPL)

Precuneus (PCu)

LOS > 
HC

PRN
(L)

Superior Occipital Gyrus (SOG)

96 -15 -78 51 4.05,
0.0003

Superior Parietal Lobule (SPL)

Angular Gyrus (AnG)

LOS > 
nLOS

SSNR
(R)

Supramarginal Gyrus (SMG)

49 36 -57 60 3.57,
0.038

Keys: ∆FC = contrast for difference in functional connectivity between two groups, RSN =  resting state 
networks, (R/L) = right or left hemisphere of the brain, Cl. Size = cluster size in voxels, MNI Co. = 
Montreal Neurological Institute Coordinates in X, Y and Z planes, Peak t, pfwe = peak t-score and fwe 
corrected p value of the cluster
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4.4.1 Higher ALFF in Hyposmic and Non-Hyposmic Survivors

We observed higher local BOLD activity (ALFF) in both nLOS and LOS groups, when 

compared to HCs. Specifically, for the hyposmic (LOS) group, higher ALFF was observed 

in the orbital gyrus (POrG, MOrG), limbic system (Hc, PHG, Amg), basal ganglia (Pd, 

BsF, Pu) and from the temporal lobe (Ent, TP). Interestingly, the regions from the orbital 

gyrus, limbic system and basal ganglia have direct neuroanatomical connections to the 

olfactory cortex (Amunts et al., 2005; Soudry et al., 2011) and association with emotional 

processing (Damasio & Damasio, 1994). Compared to HC group, we also observed higher 

ALFF in the nLOS group, specifically in right basal ganglia (Pu, Cd, BsF, Pd) and the 

limbic system (Hc, PHG, Amg). Particularly for the regions in the limbic system, we also 

observed abnormal GMV in the hyposmic group from our VBM analysis. Moreover, 

structural alterations in single patient cases with hyperintensities observed from FLAIR 

imaging match with the spatial locations observed here. Regions from the basal ganglia, 

limbic system and temporal lobe were reported to be hyperintense from several acute case 

reports (Kandemirli et al., 2020; Kremer et al., 2020; Paterson et al., 2020).  

Exclusively, in patients with olfactory dysfunction several MRI reports depict 

abnormal intensities (Laurendon et al., 2020; C.-W. Li et al., 2020; Politi et al., 2020) as 

well as asymmetry in the olfactory system (Coolen et al., 2020). Even with fMRI abnormal 

BOLD activity has been reported in the piriform cortex from a female patient with 

abnormal smell function (Ismail & Gad, 2021). More importantly, the regions with higher 

ALFF from the LOS group match these reports. Therefore, our results from ALFF analysis 

indicate a link between structural alterations and abnormal local brain activity in regions 

directly involved with olfactory function. 
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4.4.2 Altered ICA in Hyposmic and Non-Hyposmic Survivors

Our hypothesis relating to FC analysis was based on both early case-reports and more 

recent group level neuroimaging reports of structural and functional brain alterations. 

Individual case reports were primarily from acutely ill patients using FLAIR (Kandemirli 

et al., 2020; Kremer et al., 2020; Paterson et al., 2020) and Susceptibility Weighted 

Imaging (SWI) (Conklin et al., 2021), whereas, group level reports, such as those derived 

from fMRI, include, reduced default mode and salience connectivity (Fischer et al., 2021) 

and high prevalence of abnormal time varying and topological organizations between 

sensorimotor and visual networks (Fu et al., 2021). In the current context, we report 

between group FC alterations of three large scale RSNs – BGN, PRN and SSNR networks 

among COVID subtypes and HCs. 

It is important to report group level effects across different sites to evaluate if the 

single case reports from those sites can be reliably replicated across different countries in 

specific cohorts. This also demands that the neuroimaging literature now move towards 

reliable group level estimates, especially those involving fMRI. This allows a more 

conclusive and clearer picture of the brain changes in a group of patients. For example, 

while initially a single patient showed no differences in FC of DMN when compared to 

five healthy controls (Fischer et al., 2020), Fischer and colleagues recently reported 

reduced FC within DMN and between DMN and SAL networks after group level assessment 

(Fischer et al., 2021). In the current study, we did not observe any significant alterations in 

posterior or ventral DMN (PDMN and VDMN) networks, but our patient group was not 

unresponsive and as acutely ill as the patients reported in (Fischer et al., 2021). However, 

we did observe differences in FC for the PRN network which consists of Precuneus (PCu), 
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Frontal Eye Fields (FEF) and parts of the Superior Parietal Lobule (SPL). Enhanced FC 

of this network was observed with the SPL and PCu regions in the LOS group when 

compared to HC group. PCu is a constituent of DMN, and higher functional connectivity 

with this region may indicate some compensatory mechanism due to loss in connections in 

other pathways. 

Furthermore, SPL is a constituent of the posterior parietal cortex (PPC) which has 

been shown to have functional association with altered anterior insula connectivity in 

chronic fatigue syndrome (CFS) (Wortinger et al., 2017). This is important because fatigue 

is the most frequently reported symptom among survivors. In Chapter 3, we showed from 

our participant demographics statistics that fatigue was also the highest reported symptom 

in our sample (> 86%). We discuss more on this issue separately in the next chapter (see 

Chapter 5). Moreover, these brain regions are also known to be involved in attention 

processing, therefore, enhanced FC in these regions may indicate possible compensatory 

mechanisms of attention related symptoms that recovering patients may experience. 

Therefore, further investigations are necessary to understand these processes better, 

especially, from a clinical perspective.

Interestingly, for BGN, the LOS group demonstrated reduced FC in regions from 

the medial and orbito-frontal gyri (MOrG, GRe, MFC), when compared to both HC and 

nLOS groups. These regions are constituent of the olfactory system and BGN have direct 

anatomical connections with this system. This can indicate why the LOS group experience 

a loss or reduction in smell function. Compared to HC group, enhanced FC in the nLOS 

group was also observed for the BGN network with regions from the occipital lobe (Calc, 

Cu and LiG). Calc and Cu are primarily involved in visual processing. Fu and colleagues 
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reported that COVID survivors had higher connectivity between Cerebellum, Sensorimotor 

and Visual networks, indicating they spent abnormally higher time in a specific brain state 

compared to healthy controls (Fu et al., 2021). A recent study has also suggested Cu to be 

a major hub for mild cognitive impairment in idiopathic REM sleep behavior disorder 

(iRBD) (Mattioli et al., 2021). LiG and weak insular coactivation with the occipital cortex 

have been shown to be associated with disrupted salience processing that can lead to loss 

in motivation in day-to-day tasks (Kim et al., 2018). Moreover, the basal ganglia are 

known to be associated with fatigue (Miller et al., 2014), cognitive, emotional and attention 

processing (Di Martino et al., 2008; van Schouwenburg et al., 2015). 

We also observed significantly reduced FC in the nLOS group compared to LOS 

group within the SSNR network with right SPL, AnG, SMG regions. The somatosensory 

network plays a central role in processing body related stimuli. FC irregularities in the 

somatosensory cortex have been shown using RS-fMRI in several conditions such as eating 

disorder or bulimia, depression, and insomnia (Favaro et al., 2012; Kang et al., 2018; 

Lavagnino et al., 2014; Wang et al., 2018). This could indicate a link between other body 

related symptoms such as lack of sleep or appetite among non-hyposmic survivors.

4.4.3 Conclusion 

The synergy of these studies to our findings indicates possible functional brain associations 

with commonly observed symptoms in COVID survivors. Particularly, these symptoms 

last many months (Carfì et al., 2020; Garrigues et al., 2020; Logue et al., 2021; Peluso et 

al., 2021) in post-acute sequelae SARS-CoV-2 infection (PASC or Long COVID) patients. 

FC alterations in multiple networks also suggest that RS-fMRI can be useful to investigate 

multiple brain networks across the whole brain (Damoiseaux et al., 2006; Raichle & 
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Mintun, 2006; Shulman et al., 2004) in COVID-19 survivors. The results also suggest a 

possible link between structural and functional abnormalities in COVID survivors. More 

specifically, for the hyposmic group, the FC alterations associated with olfaction were 

observed in brain regions that align with anatomical abnormalities. 
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CHAPTER 5

THE RELATION OF BRAIN ESTIMATES WITH FATIGUE

Chapters 3 and 4 highlighted structural and functional brain abnormalities among COVID 

survivors. This chapter describes how these brain estimates correlate to self-reported 

fatigue at work across the groups. First the background in support of the hypothesis being 

tested is presented. Then, the effects across groups are presented for VBM and FC 

estimates, respectively, and discussed in terms of fatigue-related literature. 

5.1 Introduction

5.1.1 Background

A rising concern with surviving COVID patients have been development of a sequela of 

symptoms (Logue et al., 2021; Peluso et al., 2021; Tabacof et al., 2020) which converge to 

the brain as the responsible organ. Therefore, changes in brain structure and function could 

correlate to the severity of these symptoms. In regard to that, a follow-up study (Tu et al., 

2021) assessed structural and functional changes related to post-traumatic stress symptoms 

(PTSS), where they investigated COVID-19 patients in two consecutive time points - 3 

months and 6 months after initial infection. The self-reported Posttraumatic Stress Disorder 

Checklist for DSM-5 (PCL-5) scores from COVID subjects were negatively correlated to 

left hippocampal and amygdala volumes. The interval after hospital discharge can also be 

a modulating factor and therefore, severity of symptoms can be different across time. For 

example, the study from Tu et al., 2021 also show that the PCL-5 scores from Session 1, 

i.e., after 3 months, correlated with the time after discharge and the total PCL-5 scores from 
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these survivors increased by ~20% after 6 months at Session 2 (Tu et al., 2021). 

Furthermore, another study (Duan et al., 2021) shows that the modified Rankin Scale 

(mRS), a clinical disability score, significantly correlated with lower GMV in the frontal 

lobe both during discharge and after a 6 month-follow-up. It is possible that structural 

changes could be caused by inflammatory storms, which can be identified at the acute 

stage. For example, a recent study (Qin et al., 2021) reported that the left hippocampal 

cortical thickness was negatively correlated with the inflammatory biomarker procalcitonin 

(PCT) in the severe group. Since fatigue is the highest reported symptom from surviving 

patients (Logue et al., 2021; Peluso et al., 2021; Tabacof et al., 2020), we wanted to ask, if 

self-reported fatigue (during work) independently correlated to voxel-wise GMV in 

regions, known to be functionally associated with fatigue. We hypothesized that across 

groups (HC and COVID), a significant correlation of GMV with self-reported fatigue 

scores will be observed and the effects of the COVID group (LOS and nLOS) will be 

stronger compared to the HC group.

It is possible that brain metrics derived from functional data, such as functional 

connectivity (FC), also demonstrate correlation with fatigue. Since several of the long-

COVID symptoms suggest cognitive abnormalities among survivors, most contemporary 

neuroimaging studies have turned their attention to behavioral correlates of functional brain 

alterations, primarily, post-traumatic stress syndromes (Benedetti et al., 2021; Fu et al., 

2021). On the other hand, several others have attempted to use functional connectivity (FC) 

as a neurobiological indicator of higher stress levels (Liu et al., 2021; Perica et al., 2021), 

depression (Zhang et al., 2022) and negative affect (Xiao et al., 2021) among only healthy 

subjects before and after the pandemic. Therefore, we further hypothesized that across 
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groups (HC and COVID), a significant correlation between FC and self-reported fatigue 

scores will be observed and the effects will be larger in the COVID group compared to the 

HC group.

5.1.2 Statistical Analysis 

To evaluate the relationship between GMV and fatigue in the sub-set of COVID and HC 

participants, we performed a voxelwise multiple linear regression analysis, with GMV as 

the response variable and the fatigue scores as the covariate of interest, while, age, sex and 

TIV were included as covariates of no interest. Regions with significant correlation 

between GMV and fatigue score were identified using non-stationary cluster-based 

thresholding at height threshold punc < 0.01 and FWE corrected at pFWE < 0.05, for multiple 

comparisons. 

To visualize the significant linear relationship between the GMV and Fatigue, the 

average GMV within the significant cluster was obtained from each subject across both 

groups. These average GMV values were then linearly regressed against the fatigue scores 

and age, sex and TIV of each participant were regressed out during this step. The mean 

GMV across the participants were then added back to the residuals and the correlation with 

fatigue scores was computed and visualized within a scatter plot and a line of best fit with 

95% confidence interval. The correlation analysis and the graphical plotting was done 

using ‘inhouse’ scripts prepared in RStudio (RStudio, 2021). Please note, since within the 

COVID group (LOS and nLOS) there was no significant differences in the level of fatigue 

experienced (p > 0.05), the effects of GMV and fatigue was not evaluated in these subtypes 

separately. Rather the two groups were considered as a COVID group in general and their 

effects were compared against HC group. Please note, the same statistical methods  were 
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also applied to resting state networks derived from ICA and dual regression analyses 

applied on RS-fMRI data. For the regression analysis, only age and sex were added as 

covariates of interest, since TIV is more related to VBM specifically.

  

5.2 Results

5.2.1 GMV-Fatigue Relationship

The multiple linear regression analysis to compute correlation between self-reported 

fatigue scores and GMV revealed that the subset of participants (nCOVID = 33, nHC = 18) 

demonstrated significantly positive correlation with GMV in Posterior Cingulate Cortex 

(PCC), Precuneus (PRC) and Superior Parietal Lobule (SPL), particularly. The top left 

image in Figure 5.1 shows the significant cluster that comprised of these regions (see 

Figure 5.1 bottom row, for a multi-slice view). The scatter plot (Figure 5.1, top right) 

demonstrates the linear relationship (Spearman’s ρ = 0.34, p = 0.016) across the whole 

group between fatigue scores and the GMV of each subject within the cluster. The scatter 

plot combines data from both groups, and it can be noted that the light pink dots (COVID 

subjects) have a significantly higher effect compared to the cyan dots (HC subjects). 

Therefore, while GMV is positively correlated with fatigue across both groups, the overall 

trend is primarily driven by the effects from the COVID group. 

We also observed another cluster, which did not survive the stringent non-

stationary clustering threshold (< 3547 voxels), however, the cluster-based thresholding 

can be somewhat tricky. Often, a larger cluster size may be required for an effect and a true 

effect may be ignored simply because a p value threshold is not reached. It is further limited 

by sample size and other regressors that lowers the degrees of freedom. We had a 
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comparatively smaller sample size for the correlation analysis. Therefore, we still wanted 

to evaluate the effects after extracting the average cluster GMV and performing the linear 

regression. 

Figure 5.1. VBM demonstrating significantly positive correlation with fatigue scores 
across the whole group. The significant cluster (top-left) consisting of 3547 voxels (kE = 
3547), comprised of: Left – PCC, PRC, SPL and Right - PRC with peak t-score of 4.74 and 
exact corrected p-value of pFWE = 0.019 at MNI coordinates: [-16 -54 48]. The axial slices 
(bottom) show the spatial extent of the same cluster over finer slices. The scatter plot (top-
right) with the linear regression line shows significant positive correlation of GMV with 
self-reported fatigue score across the whole group (ρ = 0.34, p = 0.016, r2 = 0.11). Please 
note, the ρ represents Spearman’s rank-order correlation coefficient. The light pink colored 
dots represent the COVID subjects, and the cyan dots represent the HCs. The COVID 
group clearly demonstrates higher effects than the HC group. Please note, the GMV in the 
x-axis represents the residuals plus the mean GMV of the cluster across subjects added 
back after linear regression. Keys: PCC = Posterior Cingulate Cortex, PRC = Precuneus, 
SPL = Superior Parietal Lobule. The linear plot (blue) represents the least squares 
regression line (best fit), and the shaded gray area represents the 95% confidence interval.
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Figure 5.2. VBM demonstrating positive correlation with fatigue scores across the whole 
group. The cluster (top-left) (1796 voxels) did not survive the non-stationary cluster 
threshold (kE = 3547 voxels). However, when the residual plus mean GMV across group 
was regressed against fatigue scores, a significant effect was observed (top-right). The 
cluster comprises of bilateral – Subcallosal Area (ScA), Accumbens Area (AcA), Mid-
orbital Gyrus (MOG), Anterior Cingulate Gyrus (ACG), Medial Frontal Cortex (MFC), 
Gyrus Rectus (GRe), Caudate (Cd), Putamen (Pu) and Bilateral – Ventral Diencephalon 
(VDC) and Right – Basal Forebrain (BsF), Amygdala (Amg), Entorhinal Area (EnA) and 
Parahippocampal Gyrus (PHG). A multi-slice axial view has also been added to showcase 
the spatial extent of this cluster. The linear plot (blue) represents the least squares 
regression line (best fit), and the shaded gray area represents the 95% confidence interval.

When the residual plus average cluster GMV was linearly regressed against fatigue, 

a significant positive correlation (Spearman’s ρ = 0.41, p = 0.0028) was observed. This 

cluster consisted of brain regions from the cholinergic output from the ventral basal 

ganglia (BsF, AcA), orbitofrontal cortex (MOG, GrE) and ventromedial prefrontal cortex 

(vmPFC) (ACG, MFC). Like Figure 5.1, the statistical map, multi-slice view and the linear 

plot for this cluster are shown in Figure 5.2.
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Figure 5.3. Demonstrating GMV-fatigue correlation observed in COVID and HC groups 
separately. Left: Scatter plot and linear regression line for each group from the significant 
cluster shown in Figure 5.1. Right: Similarly stronger effects were also observed for the 
cluster shown in Figure 5.2. The scatter plots are exactly same as those shown in Figures 
5.1 and 5.2, except the regression lines in the current figure shows the effects in each group 
separately. The plots clearly show that the overall group effects in Figures 5.1 and 5.2 are 
primarily driven by the COVID group, as GMV in this group is more strongly correlated 
to fatigue.  

To show that the COVID group demonstrated stronger correlation effects compared 

to the HC group, we also computed the correlations and generated corresponding linear 

regression plots for each group separately. The plots generated from the first (Figure 5.3, 

left) and second (Figure 5.3, right) clusters shown in Figures 5.1 and 5.2 respectively. The 

scatter plot and the linear regression lines from each group from the significant cluster 

(Cluster 1, Figure 5.3, left) shows more intuitively that the COVID group (ρ_COVID = 

0.60, p_COVID = 0.0002)  was more susceptible to fatigue compared to the HC group 

(ρ_HC = 0.43, p_HC = 0.07). Similar effects could also be observed for the second cluster 

(Cluster 2, Figure 5.3, right). Interestingly, we can observe that although Cluster 2 did not 

survive the conservative non-stationary cluster extent threshold for multiple comparisons, 

there are effects like those observed for Cluster 1. The COVID group showed significantly 

stronger positive correlation (ρ_COVID = 0.52, p_COVID = 0.002) compared to HC group 

(ρ_HC = 0.19, p_HC = 0.45).       
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5.2.2 FC-Fatigue Relationship

Figure 5.4 shows brain regions where a significant negative correlation was observed 

between FC and self-reported fatigue, from the precuneus (PRN) network. The statistic 

map (Figure 5.4, left) shows the cluster where a negative correlation between FC and 

fatigue scores was observed in the Left – Superior Parietal Lobule (SPL), Superior 

Occipital Gyrus (SOG), Angular Gyrus (AnG) and Precuneus (PCu). The graph on the 

right visually presents this negative relationship (Spearman’s ρ  = -0.47, p = 0.001, r2 = 

0.22) between the average FC of this cluster and fatigue scores. The scatter plot (Figure 

5.4, right) clearly shows that the effects of FC and fatigue are significantly larger in the 

COVID group (light pink dots higher than cyan dots) compared to HC group. 

Figure 5.4 Negative correlation of FC with self-reported fatigue scores in COVID and HC 
individuals.  Left: For the PRN network, three orthogonal slices (left) along with a cut-to-
depth volume rendered image showing regions from the Superior Parietal and Occipital 
Gyri that demonstrated significantly negative correlation with fatigue. The colorbar 
represents t-score values. Right: The graph shows the linear relationship between FC within 
the significant cluster and self-reported fatigue scores across all groups. The x-axis 
represents the residuals plus the average FC (z-scores) across groups from the cluster and 
the y-axis represents the fatigue scores. The light pink dots represent the COVID group 
and the cyan dots represent the HC group. The shaded gray area represents the 95% 
confidence interval. The blue line represents the least squares regression line of best fit. 
Cluster information include - cluster peak: [-21 -72 42], | cluster extent threshold, kE = 46 
and cluster size = 46 voxels. The peak t-score of the cluster was, Tpeak = 4.39, and corrected 
for multiple comparisons at p < 0.05.
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5.3 Discussion

5.3.1 Stronger GMV-Fatigue Effects in COVID Survivors

The results from the correlation analysis between GMV and fatigue support the hypothesis 

that fatigue levels experienced by the COVID survivors will be higher compared to the HC 

group and GMV will correlate more strongly with self-reported fatigue in this group. 

Reports have emerged of recovering patients experiencing a sequelae of symptoms that 

persist from 3-6 months and beyond after initial infection (Logue et al., 2021; Peluso et al., 

2021; Tabacof et al., 2020). Fatigue was the highest reported symptom in these studies 

among others, including lack of attention, delayed recovery of loss of sense of smell and 

taste. We asked the healthy subjects and surviving patients, what level of fatigue do they 

experience in their daily work? Based on their reported score, we observed significantly 

higher levels of fatigue within the COVID group when compared to HCs (see Table 3.2). 

We also observe from Figure 5.1 that GMV in PCC, PRC and SPL regions are more 

strongly correlated to fatigue in COVID survivors compared to healthy controls. This could 

also indicate a link to high percentage of survivors experiencing fatigue during and post 

recovery, eventually leading to functional or cognitive disruption. This is also typical of 

neurodegenerative populations and these regions have been found to be related to fatigue. 

For example, higher metabolic activity within PCC has been shown to be positively 

correlated with higher fatigue levels in Parkinson’s patients (Cho et al., 2017). PCC and 

SPL have also been shown to be associated with fatigue in patients with chronic fatigue 

syndrome (CFS) (Boissoneault et al., 2018; Gay et al., 2016). Moreover, atrophy in the 

parietal lobe has been shown to be associated with fatigue among multiple sclerosis (MS) 

patients (Calabrese et al., 2010; Pellicano et al., 2010). 
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We also observed similar effects in another cluster (did not survive non-stationary 

thresholding, see Figure 5.2) particularly comprising of brain regions from the ventral 

basal ganglia (BG) and ventromedial prefrontal cortex (vmPFC).  Interestingly, the BG 

and vmPFC regions have also been shown to be functionally associated with fatigue 

(Chaudhuri & Behan, 2000; Dobryakova et al., 2020; Dobryakova et al., 2015; Dobryakova 

et al., 2018; Wylie et al., 2017; Wylie et al., 2019). We observed this effect with 18 HCs 

and 33 COVID subjects and our expectation is that with a bigger sample size in both 

groups, this cluster would survive and therefore it may be of relevance to fatigue related 

effects among survivors.    

5.3.2 Stronger FC-Fatigue Effects in COVID Survivors 

We further evaluated linear relationship between FC of RSNs and self-reported fatigue at 

work. We observed that the COVID group was significantly more negatively correlated to 

FC within the PRC network compared to the HC group. More specifically, the correlation 

between FC and fatigue was observed within the SPL, SOG, AnG and PCu, i.e., brain 

regions primarily belonging to the parietal lobe. Structural atrophy in the parietal lobe has 

been shown to be associated with fatigue among multiple sclerosis (MS) patients 

(Calabrese et al., 2010; Pellicano et al., 2010). An RS-fMRI study of patients with chronic 

fatigue syndrome (CFS) used ICA to reveal loss of intrinsic connectivity in the parietal 

lobe (Gay et al., 2016). It is interesting that lower FC of the PRC network with regions 

from the parietal lobe correlates negatively to higher fatigue scores among COVID 

survivors. To the best of our knowledge, this is the first study to show work-related fatigue 

correlates of FC among recovering patients 2 weeks after hospital discharge. Therefore, 

future studies are necessary to evaluate this avenue further in the surviving cohorts.
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5.3.3 Conclusion 

In conclusion, we observed COVID survivors experience higher levels of fatigue compared 

to HCs. We noticed that fatigue is significantly correlated with GMV and FC and these 

effects are more strongly observed in the hyposmic and non-hyposmic survivors compared 

to HCs. More importantly, these effects have functional implications, because the brain 

regions demonstrating these stronger effects with fatigue are also known to be functionally 

associated with fatigue from other studies.  
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CHAPTER 6

CHALLENGES, LIMITATIONS AND FUTURE DIRECTIONS

Chapters 3, 4 and 5 depict the methods applied for all three aims of this study and the 

results that provide evidence in support of our hypotheses that were tested. Neuroimaging 

studies have their own caveats in terms of spatial and temporal resolution. For both 

structural and functional modalities, there are challenges faced ubiquitously among 

research groups. Aside from such standard limitations, each study comes with its own 

challenges and our study is no different in that aspect. Here we discuss some limitations 

and challenges from the initiation of the study to its current stage. We also suggest possible 

adaptations that may be implemented in overcoming some of these limitations in the future.  

This study involves COVID patients. Due to the pandemic recruiting healthy 

controls proved even more difficult. Understandably, the control subjects were in a lot of 

stress and fear of being exposed to COVID-19 during the early phase of recruitment. This 

is equally challenging for the COVID survivors who were also afraid of the risk of getting 

exposed to the virus again. While mask mandates have eased up now, it was not the case 

when we started scanning the subjects. Extreme precautions were taken during the 1st phase 

of recruitment just to make sure the patient is not compromised again and does not infect 

others in the process. Of course, both the healthy and COVID groups had to wear masks 

through the full process of screening, answering questionnaire and scanning. 

A big part of the process was to ensure and convince the participants of their safety 

in an MRI environment. Not all participants were keen on going under an MRI. We 

observed a general fear among subjects when discussing an MRI scan. Educating the 
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participants of the safety protocols and finally getting their consent to come in for a scan 

is an extremely time consuming and laborious process. This requires additional ‘man-

power’ which becomes almost impossible during a lock down. This is an ongoing study, 

and we are very interested in the longitudinal progression of the symptoms in these 

survivors. However, follow-up studies can be challenging for the time required and the 

perceived risks of subjects going to the hospital and being MRI scanned.

To make sure we have a large enough sample pool to recruit COVID subjects, we 

contacted the Metro Heart and Super Specialty Hospital, New Delhi, India during the early 

phase of COVID-19. We were able to recruit 47 COVID subjects from a sample of over 

2000 patient database. This abundant flexibility greatly helped in the continuation of the 

study. It is understandable that 47 subjects may seem insufficient for robust statistical 

power, but our sample size is quite comparable among current publications with cross-

sectional designs (Duan et al., 2021; Fu et al., 2021). We hope that the aforementioned 

points help explaining why recruiting even these many subjects can be quite difficult under 

the circumstances.

6.1 Limitations of The Structural Analysis

In the beginning of this study, there were hardly any conclusive group level effects in any 

specific COVID cohort in the literature. Naturally, we tried to address that by investigating 

any group level differences between survivors and controls (Hafiz, Gandhi, Mishra, Prasad, 

Mahajan, Di, et al., 2022). With the availability of more data and participant information, 

we were able to move to more definite group level hypotheses for the structural analysis in 

this study. Despite our emphasis on group level analysis, we understand that in a clinical 
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setting, it may have little transferability, owing to idiosyncrasies associated with each 

patient. A possible approach to address this issue would be to compare patient specific 

VBM against a sufficiently sized control sub-group randomly selected from a larger cohort 

(Scarpazza et al., 2016). However, it may not be very practical in a clinical setting unless 

a well-designed control dataset is available for a clinician. Nevertheless, our group level 

results from a single site seem to match single patient findings quite well, especially when 

they were reported from several centers across different countries (Gulko et al., 2020).  

Moreover, currently, we only have 47 COVID subjects. While we do observe significant 

effects across groups, the LOS group had only 17 subjects. We would still need a larger 

sample size to verify the main effects across these groups more conclusively. The IIT team 

from India have been collecting new data and about 48% of the newly recruited sample 

had experienced loss of sense of smell or some form of hyposmia. This opens an 

opportunity to study the LOS group with larger sample size in the future. 

Another concern we had is the reversibility or transient nature of some effects. 

These patients were scanned two weeks after hospital discharge. It is possible some critical 

effects may have already disappeared through recovery or reversible neurological 

processes. But it was also necessary to allow for that 2-week interval to remove any 

hospitalization factors confounding COVID-related effects in the brain. Therefore, a better 

approach could be to scan the patients at onset, during and after recovery along with 

behavioral parameters to assess any possible trends unique to the neurological pathology 

in COVID survivors. That is indeed, where this study is heading with the hope that more 

participants agree to come back for the second and third scan after 6 and 12 months 

respectively.
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6.2 Limitations of The Functional Analysis

If we look at the early neuroimaging literature, the first functional imaging studies were 

also case reports (Fischer et al., 2020; Ismail & Gad, 2021). Therefore, the need to move 

from single cases to group level effects was equally, if not more, relevant for the functional 

neuro-imaging field. Despite our efforts to show group level effects that reflect individual 

and group level reports in the recent literature (Hafiz, Gandhi, Mishra, Prasad, Mahajan, 

Natelson, et al., 2022), our study still maintains a cross-sectional design. In cases like this, 

a better approach for the future would be to use follow up designs (Fu et al., 2021; Lu et 

al., 2020; Tu et al., 2021) or possibly a longitudinal design where patients could be 

observed both before and after the pandemic like the one using the UK-biobank (Douaud 

et al., 2021). Our effort here, was to delineate the functional differences between hyposmic, 

non-hyposmic and healthy subjects at an early stage of recovery (2 weeks after hospital 

discharge) and determine the relation between work-related fatigue and FC of RSNs. We 

believe the results from this study will help understanding the recovery stage brain 

alterations and how they might drive fatigue-related symptoms among COVID survivors.

In the future, with more data collection, follow-up and longitudinal assessments can 

be made. The parameters obtained from the first time point can be used to assess if they 

can predict development of brain pathologies among these subtypes. One expectation is 

that these early differences in the hyposmic group and the higher susceptibility to fatigue 

among the COVID participants, will be an early indicator to PASC development and other 

fatigue related disturbances such as chronic fatigue syndrome (CFS) in these survivors. Dr. 

Benjamin H. Natelson, from the Neurology department in Mount Sinai, is an expert in CFS. 

Based on his expert evaluation, the symptoms of fatigue observed in the COVID survivors 
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closely resemble those of CFS. He thinks identifying these abnormalities at an earlier point 

in recovery which may contribute to PASC and CFS development are paramount. 

Therefore, this could be clinically relevant and potentially help come up with better 

strategies against such brain pathologies early in the recovery phase. 

6.3 Limitations of The Fatigue Correlation Analysis

We evaluated brain correlates of fatigue and compared the regression models of COVID 

and HC participants based on self-reported scores during work. The questionnaire was set 

on a scale of 0-5, with increasing fatigue levels towards 5. While these scores helped us 

identify fatigue related effects in the brain in these survivors, perhaps a more clinically 

relevant test is preferred. Unfortunately, there is no single test to evaluate a complex 

symptom like fatigue or CFS. Nevertheless, the fatigue-expert in our study, Dr. Benjamin 

H. Natelson, believes these scores still prove useful from a research standpoint. 

The other challenge in this analysis is the sample size. We were able to obtain scores 

from 33/47 COVID and 18/35 HC participants. This largely affects the degrees of freedom 

for statistical tests and reduce statistical power of the effects of interest. However, we were 

still able to extract significant effects with this sample. Naturally, these effects will need to 

be verified with a larger sample for a more conclusive inference.       

6.4 Conclusion 

In this study, we were able to identify structural and functional differences between 

COVID survivors and HCs. We were further able to differentiate brain abnormalities 

between two important sub-types among COVID survivors: hyposmic and non-hyposmic 
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patients. We found that COVID survivors are more strongly affected by fatigue compared 

to HCs. We find these results interesting because they can have clinical implications 

towards PASC development among long-haul survivors. We hope these findings will 

inspire researchers to ask more pertinent questions and help closing the gaps in knowledge 

using state-of-the-art imaging modalities. We speculate that single imaging modalities will 

not be sufficient and suggest that a multi-modal approach will provide more conclusive 

evidence to solve the mysteries behind CNS invasion of the novel coronavirus.  
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