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ABSTRACT

TYPE I ERROR RATE CONTROLLING PROCEDURES FOR MULTIPLE
HYPOTHESES TESTING

by
Beibei Li

This dissertation addresses several different but related topics arising in the field of

multiple testing, including weighted procedures and graphical approaches for controlling

the familywise error rate (FWER), and stepwise procedures with control of the false

discovery rate (FDR) for discrete data. It consists of three major parts.

The first part investigates weighted procedures for controlling the FWER. In many

statistical applications, hypotheses may be differentially weighted according to their

different importance. Many weighted multiple testing procedures (wMTPs) have been

developed for controlling the FWER. Among these procedures, two weighted Holm

procedures are commonly used in practice: one is based on ordered weighted p-values

and is called WHP; the alternative weighted Holm procedure that is based on ordered raw

p-values is named WAP. This part of dissertation studies statistical properties of these

two weighted procedures and make recommendation for their applications. First, the

corresponding closed testing procedures (CTPs) of both weighted procedures are obtained

and the WHP is proved to be uniformly more powerful than the WAP. Following this, in

order to provide an intuitive and clear way to communicate with non-statisticians, two

procedures are visualized with graphical approaches through a common initial graph and

their corresponding updating strategies. Next, the adjusted p-values are derived for these

two procedures. Finally, the optimality of these two procedures is discussed and it is shown

that the WHP is an optimal procedure in the sense that the procedure cannot be improved by

increasing even one of its critical values without losing control over the FWER. Simulations

were conducted to provide numerical evidence of superior performance of the WHP in

terms of the FWER control and average power.



In the second part of the dissertation, two graphical approaches are investigated. One

is the original graphical approach which is introduced in Bretz et al. (2009) and widely

used in clinical trials studies, and the other one is the default graphical approach, proposed

in Burman et al. (2009). These two graphical approaches are commonly considered

to be equivalent in the literature. However, this study shows that their equivalence can

only be achieved under certain conditions or in the case of three hypotheses. When the

conditions are satisfied, a general method is developed for deriving the equivalent graph.

The nonuniqueness property of the original graphical approach is also discussed. Moreover,

a simple and direct proof is offered for showing the FWER control of the original graphical

approach. This is helpful for understanding the original graphical approach thoroughly and

provides some guideline to develop new graphical approaches.

In the third part of the dissertation, a new generalized step-up FDR controlling

procedure is developed for discrete data. Most existing FDR controlling procedures are

developed for continuous data, which are often conservative when analyzing discrete data.

Lynch and Guo (2016) introduced a generalized stepwise procedure which generalizes

the usual stepwise procedure to the case where each hypothesis is tested with a different

set of critical constants. Under the framework of the generalized step-up approach, by

taking the discreteness and heterogeneity properties of discrete data into account and fully

utilizing known marginal distributions of true null p-values, a powerful generalized step-up

procedure is proposed for discrete case. Theoretically, it is shown that the proposed

procedure strongly controls the FDR under independence and is more powerful than the

popular BH procedure. Nevertheless, some theoretical as well as simulation issues still

remain to be fully addressed.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In many statistical applications, multiple testing problems are very common in clinical

trial studies and genome-wide association studies (GWAS), such as estimating the effects

of a new treatment, finding the optimal dose of a new drug, detecting adverse events and

testing gene sets or individual genes for differential expression. Consequently, multiplicity

problem, which we called type I error rate inflation, arises and the magnitude of the error

rate increases as the number of hypotheses becomes larger. For this kind of problem,

the difficulty is how to control the type I error rate at a pre-specified significant level

α and meanwhile achieve a high power. Unlike the single hypothesis testing, there are

various measures of type I error rate, the most common two are the familywise error rate

(FWER), the probability of making at least one false rejections, and the false discovery rate

(FDR) which is the expected proportion of false rejections among the rejected hypotheses.

Many multiple testing procedures (MTPs) have been developed to address the multiplicity

problem with the control of proper error rates. For small scale multiple testing problems,

the procedures controlling FWER are needed, especially in clinical studies, while for

large scale testing the procedures controlling FDR are more suitable. The Bonferroni

(1936) procedure, a single-step procedure, is the most basic method to control FWER

under arbitrary dependence and it is usually used to develop some advanced multiple

testing procedures, for example, Holm (1979) procedure which is a step-down version

of the Bonferroni procedure. Another popular procedure based on the Simes global

test is Hochberg (1988) procedure which is a step-up procedure and uniformly more

powerful than Holm procedure, but it controls the FWER under independence or positive

regression dependence. However, controlling FWER will be conservative when the number

1



of hypotheses is large and in such a situation one can often tolerate a small number or

proportion of type I errors. Benjamini and Hochberg (1995) developed a classical step-up

procedure, BH procedure, which strongly controls the FDR under independence that allows

to make a pre-specified proportion of false rejections and is suitable for testing a large

number of hypotheses. Benjamini and Yekutieli (2001) showed that the FDR control of BH

procedure can be extended to the cases of positive regression dependence and proposed a

modified BH procedure controlling the FDR under arbitrary dependence.

Moreover, it often happens that some hypotheses are more important than the others,

which suggests us to assign different weights to different hypotheses according to their

importance. In the existing literature, some progress has been made to develop weighted

procedures. Rosenthal and Rubin (1983) proposed a weighted Bonferroni procedure

which permits greater power for the important hypotheses. Holm (1979) and Benjamini

and Hochberg (1997) developed two different weighted Holm procedures. One is based

on ordered weighted p-values that we called WHP, see Holm (1979); the alternative

weighted Holm procedure that is based on ordered original p-values is named WAP, refer

to Benjamini and Hochberg (1997). Wiens et al. (2013) pointed out that hypotheses

ordering is more relevant for stepwise procedures with asymmetric rules for updating the

hypotheses weights, including the fixed-sequence and fallback procedures; however, the

similarities and differences of ordering based on raw or weighted p-values have not been

studied. Tamhane and Liu (2008) constructed weighted Hochberg-type step-up multiple

test procedures including two closed procedures based on weighted Simes tests: one

based on ordered raw p-values and the other one based on ordered weighted p-values.

However, both two weighted procedures lack simple stepwise structure, therefore it is

hard to be compared with each other and not easy to explain it to practitioners. And also

these procedures were developed under independence structure. Thus, to study weighted

procedures controlling the FWER with some simple and exact stepwise short-cuts is highly

needed. It happens to be that weighted Holm procedures, the WHP and WAP are such
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procedures. Therefore, it will be of interest and necessary to study these two weighted

Holm procedures by investigating the similarities and differences between them and make

recommendation for their use. In addition, it is also important to study the procedures’

optimality property that the procedures cannot be improved without losing the control of

error rates. Sarkar, Fu and Guo (2016) improved the Holm procedure by using pairwise

dependencies, but without information of dependence it was shown that Holm procedure

is an optimal procedure, see Gordon and Salzman (2008) and Gordon (2011). However,

there are few studies to explore the optimal property of weighted procedures, in the first

part of thesis proposal, we will study the optimal properties of both WHP and WAP. Mielke

et al. (2021) and Guilbaud (2021) proposed a stepdown MTP of Holm procedure and its

weighted version and a slight modification based on marginal p-values for rejecting at least

k out of m null hypotheses.

Closure principle (Marcus et al., 1976) is a powerful tool for constructing multiple

testing methods controlling the FWER. The multiple testing procedures constructed by

using the closure principle are called closed testing procedures (CTPs) and closed testing is

a flexible and easily explained approach to control the overall error rate that has been widely

used in pharmaceutical research, particularly in clinical trials settings, see Dmitrienko et

al. (2007), Brannath and Bretz (2010) and Henning and Westfall (2015). A hypothesis

is rejected in the context of multiple testing if and only if all intersection hypotheses

containing this hypothesis are rejected by the local tests in the context of single test;

however, sometimes the number of hypotheses is large, then the number of intersection

hypotheses increases rapidly and the CTPs are in general difficult to apply. In contrast,

graphs are usually easier to communicate with clinical teams than long and abstract

decision tables, which typically are not intuitive and can avoid unnecessary computer

programming. In order to make the weighted procedures being clear, intuitive and simple to

communicate with clinical teams, the graphical representations of both WHP and WAP will

be provided. Moreover, one more important reason to find powerful weighted procedures
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is that gatekeeping procedures and graphical approaches are commonly used in clinical

studies and the weighted procedures are fundamental to develop gatekeeping procedures

and graphical approaches, refer to Westfall and Krishen (2001), Ghulam, Wang and Xie

(2016), Bretz et al. (2009) and Bretz et al. (2011).

Even though we won’t study how to choose proper weights in our projects, its

importance can not be ignored. Except for choosing weights based on a priori importance

of the hypotheses or prior information, refer to Westfall et al. (2001), the researchers

can also choose weights depending on the concurrent data set to improve power without

compromising significance levels. There are many approaches using data dependent

weights and yet maintain familywise or generalized familywise error control, see Finos

and Salmaso (2007), Kang et al. (2009), Dalmasso et al. (2008), Westfall, Kropf and Finos

(2004) and Wang (2019). Also some papers have studied weighted parametric procedures

based on utilizing the joint distribution of test statistics (See Xie, 2011 and Xi et al.,

2017). There are also many weighted procedures with the control over FDR or wFDR,

see Benjamini and Hochberg (1997), Genovese, Roeder and Wasserman (2006), Benjamini

and Heller (2007), Zhao and Zhang (2014), Benjamini and Cohen (2017), Ramdas et al.

(2019) and so on.

For the second part of this dissertation, we focus on investigating two independently

developed graphical approaches, the original graphical approach in Bretz et al. (2009)

and the default graphical approach in Burman et al. (2009), and providing a direct proof

of the FWER control for the original graph. As aforementioned, the original graphical

approach is a simple, flexible and clear graphical visualization approach. And both of the

original graphical approach and the default graph are used to visualize Bonferroni-based

sequentially rejective procedures, so they are usually considered to be equivalent, refer to

Bretz et al. (2011), Robertson, Wason and Bretz (2020), etc. In fact, the study finds that

two graphical approaches are different, especially, when the number of hypotheses is larger

than 3. Moreover, given either one graph of two graphical approaches for testing multiple
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hypotheses, we want to see if we can find the other corresponding graphical approach. In

addition, the original graphical approach is commonly treated as a unique approach, we

want to study if it has this property or not. So in this part, we aim to study both approaches

thoroughly and provide theoretical results reference for future study, such as developing a

more general graphical approach.

For the third part of this dissertation, we focus on developing a new generalized

step-up FDR controlling procedure for discrete data. In many applications such as clinical

safety analysis, genome-wide association studies (GWAS) and next generation sequencing

data (NGS), the data of the experiments usually are represented by frequency counts. Also

many of such experiments often involve a large number of hypotheses to test. In the analysis

of such data, researchers often face the problem of multiple testing based on discrete test

statistics, aimed at controlling false discovery rate (FDR). Most existing FDR controlling

procedures are developed for continuous data, which are often conservative when analyzing

discrete data. The reason for this phenomenon is that the distribution of the p-values

for discrete data is stochastically larger than uniform (0, 1). Consequently, to develop

a procedure, taking the properties of discreteness and heterogeneity of discrete data into

account, becomes necessary and inevitable.

In the literature, some FWER controlling procedures for discrete data were developed

by considering the special property of discrete data. Tarone (1990) proposed a modified

Bonferroni procedure for discrete data, which improves the power by reducing the number

of tested hypotheses through eliminating those hypotheses with relatively large minimal

attainable p-values. There are also many other FWER controlling procedures, see Hommel

and Krummenauer (1998), Roth (1999), Leon and Heo (2005), He and Heyse (2019) and

Zhu and Guo (2019). However, only several studies are related to FDR control for discrete

data. Gilbert (2005) developed a modified FDR procedure for discrete data, which is a

simple two-step combination of the Tarone and BH procedures. Same as Tarone procedure,

Gilbert procedure only used the information of minimal attainable p-values. Heyse (2011)
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proposed a BH-type procedure relying on the averaged cumulative distribution functions

(CDFs) of the p-values of hypotheses when they are true. Heyse procedure is powerful

for discrete data; however, it can not be shown to control the FDR at a pre-specified

level α. Döhler, Durand and Roquain (2018) provided new FDR upper bounds to help

to construct BH-type procedures that incorporate the discrete and heterogeneous structure

of the data and provably control the FDR for any fixed number of null hypotheses under

independence. As modified versions of Heyse procedure, their procedures are not proved

to be more powerful than BH procedure. Döhler (2018) modified the Benjamini-Yekutieli

procedure by considering the special properties of discrete data. Recently, some adaptive

and weighted procedures were developed to control the FDR for discrete data, refer to

Chen, Doerge and Heyse (2018) and Chen , Doerge and Sarkar (2020). Lynch and Guo

(2016) presented a generalized step-wise procedure which generalizes the usual step-wise

procedure to the case where each hypothesis is tested with a different set of critical

constants. But this generalized procedure is only developed for continuous case. In our

project, under the same framework of the aforementioned generalized step-up approach,

by fully utilizing known marginal distributions of true null p-values, we plan to develop a

powerful generalized step-up procedure for discrete case.

1.2 Basic Concepts in Multiple Hypotheses Testing

Consider simultaneously testing m null hypotheses H1, · · ·, Hm for which m0 of them are

true and m1 of them are false. Let V , S and R denote the numbers of false rejections,

correct rejections and total rejections, respectively. Here, m, m0 and m1 are fixed numbers

while m is known and m0 and m1 are unknown, R can be observable while V and S are

unobservable.
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1.2.1 Type I error rates and power

Unlike the single hypothesis testing, there are various measures of type I error rate and

power. It is important to choose a suitable error rate before developing any MTP. The

commonly used ones are described as follows.

(a) Comparisonwise error rate (CWER) is defined as the proportion of incorrectly

rejected hypotheses among all tested hypotheses, which is given by:

CWER = E

(
V

m

)
=
E (V )

m
.

The simple rule of p-value≤ α can control the CWER well, so controlling the CWER does

not impose any multiplicity adjustment.

(b) Perfamily error rate (PFER): the expected number of false rejections,

PFER = E (V ) .

This is the strongest type I error rate in the literature.

(c) Familywise error rate (FWER): the probability of making at least one type I

errors, which is given by:

FWER = Pr (V ≥ 1) .

Controlling the FWER is suitable for the small scale test. And Strong control of the FWER

for the primary objections is mandated by FDA in all confirmatory clinical trials.

A MTP strongly controls type I error rate means that it can control type I error rate

under any combination of true and false null hypotheses. While weak control means

controlling type I error rate only when all null hypotheses are true. Generally, in our

proposal thesis, we will focus on strong control of type 1 error rate, since it is hard to

know which combination of true and false hypotheses the actual setting is.
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(d) False discovery rate (FDR): the expected proportion of false rejections among

all rejected hypotheses, which is given by:

FDR = E

(
V

R ∨ 1

)
.

It is introduced by Benjamini and Hochberg (1995) and suitable for the large scale testing

problems.

The order of four errors is CWER ≤ FDR ≤ FWER ≤ PFER, when all the null

hypotheses are true, we have FDR = FWER.

In addition to the type I error rates control, the performance of a MTP is usually to

be evaluated by a suitable overall power. The definitions of two commonly used power are

described as follows.

The minimal power is the probability of rejecting at least one false null hypothesis,

Minimal power = Pr (S ≥ 1) .

The average power is the expected proportion of rejected false null hypotheses among

all false null hypotheses,

Average power = E

(
S

m1

)
=
E (S)

m1

.

The average power is commonly used in practice for large scale multiple testing.

1.2.2 Closure principle

Closure principle (Marcus et al., 1976) is a powerful tool and fundamental principle

for constructing multiple testing methods controlling the FWER. The MTPs constructed

by using the closure principle are called CTPs and closed testing is a flexible and

easily explained approach to control the overall error rate that has been widely used in

pharmaceutical research, particularly in clinical trials settings. A hypothesis is rejected

in the context of multiple testing if and only if all intersection hypotheses containing this
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hypothesis are rejected by the local tests in the context of single test. Given a closed test

procedure with m null hypotheses Hi, i ∈ {1, . . . ,m}, for each hypothesis Hi, we test all

the intersection hypotheses

HI =
⋂
j∈I

Hj,

by valid local tests at a suitable level α , where I is an non-empty index set, such that

I ⊆ {1, . . . ,m} and i ∈ I . Hi can be rejected provided that all HI are rejected. And any

closed testing procedure strongly controls the FWER at level α.

1.2.3 Adjusted p-values

Westfall and Young (1993) provided a definition that adjusted p-value is the smallest

significant level at which one can reject the hypothesis using the given multiple test

procedure. And the adjusted p-values incorporate the structure of the underlying decision

rule that can be quite complex; thus, they can be compared with global significance level α

directly and give the same results as applying the multiple test procedures to the p-values.

1.2.4 Assumptions on p-values

Consider simultaneously testing m hypotheses Hi, i = 1, ...,m, with the associated

p-values P1, ..., Pm. Under true null hypotheses, the distribution of marginal p-values is

assumed to be distributed as follows,

Pr{Pi ≤ p} ≤ p, for any p ∈ (0, 1) and i ∈ I0,

where I0 is the index set of true null hypotheses.

In MTPs, we usually consider several types of joint dependence structure: arbitrary

dependence, independence, and positive regression dependence on subset (PRDS). Under

arbitrary dependence, we do not know any specific dependence structure of the p-values.
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Definition 1.2.1 A set D is called increasing if x ∈ D and y ≥ x implies y ∈ D. Here, the

inequality between vectors x and y is interpreted coordinatewise.

Assumption 1.2.1 (PRDS) The random variables (P1, ..., Pm) are PRDS on I0 if for any

increasing D and each i ∈ I0,

Pr ((P1, ..., Pm) ∈ D | Pi = p)

is non-decreasing in p.

First and second parts of this dissertation is discussed under arbitrary dependence,

while the third part, independent structure of the p-values is assumed.

1.3 Multiple Testing Procedures

Consider we simultaneously test m hypotheses H1, ..., Hm with p-values P1, ..., Pm and

positive weights w1, ..., wm, correspondingly. Then, the weighted p-values are P̃i = Pi

wi
,

i = 1, ...,m. Let P(1) ≤ ... ≤ P(m) be the ordered version of the p-values P1, ..., Pm

with corresponding hypotheses H(1), ..., H(m) and corresponding weights w(1), ..., w(m).

Let P̃(1) ≤ ... ≤ P̃(m) be the ordered version of the weighted p-values P̃1, ..., P̃m

with corresponding hypotheses H∗(1), ..., H
∗
(m) and corresponding weights w∗(1), ..., w

∗
(m).

Suppose there are m0 true null hypotheses and m1 false null hypotheses and let I0 denote

the indices of true nulls. Let α1 ≤ α2 ≤ ... ≤ αm be a sequence of increasing critical

constants and let α0 = 0.

There are three main types MTPs: p-value based MTPs, parametric MTPs and

resampling based MTPs. In this proposal thesis, we only focus on p-value based MTPs.

Usually they are stepwise procedures.

1.3.1 Several classical stepwise FWER controlling procedures

Single-step procedure : A stepwise procedure with the same critical constant c, reject any

hypothesis Hi if and only if Pi ≤ c.
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Bonferroni Procedure(1936): the most classical single-step procedure, reject Hi if

Pi ≤ α/m, i = 1, ...,m.

When the number of hypotheses m is large, eg, m is tens of thousands, Bonferroni

procedure will be very conservative.

Step-down Procedure: A step-down procedure begins with the most significant

hypothesis H(1), gradually steps down to the least significant hypothesis H(m). Reject

H(1), ..., H(R), where R = max
{

0 ≤ i ≤ m : P(j) ≤ αj, ∀j ∈ {0, ..., i}
}

.

Holm procedure (1979): is a typical step-down version of the Bonferroni procedure,

reject H(i) when

P(j) ≤
α

m− j + 1
, j = 1, ..., i. (1.1)

Step-up Procedure: A step-up procedure begins with the least significant hypothesis

H(m), gradually steps up to the most significant hypothesis H(1). Reject H(1), ..., H(R),

where R = max
{

0 ≤ i ≤ m : P(i) ≤ αi
}

.

Hochberg Procedure (1988): a popular step-up procedure, reject H(1), H(2),..., H(j),

when

P(j) ≤
α

m− j + 1
, j = m, ..., 1. (1.2)

The adjusted p-value P adj
i for a hypothesis Hi is the required smallest FWER level

at which one would reject the hypothesis using the given multiple testing procedure for

controlling the FWER. The hypothesis will be rejected if the corresponding adjusted

p-value is less than or equal to α. The following are adjusted p-values for Bonferroni

procedure, Holm procedure and Hochberg procedure.

Bonferroni procedure:

P adj
i = min (1, mPi) , i = 1, ...,m.
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Holm procedure:

P adj
(i) =


min

(
1 , mP(i)

)
, if i = 1,

max
(
P adj
(i−1) , (m− i+ 1)P(i)

)
, if i = 2,...,m.

Hochberg procedure:

P adj
(i) =


P(i), if i = m,

min
(
P adj
(i+1) , (m− i+ 1)P(i)

)
, if i = m-1,...,1.

1.3.2 Weighted procedures with control over FWER

The most popular weighted procedures are Rubin and Rosenthal’s weighted Bonferroni

procedure and Holm’s weighted Holm procedure (WHP). Another popular weighted

procedure is Benjamini and Hochberg’s weighted alternative Holm procedure (WAP).

Tamhane and Liu (2008)’s weighted Hochberg procedures lack a simple stepwise structure

and were developed under independence or PRDS structure. The weighted procedures are

very fundamental to develop popular gatekeeping procedures and graphical approaches,

which are commonly used in clinical studies (see Dmitrienko, 2003, Dmitrienko et al.,

2007, Bretz et al., 2009, Bretz et al., 2011, etc).

Procedure 1.3.1 (Rubin and Rosenthal, 1983) Weighted Bonferroni procedure: Reject

Hi if Pi ≤ wi∑m
k=1 wk

α, i = 1, ...,m.

Weighted Bonferroni procedure is a basic and typical procedure, but again, if the testing

hypotheses’ number is large, it might be conservative.

Procedure 1.3.2 (Holm, 1979) Weighted Holm Procedure (WHP): Reject H∗(i) when

P̃(j) ≤
α∑m

k=j w
∗
(k)

, j = 1, ..., i. (1.3)
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Procedure 1.3.3 (Benjamini and Hochberg, 1997) An alternative weighted procedure

(WAP): Reject H(i) when

P(j) ≤
w(j)∑m
k=j w(k)

α, j = 1, ..., i. (1.4)

We can see that the testing order of the WHP is based on weighted p-values while

the WAP is based on original p-values. However, when we calculate weighted p-values (

P̃i = Pi

wi
) if the weights do not change the order of p-values, which means P̃(i) =

P(i)

w(i)
,

i = 1, ....,m, the WHP and WAP are equivalent. For example, suppose simultaneously

test m = 3 hypotheses {H1, H2, H3} with the corresponding weights wi = i, i = 1, 2, 3,

assume that p-values p1 = 0.01, p2 = 0.03 and p3 = 0.09 were observed; thus, the observed

weighted p-values p̃1 = 0.01, p̃2 = 0.015, and p̃3 = 0.03. We can see that the weights do

not change the testing order, and both of WHP and WAP compare sequentially p1, p2 and

p3 with α/6, 2α/5 and α.

1.3.3 Graphical approach

The decision tables of the aforementioned multiple testing procedures might be long

and non-visualized, which make them difficult to present to non-statisticians clearly and

intuitively. Bretz et al. (2009) proposed to use graphical tools to describe Bonferroni-type

sequentially rejective procedures. The graphical approaches are easy to communicate with

other clinical team members and can avoid unnecessary computer programming.

In a graph, each null hypothesis is located at a vertex and the overall critical value

α is allocated to each vertex initially and the relationships between null hypotheses are

expressed by transition coefficients. Define initial significance levels α = (α1, ..., αm)

with
∑m

i=1 αi = α ∈ (0, 1) if based on original p-values. Let M = {1, ...,m} and G =

(gij)m×m, where gij is the fraction of the level ofHi that is propagated toHj with 0 ≤ gij ≤

1, gii = 0, and
∑m

j=1 gij ≤ 1, ∀i = 1, ...,m. (G, α) determines a graph with an associated
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multiple test. And all local critical values and transition coefficients will be updated as well

based on the following rules:

Bretz et al. (2009) Algorithm I:

0. Set I = M .

1. Let j = argmini∈I pi/αi

2. If pj ≤ αj , reject Hj; otherwise stop.

3. Update the graph:

I → I \ {j}

αl →


αl + αjgjl, l ∈ I

0 otherwise

glk =


glk+gljgjk
1−gljgjl

, l, k ∈ I , l 6= k

0 otherwise

4. If |I| ≥ 1, go to step 1; otherwise stop.

Bretz et al. (2009) shows that the graphical approach strongly controls the FWER at

level α if the constraint conditions
∑m

i=1 αi ≤ α ∈ (0, 1),
∑m

j=1 gij ≤ 1, ∀i = 1, ...,m. and

0 ≤ gij ≤ 1, gii = 0 are satisfied.

1.3.4 FDR controlling procedures

There are many existing FDR controlling procedures, for example, the most popular ones

are BH procedure and BY procedure. However, most of them are developed for continuous

data, without considering the discreteness and heterogeneity, those procedures might be
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much conservative when applying to discrete data. BH procedure and BY procedure are

described as follows.

BH procedure: Benjamini and Hochberg (1995) first introduced the FDR and

developed a step-up procedure controlling FDR with the critical constants : αi = iα
m

,

i = 1, ...,m. BH procedure strongly controls the FDR at level α under independence.

BY procedure: Benjamini and Yekutieli (2001) showed BH procedure can also

control the FDR under positive regression dependence on subset PRDS and developed

a step-up procedure controlling FDR with the critical constants : αi = iα
mCm

, where

Cm =
∑m

j=1 1/j, i = 1, ...m, under arbitrary dependence.

1.4 Motivation and Outline

In many statistical applications, such as clinical studies, hypotheses might be assigned

different weights according to their different importance. Among the existing weighted

procedures, the weighted Holm procedures are the most popular and easy to be applied

without any assumption of dependence structure. There are two common weighted Holm

procedures: the WHP whose testing order depends on weighted p-values; while the

WAP depends on raw p-values. But the relation between them is still not clear yet. In

addition, the weighted Bonferroni procedure might be too conservative when the number

of hypotheses is large and weighted Hochberg procedures lack a simple stepwise short-cuts;

thus, it’s interesting to study the statistical properties of the weighted Holm procedures and

recommend their application.

Closure principle is a powerful tool for constructing multiple testing methods

controlling the FWER. Through finding the underlying CTPs of the procedures we will

understand the weighted procedures clearly and thoroughly. Besides, the graphical

approaches are usually easier to communicate with other clinical team members intuitively

than long and abstract decision tables and can avoid unnecessary computer programming.

Moreover, the weighted procedures are fundamental to develop gatekeepings and graphical
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procedures. Therefore, it will be of interest and necessary to study these two weighted

Holm procedures by investigating the similarities and differences between them based on

comparing their corresponding closed testing procedures, graphical representations and

adjusted p-values, and make recommendation for their use.

In addition, it is also important to study the MTPs’ optimality property that the

procedures cannot be improved without losing the control of error rates. To the best of

our knowledge, there is no research studying the optimality of the WHP and WAP. Thus,

in the first part of this dissertation, we also investigate if the WHP and WAP are optimal

procedures.

In the second part of this dissertation, we mainly focus on studying the similarities

and differences between two graphical approaches which are independently developed

and usually considered to be same. One is called the original graphical approach which

is popular and widely used in clinical trials. The other one is named the default

graphical approach, a combination of fixed sequences of hypotheses. As there is no

transition coefficient involved, the recycled of critical values of the rejected hypotheses

is straightforward in the default graph. Moreover, in Bretz et al. (2009), it provided an

indirectly proof of the FWER control by showing the equivalence between the original

graphical approach and short-cut of CTPs. In this part, in order to understand the original

graphical approach thoroughly and provide theoretical reference, we will give an elegant

theoretical result about the FWER control directly by the original graphical approach.

For the third part of this dissertation, we focus on developing a generalized step-up

FDR controlling procedure for discrete data. Most existing MTPs procedures are developed

for continuous data, which are often conservative when analyzing discrete data because

the true null distributions of discrete data are stochastically larger than uniform (0, 1).

Also, many procedures, which were developed for discrete data, are based on the minimal

attainable p-values. In fact, if we know the minimal attainable p-values, the CDFs under

true nulls are also known. Moreover, the CDFs under different true null hypotheses might
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be different which implies using a unique function of rejection rule might cause power

loss. Consequently, to develop a procedure, taking the properties of discreteness and

heterogeneity of discrete data into account, becomes necessary and inevitable.

In the literature, many FWER controlling procedures for discrete data were developed

by considering the special property of discrete data, refer to Tarone (1990), Hommel and

Krummenauer (1998), Roth (1999) and Zhu and Guo (2019). However, there are only a few

literature discussing FDR control for discrete data, see Gilbert (2005), Heyse (2011) and

Döhler, Durand and Roquain (2018). Usually, for large scale hypotheses testing problem,

the procedures with FDR control are highly needed. And none of the aforementioned

FDR controlling procedures controls the FDR and be more powerful than BH procedure

theoretically at the same time. According to Lynch and Guo’s (2016) generalized step-up

procedure, we can see that each hypothesis can have its own critical function; therefore,

this framework is especially suitable for developing powerful FDR controlling procedures

for discrete data.

The rest of this dissertation is outlined as follows: in Chapter 2, we study the

similarities and differences between the WHP and WAP and show that the WHP is more

powerful than the WAP by constructing and comparing their corresponding closed testing

procedures, graphical representations, and adjusted p-values. Also, we provide a proof

that the WHP is an optimal procedure in the sense that the procedure cannot be improved

by increasing even one of its critical values without losing control over the FWER.

Simulations were conducted to provide numerical evidence of superior performance of the

WHP in terms of the FWER controlling and average power. In Chapter 3, we investigate

the similarities and differences between the original graphical approach and the default

graphical approach. Also, we provide an elegant theoretical result that is a direct proof

of the FWER control for the original graphical approach. In Chapter 4, we develop a

new generalized step-up procedure for discrete data with proven of FDR control by fully
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utilizing the distributions of marginal p-values. In Chapter 5, we have summarized the main

results of this dissertation and discussed the future works.

18



CHAPTER 2

ON WEIGHTED HOLM PROCEDURES

2.1 Introduction

In this chapter, we aim to study the similarities and differences of two common weighted

Holm procedures and make recommendation for their use. In many clinical applications,

it often happens that some hypotheses are more important than the others, which suggests

us to assign different weights to different hypotheses according to their importance. In

the existing literature, some weighted procedures based on Bonferroni test, Simes test and

resampling-based tests were developed, see Rosenthal and Rubin (1983), Holm (1979),

Benjamini and Hochberg (1997), Tamhane and Liu (2008), Westfall and Young (1993)

and so on. Rosenthal and Rubin (1983) proposed a weighted Bonferroni procedure which

permits greater power for the important hypotheses. There are two common weighted Holm

procedures. One is based on ordered weighted p-values that we called WHP, see Holm

(1979); the alternative weighted Holm procedure that is based on ordered raw p-values

is named WAP, refer to Benjamini and Hochberg (1997). The questions arise that what

the similarities and differences are between these two procedures and which one performs

better in terms of power and the FWER control? Apparently, the later procedure is more

objective than the former one since the testing order, based on raw p-values, does not

depend on the weights; however, it also loses the monotone property because of this reason.

For stepwise procedures with asymmetric rules for updating the hypothesis weights, the

ordering of the testing hypotheses is much relevant and utmost importance, including the

fixed-sequence (Maurer et al., 1995) and fallback procedures (Wiens, 2003). Wiens et al.

(2013) examined the behavior of different classes of multiple testing procedures (MTPs) in

problems with unequally weighted hypotheses and a prior ordered hypotheses and provided

practical guidelines for the choice of hypothesis weights and hypothesis ordering. However,

the similarities and differences of ordering based on original or weighted p-values have
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not been studied. Tamhane and Liu (2008) constructed weighted Hochberg-type step-up

multiple test procedures including two closed procedures based on weighted Simes tests:

one based on ordered raw p-values and the other one based on ordered weighted p-values.

However, both two weighted procedures lack simple stepwise structure, therefore it is hard

to be compared with each other and not easy to explain it to practitioners. And also these

procedures were developed under independence structure. Thus, it’s interesting to study the

statistical properties of the weighted Holm procedures and recommend their application.

Moreover, the Bonferroni-type weighted procedures can often be described as some

specific closed testing procedures (CTPs) and can be visualized by some specific graphics.

A CTP constructed by using the closure principle (Marcus et al., 1976) is a flexible and

easily explained approach to control the FWER, particularly in clinical trials settings, see

Brannath and Bretz (2010) and Henning and Westfall (2015). But when simultaneously

testing a large number of hypotheses, the number of intersection hypotheses increases

rapidly and the CTPs are in general difficult to apply. In contrast, graphs can visualize

many MTPs and gatekeeping procedures; thus, graphs are usually easier to communicate

with clinical teams than long and unintuitive decision tables of the CTPs and they also

can avoid unnecessary computer programming. In the literature, graphical approaches

are commonly used in clinical studies, see Bretz et al.(2009) and Bretz et al. (2011).

The weighted multiple testing procedures (wMTPs) are also very fundamental to develop

popular gatekeeping procedures which are commonly used in clinical studies, such as serial

gatekeeping see Maurer et al. (1995) and Westfall and Krishen (2001), parallel gatekeeping,

refer to Dmitrienko et al. ( 2003) and Dmitrienko et al. (2007) and mixture procedures for

gatekeeping, see Dmitrienko and Tamhane (2013). Therefore, to find simple and powerful

weighted procedures will be especially helpful to develop useful and powerful graphical

approaches and gatekeeping procedures. In addition, it is also important to study the

optimality property of weighted procedures that the procedures cannot be improved without
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losing the control of error rates. To the best of our knowledge, there is no research studying

the optimality of the WHP and WAP.

In summary, we have studied these two weighted Holm procedures by investigating

the similarities and differences between them according to their corresponding closed

testing procedures, graphical representations and adjusted p-values and make recommen-

dation for their use. Theoretically we show that the WHP is uniformly more powerful

than the WAP. In addition, we have an interesting finding that the WAP is not monotone in

the sense that a procedure rejects a hypothesis with a smaller p-value whenever it rejects

another hypothesis with a larger p-value and also it does not satisfy the monotonicity

condition in the sense of the weighted functions being monotone in terms of the index

subsets of the corresponding CTP; however, it is a consonant procedure which usually

leads to a shortcut of a procedure. Moreover, we have found that the graphical approach

corresponding to the WAP is beyond the domain of the original graphical approach (Bretz et

al., 2009). Then, we also discuss optimality of these two procedures and show that the WHP

is an optimal procedure in the sense that the procedure cannot be improved by increasing

even one of its critical values without losing control over the FWER, while the WAP is

an optimal procedure under some condition that is the proportions of smallest weight to

other weights are not less than the global significance level α. Through some clinical

examples and simulations, we also give some numerical results that the WHP is always

more powerful than the WAP and properly choosing weights will improve the performance

of both procedures in terms of the average power, especially the WAP. The rest of the

chapter is organized as follows: Section 2.2 introduces some basic notations and concepts

used in this paper. In Section 2.3, we find the corresponding closed testing procedures.

And we also discuss two different monotone properties of both procedures. The graphical

representations are provided in Section 2.4. We derive the adjusted p-values and adjusted

weighted p-values for both procedures in Section 2.5. In Section 2.6, we have discussed

the optimality properties of the WHP and the WAP. Simulation studies are conducted in
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Section 2.7. Two real data examples are used to show the performance of the WHP and

WAP in Section 2.8. In Section 2.9, some discussions are briefly provided.

2.2 Preliminaries

In this section, we introduce some general notations and two weighted Holm procedures

that will be studied in this paper.

2.2.1 Basic notations

Consider simultaneously testing m hypotheses H1, ..., Hm which are associated with

p-values P1, ..., Pm and positive weights w1, ..., wm, correspondingly. Then, the weighted

p-values are P̃i = Pi

wi
, i = 1, ...,m. Let P(1) ≤ ... ≤ P(m) be the ordered version of

the p-values P1, ..., Pm with corresponding hypotheses H(1), ..., H(m) and corresponding

weights w(1), ..., w(m). Let P̃(1) ≤ ... ≤ P̃(m) be the ordered version of the weighted

p-values P̃1, ..., P̃m with corresponding hypotheses H∗(1), ..., H
∗
(m) and corresponding

weights w∗(1), ..., w
∗
(m). Suppose there are m0 true null hypotheses and m1 false null

hypotheses and let I0 denote the indices of true nulls. Let V be the number of true null

hypotheses among the R rejected null hypotheses in a multiple testing procedure. The the

familywise error rate (FWER) is defined as the probability of making at least one type I

error rate.

2.2.2 Two weighted Holm procedures

Two most popular and widely used weighted Holm procedures that we will study are

described as follows.

Procedure 2.2.1 (Holm, 1979)

The weighted Holm procedure (WHP): Reject H∗(i) when

P̃(j) ≤
α∑m

k=j w
∗
(k)

, j = 1, ..., i. (2.1)
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The testing order of the WHP is based on the order of weighted p-values, and this procedure

was developed based on the weighted Bonferroni test.

Procedure 2.2.2 (Benjamini and Hochberg, 1997)

An alternative weighted Holm procedure (WAP): Reject H(i) when

P(j) ≤
w(j)∑m
k=j w(k)

α, j = 1, ..., i. (2.2)

To explore the similarities and differences between the WHP and WAP, we will study

from three aspects: the underlying closed testing procedures, the graphical representations

and adjusted p-values. First, we study the underlying CTPs of both procedures and

their monotonicity properties and consonant property. Then we also use the graphical

approaches to visualize both procedures and give two clear and intuitive examples.

Finally, we will give the adjusted p-values and adjusted weighted p-values for the WAP

and the WHP, respectively, since the adjusted p-values incorporate the structure of the

underlying decision rules that can be quite complex; thus, they can be compared with

global significance level α directly and give the same results as applying the multiple test

procedures to the p-values.

2.3 The Underlying CTPs of the WAP and WHP and Some Theoretical Results

In order to study the statistical properties of the WHP and the WAP, we investigate

the underlying CTPs for both procedures, which will help us to understand them well

and conduct a comparison easily. Also, the consonance property of a MTP has not

received much attention yet, especially for the WAP. While studying the local tests of both

procedures will bring us with new understanding of consonance property.

First, we will study the CTP of the WAP and provide a proof of equivalence between

the WAP and its corresponding CTP. The WAP can be expressed as a closed testing

procedure where each intersection hypothesis in the closure of the family is tested with

a modified weighted Bonferroni test.
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For any intersection hypothesis HI = ∩i∈IHi, where I ⊆ {1, 2, ...,m}, let P I
(1) =

mini∈I {Pi} with corresponding weight wI(1). Here, P I
(1) and wI(1) denote the smallest p-

value in {Pi, i ∈ I} and the corresponding weight, respectively. Then we use local test

P I
(1) ≤

wI(1)∑
i∈I wi

α (2.3)

to reject HI ; otherwise, retain it.

The above local test is valid, the proof is given as follows.

The type 1 error rate of this local test is:

Pr

(
P I
(1) ≤

wI(1)∑
i∈I wi

α

)
≤ Pr

(
∪i∈IPi ≤

wi∑
i∈I wi

α

)
≤
∑
i∈I

Pr

(
Pi ≤

wi∑
i∈I wi

α

)
≤ α

(2.4)

Thus, by closure principle, the FWER is controlled at level α.

Proposition 2.3.1 The closed testing procedure with the local tests defined in (2.3) is

equivalent to Benjamini and Hochberg(1997)’s weighted alternative Holm procedure(WAP).

Second, in order to find the similarity and difference between the WHP and the WAP,

we will study the corresponding CTP of the WHP. The WHP can be expressed as a closed

testing procedure (CTP) where each intersection hypothesis in the closure of the family is

tested with a weighted Bonferroni test, refer to Westfall and Krishen (2001).

For testing any intersection hypothesis HI = ∩i∈IHi, where I ⊆ {1, 2, ...,m}, the

local test for each intersection hypothesis is

Pi ≤
wi∑
i∈I wi

α, (2.5)

for some i ∈ I to reject HI ; otherwise, retain it.
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The local test , weighted Bonferroni test, is a valid test. The reason is given as

follows. The type 1 error rate of this local test is:

Pr

(
∪i∈IPi ≤

wi∑
i∈I wi

α

)
≤
∑
i∈I

Pr

(
Pi ≤

wi∑
i∈I wi

α

)
≤ α

(2.6)

Proposition 2.3.2 (Westfall and Krishen, 2001) The closed testing procedure with the

local tests defined in (2.5): the weighted Bonferroni test, is equivalent to Holm (1979)’s

weighted Holm procedure(WHP).

By looking into the local tests of both WHP and WAP, we have the following result:

Theorem 1 For any hypothesis Hi, i = 1, ...,m, if it is rejected by Alternative Weighted

Holm procedure (WAP) (Benjamini and Hochberg, 1997), it will be rejected by Weighted

Holm procedure (WHP) (Holm, 1979). In other words, the WHP is always more powerful

than the WAP under arbitrary dependence.

Proof for Theorem 1:

Note that the event
{
P I
(1) ≤

wI
(1)∑

i∈I wi
α

}
implies

{
∪i∈IPi ≤ wi∑

i∈I wi
α
}

for any inter-

section hypothesis HI , I ⊆ {1, ...,m} . Therefore, if the intersection hypothesis HI is

rejected by WAP’s local test, it must be rejected by WHP’s local test.

Thus, by closure principle, the hypothesis Hi, i = 1, ...,m, which is rejected by the

WAP, will be always rejected by the WHP. Thus, the WHP performs better than the WAP

in terms of power. �

Remark 1 We know that critical values for the WAP do not have the monotone property in

the following Definition 2.3.1 (see Benjamini and Hochberg, 1997) which will cause power

loss. And we can see that when we calculate weighted p-values ( P̃i = Pi

wi
) if the weights

do not change the order of p-values, which means P̃(i) =
P(i)

w(i)
, i = 1, ....,m, the WHP and

the WAP are equivalent. The reason is described as follows,

P̃(i) ≤
α∑m

k=iw
∗
(k)

⇐⇒ P(i) ≤
w(i)∑m
k=iw(k)

α.
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Next, we will discuss the monotone and consonant properties of the WHP and WAP.

Two different monotone definitions are described as follows. Dimitrienko et al.(2009)

introduced a monotone property which is defined for the general MTPs in terms of p-values.

While the monotonicity condition is defined for the CTPs with weighted Bonferroni-type

local tests in the sense of the weighted functions being monotone in terms of the index

subsets, see Romano and Wolf (2005), Hommel, Bretz and Maurer (2007) and Bretz et al.

(2009). For such CTPs, they are always monotone in terms of the p-values.

Definition 2.3.1 (Monotone property)

A multiple testing procedure is called to be p-value monotone if some p-values become

smaller, then at least the same or even more hypotheses would be rejected by this procedure.

Definition 2.3.2 (Monotonicity condition)

Let αi(I), i ∈ I ⊆ M = {1, ...,m} denote the local significance levels for an

intersection hypothesis such that
∑

i∈I αi(I) ≤ α, then the monotonicity condition is

αi(I) ≤ αi(J) for all i, I, J with i ∈ J and J ⊂ I ⊆M.

Definition 2.3.3 (Consonance, Gabriel, 1969)

A multiple testing procedure is termed consonant if the rejection of an intersection

hypothesis HI with I ⊆ {1, ...,m} and |I| > 1 always leads to the rejection of at least

one HJ implied by HI , i.e., HJ with J ⊂ I .

The WHP is monotone in the sense that the WHP rejects a hypothesis with a smaller

p-value whenever it rejects another hypothesis with a larger p-value while the WAP does

not have this property, see Benjamini and Hochberg (1997). It is easy to see the WHP is

monotone by looking into its local test for each intersection hypothesis of the corresponding

CTP of WHP, for example, for testing any intersection hypothesis HI = ∩i∈IHi, I ⊆M =

{1, ...,m}, if some Pi ≤ wiα∑
i∈I wi

for all I such that i ∈ I , then by closure principle, Hi

will be rejected. Obviously, if making such Pi smaller, all the HI including Hi will have
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a larger chance to be claimed significant, then by closure principle, the monotone property

in Definition 2.3.1 is achieved.

In addition, for the WHP, through its corresponding Bonferroni-type local tests, we

can know that its weighting function is monotone; thus, the CTP of WHP satisfy the

monotonicity condition (See Hommel et al., 2007 and Bretz et al., 2009) which leads to

a consonant closed test. By looking into the corresponding local tests of the WAP, which is

P I
(1) ≤

wI
(1)∑

i∈I wi
α, the local significance level is a constant for all the component hypotheses

in I; thus, the WAP does not satisfy the monotonicity condition. For example, consider

simultaneously testing 3 hypotheses H1, H2 and H3, with P1 ≤ P2 ≤ P3 and weights

w1 = 4, w2 = w3 = 1, respectively. For testing the intersection hypothesis H1 ∩H2 ∩H3,

the local critical value for H2 is 2α/3; while when testing the intersection hypothesis

H2 ∩ H3 the local critical value for H2 is α/2. However, its corresponding closed test

is consonant, and we have the following result.

Proposition 2.3.3 The corresponding CTP of the WAP is a consonant procedure, although

it does not satisfy the monotonicity condition in Definition 2.3.2 and it is also not monotone

in Definition 2.3.1.

The proof of Proposition 2.3.3 is provided in the Appendix.

The following example 2.3.1 explains if the orders of the original p-values and the

weighted p-values are same, the WHP and the WAP are equivalent when applying them to

the data, respectively. While if the orders are different, the WHP performs better than the

WAP in terms of power, see example 2.3.2.

Example 2.3.1 Suppose simultaneously test m = 3 hypotheses {H1, H2, H3} with the

corresponding weights wi = i, i = 1, 2, 3, assume that p-values p1 = 0.01, p2 = 0.03 and

p3 = 0.09 were observed; thus, the observed weighted p-values p̃1 = 0.01, p̃2 = 0.015,

and p̃3 = 0.03. We can see that the weights do not change the testing order, and both of the

WHP and WAP compare sequentially p1, p2 and p3 with α/6, 2α/5 and α.
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Example 2.3.2 Suppose m = 3, wi = i, i = 1, 2, 3, and α = 0.05, assume that p-values

p1 = 0.01, p2 = 0.014 and p3 = 0.3 were observed; thus, the observed weighted p-values

p̃1 = 0.01, p̃2 = 0.007, and p̃3 = 0.1; thus, we can see the weights do change the testing

order of hypotheses. The WAP compares sequentially p1, p2 and p3 with α/6 = 0.0083,

2α/5 = 0.02, and 0.05 while the WHP compares sequentially p2, p1 and p3 with 2α/6 =

0.0167, α/4 = 0.0125 and 0.05. Then the WAP does not reject any hypothesis but the WHP

rejects H1 and H2.

2.4 The Graphical Representations of the WHP and WAP

In a graph, each null hypothesis is located at a node and the overall critical value α

is allocated to each node initially and the relationships between null hypotheses are

expressed by transition coefficients. Define initial significance levels α = (α1, ..., αm)

with
∑m

i=1 αi ≤ α ∈ (0, 1). Let M = {1, ...,m} and G = (gij)m×m, where gij is the

fraction of the level of Hi that is propagated to Hj when Hi is rejected, with 0 ≤ gij ≤ 1,

gii = 0, and
∑m

j=1 gij ≤ 1, ∀i = 1, ...,m. Then the initial graph (G, α) and a proper

updating algorithm determine graphs with an associated multiple test.

Let the initial transition coefficient matrix is

G =



0 w2∑m
j=2 wj

... wm∑m
j=2 wj

w1∑m
j=1,j 6=2 wj

0 ... wm∑m
j=1,j 6=2 wj

...

w1∑m−1
j=1 wj

w2∑m−1
j=1 wj

... 0


.

Let the initial local significance levels αi = wi∑m
i=1 wi

α, i = 1, ...,m; then, the initial

levels satisfy
∑m

i=1 αi ≤ α ∈ (0, 1).

Graphical algorithm corresponding to the WHP according to Bretz et al. (2009):

0. Set I = M .

1. Let j = argmini∈I p̃i.

2. If pj ≤ αj , reject Hj; otherwise stop.
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3. Update the graph:

I → I \ {j}

αl →


αl + αjgjl, l ∈ I

0 otherwise

glk =


glk+gljgjk
1−gljgjl

, l, k ∈ I , l 6= k

0 otherwise

4. If |I| ≥ 1, go to step 1; otherwise stop.

Formal graphical algorithm corresponding to WAP according to Bretz et al.

(2009):

0. Set I = M .

1. Let j = argmini∈Ipi.

2. If pj ≤ αj , reject Hj; otherwise stop.

3. Update the graph:

I → I \ {j}

αl →


αl + αjgjl, l ∈ I

0 otherwise

glk =


glk+gljgjk
1−gljgjl

, l, k ∈ I , l 6= k

0 otherwise
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4. If |I| ≥ 1, go to step 1; otherwise stop.

The graphical approach of the WHP was mentioned in Alosh et al. (2014) and

Guilbaud (2018), but only restricted to some specific number (e.g., m = 3) of hypotheses

examples; however, we have provided a general graphical representation for the WHP.

Remark 2 Moreover, we can note that the graphical approach corresponding to the WAP

is beyond the domain of the original graphical approach (Bretz et al., 2009) since its local

tests are not weighted Bonferroni tests and also do not satisfy the monotonicity conditions.

So it will be highly needed to develop a more general graphical approach.

Given the initial graphs and algorithms, we have the following result.

Proposition 2.4.1 The WHP and the WAP are equivalent to their corresponding graphical

representations that found above, respectively.

The following example 2.4.1 is used to illustrate different performance of the

corresponding graphical representations of WHP and WAP.

Example 2.4.1 Here, we use same setting of example 2.3.2. We can see from Figure 2.1

and Figure 2.2, the results are same as example 2.3.2, the WAP rejects none while the WHP

rejects H1 and H2.

H2

0.0167

H1

0.0083

H3

0.0252/5

1/4

3/4

2/3

3/5

1/3

Figure 2.1 The graphical approach for the WAP: set α = 0.05, and given P1 = 0.01,
P2 = 0.014 and P3 = 0.3; wi = i, i = 1, 2, 3. Initial allocation α = {α/6, α/3, α/2}.
Yellow color means rejection; red color means acceptance.
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H1 H2 H3α1=α/6=
0.0083

α2=α/3=
0.0167

α3=α/2=
0.025

2/5

3/5

3/4

1/4 2/3

1/3

H1 H3

α1=α/4=
0.0125

α3=3α/4
= 0.0375

1

1

H3 α3=0.05

Figure 2.2 The graphical approach for the WHP: set α = 0.05, and given P1 = 0.01,
P2 = 0.014 and P3 = 0.3; wi = i, i = 1, 2, 3. Then, P̃1 = 0.01, P̃2 = 0.007 and P̃3 = 0.1.
Yellow color means rejection; red color means acceptance.

2.5 Adjusted p-values

In this section, we find adjusted p-values for both the WAP and the WHP which can be

compared with global significance level α directly then give the same results as applying

the multiple test procedures to the p-values.

For the WHP, the adjusted p-values P̃ adj
(i) for corresponding H∗(i) can be calculated as

follows.

P̃ adj
(i) =


min

{
P̃(1)

∑m
k=1w

∗
(k) , 1

}
, i=1

max
{
P̃(i)

∑m
k=iw

∗
(k) , P̃ adj

(i−1)

}
, i=2,...,m.

For the WAP, the adjusted p-values P adj
(i) for corresponding H(i) can be calculated as

follows.
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P adj
(i) =


min

{
P(1)

w(1)

∑m
k=1w(k) , 1

}
, i=1

max
{
P(i)

w(i)

∑m
k=iw(k) , P adj

(i−1)

}
, i=2,...,m.

Proposition 2.5.1 For each hypothesis Hi, i = 1, ...,m, the adjusted p-value of the WHP

is always less than or equal to its adjusted p-value of the WAP. Thus, the hypothesis Hi,

which is rejected by WAP, can always be rejected by WHP.

We can see that the result of Proposition 2.5.1 is consistent with Theorem 1.

Example 2.5.1 Here, we use same setting of example 2.3.2 to find both adjusted p-values

and adjusted weighted p-values. Based on formulas P̃ adj
(i) and P adj

(i) , we find P adj
1 = P adj

2 =

0.06, P adj
3 = 0.3 and P̃ adj

1 = P̃ adj
2 = 0.042, P̃ adj

3 = 0.3; then, compared with α = 0.05,

respectively, WHP rejects H1 and H2 while WAP rejects none, which is consistent with the

result of example 2.3.2.

2.6 The Optimality of the WHP and WAP

It is important to study the optimality property that the procedures cannot be improved

without losing the control of error rates. To the best of our knowledge, there is no research

studying the optimality of the WHP and WAP. Thus, in this paper, we will discuss the

optimality property of both procedures.

2.6.1 The optimality property of the WHP

By finding a specific joint distribution for the p-values {P1, ..., Pm} under arbitrary

dependence, we show that the WHP is an optimal procedure if the equality of FWER ≤ α

can be attained.

Theorem 2 The WHP is an optimal procedure in the sense that the procedure cannot be

improved by increasing even one of its critical values without losing control over the FWER.
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The optimality property of Theorem 2 is in a general sense which can be applied

to either monotone procedures such as the WHP or non-monotone procedures such as the

WAP. The following Proposition 2.6.1 is another result of the optimality of the WHP by

narrowing the family of the weighted MTPs to the weighted monotone step-down MTPs.

Some definitions and notations are introduced as follows.

Definition 2.6.1 (Weighted monotone step-down procedure)

Reject H∗(i) when

P̃(j) ≤ αj, j = 1, ..., i, (2.7)

where P̃(1) ≤ ... ≤ P̃(m) is the ordered version of weighted p-values P̃i = Pi/wi, associated

with hypotheses H∗(1), ..., H
∗
(m). And α1 ≤ α2 ≤ ... ≤ αm be a sequence of increasing

critical values.

Proposition 2.6.1 LetMw be a weighted monotone step-down multiple testing procedure

with

FWER ≤ α < 1.

Then, for any hypothesis, if it is rejected by the procedureMw, it will be rejected by the

WHP.

We can see the Proposition 2.6.1 is only restricted to the weighted monotone step-

down procedure of Definition 2.6.1.

2.6.2 The optimality property of the WAP

Next, we will study the optimality property of the WAP.

Proposition 2.6.2 The weighted alternative Holm procedure (WAP) (Benjamini and Hochberg,

1997) is an optimal procedure when the proportions of smallest weight to other weights are

not less than the global significance level α, that is, wj

wi
≥ α, where wj = min {w1, ..., wm},

1 ≤ i ≤ m and i 6= j.
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Remark 3 Note: The constraint for Proposition 2.6.2 can be satisfied in many appli-

cations, eg, let α = 0.05, then we have wj ≤ wi ≤ 20wj , where wj = min {w1, ..., wm}.

Remark 4 The question is that if wj

wi
< α, wj = min {w1, ..., wm}, can we find a joint

distribution of p-values Pi, i = 1, ...,m under some arbitrary dependence, such that

FWER = α. Suppose m = 2, both H1 and H2 are true null hypotheses, and let w1

be close to 1, w2 > 0 but is close to 0, eg, w1 = 0.999, w2 = 0.001, and let f(P1, P2)

denote the joint pdf of P1 and P2, therefore we have

FWERWAP = Pr (P1 ≤ 0.999α, P1 ≤ P2) + Pr (P2 ≤ 0.001α, P1 ≥ P2)

=

∫ 0.999α

0

∫ 1

P1

f(P1, P2)dP2dP1 +

∫ 0.001α

0

∫ 1

P2

f(P1, P2)dP1dP2

≤
∫ 0.999α

0

∫ 1

0

f(P1, P2)dP2dP1 +

∫ 0.001α

0

∫ 1

0

f(P1, P2)dP1dP2

= α

(2.8)

We can see, for the inequality of Equation (2.8), the equality holds only if (1)∫ 1

P1
f(P1, P2)dP2 =

∫ 1

0
f(P1, P2)dP2 which means

∫ P1

0
f(P1, P2)dP2 = 0 ⇐⇒

P1 ≤ P2; and (2) similarly,
∫ 1

P2
f(P1, P2)dP1 =

∫ 1

0
f(P1, P2)dP1 which means∫ P2

0
f(P1, P2)dP1 = 0 ⇐⇒ P2 ≤ P1. Thus, for continuous data, there is no such

f(P1, P2) existing to make FWERWAP = α.

So, according to Proposition 2.6.2 and Remark 4, the weights are α dependent, since

only when wj

wi
≥ α, wj = min {w1, ..., wm}, 1 ≤ i ≤ m and i 6= j, the WAP is an optimal

procedure.

2.7 Simulation Studies

In this section, simulation studies were conducted to compare the performances of the

WHP and WAP in terms of average power and FWER control under dependent structure.

The considered dependent structure is equal correlation dependence where off-diagonal

components of covariance matrix are equal to ρ and the diagonal components are equal to 1.
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In each simulation, n independent m dimensional random normal vectors with covariance

matrix Σ and components Zi ∼ N(µi, 1), i = 1, ...,m were generated. The p-value for

testing Hi : µi = 0 vs. H ′i : µi > 0 was calculated using a one-sided, one-sample t-test for

each i.

Four different weight settings were used in this research: (1) The weights wi’s were

generated from uniform distribution U(1, 2) for true nulls and U(2, 10) for false nulls to

see if properly choosing the weights and the distance is large, how the power is affected.

(2) The weights wi’s were generated from uniform distribution U(1, 2) for true nulls and

U(2, 6) for false nulls to see if the distance gets smaller, how the power is affected. (3) The

weights wi’s were generated from uniform distribution U(1, 2) for true nulls and U(6, 10)

for false nulls to see if distance is same as (2) but weights are larger, how the power is

affected. (4) The weights were generated from U(1, 6) for both true and false nulls in

order to see if the weights were poorly selected, how the performance of WHP, WAP and

Holm procedure, respectively.

We set α = 0.05, the number of hypothesesm = {5, 10, 15}, the true null proportion

π0 = {0.2, 0.4, 0.6, 0.8}, the correlation coefficients ρ = {0, 0.1 ..., 0.9} and the whole

sample size n = 15. Amongm hypotheses,mπ0 ofmµi’s are equal to 0, and the remaining

µi are equal to 0.7. Our simulation runs 5000 times.

Figures 2.3 to 2.7 have showed the simulated FWER levels and average powers of

three procedures: the WHP, the WAP and Holm procedures under one-sided one-sample t

test setting. From these simulation results we can observe:

All the three procedures always control the FWER at the pre-specified level α. But

the WHP always has higher FWER level and greater power than the WAP no matter how

to choose weights. If poorly choosing weights, see Figure 2.7, Holm procedure performs

better than the WHP and WAP, and the average power decreases as the correlation increases.

If choosing weights properly, see Figures 2.4, 2.5 and 2.6, both the WHP and the

WAP perform better than Holm in terms of power. The average powers for both WHP and
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Figure 2.3 Simulated FWER comparisons for weighted Holm procedures based on
arbitrary dependent one-sided t-test, including WHP and WAP, and the weights were
generated from U(1, 2) for true nulls and U(2, 10) for false nulls.

36



Figure 2.4 Simulated average power comparisons for weighted Holm procedures based
on arbitrary dependent one-sided t-test, including WHP and WAP, and the weights were
generated from U(1, 2) for true nulls and U(2, 10) for false nulls.
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Figure 2.5 Simulated average power comparisons for weighted Holm procedures based
on arbitrary dependent one-sided t-test, including WHP and WAP, and the weights were
generated from U(1, 2) for true nulls and U(6, 10) for false nulls.
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Figure 2.6 Simulated average power comparisons for weighted Holm procedures based
on arbitrary dependent one-sided t-test, including WHP and WAP, and the weights wi’s
were generated from uniform distribution U(1, 2) for true nulls and U(2, 6) for false nulls.

39



Figure 2.7 Simulated average power comparisons for weighted Holm procedures based
on arbitrary dependent one-sided t-test, including WHP and WAP, and the weights wi’s
were generated from uniform distribution U(1, 6) for both true and false nulls.
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WAP procedures are decreasing as the correlation ρ increases when hypotheses number m

is small, eg, m = 5. More importantly, the WHP is always powerful than WAP no matter

how the correlation ρ changes. And the power advantage for the WHP is larger for larger

proportion of false null hypotheses and larger distance between weights.

From Figures 2.4, 2.5 and 2.6, we can find that the power will be improved for both

procedures if the weights are chosen properly, especially for smaller proportion of false

null hypotheses. The finding is interesting, because in many applications, the proportion

of false nulls is not large and the power usually increases as the proportion of false null

hypotheses increases, for example, Holm procedure.

2.8 Real Data Analysis: Clinical Examples

Example 2.8.1 Consider a clinical trial in patients with acute respiratory distress syndrome

(ARDS), refer to ARDS Network (2000) and Dmitrienko, Offen and Westfall (2003). The

trial is conducted to compare one dose of a new drug to placebo. The therapeutic benefits

of experimental treatments in ARDS trials are commonly measured using the number

of days alive and off mechanical ventilation during a 28-day study period and 28-day

all-cause mortality rate. There are two primary endpoints, denoted by H1 and H2, the

null hypotheses of no treatment effect with respect to the number of ventilator-free days

and 28-day all-cause mortality, respectively. Denote the secondary hypotheses H3 and H4

associated with the drug effects on the number of days the patients were out of the intensive

care unit (ICU-free days) and general quality of life in the product label, respectively.

Suppose the weights for the primary hypotheses are given by w1 = 2 and w2 = 1.5,

and the secondary hypotheses are equally weighted, that is, w3 = w4 = 0.25. The observed

raw p-values are p1 = 0.024, p2 = 0.003, p3 = 0.026 and p4 = 0.002. Then the adjusted

p-values for both procedures are presented in the following table 2.1. The table shows that

all of 4 hypotheses will be rejected by both procedures; however, the adjusted p-values,
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given by the WHP, are always smaller than its corresponding adjusted p-values, given by

the WAP.

Table 2.1 Comparison Between the WHP and the WAP Using Adjusted p-values for
ARDS Data

Hypothesis Weights Raw p-values P̃ adj
(i) P adj

(i)

H1 2 0.024 0.027 0.032

H2 1.5 0.003 0.008 0.032

H3 0.25 0.026 0.027 0.032

H4 0.25 0.002 0.020 0.032

Example 2.8.2 A clinical trial was conducted to compare a new formulation of an insulin

therapy (Formulation A) to a standard formulation (Formulation B) in patients with Type

2 diabetes. Patients were allocated to three treatment groups (A, B and A + B) and the

efficacy analysis was based on the mean change in hemoglobin A1c from baseline to a

6-month endpoint, see Dmitrienko et al. (2007). To use the raw p-values from Dmitrienko

et al. (2007) Table IV, then let wi = {6, 6, 5, 4, 2, 1} . The results are shown in the

following table 2.2.

Table 2.2 Comparison Between the WHP and the WAP Using Adjusted p-values for the
Formulation Clinical Trial

Hypothesis Weights Raw p-values Adjusted weighted p-value Adjusted p-value

H1 6 0.011 0.0348 0.0348

H2 6 0.023 0.0498 0.0585

H3 5 0.006 0.0288 0.0288

H4 4 0.018 0.0498 0.0585

H5 2 0.042 0.063 0.063

H6 1 0.088 0.088 0.088
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From above table 2.2, we can see the WHP rejects {H1, H2, H3, H4} while the WAP

rejects {H1, H2}.

2.9 Conclusion

Although several weighted procedures were developed and commonly used to control the

FWER, such as the weighted Bonferroni procedure, the weighted Holm procedure and

the weighted Hochberg procedure, there is no clear conclusion that which procedures

will be preferred and easy to be applied in real applications, especially in clinical trial

studies. In this paper, we have investigated the similarities and differences between

the WHP and the WAP from three aspects: exploring their corresponding underlying

closed testing procedures, visualizing both procedures by proper graphical approaches and

finding the adjusted p-values and adjusted weighted p-values. And we have provided a

theoretical result that the WHP is more powerful than the WAP under arbitrary dependence.

Then, we have studied the optimality property of both procedures and have showed

the WHP is an optimal procedure and can dominate all the other monotone step-down

weighted procedures controlling the FWER and the WAP is an optimal procedure when

the proportions of smallest weight to other weights are not less than the global significance

level α. We also give some numerical results of the power and FWER performance through

our simulation studies.

Moreover, the WHP is monotone in the sense that the WHP always rejects a

hypothesis with the smaller p-value whenever it rejects another hypothesis with a larger

p-value and this procedure also satisfies the monotonicity condition from Definition 2.3.2.

While we find that the WAP has neither the monotone property in terms of p-values nor

satisfied the monotonicity condition in the sense of the weighted functions being monotone

in terms of the index subsets. Bretz et al. (2009) pointed out that monotonicity condition

leads to consonant closed tests and shortcut procedures. Even though the WAP does not

satisfy the monotonicity condition, it is a consonant procedure which usually leads to a
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shortcut of the procedure. Thus, an interesting observation is that the WAP does not belong

to the class of CTPs with weighted Bonferroni-type local tests and it’s also not monotone

in terms of the p-values. In the future, we can develop a new and more general weighted

graphical approach, which is a natural extension of the usual graphical approach and the

WHP and WAP both can be expressed as special cases of the new graphical approach.
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CHAPTER 3

ON GRAPHICAL APPROACHES

3.1 Introduction

In this chapter, we aim to study the similarities and differences of the original graphical

approach in Bretz et al. (2009) and the default graph in Burman et al. (2009), and provide

a direct proof of the FWER control for the original graph. As aforementioned, there

are existing many FWER controlling procedures to address multiplicity issues when we

simultaneously test multiple hypotheses, such as Bonferroni-based sequentially rejective

procedures, Simes-based procedures. However, it is too complicated and not intuitive when

using long and non-visualized decision tables, especially when the number of hypotheses is

large. Bretz et al. (2009) proposed an original graphical approach which can visualize the

Bonferroni-type based sequentially rejective MTPs with intuitive graphs and relationships

between two hypotheses via directed edges. The original graphical approach is flexible

and powerful to develop Bonferroni-type procedures according to various objectives of

clinical trial studies. This graphical approach strongly controls the FWER and has been

widely used in clinical trials and further extended in many literatures, including Bretz et al.

(2011), Maurer and Bretz (2014), Sugitani, Bretz and Maurer (2016), Robertson, Wason

and Bretz (2020), Zhan et al. (2022), etc. One limitation of the original graphical approach

is that at most one rejection is allowed in each step; thus, the computation can be inefficient

as the allocated critical values and transition coefficients need to be updated at each step,

especially when test large number of hypotheses.

The default graph is an independently developed graphical approach in Burman et

al. (2009), it is also based on weighted Bonferroni test and usually considered to be

equivalent to the original graphical approach. That is also one of the reasons, the default

graph is not that popular as the previous approach. The default graph consists of a group

of fixed sequences of pre-ordered testing hypotheses, with allocated critical values to each
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sequence. The testing order for each sequence is prespecified, once the corresponding

hypothesis is rejected, the allocated critical value is fully passed to next hypothesis in the

current sequence. An example of visualizations of both graphical approaches for a parallel

gatekeeping problem is given in Figure 3.1 and 3.2. From Figure 3.2, we can see the

default graph consists of four fixed sequences of hypotheses, which can be denoted as

α
4
(H1 → H3 → H4), α

4
(H1 → H4 → H3), α

4
(H2 → H3 → H4) and α

4
(H2 → H4 → H3),

respectively. At first step, both H1 and H2 can be test at level α/2. Suppose H1 is rejected,

then for the first sequence from left side, the allocated critical value α/4 is fully passed

to H3, and for the second sequence, α/4 is fully passed to H4. Comparing with the

original graphical approach, more than one hypothesis can be rejected at each step, and

the transition of allocated critical values is more straightforward if the some hypotheses are

rejected. However, there is no clear updating algorithm provided in Burman et al. (2009).

1

α/2

2

α/2

3 4

1/2 1/21/2

1

1

1/2

Figure 3.1 The original graph for a parallel gatekeeping problem.

1

α/4

3

4

1

α/4

4

3

2

α/4

3

4

2

α/4

4

3

Figure 3.2 The corresponding default graph.
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Both of graphical approaches are Bonferroni-based procedures, they are usually

considered to be similar, refer to Bretz et al. (2011), Robertson, Wason and Bretz (2020),

etc. Actually, based on our investigation, two approaches are different, especially, when

the number of hypotheses is larger than 3. Initially, we can use the degree of freedom

to explain the reason of difference. Let’s take Holm procedure as an example. Consider

simultaneously testing m hypotheses, and there are m! sequences. Let df1 and df2 denote

the degrees of freedom of local critical values for the original and default graphical

approaches, respectively. For the default graph, df1 = m! − 1; however, for the original

approach, we have df2 = (m − 1) + m(m − 2) = m2 − m − 1, since (1) we have m

hypotheses and
∑m

i=1 αi = α, and (2) for each of m hypotheses, we have m − 1 flexible

transition coefficients and the summation of them equals 1, which produces m(m-2) degrees

of freedom. Thus, we have df1 = df2 when m ≤ 3 (when m = 2, df1 = df2 = 1), and

df1 > df2 when m ≥ 4. Therefore, there are less degree of freedoms for the original

graph, which means we have more restrictions for this method and the default graph is

more flexible.

In summary, we have studied the similarity and difference between these two

approaches and the conditions that should be satisfied. We also have provided the method

to find the corresponding equivalent graphical approach when the other approach is given

for testing three hypotheses. Moreover, Bretz et al. (2009) provided an indirect proof of

FWER control for the original graphical approach by showing the equivalence between

the graphs with updating algorithm and a short-cut of the corresponding closed testing

procedures (CTPs). In our study, we will give an elegant proof to show the FWER control

directly, which can help to understand the original graph approach thoroughly and provide

theoretical reference to develop new graphical approaches. The rest of the chapter is

organized as follows: Section 3.2 introduces some basic notations and concepts used in this

paper. Two algorithms of the default graphical approach are provided in Section 3.3. In

Section 3.4, we have provided theoretical results of the similarity and difference between
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two graphical approaches, and an elegant and direct proof of the FWER control for the

original graphical approach. Some clinical examples are given in Section 3.5. In Section

3.6, a brief summary and future plan are given.

3.2 Preliminaries

In this section, some general notations and definitions are introduced in this chapter.

Moreover, as the original graphical approach is well explained in Chapter 2, we will

introduce the default graph in this section.

Consider simultaneously testing m null hypotheses in the framework of the original

graphical approach. Let H and M denote the collection of m hypotheses and its

corresponding index set, respectively. Let T and F = H\T denote the set of all true nulls

and the set of all false null hypotheses, respectively. The initial local critical values for m

hypothesesHk: α = (α1, ..., αm). The initial transition coefficients matrixG = (glk)m×m,

where glk is the fraction of the critical value of Hl that is passed to Hk when Hl is rejected.

Given the following regularity conditions on the initial critical values and transition

coefficients:

1.
∑m

l=1 αl ≤ α ∈ (0, 1)

2. 0 ≤ glk ≤ 1, gll = 0, l, k = 1, ...,m.

3.
∑m

j=1 glk ≤ 1, ∀l = 1, ...,m.

Let H = (Hj1 , Hj2 , ..., Hjm), with associated p-values P = (Pj1 , ..., Pjm), denote a

sequence of ordered testing hypotheses, such thatHjk will be tested at step k by the original

graphical approach given that all the previous hypotheses Hj1 ,..., Hjk−1
are rejected at step

i = 1, ..., k − 1, correspondingly. Let R denote the rejection number, where

R = max {1 ≤ k ≤ m : Pji ≤ αji(Ri−1),∀i ∈ {1, ..., k}} ,
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whereRi−1 =
(
Hj1 , ..., Hji−1

)
denotes the rejection sequence at first i−1 steps. Therefore,

we have the final rejection sequenceR = {Hji ∈ H : Pji ≤ αji(Ri−1), i = 1, ..., R} . And

let Ii denote the index set of non-rejected hypotheses before testing at step i, supposeR0 =

∅ and I1 = M . Let glk(Ri−1) denote transition coefficients of the remaining hypotheses

after rejecting all the hypotheses in Ri−1, which is a function of Ri−1, l, k ∈ Ii. Let m0

denote the number of true null hypotheses with the index set I0.

For the default graphical approach, we know that the default graph consists of a

group of fixed sequences of pre-ordered hypotheses, each sequence includes at least one

hypothesis which belongs to H. Let S1, ..., Sn denote the sequences of testing hypotheses

of the default graph, where n is the total number of sequences. Let α̃k, k = 1, ..., n, be the

allocated critical values for each sequence. Then, we have Sk = α̃k(Hj1 → Hj2 → ... →

Hji), j1, ..., ji ∈ {1, ...,m}, jl 6= jt if l 6= t. The following are definitions of the default

graph, complete default graph, complete original graph which are basic settings that we

studied with.

Definition 3.2.1 (Burman et al., 2009) A default graph splits the nominal critical value

into several parts (not necessarily of equal size), each allocated to a fixed-sequence of

hypotheses.

Definition 3.2.2 A complete default graph consists of m! sequences when it is used to test

m hypotheses, and each sequence consists of all m hypotheses. For the sequences critical

values,
m!∑
k=1

α̃k = α, and 0 < α̃k < α.

Definition 3.2.3 A complete original graph is with initial critical valuesα = {α1, ..., αm},

0 < αi < α and
∑
i∈M

αi = α, M = {1, ...,m} . And the transition coefficient matrix is

denoted byG = (gij)m×m, where 0 < gij < 1, i 6= j, gii = 0 and
∑
j∈M

gij = 1.

3.3 Algorithms of the Default Graphical Approach

In this section, first we will provide an updating algorithm for the default graph. Let αi

denote the initial critical value of hypothesis Hi, then we have
∑m

i=1 αi ≤ α and αi =
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∑n
k=1 α̃kI(Sk(1) = i), i = 1, ...,m, where Sk(1) denotes the index of initial hypothesis

(tail hypothesis) for the sequence Sk at first stage, suppose Sk(1) = S1
k(1).

Algorithm 1 1. Initialize I = {1, ...,m}, t = 1, nt = n.

2. Let αi =
∑nt

k=1 α̃kI(Stk(1) = i) for i ∈ I , where Stk(1) denotes the index of initial
hypothesis for the sequence Sk at stage t, for simplicity.

3. If Pi ≤ αi, reject the corresponding hypotheses Hi. Let At and It denote the set and
corresponding index set of the rejected hypotheses; otherwise stop.

4. Update the default graph:

(a) I → I \ It;
(b) Remove all the hypotheses Hi ∈ At from the sequences, if all the elements

in some sequences are removed, the corresponding critical values won’t
be recycled; otherwise, the critical value of each remaining sequence is
unchanged;

(c) Combine the same remaining sequences by adding the corresponding sequence
critical values.

α̃k −→ α̃k +
∑
j∈I

α̃jI(Sj = Sk), k ∈ I, k 6= j.

Only one updated combined α̃k for the same sequences is kept. Increase t by 1, and
let nt denote the updated number of sequences, and the updated k = 1, ..., nt.

5. If |I| ≥ 1, go to step 2; otherwise stop.

Remark 5 We take a fallback procedure example to explain the statements in step 4(ii)

and (iii). Suppose we simultaneously test three hypotheses H1, H2, H3 with corresponding

weights w1, w2, w3. If the testing order is H1, H2 and H3, correspondingly. Then

applying fallback procedure, we have three sequences, S1 = w1α(H1 → H2 → H3),

S2 = w2α(H2 → H3) and S3 = w3α(H3). (1) Suppose only H3 is rejected at stage

1 as P3 ≤ w3α, P1 > w1α and P2 > w2α. Then, sequence S3 is removed and its

assigned critical value won’t be recycled. (2) If only H2 is rejected at stage 1 when

P1 > w1α, P2 ≤ w2α and P3 > w3α. Consequently, H2 is removed from sequences

S1 and S2; therefore the updated sequences are S1 = w1α(H1 → H3), S2 = w2α(H3)

and S3 = w3α(H3). After combining same sequences we have updated sequences

S1 = w1α(H1 → H3), S2 = (w2 + w3)α(H3).
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The following two examples are used to illustrate Algorithm 1 of the default graph.

Example 3.3.1 Consider a fallback procedure example. Given three hypotheses H1, H2

and H3, with associated p-values P1, P2 and P3, respectively. Suppose P1 = 0.5α, P2 =

0.8α and P3 > α. The yellow nodes mean that the hypotheses are rejected, red means that

the procedure stops.

1

0.7α

2

3

2

0.2α

3

3

0.1α

Figure 3.3 The initial default graph.

2

0.7α

3

2

0.2α

3

3

0.1α

Figure 3.4 The updated default graph after rejecting H1 at stage 1 as P1 < 0.7α.

2

0.9α

3

3

0.1α

Figure 3.5 Combining the remaining same sequences.

3

0.9α

3

0.1α

Figure 3.6 The updated default graph after rejecting H2 at stage 2, as P2 < 0.9α.

From this example, we can see that at first stage, only H1 is rejected as P1 < 0.7α,

P2 > 0.2α and P3 > 0.1α. After removing the node of H1 in the graph, the allocated
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3

α

Figure 3.7 Combining same sequences.

critical value 0.7α is passed to H2 in the first sequence from left side. Then, we combine

first two same sequences S1 = 0.7α(H2 → H3) and S2 = 0.2α(H2 → H3) by adding 0.7α

and 0.2α, which is 0.9α(H2 → H3). The following steps are updated by the same way.

Example 3.3.2 Consider a Holm procedure example. Given three hypotheses H1, H2 and

H3, with associated p-values P1, P2 and P3, respectively. Suppose P1 = 0.5α, P2 = 0.3α

and P3 > α.

1

0.35α

2

3

1

0.35α

3

2

2

0.2α

1

3

2

0.2α

3

1

3

0.05α

1

2

3

0.05α

2

1

Figure 3.8 The initial default graph.

3

α

Figure 3.9 The updated default graph as P1 < 0.7α and P2 < 0.4α.

From this example, we can see both H1 and H2 are rejected at stage 1 which is

different with the original graphical approach, and the allocated critical values of these

two hypotheses will be fully passed to H3.

We also provide an algorithm to find the corresponding original graphical approach

when a complete default graph is given. From the definition of complete default graph,

we know that it consists of m! sequences, each sequence is one of permutations of m

hypotheses. Let Stk(l) denote the lth hypothesis in the sequence Sk at stage t.
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Algorithm 2 1. Initialize I = {1, ...,m}, t = 1, nt = m! which is the number of
sequences for the initial graph.

2. First, according to the complete default graph, we find the initial transition coefficient
matrix.

(a) For i ∈ I , define summation of critical values of the sequences with same first
two hypotheses Hi and Hj ,

αij =
nt∑
k=1

α̃kI(Stk(1) = i, Stk(2) = j), j ∈ I \ {i} .

(b) Therefore, we have initial transition coefficients

gij =
αij∑nt

k=1 α̃kI(Sk(1) = i)
,∀i ∈ I, j ∈ I \ {i} . (3.1)

3. If some hypotheses are rejected at stage t, update the graph according to Algorithm
1. Let It denote the index set of the rejected hypotheses at stage t, and I → I \ It.
otherwise stop.

4. Increase t by 1, and let nt denote the updated number of sequences, and the updated
k = 1, ..., nt.

5. If |I| ≥ 3, go to step 2(a); otherwise stop.

3.4 Main Theoretical Results

In this section, first, we will provide the theoretical results of similarity and difference

between two graphical approaches. Second, we will give elegant theoretical results to

prove the FWER control directly for the original graphical approach.

3.4.1 The similarity and difference between two graphical approaches

First, in the following Theorem 3, we show that when simultaneously test three hypotheses,

if the complete original graph is given, we can always find a corresponding equivalent

complete default graph.

Theorem 3 When simultaneously test three hypotheses, the original graph according to

Bretz et al. (2009) is given, with
3∑
i=1

αi = α, gii = 0, 0 < gij < 1, and
∑
j∈M

gij = 1,

i 6= j, i, j ∈ M and M = {1, 2, 3}. The default graph is obtained based on finding all
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the possible routes for each sequence, and adding all the allocated critical values to the

routes together. Then the performances of the original graphical approach and the default

graphical approach are equivalent.

The proof of Theorem 3 is given as follows.

Suppose three hypotheses H1, H2 and H3 are simultaneously tested. The initial

critical values for the hypotheses and transition coefficients are given in Figure 3.10.

Suppose
3∑
i=1

αi = α, gii = 0 and 0 < gij < 1,
∑
j∈M

gij = 1, i 6= j, i, j ∈ M and

M = {1, 2, 3}.

1

α1

2
α2 3

α3

g12
g21

g31
g13

g23

g32

Figure 3.10 The complete original graph with 0 < gij < 1, ∀ i 6= j, i, j ∈ M and
M = {1, 2, 3}. Yellow node means the tail hypothesis in the sequence.

According to the given original graph, we list all the possible direct routes as a default

graph in Figure 3.11. The key point is to find the critical values for each sequence α̃k,

k = 1, ..., 6.

1

α̃1

2

3

1

α̃2

3

2

2

α̃3

1

3

2

α̃4

3

1

3

α̃5

1

2

3

α̃6

2

1

Figure 3.11 The corresponding default graph of the original graph in Figure 3.10.

Since the methods to find the critical values for 6 sequences are similar, we only show

the process for the first sequence: H1 → H2 → H3, which consists of two types of routes:
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1

α1

2 3

g12
g21

g23

Figure 3.12 First type of routes for the sequence H1 → H2 → H3 when all 0 < gij < 1,
i 6= j.

(1) First type of routes for the sequence H1 → H2 → H3 is as follows.

We can express this type of routes as (H1 → H2)
t → H3, where (H1 → H2)

t means

the loop between H1 and H2 repeats t − 1 times and the allocated critical values are

α1 (g12g21)
t−1 g12g23, t ∈ N, correspondingly. For example, when t = 1 means there is

no loop between H1 and H2, then the route is the simplest one: H1 → H2 → H3. When

t = 2, we have one loop: H1 → H2 → H1 → H2 → H3.

Thus, for this type of routes, we have assigned the following critical value in total

∞∑
t=1

α1 (g12g21)
t−1 g12g23 = α1g12

g23
1− g12g21

, (3.2)

this is due to the fact that
∞∑
t=1

xt−1 = 1
1−x , when 0 < x < 1 and 0 < gij < 1, ∀ i, j ∈ M ,

i 6= j and M = {1, 2, 3}.

(2) The graph of second type of routes is attached as below.

1

α1

2 3

g12
g21 g13

Figure 3.13 Second type of routes for the sequence H1 → H2 → H3 when all 0 < gij <
1, i 6= j.

This type of routes can be expressed as (H1 → H2)
t → H1 → H3 and the allocated

critical values to these routes are α1 (g12g21)
t g13, t ∈ N, correspondingly.
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Thus, for the second type of routes, we have assigned the following critical value in

total
∞∑
t=1

α1 (g12g21)
t g13 = α1g12g21g13(1 +

∞∑
t=1

(g12g21)
t) = α1g12

g21g13
1− g12g21

, (3.3)

this is also because 1 +
∞∑
t=1

xt = 1
1−x , when 0 < x < 1.

Therefore, for the given sequenceH1 → H2 → H3, the critical value can be obtained

by adding Equation (3.2) and (3.3) together, which is,

α1g12
g23

1− g12g21
+ α1g12

g21g13
1− g12g21

= α1g12

(
g23 + g21g13
1− g12g21

)
= α1g12g23(H1) = α1g12,

where g23(H1) denotes the updated transition coefficient from H2 to H3 after removing

hypothesis {H1} at first stage, and g23(H1) = g23+g21g13
1−g12g21 = 1−g21+g21(1−g12)

1−g12g21 = 1.

Thus, by similar method, finally we have α̃1 = α1g12, α̃2 = α1g13, α̃3 = α2g21,

α̃4 = α2g23, α̃5 = α5g31, and α̃6 = α6g32. Consequently, we have α̃1 + α̃2 = α1,

α̃3 + α̃4 = α2 and α̃5 + α̃6 = α3. Therefore, at first stage, both approaches can test

hypotheses at exactly same critical values.

Suppose Hi, i ∈ M , is rejected at first stage, (1) for the original graphical approach,

we have αl(Hi) = αl +αigil, l ∈M \{i} . And glk(Hi) = 1, l, k ∈M \{i} , l 6= k. (2) For

the default graph, we have αl(Hi) = αl + αigilglk(Hi) = αl + αigil, l ∈ M \ {i} . Thus,

at stage 2, two approaches can also test the remaining hypotheses at same critical values.

And it is easy to show after removing second hypothesis at stage 2, both approaches can

test last hypothesis at
3∑
i=1

αi level.

Thus, for testing 3 hypotheses, given an original graph, we can find the corresponding

default graph and prove it they are equivalent when 0 < gij < 1, i 6= j, i, j ∈M . �

Second, in Theorem 4, we show that when simultaneously test three hypotheses, if

the complete default graph is given, we can also find a corresponding equivalent original

default graph.
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Theorem 4 When simultaneously test three hypotheses, the default graph according to

Burman et al. (2009) is given, with
6∑

k=1

α̃k = α, and 0 < α̃k < α. The corresponding

original graphical approach according to Algorithm 2 is equivalent to the default graphical

approach.

The proof of Theorem 4 is given as follows.

Suppose we simultaneously test 3 hypotheses H1, H2 and H3, with associated

p-values P1, P2 and P3. The default graph is given in Figure 3.14, then we find the

corresponding initial original graph according to Algorithm 2 (refer to Figure 3.15), and

prove that these two approaches are equivalent when they are performed based on their own

algorithms. Suppose
6∑

k=1

α̃k = α, and 0 < α̃k < α.

1

α̃1

2

3

1

α̃2

3

2

2

α̃3

1

3

2

α̃4

3

1

3

α̃5

1

2

3

α̃6

2

1

Figure 3.14 The complete default graph for testing 3 hypotheses with
6∑

k=1

α̃k = α, and

0 < α̃k < α.

According to the above graph, we can find α1 =
∑6

k=1 α̃kI(Sk(1) = 1) = α̃1 + α̃2.

Similarly, α2 = α̃3 + α̃4, and α3 = α̃5 + α̃6.

The initial transition coefficients can be found by gij =
∑n

k=1 α̃kI(Sk(1)=i, Sk(2)=j)

αi
, j ∈

M \ {i}, where Sk(1) = i, Sk(2) = j denote the first and second hypothesis indices of

sequence Sk. For instance, g12 = α̃1/α1.

Without loss of generality, we suppose H1 is rejected first by both approaches, since

at stage 1, both methods can test three hypotheses at same levels, correspondingly. The

updated graphs are attached as below for both approaches.

(1) For the default graphical approach, the updated default graph according to

Algorithm 1 is in Figure 3.16.
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1

α1

2
α2 3

α3

α̃1/α1

α̃3/α2

α̃5/α3

α̃2/α1

α̃4/α2

α̃6/α3

Figure 3.15 The corresponding initial original graph of the default graph in Figure 3.14
according to Algorithm 2.

2

α̃1 + α̃3 + α̃4

3

3

α̃2 + α̃5 + α̃6

2

Figure 3.16 The updated default graph of Figure 3.14 after rejecting H1 according to
Algorithm 1.

Based on Algorithm 2, the updated original graph (refer to Figure 3.17) is corre-

sponding to Figure 3.16.

2

α̃1 + α̃3 + α̃4

3

α̃2 + α̃5 + α̃61

1

Figure 3.17 The updated original graph of Figure 3.16 according to Algorithm 2.

(2) According to the updating algorithm in Bretz et al. (2009), α2(H1) = α2 +

α1g12 = α̃1 + α̃3 + α̃4 and α3(H1) = α3 + α1g13 = α̃2 + α̃5 + α̃6. And g23(H1) =

g32(H1) = 1.

2

α̃1 + α̃3 + α̃4

3

α̃2 + α̃5 + α̃61

1

Figure 3.18 The updated original graph of Figure 3.15 according to the algorithm in
Bretz et al. (2009).

Therefore the updated original graphs based on two different algorithms are same.

Suppose H2 is removed at stage 2. It is easy to show both approaches can test H3 at level
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6∑
k=1

α̃k. Thus, when only three hypotheses are simultaneously tested, two approaches are

equivalent when all the 0 < α̃k < α. �

We also provide an algebraic method to find the corresponding equivalent graphical

approach when the other approach is given to test three hypotheses.

Suppose we simultaneously test three hypotheses H1, H2 and H3. Then we applied

the default graphical approach and the original graphical approach to test these hypotheses,

respectively. Only complete graphs are considered. See Figure 3.10 and 3.11.

By solving the following equations, we want to show if two approaches are equivalent

when there are only three hypotheses. Equations (3.4) to (3.6) mean the critical values are

equivalent correspondingly at first stage for both the original graphical approach and the

default graphical approach; Equations (3.7) to (3.12) mean after removing one hypothesis,

the updated critical values are equivalent for two approaches; Equation (3.13) means after

removing two hypotheses, the critical values for the remaining hypothesis are equivalent.

As both approaches are sequentially rejective procedures, if a unique group of solutions

exists, then, two approaches are equivalent.



α̃1 + α̃2 = α1

α̃3 + α̃4 = α2

α̃5 + α̃6 = α3

α̃1 + α̃3 + α̃4 = α2 + α1g12

α̃2 + α̃5 + α̃6 = α3 + α1g13

α̃1 + α̃2 + α̃3 = α1 + α2g21

α̃4 + α̃5 + α̃6 = α3 + α2g23

α̃1 + α̃2 + α̃5 = α1 + α3g31

α̃3 + α̃4 + α̃6 = α2 + α3g32

α̃1 + α̃2 + α̃3 + α̃4 + α̃5 + α̃6 = α1 + α2 + α3

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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Case 1: When we test three hypotheses simultaneously, suppose the original graph

is given, we find the critical values for sequences of the default graph based on the above

equations. On the right side of equations, the critical values are corresponding to the initial

critical values and updated critical values which can be obtained from initial critical values

and transition coefficients.

From Equations (3.5) and (3.7), we can find α̃1 = α1g12; from Equations (3.4) and

(3.9), we can find α̃3 = α2g21. Similarly, we can find α̃2 = α1g13, α̃4 = α2g23, α̃5 = α3g31

and α̃6 = α3g32. Since Equation (3.13) can be obtained from (3.4) to (3.6), then for the

exhaustive procedure, the solutions don’t depend on last stage. Therefore, when an original

graph is given, we can find a unique default graph which is equivalent to the original one

for three hypotheses.

Case 2: Suppose a default graph is given, we want to find a corresponding initial

graph to see if it is unique. From first three equations we can find three initial critical

values in terms of sequence critical values. According to Equations (3.4), (3.5) and (3.7),

we can have g12 = α̃1

α̃1+α̃2
; from Equations (3.4), (3.6) and (3.8), we can have g13 = α̃2

α̃1+α̃2
.

Similarly, we can find g21 = α̃3

α̃3+α̃4
, g23 = α̃4

α̃3+α̃4
, g31 = α̃5

α̃5+α̃6
, and g32 = α̃6

α̃5+α̃6
. The

solutions are also unique, which means both approaches are equivalent.

However, when a given default graph is not complete, it is not necessary to find a

corresponding original graph. See the following example 3.4.1.

Example 3.4.1 A default graph is given in Figure 3.19, which consists of three sequences,

with the sequence critical values α̃1, α̃2 and α̃3, respectively. Suppose
3∑

k=1

α̃k = α.

To find the corresponding original graph, a group of equations are found by setting

equal critical values for the remaining hypotheses at each stage for both approaches.

Then we will see if we can find the parameters for the original graph in terms of given

information.
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1

α̃1

2

3

2

α̃2

1

3

3

α̃3

1

2

Figure 3.19 An incomplete default graph for three hypotheses, where the number of
sequences is three.



α̃1 = α1

α̃2 = α2

α̃3 = α3

α̃1 + α̃2 = α2 + α1g12 = α2(H1) Remove H1

α̃3 = α3 + α1g13 = α3(H1) Remove H1

α̃1 + α̃2 = α1 + α2g21 = α1(H2) Remove H2

α̃3 = α3 + α2g23 = α3(H2) Remove H2

α̃1 + α̃3 = α1 + α3g31 = α1(H3) Remove H3

α̃2 = α2 + α3g32 = α2(H3) Remove H3

α̃1 + α̃2 + α̃3 = α3(H1) + α2(H1)g23(H1) Remove H1 and H2

α̃1 + α̃2 + α̃3 = α2(H1) + α3(H1)g32(H1) Remove H1 and H3

α̃1 + α̃2 + α̃3 = α1(H2) + α3(H2)g31(H2) Remove H2 and H3

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

Therefore, we can find the initial transition coefficients g12 = g21 = g31 = 1 and

g13 = g23 = g32 = 0 according to Equations (3.14) to (3.22). According to the initial

critical values and transition coefficients that we found, the corresponding initial original

graph is attached in Figure 3.20.
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1

α̃1

2

α̃2

3 α̃3

1

1

1

Figure 3.20 The corresponding initial incomplete original graph for three hypotheses in
Figure 3.19.

Then, substitute these values to Equations (3.23) to (3.25), we can have the updated

transition coefficients g23(H1) = g32(H1) = g31(H2) = 1. However, according to the

algorithm in Bretz et al. (2009), we have g23(H1) = 0. Thus for this given default graph,

there is no corresponding updated original graph existing. From this example, we can note

that H3 have a chance to be tested at α level by using a default graph; however, in the

corresponding initial original graph, H3 can only be tested at level α̃3.

If an original graph is incomplete but with
∑
j∈M

gij = 1,M = {1, 2, 3}, we can find an

equivalent default graph. See Example 3.4.2. However, if an original graph is incomplete

and with
∑
j∈M

gij < 1, M = {1, 2, 3}, it is not necessarily to find an equivalent default

graph. See Remark 6.

Example 3.4.2 When an original graph is given, with
3∑
i=1

αi = α, gii = 0 and
∑
j∈M

gij = 1,

i, j ∈M and M = {1, 2, 3}. But at least one of gij’s are equal to 0 or 1.

1

α1

2

α2

3
α3

1

g21

g31
g23

g32

Figure 3.21 g12 = 1 and other 0 < gij < 1.

For special cases from Figure 3.21 to 3.24, once we have
∑
j∈M

gij = 1, there must

be existing an unique corresponding default graph. Take Figure 3.24 as an example, the

corresponding default graph is given in Figure 3.25.
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1

α1

2

α2

3
α3

1

g31
1

g32

Figure 3.22 g12 = g23 = 1 and other 0 < gij < 1.

1

α1

2

α2

3
α3

1

1 1

Figure 3.23 One example, g12 = g23 = g31 = 1.

1

α1

2

α2

3
α3

1

1
1

Figure 3.24 Another example, g12 = g23 = g32 = 1.

1

α1

2

3

2

α2

3

3

α3

2

Figure 3.25 The corresponding default graph to original graph in Figure 3.24.
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Remark 6 However, when
∑
j∈M

gij < 1, it is not necessarily to find a corresponding default

graph, refer to Figure 3.26.

1

α1

2

α2

3
α3

1/2

1/2

1/2
1/2

1/2

Figure 3.26 g12 = 1/2, g13 = 0.

According to the algebraic method, we can find the initial default graph for Figure

3.26.

1

α1/2

2

3

1

α1/2

2

α2/2

1

3

2

α2/2

3

1

3

α3/2

1

2

3

α3/2

2

1

Figure 3.27 The corresponding default graph of the Figure 3.26.

The following graphs in Figures 3.28 and 3.29 are the updated graphs for two

approaches, respectively. It is easy to see the updated graphs are not equivalent after

removing either H2 or H3 of the remaining two hypotheses.

2

α2 + α1/2

3

α32/3

3/4

Figure 3.28 The updated original graph in Figure 3.26 after removing H1 according to
the algorithm in Bretz at el. (2009).

Third, the uncertainty of equivalency between two graphical approaches for more

than three hypotheses are also discussed. We have already discussed the equivalence of two

complete graphical approaches and also non-equivalence between two incomplete graphs
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2

α2 + α1/2

3

3

α3

2

Figure 3.29 The updated default graph in Figure 3.27 after removing H1 according to
Algorithm 1.

for testing three hypotheses. In the following section, at beginning, we use an example to

illustrate the complete original graph is corresponding to multiple default graphs when we

simultaneously test four hypotheses. Next, a theorem of nonuniqueness is given. Then, we

will discuss the non-equivalent property when there are more than three hypotheses, even

when the given default graphs are complete.

Example 3.4.3 (Four hypotheses) Suppose a complete original graph is given to simulta-

neously test 4 hypotheses H1, H2, H3 and H4. Suppose
4∑
i=1

αi = α, gii = 0, 0 < gij < 1,

i 6= j, and
∑
j∈M

gij = 1, i, j ∈ M and M = {1, ..., 4}. See the following original graph in

Figure 3.30.

Then the corresponding default graph with 4!=24 sequences is attached in Figures

3.31 and 3.32. We will use the algebraic method to find the critical value for each sequence.

In the following group of equations, only a part of equations is listed, which is needed

for finding α̃1, α̃2, α̃7, and α̃8. Equations (3.26) to (3.29) are defined to find equivalent

initial critical values for both approaches. Equations (3.30) to (3.32) are defined to find

equivalent updated critical values after removing H1 for two approaches. Equations (3.33)

to (3.35) are defined to find equivalent updated critical values after removing H2 for two

approaches. Equations (3.36) and (3.37) are defined to find equivalent updated critical

values for H3 and H4 after removing H1 and H2, no matter how the removing order is.

Allocated critical values for other sequences are found by the similar way.
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1

α1

2

α2

3α3 4 α4

g13 g31

g12

g14

g14

g21

g23 g24 g42g32

g43

g34

Figure 3.30 A complete original graph for testing 4 hypotheses.
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α̃1

2

3

4

1

α̃2

2

4

3

1

α̃3

3

2

4

1

α̃4

3

4

2

1

α̃5

4

2

3

1

α̃6

4

3

2

2

α̃7

1

3

4

2

α̃8

1

4

3

2

α̃9

3

1

4

2

α̃10

3

4

1

2

α̃11

4

1

3

2

α̃12

4

3

1

Figure 3.31 First 12 sequences in the complete default graph for testing 4 hypotheses.
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α̃13

1

2
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3

α̃14

1

4

2

3

α̃15

2

1

4

3

α̃16

2

4

1

3

α̃17

4

1

2

3

α̃18

4

2

1

4

α̃19

1

2

3

4

α̃20

1

3

2

4

α̃21

2

1

3

4

α̃22

2

3

1

4

α̃23

3

1

2

4

α̃24

3

2

1

Figure 3.32 First 12 sequences in the complete default graph for testing 4 hypotheses.
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6∑
k=1

α̃k = α1

12∑
k=7

α̃k = α2

18∑
k=13

α̃k = α3

24∑
k=19

α̃k = α4

α̃1 + α̃2 +
12∑
k=7

α̃k = α2 + α1g12

α̃3 + α̃4 +
18∑

k=13

α̃k = α3 + α1g13

α̃5 + α̃6 +
24∑

k=19

α̃k = α4 + α1g14

α̃7 + α̃8 +
6∑

k=1

α̃k = α1 + α2g21

α̃9 + α̃10 +
18∑

k=13

α̃k = α3 + α2g23

α̃11 + α̃12 +
24∑

k=19

α̃k = α4 + α2g24,

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

and

α̃1 + α̃3 + α̃4 + α̃7 + α̃9 + α̃10 +
18∑

k=13

α̃k = α3 + α1g13 + (α2 + α1g12)g23(H1), (3.36)

α̃2 + α̃5 + α̃6 + α̃8 + α̃11 + α̃12 +
24∑

k=19

α̃k = α4 + α1g14 + (α2 + α1g12)g24(H1) (3.37)

After simplifying above group of equations we get the following four equations:
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α̃1 + α̃2 = α1g12

α̃7 + α̃8 = α2g21

α̃1 + α̃7 = α1g12g23(H1) + α2g21g13(H2)

α̃2 + α̃8 = α1g12g24(H1) + α2g21g14(H2).

From Equations (1*) to (4*), we can find



α̃1 = α1g12g23(H1) + δ1

α̃2 = α1g12g24(H1)− δ1

α̃7 = α2g21g13(H2)− δ1

α̃8 = α2g21g14(H2) + δ1,

Then by similar method, we can get



α̃3 = α1g13g32(H1) + δ2

α̃4 = α1g13g34(H1)− δ2

α̃13 = α3g31g12(H3)− δ2

α̃14 = α3g31g14(H3) + δ2,



α̃5 = α1g14g42(H1) + δ3

α̃6 = α1g14g43(H1)− δ3

α̃19 = α4g41g12(H4)− δ3

α̃20 = α4g41g13(H4) + δ3,
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α̃9 = α2g23g31(H2) + δ4

α̃10 = α2g23g34(H2)− δ4

α̃15 = α3g32g21(H3)− δ4

α̃16 = α3g32g24(H3) + δ4,



α̃11 = α2g24g41(H2) + δ5

α̃12 = α2g24g43(H2)− δ5

α̃21 = α4g42g21(H4)− δ5

α̃22 = α4g42g23(H4) + δ5,

and 

α̃17 = α3g34g41(H3) + δ6

α̃18 = α3g34g42(H3)− δ6

α̃23 = α4g43g31(H4)− δ6

α̃24 = α4g43g32(H4) + δ6.

We find that if δ-values change over some specific intervals, the default graphs are

different, but equivalent. And these default graphs are corresponding to an unique original

graph with initial critical values α = {α1, α2, α3, α4} and initial transition coefficients

G = {gij}4×4.

For example, even though the solutions of sequence critical values are not unique;

however, we have unique
6∑

k=1

α̃k,
12∑
k=7

α̃k,
18∑

k=13

α̃k, and
24∑

k=19

α̃k. And after removing any

hypotheses, the summations of the corresponding sequence critical values for each of

remaining hypotheses are also unique, for example, after removing H1, we have unique
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α̃1 + α̃2 +
12∑
k=7

α̃k, α̃3 + α̃4 +
18∑

k=13

α̃k and α̃5 + α̃6 +
24∑

k=19

α̃k. This is also true for removing

two or three hypotheses. Therefore, all the corresponding default graphs are equivalent.

Therefore, when an original graph is given for testing four hypotheses, even though

the solutions for default graphs are not unique, but they are equivalent in the sense that

when testing hypotheses are same, we will have the same rejection sets.

Consequently, we have the following result. And the proof of Theorem 5 is deferred

to Appendix B.

Theorem 5 A complete original graph, described as Definition 3.2.3, is used to test m

hypotheses. Then, there are existing multiple corresponding default graphs, and they are

equivalent.

Next, we will introduce a necessary condition for two different original graphs are

equivalent, which is ,
∑
l∈M

gkl =
∑
l∈M

g′kl = 1, M = {1, ...,m}.

Consider a problem simultaneously test m hypotheses, two different original graphs

are used to test the given hypotheses and they have same results. Suppose for one graph,

the assigned initial critical values are α1, ..., αm, and we have αi ≥ 0,
∑m

i=1 αi = α. The

initial transition coefficients are gij , and we have 0 ≤ gij ≤ 1,
∑m

j=1 gij ≤ 1, where i, j ∈

M = {1, ...,m}. For the other graph, the initial critical values are α′i, and suppose αi = α′i,

∀ i ∈ M . Let g′ij denote the transition coefficients for this graph, where 0 ≤ g′ij ≤ 1,∑m
j=1 g

′
ij ≤ 1, where i, j ∈M .

Let α(t)
l and α(t)′

l denote the updated critical values for hypothesis Hl for both graphs

at stage 1 ≤ t ≤ m. Let g(t)jl and g
(t)′
jl denote the updated transition coefficients from

Hj to Hl at stage 1 ≤ t ≤ m − 1. Since two original graphs are equivalent for testing

m given hypotheses, they must have same initial and updated critical values at each

stage if the rejection orders are same. And according to the Algorithm 1 in Bretz et al.

(2009), if hypothesis Hj is rejected at stage t, we have following equations for two graphs,

respectively.
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α
(t+1)
l = α

(t)
l + α

(t)
j g

(t)
jl ,

and

α
(t+1)′
l = α

(t)′
l + α

(t)′
j g

(t)′
jl ,

where l ∈ It+1, It+1 denotes the index set of remaining hypotheses. α(1)
l = αl and g(1)jl =

gjl, α
(1)′
l = α′l and g(1)jl = g′jl.

Moreover, since two original graphs are equivalent, and because of the uniqueness

property of the rejection set, we can assume that they have same rejection orders of

hypotheses. And also due to the uniqueness properties of critical values, we will have

α
(t)
l = α

(t)′
l , t = 1, ...,m,

and

g
(t)
jl = g

(t)′
jl , if α(t)

j = α
(t)′
j 6= 0. (3.38)

That means if α(t)
j = α

(t)′
j = 0, at stage t, the transition coefficients from Hj to other

hypotheses might be different for two different graphs. However, if the initial or updated

critical values toHj for two graphs are equal to 0, the hypothesisHj does not have a chance

to be rejected at the corresponding stages. Thus, this situation does not necessarily affect

the result.

Once the assigned critical value for some hypothesis Hk is updated to a positive

number from 0, the updated transition coefficients from Hk to other hypotheses will be

same for two graphs. For example, we consider Hj is rejected at first stage, and αk = α′k =

0, α(2)
k = αjgjk, and α(2)′

k = α′jg
′
jk, j ∈ M , k ∈ M \ {j}. Then according to Equation

(3.38), we have gjk = g′jk, and suppose they are non-zeros; therefore, α(2)
k = α

(2)′
k 6= 0.
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The updated transition coefficients from Hk to other hypotheses Hl, l ∈ M \ {j, k} are as

follows,

g
(2)
kl =

gkl + gkjgjl
1− gkjgjk

,

and

g
(2)′
kl =

g′kl + g′kjg
′
jl

1− g′kjg′jk
=
g′kl + g′kjgjl

1− g′kjgjk
.

Then, according to equation (3.38), we have

gkl + gkjgjl
1− gkjgjk

=
g′kl + g′kjgjl

1− g′kjgjk
.

Next, based on above equation, we want to find the condition that we need to satisfy

the equality.

Consequently, we will have∑
l∈M\{j,k}

gkl + gkjgjl
1− gkjgjk

=
∑

l∈M\{j,k}

g′kl + g′kjgjl

1− g′kjgjk∑
l∈M

gkl − gkj +
∑

l∈M\{j,k}
gkjgjl

1− gkjgjk
=

∑
l∈M

g′kl − g′kj +
∑

l∈M\{j,k}
g′kjgjl

1− g′kjgjk
,

(3.39)

which is

∑
l∈M

gkl − g′kjgjk
∑
l∈M

gkl − gkj +
∑

l∈M\{j,k}

gkjgjl

=
∑
l∈M

g′kl − gkjgjk
∑
l∈M

g′kl − g′kj +
∑

l∈M\{j,k}

g′kjgjl

∑
l∈M

gkl − g′kjgjk(
∑
l∈M

gkl − 1) + gkj(
∑
l∈M

gjl − 1)

=
∑
l∈M

g′kl − gkjgjk(
∑
l∈M

g′kl − 1) + g′kj(
∑
l∈M

gjl − 1).

(3.40)

From above equations, we can see when
∑
l∈M

gkl =
∑
l∈M

g′kl =
∑
l∈M

gjl = 1, two sides

are equal.
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The above statement is also applied to an arbitrary stage t+1. SupposeHj is rejected

at stage t, and for some hypothesisHk, α(t)
k = α

(t)′
k = 0. Then after rejectingHj , assume we

have α(t+1)
k = α

(t+1)′
k > 0; therefore, according to Equation (3.38), we have g(t+1)

kl = g
(t+1)′
kl ,

l ∈ It+1, which is

g
(t)
kl + g

(t)
kj g

(t)
jl

1− g(t)kj g
(t)
jk

=
g
(t)′
kl + g

(t)′
kj g

(t)
jl

1− g(t)′kj g
(t)
jk∑

l∈It\{j,k}

g
(t)
kl + g

(t)
kj g

(t)
jl

1− g(t)kj g
(t)
jk

=
∑

l∈It\{j,k}

g
(t)′
kl + g

(t)′
kj g

(t)
jl

1− g(t)′kj g
(t)
jk

.

(3.41)

Similarly, we will have the condition
∑
l∈It

g
(t)
kl =

∑
l∈It

g
(t)′
kl =

∑
l∈It

g
(t)
jl = 1, two sides are

equal.

Remark: If for all hypotheses Hk, k ∈ M , the assigned initial critical values αk 6=

0, then according to Equation (3.38) we have gkl = g′kl, ∀ k, l ∈ M if two graphs are

equivalent. We can also say that for this case, the graph is unique.

However, the above condition is only a necessary condition which means when

two different original graphs are equivalent, if some hypothesis Hk with zero initial

critical value, the transition coefficients from Hk to other hypotheses for two graphs can

be different, but the summation of them of one graph must be equal to 1. However,∑
l∈M

gkl =
∑
l∈M

g′kl = 1 is not a sufficient condition.

We also provide an example 3.5.1 in Section 3.5 to illustrate that even if the default

graph is complete when it is used to test more than three hypotheses, there is not necessarily

an equivalent original graph existing. Also, we give an example to show that for some

incomplete default graphs, by adding some edges between two hypotheses with associated

infinitesimally small transition coefficients, we can find corresponding equivalent original

graphs.
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3.4.2 A direct proof of FWER control for the original graphical approach

In this section, we have shown that the three regularity conditions are achieved at each

testing step, and monotonicity property of critical values and transition coefficient holds;

thus, a direct proof of FWER control is obtained, consequently. Moreover, we also showed

the final rejection set is unique and the original approach graphical approach is monotone

in terms of p-values directly. These results offered a complete theoretical results for the

original graphical approach and it will help us to understand it thoroughly and develop new

graphical approaches.

The proofs of Proposition 3.4.1, Proposition 3.4.2, Proposition 3.4.3, Theorem 6 and

Theorem 7 are deferred to Appendix B.

Proposition 3.4.1 The critical value function αk(R) and transition coefficients function

glk(R) are unique in terms of rejection set no mater what the rejection order is, where R

is an arbitrary rejection set and l, k are the indices of hypotheses Hl, Hk ∈ H \ R.

Proposition 3.4.2 Three regularity conditions holds for rejection sets at any step,

∑
k∈Ii

glk(Ri−1) ≤ 1, (3.42)

0 ≤ glk(Ri−1) ≤ 1, gll(Ri−1) = 0, ∀l, k ∈ Ii, i = 1, ...,m, (3.43)

∑
k∈Ii

αk(Ri−1) ≤ α, i = 1, ...,m. (3.44)

Proposition 3.4.3 Given two rejection setsR and S, such thatR ⊂ S , then we have shown

αk(R) ≤ αk(S) and glk(R) ≤ glk(S), l, k are the indices of hypotheses Hl, Hk ∈ H \ S.

The rejection setR consists of an arbitrary number of rejected hypotheses from 1 to m−1.

Example 3.4.4 If simultaneously test 4 hypothesesH = {H1, H2, H3, H4}, supposeR =

{H2} and S = {H2, H4}, then according to Proposition 3.4.3, we have α1(R) ≤ α1(S),

α3(R) ≤ α3(S), g13(R) ≤ g13(S) and g31(R) ≤ g31(S).
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Theorem 6 (Uniqueness of rejection set) When apply the original graphical approach to

test a given number of hypotheses, the final rejection set R is unique no matter what the

rejection order is.

Theorem 7 (Monotone property in terms of p-values) The original graphical approach

is monotone in terms of p-values, in the sense that the original graphical approach always

rejects a hypothesis with the smaller p-value whenever it rejects another hypothesis with a

larger p-value.

A direct proof of the FWER control for the original graphical approach is achieved.

Suppose the first rejection of true null hypothesis happens in step i, in other words, at first

i− 1 steps, the graphical approach does not reject any true null hypotheses. Therefore, we

have Ri−1 ⊂ F ; thus, αl(Ri−1) ≤ αl(F), l ∈ I0, which is due to the monotonicity of the

critical value function. Correspondingly,

FWER = Pr(V ≥ 1)

= Pr (∪l∈I0 {Pl ≤ αl(Ri−1)})

≤ Pr (∪l∈I0 {Pl ≤ αl(F)})

≤
∑
l∈I0

Pr (Pl ≤ αl(F))

≤
∑
l∈I0

αl(F)

≤ α.

(3.45)

The first inequality of Equation (3.45) is due to the monotonicity of the critical value

function. The second and third inequalities are based on Bonferroni inequality and the

distribution of true nulls. Thus, the original graphical approach strong controls the FWER

at α under arbitrary dependence.

Moreover, from the first inequality of Equation (3.45), Pr (∪l∈I0 {Pl ≤ αl(Ri−1)}) ≤

Pr (∪l∈I0 {Pl ≤ αl(F)}) we can see only all of false null hypotheses are rejected we may

75



achieve the largest type I error α. Therefore, if all the p-values of false nulls are equal to 0,

and true nulls follow the uniform distribution from 0 to 1, the FWER could be equal to α

based on the monotone property and uniqueness property of α(R) and rejection set.

3.5 Clinical Examples

Example 3.5.1 is used to explain for some default graphs when they are used to test more

than three hypotheses, it is not necessarily to find a corresponding original graph even if

the default graph is complete. As aforementioned, for testing more than three hypotheses,

the degree of freedom of a complete default graph is more than that of an complete original

graph; thus, a complete default graph is more flexible.

Example 3.5.1 See the default graph in Example 3.4.3. Here, for simplicity I only attach

part of the default graph where only the sequences with the tail hypotheses H1 or H2 are

included, see Figure 3.33. Also, we have α̃13 = α̃14 = α̃17 = α̃18 = 0.001, α̃15 = α̃16 =

α̃19 = α̃20 = α̃23 = α̃24 = 0.002, and α̃21 = α̃22 = 0.003. Suppose the associated p-values

P1 = 0.01, P2 = 0.015, P3 = 0.04 and P4 = 0.025.

Then, according to Algorithm 1, we have α1 =
∑6

k=1 α̃k = 0.016, α2 =
∑12

k=7 α̃k =

0.012, α3 =
∑18

k=13 α̃k = 0.008 and α4 =
∑24

k=19 α̃k = 0.014.

1

α̃1 = 0.004

2

3

4

1

0.004

2

4

3

1

0.002

3

2

4

1

0.002

3

4

2

1

0.002

4

2

3

1

0.002

4

3

2

2

α̃7 = 0.002

1

3

4

2

0.002

1

4

3

2

0.003

3

1

4

2

0.003

3

4

1

2

0.001

4

1

3

2

0.001

4

3

1

Figure 3.33 A part of the complete default graph for testing four hypotheses for which
the sequences has H1, H2 as tail hypotheses.

According to Algorithm 2, we can find the initial transition coefficients, eg,

g12 =

∑24
k=1 α̃kI(Sk(1) = 1, Sk(2) = 2)

α1

=
0.004 + 0.004

0.016
=

1

2
, (3.46)
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or

g21 =

∑24
k=1 α̃kI(Sk(1) = 2, Sk(2) = 1)

α2

=
0.002 + 0.002

0.012
=

1

3
. (3.47)

From above two equations and default graph, we can see the numerator of g12 are

determined by the portions of critical value α1 which are allocated to first and second

sequences. If g12 is fixed, then there can be any combination of first two sequences critical

values as long as the summation equals 0.008. So is g21. Therefore, if we don’t have

additional restriction for the setting of initial critical values of sequences, after removing a

hypothesis at first stage, then if we find the corresponding original graph according to the

updated default graph, the updated transition coefficients g23(H1) and g24(H2) will vary

depending on how we set α̃1, α̃2, α̃7 and α̃8. Only when we set α̃1 = 0.0056, α̃2 = 0.0024,

α̃7 = 0.0024, and α̃8 = 0.0016, then g23(H1) and g24(H2), found according to the original

graphical approach can be equal to the ones found by the default graphical approach, and

g23(H1) = 7/10, g24(H1) = 3/10. This is because for this setting we also consider how to

pass the updated critical value of H2 to H3 or H4 after removing H1.

Then, by similar method, we get the initial transition coefficient matrix is as follows.

G =



0 1
2

1
4

1
4

1
3

0 1
2

1
6

1
4

1
2

0 1
4

2
7

3
7

2
7

0


.

Return to this example, since P1 < α1, P2 > α2, P3 > α3 and P4 > α4, H1 is

rejected at the first stage. Then, according to Algorithm 1, the updated graph is attached

in Figure 3.34. Take the sequences with tail hypothesis H2 as an example, we have two

different sequences: (1) H2 → H3 → H4 (yellow color labeled), and (2) H2 → H4 → H3

(pink color labeled).

Also, according to the algorithm in Bretz et al. (2009), after rejectingH1, the updated

original graph is attached in Figure 3.35.
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0.012
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0.007
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3

0.005
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0.01

2

3

4

0.008

3

2

Figure 3.34 The updated default graph after removing H1 according to Algorithm 1.

2

0.02

30.012 4 0.018

7/10
2/3

8/13
3/10

1/3

5/13

Figure 3.35 The updated original graph after removing H1 according to the algorithm in
Bretz et al. (2009).

We can see, based on both approaches, H2 is rejected at second stage since P2 <

α2(H1), P3 > α3(H1) and P4 > α4(H1). The updated graphs in Figure 3.36 and 3.37

are corresponding to two updating algorithms of the default graph and original graph,

respectively.

3

0.024

4

4

0.026

3

Figure 3.36 The updated default graph at stage 3 after rejecting H1 and H2 according to
Algorithm 1.

3

0.026

4

0.024
1

1

Figure 3.37 The updated original graph at stage 3 after rejecting H1 and H2 according to
the algorithm in Bretz at el. (2009).
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Based on the updated default graph, we can see H4 is rejected as P4 < α4(H1, H2).

However, the original graphical approach stops testing since both of remaining p-values

are larger than corresponding critical values. This means for the given default graph, there

is no corresponding original graph existing.

Example 3.5.2 In this example, we want to show for some incomplete default graph, we

may find a corresponding original graph by adding some sequences with infinitesimally

small allocated critical values. Consider Example 3.4.1 and Figure 3.19 again.

1

α̃1 − ξα̃1

2

3

1

ξα̃1

3

2

2

α̃2

1

3

3

α̃3

1

2

Figure 3.38 Add a sequence ξα̃1 : H1 → H3 → H2.

1

α̃1

2

α̃2

3
α̃3

1− ξ

1

ξ

1

Figure 3.39 Add an edge from H1 to H3 with an infinitesimally small number g13 = ξ.

1

α̃1

2

3

2

α̃2 − ξα̃2

1

3

2

ξα̃2

3

1

3

α̃3

1

2

Figure 3.40 Add a sequence ξα̃2 : H2 → H3 → H1.

From Example 3.4.1, we know there is no corresponding original graph to Figure

3.19. However, for the method 1, by adding a sequence ξα̃1 : H1 → H3 → H2 where ξ is
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1

α̃1

2

α̃2

3
α̃3

1

1− ξ

1 ξ

Figure 3.41 Add an edge from H2 to H3 with an infinitesimally small number g23 = ξ.

an infinitesimally small number to Figure 3.38 and adding an edge with an infinitesimally

small transition coefficient ξ from H1 to H3 to Figure 3.39, we can find the equivalent

corresponding graphs, especially when ξ goes to 0. And for method 2, by adding a sequence

ξα̃2 : H2 → H3 → H1 where ξ is an infinitesimally small number to Figure 3.40 and

adding an edge with an infinitesimally small transition coefficient ξ fromH2 toH3 to Figure

3.41, we also can find the equivalent corresponding graphs, especially when ξ goes to 0.

3.6 Conclusion

In this chapter, we mainly investigated the similarities and differences between the original

graphical approach and the default graph. Currently, these two approaches are usually

considered to be equivalent since both of them are used to visualize Bonferroni-type

sequentially rejective procedures. Actually, when the graphs are not complete and the

number of hypotheses are more than three, their performance may be different. We have

shown the equivalence between two graphical approaches when we simultaneously test

three hypotheses and both of graphs are complete. For testing three hypotheses, if a default

graph is incomplete, it is not necessarily to find an equivalent original graph; however,

even if an original graph is incomplete but with
3∑
j=1

gij = 1, i = 1, 2, 3, we can find

an equivalent default graph. We also find if an original graph is incomplete and with
3∑
j=1

gij < 1, it is not necessarily to find an equivalent default graph. For testing more

than three hypotheses, we have proved that if an original graph is complete, there will

be corresponding to multiple equivalent default graphs. We also provide a proof of a
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necessary condition of non-uniqueness of original graph which is
∑
l∈M

gkl =
∑
l∈M

g′kl = 1,

M = {1, ...,m}. However, given an complete default graph for testing more than three

hypotheses, it is not necessarily to find an equivalent original graph. One of the reasons is

the degree of freedom of a complete default graph is more than that of a complete original

graph. In this chapter, we also give an elegant theoretical result: a direct proof of the FWER

control for the original graphical approach. Moreover, for the families of hypotheses testing

problems, for example when we use the serial gatekeeping procedure, it is convenient to use

default graph since there are existing problems to use original graph without adding edges

with infinitesimally small transition coefficients between two families. This work, adding

infinitesimally small transition coefficients ξ for application purpose, is not complete yet.

We are working on providing general guidelines for how to add edges. Specially, between

which two hypotheses should the edges be placed and what values of transition coefficients

should be associated with the added edges?
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CHAPTER 4
A GENERALIZED STEP-UP FDR CONTROLLING PROCEDURE FOR

DISCRETE DATA

4.1 Introduction

In this chapter, we focus on developing a new generalized step-up FDR controlling

procedure for discrete data. In many applications, such as clinical safety analysis,

genome-wide association studies (GWAS) and next generation sequencing data (NGS),

the experiment data often takes the forms of counts and the number of hypotheses for such

studies is usually large. Thus, the procedures that considering the discrete properties of the

data and controlling the FDR are required for this kind of problems. Most existing FDR

controlling procedures are developed for continuous data (Benjamini and Hochberg (1995),

Benjamini and Yekutieli (2001)), which are often conservative when analyzing discrete

data because the distributions of p-values under true nulls for discrete case are usually

stochastically larger than U(0, 1). In addition, for discrete data, under true null hypotheses,

different p-values often have different distributions. To overcome this conservatism, we

aim to develop a FDR controlling procedure, taking the properties of discreteness and

heterogeneity of discrete data into account.

Several FDR controlling procedures were developed for analyzing discrete data by

considering various information of the discrete data: the minimal attainable p-values, see

Gilbert (2005), the midP -values, see Heller and Gur (2011) and the averaged cumulative

distribution functions of the p-values, refer to Heyse (2011) and Dohler, Durand and

Roquain (2018). However, none of these procedures can be proved to control the FDR

and be more powerful than BH procedure theoretically at same time. Jiang et al. (2017)

introduced a discrete FDR method which coincides with the permutation-based FDR

estimation procedure of Li and Tibshirani (2013) by using the nonparametric method to

exploit the discreteness of the test statistics, but it is not proved to be more powerful than

BH procedure. Moreover, most existing multiple testing procedures (MTPs) are stepwise
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methods with a unique critical value function which is suitable for testing the continuous

data, since under the hypotheses are true, the distributions of p-values are uniformly

distributed over an interval (0, 1). However, because of the heterogeneity property of

discrete data the existing rejection rule may not be proper any more and consequently,

it will be promising to find a specific sequence of critical values for each hypothesis by

fully utilizing its underlying distribution, which will be known if the minimal attainable

p-values are known. Lynch and Guo (2016)introduced a new concept of generalized

stepwise procedure which generalizes the usual stepwise procedure to the case where

each hypothesis is tested with a sequence of its own critical constants. In this research

project, under the same framework of the aforementioned generalized step-up approach, by

fully utilizing known marginal distributions of true null p-values, we develop a powerful

generalized step-up procedure for discrete case under independence structure with proven

control of the FDR.

The rest of this chapter is organized as follows: in Section 4.2, we introduce basic

notations used in this chapter. In section 4.3, we discuss some existing FDR controlling

procedures for discrete data and their limitations. Section 4.4 introduces a generalized

step-up procedure. The FDR control of the proposed procedure is proved in Section 4.5. In

Section 4.6, we demonstrate clinical trial examples to illustrate the proposed procedure. In

Section 4.7, a summary and future plan are given.

4.2 Preliminary

The FDR is defined as FDR = E(V
R

), where we use the convention that V
R
≡ 0 when

R = 0. Here, R and V are number of rejected hypotheses and falsely rejected hypotheses

among the m hypotheses. Consider we simultaneously test m hypotheses H1, ..., Hm,

suppose there are m0 true null hypotheses and m1 false null hypotheses, assuming the

testing statistics are discrete, with p-values P1, ..., Pm correspondingly. Let Fi denote the
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CDF of Pi under Hi is true and let Pi denotes the full set of all attainable values for Pi,

i = 1, ...,m.

In our project,we make use of the following assumption regarding marginal p-

values : under the hypotheses are true,

Fi(u) ≤ u for any 0 ≤ u ≤ 1,

here if u ∈ Pi, the above inequality becomes equality; otherwise, Fi(u) < u.

4.3 The Existing FDR Controlling Procedures

Lynch and Guo (2016) presented a generalized stepwise procedure where each hypothesis

is tested with a different set of critical constants.

For the generalized step-up procedure, if we simultaneously test m hypotheses

H1, ..., Hm with p-values P1, ..., Pm correspondingly, then given m non-decreasing critical

functions α(i)
r , i = 1, ...,m, this procedure rejects Hi if Pi ≤ α

(i)
R for each i = 1, ...,m

where R is determined as follows : R = max
{

0 ≤ r ≤ m : r ≤
∑m

i=1 I
{
Pi ≤ α

(i)
r

}}
.

Remark 7 From this generalized step-up procedure, we can see that each hypothesis can

have its own critical function; therefore, this framework is especially suitable for discrete

data. That is because under true null hypotheses, p-values for different hypotheses have

different distributions, which is not like continuous case that all p-values under true nulls

will follow an unique uniform distribution from 0 to 1. Thus, it will be promising to find

a specific sequence of critical values for each hypothesis by fully utilizing its underlying

distribution.

Gilbert procedure (2005): a simple two-step combination of the Tarone procedure

(1990) and BH procedure, which is described below.
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(1) Tarone’s procedure (1990): is a modified Bonferroni procedure for discrete data.

Suppose that p∗i is the smallest attainable p-value for Hi, i=1,...,m. Let

m(k) =
m∑
i=1

I
{
p∗i ≤

α

k

}
and K = min {1 ≤ k ≤ m : m(k) ≤ k} .

Then, reject Hi if Pi ≤ α
K
. Here, m(k) is the number of hypotheses with p∗i < α/k, RK is

the set of indices satisfying p∗i < α/K, which contains m(K) indices.

(2) The newly proposed modified FDR procedure: first, compute the integer K and

the subset of m(K) indices RK among the m hypotheses; second, perform BH procedure at

level α on the subset of hypotheses RK .

We can see this modified procedure carries out BH procedure using cut-off levels

iα
m(K)

, i = 1, ...,m(K). Because K, m(K) and RK are calculated on the basis of marginal

information only, it follows that the FDR procedure conducted on the subset of indices in

RK controls the FDR at level less than or equal to {m0(K)/m(K)}α ≤ α.

Gilbert (2005) also showed, under arbitrary dependence, the FDR can be controlled

at level α if the cut-off critical values are iα

m(K)
∑m(K)

j=1 (1/j)
, i = 1, ...,m(K).

Remark 8 When Gilbert procedure is applied to continuous data, Rk = m since p∗i =

0. Thus, it is reduced to BH procedure. However, this procedure cannot be theoretically

shown more powerful than BH procedure since it heavily depends on the minimal attainable

p-values.

Heyse procedure (2011): Heyse’s procedure is relying on the following averaged

cumulative distribution functions (CDFs) :

F̄ (t) =
1

m

m∑
i=1

Fi(t), t ∈ [0, 1],

where each Fi corresponds to the CDF of the ith p-value under the true null hypothesis.

The critical values of the Heyse procedure can be obtained by inverting F̄ at the

values αk/m, k = 1, ...,m. Thus, the smaller the F̄ -values, the larger the critical values.
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Remark 9 Heyse procedure is a BH-type procedure and it is more powerful than BH

procedure when the heterogeneity and discreteness both exist; however, it cannot be

theoretically shown to control the FDR.

The adjusted p-values for Heyse procedure are

P adj
(j) =


P(j), if j = m,

min
(
P adj
(j+1) ,

[∑m
i=1 Fi(P(j))

]
/j
)

if j = m-1,...,1.

Hypotheses with P adj
(j) ≤ α are declared significant.

Döhler, Durand and Roquain (2018) heterogeneous step-up procedure [HSU]:

The step-up procedure SU(τ) using the critical values defined in the following way:

τm = max

{
t ∈ P :

1

m

m∑
i=1

Fi(t)

1− Fi(t)
≤ α

}
,

τk = max

{
t ∈ P : t ≤ τm,

1

m

m∑
i=1

Fi(t)

1− Fi(τm)
≤ αk/m

}
, 1 ≤ k ≤ m− 1,

where P =
⋃m
i=1 Pi denotes the overall p-value support and Pi denotes the attainable values

for p-value Pi, i = 1, ...,m, under the null hypotheses.

Then the upper bound of FDR when applying SU(τ) is given by

FDR(SU(τ)) ≤ min

(
m∑
i=1

max
1≤k≤m

Fi(τk)

k
, max

1≤k≤m
max

A⊂{1,...,m}
|A|=m−k+1

(
1

k

∑
i∈A

Fi(τk)

1− Fi(τm)

))
.

Remark 10 In order to overcome the problem that Heyse procedure cannot control the

FDR, SU(τ) has a little bit conservative modification of Heyse procedure. We can see that if

SU(τ) is applied to continuous data, then for any t ∈ (0, 1), we have 1
m

∑m
i=1

Fi(t)
1−Fi(t)

= t
1−t .

Then τm = α
1+α

, consequently, τk = α
1+α

k
m

, k = 1, ...,m − 1. Thus, when applying SU(τ)

to continuous case, it is same as applying BH procedure at α
1+α

level, which is a little bit

more conservative than BH procedure.
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4.4 The Proposed Generalized Step-up Procedure

In this section, we introduce a new generalized step-up procedure, different from the

traditional ones, refer to Gilbert (2005), Heyse (2011) and Dohler and Roquain (2017),

which generalizes the usual step-wise procedure to the case where each hypothesis is

tested with a different set of critical constants. To the best of our knowledge, the proposed

procedure is the first procedure which can be theoretical proved to be more powerful than

BH procedure with proven FDR control under independence.

Suppose we simultaneously test m hypotheses H1, ..., Hm with the corresponding

discrete testing statistics T1, ..., Tm. Let Pi denote the p-value for testing Hi and Pi ={
p
(i)
1 , ..., p

(i)
n

}
denotes the full set of all attainable p-values for Hi such that Pi ∈ Pi,

where p(i)n = 1 and let p(i)0 = 0 for all i. Suppose Fi denote the CDF of Pi under Hi is true,

such that Fi(u) = u, for any u ∈ Pi; otherwise, Fi(u) < u.

Then we find the critical values sequences for m hypotheses, respectively. For

hypothesis Hi, we find a non-decreasing α(i)
r sequence by using the following method:

α(i)
r = max

1≤j≤m

{
jα

m
: Fi(

jα

m
) ≤ rα

m

}
, (4.1)

where r = 1, ...,m.

In order to make it easy to be applicable and provable, we introduce some notations

and detailed steps to find critical value sequences as follows. Define

ψ(i)(k) = max
{

0 ≤ r ≤ m :
rα

m
< p

(i)
k

}
, (4.2)

which is ψ(i)(k) = bmp
(i)
k

α
c, for k = 1, ..., n, if the maximum does not exist, let ψ(i)(k) = 0.

The function ψ(i)(k) is non-decreasing in k, since p(i)k is increasing in k.

Let

S(i) =
{

non-zero jump points of ψ(i)(k), k = 1, ..., n
}

and K(i) =| S(i) |;
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then let

S(i) =
{
j
(i)
1 , j

(i)
2 , ..., j

(i)

K(i)

}
,

where j(i)
K(i) = m and let j(i)0 = 0 for all i.

Define

D̃(u) =
m∑
i=1

Fi(j(i)1

m
u) +

K(i)−1∑
s=1

Fi( j(i)s+1

m
u)

j
(i)
s + 1

−
Fi(

j
(i)
s

m
u)

j
(i)
s−1 + 1

 I
Fi(

j
(i)
s+1

m
u)

j
(i)
s + 1

>
Fi(

j
(i)
s

m
u)

j
(i)
s−1 + 1


 ,

for any given u ∈ (0, 1).

Let D(u) = maxβ

{
D̃(β) : β ≤ u

}
which is monotonically non-decreasing in u.

Then we find α̃ = max {u : D(u) ≤ α} . For simplicity, let α̃ = D−1(α). Thus, α(i)
r =

j
(i)
s

m
α̃, j

(i)
s−1 < r ≤ j

(i)
s , s = 1, ..., K(i).

4.4.1 A generalized step-up procedure

Suppose simultaneously testing m hypotheses H1, ..., Hm where the testing statistics are

discrete, with p-values P1, ..., Pm correspondingly.

Procedure 4.4.1 Given m non-decreasing sequences of critical constants α
(i)
r , i =

1, ...,m, the hypotheses are tested as follows.

1. Determine R first, let R = max
{
r ∈ {0, 1, ..., m} : r ≤

∑m
i=1 I

{
Pi ≤ α

(i)
r

}}
,

where α(i)
0 = 0.

(a) Step 1. If m >
∑m

i=1 I
{
Pi ≤ α

(i)
m

}
, go to the next step. Otherwise reject all

hypotheses and stop.

(b) Step j = 2, ...,m − 1. If m − j + 1 >
∑m

i=1 I
{
Pi ≤ α

(i)
m−j+1

}
, go to the next

step. Otherwise reject the corresponding m− j+1Hi’s with Pi ≤ α
(i)
m−j+1 and

stop.

(c) Step m. If 1 >
∑m

i=1 I
{
Pi ≤ α

(i)
1

}
, retain all the hypotheses. Otherwise reject

the corresponding Hi with Pi ≤ α
(i)
1 .

2. Test the hypotheses H1, ..., Hm at level α(1)
R , ..., α

(m)
R , respectively. Then reject Hi if

and only if Pi ≤ α
(i)
R .

88



Remark 11 For example, if α
m

is located in an interval [p
(i)
k , p

(i)
k+1),

ψ(i)(j) = max
{

0 ≤ r ≤ m :
rα

m
< p

(i)
j

}
= 0, for j = 1, ..., k,

and

ψ(i)(k + 1) = max
{

0 ≤ r ≤ m :
rα

m
< p

(i)
k+1

}
= j

(i)
1 ,

then, we can check Fi(
j
(i)
1

m
α) = p

(i)
k ≤ α

m
and also Fi(

j
(i)
1 +1

m
α) = p

(i)
k+1 >

α
m

since j(i)1 is the

largest r which satisfies rα
m
< p

(i)
k+1. Next, we continue to find ψ(i)(k + j), j = 2, ..., n − k

until we once get a larger value than j(i)1 , which will be denoted to j(i)2 . Then, by similar

way, we can obtain j(i)s , s = 3, ..., K(i), respectively. It’s easy to show the critical value

sequences that we find by the above method are same as those found by equation (4.1).

4.4.2 A simple algorithm to find j(i)s and K(i)

A simple algorithm to find j(i)s and K(i) is described bellow.

Algorithm 3 For simplicity, we will omit the index i for the attainable p-values of Pi, j
(i)
s

and K(i).

1. Initialize j0 = 0, t = 1.

2. For any given α ∈ (0, 1), let at = Fi(
jt−1+1
m

α), find k ∈ {0, 1, ..., n} such that
pk = at, let bt = pk+1. Then, find the largest l which satisfy lα

m
∈ [at, bt), l is a

positive integer from 1 to m.

3. (a) If l = m, set jK = m, K = t and stop.
(b) If l < m, set jt = l and increase t by 1. Then repeat step 2 and 3.

4.5 The FDR Control

According to the Procedure 4.4.1, the method (4.1), and the algorithm to find j(i)s and K(i),

we have the following result.

Theorem 8 Under independence structure of Pi, i = 1, ...,m, the generalized step-up

procedure 4.4.1 with m critical constant sequences α(i)
r = j

(i)
s

m
α̃ that we find by the

aforementioned method, strongly controls the FDR at level α.
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Therefore, we provide a theoretical result of the FDR control for the proposed

method. Then proof of Theorem 8 is deferred to Appendix C. Combined with the following

result, we provide a procedure which is theoretically more powerful than BH procedure and

meanwhile, it is also proved to control the FDR under independence structure.

Proposition 4.5.1 The generalized step-up procedure 4.4.1 is uniformly more powerful

than BH procedure, that is, procedure 4.4.1 will reject any hypotheses that are rejected

by BH procedure.

The result just simply follows Equation (4.1), that is, each critical value sequence

is obtained by inverting the CDF of Pi at rα/m, r = 1, ...,m, and the distribution is

stochastically larger than U(0, 1). Thus, all m critical value sequences are not less than

those for BH procedures in coordinatewise.

Remark 12 The generalized step-up procedure 4.4.1 will be reduced to BH procedure

when it is applied to continuous data. Moreover, for discrete case, when the distributions of

Pi, i = 1, ..., m are homogeneous. There is no space to improve the procedure. One special

case is given as follows.

Suppose that p∗i ’s are the smallest attainable p-values for Hi’s, i = 1, ...,m. (1) For

any given α, if p∗i > α, D(α) = 0 since for any j ≤ k, ij
m
α ≤ α < p∗i . (2) If p∗i = α, in

the summation terms of D(α), only when j = k - 1, Fi(
ij+1

m
α) = Fi(

ik
m
α) = α = p∗i , others

equals 0; thus, D(α) =
∑m

i=1
p∗i

ik−1+1
≥ p∗i .

4.6 Clinical Examples

In this section, we will use a sample of simultaneous testing m = 10 hypotheses, which

consists of two different distributions under true null hypotheses, to demonstrate that the

proposed generalized procedure has a great potential to perform better than the Döhler,

Durand and Roquain (2018) procedure and Gilbert (2005) procedure.

Consider simultaneously testingm independent hypotheses, suppose for each hypothesis

we conduct a two sample test with two binomial responses Xi1 and Xi2, observed for each
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of n individuals in each group, such as Xi1 ∼ b(n, pi1), Xi2 ∼ b(n, pi2), i = 1, ...,m.

Then, to test two-sided hypothesis Hi : pi1 = pi2 vs H ′i : pi1 6= pi2 where pi1 and pi2

are the success probabilities for ith treatment group and control group, respectively. Let

Xi = Xi1 +Xi2. Let Ti denote the number of success belongs to ith treatment group in the

sample. Thus, the test statistics Ti ∼ Hypergeometric(2n, n, Xi).

Example 4.6.1 Consider simultaneously testing 10 independent hypotheses with two

distributions under true nulls, and the sample size for each group is n = 5. Suppose

i = 1, ..., 5, we have Xi1 = 4 and Xi2 = 0, when i = 6, ..., 10, we have Xi1 = 4 and

Xi2 = 1. Then, we have 5 test statistics Ti ∼ Hypergeometric (10, 5, 4), i = 1, ..., 5 and

the other 5 test statistics Ti ∼ Hypergeometric (10, 5, 5), i = 6, ..., 10.

Therefore, for the first 5 hypotheses, Pi = 0.0476, the full set of attainable p-values

Pi = {0.0476, 0.524, 1}, while for the remaining 5 hypotheses, Pi = 0.206 and the

corresponding attainable p-values set Pi = {0.0079, 0.206, 1}. The table 4.1 shows the

critical values for the proposed generalized step-up procedure and Döhler, Durand and

Roquain (2018) procedure.

In table 4.1, The column Distribution 1 represents the critical value sequence of first

5 hypotheses where Xi ∼ Hypergeometric (10, 5, 4), while the column Distribution 2

for the hypotheses where Xi ∼ Hypergeometric (10, 5, 5); Döhler, Durand and Roquain

(2018) procedure is denoted by SU(τ). From table 4.1, we can see, except for α(i)
1 , i =

6, ..., 10, all the other critical values are larger than those of Döhler, Durand and Roquain

(2018) procedure, which means our procedure has a great potential more powerful than it.

Example 4.6.2 Under the same setting of example 4.6.1, By Gilbert procedure (2005),

K(α) = min
{

1 ≤ k ≤ 10 :
∑10

k=1 I
{
p∗i ≤ α

k

}
≤ k

}
gives K(α) = 5. Consequently,

Rk =
{
Hi : p∗i ≤ α

5
= 0.01

}
returns Rk = {H6, ..., H10} with P -value: 0.206 from which

we can see the hypotheses with smaller P -value 0.046 don’t even have the chance to be

tested.
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Table 4.1 Comparison Between the Generalized Step-up Procedure and Döhler, Durand
and Roquain (2018) Procedure

α Distribution 1 Distribution 2 SU(τ)

α1 0.0476 0.0068 0.0079

α2 0.0476 0.068 0.0079

α3 0.0476 0.068 0.0079

α4 0.0476 0.068 0.0079

α5 0.0476 0.068 0.0079

α6 0.0476 0.068 0.0476

α7 0.0476 0.068 0.0476

α8 0.068 0.068 0.0476

α9 0.068 0.068 0.0476

α10 0.068 0.068 0.0476

4.7 Discussion and Future Work

In this chapter, we have introduced a new generalized step-up procedure by taking the

special properties of discrete data which are discreteness and heterogeneity into account.

The proposed procedure is theoretically more powerful than BH procedure and proved to

control the FDR under independence structure. Compared to the existing FDR controlling

procedures for discrete data, our procedure fully utilizes the information of marginal

distribution of p-values that each hypothesis is tested with a different set of critical

constants. Such procedure is especially suitable for discrete data since under the true null

hypotheses, the discrete testing statistics will have their specific distributions. In the future

work, we aim to develop the corresponding generalized step-up procedures under various

dependent structures of the p-values under true null hypotheses. Also the simulation studies

should be given as future work.
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The hypotheses with a known graphical structure often arise in many large scale

multiple testing applications, such as clinical safety analysis and gene ontology in gene

expression data. Exploiting this graphical structure in multiple testing procedures can

improve power as well as aid in interpretation. Many MTPs were developed for the

hierarchical structured hypotheses with continuous data, see Yekutieli (2008), Barber and

Ramdas (2016), Guo, Lynch and Romano (2018) and Bogomolov et al. (2018). And

few studies are related to structured hypotheses with discrete data, for example, adverse

events in clinical safety study, see Mehrotra and Heyse (2004), Berry and Berry (2004) and

Mehrotra and Adewale (2012). Thus, a hierarchical procedure based on the generalized

step-up procedure for discrete data will be meaningful to be developed in the future work.
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CHAPTER 5

SUMMARY AND FUTURE WORK

In this dissertation, first, we mainly focus on investigating two weighted Holm procedures,

the WHP and the WAP, in Chapter 2. We have studied the basic statistical properties and the

optimality property of both procedures, such as finding the underlying CTPs, visualizing

both procedures by graphs, providing the adjusted p-values. We have shown the WHP is

uniformly more powerful than the WAP by theoretical and numerical methods. Also, we

have an interesting observation which is the WAP does not belong to the class of CTPs with

weighted Bonferroni-type local tests and it’s also not monotone in terms of the p-values.

However, the WAP is a consonant procedure although it does not satisfy the monotonicity

condition. And this finding can provide an inspiration to develop a more general graphical

approach. In this chapter, we also discussed how the weights affect the performance of

both procedures by simulation method.

Next, in Chapter 3, we have studied similarities and differences between two

independently developed graphical approaches. Both of two graphical approaches are

used to visualize Bonferroni-type sequentially rejective procedures. We have theoretically

showed that for testing three hypotheses, two graphical approaches are equivalent when

the graphs are complete. However, if the graphs are incomplete, it is not necessarily to

find an equivalent corresponding one. Moreover, when we test more than three hypotheses,

they are not equivalent, this is due to the degree of freedom of the default graph is larger

than the original graph which means the default graph is more flexible. We also provide a

direct proof of the FWER control for the original graphical approach. For the families of

hypotheses testing problems, it is convenient to use default graph; however, we should be

able to solve this problem by adding edges with infinitesimally small transition coefficients
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between two families or modify the updating algorithm when using original approach. We

are working on providing general guidelines on this topic.

Finally, in Chapter 4, we have introduced a new generalized step-up procedure for

discrete data by taking discreteness and heterogeneity properties into account. To the best

of our knowledge, the proposed procedure is the first procedure for discrete data that is

theoretically more powerful than BH procedure and proved to control the FDR under

independence structure. The proposed procedure provides a specific sequence of critical

values for each hypothesis, which is especially suitable for discrete data since the discrete

testing statistics may have different distributions under true null hypotheses.

Some future works for the chapters are summarized as follows. For Chapters 2 and

3, we plan to develop a new general graphical approach for clinical trial studies with

familywise error rate control, including the original graphical approach, the WHP, and

the WAP as special cases. Moreover, we are planning to provide general guidelines on

modifying the graph or the updating algorithm of the original graphical approach in order

to make it to be a more general approach which can be applied to more multiple testing

problems, such as serial gatekeeping problems. For Chapter 4, we want to develop the

corresponding generalized step-up procedures under various dependent structures of the

p-values under true null hypotheses. Also the simulation studies should be given as future

work. A hierarchical procedure based on the generalized step-up procedure for discrete

data will be meaningful to be developed in the future work.
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APPENDIX A

ON WEIGHTED HOLM PROCEDURES

This appendix shows the proofs of the theorems and propositions for the statistical

properties and optimal property of two weighted Holm procedures.

A.1 Proof of Proposition 2.3.1

Given an index set I for which P(i) = min {Pl, l ∈ I} where i denote the index of the ith

smallest p-value. Let I+(i) denote the index set corresponding to the n−i+1 largest p-values{
P(i), P(i+1), ..., P(m)

}
. Thus, I ⊆ I+(i) for any I including P(i) as the smallest p-value in

the index set.

Define φ is an indicate function of the local test, eg, for testing any intersection

hypothesis HI , if reject, φI = 1.

First, to show φI+
(i)

= 1 implies φI = 1. The proof is provided as follows.

If φI+
(i)

= 1, then based on local test of CTP for WAP, we have

P(i) ≤
w(i)∑m
k=iw(k)

α.

In addition, as P(i) is the smallest p-value with index in the index set I , we have∑
k∈I w(k) ≤

∑m
k=iw(k).

Thus, P(i) = min {Pl, l ∈ I} ≤
w(i)∑

k∈I w(k)
α, so φI+

(i)
= 1 implies φI = 1.

Second, given the first observation, we can know that H(i) is rejected if and only if

φI+
(j)

= 1, j = 1, ..., i,

which is equivalent to

P(j) ≤
w(j)∑m
k=iw(k)

α, j = 1, ..., i.
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The last inequality is just the decision rule of the WAP for rejectingH(i), i = 1, ...,m;

thus, the WAP and its corresponding CTP are equivalent. �

The above arguments can also be used to prove the equivalence between the WHP

and its corresponding CTP, which is different with the proof provided by Westfall and

Krishen (2001).

A.2 Proof of Proposition 2.3.3

Let the index set M = {1, ...,m}. According to Definition 2.3.3, we need to show that if

an intersection hypothesis HI , I ⊆ M is rejected in the multiple setting, at least one Hi

implied by HI will be rejected, i.e., Hi with i ∈ I .

(i) If I = M and HI is rejected, consequently, the global intersection hypothesis

∩i∈MHi is rejected by its local test P(1) ≤
w(1)∑
i∈M wi

α. Then, according to the local tests

of the WAP, all the intersection hypotheses HJ , J ⊂ M including H(1) will be rejected.

Therefore, by closure principle, H(1) will be rejected.

(ii) If I ⊂M , and HI is rejected, then we have

P I
(1) ≤

wI(1)∑
i∈I wi

α and P S
(1) ≤

wS(1)∑
i∈S wi

α ∀S, I ⊂ S ⊆M.

where P I
(1) and wI(1) are the smallest p-value in I and its corresponding weight, let Hj , Pj

and wj denote the associated hypothesis, its p-value and weight, respectively. And let P S
(1)

and wS(1) are the smallest p-value in S and its corresponding weight. Then, ∀ J , where

j ∈ J ⊂ I ⊆M , we have

P J
(1) ≤

wJ(1)∑
i∈J wi

α ∀J ⊂ I ⊆M.

Next, we need to show that ∀S, J , where j ∈ J 6⊂ I, J ⊆ S, the intersection

hyptheses HJ will be rejected.

Let Ic = M\I and P Ic

(1) ≤ ... ≤ P Ic

(|Ic|) be the ordered version of the p-values in the

index set Ic with the corresponding weights wIc(1), ..., w
Ic

(|Ic|) and hypothesesHIc

(1), ..., H
Ic

(|Ic|) ,

where |Ic| is the cardinality of Ic. Consider all intersection hypotheses HS , including both
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Hj and HIc

(1) first, where I ⊂ S, since such intersection hypotheses are claimed significant,

we have

Pj ≤
wj∑
i∈S wi

α or P Ic

(1) ≤
wI

c

(1)∑
i∈S wi

α.

Therefore, by the similar method as above, all the intersection hypotheses HJ including

both Hj and HIc

(1), J ⊆ S, are significant according to the following facts,

Pj ≤
wj∑
i∈J wi

α or P Ic

(1) ≤
wI

c

(1)∑
i∈J wi

α.

Consequently, we can continue testing the intersection hypotheses HJ including both Hj

and HIc

(i), i = 2, ..., |Ic| gradually by the similar method as above.

Therefore, all the intersection hypotheses including Hj and itself are rejected, then

by closure principle, Hj is rejected. Thus, the WAP is a consonant procedure. �

A.3 Proof of Proposition 2.4.1

In the following part, we will show that the above graphical representations are equivalent

to the corresponding procedures, the WHP or the WAP, based on the initial graph and

algorithms. Since the only difference between the graphical representations of the WHP

and the WAP is the ordering rule: taking the argument of the minimum of weighted p-values

or original p-values in step 1 of algorithm, so we only need to discuss one proof of them

here, for example, to show equivalence between WHP and its graphical representation.

Let I = {1, ...,m} denote the whole index set. Let ji, i = 1, ...,m denote the

indices of hypotheses Hji that are sequentially tested based on the algorithm, then let

Ii = I\ {j1, ..., ji} denote the index set of the remaining hypotheses after rejecting ith

hypothesis. Suppose I0 = I .

(i) First, for each step of graphical approach, to show a weighted Bonferroni

procedure will be applied to the subset Ii, i = 0, 1, ...,m − 1. Eg, at i + 1 th step,

αj =
wj∑

i∈Ii
wi
α, j ∈ Ii, i = 0, 1, ...,m− 1. Here, the induction method will be used.
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At step 1 when i = 0, we start from the minimum weighted p-value Pj1 , if

Pj1 ≤ αj1 =
wj1∑
i∈I wi

α based on the selection rule at step 1 of algorithm and initial local

significance level, reject Hj1; otherwise stop.

At step 2 when i = 1, Hj1 is rejected, then I1 = I\ {j1}. According to the initial

graph and updating rule, for any l, k ∈ I1, l 6= k,

αl ← αl + αj1gj1l

=
wlα∑
i∈I wi

+
wj1α∑
i∈I wi

wl∑
i∈I\{j1}wi

=
wl∑

i∈I\{j1}wi
α =

wl∑
i∈I1 wi

α

(A.1)

glk ←
glk + glj1gj1k
1− glj1gj1l

=

wk∑
i∈I\{l} wi

+
wj1∑

i∈I\{l} wi

wk∑
i∈I\{j1}

wi

1− wj1∑
i∈I\{l} wi

wl∑
i∈I\{j1}

wi

=
wk∑

i∈I1\{l}wi

(A.2)

Based on the above updated local significance levels, we can see, at step 2, a weighted

Bonferroni procedure will be applied to the subset of hypotheses with index set I1 =

I\ {j1} .

Next, by induction method, assume at step i, after rejecting
{
Hj1 , ..., Hji−1

}
the

results hold, which means for any l, k ∈ Ii−1, l 6= k, αl = wl∑
i∈Ij−1

wi
α and glk =

wk∑
i∈Ii−1\{l}

wi
. Then we only need to show, at step i+ 1, the results still hold.

Based on (6) and (7) and the assumption of ith step, it is easy to find, for any l, k ∈ Ii,

l 6= k,

αl ← αl + αjigjil =
wl∑

i∈Ii−1\{ji}wi
α =

wl∑
i∈Ii wi

α,

glk ←
glk + gljigjik
1− gljigjil

=
wk∑

i∈{Ii−1\{ji}}\{l}wi
=

wk∑
i∈Ii\{l}wi

.
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Besides, considering the selection rule at step 1 of algorithm, we have Pj1

wj1
≤ Pj2

wj2
≤ · · · ≤

Pjm

wjm
.

Thus, we can find the graphical approach will reject Hjl if

Pji ≤ αji =
wji∑

k∈Ii−1
wk
α⇒ Pji

wji
≤ α∑

k∈Ii−1
wk
, i = 1, ..., l,

which is equivalent to

P̃(i) ≤
α∑m

k=iw
∗
(k)

, i = 1, ..., l.

Thus, the WHP is equivalent to its graphical representation.

The above arguments can also be used for the graphical representation of the WAP.

Compared to the graphical representation of the WHP, for the WAP, the only difference is

the selection rule, accordingly, Pji = P(i), i = 1, ...,m.

Then, to reject Hjl which is H(l) if

Pji ≤ αji =
wji∑

k∈Ii−1
wk
α i = 1, ..., l,

which is equivalent to

P(i) ≤
w(i)∑m
k=iw(k)

α, i = 1, ..., l.

Thus, the result follows. �

A.4 Proof of Proposition 2.5.1

For any i ∈ {1, ...,m}, we can find a j, such that P̃(j) =
P(i)

w(i)
, then we have two possible

results: (1) j ≥ i and (2) j < i. Under both cases (1) and (2) we need to show P̃ adj
(j) ≤ P adj

(i) ,

which means we need to show P̃(r)

∑m
k=r w

∗
(k) ≤ P adj

(i) , r = 1, ..., j.

If P̃ adj
(1) = 1, then because P(1)

w(1)

∑m
k=1w(k) ≥ P̃(1)

∑m
k=1w

∗
(k) we have P adj

(1) = 1.

In addition, by the monotonicity increasing of adjusted p-values and adjusted weighted

p-values, all of the values are equal to 1; thus, the result follows.

If P̃ adj
(1) < 1, the proof is shown as follows.
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(1) We start from first case j ≥ i.

For any r ∈ {1, ..., j}, we can find a sr which satisfies

sr = min

{
l : P̃(r) ≤

P(l)

w(l)

≤ P̃(m)

}
. (A.3)

From condition (A.3), we can see P̃(r) ≤ P̃(j) =
P(i)

w(i)
≤ P̃(m) and sr takes the minimum

index of P(l)

w(l)
, therefore, we have sr ≤ i.

Then, if there are m − r + 1 of l′s that satisfy the condition (A.3), and all such

l’s satisfy l ≥ r; thus, sr = r and the two hypotheses subsets,
{
H∗(r), ..., H

∗
(m)

}
and

{
H(sr), ..., H(m)

}
, have the same components, therefore we have

∑m
k=r w

∗
(k) =∑m

k=sr
w(k), r = 1, ..., j.

If some of the l’s, such that l < r, considering the condition (A.3), we have{
H∗(r), ..., H

∗
(m)

}
⊂
{
H(sr), ..., H(m)

}
, therefore

∑m
k=r w

∗
(k) <

∑m
k=sr

w(k), r = 1, ..., j.

Then we have

P̃(r) ≤
P(sr)

w(sr)

and
m∑
k=r

w∗(k) ≤
m∑

k=sr

w(k), r = 1, ..., j;

thus,

P̃(r)

m∑
k=r

w∗(k) ≤
P(sr)

w(sr)

m∑
k=sr

w(k),

and

P adj
(sr)
≤ P adj

(i) ⇒ P̃(r)

m∑
k=r

w∗(k) ≤ P adj
(i) , r = 1, ..., j.

Finally, we have P̃ adj
(j) ≤ P adj

(i) when j ≥ i.

(2) Second case when j < i, still for any r ∈ {1, ..., j}, we can find a sr which

satisfies sr = min
{
l : P̃(r) ≤

P(l)

w(l)
≤ P̃(m)

}
, here, 1 ≤ sr ≤ j < i.

Then we have the same proof as first case, the only minor difference is

P adj
(sr)
≤ P adj

(j) ⇒ P̃(r)

m∑
k=r

w∗(k) ≤ P adj
(j) , r = 1, ..., j.
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Since j < i, consequently, P̃ adj
(j) ≤ P adj

(j) ≤ P adj
(i) .

Thus, the result follows. �

A.5 Proof of Theorem 2

To show WHP is an optimal procedure, we need to show the equality of FWER ≤ α can

be attained by finding a joint distribution for the p-values {P1, ..., Pm}.

We will prove Theorem 2 under the least favorable configuration, where the false

null p-values are all 0 with probability 1, and the true null p-values are the same with

each following U(0, 1) distribution. This is because, under arbitrary dependence, the least

favorable configuration leads to the largest error rate (Finner and Roters, 2001). Let m0

denote the number of true null hypotheses, and for simplicity, let first m0 hypotheses Hi,

i = 1, ...,m0 are true null hypotheses.

Consider the following joint distribution. Choose exactly one true null hypothesis

Hi, i ∈ {1, ...,m0} with probability wi∑m0
k=1 wk

, and let Pi = wiU1, where U1 is uniform on(
0, 1∑m0

k=1 wk

)
, then Pi ∼ U

(
0, wi∑m0

k=1 wk

)
and P̃i = U1. Given Hi is not being selected,

let Pi = wiU
i
2, where U i

2 is independent of U1 and U i
2 ∼ U

(
1∑m0

k=1 wk
, 1
wi

)
, then Pi ∼

U
(

wi∑m0
k=1 wk

, 1
)

and P̃i = U i
2. Then, unconditionally,

Pi ∼
wi∑m0

k=1wk
U

(
0,

wi∑m0

k=1wk

)
+

(
1− wi∑m0

k=1wk

)
U

(
wi∑m0

k=1wk
, 1

)
.

Indeed, if u ≤ wi∑m0
k=1 wk

,

Pr (Pi ≤ u) =
wi∑m0

k=1wk

u

wi/
∑m0

k=1wk
= u

and if u > wi∑m0
k=1 wk

,

Pr(Pi ≤ u) =
wi∑m0

k=1wk
· 1 +

(
1− wi∑m0

k=1wk

)
u− wi/

∑m0

k=1wk
1− wi/

∑m0

k=1wk
= u.
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Thus, by construction, all the true null p-values follow uniform distribution from 0

to 1 and exactly one of constructed weighted p-values P̃i is less than or equal to 1∑m0
k=1 wk

.

Therefore,

FWER = Pr (V ≥ 1)

= Pr

(
min
i∈I0

P̃i ≤
α∑m0

k=1wk

)
= Pr

(
U1 ≤

α∑m0

k=1wk

)
=
α/
∑m0

k=1wk
1/
∑m0

k=1wk
= α,

(A.4)

where U1 is distributed as U
(

0, 1∑m0
k=1 wk

)
and the second equality is because of least

favorable configuration. Thus, the WHP under arbitrary dependency is shown to be

unimprovable without losing control of FWER. �

A.6 Proof of Proposition 2.6.1

Given p-values q = {q1, ..., qm} associated with m hypothesesH1, ..., Hm and pre-specified

positive weights w1, ..., wm, respectively. A m-dimensional simplex:

Simpm = {t = (t1, ..., tm) ∈ Rm : 0 ≤ t1 ≤ · · · ≤ tm ≤ 1} . (A.5)

Let q̃i = qi/wi, i = 1, ...,m. Then, according to equation (A.5), we can always find a

vector t = {t1, ..., tm} ∈ Simpm, such that the vector of the ordered version of q̃i: q̃ ={
q̃(1), ..., q̃(m)

}
is equal to t, where ti = q̃(i), i = 1, ...,m. Let w∗(i) and H∗(i) correspond to

q̃(i) (also ti).

Let Mw be a weighted monotone step-down procedure with FWER ≤ α < 1.

Suppose the weighted procedure Mw finds the rth of t, tr, significant, then what is the

upper bound of tr?

Let l =
∑m

k=r w
∗
(k), τ = min {tr, 1/l} and β = lτ , so that β ≤ 1.

Next, we define m− r + 1 random variables, corresponding to weighted p-values,

P̃r, P̃r+1, ..., P̃m (A.6)
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as follows. First, randomly choose an integer j equal to one of the numbers r, r +

1, ..., m, 0 with probabilitiesw∗(r)τ, w
∗
(r+1)τ, ..., w

∗
(m)τ, 1−β, respectively. Then generate,

independently of each other (given j), the random numbers (A.6), if j 6= 0, P̃j is uniformly

distributed in the interval [0, τ ] while the other variables are distributed as U
[
τ, 1

w∗
(i)

]
,

i ∈ {r, r + 1, ..., m} \ {j}, wherew∗(i) associated with the corresponding random variables

P̃i. If j = 0, all P̃i will follow U [τ, 1
w∗

(i)
], i ∈ {r, r + 1, ..., m}.

Consequently, the original p-value corresponding to the weighted p-value P̃j will

follow U
[
0, w∗(j)τ

]
, j ∈ {r, ..., m}, while all the other original p-values, corresponding to

other P̃i, i ∈ {r, ..., m} \ {j} , will follow U [w∗(i)τ, 1]. It follows the construction that the

distribution of each of the original p-values corresponding to the random variables (A.6)

are uniformly distributed in the interval [0, 1]. Therefore, these corresponding m − r + 1

hypotheses are true nulls.

Also, by construction, if j 6= 0, we have

min
r≤i≤m

P̃i ≤ τ. (A.7)

Then, let P̃1, P̃2, ..., P̃r−1 be arbitrary random variables, such that

0 ≤ P̃i ≤ ti, 1 ≤ i ≤ r − 1. (A.8)

Denote P̃ =
{
P̃(1), ..., P̃(m)

}
the nondecreasing rearrangement of the random vector{

P̃1, ..., P̃m

}
. Then, inequalities (A.7), τ = min {tr, 1/l} ≤ tr and (A.8) imply that,

with probability at least β,

P̃(i) ≤ ti, i = 1, 2, .., r. (A.9)

Since the weighted procedureMw finds the first r terms ti of t significant, being a

step-down procedure,Mw will still find them significant if the remaining terms tr+1, ..., tm

are replaced by 1’s. Then, becauseMw is monotone, the first r terms of the P̃ will also be

found significant, if inequalities (A.9) hold. However, based on construction, there are at
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most r − 1 hypotheses are false, soMw makes at least one type I error with probability at

least β. Therefore, we have FWER ≥ β. By assumption, we have FWER ≤ α < 1,

consequently, β ≤ α, which is lτ ≤ α.

Thus, in particular, β < 1, we have τ = tr and

tr ≤
α∑m

k=r w
∗
(k)

. (A.10)

Because, given the p-values q, the weighted procedure Mw finds all weighted p-

values tj , j = 1, ..., r, significant, it follows that inequalities

tj ≤
α∑m

k=j w
∗
(k)

, j = 1, ..., r

all hold, which means that the hypothesis with rth weighted p-value tr can be rejected by

the WHP.

Thus, given p-values q, if the rth weighted p-value is rejected by the weighted

monotone step-down procedureMw, it is also rejected by the WHP. �

A.7 Proof of Proposition 2.6.2

Still under least favorable configuration, the same setting and joint distribution as proof of

Theorem 2.

Suppose wj = min {w1, ..., wm0}, which is the smallest weight among true null

hypotheses. And we know Pi ∼ U
(

0, wi∑m0
k=1 wk

)
once Hi is selected with probability

wi∑m0
k=1 wk

, i ∈ {1, ...,m0} when we choose exactly one hypothesis. For other non-selected

hypotheses, Pi ∼ U
(

wi∑m0
k=1 wk

, 1
)

, i ∈ I0\ {j}. Let P0 = {P1, ..., Pm0} .

Obviously, as wj is the smallest weights, so when Hj is selected with probability
wj∑m0

k=1 wk
, we have

Pr

(
Pj ≤

wj∑m0

k=1wk
α, Pj ≤ Pi ∈ P0\Pj

)
=

wj∑m0

k=1wk
α.
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When Hi, i ∈ I0\ {j} is selected,

Pr

(
Pi ≤

wi∑m0

k=1wk
α, Pi ≤ Pl ∈ P0\Pi

)
=

wi∑m0

k=1wk
α,

where we only need wi∑m0
k=1 wk

α ≤ wj∑m0
k=1 wk

⇐⇒ wj

wi
≥ α, i ∈ I0\ {j} , which means the

proportions of the smallest weight to any other weights of true null hypotheses are not less

than α. Actually this constraint is easy to be satisfied for many applications.

Therefore, when wj

wi
≥ α, we have

FWER =

m0∑
i=1

Pr

(
Pi ≤

wi∑m0

k=1wk
α, Pi ≤ Pl ∈ P0\Pi

)
= α.

Thus, we can say if the weights of true null hypotheses satisfy the constraint wj

wi
≥ α,

wj = min {w1, ..., wm0} and i ∈ I0\ {j}, the WAP is an optimal procedure. Thus, the

result follows. �
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APPENDIX B

ON GRAPHICAL APPROACHES

This appendix shows the proofs of the theorems and the propositions that we do not provide

in Chapter 3.

B.1 Proof of Theorem 5

Suppose we simultaneously test m hypotheses, m ≥ 4, the number of sub-default graphs

is nsub−default =
(
m
2

)
, and for each sub-default graph, we will have (m − 2)!2! sequences.

Suppose the last two hypotheses of sequences are permutations of Hs and Ht, then any

sequences, consisting of permutations of remaining hypothesesHi, i ∈M \{s, t} followed

by permutations of Hs and Ht, will compose a sub-default graph. We can consider use δi

for each sub-default graph, where i = 1, ...,
(
m
2

)
. Then we can let two arbitrary sequences

of this sub-default graph be Hj1 → Hj2 → ... → Hjm−2 → Hs → Ht and Hj1 → Hj2 →

...→ Hjm−2 → Ht → Hs, respectively. SupposeR0 = ∅. The sequence critical values are

denoted by

αj1

m−2∏
k=1

gjkjk+1
(Rk−1)± δ

, whereRk−1 =
{
Hj1 , ..., Hjk−1

}
.

For two sequences, if the order of first m − 2 hypotheses are same, when jm−1 = t,

jm = s, αj1
∏m−2

k=1 gjkjk+1
(Rk−1) + δ is assigned, then when jm−1 = s, jm = t,

αj1
∏m−2

k=1 gjkjk+1
(Rk−1) − δ will be assigned. Moreover, in this sub-default graph, if the

sequences with same order of last two hypotheses Hs and Ht, for example, jm−1 = t, we

should also make sure they have same numbers of δ and −δ, for each one, the number is

(m− 2)!/2. Then by adding corresponding sequences together when some hypotheses are

rejected, positive or negative δ-values can be canceled. �
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B.2 Proof of Proposition 3.4.1

In the following, we will use the mathematical induction to prove the uniqueness of the

critical value function αl(R) and transition coefficients function glk(R) no mater how the

rejection order is, whereR is an arbitrary rejection set and l, k are the indices of hypotheses

Hl, Hk ∈ H \ R.

When i = 2,R1 consists of one rejected hypothesisHj1 , then according to Algorithm

1 of Bretz et al. (2009) we have

glk(R1) =
glk + glj1gj1k
1− glj1gj1l

, l, k ∈ I2, l 6= k,

αk(R1) = αk + gj1kαj1 , k ∈ I2.

Therefore, the transition coefficient function and critical value function are unique

when the rejection set consists only one component.

Assume these two functions are unique on the rejection set consisting of s − 1

hypotheses, e.g., i = s, no mater how the rejection order of hypotheses inRs−1 is. That is,

we have that the following equations are unique for any j, where j is the index of hypothesis

Hj ∈ Rs−1.

glk(Rs−1) =
glk(Rs−2) + glj(Rs−2)gjk(Rs−2)

1− glj(Rs−2)gjl(Rs−2)
, l, k ∈ Is, l 6= k, (B.1)

αk(Rs−1) = αk(Rs−2) + gjk(Rs−2)αj(Rs−2), k ∈ Is, (B.2)

whereRs−2 = Rs−1 \ {Hj}.

We need to prove the transition coefficient function and critical value function are

still unique for Rs no mater how the rejection order is. Suppose Ht is rejected at step

i = s, such thatRs = Rs−1 ∪ {Ht}, based on the updating rule we have
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glk(Rs) =
glk(Rs−1) + glt(Rs−1)gtk(Rs−1)

1− glt(Rs−1)gtl(Rs−1)
, l, k ∈ Is+1, l 6= k, (B.3)

αk(Rs) = αk(Rs−1) + gtk(Rs−1)αt(Rs−1), k ∈ Is+1. (B.4)

Then we need to show if the rejection order of Ht is exchanged with any hypothesis

Hj that belongs toRs−1, the Equations (B.3) and (B.4) are still unique.

According to the assumption onRs−1, and letR′s−1 = Rs\{Hj}, whereHj ∈ Rs−1,

the Equation (B.3) is equal to

glk(Rs−2)+glj(Rs−2)gjk(Rs−2)

1−glj(Rs−2)gjl(Rs−2)
+

glt(Rs−2)+glj(Rs−2)gjt(Rs−2)

1−glj(Rs−2)gjl(Rs−2)

gtk(Rs−2)+gtj(Rs−2)gjk(Rs−2)

1−gtj(Rs−2)gjt(Rs−2)

1− glt(Rs−2)+glj(Rs−2)gjt(Rs−2)

1−glj(Rs−2)gjl(Rs−2)

gtl(Rs−2)+gtj(Rs−2)gjl(Rs−2)

1−gtj(Rs−2)gjt(Rs−2)

=

glk(Rs−2)+glj(Rs−2)gjk(Rs−2)

1−glt(Rs−2)gtl(Rs−2)
+

glt(Rs−2)+glj(Rs−2)gjt(Rs−2)

1−glt(Rs−2)gtl(Rs−2)

gtk(Rs−2)+gtj(Rs−2)gjk(Rs−2)

1−gtj(Rs−2)gjt(Rs−2)

1−glj(Rs−2)gjl(Rs−2)

1−glt(Rs−2)gtl(Rs−2)
− glt(Rs−2)+glj(Rs−2)gjt(Rs−2)

1−glt(Rs−2)gtl(Rs−2)

gtl(Rs−2)+gtj(Rs−2)gjl(Rs−2)

1−gtj(Rs−2)gjt(Rs−2)

.

(B.5)

The numerator of Equation (B.5) is equal to

glk(Rs−2) + glt(Rs−2)gtk(Rs−2)

1− glt(Rs−2)gtl(Rs−2)

+
glj(Rs−2) + glt(Rs−2)gtj(Rs−2)

1− glt(Rs−2)gtl(Rs−2)

gjk(Rs−2) + gjt(Rs−2)gtk(Rs−2)

1− gtj(Rs−2)gjt(Rs−2)

= glk(R
′

s−1) + glj(R
′

s−1)gjk(R′s−1).

(B.6)

From above equation, based on assumption of the uniqueness of transition coefficient

function on Rs−1, we can see that if t in the indices of three fractional expressions on the

left hand side of Equation (B.6) changes to be r which is any index of hypothesis that

belongs to R′s−1 = Rs \ {Hj}, and the corresponding Rs−2 = R′s−1 \ {Hr}, the value of

left hand side of the equation stays same.
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Similar as above, according to the assumption, the denominator of Equation (B.5) is

equal to

1− glj(Rs−2) + glt(Rs−2)gtj(Rs−2)

1− glt(Rs−2)gtl(Rs−2)

gjl(Rs−2) + gjt(Rs−2)gtl(Rs−2)

1− gjt(Rs−2)gtj(Rs−2)

= 1− glj(R
′

s−1)gjl(R
′

s−1).

(B.7)

Therefore, we have

glk(Rs) =
glk(Rs−1) + glt(Rs−1)gtk(Rs−1)

1− glt(Rs−1)gtl(Rs−1)
, l, k ∈ Is+1, l 6= k,

=
glk(R

′
s−1) + glj(R

′
s−1)gjk(R′s−1)

1− glj(R
′
s−1)gjl(R

′
s−1)

,

(B.8)

where R′s−1 = Rs \ {Hj}, for any Hj ∈ Rs−1. Thus, the transition coefficient

function is unique for the arbitrary rejection set.

Based on the assumption of uniqueness of critical value function on Rs−1, for any

index j of hypothesis Hj ∈ Rs−1, the Equation (B.4) is equal to

αk(Rs) = αk(Rs−1) + gtk(Rs−1)αt(Rs−1), k ∈ Is+1

= αk(Rs−2) + gjk(Rs−2)αj(Rs−2) +
gtk(Rs−2) + gtj(Rs−2)gjk(Rs−2)

1− gtj(Rs−2)gjt(Rs−2)
(αt(Rs−2)

+ gjt(Rs−2)αj(Rs−2))

= αk(Rs−2) + gtk(Rs−2)αt(Rs−2) +
gjk(Rs−2) + gjt(Rs−2)gtk(Rs−2)

1− gjt(Rs−2)gtj(Rs−2)
(αj(Rs−2)

+ gtj(Rs−2)αt(Rs−2))

= αk(R
′

s−1) + gjk(R
′

s−1)αj(R
′

s−1),

(B.9)

where R′s−1 = Rs \ {Hj}, for any Hj ∈ Rs−1. In the third equality of Equation

(B.9), according to the assumption, if t is exchanged with any index r which is index of an

hypothesis that belongs toR′s−1 = Rs\{Hj}, and the correspondingRs−2 = R′s−1\{Hr},
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the equality still holds. Thus, the critical value function is unique for the arbitrary rejection

set. �

B.3 Proof of Proposition 3.4.2

We have shown the uniqueness of the transition coefficient function and critical value

function on any rejection set. Next, by mathematical induction, we want to show three

regularity conditions holds for any rejection sets,

∑
k∈Ii

glk(Ri−1) ≤ 1 (B.10)

and

0 ≤ glk(Ri−1) ≤ 1, gll(Ri−1) = 0, ∀l, k ∈ Ii, i = 1, ...,m, (B.11)

∑
k∈Ii

αk(Ri−1) ≤ α, i = 1, ...,m. (B.12)

When i = 1, by the assumption and initial construction, it is easy to have

∑
k∈I1

glk(R0) =
∑
k∈M

glk ≤ 1,

0 ≤ glk(R0) = glk ≤ 1 and gll(R0) = gll = 0, l, k ∈ I1, and
∑

k∈I1 αl(R0) =∑
k∈M αk ≤ α.

Assume at step i = s, we have
∑

k∈Is glk(Rs−1) ≤ 1, for all l ∈ Is. Consequently,

the conditions 0 ≤ glk(Rs−1) ≤ 1, gll(Rs−1) = 0 hold for all l, k ∈ Is. Moreover, assume∑
k∈Is αk(Rs−1) ≤ α. And Then we need to show the conditions are also satisfied at step

i = s+ 1, which are

∑
k∈Is+1

glk(Rs) ≤ 1, for all l ∈ Is+1, (B.13)
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0 ≤ glk(Rs) ≤ 1, gll(Rs) = 0, l, k ∈ Is+1, (B.14)

∑
k∈Is+1

αk(Rs) ≤ α. (B.15)

In the following proof, we will not consider the case k = l, because according to the

updating rule, glk(Rs−1) = 0 for all s ∈M in such case. Suppose Hjs is rejected at step s,

then we have

∑
k∈Is+1

glk(Rs) =
∑
k∈Is+1

glk(Rs−1) + gljs(Rs−1)gjsk(Rs−1)

1− gljs(Rs−1)gjsl(Rs−1)
, l, k ∈ Is+1, k 6= l

≤ (1− gljs(Rs−1)) + gljs(Rs−1) (1− gjsl(Rs−1))

1− gljs(Rs−1)gjsl(Rs−1)

= 1.

(B.16)

The inequality of Equation (B.16) is due to three following conditions:

(1) According to the assumption
∑

k∈Is glk(Rs−1) ≤ 1, for all l ∈ Is and Hjs is

rejected at step s, we have
∑

k∈Is+1, k 6=l glk(Rs−1) + gljs(Rs−1) ≤ 1, where gll(Rs−1) = 0,

l ∈ Is.

(2) Given l, k ∈ Is+1, k 6= l, we have glk(Rs) =
glk(Rs−1)+gljs (Rs−1)gjsk(Rs−1)

1−gljs (Rs−1)gjsl(Rs−1)
;

otherwise, glk(Rs) = 0. Therefore,

∑
k∈Is+1, k 6=l

gjsk(Rs−1) + gjsl(Rs−1) =
∑
k∈Is

gjsk(Rs−1) ≤ 1,

where gjsjs(Rs−1) = 0, js ∈ Is.

(3) Based on assumption 0 ≤ glk(Rs−1) ≤ 1, l, k ∈ Is at step i = s, we can know

that 1− gjsl(Rs−1) > 0, js, l ∈ Is.
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Therefore, we have
∑

k∈Is+1, k 6=l glk(Rs) ≤ 1 and glk(Rs) = 0, when k = l;

consequently, we have ∑
k∈Is+1

glk(Rs) ≤ 1

for all l ∈ Is+1. Thus, we proved the regularity condition (B.10).

Then, the regularity condition (B.11) is achieved by proving the satisfaction of the

regularity condition (B.10) and the updating rule for the case when l = k.

Finally, we want to prove the regularity condition (B.12),∑
k∈Is+1

αk(Rs) =
∑
k∈Is+1

αk(Rs−1) +
∑
k∈Is+1

αjs(Rs−1)gjsk(Rs−1)

≤ α− αjs(Rs−1) + αjs(Rs−1)

= α.

(B.17)

The inequality of Equation (B.17) is due to the following two reasons: (1) Based on

the rejection of hypothesis Hjs at step i = s and the assumption
∑

k∈Is αk(Rs−1) ≤ α,

we have
∑

k∈Is+1
αk(Rs−1) + αjs(Rs−1) =

∑
k∈Is αk(Rs−1) ≤ α. Consequently,∑

k∈Is+1
αk(Rs−1) ≤ α − αjs(Rs−1). (2)

∑
k∈Is+1

gjsk(Rs−1) =
∑

k∈Is gjsk(Rs−1) −

gjsjs(Rs−1) ≤ 1, as
∑

k∈Is gjsk(Rs−1) ≤ 1 and gjsjs(Rs−1) = 0 which are shown above.

Therefore, the regularity condition (B.12) is proved. �

B.4 Proof of Proposition 3.4.3

Given two rejection setsR and S, such thatR ⊂ S , we need to show αk(R) ≤ αk(S) and

glk(R) ≤ glk(S), l, k are the indices of hypotheses Hl, Hk ∈ H \ S . The rejection set R

consists of an arbitrary number of rejected hypotheses from 1 to m− 1.

Let Ai, consisting of i rejected hypotheses, denote a mutually exclusive rejection set

with the rejection set R, and Si = R ∪ Ai. Therefore, we have R ⊂ Si and there are i

more rejected hypotheses in Si more than the number of hypotheses in R. Let Ji denote

the index set ofH \ Si.
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We use the mathematical induction to prove the monotone property of transition

coefficient function and critical value function. When i = 1,A1 consists of one hypothesis,

say Hj , where Hj ∈ H \ R. Then we have

αk(S1) = αk(R) + gjk(R)αj(R) ≥ αk(R), k ∈ J1,

glk(S1) =
glk(R) + glj(R)gjk(R)

1− glj(R)gjl(R)
≥ glk(R) + glj(R)gjk(R) ≥ glk(R), k, l ∈ J1,

the above equations are due to the regularity condition (B.11), the property of the

critical values and the uniqueness of these two functions.

Assume when i = r − 1, Sr−1 = R∪Ar−1, the following relations are satisfied,

αk(Sr−1) ≥ αk(R), k ∈ Jr−1,

and

glk(Sr−1) ≥ glk(R), l, k ∈ Jr−1.

Then we need to show when i = r, the relations still hold for the rejection sets Sr and R,

whereR ⊂ Sr. Suppose Hj , j ∈ Jr−1 is rejected. Therefore, we have

αk(Sr) = αk(Sr−1) + gjk(Sr−1)αj(Sr−1), k ∈ Jr

≥ αk(R) + gjk(R)αj(R)

≥ αk(R).

(B.18)

The first inequality of Equation (B.18) is due to the assumption on Sr−1.

Moreover, we have
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glk(Sr) =
glk(Sr−1) + glj(Sr−1)gjk(Sr−1)

1− glj(Sr−1)gjl(Sr−1)
, , l, k ∈ Jr

≥ glk(Sr−1) + glj(Sr−1)gjk(Sr−1)

≥ glk(R),

(B.19)

the first inequality of Equation (B.19) is due to the regularity condition (B.11), the

second inequality is due to the assumption on Sr−1 and the regularity condition (B.11).

Therefore, we have shown αk(R) ≤ αk(S) and glk(R) ≤ glk(S), l, k are the indices

of hypotheses Hl, Hk ∈ H \ S, givenR ⊂ S. �

B.5 Proof of Theorem 6

We use the contradiction method to prove that the rejection set by the original graphical

approach is unique.

Suppose there exists two different final rejection sets R and R′ , eg, R 6= R′ , such

that we can find one hypothesis Hjr ∈ R, but Hjr /∈ R′ , and suppose Hjr is the first

different rejected hypothesis at some step i = r ∈ M = {1, ...,m}, which means for both

rejection sets, they have same rejected components at first r−1 steps, that is,Rr−1 = R′r−1,

let R0 = R′0 = ∅. According to the uniqueness of the critical value function on any

rejection set, we have

αjr(Rr−1) = αjr(R
′

r−1);

thus, the event Pjr ≤ αjr(Rr−1) as Hjr ∈ R is conflict with the event Pjr > αjr(R
′
r−1) as

Hjr /∈ R
′ . Therefore, the rejection set is unique. �

B.6 Proof of Theorem 7

From section 3.2, we have the ordered testing hypotheses H = (Hj1 , Hj2 , ..., Hjm) with

associated p-values P = (Pj1 , ..., Pjm), and the final rejection sequence
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R = {Hji ∈ H : Pji ≤ αji(Ri−1), i = 1, ..., R} , (B.20)

where R = max {1 ≤ k ≤ m : Pji ≤ αji(Ri−1),∀i ∈ {1, ..., k}} .

Suppose some of p-values become smaller, others remains unchanged, then the

corresponding rejection sequence is S, and let Si denote the rejection sequence at first i

steps, i = 1, ...,m. Suppose S0 = ∅.

To show the original graphical approach is monotone in terms of p-values, we need

to showR ⊆ S.

From Equation (B.20), it is easy to see Hj1 can always be rejected since αj1(S0) =

αj1 , then we can have S1 = R1 = (Hj1). According to the uniqueness property of

αji(Si−1), i = 2, ..., R, then Hji can be rejected sequentially no mater if the corresponding

p-value becomes smaller or unchanged. Therefore, we haveR ⊆ S. The result follows. �
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APPENDIX C

A GENERALIZED STEP-UP FDR CONTROLLING PROCEDURE FOR
DISCRETE DATA

This appendix shows the proof of the FDR control for the generalized step-up procedure

for discrete data. The FDR is defined as follows.

FDR = E

[
V

R ∨ 1

]
=
∑
i∈I0

m∑
r=1

1

r
E
(
I
{
Pi ≤ α(i)

r

}
I {R = r}

)
=
∑
i∈I0

m∑
r=1

1

r
Pr
(
R = r, Pi ≤ α(i)

r

)
=
∑
i∈I0

m∑
r=1

1

r
Pr
(
R = r | Pi ≤ α(i)

r

)
Pr
(
Pi ≤ α(i)

r

)

=
∑
i∈I0

m∑
r=1

Fi

(
α
(i)
r

)
r

Pr
(
R = r | Pi ≤ α(i)

r

)
,

(C.1)

where I0 is the indices of true nulls and Fi is the distribution of the null p-values Pi.

Note that under positive dependence, we have

Pr
(
R = r | Pi ≤ α(i)

r

)
= Pr

(
R ≥ r | Pi ≤ α(i)

r

)
− Pr

(
R ≥ r + 1 | Pi ≤ α(i)

r

)
≤ Pr

(
R ≥ r | Pi ≤ α(i)

r

)
− Pr

(
R ≥ r + 1 | Pi ≤ α

(i)
r+1

)
.

(C.2)

Then,

FDR ≤
∑
i∈I0

m∑
r=1

Fi

(
α
(i)
r

)
r

(Pr
(
R ≥ r | Pi ≤ α(i)

r

)
− Pr

(
R ≥ r + 1 | Pi ≤ α

(i)
r+1

)
),
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(C.3)

which is equivalent to,

∑
i∈I0

m∑
r=1

Fi

(
α
(i)
r

)
r

Pr
(
R ≥ r | Pi ≤ α(i)

r

)
−
∑
i∈I0

m∑
r=2

Fi

(
α
(i)
r−1

)
r − 1

Pr
(
R ≥ r | Pi ≤ α(i)

r

)

=
∑
i∈I0

Fi (α(i)
1

)
+

m∑
r=2

Fi
(
α
(i)
r

)
r

−
Fi

(
α
(i)
r−1

)
r − 1

Pr (R ≥ r | Pi ≤ α(i)
r

)
=
∑
i∈I0

[
Fi(α

(i)
1 ) +

m∑
r=2

[
Fi(α

(i)
r )

r
−
Fi(α

(i)
r−1)

r − 1

]
Pr(R(−i) ≥ r − 1)

]

≤
∑
i∈I0

[Fi(
j
(i)
1

m
α̃) +

K(i)−1∑
s=0

j
(i)
s+1∑

r=j
(i)
s +2

[
Fi(α

(i)
r )

r
−
Fi(α

(i)
r−1)

r − 1

]
Pr(R(−i) ≥ j

(i)
s+1)

+
K(i)−1∑
s=1

Fi( j(i)s+1

m
α̃)

j
(i)
s + 1

−
Fi(

j
(i)
s

m
α̃)

j
(i)
s

Pr(R(−i) ≥ j(i)s )],

(C.4)

which is less than or equal to

∑
i∈I0

Fi(j(i)1

m
α̃) +

K(i)−1∑
s=1

Fi( j(i)s+1

m
α̃)

j
(i)
s + 1

−
Fi(

j
(i)
s

m
α̃)

j
(i)
s−1 + 1

Pr(R(−i) ≥ j(i)s )


≤

m∑
i=1

Fi(j(i)1

m
α̃) +

K(i)−1∑
s=1

Fi( j(i)s+1

m
α̃)

j
(i)
s + 1

−
Fi(

j
(i)
s

m
α̃)

j
(i)
s−1 + 1

 I
Fi(

j
(i)
s+1

m
α̃)

j
(i)
s + 1

>
Fi(

j
(i)
s

m
α̃)

j
(i)
s−1 + 1




= D̃(α̃) ≤ D(α̃) ≤ α.

(C.5)

where j(i)0 = 0 and j(i)
K(i) = m.

(1)The second equality of Equation (C.4) is because R(−i) is independent of Pi under

the independence assumption of p-values.
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(2) The inequality of Equation (C.4) holds because of the following reasons: (i)Since

when j(i)s + 1 ≤ r ≤ j
(i)
s+1, s = 0, ..., K(i) − 1,

[
Fi(α

(i)
r )
r
− Fi(α

(i)
r−1)

r−1

]
< 0. (ii)Pr(R(−i) ≥

r − 1) is decreasing in r.

(3)In the above upper bound of the FDR, there areK(i)−1 terms

[
Fi(

j
(i)
s+1
m

α̃)

j
(i)
s +1

− Fi(
j
(i)
s
m
α̃)

j
(i)
s−1+1

]
,

we only keep the positive terms and replace the following probability Pr(R(−i) ≥ j
(i)
s ) with

1; if some terms are negative, just remove them.

(4) Finally, we can see that the last two inequalities hold is because of D(u) =

maxβ

{
D̃(β) : β ≤ u

}
α̃ = max {u : D(u) ≤ α} . �
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