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ABSTRACT

HELIOSEISMIC DIAGNOSTICS OF ACTIVE REGIONS
AND THEIR MAGNETIC FIELDS

by
John T. Stefan

While two and a half decades of nearly constant observation by the Solar and

Heliospheric Observatory (SOHO) and the Solar Dynamics Observatory (SDO)

spacecraft have yielded key insights into the structure and dynamics of active regions,

it is still unclear if active regions can be identified before emerging on the solar

surface and, once emerged, whether the subsurface structure of an active region’s

magnetic field can be measured. Regarding the dynamical processes associated with

active regions, the height and mechanism of sunquake excitation remains poorly

understood. To answer these questions, a comprehensive survey of active region

magnetic fields and their associated helioseismic signatures for both the pre-emergence

and post-emergence phase is completed.

For the former, deviations of the mean phase travel time of acoustic waves are

used to detect the rise of magnetic flux from the solar interior. Calibration and

testing of the time-distance technique is performed using simulations of submerged

sound speed perturbations. A detailed case study of select active regions is performed,

and the technique is then applied to a collection of 46 active regions to determine

the statistical significance of mean travel time perturbations as a signature of active

region emergence.

Next, a novel technique is developed for the assessment of existing active region

magnetic fields. By combining the travel time of acoustic waves propagating in

varying directions, perturbations due to subsurface horizontal magnetic fields are

isolated from structural changes. The resulting measurements provide a proxy for

the magnitude of the horizontal magnetic field as well as a direct measurement of



the field’s azimuth. The technique is applied to a sunspot simulation for validation,

and is then used to investigate the subsurface magnetic structure of several observed

sunspots.

Finally, a model of solar acoustic wave propagation is constructed using the

compressible form of the mass, momentum, and entropy conservation equations to

study the excitation of sunquakes. The constructed model is used to determine at

what height sunquakes are excited, what mode of excitation is most energetically

favorable, and what properties of particle beams are relevant to sunquake excitation.

The excitation height is determined from comparison of observed events with a

catalogue of simulated sunquakes for a range of excitation locations and for several

excitation mechanisms, which allows the excitation height and energy to be estimated.

Additionally, the output of FP proton beam simulations are used to derive forcing

functions for the excitation of sunquakes in the model to determine the dependence

of wave front amplitude on the low-energy cut-off.
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CHAPTER 1

INTRODUCTION

1.1 Solar Activity

The first physical model of the solar cycle—variations in the Sun’s activity and

magnetic field, with period 11 years—was developed by Babcock in 1961 (Babcock,

1961). The clearest visualization of the solar cycle is the butterfly diagram, pictured

in Figure 1.1. In his work, Babcock identified five stages of the solar cycle: the initial

dipolar field; the amplification of the magnetic field; the formation of bipolar magnetic

regions; neutralization and reversal of the dipolar field; and the reversed dipolar field.

We are primarily interested in the first three stages of the cycle, as they explain the

formation of active regions. In the second stage, the initial dipolar field becomes

wound around the Sun as a toroidal field because of the Sun’s differential rotation.

Instabilities in or near the toroidal field cause kinks, which rise to the surface due to

the magnetic pressure, forming the dipolar magnetic regions on the surface that we

observe. Babcock also suggests that unipolar magnetic regions may form from the

remnants of bipolar magnetic regions, which was supported by Leighton’s 1964 study

of magnetic dissipation (Leighton, 1964).

The current understanding of solar activity indicates that strong concentrations

of magnetic flux originate at the base of the solar convective zone (Fan, 2004), where

solar rotation transitions from the inner solid-body rotation to the outer differentially-

rotating layers. This region, known as the tachocline, sits at around 0.7R⊙ or roughly

200 Mm beneath the photosphere, shown in Figure 1.2 as the boundary between the

radiative and convective zones. The deep origins of magnetic flux implies that it must

rise through the convective zone before emerging on the solar surface. Recent MHD

models have shown that the strong rotational shear at the tachocline can convert

1



Figure 1.1 A depiction of the solar cycle. The top image is the butterfly diagram,
showing the longitudinally averaged sunspot area coverage for each latitude over time,
and the averaged daily sunspot coverage over time is shown in the lower image.
Source: Hathaway (2015)

weak background poloidal magnetic fields into strong strong toroidal fields (Hughes

et al., 1998; Brummell et al., 2002). This concentration of the magnetic field can be

considered as a flux tube, which experiences a buoyant force causing the tube to bend

and rise through the convective zone towards the surface (Cline et al., 2003). Other

full-scale MHD simulations of magnetic flux emergence have been able to reproduce

this process, in which the flux concentration takes between 24 and 68 days to reach

the surface depending on the tube’s initial twist and symmetry (Fan, 2008).

1.2 Active Regions

Once emerged, concentrations of magnetic flux are called active regions, so called

because of their solar flare productivity and other associated energetic phenomenon.

One of the more distinct markers of the presence of an active region is an associated

sunspot, composed of an inner, darker area called the umbra and an outer, less dark

area called the penumbra (see Figure 1.3). The umbra radiates around 20% to 30%

2



Figure 1.2 The three distinct layers of the Sun’s interior. The tachocline is located
at the boundary between the convective and radiative zones.
Source: Hathaway (2015)

of the quiet Sun flux and is between one- to two-thousand Kelvin cooler than the

surrounding quiet Sun while the penumbra radiates 75% to 85% of the quiet Sun flux

and is only a few hundred Kelvin cooler than the surrounding plasma (Solanki, 2003).

It is generally thought that since the magnetic field of active regions is so strong,

on the order of thousands of Gauss compared to tens of Gauss in the quiet Sun

(Livingston, 2002), that surface convection is suppressed (Solanki, 2003). This, in

turn, reduces the energy flux from the convective zone to the surface, reducing the

local temperature and therefore brightness. In fact, a direct correspondence between

the surface magnetic field and continuum emission intensity of sunspot umbrae as

well as the surface temperature has been established, with the continuum emission

decreasing linearly with the magnetic field strength and the temperature decreasing

with the square of the magnetic field strength (Martinez Pillet & Vazquez, 1993).

An additional consequence of the relative coolness and suppressed convection

within sunspots is the Wilson effect (Parker, 1979). Since the Sun is composed of

plasma and has no discernible surface, relative heights and the beginning of the

3



Figure 1.3 The Sun covered with several sunspots and a close-up view of one of the
sunspots. The sunspot in the right panel shows a well-developed umbra (inner dark
area) and penumbra (outer less-dark area).
Source: UCAR (2011)

solar atmosphere is, by convention, marked by the height at which the optical

depth approaches 2/3, which is called the photosphere (Carroll & Ostlie, 1996).

Alternatively, the beginning of the photosphere is sometimes marked where the

optical depth is equal to unity (Jeffery & Branch, 1990). In either definition, the

probability for light to scatter at least once is ≤50% and decreases exponentially

above the photosphere. Because the hydrogen opacity gives the greatest contribution

to the overall photospheric opacity and is very sensitive to temperature, the effective

photosphere in sunspots is depressed several hundred kilometers, and up to 2000

km for large sunspots (Prokakis, 1974). This depressed photosphere means that

observations of the solar surface within sunspots are actually looking at deeper

layers than compared to the surrounding quiet Sun regions, which has complicated

implications for helioseismic measurements. Such implications are discussed in, for

example, the Acoustic Showerglass series of papers by Lindsey & Braun (2005).
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The most important aspect of active regions and sunspots, however, are

their ability to produce strong solar flares and occasionally coronal mass ejections

(CMEs), which have the potential to seriously impact the local geospace environment.

It is widely accepted that solar flares are the result of magnetic reconnection,

where twisted magnetic fields with a large amount of stored energy relax to a

lower-energy configuration, releasing magnetic energy through heating, shocks, and

particle acceleration (Priest & Forbes, 2002; Masuda et al., 1994). CMEs may also

be triggered by reconnection, though there are several other mechanisms which may

cause a flux rope to rise and eventually erupt, including various MHD instabilities

(Chen, 2011). While the two processes are sometimes considered intertwined, not all

flares are associated with CMEs and nearly 70% of C-class flares are not accompanied

by a CME (Yashiro et al., 2005). However, this proportion decreases significantly with

flare intensity, and only 10% of X-class flares are not associated with a CME (Wang &

Zhang, 2007). Additionally, there exists a strong correlation between the overall size

and amount of magnetic flux within an active region, and the intensity of associated

flares (Schrijver, 2007). Based on this relationship several estimates have been given

of the greatest possible energy release in a modern solar flare, generally near 1033 ergs

(Cliver et al., 2022; Tschernitz et al., 2018).

1.3 Helioseismology

In general, helioseismology is the study of solar oscillations and the properties and

processes that can be detected using these oscillations. While the precise details

regarding the stochastic nature of these oscillations has not been fully understood,

it is well-known that strong downdrafts in intergranular lanes are a source of the

vast majority of solar pressure waves (Rimmele et al., 1995). These downdrafts occur

when plasma rising from the convective region radiatively cools at the surface and

sinks back down because of changes in buoyancy (Skartlien & Rast, 2000). Since these

5



Figure 1.4 Resonant modes computed from the Standard Solar Model (Christensen-
Dalsgaard et al., 1996).
Source: Kosovichev (2011)

oscillations are excited stochastically, there are no preferred frequencies. However,

which oscillation modes—characterized by a specific frequency and spherical harmonic

angular degree l—are resonant is very strongly constrained by solar structure (Gough,

1993). As shown in Figure 1.4, these oscillations are separated into three distinct

categories: p-modes, solar pressure waves; the f-mode, a surface gravity wave; and

g-modes, internal gravity waves. In particular, p-mode resonance is constrained by

the internal sound speed profile and g-modes by the buoyancy frequency (Vallis, 2006;

Tassoul, 1980), both of which are dictated by pressure and density stratification.

In turn, this means that the internal structure of the Sun can be determined

by the observed resonant frequencies, which lead to the development of some of

the earlier standard models of solar structure (Christensen-Dalsgaard et al., 1988).

Additional methods were later developed which also revealed the adiabatic index,

convective stability, and chemical composition of the solar interior (Asplund et al.,

2009). Helioseismology reveals not only the internal structure of the Sun, but also

its internal motions. For example, inversion of the frequency splitting from rotation

revealed that the differential rotation observed on the surface extends down through

the convective zone and transitions to very nearly solid-body rotation beyond the
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tachocline and into the radiative zone (Schou et al., 1998). All of these previously

mentioned findings are categorized as global helioseismology, as they are concerned

with the structure of the entire Sun. Local helioseismology, on the other hand, studies

specific areas and structures in the Sun, mainly through variations in wave travel times

and phase shifts.

1.3.1 Local Time-Distance Helioseismology

Local helioseismology can be divided into two main methods, acoustic holography

and and time-distance helioseismology. The principle behind acoustic holography

is similar to traditional optics, where variations in the surface acoustic wavefield

can be attributed to specific perturbations in the interior using Green’s functions

for wave propagation (Gizon et al., 2018). Such attribution is accomplished by

examining either changes in wave phase, as in phase-sensitive holography (Lindsey

& Braun, 2000), or in wave amplitude, as in acoustic power holography (Lindsey &

Braun, 1997). Time-distance helioseismology, as the name suggests, detects interior

perturbations by measuring variations in the travel time of waves as they move from

point to point.

Time-distance helioseismology naturally requires that wave travel times can be

extracted from stochastic oscillations and that variations in the travel time can be

attributed to specific sources. Regarding the first requirement, the cross-correlation

function provides an invaluable tool to measure the wave travel time. By cross-

correlating the Doppler velocities of two separate points on the solar surface, one

may obtain a time-dependent function which is maximized at the travel time between

the two points (Rickett & Claerbout, 2000). This cross-correlation maximizing time

is the group travel time, relating the propagation time of a given wave packet’s

envelope. Subsurface perturbations are more easily detected by their corresponding

perturbation to the phase travel time, which necessitates the use of some analytical
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function with which to fit the observed cross-correlation. It has been shown, such as

in Nigam et al. (2007), that the solar cross-correlation function is well-fit by a Gabor

wavelet, with the phase travel time as one of the function’s parameters.

Attributing the variations in phase travel time to specific perturbations is

accomplished through inversions of the travel times based upon either the ray

approximation or the Born approximation (Birch et al., 2001). While the Born

approximation takes into account the band-limited nature of the solar oscillation

signal and is therefore better at resolving small-scale features (Birch & Felder,

2004), the ray approximation is more straight-forward and generally considered more

robust (Kosovichev, 2011). An additional tool for isolating the contribution from

perturbations at specific depths is phase speed filtering (Gizon & Birch, 2005). As

solar acoustic waves travel into the interior, they are reflected back upwards by the

sound speed gradient. The specific depth at which these waves reflect, called the

turning point, is determined by the spherical harmonic degree l and frequency ω of

a given oscillation mode. A more detailed description of turning points is given

in Appendix A, however, the relevant point is that oscillations which penetrate

to a specific depth can be selected for, which increases the signal-to-noise ratio of

helioseismic measurements (Couvidat & Birch, 2006).

1.3.2 Helioseismic Studies of Active Regions and Effects of Magnetic
Fields on Travel Times

There exist several helioseismic techniques which have been successful in examining

active regions, including the identification of existing active regions on the far-side

of the Sun. This far-side imaging has been accomplished using both acoustic

holography and time-distance analysis. In the acoustic holography technique, the

far-side wavefield is extracted from near-side measurements, and inhomogeneities in

the wavefield measured by relative phase-shift can be attributed to the magnetic

field’s magnitude (Malanushenko et al., 2004; Gizon et al., 2018). In the time-distance
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Figure 1.5 Composite map of the full Sun for July 29 2022; the black and white
color scale indicates the near-side magnetic field magnitude observed by HMI and the
gold and black color scale indicates the far-side travel time shift.
Source: Joint Science Operations Center (2022)

method, shifts in the phase travel time of waves traveling from the near-side to the

far-side and back are used to identify far-side active regions (Braun et al., 2010).

Applying phase speed filters as well as combining measurement configurations for a

so-called multi-skip analysis further increases the signal-to-noise ratio (Hartlep et al.,

2008; Zhao, 2007). This far-side imaging has been used to provide a full Sun map of

existing active regions, as in Figure 1.5, which is made available every 12 hours by

the Joint Science Operations Center (JSOC) (Braun et al., 2010).

While far-side imaging has only been able to identify existing active regions,

other efforts have been made to detect emerging active regions. For example, Lindsey

& Braun (1997) have detected subsurface flows prior to active regions emergence

using acoustic holography. A detailed study of emerging active regions using a

similar technique found statistically significant differences in the mean phase travel

time of waves penetrating the upper 20 Mm of the convection zone (Birch et al.,

2013). Early efforts using time-distance helioseismology have also been able to identify

subsurface structures and estimate the emergence rate of an active region observed

by the Michelson Doppler Imager (MDI) (Kosovichev et al., 2000, 2001).
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Of particular note are the results of Ilonidis et al. (2012) and Ilonidis et al.

(2013), which establish a measurement procedure for identification of pre-emergence

active regions with a SNR of 4.2-4.9. The authors find significant reductions in the

mean travel time of waves one to two days prior to the emergence of several active

regions. Additional study of pre-emergence active regions, including some of the

regions studied by Kosovichev et al. (2000) and Ilonidis et al. (2013), have found

10-15 second phase travel time perturbations around the eventual location of several

active regions at depths of 40 to 75 Mm (Kholikov, 2013). Additional investigation at

shallower depths, between 2 and 15 Mm beneath the photosphere, by Toriumi et al.

(2013) of an active region studied by Ilonidis et al. (2013) also confirm mean phase

travel time reductions preceding the active region’s emergence.

One of the mean critiques of these mean travel time analyses, however, is the

large difference between the 10 to 15 second variations which were measured and

the theoretical effect of the magnetic field in the convection zone, which should

produce immeasurably small variations in the travel time (Braun, 2012). A recent

study by Felipe et al. (2016) may provide an alternative explanation, where the

authors perform MHD simulations to develop a realistic sunspot. The authors then

initiate two simulations, one with the previous sunspot’s thermal profile with zero

magnetic field, and another with the previous sunspot’s magnetic field but with a

quiet sun thermal profile, with the goal of identifying the individual contribution

of thermal and magnetic effects. While the magnetic-only sunspot produces weak

mean travel time shifts, those from the thermal simulation are both stronger and

more persistent with depth. Furthermore, the thermal variations should decrease the

wave speed and lengthen the travel time, but strong reductions in the travel time are

measured instead. The authors show that this can be explained by considering the

corresponding change in the cut-off frequency, which would shorten the travel time in

agreement with Moradi et al. (2009). It may be possible that similar thermal effects
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originating from the concentration of rising magnetic flux can lead to the observed

pre-emergence travel time variations.

A full understanding of the magnetic field’s effect on helioseismic measurements

remains difficult to achieve. While significant progress has been made in assessing

some aspects of the subsurface structure of active regions, for example their

surrounding flows (Jain et al., 2012; Braun, 2016) and associated sound speed

variations (Zhao & Kosovichev, 2003), there has yet to be a successful direct

assessment of an active region’s subsurface magnetic field. In theory, at least, the

basis for such assessment has been laid; namely, the conversion of purely acoustic

waves into fast magnetoacoustic waves in the presence of strong magnetic fields.

Cally (2005) find significant conversion from acoustic to fast magnetoacoustic at

the equipartition surface—where the sound and Aflvèn speeds are equal—for vertical

magnetic fields. It has also been found that horizontal magnetic fields produce a phase

speed-dependent perturbation to acoustic travel times in the ray path approximation

(Jain, 2007). Furthermore, numerical simulations show that the fast magnetoacoustic

mode displays resonant characteristics, such that it is reflected slightly above the

equipartition surface and remains trapped beneath the chromosphere (Khomenko &

Collados, 2006).

1.3.3 Sunquakes

Regarding the dynamical processes associated with existing active regions, it is

commonly accepted that solar flares result from the reconfiguration of the coronal

magnetic field towards a lower-energy state (Aschwanden, 2019; Ulyanov et al., 2019).

While seemingly unrelated to other helioseismic studies, the distribution of the energy

released in solar flares from coronal heights to regions lower in the atmosphere gives

rise to impulsive seismic events which can be observed in the photosphere. Such

events, known as sunquakes, are easily seen in observations and were first detected by

the characteristic expanding ripples in MDI Dopplergrams (Kosovichev & Zharkova,
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Figure 1.6 Time series of the sunquake following the solar flare of 1996 July 9. The
sunquake wavefront has been amplified by a factor of four to be discerned from the
background.
Source: Kosovichev (2011)

1998; Kosovichev, 2006), as in Figure 1.6. The mechanism by which these sunquakes

are excited, however, has yet to be definitively identified.

Electron beams accelerated by magnetic reconnection have been suggested as

a possible means of exciting sunquakes (Sharykin et al., 2017; Macrae et al., 2018;

Pedram & Matthews, 2012). In particular, the thick-target model (e.g., Fisher et al.,

1985) suggest that the electron beam strikes a stationary chromosphere, and the

energy released by the electrons as they thermalize can be observed as a strong

increase in hard X-ray (HXR) emission. Additionally, past studies of sunquakes

have identified the photosphere or lower chromosphere as possible locations where

sunquakes are excited Kosovichev & Zharkova (1995); Zharkova & Zharkov (2015);

Sharykin et al. (2017); Chen (2019). It appears that heating in these regions, and the

shocks produced by this heating, may provide enough energy to excite the observed

acoustic waves (Kosovichev, 2015; Kosovichev & Zharkova, 1995).

Other beams aside from purely electron-based, such as proton or mixed-particle

beams, also have the potential to provide the heating necessary to excite sunquakes.

For example, Zharkova & Zharkov (2015) find that proton beams—which deposit

significantly more momentum than electron beams—may penetrate up to 300 km
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beneath the photosphere. Additional modeling has shown that the proton beams

are more efficient at exciting sunquakes, and the temporal coincidence of high-energy

emission and sunquake excitation in some events suggests a mixed electron-proton

beam as a seismic source (Zharkova & Zharkov, 2007). Further studies reinforce

the importance of the coincidence between HXR emission and sunquake excitation,

and that the momentum flux required to compress the photosphere is more likely to

originate from a proton-heated atmosphere, as opposed to electron-heated (Donea &

Lindsey, 2005).

1.4 Dissertation Outline

In this dissertation, we present a comprehensive helioseismic analysis of active regions

beginning with their pre-emergence properties up to their appearance on the solar

surface and their associated dynamic processes. The structure of this dissertation is

as follows.

Chapter 2 begins with a discussion on some of the finer details of phase speed

filtering and how this is used to isolate oscillations in the upper convection zone. We

apply our methodology to two simulations of subsurface sound speed perturbations,

as a model for rising magnetic flux, and examine the evolution of phase travel time

deviations for several active regions. Additionally, we present an idealized model for

flux emergence and use this to evaluate the time delay between surface magnetic fields

and mean phase travel time perturbations. We also discuss possible correlations with

the surface properties of the active regions studied in the time-delay analysis.

In Chapter 3, we derive a novel technique for the assessment of subsurface

magnetic fields. In particular, we show that the orientation of the horizontal magnetic

field as well as a proxy for its magnitude can be determined from spatial anisotropies

in mean phase travel time deviations. We validate this technique using a simulation of

acoustic waves propagating in a plasma with uniform background magnetic field and
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perform more comprehensive tests using a realistic simulation of a sunspot. Finally,

we apply the technique to several active regions observed by HMI and compare the

properties of the subsurface field with the surface counterparts.

Chapter 4 includes a derivation of the equations describing solar oscillations

as linear perturbations which is used to construct a hydrodynamic simulation of

sunquake excitation. We discuss the use of wavenumber damping and how the relevant

parameters can be obtained from solar observations. The simulations are used in

conjunction with HMI observations to provide estimates for the energy release and

excitation height of several sunquake events in the context of both a time-dependent

and instantaneous source function. We then move to more realistic mechanisms of

sunquake excitation, using heating rates derived from RADYN simulations (Allred

et al., 2020) of proton beams with varying low-energy cutoffs.

Chapter 5 summarizes the results of the previous chapters and discussion of

what these results imply. We also discuss potential extensions of this thesis’ results

to future work, including the develop of new inversion of subsurface magnetic fields

and improvements to sunquake simulations.

Appendix A describes the procedure for computing the theoretical helioseismic

measurements presented in Chapters 2 and 3, as well as how oscillations penetrating

to a desired depth can be identified from the acoustic dispersion relation.

Appendix B derives the central difference approximation to the first radial

derivative on a non-uniform mesh, which is used in our simulations in Chapter 4.
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CHAPTER 2

EARLY DETECTION OF EMERGING ACTIVE REGIONS

2.1 Data and Methods

For all active regions studied in this section, the Dopplergrams cover an area of

30.72 by 30.72 heliographic degrees with a spatial resolution of 0.12 degrees per pixel.

While higher resolution data is available for Helioseismic and Magnetic Imager (HMI)

data from the Solar Dynamics Observatory, the increased number of pixels leads to

longer computation times without significant increases in the signal-to-noise ratio of

the resulting measurements. The data obtained from the Michelson Doppler Imager

(MDI) aboard the Solar and Heliospheric Observatory (SOHO) for NOAA ARs 07978

and 10488 have a cadence of 60 seconds, with 480 frames per eight-hour segment. The

HMI Dopplergrams have a cadence of 45 seconds for a total for 640 frames in an 8-hour

segment. The eight-hour segments are spaced closely together near the emergence

time, with four hours separating the mid-times, and farther apart at other times with

eight-hours separating the mid-times. Both of the HMI and MDI Dopplergrams are

tracked at the Carrington rotation rate and remapped to a Postel’s projection for

the following helioseismic analysis. The data from the 3D hydrodynamic simulation

developed by Hartlep et al. (2011), referred to here as Acoustic Model 1, has a spatial

resolution of 0.7 degrees per pixel and 60-second cadence; the spatial resolution and

cadence of the data from the 3D acoustic model developed by Stejko et al. (2021),

referred to here as Acoustic Model 2, is identical to MDI Dopplergrams.

2.1.1 Selection of Active Regions for Statistical Analysis

To select the active regions to be used in our larger-scale analysis, we first search

the NOAA Solar Region Summaries catalog for sunspots which eventually reach a

maximum size of 150 millionths of disk area or greater, and which appear between
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April 2011 and November 2020. This list is refined further by selecting the associated

active regions which are first identified within 45 degrees of disk center. This

excludes active regions whose pre-emergence coordinates would lead to distortions

in the corresponding Dopplergrams from foreshortening. The Dopplergrams and

Magnetograms of the resulting 91 active regions are obtained for the 96-hour time

period beginning 72 hours before the respective emergence times. These time series

are tracked and remapped to a Postel’s projection with 0.12 degrees per pixel spatial

resolution, and 45-second cadence for the Dopplergrams and 12-minute cadence for

the Magnetograms. Finally, we examine the Dopplergrams and Magnetograms for

any artifacts which may interfere with processing, including anomalous pixels and

missing frames, where we find that the 20 of the initial 91 active region Dopplergram

series were unsuitable for analysis. The remaining 71 time series are divided into

eight-hour segments in increments of four hours, and the results of the first 46 active

regions are presented in this work.

2.1.2 Phase-Speed Filtering

We next treat the data with two Fourier filters; the first filter (F1) is a step-function

in frequency which preserves oscillations only in the 2 to 5 mHz range, which is the

resonant portion of the solar acoustic power spectrum. The second filter (F2)is similar,

though here we filter over phase speed vph = ω/k, with the parameters selected such

that oscillations with turning points between 40 and 70 Mm beneath the photosphere

are isolated. As discussed in Section 1.3 and Appendix A, the phase speed of a

given oscillation mode is equal to the local sound speed at the corresponding turning

point. Here, we use the Standard Solar Model (Christensen-Dalsgaard et al., 1996) to

determine the sound speed at z = −40 Mm (vph,1 = 92 km s−1) and at z = −70 Mm

(vph,2 = 127 km s−1). Oscillations which have phase speed less than vph,1 are treated

with a Gaussian filter centered at vph,1 with width δv = 8.7 km s−1, and oscillations
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with phase speed greater than vph,2 receive a similar treatment. Oscillations with

phase speed between vph,1 and vph,2 are unaffected. In other words, F1 is given by

F1(ν) =

 1 2mHz ≤ ν ≤ 5mHz

0 otherwise
, (2.1)

and F2 by

F2(vph) =



exp

[
−(vph − vph,1)

2

2δv2

]
vph < vph,1

1 vph,1 ≤ vph ≤ vph,2

exp

[
−(vph − vph,2)

2

2δv2

]
vph,2 < vph

. (2.2)

A typical acoustic power spectrum, along with the bounds of the Fourier filters, are

shown in Figure 2.1.

2.1.3 Computing Cross-Correlations and Travel Time Deviations

After filtering the data to isolate oscillations with the desired turning points, we

compute the cross-correlations as described in Duvall et al. (1993) with the following

procedure. The spherical coordinates for each pixel within the tracked Dopplergram

series are determined using the heliographic coordinates of the central pixel in the

image, and concentric rings about a given pixel are identified which have radii equal

to half the horizontal travel distance of the desired oscillations. The radius of the

smallest ring, or annulus, is 4.56 heliographic degrees, which corresponds to the

oscillations with the turning point at z = −40 Mm. Additional annuli are identified

in increasing radius with increment 0.12 degrees up to the largest annulus with radius
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Figure 2.1 Acoustic power spectrum derived from an eight-hour Dopplergram series.
The bounds of the step-function filter (F1) are depicted by the horizontal white lines
at 2 and 5 mHz. The bounds of the phase-speed filter (F2) are depicted by the
diagonal white lines. Oscillations within this bounding box are unaffected.
Source: Stefan et al. (2021)

8.16 degrees for the turning point at z = −70 Mm. We also consider five different

configurations for averaging the Dopplergram signal where the annulus is divided into

an increasing number of opposing arc segments, beginning with three opposing pairs

up to seven opposing pairs. The Dopplergram signal is averaged within each arc for

the point-to-point cross-correlation with the similarly averaged opposing arc, for a

give turning point depth, spatial position, and arc configuration. Figure 2.2 shows

an example of the measurement scheme for the case of five arc pairs.

The point-to-point cross-correlations are computed separately for the positive

and negative phase travel times. For an arc labeled A correlated with the opposing

arc labeled B, the positive phase travel time is associated with oscillations traveling

from A to B and the negative phase travel time with oscillations traveling from B to

A. The choice of reference arc is, of course, arbitrary and in our case, we are most

18



Figure 2.2 Example of a spatial averaging scheme used to measure phase travel times
for the case of eight arc segments. Dopplergram signal within each arc is averaged
and cross-correlated with the opposing arc.
Source: Stefan & Kosovichev (2022)

interested in the average of these phase travel times as described in the following

section. The cross-correlations are given by

ΨA→B(τ) =
1

T

∫ T

0

vA(t)vB(t− τ)dt (2.3)

and

ΨB→A(τ) =
1

T

∫ T

0

vA(t)vB(t+ τ)dt, (2.4)

where T is the duration of the Dopplergram time series, vA is the Dopplergram signal

of arc A, vB is the Dopplergram signal for arc B, and τ is the time lag between the

two signals.
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The phase travel times can be extracted from the cross-correlations using several

methods, though here we use Gabor wavelet fitting (Nigam et al., 2007) and the

error-minimization method developed by Gizon & Birch (2002), which we refer to as

the GB02 method. For the first method, the cross-correlations are fit to a Gabor

wavelet of the form

Ψ(τ) = A cos (ω0(τ − τph)) exp

[
−1

2
γ2(τ − τg)

2

]
, (2.5)

where τ is the time lag, A is the amplitude, ω0 is the angular frequency of a given

mode, τph and τg are the corresponding phase and group travel times respectively, and

γ is related to the width of the wavepacket’s Gaussian envelope. To supply an initial

guess of the parameters for the curve-fitting algorithm, we fit the spatially averaged

cross-correlation for each annulus radius and arc number using the travel times and

frequency derived from ray theory (Gough, 1993). The resulting radius-dependent

phase travel times are used as a reference to shift the pixel-by-pixel cross-correlations

in time so that they can be averaged over arc radius. The averaged cross-correlations

are then used to obtain a phase travel time deviation map for each arc segment case

from a final Gabor wavelet fit.

The procedure for the GB02 method begins similarly, by obtaining reference

phase travel times from the spatially-averaged Gabor wavelet fit to shift and

average the pixel-by-pixel cross-correlations. However, we also define a reference

cross-correlation, Cref, for the entire region by further averaging over the number

of arc segments. We then define X±(Ψ, t), the squared error between the reference

cross-correlation and a given pixel’s cross-correlation Ψ(x, y, n) for spatial position
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(x, y) and number of arc segments n. This function is given by

X±(Ψ, τ) =

∫ ∞

−∞
[Ψ(x, y, τ ′)− Cref(τ

′ ∓ τ)]
2
f(±τ ′)dτ ′, (2.6)

where f(∓τ) is a window function which isolates the positive or negative time

lags. This function is defined to be unity for |τph − τph,ref| ≤ 5 minutes and zero

otherwise. The travel time deviations can be derived from the above function, where

the backward travel time deviation δτ− is given by the lag τ which minimizes the

error function X−(Ψ, τ) and similarly for the forward travel time deviation δτ+ and

the error function X+(Ψ, τ).

It can be shown—as in (Kosovichev & Duvall, 1997)—that the expected first

order perturbation to the expected mean phase travel time deviation due to a change

in the sound speed along the ray path is

δτmean =

∫
Γ

δc

c
Sds, (2.7)

where δτmean is the mean phase travel time deviation, Γ is the unperturbed acoustic

ray path, δc is the perturbation to the background sound speed c, S = k/ω is the

phase slowness, and ds is the differential of the ray path. The mean phase travel time

deviation, δτmean is computed from the simple average of the forward and backward

travel time deviations, derived directly in the GB02 method and computed in the

Gabor wavelet method as δτph,± = τph,± − ⟨τph,±⟩x,y.
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2.2 Testing on Numerical Simulations: Acoustic Model 1

We first test the above time-distance method on simulated Dopplergram data from

Model 1 (Hartlep et al., 2011), which contains two 5% reductions in sound speed

of differing horizontal extent. Both perturbations have the following dependence on

depth (z) and angular distance from the respective perturbation’s center (α),

δc =
A

4

(
1 + cos

(
π
z − z0
δz

))(
1 + cos

(
π
α

δα

))
. (2.8)

The smaller perturbation has a horizontal width 2δα = 180 Mm and the larger

perturbation has a horizontal width 2δα = 360 Mm; both perturbations are placed 50

Mm (z0) beneath the model’s surface with vertical radius δz = 20 Mm. While these

perturbations, particularly the larger one, are significantly wider than is expected

of an emerging concentration of magnetic flux, they provide some context on the

maximum detectability of sound speed perturbations near the center of our vertical

region of interest.

The large perturbation (Figure 2.3a) is very well-resolved, with strong mean

travel time perturbations extending up to 100 Mm from the center of the perturbation.

This strongly perturbed region, along with the entire map, is modulated by the

inherent realization noise associated with helioseismic measurements. The smaller

perturbation (Figure 2.3b) is distinguishable from the background, but the circular

horizontal shape is less clear than for the large perturbation. Furthermore, the

maximum travel time deviation at the center of the small perturbation is smaller than

the maximum of the large perturbation, ≈ 29 s compared to ≈ 38 s. This difference

is expected as less of a given oscillation’s ray path travels through a perturbed region

which reduces the overall shift in the phase travel time.
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Figure 2.3 Measurements of phase travel time deviation for the sound speed
perturbations in Acoustic Model 1. a) Mean phase travel time deviation map of
the perturbation with horizontal width 2δα = 360 Mm; b) Mean phase travel time
deviation map of the perturbation with horizontal width 2δα = 180 Mm. The solid
black line marks the 2σ = 8.20 threshold derived from the unperturbed regions of the
model.
Source: Stefan et al. (2021)

To highlight significantly perturbed regions, we determine a 2σ threshold of

8.20 seconds and overlay this contour in Figures 2.3a and 2.3b, marked by the black

line. The standard deviation is obtained from the mean phase travel deviations after

those within 200 Mm of the map center for both the large and small perturbations.

The shape of the contour differs in both cases from the prescribed horizontal circular

symmetry, and this difference is more significant for the smaller sound speed which has

a maximum travel time deviation closer to the background variation. This indicates

that the overall shape of detected features may not necessarily coincide with in-situ
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conditions, though the difference in the magnitudes of the measured mean travel time

deviations are consistent with the size and strength of the sound speed perturbations.

The 2σ contouring also reveals some anomalous travel time deviations in the lower

portions of Figures 2.3a and 2.3b, which are not observed in Acoustic Model 2 in

the following section. While there certainly may be some pixels not associated with

the sound speed perturbations that exceed the threshold, both figures clearly show a

latitudinal dependence as opposed to a random distribution. The background mesh

of Acoustic Model 2 is uniform in latitude and it is suspected that these anomalies

arise from the changing spatial resolution near the model’s poles.

2.3 Testing on Numerical Simulations: Acoustic Model 2

Using Acoustic Model 2 (Stejko et al., 2021), we test both the sensitivity dependence

on perturbation width and depth, as well as the accuracy of travel time measurements

made with our time-distance method. We consider six variations of sound speed

perturbations, the results of which are shown in Figure 2.4. For all perturbations, the

vertical radius is equal to 20 Mm, while the left column contains perturbations with

horizontal radius 50 Mm and the right column with horizontal radius of 20 Mm. The

depth of the perturbations increases in descending order, with z0 = −40, z0 = −50,

and z0 = −60 Mm. The perturbations are Gaussian in all directions with amplitude

equal to 5% of the background sound speed. As with Acoustic Model 1, we use the

standard deviation of unperturbed regions highlight the strongly perturbed regions

in the mean phase travel time maps using a 2σ = 9.58 s threshold. However, the field

of view is small enough in this case to necessitate the use of additional simulations

lacking a sound speed perturbation, shown in Figure 2.5, to compute this threshold.

There is a surprising lack of spatial information in Figure 2.4, where one would

expect circular mean phase travel time shifts given the Gaussian nature of the sound

speed perturbations in the (x,y)-plane. Instead, we find that the spatial structure of
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Figure 2.4 Travel time shifts measured in Acoustic Model 2 from a 5% increase in
sound speed with a vertical radius of 20 Mm, at a depth of 40 Mm (a,b), 50 Mm
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Source: Stefan et al. (2021)
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the sound speed perturbations is convolved with the background noise and added

to the underlying inhomogeneities. This is particularly true for the z0 = −40

Mm perturbation, located at the upper range of our sampled region such that the

entire perturbation is not within our vertical field of view. Additionally, we see

little variation in the shape of the 2σ contours between the 20 Mm and 50 Mm

perturbation for depths z0 = −50 Mm and z0 = −60 Mm. Some similarity is expected

as the oscillation excitation functions of Acoustic Model 2 are the same for each case,

however, the only distinguishing features between the two width cases are a slight

increase in the maximum mean phase travel time deviation as well as a small increase

in the area encircled by the 2σ contour. The increase in the maximum’s magnitude

between the 20 Mm and 50 Mm wide perturbations, around two to three seconds, is

similar to that seen in Acoustic Model 1. Likewise, there is an increase of around

eight seconds from the z0 = −40 Mm and z0 = −60 Mm cases; since the sound speed

perturbation is proportional to the local sound speed which increases with depth, we

should similarly expect the mean phase travel time deviation to increase as well.

Further testing is done with Acoustic Model 2 to asses the accuracy of the

travel time measurements, where a 5% Gaussian sound speed reduction is placed

55 Mm beneath the model’s surface and with radius 20 Mm in all directions. The

expected travel time shift is computed using Equation (2.7), the Standard Solar Model

(Christensen-Dalsgaard et al., 1996) as the background mesh, and the previously

described parameters for the perturbed sound speed. The procedure for computing

the expected travel time perturbation is described in Appendix A. The mean phase

travel time deviations are sampled with the same method as in Acoustic Model 1,

though only one ray is sampled per arc pair. We expect there to be no difference

with the inclusion of additional rays as the sound speed perturbation is circularly

symmetric. As with the actual measurements of the perturbation, the predicted map

has the mean phase travel time subtracted to obtain the deviations. The measured
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contours) of Figures 2.4 and 2.6.
Source: Stefan et al. (2021)

area of the perturbation in Figure 2.6 is roughly the same as what is predicted,

however the 2σ-contoured region is strongly convolved with the background noise

such that area is no longer entirely circular. Additionally, the maximum of the

measured mean phase travel deviations is several seconds shorter than the predicted

maximum. While the noise level—around 4.8 seconds—can explain this discrepancy,

we observe far more reductions in the travel time magnitude than increases relative

to the predicted deviation.
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2.4 Case Study of Select Active Regions and Comparison with Quiet
Sun Measurements

In this section, we apply our time-distance method to five active regions using

Dopplergrams obtained from HMI and MDI. Here, the travel time deviations are

computed only with the Gabor wavelet fitting procedure. We begin with NOAA

ARs 07978 and 10488 which were previously studied by Ilonidis et al. (2011), who

measured strong travel time shifts several hours prior to the flux emergence. To

provide a quantitative measure of the strength and significance of mean phase travel

time shifts, we define the perturbation index in a fashion similar to Ilonidis et al.

(2011). We take the perturbation index to be the sum of negative travel time shifts

having amplitude greater than twice the standard deviation of the entire time series,

multiplied by the area occupied by these travel time deviations. For example, a

region of area 50 Mm2 having a travel time deviation of −10 seconds will have a

perturbation index of 500 s Mm2. The perturbation index will therefore increase if

either the magnitude of the travel time deviation or the occupied area increases.

With this in mind, we find that AR 10488 has a small increase in the

perturbation index 25 hours prior to emergence, and a stronger increase which occurs

five hours before the magnetic flux emerges, as shown in Figure 2.7a. Additionally,

there is a large peak in the perturbation index 24 hours after the active region

emerges. Extended observations by Ilonidis et al. (2011) show that the magnetic flux

rate decreases one day after emergence before abruptly increasing, and we interpret

this secondary peak as additional magnetic flux. We also see a strong peak in the

perturbation index of AR 07978 (Figure 2.8a) 20 hours before its emergence, though

the background perturbation index is slightly more noisy than that of AR 10488.

The active regions magnetic flux increases slowly for about 15 hours after emergence

followed by a strong increase in the flux in the remaining 15 hours of observation. We
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Figure 2.7 Analysis of AR 10488. a) Perturbation index over time (black) and
the unsigned magnetic flux (red) where the vertical red dashed line indicates the
approximate time of emergence; b) Travel time map at the time of peak perturbation
index where the regions which meet the 2σ threshold are bounded by the solid dashed
line; and c) Magnetogram of the active region at the end of the data series.
Source: Stefan et al. (2021)

observe a moderate peak near the emergence time which precedes this change in the

flux rate by around 14 hours.

In contrast to ARs 07978 and 10488, AR 12772 is a relatively weak active region

where the unsigned magnetic flux remains below 850 Gauss during our observations.

We are, however, able to detect a peak in the perturbation index 20 hours prior to

the active region’s emergence, as seen in Figure 2.9a. AR 11158 is an active region

of moderate strength, where the magnetic field does exceed 1000 Gauss by the end

of our observations. Furthermore, the structure of the active region is significantly
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Figure 2.8 Analysis of AR 07978. a) Perturbation index over time (black) and
the unsigned magnetic flux (red) where the vertical red dashed line indicates the
approximate time of emergence; b) Travel time map at the time of peak perturbation
index where the regions which meet the 2σ threshold are bounded by the solid dashed
line; and c) Magnetogram of the active region at the end of the data series.
Source: Stefan et al. (2021)
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Figure 2.9 Analysis of AR 12772. a) Perturbation index over time (black) and
the unsigned magnetic flux (red) where the vertical red dashed line indicates the
approximate time of emergence; b) Travel time map at the time of peak perturbation
index where the regions which meet the 2σ threshold are bounded by the solid dashed
line; and c) Magnetogram of the active region at the end of the data series.
Source: Stefan et al. (2021)

more bipolar than AR 12772. For AR 11158 we observe a more gradual rise in

the perturbation index (Figure 2.10a) beginning around 25 hours before the flux

emerges, with some smaller changes in the perturbation index following emergence

which appear to precede abrupt changes in the unsigned magnetic flux.

Whereas we observe gradual increases in the perturbation index of active

regions, the perturbation index of quiet Sun regions (Figure 2.11) shows more

abrupt changes as expected of background noise. While there is a rapid increase

in the perturbation index of the quiet Sun region located at latitude +15◦ followed
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Figure 2.10 Analysis of AR 11158. a) Perturbation index over time (black) and
the unsigned magnetic flux (red) where the vertical red dashed line indicates the
approximate time of emergence; b) Travel time map at the time of peak perturbation
index where the regions which meet the 2σ threshold are bounded by the solid dashed
line; and c) Magnetogram of the active region at the end of the data series.
Source: Stefan et al. (2021)
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Source: Stefan et al. (2021)

by a gradual decline, this isn’t observed in either of the other quiet Sun regions.

Furthermore, we expect—and observe in the case of ARs 11158 and 12772—the

opposite trend, where perturbation index increases gradually before sharply falling.

The interpretation is the following, where a concentration of magnetic flux has

risen into focus at z = −70 Mm, slightly perturbing the mean phase travel time.

As the flux continues to rise, the mean phase travel time is further perturbed by

introduction of more flux in our vertical field of view. Once the lower extent of

the flux concentration crosses z = −70 Mm, we expect the perturbation index to

begin to sharply decline. This asymmetrical development is expected as there is an

uneven sensitivity which we use to probe the interior; as seen in Figure 2.4, deeper

perturbations correspond to stronger shifts in the mean phase travel time. We also

see that when the perturbation begins to rise out of focus, as in Figures 2.4a and 2.4b,
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the size and magnitude of the travel time deviations decreases compared to deeper

perturbations.

2.5 Statistics of Emerging Active Regions in Solar Cycle 24

In this section, we consider the mean phase travel time deviations obtained both

through the Gabor wavelet fitting procedure as well as the GB02 method. We

also adjust the threshold by which the perturbation index is computed. Where the

perturbation index was previously computed using the 2σ value from the series of

travel time maps of a given active region, we impose a more strict threshold here.

Using the quiet Sun travel times obtained in the previous section, we set the threshold

as the 99th percentile of negative mean phase travel time deviations from the entire

series for each arc segment case. These thresholds range from −7.1 to −10.2 seconds

for the GB02 travel times, and from −7.1 to −8.5 for the Gabor-wavelet derived travel

times.

We also consider the correlation lag time between changes in the mean phase

travel time deviation and the unsigned surface magnetic field. Where the perturbation

index has some predictive capability in that it can be computed from current

data, the correlation lag time requires the entire sequence of travel time maps

and Magnetograms. For each pixel, we subtract the mean and normalize both the

mean phase travel time deviations and the unsigned surface magnetic field, and then

compute the cross-correlation. The normalization ensures that an absolute correlation

can be determined, i.e. a value between −1 and 1. The cross-correlations between the

travel times and magnetic field are then averaged for pixels where the unsigned surface

magnetic field eventually reaches 100 G or more, and we identify the correlation lag

time from the maximum in the averaged cross-correlation.
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Figure 2.12 a) Simple model of flux emergence, with the magnetic field (red)
increasing as an error function and the travel time deviation (black) peaking prior
to emergence. b) Cross-correlation of the magnetic field and travel time deviation.
The green dashed line in b) marks the minimum of the cross-correlation, with the lag
equal to the separation of the travel time deviation and magnetic field peaks. The
blue dashed line in b) marks the maximum of the cross-correlation, with the lag equal
to the separation between the travel time deviation peak and onset of the magnetic
field’s rise.

2.5.1 Toy Model for Flux Emergence

In order to determine what features should be expected in the travel time - magnetic

field cross-correlation, we consider a simple model for flux emergence. Here, the travel

time deviation is Gaussian in time, with a FWHM of 8 hours and separated from the

time of peak emergence by 30 hours. The magnetic field increases as an adjusted

error function, taking around 20 hours to reach its peak. Both quantities are shown

in Figure 2.12a, with the vertical green dashed line indicating when the magnetic field

has saturated and the blue dashed line showing the onset of flux emergence. The peak

in the travel time deviation is indicated by the black dotted line, which serves as a

reference point for comparison with the rise and peak times of the magnetic field.

We find that the minimum of the cross-correlation, indicated by the green

dashed line in Figure 2.12b, occurs at a lag equal to the time between the travel

time deviation’s peak and the increase of the magnetic field, i.e. the onset of flux
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emergence. Intuitively, we should expect the cross-correlation to peak here, as the

return of the travel time deviation to zero has a similar functional form to the rise

of the magnetic field. The maximum of the cross-correlation, indicated by the blue

dashed line in Figure 2.12b, occurs at a lag equal to the the time between the peak

travel time deviation and peak magnetic field. This should also be expected, as the

negative peak of the travel time deviation and the positive peak of the magnetic field

contribute most strongly to the cross-correlation when the two are aligned, forming

the indicated minimum. In this work, we are most interested in the delay between

strong negative travel time deviations and the onset of flux emergence, so we will

focus on the time lag associated with the minimum in the cross-correlation.

2.5.2 Observed Correlations

We first examine the distribution of correlation lag times for each of the arc segment

cases and travel time procedures, as shown in Figure 2.13. In all cases, there are

more negative lag times than positive, with the GB02-derived, 8 arc segment method

yielding negative lag times in 36 of the 46 active regions; in fact, the GB02 procedure

outperforms the Gabor wavelet procedure in every case. The median correlation lag

time varies with the number of arc segments, though the 14 arc segment case performs

most poorly with a median correlation lag time of −10 hours for the GB02 procedure

and −12 hours for the Gabor wavelet procedure. The 8 arc segment case produces the

greatest median correlation time lag of −16 hours for both procedures, and median

correlation lag time decreases in both the GB02 and Gabor wavelet procedures as the

number of arc segments increases.

The median lag time associated with the peak in the perturbation index does not

follow this trend, however, and actually increases with the number of arc segments.

The median lag time from the perturbation index in the 6 arc segment case is −10

hours for both travel time procedures, reaching a maximum of −14 hours for the
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Figure 2.13 Distribution of correlation lag times for the travel times obtained with
n = 6 arc segments (a,b), n = 8 arc segments (c,d), n = 10 arc segments (e,f), n = 12
arc segments (g,h), n = 14 arc segments (i,j), and by the average of the five cases
(k,l). The first row is derived from the GB02 travel time procedure, and the second
row from the Gabor wavelet fitting procedure.

GB02 procedure and −20 hours for the Gabor wavelet procedure, both with the 14

arc segment case. We next compare the perturbation index indicated lag time with

the correlation lag time in Figure 2.14 and compute the Pearson correlation coefficient

for each case. For the GB02 procedure, the two lag times are most correlated in the

8 arc segment case (Figure 2.14e) with a weak correlation coefficient of r = 0.03. The

perturbation index and lag times derived from the Gabor wavelet procedure are also

most correlated in the 8 arc segment case (Figure 2.14d), with r = 0.21. For both the

GB02 and Gabor wavelet procedures, the greatest correlation between perturbation

index and lag times are associated with the arc segment case which yields the greatest

number of negative correlation lag times.

We now examine the relationship between the correlation lag times and relevant

active region characteristics, and here we consider the case where the travel times are

obtained through averaging the cross-correlations over the different number of arc

segments. As opposed to the previous comparison, we do not necessarily expect a

linear relationship with the active region characteristics, so here we use the Spearman
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Figure 2.14 Comparison between the correlation lag times and the peak perturbation
index times; the plots are organized as in Figure 2.13.

correlation coefficient instead of the Pearson correlation coefficient. The Spearman

coefficient evaluates the monotonicity of a relationship, where the Pearson coefficient

evaluates the linearity. The first quantity we examine is the maximum magnetic

flux of an active region, Figures 2.15a and 2.15d, and find that there is a weak

anti-correlation with the correlation lag time for the GB02 procedure, and far weaker

for the Gabor wavelet procedure, with ρ = −0.22 and ρ = −0.09 respectively. There is

a relationship of similar strength between the correlation lag times and the maximum

flux rates, Figures 2.15b and 2.15e, with ρ = −0.40 for both the GB02 and the Gabor

wavelet procedures. There is also a weak anti-correlation between the correlation lag

times and sunspot sizes, Figures 2.15c and 2.15f, with ρ = −0.16 and ρ = −0.22 for

the GB02 and Gabor wavelet procedures, respectively.

After removing the active regions with positive correlation lag times, which do

not predict flux emergence, the probability that the sunspot sizes are uncorrelated

with the lag times increases, from p = 0.26 to p = 0.39 for the GB02 procedure

and p = 0.14 to p = 0.50 for the Gabor procedure. Reevaluating the relationship

between the maximum fluxes also leads to a significant increase in the probability of

no correlation, increasing from p = 0.14 to p = 0.40 for the GB02 procedure and from

p = 0.57 to p = 0.77 for the Gabor wavelet procedure. There is also an increase in the
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Figure 2.15 Comparison between the correlation lag times for the GB02 procedure
(left column) and Gabor wavelet procedure (right column), and an active region’s
maximum magnetic flux (a,d); an active regions maximum flux rate (b,e); and an
active region’s size (c,f).
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probability of no correlation for the maximum flux rates, from p = 0.17 to p = 0.37

for the GB02 procedure and p = 0.18 to p = 0.91 for the Gabor wavelet procedure.
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CHAPTER 3

ASSESSMENT OF SUBSURFACE MAGNETIC FIELDS

3.1 Deriving the Wavenumber Perturbation from Magnetic Fields

The basis of our detection of subsurface magnetic fields is the perturbation to a

given oscillation’s wavenumber in the presence of a magnetic field. This change

in the wavenumber is derived from the treatment of oscillations in an initially

stationary plasma with an arbitrarily-oriented background magnetic field B0 as linear

perturbations to the conservation of mass (Equation (3.1)) and momentum (Equation

(3.2)), the induction equation (Equation (3.3)), and the adiabatic condition (Equation

(3.4)). Denoting the perturbation to quantity a as a′, the linearized equations are

∂ρ′

∂t
= −ρ0∇ · v, (3.1)

ρ0
∂v

∂t
= −∇

(
c2sρ

′)+ 1

4π
(∇×B′)×B0, (3.2)

∂B′

∂t
= ∇× (v ×B0) , (3.3)

and

p′ = c2sρ
′. (3.4)

For simplicity, we will consider Cartesian coordinates and plan wave solutions,

and orient our coordinate system such that the direction of wave propagation is

in the ẑ-direction. This orientation leaves the possibility of the magnetic field
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having some component in all three directions; however, we can further rotate our

coordinate system about the ẑ-axis so that horizontal component of the field lies

entirely along the ŷ-axis. With the background magnetic field now of the form

B0 = (0, B0 sinα,B0 cosα)
T, where α is the angle between the ẑ-axis and the

magnetic field, and the following conditions

∂

∂x
=

∂

∂y
= 0;

∂

∂z
= ik;

∂

∂t
= −iω, (3.5)

Equation (3.2) reduces to



ωρ0vx +
B0

4π
kB′

x cosα = 0

ωρ0vy +
B0

4π
kB′

y cosα = 0

ωρ0vz − kc2sρ
′ − B0

4π
kB′

y sinα = 0

, (3.6)

and Equation (3.3) to


ωB′

x +B0kvx cosα = 0

ωB′
y +B0kvy cosα−B0kvz sinα = 0

ωB′
z = 0

. (3.7)

Expansion of Equation (3.1) simply yields

ωρ′ − kρ0vz = 0. (3.8)
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We can obtain the dispersion relation for Alfvén waves by solving for vx in the

momentum equation and substituting the result into the induction equation. This

gives

ω2ρ0 − k2B
2
0

4π
cos2 α = 0 → ω = kcA cosα (3.9)

where cA = B0/
√
4πρ0 is the Alfvén speed. Alfvén waves propagate in the direction of

the magnetic field, which is also their restoring force. The remaining four equations,

two from the induction equation and two from the momentum equation, can be solved

as a matrix equation to yield the dispersion relation for magnetoacoustic waves

(ω
k

)2
=

1

2

(
c2A + c2s

)
± 1

2

√
c4A + c4s − 2c2Ac

2
s cos 2α, (3.10)

which has two modes: the fast mode (+) and the slow mode (−). Both modes

have pressure and the magnetic field as their restoring force, the contributions of

which enhance each other for the fast mode and partially negate for the slow mode.

Additionally, these waves do not necessarily need to propagate in the direction the

magnetic field. We can simplify the above using the cosine double angle identity to

(ω
k

)2
=

1

2

[
c2A + c2s ±

√
c4A + c4s − 2c2sc

2
A(2 cos

2 α− 1)

]
, (3.11)

44



which facilitates the use of the dot product to make the interaction between the

wavevector and the Alvén velocity more clear in the following form,

(ω
k

)2
= c2MHD =

1

2

c2A + c2s ±

√
(c2A + c2s)

2 − 4c2s

(
k · cA
|k|

)2
 . (3.12)

Here, we have defined the magnetoacoustic wave speed cMHD which takes the value

cf,MHD for the fast mode and cs,MHD for the slow mode.

Considering some variable x = c2A/c
2
s, the above can be expressed in cosine form

as

c2MHD(x) =
c2s
2

[
x+ 1±

√
x2 + 1 + 2x+ 4xk2 cos2 α

]
. (3.13)

While this temporarily complicates our dispersion relation, we expect the Alfvén

speed to be smaller than the local sound speed for sufficiently small magnetic field

B0, such that we can consider small perturbations to the magnetoacoustic wave

speed about x = 0. Specifically, we apply a first order Taylor expansion to the

fast magnetoacoustic wave speed,

c2f,MHD(x) ≈ c2f,MHD(x = 0) + x
d

dx

(
c2f,MHD

)∣∣∣∣
x=0

, (3.14)
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which simplifies to

c2f,MHD ≈ c2s +

(
c2A −

(
k · cA
|k|

)2
)
. (3.15)

We now derive the perturbation to a given oscillation mode’s wavenumber by

again Taylor expanding the fast magnetoacoustic speed to first order, though now

using the relation c2f,MHD = ω2/k2 and expanding about the unperturbed wavenumber

k0. We then have

c2f,MHD(k) = c2f,MHD(k0) + (k − k0)
d

dk

(
c2f,MHD

)∣∣∣∣
k=k0

= c2f,MHD(k0) + δk
d

dk

(
c2f,MHD

)∣∣∣∣
k=k0

=
ω2

k2
0

− 2δk
ω2

k3
0

= c2s − 2δk
ω2

k3
0

, (3.16)

where the last equality makes use of the unperturbed dispersion relation ω = csk.

Finally, the above expression can be substituted in the previous Taylor expansion of

cf,MHD as

c2s +

(
c2A −

(
k · cA
|k|

)2
)

= c2s − 2δk
ω2

k3
0

. (3.17)
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Rearranging the above to solve for δk, the perturbation to the wavenumber, gives

δk = −1

2

k3
0

ω2

(
c2A −

(
k · cA
|k|

)2
)

(3.18)

Note that perturbations to wavenumber produce perturbations to the wave

travel time via the following relation,

δτ =
1

ω

∫
Γ

δkds, (3.19)

so it can be expected that the perturbation to the wave travel time in the presence

of sufficiently weak magnetic fields can be expressed as

δτ = −
∫
Γ

1

2

[
c2A
c2s

−
(
k · cA
|k|cs

)2
]
Sds. (3.20)

As in Chapter 2, S = k/ω is the phase slowness and δτ is the perturbation to the
phase travel time.

3.2 Isolating the Azimuth and Magnitude of the Horizontal Magnetic
Field from Phase Travel Times

While we have neatly summarized how magnetic fields are expected to perturb the

phase travel time of acoustic waves, these are not the only perturbations an acoustic

wave may encounter in a realistic setting. We must also consider the effect that flows

as well as changes in sound speed and acoustic cut-off frequency have, which together
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provide a perturbation to the one-way phase travel time given by

δτ = −
∫
Γ

[
n ·U
c2

+
δc

c
S +

δωc

ωc

ω2
c

ω2c2S
+

1

2

(
|cA|2

c2
− (k · cA)2

|k|2c2

)
S

]
ds, (3.21)

where n = k/|k| is the direction of wave propagation, U is the flow velocity, δc is the

perturbation to the sound speed, and δωc is the perturbation to the acoustic cut-off

frequency ωc. A more detailed discussion of the non-magnetic terms can be found

in Kosovichev & Duvall (1997); for our purposes, it is enough to know that these

additional perturbations exist and how they behave. On small enough scales, where

the perturbations can be considered constant along the ray path Γ, the contribution

to the travel time from sound speed and cut-off frequency perturbations is the same

regardless of the direction the wave is propagating in. The contribution from flows can

be isolated by taking the difference between the forward and backward phase travel

time, while taking the mean of these phase travel times removes its contribution. This

leaves

δτmean = TA − 1

2

∫
Γ

(
|cA|2

c2
− (k · cA)2

|k|2c2

)
Sds, (3.22)

where the sound speed and cut-off frequency terms are represented by TA.

For a background magnetic field having radial component Br and total

horizontal component Bh =
√
B2

θ +B2
ϕ, the mean phase travel time deviation along
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the North-South axis, labeled by δτ
(1)
mean, is given by

δτ (1)mean = TA − 1

2

∫
Γ

1

|k|2c2

[
1

4πρ

(
k2
r + k2

h

) (
B2

r +B2
h

)
− 1

4πρ
(krBr + khBh cos(α))

2

]
Sds.

(3.23)

For this particular configuration, the wave is traveling entirely along the θ̂-direction,

such that only the polar-angle and radial terms remain in Equation (3.22). Here,

α is the angle between the horizontal magnetic field and the North-South axis—the

magnetic field’s azimuth. We now assume that the magnetic field is uniform along the

ray path, and the expected mean perturbation of a North-South traveling acoustic

wave is

δτ (1)mean = TA − 1

2

∫
Γ

1

|k|2c2
(
k2
rc

2
A,h + k2

hc
2
A,r

)
Sds−

(
1

2

∫
Γ

1

|k|2c2
k2
hc

2
A,hSds

)
sin2(α)

+

(∫
Γ

1

|k|2c2
krkhcA,rcA,hSds

)
cos(α).

(3.24)

We can further reduce this expression by realizing that the last term is anti-symmetric

along the ray path; the sign of kr changes from negative to positive after the wave

travels past the turning point, but we have assumed that the magnetic field is uniform.

This then reduces to

δτ (1)mean = TA − 1

2

∫
Γ

1

|k|2c2
(
k2
rc

2
A,h + k2

hc
2
A,r

)
Sds−

(
1

2

∫
Γ

1

|k|2c2
k2
hc

2
A,hSds

)
sin2(α).

(3.25)
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The above treatment is also applied to acoustic waves traveling along the

Northeast-Southwest direction, (δτ
(2)
mean), along the East-West direction (δτ

(3)
mean), and

along the Southeast-Northwest direction (δτ
(4)
mean). For each increment, we re-orient

our coordinate system so that the acoustic wave is always propagating along the local

θ̂-direction which simplifies the corresponding expressions for the mean travel time

perturbation. After accounting for the π/4 rotation in each additional increment, the

expected mean phase travel time perturbations are

δτ (2)mean = TA − 1

2

∫
Γ

1

|k|2c2
(
k2
rc

2
A,h + k2

hc
2
A,r

)
Sds

−
(
1

2

∫
Γ

1

|k|2c2
k2
hc

2
A,hSds

)
sin2

(
α +

π

4

)
,

(3.26)

δτ (3)mean = TA − 1

2

∫
Γ

1

|k|2c2
(
k2
rc

2
A,h + k2

hc
2
A,r

)
Sds

−
(
1

2

∫
Γ

1

|k|2c2
k2
hc

2
A,hSds

)
cos2(α),

(3.27)

and

δτ (4)mean = TA − 1

2

∫
Γ

1

|k|2c2
(
k2
rc

2
A,h + k2

hc
2
A,r

)
Sds

−
(
1

2

∫
Γ

1

|k|2c2
k2
hc

2
A,hSds

)
cos2

(
α +

π

4

)
.

(3.28)

Subtracting the East-West travel time perturbation (Equation (3.27)) from the

North-South perturbation (Equation (3.25)), and similarly the Southeast-Northwest

perturbation (Equation (3.28)) from the Northeast-Southwest perturbation (Equation
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(3.26)), gives

δτ (1)mean − δτ (3)mean = −
(
1

2

∫
Γ

1

|k|2c2
k2
hc

2
A,hSds

)(
sin2(α)− cos2(α)

)
=

(
1

2

∫
Γ

1

|k|2c2
k2
hc

2
A,hSds

)
cos(2α)

(3.29)

and

δτ (2)mean − δτ (4)mean = −
(
1

2

∫
Γ

1

|k|2c2
k2
hc

2
A,hSds

)(
sin2

(
α +

π

4

)
− cos2

(
α +

π

4

))
= −

(
1

2

∫
Γ

1

|k|2c2
k2
hc

2
A,hSds

)
sin(2α).

(3.30)

We can now combine Equations (3.29) and (3.30) to extract expressions for the

magnetic field’s azimuth

α =
1

2
tan−1

(
−δτ

(2)
mean − δτ

(4)
mean

δτ
(1)
mean − δτ

(3)
mean

)
, (3.31)

and a quantity which we call the magnetic anisotropy parameter

A ≡
∫
Γ

1

|k|2c2
k2
hc

2
A,hSds = 2

√(
δτ

(2)
mean − δτ

(4)
mean

)2
+
(
δτ

(2)
mean − δτ

(4)
mean

)2
, (3.32)

which is directly proportional to the magnitude of the horizontal magnetic field.
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3.3 Procedure for Measuring Characteristics of the Subsurface
Magnetic Field

As described in Subection 2.1.2, it is necessary to apply phase speed filters to the

oscillation data in order to isolate modes penetrating to a desired depth. Here, we

are looking at much more shallow layers of the solar interior—between 5 and 13

Mm beneath the photosphere—for which there are standardized phase speed filters

used by the Joint Science Operations Center (JSOC) of SDO for the processing of

Dopplergrams in their time-distance pipeline (Zhao et al., 2012). We use these same

phase speed filter parameters in this chapter for the sake of compatibility with other

helioseismic data products. A complete description of the parameters is listed in Table

3.1, where the term annulus group denotes the collection of measurement annuli which

reach the desired depth range.

The corresponding annulus groups for our desired vertical view are annulus

group 4, with turning point depths z = −5 to −7 Mm; annulus group 5, with turning

point depths z = −7 to −10 Mm; and annulus group 6, with turning point depths

z = −10 to −13 Mm. The travel time perturbations for the very shallow layers

probed by annulus groups 1, 2, and 3 (z = 0 to −3 Mm) are generally too noisy to

extract useful magnetic field information. Additionally, annulus groups 7 (z = −13

to −17 Mm) to 11 (z = −30 to −35 Mm) require long time series to resolve the

perturbations caused by the magnetic field. The effects of acoustic perturbations

become much stronger than those from the magnetic field, as the ratio of Alfvén

speed to sound speed becomes exceedingly small with increasing depth.

To perform the measurements of the mean phase travel time deviations, we

employ a similar procedure as described in Section 2.1.3. We use three measurement

annuli in each annulus group, one each for the minimum, mean, and maximum

horizontal travel distances listed in Table 3.1. The cross-correlation is computed

for opposing arcs, each of which covers 45◦ and is oriented with respect to the
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Table 3.1 Parameters for Annulus Groups 4, 5, and 6

Annulus Group Depth Range (Mm) Horizontal Travel
Distance (deg)

Phase Velocity (km
s−1)

Gaussian Width (km
s−1)

4 5-7 1.44-1.80 28.83 9.40

5 7-10 1.92-2.40 36.48 5.91

6 10-13 2.40-2.88 40.25 5.17

Source: Stefan & Kosovichev (2022)

5
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desired travel time measurement, for example the North-South mean. The exact

orientation of the arcs is shown in Figure 2.2, with green corresponding to the

North-South measurement, orange to the Northeast-Southwest measurement, blue

to the East-West measurement, and red to the Southeast-Northwest measurement.

Whereas in Chapter 2 we cross-correlated opposing arcs, here we cross-correlate

each arc with the central pixel. This technique, known as surface-focusing, is

better suited for observation of shallow features (Braun & Birch, 2008). Instead

of intersecting at the respective turning points, the acoustic rays in this configuration

have one terminus at the outer arc and a shared terminus at the central pixel, indicated

by the black dot in Figure 2.2. An example of the average ray path for the annulus

groups used here is shown in Figure 3.1.

We measure the travel time deviations with both the Gabor wavelet fitting

and GB02 method exactly as in Chapter 2, though with two additional intermediate

steps. We, in effect, have two cross-correlations for a given measurement direction;

for example, the North-South direction is sampled both by the North-to-center ray

and by the South-to-center ray. We can then average the forward North-to-center and

backward South-to-center cross-correlations to obtain a less noisy travel time for waves

traveling from North to South. Similarly, averaging the backward North-to-center and

forward South-to-center cross-correlations yields a less noisy travel time for waves

traveling from South to North. The average of the deviations of these two travel

times is the mean perturbation described by Equation (3.25). Our first modification

to the procedure outlined in Subsection 2.1.3 is the application of such averaging

to all the directional cross-correlations, and for the GB02 method these resulting

cross-correlations are averaged over space and direction to obtain the reference cross-

correlation Cref. The second modification is an additional 2x2 spatial average of cross-

correlations to further reduce noise in resulting travel times. The spatial resolution of
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Figure 3.1 Mean path of acoustic waves in the surface-focus procedure, traveling
through the simulated sunspot described in Subsection 3.4.2. The particular
configuration shown here is for the measurement of the magnetic field at (x,y)=0
Mm. The mean path for oscillations in annulus group 4 is shown in cyan, for annulus
group 5 in green, and annulus group 6 in magenta.
Source: Stefan & Kosovichev (2022)

our results is then increased by a factor of two and the number of pixels consequently

reduced by a factor of two.

3.4 Validation of the Technique on Simulations

3.4.1 Simulation of Point-Source Acoustic Wave Propagation through a
Uniform Magnetic Field

We first validate the time-distance technique by applying the measurement scheme

to simulations developed by Parchevsky & Kosovichev (2009). Here, a point-source

generates acoustic waves which propagate through a uniform, inclined background

magnetic field. The model density and pressure stratification is derived from the

Standard Solar Model (Christensen-Dalsgaard et al., 1996) such that the observed
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p- and f-mode dispersion relations are reproduced. There are many simulations with

various configurations of the background magnetic field, and we choose the simulation

where the magnetic field has magnitude B0 = 1900 G, making a 30◦ angle with

the vertical and horizontal component oriented in ŷ-direction. The amplitude and

inclination of the field in this simulation closely resembles that of a sunspot umbra.

While the authors make available all three components of the simulated photospheric

velocity to study line-of-sight effects, this is beyond the scope of our investigation.

We therefore assume the case of observations sufficiently close to disk center that use

of only the radial component of the velocity is sufficient.

Using this simple model, we will show that the derived equations can be used to

determine the magnetic field’s azimuth, as well as provide a reliable measurement of

the anisotropy parameter. The correct orientation of the subsurface horizontal field

is already known from the simulation parameters, and the expected phase travel time

anisotropy can be found by solving Equation (3.23) using the method described in

Appendix A. Our secondary goal of using this model is to show that the magnetic field

parameters can be extracted regardless of the orientation of our measurement scheme,

i.e. that the measurement does not rely on a particular alignment with the magnetic

field. This is accomplished by varying the orientation of the measurement annulus,

Figure 2.2, in increments of 1◦ from the initial orientation along the North-South axis.

Figure 3.2 shows the results of this validation, with Figure 3.2a showing the

raw mean travel times, Figure 3.2b showing the derived azimuth as a function

of measurement orientation, and Figure 3.2c showing the measured anisotropy

parameter (A) also as a function of measurement orientation. The mean phase

travel times were computed using a Gabor wavelet fit to the time-dependent velocity

located a distance 1.62 degrees—the average horizontal travel distance associated

with annulus group 4—away from the excitation source. Since the excitation here is
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Figure 3.2 Validation of the measurement scheme. Panel a contains the mean phase
travel times determined by the Gabor wavelet fit, panel b contains the field’s inferred
azimuth, and panel c contains the resulting travel time anisotropy. The blue line in
panel b shows the field’s true azimuth of 0◦ relative to the +ŷ- or NS-axis, and the
blue line in panel c shows the expected travel time anisotropy from solving the ray
equations for the specified field’s parameters.
Source: Stefan & Kosovichev (2022)

impulsive and point-source, the resulting oscillations are essentially a Green’s function

and no cross-correlation is necessary.

We are able to measure the magnetic field’s azimuth to within 2 to 3 degrees, as

seen in Figure 3.2b. The small-scale variations in the azimuth originate from similar

variations in the raw mean travel times, the larger variations with period 45◦ also

originate from the variations in the raw mean travel times in increments of the same

period. The anisotropy parameter in Figure 3.2c shows similar, but less extreme,

variations. The average derived anisotropy is about 15.5 seconds compared to the
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predicted value of 19.9 seconds. This discrepancy is likely due more to errors in

predicted value’s computation, which is strongly dependent on the density of grid

points near the oscillation turning point. Furthermore, the computation in the ray

approximation assumes plane-parallel waves which may not necessarily be true for

the simulated oscillations at short travel distances. Additionally, the uncertainties

reported in Figures 3.2b and 3.2c are selected from the maximum of four cases where

the mean travel time uncertainties are either added or subtracted from the differences

in Equations (3.31) and (3.32).

3.4.2 Realistic Sunspot Simulation with Solar-like Oscillations

We now test the measurement technique using a more realistic simulation of a sunspot

developed by Rempel (2012), which is itself a modified version of MURaM radiative

MHD code (Vögler et al., 2005). The numerical domain of the simulation is 98.304 Mm

in both horizontal directions, which reduces our observational field of view to around

45 Mm in each direction. This restriction takes into account the additional space in

each direction required for the measurement scheme of annulus group 4, which requires

a maximum separation of ≈ 20 Mm between the arcs and central observation pixel

because of oscillation travel distance. The vertical extent of the domain is 12.432 Mm,

which is deep enough to accommodate measurements with annulus group 4 without

encountering any numerical effects from the bottom boundary. The simulation is

initialized with an axisymmetric flux concentration of 9× 1021 Mx which eventually

produces a sunspot with flux 6×1021 Mx. The data used in our analysis are the time

series of the model’s photospheric (τ = 0.01) vertical velocity, which begins 50 hours

after the simulation is initiated. The time series has duration 25 hours and cadence

of 45 seconds with horizontal resolution 0.384 Mm per pixel.

In this case, the known parameters of the subsurface magnetic field are the

azimuthally-averaged magnitude of the horizontal component and the orientation
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Rempel (2012) Sunspot Model

Figure 3.3 Comparison of the model’s surface magnetic field azimuth (a) and
magnitude (b) with the measured subsurface azimuth (c) and travel time anisotropy
(d).
Source: Stefan & Kosovichev (2022)

of the field is taken to be the same as the surface orientation. The horizontal

component’s magnitude is shown in Figure 3.1 along with the average ray path of

annulus groups 4, 5, and 6. The results of our analysis are shown in Figure 3.3, with

Figures 3.3a and 3.3b showing the surface magnetic field azimuth and magnitude of

the horizontal component, respectively. Here, the measured azimuth, Figure 3.3c,

and anisotropy, Figure 3.3d, are derived from the GB02 mean travel time deviations,

which were less noisy in this case than the Gabor wavelet derived travel times. The

outer 10 Mm of the measured azimuth correspond very well to the surface azimuth,

though additional noise is present closer to the center of the sunspot. The inner

10 Mm of the measured azimuth is rotated 90◦ relative to the true azimuth and the

measurements near the outer edge of the sunspot. This region also shows a significant

lack of travel time anisotropy (Figure 3.3d) than would be expected from the spatial
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structure of the horizontal magnetic field. Instead, we see that the greatest anisotropy

occurs around 10 Mm from the true maximum of the horizontal field.

3.5 Assessing the Subsurface Magnetic Fields in Observed Sunspots

We proceed now to apply our measurement technique on sunspots observed by HMI.

The input data sets here are tracked Dopplergrams which are remapped to a Postel’s

projection with a spatial resolution of 0.12 degrees per pixel. The time series has

duration 24 hours with 45 second cadence, and each image in the series is 256 by 256

pixels in size. Taking into account the additional space needed for the measurement

annuli and our 2x2 binning, the final map size is 64 by 64 pixels with spatial resolution

0.24 degrees per pixel.

The sunspots are selected based on the following criteria: that the size and shape

of the sunspot, along with the magnitude and orientation of the magnetic field, remain

approximately constant over the observation period, and that the area surrounding

the sunspot is free of significant magnetic features which might contaminate the travel

time measurements. The sunspots which satisfy these criteria are those associated

with ARs 12218, 12786, and 12794, which are unipolar and roughly axisymmetric.

We compute the unsigned magnetic flux of each sunspot with a minimum threshold

of 200 G, to ensure that the computed flux corresponds to the sunspot itself and not

the background. We compute the azimuth and anisotropy parameter from the travel

times of annulus groups 4, 5, and 6 derived from both the Gabor wavelet fitting

and GB02 methods. The observations of the respective sunspot’s magnetic field

azimuth, horizontal magnitude, and line-of-sight magnitude originate from a time

series averaged over the duration of the Dopplergram measurements, with spatial

resolution 0.12 degrees per pixel.

We first examine the subsurface magnetic field for AR 12218 (Figure 3.4),

with a sunspot of unsigned flux 2.11 × 1022 Mx. We note that the measurements
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here are much more noisy than those of the sunspot model (Figure 3.3), especially

for the measurements between z = −5 to −7 Mm using annulus group 4 (Figures

3.4f,g,i,j). Additionally, the size of the detected features increase slightly in size with

depth between annulus groups 4 and 5 (Figures 3.4k,l,n,o), and between annulus

groups 5 and 6 (Figures 3.4p,q,s,t). As in the sunspot model, there is an offset

between the location of greatest anisotropy and the maximum horizontal magnitude

at the surface for annulus groups 5 (Figure 3.4n,o) and 6 (Figure 3.4s,t). Such an

assessment is difficult to make for annulus group 4 considering the low SNR, though

there appears to be no such offset for these measurements. There are no significant

differences between the azimuth derived from the GB02 travel times (Figure 3.4f,k,p)

and the Gabor wavelet travel times (Figure 3.4g,l,q). There is, however, slightly less

noise in the GB02-derived measurements of the anisotropy parameter, particularly for

annulus group 5 (Figure 3.4n). The feature seen in the annulus group 5 anisotropy

measurements does suggest some degree of connection with the magnetic feature of

opposite sign to the left of the sunspot in Figure 3.4c.

The magnetic field configuration of the sunspot associated with AR 12786 is

unique, showing significant asymmetry in the magnitude and extent of the horizontal

field between the North and South sectors. The field azimuth also shows a similar

degree of asymmetry. AR 12786’s sunspot is somewhat weaker than AR 12218’s,

with an unsigned magnetic flux of 1.37 × 1022 Mx. In contrast to the azimuth

measurements in AR 12218, neither the GB02-derived (Figure 3.5f,k,p) nor the

Gabor wavelet-derived (Figure 3.5g,l,q) are particularly well-aligned with the surface

azimuth. Additionally, while ARs 12218 and 12786 have similar maximum horizontal

field magnitudes, the anisotropy measured from AR 12786 is much weaker than in

AR 12218.

Comparing the mean in-out travel time deviations between the two active

regions (Figures 3.4h,m,r and 3.5h,m,r), we find that the magnitudes are similar,
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Figure 3.4 Comparison of AR 12218’s surface magnetic field with measurements of
the subsurface field. The active region’s surface azimuth is shown in panels a and b,
the line-of-sight magnetic field in panel c, and the magnitude of the horizontal surface
magnetic field is shown in panels d and e. The measured subsurface azimuth is shown
in rows 1 and 2 and travel time anisotropy in rows 4 and 5. Measurements in rows
1 and 4 are derived from the GB02 travel time method, and measurements in rows 2
and 5 are derived from the Gabor wavelet phase travel time method. Row 3 shows
the mean in-out travel time difference, from which wave speed perturbations can be
obtained through inversion. Column 2 corresponds to annulus group 4, column 3 to
annulus group 5, and column 4 to annulus group 6.
Source: Stefan & Kosovichev (2022)

though the perturbation is larger for AR 12218. The mean in-out travel time deviation

is produced both by sound speed perturbations and acoustic cut-off frequency

perturbations, and to some extent measures changes in temperature and pressure.

This, coupled with the smaller BLOS feature and reduced magnitude, may indicate

that the overall subsurface field is weaker in AR 12786 and therefore explains the

weaker measured anisotropy. As with AR 12218, the anisotropy measurements derived
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from the Gabor wavelet fitting (Figures 3.5j,o,t) are more noisy than those derived

from the GB02 method (Figures 3.5i,n,s). Additionally, there is no noticeable change

in the size of the anisotropy feature with increasing depth in either the GB02 or

Gabor wavelet methods.
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Figure 3.5 Comparison of AR 12786’s surface magnetic field with measurements of
the subsurface field, with the same format as Figure 3.4.
Source: Stefan & Kosovichev (2022)

The final active region we study is AR 12794, with an unsigned flux of 2.51×1022

Mx. This sunspot is more similar to AR 12218 than to AR 12786, with a more

axisymmetric configuration of the horizontal magnetic field. The features detected

in the travel time anisotropy do not appear to grow in size between annulus groups

4 (Figures 3.6i,j) and 5 (Figures 3.6n,o), and in fact, there is some contraction in

size between annulus groups 5 and 6 (Figures 3.6s,t). Along with this contraction,
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the magnitude of the anisotropy measured with both the Gabor wavelet and GB02

methods increases with depth. As with ARs 12218 and 12786, the GB02 travel times

produce less noisy measurements than the Gabor wavelet travel times, in general,

though the noise level for the two methods are similar in annulus group 6 (Figures

3.6s,t). While not completely aligned with the surface azimuth, the subsurface

azimuth (Figures 3.6f,g,k,l,p,q) is reasonably well-resolved. In annulus groups 5 and 6

in particular, there appears to be a unidirectional concentration of magnetic flux in the

lower left corner. This concentration is most visible in the azimuth maps for annulus

group 5 (Figure 3.6k,l) and there is a corresponding, albeit weak, enhancement of the

anisotropy in the same location for annulus groups 5 (Figure 3.6n,o) and 6 (Figures

3.6s,t).

We now examine how the measured anisotropy for each active region changes

with depth, shown in Figure 3.7. Here, the anisotropy is averaged over an annulus

with and inner radius of 10 Mm and outer radius of 30 Mm, roughly the same size

and shape as the detected features. The noise floor, as indicted by the dotted lines in

Figure 3.7, is computed from the weighted mean of travel time anisotropy in a quiet

Sun region. The weights are the inverse chi-squared residuals for the Gabor wavelet

method and the inverse of the least-squared error for the GB02 method. As seen in

Figure 3.7, there is little to no similarity between the depth-dependent anisotropies in

the observed active regions. The anisotropy measured in AR 12218 increases between

annulus groups 4 and 5, then slightly decreases from annulus group 5 to 6. Conversely,

the anisotropy measured in AR 12786 shows almost no variation with depth. Similarly

for AR 12794, the anisotropy is nearly constant between annulus groups 4 and 5, and

increases significantly at annulus group 6. For ARs 12218 and 12794, the variation of

anisotropy with depth is greater than the noise floor, indicating a strong dependence

of the anisotropy on local conditions.
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Figure 3.6 Comparison of AR 12794’s surface magnetic field with measurements of
the subsurface field, with the same format as Figure 3.4.
Source: Stefan & Kosovichev (2022)
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CHAPTER 4

ACOUSTIC MODEL OF SUNQUAKE EXCITATION

4.1 Governing Equations and Methods

4.1.1 Derivation of the Governing Equations

To construct our acoustic model, we begin with the compressible form of the mass

and momentum conservation equations,

Dρ

Dt
+ ρ∇ · v = 0 (4.1)

and

ρ
Dv

Dt
= −∇P + ρg + Fext, (4.2)

where Fext is the net external force and D/Dt is the material derivative, equivalent

to

D

Dt
=

∂

∂t
+ v · ∇, (4.3)

which accounts for changes in time and also gradients advected by the velocity field.

We assume that wavefront travels quickly enough that there is no exchange of any

heat generated by compression. In other words, the wave propagation is adiabatic
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such that the entropy of the system is unchanged, yielding the following condition

DS

Dt
=

D

Dt

(
P

ργ

)
= 0. (4.4)

We now consider linear perturbations to Equations (4.1), (4.2), and (4.4), with

the static background state dependent only on radius: ρ → ρ0(r)+ρ′(r, ϑ, φ, t). In the

unperturbed state, the plasma is in hydrostatic balance with no background flows.

The plasma velocity itself is then a perturbation: v → v(r, ϑ, φ, t). The velocity

is further separated into a radial and a horizontal component, with the horizontal

component contained both the θ̂ and ϕ̂ components. We separate the radial and

angular dependence of any variable a using the spherical harmonics Y m
l , such that

a(r, ϑ, φ) =
∑
l,m

al,m(r)Y
m
l (ϑ, φ). (4.5)

Starting with the mass conservation equation, Equation (4.1), each variable is

expanded in terms of the background and perturbed quantities. Keeping only terms

which contain at most one perturbed quantity, we have

∂ρ′

∂t
+ v · ∇ρ0 + ρ0∇ · v = 0. (4.6)

We now introduce the horizontal velocity vh, the vector component of the velocity

in the θ̂ and ϕ̂ directions. Furthermore, we separate the radial and horizontal

components of the divergence operator, such that ∇· = 1
r2

∂
∂r

+ ∇h·. Applying this
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formulation to the above perturbed mass conservation equation yields

∂ρ′

∂t
+ vr

∂ρ0
∂r

+ ρ0

(
1

r2
∂

∂r

(
r2vr

)
+

1

r
∇h · vh

)
= 0. (4.7)

It is convenient to choose the case where the angular dependence of the horizontal

velocity can be expressed as horizontal gradients of the spherical harmonics as opposed

to the spherical harmonics themselves. The horizontal velocity is then expressed as∑
l,m vh,l(r, t)∇hY

m
l (ϑ, φ), where ∇h contains the angular components of the gradient

and vh,l = Alvh is the scalar horizontal velocity. Expressing Equation (4.7) with all

dependences, and the summation over l and m begin implicit, we have

[
∂ρ′(r, t)

∂t
+ vr,l(r, t)

∂ρ0(r)

∂r
+ ρ0(r)

1

r2
∂

∂r

(
r2vr,l(r, t)

)]
· Y m

l (ϑ, φ)

+ ρ0(r)

[
vh,l(r, t)

r

]
∇2

hY
m
l (ϑ, φ) = 0.

(4.8)

We restrict ourselves to the situation where any provided excitation mechanism

is azimuthally symmetric. In this case, we can place the excitation over the pole

at ϑ = 0 such that wave propagation is also azimuthally symmetric and there is no

longer any dependence on φ. The spherical harmonics then reduce to the ordinary

Legendre polynomials Pl(cosϑ), which satisfies ∇2
hPl = −L2Pl = −l(l + 1)Pl for

positive integer l. The angular derivatives can then be spectrally computed via the

previous relationship rather than being explicitly computed with finite differences.

Keeping the shorthand from the horizontal velocity, we express any variable x with

its associated Legendre coefficient Al as xl, where xl = Alx. The linearized mass
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conservation equation can finally be reduced to

∂ρ̄l
∂t

+ vr,l
∂ ln ρ0
∂r

+
1

r2
∂

∂r

(
r2vr,l

)
− L2

r
vh,l = 0, (4.9)

where ρ̄ = ρ′/ρ0 is the normalized perturbation to density.

Moving now to the adiabatic condition (Equation (4.4)), we expand the material

derivative and express the variables in terms of their background and perturbed

quantities

1

γP0

[
∂P ′

∂t
+ v · ∇P0 + v · ∇P ′

]
=

1

ρ0

[
∂ρ′

∂t
+ v · ∇ρ0 + v · ∇ρ′

]
. (4.10)

Since, in general, P ′ ≪ P0 and ρ′ ≪ ρ0, we make the approximations 1/γ(P0 +P ′) ≈

1/γP0 and 1/(ρ0 + ρ′) ≈ 1/ρ0. Removing the non-linear terms gives

1

γP0

∂P ′

∂t
+ vr

(
1

γP0

∂P0

∂r
− 1

ρ0

∂ρ0
∂r

)
=

1

ρ0

∂ρ′

∂t
. (4.11)

An important parameter lies within Equation ((4.11)), the Brunt-Väisälä frequency

(N), or buoyancy frequency (Vallis, 2006), which is defined as

N2 = g

(
1

γP0

∂P0

∂r
− 1

ρ0

∂ρ0
∂r

)
. (4.12)
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The stability and frequency of g-modes is determined by the buoyancy frequency,

which is real-valued in the solar core and is expected to produce stable g-modes. In

the convective zone, however, this frequency is imaginary which indicates an unstable

density-pressure stratification. Since our simulation does not include a detailed model

for heat transport, we are unable to counteract the runaway convection caused by this

stratification, and instead set N2 to be zero where it would otherwise be negative.

Making the buoyancy frequency substitution in Equation (4.11), we have

1

γ

∂P̄

∂t
+ vr

N2

g
=

∂ρ̄

∂t
, (4.13)

where P̄ = P ′/P0 is the normalized perturbation to pressure. Substituting the time

derivative of the normalized density from Equation (4.9) along with the Legendre

polynomials, we arrive at the final form for the pressure equation,

∂P̄l

∂t
+ γ

[
vr,l

(
N2

g
+

∂ ln ρ0
∂r

)
+

1

r2
∂

∂r

(
r2vr,l

)
− L2

r
vh,l

]
= 0. (4.14)

We now separate the radial and horizontal components of the momentum

equation and perform the same linearization and spherical harmonic expansion as

in Equations (4.9) and (4.14). Applying this to the radial momentum equation, we

have

ρ0
∂vr
∂t

= −∂P0

∂r
− ∂P ′

∂r
+ ρ0g + ρ′g + Fext,r. (4.15)
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The background state is assumed to be in hydrostatic equilibrium, such that the

relation ∂P0/∂r+ ρ0g = 0 is satisfied, and the corresponding terms are removed from

the equation. We isolate the time derivative by dividing by ρ0, and substituting the

Legendre polynomials yields

∂vr,l
∂t

= − 1

ρ0

∂P ′
l

∂r
+ ρ̄lg +

Fext,r,l

ρ0
. (4.16)

The linearized form of the horizontal momentum equation is

ρ0
∂vh
∂t

=
1

r
∇hP

′ + Fext,h. (4.17)

Here, the radial and horizontal dependence of P ′ can be separated with the Legendre

polynomials as P ′ =
∑

l P
′
l (r)Pl(ϑ). The horizontal gradient ∇h does not affect P ′

l

and instead is applied to the Legendre polynomial. Assuming that the horizontal

component of the external forces can also be decomposed into the horizontal gradient

of Legendre polynomials, Fext,h =
∑

l Fext,h,l(r, t)∇hPl(ϑ), each term in the horizontal

momentum then contains ∇hPl which can be neglected. The final form for the

horizontal momentum equation, obtained by again dividing through by ρ0, is

∂vh,l
∂t

=
P ′
l

rρ0
+

Fext,h,l

ρ0
. (4.18)
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Together, the system of equations solved in our model is



∂ρ̄l
∂t

+ vr,l
∂ ln ρ0
∂r

+
1

r2
∂

∂r
(r2vr,l)−

L2

r
vh,l = 0

∂P̄l

∂t
+ γ

[
vr,l

(
N2

g
+

∂ ln ρ0
∂r

)
+

1

r2
∂

∂r
(r2vr,l)−

L2

r
vh,l

]
= 0

∂vr,l
∂t

= − 1

ρ0

∂P ′
l

∂r
+ ρ̄lg +

Fext,r,l

ρ0
∂vh,l
∂t

=
P ′
l

rρ0
+

Fext,h,l

ρ0

. (4.19)

4.1.2 Boundary Conditions

In the Sun, acoustic waves with frequency equal to or greater than the acoustic cut-off

frequency, ωc, travel beyond the surface and are mostly damped in the atmosphere

(Christensen-Dalsgaard, 2002). Waves which have frequency less than the acoustic

cut-off frequency are reflected near the surface and are trapped in the interior. It is

necessary to choose our boundary conditions carefully so that this selective resonance

is replicated in our model, otherwise high frequency oscillations will reflect off of the

upper boundary. To this end, we derive non-reflecting boundary conditions through

an eigendecomposition of the matrix representation of the system’s radial derivatives,

B = QΛQ−1.

We consider only Equations (4.14) and (4.16) to simplify calculations, as ρ′ can

be derived from P ′ via Equation (4.4) and Equation (4.18) has no radial derivatives.

The matrix form of this reduced system is

A
∂X

∂t
+ B

∂X

∂r
= C, (4.20)
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where A is the matrix of time derivative coefficients, X = [P ′
l , vr,l]

T are the relevant

variables, and C is the vector containing any non-derivative terms. We use the form

of Equation (4.14) where the pressure perturbations are not normalized such that the

matrix A is simply the identity matrix. The matrix containing the radial derivatives

is

B =

 0 γP0

1

ρ0
0

 , (4.21)

with eigenvalues λ+ = +cs and λ− = −cs, where cs =
√

γP0/ρ0 is the adiabatic

sound speed, corresponding to outward and inward propagating waves, respectively.

Using these eigenvalues, we obtain the following decomposition for the system

B = QΛQ−1 =
1

2

ρ0cs −1

1
cs
γP0


+cs 0

0 −cs


 cs
γP0

1

−1 ρ0cs

 . (4.22)

Keeping track of terms associated with λ− during the matrix multiplication

enables us to determine the derivatives corresponding to the inward propagating

waves. We enforce hydrostatic equilibrium for the inward propagating terms, such

that ∂P ′
l /∂r] = −ρ′g and [∂vr,l/∂r] = 0, while outward propagating waves travel as
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normal. The system of equations solved at the upper boundary R = Rmax is



∂ρ̄l
∂t

+ vr,l

(
∂ ln ρ0
∂r

+
2

r

)
− L2

r
vh,l +

1

2

(
cs
∂ρ̄l
∂r

+
∂vr,l
∂r

+
ρ̄lg

cs

)
= 0

∂P̄ ′
l

∂t
+ γ

(
vr,l

∂ ln ρ0
∂r

+ vr,l
N2

g
− L2

r
vh,l

)
+

1

2

(
cs
∂ρ̄l
∂r

+
∂vr,l
∂r

+
ρ̄lg

cs

)
= 0

∂vr,l
∂t

+ ρ̄lg +
1

2

(
c2s
∂ρ̄l
∂r

+ cs
∂vr,l
∂r

− ρ̄lg

)
= 0

∂vh,l
∂t

+
P ′
l

rρ0
= 0

, (4.23)

where we use the substitution P ′
l = c2sρ

′
l.

4.1.3 Numerics

We solve the governing equations along a radial mesh which contains values for

radius, the unperturbed pressure and density, adiabatic exponent, and gravitational

acceleration. The background model is derived from the Standard Solar Model

(Christensen-Dalsgaard et al., 1996) which is computed up to r = 696.841 Mm. The

time derivatives are approximated by a simple first-order forward difference

∂y

∂t
≈ yn+1

i − yni
τ

, (4.24)

where τ is the time step. The time step is chosen to satisfy the CFL condition

(Courant et al., 1967) τCFL ≤ min[∆r/cs], the travel time for an acoustic wave

between the smallest grid-point separation ∆r with speed cs. Here, we choose

τ = 0.6τCFL to ensure stability.
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The radial derivatives are evaluated using a fourth-order central difference, with

the following form on a uniform grid

∂f

∂r
(t = tn, r = ri) ≈

fn
i−2 − 8fn

i−1 + 8fn
i+1 − fn

i+2

12∆r
. (4.25)

However, the grid we use is not uniform in radius, and the appropriate form of the

difference is derived in Appendix B. Additionally, we use a staggered mesh scheme,

where the horizontal velocity, pressure, and density variables are placed on body

points and the radial velocity variable placed on edge points located halfway between

neighboring body points; i.e. given rb as the radius of the body point and re as

the radius of the edge point, rb,i < re,i < rb,i+1. For each time step, the density

and pressure are computed first, then the radial and horizontal velocities using the

updated values for pressure and density. The variables are linearly interpolated where

they need to be explicitly evaluated, as opposed to the radial derivatives. For example,

the radial velocity is linearly interpolated from neighboring edge points to be used in

Equation (4.14) at a body point.

At the upper boundary’s body point, the radial velocity is computed using a

second-order central difference, since edge points exist both above and below the body

point. For a non-uniform grid, this central difference has the form

∂f

∂r
(t = tn, r = ri) ≈

fn
i+1 − fn

i−1

∆ri+1 +∆ri−1

. (4.26)

For the perturbed density radial derivative to be evaluated at the upper boundary’s

edge point, a ghost point is implemented above the edge point so that the central

difference in Equation (4.26) can be used. The perturbed pressure and density at the
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ghost body point are evolved in time with the boundary conditions, and the radial

derivative is evaluated with a second-order one-sided difference of the form

∂f

∂r
(t = tn, r = ri) ≈

3fn
i − 4fn

i−1 + fn
i−2

2∆x
. (4.27)

Here, we’ve chosen the grid spacing to be uniform and the above formulation does

not need to be adjusted.

The discretized governing equations and accompanying algorithm are written

in Fortran, and parallelized using the MPI (Message-Passing Interface) library. The

code can be run on an arbitrary number of CPUs, taking approximately four minutes

per angular degree l for one hour of solar time. We compute solutions to the governing

equations up to angular degree l = 6000. This corresponds to a smallest resolvable

distance of 0.36 Mm in the θ̂-direction, approximately twice the resolution of HMI

measurements. The data are stored as functions of radius, time, and angular degree l,

which allows for damping of individual wavenumbers to reproduce the damping seen

on the Sun, as described in the following Subsection 4.1.5.

4.1.4 Stability Analysis of the Finite-Difference Method

Keeping in mind that half-grid variables are interpolated onto a given grid point, i.e.

vnr,i = vn
r,i− 1

2
+

vn
r,i+ 1

2

− vn
r,i− 1

2

∆ri

∆ri
2

= vn
r,i− 1

2
+

vn
r,i+ 1

2

− vn
r,i− 1

2

2
, (4.28)
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we express the discretized governing equations in terms of each variables associated

error, denoted by the symbol, as



vn+1
h,i = vnh,i −

∆t

rρ0
P n+1
i

ρn+1
i − ρni
∆t

= −1

2
x1

(
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2
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2

)
− 1

12∆r
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2
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2
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2
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+vn
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1
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2
+ 8vn

r,i+ 1
2
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2

)
+

L2

r
vnh,i

]

, (4.29)

where we have defined x1 = ∂ ln ρ0/∂r + 2/r and x2 = x1 + N2/g for convenience.

For simplicity, we’ve assumed the case of a uniform grid; to ensure stability for our

non-uniform grid, we will evaluate the stability criteria for several grid spacings.

The error associated with a particular variable can be expressed in terms of the

corresponding Fourier components; for example, vh can be expressed as

vnh,i =
∑
m

Dme
amtneikmri , (4.30)

where Dm is the error amplitude of the mth mode, km is the mth wavenumber of the

error’s propagation in the radial direction, am is the corresponding growth rate of

the error. The errors associated with ρ̄, P ′, and vr can be expressed similarly with

coefficients A, B, and C, respectively. Considering a particular Fourier mode and
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dividing through by eikrieatn , where we drop the subscript m, we have
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. (4.31)

Here, G = ea(tn+1−tn) is the growth factor of the error between successive time steps,

which we’ve assumed to be the same for each variable. The assumption of identical

error growth rates is justified since our system of equations is coupled.

For convenience, we define the following variables

x3 =
1

2

(
e

ik∆r
2 + e−

ik∆r
2

)
= cos

(
k∆r

2

)
(4.32)

and

x4 =
1

12

(
e−

3ik∆r
2 − 8e−
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2 + 8e
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2 − e

3ik∆r
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)
=
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6

(
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)
− sin

(
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2
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.

(4.33)
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We will evaluate the stability at the shortest wavelength, λ = 2∆r, k = π/∆r, which is

generally the most unstable mode; substituting this value for k yields x3 = 0 and x4 =

3i/2. It is beneficial to express the stability of the system in terms of dimensionless

parameters, and we begin this process by defining new Fourier amplitudes A′, B′, C ′,

and D′, given by



A′ = Ac

B′ =
B

ρ0c

C ′ = C

D′ = D

. (4.34)

The corresponding dimensionless parameters the system will be expressed in are



Nc =
c∆t

∆r

Ns =
c∆t

r

Ng =
g∆t

c

Nρ =
c∆t

Hρ

= −c∆t
∂ ln ρ0
∂r

NN =
c∆tN2

g

. (4.35)

Here, Nc is the Courant number (Courant et al., 1967), the ratio between the

time step and the travel time of a wave passing between two grid points. Ns is the

ratio of a radially propagating wave’s travel distance and its radial position. The

quantity Ns multiplied by L2, which appears in some of the error equations, describes

a similar ratio but for horizontally propagating waves. Ng is the ratio between the
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change in velocity experienced by a fluid element due to gravity in unit time and the

sound speed. Nρ is the ratio of the travel distance of a radially propagating wave

relative to the density scale height, and NN is a stability parameter for gravity waves.

Starting with the perturbed density’s error and multiplying everywhere by c,

we recover

c

[
GA = A−∆tx1x3C − ∆t

∆r
Cx4 +

∆tL2

r
D

]
GA′ = A′ −

(
2
c∆t

r
− c∆t

Hρ

)
Cx3 −

c∆t

∆r
Cx4 +

c∆t

r
L2D

GA′ = A′ − (2Ns −Nρ)Cx3 −NcCx4 +NsL
2D

. (4.36)

Multiplying everywhere in the perturbed pressure error equation by 1/ρ0c, we

have

1

ρ0c

[
GB = B − γP0∆tx2x3C − γP0

∆t

∆r
x4C + γP0

∆t

r
L2D

]
GB′ = B′ − c∆t

(
2

r
− 1

Hρ

+
N2

g

)
x3C − c∆t

∆r
x4C +

c∆t

r
L2D

GB′ = B′ − (2Ns −Nρ +NN)x3C −Ncx4C +NsL
2D

. (4.37)

Finally, substituting the new Fourier coefficients A′ and B′ into the radial and

horizontal momentum error equations yields

GC = C − G

ρ0

∆t

∆r
x4B −Gx3g∆tA

GC = C −G
c∆t

∆r
x4B

′ −G
g∆t

c
x3A

′

G (C +Ncx4B
′ +Ngx3A

′) = C

(4.38)
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and

GD = D −G
∆t

r

1

ρ0
B

GD = D −G
∆t

r

1

c
B′

G (D +NsB
′) = D

. (4.39)

The above derived conditions form a matrix equation GY x = Zx, or

G



1 0 0 0

0 1 0 0

x3Ng x4Nc 1 0

0 Ns 0 1





A′

B′

C

D



=



1 0 − (2Ns −Nρ)x3 − x4Nc L2Ns

0 1 − (2Ns −Nρ +NN)x3 − x4Nc L2Ns

0 0 1 0

0 0 0 1





A′

B′

C

D



. (4.40)

The above system can be solved for G, the error growth factor, where we find

the amplitudes are bounded by 1 for all angular degrees up to l = 6000. Figures 4.1

(a,b,c), (d,e,f), and (g,h,i) show how the error growth factors change with the Courant

number for l = 0, l = 100, and l = 1000 respectively. The dimensionless parameters

are evaluated based on local values, for r = 562 Mm (Figures 4.1 a,d,g), r = 673 Mm

(Figures 4.1 b,e,h), and r = 696 Mm (Figures 4.1 c,f,i). Though it would appear that

the l = 1000 mode is unstable at r = 562 Mm for the Courant number used in our

simulations, Nc = 0.6, this instability is physical and not numerical. Oscillations with
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Figure 4.1 Amplitude of the error growth factors for our governing equations, for
l = 0 at r = 562 Mm (a), at r = 673 Mm (b), and at r = 696 Mm (c); for l = 100 at
r = 562 Mm (d), at r = 673 Mm (e), and at r = 696 Mm (f); for l = 1000 at r = 562
Mm (g), at r = 673 Mm (h), and at r = 696 Mm (i).
Source: Stefan & Kosovichev (2020)

this high of angular degree do not penetrate very deeply, and in fact the l = 1000

mode has a lower turning point at r = 664 Mm, well above r = 562 Mm. In other

words, we require only that our system of equations is stable for a given angular

degree in its region of propagation, which is indeed true. Below the lower turning

point and outside the propagation region, all perturbations for a particular angular

degree are identically zero.
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4.1.5 Damping by Wavenumber

We have so far neglected the effects of viscous damping, as the plasma viscosity

depends strongly on degree of ionization, magnetic field strength, and temperature

(Vranjes, 2014). Instead, we apply exponential damping over each angular degree

with appropriate parameters derived from observation. We will assume that the time

dependence of an acoustic wave traveling with frequency ω0 has the form Ψ(t) =

A exp[iω0t] exp[−αlt], where αl is the l-dependent damping parameter. Any wave is

expected to have a wavenumber-dependent rate of damping in a dispersive medium,

and the angular degree and wavenumber are closely related by kh =
√

l(l + 1)/r.

We’ve chosen to express the damping parameter as a function of angular degree l as

the governing equations are expressed similarly.

The power spectrum, evaluated at a particular wavenumber, is dependent on

frequency as

P =
A

4π2

1

(ω0 − ω)2 + α2
l

, (4.41)

and the power is maximized at frequency ω0 such that Pmax = A/(4π2α2
l ).

Substituting the upper frequency corresponding to the half-maximum Pmax/2 into

the above equation, where the full-width half-maximum is given by FWHM =

2(ω0 − ω+ with ω+ as the upper frequency, the damping parameter can be found

as αl = (1/2)(FWHM). We assume that the damping time varies as a power law

with angular degree l, as

τl = τ ⋆
(

l

l⋆

)γ

, (4.42)
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where τ ⋆ is the damping time associated with the base angular degree l⋆, and γ is the

power law exponent derived from observations.

We consider three different damping scenarios: quiet Sun damping, active region

damping, and no damping. For quiet Sun damping, we use p-mode data made

available by Rhodes et al. (2011), which is obtained from the azimuthally-averaged

power spectrum of a three-day full-disk Dopplergram series. The damping times

are derived from the provided FWHMs and fit to a power law using a least-squares

algorithm. We find γ = −0.723, and the damping time associated with the chosen

base angular degree l = 1000 is 643 seconds. For the active region damping scenario,

we compute a power spectrum from a three-hour Dopplergram series of AR 11598

(Figure 4.2a) from which the damping time of the l = 800 mode is computed. We

choose the base angular degree of l = 800 here instead of l = 1000 as the latter mode

is not well-resolved in the power spectrum. We find two discernible peaks in the

power spectrum at l = 800 (Figure 4.2b), and a Gaussian fit yields damping times

of 408 seconds and 422 seconds for the first and second peaks, respectively. We use

the average, 415 seconds, as the corresponding damping time τ ⋆ of the base angular

degree. The damping is applied to the simulated radial velocity, which is stored as a

function of angular degree l, before applying the Legendre transformation to return

the data as a function of angular distance ϑ.

4.2 Analysis of Observed Sunquake Events

4.2.1 Form of the Simulated Excitation Mechanisms

Here, we consider two types of excitations, an instantaneous transfer of momentum

and an applied external force. The momentum excitation is time-independent,

whereas the external force excitations are time-dependent to simulate more gradual

processes. Both excitation mechanisms are directed in the downward radial direction

with Gaussian radial and angular dependences. The applied external force has
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Figure 4.2 (a) Power spectrum obtained from the Dopplergram series of AR 11598.
Redder colors indicate greater power, bluer colors indicate lesser power. (b) Power
spectrum of angular degree l = 800. The first peak (in red) corresponds to τ800 = 408
seconds, and the second peak (in blue) corresponds to τ800 = 422 seconds.
Source: Stefan & Kosovichev (2020)

Gaussian time-dependence and is expressed per unit volume with the form

Fr(r, ϑ, t) = A exp

[
−(r − r0)

2

2σ2
r

]
exp

[
− ϑ2

2σ2
ϑ

]
· exp

[
−(t− t0)

2

2σ2
t

]
, (4.43)

with r0 as the radial center of the source, t0 = T/2 is the mid-time of the total source

duration, and σr, σϑ, and σt are the Gaussian widths for the radial, angular, and time

dependence, respectively. The amplitude of the force density A is arbitrary as the

model is linear, though it must be negative for it be downard-directed, and we choose

A = −0.001 dyn cm−3. The transfer of momentum is modeled as an initial condition

expressed as

vr (r, ϑ, 0) =
A

ρ0 (r)
exp

[
−(r − r0)

2

2σ2
r

]
exp

[
− ϑ2

2σ2
ϑ

]
. (4.44)
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As with the applied force, the amplitude of the momentum excitation is arbitrary,

though we choose the momentum density to be A = −ρ0(r) × 104 g cm−2 s−1 so

that the initial velocity at the center of the source is 100 m s−1. Here, ρ0(r) is

the background density. The horizontal Gaussian width is fixed at σϑ = 8.6 × 10−4

radians corresponding to a circular area on the surface of radius 0.6 Mm, and the

radial Gaussian width is σr = 0.2 Mm.

4.2.2 Differences Between Momentum and Force Mechanisms

We find that the appearance of two mechanisms’ wave fronts in time-distance

diagrams are completely distinct (Figure 4.3). The time-distance diagram displays

the radial velocity as a function of horizontal distance on the x-axis and time on the

y-axis; for time-distance diagrams derived from observations, the line-of-sight velocity

is used and azimuthally-averaged about the source location. For this comparison,

the force and momentum excitations are centered approximately 100 km above the

photosphere at R = 696.119 Mm. The first bounce wave front appears to have a

longer duration than the momentum excitation by around five minutes and has a

more complicated structure.

In both undamped time-distance diagrams, we are able to identify three different

modes of wave propagation: pressure waves, or p-modes; the f-mode; and atmospheric

acoustic-gravity waves. The p-modes (indicated by the red arrows in Figure 4.3d)

form the main wavepacket of a sunquake, and these waves travel downwards before

reflecting off the sound speed gradient and returning to the surface. The f-mode

(indicated by the magenta arrow in Figure 4.3d) is a surface traveling wave whose

dispersion relation occupies the intermediate space between p-modes and gravity

waves in the solar power spectrum and is regularly observed on the Sun (Singh et al.,

2016). The f-mode is characterized by its distinctive discontinuous ridge pattern and

a phase velocity exactly twice the group velocity (Gizon, 2006).
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Figure 4.3 Time-distance diagrams of radial velocity on the solar surface (R=696
Mm) for force excitations with no damping (a), quiet Sun damping (b), and active
region damping (c). Time-distance diagrams of radial velocity on the solar surface
(R=696 Mm) for momentum excitations with no damping (d), quiet Sun damping
(e), and active region damping (f). The different wave modes are highlighted in panel
d, with p-modes indicated by red arrows, the f-mode indicated by the magenta arrow,
and atmospheric acoustic-gravity waves indicated by the cyan arrow.
Source: Stefan & Kosovichev (2020)
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Figure 4.4 Square of the buoyancy frequency in the solar atmosphere, with the base
of the photosphere denoted by z = 0. Negative values indicate regions of unstable
gravity wave propagation and positive values indicate stable propagation.
Source: Stefan & Kosovichev (2020)

We also observe surface-propagating acoustic-gravity waves in the simulation,

indicated by the cyan arrow in Figure 4.3d. Both excitation mechanisms produce

these waves, which propagate similarly to atmospheric gravity waves on Earth (e.g.

Row (1967)), though they are stronger for the force mechanism than the momentum

mechanism. The solar atmosphere is technically stable to gravity wave (or g-mode)

propagation in linear acoustics, with a real-valued buoyancy frequency (Figure 4.4).

Such waves haven’t been observed on the Sun however, and it’s likely that convective

flows, which oscillate with similar frequencies to gravity waves, either mask or break

up any generated acoustic-gravity waves.

The acoustic-gravity waves are affected more strongly than the p-mode wave

packet as the damping is increased, though the successive bounces of the sunquake

and f-mode both show decreased in amplitude. In general, the phase relationship

of the momentum-excited sunquakes is preserved and shorter-wavelength features

appear to be smoothed. There is similar smoothing apparent in the force-excited

sunquakes, though the first-bounce signal appears to have split into two separate

wave packets. As the damping increases from quiet Sun to active region, the f-mode

and acoustic-gravity waves are almost entirely damped, and successive bounces of the
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p-mode wave packet are barely measurable. Additionally, there is some introduction

of an artifact near the origin for both excitation mechanisms in the active region

damping scenario, caused by the loss of small-scale resolution from the strong damping

on high wavenumbers.

4.2.3 Comparison with Observations

We now compare our results with several observed sunquakes, including the events

associated with the X1.8 flare in October 2012, the X9.3 flare in September 2017, the

X3.3 flare in November 2013, the X1.0 flare in March 2014, and the M1.1 flare in

September 2015 (Table 4.1). The initial time and location of these events are derived

from the sunquake catalog produced by Sharykin & Kosovichev (2020).

Table 4.1 Sunquake Events and Relevant Times

GOES Flare Class Date Tstart (UT) Lon.a (deg) Lat.a (deg) TG1 (s) TG3 (s) TBP (s)

X1.8 2012 Oct 23 03:16:30 110.3 -12.7 +85 +141 +45

X9.3 2017 Sep 6 11:57:00 122.6 -9.1 -82 -49 -60

X3.3 2013 Nov 5 22:10:19 175.5 -12.6 +34 +76 +56

X1.0 2014 Mar 29 17:45:00 132.5 +32.0 +17 +48 +135

M1.1 2015 Sep 30 13:15:00 108.0 -21.0 +86 +48 N/A

Source: Stefan & Kosovichev (2020)

aLatitude and longitude are given in Carrington heliographic coordinates.

We produce time-distance diagrams for these events using Dopplergrams

obtained by HMI, which are filtered with a Gaussian function in frequency. The width

of the filter and the central frequency vary between events, and these parameters are

chosen to enhance the contrast between the sunquake wave packet and background

noise. We produce corresponding time-distance diagrams for our simulation runs,

which are treated with the same filter after the resolution and cadence have been
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adjusted to match the particular observed event. We generate two sets of simulations,

for the momentum and force excitation mechanisms, with each set containing 46

sunquakes of fixed radial width and centered along the grid points of our background

mesh in the range of r = 695.788 Mm to r = 696.422 Mm.

To quantify how closely an observed sunquake event corresponds with a

particular simulation, we evaluate the cross-correlation between the two time-distance

diagrams as a function of offsets in both time (τ) and distance from the source (ξ). The

signal from an observed sunquake, denoted by S, is dependent on time, t, and distance

from the source d, and the sets of simulated sunquakes also have these dependences

along with the additional dependence on source depth, z. The cross-correlation

between the observed and modeled sunquake signals is then computed as

Ξ(τ, ξ, z) =
1

Nd

∑
t

∑
d

S(t, d)S ′(t+ τ, d+ ξ, x), (4.45)

where Nd is the number of pixels in the horizontal direction. We then identify the

distance shift which maximizes the cross-correlations such that function Ξ⋆(τ, z) is

dependent only on the offset in time and excitation depth, expressed as

Ξ⋆(τ, z) = max
ξ

(Ξ(τ, ξ, z)) (4.46)

The simulation of best fit is found depending on which time offset and excitation

depth maximize the cross-correlation Ξ⋆(τ, z), and the ratio of the maximum velocities

of the simulated and observed sunquake wave fronts are used to determine the

total kinetic energy necessary to excite the observed sunquake. For the momentum

excitation mechanism, the kinetic energy is computed by the volume integral of the
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kinetic energy density,

KE =

∫
V

ρ0(r)v
2
r(r, ϑ)dV, (4.47)

using the form of vr described in Subsection 4.2.1. For the force excitation mechanism,

we consider the kinetic energy deposited to be equal to the net work done by the force

over the duration of excitation. This is given by

KE =

∫
V

∫
t

Fr(r, ϑ, t) · vr(r, ϑ, t)dtdV. (4.48)

The time shift indicated by the maximum of the cross-correlation is examined

in the context of three important times: 1) when the time derivative of soft X-ray

(SXR) emission is maximized; 2) the time when the hard X-ray (XHR) emission is

maximized; and 3) the start time of the sunquake as determined from the appearance

of so-called HMI bad pixels. Bad pixels occasionally appear in Dopplergram images

which have wildly different values from their neighbors and are a result of the failure

of algorithms to correctly interpret raw observations in Level 1 processing. These

pixels generally indicate extreme values of Doppler velocity, magnetic field, and other

observables, which are associated with flare impacts in the low atmosphere (Couvidat

et al., 2016). We interpret these pixels as the source location of observed sunquake

events, and identify the first appearance of bad pixels (TBP) as the start time of the

sunquake.

Based on models of thick-target heating of the chromosphere, for example as

described in Fisher et al. (1985), strong HXR emission should be expected from the

impact of particles accelerated by the sunquake’s originating flare (Brown, 1971).
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After the particles have heated the impacted plasma, SXR emission is expected from

thermal bremsstrahlung radiation (Veronig et al., 2002). The so-called Neupert effect

(Neupert, 1968) posits that the total HXR fluence is related to SXR emission through

the previously described mechanism. Equivalently, the time-derivative of the SXR

emission should be related to the HXR emission. We therefore examine how the timing

of these two quantities relates to the excitation of sunquakes using data obtained from

the KONUS instrument aboard the Wind spacecraft (Aptekar et al., 1995; Lysenko

et al., 2018). Observations by KONUS are made in three bands: G1 in the 21-82 keV

range (the upper range of the X-ray spectrum considered to be soft); G2 in 82-331

keV range; and G3 in the 331-1252 keV range (the upper range of the X-ray spectrum

considered to be hard). Here, we use the time derivative of the G1 band as a proxy

for the dSXR/dt peak (TG1) and the G3 band’s peak as the HXR peak (TG3). These

times, and the bad pixel times, are listed in Table 4.1 relative to the start time of

Dopplergram observations; for the M1.1 sunquake, bad pixels could not be identified.

The best-fit parameters derived from the cross-correlations using the momentum

and force excitation mechanisms are detailed in Tables 4.3 and 4.3, respectively, and

a visual comparison between the X1.8 sunquake and best fit simulations as well as a

comparison for the X9.3 sunquake are provided in Figure 4.5. The cross-correlation

functions Ξ⋆(τ, z) for the quiet Sun damped momentum and force mechanisms are

shown in Figures 4.6 and 4.7, respectively. Since the sunquake wave front oscillates

with a period of several minutes, more than one band of best fit is often present

in the cross-correlations. For the momentum mechanism, Table 4.3, a majority of

the simulated undamped sunquakes have energies bounded by 1028 ergs and initial

velocities on the order of 10 km s−1. While there is not a common height at which

the observed sunquakes are excited, the excitation is consistently decreased as the

damping is increased.
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Table 4.2 Best Fit Parameters for Sunquake Events - Force Mechanism

Force Case

Flare Damping Tshift (s) Height (km) Amp. (dyn cm−3) Energy (ergs)

X1.8 Undamped -146.25 -203 1.38× 10−2 1.01× 1028

Quiet Sun -157.5 -203 1.01× 10−1 5.58× 1028

Active Region -157.5 -203 6.59× 10−1 2.58× 1029

X9.3 Undamped +135 +129 2.19× 10−3 2.27× 1027

Quiet Sun -33.75 -203 2.29× 10−1 1.27× 1029

Active Region -45 -203 1.57 6.17× 1029

X3.3 Undamped +135 +181 5.65× 10−4 6.44× 1026

Quiet Sun +157.5 +255 1.30× 10−2 1.32× 1028

Active Region 0 -33 4.24× 10−1 2.07× 1029

X1.0 Undamped -157.5 +327 3.59× 10−3 4.56× 1027

Quiet Sun -157.5 +155 5.34× 10−2 4.73× 1028

Active Region -11.25 +432 6.52× 10−1 3.73× 1029

M1.1 Undamped +146.25 -203 4.04× 10−2 2.93× 1028

Quiet Sun -78.5 -203 2.59× 10−1 1.44× 1029

Active Region -90 -203 1.45 5.68× 1029

Source: Stefan & Kosovichev (2020)
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When comparing the observed sunquake events with the set of simulations

using the force mechanism, the same relationship between excitation height and

damping strength is preserved. The amount of kinetic energy necessary to reproduce

observations is similar in the undamped case to the momentum mechanism, with

energies also on the order of 1028 ergs (Table 4.2). As the damping is increased in

the active region damping scenario, the energy estimates vary much less widely than

for the momentum mechanism with similar damping, with energies for all observed

events on the order of 1029 ergs.

Table 4.3 Best Fit Parameters for Sunquake Events - Momentum Mechanism

Momentum Case

Flare Damping Tshift (s) Height (km) Amp. (g cm s−1) Max. V (km s−1) Energy (ergs)

X1.8 Undamped -45 -17 1.95× 1022 11.1 6.39× 1027

Quiet Sun -45 -104 3.31× 1023 141.8 1.39× 1030

Active Region -56.25 -142 1.76× 1024 675.6 3.53× 1031

X9.3 Undamped +112.5 +432 5.40× 1021 32.5 3.05× 1027

Quiet Sun +112.5 -33 1.54× 1023 82.3 3.74× 1029

Active Region +112.5 -68 1.54× 1024 785.8 3.82× 1031

X3.3 Undamped +135 +386 2.68× 1021 11.5 5.88× 1026

Quiet Sun +67.5 +386 2.83× 1022 121.2 6.57× 1028

Active Region -123.75 -162 1.65× 1024 599.8 2.94× 1031

X1.0 Undamped +67.5 +87 2.87× 1022 24.0 1.94× 1028

Quiet Sun +78.75 -86 9.48× 1023 430.2 1.21× 1031

Active Region +78.75 -123 6.96× 1024 2825.6 5.85× 1032

M1.1 Undamped +101.25 -182 4.60× 1022 15.8 2.15× 1028

Quiet Sun +135 -203 7.34× 1023 238.8 5.19× 1030

Active Region +123.75 -203 5.47× 1024 1780.1 2.88× 1032

Source: Stefan & Kosovichev (2020)
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Figure 4.5 Time-distance diagrams of: a) the best fit force case for the sunquake of
the X1.8 flare; b) the sunquake produced by the X1.8 flare; c) the best fit momentum
case for the sunquake of the X1.8 flare; d) the best fit force case for the sunquake of
the X9.3 flare; e) the sunquake produced by the X9.3 flare; f) the best fit momentum
case of the X9.3 flare. Darker pixels correspond to more negative velocities, lighter
pixels correspond to more positive velocities.
Source: Stefan & Kosovichev (2020)

For some of the observations, the maxima of the cross-correlations does appear

close to previously described flare-relevant times. For example, in two of the five

sunquake events evaluated with the undamped momentum mechanism, the M1.1 and

X1.0 events, the timing of the best-fit case immediately follows the HXR peak. As

the damping is increased, this count increases to three for quiet Sun damping—the

previous two events and the X3.3 event—but reduces back to two in the active region

damping scenario. For the force mechanism, only two best-fit cases are identified

close to the HXR peak, which reduces to one in both the quiet Sun and active region

scenarios.

In general, it should be expected that the best-fit excitation depth moves

downwards as the damping strength is increased, since excitation in the denser layers

leads to larger amplitude waves higher in the atmosphere from a conservation of

95



−200 −100 0 100 200 300 400
−150

−100

−50

0

50

100

150

−200 −100 0 100 200 300 400
Source Depth (km)

−150

−100

−50

0

50

100

150

T
im

e
 S

h
if

t 
(s

)

M1.1 (QS case) T0= 13:18:23 UTC

−200 −100 0 100 200 300 400
−150

−100

−50

0

50

100

150

−200 −100 0 100 200 300 400
−150

−100

−50

0

50

100

150

−200 −100 0 100 200 300 400
Source Depth (km)

−150

−100

−50

0

50

100

150

T
im

e
 S

h
if

t 
(s

)

X1.0 (adjusted) (QS case) T0= 17:45:00 UTC

−200 −100 0 100 200 300 400
−150

−100

−50

0

50

100

150

−200 −100 0 100 200 300 400
−150

−100

−50

0

50

100

150

−200 −100 0 100 200 300 400
Source Depth (km)

−150

−100

−50

0

50

100

150

T
im

e
 S

h
if

t 
(s

)

X1.8 (QS case) T0= 03:13:30 UTC

−200 −100 0 100 200 300 400
−150

−100

−50

0

50

100

150

−200 −100 0 100 200 300 400
−150

−100

−50

0

50

100

150

−200 −100 0 100 200 300 400
Source Depth (km)

−150

−100

−50

0

50

100

150

T
im

e
 S

h
if

t 
(s

)
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Figure 4.6 Cross-correlation functions with the quiet sun damped momentum
mechanism set for the sunquake associated with the M1.1 flare (a), with the X1.0
flare (b), with the X1.8 flare (c), with the X3.3 flare (d), and with the X9.3 flare.
The contours begin at the median value, and each successive contour represents
an increase in 5 percentile points. The solid horizontal line shows the HXR peak
time, the dashed horizontal line shows the dSXR/dt peak time, and the dot-dashed
horizontal line shows the suspected sunquake start time based on bad pixel count.
The white and black diamond indicates where the parameters produce the greatest
cross-correlation. Redder colors indicate greater correlation, green representing
intermediate correlation, and purple representing low correlation.
Source: Stefan & Kosovichev (2020)
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momentum perspective. Consequently, the estimated energy required to excite the

observed sunquakes increases with depth, as more energy is required to move the

denser material. However, the active region damping scenario is not necessarily

representative of in situ conditions of sunquake propagation, which assumes that the

sunquake wavefront is traveling through a strongly magnetized region. In fact, the

sunquakes observed here are excited at the edge of the corresponding active regions

and propagate mostly in regions of moderate magnetic field.

Furthermore, the estimates of excitation energy can only be relied upon when

the identified best-fit time shift, τ , follows or coincides with the HXR peak or bad

pixel times which are both clear indications of energy deposition. The M1.1, X1.0,

and X3.3 events satisfy this criteria for the momentum mechanism, while only the

M1.1 and X9.3 events satisfy this criteria for the force mechanism. The X1.8 event has

strong correlations near the HXR, dSXR/dt, and bad pixel times for both mechanisms

(Figures 4.6c and 4.7c), but these time shifts do not maximize the cross-correlations.

For the events which correspond well with a momentum mechanism, the undamped

excitation energy is on the order of 1028 ergs, consistent with energy estimates made by

Chen (2019) using acoustic holography. And though the X1.8 event does not produce

strong correlations in the undamped momentum mechanism, the quiet Sun and active

region damping scenarios return a time shift very close to the peak HXR time and

excitation energies on the order of 1028 ergs and 1029 ergs, respectively. Similarly

for the X9.3 event with a force mechanism, the undamped case is not temporally

coincident with flare-relevant times but the quiet Sun damping scenario indicates an

excitation time just after the HXR peak time. The energy estimate for this excitation

is around 1029 ergs which is not unreasonable for strong X-class flare that may release

up to 1032 ergs (Hudson, 2011).

97



−200 −100 0 100 200 300 400
−150

−100

−50

0

50

100

150

−200 −100 0 100 200 300 400
Source Depth (km)

−150

−100

−50

0

50

100

150
T

im
e

 S
h

if
t 

(s
)

M1.1 (QS case) T0= 13:18:23 UTC

−200 −100 0 100 200 300 400
−150

−100

−50

0

50

100

150

−200 −100 0 100 200 300 400
−150

−100

−50

0

50

100

150

−200 −100 0 100 200 300 400
Source Depth (km)

−150

−100

−50

0

50

100

150

T
im

e
 S

h
if

t 
(s

)

X1.0 (adjusted) (QS case) T0= 17:45:00 UTC

−200 −100 0 100 200 300 400
−150

−100

−50

0

50

100

150

−200 −100 0 100 200 300 400
−150

−100

−50

0

50

100

150

−200 −100 0 100 200 300 400
Source Depth (km)

−150

−100

−50

0

50

100

150

T
im

e
 S

h
if

t 
(s

)

X1.8 (QS case) T0= 03:13:30 UTC

−200 −100 0 100 200 300 400
−150

−100

−50

0

50

100

150

−200 −100 0 100 200 300 400
−150

−100

−50

0

50

100

150

−200 −100 0 100 200 300 400
Source Depth (km)

−150

−100

−50

0

50

100

150

T
im

e
 S

h
if

t 
(s

)

X3.3 (QS case) T0= 22:10:19 UTC

−200 −100 0 100 200 300 400
−150

−100

−50

0

50

100

150

−200 −100 0 100 200 300 400
−150

−100

−50

0

50

100

150

−200 −100 0 100 200 300 400
Source Depth (km)

−150

−100

−50

0

50

100

150

T
im

e
 S

h
if

t 
(s

)

X9.3 (QS case) T0= 11:57:10 UTC

−200 −100 0 100 200 300 400
−150

−100

−50

0

50

100

150

a)

b) c)

d) e)

Figure 4.7 The same as in Figure 4.6 for the force mechanism.
Source: Stefan & Kosovichev (2020)
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Figure 4.8 Maximum heating rates derived from the proton beam simulations, used
to excite sunquakes in the hydrodynamic model. For all beams but the 100 MeV
(δ=5), the spectral index is 3. The gray dotted line represents the background density.

4.3 Atmospheric Heating Derived from FP Simulations

4.3.1 Description of Simulations

In this section, we use radially-dependent heating rates derived from FP proton beam

simulations (Allred et al., 2020) to excite acoustic waves. The Fokker-Planck proton

beams all have identical energy flux, 1011 erg cm−2, with increasing low energy cut-off

varying from 100 keV to 100 MeV. Except where explicitly stated, the proton beams

have spectral index δ = 3. The volumetric heating rates are shown in Figure 4.8,

along with the acoustic model’s background density profile in gray. The subsurface

background profile is still the Standard Solar Model (Christensen-Dalsgaard et al.,

1996), though the VAL-C atmosphere (Vernazza et al., 1981) has been carefully

appended where the original background profile ends. This extends the total height

of the background profile to r = 711 Mm, which accommodates the strong heating of

the upper chromosphere from the 100 keV beam as well as the corresponding weak

heating in the low corona.
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4.3.2 Deriving the Modeled Perturbations

Since our model does not have an explicit term for heating, we treat the energy

deposition of the proton beams as a pressure perturbation. This pressure perturbation

is directly derived from the FP-provided volumetric heating rates Q′
vol in the following

manner. For a fixed amount of heat transferred in a fixed volume, we have

dQ = CV dT (4.49)

with the corresponding time dependence

dQ

dt
= CV

dT

dt
, (4.50)

where CV is the heat capacity of the plasma at constant volume. Assuming the plasma

behaves as an ideal gas, such that CP −CV = NK and PV = NKT = (CP −CV )T ,

the change in temperature can be expressed in terms of a pressure perturbation P ′

as

Q′

CV

− d

dt
T =

d

dt

(
P ′V

(CP − CV )

)
, (4.51)

where Q′ is the heating rate in erg s−1 and CP is the heat capacity of the plasma

at constant pressure. Since the volume element under consideration is constant, the
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above can be simplified by

Q′

CV

=
V

(CP − CV )

dP ′

dt
, (4.52)

which reduces to

dP ′

dt
=

Q′

V

(CP − CV )

CV

= Q′
vol(γ − 1) (4.53)

with γ being the adiabatic index and Q′
vol in erg cm−3 s−1. Since we consider the

normalized pressure perturbations P = P ′/P0, the source term used in Equation

(4.14) is

dP

t
=

Q′
vol

P0

(γ − 1). (4.54)

We assume that the area heated by the proton beams is constant over height,

and the horizontal profile of the volumetric heating rate is considered to be Gaussian

with a FWHM of 1.5 Mm. Where the lower end of the supplied heating functions end,

slightly below R = 696 Mm, the volumetric heating rates are appended by a Gaussian

with drop-off closely matching existing data. This is only strictly necessary for the

100 MeV δ = 3 and δ = 5 beams which penetrate deeply into the solar atmosphere,

but is also applied to the other beams to ensure a smooth transition to zero heating

in the acoustic model.
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Figure 4.9 Log of the sunquake wavefront maximum vertical velocity amplitude over
horizontal distance, for a 10 second beam duration (a) and 20 second beam duration
(b). The dotted curves represent amplitudes for the square heating rate case, and the
solid lines represent the triangular heating rate case.

4.3.3 Sunquake Amplitudes

Using the volumetric heating rates as a maximum, we consider heating durations of

10 and 20 seconds with square and triangular temporal profiles. We then examine the

resulting photospheric wavefront, with maximum radial velocity for each case shown

as a function of horizontal distance from the beam target in Figure 4.9. Surprisingly,

the lowest cut-off energy beam, 100 keV, produced the highest amplitude wavefront.

This wavefront has minimum amplitude of nearly 1 km s−1 at a horizontal distance

of 17 Mm for the 10 s triangular profile, and 3 km s−1 at the same distance in the

case of a 20 s square profile.

As the low energy cut-off increases, the amplitude of the photospheric wavefront

decreases; taking the 10 s triangular profile as an example, from 800 m s−1 for the

100 keV low energy cut-off to 3 m s−1 for the 100 MeV cut-off. This decrease in

wavefront amplitude is exponential with low energy cut-off, with log-10 spectral index

ϵ = −0.779± 0.001 for all temporal profiles.
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The somewhat paradoxical relationship between the low energy cut-off and

maximum photospheric wavefront amplitude—that the 100 keV beam deposits the

least energy yet produces the highest amplitude wavefront—can be explained by

examining the expected acceleration rates produced from each beam. The acceleration

rates shown in Figure 4.10 are derived from the gradient in the pressure perturbations

which the model is supplied and the local background density. While the pressure

gradient in the 100 keV beam is moderately smaller than the other beams, this

gradient acts in a region of relatively low density which leads to the high acceleration

of the local plasma. As the beam cut-off energy increases, the corresponding

acceleration rate decreases as the beams deposit energy in gradually deeper layers

of the solar atmosphere.

We, therefore, expect that the exponential decrease in wavefront amplitude is

caused not by the amount of energy deposited, but by where that energy is deposited.

That is, the local density of the beam target is significantly more important than the

amount of energy deposited; however, the height of maximum energy deposition is of

course strongly constrained by the energy content of the proton beam. This height

dependence is further supported by the comparison between the δ = 3 and δ = 5 100

MeV beams. Both beams deposit energy at nearly the same depth, and despite the

δ = 5 beam depositing almost 50% more energy than the δ = 3 beam, both produce

wavefronts of similar magnitude, separated by about 4 m s−1 at the X=17 Mm peak.
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Figure 4.10 Log of the expected acceleration rates derived from the heating rates.
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CHAPTER 5

DISCUSSION

5.1 The Detectability of Emerging Flux

In Chapter 2, we presented a method for detecting emerging magnetic flux from mean

phase travel time deviations 40 to 70 Mm beneath the photosphere. In particular,

Section 2.4 presents the perturbation index for several active regions and how this

compares to the perturbation index of quiet Sun regions. It is found that in the quiet

Sun, the perturbation index can occasionally reach values as large as 13000 s Mm2,

though it mostly fluctuates between 4000 and 6000 s Mm2. Choosing this maximum

as the criteria for positive emerging flux detection, three of the four active regions

presented in Section 2.4 are able to be identified 24-36 hours before emergence.

Detailed spatial features, however, cannot be observed using our time-distance

method, and likely not through any other helioseismic method. The average

wavelength of oscillations penetrating 40 to 70 Mm beneath the photosphere is 3

Mm, which significantly reduces the resolution of any detected features. While we

are limited in the resolution of phase travel time maps, the location of the positive

and negative travel time shifts relative to the eventual location of the magnetic

flux concentration is interesting. At the time of peak emergence, we find areas of

strong positive mean travel time shifts—which may be caused by diverging flows that

reduce the local wave speed—spatially coincident with the later development of active

regions. The strong negative travel time shifts used to compute the perturbation index

are generally adjacent to these positive travel time shifts.

Prior studies have found that travel time perturbations due to flows induced

by the magnetic field should be stronger than the field’s direct perturbation to the

wave speed (Braun, 2012); specifically, that radial flows are strongest above the rising
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magnetic flux and that stronger horizontal flows dominate the regions adjacent to the

rising magnetic flux (Birch et al., 2010). This may explain our observations of strong

negative travel time shifts adjacent to the eventual location of active regions, as the

convergence and divergence of these flows relative to the background plasma may also

induce shifts in the wave travel time.

In our larger-scale analysis of active region emergence in Section 2.5, we found

that the peak correlation time between the mean phase travel times and the surface

magnetic flux for most active regions occurs prior to the flux emergence is not

particularly strong. Some pixels may have a cross-correlation amplitude as strong

as 0.35—close to the theoretical value from the simplified model presented in Section

2.5.1—though the spatial average is generally much lower, on the order of 0.02.

Considering only pixels where the corresponding magnetic field is greater than 100

G increases the spatial average by slightly more than a factor of two, to on the order

of 0.05. However, the non-uniformity of the correlation lag times about T = 0 does

indicate that there is some degree of connection between the mean phase travel times

and the emergence of active regions.

Examining the relationship between the correlation lag times and peak pertur-

bation index times shows that, at least for the thresholds used in this work, the

perturbation index itself is not a strong indicator of emerging magnetic flux. Of the

46 active regions studied, only 28 of these regions, on average, have the maximum

perturbation index prior to the emergence of the magnetic flux. Additionally, only 30

of the active regions, on average, have the time of peak perturbation index preceding

the correlation lag time. There is also no significant relationship between the time of

peak perturbation index and maximum magnetic flux, maximum flux rate, or sunspot

size, with the Spearman correlation coefficient ρ on the order of 10−2.

We find that for a majority of active regions, the peak correlation between the

surface magnetic field and the mean phase travel time deviations occurs before the
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active region emerges, with a median time lag in the best case of −16 hours prior

to emergence. Separating the measurement annuli into additional arc segments does

not necessarily increase the sensitivity of the measurements, and our results suggest

that eight arc segments is optimal. While the median correlation lag time for the

Gabor wavelet procedure is slightly greater than that of the GB02 procedure, the

GB02 procedure has a greater number of active regions with a correlation lag time

preceding the emergence of the active regions in every arc segment case. Additionally,

we find no strong correlation between the lag times and sunspot size or maximum

flux, though there is a noticeable correlation between the lag times and the maximum

flux rate.

5.2 Properties of Sunspot Subsurface Magnetic Fields

One of the more surprising features in the measurements made in the sunspot

simulation developed by Rempel (2012) is the apparent 90◦ counter-clockwise rotation

of the magnetic field’s azimuth in Figure 3.3c, relative to the true azimuth. While the

outer 10 Mm of the subsurface azimuth aligns very well with the true subsurface state,

the inner feature likely develops as a failure of our assumption of a uniform magnetic

field since the magnetic field quickly changes direction in the center of the sunspot.

The spatial coincidence of suppressed travel time anisotropy (Figure 3.3d) seems to

support this, where the size of the suppression is larger than the corresponding region

of low horizontal field magnitude. In both the azimuth and travel time anisotropy,

the anti-symmetric term in Equation (3.24) may provide an opposing contribution to

the travel time perturbation where the magnetic field is non-uniform.

However, such a rotation of the azimuth is not observed in any of the studied

active regions. This may be due to the significantly coarser resolution and the greater

noise level which might mask this feature, especially as the azimuth inversion lines—

where the azimuth changes from 180◦ to 0◦—do not extend to the center of the
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sunspot in the active region measurements. Based on the results from the sunspot

simulation though, we should expect the region avoided by the azimuth inversion lines

to be of similar size to the area of anisotropy suppression, which is only true for ARs

12786 and 12794 at depths of z = −10 to −13 Mm (Figures 3.5p,q,s,t and 3.6p,q,s,t

respectively).

Another interesting aspect of our active region measurements is the significantly

reduced anisotropy for AR 12786, as compared to ARs 12218 and 12794. While the

actual magnitude of the subsurface horizontal magnetic field is, of course, unknown,

the surface horizontal field magnitude is similar between each active region. Assuming

the field remains constant with depth, it should be expected that the active regions’

travel time anisotropies will have correspondingly similar magnitudes. One possibly

contribution to the relatively small anisotropy may be AR 12786’s slightly smaller

area compared to the other two active regions. This would also explain the greater

maximum anisotropy in AR 12794 compared to AR 12218, which is moderately

smaller, as an acoustic wave traveling through AR 12794 would encounter greater

magnetic flux and therefore have a stronger travel time perturbation.

Comparing the azimuth and anisotropy measurements derived from the GB02

procedure with those derived from the Gabor wavelet fitting, it is clear that the GB02-

derived measurements outperform in nearly every case. This is somewhat expected

as the GB02 procedure is much less sensitive to noise in the cross-correlations; the

GB02 procedure has only one dependent parameter for error minimization—the time

lag—whereas the Gabor wavelet fitting method has five—the group and phase time

lags, cross-correlation amplitude, frequency of oscillation, and width of the Gaussian

envelope. While these additional parameters in the Gabor wavelet procedure may

be useful for other studies, there is reduced accuracy in the travel time measurement

as the combined error of all parameters is minimized, as opposed to only the phase

travel time lag in the GB02 procedure.
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The measurements made from the acoustic simulation with uniform background

magnetic field confirm that the combination of travel times in Equation (3.31)

accurately reproduces the magnetic field’s azimuth. Other measurements made in

this simulation, in conjunction with the simulation of a realistic sunspot, also confirm

that the anisotropy parameter defined in Equation (3.32) is a reasonable proxy for

the magnitude of the subsurface magnetic field where the approximation of a uniform

magnetic field is at least somewhat valid. Despite the increased noise level, we further

show that the detection of travel time anisotropy in active regions is feasible and can

be used to recover some aspects of the subsurface magnetic field’s structure.

5.3 Excitation Mechanisms for Sunquakes

From the correlation analysis made in Section 4.2 with several observed sunquake

events, the signal in time-distance diagrams is clearly degenerate in parameter space

with respect to source depth and time shift. Recalling that the time shift is between

the start time of simulations and the suspected start time of the sunquake event,

it should be relatively easy to account for in further analysis. We expect the start

time of sunquake events to be close to the HXR peak time and bad pixel times,

and any correlation-indicated time shifts which do not align with these times can

be disregarded. Accounting for the degeneracy in excitation depth, however, is

somewhat more difficult to account for. We find that the lower wave front amplitudes

characteristic of deep excitation can be compensated for by greater energy deposition,

though bounding the amount of deposited energy by the flare energy budget for a

given event’s flare-class can reduce this depth uncertainty.

Additionally, there are several events—most notably the X1.0 event—which

seem to suggest the presence of a high excitation source in some damping scenarios,

though these sources tend to produce weaker p-mode wave fronts and stronger

acoustic-gravity waves with increasing height in our simulations. Similar corre-
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spondence between excitation height and the strength of acoustic-gravity waves is

observed in the simulated events of Section 4.3 with the proton beam heating rates.

The 100 keV beam, with the highest location of peak heating around r = 697.8 Mm,

produced the strongest acoustic-gravity waves of the proton beams considered in this

work, for all temporal profiles. The 100 MeV beam which penetrated furthest into

the atmosphere correspondingly produced the weakest acoustic-gravity waves.

While the low-energy cutoff of 100 MeV is quite extreme, the initial expectation

was that such a deeply penetrating beam would serve as an upper bound of the

wavefront amplitude for the collection of simulations, especially the δ = 5 100 MeV

beam which deposits the second greatest amount of heat. As discussed previously in

Section 4.3.3 however, the opposite relationship was instead observed, with the weaker

and less-deeply penetrating beams producing the stronger wave front amplitudes.

While we believe that this relationship is adequately explained by the expected

acceleration rates shown in Figure 4.10, it should be noted that the 100 keV beam

produced supersonic downflows near the excitation source. For the 20s square heating

rate, these downflows approach M = 4 at the center of the source. Considering that

our model is linear, we do not adequately capture the shock dynamics expected of

these downflows, and it may be possible that non-linear effects reduce the resulting

wave front’s unrealistically large amplitude of ≈ 1 km s−1.

5.4 Directions for Future Work

The results of this dissertation highlight several avenues for future work in the

helioseismic study of active regions. Regarding the early detection of emerging active

regions, the use of mean phase travel time deviations as indicators of emerging flux

appears to be successful. While there is inherent noise in helioseismic measurements

made at significant depths (z = −40 to −70 Mm), there is significant potential benefit

to the corresponding early detection (24-36 hours) compared to only several hours for
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more shallow measurements. The phase travel time maps in Section 2.4 also suggest

that measurements of flows at similar depths may also yield additional insights, and

this is further motivated by the work of Birch et al. (2010).

The direct interpretation of our phase travel time maps, however, remains

difficult as the composite measurements are averaged over ≈ 30 Mm. A depth-

dependent analysis can be made, though at the cost of a decrease in the signal-to-noise

ratio. The use of machine learning techniques to interpret the phase travel time maps

serve as one potential approach for identifying emerging magnetic flux directly from

these maps. Such techniques have already had success, for example in the use of

convolutional neural networks (CNNs) to convert far-side travel time measurements

into magnetic flux maps (Hess Webber et al., 2020), in up-scaling MDI and GONG

Magnetograms to HMI resoltution (Munoz-Jaramillo et al., 2021) and in predicting

solar flares from HMI Magnetograms using a support vector machine (SVM) (Bobra

& Couvidat, 2015). While in our case there are far fewer positive samples—cases

where an active region emerges—compared to negative samples, there exist so-called

few sample learning (FSL) techniques which may overcome this bias (Lu et al., 2020).

The clear next step in examining the structure of subsurface magnetic fields

in active regions is to develop inversions for the actual magnitude of the horizontal

field from the measured travel time anisotropies. Sensitivity kernels derived from the

ray-approximation appear to be the most straightforward approach to such inversions,

as these can be directly derived from Equations (3.31) and (3.32) similar to the

procedure outlined in Kosovichev & Duvall (1997). While the ray approximation is

sometimes criticized as being too simplistic, the large scale features recovered by these

kernels are not significantly different from those recovered by Fresnel-zone kernels

which take into account finite-wavelength effects (Gizon & Birch, 2005; Couvidat

et al., 2004).
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Recovery of the radial field, however, remains a difficult pursuit, especially

in the formulation of Section 3.2. The radial field appears here in two terms, in

the interaction with an oscillation’s horizontal wavenumber and in the mixed term

containing all wavenumbers and Alfvèn speeds. The first term produces travel time

deviations which are indistinguishable from sound speed perturbations and are lost in

the computation of the travel time anisotropy (Equation (3.32)). There is a possibility

of recovering the radial field from the mixed term, as its contribution to the travel

time deviation is dependent on the orientation of an incident oscillation relative to the

horizontal field component and so does not behave like a sound speed perturbation.

This term was estimated to be negligible under the assumption of a uniform radial

field, though it may produce a measurable shift in the travel time for a moderately

inclined magnetic field.

Moving to the surface processes of active regions, there is still much work to

be done in determining the mechanism which excites sunquakes. Recently published

work has suggested the possibility of a deep source—up to 1 Mm beneath the quiet

Sun photosphere—for some sunquake events (Lindsey et al., 2020), though the results

from Section 4.3 highlight the difficulty in exciting a sunquake of moderate amplitude

at even relatively shallow depths. Additionally, the results from Section 4.2 indicate

that the energy required for such deep excitation increases significantly with depth.

There appears to be much promise in the possibility of comparatively high

source heights for sunquakes for particle beams of moderate low-energy cut-off.

Admittedly, our model does not treat such sources with sufficient accuracy in terms

of any possible non-linear effects. Future works focused on simulating sunquake

excitation should include non-linear terms in models, a feat much easier said than

done. A comprehensive simulation which includes both the solar atmosphere and

interior covers characteristic length scales which vary over many orders of magnitude.

For simulations relying on explicit finite differences, the solar atmosphere in particular
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requires the use of very short numerical time steps which make long duration

simulations infeasible. This problem of long computation time is exacerbated by the

inclusion of non-linear terms, as the governing equations will be coupled in angular

degree and, therefore, unable to be decomposed into an independently-solvable

system.
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APPENDIX A

COMPUTING TRAVEL TIME PERTURBATIONS

The method outlined here is derived for sound speed perturbations c but is applicable

to any perturbation along the acoustic ray path which produces a mean travel time

perturbation. The expected perturbation to the mean travel time is given by

δτmean = −
∫
Γ

δc

c
Sds, (A.1)

where Γ is the unperturbed ray path, S = k/ω is the phase slowness, and ds is the

differential of the ray path. We first need to determine the coordinate s, the path

length, which depends on radius r and horizontal position θ. For a coordinate system

depending on some parameter a, we have

ds(a) =
√

dr2(a) + r2(a)dθ2(a) =

√(
dr

dθ
(a)

)2

+ r(a)2dθ2(a). (A.2)

Given the dispersion relation for acoustic waves without the acoustic cut-off

frequency, which is negligible everywhere but the surface,

ω2 = c2(k2
h + k2

r), (A.3)
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the derivative dr/dθ can be determined using the ray approximation,

dr

dt
=

dω

dk
. (A.4)

We then have

dr

dt
=

dω

dkr
=

ckr√
k2
r + k2

h

(A.5)

and

r
dθ

dt
=

dω

dkh
=

rckh√
k2
r + k2

h

, (A.6)

where kr =
√

(ω/c)2 − k2
h is the radial wavenumber and kh =

√
l(l + 1)/r = L/r is

the horizontal wavenumber. The derivative in Equation A.2 is then

dr

dθ
= r

dr/dt

rdθ/dt
=

kr
kh

=
r2
√(

ω
c

)2 − (L
r

)2
L

. (A.7)

We now need to identify the pair of angular degree l and frequency ω which

correspond to oscillations reaching our desired observation depth, r0. This is found

by noting that at a given oscillation’s turning point, the radial wavenumber goes to
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zero. Making this substitution in Equation A.3 yields

r0 =

√
(l)(l + 1)c(r0)

ω
, (A.8)

which can be solved easily through interpolation. The next step is to evaluate the

sound speed perturbation δc along the ray path, which requires us to determine

the coordinates (r, θ) along the ray path. We find this by solving Equation A.7 to

determine the horizontal distance θray(r
′) traveled by the ray to reach radius r′,

θray(r
′) = −2

∫ r′

R⊙

c

r

√
ω2

L2
− c2

r2

dr. (A.9)

Here, r′ is varied from the surface R⊙ to the turning point r′, where θray corre-

spondingly varies from 0 to ∆/2. We have essentially parameterized the ray path

along the computation radial mesh such that there is a unique horizontal distance

θtextray for each point in the mesh r(a).

We can now evaluate the sound speed perturbation δc using these parameterized

coordinates. However, the sound speed perturbation in Section 2.3 is defined in

latitude λ and longitude ϕ, so we also need to determine the global location of a

given ray in our computations. To reproduce the appropriate measurement scheme,

for example as in Figure 2.2, we need to find opposing points on an annulus centered

on a particular point (λstar, ϕ⋆ with radius ∆. Here, we will consider the case of four

opposing pairs of points, which correspond to initial bearings B = ±m × 45◦ for
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m = 0, 3. The coordinates for the starting point are

λ1 = arcsin (sin(λ∗) cos(∆) + cos(λ∗) sin(∆) cos(B))

ϕ1 = ϕ∗ + arctan

(
sin(B) sin(∆) cos(λ∗)

cos(∆)− sin(λ∗) sin(λ1)

) , (A.10)

and the remaining coordinates of the ray are found by reversing the initial bearing

and substituting the parameterized horizontal distance θray(a) for ∆. We find the

parameterized global coordinates are

λ(a) = arcsin (sin(λ1) cos(θray(a)) + cos(λ1) sin(θray(a)) cos(B − 180))

ϕ(a) = ϕ1 + arctan

(
sin(B − 180) sin(θray(a)) cos(λ1)

cos(θray(a))− sin(λ1) sin(λ(a))

) . (A.11)

To summarize, we perform the following steps to compute the theoretical mean

travel time deviations:

1. Find the pair of ω and l which correspond to oscillations reaching our desired
depth with Equation A.8.

2. Parameterize the ray path using Equation A.9.

3. For each point in the resulting map, replicate the appropriate measurement
scheme using global coordinates derived from Equations A.10 and A.11.

4. Evaluate the perturbed sound speed, or other perturbed quantity, using the
previously obtained global coordinates.

5. Use the evaluated perturbed sound speed, or other perturbed quantity, to
compute the corresponding mean travel time deviation from Equation A.1.
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APPENDIX B

DERIVING THE CENTRAL DIFFERENCE FORMULA ON A
NON-UNIFORM MESH

The central difference formula on a non-uniform grid can be derived from the matrix

equation BA−1x0 = x⋆ = Bx′. Here, x′ is the vector whose elements are the kth

analytical derivative of the function y at the ith grid point, x⋆ is the vector containing

only the first analytical derivative of y at the ith grid point, and B is the matrix which

isolates the first analytical derivative which is zero everywhere except the element

B1,1 = 1. The matrix A has columns containing the Taylor expansion coefficients,

(ri − rj)
k/k!, where k = 0, 3 for columns 1 to 4 and j = i − 2, i + 2 for rows 1 to 4

with j = i excluded. Explicitly, the matrices are

A =



1 −(∆ri−2 +∆ri−1)
1

2
(∆ri−2 +∆ri−1)

2 −1

6
(∆ri−2 +∆ri−1)

3

1 −∆ri−1
1

2
∆r2i−1 −1

6
∆r3i−1

1 ∆ri+1
1

2
∆r2i+1

1

6
∆r3i+1

1 (∆ri+1 +∆ri+2)
1

2
(∆ri+1 +∆ri+2)

2 1

6
(∆ri+1 +∆ri+2)

3



(B.1)

and

B =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , (B.2)
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and the relevant vectors are

x0 =



fn
i−2

fn
i−1

fn
i+1

fn
i+2


, (B.3)

x′ =



fn
i

fn
i
′

fn
i
′′

fn
i
′′′


, (B.4)

and

x⋆ =



0

fn
i
′

0

0


, (B.5)

Solving the previous matrix equation and using the coefficients on the following page,

it can be shown that the appropriate difference formula is

∂f

∂r
(t = tn, r = ri) ≈ −Ni−2

Di−2

fn
i−2 +

Ni−1

Di−1

fn
i−1 −

Ni+1

Di+1

fn
i+1 +

Ni+2

Di+2

fn
i+2, (B.6)
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with

Ni−2 = −∆ri+1∆ri−1 − ∆ri+1(∆ri+1 + ∆ri+1) + ∆ri−1(∆ri+1 + ∆ri+1), (B.7)

Di−2 = (∆ri+1 + (∆ri−2 +∆ri−1))((∆ri+1 +∆ri+1)

+ (∆ri−2 +∆ri−1))(∆ri−1 − (∆ri−2 +∆ri−1)), (B.8)

Ni−1 = ∆ri+1(∆ri−2 +∆ri−1)−∆ri+1(∆ri+1

+∆ri+1) + (∆ri+1 +∆ri+1)(∆ri−2 +∆ri−1), (B.9)

Di−1 = (∆ri+1 + ∆ri−1)(∆ri−1 + (∆ri+1 + ∆ri+1))(∆ri−1 − (∆ri−2 + ∆ri−1)),

(B.10)

Ni+1 = ∆ri−1(∆ri+1 +∆ri+1)−∆ri−1(∆ri−2

+∆ri−1) + (∆ri+1 +∆ri+1)(∆ri−2 +∆ri−1), (B.11)
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Di+1 = (∆ri+1 + ∆ri−1)(∆ri+1 + (∆ri−2 + ∆ri−1))(∆ri+1 − (∆ri+1 + ∆ri+1)),

(B.12)

Ni+2 = ∆ri+1∆ri−1 + ∆ri+1(∆ri−2 + ∆ri−1) − ∆ri−1(∆ri−2 + ∆ri−1), (B.13)

and

Di+2 = (∆ri−1 + (∆ri+1 +∆ri+1))((∆ri+1 +∆ri+1)

+ (∆ri−2 +∆ri−1))(∆ri+1 − (∆ri+1 +∆ri+1)). (B.14)
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