

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

A NEURAL ANALYSIS-SYNTHESIS APPROACH TO LEARNING
PROCEDURAL AUDIO MODELS

by
Danzel Serrano

The effective sound design of environmental sounds is crucial to demonstrating

an immersive experience. Classical Procedural Audio (PA) models have been

developed to give the sound designer a fast way to synthesize a specific class of

environmental sounds in a physically accurate and computationally efficient manner.

These models are controllable due to the choice of parameters from analyzing a

class of sound. However, the resulting synthesis lacks the fidelity for the preferred

immersive experience; thus, the sound designer would rather search through an

extensive database for real recordings of a target sound class. This thesis proposes

the Procedural audio Variational autoEncoder (ProVE), a general framework for

developing a high-fidelity PA model through data-driven neural audio synthesis

methods to address the lack of realism in classical PA models. The two-step procedure

of training ProVE models is explained through examples of sound classes of footstep

sounds and the sound of pouring water.

Furthermore, the thesis demonstrates a web application where users can

generate footstep sounds by defining control variables for a pretrained ProVE model

to show its capacity for interactive use in sound design workflows. The increase in

fidelity from ProVE models is explored through objective evaluations of audio and

subjective evaluations against classical PA methods. These results show that these

learned neural PA models are feasible for sound design projects. The thesis concludes

with a discussion of applications and future research directions.

A NEURAL ANALYSIS-SYNTHESIS APPROACH TO LEARNING
PROCEDURAL AUDIO MODELS

by
Danzel Serrano

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Data Science

Department of Computer Science

December 2022

APPROVAL PAGE

A NEURAL ANALYSIS-SYNTHESIS APPROACH TO LEARNING
PROCEDURAL AUDIO MODELS

Danzel Serrano

Dr. James Geller, Dissertation Advisor Date
Professor of Computer Science and Data Science, NJIT

Dr. Mark Cartwright, Committee Member Date
Assistant Professor of Informatics, NJIT

Dr. Przemyslaw Musialski, Committee Member Date
Associate Professor of Computer Science, NJIT

BIOGRAPHICAL SKETCH

Author:

Degree:

Date:

Date of Birth:

Place of Birth:

Danzel Serrano

Master of Science

December 2022

Undergraduate and Graduate Education:

• Master of Science in Data Science,

New Jersey Institute of Technology, Newark, NJ, 2022

• Bachelor of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2021

Major: Computer Science

iv

To my loving parents, who have constantly supported
me, prayed for me, and never gave up on me. I wouldn’t
be where I am without their guidance in technology and
in music.

To my little brother, who, despite having cerebral palsy,
never fails to make everyone smile with his own smile.
You are a big influence on my decision to pursue a career
in academia and research.

To my church family at Word Christian Fellowship
International (WCFI). Thank you for your constant
prayers and encouragement.

Most importantly, to God, the one I fully trust my
research, my work, and my whole life to because of His
divine providence and amazing love.

v

ACKNOWLEDGMENT

I would like to thank Dr. Mark Cartwright for guiding me through this project,

introducing the audio processing realm to me, and teaching me so much in the domain

of machine listening and DSP.

Without Dr. Geller, I wouldn’t be able to pursue this research topic, so I would

like to thank him for allowing me this opportunity.

I’d also like to thank Dr. Przemyslaw Musialski, as my participation in his lab has

also influenced the methodology described in this thesis.

Finally, I’d like to thank the members of the Sound Interaction and Computing

Lab (SInC) at NJIT for being a motivating medium for brainstorming ideas and

recommending papers in the fields of Machine Listening, Representation Learning,

and HCI.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 Problem Statement . 4

1.2 Thesis Structure . 6

2 BACKGROUND . 7

2.1 Analysis-Synthesis Abstraction to Designing Procedural Audio Models 9

2.2 Neural Audio Synthesis . 11

2.3 Neural Audio Analysis - Machine Listening 13

3 APPROACH . 15

3.1 ProVE: A General Neural Analysis-Synthesis Abstraction 15

3.2 ProVE on Environmental Sounds . 19

3.2.1 Footsteps . 19

3.2.2 Pouring Water into A Glass 26

4 EVALUATIONS AND RESULTS . 29

4.1 Objective Evaluation . 29

4.2 Subjective Evaluation . 30

4.3 Results . 32

4.3.1 Sound Fidelity . 32

4.3.2 Sound Expressivity . 38

4.4 ProVE Application: Draw a GRF Curve 39

5 CONCLUSIONS AND FUTURE WORK 41

5.1 Conclusions . 41

5.2 Future Work . 42

APPENDIX A FORMULATION OF THE GRF CURVE GENERATOR . . 45

BIBLIOGRAPHY . 47

vii

LIST OF TABLES

Table Page

4.1 Frechét Audio Distances and Maximum Mean Discrepancies of Real and
Synthesized Footstep Sound Datasets 33

4.2 Audio Classification Accuracy of Label “Walk, Footstep” From Footstep
Sound Synthesis Methods . 35

4.3 Objective Difference Grades (ODG) of the Reconstruction of Footstep
Sounds. 36

4.4 Results of Subjective Evaluation (ProVE, PA) 37

4.5 Results of Subjective Evaluation (ProVE, Real) 37

viii

LIST OF FIGURES

Figure Page

2.1 A diagram of the structured approach to developing PA models and its
abstraction. 8

2.2 Diagram of DDSP Autoencoder Architecture. 12

3.1 Two-stage framework of ProVE. 16

3.2 Ground Reaction Force (GRF) curves as 3 polynomial segments. 20

3.3 Smoothed discrete Hilbert transform envelope as a GRF curve proxy. . . 20

3.4 ProVE Reconstruction (Footsteps on Gravel Texture). 22

3.5 ProVE Inference (Footsteps on Gravel Texture). 23

3.6 ProVE Reconstruction (Footsteps on Dirt Texture). 23

3.7 ProVE Inference (Footsteps on Dirt Texture). 24

3.8 ProVE Reconstruction (Footsteps on Grass Texture). 24

3.9 ProVE Inference (Footsteps on Grass Texture). 25

3.10 ProVE Reconstruction (Footsteps on Wood Texture). 25

3.11 ProVE Inference (Footsteps on Wood Texture). 26

3.12 Envelope generator for ProVE inference of pouring water model. 27

3.13 ProVE inference of pouring water (16 seconds). 28

3.14 ProVE inference of pouring water (shorter sound event duration, 16
seconds). 28

4.1 An example question for subjective evaluation of synthesis approaches. . 31

4.2 ProVE Example Web Application: Draw a GRF to synthesize footstep
sounds. 40

A.1 GRF using cosine half angle vs modified polynomial 46

ix

CHAPTER 1

INTRODUCTION

In immersive mediums, such as film, video games, and virtual environments, the

sound designer’s job is to record, synthesize, and process audio stimuli in a way that

best accompanies a set of visual or other modes of stimuli. The designer is usually

given a set of expectations or deliverables influencing this audio-visual relationship,

such as genre, and the overall atmosphere of a scene. The sound designer’s job is

defined in a similar way in engineering fields: the processing of sound signals in such

a way that it helps solve an engineering problem, like reducing noise in industrial

machines [27].

For many sounds, especially realistic sounds synchronized to on-screen events,

sound designers must search recorded sound databases for particular classes of sounds

and edit and process them to meet their project’s expectations. Traditional sound

design has been done this way for many years: crafting an auditory scene comprises

recording sets of sound classes and then putting them together in context [35].

However, the problem is not just finding a recorded sound that matches. Typically the

designer would find a sound that is close to what they want through public databases

of recorded sounds. They would then edit and process this initial sound until it

matches the requirements of the situation. In interactive media, like video games and

virtual environments, this is much harder to do due to the characteristics of a sound

event being dependent on the player’s current context (movement speed, distance

to sound sources, etc). Another problem is that these datasets of recorded audio

for a sound class can be massive, and sound designers must scan through them to

collect enough sounds for a specific sound class they want to model for their project.

The time it takes to scan through a database depends on the level of variability

1

required for a sound class and the number of sound classes the designer needs. Most

projects require more than one sound class, so this task is usually lengthy. If the

sounds collected by the designer are not able to match its corresponding visual event

because a suitable sound could not be found from the database or it could not be

processed appropriately, the resulting auditory scene may lose its realism, especially

in interactive media where a consumer is expected to be exposed to the auditory scene

for an extended period. The second problem of storage limitation is also dependent

on the sound class. The designer must collect many distinct class recordings if a

sound class requires high variability, which takes up storage space, especially in a

high-quality project.

Procedural Audio (PA) is a different approach to capturing a specific sound

class that aims to solve these problems. As an analogy, traditional sound design is

to a product development lifecycle, as PA is to mathematical modeling: the former

creates a static product; the latter models a variable process [17]. In other words, PA

models an approximation to the sound class. The constraint on storage is mitigated,

because only the process is kept in memory and used when needed, which is great for

interactive media, where the data storage of visual stimuli should be the focus. Since

PA models the sound class itself, the property of sound class variation is embedded

in an ideal model, which is highly controllable and expressive. This avoids the need

to search extensive databases, reducing the time (and money) it takes for a sound

designer to capture a sound class. Current approaches to PA are computationally

efficient and have control inputs and synthesis outputs that are physically inspired.

Although efficient and powerful, PA is still not widely used for sound design

and game audio for several reasons. One of them being the lack of reliable tools in

the immersive media industry [4]. However, the main reason PA is not being used

is simply that the sound quality of the resulting synthesized sound is lower than

real samples of the target sound class. This is partly due to the lack of research in

2

bringing PA to be a standard in immersive media, where the primary research focus is

on improving upon presenting visual stimuli. Current state-of-the-art approaches to

enhancing the quality of sound synthesis have been data-driven through deep learning.

Neural audio synthesis has been extensively researched for applications like speech

synthesis [52, 48, 44] and music generation [38, 13], but neural sound synthesis for

specific environmental sounds and foley1 synthesis have only recently been illuminated

[10]. Furthermore, the research on controllable neural synthesis models has progressed

mainly in the music [53] and speech [9] domains, while research into controllable neural

audio synthesis models for environmental sounds have been limited.

This thesis concentrates on the problem of developing a general data-driven

framework for learning controllable PA models for environmental sounds with

improved sound quality through neural audio synthesis. The framework presented,

the Procedural (audio) Variational autoEncoder (ProVE), can be seen as a 2-stage

(analysis-synthesis) abstraction of the structured approach to sound design presented

in [19]. The primary neural audio synthesis model, however, is an autoencoder

model from a recent paper called Differentiable Digital Signal Processing (DDSP)

[16], which proposed a differentiable version of the harmonic + noise sound synthesis

method [47]. Emphasis must be placed on the fact that, despite most PA models

being efficient enough to be run in real-time, this thesis does not contain results

of PA models developed through ProVE running in real-time. This is because the

neural audio synthesis model used for the examples illustrated in this thesis does

not have a fast enough inference time. One of the main objectives of this thesis is

to demonstrate that ProVE models surpass classical PA models in fidelity, not in

feasibility for use in real-time interactive media. Nevertheless, ProVE is agnostic

to neural audio synthesis approaches, so the benefit of utilizing recent advances in

1Foley, in this case, refers to the act of physically recording additional sound effects to be
added post-production of immersive medias.

3

real-time neural audio synthesis [5] as a next step is discussed in the future works

section.

1.1 Problem Statement

Ultimately, the problem with PA models is low fidelity. Although these models are

controllable with physics-inspired parameter choices and synthesis methods, the lack

of use in immersive media is due to low audio quality. Subsequently, sound designers

would rather search an extensive database to find recorded audio that best matches

the sound class they need [17]. The ProVE framework aims to develop a controllable

PA model that synthesizes higher fidelity environmental sounds than traditional PA

models through the use of neural audio analysis-synthesis. The definition of fidelity

in this case is the measure of how well a synthesis method produces sounds of a sound

class and must not be mistaken for how many discrete samples are used for 1 second

of audio, or the sample rate.

The problem formulation in terms of generative modeling is as follows:

An environmental sound class Xclass can be interpreted as being a conditional

distribution p(x|γ, u) with x ∈ Xclass being a sound belonging to class Xclass, γ ∈

Γclass being a control variable sequence, and u ∈ U([−1, 1]) being a random uniform

sequence. The intuition here is that the definition of γ influences the characteristics

of sound x, and sampling u captures the variation of possible sounds conditioned by

γ. With these assumptions, the goals of the ProVE framework are:

1. With an autoencoder (fθ(x),gθ(z)), learn an encoded representation of audio x,

z = fθ(x). Here, the encoder fθ and the decoder gθ are neural networks and θ

denotes their parameters that get updated through gradient-based optimization.

One can interpret z as a “machine-interpretable” control variable, because

although modifying z results in controlling the sound from the decoder, gθ,

a human would not understand the learned semantics of z.

4

2. Learn a mapping from “human-interpretable” control to “machine-interpretable”

control. That is, optimize a mapping from Γclass 7→ Zclass, where Zclass is the

latent space learned from training the autoencoder. To do so, γ is assumed to

correlate with z via some random sample u ∈ U([−1, 1]). The control mapping

is then hϕ : Γclass × U([−1, 1]) 7→ Zclass, where ϕ are to denote the parameters

for neural network hϕ.

3. The controllable data-driven procedural audio model is the composition of the

“human-interpretable” control mapping ẑ = hϕ(γ, u) and the audio decoder

x̂ = gθ(ẑ):

x̂ = (gθ ◦ hϕ)(γ, u) ∼ p(x|γ, u)

It is important to keep the generative modeling formulation in mind. Most

modern generative models sample a latent distribution in order to sample an

approximation of the real distribution. Many classical approaches to developing

procedural models for environmental sounds can be defined in the same way: the

input to a synthesis module is usually a sequence of uniformly distributed white noise

(u ∈ U([−1, 1])) and an accompanying control variable (γ). The control variable

governs what the synthesis module does with the uniform sequence to output sound.

In other words, one can sample the space of uniformly distributed noise to sample the

space of sounds that approximates a sound class. This formulation of developing PA

models as data-driven generative models greatly influences the use of neural audio

synthesis techniques in ProVE.

It is also important to note that the set of models learned in ProVE reported in

this thesis is targeted towards the class of various environmental sounds. Although

research towards controllable synthesis of speech and music has leaned towards

a language-oriented approach, it still shares similarities to the analysis-synthesis

approach in ProVE.

5

1.2 Thesis Structure

The remainder of the thesis seeks to answer the following questions:

1. Do PA models trained in ProVE obtain a higher fidelity than traditional PA

models of the same sound class?

2. Since the learned latent sequence space of an audio autoencoder fθ : Xclass 7→

Zclass is not understood by a human, how can we define a “human-interpretable”

control sequence γ ∈ Γclass fromXclass that allows a human to control the sound

synthesis of data-driven neural audio synthesis models?

3. Are ProVE models feasible for use in the current sound design workflow?

The following chapter introduces the background of the classical analysis-

synthesis approach to designing a procedural model and current approaches to neural

audio synthesis and neural audio analysis. The approach section explains the data

collection and processing methods for an arbitrary target sound class and the 2-stage

“connectionist” analysis-synthesis approach in ProVE. In the evaluation section,

subjective and objective evaluations are done on the models learned in ProVE,

followed by a discussion of their results. Finally, the thesis concludes with applications

and limitations of ProVE, the implications of ProVE in the workflow of sound design

for immersive media, and future research directions in neural PA models.

6

CHAPTER 2

BACKGROUND

Andy Farnell’s Designing Sound [19] takes a systematic approach to introducing the

theory and technique for developing classical procedural audio models. The theory

ranging from the basics of understanding the physics of the propagation of sound

waves to psychoacoustics, the study of sound perception. Farnell also provides the

reader with a plethora of example PA models that synthesize a variety of sound classes.

In the book, a multi-stage structured approach to the development of procedural audio

models is given.

With regard to sound design, an auditory scene may be described, but the

designer still must understand what sound classes are required to make up the full

context. This step of planning out a full auditory context is called Requirements

Analysis. There are then intermediate steps to take in iteratively improving upon

that product with the responses from the penultimate testing step, the first being the

Research step. Once the required components of an auditory scene are planned out,

the designer must delve deeper into what makes up the components. As an example,

if a designer wishes to create a PA model for a rainforest soundscape, they would

have in their requirements the rain, as well as a few other environmental sounds.

The designer must then research to understand the physics behind droplets of rain

on several types of surfaces, as well as similar analyses on the other required sound

classes.

The next steps are Model Making and Method Selection. With the information

retrieved from the research step, the designer sketches out an abstract version of

the model in an object-oriented way, listing out technical requirements like object

structures, audio streams, and possible synthesis methods to use. It is here where

7

Figure 2.1 (Left) The full structured approach cycle to developing PA models as
explained in Andy Farnell’s Designing Sound [19]; (Right) an abstraction of this
process into analysis and synthesis, where the output of the analysis stages are also
evaluated and improved in an iterative manner.

8

most of the control variables are planned out from the data in the research and

analysis steps. Along with creating a blueprint for the model, the designer must also

select a synthesis algorithm to use that best suits the analysis of the specific sound

classes.

The next step is Implementation, or the actual building of the model itself with

a framework for audio synthesis. Lastly are the Integration and Testing stages, where

the synthesis samples from the model are placed into a project or the implementation

of the model is integrated into a system to be evaluated against the initial stated

deliverables in the analysis stages. When a feature is not up to par with the

expectations of the initial vision or with the information retrieved from the research

stage, then the sound designer takes an iterative step backward to the necessary

step to fill in the gaps. Usually, this means modifying or adding to the current

configuration in the implementation step, however, the sound designer may have to

go back to the research step to get more information about what’s missing.

2.1 Analysis-Synthesis Abstraction to Designing Procedural Audio

Models

The full “waterfall-esque” iterative process of the aforementioned structured approach

to developing PA models can be abstracted into two stages: Analysis and Synthesis.

One can list requirements for an auditory scene and research those requirements with

various digital signal processing (DSP) techniques for analysis and simple attentive

listening. As a starting point, studying the waveform in the time domain can tell a

sound designer a few things, like the overall envelope of a sound event or the general

activity of an entire auditory scene. In the context of impulse-based sound classes,

the envelope of a sound can represent the amount of physical force exerted against

a surface. If the designer is examining sounds with prevalent harmonics (musical

instruments, speech, etc.), they can even examine the shape of periodic features

9

in the time domain; however, that’s usually done through spectral analysis in the

frequency domain. Analysis of sound in the time domain and frequency domain may

lead questions about what happens in the physical world to make the waveform and

spectra appear or evolve in a certain way. In that case the designer may also want to

do a physical analysis of a sound class, which are what makes the control parameters

of PA models of environmental sounds physically inspired.

From the research and analysis done for the requirements of the target sound

class, the designer lists possible control parameters for the synthesis module. For

example, possible control parameters for a model of synthesizing footsteps would be

the selection of ground material and the ground reaction force of a human foot during

a step phase. The size of this list is usually reduced by correlating one parameter to

others in a meaningful way to users of the model. With this list of control parameters,

the designer has to choose synthesis methods that will benefit best in matching the

information from the analysis step. Examples of synthesis methods used for PA

models of environmental sounds include pure additive synthesis [39, 46], wavetable

synthesis [26], subtractive noise, granular synthesis [45], piecewise modeling, and

physical modeling.

The difference between the proposed approach in this thesis and the set of

models using physical modeling synthesis [49] must be emphasized. These models

render sound through simulation methods in computational physics, usually through

formulating state space models. Although with exciting high-fidelity results, the

physical modeling synthesis approach has disadvantages. One of them is that some

of these models are computationally expensive in that prerendering sound consists of

solving a system of differential equations using numerical methods. It is still an open

problem to design a solution for the real-time rendering of computer-generated and

physically-modeled sound, especially in interactive media like video games and virtual

environments [28]. Another disadvantage of formulating sound synthesis models with

10

the physics-based approach is that one would require immense knowledge in the

domain of physics or mechanics. The most prominent are fluid dynamics [34, 7],

rigid-body physics [33, 8], and research in acoustics simulations like wave propagation

[3] and sound spatialization. Unfortunately, sound designers without this domain

knowledge must wait for the research towards a specific sound class they require. This

thesis is a step towards developing sound synthesis models that are data-driven while

still borrowing some domain knowledge from physics, as opposed to being entirely

driven by a model of the sound class in the physical world.

2.2 Neural Audio Synthesis

The deep learning subset of data-driven generative modeling methods for generative

audio are coined neural audio synthesis methods. The main neural audio synthesis

method used in this thesis is from Engel et al. [16], which presented Differentiable

Digital Signal Processing (DDSP); a library of differentiable DSP modules formulated

in a way that allows them to be used in automatic differentiation frameworks

(Tensorflow, PyTorch, etc). The goal of DDSP was to move towards the vocoder

approach to generating audio, which generates audio with oscillators and filters using

the analysis-synthesis paradigm. This is opposed to the models that predicts Fourier

coefficients in the spectral domain [52, 15], as well as autoregressive approaches that

predict samples one-by-one in the time domain [29, 43], which take longer to train

and have a larger dataset size.

Adversarial approaches like HiFi-GAN[32] and WaveGAN [14] have also been

used for generating high quality synthesis of speech and music. Recent papers have

used HiFi-GAN for the neural audio synthesis of footstep sound effects [11], and drum

sounds [41]. Although the resulting sample space successfully generates high-fidelity

footstep sounds, the model is only controllable up to a discrete label for material

selection. Also, the audio generated are one-shots of a single footstep, not taking

11

into account the speed or amount of force on the floor. Furthermore, adversarial

approaches are typically unstable to train, and DDSP lists adversarial losses as

another goal avoidance.

The experiments done in the DDSP paper were focused on the neural audio

synthesis of sound classes that are rich in harmonics, like musical instruments and

speech, using an audio autoencoder model. The encoder side of the model used a

pre-trained CREPE model [31], a state-of-the-art pitch estimation model, to encode

fundamental frequency f0[n] sequence. Loudness l[n] was also encoded using simple

A-weighting [23]. Finally, an optional latent encoder was done on the target audio,

with the intuition that the residual information from z[n] captured musical timbre.

The latent space is thus a tuple (f0[n], l[n], z[n]), which is used as input to a recurrent

decoder. The output of this decoder parameterizes the differentiable synthesis

modules, which, when combined together, render synthesized audio.

Figure 2.2 A diagram of the DDSP Autoencoder Architecture.

The synthesis method in DDSP uses spectral modeling synthesis (SMS) with

a harmonic synthesizer component and a filtered noise component. The harmonic

component has as input a bank of harmonic amplitudes (from the decoder model)

and the fundamental frequency f0[n]. It sums up a bank of oscillators with frequencies

ωk = k · f0 being integer multiples of the fundamental. The harmonic signal s[n] is

12

formulated as:

s[n] =
K∑
k=1

Ak[n] sin(2πϕk[n])

where Ak[n] is a time-varying amplitude for the k-th harmonic and instantaneous

phase ϕk[n] is obtained by summing ωk[n] with some initial phase ϕ0,k:

ϕk[n] =
n∑

m=0

ωk[m] + ϕ0,k

The DDSP-filtered noise component applies a time-varying FIR filter to random

uniform noise. With the convolution theorem for the Fourier transforms, the

component takes an input of vectors Hl, interpreted as the frequency-domain transfer

function, and multiplies them with frames of the discrete Fourier transform (DFT) of

uniform noise Yl = HlUl (u[l] ∼ U[−1,1]L , where L is the length of the output signal).

The frames of y[n]←→ Yl are combined together with overlap-add.

Recently, research in the use of DDSP for the procedural generation of car engine

sounds has been done with exciting results [36]. The approach was in a similar manner

as to ProVE; however, the collection of control variables (denoted γ in this thesis)

paired with corresponding audio (denoted x) required recording the RPM of an actual

car’s onboard diagnostics system. This approach to collecting (γ, x) pairs is, although

physically inspired, a lengthy process and difficult to do for small-scale projects. This

thesis focuses on environmental sounds obtainable through online sound packs and

simpler recording processes one can do from home.

2.3 Neural Audio Analysis - Machine Listening

As stated by Andy Farnell in [19],

“Good sound design is more analysis than synthesis. Most of it is

component analytical, reduced, critical, and semantic listening.”

Machine Listening aims to develop algorithms for a machine to perceive audio in

a similar manner that humans do, encoding semantic information about a sound class

13

and using that semantic information to solve problems like recognition or derivative

generation. Unfortunately, little research is found where the motivation of controllable

neural audio synthesis methods is on how a human audiates different sounds they have

experienced and encoded. This focus on “machine audiation” would connect machine

listening, a machine’s perception of audio, with neural audio synthesis, a machine’s

audiation from the semantic information retrieved from machine listening. More

specifically, a connection between neural audio synthesis methods with approaches

to sound event detection (SED) is motivated by the way humans internally audiate

sounds. The current approaches to SED are data-driven, trained to classify multiple

classes per temporal window [1, 37]. Models used in the state-of-the-art SED use

convolutional recurrent neural networks [6] and transformers [21].

One can internally audiate a dog barking sound in a busy city street, just

like one can internally visualize a dog in any environment. This is what motivates

the methodology of this thesis, where ProVE learns “machine-interpretable” control

variables, and learns a mapping to that control space from “human-interpretable”

control.

14

CHAPTER 3

APPROACH

3.1 ProVE: A General Neural Analysis-Synthesis Abstraction

The “classical” approach to PA relies on the information collected from analysis to

create a synthesis model. A “connectionist” approach to PA should be similar except

that a learning machine would do the signal analysis instead of the human. The

Procedural Variational autoEncoder (ProVE) is a 2-stage framework that proposes

just that.

The first step in ProVE is to train an autoencoder model to reconstruct audio

x from a specific sound class. The encoder z = fθ(x) and decoder x̂ = gθ(z) models

are architecture agnostic; however, the quality of outputs may depend on the choice

of both. A trained autoencoder learns a latent sequence space z ∈ Zclass that one

can think of as a latent parameter space to the synthesis module (the decoder gθ(z)),

learned by the analysis module (the encoder fθ(x)). Of course, this latent space of

sequences is not interpretable by a human, so a second step is needed to allow for a

controllable model.

The second step is to map a set of control variables to the latent sequences

learned in the first step. These control variables γ ∈ Γclass, which are proxied through

classical signal analysis on audio x, are paired with x ∈ Xclass of the sound class

dataset used to train the autoencoder. In each example model demonstrated in this

thesis, the collection or approximation of control variables is explained. This step is

where the PA model is developed. As mentioned in the background section, most

PA models for environmental sounds have a synthesis module which is a function of

the control parameters γ and a uniformly distributed sequence u ∼ U([−1, 1]). The

control parameters influence the operations done on the random sequence, giving

15

Figure 3.1 The two stage framework of ProVE: (1) Neural Analysis-Synthesis; (2)
Learning a mapping from “human-interpretable” to “machine-interpretable” control
learned in step 1; (3) The final model is the composition of the mapping from step 2
and the decoder from step 1.

16

variation to the synthesis. In the second stage of ProVE, a control encoder model

hϕ(γ, u) takes in as input the control variable γ that’s paired with audio x, as well as

u ∼ U[−1,1], which is assumed to be paired with x. The control encoder ẑ = hϕ(γ, u)

is then trained to optimize a distance loss to the latent sequence of the audio encoder

from step 1 z = fθ(x), attempting to map an interpretable control variable to a

seemingly uninterpretable one with influence from an assumed random sequence u ∼

U[−1,1] to infuse some sort of variation.

In the demos of the subsequent sections, two encoder architectures were tested.

The first encoder follows the architecture of the original DDSP paper [16], where

mel-frequency cepstrum coefficients (MFCCs) are calculated, normalized over the

channel dimension, and passed through a recurrent network. MFCCs are defined as

compact representations of the power spectrum (periodogram) of signals and have

been used extensively for extracting temporal features in various fields of audio

processing [20]. The second architecture that was tested was a fully convolutional

network with stacks of 1D inception-like modules where 1D convolutions of different

kernel sizes and dilation rates are concatenated in the channel dimension. Both

encoders were used and gave similar audio qualities, however, the former MFCC

encoder was used as the primary encoder, as it used significantly less parameters.

This thesis focuses on audio with a sample rate of fsa = 16kHz and a control rate of

fsc = 250Hz, so the encoder has a depth of 6 with a downsampling scale of 2. Each

of the inception-blocks of the second encoder type have kernel sizes of 3 and 5 and

dilation rates of 1 and 2. The latent space is 512-dimensional and is restricted to

be in the range z ∈ [−1, 1]Dz by using the tanh function as a final activation of the

encoder.

The decoder model gθ(z) used is a recurrent neural network parameterizing the

DDSP subtractive noise synthesizer explained in section 2.2. The specific architecture

starts with an MLP taking an input latent sequence z. These MLPs have a depth

17

of 3 with a dimension of 1024 in each layer. The output sequence of this MLP is

fed through a recurrent layer, and the resulting sequence is passed through a final

dense layer before being sent to the subtractive synth, as noise magnitudes with a

dimensionality of 4096. The synth itself uses a window size of 4096+1. To optimize

spectral reconstruction loss, this project uses the same multi-scale spectral loss used

in the original DDSP paper, where the loss is the sum of spectral distance losses

with various Short-Time Fourier Transform (STFT) window sizes (Si
j is the j-th

window of the magnitude spectrogram from the STFT of audio x with a window size

i ∈ {64, 128, 256, 512, 1024, 2048}; Ŝi
j is defined the same way using the audio from

the model x̂):

Li = Ej[||Si
j − Ŝi

j||1 + α|| logSi
j − log Ŝi

j||1]

L =
∑
i

Li

The control encoder hϕ(γ, u) used for mapping the human-interpretable control

variables to the “machine-interpretable” control in the second step of ProVE is similar

to the MFCC encoder, where the control variable γ ∈ Γclass paired with random

uniform noise u ∼ UDr

[−1,1] are first normalized over the channel dimension and passed

through a recurrent network. The combination of this model with the decoder learned

in the first step of ProVE gives us the full PA model.

One may ask why the models demonstrated in this thesis use fsa = 16kHz when

the goal is high-fidelity audio. Readers are advised to remember that high-fidelity

in the case of developing models that synthesize audio is the measure of how well a

model produces sounds of a sound class. That is, the output of a decoder x̂ = gθ(z) is

considered high fidelity if the density p(x|z) associated with sound class Xclass is high

for x̂. The reason why the models in this thesis use fsa = 16kHz is because classical

18

PA models synthesize 16 kHz audio which are less likely to be a part of Xclass than

16 kHz audio of real recordings. It is a starting point, as 16 kHz was the sample rate

from the original DDSP paper [16], and it was shown that the DDSP autoencoder

could be scaled up to synthesize with the standard 48 kHz sample rate [36].

3.2 ProVE on Environmental Sounds

The first step of ProVE is the same for all sound classes, however, the process of

defining control variables for different environmental sound classes is explained in

this section. The sound classes demonstrated in this thesis are Footsteps and Pouring

Water.

3.2.1 Footsteps

In [18], a procedural audio model is developed for the controllable synthesis of footstep

sounds from bipedal locomotion analysis of foot pressure. The main control variable

influencing the puredata1 patch is the output of a ground reaction force (GRF) curve

generator. The GRF is the reactive force the ground applies back toward the human

as its feet push against it. The generator is a combination of 3 polynomial segments,

one for the initial hit of the heel of the foot, another for the transition rolling from

the heel to the ball of the foot, and another for the final push from the ball of the

foot as it leaves the ground. This curve is then used as the excitation to a synthesis

module, which outputs a synthetic footstep sound depending on the ground material

the synthesis module is modeling. Since a footstep sound is dependent on the material

being modeled, the idea is to either have a synthesis module for each, all of them

having the same excitation curve, or train a model with a parameter for material

selection, as in [11].

1puredata is an open source visual programming language used for modular synthesis:
https://puredata.info/

19

Figure 3.2 GRF curves as 3 polynomial segments.

It is the same for the footstep models in ProVE, dividing the footstep sound

class by ground materials. To train the control encoder, there has to be a defined

control variable γ to be passed along with the uniform sequence u, paired with input

audio x. The control variable for footstep sounds was simply defined as the envelope

of the audio, with the motivation that the magnitude of the exertion of force influences

the magnitude of the conversion of energy which influences the loudness of an impact-

based sound.

Figure 3.3 The envelope of footstep sounds calculated as the absolute value of the
discrete Hilbert transform. This envelope is smoothed either by average pooling, low
pass filtering, or Laplacian smoothing.

20

Hence, the training of the control encoder is done by calculating the envelope of

the sounds as γ, passing (γ, u) as input to the control encoder to get ẑ, and optimizing

with respect to a distance loss. Inference on ProVE trained on footstep sounds of

a specific material is then done with the same tri-segment GRF curve as input to

the control encoder, along with a sample sequence from U[−1,1]. The output of the

control encoder ẑ is then passed to the decoder model in step 1 for the synthesis of a

footstep sound with loudness in relation to the input GRF curve. Figures 3.4 - 3.11

display samples of the full ProVE model for footstep sounds on the surfaces of gravel,

dirt, grass, and wood. The even numbered figures show log-scaled spectrograms of

the footstep sound from the training dataset and the ProVE spectral reconstruction

from the autoencoder (̂x) = (gθ ◦ fθ)(x), as well as the smoothed audio envelope

which is used as the proxy to the GRF of the footstep. The odd numbered figures

display the log-scaled spectrogram of using the ProVE model with Farnell’s GRF

curve generator, along with the curve used as input to the model. Some of the curves

have additional random curves to account for small debris, like for the gravel surface

texture.

The results from the evaluation section of this thesis demonstrate ProVE on two

different sets of footstep datasets. The first is a small archive of footsteps from a blog

post on PremiumBeat.com2 which discussed footstep sound effects in sound design.

This set had footsteps separated by ground material with varying walking and running

speeds in order to test ProVE’s ability to learn a higher fidelity synthesis while also

retaining the same expressivity of classical PA models. The second set was the same

collection of high-heel footstep sound effects from the Zapsplat3 website used in [11]

in order to compare ProVE to an adversarial approach. This set contained one-shot

sounds and also separated these by ground material; however, the demonstrations in

the evaluation section show a ProVE model which was trained on a long segment

2https://www.premiumbeat.com/blog/40-free-footstep-foley-sound-effects/
3https://www.zapsplat.com/sound-effect-packs/footsteps-in-high-heels

21

of audio with footsteps walking on a specific material for about 10 seconds. The

rationale behind continuing to train with long segments of walking audio instead of

training on one-shots is that audio is temporal, and it is infeasible to increase the

fidelity of PA models by bounding the analysis-synthesis approach to look at a brief

moment in time. Bipedal acceleration perceptually will sound very different than

bipedal deceleration, and that is due to how the control variables (GRF Curve in this

case), as well as its corresponding sound, behave over time.

Figure 3.4 (a) Log-scaled spectrogram of Footsteps on Gravel Texture (Real
Recording); (b) Log-scaled spectrogram of Footsteps on Gravel Texture (ProVE
Reconstruction); (c) Envelope as control variable proxy.

22

Figure 3.5 (a) Control variable as input to Control Encoder (along with random
uniform sequence). (b) Spectrogram of ProVE Inference for Footsteps on Gravel
Texture.

Figure 3.6 (a) Log-scaled spectrogram of Footsteps on Dirt Texture (Real
Recording); (b) Log-scaled spectrogram of Footsteps on Dirt Texture (ProVE
Reconstruction); (c) Envelope as control variable proxy.

23

Figure 3.7 (a) Control variable as input to Control Encoder (along with random
uniform sequence). (b) Spectrogram of ProVE Inference for Footsteps on Dirt
Texture.

Figure 3.8 (a) Log-scaled spectrogram of Footsteps on Grass Texture (Real
Recording); (b) Log-scaled spectrogram of Footsteps on Grass Texture (ProVE
Reconstruction); (c) Envelope as control variable proxy.

24

Figure 3.9 (a) Control variable as input to Control Encoder (along with random
uniform sequence). (b) Spectrogram of ProVE Inference for Footsteps on Grass
Texture.

Figure 3.10 (a) Log-scaled spectrogram of Footsteps on Wood Texture (Real
Recording); (b) Log-scaled spectrogram of Footsteps on Wood Texture (ProVE
Reconstruction); (c) Envelope as control variable proxy.

25

Figure 3.11 (a) Control variable as input to Control Encoder (along with random
uniform sequence). (b) Spectrogram of ProVE Inference for Footsteps on Wood
Texture.

3.2.2 Pouring Water into A Glass

The control variable proxy for sounds of footsteps was simple to define by using

the smoothed envelope of the audio. In this next section, the same proxy is used

in modeling the sound class of pouring water into a glass, however, the purpose

of describing the process done in modeling this sound class is to demonstrate the

simplicity of training a ProVE model with simple user-defined control variables. In

this small experiment, a ProVE model for the specific sound class of pouring water

into a glass cup is learned. The motivation in the defined control variable is as

simple as understanding that the sound of pouring water differs depending on how

full the glass cup is. The shape and volume of the glass cup are fixed, with the

assumption that the model learned only synthesizes sounds of that specific glass cup.

The control variables of this model were simplified to the envelope (γ<0>) and how

full the cup is (γ<1> = 0 being completely empty and γ<1> = 1 being completely full).

26

Audio was recorded with the cup at a starting capacity γ<1>
0 ∈ [0, 1] and filled to an

ending capacity γ<1>
T ∈ [γ<1>

0 , 1]. Since audio samples are recorded in this way, the

discrete control signal is assumed to be the linear interpolation from γ<1>
0 to γ<1>

T ,

with a length of T , the recorded audio length. With γ = (γ<0>, γ<1>) defined, and

u ∼ U[−1,1]T paired with audio x, the second step of ProVE can begin, mapping the

control and uniform sequence to the latent space learned in the first step. Inference of

this ProVE model is done by inputting cup capacity γ<1> ∈ [0, 1]T and the input of

an envelope generator, defined as the summation of the square of sinusoidal functions

with random frequencies and initial phases:

γ<0>(t) =
N∑

n=1

an sin
2(2πωnt+ θ0,n)

This envelope generator was approximated by observing the envelopes of the real

recordings.

Figure 3.12 (a) An actual envelope calculated from real pouring water recordings;
(b) Samples from γ<0>(t), of the described envelope generator.

27

Figure 3.13 ProVE inference of the pouring water model. The input envelope is the
product of a negative exponential and the envelope generator. The plots on the left
are the control variables, which, when fed into the control encoder along with random
uniform noise hϕ(γ, u), gives an approximation to the latent sequence ẑ, which is then
passed to the decoder gθ(ẑ).

Figure 3.14 Another example of synthesizing water pouring into a glass cup with
a shorter sound event duration. The full synthesis is still 16 seconds.

28

CHAPTER 4

EVALUATIONS AND RESULTS

This section introduces the choices in objective and subjective evaluations of the

models learned in ProVE. These evaluations aim to answer the question of whether

or not these models are higher in fidelity than classical procedural audio models.

Although the second step of ProVE of mapping human-interpretable control to

(machine-interpretable) latent control makes ProVE models expressive by definition,

the evaluation of the expressivity must still be evaluated. However, due to time

constraints, the proposed approach is only described and not conducted.

4.1 Objective Evaluation

Although there is no perfect objective evaluation metric, one can utilize data-driven

and perceptually motivated metrics to evaluate how close one synthesis model is to the

data distribution it is designed to model. The Frechét Audio Distance (FAD) [30] is

used as an objective evaluation method comparing the synthesis from ProVE models

to classical PA models. The idea behind FAD is to calculate two sets of embedding

vectors from a pre-trained audio classification model: one set of embeddings from

the real audio distribution ereal and another set from the output of a generative

model emodel. The next step would be to estimate multivariate Gaussians with the

sample means and covariances of ereal and emodel, and finally calculate the Frechét

Inception Distance [25] between the two estimated distributions. This metric has

been used in the past to evaluate generative audio models [42]. The Maximum Mean

Discrepancy (MMD) [22] was also used as another distribution distance metric to

compare between synthesis approaches. The MMD is calculated the same as the FAD,

29

but only as the distance between sample mean embeddings of both distributions1. For

the objective evaluations done in this thesis, the FAD was calculated from embeddings

from a pre-trained audio classification model called VGGish [24] and the MMD was

calculated from pretrained OpenL3 [12, 2] embeddings, both models being trained on

audio classification datasets.

Another objective measure shown was the accuracy of an audio classification

model in classifying the resulting synthesis as the target sound class. A pretrained

yamnet2, a model that was used for classifying 521 different audio classes, calculated a

set of 521-dimensional vectors which are classification scores for each synthesis model

and the real audio dataset. These scores are interpreted as the confidence that the

classifier has in labelling the input audio as some class. In the case of footsteps, the

label that was analyzed had the class-name “walk, footsteps.”

The final objective measurement used is the Perceptual Evaluation of Audio

Quality (PEAQ), which is carried out for the evaluation of the basic audio quality

(BAQ) of reconstructed audio from ProVE. The implementation of PEAQ used here

is PEAQ Basic and is publicly available as MATLAB code from McGill University

[51].

4.2 Subjective Evaluation

The main interface for subjective evaluations was the Reproducible Subjective

Evaluation (reseval) framework [40], which allows for the creation of simple and

efficient subjective evaluation tests and the crowdsourcing of these tests as Human

Intelligence Tasks (HITs) on Amazon Mechanical Turks. This interface was modified

to also show the participants a description of the stimulus being presented on a test

page. For example, for an AB test of footstep sounds, the participant is tasked to

1Typically, the MMD is calculated as the distance between sample mean embeddings after
applying a kernel function to them.
2https://tfhub.dev/google/yamnet/1

30

choose whether stimulus A or B best matches the stimulus description of “Footsteps

on a Gravel Texture.” The criteria for inclusion in crowdsourcing these sound

comparison tests on Amazon Mechanical Turks were limited to those above or at

the age of 18 and those who are not diagnosed as deaf or hard of hearing. The HITs

also had criteria that required a participant to have at least 1000 approved HITs

completed, as well as have a sufficiently high acceptance rate of 99%, in order to

ensure all of the responses were reliable for use in analysis. An additional headphone

screening test is implemented in reseval for testing the competency of a participant

in hearing the auditory stimuli of each test page. All participants were compensated

a base payment, regardless of whether or not they qualified for inclusion. Those that

fit the criteria of inclusion, passed the headphone screening test, and completed the

full listening survey, were compensated a bonus payment. Each test called for 50

participants to answer 10 pages of comparing two pairs of audio to their stimulus

description.

Figure 4.1 An example question for subjective evaluation of synthesis approaches.
In this case it is a test on footstep sounds. The interface is created using a modified
version of reseval [40].

.

31

4.3 Results

The main objective of ProVE is to provide a general framework for learning PA

models which surpass classical PA models in fidelity, but still retaining the same

level of expressivity and controllability that adversarial-based approaches lack. This

section is separated into the results of analyzing these two goals by first discussing

sound fidelity evaluations, and then discussing the controllability of ProVE models.

4.3.1 Sound Fidelity

As mentioned previously, there is no ideal objective metric for evaluating environ-

mental sounds, but the widespread inclusion of perceptually motivated audio metrics

allows for confidence in their utilization as a reliable replacement. Table 4.1 displays

the same distribution metrics used in [11], the paper displaying the adversarial

approach to learning a distribution of footstep one-shots. In order to use the metrics

shown from that paper faithfully and reliably, the same sampling and evaluation

processes are strictly followed. This was done because a pretrained model of the

adversarial approach was not readily available. Each column of the table is the

distance between two audio distributions, for example, the column (ProV E,Heels)

would hold the results of evaluating the Fréchet Audio Distance (FAD) on the top cell

and the Maximum Mean Discrepancy (MMD) on the bottom cell between the sample

datasets of the footstep ProVE model and the training dataset Heels. The FAD and

the MMD, are two objective metrics used by the previously mentioned adversarial

approach to learning one shots of footstep sounds. These two distribution distances

are calculated among 3 different synthesis methods for footsteps (PA, GAN, and

ProVE) and the real audio footstep dataset from Zapsplat. PA denotes the classical

procedural audio model for footsteps [18], ProVE denotes the ProVE model, and

GAN represents the adversarial approach. Heels represents the training distribution

used for the ProVE model and the adversarial approach and Misc represents the

32

distribution of the rest of the footsteps collected from the Zapsplat website. One

would desire a lower FAD and MMD with Heels to show that the synthesis of their

model closely matches the training distribution of real audio.

(PA, Heels) (ProVE, Heels) (GAN, Heels)

FAD 10.19 2.41 6.06

MMD N/A 42.71 53.5

(PA, Misc) (ProVE, Misc) (GAN, Misc)

FAD 11.53 3.96 3.13

MMD N/A 88.48 56.4

(PA, ProVE) (Heels, Misc)

FAD 8.10 6.43

MMD N/A N/A

Table 4.1 Frechét Audio Distances (FAD) and Maximum Mean Discrepancies
(MMD) of Real and Synthesized Footstep Sound Datasets

The cells of table 4.1 show the FAD or MMD between two sample distributions of

footstep sounds. The top table shows the distances between the synthesis methods to

the training dataset Heels, the middle table shows the distances between the synthesis

methods to the Misc dataset, and the bottom table shows the distances between the

adversarial approach and the ProVE model and the distances between the Heels and

Misc. What is unsurprising from analyzing the FADs is that the classical PA model

is the furthest away from both datasets, enforcing the fact that classical PA models

lacks realism. What is exciting is that the ProVE model is significantly closer to

the datasets of real recordings of footsteps. This was one of the objectives that

this thesis aimed to show: that ProVE models have higher fidelity than classical PA

models while still retaining the expressivity that the one-shot adversarial approach

lacks. The table also shows that the ProVE model is closer to the training data

(Heels (Zapsplat)), than the adversarial approach is, the ProVE model having an

FAD of 2.41 and the adversarial approach having an FAD of 6.06. However, the

33

FAD between the models and the dataset consisting of the rest of the footstep sounds

from the Zapsplat website3 (Misc (Zapsplat)) shows that the adversarial approach

has an FAD of 3.13, whereas the ProVE model is further away with an FAD of 3.96.

The authors of the adversarial approach interpret this as the generator having the

capability of synthesizing samples outside of the distribution of training data. The

ProVE model seems to have a consistent distance in both datasets, where the model

is closer to the training Heels dataset, the distribution it is attempting to model, and

it is proportionally further away than the Misc dataset. Furthermore, the FAD of

the adversarial approach to the Misc dataset does not differ significantly to the FAD

of the ProVE model to Misc. With this, an argument can be made that the ProVE

model has the capability of synthesizing samples outside of the distribution of the

training data.

The bottom rows of table 4.1 display the Maximum Mean Discrepancies (MMD)

between distributions. The results for MMDs are similar to FAD, in that the ProVE

model is closer to the Heels dataset with a distance of 42.71, compared to the 53.5

from the adversarial approach. The MMDs with theMisc dataset shows an interesting

result with the adversarial approach, in that it is further away from Misc than the

Heels dataset. This is the opposite of what was shown with FAD. Furthermore, the

difference between the two MMDs for the adversarial approach are not significant,

but for FAD, they are significantly different. The MMDs of the ProVE model, on

the other hand, are consistent with FAD, in that the distance from Misc is larger

than from Heels. The main results from the two objective measures are that the

ProVE model surpasses the procedural audio model in terms of fidelity, while being

naturally more controllable than the adversarial approach by definition. Along with

this, one can argue that the ProVE model also does a better job in matching the

original training data distribution, being consistent in its distances.

3https://www.zapsplat.com/sound-effect-packs/footsteps-in-high-heels

34

An interesting result occurs from evaluating synthesized samples and the real

sound datasets when using classification accuracy as a metric. The pretrained yamnet

used was trained to classify audio data into 521 different classes. The one class that is

focused on in this section is the label “Walk, footstep.” Table 4.2 shows the confidence

probabilities that occur when inputting samples from the footstep sound synthesis

methods and the real audio dataset they are trying to model.

Synthesis Method/
Real Audio

Yamnet accuracy
(Confidence probability
on “walk, footstep”)

Zapsplat Real 0.0172
Zapsplat GAN 0.0175
Zapsplat Classical PA 0.0038
Zapsplat ProVE 0.0357
PB Real 0.09
PB Classical PA 0.0046
PB ProVE 0.0357

Table 4.2 Audio Classification Accuracy of Label “Walk, Footstep” From A
Pretrained Yamnet Model

What is unsurprising is that classical PA models have a smaller probability on

both datasets, lining up with the discussion in the first chapter where it was stated

that classical PA models lack the fidelity preferred for immersive medias. On the

other hand, what is surprising is that the classification accuracy of the label “Walk,

footstep” obtained on the ProVE model is greater than the GAN approach and even

the real audio dataset. Although purely speculative, these results may be due to the

ProVE models emphasizing key characteristics of audio labeled with “Walk, footstep”

more so than the footsteps in the real datasets and the GAN approach. One can

interpret this as the audio from ProVE footstep models sound more like a footstep to

yamnet than the other methods and datasets, but further research would be needed

to fully understand these results before confirming the speculation. Of course, the

main highlight here is that ProVE models beat classical PA models in sounding more

like a footstep according to these classification probabilities.

35

Surface Material
(Zapsplat)

ODG
[-4.0, 0.0]

Surface Material
(PremiumBeat)

ODG
(Running)
[-4.0, 0.0]

ODG
(Walking)
[-4.0, 0.0]

Carpet -2.57 Gravel -1.48 -1.4
Wooden Deck -3.54 Dirt -1.82 -1.95
Metal -3.56 Wood -1.5 -2.98
Pavement -1.88 Grass -2.09 -2.18
Rug -2.8
Wood -2.33
Wood Internal -2.34

Table 4.3 Objective Difference Grades (ODG) of the Reconstruction of Footstep
Sounds Calculated Using PEAQ Basic

The Perceptual Evaluation of Audio Quality (PEAQ) measures basic audio

quality (BAQ) through deriving mid-level perceptual features called Model Output

Variables (MOVs) [50] and using these as input to a neural network computing the

Objective Difference Grade (ODG) between a reference signal and a reconstructed

signal, with grades ranging from -4.0 (very annoying impairment) to 0.0 (imper-

ceptible impairment). The ODGs of the ProVE models for each sound class on

both footstep datasets are shown in Table 4.3. The ODGs are included in this

thesis are calculated in an attempt to give a perceptually-motivated evaluation of

the reconstruction from the first step in ProVE, which is the DDSP autoencoder

(AE) in this case. In other words, one can interpret the grades from PEAQ Basic as

a measure of the capability of the DDSP autoencoder to reconstruct environmental

sounds. The left side of table 4.3 shows ODGs of the DDSP autoencoder (AE) model

trained on the Zapsplat footstep dataset, where each of the surface material sounds

were learned to be reconstructed using a single autoencoder. The right side of the

table shows ODGs of a model trained on the footstep dataset from PremiumBeat.com,

with varying step speeds (Running and Walking), where each of the surface material

sounds were learned to be reconstructed in separate models. From the two tables

one can argue that the audio quality is better when further separating a target sound

class into subclasses and developing multiple PA models to be chosen during inference.

36

That is, if a model requires integer valued control variables to model subclasses of an

audio class (i.e. surface material selection), then one can train a model per subclass

and use a finite index set to select a model. The table also shows some subclasses of

footstep sounds being reconstructed with a lower ODG than the rest. On the Zapsplat

dataset, the subclasses that had the lowest grades from PEAQ were the Wooden

Deck and Metal subclasses, having ODG’s of -3.54 and -3.56 respectively. On the

PremiumBeat dataset, the subclass that had the lowest grade was the Wood subclass

with a slower walkspeed, having an ODG of -2.98. Observing the spectrogram of all of

these audio subclasses leads to the speculation that the DDSP AE, with only a filtered

noise component, tends to reconstruct sounds with less prolonging frequencies. This

speculation makes sense since the sounds with the least ODG’s are footstep sounds

that have a prolonging resonance when force is acted upon it.

p-value = 6× 10−7 Dirt Grass Gravel Wood
ProVE 0.77 0.705 0.371 0.81
PA 0.23 0.295 0.629 0.19

Table 4.4 Results of Subjective Evaluation (ProVE, PA)

p-value = 0.1 Dirt Grass Gravel Wood
ProVE 0.5 0.486 0.431 0.387
Real (PB) 0.5 0.514 0.569 0.613

Table 4.5 Results of Subjective Evaluation (ProVE, Real)

Subjective Evaluation Results Tables 4.4 and 4.5 show the results from

crowdsourcing the subjective evaluation interface previously described. Two AB tests

were conducted, comparing the synthesis of the ProVE model for footstep with the

classical PA models and its training distribution, the footsteps from the PremiumBeat

dataset. The tables are organized by surface material. The p-values associated with

these tables were obtained from a two-sided binomial test, which reseval calculates

for us during the HITs. Each cell is the ratio of how many participants preferred

37

the ProVE model over the real distribution or the classical PA model. The results

show that between ProVE and classical PA, there is a large difference per surface

material. This is in contrast with comparing the ProVE model with the real dataset,

where the table shows high entropy. It can also be said that most of the participants

would choose the synthesis from the ProVE model than the classical PA model for

the surfaces of dirt, grass, and wood. However, the majority of the participants more

preferred the synthesis of the gravel texture footsteps from the classical PA models

than the ProVE model. This is possibly due to the fine grain sounds of the trajectory

of small pebbles and rocks from gravel, which is not accounted for by simply using a

control variable proxy of the smoothed envelope of footstep sounds.

4.3.2 Sound Expressivity

Although the ProVE model does not surpass the adversarial approach in synthesizing

footsteps, the ProVE model surpasses the adversarial approach in expressivity and

controllability by definition. The adversarial approach learns to generate one-shot

footstep sounds which are limited to the envelope shapes of the one-shots from the

Zapsplat dataset. In similar nature as the discussion in the first chapter on using

recorded audio vs PA models for sound design, the adversarial approach learns a

space of footstep sounds, whereas ProVE learns to synthesize footstep sounds as a

temporal process. That is, ProVE models for footstep sounds learn to synthesize

the sounds of walking or running given the audio’s envelope and assuming a random

uniform sample, but are not limited to those envelope shapes during inference.

Due to time constraints, another subjective evaluation was proposed but not

posted. This test would be to evaluate the controllability of the ProVE models. For

the example of a test for footstep sounds: a participant is shown two audio samples,

both synthesized from ProVE models. The first audio sample is synthesized to match

the audio context of a person moving with a constant speed, and the second audio

38

sample is synthesized to modify that context into a different one (i.e. from walking

to running, running to walking, etc). The participant is then asked whether or not

the modified audio sample matches the modification applied, where the modification

is described with text as the stimulus description.

4.4 ProVE Application: Draw a GRF Curve

One of the goals of developing ProVE as a general framework for learning data-driven

PA models is to show that its high-fidelity sound synthesis and controllability is

feasible for interactive use by a sound designer. This would be a step forward in

bringing PA models into standardization in sound design workflows. In order to

show that models from ProVE have this capability, an interactive web application

was developed4. The client interface was written in javascript and it allows a user

to define control variables for the input to a pretrained ProVE model by drawing a

1D curve on a canvas, select a surface material, and modify walk speed. The drawn

curve is then repeated to span 8 seconds with respect to the walk speed. This curve

and the selected surface material is sent to an AWS EC2 instance hosting a Flask

REST API. The server also hosts a pretrained ProVE footstep model, trained on the

Zapsplat Heels dataset.

When a user presses on the “generate” button, the user-defined control variables,

along with a randomly generated audio id, are sent to the server, which uses those

variables to synthesize 8 seconds of footsteps with the specified surface material. The

server responds with the audio back to the client. The client then calls the server again

with the same audio id, in order to obtain an image of the magnitude spectrogram of

the resulting synthesis, as well as delete it from the server’s cache. Finally, the client

displays the magnitude spectrogram image and plays the 8 seconds of synthesized

audio. The application is simple to interact with, it synthesizes realistic footstep

4The demo is publicly available at https://dependanz.github.io/blog/prove.html

39

sounds, and it is highly controllable. This indicates that the application is feasible

to use in a sound design workflow requiring footstep sounds, and further motivates

future interactive use cases and projects.

Figure 4.2 ProVE Example Web Application: Draw a GRF to synthesize footstep
sounds. A user would draw a curve on the top canvas, select surface materials, set walk
speed, and press the green generate button. A REST API responds with the audio
from a ProVE model and an image of the magnitude spectrogram of the synthesized
audio.

40

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

The goal of this thesis was to develop a general framework for learning high-fidelity

procedural audio (PA) models for the use in the sound design of immersive and

interactive medias, such as film, games, and virtual environments. To this end,

the Procedural (audio) Variational autoEncoder (ProVE) framework was proposed,

which learns a data-driven PA model in a way that is loyal to the Analysis-Synthesis

abstraction of sound design. ProVE learns these high-fidelity PA models by first

learning “machine-interpretable” control variables through an audio autoencoder,

and then by learning a mapping from “human-interpretable” control space to

“machine-interpretable” control space. ProVE does this by assuming the definition

of a PA model is a function of uniform noise, as many PA patches for environmental

sounds generate sounds by taking uniform noise and applying transformations and

digital filtering. The second stage of ProVE, after training an audio autoencoder,

assumes a pair of uniform noise u to audio x and its corresponding control variable

γ. A mapping from (γ, u) to z, the latent sequence (or the “machine-interpretable”

control) is learned, and is connected to the audio decoder (mapping z 7→ x). Optimal

control mappings connected to audio decoders are the controllable data-driven PA

models from ProVE (a composite mapping (γ, u) 7→ x). In this thesis, the DDSP

autoencoder [16] was used as the main neural audio synthesis module for shaping

this control space, however, the framework is agnostic to any models that do well in

neural audio synthesis.

The main sound classes demonstrated in this thesis were footsteps and pouring

water. The latter was demonstrated in order to show the simplicity of using ProVE for

a small-scale personal project. For each of the sound classes demonstrated, emphasis

41

is placed on how the “human-interpretable” control variables are defined, as they may

be different depending on the type of sound. However, for impact based sounds, like

the footstep sounds, the control variable was proxied as the envelope of the sound,

with the motivation that the amplitude of a sound corresponds to how much force is

applied over some point on a surface.

As a result of objective and subjective evaluations of synthesis samples, one

may conclude that ProVE models surpass classical PA models in fidelity, while still

retaining the same controllability. For footstep sounds, the use of the GRF curve

generator allowed the ProVE model to be expressive in the shape of possible footstep

GRF curves, something that is lacking in recent adversarial approaches that focused

on generating one-shots of a single envelope shape.

5.2 Future Work

One interesting result that was found through objective evaluations was the classifi-

cation confidence probabilities of footstep sounds from a pretrained yamnet model.

Due to time constraints, what was concluded in that section is purely speculative and

may need further investigating.

One limitation of the proposed approach is that training ProVE models relies

on the definition of simple control variable proxies directly from classical analysis

of audio. The definition was simple for footstep models with the smoothed audio

envelopes, however, these proxies may be more difficult to define with classical analysis

methods on more complex environmental sound classes. It seems like a reasonable

next step to mitigate this limitation of relying on using classical signal analysis

methods and try to develop an additional model that approximates control variables

of already existing PA models from the real audio distribution that the model tries to

match. An example of this limitation was shown in the subjective evaluations, where

the classical PA model was more preferred than the ProVE model for footsteps on a

42

gravel surface texture. The speculative reason was that the fine grain sounds of the

trajectory of small debris was not accounted for in using the simple GRF curve proxy

of smoothed audio envelopes, whereas Farnell’s classical PA model maps the GRF

curves to densities that approximate the movement of small particles [18].

Another limitation shown was that inference times for the ProVE models are

still not practical for use in real-time audio synthesis, which is preferred for interactive

medias like games and VR. In order for ProVE models to be adapted for real-time

usage, this inference time must be shortened. The latent dimension of the DDSP

autoencoder used in this thesis was at a high 512 for a 250 Hz control rate on a 16

kHz sample rate. A research direction that could be taken from ProVE models is

to explore neural audio synthesis approaches that have a smaller latent dimension.

A paper which synthesizes audio with a real-time variational autoencoder [5] could

potentially be investigated as a replacement to the DDSP models. In addition, the

models trained for the demonstrations of this thesis only used the DDSP filtered noise

components, which does not account for surface textures which have a prolonging

harmonic resonance when an impact occurs on it. This was apparent in the objective

evaluation section, where the ProVE model had the least objective difference grade

(ODG) on the metal surface texture, the surface with the most resonance. This

limitation may be alleviated by comparing the ProVE model with only the filtered

noise component with a ProVE model that adds the DDSP harmonic component.

Time-permitting, another goal for learning ProVE models was to give a solution

to the problem of automatic foley placement in videos, a problem that was recently

put under the audio machine learning spotlight. The idea was to develop a model that

learns the control variables to the ProVE models directly from the video signals, either

as input directly to a convolutional network or having the optical flow as input. The

choice of optical flow would have been for event-based sounds like footsteps, where

one can follow the path of an actor running or walking.

43

Recently, denoising diffusion probabilistic models (DDPM) have been exten-

sively researched for generative modeling in the usual modalities. Right now, the

second step of ProVE is to assume a sample from uniform noise and pair it with

a sample of audio and its associated control. However, this assumption is nothing

more than a guess, and a better approach would be to learn a conditional DDPM

which goes from the distribution of “machine-interpretable” control, to an isotropic

Gaussian, conditioned on the “human-interpretable” control variables.

44

APPENDIX A

FORMULATION OF THE GRF CURVE GENERATOR

The footstep Ground Reaction Force (GRF) curve generator as formulated by Andy

Farnell in [18] is what is used as the control variable to the ProVE model of footsteps.

The initial formulation used in this project was 3 half cycles of a cosine to make a

3-component envelope.

q(x, a, b, s) =

 s · cos(π
b−a

(x− (a+b)
2

)) if a ≤ x ≤ b

0 otherwise

This envelope is then repeated by a parameter phasor, with the magnitudes of each

envelope component corresponding to heel, roll, and ball parameters. The walk speed

and shortness of step are also added parameters to this GRF generator:

g(x) = maxk(q(x, sk, ak, bk))

m(x, v) = v ·mod(x, 2)

fGRF (x, ωspeed, vshortness) = g(m(ωspeed · x, vshortness))

Farnell further improved upon the curve by changing the cosine envelope to a

polynomial curve with a steeper beginning to have a curve that better matched actual

GRF curves (N = 3.333):

κ(x, b) = −1.5((N(bx)3)− (bNx))(1− bx)

q(x, a, b, s) =

 s · κ(x− a, 1
b
) if a ≤ x ≤ (a+ b)

0 otherwise

45

Figure A.1 The modified polynomial (blue curve) as a more realistic force curve
than a cosine half angle.

46

BIBLIOGRAPHY

[1] Sharath Adavanne and Tuomas Virtanen. A report on sound event detection with
different binaural features. CoRR, abs/1710.02997, 2017.

[2] Relja Arandjelovic and Andrew Zisserman. Look, listen and learn. CoRR,
abs/1705.08168, 2017.

[3] S. Bilbao. Time domain simulation and sound synthesis for the snare drum. J Acoust
Soc Am, 131(1):914–925, Jan 2012.

[4] Niels Böttcher. Current problems and future possibilities of procedural audio
in computer games. Journal of Gaming & Virtual Worlds, 5(3):215–234,
September 2013.

[5] Antoine Caillon and Philippe Esling. Rave: A variational autoencoder for fast and
high-quality neural audio synthesis, 2021.

[6] Emre Çakir, Giambattista Parascandolo, Toni Heittola, Heikki Huttunen, and
Tuomas Virtanen. Convolutional recurrent neural networks for polyphonic
sound event detection. CoRR, abs/1702.06286, 2017.

[7] Jeffrey N. Chadwick and Doug L. James. Animating fire with sound. ACM Trans.
Graph., 30(4), jul 2011.

[8] Jeffrey N. Chadwick, Changxi Zheng, and Doug L. James. Precomputed acceleration
noise for improved rigid-body sound. ACM Trans. Graph., 31(4), jul 2012.

[9] Meiying Chen and Zhiyao Duan. Controlvc: Zero-shot voice conversion with time-
varying controls on pitch and rhythm, 2022.

[10] Keunwoo Choi, Sangshin Oh, Minsung Kang, and Brian McFee. A proposal for foley
sound synthesis challenge, 2022.

[11] Marco Comunità, Huy Phan, and Joshua D. Reiss. Neural synthesis of footsteps
sound effects with generative adversarial networks, 2021.

[12] Jason Cramer, Ho-Hsiang Wu, Justin Salamon, and Juan Pablo Bello. Look, listen,
and learn more: Design choices for deep audio embeddings. In ICASSP
2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 3852–3856, 2019.

[13] Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford,
and Ilya Sutskever. Jukebox: A generative model for music, 2020.

[14] Chris Donahue, Julian McAuley, and Miller Puckette. Adversarial audio synthesis,
2019.

47

[15] Jesse Engel, Kumar Krishna Agrawal, Shuo Chen, Ishaan Gulrajani, Chris Donahue,
and Adam Roberts. Gansynth: Adversarial neural audio synthesis, 2019.

[16] Jesse Engel, Lamtharn Hantrakul, Chenjie Gu, and Adam Roberts. Ddsp:
Differentiable digital signal processing, 2020.

[17] Andy Farnell. An introduction to procedural audio and its application in computer
games, 2007.

[18] Andy Farnell. Marching onwards procedural synthetic footsteps for video games and
animation. 2007.

[19] Andy Farnell. Designing Sound. The MIT Press. MIT Press, London, England,
August 2010.

[20] Haytham M. Fayek. Speech processing for machine learning: Filter banks, mel-
frequency cepstral coefficients (mfccs) and what’s in-between, 2016.

[21] Yuan Gong, Yu-An Chung, and James R. Glass. AST: audio spectrogram transformer.
CoRR, abs/2104.01778, 2021.

[22] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf,
and Alexander Smola. A kernel two-sample test. J. Mach. Learn. Res.,
13(null):723–773, mar 2012.

[23] Lamtharn (Hanoi) Hantrakul, Jesse Engel, Adam Roberts, and Chenjie Gu. Fast and
flexible neural audio synthesis. 2019.

[24] Shawn Hershey, Sourish Chaudhuri, Daniel P. W. Ellis, Jort F. Gemmeke, Aren
Jansen, R. Channing Moore, Manoj Plakal, Devin Platt, Rif A. Saurous,
Bryan Seybold, Malcolm Slaney, Ron J. Weiss, and Kevin W. Wilson. CNN
architectures for large-scale audio classification. CoRR, abs/1609.09430, 2016.

[25] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Günter
Klambauer, and Sepp Hochreiter. Gans trained by a two time-scale update
rule converge to a nash equilibrium. CoRR, abs/1706.08500, 2017.

[26] andrew horner, james beauchamp, and lippold haken. methods for multiple wavetable
synthesis of musical instrument tones. journal of the audio engineering society,
41(5):336–356, may 1993.

[27] Daniel Hug. How do you sound design? an exploratory investigation of sound design
process visualizations. In Proceedings of the 15th International Conference on
Audio Mostly, AM ’20, page 114–121, New York, NY, USA, 2020. Association
for Computing Machinery.

[28] Doug L. James. Physically based sound for computer animation and virtual
environments. In ACM SIGGRAPH 2016 Courses, SIGGRAPH ’16, New
York, NY, USA, 2016. Association for Computing Machinery.

48

[29] Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman Casagrande,
Edward Lockhart, Florian Stimberg, Aaron van den Oord, Sander Dieleman,
and Koray Kavukcuoglu. Efficient neural audio synthesis, 2018.

[30] Kevin Kilgour, Mauricio Zuluaga, Dominik Roblek, and Matthew Sharifi. Fréchet
audio distance: A metric for evaluating music enhancement algorithms, 2018.

[31] Jong Wook Kim, Justin Salamon, Peter Li, and Juan Pablo Bello. Crepe: A
convolutional representation for pitch estimation, 2018.

[32] Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. Hifi-gan: Generative adversarial
networks for efficient and high fidelity speech synthesis, 2020.

[33] Timothy R. Langlois and Doug L. James. Inverse-foley animation: Synchronizing
rigid-body motions to sound. ACM Trans. Graph., 33(4), jul 2014.

[34] Timothy R. Langlois, Changxi Zheng, and Doug L. James. Toward animating water
with complex acoustic bubbles. ACM Trans. Graph., 35(4), jul 2016.

[35] Mats Liljedahl and Johan Fagerlönn. Methods for sound design: A review and
implications for research and practice. In Proceedings of the 5th Audio Mostly
Conference: A Conference on Interaction with Sound, AM ’10, New York, NY,
USA, 2010. Association for Computing Machinery.

[36] Anton Lundberg. Data-driven procedural audio : Procedural engine sounds using
neural audio synthesis. PhD thesis, 2020.

[37] Annamaria Mesaros, Toni Heittola, Tuomas Virtanen, and Mark D. Plumbley. Sound
event detection: A tutorial. IEEE Signal Processing Magazine, 38(5):67–83,
sep 2021.

[38] Gautam Mittal, Jesse Engel, Curtis Hawthorne, and Ian Simon. Symbolic music
generation with diffusion models, 2021.

[39] james a. moorer. the synthesis of complex audio spectra by means of discrete
summation formulas. journal of the audio engineering society, 24(9):717–727,
november 1976.

[40] Max Morrison, Brian Tang, Gefei Tan, and Bryan Pardo. Reproducible subjective
evaluation. In ICLR Workshop on ML Evaluation Standards, April 2022.

[41] J. Nistal, S. Lattner, and G. Richard. Drumgan: Synthesis of drum sounds with
timbral feature conditioning using generative adversarial networks, 2022.

[42] Javier Nistal, Stefan Lattner, and Gaël Richard. Comparing representations for audio
synthesis using generative adversarial networks, 2020.

[43] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.
Wavenet: A generative model for raw audio, 2016.

49

[44] Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu.
Fastspeech 2: Fast and high-quality end-to-end text to speech, 2020.

[45] Curtis Roads. Microsound. The MIT Press, 2002.

[46] Matthias Robine, Robert Strandh, and Sylvain Marchand. Fast Additive Sound
Synthesis Using Polynomials. In Digital Audio Effects (DAFx06) Conference,
pages 181–186, Montréal, Canada, September 2006.

[47] Xavier Serra and Julius Smith. Spectral modeling synthesis: A sound
analysis/synthesis system based on a deterministic plus stochastic decompo-
sition. Computer Music Journal, 14(4):12–24, 1990.

[48] Jonathan Shen, Ruoming Pang, Ron J. Weiss, Mike Schuster, Navdeep Jaitly,
Zongheng Yang, Zhifeng Chen, Yu Zhang, Yuxuan Wang, RJ Skerry-Ryan,
Rif A. Saurous, Yannis Agiomyrgiannakis, and Yonghui Wu. Natural tts
synthesis by conditioning wavenet on mel spectrogram predictions, 2017.

[49] Julius O. Smith. Physical Audio Signal Processing.
http:http://ccrma.stanford.edu/ jos/pasp///ccrma.stanford.edu/~jos/-
pasp/, accessed ¡date¿. online book, 2010 edition.

[50] Matteo Torcoli, Thorsten Kastner, and Jurgen Herre. Objective measures of
perceptual audio quality reviewed: An evaluation of their application domain
dependence. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 29:1530–1541, 2021.

[51] Matteo Torcoli, Thorsten Kastner, and Jürgen Herre. Objective measures of
perceptual audio quality reviewed: An evaluation of their application domain
dependence. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 29:1530–1541, 2021.

[52] Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron J. Weiss, Navdeep
Jaitly, Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, Quoc Le,
Yannis Agiomyrgiannakis, Rob Clark, and Rif A. Saurous. Tacotron: Towards
end-to-end speech synthesis, 2017.

[53] Yusong Wu, Ethan Manilow, Yi Deng, Rigel Swavely, Kyle Kastner, Tim Cooijmans,
Aaron Courville, Cheng-Zhi Anna Huang, and Jesse Engel. Midi-ddsp:
Detailed control of musical performance via hierarchical modeling, 2021.

50

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Background
	Chapter 3: Approach
	Chapter 4: Evaluations and Results
	Chapter 5: Conclusions and Future Work
	Appendix A: Formulation of the GRF Curve Generator
	Bibliography

	List of Tables
	List of Figures

