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ABSTRACT

PRIVATE INFORMATION RETRIEVAL AND FUNCTION
COMPUTATION FOR NONCOLLUDING CODED DATABASES

by
Sarah A. Obead

The rapid development of information and communication technologies has motivated

many data-centric paradigms such as big data and cloud computing. The resulting

paradigmatic shift to cloud/network-centric applications and the accessibility of

information over public networking platforms has brought information privacy to

the focal point of current research challenges. Motivated by the emerging privacy

concerns, the problem of private information retrieval (PIR), a standard problem

of information privacy that originated in theoretical computer science, has recently

attracted much attention in the information theory and coding communities. The goal

of PIR is to allow a user to download a message from a dataset stored on multiple

(public) databases without revealing the identity of the message to the databases and

with the minimum communication cost. Thus, the primary performance metric for

a PIR scheme is the PIR rate, which is defined as the ratio between the size of the

desired message and the total amount of downloaded information.

The first part of this dissertation focuses on a generalization of the PIR problem

known as private computation (PC) from distributed storage system (DSS). In PC, a

user wishes to compute a function of f variables (or messages) stored in n noncolluding

coded databases, i.e., databases storing data encoded with an [n, k] linear storage

code, while revealing no information about the desired function to the databases.

Here, colluding databases refers to databases that communicate with each other in

order to deduce the identity of the computed function. First, the problem of private

linear computation (PLC) for linearly encoded DSS is considered. In PLC, a user

wishes to privately compute a linear combination over the f messages. For the PLC



problem, the PLC capacity, i.e., the maximum achievable PLC rate, is characterized.

Next, the problem of private polynomial computation (PPC) for linearly encoded DSS

is considered. In PPC, a user wishes to privately compute a multivariate polynomial

of degree at most g over f messages. For the PPC problem an outer bound on the

PPC rate is derived, and two novel PPC schemes are constructed. The first scheme

considers Reed-Solomon coded databases with Lagrange encoding and leverages ideas

from recently proposed star-product PIR and Lagrange coded computation. The

second scheme considers databases coded with systematic Lagrange encoding. Both

schemes yield improved rates compared to known PPC schemes. Finally, the general

problem of PC for arbitrary nonlinear functions from a replicated DSS is considered.

For this problem, upper and lower bounds on the achievable PC rate are derived and

compared.

In the second part of this dissertation, a new variant of the PIR problem,

denoted as pliable private information retrieval (PPIR) is formulated. In PPIR,

the user is pliable, i.e., interested in any message from a desired subset of the

available dataset. In the considered setup, f messages are replicated in n noncolluding

databases and classified into Γ classes. The user wishes to retrieve any one or

more messages from multiple desired classes, while revealing no information about

the identity of the desired classes to the databases. This problem is termed as

multi-message PPIR (M-PPIR), and the single-message PPIR (PPIR) problem is

introduced as an elementary special case of M-PPIR. In PPIR, the user wishes to

retrieve any one message from one desired class. For the two considered scenarios,

outer bounds on the M-PPIR rate are derived for arbitrary number of databases.

Next, achievable schemes are designed for n replicated databases and arbitrary n.

Interestingly, the capacity of PPIR, i.e., the maximum achievable PPIR rate, is shown

to match the capacity of PIR from n replicated databases storing Γ messages. A

similar insight is shown to hold for the general case of M-PPIR.
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CHAPTER 1

INTRODUCTION

In today’s age of information, the rapid development of information and communi-

cation technologies (ICT) has brought about voluminous amounts of data. Big data

is a term that refers to vast, and continuously growing, amounts of data generated by

different sources including, for example, media platforms, public databases, web logs,

and internet of things (IoT) sensors. Thus, this massive volume of data introduce

a new set of challenges from data storage, retrieval, search, and transfer. As a

result, cloud computing paradigms for data storage and computation, with on-demand

remote access to powerful computing and data storage services over the internet, has

emerged as an indispensable resource for both enterprises and individuals. With this

widespread use of cloud computing and with information accessibility over public

networking platforms, many major concerns have risen regarding information privacy,

specifically with respect to data and computation privacy.

Motivated by emerging privacy concerns, the problem of private information

retrieval (PIR), a standard problem of information privacy established originally in

theoretical computer science and cryptography, has recently attracted much attention

in the information theory and coding communities. As a result, many interesting

variations of PIR problem have surfaced. The goal of PIR is to allow a user to

efficiently retrieve a specific message from a dataset stored on a database without

revealing any information about the desired message to the database. The efficiency

of a PIR scheme is primarily measured by the PIR rate, which is defined as the ratio

between the size of desired message to the total amount of downloaded information

and the maximum of this rate is known as the capacity of PIR.
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In this dissertation, we focus on two directions centered around PIR. The first

direction is a generalization of the PIR problem, when the data is numerical, known as

private computation (PC). This generalization, not only considers the private retrieval

of the numerical data but also arbitrary functions evaluated on the said data. The

second direction is a relaxation of the PIR problem where the users are flexible with

their demands and with their privacy requirements. We denote this variation as

pliable private information retrieval (PPIR). We start with a brief background about

PIR, then we present an overview of selected works related to private computation

and pliable information retrieval.

1.1 Private Information Retrieval

The problem of PIR from public databases, introduced by Chor et al. [1], has been the

focus of attention for several decades in the computer science community (see, e.g.,

[2]–[4]). The goal of PIR is to allow a user to privately access an arbitrary message

stored in a set of databases, i.e., without revealing any information of the identity of

the requested message to each database. If the users do not have any side information

on the data stored in the databases, they can trivially request the content of the whole

database to hid the identity of the desired message. This trivial solution achieves

perfect privacy, however, with high storage and communication costs. Alternatively,

Chor et al. [1] proposed a strategy to store the messages in at least two databases

which provides the user with multiple point of views of the stored data while each

database maintain a single view of what the user query and thus privacy can be

ensured. To illustrate this concept, consider the following example

Example 1 (Private Information Retrieval) Suppose that we have two databases

each storing a dataset W consisting of f equal-length messages denoted by W =

{W (1), . . . ,W (f)}. Consider a user that is interested in retrieving W (θ) for some

θ ∈ {1, 2, . . . , f} while keeping the message index θ hidden from each database.

2



Figure 1.1 Simple private information retrieval scheme.

The PIR solution is illustrated in Figure 1.1. The user sends a uniformly

random binary vector of length f , r ∈ {0, 1}f to the first database. Then sends r+e to

the second database, where e ∈ {0, 1}f is an identity vector with 1 in the θ-th position.

The first database answers with r ·W and the second database answers with (r+e)·W.

The user substitute the answers of the databases as (r + e) ·W − r ·W = e ·W and

obtains the desired message W (θ). Here, the privacy follows from the fact that both

binary vectors (r+e) and r appear uniformly distributed from the perspective of each

database. Thus, no information about the desired message can be deduced, unless, the

two databases share the user queries, i.e., collude. Finally, since the user obtains one

message by downloading two linear combinations, the PIR rate is 1
2
compared to 1

f

with the trivial solution.

Hence, the design of PIR protocols has focused on the case when multiple

databases store the messages. This connects to the active and renowned research

area of distributed storage systems (DSSs) usually referred to as coded DSSs. In

coded DSSs, the data is encoded by an [n, k] linear code, i.e., a storage code that

generates n codewords by linear combination of k information words, then distributed

and stored across n storage nodes [5]. Using coding techniques, coded DSSs possess
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many practical features and benefits such as high reliability, efficient repairability,

robustness, and security [6].

Recently, the aspect of minimizing the communication cost, e.g., the required

rate or bandwidth of privately querying the databases with the desired requests

and downloading the corresponding information from the databases has attracted

a great deal of attention in the information theory and coding communities. Thus,

the renewed interest in PIR primarily focused on the study and design of efficient

PIR protocols for coded DSSs, starting with the fundamental limit of PIR from DSSs

encoded with simple codes as for example, repetition codes in [7]. This was followed by

an immense amount of work characterizing the capacity, i.e., the maximum achievable

rate, for many variants of the original PIR problem (see e.g., [8]–[29]). Such variations

include additional interesting privacy, storage, or security constraints. For example, in

[9], multi-message PIR (M-PIR) has been proposed where the user can request more

than one messages from replicated databases, i.e., databases encoded with simple

repetition codes. Recently, the special case of private retrieval of multiple messages

with side information, i.e., the user already knows a subset of the messages stored in

the database, was studied in [25]–[28]. In [10], [30] a bounded number of databases

might be colluding, adversarial (byzantine), or non-responsive. Achievable schemes

for PIR from storage encoded with maximum distance separable (MDS) erasure codes

have been presented in [31]–[33] and the capacity of MDS-coded storage has been

established in [8].

Finally, the broad interest in PIR problem from computer science, coding theory,

and information theory communities is due to its close connection to a variety of

interdisciplinary problems such as oblivious transfer [34], multi-party computation

[35], [36], secret sharing [37], [38], locally recoverable and decodable codes [39] and

[40], respectively, and index coding [41], [42].
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1.2 Private Computation

Motivated by privacy concerns in distributed computing a recently proposed general-

ization of the PIR problem [43]–[46] addresses private computation (PC) for functions

of the messages stored in the database, also denoted as private function retrieval [47].

In PC a user has access to a number of databases and intends to compute a function of

messages stored in these databases. This function is kept private from the databases,

as they may be under the control of an adversary. The PC rate, defined as the ratio of

the desired amount of information and the total amount of downloaded information

is the main performance metric in this line of research. Accordingly, the PC capacity

is defined as the maximum of all achievable PC rates over all possible PC protocols.

In [43], [47], the capacity and achievable rates for the case of privately computing a

given linear function, referred to as private linear computation (PLC), were derived

as a function of the number of messages and the number of databases, respectively,

for the scenario of noncolluding replicated databases. Interestingly, the obtained PLC

capacity is equal to the PIR capacity of [7].

The extension to the coded case is addressed in [45], [46]. In [45], private

polynomial computation (PPC) over t colluding and systematically coded databases

was considered by generalizing the PIR scheme of [33]. In [45], the functions to be

computed are polynomials of degree at most g, and a PC rate equal to the best

asymptotic PIR rate of MDS-coded storage (when the number of messages tends

to infinity) is achieved for g = t = 1 (the case of linear function retrieval and

noncolluding databases). An alternative PPC approach was recently proposed in

[46] for polynomials with higher degree, i.e., g > 1, by employing Reed-Solomon

coded databases with Lagrange encoding. For low code rates, the scheme improves

on the PC rate of [45]. The special case of private monomial computation (PMC)

was addressed in [48], where the PMC capacity for an asymptotically large field

size and under a mild technical condition on the size of the base field was derived.
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Figure 1.2 Simple overview of some of the PIR problem extensions and variations.

The technical condition on the size of the base field can be shown to be satisfied

for a sufficiently large base field. Recently, PC was also extended to the single

server scenario, where all messages are stored uncoded on a single server, with side

information in [49], [50]. Here, the authors derived the capacity for both coded and

uncoded side information under two different privacy conditions on the messages of

the desired linear combination.

Finally, a separate but relevant form of PC, the private search (PS) problem

[44] considers mapping records replicated over n noncolluding databases to binary

search patterns. Each pattern represents the search result of one value out of a

set of candidate alphabets. The asymptotic capacity, i.e., the information retrieval

rate for PS with a large alphabet size, of privately retrieving one search pattern is

found to match the asymptotic capacity of PIR for the special case of balanced PS.

In a balanced PS scenario, the nonlinearly dependent search patterns are assumed

to contain equal amount of information. An overview of how these extensions align

together can be seen in Figure 1.2.

In another line of research for the case of noncolluding databases, in [15] the

authors proposed two PIR protocols for a DSS where data is stored using a non-MDS

linear code. For a large class of linear codes, the proposed protocols are shown to

achieve, respectively, the nonasymptotic and asymptotic MDS-coded PIR capacity,
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i.e., the capacity of PIR over noncolluding MDS-coded DSSs, established in [8],

referred to as the MDS-PIR capacity in the sequel. The first family of non-MDS

codes for which the PIR capacity is known was found in [51], [52]. Further, PIR on

linearly-coded databases for the case of colluding databases was also proposed in [15],

[32], [33], [53].

1.2.1 Main Contributions

For the PC with noncolluding databases, the capacity results for arbitrary linearly-

coded DSSs have not been addressed so far in the open literature to the best of our

knowledge. In the first part of dissertation, we intend to fill this void by proposing

four PC schemes from linearly-coded DSSs and deriving outer bounds on the PC rate

over all possible PC protocols. Our contributions are outlined as follows:

• We fully characterize the capacity of PLC from noncolluding coded DSSs encoded
with family of non-MDS storage codes known as MDS-PIR capacity-achieving
codes [15]. Towards that end, we prove a converse bound for the coded PLC
capacity and construct a novel PLC scheme that achieves a rate equal to the
converse bound, i.e., a capacity-achieving scheme. The proposed PLC scheme
strictly generalize the replication-based PC schemes of [43], [47] and the optimal
PIR scheme of [15].

• In [46], the authors were mainly concerned with constructing PPC schemes with
a focus on preserving privacy against colluding DSSs. We, in contrast, aim our
attention at establishing the capacity of the PPC setup. Towards that aim, we first
extend our converse proof of the coded PLC to the coded PPC problem and derive
an outer bound on the PPC rate from a DSS encoded with MDS-PIR capacity-
achieving codes [15].Then we provide PPC solutions that minimize the download
cost. Specifically, we propose two novel PPC schemes from RS-coded DSSs (one
for systematic encoding) by generalizing our capacity-achieving PLC scheme and
leveraging ideas from star-product PIR [33] and Lagrange coded computation [54].
Our schemes improve on the rates of the PPC schemes presented in [45], [46].

• Finally, we consider general private nonlinear computation for replication-based
DSSs. We provide a general converse result and construct a novel PC scheme.
When the message size is large and the candidate functions are the independent
messages and one arbitrary nonlinear function of these, we show that the proposed
PC scheme achieves a rate equal to the PC capacity. Moreover, when the number
of messages grows, the PC rate approaches the outer bound on the PC capacity
derived from [55, Thm. 1] and thus becomes the capacity itself. Finally, we discuss
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how a PC scheme should be designed to achieve the PC capacity for general non-
linear function computation.

1.3 Pliable Private Information Retrieval

Today, a growing amount of traffic over the internet is generated by content-based

applications. Content-based applications are applications that provide access to

information (e.g., search engines, video libraries, and digital galleries) generated by

individuals or businesses. Examples of well-known content-based applications include

News-feed applications, social media, and content delivery networks.

This prominent presence of content-type versus traditional message-type traffic

in communication networks has recently caught the attention of the network

information theory community. The main distinction is that content-type traffic

is able to deliver a message within a prescribed content type instead of specific

messages. For example, [56] explored the benefits of designing network and channel

codes tailored to content-type requests. This work was shortly followed by the

introduction of pliable index coding (PICOD) [57]. Index coding (IC) [41] is a

well-known network information theory problem that aims to minimize the broadcast

rate for communicating of messages noiselessly to n receivers, where each receiver

has a different subset of messages as side-information. PICOD is a variant of the

IC problem where the receivers, having a set of messages as side information, are

interested in any other message they do not have. This is in contrast to classical IC,

where the receivers are interested in specific messages.

Following the introduction of PICOD, converse bounds on the PICOD broadcast

rate were derived in [58]. Moreover, variations of the PICOD problem are considered

in [59]–[61]. Specifically, in private PICOD [60], the privacy is defined by the inability

of each user to decode more than one message. In decentralized PICOD [59], the

system model does not include a central transmitter with knowledge of all f messages.

Alternatively, the n users share among themselves messages that can only depend on
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their local set of side information messages. This work has been recently extended to

secure decentralized PICOD in [61] where security is defined such that users are not

allowed to gain any information about any message outside their side information set

except for one message. Finally, a number of constructions for PICOD are proposed

in [62]–[67].

In this dissertation, motivated by emerging content-based applications and

inspired by content-type coding [56], and PICOD [57], we introduce the pliable private

information retrieval (PPIR) problem as a new variant of the classical PIR problem.

The PIR problem and its available variations traditionally aim to retrieve a specific

information message from a database without revealing the identity of the desired

message to the database and with the minimum communication cost. This broad

aim encompasses most of the work in the PIR literature discussed in Section 1.1 and

Section 1.2. However, in (single-message) PPIR, we consider that a set of f messages

are replicated in n noncolluding databases and the user is flexible with her demand.

She wishes to retrieve any message from a desired subgroup of the dataset, i.e., class,

without revealing the identity of the desired class to each database.

One motivating example for PPIR is given by retrieving a news article of a

desired topic without revealing the topic to the database. Another example would

be to privately retrieve a movie from a desired genre without revealing the genre,

i.e., the classification of the movie, to the content database in order to avoid targeted

recommendation or undesired profiling.

To illustrate the difference between PIR and PPIR, consider the following

example.

Example 2 (Pliable Private Information Retrieval) Suppose that we have a single

database consisting of f = 5 equal-length messages denoted by W (1), . . . ,W (f) and

classified into Γ = 2 classes. Suppose that the messages with indices M1 = {1, 3}

are members of the first class γ = 1 and the remaining messages, i.e., messages with
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indices M2 = {2, 4, 5} are members of the second class γ = 2. Consider a user that

is interested in retrieving any message from class γ = 1 while keeping the class index

hidden from the database. If the user has access to the message membership in each

class, i.e., the user knows M1 = {1, 3} and M2 = {2, 4, 5}, there are two intuitive

solutions.

• One solution is to select one of the members of the desired class uniformly at
random and attempt to privately retrieve that message using a PIR solution.
For achieving information-theoretic privacy in the single-server case, it is well-
known that the user has to download the entire database to hide the identity of
the desired message [2]. As a result, the information retrieval rate is R = 1

f
= 1

5
.

• Alternatively, in PPIR, the user selects Γ messages, one from each class,
uniformly at random. Let the selected messages indices be denoted by θ1 and
θ2, respectively, for each class. The user then queries the database for the two
messages W (θ1) and W (θ2) resulting in P(γ = 1|θ1, θ2) = P(γ = 2|θ1, θ2) = 1

Γ
.

In other words, perfect information-theoretic privacy is achieved as the desired
message can be from any of the two classes. As a result, the information retrieval
rate is R = 1

Γ
= 1

2
. This matches the PIR rate for the case where we have only

f = 2 messages stored in the database, indicating an apparent trade-off between
a reduction of privacy with respect to five messages versus two classes and the
download rate.

It can be easily seen from Example 2 that the PPIR rate reduces to the PIR rate if

Γ = f , i.e., there is only one message in each class. Accordingly, the PPIR problem

is also a strict generalization of the PIR problem. Moreover, we are able to achieve

a significant gain in the information retrieval rate with the PPIR solution if f >> Γ.

Finally, in the PPIR problem, we make no assumptions about the user accessibility to

the messages membership in each class. As a result, the PIR solution for Example 2

is not valid if the user doesn’t know the identity of the messages that belong to the

desired class.

To the best of our knowledge, the problem of pliable private information retrieval

has not been examined before in the open literature. However, there has been some

related work on other variations of PIR that explore opportunities to trade off perfect

privacy with privacy leakage to increase the communication rate. The following are

10



some representative examples: [68] initiated the study of leaky private information

retrieval and derived upper and lower bounds on the download rate for some bounded

ε > 0 information leakage about the message identity, an arbitrary number of messages

f , and n = 2 replicated databases. Another related variant of PIR is known as

weakly-private information retrieval (WPIR) [69]–[71]. In WPIR the perfect privacy

requirement on the identity of the desired message is relaxed by allowing bounded

average leakage between the queries and the corresponding requested message index.

The leakage is measured by different information leakage measures including mutual

information and maximal leakage (MaxL) metrics [72]–[74]. In particular, [69], [70]

studied the trade-offs between different parameters of PIR, such as download rate,

upload cost, and access complexity while relaxing the privacy requirement.

1.3.1 Main Contributions

In the second part of this dissertation, we introduce the multi-message PPIR (M-

PPIR) problem. We consider the setup where we have a dataset of f messages

replicated in n noncolluding databases and classified into Γ classes. Our contributions

are outlined as follows:

• As a tutorial introduction to for the PPIR problem, we first consider single-server
PPIR. For this problem, we establish the capacity and provide a simple capacity-
achieving scheme.

• Then, we fully characterize the PPIR capacity from replicated noncolluding
databases. Towards that end, we prove a novel converse bound on the PPIR rate
for an arbitrary number of messages f , classes Γ, and databases n and we construct
a capacity-achieving PPIR scheme. The significant of our PPIR converse is that
it indicates an independence between the maximum achievable rate and the total
number of messages f . Moreover, the derived converse bound matches the capacity
of PIR when the user wishes to privately retrieve one of Γ messages only.

• Similar to the PPIR problem, we provide a tutorial introduction to the general M-
PPIR problem by first considering the single-server scenario. We prove a converse
bound and construct a simple capacity-achieving scheme, thus settling the single-
server M-PPIR capacity.
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• Next, we consider the M-PPIR problem from replicated noncolluding databases
and derive two converse bounds on the achievable M-PPIR rate. The first bound is
valid when the number of desired classes is at least half the total number of classes
η ≥ Γ

2
and the second one holds with η ≤ Γ

2
. Interestingly, when there is only

one message in each class, i.e., Γ = f , the M-PPIR problem reduces to the M-PIR
problem and our converse bounds match the M-PIR bounds.

• Finally, leveraging our construction for the single-server M-PPIR scheme and the
M-PIR schemes of [9], we present two achievable M-PPIR schemes for replicated
noncolluding databases. The first scheme is for the case when η ≥ Γ

2
and the

second when η ≤ Γ
2
. The achievable rates of the proposed schemes match the

converse bounds when η ≥ Γ
2
and when Γ

η
is an integer number. Thus, we settle

the capacity of M-PPIR from replicated databases for the two former cases.

1.4 Organization of the Dissertation

The dissertation proceeds as follows:

In Chapter 2, the notation used through out the dissertation and some basic

definitions are outlined. Then, we provide the general system model and the problem

statement of private computation from linearly-coded DDSs. This system model is

considered for the majority of the work presented in this dissertation. Finally, we

introduce a particular family of linear storage codes, i.e., the MDS-PIR Capacity

achieving codes.

In Chapter 3, we consider the problem of private linear computation (PLC) for

coded databases. For a DSS setup where data is stored using MDS-PIR Capacity

achieving codes, we derive an outer bound on the PLC rate. Further, we present a

PLC scheme with rate equal to the outer bound and hence settle the PLC capacity

for the considered class of linear storage codes.

In Chapter 4, we consider the problem of private polynomial computation

(PPC) from a distributed storage system (DSS). For a DSS setup where data is

stored using MDS-PIR Capacity achieving codes, we derive an outer bound on the

PPC rate and construct two novel PPC schemes. In the first scheme, we consider

Reed-Solomon coded databases with Lagrange encoding, which leverages ideas from
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recently proposed star-product PIR and Lagrange coded computation. The second

scheme considers the special case of coded databases with systematic Lagrange

encoding.

In Chapter 5, we consider the general problem of private computation (PC) in a

replicated DSS, i.e., the messages are replicated across n noncolluding databases. We

provide an information-theoretically accurate achievable PC rate for the scenario of

nonlinear computation. For a large message size the rate equals the PC capacity when

the candidate functions are the f independent messages and one arbitrary nonlinear

function of these. When the number of messages grows, the PC rate approaches an

outer bound on the PC capacity. As a special case, we consider private monomial

computation (PMC) and numerically compare the achievable PMC rate to the outer

bound for a finite number of messages.

In Chapter 6, we formulate the pliable private information retrieval (PPIR)

problem. We first provide the general system model and the problem statement

of multi-message pliable private information retrieval (M-PPIR) from replicated

databases and introduce the single-message PPIR (PPIR) problem as an elementary

special case of M-PPIR. For the two considered scenarios we first focus on the case

of the single server, i.e., n = 1 and derive outer bounds on the M-PPIR rate. Next,

we design achievable schemes for the single server case and then extend our results to

the case of replicated databases. Interestingly, we show that for PPIR capacity, i.e.,

the maximum achievable PPIR rate, matches the capacity of PIR with n databases

storing Γ messages. A similar insight is shown to hold for the general case of M-PPIR.

Finally, in Chapter 7, we conclude the dissertation with a summary of the

results, and provide directions for future research.
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CHAPTER 2

PRELIMINARIES

In this chapter, we first present the notation used throughout the dissertation and

provide some basic definitions. Then, we provide the general system model and the

problem statement of private computation from linearly-coded DDSs. This system

model is considered for the majority of the work presented in this dissertation.

Namely, for the private computation protocols proposed in Chapters 3, 4, and 5.

Finally, we introduce the family of linear storage codes that is considered for the

private linear and private polynomial computations, i.e., the MDS-PIR Capacity

achieving codes.

2.1 Notation

We denote by N the set of all positive integers and let N0 , {0}∪N, [a] , {1, 2, . . . , a},

and [a : b] , {a, a+1, . . . , b} for a, b ∈ N, a ≤ b. Random and deterministic quantities

are carefully distinguished as follows. A random variable is denoted by a capital

Roman letter, e.g., X, while its realization is denoted by the corresponding small

Roman letter, e.g., x. Vectors are boldfaced, e.g., X denotes a random vector and x

denotes a deterministic vector, respectively. The notation X ∼ Y is used to indicate

that X and Y are identically distributed. Random matrices are represented by bold

sans serif letters, e.g., X, where X represents its realization. In addition, sets are

denoted by calligraphic uppercase letters, e.g., X , and X c denotes the complement of

a set X in a universe set. We denote a submatrix of X that is restricted in columns

by the set I by X|I . For a given index set S, we also write XS and YS to represent{
X(v) : v ∈ S

}
and

{
Yj : j ∈ S

}
, respectively. Furthermore, some constants and

functions are also depicted by Greek letters or a special font, e.g., X.

14



The function H(X) represents the entropy of X, and I(X ;Y ) the mutual

information between X and Y . The binomial coefficient of a over b, a, b ∈ N0, is

denoted by
(
a
b

)
where

(
a
b

)
= 0 if a < b. The notation b·c denotes the floor function and

1(·) represents the indicator function, i.e., 1(statement) equals to 1 if the statement

holds, and 0 otherwise. P[A] is the probability that the event A occurs.

We use the customary code parameters [n, k] to denote a code C over the finite

field Fq of blocklength n and dimension k. A generator matrix of C is denoted by GC .

A set of coordinates of C , I ⊆ [n], of size k is said to be an information set if and

only if GC |I is invertible. (·)T denotes the transpose operator, while rank(V) denotes

the rank of a matrix V. The function χ(x) denotes the support of a vector x, and the

linear span of a set of vectors {x1, . . . ,xa}, a ∈ N, is denoted by span{x1, . . . ,xa}.

Finally, Fp[z] denotes the set of all univariate polynomials over Fp in the variable z,

and we denote by deg(φ(z)) the degree of a polynomial φ(z) ∈ Fp[z].

A monomial zi in m variables z1, . . . , zm with degree g is written as zi =

zi11 z
i2
2 · · · zimm , where i , (i1, . . . , im) ∈ Nm0 is the exponent vector with wt(i) ,∑m

j=1 ij = g. The set {zi : i ∈ Nm0 , 1 ≤ wt(i) ≤ g} of all monomials in m variables of

degree at most g has size

Mg(m) ,
g∑

h=1

(
h+m− 1

h

)
=

(
g +m

g

)
− 1. (2.1)

Moreover, we define a parallel monomial as a monomial resulting from raising another

monomial to a positive integer power, i.e., to {W i : i ∈ Nf0 , 1 ≤ wt(i) ≤ g, i |

p, p ∈ Pg}. Here, Pg denotes the set of prime numbers less or equal to g and

i = (i1, . . . , im) | p means that all nonzero ij, j ∈ [m], are divisors of p. For example,

for a bivariate monomial over the variables x and y of degree at most g = 2 the set

of possible monomials is {x, y, xy, x2, y2}. Note that x2 is a parallel monomial as it

can be obtained by raising the monomial x to the power of 2. Thus, x2 and y2 are

parallel monomials. Denote by P = {p1, . . . , p|P|} an arbitrary nonempty subset of
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Pg. By applying the Legendre formula for counting the prime numbers less or equal

to g, we obtain the number of nonparallel monomials as

ĂMg(m) ,Mg(m) +
∑

∀P⊆Pg :P6=∅,
p1···p|P|≤g

(−1)|P|


⌊

g
p1···p|P|

⌋
+m⌊

g
p1···p|P|

⌋
− 1

. (2.2)

Finally, a polynomial φ(z) of degree at most g is represented as φ(z) =∑
i:wt(i)≤g aiz

i, ai ∈ Fp. The total number of polynomials in m variables of degree

at most g generated with all possible distinct (up to scalar multiplication) Mg(m)-

dimensional coefficients vectors defined over Fp is equal to µg(m) ,
(
pMg(m)−1

)
/(p−1).

We now proceed with a general description for the problem statement of private

function computation from linearly-coded DSSs.

2.2 Private Computation Problem Statement and System Model

The PC problem for coded DSSs is described as follows. We consider a DSS that stores

in total f independent messages W(1), . . . ,W(f), where each message W(m),m ∈ [f ],

consists of L symbolsW (m)
1 , . . . ,W

(m)
L chosen independently and uniformly at random

from Fp. Thus,

H(W(m)) = L, ∀m ∈ [f ],

H(W(1), . . . ,W(f)) = fL (in p-ary units).

Let L , βk, for some β, k ∈ N. The DSS stores the f messages encoded using an

[n, k] code as follows. Shown in Figure 2.1, first, the symbols of each message W(m),

m ∈ [f ], are presented as a β × k matrix, i.e., W(m) =
(
W

(m)
i,j

)
, i ∈ [β], j ∈ [k]. Let

W
(m)
i =

(
W

(m)
i,1 , . . . ,W

(m)
i,k

)
, i ∈ [β], denote a message vector corresponding to the

i-th row of W(m). Second, each W (m)
i is encoded by an [n, k] code C over Fp into a

length-n codeword C(m)
i =

(
C

(m)
i,1 , . . . , C

(m)
i,n

)
. The βf generated codewords C(m)

i are

then arranged in the array C =
(
(C(1))T| . . . |(C(f))T

)T of dimensions βf × n, where
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segment
encode
distribute

user

Figure 2.1 System model for PC from an [n, k] coded DSS storing f messages.

C(m) =
(
(C

(m)
1 )T| . . . |(C(m)

β )T
)T. Finally, the code symbols C(m)

1,j , . . . , C
(m)
β,j , m ∈ [f ],

for all f messages are stored on the j-th database, j ∈ [n].

We consider the case of n noncolluding databases. In private function compu-

tation, a user wishes to privately compute exactly one function imageX(v)
l , φ(v)(Wl),

where Wl = (W
(1)
l , . . . ,W

(f)
l ), ∀ l ∈ [L], out of µ arbitrary candidate functions

φ(1), . . . , φ(µ) : Ffp → Fp from the coded DSS. Let X(v) =
(
X

(v)
1 , . . . , X

(v)
L

)
, where

X
(v)
1 , . . . , X

(v)
L are independent and identically distributed according to a prototype

random variable X(v) with probability mass function PX(v) . Thus,

H(X(v)) = LH(X(v)), ∀ v ∈ [µ],

H(X(1), . . . ,X(µ)) = LH
(
X(1), . . . , X(µ)

)
(in p-ary units),

and we let Hmin , minv∈[µ]H
(
X(v)

)
and Hmax , maxv∈[µ]H

(
X(v)

)
.

The user privately selects an index v ∈ [µ] and wishes to compute the v-th

function while keeping the requested function index v private from each database.

In order to retrieve the desired function evaluation X(v), v ∈ [µ], from the coded
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DSS, the user sends a query Q(v)
j to the j-th database for all j ∈ [n] as illustrated

in Figure 2.1. The queries are generated by the user without any prior knowledge of

the realizations of the candidate functions, consequently, they are independent of the

candidate functions evaluations. In other words, we have

I
(
X(1), . . . ,X(µ) ;Q

(v)
1 , . . . , Q(v)

n

)
= 0, ∀ v ∈ [µ]. (2.3)

In response to the received query, database j generates the answer A
(v)
j as a

deterministic function of Q(v)
j and the data stored in the database, and then sends it

back to the user. Let Cj ,
(
C

(1)
1,j , . . . , C

(1)
β,j , C

(2)
1,j , . . . , C

(f)
β,j

)T denote the f coded chunks

that are stored in the j-th database. Thus, ∀ v ∈ [µ],

H
(
A

(v)
j

∣∣∣Q(v)
j ,Cj

)
= 0, ∀ j ∈ [n]. (2.4)

To guarantee user privacy, in an information-theoretic sense, the query-answer

function must be identically distributed for each possible desired function index

v ∈ [µ] from the perspective of each database j ∈ [n]. In other words, the

scheme’s queries and answer strings must be independent from the desired function

index, therefore, revealing no information about the identity of the desired function

evaluation. Moreover, the user must be able to reliably decode the desired function

evaluation X(v). Accordingly, we define a PC protocol for an [n, k] coded DSSs as

follows.

Consider a DSS with n noncolluding databases storing f messages using an

[n, k] code. The user wishes to retrieve the v-th function evaluation X(v), v ∈ [µ],

from the available information Q(v)
j and A(v)

j , j ∈ [n]. For a PC protocol, the following

conditions must be satisfied ∀ v, v′ ∈ [µ], v 6= v′, and ∀ j ∈ [n],

[Privacy] (Q
(v)
j , A

(v)
j ,X[µ]) ∼ (Q

(v′)
j , A

(v′)
j ,X[µ]), (2.5)

[Recovery] H
(
X(v)

∣∣A(v)
[n] , Q

(v)
[n]

)
= o(L), (2.6)
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where any function of L, say λ(L), is said to be o(L) if limL→∞ λ(L)/L = 0.

From an information-theoretic perspective, the efficiency of a PC protocol is

measured by the PC rate, which is defined as follows.

Definition 1 (PC rate and capacity for linearly-coded DSSs) The exact

information-theoretic rate of a PC scheme, denoted by R, is defined as the ratio of

the minimum desired function size LHmin over the total required download cost, i.e.,

R ,
LHmin

D
,

where D is the total required download cost. The PC capacity CPC is the maximum of

all achievable PC rates over all possible PC protocols for a given [n, k] storage code.

2.3 MDS-PIR Capacity-Achieving Codes

A PIR protocol for any linearly-coded DSS that uses an [n, k] code to store f messages,

named Protocol 1, was proposed in [15]. The PIR rate of Protocol 1 can be derived

by finding a PIR achievable rate matrix of the underlying storage code C , which is

defined as follows.

Definition 2 ([15, Def. 10]) Let C be an arbitrary [n, k] code. A ν × n binary

matrix ΛPIR
κ,ν (C ) is said to be a PIR achievable rate matrix for C if the following

conditions are satisfied.

1. The Hamming weight of each column of ΛPIR
κ,ν is κ, and

2. for each matrix row λi, i ∈ [ν], χ(λi) always contains an information set of C ,
where χ(λi) denotes the support of the vector λi.

In other words, each coordinate j of C , j ∈ [n], appears exactly κ times in

{χ(λi)}i∈[ν], and every set χ(λi) contains an information set of C .
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Example 3 Consider a [4, 2] code C with generator matrix

GC =

1 0 1 1

0 1 1 1

.
One can verify that

ΛPIR
1,2 =

1 0 1 0

0 1 0 1


is a valid PIR achievable rate matrix for C with (κ, ν) = (1, 2). This is true given

that, column-wise, the Hamming weight of each column in ΛPIR
1,2 is κ = 1. On the

other hand, row-wise, χ(λ1) = {1, 3} and χ(λ2) = {2, 4} are two information sets of

C . 5

It is shown in [15] that the MDS-PIR capacity [8] can be achieved using

Protocol 1 for a special class of [n, k] codes. In particular, to achieve the MDS-PIR

capacity using Protocol 1, the [n, k] storage code should possess a specific underlying

structure as given by the following theorem.

Theorem 1 ([15, Cor. 1]) Consider a DSS that uses an [n, k] code C to store f

messages. If a PIR achievable rate matrix ΛPIR
κ,ν (C ) with κ

ν
= k

n
exists, then the

MDS-PIR capacity

CMDS-PIR ,
(
1− k

n

)[
1−

(k
n

)f]−1

is achievable.

This gives rise to the following definition.

Definition 3 ([15, Def. 13]) Given an [n, k] code C , if a PIR achievable rate

matrix ΛPIR
κ,ν (C ) with κ

ν
= k

n
exists, then the code C is referred to as an MDS-PIR

capacity-achieving code, and the matrix ΛPIR
κ,ν (C ) is called an MDS-PIR capacity-

achieving matrix.
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Accordingly, one can easily see that the [4, 2] code C given in Example 3 is

an MDS-PIR capacity-achieving code. Note that the class of MDS-PIR capacity-

achieving codes includes MDS codes, cyclic codes, Reed-Muller codes, and certain

classes of distance-optimal local reconstruction codes [15]. In the following chapter,

we present a PLC protocol and a general achievable rate using the PIR achievable

rate matrix ΛPIR
κ,ν of an [n, k] code.
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CHAPTER 3

PRIVATE LINEAR COMPUTATION FOR NONCOLLUDING
CODED DATABASES

3.1 Introduction

In this chapter1, we consider the problem of private linear computation (PLC) for

coded databases. In PLC, a user wishes to compute a linear combination over the f

messages while keeping the coefficients of the desired linear combination hidden from

the databases. For a DSS setup where data is stored using a code from a particular

family of linear storage codes, we derive an outer bound on the PLC rate, which

is defined as the ratio of the desired amount of information and the total amount of

downloaded information. In particular, the proposed converse is valid for any number

of messages and linear combinations, and depends on the rank of the coefficient matrix

obtained from all linear combinations. Further, we present a PLC scheme with rate

equal to the outer bound and hence settle the PLC capacity for the considered class of

linear storage codes. Interestingly, the PLC capacity matches the maximum distance

separable coded capacity of PIR for the considered class of linear storage codes.

The PLC problem from n noncolluding coded DSSs is described in Section 2.2.

However, in PLC a user wishes to privately compute exactly one linear function

evaluation X(v) =
(
X

(v)
1 , . . . , X

(v)
L

)
, out of µ candidate linear combinations

X(1), . . . ,X(µ) from the coded DSS. As a result, the µ-tuple
(
X

(1)
l , . . . , X

(µ)
l

)T,

∀ l ∈ [L], is mapped by a deterministic matrix V of size µ× f over Fp by
X

(1)
l

...

X
(µ)
l

 = Vµ×f


W

(1)
l

...

W
(f)
l

. (3.1)

1The material presented in this chapter is published in [75].
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The user privately selects an index v ∈ [µ] and wishes to compute the v-th function

while keeping the requested function index v private from each database. Here,

we also assume that the rank of V is equal to rank(V) = r ≤ min{µ, f} and

the indices corresponding to a basis for the row space of V are denoted by the

set L , {`1, . . . , `r} ⊆ [µ]. Finally, we assume error-free recovery; hence, the

recoverability constraint of the PC protocol given in equation (2.6) becomes

[Recovery] H
(
X(v)

∣∣A(v)
[n] , Q

(v)
[n]

)
= 0. (3.2)

The remainder of this chapter is organized as follows. We derive the converse

bound for an arbitrary number of messages and linear combinations in Section 3.2. A

capacity-achieving PLC scheme for linearly-coded storage with an MDS-PIR capacity-

achieving code is presented in Section 3.3. Some conclusions are drawn in Section 3.4.

3.2 Converse Bound

In [51], [52], the PIR capacity for a coded DSS using an MDS-PIR capacity-achieving

code is shown to be equal to the MDS-PIR capacity. In this section, we derive a

converse bound for the PLC rate (Theorem 2 below) by adapting the converse proof

of [52, Thm. 4] to the linearly-coded PLC problem, where the storage code is an

MDS-PIR capacity-achieving code. Then, we show that the PLC capacity matches

the MDS-PIR capacity (i.e., the PIR capacity for a DSS where data is encoded and

stored using an MDS code). The converse is valid for any number of messages f and

candidate linear functions µ. The following theorem states an upper bound on the

PLC capacity for a coded DSS where data is stored using an MDS-PIR capacity-

achieving code.

Theorem 2 Consider a DSS with n noncolluding databases that uses an [n, k] MDS-

PIR capacity-achieving code C to store f messages. Then, the rate R of any PLC
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protocol is upper bounded by

R ≤ CPLC ,

[
1 +

r−1∑
v=1

(
k

n

)v]−1

=
(

1− k

n

)[
1−

(k
n

)r]−1

,

where r is the rank of the linear mapping from equation (3.1).

Note that by simply assuming that the candidate functions are linearly

independent linear combinations, i.e., µ = r, the PLC problem reduces to PIR

from [n, k] linearly-encoded DSSs. If these linear combinations are also uniformly

distributed, the proof of Theorem 2 follows directly from the PIR capacity of [52,

Thm. 4]. However, by providing a formal proof for Theorem 2, we confirm that with

added computation, i.e., µ > r, we can not achieve a better rate. In the following,

we present a general converse proof for dependent messages and detail the conditions

that lead to this conclusion. Before we proceed with the converse proof, we provide

some general results.

• From the condition of privacy,

H
(
A

(v)
j

∣∣X(v),Q
)

= H
(
A

(v′)
j

∣∣X(v),Q
)
, (3.3)

where v 6= v′, v, v′ ∈ [µ], and Q ,
{
Q

(v)
j : v ∈ [µ], j ∈ [n]

}
denotes the set of all

queries. Although this seems to be intuitively true, a proof of this property is still
required and can be found in [8].

• Consider a PLC protocol for a coded DSS that uses an [n, k] code C to store f
messages.

Lemma 1 (Independence of answers from k databases forming an information

set): For any information set I ⊆ [n], |I| = k, of the [n, k] linear storage code C ,

and for any v ∈ [µ],

H
(
A

(v)
I
∣∣Q) =

∑
j∈I

H
(
A

(v)
j

∣∣Q). (3.4)
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Moreover, equation (3.4) is true conditioned on any subset of linear combinations

XV , V ⊆ [µ], i.e.,

H
(
A

(v)
I
∣∣XV ,Q) =

∑
j∈I

H
(
A

(v)
j

∣∣XV ,Q). (3.5)

The proof of Lemma 1 is a simple extension of [8, Lem. 1] based on [16, Lem. 1]
and is presented in Appendix A.

Next, we state Shearer’s Lemma, which represents a very useful entropy method

for combinatorial problems.

Lemma 2 (Shearer’s Lemma [76]) Let S be a collection of subsets of [n], with

each j ∈ [n] included in at least κ members of S . For random variables Z1, . . . , Zn,

we have
∑
S∈S H(ZS) ≥ κH(Z1, . . . , Zn).

For our converse proof for the coded PLC problem, we also need the following

lemma, whose proof is presented in Appendix B.

Lemma 3 Consider the linear mapping V = (vi,j) defined in equation (3.1) with

rank(V) = r where vi1,j1 , . . . , vir,jr are the entries corresponding to the pivot

elements of V. It follows that
(
X(i1), . . . ,X(ih)

)
and

(
W(j1), . . . ,W(jh)

)
are identically

distributed, for some h ∈ [r]. In other words, H
(
X(i1), . . . ,X(ih)

)
= hL, h ∈ [r].

Now, we are ready for the converse proof. By [15, Lem. 2], since the code C is

MDS-PIR capacity-achieving, there exist ν information sets I1, . . . , Iν such that each

coordinate j ∈ [n] is included in exactly κ members of I = {I1, . . . , Iν} with κ
ν

= k
n
.

Applying the chain rule of entropy we have H
(
A

(v)
[n]

∣∣XV ,Q) ≥ H(A(v)
Ii

∣∣XV ,Q),
∀ i ∈ [ν], where V ⊆ [µ] is arbitrary.
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Let v ∈ V and v′ ∈ Vc , [µ] \ V . Following similar steps as in the proof given

in [8], [77], we get

νH
(
A

(v)
[n]

∣∣XV ,Q) ≥ ν∑
i=1

H
(
A

(v)
Ii

∣∣XV ,Q)
(a)
=

ν∑
i=1

(∑
j∈Ii

H
(
A

(v)
j

∣∣XV,Q))(b)
=

ν∑
i=1

(∑
j∈Ii

H
(
A

(v′)
j

∣∣XV,Q))
(a)
=

ν∑
i=1

H
(
A

(v′)
Ii

∣∣XV ,Q) (c)

≥ κH
(
A

(v′)
[n]

∣∣XV ,Q)
= κ

[
H
(
A

(v′)
[n] ,X

(v′)
∣∣XV ,Q)−H(X(v′)

∣∣A(v′)
[n] ,X

V ,Q
)]

(d)
= κ

[
H
(
X(v′)

∣∣XV ,Q)+ H
(
A

(v′)
[n]

∣∣XV ,X(v′),Q
)
− 0
]

(e)
= κ

[
H
(
X(v′)

∣∣XV)+H(A(v′)
[n]

∣∣XV ,X(v′),Q
)]
,

where (a) follows from equation (3.5); (b) is because of equation (3.3); (c) is due

to Shearer’s Lemma; (d) is from the fact that the v′-th linear combination X(v′) is

determined by the answers A(v′)
[n] and all possible queries Q; and finally, (e) follows

from the independence between all possible queries and the messages. Therefore, we

can conclude that

H
(
A

(v)
[n]

∣∣XV ,Q) ≥ κ

ν
H
(
X(v′)

∣∣XV)+
κ

ν
H
(
A

(v′)
[n]

∣∣XV ,X(v′),Q
)

=
k

n
H
(
X(v′)

∣∣XV)+
k

n
H
(
A

(v′)
[n]

∣∣XV ,X(v′),Q
)
, (3.6)

where we have used Definition 3 to obtain equation (3.6).

Since there are in total µ linear combinations and L , {`1, . . . , `r} ⊆ [µ] is the

set of row indices corresponding to the selected basis for the row space of V, we can

recursively use equation (3.6) r − 1 times to obtain

H
(
A

(`1)
[n]

∣∣X(`1),Q
)

≥
r−1∑
v=1

(k
n

)v
H
(
X(`v+1)

∣∣X{`1,...,`v})+
(k
n

)r−1

H
(
A

(`r)
[n]

∣∣X{`1,...,`r},Q)
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(a)

≥
r−1∑
v=1

(k
n

)v
H
(
X(`v+1)

∣∣X{`1,...,`v}) (b)
=

r−1∑
v=1

(k
n

)v
L, (3.7)

where (a) follows from the nonnegativity of entropy, and (b) holds since H
(
X(`v+1)

∣∣
X{`1,...,`v}

)
= H

(
X(`v+1)

)
= L (see Lemma 3). Here, we also remark that the

recursive steps follow the same principle of the general converse for DPIR from

[44, Thm. 1]. In [44], the authors claim that the general converse for the DPIR

problem strongly depends on the chosen permutation of the indices of the candidate

functions. However, for the PLC problem, the index permutation of the candidate

linear functions intuitively follows from finding a basis for V. Now,

L = H
(
X(`1)

) (a)
= H

(
X(`1)

∣∣Q)−H(X(`1)
∣∣A(`1)

[n] ,Q
)︸ ︷︷ ︸

=0

= H
(
A

(`1)
[n]

∣∣∣Q)−H(A(`1)
[n]

∣∣∣X(`1),Q
)

(b)

≤ H
(
A

(`1)
[n]

∣∣∣Q)− r−1∑
v=1

(k
n

)v
L, (3.8)

where (a) follows since any message is independent of the queries Q, and by knowing

the answers A(`1)
[n] and the queries Q, one can determine X(`1), and (b) holds because

of equation (3.7).

Finally, the converse proof is completed by showing that

R =
L∑n

j=1H
(
A

(`1)
j

) ≤ L

H
(
A

(`1)
[n]

) (a)

≤ L

H
(
A

(`1)
[n]

∣∣Q)
(b)

≤ 1

1 +
∑r−1

v=1

(
k
n

)v = CPLC,

where (a) is due to the fact that conditioning reduces entropy, and we apply

equation (3.8) to obtain (b).

It can be easily seen that the converse bound of Theorem 2 matches the MDS-

PIR capacity CMDS-PIR for f = r files given in Theorem 1. The capacity-achieving

PLC scheme is provided in the following section.
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3.3 Private Linear Computation From Coded DSSs

One of the main results of this chapter is the derivation of the PLC capacity for

a coded DSS where data is encoded and stored using a linear code from the class

of MDS-PIR capacity-achieving codes [15]. Based on the PLC converse bound of

Theorem 2, in this section we construct a capacity-achieving PLC scheme. Our

capacity-achieving PLC scheme is also a generalization of the replication-based PLC

scheme in [43]. Although the two schemes are build upon a different PIR construction,

both schemes adapt the underlying PIR construction for dependent virtual messages

through an index assignment structure. Moreover, in order to optimize the download

rate, both schemes deploy a sign assignment structure to induce redundancy within

the queries of the modified underlying PIR construction. In this section, we first

present our modified underlying PIR construction with Algorithm 1 in Section 3.3.1.

Then, we elaborate on the sign assignment procedure in Section 3.3.3. In Theorem 3

we settle the PLC capacity for a DSS where data is stored using an MDS-PIR capacity-

achieving code.

Theorem 3 Consider a DSS with n noncolluding databases that uses an [n, k] MDS-

PIR capacity-achieving code C to store f messages. Then, the PLC capacity is equal

to CPLC, where r is the rank of the linear mapping from equation (3.1).

We remark that since all MDS codes are MDS-PIR capacity-achieving codes,

it follows that if rank(V) = f , then the PLC capacity for an MDS-coded DSS [78] is

equal to the MDS-PIR capacity CMDS-PIR.

We now start by constructing a query generation algorithm for a coded PIR-

like scheme, where its dependent virtual messages represent the evaluations of the µ

candidate linear combinations. A PIR-like scheme achieves a private retrieval of the

desired virtual message by following three important design principles: 1) Enforcing

symmetry across databases. Each database is queried for an equal number of symbols

and the query structure does not depend on the individual database, i.e., the scheme
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structure is fixed for all databases. 2) Enforcing symmetry across virtual messages.

3) Exploiting side information represented by undesired information downloaded to

maintain message symmetry.

Given that the messages are stored using an [n, k] MDS-PIR capacity-achieving

code C , we can construct a ν × n MDS-PIR capacity-achieving matrix ΛPIR
κ,ν of

Definition 2, and obtain the PIR interference matrices Aκ×n and B(ν−κ)×n as given by

the following definition.

Definition 4 ([15]) For a given ν×n PIR achievable rate matrix ΛPIR
κ,ν (C ) = (λu,j),

we define the PIR interference matrices Aκ×n = (ai,j) and B(ν−κ)×n = (bi,j) for the

code C as

ai,j , u if λu,j = 1, ∀j ∈ [n], i ∈ [κ], u ∈ [ν],

bi,j , u if λu,j = 0, ∀j ∈ [n], i ∈ [ν − κ], u ∈ [ν].

Note that in Definition 4, for each j ∈ [n], distinct values of u ∈ [ν] should be

assigned for all i. Thus, the assignment is not unique in the sense that the order of

the entries of each column of A and B can be permuted. Moreover, for j ∈ [n], let

Aj , {ai,j : i ∈ [κ]} and Bj , {bi,j : i ∈ [ν − κ]}. Note that the j-th column of Aκ×n

contains the row indices of ΛPIR
κ,ν whose entries in the j-th column are equal to 1, while

B(ν−κ)×n contains the remaining row indices of ΛPIR
κ,ν . Hence, it can be observed that

Bj = [ν] \ Aj, ∀ j ∈ [n].

Next, for the sake of illustrating our query generation algorithm, we make use

of the following definition.

Definition 5 By S(u|Aκ×n) we denote the set of column coordinates of matrix

Aκ×n = (ai,j) in which at least one of its entries is equal to u, i.e., S(u|Aκ×n) ,

{j ∈ [n] : ∃ ai,j = u, i ∈ [κ]}.

As a result, we require the size of the message to be L = νµ · k (i.e., β = νµ).
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3.3.1 Query Generation for PLC

Before running the main algorithm to generate the query sets, the following index

preparation for the coded symbols stored in each database is performed.

1) Index Preparation: The goal is to make the symbols queried from each

database to appear to be chosen randomly and independently from the desired linear

function index. Note that the function is computed separately for the t-th row of all

messages, t ∈ [β]. Therefore, similar to the PLC scheme in [43] and the MDS-coded

PLC scheme in [78], we apply a permutation that is fixed across all coded symbols

for the t-th row to maintain the dependency across the associated message elements.

Let π(·) be a random permutation function over [β], and let

U
(v′)
t,j , vv′Cπ(t),j, t ∈ [β], j ∈ [n], v′ ∈ [µ], (3.9)

denote the t-th permuted symbol associated with the v′-th virtual message X(v′) stored

in the j-th database, where Ct,j ,
(
C

(1)
t,j , . . . , C

(f)
t,j

)T and vv′ represents the v′-th

row vector of the matrix Vµ×f = (vi,j). The permutation π(·) is randomly selected

privately and uniformly by the user.

2) Preliminaries: The query generation procedure is subdivided into µ

rounds, where in each round τ we generate the queries based on the concept of

τ -sums as defined in the following.

Definition 6 (τ-sum) For τ ∈ [µ], a sum U
(v1)
i1,j

+ U
(v2)
i2,j

+ · · · + U
(vτ )
iτ ,j

, j ∈ [n], of τ

distinct symbols is called a τ -sum for any (i1, . . . , iτ ) ∈ [β]τ , and {v1, . . . , vτ} ⊆ [µ]

determines the type of the τ -sum.

Since we have
(
µ
τ

)
different selections of τ distinct elements out of µ elements, a τ -sum

can have
(
µ
τ

)
different types. For a requested linear function evaluation indexed by

v ∈ [µ], a query set Q(v)
j , j ∈ [n], is composed of µ disjoint subsets of queries,

each subset of queries is generated by the operations of each round τ ∈ [µ]. In
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a round we generate the queries for all possible
(
µ
τ

)
types of τ -sums. For each

round τ ∈ [µ] the corresponding query subset is further subdivided into two subsets

Q
(v)
j (D; τ) and Q

(v)
j (U ; τ). The first subset Q(v)

j (D; τ) corresponds to τ -sums with

a single symbol from the desired function evaluation and τ − 1 symbols from the

evaluations of undesired functions, while the second subset Q(v)
j (U ; τ) corresponds to

τ -sums with symbols only from the evaluations of undesired functions. Here, D is

an indicator for “desired function evaluations”, while U an indicator for “undesired

functions evaluations”. Note that we require κµ−(τ−1)(ν − κ)τ−1 distinct instances of

each τ -sum type for every query set Q(v)
j . To this end, the algorithm will generate κn

auxiliary query sets Q(v)
j (ai,j,D; τ), i ∈ [κ], where each query requests a distinct

symbol from the desired function evaluation and τ − 1 symbols from undesired

functions evaluations, and (ν − κ)n auxiliary query sets Q(v)
j (bi,j,U ; τ), i ∈ [ν − κ],

to represent the query sets of symbols from the undesired functions evaluations for

each database j ∈ [n]. We utilize these sets to generate the query sets of each round

according to the PIR interference matrices Aκ×n and B(ν−κ)×n.

To illustrate the key concepts of the coded PLC scheme, we use the following

example, i.e., Example 4, as a running example for this section.

Example 4 Consider f = 4 messages W(1), W(2), W(3), and W(4) that are stored in

a DSS using the [4, 2] MDS-PIR capacity-achieving code C given in Example 3 for

which

ΛPIR
1,2 =

1 0 1 0

0 1 0 1

,A1×4 =

(
1 2 1 2

)
, and B1×4 =

(
2 1 2 1

)
,

are a PIR achievable rate matrix with (κ, ν) = (1, 2) and the corresponding PIR

interference matrices A1×4 and B1×4, respectively, according to Definition 4. Suppose

that the user wishes to obtain a linear function evaluation X(v) from a set of µ = 4
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candidate linear functions, whose Vµ×f from equation (3.1) is given by

V4×4 =



1 0 0 1

1 1 0 0

2 1 0 1

4 1 0 3


.

We simplify notation by letting xt,j = U
(1)
t,j , yt,j = U

(2)
t,j , zt,j = U

(3)
t,j , and wt,j = U

(4)
t,j

for all t ∈ [β], j ∈ [n], where β = νµ = 16. First, let the desired linear function index

be v = 1. 5

The query sets for all databases are generated by Algorithm 1 through the

following procedures.2

3) Initialization (Round τ = 1): In the initialization step, the algorithm

generates the auxiliary queries for the first round. This round is described in lines

5 to 11 of Algorithm 1, where we have τ = 1 for the τ -sum. At this point,

Algorithm 1 invokes the subroutine Initial-Round given in Algorithm 2 to generate

Q
(v)
j (ai,j,D; 1), i ∈ [κ], such that each of these query sets contains α1 = κµ−1

distinct symbols. Furthermore, to maintain function symmetry, the algorithm asks

each database for the same number of distinct symbols of all other linear functions

evaluations inQ(v)
j (ai,j,U ; 1), i ∈ [κ], resulting in a total number of

(
µ−1

1

)
κµ−1 symbols.

As a result, the queried symbols in the auxiliary query sets for each database are

symmetric with respect to all function evaluation vectors indexed by v′ ∈ [µ].

In the following steps, we will associate the symbols of undesired functions

evaluations in κ groups, each placed in the undesired query sets Q(v)
j (ai,j,U ; 1), i ∈ [κ].

2Note that a query Q
(v)
j sent to the j-th database usually indicates the row indices of

the symbols that the user requests, while the answer A(v)
j to the query Q

(v)
j refers to

the particular symbols requested through the query. In Algorithm 1, with some abuse of
notation for the sake of simplicity, the generated queries are sets containing their answers.
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Algorithm 1: Q-Gen
Input : v, µ, κ, ν, n, Aκ×n, and B(ν−κ)×n

Output: Q(v)
1 , . . . , Q

(v)
n

1 for τ ∈ [µ] do
2 Q

(v)
j (D; τ)← ∅, Q(v)

j (U ; τ)← ∅, j ∈ [n]

3 ατ ← κµ−1 +
∑τ−1

h=1

(
µ−1
h

)
κµ−(h+1)(ν − κ)h

4 . Generate query sets for the initial round
5 if τ = 1 then
6 for u ∈ [ν] do
7 for j ∈ S(u|Aκ×n) do
8 Q

(v)
j (u,D; τ), Q

(v)
j (u,U ; τ)← Initial-Round(u, ατ , j, v, τ)

9 end
10 end
11 end
12 . Generate query sets for the following rounds τ > 1
13 else
14 for u ∈ [ν] do
15 . Generate desired symbols for the following rounds τ > 1
16 for j ∈ S(u|Aκ×n) do
17 Q

(v)
j (u,D; τ)← Desired-Q(u, ατ , j, v, τ)

18 end
19 . Generate side information for the following rounds τ > 1
20 for j ∈ S(u|B(ν−κ)×n) do
21 Q

(v)
j (u,U ; τ − 1)←
Exploit-SI(u,Q

(v)
1 (u,U , τ − 1), . . . , Q

(v)
n (u,U , τ − 1), j, v, τ)

22 end
23 end
24 . Generate the final desired query sets for the following

rounds τ > 1
25 for j ∈ [n] do
26 Q̃

(v)
j (U ; τ − 1)←

⋃ν−κ
i=1 Q

(v)
j (bi,j ,U ; τ − 1)

27 Q̃
(v)
j (1,U ; τ − 1), . . . , Q̃

(v)
j (κ,U ; τ − 1)← Partition

(
Q̃

(v)
j (U ; τ − 1)

)
28 for i ∈ [κ] do
29 Q

(v)
j (ai,j ,D; τ)← SetAddition

(
Q

(v)
j (ai,j ,D; τ), Q̃

(v)
j (i,U ; τ − 1)

)
30 end
31 end
32 . Generate the query sets of undesired symbols by forcing

message symmetry for the following rounds τ > 1
33 for u ∈ [ν] do
34 for j ∈ S(u|Aκ×n) do
35 Q

(v)
j (u,U ; τ)← M-Sym

(
Q

(v)
j (u,D; τ), j, v, τ

)
36 end
37 end
38 end
39 for u ∈ [ν] do
40 for j ∈ S(u|Aκ×n) do
41 Q

(v)
j (D; τ)← Q

(v)
j (D; τ) ∪Q(v)

j (u,D; τ)

42 Q
(v)
j (U ; τ)← Q

(v)
j (U ; τ) ∪Q(v)

j (u,U ; τ)
43 end
44 end
45 end
46 for j ∈ [n] do
47 Q

(v)
j ←

⋃µ
τ=1

(
Q

(v)
j (D; τ) ∪Q(v)

j (U ; τ)
)

48 end
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Since this procedure produces κ undesired query sets for each database, database

symmetry is maintained.

Example 4 (continued) The initialization step is described in the following.

Algorithm 1 starts with τ = 1 to generate auxiliary query sets Q
(v)
j (ai,j,D; 1),

Q
(v)
j (ai,j,U ; 1), i ∈ [κ], for each database j ∈ [n]. Starting at line 6 of Algorithm 1,

since ν = 2, we have the row indicator u ∈ [2]. This indicator is first used to

identify the code coordinates pertaining to different entries u = ai,j, as specified by

the interference matrix A1×4. For example, when u = 1, following Definition 5,

we have S(1|Aκ×n) = {1, 3}. In line 7 of Algorithm 1, for j ∈ {1, 3}, algorithm

Initial-Round is invoked to generate the desired and undesired query subsets

Q
(1)
j (1,D; 1) and Q(1)

j (1,U ; 1). The set Q(1)
j (1,D; 1) queries α1 = κµ−1 = 1 distinct

instances of the desired function evaluation xt,j and the set Q(1)
j (1,U ; 1) α1 = 1

distinct instances of the remaining linear functions evaluations yt,j, zt,j, and wt,j.

To this end, the row indicator u is passed to the subroutine Initial-Round,

i.e., Algorithm 2, where it is used to determine the indices of the queried symbols.

For example, the first auxiliary query set for u = 1 generated by Algorithm 2 is given

by Q(1)
j (1,D; 1) = {U (1)

(1−1)·1+1,j} = {x1,j}, j ∈ {1, 3}. A similar process is followed for

Q
(1)
j (1,U ; 1). The same process is then repeated for u = 2. By the end of this step, we

have queried να1 = 2 distinct instances of the desired function evaluation xt,j and by

message symmetry, να1 = 2 distinct instances of the remaining functions evaluations

yt,j, zt,j, and wt,j. In total, the first round of queries comprises nκα1µ = 16 symbols,

which can be written in the form n
(
µ
1

)
κµ−1+1(ν−κ)1−1. The resulting auxiliary query

sets for the first round of queries are shown in Table 3.1(a), where we highlight in red

the row indicator u ∈ [ν] as specified by the interference matrix A1×4, i.e., u = a1,j.

5

4) Desired Function Symbols for Rounds τ > 1: For the following rounds

a similar process is repeated in terms of generating auxiliary query sets containing

distinct code symbols from the desired linear function evaluation U(v) = (U
(v)
t,j ).

This is accomplished in lines 16 to 18 by calling the subroutine Desired-Q, given

in Algorithm 3, to generate Q(v)
j (ai,j,D; τ), i ∈ [κ], such that each of these query sets
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Table 3.1 Auxiliary Query Sets for Example 4

j 1 2 3 4

Q
(1)
j (a1,j,D; 1) x(1−1)·1+1,1 x(2−1)·1+1,2 x(1−1)·1+1,3 x(2−1)·1+1,4

Q
(1)
j (a1,j,U ; 1)

y(1−1)·1+1,1 y(2−1)·1+1,2 y(1−1)·1+1,3 y(2−1)·1+1,4

z(1−1)·1+1,1 z(2−1)·1+1,2 z(1−1)·1+1,3 z(2−1)·1+1,4

w(1−1)·1+1,1 w(2−1)·1+1,2 w(1−1)·1+1,3 w(2−1)·1+1,4

(a)

j 1 2 3 4

Q
(1)
j (a1,j,D; 2)

x1·2+1,1 + y2,1 x1·2+2,2 + y1,2 x1·2+1,3 + y2,3 x1·2+2,4 + y1,4

x2·2+1,1 + z2,1 x2·2+2,2 + z1,2 x2·2+1,3 + z2,3 x2·2+2,4 + z1,4

x3·2+1,1 + w2,1 x3·2+2,2 + w1,2 x3·2+1,3 + w2,3 x3·2+2,4 + w1,4

Q
(1)
j (a1,j,U ; 2)

y4+1,1 + z2+1,1 y4+2,2 + z2+2,2 y4+1,3 + z2+1,3 y4+2,4 + z2+2,4

y6+1,1 + w2+1,1 y6+2,2 + w2+2,2 y6+1,3 + w2+1,3 y6+2,4 + w2+2,4

z6+1,1 + w4+1,1 z6+2,2 + w4+2,2 z6+1,3 + w4+1,3 z6+2,4 + w4+2,4

(b)

j 1 2 3 4

Q
(1)
j (a1,j,D; 3)

x4·2+1,1 + y6,1 + z4,1 x4·2+2,2 + y5,2 + z3,2 x4·2+1,3 + y6,3 + z4,3 x4·2+2,4 + y5,4 + z3,4

x5·2+1,1 + y8,1 + w4,1 x5·2+2,2 + y7,2 + w3,2 x5·2+1,3 + y8,3 + w4,3 x5·2+2,4 + y7,4 + w3,4

x6·2+1,1 + z8,1 + w6,1 x6·2+2,2 + z7,2 + w5,2 x6·2+1,3 + z8,3 + w6,3 x6·2+2,4 + z7,4 + w5,4

Q
(1)
j (a1,j,U ; 3) y12+1,1 + z10+1,1 + w8+1,1 y12+2,2 + z10+2,2 + w8+2,2 y12+1,3 + z10+1,3 + w8+1,3 y12+2,4 + z10+2,4 + w8+2,4

(c)

j 1 2 3 4

Q
(1)
j (a1,j,D; 4) x7·2+1,1 + y14,1 + z12,1 + w10,1 x7·2+2,2 + y13,2 + z11,2 + w9,2 x7·2+1,3 + y14,3 + z12,3 + w10,3 x7·2+2,4 + y13,4 + z11,4 + w9,4

(d)

Note: auxiliary query sets for each round τ ∈ [4]. Highlighted in red is the row indicator
u ∈ [ν] used in determining the indices of the queried symbols. The magenta dashed arrows
and the cyan arrows indicate that the Exploit-SI algorithm and the M-Sym algorithm are
used, respectively.

35



contains (ατ − 1) − ατ−1 + 1 =
(
µ−1
τ−1

)
κµ−(τ−1+1)(ν − κ)τ−1 distinct symbols from the

desired linear function evaluation U(v).

Example 4 (continued) After successfully generating the queries for να1 = 2

distinct symbols from the desired linear function evaluation in the initiation step,

for round τ = 2 we generate the queries for the following ν(α2−α1) = 6 symbols. To

this end, subroutine Desired-Q, given in Algorithm 3, generates auxiliary query sets

Q
(1)
j (ai,j,D; 2) containing distinct symbols from the desired linear function evaluation,

following a process similar to Algorithm 2, however with a different method for

determining the queried indices. The output of lines 16 to 18 after calling the

subroutine Desired-Q for u ∈ [2] is as follows.

j 1 2 3 4

Q
(1)
j (1,D; 2)

x1·2+1,1 x1·2+1,3

x5,1, x7,1 x5,3, x7,3

Q
(1)
j (2,D; 2)

x1·2+2,2 x1·2+2,4

x6,2, x8,2 x6,4, z8,4

5

5) Side Information Exploitation: In lines 20 to 22, we generate the side

information query sets Q(v)
j (bi′,j,U ; τ − 1), i′ ∈ [ν − κ], from the auxiliary query sets

Q
(v)
1 (ai,1,U ; τ −1), . . . , Q

(v)
n (ai,n,U ; τ −1), i ∈ [κ], of the previous round τ −1, τ ∈ [2 :

µ], by applying the subroutine Exploit-SI, given by Algorithm 4. This subroutine

is extended from [43] based on our coded storage scenario. These side information

query sets will be exploited by the user to ensure the recovery and privacy of the PLC

scheme. Note that in Algorithm 4 the function Reproduce(j,Q
(v)
j′ (u,U ; τ − 1)), j′ ∈

[n] \ {j}, simply reproduces all the queries in the auxiliary query set Q(v)
j′ (u,U ; τ − 1)

with a different coordinate j.

Next, we update the desired query sets Q(v)
j (ai,j,D; τ) in lines 25 to 31. First,

the function Partition
(
Q̃

(v)

j (U ; τ − 1)
)

denotes a procedure that divides a set

into κ disjoint equally-sized subsets. This is viable since based on the subroutine
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Initial-Round and the following subroutine M-Sym, one can show that
∣∣Q̃(v)

j (U ; τ −

1)
∣∣ =

(
µ−1
τ−1

)
κµ−(τ−1)(ν − κ)(τ−1)−1 · (ν − κ) for each round τ ∈ [2 : µ], which is always

divisible by κ. Secondly, we assign the new query set of desired symbols Q(v)
j (ai,j,D; τ)

for the current round by using an element-wise set addition SetAddition(Q1, Q2).

The element-wise set addition is defined as
{
qil + qi′l : qil ∈ Q1, qi′l ∈ Q2, l ∈ [ρ]

}
with

|Q1| = |Q2| = ρ, where ρ is an appropriate integer.

Algorithm 2: Initial-Round

Input : u, ατ , j, v, and τ

Output: ϕ(v)(u,D; τ), ϕ(v)(u,U ; τ)

1 ϕ(v)(u,D; τ)← ∅, ϕ(v)(u,U ; τ)← ∅

2 for l ∈ [ατ ] do

3 ϕ(v)(u,D; τ)← ϕ(v)(u,D; τ) ∪
{
U

(v)
(u−1)·ατ+l,j

}
4 ϕ(v)(u,U ; τ)← ϕ(v)(u,U ; τ) ∪

(
µ⋃

v′=1

{
U

(v′)
(u−1)·ατ+l,j

}
\
{
U

(v)
(u−1)·ατ+l,j

})
5 end

Algorithm 3: Desired-Q

Input : u, ατ , j, v, and τ

Output: ϕ(v)(u,D; τ)

1 ϕ(v)(u,D; τ)← ∅

2 for l ∈ [ατ−1 : ατ − 1] do

3 ϕ(v)(u,D; τ)← ϕ(v)(u,D; τ) ∪
{
U

(v)
l·ν+u,j

}
4 end

6) Message and Index Symmetry in Rounds τ > 1: In lines 33 to 37, the

subroutine M-Sym, given in Algorithm 5, is invoked to generate the undesired query

sets Q(v)
j (ai,j,U ; τ) by utilizing message symmetry. This subroutine selects symbols

of undesired functions evaluations to generate τ -sums that enforce symmetry in the

round queries. The procedure resembles the subroutine M-Sym proposed in [43]. In

Algorithm 5, Πτ denotes the set of all possible selections of τ distinct indices in
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Algorithm 4: Exploit-SI

Input : u, Q(v)
1 (u,U ; τ − 1), . . . , Q

(v)
n (u,U ; τ − 1), j, v, and τ

Output: ϕ(v)(u,U ; τ − 1)

1 ϕ(v)(u,U ; τ − 1)← ∅

2 for i ∈ [κ] do

3 for j′ ∈ [n] \ {j} do

4 if u = ai,j′ then

5 ϕ(v)(u,U ; τ − 1)← Reproduce(j,Q
(v)
j′ (u,U ; τ − 1))

6 break

7 end

8 end

9 end

Algorithm 5: M-Sym

Input : Q(v)
j (u,D; τ), j, v, and τ

Output: ϕ(v)(u,U ; τ)

1 ϕ(v)(u,U ; τ)← ∅

2 for (v1, . . . , vτ ) ∈ Lexico(Πτ ), v /∈ {v1, . . . , vτ} do

3 ϕ(v)(u,U ; τ)← ϕ(v)(u,U ; τ) ∪
{
U

(v1)
i1,j

+ . . .+ U
(vτ )
iτ ,j

}
such that ∀ z ∈ [τ ],

∃U (v)
iz ,j

+
∑
x∈[τ ]
x 6=z

U
(vx)
∗,j ∈ Q

(v)
j (u,D; τ)

4 end
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[µ] and Lexico(Πτ ) denotes the corresponding set of ordered selections (the indices

(v1, . . . , vτ ) of a selection of Πτ are ordered in natural lexicographical order). Further,

the notation U
(vx)
∗,j implies that the row index of the symbol can be arbitrary. This

is the case since only the function indices (v1, . . . , vτ ) are necessary to determine iz,

∀ z ∈ [τ ]. As a result, symmetry over the linear functions is maintained. Moreover,

for Q(v)
j (ai,j,U ; τ), i ∈ [κ], we obtain for each τ ∈ [2 : µ] the remaining τ -sum types,

such that each of these query sets contains
(
µ−1
τ

)
κµ−(τ−1+1)(ν − κ)τ−1 symbols.

Example 4 (continued) After determining the indices of the desired function

evaluations to be queried by each database in round τ = 2, we now deploy side

information to preserve the privacy for the desired function evaluation. This

is accomplished by generating τ -sums of each possible type and enforcing index

symmetry. To this end, we first identify the side information available from the

previous round, queried from the neighboring databases, to be exploited according to

the interference matrix B1×4. This process is performed by invoking Algorithm 4,

which generates complement sets for the undesired query sets of the previous round,

i.e., Q(1)
j (ai,j,U ; 1). The output of Algorithm 4 for u ∈ [2] is as follows.

j 1 2 3 4

Q
(1)
j (1,U ; 1) y1,2, z1,2, w1,2 y1,4, z1,4, w1,4

Q
(1)
j (2,U ; 1) y2,1, z2,1, w2,1 y2,3, z2,3, w2,3

Next, these side information query sets are then partitioned into κ groups to

be exploited in different Q(1)
j (ai,j,D; 2) for i ∈ [κ]. The partitioning guarantees that

the two sets used in generating the τ -sums in lines 28 to 30 of Algorithm 1 have an

equal number of elements. Finally, message and index symmetry is guaranteed by

passing the generated auxiliary query sets Q(1)
j (ai,j,D; 2) to the subroutine M-Sym,

i.e., Algorithm 5, that generates τ -sums of the remaining types. Table 3.1(b)

illustrates the final query sets for round τ = 2.

Next, Steps 4) to 6) are repeated for the following rounds, i.e., for τ = 3 and

τ = 4. As a result, the queries for ν(α3 − α2) = 6 and the remaining ν(α4 − α3) = 2

distinct symbols of the desired linear function evaluation are generated by rounds

τ = 3 and τ = 4, respectively. Tables 3.1(c)-(d) illustrate the final query sets for the
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final rounds. Similar to Table 3.1(a), in Tables 3.1(b)–(d), we highlight with red the

row indicator u = a1,j ∈ [ν] and with magenta dashed arrows the side information

exploitation following the algorithm Exploit-SI, i.e., Algorithm 4. In addition, we

indicate with cyan arrows the message symmetry enforcement procedure following the

algorithm M-Sym, i.e., Algorithm 5, and with red the resulting index symmetry in

Q
(1)
j (a1,j,U ; τ) based on the desired linear function indices. 5

7) Query Set Assembly : Finally, in lines 39 to 48, we assemble each query set

from disjoint query subsets obtained in all τ rounds. It can be shown that Q(v)
j (D; τ)∪

Q
(v)
j (U ; τ) contains κµ−(τ−1)(ν−κ)τ−1 τ -sums for every τ -sum type as follows. For the

initialization round, τ = 1, from Step 3) above, the total number of queried symbols

is given by

∣∣Q(v)
j (D; 1) ∪Q(v)

j (U ; 1)
∣∣ = κ

[
κµ−1 +

(
µ− 1

1

)
κµ−1

]
=

(
µ

1

)
κµ−1+1(ν − κ)1−1.

For the following rounds, τ ∈ [2 : µ], from Steps 4), 5), and 6) above, we have

∣∣Q(v)
j (D; τ) ∪Q(v)

j (U ; τ)
∣∣ = κ

[(
µ− 1

τ − 1

)
κµ−τ (ν − κ)τ−1 +

(
µ− 1

τ

)
κµ−τ (ν − κ)τ−1

]
=

(
µ

τ

)
κµ−τ+1(ν − κ)τ−1.

In summary, the total number of queries generated by Algorithm 1 is

n∑
j=1

∣∣Q(v)
j

∣∣ = n

µ∑
τ=1

(
µ

τ

)
κµ−τ+1(ν − κ)τ−1. (3.10)

Remark 1 The practicality of implementing an algorithm is measured by the

algorithm’s computational complexity, i.e., the number of operations an algorithm

performs to complete its task. The computational complexity of Algorithm 1 can

be shown to be O(nκµνµ−1). To the best of our knowledge, our scheme shares this

exponential time complexity with the PIR and PLC schemes of [7], [8], [15], [43].

Example 4 (continued) In the final step, i.e., Step 7), the auxiliary query subsets

are aggregated according to the row indicator u = ai,j, i ∈ [κ], to form the final
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query set for each database. Note that, by utilizing the code coordinates forming an

information set in the code array, it can be shown that the side information based

on B(ν−κ)×n can be decoded. For example, in round 3, since {2, 4} is an information

set of the storage code C , the code symbols y6,1 + z4,1 and y6,3 + z4,3 can be obtained

by knowing y6,2 + z4,2 and y6,4 + z4,4, from which the corresponding symbols x6,1 and

x6,3 can be obtained by canceling the side information. Hence, the symbols from the

desired linear function evaluation can be obtained.

3.3.2 Recovery of Desired Function Evaluation

The construction of the capacity-achieving PLC scheme is, so far, a PIR-like scheme

that privately retrieve a virtual message from a linearly-coded DSS. This virtual

message represents the evaluation of the desired function over coded symbols,

however, the user wishes to privately retrieve the evaluation of the desired function

over the original information symbols. As a result, due to the fact that we are

performing computation over coded storage, the coded PLC scheme includes two

extra steps over other uncoded PC schemes. Namely, decoding the desired function

evaluation symbols and decoding and canceling the side information. Thus, the

correct decoding of the desired function evaluation relies on the correct decoding

of the queried symbols from all virtual messages. To this end, in the following, we

show that we can reliably recover the desired function evaluation from the queried

symbols.

The main argument behind the reliable recovery of the desired function

evaluation is the fact that the candidate linear functions and linear coding commute,

i.e., evaluating a function over coded symbols is equal to encoding the symbols of

the function evaluation. To see that, let t̂ = π(t) where t, t̂ ∈ [β] be the private

permutation selected by the user and let gj =
(
g1,j, g2,j, . . . , gk,j

)T be the j-th column

of the generator matrix GC for the [n, k] linear storage code. One can verify, from
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equation (3.9), that for all v′ ∈ [µ], we have

U
(v′)
t,j = vv′Ct̂,j =

f∑
i=1

vv′,iC
(i)

t̂,j
=

f∑
i=1

vv′,i

k∑
h=1

W
(i)

t̂,h
gh,j

=
k∑

h=1

gh,j

f∑
i=1

vv′,iW
(i)

t̂,h
=

k∑
h=1

X
(v′)

t̂,h
gh,j, (3.11)

where (X
(v′)
1,1 , . . . , X

(v′)
1,k , X

(v′)
2,1 , . . . , X

(v′)
β,k ) = (X

(v′)
1 , . . . , X

(v′)
k , X

(v′)
k+1, . . . , X

(v′)
L ) = X(v′).

Note that equation (3.11) resembles the process of encoding the segment(
X

(v′)

t̂,1
, . . . , X

(v′)

t̂,k

)
of the candidate linear function evaluation X(v′) using the

[n, k] storage code. Thus, one can consider the construction of our PLC scheme, so

far, as a coded PIR scheme over a virtual coded DSS storing the evaluations of the

candidate functions. As a result, using the same [n, k] linear code for decoding the

symbols obtained from the answer sets guarantees the reliable retrieval of the desired

function evaluation.

3.3.3 Sign Assignment and Redundancy Elimination

In contrast to simple PIR solutions, in PLC we have the opportunity to exploit the

dependencies induced by performing computations over the same set of messages,

i.e., the f independent messages W(1), . . . ,W(f), while keeping the requested index

v private from each database. As shown in the recent PC literature (e.g., [43], [47],

[78]), one is able to exploit this dependency to optimize the download cost by trading

communication overhead with offline computation performed at the user side. To this

end, our proposed PLC scheme is further constructed with two additional procedures:

Sign assignment and redundancy elimination.

After running Algorithm 1, the user will know which row indices of the stored

code symbols he/she is going to request. To reduce the total number of downloaded

symbols, the linear dependency among the candidate linear functions evaluations is

exploited. To this end, an initial sign σ(v)
t is first privately generated by the user with
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a uniform distribution over {−1,+1} for all t ∈ [β], i.e., the same selected sign is

identically applied to all symbols from different function evaluations with the same

index.

Next, depending on the desired linear function index v ∈ [µ], we apply a

deterministic sign assignment procedure that carefully scales each pre-signed symbol

in the query sets, i.e., σ(v)
t U

(v′)
t,j , v′ ∈ [µ], by {+1,−1}. The intuition behind

the sign assignment is to introduce a uniquely solvable equation system from the

different τ -sum types given the side information available from all other databases.

By obtaining such a system of equations in each round, the user can determine

some of the queries offline to decode the desired linear function evaluations and/or

interference, thus reducing the download rate. On the other hand, the privately

selected initial sign for σ(v)
t , t ∈ [β], acts as a one-time pad that randomizes over the

deterministic sign assignment procedure. Here, we adopt a similar sign assignment

process over each symbol in the query sets, as introduced in [43, Sec. IV-B]. The

sign assigned to each symbol relies on two factors; the position of that symbol within

a lexicographically ordered τ -sum query and whether that query contains a symbol

from the desired function evaluation. Specifically, let a lexicographically ordered

τ -sum query be q, i.e., q ,
∑τ

`=1 U
(v`), v1 < · · · < vτ .3 Let ∆(v)(q) denote the

position of the symbol associated with the desired function evaluation X(v) within

q, where ∆(v)(q) = 0 indicates that the query does not contain a symbol from the

desired function evaluation. The queries generated by Algorithm 1 are sorted by

round τ ∈ [µ], then the queries for each round are divided into subgroups indexed by

S(∆(v)(q)) ∈ {1, 2, . . .} based on the value of ∆(v)(q) for each query. Finally, a ‘+’ or

’−’ sign is assigned as a function of the subgroup index S(·) and the position of each

symbol relative to the desired function evaluation symbol in each query. The details

of the sign selection follow [43, Sec. IV-B] and are omitted for brevity. Moreover, we

3Segment and database indices are suppressed here for clarity.
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remark that after sign assignment, the recovery condition of the scheme is inherently

maintained since it can be seen as a coded PIR scheme as Protocol 1 in [15]. The key

idea of redundancy elimination is illustrated with Example 4 below.

Example 4 (continued) First, without loss of generality, we assume the initial sign

assignment σ(v)
t = +1 is privately selected by the user for all t ∈ [β]. Next, we apply

the sign assignment process to the query sets for v = 1. The resulting queries after

sign assignment are shown in Table 3.2. In the following, we show that we can remove

some redundant queries from each database and the desired linear function evaluation

X(1) can still be recovered. For example, in the first round (τ = 1), it can be easily

seen from Vµ×f that the queried symbols of zt,j and wt,j can be generated offline by

the user as functions of xt,j and yt,j, i.e., zt,j = xt,j + yt,j and wt,j = 3xt,j + yt,j

for all t ∈ [β] and j ∈ [n]. Moreover, the coefficient vectors associated with xt,j and

yt,j are the two row basis vectors of the coefficient matrix Vµ×f (r = rank(V) = 2).

Thus, we can represent the candidate functions evaluations in terms of this basis with

a deterministic linear mapping V̂µ×r = (v̂i,l) of size µ× r as follows:

(xt,j, yt,j, zt,j, wt,j)
T =


1 0

0 1

1 1

3 1


︸ ︷︷ ︸

V̂µ×r

(xt,j, yt,j)
T. (3.12)

That is true due to the commutativity of the performed linear functions, i.e., the

storage code and the candidate functions, and given that the coefficient matrix Vµ×f

of the candidate functions is available to the user. Thus, the queries for these symbols,

i.e., zt,j and wt,j, are redundant and can be removed from the query sets regardless of

which function evaluation is desired by the user. Next, in round τ = 2 and for the 1st

database, from the deterministic linear mapping V̂µ×r = (v̂i,l) of equation (3.12), one

can verify that

v̂3,2(y7,1 − w3,1)− v̂4,2(y5,1 − z3,1)− (v̂3,1 · v̂4,2 − v̂4,1 · v̂3,2)x3,1 − v̂4,1x5,1 + v̂3,1x7,1

= 1(y7,1 − w3,1)− 1(y5,1 − z3,1)− (1 · 1− 3 · 1)x3,1 − 3x5,1 + 1x7,1

= 1(y7,1 − 3x3,1 − 1y3,1)− (y5,1 − x3,1 − y3,1) + 2x3,1 − 3x5,1 + x7,1
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= (x7,1 + y7,1)− (3x5,1 + y5,1) = z7,1 − w5,1, (3.13)

and hence we do not need to download the 2-sum z7,1 − w5,1. Similarly, we can do

the same exercise for the other databases. The redundant queries are marked in blue

in Table 3.2, shown at the top of the following page, and the indices t ∈ [β] of the

desired linear function evaluations are marked in red. This completes the recovery

part. The resulting PLC rate becomes νµ·k
D

= 16·2
12·4 = 2

3
, which is equal to the PLC

capacity in Theorem 3 with r = rank(V) = 2. This demonstrates the optimality of the

PLC scheme. 5

Table 3.2 PLC Query Sets for v = 1 after Sign Assignment
j 1 2 3 4

Q
(v)
j (D; 1) x1,1 x2,2 x1,3 x2,4

Q
(v)
j (U ; 1) y1,1, z1,1, w1,1 y2,2, z2,2, w2,2 y1,3, z1,3, w1,3 y2,4, z2,4, w2,4

Q
(v)
j (D; 2)

x3,1 − y2,1 x4,2 − y1,2 x3,3 − y2,3 x4,4 − y1,4

x5,1 − z2,1 x6,2 − z1,2 x5,3 − z2,3 x6,4 − z1,4

x7,1 − w2,1 x8,2 − w1,2 x7,3 − w2,3 x8,4 − w1,4

Q
(v)
j (U ; 2)

y5,1 − z3,1 y6,2 − z4,2 y5,3 − z3,3 y6,4 − z4,4

y7,1 − w3,1 y8,2 − w4,2 y7,3 − w3,3 y8,4 − w4,4

z7,1 − w5,1 z8,2 − w6,2 z7,3 − w5,3 z8,4 − w6,4

Q
(v)
j (D; 3)

x9,1 − y6,1 + z4,1 x10,2 − y5,2 + z3,2 x9,3 − y6,3 + z4,3 x10,4 − y5,4 + z3,4

x11,1 − y8,1 + w4,1 x12,2 − y7,2 + w3,2 x11,3 − y8,3 + w4,3 x12,4 − y7,4 + w3,4

x13,1 − z8,1 + w6,1 x14,2 − z7,2 + w5,2 x13,3 − z8,3 + w6,3 x14,4 − z7,4 + w5,4

Q
(v)
j (U ; 3) y13,1 − z11,1 + w9,1 y14,2 − z12,2 + w10,2 y13,3 − z11,3 + w9,3 y14,4 − z12,4 + w10,4

Q
(v)
j (D; 4) x15,1 − y14,1 + z12,1 − w10,1 x16,2 − y13,2 + z11,2 − w9,2 x15,3 − y14,3 + z12,3 − w10,3 x16,4 − y13,4 + z11,4 − w9,4

Note: PLC query sets for v = 1 for rounds one to four for the [4, 2] code of Example 4,
f = 4 messages, and µ = 4 candidate linear functions. Red subscripts indicate the indices
of the desired linear function evaluations. The redundant queries are marked in blue.

From the above example we note the following.

• There is a deterministic linear mapping, i.e., V̂µ×r, that captures the depen-
dencies among the candidate linear functions evaluations.

• We maintain the same characteristics of the query construction that facilitate
the exploitation of the linear dependencies among the candidate functions
evaluations as for the uncoded PLC scheme in [43]. These characteristics include
index assignment, sign assignment, and lexicographic ordering of the elements of
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τ -sums. As a result, some of the queries become redundant and can be removed
from the query sets while maintaining the decodability of the desired function
evaluation.

• The candidate functions are computed over the coded symbols stored in each
database individually. Consequently, from the perspective of the queries of each
database, the linear dependency among the symbols of the candidate functions
evaluations is present, i.e., the fact that the computation is performed over
coded storage is transparent to the redundancy elimination process. This can
be seen from equation (3.13).

• The number of redundant queries depends on the rank of the coefficient matrix
Vµ×f , i.e., r = rank(V). This can be clearly observed for the 1-sum symbols
where out of the µ symbols, µ−r can be computed offline given that the symbols
of the functions evaluations associated with the r row basis vectors of Vµ×f are
available.

Based on this insight we can state the following lemma for redundancy elimination.

Lemma 4 For all v ∈ [µ], each database j ∈ [n], and based on the side information

available from the databases, any
(
µ−r
τ

)
τ -sum types out of all possible

(
µ
τ

)
types in

each round τ ∈ [µ− r] of the query sets are redundant.

The proof of Lemma 4 is presented in Appendix C. The proof is based on the insight

that the redundancy resulting from the linear dependencies between virtual messages

is also present with MDS-PIR capacity-achieving codes. Since both repetition and

MDS codes are MDS-PIR capacity-achieving codes, Lemma 4 generalizes both [43,

Lem. 1] and [78, Lem. 1]. We now make the final modification to our PLC query

sets by first directly applying the sign assignment over σ(v)
t U

(v′)
t,j , v′ ∈ [µ], and then

remove the τ -sums corresponding to the redundant τ -sum types from every round

τ ∈ [µ− r]. Note that the amount of redundancy is dependent on the rank of the

functions matrix, rank(V) = r ≤ min{µ, f}, thus generalizing the MDS-coded PLC

case. Finally, we generate the queries Q(v)
[n] .

3.3.4 Privacy

It is worth mentioning that the queries generated by Algorithm 1 inherently satisfy

the privacy condition of equation (2.5), which is guaranteed by satisfying the index,
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message, and database symmetry principles as for all the PIR schemes in [7], [8], [15].

That is, given the fixed and symmetric construction of the queries, there always exists

a one-to-one mapping between the queries, Q(v)
j ↔ Q

(v′)
j , ∀ j ∈ [n], in terms of the

queried symbols indices t ∈ [β], where v, v′ ∈ [µ] and v 6= v′. Given this one-to-one

mapping along with a permutation π(t) over these indices privately selected uniformly

at random by the user, the queries are indistinguishable and equally likely.

Moreover, after the sign assignment process a one-to-one mapping between the

assigned signs is found following a simple sign flipping rule for σ(v′)
t . The rule states

that, to map the queries of Q(v)
j to Q(v′)

j , one should only consider the desired queries,

i.e., queries that contain symbols associated with X(v′). For such queries in each round

τ , we replace σ(v′)
∗ with −σ(v′)

∗ for each element to the right of the desired function

evaluation symbol U (v′)
∗ in the lexicographically ordered query if the query is sorted

in a subgroup indexed with an odd S (see Section 3.3.3). Next, we flip the sign

of elements to the left of the desired function evaluation symbol U (v′)
∗ if the query is

sorted in a subgroup indexed with an even S. The proof of the correctness of this rule

and thus the privacy after sign assignment follows directly from [43, Sec. VI-B]. For

completeness, we also show with Example 4 that the user’s privacy is still maintained

after the sign assignment process and the removal of redundant queries.

Example 4 (continued) Here, to show that the queries are identically distributed

regardless of the desired function evaluation index v ∈ [4] we show that there exists

a one-to-one mapping from the queries for v = 1 to the queries for v = 3 for all

databases. Without loss of generality, we again assume the initial sign assignment

σ
(3)
t = +1 to be privately selected by the user for all t ∈ [β]. In Table 3.3, shown at

the top of the following page, the queries for v = 3 are presented following Algorithm 1

and the sign assignment process. From Tables 3.2 and 3.3 one can verify that the index

and sign mapping
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Table 3.3 PLC Query Sets for v = 3 after Sign Assignment
j 1 2 3 4

Q
(v)
j (D; 1) z1,1 z2,2 z1,3 z2,4

Q
(v)
j (U ; 1) x1,1, y1,1, w1,1 x2,2, y2,2, w2,2 x1,3, y1,3, w1,3 x2,4, y2,4, w2,4

Q
(v)
j (D; 2)

x2,1 − z3,1 x1,2 − z4,2 x2,3 − z3,3 x1,4 − z4,4

y2,1 − z5,1 y1,2 − z6,2 y2,3 − z5,3 y1,4 − z6,4

z7,1 − w2,1 z8,2 − w1,2 z7,3 − w2,3 z8,4 − w1,4

Q
(v)
j (U ; 2)

x5,1 − y3,1 x6,2 − y4,2 x5,3 − y3,3 x6,4 − y4,4

x7,1 − w3,1 x8,2 − w4,2 x7,3 − w3,3 x8,4 − w4,4

y7,1 − w5,1 y8,2 − w6,2 y7,3 − w5,3 y8,4 − w6,4

Q
(v)
j (D; 3)

x6,1 − y4,1 + z9,1 x5,2 − y3,2 + z10,2 x6,3 − y4,3 + z9,3 x5,4 − y3,4 + z10,4

−x8,1 − z11,1 + w4,1 −x7,2 − z12,2 + w3,2 −x8,3 − z11,3 + w4,3 −x7,4 − z12,4 + w3,4

−y8,1 − z13,1 + w6,1 −y7,2 − z14,2 + w5,2 −y8,3 − z13,3 + w6,3 −y7,4 − z14,4 + w5,4

Q
(v)
j (U ; 3) x13,1 − y11,1 + w9,1 x14,2 − y12,2 + w10,2 x13,3 − y11,3 + w9,3 x14,4 − y12,4 + w10,4

Q
(v)
j (D; 4) x14,1 − y12,1 + z15,1 + w10,1 x13,2 − y11,2 + z16,2 + w9,2 x14,3 − y12,3 + z15,3 + w10,3 x13,4 − y11,4 + z16,4 + w9,4

Note: PLC query sets for rounds one to four for the [4, 2] code of Example 4, f = 4
messages, and µ = 4 candidate linear functions. Red subscripts indicate the indices of the
desired linear function evaluations. The redundant queries are marked in blue.

Databases 1 and 3:

(3, 2, 5, 9, 6, 4, 11, 8, 13, σ
(1)
13 , 15, 14, 12, σ

(1)
10 )

v=3−−→ (5, 3, 2, 6, 4, 9, 13, 11, 8,−σ(3)
8 , 14, 12, 15,−σ(3)

10 ) (3.14)

Databases 2 and 4:

(4, 1, 6, 10, 5, 3, 12, 7, 14, σ
(1)
14 , 16, 13, 11, σ

(1)
9 )

v=3−−→ (6, 4, 1, 5, 3, 10, 14, 12, 7,−σ(3)
7 , 13, 11, 16,−σ(3)

9 ) (3.15)

converts the queries for v = 1 to the queries for v = 3. To see this mapping, compare

the τ -sums xt1,1−yt2,1 and xt′1,1−yt′2,1 from the queries of the first database of Tables 3.2

and 3.3, respectively. It can be seen that the indices t1 = 3 and t2 = 2 of the queries

for v = 1 convert into the indices t′1 = 5 and t′2 = 3 of the queries for v = 3,

respectively. Thus, we have the mapping ((t1, t2) → (t′1, t
′
2)) = ((3, 2) → (5, 3)) and

due to the index symmetry of the query construction this mapping is fixed for all
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symbols with the corresponding indices. A similar comparison between the remaining

τ -sums results in the index and sign mapping of equations (3.14) and (3.15).

One can similarly verify that there exists a mapping from the queries for v = 1

to the queries for v = 2 or those for v = 4, i.e., Q(1)
[n] ↔ Q

(2)
[n] and Q(1)

[n] ↔ Q
(4)
[n] . Since

a permutation over these indices, i.e., π(t) and an initial sign σ(v)
t are uniformly and

privately selected by the user independently of the desired function evaluation index

v, these queries are equally likely and indistinguishable.

Next, to verify the correctness of the sign flipping rule stated above, consider the

desired queries of the third round (τ = 3) for the query sets for v = 3 in Table 3.3.

For database 1, one can verify that the query x6,1−y4,1 +z9,1 is sorted in the subgroup

indexed by S = 1. As S is odd and no element is placed to the right of z9,1 the

signs are left unchanged. However, for the query −x8,1 − z11,1 + w4,1 which falls in

the subgroup indexed by S = 2, the sign of the element to the left of z11,1, i.e., x8,1,

is flipped. That is, we change σ(3)
8 to −σ(3)

8 and that matches the sign mapping in

equation (3.14) for this query. Moreover, due to index symmetry, this mapping also

matches the sign assignment for σ(3)
8 for the query −y8,1 − z13,1 + w6,1.

Finally, for redundancy elimination, we only need to show that for any desired

index v ∈ [4], the removed redundant τ -sums can be chosen to be of the same type.

For instance, let us consider the 1st database. In the 2nd round, see Table 3.3, it can

be shown that the queries for desired index v = 3 satisfy the equation

(1 · 1− 3 · 1)(x5,1 − y3,1)− 1(x7,1 − w3,1)− 3z3,1 − 1z5,1 + 1z7,1

= −2(x5,1 − y3,1)− (x7,1 − 3x3,1 − y3,1)− 3(x3,1 + y3,1)

−(x5,1 + y5,1) + (x7,1 + y7,1)

= 1(y7,1 − (3x5,1 + y5,1))

= y7,1 − w5,1, (3.16)

which implies that the 2-sum z7,1−w2,1 can be removed from the download, since z7,1

can be obtained from downloading x5,1 − y3,1, x7,1 − w3,1, x2,1 − z3,1, y2,1 − z5,1, and

y7,1 − w5,1. Hence, the redundant τ -sum type for v = 3 can be chosen to be equal to

the redundant τ -sum type for v = 1 (see equation (3.13)). A similar argument can

be made for v = 2 and v = 4, which ensures that the privacy of the scheme is not

affected by redundancy elimination. 5

49



3.3.5 Achievable PLC Rate

The resulting achievable PLC rate of Algorithm 1 after removing redundant τ -sums

according to Lemma 4 becomes

R
(a)
=

kνµ

n
∑µ

τ=1

((
µ
τ

)
−
(
µ−r
τ

))
κµ−(τ−1)(ν − κ)τ−1

(b)
=

κνµ

ν
∑µ

τ=1

((
µ
τ

)
−
(
µ−r
τ

))
κµ−(τ−1)(ν − κ)τ−1

=
νµ
(
ν−κ
ν

)∑µ
τ=1

((
µ
τ

)
−
(
µ−r
τ

))
κµ−τ (ν − κ)τ

...

(c)
=

νµ
(
1− κ

ν

)
νµ− κrνµ−r

=
(

1− κ

ν

)[
1−

(κ
ν

)r]−1

, (3.17)

where we recall that
(
m
n

)
= 0 if m < n; (a) follows from the PLC rate in

Definition 1, equation (3.10), and Lemma 4; (b) follows from Definition 3; and (c)

follows by adapting similar steps as in the proof given in [78]. Note that the rate in

equation (3.17) matches the converse in Theorem 2, which proves Theorem 3.

3.4 Conclusion

In this chapter, we have provided the capacity of PLC from coded DSSs, where data

is encoded and stored using an arbitrary linear code from a large class of linear

storage codes. Interestingly, for the considered family of linear storage codes, the

capacity of PLC is equal to the corresponding PIR capacity. Thus, privately retrieving

arbitrary linear combinations of the stored messages does not incur any overhead

in rate compared to retrieving a single message from the databases and provides a

significant advantage over individually downloading each message via a PIR scheme

and combining them offline.
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CHAPTER 4

PRIVATE POLYNOMIAL FUNCTION COMPUTATION FOR
NONCOLLUDING CODED DATABASES

4.1 Introduction

In this chapter4, we consider the problem of private polynomial computation (PPC)

from a distributed storage system (DSS). In such setting a user wishes to compute a

multivariate polynomial of degree at most g over f variables (or messages) stored in

n noncolluding coded databases, i.e., databases storing data encoded with an [n, k]

linear storage code, while revealing no information about the desired polynomial

evaluation to the databases.

For a DSS setup where data is stored using linear storage codes, we derive

an outer bound on the PPC rate, which is defined as the ratio of the (minimum)

desired amount of information and the total amount of downloaded information, and

construct two novel PPC schemes. In the first scheme, we consider Reed-Solomon

coded databases with Lagrange encoding, which leverages ideas from recently

proposed star-product PIR and Lagrange coded computation. The second scheme

considers the special case of coded databases with systematic Lagrange encoding.

Both schemes yield improved rates, while asymptotically, as f → ∞, the systematic

scheme gives a significantly better computation retrieval rate compared to all known

schemes up to some storage code rate that depends on the maximum degree of the

candidate polynomials.

The PPC problem for coded DSSs is described as in Section 2.2. Here, without

loss of generality, we also assume that the polynomial candidate set contains its

monomial basis, i.e., all monomials required to represent the polynomials in the

candidate set as linear combinations of monomials, are included in the candidate

4The material presented in this chapter is published in [79].
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set. Moreover, similar to the PLC problem for linearly coded DSSs of Chapter 3, we

assume error-free recovery; hence, the recoverability constraint of the PC protocol

given in equation (2.6) becomes

[Recovery] H
(
X(v)

∣∣A(v)
[n] , Q

(v)
[n]

)
= 0. (4.1)

In the following, we outlines some useful definitions. Then, the remainder of

the chapter is organized as follows. We derive the converse bound for an arbitrary

number of messages and polynomial functions in Section 4.2. In Sections 4.3 and

4.4, we propose two PPC schemes for RS-coded storage with examples . Then, in

Section 4.5, numerical results for the proposed PPC schemes and the converse bound

from Section 4.2 are presented, establishing the achievability of larger retrieval rates

compared with PPC schemes from the literature. Some conclusions are drawn in

Section 4.6.

4.1.1 Background

Definition 7 (Star-product) Let C and D be two linear codes of length n over Fq.
The star-product (Hadamard product) of v = (v1, . . . , vn) ∈ C and u = (u1, . . . , un) ∈
D is defined as v ?u = (v1u1, . . . , vnun) ∈ Fnq . Further, the star-product of C and D ,

denoted by C ?D , is defined by span{v?u : v ∈ C ,u ∈ D} and the g-fold star-product

of C with itself is given by C ?g = span{v1 ? · · · ? vg : vi ∈ C , i ∈ [g]}.

Definition 8 (RS code) Let α = (α1, . . . , αn) be a vector of n distinct elements of

Fq. For n ∈ N, k ∈ [n], and q ≥ n, the [n, k] RS code (over Fq) is defined as

RSk(α) , {(φ(α1), . . . , φ(αn)) : φ ∈ Fq[z], deg(φ) < k}. (4.2)

It is well-known that RS codes are MDS codes that behave well under the

star-product. We state the following proposition that was introduced in [33].

Proposition 1 Let RSk(α) be a length-n RS code. Then, for g ∈ N, the

g-fold star-product of RSk(α) with itself is the RS code given by RS?gk (α) =

RSmin {g(k−1)+1,n}(α).
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Let γ = (γ1, . . . , γk) be a vector of k distinct elements of Fq. For a message

vector W = (W1, . . . ,Wk), let `(z) ∈ Fq[z] be a polynomial of degree at most k − 1

such that `(γi) = Wi for all i ∈ [k]. Using the Lagrange interpolation formula we

present this polynomial as `(z) =
∑

i∈[k] Wiιi(z), where ιi(z) is the Lagrange basis

polynomial

ιi(z) =
∏

t∈[k]\{i}

z − γt
γi − γt

.

It was shown in [46] that Lagrange encoding is equivalent to the choice of a

specific basis for an RS code. Therefore, for encoding we choose the set of Lagrange

basis polynomials as the code generating polynomials of equation (4.2) [54]. Thus, a

generator matrix of RSk(α) is GRSk(α,γ) = (ιi(αj)), i ∈ [k], j ∈ [n]. Note that if we

choose γi = αi for i ∈ [k], then the generator matrix GRSk(α,γ) becomes systematic.

4.2 Converse Bound

In Section 3.2, the PLC capacity for a coded DSS using an MDS-PIR capacity-

achieving code is shown to be equal to the MDS-PIR capacity. In this section, we

derive an outer bound on the PPC rate (Theorem 4 below) by adapting the converse

proof of Theorem 2 in Section 3.2 to the scenario of the linearly-coded PPC problem,

where the storage code is MDS-PIR capacity-achieving. The converse is valid for any

number of messages f and candidate functions µ. We first define an effective rank

for the PPC problem as follows.

Definition 9 Let X[µ] = {X(1), . . . ,X(µ)} denote the set of candidate polynomials

evaluations where X(`) =
(
X

(`)
1 , . . . , X

(`)
L

)
, ` ∈ [µ]. The effective rank r

(
X[µ]

)
is

defined as

r
(
X[µ]

)
, min

{
s : H

(
X

(`1)
l , . . . , X

(`s)
l

)
= H

(
X

[µ]
l

)
,

{`1, . . . , `s} ⊆ [µ], s ∈ [µ], ∀ l ∈ [L]
}
, (4.3)
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and we define the set L , {`1, . . . , `r} ⊆ [µ] to be a minimum set that satisfies

equation (4.3).5

Accordingly, an upper bound on the capacity of PPC for a coded DSS where

data is encoded and stored using an MDS-PIR capacity-achieving code introduced in

Definition 3, is stated as follows.

Theorem 4 Consider a DSS with n noncolluding databases that uses an [n, k] MDS-

PIR capacity-achieving code C to store f messages. Then, the maximum achievable

PPC rate over all possible PPC protocols, i.e., the PPC capacity CPPC, is upper

bounded by

CPPC ≤
Hmin

H
(B)
min +

∑r−1
v=1

(
k
n

)v
H
(
X(`v+1)

∣∣X(`1), . . . , X(`v)
) ,

for any effective rank r
(
X[µ]

)
= r, where H(B)

min , min`∈LH
(
X(`)

)
.

Here, we remark that Theorem 4 generalizes [44, Thm. 1], which is a converse bound

on the capacity of dependent PIR (DPIR) for noncolluding replicated databases.

Remark 2 Restricting the candidate set to degree g = 1 polynomials reduces the

PPC problem to a PLC problem where there is a deterministic linear mapping

Vµ×f between the µ functions evaluations and the f information messages. Thus,

the effective rank given in Definition 9 becomes the rank of said mapping, i.e.,

r = rank(Vµ×f ). Moreover, the candidate functions evaluations with indices from

the set L = {`1, . . . , `r} that satisfies equation (4.3) are independent and identically

distributed according to a uniform distribution (see Lemma 3 in Section 3.2). As

a result, for v ∈ [r − 1] we have H
(
X(`v+1)

∣∣ X{`1,...,`v}) = H
(
X(`v+1)

)
= 1,

H
(B)
min = Hmin = 1, and the capacity of PLC (see Theorem 2 in Section 3.2)

i.e., CPLC =
(
1− k/n

)[
1−

(
k/n
)r]−1, follows.

5There always exists a subset {`1, . . . , `s} ⊆ [µ] that satisfies the joint entropy condition of
equation (4.3). For the case where the candidate functions result in independent functions
evaluations, this set is the set of all function evaluations, i.e., r = µ. Moreover, we naturally
assume that r > 1, as µ > 1 and f > 1. Otherwise, the problem becomes trivial in the sense
that there is only one candidate message/computation to retrieve.
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Accordingly, the proof of Theorem 4 is an extension to our converse proof of

PLC in Section 3.2 and is presented in Appendix D.

Remark 3 Note that the converse bound of Theorem 4 is generally difficult to

compute for a large number of candidate polynomials. However, it is worth

mentioning that there are two cases where the computation of the converse bound

is straightforward. Namely, the case of the candidate functions being from the linear

polynomials class, following Remark 2, and the case where the set of µ candidate

polynomials evaluations includes the f independent files, i.e., {W(1), . . . ,W(f)} ⊂
{X(1), . . . ,X(µ)}. For this case, the rank of the candidate functions set is simply

r = f as all the remaining candidate polynomials evaluations are a function of these

f files and no other smaller subset captures the value of the joint entropy H
(
X

[µ]
l

)
of equation (4.3). Since these f files are independent and uniformly distributed,

computing the capacity bound reduces to computing only the minimum entropy.

4.3 General PPC Scheme for RS-Coded DSSs

In the following, we build PPC schemes based on Lagrange encoding and our PLC

scheme in Section 3.3. Note that a polynomial can be written as a linear combination

of monomials, and therefore PMC is a special case of PPC. Thus, a PPC scheme

can be obtained from a PLC scheme by replacing independent messages with a

monomial basis. We first discuss the PPC case in general in the following scheme. In

RS-coded DSSs, each message vector W (m)
i is encoded by an RS code RSk(α) with

evaluation vector α = (α1, . . . , αn) over Fq into a length-n codeword C(m)
i where

C
(m)
i = W

(m)
i GRSk(α,γ) =

(
C

(m)
i,1 , . . . , C

(m)
i,n

)
and C(m)

i,j = `(αj), j ∈ [n]. Consider an

RS-coded DSS with n noncolluding databases storing f messages. The user wishes to

retrieve the v-th polynomial evaluation X(v), v ∈ [µ], from the available information

from queries Q(v)
j and answer strings A(v)

j , j ∈ [n], satisfying the conditions of

equations (2.5) and (4.1).
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4.3.1 Lagrange Coded Computation

Lagrange coded computation [54] is a framework that can be applied to any function

computation when the function of interest is a multivariate polynomial of the

messages. We extend the application of this framework to PMC and PPC by utilizing

the following argument.

Let `(m)
t (z) be the Lagrange interpolation polynomial associated with the length-

k message segmentW (m)
t for some t ∈ [β] and m ∈ [f ]. Recall that `(m)

t (z) evaluated

at γj results in an information symbol W (m)
t,j and when evaluated at αj we obtain

a code symbol C(m)
t,j . Let `t(z) = (`

(1)
t (z), . . . , `

(f)
t (z)) be a vector of f Lagrange

interpolation polynomials associated with the messagesW (1)
t , . . . ,W

(f)
t . Now, given a

multivariate polynomial φ(Wt,j) of degree at most g, whereWt,j ,
(
W

(1)
t,j , . . . ,W

(f)
t,j

)T,

we introduce the composition function ψt(z) = φ(`t(z)). Accordingly, evaluating

ψt(z) at any γj, j ∈ [k], is equal to evaluating the polynomial over the uncoded

information symbols, i.e., φ(Wt,j) and similarly, evaluating ψt(z) at αj, j ∈ [n], will

result in the evaluation of the polynomial over the coded symbols, i.e., φ(Ct,j), where

Ct,j ,
(
C

(1)
t,j , . . . , C

(f)
t,j

)T. Since each Lagrange interpolation polynomial of `t(z) is a

polynomial of degree at most k − 1, it follows that deg(ψt(z)) ≤ g(k − 1) and we

require up to g(k − 1) + 1 coefficients to interpolate and determine the polynomial

ψt(z).

Note that ψt(z) is a linear combination of monomials zi ∈ Fq[z], i ≤ g(k − 1),

and the underlying code C̃ for (ψt(α1), . . . , ψt(αn)), referred to as the polynomial

decoding code, is given by the g-fold star-productRS?gk (α) of the storage codeRSk(α)

according to [46, Lem. 6]. This is due to the fact that the span of RS?gk (α) is given by

linear combinations of codewords in RS?gk (α) where each code symbol represents a

monomial. In other words, to construct coded PPC schemes that retrieve polynomials

of degree at most g, we require g(k − 1) + 1 ≤ n and dC̃
min ≥ n− (g(k − 1) + 1) + 1,

where dC̃
min denotes the minimum distance of C̃ , to be able to decode the computation
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correctly. It follows from Proposition 1 that C̃ = RS k̃(α) with dimension k̃ =

min{g(k − 1) + 1, n} = g(k − 1) + 1 and dC̃
min = n− k̃ + 1 = n− (g(k − 1) + 1) + 1.

4.3.2 PPC Achievable Rate Matrix

We now extend the notion of a PIR achievable rate matrix for the coded PIR problem

in Definition 2 to the coded PPC problem.

Definition 10 Let C be an arbitrary [n, k] code and denote by C̃ = C ?g the k̃-

dimensional code generated by the g-fold star-product of C with itself. A ν×n binary

matrix ΛPPC
κ,ν is called a PPC achievable rate matrix for (C , C̃ ), if

1. ΛPPC
κ,ν is a κ-column regular matrix, i.e., its column sums are equal to κ, with

κ/ν = k̃/n, and

2. for each matrix row λi, χ(λi) is always an information set for C̃ , i ∈ [ν].

In [15, Def. 11], two PIR interference matrices are defined from a PIR

achievable rate matrix. Similar to the notion of PIR interference matrices, given a

PPC achievable rate matrix ΛPPC
κ,ν , the PPC interference matrices Aκ×n and B(ν−κ)×n,

are defined as follows.

Definition 11 For a given ν × n PPC achievable rate matrix ΛPPC
κ,ν (C , C̃ ) = (λu,j),

we define the interference matrices Aκ×n = (ai,j) and B(ν−κ)×n = (bi,j) for the code

pair (C , C̃ ) as

ai,j , u if λu,j = 1, ∀ j ∈ [n], i ∈ [κ], u ∈ [ν],

bi,j , u if λu,j = 0, ∀ j ∈ [n], i ∈ [ν − κ], u ∈ [ν].

For j ∈ [n], let Aj , {ai,j : i ∈ [κ]} and Bj , {bi,j : i ∈ [ν − κ]}. Then, the j-th

column of Aκ×n contains the row indices of ΛPPC
κ,ν whose entries in the j-th column

are equal to 1, while B(ν−κ)×n contains the remaining row indices of ΛPPC
κ,ν . Hence,

Bj = [ν] \ Aj, ∀ j ∈ [n].

Note that in Definition 11, for each j ∈ [n], distinct values of u ∈ [ν] should be

assigned for all i. Thus, the assignment is not unique in the sense that the order of

the entries of each column of A and B can be permuted.
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Example 5 Consider a DSS storing messages using a [4, 2] RS code C over F5 with

GC =

(
1 1 1 1

0 1 2 3

)

and candidate polynomials of degree at most g = 2. We have C̃ = C ?2, k̃ = g(k −
1) + 1 = 3, and the generator matrix for C̃ is given by

GC̃ =


1 1 1 1

0 1 2 3

0 1 4 4

.
One can verify that

ΛPPC
3,4 =


1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1


is a valid PPC achievable rate matrix for (C , C̃ ), with (κ, ν) = (3, 4), generated using

the four information sets of C̃ and the corresponding interference matrices are given

by

A3×4 =


1 1 1 2

2 2 3 3

3 4 4 4

 and B1×4 =
(

4 3 2 1
)
.

5

4.3.3 Generic Query Generation

In this subsection, we utilize the query generation algorithm Q-Gen that is introduced

for PLC from MDS-PIR capacity-achieving coded DSSs in Section 3.3 as the basis for

our PPC scheme. More specifically, the query generation algorithm Q-Gen generates

the query of a PIR-like scheme from a linearly-coded DSS with dependent virtual

messages representing the evaluations of the µ candidate functions. Accordingly, the
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PPC scheme requires the length of each message to be L = νµ · k. Before running the

main algorithm to generate the query sets, the following index preparation for the

coded symbols stored in each database is performed.

1) Index Preparation: Given that the query generation algorithm Q-Gen

generates a fixed query set structure as a deterministic function of the desired

polynomial index, we introduce an index permutation. The goal is to make the

symbols queried from each database appear to be chosen randomly and independently

from the desired polynomial index. Note that the polynomial is computed separately

for the t-th row of all messages, t ∈ [β]. Therefore, similar to the coded PLC scheme

in Section 3.3, we apply a permutation that is fixed across all coded symbols for the

t-th row to maintain the dependency across the associated message elements. Let

π(·) be a random permutation function over [β], and let

U
(v′)
t,j , φ(v′)(Cπ(t),j), t ∈ [β], j ∈ [n], v′ ∈ [µ],

denote the t-th permuted symbol associated with the v′-th virtual message X(v′)

stored in the j-th database, where Ct,j =
(
C

(1)
t,j , . . . , C

(f)
t,j

)T. The permutation π(·)

is randomly selected privately and uniformly by the user.

2) Preliminaries: The query generation procedure is subdivided into µ

rounds, where each round τ generates the queries based on the concept of τ -sums

as defined as in Definition 6, of Section 3.3.1. Since we have
(
µ
τ

)
different selections

of τ distinct elements out of µ elements, a τ -sum can have
(
µ
τ

)
different types. For

a requested polynomial evaluation indexed by v ∈ [µ], a query set Q(v)
j , j ∈ [n], is

composed of µ disjoint subsets of queries, each subset of queries is generated by the

operations of each round τ ∈ [µ]. In a round we generate the queries for all possible(
µ
τ

)
types of τ -sums. For each round τ ∈ [µ] the corresponding query subset is further

subdivided into two subsets Q(v)
j (D; τ) and Q

(v)
j (U ; τ). The first subset Q(v)

j (D; τ)

corresponds to τ -sums with a single symbol from the desired polynomial evaluation
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and τ − 1 symbols from the evaluations of undesired polynomials, while the second

subset Q(v)
j (U ; τ) corresponds to τ -sums with symbols only from the evaluations of

undesired polynomials. Here, D is an indicator for “desired function evaluation”,

while U an indicator for “undesired functions evaluations”. Note that we require

κµ−(τ−1)(ν − κ)τ−1 distinct instances of each τ -sum type for every query set Q(v)
j . We

utilize these sets to generate the query sets of each round according to the interference

matrices Aκ×n and B(ν−κ)×n.

The queries Q(v)
j are generated by setting (κ, ν) = (k̃, n) and invoking the query

generation algorithm Q-Gen of Section 3.3.1 with the PPC problem parameters as

follows:

{Q(v)
1 , . . . , Q(v)

n } ← Q-Gen(v, µ, κ, ν, n,Aκ×n,B(ν−κ)×n).

The total number of queries generated by the algorithm is given by
n∑
j=1

∣∣Q(v)
j

∣∣ = n

µ∑
τ=1

(
µ

τ

)
κµ−τ+1(ν − κ)τ−1. (4.4)

4.3.4 Sign Assignment and Redundancy Elimination

Here, we generalize the coded PLC scheme of Chapter 3 in terms of exploiting the

dependency between the virtual messages. LetMc
g(f) denote the size of the monomial

basis of the polynomial candidate set. Then, since any polynomial in the candidate

set is a linear function of its monomial basis of size Mc
g(f), a PPC scheme can

be seen as a PLC scheme performed over a set of Mc
g(f) messages. Hence, the

redundancy resulting from the linear dependencies between the virtual messages is

also present for PPC and we can extend Lemma 4 in Section 3.3.3 and [43, Lem. 1]

to this scheme. To exploit the dependency between the virtual messages we adopt

a similar sign assignment process to each queried symbol of the virtual monomial

messages as detailed in [43, Sec. IV-B]. Using Lagrange interpolation, we will show

that it results in a uniquely solvable equation system from the different τ -sum types
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given the side information available from all other databases. By obtaining such a

system of equations in each round τ ∈ [µ] of the protocol, the user can determine

some of the answers offline.

Now, consider τ -sum types for τ = 1, where we download individual segments

of each virtual message including f independent messages. For this type, the user

can determine any polynomial from the f obtained message segments. Based on this

insight we can state the following lemma.

Lemma 5 Let µ ∈ [f : µg(f)] be the number of candidate polynomials evaluations,

including the f independent messages. For each query set, for all v ∈ [µ], each

database j ∈ [n], and based on the queried segments from the f independent messages,

any
(
µ−f

1

)
1-sum types out of all possible

(
µ
1

)
types are redundant. On the other hand,

for τ ∈ [2 : µ], any
(
µ−Mc

g(f)
τ

)
τ -sum types out of

(
µ
τ

)
types are redundant. Thus, the

number of nonredundant τ -sum types with τ > 1 is given by ρ(µ, τ) ,
(
µ
τ

)
−
(
µ−Mc

g(f)
τ

)
.

The proof of Lemma 5 is presented in Appendix E. In the following subsection,

we show that the recovery and privacy conditions of our proposed PPC scheme are

satisfied.

4.3.5 Recovery and Privacy

The scheme works as the PLC scheme in Chapter 3 by using the code C̃ instead

of the storage code C . This is the case since for any polynomial evaluation code

D , D∗i ⊆ D∗j for all i ∈ [j], j ∈ N, since the all-ones codeword is in D (see also

[46, Lem. 6]). Moreover, since the definition of the PPC achievable rate matrix

in Definition 10 is analogous to the corresponding definition of a PIR achievable

rate matrix in Definition 2 (by using C̃ instead of C ), it can directly be seen

that the arguments in the proof of [15, Thm. 1] (see [15, App. B]) can be applied.

Hence, it follows that k̃ distinct evaluations of ψt(z) = φ(`t(z)) for each segment t

can be recovered. Since deg(ψt(z)) ≤ k̃ − 1, it follows that the polynomial ψt(z)

can be reconstructed via polynomial interpolation and then the desired polynomial
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evaluations can be recovered by evaluating ψt(z) at γj, j ∈ [k]. This is equal to

evaluating the desired polynomial φ(·) over the uncoded information symbols, i.e.,

φ(Wt,j) due to Lagrange encoding.

As for the privacy of the PPC scheme, using an argumentation similar to the

PLC scheme privacy argument in Section 3.3.4, it can be seen that for any desired

index v ∈ [µ], the redundant τ -sum types according to Lemma 5 can be fixed, i.e., the

same τ -sum types are redundant for all v ∈ [µ], and hence the queries satisfy the

privacy condition.

4.3.6 Achievable PPC Rate

Since C̃ is an [n, k̃] MDS code (C is an RS code), there always exists a PPC achievable

rate matrix ΛPPC
κ,ν with κ/ν = k̃/n. Hence, using Lemma 5 we can prove the following

theorem.

Theorem 5 Consider a DSS that uses an [n, k] RS code C to store f messages over

n noncolluding databases using Lagrange encoding. Let µ ∈ [f : µg(f)] be the number

of candidate polynomials evaluations of degree at most g, including the f independent

messages. Then, the PPC rate

RPPC =


1
f
Hmin if n ≤ g(k − 1) + 1,

k
k̃

(
1− k̃

n

)
Hmin

1−
(
k̃
n

)Mc
g(f)

−(Mc
g(f)−f)

(
1− k̃

n

)(
k̃
n

)µ−1 otherwise
(4.5)

is achievable.

Proof: From equation (4.4) and Lemma 5, the achievable PPC rate after

removing redundant τ -sums becomes

R
(a)
=

kνµHmin

n
((
µ
1

)
−
(
µ−f

1

))
κµ + n

µ∑
τ=2

ρ(µ, τ)κµ−τ+1(ν − κ)τ−1

=
kνµHmin

n
[
fκµ +

∑µ
τ=2 ρ(µ, τ)κµ−τ+1(ν − κ)τ−1

] , (4.6)
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where (a) follows from the PPC rate in Definition 1, equation (4.4), and Lemma 5.

Now, if ν = κ, or equivalently (from Definition 10) n = k̃
(b)
= min{g(k − 1) + 1, n},

i.e., n = g(k − 1) + 1 (since n cannot be strictly smaller than g(k − 1) + 1 by

assumption and (b) is from Proposition 1), then it follows directly from equation (4.6)

that R = kHmin/nf. Moreover, it can be seen in this case that the proposed scheme

reduces to the trivial scheme where the f independent files are downloaded and then

the desired polynomial evaluation is performed offline. However, the proposed scheme

requires an unnecessarily high redundancy to decode the f files, i.e., k̃ = n instead

of k̃ = k. As a result, for the case of n ≤ g(k − 1) + 1, we opt out of any other

achievable scheme and achieve the PPC rate Hmin/f by simply downloading all f files

and performing the desired polynomial evaluation offline. Otherwise, i.e., ν > κ, or

equivalently (from Definition 10), n > k̃ = min{g(k−1)+1, n}, i.e., n > g(k−1)+1,

then from equation (4.6) we have

R
(c)
=

k(ν−κ)
nκ

Hmin[
f(ν−κ)

ν

(
κ
ν

)µ−1
+ 1

νµ

∑µ
τ=2 ρ(µ, τ)κµ−τ (ν − κ)τ

]
(d)
=

k(n−k̃)

nk̃
Hmin[

f
(
1− k̃

n

)(
k̃
n

)µ−1
+ 1

nµ

∑µ
τ=2 ρ(µ, τ)k̃

µ−τ
(n− k̃)

τ
]

(e)
= k

k̃

(
1− k̃

n

)
Hmin

[
f
(

1− k̃
n

)(
k̃
n

)µ−1

+ 1
nµ

(∑µ
τ=0

(
µ
τ

)
k̃
µ−τ

(n− k̃)τ − µk̃µ−1(n− k̃)− k̃µ
)

− 1
nµ

∑µ
τ=2

(
µ−Mc

g(f)
τ

)
k̃
µ−τ

(n− k̃)τ
]−1

(f)
= k

k̃

(
1− k̃

n

)
Hmin

[
f
(

1− k̃
n

)(
k̃
n

)µ−1

+ 1
nµ

(
nµ − µk̃µ−1(n− k̃)− k̃µ

)
− 1
nµ

(
η∑
τ=0

(
η
τ

)
k̃
µ−τ

(n− k̃)τ − ηk̃µ−1
(n− k̃)− k̃µ

)]−1

= k
k̃

(
1− k̃

n

)
Hmin

[
f
(

1− k̃
n

)(
k̃
n

)µ−1

− µ
(

1− k̃
n

)(
k̃
n

)µ−1

+1−
(
k̃
n

)µ
− 1

nµ

(
k̃
µ−η∑η

τ=0

(
η
τ

)
k̃
η−τ

(n− k̃)τ
)

+η
(

1− k̃
n

)(
k̃
n

)µ−1

+
(
k̃
n

)µ]−1
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= k
k̃

(
1− k̃

n

)
Hmin

[
1 + (f − µ+ η)

(
1− k̃

n

)(
k̃
n

)µ−1

− 1
nµ

(
k̃
µ−η

nη
)]−1

= k
k̃

(
1− k̃

n

)
Hmin

[
1− (µ− η − f)

(
1− k̃

n

)(
k̃
n

)µ−1

−
(
k̃
n

)µ−η]−1

=
k
k̃

(
1− k̃

n

)
Hmin

1−
(
k̃
n

)Mc
g(f) − (Mc

g(f)− f)
(
1− k̃

n

)(
k̃
n

)µ−1
,

where (c) follows since ν > κ; (d) holds since we have κ/ν = k̃/n from Definition 10;

(e) follows from expanding the summation over the terms of ρ(µ, τ); and (f) follows

by defining η , µ−Mc
g(f) and the fact that

(
m
n

)
= 0 if m < n.

Corollary 1 Consider a DSS that uses an [n, k] RS code C to store f messages over

n noncolluding databases using Lagrange encoding. Let µ ∈ [f : µg(f)] be the number

of candidate polynomials evaluations of degree at most g, including the f independent

messages. Then, the PPC rate

RPPC,∞ =
k

n

(
max{n− g(k − 1)− 1, 0}

g(k − 1) + 1

)
Hmin (4.7)

is achievable as f →∞.

Proof: If n ≤ g(k − 1) + 1, then it follows from equation (4.5) that the

PPC rate approaches zero as f → ∞, which is in accordance with equation (4.7).

Otherwise, if n > g(k−1)+1, the result follows directly from equation (4.5) by taking

the limit f →∞ and using the fact that k̃
(a)
= min{g(k−1)+1, n} = g(k−1)+1 < n,

where (a) follows from Proposition 1.

Note that the asymptotic PPC rate in equation (4.7) is equal to the rate of the

general scheme from [46] when Hmin = 1. This difference is due to the simplified rate

definition used in [46]. Moreover, our proposed scheme cannot be obtained using the

concept of refinement and lifting of so-called one-shot schemes as introduced for PIR

in [80], since this concept cannot readily be applied to the function computation case.

Remark 4 Note that in Lemma 5 and Theorem 5 we assume that the set of µ

candidate functions includes its monomial basis which at least consists of the f
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independent files, i.e., {W(1), . . . ,W(f)} ⊆ {X(1), . . . ,X(µ)} and µ ≥ f . However,

for the PPC problem where this is not the case, one can see that the PPC rate

RPPC =


1
f
Hmin if n ≤ g(k − 1) + 1,

k
k̃

(
1− k̃

n

)
Hmin

1−
(
k̃
n

)µ otherwise

is achievable with our general PPC scheme for RS-coded DSSs based on equation (4.4).

Moreover, Corollary 1 holds when µ→∞.

4.4 PPC Scheme for Systematic RS-Encoded DSSs

In this section, we consider the case of RS-coded DSSs with systematic Lagrange

encoding and first adapt the concept of the PPC achievable rate matrix from

Definition 10.

4.4.1 PPC Systematic Achievable Rate Matrix

In contrast to the PPC scheme in Section 4.3, the basic idea is to utilize the systematic

part of the RS code to recover the requested polynomial evaluation directly, i.e., we

do not need to interpolate the systematic downloaded symbols to determine the

requested polynomial evaluation. Thus, we can further enhance the download

rate. However, due to the generic PC query design principles, namely, message

symmetry and side information exploitation, we are restricted in how to exploit side

information obtained from the systematic nodes. Specifically, for decodability (side

information cancellation) to be possible, the side information obtained from the

systematic nodes must be utilized in an isolated manner within an information set of

the polynomial decoding code (see Section 4.3.1), such that we can reverse the order

of the decoding procedure (i.e., unlike our RS-coded PPC scheme, we interpolate

first and then cancel the side information). This restriction is further illustrated

by a careful construction of a PPC systematic achievable rate matrix (Definition 12

below) and the corresponding interference matrices. Moreover, we modify the general
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PPC scheme to utilize only the necessary number of nodes, denoted by n̂, that

guarantee the isolated use of systematic side information. Accordingly, we introduce

an achievable rate matrix for the systematic PPC scheme as follows.

Definition 12 Let C be an arbitrary [n, k] code and denote by C̃ = C ?g the k̃-

dimensional code generated by the g-fold star-product of C with itself. Moreover,

let6

n̂ ,


n if

⌊
n
k̃

⌋
= 1 and n−

⌊
n
k̃

⌋
k̃ < k,

k + (
⌊
n
k̃

⌋
− 1)k̃ if

⌊
n
k̃

⌋
> 1 and n−

⌊
n
k̃

⌋
k̃ < k,

k +
⌊
n
k̃

⌋
k̃ if

⌊
n
k̃

⌋
≥ 1 and n−

⌊
n
k̃

⌋
k̃ ≥ k.

(4.8)

Then, a ν× n̂ binary matrix ΛS,PPC
κ,ν is called a PPC systematic achievable rate matrix

for (C , C̃ ) if the following conditions are satisfied.

1. ΛS,PPC
κ,ν is a κ-column regular matrix, and

2. there are exactly % ,
⌊
n̂/k̃
⌋
κ rows {λi}i∈[%] and ν−% rows {λi+%}i∈[ν−%] of ΛS,PPC

κ,ν

such that ∀ i ∈ [%], χ(λi) contains an information set for C̃ and ∀ i ∈ [ν − %],
χ(λi+%) = [k].

The following lemma shows how to construct a PPC systematic achievable rate

matrix with (κ, ν) =
(
k, n̂−

⌊
n̂/k̃
⌋
(k̃ − k)

)
.

Lemma 6 Let C be an arbitrary [n, k] code and C̃ = C ?g. Then, there exists a PPC

systematic achievable rate matrix ΛS,PPC
κ,ν for (C , C̃ ) with (κ, ν) =

(
k, n̂−

⌊
n̂/k̃
⌋
(k̃−k)

)
,

where k̃ is the dimension of C̃ .

Proof: Let δ̂ ,
⌊
n̂/k̃
⌋

and Γ , n̂ − δ̂k̃. From our choices of n̂ in

equation (4.8), one can verify that Γ ≤ k and Γ is well-defined. Accordingly, construct

a matrix Ak×n̂ as in Definition 11 with

ai,j = δ̂k + i, if j ∈ [k], i ∈ [Γ]. (4.9)

6Note that the first requirement of the final case of equation (4.8) is unnecessary as
⌊
n/k̃
⌋
≥ 1

always. However, it is included for symmetry reasons.
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In this way, kΓ entries of Ak×n̂ are filled. Next, let {a
i
(j)
1 ,j

, . . . , a
i
(j)
u(j)

,j
}, j ∈ [n̂], denote

the remaining empty entries in column j of Ak×n̂, where u(j) ≤ k is the number of

empty entries in column j. Hence, the kn̂− kΓ = k(n̂− Γ) entries{
a
i
(1)
1 ,1

, . . . , a
i
(1)
u(1)

,1
, . . . , a

i
(n̂)
1 ,n̂

, . . . , a
i
(n̂)
u(n̂)

,n̂

}
(4.10)

are empty. Now, observe that (n̂ − Γ)δ̂−1 =
(
n̂ − (n̂ − δ̂k̃)

)
δ̂−1 = k̃ ∈ N. By

consecutively assigning {1, . . . , δ̂k} to the entries of Ak×n̂ in equation (4.10) and

repeating this process k̃ times, the remaining δ̂k · (n̂−Γ)/δ̂ = k(n̂− Γ) empty entries of

Ak×n̂ are filled. Note that since values of [δ̂k] are consecutively assigned, the largest

number of empty entries of each column of Ak×n̂ is k, and δ̂ =
⌊
n̂/k̃
⌋
≥ 1, there are

no repeated values of [δ̂k] in any column of Ak×n̂, which implies that condition 1) in

Definition 12 is satisfied. From equations (4.9) and (4.10), it can be seen that each

a ∈ [δ̂k] = [%] occurs in k̃ columns of Ak×n̂ and each a ∈ [δ̂k + 1 : δ̂k + Γ] occurs in

k columns of Ak×n̂. This implies that condition 2) in Definition 12 is satisfied with

κ = k, % = δ̂k, and ν = Γ + δ̂k, which completes the proof.

Lemma 7 For the PPC systematic achievable rate matrix from Lemma 6, it holds

that

ν =


n− k̃ + k if

⌊
n
k̃

⌋
= 1 and n−

⌊
n
k̃

⌋
k̃ < k,⌊

n
k̃

⌋
k if

⌊
n
k̃

⌋
> 1 and n−

⌊
n
k̃

⌋
k̃ < k,⌊

n
k̃

⌋
k + k if

⌊
n
k̃

⌋
≥ 1 and n−

⌊
n
k̃

⌋
k̃ ≥ k.

(4.11)

Proof: To prove the results, we use Definition 12 and the fact that ν =

n̂−
⌊
n̂/k̃
⌋
(k̃−k). Now, if

⌊
n/k̃
⌋

= 1 and n−
⌊
n/k̃
⌋
k̃ < k (the first case from Definition 12),

then it follows directly that ν = n̂−
⌊
n̂/k̃
⌋
(k̃− k) = n−

⌊
n/k̃
⌋
(k̃− k) = n− k̃+ k. On

the other hand, if
⌊
n/k̃
⌋
> 1 and n−

⌊
n/k̃
⌋
k̃ < k (the second case from Definition 12),

then after inserting n̂ = k +
(⌊

n/k̃
⌋
− 1
)
k̃ into the expression for ν, ν = k

⌊
n/k̃
⌋
−⌊

k/k̃
⌋
(k̃−k) = k

⌊
n/k̃
⌋
, since

⌊
k/k̃
⌋
(k̃−k) = 0. In a similar manner, the remaining case

in equation (4.11) can be shown.
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In the following lemma, we show a lower bound to the fraction κ/ν.

Lemma 8 If a matrix ΛS,PPC
κ,ν (C , C̃ ) exists for an [n, k] code C and the [n, k̃] code C̃ ,

then we have κ/ν ≥ k/
(
n̂−bn̂/k̃c(k̃−k)

)
.

Proof: Since by definition each row λi of ΛS,PPC
κ,ν contains an information

set for C̃ , i ∈ [%], % =
⌊
n̂/k̃
⌋
κ, and each row λi+% = [k], i ∈ [ν−%], we have wH(λi) ≥ k̃,

i ∈ [%], and wH(λi+%) = k, i ∈ [ν − %]. Let vj, j ∈ [n̂], be the j-th column of ΛS,PPC
κ,ν .

If we look at ΛS,PPC
κ,ν from both a row-wise and a column-wise point of view, we obtain

%k̃ + (ν − %)k ≤
%∑
i=1

wH(λi) +

ν−%∑
i=1

wH(λi+%)

=
n̂∑
j=1

wH(vj) = κn̂.

Thus, we have

%k̃ − %k + νk = %(k̃ − k) + νk ≤ κn̂,

from which the result follows.

The systematic PPC scheme requires the length of each message to be L = νµ ·k. The

queries Q(v)
j are generated by setting (κ, ν) = (k, n̂ −

⌊
n̂/k̃
⌋
(k̃ − k)) and invoking the

query generation algorithm Q-Gen of Section 3.3.1 with the systematic PPC problem

parameters as follows:

{Q(v)
1 , . . . , Q

(v)
n̂ } ← Q-Gen(v, µ, κ, ν, n̂,Aκ×n̂,B(ν−κ)×n̂).

Note that we utilize n̂ ≤ n databases, including the systematic nodes, in constructing

the scheme, while the remaining n− n̂ databases are not queried.

4.4.2 Sign Assignment and Redundancy Elimination

Since this scheme is a modified version of the general PPC scheme where we utilize

the systematic part of the RS code to recover the requested polynomial evaluation
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directly, the scheme inherently extends the same redundancy and sign assignment

arguments stated in Section 4.3.4. The only difference between the general PPC

scheme and the systematic PPC scheme lies within the recovery argument.

4.4.3 Recovery and Privacy

The scheme works as the PPC scheme in Section 4.3, however by mixing between the

code C̃ and the storage code C . Due to this mixture, we require a more complicated

decoding process. The key idea of the recovery process of the scheme is illustrated

with Example 6 in Section 4.4.5.

4.4.4 Achievable PPC Rate

Using Lemmas 5 and 6, the following theorem follows.

Theorem 6 Consider a DSS that uses an [n, k] RS code C to store f messages over

n noncolluding databases using systematic Lagrange encoding. Let µ ∈ [f : µg(f)] be

the number of candidate polynomials evaluations of degree at most g, including the f

independent messages. Then, the PPC rate

RS
PPC =


1
f
Hmin if n ≤ g(k − 1) + 1,

k
n̂( ν−κκ )Hmin

1−(κν )
Mc
g(f)
−(Mc

g(f)−f)(1−κ
ν )(κν )

µ−1 otherwise,
(4.12)

with (κ, ν) = (k, n̂− bn̂/k̃c(k̃ − k)) and n̂ as defined in equation (4.8), is achievable.

Proof: From equation (4.4) and by removing redundant τ -sums from the

query sets according to Lemma 5, the achievable PPC rate becomes

R
(a)
=

kνµHmin

n̂
((

µ
1

)
−
(
µ−f

1

))
κµ + n̂

µ∑
τ=2

ρ(µ, τ)κµ−τ+1(ν − κ)τ−1

=
kνµHmin

n̂κ
[
fκµ−1 +

∑µ
τ=2 ρ(µ, τ)κµ−τ (ν − κ)τ−1

] , (4.13)

where (a) follows from the PPC rate in Definition 1, equation (4.4), and Lemma 5.
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Now, we first consider the case where ν = κ and show that it is equivalent to

n ≤ g(k − 1) + 1. Assume that ν = κ = k. Then, for the first case of equation (4.11)

it follows that k̃ = n. For the second and third cases of equation (4.11), to obtain

ν = k, we must have
⌊
n/k̃
⌋

= 1 or
⌊
n/k̃
⌋

= 0, respectively, which violates the condition

of the second case and is never true for the third case. Since, by Proposition 1,

k̃ = min{g(k − 1) + 1, n} = n, it follows that n ≤ g(k − 1) + 1. Conversely, if

n ≤ g(k−1)+1, then k̃ = min{g(k−1)+1, n} = n, and it follows from equation (4.11)

(the first case) that ν = κ. Hence, in summary, we have shown that ν = κ is

equivalent to n ≤ g(k − 1) + 1. As a result, for n ≤ g(k − 1) + 1, it follows directly

from equation (4.13) that R = kHmin/n̂f. Moreover, it can be seen in this case that the

proposed systematic PPC scheme reduces to the trivial scheme for which all the f

independent files are downloaded and the desired polynomial evaluation is performed

offline. However, similar to the general PPC scheme, the proposed systematic PPC

scheme requires an unnecessarily high redundancy to decode the f files, i.e., k̃ = n̂

instead of k̃ = k. As a result, for the case of n ≤ g(k − 1) + 1, we again opt out of

any other achievable scheme and achieve the PPC rate Hmin/f by simply downloading

all f files and performing the desired polynomial evaluation offline.

On the other hand, if ν > κ, or equivalently, n > g(k − 1) + 1, then from

equation (4.13) we have

R
(b)
=

k
n̂κ
Hmin

fκµ−1

νµ
+ 1

νµ(ν−κ)

∑µ
τ=2 ρ(µ, τ)κµ−τ (ν − κ)τ

=
k(ν−κ)
n̂κ

Hmin
f(ν−κ)

ν

(
κ
ν

)µ−1
+ 1

νµ

∑µ
τ=2 ρ(µ, τ)κµ−τ (ν − κ)τ

...

(c)
=

k
n̂
(ν−κ

κ
)Hmin

1−
(
κ
ν

)Mc
g(f) − (Mc

g(f)− f)
(
1− κ

ν

)(
κ
ν

)µ−1
,

where (b) follows since ν > κ and (c) results from following similar steps as in the

proof of the achievable PPC rate of Theorem 5 in Section 4.3.6.
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Corollary 2 Consider a DSS that uses an [n, k] RS code C to store f messages over

n noncolluding databases using systematic Lagrange encoding. Let µ ∈ [f : µg(f)] be

the number of candidate polynomials evaluations of degree at most g, including the f

independent messages. Then, the PPC rate

RS
PPC,∞=



1
n

(
max{n− g(k−1)− 1, 0}

)
Hmin if

⌊
n
k̃

⌋
= 1 and

n−
⌊
n
k̃

⌋
k̃ < k,

1
n̂

(⌊
n

g(k−1)+1

⌋
k − k

)
Hmin if

⌊
n
k̃

⌋
> 1 and

n−
⌊

n
g(k−1)+1

⌋
(g(k − 1)+1)< k,

1
n̂

(
b n
g(k−1)+1

⌋
k
)
Hmin if

⌊
n
k̃

⌋
≥ 1 and

n−
⌊

n
g(k−1)+1

⌋
(g(k−1)+ 1)≥ k,

(4.14)

with n̂ as defined in equation (4.8), is asymptotically achievable for f →∞.

Proof: If n ≤ g(k − 1) + 1, then it follows from equation (4.12) that the

PPC rate approaches zero as f → ∞, which is in accordance with equation (4.14)

(first case, since
⌊
n/k̃
⌋

= 1 and n −
⌊
n/k̃
⌋
k̃ = 0 < k). Otherwise, if n > g(k − 1) + 1,

the result follows directly from equation (4.12) by taking the limit f →∞ and using

equation (4.11) and the fact (see Proposition 1) that k̃ = min{g(k − 1) + 1, n} =

g(k − 1) + 1.

Note that when n− k̃ ≤ k, the asymptotic PPC rate in equation (4.14) is equal to the

rate of the systematic scheme from [45, Thm. 3], [46] when Hmin = 1. This difference

is due to the simplified rate definition used in [45], [46]. However, for the case when

n− k̃ > k, with the simplified rate definition, i.e., for Hmin = 1, the asymptotic PPC

rate in equation (4.14) is larger compared to the PPC rate of the systematic scheme

from [45, Thm. 3], [46].

Remark 5 Similar to Remark 4, in Theorem 6 we assume that the set of µ candidate

functions includes its monomial basis which at least consists of the f independent files,

i.e., {W(1), . . . ,W(f)} ⊆ {X(1), . . . ,X(µ)} and µ ≥ f . However, for the PPC problem
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where this is not the case,one can see that the PPC rate

RS
PPC =


1
f
Hmin if n ≤ g(k − 1) + 1,

k
n̂

(
ν−κ
κ

)
Hmin

[
1−

(
κ
ν

)µ]−1 otherwise,

with (κ, ν) = (k, n̂−bn̂/k̃c(k̃−k)) and n̂ as defined in (4.8), is achievable with our PPC

scheme for RS-coded DSSs with systematic Lagrange encoding based on equation (4.4).

Moreover, Corollary 2 holds when µ→∞.

We illustrate the key concept of our proposed scheme in Theorem 6 with an

example for the special case of PMC.

4.4.5 Special Case: PMC Scheme

As the rate of PMC is a decreasing function of the number of candidate monomials,

we can increase the PMC rate by limiting ourselves to the set of monomials excluding

parallel monomials as defined by equation (2.2) in Chapter 2 . Recall that, given a

bivariate monomial over the variables x and y of degree at most g = 2, the set of

possible monomials is {x, y, xy, x2, y2}. Moreover, x2 is said to be a parallel monomial

as it can be obtained by raising the monomial x to the power of 2. Thus, x2 and y2

are parallel monomials and can be excluded from the set of candidate monomials.

Example 6 Consider two messages W(1) and W(2) that are stored in a noncolluding

DSS using a systematic [4, 2] RS code C . Suppose that the user wishes to obtain a

monomial function evaluation X(v) from the set of nonparallel monomial functions

of degree at most g = 2. We have µ = Mc
2(2) = ĂM2(2) = 3, v ∈ [3], and the

candidate set of monomial functions evaluations is {W(1),W(2),W(1)?W(2)}, where
? denotes element-wise multiplication. Let the desired monomial function index be

v = 1, i.e., the user wishes to obtain the function evaluation X(1) = W(1). We have

k̃ = g(k − 1) + 1 = 3 and n̂ = n = 4. It follows that ν = n̂ −
⌊
n̂/k̃
⌋
(k̃ − k) = 3,
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Table 4.1 PMC Query Sets for v = 1

j 1 2 3 4

Q
(1)
j (D; 1) x1:4,1, x9:12,1 x5:8,2, x9:12,2 x1:4,3, x5:8,3 x1:4,4, x5:8,4

Q
(1)
j (U ; 1) y1:4,1, y9:12,1 y5:8,2, y9:12,2 y1:4,3, y5:8,3 y1:4,4, y5:8,4

Q
(1)
j (D; 2)

x13:14,1 − y5:6,1 x17:18,2 − y1:2,2 x13:14,3 − y9:10,3 x13:14,4 − y9:10,4

x15:16,1 − z5:6,1 x19:20,2 − z1:2,2 x15:16,3 − z9:10,3 x15:16,4 − z9:10,4

x21:22,1 − y7:8,1 x21:22,2 − y3:4,2 x17:18,3 − y11:12,3 x17:18,4 − y11:12,4

x23:24,1 − z7:8,1 x23:24,2 − z3:4,2 x19:20,3 − z11:12,3 x19:20,4 − z11:12,4

Q
(1)
j (U ; 2)

y15:16,1 − z13:14,1 y19:20,2 − z17:18,2 y15:16,3 − z13:14,3 y15:16,4 − z13:14,4

y23:24,1 − z21:22,1 y23:24,2 − z21:22,2 y19:20,3 − z17:18,3 y19:20,4 − z17:18,4

Q
(1)
j (D; 3)

x25,1 − y19,1 + z17,1 x26,2 − y15,2 + z13,2 x25,3 − y23,3 + z21,3 x25,4 − y23,4 + z21,4

x27,1 − y20,1 + z18,1 x27,2 − y16,2 + z14,2 x26,3 − y24,3 + z22,3 x26,4 − y24,4 + z22,4

Note: query sets after sign assignment and removal of redundant queries for a [4, 2] RS-
coded DSS with systematic Lagrange encoding storing f = 2 messages, where the µ = 3
candidate monomial functions evaluations are {X(1) = W(1),X(2) = W(2),X(3) = W(1) ?
W(2)}. Blue and red subscripts indicate side information exploitation in rounds τ = 2 and
τ = 3, respectively.

κ = k = 2, % =
⌊
n̂/k̃
⌋
κ = 2, and

ΛS,PPC
2,3 =


1 0 1 1

0 1 1 1

1 1 0 0


is a valid PPC systematic achievable rate matrix (see Lemma 6). We further obtain

the PC interference matrices

A2×4 =

(
1 2 1 1

3 3 2 2

)
and B1×4 =

(
2 1 3 3

)

from ΛS,PPC
2,3 using Definition 11.

We simplify the notation by letting xt,j = C
(1)
t,j , yt,j = C

(2)
t,j , and zt,j = C

(1)
t,j ·C

(2)
t,j

for all t ∈ [β], j ∈ [4], where β = νµ = 27. Since the desired function evaluation is
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X(1), the goal is to privately obtain xt,j, ∀ t ∈ [27], and successfully decode X(1). The

construction of the query sets is briefly presented in the following steps.7

Initialization (Round τ = 1): We start with τ = 1 to generate query sets for

each database j holding κµ = 8 instances of xt,j. By message symmetry this also

applies to yt,j and zt,j.

Following Rounds (τ ∈ [2 : 3]): Using the PC interference matrices A2×4

and B1×4 for the exploitation of side information for the j-th database, j ∈ [n], we

generate the desired query sets Q(1)
j (D; τ) by querying a number of new symbols of

the desired monomial jointly combined with symbols from other monomials queried in

the previous round from database i 6= j. Next, the undesired query sets Q(1)
j (U ; τ) (if

τ = 2) are generated by enforcing message symmetry.

In the end, we apply the sign assignment procedure to the query sets for

v = 1 and make the final modification to the queries by removing all the 1-sums

corresponding to the redundant 1-sum types from the first round (see Lemma 5).

This translates to removing the queries for zt,j, since they can be generated offline

by the user given xt,j and yt,j. The resulting query sets are shown in Table 4.1,

where ua:b,j , {ua,j, . . . , ub,j} for u = x, y, z, and the side information is highlighted

with blue and red for rounds τ = 2 and τ = 3, respectively. The PMC rate
kνµ Hmin/D = (2×33×Hmin)/(2×4×15) = 0.45 · Hmin is achievable, where the value of

Hmin = H(X(3)) depends on the underlying field.

Now we show that the L = kβ = 54 symbols of the desired function evaluation

can be reliably decoded. Note that here we assume that the nodes j ∈ {1, 2} are

systematic.

Initialization Round (τ = 1): The following steps are taken.

1. Obtain the desired symbols: From the answers retrieved for the query sets Q(1)
j (D, 1),

utilize the information sets Ĩ1 = {1, 3, 4} and Ĩ2 = {2, 3, 4} of C̃ to decode the
symbols of the desired function evaluation X(1) for j ∈ {1, 2}. In other words, from
x1:4,1, x1:4,3, and x1:4,4 we use Lagrange interpolation to obtain x1:4,2. Similarly,
from x5:8,2, x5:8,3, and x5:8,4 we obtain x5:8,1. Finally, from the information set
I = {1, 2} of C we readily have x9:12,1 and x9:12,2. By the end of this round, we
obtain kν(κµ−1) = 24 symbols from the desired function evaluation X(1).

7With some abuse of notation for the sake of simplicity, the generated queries are sets
containing their answers.
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2. Prepare the side information: We prepare the side information symbols retrieved
in this round to be used in the next round by the following steps. First, for the
answers of the query sets Q(1)

j (U , 1), repeat the previous step to decode the undesired
symbols y5:8,1 and y1:4,2. Next, since in this round, due to redundancy elimination,
we retrieve symbols of polynomials of degree one, i.e., symbols from the f = 2
independent files, we can use Lagrange interpolation with k = 2 symbols from the
systematic nodes to obtain coded symbols for j /∈ {1, 2}. Accordingly, from x9:12,1

and x9:12,2 we obtain x9:12,3 and x9:12,4, and similarly for y9:12,3 and y9:12,4. Finally,
using the dependency between x, y, and z and the available symbols, compute z5:8,1,
z1:4,2, z9:12,3, and z9:12,4. The obtained symbols are shown in Table 4.2(a).

Table 4.2 Decoded and Computed Symbols from the PMC Query Sets for v = 1
from Table 4.1

j 1 2 3 4

Q̃
(1)
j (D; 1) x5:8,1 x1:4,2 x9:12,3 x9:12,4

Q̃
(1)
j (U ; 1) y5:8,1, z5:8,1 y1:4,2, z1:4,2 y9:12,3, z9:12,3 y9:12,4, z9:12,4

(a)

j 1 2

Q̃
(1)
j (D; 2) x17:18,1, x19:20,1 x13:14,2, x15:16,2

Q̃
(1)
j (U ; 2) y19:20,1 − z17:18,1 y15:16,2 − z13:14,2

(b)

j 1 2

Q̃
(1)
j (D; 3) x25,1, x27,1 x26,2, x27,2

Q̃
(1)
j (U ; 3) x25,1 + y23,1 − z21,1 x26,2 + y24,2 − z22,2

(c)

Second Round (τ = 2): The decoding procedure is as follows.

1. Interference cancellation: Utilize the decoded symbols from the set Q̃(1)
j (U , 1) of

Table 4.2(a) to cancel the side information, marked in blue in Table 4.1, from the
answers of the query sets Q(1)

j (D, 2).

2. Obtain the desired symbols: Similar to the first round, utilize the information sets
Ĩ1 = {1, 3, 4} and Ĩ2 = {2, 3, 4} of C̃ to decode the symbols of the desired function
evaluation X(1) for j ∈ {1, 2} shown in Q̃

(1)
j (D, 2) of Table 4.2(b). Together with

the symbols directly obtained from j ∈ {1, 2}, by the end of this round, we would
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have obtained an additional kν(
(
µ−1
τ−1

)
κµ−τ (ν−κ)τ−1) = 24 symbols from the desired

function evaluation.

3. Prepare the side information: We prepare the side information τ -sums retrieved in
this round to be used in the next round by repeating the previous step to decode the
undesired τ -sums y19:20,1 − z17:18,1 and y15:16,2 − z13:14,2 of the query sets Q̃(1)

j (U , 2).
Note that, unlike in the previous round, we do not have enough symbols to utilize
Lagrange interpolation to re-encode the τ -sums y19:20,3−z17:18,3 and y19:20,4−z17:18,4

as they represent polynomials of degree strictly larger than one.

Final Round (τ = 3): The decoding procedure is as follows.

1. Interference cancellation: Utilize the decoded τ -sums from the set Q̃(1)
j (U , 2) of

Table 4.2(b) to cancel the side information, marked in red in Table 4.1, from the
query sets Q(1)

j (D, 3) for j ∈ {1, 2}. As a result we obtain the desired symbols of
the set Q̃(1)

j (D, 3) shown in Table 4.2(c).

2. Generate new symbols: This step is only required when n̂ −
⌊
n̂/k̃
⌋
k̃ < k due to the

construction of the interference matrix in the proof of Lemma 6. In particular, the
condition is equivalent to Γ < k. Using the obtained symbols from the previous
step, colored in Table 4.2 for Q̃(1)

j (D, 3) with blue, along with the side information
downloaded in the previous round in Q(1)

j (U , 2), generate
⌊
n̂/k̃
⌋
k̃ − (n− k) = 1 new

τ -sum with identical indices to the τ -sums retrieved from the nonsystematic nodes.
These newly generated symbols are shown in Q̃(1)

j (U , 3).

3. Obtain the desired symbols: Here, we reverse the order of operation of the
previous rounds where we use Lagrange interpolation first and then cancel the side
information. First, utilize the information sets Ĩ1 = {1, 3, 4} and Ĩ2 = {2, 3, 4}
of C̃ to decode the τ -sums containing the desired function evaluation for j ∈
{1, 2}. As a result, we obtain x26,1 + y24,1 − z22,1 and x25,2 + y23,2 − z21,2. Next,
cancel the side information from the τ -sums directly obtained from Q

(1)
j (U , 2) for

j ∈ {1, 2}. Finally, by the end of this round, we would have obtained the final
kν(
(
µ−1
τ−1

)
κµ−τ (ν − κ)τ−1) = 6 symbols from the desired function evaluation X(1).

In summary, the total number of desired function evaluation symbols obtained from

this decoding process is kν
∑µ

τ=1

(
µ−1
τ−1

)
κµ−τ (ν − κ)τ−1 = kνµ = 54. 5

4.5 Numerical Results

In Figures 4.5 and 4.5, we compare the PPC rates of Theorems 5 and 6 and those of

the schemes from [45], [46] as well as the converse bound from Theorem 4 for various

values of the storage code rate α = k/n, fixed k, g = 2, f = 2, µ = Mc
2(2) = M2(2) = 5
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Figure 4.1 PPC rates as a function of the storage code rate α = k/n for f = 2,
k = 2, g = 2, and µ = Mc

2(2) = M2(2) = 5. For simplicity, we assume Hmin = 1.
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Figure 4.2 PPC rates as a function of the storage code rate α = k/n for f = 10,
k = 20, g = 2, and µ = Mc

2(10) = M2(10) = 65. For simplicity, we assume Hmin = 1.
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for Figure 4.5, and f = 10, µ = Mc
2(10) = M2(10) = 65 for Figure 4.5. For a small

number of files (f = 2), the proposed schemes show improved performance for all code

rates, while for a relatively large number of files (f = 10), the systematic scheme from

Theorem 6 shows improved performance up to some code rate. The converse bound

from Theorem 4 shows a relatively large gap for all values of f and storage code

rate α = k/n. Observe that when neglecting the computational cost at the user,

the trivial scheme which downloads all the f files and computes the desired function

evaluation offline outperforms all considered PPC schemes when the code rate is

above some threshold that depends on both f and g. For f = 10 the code rate needs

to be close to 1/2 for the trivial scheme to be the best. Note that the curve for the

systematic scheme follows a staircase in which there are k̃ points on each horizontal

line of the staircase. This follows directly from the term
⌊
n/k̃
⌋
in the definition of n̂

in equation (4.8).

4.6 Conclusion

For the PPC problem, we have presented two PPC schemes for RS-coded DSSs

with Lagrange encoding showing improved computation rates compared to the best

known PPC schemes from the literature when the number of messages is small.

Asymptotically, as the number of messages tends to infinity, the rate of our RS-coded

nonsystematic PPC scheme approaches the rate of the best known nonsystematic

PPC scheme. However, for systematically RS-coded DSSs, our scheme significantly

outperforms all known PPC schemes up to some specific storage code rate that

depends on the maximum degree of the candidate polynomials. Finally, a general

converse bound on the PPC rate was derived and compared to the achievable rates

of the proposed schemes with some numerical results.
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CHAPTER 5

GENERAL PRIVATE COMPUTATION OF NONLINEAR
FUNCTIONS FROM REPLICATED DATABASES

In this chapter8, we consider the general problem of private computation (PC) in a

distributed storage system. In such a setting a user wishes to compute a function of f

messages replicated across n noncolluding databases, while revealing no information

about the desired function to the databases. We provide an information-theoretically

accurate achievable PC rate, which is the ratio of the smallest desired amount of

information and the total amount of downloaded information, for the scenario of

nonlinear computation. For a large message size the rate equals the PC capacity, i.e.,

the maximum achievable PC rate, when the candidate functions are the f independent

messages and one arbitrary nonlinear function of these. When the number of messages

grows, the PC rate approaches an outer bound on the PC capacity. As a special

case, we consider private monomial computation (PMC) and numerically compare

the achievable PMC rate to the outer bound for a finite number of messages.

The PC problem for replicated DSSs differs PC problem from coded-DSSs,

that is described in Section 2.2, as follows. We consider a DSS that stores

in total f independent messages W(1), . . . ,W(f), where each message W(m) =(
W

(m)
1 , . . . ,W

(m)
βL

)
, m ∈ [f ], is a random length-βL vector with independent and

identically distributed symbols that are chosen at random from the field Fp for

some β,L ∈ N. The messages are replicated and stored on the j-th database,

j ∈ [n]. Without loss of generality, we assume that the candidate functions

evaluations are ordered descendingly with respect to their entropy, i.e., H
(
X(1)

)
=

maxv∈[µ]H
(
X(v)

)
, Hmax and H

(
X(µ)

)
= minv∈[µ]H

(
X(v)

)
, Hmin. Thus, in p-ary

8The material presented in this chapter is published in [81].
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units, we have

H(X(1)) ≥ H(X(2)) ≥ · · · ≥ H(X(µ)) ≥ 0.

In the following sections, we first derive an outer bound on the PC rate of any PC

protocol from [55, Thm. 1] (Theorem 7 below) and then an achievable rate for the

special case of large message sizes (Theorem 8 below).

5.1 Converse Bound

Theorem 7 Consider a DSS with n noncolluding replicated databases storing f

messages, where the number of arbitrary candidate functions to be computed is µ ≥ 1.

Then, the PC capacity CPC is upperbounded as

CPC ≤
nµHmin

µ∑
v=1

nµ−v+1
[
H(X [v])−H(X [v−1])

] , (5.1)

where X [0] is the empty set and H(∅) = 0.

Proof: From the converse proof of either [43] or [55], it is not difficult to

see that the total download cost D of a PC protocol is lowerbounded as

D ≥ H
(
X(1)

)
+
H
(
X(2)

∣∣X(1)
)

n
+
H
(
X(3)

∣∣X(1),X(2)
)

n2

+ · · ·+ 1

nµ−1
H
(
X(µ)

∣∣X(1), . . . ,X(µ−1)
)
,

from which the result follows directly from Definition 13.

Corollary 3 The outer bound from equation (5.1) equals

Hmin
1− 1

n

1− ( 1
n
)
f
, HminCPIR (5.2)

when µ ≥ f and the candidate functions include the f independent messages

W(1), . . . ,W(f), where CPIR =
1− 1

n

1−( 1
n

)
f is the PIR capacity for a DSS with n

noncolluding replicated databases storing f messages [7].
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5.2 Achievability

Theorem 8 Consider a DSS with n noncolluding replicated databases storing f

messages of length βL, where the number of arbitrary candidate functions to be

computed is µ ≥ 1. Then, as L→∞, the PC rate

R =
Hmin

µ−1∑
v=1

1
nv−1 H(X(v)) + 1

nµ−1

[
H(X [µ])−

µ−1∑
v=1

H(X(v))
] (5.3)

is achievable.

Corollary 4 The PC rate R from equation (5.3) is lowerbounded as

R ≥ Hmin

Hmax

1− 1
n

1− ( 1
n
)
µ .

Corollary 5 Consider a DSS with n noncolluding replicated databases storing f

messages of length βL. Then, as L→∞, the PC rate

R =


Hmin

1− 1
n

1−
(

1
n

)f = HminCPIR, if µ = f + 1,

Hmin(1− 1
n

)

1−
(

1
n

)f
+
(

1− 1
n

) µ−1∑
v=f+1

H(X(v))
[

1
nv−1−

1
nµ−1

] , if µ ≥ f + 2
(5.4)

is achievable when the candidate functions include the f independent messages

W(1), . . . ,W(f).

Remark 6

• For µ = f + 1 the PC rate from Corollary 5 equals the outer bound from
Corollary 3. Thus, the proposed scheme is capacity-achieving.

• The PC rate from Corollary 5 and the outer bound from Corollary 3 converge to
Hmin(1− 1/n) as f →∞. A similar result was stated in [43, Thm. 2], however
for a simplified definition of the PC rate.

• The rate of equation (5.3) extends the elementary capacity result for the case
of two arbitrary correlated functions [43, Sec. VII], while the lower bound from
Corollary 4 matches the lower bound on the capacity of DPIR [55, Sec. III-B].

• If all the µ functions are uniformly distributed, Hmin = Hmax and we obtain the
PC rate
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R =
1− 1

n

1− ( 1
n
)
µ . (5.5)

A PMC problem is a PC problem where the candidate functions to be computed

are restricted to a subset of all possible multivariate monomials in f variables (or

messages) with degree at most g which includes W(1), . . . ,W(f), where f ≤ µ ≤

Mg(f), g ∈ N. The goal here is to find a scheme that achieves the outer bound in

equation (5.2). Towards this goal, we state the following remark.

Remark 7

• For multivariate monomials in f variables with degree at most g, it can be seen
that the PMC rate

1− 1
n

1− ( 1
n
)
µ (5.6)

can be achieved via the PIR protocol from [7] by considering each candidate
monomial as a virtual message.

• In the case of monomials with degree at most g = 1, µ = f (since Mg(f) = f)
and Hmin = Hmax, and the PMC rate reduces to the PIR capacity CPIR.

• Finally, for monomials with higher degree, i.e., g ≥ 2, we can achieve a PMC
rate R strictly larger than equation (5.6) by Corollary 5, using a similar approach
of redundancy elimination as in the PPC schemes in Chapter 4, specifically,
Section 4.3.4. Moreover, the gap between the achievable PMC rate and the
outer bound from equation (5.2) decreases with the degree of the monomials and
the number of messages (see Section 5.4).

5.2.1 Achievable Scheme for Theorem 8

We start with a PIR query scheme for µ virtual messages, where the µ arbitrary

candidate functions of the PC problem are considered as µ arbitrary correlated

messages. Given that µ virtual messages are replicated over n noncolluding databases,

we require the length of each message to be βL = nµL with a sufficiently large L. Let

X(v) = (X
(v)
1 , . . . ,X

(v)
β ), where each segment X(v)

i , i ∈ [β], contains L symbols. For

τ ∈ [µ], a sum X
(v1)
i1

+ · · ·+X(vτ )
iτ

of τ distinct candidate function segments is called
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a τ -sum for any (i1, . . . , iτ ) ∈ [β]τ , and {v1, . . . , vτ} ⊆ [µ] determines the type of the

τ -sum.

Here, we rely on lossless data compression of large-enough message segments to

achieve the PC rate presented in Theorem 8. However, due to possible dependency

across message symbols associated with the same subindex, we follow similar index

assignment and message symmetry principles as for the PLC scheme in [43] and our

PLC scheme in Chapter 3.

The overall protocol is composed of µ rounds. For a desired function indexed

by v ∈ [µ], a query set Q(v)
j , j ∈ [n], is composed of µ disjoint subsets, one generated

by each round τ ∈ [µ]. For each round τ the query subset is further subdivided into

two subsets. The first subset Q(v)
j (D; τ) consists of τ -sums with a single symbol from

the desired message and τ − 1 symbols from undesired messages, while the second

subset Q(v)
j (U ; τ) contains τ -sums with symbols only from undesired messages.9 We

let π be a random permutation over the β message segments. For v ∈ [µ],

U
(v)
t ,X(v)

π(t), t ∈ [β],

denotes a permuted segment from the virtual message X(v), where the permutation

π is selected privately by the user and is applied as a one-time pad to all messages.

Without loss of generality, let the desired virtual message be X(1). The construction

of the queries for arbitrary n and µ is done round-wise for each round τ ∈ [µ] and

each database as shown in Table 5.1. The answer string of each database is generated

as follows.

• For the first round (τ = 1), optimally compress the length-L segments{
U

(1)
t ,U

(2)
t , . . . ,U

(µ)
t

}
, t ∈ [β], jointly, which results in LH(X [µ]) + o(L) units.

• In the second round (τ = 2), for the 2-sum U
(v)
t + U

(v′)
t′ , ∀ v, v′ ∈ [µ],

v < v′, and t, t′ ∈ [β], compress each message segment independently based
on max{H(X(v)),H(X(v′))} and then return the sum of the two compressed

9With some abuse of notation, the generated queries are sets containing their answers.
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segments, which results in Lmax{H(X(v)),H(X(v′))} + o(L) units. For this
round, one can show that in total (n − 1)

∑µ−1
v=1(µ − v)LH(X(v)) + o(L) units

are downloaded.

• For the following rounds (τ > 2), each database compresses the segments of
each queried τ -sum

∑τ
l=1U

(vl)
tl

, where {v1, . . . , vτ} ⊆ [µ] and (t1, . . . , tτ ) ∈
[β]τ , separately based on max{H(X(v1)), . . . ,H(X(vτ ))}. Each database then
returns the sum of the compressed segments in Lmax{H(X(v1)), . . . ,H(X(vτ ))}+
o(L) units. By the end of each round, one can show that in total (n −
1)τ−1

∑µ−(τ−1)
v=1

(
µ−v
τ−1

)
LH(X(v)) + o(L) units are downloaded for each τ ∈ [3 : µ].

Table 5.1 Query Sets for a DSS with n Noncolluding Replicated Databases Storing
f Messages

j 1 . . . n

Q
(1)
j (D; 1) U

(1)
1 . . . U (1)

n

Q
(1)
j (U ; 1) U

(2)
1 , . . . ,U

(µ)
1 · · · U (2)

n , . . . ,U (µ)
n

Q
(1)
j (D; 2)

U
(1)
n+1 +U

(2)
2 · · · U

(1)

n+(µ−1)(n−1)2+1 +U
(2)
1

...
...

...

U
(1)
n+µ−1 +U

(µ)
2 · · · U

(1)

n+(µ−1)(n−1)2+(µ−1) +U
(µ)
1

...
...

...

U
(1)
n+(µ−1)(n−1) +U (µ)

n · · · U
(1)
n+n(µ−1)(n−1) +U

(µ)
n−1

Q
(1)
j (U ; 2)

U
(2)
n+2 +U

(3)
n+1 · · · U (2)

∗ +U
(3)

n+(µ−1)(n−1)2+1

...
...

...

U
(µ−1)
n+(µ−1)(n−1) +U (µ)

∗ · · · U
(µ−1)
n+n(µ−1)(n−1) +U (µ)

∗
...

...
...

...

Q
(1)
j (D;µ)

U (1)
∗ + · · ·+U (µ)

∗ · · · U (1)
∗ + · · ·+U (µ)

∗
...

...
...

U (1)
∗ + · · ·+U (µ)

∗ · · · U
(1)
nµ + · · ·+U (µ)

∗

Note: the first (v = 1) out of µ candidate functions is privately computed. For simplicity,
U

(v)
∗ indicates that the exact requested subindex t ∈ [β] is omitted.
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Recovery and Privacy: The scheme inherently satisfies the recovery and privacy

conditions stated in Section 2.2. Privacy is guaranteed by satisfying the index,

message, and database symmetry principles as for the PLC scheme in [43] and our

PLC scheme in Chapter 3. As for the recovery, one can easily see from the PIR query

structure that the user is able to obtain all β segments of the desired function based

on the answers received from the n databases. Then, each segment is decoded (or

optimally decompressed) to obtain in total βL symbols with a probability of decoding

error that is arbitrarily close to zero for a sufficiently large L.

Achievable Rate: The PC rate of the scheme, assuming L→∞, is given by

R
(a)
=
βLHmin

D

=
nµLHmin

nL

[
H(X [µ]) +

µ∑
τ=2

(n− 1)τ−1
µ−(τ−1)∑
v=1

(
µ−v
τ−1

)
H(X(v))

]
=

nµHmin

n

[
H(X [µ]) +

µ∑
τ=2

(n− 1)τ−1
µ−(τ−1)∑
v=1

(
µ−v
τ−1

)
H(X(v))

] (5.7)

(b)
=

nµ−1Hmin

H(X [µ]) +
µ−1∑
v=1

µ−(v−1)∑
τ=2

(n− 1)τ−1
(
µ−v
τ−1

)
H(X(v))

(c)
=

nµ−1Hmin

H(X [µ]) +
µ−1∑
v=1

H(X(v))
µ−v∑
τ ′=1

(
µ−v
τ ′

)
(n− 1)τ ′

(d)
=

nµ−1Hmin

H(X [µ]) +
µ−1∑
v=1

H(X(v))(nµ−v − 1)

=
Hmin

µ−1∑
v=1

1
nv−1 H(X(v)) + 1

nµ−1

[
H(X [µ])−

µ−1∑
v=1

H(X(v))
] ,

where (a) follows from Definition 13, (b) follows from changing the order of the two

summations, (c) results by defining τ ′ = τ − 1 of the second summation term, and

(d) follows from the binomial identity.
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For the scenario of Corollary 5, by a similar approach of redundancy elimination

as in the PPC schemes in Chapter 4, the PC scheme above can be modified by

removing the redundant 1-sums. Using Lemma 5 from Section 4.3.4 and H(X(v)) =

Hmax = 1, ∀ v ∈ [f ], the PC rate can be shown to be equal to equation (5.4).

5.3 Discussion of the Outer Bound of Theorem 7

By expanding the denominator of equation (5.1), denoted by Dopt, we get

Dopt =

µ∑
v=1

nµ−v+1
[
H(X [v])−H(X [v−1])

]
= nH

(
X [µ]

)
+ n(n− 1)H

(
X [µ−1]

)
+ n(n− 1) · nH

(
X [µ−2]

)
+ · · ·

· · ·+ n(n− 1) · nµ−2H(X(1)).

Next, consider the total download cost of the achievable scheme for Theorem 8

divided by L, i.e., the denominator of equation (5.7), and denote it by D1. We have

D1 = nH(X [µ]) +

µ∑
τ=2

n(n− 1)τ−1

µ−(τ−1)∑
v=1

(
µ−v
τ−1

)
H(X(v))

= nH(X [µ]) + n(n− 1)

µ−1∑
v=1

(
µ−v

1

)
H(X(v)) + n(n− 1)

µ−2∑
v=1

(n− 1)
(
µ−v

2

)
H(X(v)) + · · ·

· · ·+ n(n− 1) · (n− 1)µ−2H(X(1)).

By comparing Dopt with D1, it can be seen that because joint compression of

the virtual message segments is not utilized, the outer bound of Theorem 7 is not

achieved. An open question is to design an optimal scheme that achieves a download

cost of Dopt.

5.4 Special Case: Private Monomial Computation

In this section, we consider the special case of PMC. One can easily see that

the assumption of Corollary 5 covers the scenario of PMC, which includes the f
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Figure 5.1 PMC rate R versus the number of messages f for the retrieval of
nonparallel monomials over the field F3.

independent messages as candidate functions. Hence, as L → ∞, the rate in

equation (5.4) is achievable for PMC.

In Figure 5.1, for the field F3 and n = 3 and 5, we plot the PMC rate computed

from equation (5.4) and the outer bound from equation (5.2) as a function of the

number of messages f for µ = ĂMg(f) with g = 2 and g = 3, where ĂMg(f) denotes

the number of nonparallel monomials as defined by equation (2.2) in Chapter 2. Note

that the PMC rate is close to the outer bound even for a small number of messages.

As f →∞, it follows from Remark 6 that the PMC rate approaches Hmin(1− 1/n).

5.5 Conclusion

In this chapter, we presented a novel PC scheme for noncolluding replicated databases

and the scenario of nonlinear computation and showed that the resulting PC rate

equals the PC capacity as the message size grows for the case when the candidate
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functions are the independent messages and one arbitrary nonlinear function of these.

Moreover, the PC rate approaches an outer bound on the PC capacity and thus

becomes the capacity itself when the number of messages grows. Finally, we compared

the outer bound and the achievable rate for the special case of PMC.
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CHAPTER 6

MULTI-MESSAGE PLIABLE PRIVATE INFORMATION
RETRIEVAL

In this chapter, we formulate a new variant of the Private Information Retrieval (PIR)

problem where the user is pliable, i.e., interested in any message from a desired subset

of the available dataset, coined as Pliable Private Information Retrieval (PPIR).

We consider the setup where a dataset consisting of f messages is replicated in n

noncolluding databases and classified or categorized into Γ classes. For this setup,

the user wishes to retrieve any λ ≥ 1 messages from multiple desired classes, i.e.,

η ≥ 1, while revealing no information about the identity of the desired classes to the

databases. We term this problem multi-message PPIR (M-PPIR) and introduce the

single-message PPIR (PPIR) problem as an elementary special case of M-PPIR. In

PPIR, the user wishes to retrieve any λ = 1 message from one desired class, i.e.,

η = 1, while revealing no information about the identity of the desired class to the

databases. For the two considered scenarios we first focus on the case of the single

server, i.e., n = 1 and derive outer bounds on the M-PPIR rate, which is defined as

the ratio of the desired amount of information and the total amount of downloaded

information. Next, we design achievable schemes for the single server case and then

extend our results to the case of replicated databases. Interestingly, we show that

for PPIR from n noncolluding databases, the capacity, i.e., the maximum achievable

PPIR rate, is CPPIR = 1/Γ for n = 1 and CPPIR = (1− 1/n)(1− 1/nΓ)−1 for n > 1

which matches the capacity of PIR with n databases and Γ messages. Thus, enabling

flexibility, i.e., pliability, allows to trade-off privacy versus download rate compared

to classical PIR. A similar insight is shown to hold for the general case of M-PPIR.

The reminder of this chapter is organized as follows. In Section 6.1, we outline

the notation and formally define the M-PPIR problem. In Section 6.2, we derive
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the converse bound for single-message PPIR as special case of M-PPIR and present a

scheme that achieves this bound, hence settling the PPIR capacity for the n replicated

DSSs. In section 6.3, we consider the general case of M-PPIR and derive upper and

lower bounds on its capacity. Section 6.4 offers the conclusion.

6.1 Preliminaries

6.1.1 System Model

We consider a dataset that consists of a number of f independent messages

W (1), . . . ,W (f). Each message W (m) =
(
W

(m)
1 , . . . ,W

(m)
L

)
, m ∈ [f ], is a random

length-L vector for some L ∈ N, with independent and identically distributed symbols

that are chosen at random from the field Fp. The messages are classified into Γ classes

for Γ ≤ f 10, Γ ∈ N, and replicated in a distributed storage system (DSS) consisting

of n noncolluding databases. Without loss of generality, we assume that the symbols

of each message are selected uniformly over the field Fp. Thus,

H
(
W (m)

)
= L, ∀m ∈ [f ], (6.1)

H
(
W (1), . . . ,W (f)

)
= fL (in p-ary units). (6.2)

Let Mγ be the set of message indices belonging to the class indexed with

γ ∈ [Γ] whereMγ = |Mγ| is the size of this set. Note that here, we assume that every

message is classified into one class only i.e., ∀γ′, γ ∈ [Γ] and γ′ 6= γ,Mγ ∩Mγ′ = φ

and
∑Γ

γ=1Mγ = f. Moreover, we assume that there are at least two classes, i.e.,

1 ≤Mγ ≤ f −1. Finally, for simplicity of presentation and without loss of generality,

we assume that messages are ordered in an ascending order based on their class

membership withMγ = [(1 +
∑γ−1

i=1 Mi) : (
∑γ

i=1Mi)] for all γ ∈ [Γ], i.e.,

{W (1), . . . ,W (M1)} ∈WM1

{W (M1+1), . . . ,W (M1+M2)} ∈WM2

10Note that we assume that every message is classified into one class only and no class is
empty, i.e., Γ ≯ f .
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Figure 6.1 Index-mapping of f messages classified into Γ classes using class and
sub-class indices, i.e., θγ,βγ ∈Mγ ⊂ [f ], ∀γ ∈ [Γ].

...

{W (1+
∑Γ−1
i=1 Mi), . . . ,W (f)} ∈WMΓ .

To represent the message index-mapping that results from classifying the f

messages into Γ classes, let, for γ ∈ [Γ], θγ,βγ be the index of a message that belongs

to class γ where βγ ∈ [Mγ] is a sub-class index and θγ,βγ ∈ Mγ. Here, the sub-class

index βγ represents the membership of a message within the class γ as shown in

Figure 6.1.

Hence, ∀γ ∈ [Γ] and ∀βγ ∈ [Mγ], we have the index-mapping

θγ,βγ , βγ +

γ−1∑
l=1

Ml. (6.3)

Example 7 Consider that the messages with indices {9, 10, 11} ⊂ [f ] are members

of the second class, i.e., M2 = {9, 10, 11} and M2 = 3. Then, W (θ2,1) = W (9),

W (θ2,2) = W (10), and W (θ2,3) = W (11).

6.1.2 Problem Statement

In multi-message PPIR (M-PPIR) problem, the user wishes to retrieve a total

of any µ messages from a subset of η desired classes indexed by the index set

Ω ⊆ [Γ] where |Ω| = η. The desired number of messages µ is distributed among

the desired classes as µ =
∑η

i=1 λγi where λγi is the number of desired messages
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Figure 6.2 System model for M-PPIR from an n replicated noncolluding databases
storing f messages classified into Γ classes. The user intends to download λ messages
each out of η desired classes.

from the desired class γi ∈ Ω. For the scope of this work and for tractability we

restrict ourselves to a fixed number of requested messages from each desired class,

i.e., λγi = λ ∀γi ∈ Ω and µ = λη. Moreover, we impose the mild assumption

that the user only has prior knowledge of LCM, i.e., the least common multiple

of the sizes of the Γ classes δ , LCM(M1, . . . ,MΓ). In other words, the user

does not know the size of each class nor the total number of files stored at the

database. Accordingly, the user wishes to privately retrieve any λ messages out

of Mγi messages within a desired class γi ∈ Ω, ∀i ∈ [η], which are denoted by

{W (θγ1,βγ1,1
)
,W

(θγ1,βγ1,2
)
, . . . ,W

(θγ1,βγ1,λ
)
, . . . ,W

(θγη,βγη,λ
)}, i.e.,

{W (θγi,βγi,k
)

: γi ∈ Ω, βγi,k ∈ [Mγi ] ∀k ∈ [λ], and ∀i ∈ [η]}.

Example 8 Consider a dataset consisting of f = 15 messages classified into Γ = 3

classes with sizes {6, 4, 5}, respectively. Suppose a user that wishes to retrieve any
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Figure 6.3 Index mapping for M-PPIR problem of Example 8. The user selects
Ω = {1, 3}, i.e., γ1 = 1 and γ2 = 3 and wants to retrieve any two messages from each
class. Highlighted in red, are two arbitrary sub-class indices from each desired class.

λ = 2 messages from the set of classes Ω = {1, 3}. The indices of the two arbitrary

selected messages from each class are shown in Figure 6.3. The sub-class index of

the first message from the first class, i.e., i = 1, k = 1 and γ1 = 1, is given by

β1,1 = 2. From the index-mapping of equation (6.3), we have θ1,β1,1 = β1,1 = 2 and

similarly, θ1,β1,2 = β1,2 = M1 = 6. Next, the sub-class index of the first message

from the second class, i.e., i = 2, k = 1 and γ2 = 3, is given by β3,1 = 1. From the

index-mapping equation (6.3), we have θ3,β3,1 = 1 +
∑2

l=1Ml = 11 and similarly for

θ3,β3,2 = 2 +
∑2

l=1Ml = 12.

The user privately selects a subset of η class indices Ω = {γ1, γ2, . . . , γη} ⊆ [Γ],

and wishes to retrieve any λ messages from each of the desired classes while keeping

the identities of the requested classes in Ω private from each database. In order

to retrieve the desired messages {W (θγ1,β1,1
), . . . ,W (θγ1,β1,λ

), . . . ,W (θγη,βη,λ )}, the user

sends a random query QΩ
j to the database j ∈ [n]. The query is generated by the

user without any prior knowledge of the realizations of the stored messages. In other

words,

I
(
W (1), . . . ,W (f) ;QΩ

1 , . . . , Q
Ω
n

)
= 0. (6.4)

In response to the received query, the j-th database sends the answer AΩ
j back to the

user, where AΩ
j is a deterministic function of QΩ

j and the data stored in the database.
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Thus,

H
(
AΩ
j

∣∣QΩ
j ,W

[f ]
)

= 0, ∀ j ∈ [n]. (6.5)

Note that, here we assume that there exists at least λ messages in each class,

i.e., Mγ ≥ λ, ∀γ ∈ [Γ]. Let V and T be two arbitrary subsets of Mγ such that

V ⊆ T ⊆Mγ and |V| = λ. It follows from the definition of the M-PPIR problem

H
(
AΩ
j

∣∣QΩ
j ,W

V) = H
(
AΩ
j

∣∣QΩ
j ,W

T ). (6.6)

This is unlike the classical PIR setup where the answer string is generate given

all of the messages in the dataset. Hence, from the chain rule of entropy we have

H
(
AΩ
j

∣∣ QΩ
j ,W

V) ≥ H(AΩ
j

∣∣ QΩ
j ,W

T ) for the classical M-PIR. In other words, in

M-PPIR, the answer from the database j ∈ [n] is generated as a deterministic function

given a sufficient amount of information, i.e., at least any λ messages from a class for

any class γ ∈ [Γ]. Similarly, let v′ ∈ Mc
γ , [f ] \Mγ and V ′ ⊆ Mc

γ. Then it follows

from equation (6.6) that

H
(
AΩ
j

∣∣QΩ
j ,W

VW (v′)
)

= H
(
AΩ
j

∣∣QΩ
j ,W

TW (v′)
)
, (6.7)

and

H
(
AΩ
j

∣∣QΩ
j ,W

VW V ′) = H
(
AΩ
j

∣∣QΩ
j ,W

TW V ′). (6.8)

To satisfy the user privacy requirement, the query-answer function must be

identically distributed for all possible subset of class indices Ω ⊆ [Γ] from the

perspective of each database. In other words, the scheme’s query and answer string

must be independent from the desired class index set, i.e.,

I
(
Ω;QΩ

j , A
Ω
j

)
= 0, ∀j ∈ [n]. (6.9)
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Moreover, the user must be able to reliably decode, from the received

databases answers, any λ messages from the desired classes i.e.,

{W (θγ1,βγ1,1
)
, . . . ,W

(θγ1,βγ1,λ
)
, . . . ,W

(θγη,βγη,λ
)} for γi ∈ Ω. Accordingly, the M-PPIR

protocol from replicated DSS is defined as follows.

Consider a DSS with n noncolluding replicated databases storing f messages

classified into Γ classes. The user wishes to retrieve any λ messages from each class

in the desired class index set Ω ⊆ [Γ], from the queries QΩ
j and answers AΩ

j , ∀j ∈ [n].

Let S be the set of all unique subsets of [Γ] of size η, andMγi be the index set of the

messages classified into the class γi ∈ Ω, then for an M-PPIR protocol, the following

conditions must be satisfied ∀Ω,Ω′ ∈ S, Ω 6= Ω′, and j ∈ [n]

[Privacy] (QΩ
j , A

Ω
j ,W

[f ]) ∼ (QΩ′

j , A
Ω′

j ,W
[f ])11, (6.10)

[Correctness] H
(
W

(θγ1,βγ1,1
)
, . . . ,W

(θγ1,βγ1,λ
)
, . . .W

(θγη,βγη,λ
) ∣∣AΩ

[n], Q
Ω
[n]

)
= 0. (6.11)

To measure the efficiency of an M-PPIR protocol, we consider the required

number of downloaded symbols for retrieving the L symbols of the µ = λη desired

messages.

Definition 13 (M-PPIR rate and capacity for replicated DSSs) The rate of

an M-PPIR protocol, denoted by R, is defined as the ratio of the desired information

size, λη messages each consisting of L symbols, to the total required download cost D,

i.e.,

R ,
ηλL

D
=

ηλL∑n
j=1H

(
AΩ
j

) .
The M-PPIR capacity, denoted by CM-PPIR, is the maximum achievable M-PPIR rate

over all possible M-PPIR protocols.

11The privacy constraint can be alternatively expressed as equation (6.9).
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6.1.3 Special Cases

In this subsection, we introduce some special cases of the general M-PPIR problem

presented in Section 6.1.1 emerging from choosing different values of λ and η. We

use these special cases, namely PPIR, single-class M-PPIR, and multi-class M-PPIR,

as building-blocks for the general M-PPIR problem. As this work is an introduction

to the PPIR problem, we find it useful to see how these special cases relate to and

extend classical PIR problems.

Single-Message PPIR ( in short denoted as PPIR (λ = 1, η = 1)) Here,

the user is interested in a single message from a single desired class12. In PPIR,

the user privately selects a class index γ ∈ [Γ] and wishes to privately retrieve any

one message out of the Mγ candidate messages of the desired class, i.e., W (θγ,βγ,1 ) :

θγ,βγ,1 ∈ Mγ1 , γ ∈ [Γ], while keeping the desired class index γ private from each

database j ∈ [n]. Note that when the number of classes is equal to the number of

messages, i.e., there is only one message in each class and Γ = f , the PPIR problem

reduces to the classical PIR problem [7].

Single-Class M-PPIR (λ ≥ 1, η = 1) Here, the user is interested in multiple

messages from a single desired class. In single-class M-PPIR, the user privately

selects a class index γ ∈ [Γ] and wishes to privately retrieve any λ ≥ 1 messages out

of Mγ candidate messages within the desired class, i.e., {W (θγ,βγ,1 ), . . . ,W (θγ,βγ,λ ) :

θγ,βγ,k ∈ Mγ,∀k ∈ [λ]}, without revealing the identity of the desired class γ to each

database j ∈ [n].

Multi-Class M-PPIR (λ = 1, η ≥ 1) Here, the user is interested in a single

message from multiple desired classes. In this case, the user privately selects a subset

of class indices Ω ⊆ [Γ] of size η and wishes to retrieve any one message from each of

12For notation simplicity, we drop the desired class subscript when it is understood from the
context, i.e., there is only one desired class η = 1.
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the η desired classes γi ∈ Ω, i.e., {W (θγ1,βγ1,1
)
, . . . ,W

(θγη,βγη,1
)

: θγi,βγi,1 ∈ Mγi , γi ∈

Ω, ∀i ∈ [η]}, without revealing the identity of the desired class index set Ω to each

database j ∈ [n]. Note that when the number of classes is equal to the number of

messages, i.e., there is only one message in each class and Γ = f , the multi-class

M-PPIR problem reduces to the multi-message PIR (MPIR) problem [9].

6.2 Pliable Private Information Retrieval

In this section, we discuss the PPIR problem as a special case of the M-PPIR problem

with λ = 1, η = 1. The significance of presenting this special case lies within the direct

connection to the well known classical PIR problem in [7], thus, providing an intuitive

tutorial style introduction to the general M-PPIR problem. In the following, we derive

the capacity of PPIR, which indicates a significant (possible) reduction in download

rate compared to the capacity of classical PIR. In the PPIR problem we assume that

the user is oblivious to the structure of the database, i.e., has no knowledge of the

messages membership in each class and construct achievable schemes accordingly. To

this end, we first consider the single server case, i.e., n = 1, characterize the capacity

of single-server PPIR (see theorem 9), and present a capacity-achieving scheme. Then,

we extend our capacity result to replication-based DSSs, i.e., n > 1 (see theorem 10).

6.2.1 Single Server PPIR

Theorem 9 For the PPIR problem with single server storing f messages classified

into Γ classes, the maximum achievable PPIR rate over all possible PPIR protocols,

i.e., the PPIR capacity CPPIR, is given by

CPPIR =
1

Γ
.

In the following we start with the converse proof of Theorem 9.
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Converse proof of Theorem 9 We base this proof on an induction argument. We

first prove the outer bound for Mγ = 1, ∀γ ∈ [Γ], i.e., each class contains only one

message and f = Γ, for arbitrary f , then proceed to the case of arbitraryMγ, ∀γ ∈ [Γ].

• For Mγ = 1, ∀γ ∈ [Γ], we have Γ = f . Accordingly, in order to maintain the
privacy of the desired class identity γ ∈ [Γ], we must maintain the privacy of the
retrieved message identity θγ,1 ∈ [f ]. As a result, the capacity of single server PPIR
matches the capacity of the single server PIR problem, i.e., CPPIR = 1

f
= 1

Γ
[2].

• For Mγ > 1, ∀γ ∈ [Γ], in order to maintain the privacy of the desired class
identity, we must download at least one message from each class. Accordingly, the
probability that any one of the classes is the desired class is uniformly distributed,
thus achieving perfect information theoretic privacy. Since there is more than one
message in each class, and the user requests any message from her desired class,
the identity of the selected message is not relevant. Accordingly, by randomly
selecting one message from each class as an answer to the user it follows that the
best information retrieval rate, i.e., PPIR capacity, must be bounded by 1

Γ
, i.e.,

CPPIR = 1
Γ
.

Achievability of Theorem 9 For the achievability of theorem 9, recall that the

user has prior knowledge of δ , LCM(M1, . . . ,MΓ). To privately retrieve a message

from the desired class, the user selects a random number s ∈ [δ] and sends it to

the database. Based on the selected random number, a subset of size Γ from the

messages is selected by the database, one message from each class13. The identity of

the selected message from each class is computed as βγ,1 = d s
δ
Mγe and due to the

ascending order of the messages based on their class membership, from equation (6.3),

the message index is θγ,βγ,1 = βγ,1 +
∑γ−1

l=1 Ml. Finally, the set of candidate messages

{W (θ1,β1,1
),W (θ2,β2,1

), . . . ,W (θΓ,βΓ,1
)} are set as the answer to the user. Note that the

query is fixed, independently of the desired class. Consequently, from the perspective

of the database, the query and answer string of any desired class are indistinguishable

and the privacy constraint of equation (6.10) is satisfied. Moreover, since the user

13Given that the random number s is selected from the set of size equal to the LCM of the
sizes of all classes, each message in a given class is equally likely to be a member of the
candidate message set.

98



obtains one messageW (θγ,βγ,1 ) from the desired class γ ∈ [Γ] the correctness constraint

of equation (6.11) is satisfied. As a result, the PPIR rate R = L
ΓL

= 1
Γ
is achieved.

6.2.2 PPIR over Replicated DSS

Next, we state our main result for PPIR over replicated DSS with theorem 10 as

follows.

Theorem 10 Consider a DSS with n noncolluding replicated databases storing f

messages classified into Γ classes. The maximum achievable PPIR rate over all

possible PPIR protocols, i.e., the PPIR capacity CPPIR, is given by

CPPIR=

(
1 +

1

n
+

1

n2
+ · · ·+ 1

nΓ−1

)−1

=

(
1− 1

n

)(
1− 1

nΓ

)−1

.

Before we start the converse proof, we present a number of useful lemmas and

simplifying assumptions. Without loss of generality, assume that,

• From the queries and answers of each database j ∈ [n], we can successfully
decode the first λ message in each desired class γi ∈ Ω for any Ω ∈ S
where S is the set of all unique subsets of [Γ] of size η. As a result,
βγi,k = k for all k ∈ [λ], i ∈ [η] and we can write the message index
θγi,βγi,k as θγi,k for all k ∈ [λ]. Let θγi,k denote the index of the k-th
message in class γi ∈ [Γ]. Then, for example, from the answers of desired
classes indexed with set Ω = [η] = {1, 2, . . . , η} we can successfully decode
{W (θ1,1), . . . ,W (θ1,λ),W (θ2,1), . . . ,W (θη,λ)}. For simplicity, with some abuse of
notation, we let W θ[η],[λ] , {W (θ1,1), . . . ,W (θ1,λ),W (θ2,1), . . . ,W (θη,λ)}. As a
result, from equation (6.11), we have H

(
W θ[η],[λ]

∣∣A[η]
[n], Q

[η]
[n]

)
= 0.

• Let W [f ]\θ[η],[λ] be the complement subset of files for the set W θ[η],[λ] , where

θ[η],[λ] , {θ1,1, θ1,2, . . . , θ1,λ, θ2,1, . . . , θη,1, . . . , θη,λ},

i.e., W [f ]\θ[η],[λ] , W [θ1,λ+1:θ2,1−1] ∪ W [θ2,λ+1:θ3,1−1] ∪ · · · ∪ W [θη−1,λ+1:θη,1−1] ∪
W [θη,λ+1:f ].

Lemma 9 I
(
W [f ]\θ[η],[λ] ;Q

[η]
[n]A

[η]
[n]

∣∣∣W θ[η],[λ]

)
≤ ηλL( 1

R
− 1).

The proof of lemma 9 is given in Appendix F.
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Lemma 10 Let Ω1,Ω2 ∈ S, such that Ω1∩Ω2 = φ, without loss of generality, assume

that Ω1 = [η] and Ω2 = [η + 1 : 2η]. Then

I
(
W [f ]\θ[η],[λ] ;QΩ1

[n]A
Ω1

[n]

∣∣∣W θ[η],[λ]

)
≥ ηλL

n
+

1

n
I
(
W [f ]\θ[2η],[λ] ;QΩ2

[n]A
Ω2

[n]

∣∣∣W θ[2η],[λ]

)
. (6.12)

The proof of lemma 10 is given in Appendix G.

Converse proof of Theorem 10 We now proceed to the proof of the converse of

Theorem 10. For γ ∈ [Γ], let W θ[γ],1 , {W (θ1,1),W (θ2,1), . . . ,W (θγ,1)}.

Proof: From Lemma 9 we have for λ = 1 and η = 1

I
(
W [θ1,2:f ] ;Q

(1)
[n]A

(1)
[n]

∣∣∣W (θ1,1)
)
≤ L(

1

R
− 1). (6.13)

Next, from Lemma 10 we have for λ = 1, η = 1, and γ ∈ [2 : Γ]

I
(
W [f ]\θ[γ−1],1 ;Q

(γ−1)
[n] A

(γ−1)
[n]

∣∣∣W θ[γ−1],1

)
≥ L
n

+
1

n
I
(
W [f ]\θ[γ],1 ;Q

(γ)
[n]A

(γ)
[n]

∣∣∣W θ[γ],1

)
. (6.14)

Now, starting by γ = 2, then applying equation (6.14) repeatedly for γ ∈ [3 : Γ],

we have

I
(
W [θ1,2:f ] ;Q

(1)
[n]A

(1)
[n]

∣∣∣W (θ1,1)
)

≥ L
n

+
1

n
I
(
W [f ]\θ[2],1 ;Q

(2)
[n]A

(2)
[n]

∣∣∣W θ[2],1

)
≥ L
n

+
1

n

[
L

n
+

1

n
I
(
W [f ]\θ[3],1 ;Q

(3)
[n]A

(3)
[n]

∣∣∣W θ[3],1

)]
=
L

n
+
L

n2
+

1

n2
I
(
W [f ]\θ[3],1 ;Q

(3)
[n]A

(3)
[n]

∣∣∣W θ[3],1

)
≥

...

≥ L
n

+ · · ·+ L

nΓ−2
+

1

nΓ−2
I
(
W [f ]\θ[Γ−1],1 ;Q

(Γ−1)
[n] A

(Γ−1)
[n]

∣∣∣W θ[Γ−1],1

)
≥ L
n

+ · · ·+ L

nΓ−2
+

L

nΓ−1
+

1

nΓ−1
I
(
W [f ]\θ[Γ],1 ;Q

(Γ)
[n] A

(Γ)
[n]

∣∣∣W θ[Γ],1

)
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(a)
=
L

n
+ · · ·+ L

nΓ−2
+

L

nΓ−1
+

1

nΓ−1
I
(
W [f ]\θ[Γ],1 ;A

(Γ)
[n]

∣∣∣Q(Γ)
[n]W

θ[Γ],1

)
︸ ︷︷ ︸

=0

where in (a) the last term equals zero due to the independence of the messages and

the queries as given by equation (6.4) and the fact that the answer strings are a

deterministic function of the queries and a sufficient number of messages from each

classes, i.e., combining equations (6.5) and (6.6) we have

H
(
A

(Γ)
[n]

∣∣Q(Γ)
[n]W

θ[Γ],1
)

= H
(
A

(Γ)
[n]

∣∣Q(Γ)
[n]W

(θ1,1)W θ[2:Γ],1
)

= H
(
A

(Γ)
[n]

∣∣Q(Γ)
[n]W

[θ1,1:θ2,1−1]W (θ2,1)W θ[3:Γ],1
)

=
...

= H
(
A

(Γ)
[n]

∣∣Q(Γ)
[n]W

[f ]
)

= 0.

As a result, we obtain

I
(
W [θ1,2:f ] ;Q

(1)
[n]A

(1)
[n]

∣∣∣W (θ1,1)
)
≥ L
n

+ · · ·+ L

nΓ−2
+

L

nΓ−1
. (6.15)

Combining equations (6.15) and (6.13) yields

L

(
1

R
− 1

)
≥ L
n

+ · · ·+ L

nΓ−2
+

L

nΓ−1
, (6.16)

and by eliminating L from both sides, we finally obtain

R≤
(

1 +
1

n
+

1

n2
+ · · ·+ 1

nΓ−1

)−1

(6.17)

=

(
1− 1

n

)(
1− 1

nΓ

)−1

. (6.18)
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Achievability of Theorem 10 We now present a scheme that achieve the

PPIR capacity bound of theorem 10. The capacity of the PIR problem with n

noncolluding replicated databases, each storing f messages, was characterized in [7]

as
(
1− 1

n

)(
1− 1

nf

)−1
. From the capacity bound of PPIR in theorem 10, one can

observe that PPIR effectively reduces the size of the database from f to Γ messages.

Thus, our capacity achieving PPIR scheme extends the single server PPIR solution of

section 6.2.1 to a replicated DSS setup through adaptation of the capacity achieving

PIR scheme in [7]. Given Γ, n, γ ∈ [Γ], and δ = LCM(M1, . . . ,MΓ), the high-level

implementation of the PPIR scheme is outlined with the following steps.

1. The user selects a number uniformly at random from the set [δ].

2. The user constructs queries according to [7, Section IV] for n noncolluding
replicated database storing Γ candidate messages {X(1),X(2), . . . ,X(Γ)}, to
privately retrieve X(γ), γ ∈ [Γ], i.e., Q(γ)

1 , . . . , Q
(γ)
n . Each message is assumed to

be of length L = nΓ [7].

3. The user sends the selected random number from Step 1, s ∈ [δ], followed by the
constructed queries Q(γ)

1 , . . . , Q
(γ)
n , in a random order to each database j ∈ [n].

4. Given the random number s ∈ [δ], each database j ∈ [n] computes the indices
of Γ messages, one from each class, to be used in constructing its answer string
A

(γ)
j . These indices are computed as θγ,βγ,1 = d s

δ
Mγe +

∑γ−1
l=1 Ml. Herein,

βγ,1 = d s
δ
Mγe is the membership of the selected message within its class, and

θγ,βγ,1 follows due to the fact that the messages are ordered in an ascending
order based on their class membership. Each of these Γ messages are mapped
to the user’s queries of Step 2 as X(γ) = W (θγ,βγ,1 ) for all γ ∈ [Γ].

Privacy: Note that the query structure of the PIR capacity achieving scheme in

[7] is fixed independently of the desired candidate message index γ ∈ [Γ]. This fixed

structure adheres to three principles to achieve this independence, namely,

• Database symmetry: symmetry across databases is enforced. This is accom-
plished by querying each database j ∈ [n] for the same number of message
symbols. Thus, the query structure does not depend on the individual database,
i.e., the scheme structure is constructed to be fixed for all databases.

• Message symmetry: symmetry across messages is enforced. This is accom-
plished by querying the same number of message symbols form each message
X(γ),∀γ ∈ [Γ].
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• Side-information exploitation: the symbols of undesired messages, i.e.,X [Γ]\{γ},
that are obtained as a result from enforcing database and message symmetry
are exploited to obtain new symbols of the desired message X(γ).

Since the achievable construction of [7] guarantees that any message X(γ) for all

γ ∈ [Γ] is equally likely to be the user’s demand, it follows that the Γ messages

W (θγ,βγ,1 ) for γ ∈ [Γ], i.e., one message from each class, are also equally likely to be

the user’s demand. As a result, P(γ = γ|Q(γ)
j , A

(γ)
j ) = 1

Γ
for any γ ∈ [Γ], j ∈ [n], and

the query and answer string of any desired class γ ∈ [Γ] are indistinguishable from the

perspective of each database. This in turns satisfies the M-PPIR privacy constraint

of equation (6.10).

Correctness: Given that the scheme in [7] guarantees the retrieval of all the nΓ

symbols of X(γ) which is mapped by each database to W (θγ,βγ,1 ), the user obtains all

the symbols of a message that belongs to the class γ. Thus, the M-PPIR correctness

constraint of equation (6.11) is satisfied.

Calculation of achievable rate: For privately retrieving one message from a

candidate set of size Γ from n replicated databases, the scheme of [7] achieves an

information retrieval rate of
(
1 + 1

n
+ 1

n2 + · · ·+ 1
nΓ−1

)−1, as shown in [7, Thm. 1],

which matches the PPIR capacity of theorem 10.

The key concepts of the capacity-achieving PPIR scheme are illustrated with

the following example.

Example 9 Consider the case where we have a number of f = 20 messages classified

into Γ = 3 classes where the number of messages in each class are given by [4, 6, 10]

respectively. The f messages are replicated in n = 2 databases. Suppose that the user

is interested in retrieving a message from class γ = 3.

1)- Queries to databases: First, the user selects a number s ∈ [δ], where δ ,

LCM(4, 6, 10) = 60, uniformly at randomly and send this number to the n databases.

Next, the user utilizes the achievable scheme in [7] to generate the query sets for

privately retrieving one message from a set of Γ candidate messages {X(1),X(2),X(3)}
where X(γ) = {X(γ)

1 , X
(γ)
2 . . . , X

(γ)
L }, for γ ∈ [3].
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The achievable scheme in [7] requires the size of each message to be L = nΓ = 8

and its query sets are constructed as follows. First, to make the symbols downloaded

from each database appear random and independent from the desired message, the

indices of the L symbols of each message are randomly permuted prior to the query

construction. Let, U (γ)
i = X

(γ)
πγ(i),∀i ∈ [L], γ ∈ [Γ], where πγ(·) is a uniform random

permutation privately selected by the user independently for each candidate message.

We simplify the notation by letting U (1)
i = xi, U

(2)
i = yi and U

(3)
i = zi for i ∈ [L].

To retrieve a message from the desired class γ = 3, i.e., the candidate message z =

{z1, z2, . . . , z8}, symbols are queried from the two databases in a total of τ = 3 rounds.

This is shown in table 6.1(a) where the queries of round τ are indicated with Q(γ)
j (τ).

Initialization Round (τ = 1): The user first queries (n− 1)τ−1 = 1 distinct

instance of zi from each database. By message and index symmetries this also applies

to xi and yi, resulting in total n
(

Γ
1

)
(n− 1)(1−1) = 6 symbols. The symbols queried in

the first round are shown in the row indicated by Q(3)
j (1) in table 6.1-(a).

Following Rounds (τ ∈ [2 : 3]): In each round and for each database, the user

further queries sums of τ symbols with each symbol is from a different message. The

queried sums either contain a single symbol from the desired message (so-called desired

τ -sum) or only symbols from undesired messages (so-called undesired τ -sum, referred

to as side information). One can see that by utilizing the undesired τ -sums obtained

from the previous round, the desired message can be decoded. For example, in round

τ = 3, the desired symbol z7 can be obtained by canceling the side information x6 + y5

which is obtained from the 2nd database in round τ = 2. Similarly, one can verify the

successful recovery of all symbols of the desired message z from the queried desired

τ -sums shown in table 6.1-(a). Note that after deciding which desired sums to query,

the undesired sums to query can be decided by enforcing message and index symmetry

and the total number of symbols queried in round τ is equal to n
(

Γ
τ

)
(n − 1)(τ−1).

Finally, the queries are sent to each database j ∈ [2].

2)- Database answers: Assume that the randomly selected number in Step 1) is

given as s = 13. Accordingly, each database selects the same subset of candidate

messages as follows: X(1) = W (θ1,β1,1
) , X(2) = W (θ2,β2,1

) , and X(3) = W (θ3,β3,1
)

where θ1,β1,1 = d0.216 × 4e = 1, θ2,β2,1 = d0.216 × 6e + 4 = 6, and θ3,β3,1 = d0.216 ×
10e+ 10 = 13, respectively. Using this mapping between the identity of the candidate
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Table 6.1 Query Sets for PPIR from Replication-based DSS

j 1 2

Q
(3)
j (1) x1, y1, z1 x2, y2, z2

Q
(3)
j (2)

x4 + y3 x6 + y5

x2 + z3 x1 + z5

y2 + z4 y1 + z6

Q
(3)
j (3) x6 + y5 + z7 x4 + y3 + z8

(a)

j 1 2

Q
(1)
j (1) x1, y1, z1 x2, y2, z2

Q
(1)
j (2)

x3 + y2 x5 + y1

x4 + z2 x6 + z1

y4 + z3 y6 + z5

Q
(1)
j (3) x7 + y6 + z5 x8 + y4 + z3

(b)
Note: The n = 2 databases store f = 20 messages classified into Γ = 3 classes. (a) shows
the query sets for retrieving a message from desired class γ = 3 and (b) for γ = 1.

messages and the identity of the stored messages14, each database then generates its

answer string according to the queries of table 6.1-(a). In other words, the query for

xi is answered by each database with the symbol W (1)
i , the query of yi is answered with

the symbol W (6)
i , and query of zi is answered with the symbol W (13)

i .

3)- Privacy and correctness of the retrieved message: By decoding the

downloaded symbols, we obtain the corresponding symbols of the message W (13)

which is indeed a message from the desired class γ = 3. Moreover, since the

achievable scheme in [7] follows the symmetry principles, i.e., message, index, and

database symmetries within the query sets of each database, the privacy is inherently

ensured. Specifically, the achievable scheme in [7] guarantees the private retrieval of

the message W (13) among the set {W (1),W (6),W (13)} from the perspective of each

database. With each message representing a class γ ∈ [Γ], the desired class is also

indistinguishable. For example, Table 6.1(b) illustrates the query sets for desired class

γ = 1. From Tables 6.1(a) and 6.1(b) one can verify that the index mapping

Databases 1: (1, 2, 3, 4, 5, 6, 7)
γ=1−−→ (1, 4, 2, 3, 6, 7, 5) (6.19)

Databases 2: (1, 2, 3, 4, 5, 6, 8)
γ=1−−→ (6, 2, 4, 8, 1, 5, 3) (6.20)

14Note that, if we assume the user has knowledge of the size of each class, then δ is not
needed. An achievable scheme is generated by first randomly selecting one message from
each class to construct a set of Γ candidate messages. The mapping between the class index
and the message index is made locally by the user and the queries are generated as PIR
queries with the selected messages identities directly.
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converts the queries for γ = 3 to the queries for γ = 1. To see this mapping, compare

xi1 +yi2 and xî1 +yî2 from the queries of the first database of Tables 6.1(a) and 6.1(b),

respectively. It can be seen that the indices i1 = 4 and i2 = 3 of the queries for γ = 3

convert into the indices î1 = 3 and î2 = 2 of the queries for γ = 1, respectively.

Thus, we have the mapping ((i1, i2) → (̂i1, î2)) = ((4, 3) → (3, 2)). A similar

comparison between the remaining queries results in the index and sign mapping of

equations (6.19) and (6.20). One can similarly verify that there exists a mapping from

the queries for γ = 3 to the queries for γ = 2, i.e., Q(3)
[2] ↔ Q

(2)
[2] . Since a preliminary

permutation over these indices, i.e., πγ(t) is uniformly and privately selected by the

user independently of the desired class index γ, these queries are equally likely and

indistinguishable.

4)- Achievable Rate: By counting the number of symbols to be downloaded as

answer for the queries of table 6.1-(a), we obtain the PPIR rate R = 8
14

= 4
7

= CPPIR.

6.3 Multi-Message Pliable Private Information Retrieval

In this section, we consider the general problem of M-PPIR as presented in

Section 6.1.1 with λ ≥ 1, η ≥ 1 and derive upper and lower bounds on the M-PPIR

rate. Recall that in the M-PPIR problem, the user is oblivious to the structure of the

database, i.e., has no knowledge of the messages membership in each class. Thus, we

cannot directly utilize multi-message PIR solutions for the M-PPIR problem. To this

end, again to provide a gentle introduction, we first consider the single server case, i.e.,

n = 1, characterize the capacity of single-server M-PPIR (see theorem 11), and present

a capacity-achieving scheme. Then, we extend our results to replication-based DSSs,

i.e., n > 1 and derive upper and lower bounds on the M-PPIR rate (see theorem 12).

As mentioned in Section 6.2, the single-message PPIR problem is a special case of

M-PPIR, thus, the results of Theorem 9 and Theorem 10 can be obtained by setting

λ = 1 and η = 1 in the bounds derived in Theorem 12 below.
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6.3.1 Single Server M-PPIR

Theorem 11 For the M-PPIR problem with single server storing f messages

classified into Γ classes, the maximum achievable M-PPIR rate over all possible

M-PPIR protocols, i.e., the M-PPIR capacity CM-PPIR, for arbitrary λ number of

messages from η ∈ [Γ] desired classes is given by

CM-PPIR =
η

Γ
.

Converse proof of Theorem 11 The converse proof for the single server M-PPIR

follows intuitively from Theorem 9. We prove the outer bound for η = 1 and Mγ =

λ, ∀γ ∈ [Γ], i.e., each class contains exactly λ messages and f = λΓ. For arbitrary f

we then proceed to the case of arbitrary Mγ ≥ λ, ∀γ ∈ [Γ] and arbitrary η ≥ 1.

• ForMγ = λ, ∀γ ∈ [Γ], and η = 1 we have f = λΓ. Accordingly, we can consider the
λ messages in each class as a one super message of length λL, for arbitrary L. Thus,
in order to maintain the privacy of the desired class, we must maintain the privacy
of the retrieved super message. To this end, it is well-known that information-
theoretic privacy for a single-server can only be achieved by downloading all content
of the database [2], hence CM-PPIR = λL

fL
= λL

λΓL
= 1

Γ
.

• Finally, for arbitrary η ≥ 1 and Mγ ≥ λ, ∀γ ∈ [Γ], in order to maintain the privacy
of a set of η desired classes and obtain λ messages from each desired class γi ∈ Ω, we
must download at least one super message from each possible class. Accordingly,
the probability that any subset of η classes is the desired subset is equally likely,
i.e., achieving perfect information theoretic privacy. Since there are more than λ
messages in each class and the user requests any λmessages from each of the desired
classes, the identities of the selected λ messages to form the Γ super messages are
not relevant. Accordingly, by randomly selecting one super message from each class
as an answer to the user it follows that the best information retrieval rate, i.e., the
M-PPIR capacity, must be upper bounded by CM-PPIR = ηλL

λΓL
= η

Γ
.

Achievability of Theorem 11 For the achievability of Theorem 11 we extend our

solution for the single-server PPIR from Section 6.2.1 to the case of multiple messages

from multiple classes. To privately retrieve λ messages from the desired set of classes

Ω, let δ = LCM(M1, . . . ,MΓ). The user selects a number s ∈ [δ] uniformly at random

and sends it to the database. Based on the selected random number, a subset of size
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λΓ from the messages is selected by the database, λ messages from each class. The

identity of the selected λ messages from each class is computed as follows:

• The first message from each class is given by

θγi,βγi,1 =
⌈s
δ
Mγi

⌉
+

γi−1∑
l=1

Ml, (6.21)

where βγi,1 = d s
δ
Mγie and θγi,βγi,1 follows due to the fact that the messages are

ordered in an ascending order based on their class membership as outlined in
Section 6.1.1.

• The following λ − 1 messages from each class are selected, without loss of
generality, in a cyclic order over the members of the class starting with
θγi,βγi,2 = θγi,βγi,1 + 1. That is, for any k ∈ [λ],

θγi,βγi,k+1
=


θγi,βγi,k −Mγi + 1 if θγi,βγi,k =

∑γi
l=1Ml

θγi,βγi,k + 1 otherwise.
(6.22)

Finally, the set of candidate λΓ messages {W (θγ1,βγ1,1
)
, . . . ,W

(θγ1,βγ1,λ
)
, . . .

. . . ,W
(θγΓ,βγΓ,λ

)} are set as the answer to the user. Note that the query is fixed

independently of the desired set of classes. Consequently, from the perspective of the

database, the query and answer string of any set Ω ∈ S of desired classes are indistin-

guishable and the privacy constraint of equation (6.10) is satisfied. Moreover, since the

user obtains λη messagesW (θγ1,βγ1,1
)
, . . . ,W

(θγ1,βγ1,λ
)
, . . . ,W

(θγη,βγη,1
)
, . . . ,W

(θγη,βγη,λ
)

from the desired classes γi ∈ Ω ⊆ [Γ] the correctness constraint of equation (6.11) is

also satisfied. As a result, the M-PPIR rate R = ληL
λΓL

= η
Γ
is achieved.

Next, we extend the single server result to the M-PPIR over replicated DSS

setup with theorem 12 as follows.

6.3.2 M-PPIR over Replicated DSS

Theorem 12 Consider a DSS with n noncolluding replicated databases storing f

messages classified into Γ classes. For the M-PPIR problem with λ ≥ 1 and η ≥ 1,
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the maximum achievable M-PPIR rate over all possible M-PPIR protocols, i.e., the

M-PPIR capacity CM-PPIR, is as

R ≤ CM-PPIR ≤ R̄

where 

R̄ = R =

[
1 +

Γ− η
nη

]−1

if η ≥ Γ
2
, (6.23a)

R̄ =

[
1− ( 1

n
)b

Γ
η
c

1− 1
n

+
(

Γ
η
− bΓ

η
c
)

( 1
n
)b

Γ
η
c

]−1

if η ≤ Γ
2

(6.23b)

R =

∑η
i=1 τiκ

Γ−η
i

[(
1 + 1

κi

)Γ

−
(

1 + 1
κi

)Γ−η
]

∑η
i=1 τiκ

Γ−η
i

[(
1 + 1

κi

)Γ

− 1

] if η ≤ Γ
2
, (6.23c)

for κi , ej2π(i−1)/η

n(1/η)−ej2π(i−1)/η , τi, i ∈ [η] is the solution of the η linear equations

η∑
i=1

τiκ
−η
i = (n− 1)Γ−η

η∑
i=1

τiκ
−k
i = 0 for k ∈ [η − 1].

The converse bounds of Theorem 12 are derived in Section 6.3.2 and

Section 6.3.2, respectively. The achievability lower bounds in Theorem 12 are shown

in Section 6.3.2. The following corollary states that if Γ
η
∈ N, i.e., the number of

classes is divisible by the number of desired classes, then the achievability bound of

equation (6.23c) matches the upper bound of equation (6.23b).

Corollary 6 For the M-PPIR problem from n > 1 noncolluding replicated databases

where η ≤ Γ
2
, Γ

η
∈ N, the derived upper bound of equation (6.23b) is tight, i.e.,

matches the lower bound of equation (6.23c), and the M-PPIR capacity is given by

CM-PPIR =

(
1− 1

n

)[
1−

(
1

n

)Γ
η

]−1

. (6.24)
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Remark 8 Theorem 12 and Corollary 6 yield a simple yet powerful observation.

One can observe that privately retrieving multiple messages λ > 1 from multiple

desired classes η > 1, while keeping the identity of the desired classes indices hidden

from each database, imposes no penalty on the download rate compared to privately

retrieving only one message from each of the desired classes. That can be seen from

the independence of the bounds of theorem 12 of λ. Moreover, the presented bounds

match the MPIR rates for the case where the user is interested in privately retrieving

η messages from a dataset consisting of Γ messages, i.e., each class contains only one

message, [9, Thm. 1,Thm. 2, Cor. 3].

In the following, we first derive an upper bound for the M-PPIR problem by

adapting the classical PIR converse proofs of [7], [9] to our pliable setup. We now

proceed with the proving the upper bound on the capacity of M-PPIR.

Converse proof of Theorem 12 for η ≥ Γ
2

Here, since η ≥ Γ
2
, for any Ω,Ω′ ∈ S,

such that Ω 6= Ω′, we have Ω ∩ Ω′ 6= φ. In other words, there is always some overlap

between the possible sets of desired classes. As a result of this overlap we have the

following lemma.

Lemma 11 For the M-PPIR problem with η ≥ Γ
2
, the following bound holds

I
(
W [f ]\θ[η],[λ] ;Q

[η]
[n]A

[η]
[n]

∣∣∣W θ[η],[λ]

)
≥ λL

n
(Γ− η). (6.25)

Moreover, equation (6.25) holds for any set Ω ∈ S, i.e.,

I
(
W [f ]\θΩ,[λ] ;QΩ

[n]A
Ω
[n]

∣∣W θΩ,[λ]
)
≥ λL

n
(Γ− η). (6.26)

The proof of Lemma 11 follows similar steps as the ones for Lemma 10 and can be

found in Appendix H. Now, we are ready to prove the converse for the case η ≥ Γ
2
.

Proof: By combining Lemma 9 and Lemma 11, we have

ηλL

(
1

R
− 1

)
≥ λL

n
(Γ− η), (6.27)
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and by eliminating λL, we obtain

R ≤
[
1 +

Γ− η
nη

]−1

. (6.28)

That proves the upper bound on the M-PPIR capacity for η ≥ Γ
2

as given in

equation (6.23a).

Converse proof of Theorem 12 for η ≤ Γ
2

Proof: Let Ω1 = [η],

Ωi = [η(i−1)+1 : η(i)] for i ∈ [2 : ρ] and ρ = bΓ
η
c. Let Ωρ′ = [Γ−η+1 : Γ]. We have⋂ρ

i=1Ωi = φ and Ωρ ∩ Ωρ′ = [Γ − η + 1 : ηbΓ
η
c]. Starting by Ω1 = [η], then applying

Lemma 10 repeatedly we have

I
(
W [f ]\θ[η],[λ] ;QΩ1

[n]A
Ω1

[n]

∣∣∣W θ[η],[λ]

)
≥ ηλL

n
+

1

n
I
(
W [f ]\θ[2η],[λ] ;QΩ2

[n]A
Ω2

[n]

∣∣∣W θ[2η],[λ]

)
≥ ηλL

n
+

1

n

[
ηλL

n
+

1

n
I
(
W [f ]\θ[3η],[λ] ;QΩ3

[n]A
Ω3

[n]

∣∣∣W θ[3η],[λ]

)]
=
ηλL

n
+
ηλL

n2
+

1

n2
I
(
W [f ]\θ[3η],[λ] ;QΩ3

[n]A
Ω3

[n]

∣∣∣W θ[3η],[λ]

)
≥

...

≥ ηλL

n
+ · · ·+ ηλL

nb
Γ
η
c−2

+
1

nb
Γ
η
c−2

I
(
W

[f ]\θ
[ηbΓ

η c−1],[λ] ;Q
Ωρ−1

[n] A
Ωρ−1

[n]

∣∣∣W θ
[ηbΓ

η c−1],[λ]

)
≥ ηλL

n
+ · · ·+ ηλL

nb
Γ
η
c−2

+
ηλL

nb
Γ
η
c−1

+
1

nb
Γ
η
c−1

I
(
W

[f ]\θ
[ηbΓ

η c],[λ] ;Q
Ωρ
[n]A

Ωρ
[n]

∣∣∣W θ
[ηbΓ

η c],[λ]

)
≥ ηλL

n
+ · · ·+ ηλL

nb
Γ
η
c−2

+
ηλL

nb
Γ
η
c−1

+
1

nb
Γ
η
c

[
λL
(
Γ− ηbΓ

η
c
)]

(6.29)

where equation (6.29) results from bounding the last mutual information term, similar

to Lemma 11, as follows

n I
(
W

[f ]\θ
[ηbΓ

η c],[λ] ;Q
Ωρ
[n]A

Ωρ
[n]

∣∣∣W θ
[ηbΓ

η c],[λ]

)
≥ λL

(
Γ− ηbΓ

η
c
)
.

Now, combining equation (6.29) and Lemma 9 yields

ηλL

(
1

R
− 1

)
≥ ηλL

(
1

n
+ · · ·+ 1

nb
Γ
η
c−2

+
1

nb
Γ
η
c−1

+
1

nb
Γ
η
c

[
Γ
η
− bΓ

η
c
])
. (6.30)
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Eliminating ηλL from both sides, we obtain

R≤
(

1 +
1

n
+

1

n2
+ · · ·+ 1

nb
Γ
η
c−1

+
1

nb
Γ
η
c

[
Γ
η
− bΓ

η
c
])−1

(6.31)

=

[
1− ( 1

n
)b

Γ
η
c

1− 1
n

+

Γ
η
− bΓ

η
c

nb
Γ
η
c

]−1

, (6.32)

which proves the upper bound on the M-PPIR capacity for the case η ≤ Γ
2
as given

in equation (6.23b).

Achievability of Theorem 12 The M-PPIR schemes needed for Theorem 12

utilize the single-message and multi-message PIR solutions of [7], [9]. If we only

consider retrieving a single-message from multiple desired classes, i.e., λ = 1 and

η ≥ 1, we can directly adapt the multi-message scheme of [9], similarly to the approach

for PPIR in Section 6.2.2. In the following, we outline the required steps for this

adaptation with the extension to multiple desired classes η ≥ 1.

The achievable rate of M-PIR problem with n noncolluding replicated databases,

each storing f messages, and λη desired messages to download is characterized in

[9, Thm. 1, Thm. 2], as

R =



[
1 +

f − µ
nµ

]−1

if µ ≥ f
2
, (6.33a)

∑µ
i=1 τiκ

f−µ
i

[(
1 + 1

κi

)f
−
(

1 + 1
κi

)f−µ]
∑µ

i=1 τiκ
f−µ
i

[(
1 + 1

κi

)f
− 1

] if µ ≤ f
2
, (6.33b)

where κi , ej2π(i−1)/µ

n(1/µ)−ej2π(i−1)/µ , τi, i ∈ [µ], is the solution of the linear equations

λη∑
i=1

τiκ
−λη
i = (n− 1)f−λη

λη∑
i=1

τiκ
−k
i = 0 for k ∈ [λη − 1].
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From comparing the upper bounds of M-PPIR of Theorem 12 in

equations (6.23a)-(6.23b) with equations (6.33a)-(6.33b), we can observe that

M-PPIR effectively reduces the size of the database from f to Γ messages and the

number of desired messages from λη to simply η. Thus, our achievable M-PPIR

schemes extends the single server M-PPIR solution of section 6.3.1 to a replicated

DSS setup through adaptation of the M-PIR scheme achievable scheme in [9] for

η ≥ Γ
2
and η ≤ Γ

2
, respectively.

Given Γ, η, λ, n, Ω ∈ S, and δ = LCM(M1, . . . ,MΓ), the high-level

implementation of the M-PPIR scheme is outlined with the following steps.

1. The user selects a number uniformly at random from the set [δ].

2. If η ≥ Γ
2
, the user constructs the queries according to the achievable M-PIR

scheme in [9, Sec.IV] for n noncolluding replicated databases storing Γ candidate
super messages {X(1),X(2), . . . ,X(Γ)} to privately retrieve η messages X(γi),∀γi ∈
Ω, i.e., QΩ

1 , . . . , Q
Ω
n . Each super message is assumed to be of length L̂ = n2

super symbols, i.e., X(γ) = (X
(γ)
1 , . . . ,X

(γ)

L̂
) and the super symbol X(γ)

l =

(X
(γ)
1 , . . . , X

(γ)
λ ) corresponds to a vector of symbols from the λ messages of

class γ ∈ [Γ].

3. The user sends the selected random number from Step 1 s ∈ [δ], then the
constructed queries QΩ

1 , . . . , Q
Ω
n , in a random order to each database j ∈ [n].

4. Given the random number s ∈ [δ], each database j ∈ [n] computes the indices
of λΓ messages, λ messages from each class. These indices are computed as
follows:

• The first message from each class is given by equation (6.21).

• The following λ− 1 messages from each class are selected in a cyclic order
over the members of the class according to equation (6.22).

5. Super messages are assembled in each database using the selected λΓ messages
of the previous step to be used in constructing its answer string AΩ

j as follows.
Each of Γ super messages are mapped to the user’s queries of Step 2 as X(γ)

l =

(W
(θγ,βγ,1 )

l W
(θγ,βγ,2 )

l , . . . ,W
(θγ,βγ,λ )

l ) for all γ ∈ [Γ] and l ∈ L̂. Note that any
operation involving a super symbol is performed element wise.

6. If η ≤ Γ
2
, repeat steps 1-5 by constructing the queries of according to the

achievable M-PIR scheme in [9, Sec.V] for n noncolluding replicated database
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storing Γ candidate super messages of length

L̂ =
1

η

η∑
i=1

τiκ
Γ−η
i

[(
1 +

1

κi

)Γ

−
(

1 +
1

κi

)Γ−η
]
,

where κi , ej2π(i−1)/η

n(1/η)−ej2π(i−1)/η , τi, i ∈ [η], is the solution of the two linear equations

η∑
i=1

τiκ
−η
i = (n− 1)Γ−η

η∑
i=1

τiκ
−k
i = 0 for k ∈ [η − 1].

Privacy and Correctness: The arguments of privacy and correctness follow from

the underlying guarantees of the M-PIR solutions of [9, Sec.IV] and [9, Sec.V],

similarly to the capacity achieving scheme of PPIR in Section 6.2.2.

Calculation of achievable rate: The achievable rates follow directly from

equations (6.33a) and (6.33b) by substituting f with Γ and λη with η, respectively.

6.4 Conclusion

In this chapter, we formulated the problem of multi-message pliable private infor-

mation retrieval (M-PPIR) from noncolluding replicated database as a new variant of

the classical PIR problem. In M-PPIR, f messages are replicated in n noncolluding

databases and classified into Γ classes. The user wishes to retrieve any λ ≥ 1 messages

from multiple desired classes while revealing no information about the identity of

the desired classes to the databases. From this general problem, we considered the

special case of (single-message) PPIR where the user is interested in retrieving only

one message from one desired class. We characterized the capacity of PPIR from

replicated noncolluding databases for arbitrary number of databases n ≥ 1 and

presented capacity-achieving schemes. Interestingly, the capacity of PPIR from n

noncolluding databases matches the capacity of PIR with n databases and Γ messages.

Thus, enabling flexibility, i.e., pliability, in private information retrieval allowed to
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trade-off privacy versus download rate compared to classical information-theoretic

PIR schemes. Finally, we extended our results to the general M-PPIR problem,

derived upper and lower bounds on the M-PPIR rate, and showed a similar insight,

i.e., the derived M-PPIR bounds match the multi-message PIR bounds.
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CHAPTER 7

SUMMARY

In this dissertation, we first considered the problem of private computation (PC)

as generalization of the classical private information retrieval (PIR) problem. For

PC, three variations were studied. Namely, private linear computation (PLC) from

linearly-coded DSS, private polynomial computations (PPC) from Reed-Solomon

coded DSS with Langrange encoding, and PC of nonlinear functions from replicated

DSS. In the second part of this dissertation, we considered a relaxation of PIR problem

denoted as pliable private information (PPIR).

We have provided the capacity of PLC from coded DSSs, where data is encoded

and stored using an arbitrary linear code from the class of MDS-PIR capacity-

achieving codes. Interestingly, the capacity of PLC is equal to the corresponding

MDS-PIR capacity. Thus, privately retrieving arbitrary linear combinations of the

stored messages does not incur any overhead in rate compared to retrieving a single

message from the databases.

For the PPC problem, we have presented two PPC schemes for RS-coded DSSs

with Lagrange encoding showing improved computation rates compared to the best

known PPC schemes from the literature when the number of messages is small.

Asymptotically, as the number of messages tends to infinity, the rate of our RS-coded

nonsystematic PPC scheme approaches the rate of the best known nonsystematic

PPC scheme. However, for systematically RS-coded DSSs, our scheme significantly

outperforms all known PPC schemes up to some specific storage code rate that

depends on the maximum degree of the candidate polynomials. Finally, a general

converse bound on the PPC rate was derived and compared to the achievable rates

of the proposed schemes with some numerical results. The numerical results depicted

a gap between the derived converse bound and the achievable rates of the proposed
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schemes and the best known PPC schemes from literature. Naturally, this gap raises

two promising open problems. One is to prove that the converse of Theorem 4 is tight,

and the other is to find schemes that exploit the nonlinear dependencies between the

candidate functions evaluations. Both problems are valuable research directions for

future work.

For PC of nonlinear computation from noncolluding replicated databases, we

presented a novel PC scheme and showed that the resulting PC rate equals the PC

capacity as the message size grows for the case when the candidate functions are

the independent messages and one arbitrary nonlinear function of these. Moreover,

the PC rate approaches an outer bound on the PC capacity and thus becomes the

capacity itself when the number of messages grows. Finally, we compared the outer

bound and the achievable rate for the special case of PMC. Similar to the PPC

scheme, the numerical result depicted a gap between the derived converse bound and

the achievable rate. Closing this gap is an interesting direction for future work.

Finally, the insights provided by the results of M-PPIR problem motivates

further exploration of practical setups. One direction for future research would

consider the case where the number of desired messages from each class is not fixed.

Another direction could be for the case where the user has some side-information

in the form of messages from the dataset and wishes to retrieve any other set of

messages from multiple desired classes. This direction is motivated by the close

connection between PIR with side information (PIR-SI) and index coding (IC). More

specifically, PIR-SI is related to private broadcasting [82] and blind index coding

(BIC) [83], where the side-information is considered to be unknown to the server. We

keep the question whither a similar connection can be established between PPIR and

PICOD for future works.
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APPENDIX A

PROOF OF LEMMA 1

In this appendix, we prove the independence of answers from k databases forming an

information set as given in Lemma 1 of Chapter 3. The proof of Lemma 1 uses the

linear independence of the columns of a generator matrix of C corresponding to an

information set. Consider an information set I of the [n, k] linear storage code C ,

|I| = k. The content of the databases indexed by I, i.e.,
(
Cj, j ∈ I

)
= C|I , can be

written as (
(W(1))T| . . . |(W(f))T

)T
GC |I ∼

(
(W(1))T| . . . |(W(f))T

)T
, (A.1)

where by the construction of any [n, k] linear storage code, if I is an information set

of the code C , then GC |I is a k × k invertible matrix. (a) follows from [16, Lem. 1]

and the fact that the messages are chosen independently and uniformly at random

from Fβ×kp . Therefore, the content of any k databases forming an information set is

statistically equivalent to the stored messages. Given that the symbols of the messages

are independent, then the k columns of C|I are also statistically independent. Finally,

since A(v)
j , j ∈ I, are deterministic functions (that are composed of the µ candidate

linear combinations) of independent random variables {Cj : j ∈ I} and Q, {A(v)
j , j ∈

I} are statistically independent, and equation (3.4) follows.

Now, given that the candidate linear functions are evaluated element-wise

over independent and uniformly distributed symbols, the symbols of each linear

combination are also independent and identically distributed (i.i.d.), i.e., for X(v) =(
X

(v)
1 , . . . , X

(v)
L

)
, X(v)

1 , . . . , X
(v)
L are i.i.d. according to a prototype random variable

X(v).

Moreover, due to the commutative property of linear functions, linear compu-

tation over linearly-encoded symbols is equivalent to linear encoding of the linear
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function evaluations. As a result, we can extend the argument of statistical

equivalence to linear function evaluations over coded symbols. In other words,

the evaluations of linear functions over the content of any k databases, forming an

information set I, are statistically equivalent to the evaluations of linear functions over

the stored messages. Presenting X(v) =
(
X

(v)
1 , . . . , X

(v)
L

)
in the form X(v) =

(
X

(v)
i,j

)
,

i ∈ [β], j ∈ [k], we have

(
(X(1))T| . . . |(X(µ))T

)T
GC |I ∼

(
(X(1))T| . . . |(X(µ))T

)T
. (A.2)

Finally, since we can consider that the storage encoding is applied on individual

function evaluations, conditioning on any subset of function evaluations XV , |V| = µv,

is equivalent to reducing the problem to the private computation of µ − µv linear

combinations. That is, A(v)
j , j ∈ I, are deterministic functions (that are composed of

the µ−µv candidate linear combinations) of independent random variables {Cj : j ∈

I} and Q, and {A(v)
j , j ∈ I} are still statistically independent. Hence, the statistical

independence argument of equation (3.5) follows.
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APPENDIX B

PROOF OF LEMMA 3

In this appendix, we prove Lemma 3 as presented in Section 3.2. Since each linear

function X(v) =
(
X

(v)
1 , . . . , X

(v)
L

)
, v ∈ [µ], contains L i.i.d. symbols, it is clear that

∀ l ∈ [L],

H
(
X(1), . . . ,X(µ)

)
= LH

(
X

(1)
l , . . . , X

(µ)
l

)
, and (B.1)

H
(
W(1), . . . ,W(f)

)
= LH

(
W

(1)
l , . . . ,W

(f)
l

)
. (B.2)

Let J , {j1, . . . , jh} for some h ∈ [r]. We have

Pr
[
X

(i1)
l , . . . , X

(ih)
l

]
=
∑
wJ

c
l

Pr
[
WJ c

l = wJ
c

l

]
· Pr
[
X

(i1)
l , . . . , X

(ih)
l

∣∣∣WJ c

l = wJ
c

l

]
=
∑
wJ

c
l

Pr
[
WJ c

l = wJ
c

l

]
· Pr
[
W

(j1)
l , . . . ,W

(jh)
l

∣∣∣WJ c

l = wJ
c

l

]
(B.3)

=
∑
wHc

Pr
[
WJ c

l = wJ
c

l

](1

p

)h
=
(1

p

)h
, (B.4)

where equation (B.3) follows from the fact that there is a linear transformation

between X
(i1)
l , . . . , X

(ih)
l and W

(j1)
l , . . . ,W

(jh)
l , and equation (B.4) holds since

W
(j1)
l , . . . ,W

(jh)
l are i.i.d. over Fp. Hence, H

(
X

(i1)
l , . . . , X

(ih)
l

)
= h (in p-ary units),

which completes the proof.
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APPENDIX C

PROOF OF LEMMA 4

Here we present the main components needed for the proof of Lemma 4 as presented

in Section 3.3.3, however the detailed derivations are a direct application of the proof

of [43, Lem. 1, Sec. V-B] and thus are omitted. The proof of [43, Lem. 1] is adapted

to our setup with the following substitutions.

Let L , {`1, . . . , `r} ⊆ [µ] be the set of candidate linear combination indices

corresponding to a basis of the row space of the linear combination coefficient

matrix Vµ×f , where r = rank(V) ≤ min{µ, f}. Then X
(`1)
l , . . . , X

(`r)
l satisfy

H
(
X

(`1)
l , . . . , X

(`r)
l

)
= H

(
X

[µ]
l

)
, ∀ l ∈ [L]. Assume, without loss of generality, that

the rows of the coefficient matrix are ordered such that the first r rows constitute

the row basis, i.e., (X
(1)
l , . . . , X

(r)
l ) = (X

(`1)
l , . . . , X

(`r)
l ), l ∈ [L]. Note that we can

represent the candidate functions evaluations
(
X

(1)
l , . . . , X

(µ)
l ) in terms of the basis

candidate functions evaluations
(
X

(`1)
l , . . . , X

(`r)
l ) for l ∈ [L] with a deterministic

linear mapping V̂µ×r of size µ× r as
(
X

(1)
l , . . . , X

(µ)
l

)T
= V̂µ×r

(
X

(`1)
l , . . . , X

(`r)
l

)T. As

a result, we have (v̂T
1 , . . . , v̂

T
r )

T = Ir, where Ir is the r× r identity matrix and v̂i is the

i-th row vector of the deterministic linear mapping matrix V̂µ×r.

First, consider the case where the desired function evaluation index v = 1.

Consider the queries corresponding to undesired τ -sums, i.e., τ -sums that do not

involve any symbols from the desired function evaluation U(1). There are
(
µ−1
τ

)
different τ -sum types corresponding to such queries which can be divided into two

groups as follows.

• Group 1:
(
µ−1
τ

)
−
(
µ−r
τ

)
τ -sum types for which the corresponding τ -sums involve

at least one element from the set {U(2),U(3), . . . ,U(r)}.

• Group 2:
(
µ−r
τ

)
τ -sum types for which the corresponding τ -sums do not involve

any element from the set {U(2),U(3), . . . ,U(r)}.
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Let q(U (v[τ ])) denote a τ -sum as defined in Definition 6, in Section 3.3.1, after

performing the sign assignment process, i.e.,

q(U (v[τ ])) ,
τ∑
`=1

(−1)`−1U (v`), (C.1)

where v[τ ] = {v1, . . . , vτ} ⊆ [µ], v1 < · · · < vτ , are the indices of the functions

evaluations, and where the segment indices and the database index are suppressed to

simplify the notation. Let the type of the τ -sum be presented by the set of distinct

indices of functions evaluations involved in the τ -sum, i.e., the type of q(U (v[τ ])) is

represented by v[τ ] = {v1, . . . , vτ}. The key idea is to show that the symbols of

the queries corresponding to Group 2 are deterministic linear functions of the queries

corresponding to Group 1 when the symbols of the desired function evaluation U(1) are

known. Now, let q0 , q(U (v[τ ])), where r < v1 < · · · < vτ , denote an arbitrary query

corresponding to Group 2. Specifically, we need to show that, when the symbols

of U(1) queried by the given database are known, i.e., successfully decoded, the

query q0 can be written as a linear function of
(
τ+r−1
τ

)
− 1 queries corresponding

to Group 1. These
(
τ+r−1
τ

)
− 1 queries contain elements of the row basis functions

evaluations and elements included in the τ -sum of q0 and comprise all the τ -sums of

types corresponding to the subsets of size τ of I , [2 : r] ∪ v[τ ], except the type of

q0, i.e., {v1, . . . , vτ}. Now, let Q̃ ,
{
q(U (̂i[τ ])) : î[τ ] ∈ T

}
be a set of queries where

there is exactly one query corresponding to each of the
(
τ+r−1
τ

)
− 1 τ -sum types of

Group 1, where T ,
{
î[τ ] = {̂i1, î2, . . . , îτ} ⊂ I : î[τ ] 6= v[τ ]

}
. Finally, assume, without

loss of generality, that the subsets of distinct indices î[τ ] ∈ T are ordered in natural

lexicographical order, i.e., î1 < î2 < · · · < îτ .

Next, from the deterministic linear mapping between the candidate functions

evaluations, V̂µ×r, we have U
(v`)
∗ = v̂v`,1U

(1)
∗ + · · · + v̂v`,rU

(r)
∗ , ` ∈ [τ ], where

(v̂v`,1, . . . , v̂v`,r) = v̂v` . Now, we need to show that q0 is a linear function of the
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queries of Q̃ as follows:

q0 =
∑
î[τ ]∈T

h(U (̂i[τ ]))q(U (̂i[τ ])), (C.2)

where h(U (̂i[τ ])) is a linear coefficient calculated as a function of the deterministic

linear mapping coefficients represented by the matrix

V̂∗(r−1)×τ =


v̂v1,2 v̂v2,2 · · · v̂vτ ,2
...

... · · ·
...

v̂v1,r v̂v2,r · · · v̂vτ ,r

 (C.3)

as outlined in [43, Sec. V-B]. Given the above problem setup, notation, and

definitions, one can verify that equation (C.2) holds for all queries corresponding

to Group 2 (refer to [43, Sec. V-B] for the detailed derivation). Thus, a number of(
µ−r
τ

)
query types in Group 2 are redundant and can be removed from the query set.
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APPENDIX D

PROOF OF THEOREM 4

In this appendix, we prove the converse bound on the PPC rate presented in

Theorem 4 of Section 4.2. As previously mentioned, the proof follows similarly to

the converse proof of Theorem 2 of Section 3.2. Denote the set of all queries by

Q ,
{
Q

(v)
j : v ∈ [µ], j ∈ [n]

}
. It can be shown that for both problems of coded PLC

and PPC that use an MDS-PIR capacity-achieving storage code,

H
(
A

(v)
[n]

∣∣XV ,Q) ≥ k

n
H
(
X(v′)

∣∣XV)+
k

n
H
(
A

(v′)
[n]

∣∣XV ,X(v′),Q
)
, (D.1)

where V ⊆ [µ] is arbitrary, v ∈ V , and v′ ∈ [µ] \ V .15

Next, since there are in total µ function evaluations, by Definition 9 we can

recursively use equation (D.1) r − 1 times with L = {`1, . . . , `r} ⊆ [µ] to obtain

H
(
A

(`1)
[n]

∣∣X(`1),Q
)
≥

r−1∑
v=1

(k
n

)v
H
(
X(`v+1)

∣∣X{`1,...,`v})
+
(k
n

)r−1

H
(
A

(`r)
[n]

∣∣X{`1,...,`r},Q)
≥

r−1∑
v=1

(k
n

)v
H
(
X(`v+1)

∣∣X{`1,...,`v}), (D.2)

where equation (D.2) follows from the nonnegativity of entropy. Note that in [44],

the authors claim that the general converse for the DPIR problem strongly depends

on the chosen permutation of the indices of the candidate functions. Here, we also

make a similar observation and assume that the order of indices {`1, . . . , `r} is the

permutation that maximizes the summation term of equation (3.7) and consider that

X(`1) is the polynomial evaluation with the minimum entropy, i.e., H
(
X(`1)

)
= LH

(B)
min.

15Similar derivations can be found in, e.g., [8], [52], [77].
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Now,

LH(X(`1)) = H
(
X(`1)

)
(a)
= H

(
X(`1)

∣∣Q)−H(X(`1)
∣∣A(`1)

[n] ,Q
)︸ ︷︷ ︸

=0

= I
(
X(`1) ;A

(`1)
[n]

∣∣Q)
= H

(
A

(`1)
[n]

∣∣Q)−H(A(`1)
[n]

∣∣X(`1),Q
)

≤ H
(
A

(`1)
[n]

∣∣Q)− r−1∑
v=1

(k
n

)v
H
(
X(`v+1)

∣∣X(`1), . . . ,X(`v)
)
, (D.3)

where (a) holds since any message is independent of the queries Q, and knowing the

answers A(`1)
[n] and the queries Q, one can determine X(`1), and equation (D.3) follows

directly from equation (3.7).

Finally, the converse proof is completed by showing that

R =
LHmin∑n

j=1H
(
A

(`1)
j

) (a)

≤ LHmin

H
(
A

(`1)
[n]

) (b)

≤ LHmin

H
(
A

(`1)
[n]

∣∣Q)
≤ Hmin

H
(B)
min +

∑r−1
v=1

(
k
n

)v
H
(
X(`v+1)

∣∣X(`1), . . . , X(`v)
) , (D.4)

where (a) holds because of the chain rule of entropy, (b) is due to the fact that

conditioning reduces entropy, and we apply equation (D.3) to obtain equation (D.4).
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APPENDIX E

PROOF OF LEMMA 5

In this appendix, we prove the redundancy elimination lemma for the PPC schemes

of Chapter 4 as stated in Lemma 5, Section 4.3.4. The proof of Lemma 5 relies on

two arguments as follows.

(i) For the first round τ = 1, we can directly eliminate redundant 1-sum types based
on both the linear and the nonlinear dependencies between the µ candidate
polynomial functions evaluations and the f independent messages. As a result,
we have a total of µ − f redundant 1-sum types regardless of the desired
polynomial evaluation.

(ii) For τ > 1, we can represent the PPC problem as an allied PLC problem over
the monomial basis of the polynomial candidate set. Let {`1, . . . , `s} ⊆ [µ] be
the set of indices that correspond to the monomial basis, where, for simplicity,
s ,Mc

g(f). Then, X(`1)
l , . . . , X

(`s)
l satisfy H

(
X

(`1)
l , . . . , X

(`s)
l

)
= H

(
X

[µ]
l

)
, ∀ l ∈

[L]. Without loss of generality, we can order the candidate polynomial functions
by monomials first and then according to their degree, i.e., (X

(1)
l , . . . , X

(s)
l ) =

(X
(`1)
l , . . . , X

(`s)
l ), ∀ l ∈ [L]. Accordingly, the candidate functions evaluations

are represented in terms of the monomial basis evaluations with a deterministic
linear mapping V̂µ×Mc

g(f) of size µ×Mc
g(f), for all l ∈ [L], as

(
X

(1)
l , . . . , X

(µ)
l

)T
= V̂µ×s

(
X

(`1)
l , . . . , X

(`s)
l

)T
.

Moreover, we have (v̂T
1 , . . . , v̂

T
Mc
g(f))

T = IMc
g(f), where IMc

g(f) is theMc
g(f)×Mc

g(f)

identity matrix and v̂i is the i-th row vector of the polynomial coefficient matrix
V̂µ×Mc

g(f). With this mapping, one can show that for a desired polynomial
indexed by v = 1, the types of τ -sums corresponding to undesired queries, i.e.,
τ -sums that do not involve any symbols from the desired function evaluation
U(1) can be divided into two groups as follows.

• Group 1:
(
µ−1
τ

)
−
(
µ−Mc

g(f)
τ

)
τ -sum types for which the corresponding τ -sums

involve at least one element from the set {U(2),U(3). . . . ,U(Mc
g(f))}.

• Group 2:
(
µ−Mc

g(f)
τ

)
τ -sum types for which the corresponding τ -sums do

not involve any element from the set {U(2),U(3), . . . ,U(Mc
g(f))},

such that the symbols of the queries corresponding to Group 2 are functions of
the symbols of the queries corresponding to Group 1 when the symbols of the
desired function evaluation are known. Thus, a number of

(
µ−Mc

g(f)
τ

)
query types
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in Group 2 are redundant and can be removed from the query set. Accordingly,
with the above mapping to an allied PLC problem, we have presented the main
component needed to prove the second argument. Then, the result follows
directly from Lemma 4 of Chapter 3 and can be seen as a direct application of
the proof of [43, Lem. 1, Sec. V-B] (see Appendix C for more details).
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APPENDIX F

PROOF OF LEMMA 9

In this appendix, we prove an upper bound on the conditional mutual information

stated in Lemma 9 of Section 6.2.2. We start the proof of the simplest case16 where

λ = 1 and η = 1 as a special case of Lemma 9. Then extend the proof to λ ≥ 1 and

η ≥ 1.

Proof: For λ = 1 and η = 1, we have

I
(
W [θ1,2:f ] ;Q

(1)
[n]A

(1)
[n]

∣∣∣W (θ1,1)
)

(a)
= I
(
W [θ1,2:f ] ;Q

(1)
[n]A

(1)
[n]W

(θ1,1)
)

(b)
= I
(
W [θ1,2:f ] ;Q

(1)
[n]A

(1)
[n]

)
+ I
(
W [θ1,2:f ] ;W (θ1,1)

∣∣∣Q(1)
[n]A

(1)
[n]

)
︸ ︷︷ ︸

=0

(c)
= I
(
W [θ1,2:f ] ;A

(1)
[n]

∣∣∣Q(1)
[n]

)
+ I
(
W [θ1,2:f ] ;Q

(1)
[n]

)
︸ ︷︷ ︸

=0

= H
(
A

(1)
[n]

∣∣Q(1)
[n]

)
−H

(
A

(1)
[n]

∣∣Q(1)
[n]W

[θ1,2:f ]
)

(d)

≤ H
(
A

(1)
[n]

)
−H

(
W (θ1,1)A

(1)
[n]

∣∣Q(1)
[n]W

[θ1,2:f ]
)

+H
(
W (θ1,1)

∣∣A(1)
[n]Q

(1)
[n]W

[θ1,2:f ]
)︸ ︷︷ ︸

=0

(e)

≤ D−H
(
W (θ1,1)A

(1)
[n]

∣∣Q(1)
[n]W

[θ1,2:f ]
)

(f)
=
L

R
−H

(
W (θ1,1)

∣∣Q(1)
[n]W

[θ1,2:f ]
)
−H

(
A

(1)
[n]

∣∣Q(1)
[n]W

(θ1,1)W [θ1,2:f ]
)︸ ︷︷ ︸

=0

=
L

R
− L = L

(
1

R
− 1

)

where

(a) follows from the independence between the messages as given by equation (6.2)
and the independence of the messages and the queries as stated in equation (6.4);

16Note that, for the special case of (λ = 1, η = 1), the proof technique is similar to [7, Lem 5].
However, we restate these steps here with our notation to facilitate understanding the
general proof.
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(b) follows from the chain rule of mutual information and the independence of the
messages as given by equation (6.2);

(c) follows from the independence between the messages and the queries as stated
in equation (6.4);

(d) follows from the fact that conditioning reduces entropy and the correctness
condition of equation (6.11);

(e) follows from the chain rule of entropy and Definition 13;

(f) follows fact that the answer strings are a deterministic function of the queries
the stored messages as stated in equation (6.5).

Next, we extend the argument for λ ≥ 1 and η ≥ 1 as follows. Recall

that W θ[η],[λ] , {W (θ1,1),W (θ1,2), . . . ,W (θ1,λ),W (θ2,1), . . . ,W (θη,1), . . . ,W (θη,λ)}, and

W [f ]\θ[η],[λ] ,W [θ1,λ+1:θ2,1−1] ∪W [θ2,λ+1:θ3,1−1] ∪ · · · ∪W [θη−1,λ+1:θη,1−1] ∪W [θη,λ+1:f ].

Accordingly, we have

I
(
W [f ]\θ[η],[λ] ;Q

[η]
[n]A

[η]
[n]

∣∣∣W θ[η],[λ]

)
(a)
= I
(
W [f ]\θ[η],[λ] ;Q

[η]
[n]A

[η]
[n]W

θ[η],[λ]

)
(b)
= I
(
W [f ]\θ[η],[λ] ;Q

[η]
[n]A

[η]
[n]

)
+ I
(
W [f ]\θ[η],[λ] ;W θ[η],[λ]

∣∣∣Q[η]
[n]A

[η]
[n]

)
︸ ︷︷ ︸

=0

(c)
= I
(
W [f ]\θ[η],[λ] ;A

[η]
[n]

∣∣∣Q[η]
[n]

)
+ I
(
W [f ]\θ[η],[λ] ;Q

[η]
[n]

)
︸ ︷︷ ︸

=0

= H
(
A

[η]
[n]

∣∣Q[η]
[n]

)
−H

(
A

[η]
[n]

∣∣Q[η]
[n]W

[f ]\θ[η],[λ]
)

(d)

≤ H
(
A

[η]
[n]

)
−H

(
W θ[η],[λ]A

[η]
[n]

∣∣Q[η]
[n]W

[f ]\θ[η],[λ]
)

+H
(
W θ[η],[λ]

∣∣A[η]
[n]Q

[η]
[n]W

[f ]\θ[η],[λ]
)︸ ︷︷ ︸

=0

(e)

≤ D−H
(
W θ[η],[λ]A

[η]
[n]

∣∣Q[η]
[n]W

[f ]\θ[η],[λ]
)

(f)
=
ηλL

R
−H

(
W θ[η],[λ]

∣∣Q[η]
[n]W

[f ]\θ[η],[λ]
)
−H

(
A

[η]
[n]

∣∣Q[η]
[n]W

θ[η],[λ]W [f ]\θ[η],[λ]
)︸ ︷︷ ︸

=0

=
ηλL

R
− ηλL = ηλL

(
1

R
− 1

)

where
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(a) follows from the independence of the messages as given by equation (6.2) and
the independence of the messages and the queries as stated in equation (6.4);

(b) follows from the chain rule of mutual information and the independence of the
messages as given by equation (6.2);

(c) follows from the independence of the queries and the messages as stated in
equation (6.4);

(d) follows from the fact that conditioning reduces entropy and from the correctness
condition of equation (6.11);

(e) follows from the chain rule of entropy and Definition 13;

(f) follows the fact that the answer strings are a deterministic function of the queries
and the stored messages as stated in equation (6.5).
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APPENDIX G

PROOF OF LEMMA 10

In this appendix, we prove a lower bound on the conditional mutual information

stated in Lemma 10 of Section 6.2.2. We first proof of the simplest case where λ = 1

and η = 1 then extend the same argument for λ ≥ 1 and η ≥ 1. Before starting the

proof, recall that for γ ∈ [Γ], W θ[γ],1 , {W (θ1,1),W (θ2,1), . . . ,W (θγ,1)},

Proof: Let λ = 1, η = 1, and γ ∈ [2 : Γ].

n I
(
W [f ]\θ[γ−1],1 ;Q

(γ−1)
[n] A

(γ−1)
[n]

∣∣∣W θ[γ−1],1

)
≥

n∑
j=1

I
(
W [f ]\θ[γ−1],1 ;Q

(γ−1)
j A

(γ−1)
j

∣∣∣W θ[γ−1],1

)
(a)
=

n∑
j=1

I
(
W [f ]\θ[γ−1],1 ;Q

(γ)
j A

(γ)
j

∣∣∣W θ[γ−1],1

)
(b)
=

n∑
j=1

I
(
W [f ]\θ[γ−1],1 ;A

(γ)
j

∣∣∣Q(γ)
j W

θ[γ−1],1

)
(c)
=

n∑
j=1

H
(
A

(γ)
j

∣∣Q(γ)
j W

θ[γ−1],1
)
−H

(
A

(γ)
j

∣∣Q(γ)
j W

θ[γ−1],1W [f ]\θ[γ−1],1
)︸ ︷︷ ︸

=0

≥
n∑
j=1

H
(
A

(γ)
j

∣∣Q(γ)
[n]A

(γ)
[j−1]W

θ[γ−1],1
)

(c)
=

n∑
j=1

I
(
W [f ]\θ[γ−1],1 ;A

(γ)
j

∣∣∣Q(γ)
[n]A

(γ)
[j−1]W

θ[γ−1],1

)
= I
(
W [f ]\θ[γ−1],1 ;A

(γ)
[n]

∣∣∣Q(γ)
[n]W

θ[γ−1],1

)
(b)
= I
(
W [f ]\θ[γ−1],1 ;A

(γ)
[n]Q

(γ)
[n]

∣∣∣W θ[γ−1],1

)
(d)
= I
(
W [f ]\θ[γ−1],1 ;A

(γ)
[n]Q

(γ)
[n]W

(θγ,1)
∣∣∣W θ[γ−1],1

)
− I
(
W [f ]\θ[γ−1],1 ;W (θγ,1)

∣∣∣A(γ)
[n]Q

(γ)
[n]W

θ[γ−1],1

)
︸ ︷︷ ︸

=0

= I
(
W [f ]\θ[γ−1],1 ;W (θγ,1)

∣∣W θ[γ−1],1
)

+ I
(
W [f ]\θ[γ−1],1 ;A

(γ)
[n]Q

(γ)
[n]

∣∣∣W θ[γ−1],1W (θγ,1)
)

(e)
= H

(
W (θγ,1)

)
+ I
(
W [f ]\θ[γ],1 ;A

(γ)
[n]Q

(γ)
[n]

∣∣∣W θ[γ−1],1W (θγ,1)
)
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(f)
= L+ I

(
W [f ]\θ[γ],1 ;A

(γ)
[n]Q

(γ)
[n]

∣∣∣W θ[γ],1

)
where

(a) follows from the privacy constraint of equation (6.10);

(b) follows from the independence between the messages as given by equation (6.2)
and the independence between the messages and the queries as stated in
equation (6.4);

(c) follows from the fact that the answer strings are a deterministic function of the
queries and a the stored messages as stated in equation (6.5).

(d) follows from the chain rule of mutual information, the independence of
the messages as given by equation (6.2), and the correctness condition of
equation (6.11); particularly, H

(
W (θγ,1)

∣∣Q(γ)
[n]A

(γ)
[n]

)
= 0;

(e) follows from the independence of the messages as stated in equation (6.2);

(f) follows from the chain rule of mutual information and the fact that each
message consists of L independent and identically distributed symbols as given
by equation (6.1).

Next, we extend the argument for λ ≥ 1 and η ≥ 1 as follows. Recall

that W θ[η],[λ] , {W (θ1,1),W (θ1,2), . . . ,W (θ1,λ),W (θ2,1), . . . ,W (θη,1), . . . ,W (θη,λ)}, and

W [f ]\θ[η],[λ] ,W [θ1,λ+1:θ2,1−1] ∪W [θ2,λ+1:θ3,1−1] ∪ · · · ∪W [θη−1,λ+1:θη,1−1] ∪W [θη,λ+1:f ].

Let Ω1,Ω2 ∈ S, such that Ω1 ∩ Ω2 = φ, without loss of generality, assume that

Ω1 = [η] and Ω2 = [η + 1 : 2η]. Then

n I
(
W [f ]\θ[η],[λ] ;QΩ1

[n]A
Ω1

[n]

∣∣∣W θ[η],[λ]

)
≥

n∑
j=1

I
(
W [f ]\θ[η],[λ] ;QΩ1

j A
Ω1
j

∣∣W θ[η],[λ]
)

(a)
=

n∑
j=1

I
(
W [f ]\θ[η],[λ] ;QΩ2

j A
Ω2
j

∣∣W θ[η],[λ]
)

(b)
=

n∑
j=1

I
(
W [f ]\θ[η],[λ] ;AΩ2

j

∣∣QΩ2
j W

θ[η],[λ]
)

(c)
=

n∑
j=1

H
(
AΩ2
j

∣∣QΩ2
j W

θ[η],[λ]
)
−H

(
AΩ2
j

∣∣QΩ2
j W

θ[η],[λ]W [f ]\θ[η],[λ]
)︸ ︷︷ ︸

=0
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≥
n∑
j=1

H
(
AΩ2
j

∣∣QΩ2

[n]A
Ω2

[j−1]W
θ[η],[λ]

)
(c)
=

n∑
j=1

I
(
W [f ]\θ[η],[λ] ;AΩ2

j

∣∣∣QΩ2

[n]A
Ω2

[j−1]W
θ[η],[λ]

)
+H

(
AΩ2
j

∣∣QΩ2

[n]A
Ω2

[j−1]W
θ[η],[λ]W [f ]\θ[η],[λ]

)︸ ︷︷ ︸
=0

= I
(
W [f ]\θ[η],[λ] ;AΩ2

[n]

∣∣∣QΩ2

[n]W
θ[η],[λ]

)
(b)
= I
(
W [f ]\θ[η],[λ] ;AΩ2

[n]Q
Ω2

[n]

∣∣∣W θ[η],[λ]

)
(d)
= I
(
W [f ]\θ[η],[λ] ;AΩ2

[n]Q
Ω2

[n]W
θ[η+1:2η],[λ]

∣∣∣W θ[η],[λ]

)
− I
(
W [f ]\θ[η],[λ] ;W θ[η+1:2η],[λ]

∣∣∣AΩ2

[n]Q
Ω2

[n]W
θ[η],[λ]

)
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=0

= I
(
W [f ]\θ[η],[λ] ;W θ[η+1:2η],[λ]

∣∣W θ[η],[λ]
)

+ I
(
W [f ]\θ[η],[λ] ;AΩ2

[n]Q
Ω2

[n]

∣∣∣W θ[η],[λ]W θ[η+1:2η],[λ]

)
(e)
= H

(
W θ[η+1:2η],[λ]

)
+ I
(
W [f ]\θ[2η],[λ] ;QΩ2

[n]A
Ω2

[n]

∣∣∣W θ[2η],[λ]

)
(f)
= ηλL+ I

(
W [f ]\θ[2η],[λ] ;QΩ2

[n]A
Ω2

[n]

∣∣∣W θ[2η],[λ]

)
where

(a) follows from the privacy constraint of equation (6.10);

(b) follows from the independence between the messages as given by equation (6.2)
and the independence between the messages and the queries as stated in
equation (6.4);

(c) follows from the fact that the answer strings are a deterministic function of the
queries and the stored messages as stated in equation (6.5);

(d) follows from the chain rule of mutual information, the independence of
the messages as stated in equation (6.2), and the correctness condition of
equation (6.11); particularly, H

(
W θ[η+1:2η],[λ]

∣∣QΩ2

[n]A
Ω2

[n]

)
= 0;

(e) follows from the independence of the messages as given by equation (6.2);

(f) follows from the chain rule of mutual information and the fact that each
message consists of L independent and identically distributed symbols as given
by equation (6.1).
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APPENDIX H

PROOF OF LEMMA 11

In this appendix, we prove a lower bound on the conditional mutual infor-

mation stated in Lemma 11 of Section 6.3.2. Before starting the proof, recall

that W θ[η],[λ] , {W (θ1,1),W (θ1,2), . . . ,W (θ1,λ),W (θ2,1), . . . ,W (θη,1), . . . ,W (θη,λ)}, and

W [f ]\θ[η],[λ] ,W [θ1,λ+1:θ2,1−1] ∪W [θ2,λ+1:θ3,1−1] ∪ · · · ∪W [θη−1,λ+1:θη,1−1] ∪W [θη,λ+1:f ].

Proof: We start the proof with Ω1 = [η] and Ω2 = [Γ − η + 1 : Γ]. For

η ≥ Γ
2
, we have Ω1 ∩ Ω2 = [Γ− η + 1 : η]

n I
(
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= I
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(g)
= λL(Γ− η)

where

(a) follows from the privacy constraint of equation (6.10);

(b) follows from the independence between the messages as given by equation (6.2)
and the independence between the messages and the queries of equation (6.4);

(c) follows from the fact that the answer is a deterministic function of the queries
and the stored messages as stated in equation (6.5);

(d) follows from the chain rule of mutual information, the independence of
the messages as stated in equation (6.2), and the correctness condition of
equation (6.11); particularly, H

(
W θ[Γ−η+1:Γ],[λ]

∣∣QΩ2

[n]A
Ω2

[n]

)
= 0;

(f) follows from the independence of the messages as given by equation (6.2); the
second term equals zero due to the independence of the messages and the queries
following equation (6.4) and the fact that the answer strings are a deterministic
function of the queries and a sufficient number of messages from each classes,
i.e., combining equations (6.5) and (6.6) we have

H
(
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)
=
...

= H
(
AΩ2

[n]

∣∣QΩ2

[n]W
[f ]
)

= 0;

(g) follows from the fact that each message consists of L independent and identically
distributed symbols as stated with equation (6.1).
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