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ABSTRACT 

ADVERSARIALLY ROBUST AND ACCURATE MACHINE LEARNING FOR 

IMAGE CLASSIFICATION  

 

by 

Yanan Yang 

Machine learning techniques in medical imaging systems are accurate, but minor 

perturbations in the data known as adversarial attacks can fool them. These attacks make 

the systems vulnerable to fraud and deception, and thus a significant challenge has been 

posed in practice. This dissertation presents the gradient-free trained sign activation 

networks to detect and deter adversarial attacks on medical imaging AI (Artificial 

Intelligence) systems. Experimental results show a higher distortion value is required to 

attack the proposed model than other state-of-the-art models on brain MRI (Magnetic 

resonance imaging), Chest X-ray, and histopathology image datasets. Moreover, the 

proposed models outperform the best existing models and are even twice superior. The 

average accuracy of our model in classifying the adversarial examples is 88.89%, whereas 

MLP and LeNet are 81.48%, and ResNet18 is 33.89%. It is concluded that the sign network 

is a solution to defend against adversarial attacks due to high distortion and high accuracy 

on transferability. In addition, different models have different tolerance abilities on 

adversarial attacks.  

This dissertation develops a novel detecting module to defend against adversarial 

attacks proactively. The proposed module uses the adaptive noise removal process to 

reconstruct the input and detect adversarial attacks without modifying the models. 

Experimental results show that the proposed models can successfully remove most noises 

and obtain detection accuracies of 97.71% and 92.96%, respectively, by comparing the 



ii 

 

classification results on adversarial samples of MNIST and two subclasses of ImageNet 

datasets. Furthermore, the proposed adaptive module can be used as part of an ensemble 

with different networks to achieve detection accuracies of 70.83% and 71.96%, 

respectively, on the white-box adversarial attacks of ResNet18 and SCD01MLP. The best 

accuracy of 62.5% is obtained for both networks when dealing with black-box attacks.
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CHAPTER 1 

INTRODUCTION 

 

1.1 Objective 

This dissertation aims to present a set of accurate and adversarially robust deep learning 

models for medical image datasets and an adaptive detection scheme to defend against 

adversarial attacks.  

The following accurate deep learning models for medical image datasets are 

presented, the dual path residual convolutional neural network and the random depthwise 

convolutional neural network. The classification performance analysis shows that both 

networks have higher accuracy when trained on medical image datasets. 

Furthermore, the stochastic descent sign activation networks are implemented to 

defend against adversarial attacks, which are SCD01, SCDCE, and SCDCEBNN. The 

different evaluation experiments suggest that the SCD models have the more powerful 

defense ability compared with the state-of-the-art. 

Last but not least, an adaptive detection scheme with an adaptive image 

reconstruction algorithm is deployed to defend against adversarial attacks more actively. 

This proposed module has a competitive detection rate and can ensemble into any model.  

 

1.2 Background 

Machine learning is a branch of artificial intelligence, which can learn the structures from 

data, identify patterns and make decisions with minimal human intervention. Many 

machine learning applications have been developed for a long time. They have achieved 
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success in many fields such as image recognition, video detection, autonomous driving, 

voice recognition, and fraud detection. Some widely used machine learning algorithms 

include linear regression, logistic regression, support vector machine(SVM), multiple layer 

perceptron (MLP), decision tree, random forest, and neural networks.  

Deep learning has emerged in the past few decades as a new approach is shown in 

machine learning, such as Google’s latest automatic translator, which achieved impressive 

results in handling large amounts of data. Deep learning models use the convolutional 

neural network (CNN). The role of “convolution” can reduce the data dimensions into a 

more accessible processing form while keeping the features used for a better prediction.   

LeNet [1] was first introduced by LeCun and Bengio in 1995. This network is a 

straightforward convolutional neural network and is used to learn the complex, high-

dimensional, and non-linear mappings from the sizeable data collections. In 2012, the CNN 

became known as AlexNet [2], which was developed by Krizhevsky et al, and won the 

2012 ImageNet vision contest with an impressive 85% accuracy. From AlexNet, the state-

of-the-art CNN architectures are going deeper and deeper. In 2014, two deep learning 

networks were proposed, one is GoogLeNet [3] with 22 layers, and another is VGG [4] 

with 19 layers, while the AlexNet [2] has only five layers. GoogLeNet and VGG both have 

more outstanding performances on classification than previous models.  

However, increasing the depth of the network brings the vanishing gradient 

problem, which causes deep networks to be hard to train. Microsoft Research Asian 

developed ResNet [5] that achieved 96.4% accuracy on ImageNet competition in 2015. 

The classification rate is higher than GoogLeNet [3] and AlexNet [2]. Moreover, the most 

exciting thing is that the residual block avoids the vanishing gradient problem. 
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The neural networks also show more impressive performances than clinicians in 

many healthcare tasks. For example, medical images, such as magnetic resonance imaging 

(MRI), computational tomography (CT), and histopathology provide detailed information 

for diagnosing various diseases. Medical experts typically have to browse numerous images 

to diagnose diseases, which requires considerable training. Furthermore, the diagnosis 

process is time-intensive and is prone to manual errors. The deep learning methods can help 

the experts decide and accelerate treatment processes.  

Recent research has shown that deep learning has a  high accuracy, reasonable 

prediction, and high sensitivity to automatical medical tasks. Since 2016, the International 

Skin Imaging Collaboration (ISIC) has begun to aggregate a large-scale publicly accessible 

dataset of dermoscopy images and hosted the challenges on disease classification and 

segmentations [5]. The top-ranked participant in 2017, Yan et al implemented a fully 

convolutional network ensemble approach to achieve an average accuracy of 93.4% and a 

Dice coefficient of 0.849 on Lesion segmentation [6]. On average classification 

performance characteristics, the top three winners are 91.1%, 91%, and 90.8%, respectively 

[7-9]. Oktay et al [10] proposed an anatomically constrained convolutional neural network 

(ACNN) model according cardiac anatomy, a generic training strategy for super-resolution 

medical images. As a result, the classification accuracy on the cardiac MR dataset was up 

to 91.6%. 

Deep learning models train algorithms efficiently to outperform other approaches 

on medical tasks. However, it is worth noting that deep neural networks are vulnerable to 

adversarial examples, which are crafted by adding imperceptible perturbations on the 

original images. Adversarial attacks bring some unforeseen losses in the real world. For 
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instance, an attacker might manipulate their examination report on a computer to cause a 

misdiagnosis of the disease, a false medical reimbursement claim, or commit insurance 

fraud. Much research has shown that adversarial attacks can force deep learning neural 

networks to make a wrong decision [11-14]. Therefore, the robustness and security of 

machine learning are still open problems. 

Researchers investigated adversarial attacks on medical images and mainly focused 

on testing the robustness of deep learning models for medical image analysis [15, 16]. 

Paschali et al [17] showed that classification accuracy drops from 87% on the regular 

medical images to almost 0% on the adversarial examples. Hokuto et al [18] demonstrated 

that their attack method achieved over 80% success rates on the deep learning models. 

Goodfellow et al [19] presented that an image of adding imperceptible perturbations can 

be misclassified with very high confidence by GoogLeNet. Papernot et al [20] showed that 

a crafted stop sign is incorrectly classified as a yield sign. 

All of the above studies indicate that the adversaries can potentially use the crafted 

images to inflict severe damage. The success of adversarial attacks leads to security threats. 

It is crucial to ensure that neural networks detect abnormal inputs more safely and securely. 

In other words, the robustness of deep learning algorithms needs to be reevaluated before 

deploying them in the real world. 

To defend against adversarial attacks, some researchers proposed the techniques of 

improving model robustness and detecting malicious behaviors. However, most of them 

require modifying the target model. One of the most straightforward methods is called 

adversarial training, which uses as many adversarial examples as possible to retrain the 

network and improve classification accuracy [21-23]. Papernot et al [24] introduced 
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another defense technique, named defensive distillation, to train two networks as a 

distillation. The first network produces probability vectors to label the original dataset, 

while the newly labeled dataset is used to train the other network.  

Recent studies have been focused on detecting adversarial examples directly. Xu et 

al [25] proposed training the detection modules using a set of adversarial examples and the 

corresponding benign ones. However, this technique requires modifying the model and a 

sufficient number of adversarial examples. 

Although the above researchers have shown definite achievements in defending 

against adversarial attacks, the cost of training time and the computational ability to retrain 

the models and modify the network architectures are impractical. Generating appropriate 

adversarial examples for training and statistical testing is quite expensive, and the 

successful results depend on a comprehensive prior knowledge of various potential 

adversarial techniques. Even worse, attackers can compose adversarial examples by the 

revamped attack algorithms, usually unknown to the defender in advance. In this way, there 

is a good chance for the adversarial examples to evade the classifier. Moreover, most of 

the existing defense techniques are model-specific. Rebuilding or retraining a classifier 

would consume significant extra time. Therefore, attackers can easily craft efficacious fake 

examples.  

Other methods intend to reconstruct the input images to defend against adversarial 

attacks. Liao et al [26] proposed a pixel denoiser method to remove the noise on high-level 

representation. As adversarial noises also interfere with the features constructed on the 

networks, Xie et al [27] developed a feature denoising architecture to smooth input images 

by applying non-local means or other filters directly on the feature level. Zhang et al [28] 
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proposed an image reconstruction network based on residual block structures to suppress 

the noises. Zhao et a. [29] found that pixels can be divided into the low-sensitivity and the 

high-sensitive groups based on the contributions to image classification. Inspired by that 

observation, they developed a structure-preserving low-rank image completion method on 

high sensitivity points to remove noises.  

However, there exists a problem with these techniques. Reconstruction and denoise 

methods apply a smoothing filter on the input images to reduce noises but inevitably 

remove some details on the object’s interest. Different adversary attackers magnify 

different scales of perturbations even on the same images. The perturbations on a 

compelling adversarial image from the semantic and grayscale datasets are very different 

for attackers. In other words, using the same parameters on an adversarial attack to generate 

an adversarial sample on ImageNet images cannot generate a successful one from MNIST. 

As a result, using the same reconstructed strategy may overly reduce the noise and lead to 

a new misclassification.   

This dissertation first evaluates the classifying performances of machine learning 

on medical images. Two networks are presented. A dual path residual convolutional neural 

network is proposed for classifying brain tumor types. The model is trained simultaneously 

from both MRI and pathology images and achieves a validation accuracy of 84.9%. In 

addition, a depthwise convolutional neural network with random weights (RDCNN) is 

investigated on four popular open-source medical datasets. The experimental results show 

that the proposed model has a 95% average accuracy across all datasets, higher than state-

of-the-art models.  
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Furthermore, this work presents the sign activation networks with a gradient-free 

stochastic coordinate descent algorithm (SCD) to address the earlier secure machine 

learning challenges. Experimental results show a higher distortion value is required to 

attack the proposed model than other state-of-the-art models on MRI, Chest X-ray, ECG, 

and histopathology image datasets. Moreover, the average accuracy of SCD models in 

classifying the adversarial examples is 88.89%, which outperforms the best and even twice 

superior. 

Based on the preliminary experiments, a novel defend scheme is proposed to 

proactively defend against the adversarial attack, which reconstructs the input image with 

an adaptive method to avoid excessive noise reduction and effectively detects the 

adversarial samples in advance. Futhermore, the framework is lightweight to make an 

ensemble into any network, and only a few arguments need to be set up. Experimental 

results show that the proposed model can successfully remove most noises and obtain 

higher detection accuracy by comparing the classification results on different adversarial 

attackers’ samples. 
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CHAPTER 2 

A DUAL PATH RESIDUAL CONVOLUTIONAL NEURAL NETWORK FROM 

MRI AND PATHOLOGY IMAGES  

 

2.1 Related Work on Brain Tumor Segmentation and Classification 

Brain cancer tumors fall into different categories given by the World Health Organization 

[30–32]. Predicting tumor types correctly plays a crucial role in diagnosis and treatment. 

The automated classification of tumor types can significantly speed up physician diagnosis 

and give patients better care and treatment.  

The CPM-RadPath 2019 MICCAI challenge is to predict three tumor types 

automatically, and the contest provides MRI and pathology images simultaneously. Figure 

2.1 shows a cropped pathology image with a Grade IV tumor (class G) and a radiology 

image (MRI) from this challenge. 

 

Figure 2.1 A typical cropped pathology image with a Grade IV tumor (class G) (left) and 

a radiology image (right) taken from the CPM-RadPath dataset. 

 

Brain tumors' classification and segmentation are challenging tasks because MRI 

scans share a highly heterogeneous appearance and shape. Although increasing scientific 
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literature on machine learning algorithms address this critical task, comparing the different 

segmentation strategies that have been reported so far is problematic. There are many 

reasons. For example, the private datasets differ widely, and there are rarely open 

manually-annotated datasets for designing and testing on machine learning algorithms. 

The top-ranked schemes on brain tumor segmentation in the BraTS 2017 and BraTS 

2018 challenges are based on machine learning algorithms, particularly the convolutional 

neural networks [33]. Kamnitsas et al ensemble multiple convolutional neural networks 

and achieved the highest accuracies in 2017 challenges. The winner in the 2018 contest 

designed a convolution network with 32 filters. 

Inspired by the success of convolutional neural networks in image recognition 

tasks, a dual path residual convolutional neural network solution is proposed to solve the 

prediction of tumor type problems. The preliminary experiments using predicted tumor 

segmentation of each MRI image show higher overall validation accuracy than the MRI 

images without masks.  

 

2.2 Proposed Networks 

2.2.1 Custom Designed U-Network for Predicting Tumor Segmentations 

Figure 2.2 shows custom designed U-Network to predict tumor segmentation from MRI 

images [34]. The proposed network takes images in four modalities and is trained on the 

Brain Tumor Segmentation (BraTS) 2019 MICCAI challenge [33, 35].  
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Figure 2.2 The architecture of custom-designed multi-modal tumor segmentation network. 

 

2.2.2 Dual Path Residual Convolutional Neural Network 

The ResNet18 architecture [5] uses residual connections between layers to prevent gradient 

vanishing problems and is a highly successful approach. Figures 2.3 (a) and (b) show the 

ResNet18 convolutional neural network architectures used separately on MRI and 

pathology images. The dual path model is in Figure 2.4. 
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Figure 2.3 ResNet18 networks for 3D tumor and pathology images. FC is fully connected 

layer. (a) ResNet18 for 3D brain MRI (b) ResNet18 for pathology images and tumor 

segmentation. Each block shows the size and number of convolutional kernels, all with 

stride 1 except for the first convolutional block that has stride 2.  
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Figure 2.4 Dual path residual convolutional neural network for tumor segmentation and 

pathology images. Each block shows the size and number of convolutional kernels all with 

stride 1 except for the first convolutional block that has stride 2. 
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2.3 Setting Parameter  

 

The networks use the standard cross-entropy loss function to predict the three tumor classes, 

they are Lower grade astrocytoma, IDH-mutant (Grade II or III); Oligodendroglioma, IDH-

mutant, 1p/19q codeleted (Grade II or III); and  Glioblastoma and Diffuse astrocytic glioma 

with molecular features of glioblastoma, IDH-wildtype (Grade IV).  

2.3.1 Training Network 

The combined model simultaneously takes in tumor segmentation and pathology images 

from each patient as input for dual path model training. Each tumor segmentation trainer 

randomly picks eight pathology images of the patient that go into the same batch during 

training. If a patient has less than eight pathology images (which occur in some cases), the 

algorithm selects random ones with replacement. At the end of the 2D network is the 

average operation that averages the features of the eight images into one layer and then 

concatenated into the 3D part, sees Figure 2.4.  

The 3D ResNet18 network is trained with 60 epochs, a learning rate of 0.01, 

stochastic gradient descent with Nesterov, a batch size of 8, and no weight decay. 

The 2D ResNet18 network is trained with 100 epochs, a learning rate of 0.01, 

stochastic gradient descent with Nesterov, a batch size of 128, and no weight decay. 

The dual path network is trained with 50 epochs, a learning rate of 0.01, stochastic 

gradient descent with Nesterov, a batch size of 8, and no weight decay. 

Early stopping is adopted to prevent overfitting. After the training accuracy reaches 

90%, the training process will stop when the loss increases in the following one. 
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2.3.2 Dataset 

The dataset is provided by CPM-RadPath 2019 MICCAI challenge, and which includes 

three classes, Lower-grade astrocytoma, IDH-mutant (Grade II or III); Oligodendroglioma, 

IDH-mutant, 1p/19q codeleted (Grade II or III); and Glioblastoma and Diffuse astrocytic 

glioma with molecular features of glioblastoma, IDH-wildtype (Grade IV).  

The images are from 221 patients as training data and 35 as validation. Each patient 

has 3D MRI images in four modalities: native (T1), post-contrast T1-weighted (T1Gd), 

T2-weighted (T2), and T2 Fluid Attenuated Inversion Recovery (T2-FLAIR). All brain 

scans were obtained with different clinical protocols and various scanners from different 

institutions. However, all images were co-registered to the same anatomical template, 

interpolated to the same resolution (1 mm3), and skull-stripped.  

Each patient also owns varying number of pathology images. These are digitized 

whole slide tissue images captured from Hematoxylin and Eosin (H&E) stained tissue 

specimens. The tissue specimens were scanned at 20x or 40x magnifications. 

To train 3D images on ResNet18, the preprocessing will normalize the data by 

subtracting the mean and dividing by the standard deviation to give 0 mean and unit 

variance. The original images are cropped and padded from dimensions 240×240×155 to 

160×192×160. 

When training on 2D ResNet18, each image is randomly cropped from dimensions 

512×512 to 224×224, and a center crop variant is recorded. Data augmentation performs 

as a random horizontal flip on images during training and inference processes. 

When training the dual path model, the MRI images and pathology ones use the 

same methods described above in the individual networks. 



  

15 

2.4 Experimental Results 

Figure 2.5 shows tumor segmentation of a given slice of an MRI image by the BraTS model 

for each of the three different axial planes. The predicted tumor is highly accurate 

compared to the true tumor segmentation across all four image modalities. It can be 

conjectured that the position and size of the tumor play a more significant role in 

determining the tumor type than the entire MRI image. Therefore, the proposed models 

will take these as inputs vs. the original MRI images. 

 

 

Figure 2.5 Tumor segmentations given by our BraTS model in all three axial planes for a 

given slice across four image modalities. The proposed models will take the predicted 

tumor segmentations that are highly accurate in these examples as input to classify the 

tumor type. 

 

The first evaluation is about the training loss. Figure 2.6 shows the training loss and 

accuracy of the dual path model on the predicted tumor segmentation, pathology images, 
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and combined images model. There is a high training accuracy in all three cases that 

suggests the models may be overfitting. Therefore, early stopping was applied as described 

above to avoid this situation.  

 

 

Figure 2.6 The training losses and accuracies of the individual and dual path models. 

 

The second evaluation is about the validation accuracies with different training 

datasets. Table 2.1 shows using the tumor segmentations gives a higher validation accuracy 

of 77.1% than using MRI images alone, which gives 69.8%. On the other hand, the 

validation accuracy on pathology images alone is lower than that of MRI and tumor images. 

In the case of random crops on pathology images, it varies between 66.2% and 69.2%. 

Combining the MRI images with pathology images under random crops gives us 78.7% 

validation accuracy, whereas combining with tumor segmentations gives us 81.6%. Finally, 

combing MRI images with pathology images under center crop also gives 78.7%, while 

combining tumor segmentation with pathology images under center crop gives the best 

validation accuracy of 84.9%. 
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Table 2.1 Validation Accuracy from Different Training Datasets 

Custom Dataset Accuracy 

Brain MRI images 69.8% 

Predicted tumor segmentation 77.1% 

Pathology (center crop) 66.2% 

Pathology (random crop) 66.2% - 69.2% 

Combined MRI + pathology (random crop) 78.7% 

Combined MRI + pathology (center crop) 78.7% 

Combined tumor + pathology (random crop) 81.6% 

Combined tumor + pathology (center crop) 84.9% 

 

2.5 Conclusion 

This chapter presents a dual path residual convolutional neural network that can be trained 

on both tumor segmentation and pathology images simultaneously. Experimental results 

show a higher accuracy for predicting tumor category than using the original MRI images 

alone. Furthermore, the validation accuracies are improved much more. The best result is 

84.9%, an increase of 18.7% at most compared with the other seven different cases.  
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CHAPTER 3 

 

CLASSIFICATION OF HISTOPATHOLOGY IMAGES WITH RANDOM 

DEPTHWISE CONVOLUTIONAL NEURAL NETWORKS 

 

 

3.1 Background 

The classification of histopathology images plays a crucial role in diagnosing and 

understanding cancer. Pathologists take a long time training before determining the disease 

types but cannot avoid the manual errors. Moreover, the diagnosis is time-sensitive. 

Convolutional neural networks that attain state-of-the-art image recognition have 

previously been proposed for this problem. The automated classification techniques can 

promise a more efficient and accurate diagnosis and better treatment. 

This chapter presents a depthwise convolutional neural network with random 

weights (RDCNN) [36]. Previously this has been shown to classify images with a similar 

background, color, and texture accurately as evaluated on existing benchmarks, Corel 

Princeton Image Similarity Benchmark [37]. Therefore, it is hypothesized that image 

similarity may play a role in classification, which may be helpful in the problem of 

histopathology images. The experimental study on the accuracy of trained convolutional 

networks compared with RDCNN show that RDCNN used similarity can improve the 

classification rates and the average accuracy are higher than previouse models.  

 

3.2 Method 

3.2.1 Convolutional Neural Networks 

Briefly, a convolution layer performs as a moving non-linearized dot product against pixels 

given by a fixed kernel size k × k (usually 3 × 3 or 5 × 5). The dot product is usually non-
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linearized with the sigmoid or hinge (ReLu) function since both are differentiable and fit 

into the gradient descent framework. The output of applying a k × k convolution against a 

p × p image is an image of size (p − k + 1) × (p − k + 1). 

The convolutional neural network is inspired by multiple layer perceptron (MLP), 

and it is typically composed of alternating convolution and pooling layers followed by a 

final flattened layer. The computational engine of the MLP is an arbitrary number of hidden 

layers that are placed between the input and output layers. MLP is trained with the 

backpropagation learning algorithm and can solve non-linearly separable problems. 

A traditional convolution network is formed by convolutional layers, pooling 

layers, and fully connected layers and specified by a kernel size and the number of kernels 

in each layer. Recently, famous modern networks may include residual layers, inception, 

and more complex structures. In addition, some optimization algorithms also accelerate 

convolutional neural networks to achieve higher accuracy. These methods all involve 

randomnesses, for instance, stochastic gradient descent, data augmentation, regularization, 

dropout, and cutout. Unsurprisingly, the random weights are essential to network 

architecture in achieving high accuracy. 

3.2.2 Random Depth Wise Convolutional Neural Networks (RDCNN) 

Consider applying random convolutional blocks repeatedly and then averaging all the 

values in the final representation of the image. After repeating this step k times, it will 

generate k new features in k dimensional space. These steps describe a random depthwise 

convolutional neural network (RDCNN) [36]. During generating the new feature space, no 

label information is used. Therefore, RDCNN can be considered as an unsupervised feature 

learning method. Figure 3.1 shows a simple toy example [36]. In (a), Four images, I0, I1, 
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I2, and I3, contain various objects but are very similar. In (b), four random hyperplanes 

divide each image into different groups. Each related hyperplane is used to calculate the 

sign of each patch, and the result is a 2 × 2 matrix for each image shown in (c). The 

matrix obtains a single feature value for the image given by the hyperplane through the 

average pooling in (d). Finally, a representation capture these similarities is found during 

these processes, I0, I1, and I2 are more similar than image I3. 

 

                           (a)                                                                     (b) 

   

                                (c)                                                                  (d) 

Figure 3.1 The process of randomness. (a) Four images contain objects in different parts 

of the image and are divided into four partitions. (b) For random hyperplanes (in red) on 

the input space of features from all patches of the images. (c) The outputs can be 

considered four partitions. (d) New feature values were obtained from average pooling. 

Source: [36]. 
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There is no theoretical guarantee that random hyperplanes would avoid a linearly 

separable space even repeatedly applying on image patches. However, Figure 3.1 shows 

that the four random hyperplanes would partition the space, and the patches will have the 

same outputs if they are in the same space. Other neighbor patches are likely to be less 

similar. As shown in (d), there is only one different output in these four hyperplanes. 

The parameters in the proposed network are the number of convolutional blocks b, 

the size of each kernel k × k, and the number of kernels m in each layer (this is the same in 

each layer). Figure 3.2 shows an example of the RDCNN network with two layers (l = 2) 

and five 3 × 3 convolution blocks in each layer (m = 5, k = 3). The values in each 

convolutional kernel are randomly from the Normal distribution with mean 0 and variance 

1. 

 

 

Figure 3.2 A random depthwise convolutional neural network with two convolutional 

blocks, five kernels with size k = 3 in each layer. 

 

 

The output of each convolution with the sign function is non-linearized, and the 

convolution is depthwise. The i-th convolution is applied only on the i-th kernel of the 

previous layer. In the input layer, however, the convolution is applied in the conventional 

way to account for three layers of RGB images. After the convolutions, a global average 
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pooling layer as the final layer generates a flattened feature space. A linear support vector 

machine trains the final feature space.  

 

3.3 Datasets and Compared Networks 

3.3.1 Datasets 

There are four publicly available datasets spanning the different cancers. These are 

available upon request to reproduce experimental results in this paper. 

The Invasive Ductal Carcinoma (IDC) dataset is provided by ICPR 2012 contest 

[4]. The original dataset consisted of 162 whole mount slide images of Breast Cancer 

histology specimens scanned 40 x 40. From that, patches of size 50x50 were extracted by 

the ROI method, of which 198,738 were IDC negative and 78,786 IDC positive. The train 

and test ratio is 80:20 [38]. 

This ISIC dataset is provided by the ISIC 2019 Challenge [6]. This is for 

classifying skin cancer images among nine different diagnostic categories: Actinic 

Keratosis, Squamous Cell Carcinoma, Basal Cell Carcinoma, Seborrheic Keratosis, Solar 

Lentigo, Dermatofibroma, Nevi, Melanoma, and Vascular Lesions. This dataset includes 

a total of 25,331 images, each of size 600 × 400. The train and test ratio is 80:20. 

Gleason 2019 dataset contains prostate cancer from H&E-stained histopathology 

images provided by Gleason 2019 challenge (https://bmiai.ubc.ca/research/miccai-

automatic-prostate-gleason-grading-challenge-2019). This challenge is part of the 

MICCAI 2019 Conference and will be one of the three challenges under the MICCAI 

2019 Grand Challenge for Pathology. Data used in this challenge consists of 267 tissue 

micro-array (TMA) images. The size of each image is 5120 x 5120. Each TMA image is 
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annotated in detail by several expert pathologists. Map1 (the first expert pathologist 

labels) is selected as the proper labels and split these images into train and test with a 

ratio of 80:20. 

The microscopic biopsy images in the BreakHis dataset were collected from 82 

patients using different magnifying factors (40X, 100X, 200X, and 400X). The images 

are provided in their raw PNG (Portable Network Graphic) format, without normalization 

or color standardization, and are all the same size (700x460 pixels, 3-channel RGB, 8-bit 

depth per channel). The samples were collected using the Surgical Open Biopsy method, 

called partial mastectomy or excisional biopsy [39]. This procedure removes a large 

tissue sample and is done in a hospital with general anesthesia. 

The benign and malignant image groups are further divided into sub-groups 

describing the specific kind of anomaly. For benign lesions, the anomalies present are 

fibroadenoma, Phyllodes tumor, and tubular adenoma. For the malignant lesions, the 

anomalies present are ductal carcinoma, lobular carcinoma, mucinous carcinoma, and 

papillary carcinoma. 

The images at the 400X magnification level are used in the experiment. In total, 

there are 1,606 samples in dataset, the ratio of train and test is 80:20. Out of that total, 

374 samples are benign, and 1,232 are malignant. Using augmentation (adding more 

samples by rotating and flipping the original images), there will be 8,120 samples (6,496 

for training and 1,624 for testing). 

3.3.2 Deep Networks Compared in Study 

Two modern networks are used to evaluate the performance of the RDCNN network, VGG 

[4] and ResNet [5]. These two convolutional neural networks are designed to enable deeper 
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architectures and are trained with stochastic gradient descent. Both networks that we use 

have previously shown high accuracy on the ImageNet classification benchmark and thus 

serve as competitive baselines in the study. The models are implemented in Keras. 

VGG16 is based on the deep convolutional neural network with several 

convolutions and pooling layers. VGG16 is one of the winners of the ImageNet contest in 

2014 [4]. On the other hand, ResNet50 is the deep residual convolutional network [5] that 

contains connections from previous layers and not just the last one. ResNet won the 

ImageNet contest in 2015. 

 

3.4 Experimental Results 

As observed before [36, 40], Figure 3.3 shows that increasing features increases the test 

accuracy. Figure 3.1 shows that a new feature space will be generated in the final flattened 

layer when applied a kernel to each image. There are improvements in test accuracy as 

increasing the number of kernels on the STL10 and CIFAR10 benchmarks in Figure 3.3. 

It also shows that the training accuracy reaches 100% much faster. However, the test 

accuracy continues to improve. 



  

25 

 

Figure 3.3 Effects of the increasing number of kernels (final features) on the test 

accuracy. 

Source: [36] 

 

Therefore, preliminary experiments are conducted on RDCNN to study the effect 

of increasing features. Both ResNet50 and VGG16 are trained with a batch size of 32 and 

center cropped images for the Gleason dataset (whose images are enormous in dimensions). 

ISIC images are also performed center cropping to improve its test accuracy. Images in 

IDC are cropped by the ROI method into small patches. 

Table 3.1 shows the train and test accuracies of VGG16, ResNet50, and RDCNN 

on the four datasets as described before. On ISIC and Gleason, RDCNN achieves much 

higher accuracy than the remaining datasets. The kernel size of RDCNN has little effect on 

the datasets shown here. On the BreakHis (2-class and 7-class) and IDC datasets, ResNet50 
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has the highest accuracy, but RDCNN is only 1%, 3%, and 0.6% behind on test accuracy. 

After averaging the accuracy across all the datasets, RDCNN has the highest mean of 95%, 

whereas VGG16 and ResNet50 have 79% and 89.8%, respectively. 

Table 3.1 Train and Test Accuracies (Shown as Percentages) of Fully Trained VGG16 

and ResNet50 and Unsupervised RDCNN on Our Datasets 

 Dataset Method Train Test 

 IDC VGG16 92.2 83.3 

  ResNet50 100 88.2 

  RDCNN(30K features, k=3, 4 layers) 87.8 87.6 

  RDCNN(50K features, k=5, 4 layers) 86.3 87.6 

     

 Dataset Method Train Test 

 ISIC VGG16 89.8 85.9 

  ResNet50 90.3 87.5 

  RDCNN (65K features, k=3, 4 layers) 100 100 

  RDCNN (65K features, k=5, 4 layers) 100 100 

     

 Dataset Method Train Test 

 Gleason VGG16 83.3 73.4 

  ResNet50 87.5 75 

  RDCNN (68K features, k=3, 4 layers) 100 93.5 

  RDCNN (70K features, k=5, 2 layers) 100 93.5 

     

 Dataset      Method Train Test 

 BreakHis 

(2 classes) 

VGG16 82.8 81.8 

  ResNet50 100 99.8 

  RDCNN (10K features, k=3, 7 layers) 100 98.8 

     

 Dataset Method Train Test 

 BreakHis 

(7 classes) 

VGG16 99.14 70.61 

  ResNet50 94.1 98.6 

  RDCNN (10K features, k=3, 7 layers) 99.5 95.4 

 

 

To determine why RDCNN performs better in this study, Figure 3.4 shows a 

random image from the ISIC dataset and its top ten similar images in each network’s final 
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layer feature space. In the spaces of RDCNN, all ten similar images are in the same 

category as the query. However, in ResNet50 and VGG16, two and three are from different 

classes. In datasets such as ISIC, where similarity also implies the same category, the 

unsupervised RDCNN network outperforms trained models. 

Figure 3.5 shows the top ten similar images from a randomly selected Gleason 

dataset. In the RDCNN final layer space, seven of the ten images are in the same category 

as the query. In contrast, in the ResNet50 and VGG16 final layer space, only six and five 

are in the same category as the query. 

 

3.5 Conclusion 

In this chapter, the unsupervised RDCNN is proposed. Compared with two state-of-the-art 

networks, the preliminary results suggest that RDCNN can be highly useful in classifying 

histopathology images where similarity also implies the same class membership. 

Furthermore, a kernel size of 3 and 4 layers works well in most cases on medical images. 
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Figure 3.4 Top 10 similar images in the ISIC dataset. Randomly selected ones (also from 

ISIC) are in the same class as the query in the RDCNN feature space but not in ResNet50 

and VGG16 space. 
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Figure 3.5 Top 10 similar images in the Gleason dataset. Randomly selected ones (also 

from Gleason) are also in the same class as the query in the RDCNN feature space but 

less in the ResNet50 and VGG16 space. 
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Chapter 4 

ACCURATE AND ADVERSARIALLY ROBUST CLASSIFICATION OF 

MEDICAL IMAGES WITH GRADIENT-FREE TRAINED SIGN ACTIVATION 

NEURAL NETWORKS 

 

In the previous chapters, machine learning algorithms have been proven to achieve high 

accuracy in classification tasks, and more new modules have been proposed to enhance 

accuracy. However, they could misclassify some data added by minor perturbations 

known as adversarial attacks [11-23]. The attackers can fool machine learning systems 

with adversarial images, often imperceptible to human eyes. In other words, the models 

could make mistakes by these adversarial inputs, which are intentionally crafted. As a 

result, machine learning systems would generate false results, misdiagnosis, or even 

cause insurance fraud. 

 

4.1 Adversarial Attack 

Adversarial examples have been shown to transfer across models, making it possible to 

perform transfer-based (substitute model) black-box attacks [13]. Transfer adversarial 

attacks and boundary attacks are the most lethal as they can be performed effectively 

without access to the model’s parameters. 

Researchers have investigated adversarial attacks on medical images and mainly 

focused on testing the robustness of deep learning models for medical image analysis [15 

- 17]. Paschali et al [17] showed that classification accuracy drops from above 87% on the 

regular medical images to almost 0% on the adversarial examples. Hokuto et al [18] 

demonstrated that the attack method achieved over 80% success rates on the DNNs model. 

Many defense methods have been proposed to defend against adversarial attacks, in which 
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adversarial training is most prevalent. However, this tends to lower accuracy on clean test 

data. To overcome this problem, transfer-based methods were developed [13, 14], but they 

are still vulnerable. Therefore, adversarial robustness is still an open problem in machine 

learning. 

 Generally, the adversarial attack injects minor distortion into original data to fool 

a machine learning system. For example, assuming a network F can correctly classify the 

clean data x, Equation (4.1) represents the projection from data x to corresponding 

classification result y. 

     F(x) = y                                                               (4.1) 

Let the fake data be x’. The adversarial attacker G generates an adversarial example x’, so 

the adversarial example is in Equations (4.2) and (4.3). 

x’ = G(x)                                                              (4.2) 

d(x, x’) ≤ε(x)                                                           (4.3) 

F(x’) ≠ y                                                               (4.4) 

The G aims to generate a successful x’ where the Euclidean distance d between x and x’ 

should be smaller than a threshold value ε(x), so F cannot detect the x.’ Finally, the 

classifier will misclassify the data ‘x as in Equation (4.4). 

The images shown in Figure 4.1can help understand the harm of adversarial attack. 

By adding an imperceptibly small noise, the classification result of the image is changed. 

Here the value .007 corresponds to the magnitude of the tiniest bit of an 8-bit image 
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encoding after GoogLeNet [3] conversion to real numbers. However, the adversarial 

example on the third column looks the same as the first clean image for humans. 

 

Figure 4.1 A example of adversarial example generation applied to GoogLeNet [3] on 

ImageNet. 

Source: [19] 

 

4.1.1 Black-box Attack 

The black-box attack method is also called Decision-based attack. The attackers cannot 

access neural networks and the accurate probability in the real world but know the predicted 

category. Brendel et al [41] proposed that a decision-based adversarial attack achieves 

similar performance as a white-box attack. However, it is hard to practice on networks in 

the real world, since the massive queries to model are time consuming. Jianbo et al [42] 

proposed a query-efficient decision-based attack named HopSkipJump. It asked fewer 

queries to the target model and competitive performance in attack compared with Brendel. 

In the following experiment, the HopSkipJump implementation in the IBM 

Adversarial Robustness Toolkit [42] is used to evaluate the robustness of the model. It is a 

family of algorithms and includes both untargeted and targeted attacks optimized for L2 

and L∞ similarity metrics. The model is developed based on a novel estimate of the 



  

33 

gradient direction using binary information at the decision boundary. Theoretical analysis 

and experiments show that HopSkipJump requires significantly fewer model parameters 

than several state-of-the-art decision-based adversarial attacks. It also achieves competitive 

performance in attacking several widely-used defense mechanisms. 

4.1.2 White-box Attack 

Unlike black-box attacks, white-box attackers can access all the information of the target 

models, such as architecture, parameters, and gradients. Therefore, the white-box attack 

can carefully craft adversarial examples by using this crucial information. Nonetheless, it 

is hard to use in practice since disclosing model architecture and parameters used in 

industries is rarely public; only some academic research will be open.  

Recent researches on White-box attacks aim to help people understand the 

weakness of DNN models. Commonly used white-box attack algorithm includes Fast 

Gradient Sign Method [19], Deep Fool [18], and Projected Gradient Descent Attack [43]. 

Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD) attack will be 

used in this dissertation to study the defense ability of models. 

 

4.2 Methods 

With many kinds of research introduced above illustrating the incredible power of 

adversary examples, the adversarial robustness of machine learning models has achieved 

colossal progress [17, 20-29]. In the beginning, the gradient-based white-box attacks are 

used to improve the security of models. Then there are more strategies developed to defend 

against the adversarial attacks based on searching minimum distortion and black-box 

attacks. 
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Gradient-free trained sign activation networks have been proven a higher 

possibility to defend against adversarial attacks [15, 16]. These networks are trained with 

a stochastic coordinate descent algorithm [17, 18], and their higher minimum distortions 

indicate that an image must comply with a more distinct modification to fool a model. This 

chapter adopts the gradient-free stochastic coordinate descent algorithm for training sign 

activation networks on medical image datasets to defend against black-box attacks. 

4.2.1 The Stochastic Coordinate Descent (SCD) 

Assume a given binary class data xi ∈ Rd and yi ∈ {−1, +1}, for i = 0, 1, ..., n−1. A linear 

classifier w ∈ Rd, w0 ∈ R minimizes the empirical risk for a given loss function defined as 

Equation (4.5),  

Lscd= ∑ L (w, w0, xi, yi)                                            (4.5) 

where starting with a random solution wi ∈ N (0, 1), w0 ∈ N (0, 1), for i = 0, 1, ..., d − 1 and 

iteratively make incremental changes that improve the risk.  

In each iteration, a random set of features (coordinates) from w is selected called F. 

For each feature wi ∈ F, we add or subtract a learning rate η and then determine w0 that 

optimizes the risk. Finally, all possible values of w0 are computed as in Equation (4.6), 

                                       w0 = 
wi

Txi+wi+1
T xi+1

2
, (i = 0, 1, ..., n − 2 )                                 (4.6) 

where select the one that minimizes the loss Lscd. A random sample of the training data in 

each iteration is generated to avoid local minima.  

The above search algorithm is stochastic coordinate descent and is abbreviated by 

SCD. SCD will be applied to the final node and then a randomly selected hidden node in 
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each algorithm iteration to train a single hidden layer network. In practice, parallelism 

and several heuristics are used to speed up the run time. 

4.2.2 Loss Function 

The loss function is derived from the mathematical optimization theory, and it usually 

maps one or more values to the actual numbers. Intuitively it means the event’s cost. The 

loss function related to machine learning is used to evaluate the difference between the 

predicted results of the model and the actual value. The lower value of loss function 

indicates the more accurate model performance obtained from training. Two general loss 

functions will be used in the proposed networks in classification tasks: Zero-one loss, and 

Cross entropy loss. 

1. Zero-One Loss 

Zero-one loss describe as in Equation (4.7), where F is a model which can correctly 

classify the input data x, and the predicted output is F(x), y is the correct label related to 

x. When the predicted value is the same as the actual label, the loss value will be 1; 

otherwise, it is 0. Zero-one loss function is non-convex, and it is tough to solve. 

Therefore, it is more convincible when judging the number of errors in classification 

prediction.  

𝐿(𝑦, 𝐹(𝑥)) =  {
1, 𝑖𝑓 𝑦 = 𝐹(𝑥)

0, 𝑖𝑓 𝑦 ≠ 𝐹(𝑥)
                                     (4.7) 

 

2.  Cross-Entropy Loss 

Cross-entropy loss is also named log loss; the output L is a probability value between 0 and 

1. Cross-entropy loss values follow the same tendency as the predicted probability a of the 
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actual label y. For instance, when the actual observation label is 1, but the probability of 

predicting 1 is .012, that would be bad and result in a high loss value. Ideally, the loss of 

the perfect model would be 0.  

L(y, f(x)) =  −
1

𝑛
∑ [𝑦 ∗ ln 𝑎 + (1 − 𝑦) ∗ ln (1 − 𝑎)]𝑥                (4.8) 

The sigmoid function is usually used to obtain the probability of a binary class dataset. 

4.2.3 Network Implementation  

The following three types of sign activation networks using the proposed algorithm are 

trained in this dissertation: 

1. SCD01MLP: 01-loss in the final node with an MLP network. 

2. SCDCEMLP: Cross-entropy loss in the final node with an MLP network. 

3. SCDCEBNN: Cross-entropy in the final node with binary weights throughout 

the model. 

 

The basic architecture of SCD models is shown in Figure 4.2. The training 

procedure is implemented in Python, Numpy, and Pytorch. Since sign activation is non-

convex, the training process starts from a different random initialization, runs 100 times, 

and outputs the majority vote. 

To illustrate the run time and clean test accuracies, the experiments are designed 

to compare the proposed models with the convolutional networks LeNet [1], ResNet18 

[5], and a single hidden layer of 20 nodes to the equivalent network with sigmoid 

activation and logistic loss function (denoted as MLP). The MLP classifier in Scikit-learn 

is used to implement MLP and the Larq library to approximate the sign activation. 
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(a) 

 

(b) 

Figure 4.2 The Architecture of SCD models. (a) The sign activation networks with our 

algorithm and 01-loss in the final node, (b) the sign activation networks with our algorithm, 

and cross-entropy loss in the final node. 

 

In addition, the HopSkipJump is used to evaluate the robustness of those target 

models. Theoretical analysis and experiments show that HopSkipJump requires 

significantly fewer model parameters than several state-of-the-art decision-based 

adversarial attacks. It also achieves competitive performance in attacking several widely-

used defense mechanisms. Figure 4.3 shows the scheme of the evaluation process. 
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HopSkipJump attacks a predictive model to generate an adversarial image, which would 

fool the model. Each image will be attacked by HopSkipJump 10 times to increase the 

chance of obtaining an accurate estimation. Each time, the initial pool size is 1,000 random 

data points and maximum iterations of 100 to report the minimum value. For a single data 

point, this typically takes several hours to finish. Therefore, this dissertation can report the 

distortion of only five random points in this dissertation. 

 

 

Figure 4.3 The procedure of attacking the models with HopSkipJump. 
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4.3 Dataset 

Three popular medical imaging datasets are used to evaluate the classification accuracy, 

BraTs18, Chest X-rays, and Colorectal Histopathology. Aside from the difference in 

imaging tissue and modality of these three data sets, the images are shown in Figure 4.4. 

4.3.1 BraTs18 

The BratS18 dataset is 210 high-grade glioma (HGG) and 75 low-grade gliomas (LGG) 

MRI with binary masks for the tumor. Each 3D MRI contains 155 slices of size 240 × 240. 

The FLAIR modality images are used in all the experiments because the entire tumor is 

represented well by this modality. In total, there are 17,100 abnormal and 18,500 benign 

images for training. For testing, there are 1,800 abnormal and 1,900 benign images. Here 

also show more experimental results on other modalities, where ANT-GAN presents 

impressive synthesis quality. The two classes are down-sample to be a balanced dataset, 

and each class contains 1,462 images, which are resized to 96 × 96. The ratio of training 

and testing datasets is 80: 20. 

4.3.2 Chest X-rays  

The Chest X-ray images (anterior-posterior) are selected from retrospective cohorts of 

pediatric patients of one to five years old from Guangzhou Women and Children’s Medical 

Center, Guangzhou, China. All chest X-ray imaging was performed as part of patients’ 

routine clinical care. The dataset is organized into two folders (train and test) and contains 

subfolders for each image category (pneumonia/normal). There are 5,863 X-ray images 

and two categories (pneumonia/normal). All chest radiographs are initially screened for 

quality control by removing all low-quality or unreadable scans. Two expert physicians 

then grade the diagnoses for the images before being cleared for training the AI system. 
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The evaluation set is checked by a third expert to account for any grading errors. The 

preprocessing resizes the images to 96 × 96 and down-sample to 1,584 for each category 

as the balanced dataset. There are 3,168 images in total, which are split into training and 

testing sets by a ratio of 80: 20. 

4.3.3 Colorectal Histopathology 

This dataset represents a collection of textures in histological images of human colorectal 

cancer. Ten anonymized H&E stained CRC tissue slides are obtained from the pathology 

archive at the University Medical Center Mannheim, Heidelberg University, Germany. The 

low-grade and high-grade tumors are included in this set, and no further selection is 

applied. The slides are first digitized, and then the contiguous tissue areas are manually 

annotated and tessellated to create 625 non-overlapping tissue tiles of size 150 × 150 (74 

μm × 74 μm). Thus, the texture features of different scales are included, ranging from 

individual cells (approximate 10 μm) to larger structures such as mucosal glands (>50 μm). 

The following eight tissue types are selected for analysis: tumor epithelium, simple stroma, 

complex stroma, immune cells, debris, normal mucosal gland, adipose tissue, and 

background (no tissue). Together, the resulting 5,000 images represent the training and 

testing sets. The experiments randomly pick two classes, immune cells and normal mucosal 

glands, resize them to 96 × 96, the ratio of train and test sets is 80: 20.  
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Figure 4.4 The sample images from three datasets. (a) Benign brain MRI, (b) abnormal 

brain MRI, (c) health chest X-ray, (d) pneumonia chest X-ray, (e) and (f) two different 

classes of human colorectal cancer, normal mucosal glands, and immune cells.  
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4.4 Qualitative Analysis 

4.4.1 Evaluation of the Test Accuracy 

Firstly, this work conducts experiments to compare all seven models’ clean test accuracies 

on chest X-ray, histopathology, and BraTs18. The results are listed in Table 4.1. On the 

Chest X-ray dataset, the convolutional networks LeNet [1] and ResNet18 [5] have higher 

accuracies since they have the advantage of convolutions. On histopathology, the MLP and 

Random Forest have higher accuracies. Finally, on BraTs18, the ResNet18, LeNet, and 

Random Forest have higher accuracies, but other models are not too far behind. 
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Table 4.1 Average Accuracy of Validation Data on BraTs18, Chest X-ray, and 

Histopathology Image Datasets 

 SCD01 SCDCE SCDCEBNN MLP LeNet ResNet18 

Random 

Forest 

BraTs18 98.38% 98.92% 95.31% 98.76% 99.1% 99.64% 99.07% 

Chest X-ray 90.69% 91.32% 89.12% 88.72% 92.59% 94.32% 89.12% 

Histopathology 99.2% 99.6% 99.6% 100% 99.6% 99.6% 100% 
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4.4.2 Evaluation of the Defense Ability by L2 Distance 

This work quantitatively measures the defense’s robustness by measuring the distance 

between normal and abnormal samples under the L2 metric, as most attacks did [44]. The 

Lp distance is the difference between original examples and adversarial examples, defined 

as  

||d||p=(∑ |vi|p)n
i=0

1/p
                                               (4.9) 

Common choices of p include L0, a measure of the number of pixels changed; L2, the 

standard Euclidean norm; or L∞, a measure of the maximum absolute value change to any 

pixel. If the distortion under any of these three distance metrics is minor, the images will 

likely appear visually similar. 

This section compares the minimum distortion required to make an adversarial 

image on different models to evaluate the defense ability of adversarial attacks. The larger 

the value, the more robust the model since a significant distortion is likely to be detected 

in advance. Finding the exact minimum distortion is an NP-hard problem evaluated in 

ReLu activated neural networks and tree ensemble classifiers. Even the approximation of 

the minimum distortion in ReLu activated neural networks is NP-hard. 

The distortions reported by HopSkipJump are lower (i.e., tighter and more accurate) 

than other boundary attack methods. Therefore, the HopSkipJump boundary-based black-

box attack determined the adversarial distortion of randomly selected images from the 

BraTs18, chest X-ray, and colorectal cancer histopathology validation datasets. 

The HopSkipJump is run ten times on each image to report the minimum value.  
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As shown in Figure 4.5, after 90 iterations, the distortions are minimum in all cases and 

become stable. Therefore, considering the best results and the computational ability, the 

experiments set 100 as the maximum iteration. 

  

 

Figure 4.5  L2 distances on one image change with different max iterations when 

Hopskipjump attacks different models. 

 

 

Table 4.2 and Figure 4.6 shows the average adversarial distortions of random test 

images from the BraTs18. Again, the gradient-free trained sign networks have higher 

distortions than other state-of-the-art models, and the SCDCEBNN has the highest 

distortion.  
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Table 4.2 Average Minimum Estimated L2 Adversarial Distortion on BraTs18 Datasets 

as Given by HopSkipJump When Attacking Different Models 

 
       

SCD01 

        

SCDCE 

            

SCDCEBNN 

    

MLP 

       

LeNet 

         

ResNet18 

Random 

Forest 

Image 1 14.61 19.13 23.47 8.95 12.28 2.00 3.44 

Image 2 10.55 13.44 16.18 4.32 9.06 1.95 4.03 

Image 3 8.17 12.05 15.13 2.75 7.47 1.82 2.12 

Image 4 7.49 13.00 3.33 3.67 7.50 2.50 3.33 

Image 5 8.75 11.66 2.87 3.99 8.75 2.12 3.99 

Average 9.06 12.23 13.70 4.38 8.27 2.00 2.78 

 

 

Figure 4.6 The candlestick chart plots the L2 distances on all adversarial images from 

BraTs18 on different models.
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Figure 4.7 plot the original and adversarial images of “Image 1” from the BtaTs18 

dataset to get a visual feel for the distortions. The first six adversarial images have a high 

distortion, where (b) - (d) are the adversarial images from SCD models. Note that they have 

higher distortions than the currently available state-of-the-art models. Clearly, there are 

more noises than the original, while the other images are hard to observe the difference by 

human eyes. 

Table 4.3 and Figure 4.8 lists the average adversarial distortions of random test 

images from the Chest X-ray dataset, where MLP is the second best after SCDCE. 

 Figure 4.9 shows the original and adversarial images of “Image 1” from the Chest 

X-ray dataset to get a visual feel for the distortions. They all have higher distortions, among 

which SCDCE has the highest. 

Table 4.4 and Figure 4.10 lists the average adversarial distortions of random test 

images from the colorectal dataset. Again, the average distortion of SCDCEBNN is the 

highest. 

Figure 4.11 shows the original and adversarial images of the human colorectal 

histopathology dataset, which shows a visual feel for the distortions. All three SCD models 

have higher distortions than other models. Compared with other adversarial images, 

SCDCE adversary is full of more colorful dots. The morphology is hard to identify, such 

that it would be potentially abnormal. 
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Figure 4.7 Visualization of original and adversarial images among different networks from 

BraTs18 dataset. (a) The original image, (b) the adversarial example which will fool 

SCD01, (c) the adversarial example which will fool SCDCE, (d) the adversarial example 

which will fool SCDCEBNN, (e) the adversarial example which will fool MLP, (f) the 

adversarial example which will fool LeNet, (g) the adversarial example which will fool 

Resnet18, and (h) the adversarial example which will fool Random Forest. 
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Table 4.3 Average Minimum Estimated L2 Adversarial Distortion on Chest X-ray 

Datasets as Given by HopSkipJump When Attacking Different Models 

 SCD01 SCDCE SCDCEBNN MLP LeNet ResNet18 

Random 

Forest 

Image 1 10.59 18.40 17.50 14.78 4.28 1.03 18.53 

Image 2 10.48 16.39 12.64 15.08 2.86 0.45 11.28 

Image 3 9.00 17.55 10.50 14.49 4.19 0.64 9.18 

Image 4 9.26 7.68 11.68 10.71 0.34 0.07 12.01 

Image 5 7.24 14.02 10.16 12.91 4.10 0.43 2.39 

Average 9.31 14.81 12.49 13.60 3.15 0.52 10.68 

 

 

 
Figure 4.8 The candlestick chart plots the L2 distances on all adversarial images from 

BraTs18 on different models.
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Figure 4.9 Visualizations of original and adversarial images among different networks 

from the Chest X-ray dataset. (a) The original image, (b) the adversarial example which 

will fool SCD01, (c) the adversarial example which will fool SCDCE, (d) the adversarial 

example which will fool SCDCEBNN (e) the adversarial example which will fool MLP, 

(f) the adversarial example which will fool LeNet, (g) the adversarial example which will 

fool Resnet18, and (h) the adversarial example which will fool Random Forest. 
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Table 4.4 Average Minimum Estimated L2 Adversarial Distortion of on Colorectal Cancer 

Histopathology Datasets as Given by HopSkipJump When Attacking Different Models 

 SCD01 SCDCE SCDCEBNN MLP LeNet ResNet18 

Random 

Forest 

Image 1 28.3 41 41.32 9.9 29 31.6 19.9 

Image 2 4.4 6.3 9.2 2.8 7 6.2 3.9 

Image 3 35.8 36.1 44.71 9.9 36.8 39.8 30.4 

Image 4 30 38.6 43.02 12 24.1 19.1 28.7 

Image 5 17.2 26.5 28.97 7.7 17.1 19 13.4 

Average 24.1 29.7 33.44 8.5 22.8 23.1 19.2 

 

 
Figure 4.10 The candlestick chart plot the L2 distances on all adversarial images from 

BraTs18 on different models.  
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Table 4.5 lists the average minimum estimated L2 adversarial distortion on all three 

datasets. Again, the distortions of the SCD models are even higher, with SCDCEBNN 

taking the lead and twice better than all other models. 

Table 4.5 Average Minimum Estimated L2 Adversarial Distortion on All Three Datasets 

 

 SCD01 SCDCE SCDCEBNN MLP LeNet ResNet18 

Random 

Forest 

Average 13.67 18.26 19.12 8.59 10.96 8.43 10.74 
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Figure 4.11 Visualizations of original images and adversarial images among different 

networks from colorectal histopathology dataset. (a) The original image, (b) the adversarial 

example which will fool SCD01, (c) the adversarial example which will fool SCDCE,         

(d) the adversarial example which will fool SCDCEBNN, (e) the adversarial example 

which will fool MLP, (c) the adversarial example which will fool LeNet, (e) the adversarial 

example which will fool ResNet18, (f) the adversarial example which will fool Random 

Forest. 
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4.4.3 Evaluation of Defense Ability by Transferability 

Another evaluation is to make use of the transferability property [13]. For example, given 

two models, F (·) and G (·), an adversarial example trained on F will be an adversarial 

example on G, even if they are trained in entirely different manners or on different datasets. 

There have been many available methods to construct adversarial examples and make 

networks robust against adversarial examples. However, no defenses have been able to 

classify adversarial examples correctly. Thus, correctly classifying adversarial examples is 

difficult.  

In the previous section, attackers generate adversarial samples on different models 

and test these adversarial examples as misclassifications. If a model G can detect the 

adversarial examples from another model F and classify them correctly, it is more robust 

against adversarial attacks. Table 4.6 shows the results for classifying one random image 

and all adversarial examples. A random image can be classified by all models correctly, 

marked as “Y”. The targeting adversarial samples are misclassified by their targeting 

models, respectively. If the model can identify the adversarial example correctly, it is 

marked as ‘Y’, otherwise, it is marked as ‘N’. The proposed models SCD01MLP and 

SCDCE can detect all adversarial examples and classify them correctly. 
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Table 4.6  Results for Classifying One Random Image and All Adversarial Examples 

 SCD01 SCDCE SCDCEB

NN 

MLP LeNet ResNet18 Random 

Forest 

Original Test 

Image 

Y Y Y Y Y Y Y 

Adversarial 

Image from 

SCD01 

- Y Y Y Y N Y 

Adversarial 

Image from 

SCDCE 

Y - Y N Y N Y 

Adversarial 

Image from 

SCDCEBNN 

Y Y - Y N N N 

Adversarial 

Image from 

MLP 

Y Y Y - Y N Y 

Adversarial 

Image from 

LeNet 

Y Y Y Y - N Y 

Adversarial 

Image from 

ResNet18 

Y Y Y Y Y - Y 

Adversarial 

Image from 

Random Forest 

Y Y Y Y Y N - 

 

 

Table 4.7 shows the average accuracy of all models when classifying the adversarial 

examples. The proposed models have higher accuracy, 88.89% and 85.19%, respectively. 

They can identify fake examples and are hard to be fooled by adversarial attacks. Other 
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models like MLP and LeNet are also not wrong but lower than our proposed models, 

Resnet18 is significantly lowest.  

Table 4.7 Average Accuracy of All Models When Classifying the Adversarial Examples 

 

   SCD01    SCDCE  SCDCEBNN    MLP   LeNet ResNet18   Random     

    Forest 

Average 

Accuracy 
88.89% 88.89%  85.19% 81.48% 81.48% 38.89% 57.14% 

 

 

 

4.5 Conclusions 

This chapter presents robust models to adversarial attacks in MRI images, chest X-rays, 

and histopathology images. The preliminary experiments show that higher distortions are 

required when adversarial attacking is applied on the gradient-free trained sign networks 

with SCD compared with state-of-the-art models. Experimental results on classifying the 

adversarial samples show that the proposed models’ accuracies are more competitive than 

others, and the adversarial attack can easily be detected on our models.  
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CHAPTER 5 

ADAPTIVE IMAGE RECONSTRUCTION FOR PROACTIVELY DEFENDING 

AGAINST ADVERSARIAL ATTACKS  

 

5.1 Adversarial Attacks Defend Mechanism 

The DNN-based image classifiers can misclassify the adversarial examples well-crafted by 

adversarial attacks, as discussed in previous chapters. To defend against adversarial attacks 

proactively, some researchers proposed the techniques of improving model robustness and 

detecting malicious behaviors.  

5.1.1 Model-Specific Defense Mechanism 

The model-specific defense mechanism is to normalize the parameters of a particular 

model through adversarial training. It makes the models more robust to the specific attacks 

corresponding to training samples. However, the disadvantage is obviously, for instance, 

the amount of training time consumed on individually training a model to the possible type 

of attack, and potential attackers can still attack the trained defense model by calculating 

its gradient.  

The common defense methods include adversarial training (AT) [21] and equip 

CNN models to detect adversarial examples [21-25]. Nevertheless, adversarial training 

requires as many adversarial examples as possible to retrain the network and improve 

classification accuracy. Although Xu et al [25] proposed training the detection modules 

equipped into CNN models, this technique requires modifying the model and many 

adversarial examples. The retraining process requires a set of adversarial examples and the 

corresponding benign ones. 
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These methods achieve competitive results in defending against adversarial attacks. 

Nonetheless, the retraining time and the large requirements on computational ability are 

not realized. Besides that, the performances rely on the comprehensive prior knowledge of 

various potential adversarial techniques. The worst thing is revamped attack algorithms, 

which are usually unknown to the defender in advance. Once the brand new adversarial 

samples are generated, the model-specific defense techniques have to take extra time to 

retain or rebuild the models. This is a good chance for the adversarial examples to evade 

the classifier.  

5.1.2 Model-Agnostic Defense Mechanism 

Model-agnostic defense mechanism aims to eliminate or reduce adversarial perturbations 

by preprocessing the input, such as JPEG compression and high-level representation 

guided denoiser (HGD) [45]. It usually requires only a tiny calculation and retains the 

models for different attack types. Nevertheless, compression will reduce the clean 

classification accuracy, and one defend method cannot be effective on all attackers, for 

instance, the HGD [45] method only against BIM and FGSM attacks. 

There are other recent methods to reconstruct the input images [26-29] to improve 

the robustness of the classifier. However, the noise added to the images varies widely. 

Some reasons lead to these problems. The first reason is that different adversary attackers 

generate different noises. Secondly, different target models will have different defense 

abilities. Moreover, the compelling adversarial images from the semantic and grayscale 

datasets are very different for attackers. Therefore, no one reconstructed strategy can 

remove all possible noise, which may sometimes lead to a new misclassification.   

 



  

59 

5.2 The Adversarial Perturbations and Removal 

5.2.1 The Perturbations from Adversarial Attacks 

The difference between the original and the crafted adversarial images looks like noises 

after visualizing. In Figure 5.1, the first column is the clean image. The middle column is 

the adversarial images generated by the Hopskipjump black-box attack on the ResNet18 

model. The last column is the noise the attacker adds. It suggests that adversarial 

perturbations are difficult to detect by human eyes at the pixel level but lead to substantial 

noise at feature levels. 

The perturbations from the adversarial attack are added layer by layer until the 

classifier makes a wrong decision. Different datasets require different scale perturbations 

even trained by the same model and attacker. For the same images trained on the same 

model, the effective fake samples are different with various attackers. We can observe that 

the noises added on the two different datasets in Figure 5.1 (c) and (f) are distinct, even 

though they are both crafted by the Hopskipjump attack on the ResNet18 model. 
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Figure 5.1 The perturbations on the image. (a) The clean image from BraTs18, (b) the 

adversarial image crafted by Hopskipjump black-box attack on the ResNet18 model,           

(c) the noise added by the attacker, (d) the clean image from ChestXray, (e) the adversarial 

image crafted by Hopskipjump black-box attack on the ResNet18 model, and (f) the noise 

added by the attacker. 

5.2.2 Perturbation Removal 

Let G denote an adversarial attacker, who generates a fake sample I’ (x, y) to fool the model 

F by adding perturbation ε(x, y) on the original image I(x, y) as 

                               I'(x, y) = I(x, y) + ε(x, y)                                                     (5.1) 

where x and y denote the spatial coordinates. Note that the perturbation ε(x, y) varies largely 

among attacker G, classifier F, and the clean input I. Assume that the model F can correctly 
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classify any clean instance. By applying the reconstruction techniques to remove ε(x, y), 

we can generate a reconstructed image I” (x, y), whose classified result is identical to the 

clean image I as 

                                                   F(I) = F(I")                                                                 (5.2) 

 Note that it is impossible to apply a single technique to remove all different 

perturbations. Image reconstruction techniques can reduce some noises, but over denoising 

happens since the noises are different among variant cases. Therefore, the reconstructed 

image I” (x, y) is a higher quality image than the adversarial one I’ (x, y), but a lower quality 

than the original clean image I(x, y). Our goal is to minimize the difference d(x, y) as 

                                                      d(x, y) = I(x, y) – I"(x, y)                                          (5.3) 

In this way, the model F has a higher chance to make the correct decision. Therefore, the 

challenge is to remove as many perturbations ε(x, y) as possible when an unknown input is 

given with added unknown noises.   

5.2.3 Entropy Value 

We use Shannon entropy [46, 47] to measure images’ uncertain distributions and 

complexity features to analyze the internal information characteristics. If the entropy is 

high, it means the image includes more information. Let the gray level k have a probability 

Pk. The entropy H is calculated as in Equation (5.4),  

                           H = − ∑ 𝑃𝑘 ∗ 𝑙𝑜𝑔2(𝑃𝑘)𝑘                                                (5.4) 

k = ∑ 𝑘𝑥,𝑦(𝑥,𝑦)                                                         (5.5)  
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The probability of the pixel k(x, y) is Pxy = k(x, y)/k. Therefore, we have 

                 H(x, y) =𝑙𝑜𝑔2(𝑘) −
1

𝑘
∑ 𝑘𝑥,𝑦 ∗ 𝑙𝑜𝑔2(𝑘𝑥,𝑦)(𝑥,𝑦)                                    (5.6) 

The minimum entropy value of zero occurs when the image pixel value is constant 

in any location. The maximum entropy value is related to the total number of grayscales. 

For instance, in an image with 256 gray levels, the maximum entropy is 𝑙𝑜𝑔2(256) = 8. 

Figure 5.2 shows the entropy values among different images, where (a) has a larger entropy 

than (c), indicating it contains less interest information. Note that the difference between 

the clean and adversarial images of (a) and (b) is greater than that of (c) and (d). We can 

conclude that the simpler images need larger perturbations to produce successfully 

adversarial samples. In contrast, color images are usually easy to craft with tiny noises. 

 

 

Figure 5.2 The entropy values among different images. (a) The clean image with the 

entropy of 1.5222, (b) the adversarial image crafted by FGSM attacker with the entropy of 

5.4241, (c) the clean image from ImageNet with the entropy of 4.9742, and (d) the 

adversarial image crafted by FGSM attacker with the entropy of 7.5302. 

 

 



  

63 

5.2.4 Adaptive Smoothing 

Image smoothing intends to reduce and suppress image noises. The average smoothing 

filter is shown in Figure 5.3, where (a) is a square mask of 3 × 3 and (b) is a plus-shape 

mask of 5 × 5.  

             

(a)                                                                    (b) 

Figure 5.3 Different average smoothing filter masks. (a) A square mask of 3 × 3 and (b) 

a plus-shape mask of size 5 × 5. 

               

The Gaussian template is another method to reduce the blur in the smoothing 

process and obtain a more natural smoothing effect. The average smoothing treats the same 

weight to all the pixels in the neighborhood. Therefore, it is natural to think about 

increasing the weight of the neighbors close to the center and reducing the weight of distant 

neighbors. Figure 5.4 shows a 3 × 3 Gaussian template.  

 

Figure 5.4 The 3 × 3 Gaussian mask template. 
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Increasing filter size to reduce the noises is an approach to remove as many noises 

as possible, but this method also causes the image over blurring. We use the adaptive 

Wiener filter to reconstruct data by removing noises without significantly blurring the 

structures in the image. The neighborhood 𝑎(𝑛1, 𝑛2) is used to estimate local mean 𝜇 and 

variance 𝜎2 as 

                                            𝜇 =  
1

𝑛∗𝑚
∑ 𝑎(𝑛1, 𝑛2)𝑛1,𝑛2∈𝑥                                   (5.7) 

                                      𝜎2 =
1

𝑛∗𝑚
∑ (𝑎(𝑛1, 𝑛2) − 𝜇)2

𝑛1,𝑛2∈𝑥                            (5.8) 

where 𝑥 is the n-by-m local neighborhood of each pixel. The pixel-wise filter to suppress 

noise is represented as 

                                     𝑏(𝑛1, 𝑛2) =  𝜇 +
𝜎2−𝛾2

𝜎2 (𝑎(𝑛1, 𝑛2) − 𝜇)                       (5.9) 

where 𝛾2 is the noise variance, which is default as the average of all local variance in 

Equation (5.8). 

 

5.3 The Proposed Method 

5.3.1 The Architecture 

Figure 5.5 shows the proposed framework. If the classified results of the original image 

X(x, y) and the related reconstructed image X”(x, y) are the same, we say X(x, y) is a clean 

image; otherwise, it is an adversarial sample. 
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Figure 5.5 Detect adversarial samples by comparing the original classified result and the 

reconstructed one. 

 

Two factors decide the reliability of this detection scheme. One is the robustness of 

model F. The previous chapters presented that the ability to defend against adversarial 

attacks differs vastly on different models. For example, LeNet has a higher tolerant ability 

than ResNet18, but is similar to MLP classifier. This means the reconstructed image X” (x, 

y) cannot be classified by ResNet18, but may work on LeNet. The other is the reconstructed 

technique, such that the perturbations added on the clean images are random, and all the 

removed noises made by preprocessing methods are different in different scenarios.  

This chapter proposes a novel reconstruction module with an adaptive process, as 

shown in Figure 5.6, which applies variant smoothing filters on different inputs. The 
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images of high entropy values require few distortions, and those of low entropy values need 

large perturbations. Based on different entropy values, we can decide if the smoothing 

filters should be applied or what kind of filters can be applied.  

 

 

Figure 5.6 The architecture of adaptive reconstruction module. Computing and training 

the entropy values are divided into different intervals. In different cases, the module will 

apply different filters to reconstruct the images.  
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5.3.2 Parameters Setting 

As discussed in previous sections, the filters may excessively smooth while reconstructing 

the images, and the models may return a new misclassification. To solve this problem, the 

uniform method is adopted to divide the entropy value into intervals evenly, and each 

interval shares the same size. Entropy values decide the quantities of intervals. The 

following adaptive filter selection algorithm is developed to select a filter for the image 

with different entropy values.  
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Algorithm 5.1 

Adaptive Filter Selection Algorithm 

 

Input: H: Entropy value; k: Intervals; F: Initiate Spatial filter; I(x,y): Original image 

input; Fi: another filter; i: the quantities of filters predefined; n: Entropy value; m1: 

Interval number; m2: Interval number 

Output: I'(x, y): the smoothed image 

if H < n and k ==m1, 

       return I(x, y) 

if H<n+1 and k ==m2, 

       return I(x, y) 

for all i filters: 

       if abs(I(x, y) – F1(I (x, y)) ) <= abs( I(x, y) – Fi(I (x, y))), 

                  return I'(x, y) = F1(I(x,y)), break 

       otherwise, F1(I (x, y)) = Fi(I (x, y)) 

end 

   

The proposed algorithm tests MINIST and ImageNet-subset (i.e., two classes) 

images to set the interval size threshold values. FGSM and PGD attack ResNet18 to craft 

adversarial images and apply the standard convolution spatial filer of size 5 × 5. The 

entropy values of the MNIST dataset are smaller than 4, and those of the ImageNet is larger 

than 6.  
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The experiments test different interval numbers and use MNIST and ImageNet-

subset as the experimental baseline. Since the entropy values of MNIST are all smaller than 

4, and those of ImageNet are typical more extensive entropy value set; i.e., all are greater 

than 6. As shown in Table 5.1, the accuracy of MNIST is continuously high. Although it 

is improved with increasing intervals but not over 1%, it can conclude that two intervals 

are good enough. On the other hand, the accuracy of the ImageNet-subset is enhanced when 

the number of intervals starts from six. 

 

Table 5.1 The accuracy of MNIST and ImageNet-subset under different numbers of 

intervals 

 

 

Dataset 

The number of intervals 

2 3 4 5 6 7 8 

MNIST  97.14% 97.28% 97.42% 97.57% 97.64% 97.65% 97.71% 

ImageNet-

Subset  

(2 classes) 

54.64% 78.05% 81.96% 85.86% 92.10% 92.88% 92.96% 

 

 

5.4 Experimental Results 

This section presents experiments on the three popular medical imaging datasets: BraTs18, 

Chest X-rays, and Colorectal Histopathology, as described in previous chapters, to evaluate 

the proposed algorithm. Two networks, ResNet18 and SCD01MLP, are used to evaluate 
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the defense performance. It has been shown that ResNet18 has the worst defense ability, 

while SCD01MLP is the best.  

5.4.1 Evaluation Against White-box Attacks 

Both networks are trained on the clean datasets, and the classification accuracies are all 

higher than 90%. Because generating the PGD adversarial examples does not work on non-

convex SCD models, the adversarial examples will not consider generated from SCD 

models. Table 5.2 evaluates the accuracy of ResNet18 on detecting white-box PGD attack 

examples. The adaptive smoothing filter works better by applying different filters and 

obtaining that. Table 5.3 shows the accuracy of SCD01MLP on detecting white-box PGD 

attack examples. The adaptive filters work better on BraTS18 datasets, but the Gaussian 

smoothing filters perform better on human colorectal histopathology images. 

5.4.2 Evaluation Against Black-box Attacks 

Tables 5.4 and 5.5 list the accuracies of detecting black-box BIM attack examples. The 

experiments set up four different filters and trained both networks on a clean dataset to 

achieve comparative classification accuracies. The adversarial examples are classified on 

the pertained models without defense methods. The detection accuracy shows that the 

adaptive and Gaussian filters work better on three datasets, but the adaptive filters perform 

better in removing black-box perturbations   
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Table 5.2 Performance of Detecting PGD Adversarial Examples with Different Smoothing Filters on ResNet18 

Accuracy 
Clean Accuracy 

on ResNet18 

3*3 Spatial 

Average 

Smoothing 

5*5 Spatial 

Average 

Smoothing 

3*3 Gaussian 

Smoothing 

Adaptive 

Smoothing with 

Mean 

Colorectal 

Histopathology 
99.60% 25% 25% 54.16% 54.16% 

BraTs18 99.64% 29.16% 29.16% 66.67% 70.83% 

ChestXray 94.32% 16% 25% 41.66% 41.66% 

 

Table 5.3 Performance of Detecting PGD Adversarial Examples with Different Smoothing Filters on SCD01MLP 

Accuracy 

Clean 

Accuracy on 

SCD01MLP 

3*3 Spatial Average 

Smoothing 

5*5 Spatial Average 

Smoothing 

3*3 Gaussian 

Smoothing 

Adaptive Smoothing 

with Mean 

Colorectal 

Histopathology 
99.20% 29.16% 54.16% 66.67% 54.16% 

BraTs18 98.38% 29.16% 66.67% 79.16% 79.16% 

ChestXray 90.69% 25% 41.66% 41.66% 41.66% 

  



  

 
 

 

Table 5.4 Performance of Detecting BIM Adversarial Examples with Different Smoothing Filters on ResNet18 

Accuracy 
Clean Accuracy 

on ResNet18 

3*3 Spatial 

Average 

Smoothing 

5*5 Spatial 

Average 

Smoothing 

3*3 Gaussian 

Smoothing 

Adaptive Smoothing 

with Mean 

Colorectal 

Histopathology 
99.60% 41.66% 45.83% 58.33% 58.33% 

BraTs18 99.64% 41.66% 50% 62.50% 62.50% 

ChestXray 94.32% 37.50% 37.50% 37.50% 45.83% 

 

Table 5.5 Performance of Detecting BIM Adversarial Examples with Different Smoothing Filters on SCD01MLP 

Accuracy 
Clean Accuracy 

on SCD01MLP 

3*3 Spatial 

Average 

Smoothing 

5*5 Spatial 

Average 

Smoothing 

3*3 Gaussian 

Smoothing 

Adaptive Smoothing 

with Mean 

Colorectal 

Histopathology 
99.20% 45.83% 58.33% 58.33% 62.50% 

BraTs18 98.38% 50% 62.50% 62.50% 62.50% 

ChestXray 90.69% 45.83% 37.50% 37.50% 58.33% 

                7
2
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5.4.3 Evaluation Against Non-Adversarial Samples 

To evaluate whether the filters can excessively remove the information from images, the 

experiments evaluate the accuracies on the clean images. Table 5.6 shows that the filters 

decrease the accuracy, but not over 1%. The filter improves the classification results or 

promises the baseline accuracy. 

5.4.4 Evaluation with Transfer Adversarial Samples 

Transferability is another vital property of a machine learning system. A model has a robust 

defense ability if it can correctly classify the adversarial sample from other unknown 

models. We show the classification rates on transfer examples in Tables 5.7 and 5.8. The 

SCD01MLP can correctly classify most adversarial examples from ResNet18 attacked by 

the black-box attack. The best accuracy is 91.19%, and the worst is 83%. The classification 

rates of ResNet18 are improved up to 16.1%. 



  

 

 

Table 5.6 Performance of Detecting Clean Examples with Different Smoothing Filters 

Accuracy 
Clean Accuracy on 

SCD01MLP 

3*3 Spatial Average 

Smoothing 

5*5 Spatial Average 

Smoothing 

3*3 Gaussian 

Smoothing 

Adaptive Smoothing 

with Mean 

Colorectal 

Histopathology 
99.20% 99.80% 98.69% 99.80% 99.20% 

BraTs18 98.38% 99.41% 98.38% 99.41% 99.67% 

Chest Xray 90.69% 92.23% 90.69% 93.78% 93.78% 

 

 

  

7
4

 



  

 

 

Table 5.7 Performance of SCD01MLP on Detecting Transferred Adversarial Examples 

Accuracy 
Clean Accuracy 

on SCD01MLP 

No 

Defense 

3*3 Spatial 

Average 

Smoothing 

5*5 Spatial 

Average 

Smoothing 

3*3 

Gaussian 

Smoothing 

Adaptive 

Smoothing 

with Mean 

Best case 

Improvement 

Colorectal 

Histopathology 
99.20% 85.19% 85.83% 83.33% 86.89% 86.89% 1.70% 

BraTs18 98.38% 88.89% 89% 88.41% 89.00% 91.17% 2.28% 

ChestXray 90.69% 82.13% 83.00% 83.00% 85.83% 83.00% 3.70% 

 

Table 5.8 Performance of ResNet18 on Detecting Transferred Adversarial Examples 

Accuracy 
Clean Accuracy 

on ResNet18 

No 

Defense 

3*3 Spatial 

Average 

Smoothing 

5*5 Spatial 

Average 

Smoothing 

3*3 Gaussian 

Smoothing 

Adaptive 

Smoothing 

with Mean 

Best case 

Improvement 

Colorectal 

Histopathology 
99.60% 26.60% 31.66% 25.83% 38.33% 38.33% 11.73% 

BraTs18 99.64% 38.89% 45.83% 43.92% 52.50% 52.50% 13.61% 

ChestXray 94.32% 21.40% 31.66% 31.66% 37.50% 37.50% 16.10% 

7
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This section detects the PGD adversarial examples generated from ResNet18 

models in the MNIST dataset to keep the fair scenario. Table 5.9 shows our approach is 

slightly lower than the adversarial training but higher than others. The classification 

performance on adversarial training is difficult to defeat. However, adversarial training 

takes longer time and requires a sufficient number of adversarial examples to retrain the 

networks. Furthermore, when a new attack technique is developed, adversarial training 

has to retrain the models again to improve the performance. Compared with that, the 

proposed method has a distinct advantage in consideration of training time and 

computation consumption. 

 

Table 5.9 Performance Comparisons with Other Methods 

Method Performance 

Feature Denoising for Improving Adversarial Robustness  55.70% 

Defense against Adversarial Attacks by Reconstructing Images 48%~98% 

Low-rank Completion of High-Sensitivity Points 62.20% 

Adversarial Training 98.00% 

Ours 97.14% 

 

 

5.5 Conclusion 

This chapter proposes a novelty adaptive framework that can reconstruct the images and 

proactively detect the adversarial attacks in advance. By comparing the classifying results 

of the original images and the reconstructed ones, the proposed method can detect the 
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adversarial samples successfully. Furthermore, an adaptive reconstruction process is 

developed based on the entropy values to avoid excessive noise reduction during 

reconstructing images. The significant contributions of the proposed method are that it does 

not need to retrain the model and can be assembled into any network. 

 The performances are evaluated in both white-box and black-box attack scenarios. 

In addition, different target models are conducted in the proposed mechanism to show the 

universal feature. Experimental results show significant improvement on correctly 

classifying the adversarial samples and providing a higher detecting accuracy than the 

existing techniques.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK  

 

6.1 Conclusion 

This dissertation presents three neural network frameworks with higher classification 

accuracy than state-of-the-art models. The dual path residual network, random depth wise 

convolutional neural network, and Stochastic Coordinate Descent (SCD) networks perform 

better than state-of-the-art.  

Meanwhile, the SCD networks are more robust than the traditional neural networks 

when conducting the black-box attack experiments. This evaluation demonstrates that the 

SCD can defend against adversarial attacks more efficiently. 

A novel adaptive image reconstruction defense mechanism is proposed to address 

the misclassifications caused by defense schemes. This scheme does not require prior 

knowledge or retrain the models and can ensemble in any network. It is more proactive and 

efficient than the traditional defense against methods. 

 

6.2 Future Work 

Even though the adaptive image reconstruction defense mechanism achieves more 

outstanding performance in some datasets, it is necessary to extend future works on more 

adversarial attacks and target models, including larger cohort datasets. Moreover, the 

adaptive reconstruction algorithm needs to develop a more efficient optimization method 

for training entropy values and filter selection. Currently, only binary classification results 
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are shown in this dissertation. Because of that, the zero-one loss being directly applied in 

multi-class problems will result in massive local minima during training. Future work aims 

to find a better multi-classifier to solve secure multi-class classification problems.  
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