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ABSTRACT

ANDROID SECURITY: ANALYSIS AND APPLICATIONS

by
Raina Samuel

The Android mobile system is home to millions of apps that offer a wide range of

functionalities. Users rely on Android apps in various facets of daily life, including

critical, e.g., medical, settings. Generally, users trust that apps perform their stated

purpose safely and accurately. However, despite the platform’s efforts to maintain

a safe environment, apps routinely manage to evade scrutiny. This dissertation

analyzes Android app behavior and has revealed several weakness: lapses in device

authentication schemes, deceptive practices such as apps covering their traces, as well

as behavioral and descriptive inaccuracies in medical apps. Examining a large corpus

of applications has revealed that suspicious behavior is often the result of lax oversight,

and can occur without an explicit intent to harm users. Nevertheless, flawed app

behavior is present, and is especially problematic in apps that perform critical tasks.

Additionally, manufacturer’s and app developer’s claims often do not mirror actual

functionalities, e.g., as we reveal in our study of LG’s Knock Code authentication

scheme, and as evidenced by the removal of Google Play medical apps due to

overstated functionality claims. This dissertation makes the following contributions:

(1) quantifying the security of LG’s Knock Code authentication method, (2) defining

deceptive practices of self-hiding app behavior found in popular apps, (3) verifying

abuses of device administrator features, (4) characterizing the medical app landscape

found on Google Play, (5) detailing the claimed behaviors and conditions of medical

apps using ICD codes and app descriptions, (6) verifying errors in medical score

calculator app implementations, and (7) discerning how medical apps should be

regulated within the jurisdiction of regulatory frameworks based on their behavior

and data acquired from users.
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CHAPTER 1

INTRODUCTION

Mobile devices are an ubiquitous and irreplaceable aspect of daily life. Therefore, it

is essential to understand and maintain a safe user friendly environment.

1.1 Dissertation Scope

The scope of this dissertation is to find areas of vulnerability in the Android

mobile ecosystem while also providing a means of fixing such issues. We focus our

research on the following key points of interest: observing deceptive app behavior,

permission abuse in apps, weak authentication schemes for unlocking mobile devices,

characterizing the range of medical apps which perform critical tasks, uncovering

inaccuracies and inconsistencies in medical calculator apps, and understanding the

scope of regulatory frameworks in approving medical apps.

1.2 Problem Description

Mobile security is a broad field that addresses different issues in mobile platforms, or

in this specific study, the Android mobile platform. We primarily focus on a specific

recurring problem in this dissertation: app behavior is not apparent to the user.

Users trust applications to perform their stated uses without suspecting any type

of suspicious behavior. Additionally, suspicious behavior is not limited to malicious

applications, rather it can occur in popular benign trusted applications, intentionally

or unintentionally.

1.3 Dissertation Objectives

The objective of this dissertation is to reveal and address vulnerabilities found in

the Android ecosystem. We will discuss issues that arise in mobile authentication
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Figure 1.1 Dissertation overview.

schemes, permission abuses and self hiding behavior found among apps. We will also

present a classification scheme to better understand medical apps and their purported

behaviors. Our intended research is to delve further in Android security, focusing

more on medical app data management, accuracy, and general app data tracing. We

provide a visualization of this dissertation in Figure 1.1.

1.4 Dissertation Organization

We begin in Chapter 2 by detailing popular mobile systems and more specifically, the

Android ecosystem. We discuss the software architecture and security of the Android

operating system, while also discussing exploits and vulnerabilities that have been

found previously by other researchers.

LG Knock Code Security and Usability. To examine mobile security, the first

aspect to discuss is device unlock methods. In Chapter 3, we present a study regarding

security and usability flaws in mobile authentication schemes, specifically LG’s Knock
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Codes. We detail our user study and results regarding this recently-introduced

authentication method and ultimately discover it is actually not as secure as LG

claims and it suffers with usability.

Self Hiding Behavior. We then move on to describe and define deceptive app

behavior in the case of self-hiding behavior in Chapter 4. We explain our study which

both defines and detects this behavior not only in malicious applications, which is

expected, but also in popular benign trusted apps.

Device Administrator Abuse. Another aspect of deceptive app behavior is found

in device administrator abuses. In Chapter 5, we study this feature found on mobile

devices that was implemented to provide capabilities for companies to control mobile

fleets given to employees, such as locking and wiping devices remotely. We discover

that such capabilities have been exploited and leveraged to cause critical issues, such

as being unable to uninstall certain device administrator apps. We characterize this

behavior and provide a method of detecting device administrator abuse.

Characterizing Medical Applications. App security requires an understanding

the app landscape. In Chapter 6, we provide an automatic characterization scheme

to better identify and understand the functionality of medical applications on Google

Play.

Claimed Behavior of Medical Apps. We look into medical app claims and

discover how many apps overstate their actual functionality in Chapter 7. We map

app behavior with ICD-11 conditions to observe their possible functionalities. We

reveal that app claims are not reliable and the need for better regulation and scrutiny

of medical apps.
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Verifying Medical Calculator Apps. Additionally, we verify the reliability of

medical calculators and their respective reference tables in Chapter 8. We find

inconsistencies and inaccuracies in many medical calculators which calculate critical

scores in hospital settings. These errors could result in severe consequences towards

patients. Many of these errors are a product of incorrect references and specifications

as well as developer errors.

Regulating Medical Apps. In Chapter 9, we discuss the various regulations set

in place for medical apps. We specifically discuss regulations based in the US and

uncover applications that may need to be scrutinized by the FTC due to dubious

claims.
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CHAPTER 2

BACKGROUND

To begin our discussion of mobile systems, we provide a brief background on their

inception, popularity, and software architecture. We also introduce examples of

mobile security issues and vulnerabilities.

2.1 Mobile Systems

In 1992, IBM created the first smartphone with a touchscreen, ‘The Simon Personal

Communicator (SPC)’. SPC was released to the public in 1994 and sold roughly 50,000

units [28]. While the SPC was ahead of its time by being the first providing certain

functionalities, such as predictive typing, sending emails and faxes, it was short lived.

Eventually other iterations of cellular devices or “smart phones” began to take hold,

spearheaded by Nokia with the Nokia 3310 [91] as well as the dominant mobile OS at

the time, Symbian [57]. However, despite these advances in mobile technology, it was

in 2007 when Apple released the first iPhone and spurred the mobile industry that

persists to this day [5]. The iPhone was the first smartphone to be solely touch-based

in its interface, removing most physical buttons found previously. Shortly after in

2008, as its answer to the iPhone, Google released the T-Mobile G1, also known as

the HTC Dream, marking the introduction of Android 1 to the mobile marketplace

[14]. Two years later in 2010, Microsoft attempted to break through the consumer

smartphone market with the Windows Phone. The Windows Phone served as a

successor to Windows Mobile, which was a popular but discontinued mobile OS that

was aimed for the enterprise market in the early 2000s. Ultimately, Windows Phone

met the same demise and was discontinued in 2017 [120]. Overall, since 2009, the

mobile OS market share has changed drastically; with initially dominant systems such
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as Symbian and Sony Ericsson fading away and with Android rising and ultimately

replacing them.

2.2 Mobile Markets and Apps

With the popularity of smartphones, mobile apps have also grown in use. Mobile

apps are programs designed to run on smartphones and are designed to aid

with productivity, to provide assistance, or to be sources of entertainment and

communication. Users are able to download apps for free or for a fee on an app

marketplace (e.g., Apple App Store or Google Play). Apps are designed to work

on specific platforms, meaning that an app designed for iOS cannot be used on an

Android device, and vice versa. We will discuss next the features of the two most

popular app marketplaces as well as an overview of popular apps and uses.

iOS. Released in 2007 with the first iPhone, iOS is the operating system used by

Apple for iPhones. After Android, it is the second most popular mobile OS worldwide,

accounting for 28.3% of users as of November 2022 [92]. Users are able to install and

use third party apps on iOS by installing them from Apple’s App Store, a digital

app marketplace where apps are curated and vetted via security checks prior to being

offered to users. In 2008, Apple released the iOS Software Development Kit (SDK),

allowing for third-party apps to be developed and published on the App Store [131].

Initially starting with 500 apps in 2008, as of November 2022, iOS has 1.6 million

apps available for download on the App Store [24].

Android. In 2008 Android became the world’s most popular mobile OS (with 73%

of the total market share at that time [22]). Developed by Google, Android is open

source, with its source code available by the Android Open Source Project, which

is customized by original equipment manufacturers (OEMs). A reason for Android’s

widespread popularity is because it is not solely tied to Google made devices, while
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iOS is limited to only Apple iPhones. Rather, Android dominates the marketplace

because OEMs can use Android as their device’s OS, thanks to the open source nature

of the platform. Android users can download apps via Google Play, Android’s app

marketplace. As of November 2022, there are 3.55 million apps on Google Play [24].

Apps have grown in number on Google Play as Android had grown in popularity until

December 2017 where almost 700,000 apps were removed [115]. Overall, Google has

been cracking down on apps that mimic other apps, apps with inappropriate content,

and apps that are potentially harmful. Additionally, apps can be downloaded from

third party markets as well such as F-Droid [7] or OEM based stores like the Samsung

Galaxy Store [15] and others. The Android ecosystem has been affected by many

vulnerabilities, which has prompted Google to take more steps ensuring security and

safety for users over the years. We will further discuss the evolution of mobile security

in Android later in this chapter.

Mobile Apps. Mobile app usage has increased significantly over the years. The

average smartphone user spends three hours a day on their device, using on average 10

apps a day, while having over 80 apps installed on their device [11]. Initially, apps were

used for general productivity or information retrieval uses, such as email clients, web

browsers, or weather apps. However with growing public demands, top apps being

downloaded are social media apps such as TikTok, Facebook, and Instagram [122].

Mobile apps are not limited to leisure or entertainment; rather, they can be used for

a variety of critical tasks. There is a surge of mobile e-commerce apps and more users

find mobile shopping to be more convenient [88]. Along with e-commerce, mobile

banking has been a growing category of apps, with 86.5% of Americans having used a

mobile device to check their bank balance [129]. Moreover, medical health apps have

grown in popularity while able to perform a range of critical tasks, handling sensitive

information. With the varied uses of mobile apps across platforms, it is imperative
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that mobile security be taken seriously. User security and privacy are increasingly

at risk due to the prevalence of mobile systems. We will next look into mobile app

development to better understand app design and app capabilities.

2.3 Android App Development

We will now discuss the development and structure of an Android app.

2.3.1 Software Stack

Before we explore app development, we first examine the platform architecture. We

provide a visualization of the Android platform architecture in Figure 2.1. Android

devices use a Linux kernel, but due to the variety of devices, the kernel version

changes based on the device model and make [80]. The kernel handles requests from

the software to the hardware. Nevertheless, despite having a Linux kernel foundation,
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Android has few similarities with the standard desktop Linux distributions [123]. On

top of the Linux kernel, there is the hardware abstraction layer or HAL. The HAL

contains library modules which interface with specific hardware components, such as

the camera and Bluetooth. The HAL serves as a bridge between device hardware

capabilities and higher level Java API libraries [13]. The next layer includes native

C/C++ libraries and Android Runtime (ART). ART is a runtime environment that

uses ahead of time compilation (AOT), meaning that it precompiles app bytecode

into native (binary) code when an app is first installed. In doing so, app execution

is much faster [142]. Before using ART in version 5.0, Android was using Dalvik

Virtual Machines as the app runtime environment. Dalvik VMs relied on a just in

time compiler (JIT) for interpreting bytecode and overall was inefficient, providing a

lot of overhead. Both ART and HAL, along with other system components, require

native C/C++ libraries since they are built from native code [13]. To expose some of

these native libraries’ functionalities to apps, Android provides Java framework APIs.

The Java API framework simplifies the use of modular components and provides

content providers, managers, and a view system for apps. Finally, on top of all the

stack layers are system apps, or apps that come preinstalled and usually cannot be

uninstalled by the user.

2.3.2 App Components

Next we will delve into the basis of a standard Android app. Android apps can be

written in Java, Kotlin, and C++. They are then compiled along with other resource

files to create an ‘APK’ or an Android package. There are four key components of

an app: activities, services, broadcast receivers, and content providers.

Activities. An activity allows users to interface with the app, providing a way

for the app to implement user flows between each facet of the app and allows the

system to coordinate what the user is prioritizing when using the app. Activities
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are managed in stacks; new stacks are placed on the current stack and becomes the

running activity. An activity has four states:

• Active or running (User is currently interacting with the activity).
• Visible (Activity is not fully in focus but still presented).
• Stopped or hidden (Activity is hidden by another activity).
• Destroyed (Process is killed).

An activity’s lifecycle begins with a call to onCreate() and is ended with the onDestroy()

method [1].

Services. A service helps keep an app run in the background in order to perform

long running operations or to work with remote processes. Services are entry points

to keep apps running in the background. They tell the system how to handle an app

[16]. There are three types of services:

• Foreground services perform noticeable operations to the user. They must
display a notification to the user that it is running even when they are not
interacting with the app.

• Background services perform unnoticeable operations to the user.
• Bound services provide a client-server interface for components to interact with
the service and perform a variety of different tasks. When an app component
unbinds from the service, the service is destroyed.

Broadcast Receivers. Broadcast Receivers allow apps to receive events from the

system and to answer such system-wide broadcast announcements. The system can

also deliver broadcasts to apps that are not running due to the fact these events

are outside the standard user data flow. Broadcast receivers, activities, and services

are activated by a message called an ‘intent’. Intents define which actions activities

and services should perform, and what announcements broadcast receivers should be

shared.
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Content Providers. Content Providers are able to read and write shared app data

that is stored in any location where an app has access to it. If allowed by the content

provider, other apps can query and modify the data. Content providers are not

activated by intents, rather they are activated from targeted requests from a content

resolver.

All of these app components must be declared in an app’s ‘Manifest’ file. Here

the Manifest, normally found as AndroidManifest.xml, declares the app components

but also identifies permissions, the minimum API level necessary, API libraries, and

software and hardware components needed by the app [3]. Additionally, Android

apps have a number of resource files that are separate from app code. These files are

found commonly in the /res folder found in the APK file. Most of these resources

deal with the layout of an app, fonts, styles, or strings, etc. [4].

2.3.3 App Development Overview

We illustrate the Android development steps in Figure 2.2. While anyone can build

and develop an Android app, in order for the app to be published, one must register

a developer account with Google Play. Then, developers can publish their app on

Google Play which goes through a security vetting process. Once the app passes the

review process, it is available for download on Google Play. The review process

may take from 2-7 days according to Google [87]. There have been significant

improvements and more stringent vetting over the years as Google Play has developed,

yet there are still lapses that occur allowing for potentially malicious apps to slip

through and masquerade as a legitimate app. We will discuss this further in Section

2.4.
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2.4 Mobile App Security

Mobile apps are lucrative targets for attacks due to their large user base. Just like

traditional desktop apps, mobile apps can be exploited to extract user data. As a

result, mobile security is a necessary subject of study to better understand platform

and developer practices as well as methods on how apps can be exploitative and

malicious.

2.4.1 Permissions

The Android system applies the ‘principle of least privilege’, meaning that apps have

access to components required to run and nothing more [6]. Apps must be granted

permission by users in order to to have access to such capabilities. Permissions

give apps access to data and restricted actions. Certain permissions provide access

to sensitive user data, making these permissions more critical than others. For

example, apps having access to Call Log or SMS permission groups must have a

core functionality related to the permissions [12]. Other sensitive permissions include
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those related to location data or manipulating external storage and files. There are

different types of permissions that can be granted to an app depending on its purpose

and data necessary to function.

• Install time permissions: granted by system upon app installation.
• Runtime permissions: have access to restricted data and actions but require
users to grant access first.

• Special permissions: defined only by OEM or platform.

Figure 2.3 illustrates how permissions provide security in Android.

Permission Abuse. Despite requiring user consent to have access to critical

functions, permissions are easily abused and expose users to malicious behavior. Many

times, developers do not realize that they are requesting unnecessary permissions

which result in potential privacy threats and risks. Alenezi et al. have found that

over 80% of apps request more permissions than what is actually needed [32]. Google
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has tried to mitigate permission abuse by implementing policies towards developers

to curb them from using needless permissions in their apps. Developers would receive

a warning from Google regarding the amount of permissions found and roughly

60% of developers complied and removed the excess permissions [130]. Since users

provide access to functions via permissions, malicious apps take advantage of this

and are able to use critical functions, hijacking a user’s device. For example, the

vulnerability known as “Strandhogg” exploited the permission prompt on Android,

which ironically is used as a security measure – asking the user first to use those

capabilities. Essentially, malicious apps display a fake permission pop up once the

user attempts to open a legitimate app. Unknowing users assume that they are

granting permissions to a trusted app without realizing it is malware [86]. In later

chapters, we will discuss other examples of permissions abuse.

2.4.2 Android Fragmentation

Fragmentation refers to the vast variety of Android versions that are currently being

used on consumer devices [19]. Since Android is an open source OS, fragmentation

across versions and devices is an issue that is difficult to solve. Third party

manufacturers and carriers are inconsistent with updates on their devices causing

a lagged distribution of the latest version to users. This results in a severe lapse in

security, as Google releases new security updates monthly. Thus, a user who has an

outdated version of Android can be subject to a litany of exploits. For instance, a

remote code execution attack occurred in 2012 on the JavaScript Interface in Android

[139]. The JavaScript Interface in Android is a feature which allows apps to expose

app-level objects to JavaScript code in a WebView. Because of this, malicious apps

could could access Java APIs by simply calling calling getClass (). Google addressed

this vulnerability in API levels 17 and higher; however, the change is not reflected in

API levels 16 or lower, meaning that apps with that API level can still be exploited
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Figure 2.4 Android API distribution as of August 2022 [2].

[105]. Nevertheless, Google is trying to bridge the gap with newer versions’ adoption

rate. This is evident with the current API distribution, with recent versions, such

as Android 12 (or S) trying to keep up with Android 11 (R) as of August 2022 [2].

We can see the overall API distribution in Figure 2.4. Still, having only roughly 40%

of devices running the most recent versions is still very concerning and a potential

security risk.

2.4.3 Malware

Mobile vulnerabilities have existed prior to Android. In 2004, the first mobile virus,

Caribe, targeted Nokia phones. While it was not inherently damaging towards the

user, Caribe did use Bluetooth to transfer files to other Nokia phones and would

cause excessive battery drain. In 2005, with the Trojan Skulls, users had to manually

install the malware on their Series 60 device. The malware would render the device

unusable by overriding the system app by creating new files with the same name in

the folder.
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In 2010, another malware, known as FakePlayer, was found in the Android

ecosystem. While FakePlayer had to be manually installed, like most other malware,

it directly affected the user involved rather than just the device. FakePlayer would

send premium SMS messages, costing $5 each, while running in the background [61].

Soon this would be the pattern for more malicious apps that would attempt to steal

user data. A study in 2012 shows that one of the most popular types of malware

found on Android were premium service abusers, such as FakePlayer [114].

Zhou et al. [161] provide a comprehensive characterization of existing Android

malware and has generalized methods of how they end up on a user’s device. Malicious

apps may repackage popular apps by adding dangerous payloads and resubmit them

in app marketplaces, causing users to inadvertently download the infected version

of the app. Another method involves adding a malicious payload as an update

component to fetch during runtime. Some forms of malware attempt to entice users

into downloading their app and have users click in-app advertisements which redirect

them to a malicious website where they can download malicious apps. Additionally

there are fake apps which masquerade as legitimate apps, such as FakeNetflix, which

steals account credentials.

In order to keep up with the changing platform, malware constantly evolves

to evade detection and in functionality. One example is Anserverbot, which

employs dynamic loading to prevent itself from being revealed by anti-virus software.

Additionally, the malware also has the capability to detect installed anti-virus

software. Upon discovering anti-virus software, Anserverbot is able to stop the

app from running [161]. As discussed, older viruses and malicious programs on

mobile devices were device oriented rather than focusing on users as the primary

victim. Newer malicious apps target primarily user account information, messages,

payment information, and other sensitive user data. An example of malware

targeting critical user data is Mailbot. Found in June 2022, Mailbot steals banking
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details, cryptocurrency wallets, passwords, and hijacks SMS abilities. By taking

advantage of SMS capabilities, Mailbot sends malicious messages to other users, thus

distributing itself in the process. Additionally, Mailbot manages to bypass two factor

authentication by being able to take screen captures of infected devices [107]. Since

mobile devices contain vast amounts of personal data, malware threats will continue

to exist, albeit in various forms.

2.4.4 Mobile Platform Policies and Enforcement

In the early stages of Android, there were few policies protecting users from

downloading malicious apps from the Google Play Store. Android allowed at the

time virtually any app to be on its marketplace. In 2012, Google introduced “Google

Bouncer” to scan uploaded apps for suspicious behavior or evidence of malware [31].

A few months later with the release of Android 4.2 the “Verify Apps” feature was

also implemented to scan all apps on a device for malicious behavior [117], which

later became a feature found in a menu in Settings. In 2020, Google launched the

Android Partner Vulnerability Initiative to manage security issues that are found with

Android OEMs [20]. Despite these attempts to mitigate OS vulnerabilities, malicious

apps still manage to slip through these checks. A recent study from 2020 shows that

the Google Play store was the main distribution vector of Android malware citing

almost 67% of malicious app installs originating from the Play Store [55]. Malware

developers employ methods to mask functionality such as dynamically loading code

until downloaded and executed, or uploading clean installations of SDKs to update

it over time with malicious functionality [111]. This simply proves that there is more

for Google to consider regarding policy enforcement and user protection.
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2.5 Conclusions

We have seen how mobile devices and operating systems have evolved over the years.

We focused on Android, one of the most popular mobile OS in the world, due to the

vast number of users and its open nature. We discussed its structure and components

as well as the development process in building an Android app. Additionally, we

delved into mobile security, detailing vulnerabilities found in past mobile OSes as

well as issues that still affect Android and Google’s attempts to mitigate them. Now

as we have introduced the appropriate background regarding the Android ecosystem,

we can further discuss other points of research completed and planned in the following

chapters.
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CHAPTER 3

MOBILE AUTHENTICATION

Before we delve into mobile app security and deceptive behavior, we recall that mobile

security begins from the moment a user attempts to unlock their device. As mobile

devices have changed over the years, the methods of authentication have become more

varied and developed in tandem. This chapter presents a user study on LG’s ‘Knock

Codes’ and quantifies the usability, as well as security, of this mobile authentication

scheme.

3.1 Introduction

Designing new device unlock methods arise from a need of more security but also

to provide the user with convenience. Implementing security without sacrificing

usability and vice versa is a very fine balance to maintain; thus there are many

known knowledge based authentication methods, such as Android graphical unlock

patterns, PINs, and passwords. Due to the variations of mobile device unlock

methods, there have been extensive user-based studies on the security of knowledge-

based mobile authentication, including Android graphical unlock patterns [143, 40],

PINs [46, 149, 103], as well as using passwords on mobile devices [104]. To add, LG

developed Knock Codes as a new mobile authentication scheme designed to combat

some of the vulnerabilities found in other unlock methods [137] and provide, per

LG’s advertising [138], “perfect security.” Knock Codes require a user to recall a

pre-selected series of at least 6 and at most 10 knocks1 (or taps) on a 2× 2 quadrant

which is displayed upon setup and can be entered with the phone screen on or off.

Knock Codes are used less frequently than PINs or Android patterns, but we estimate

1In earlier models, like the 2014 LG G2 [140], where this method first appeared, codes
required at least 3 and at most 8. Newer models require 6 to 10 knocks occurring in at least
3 quadrants.
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that there is a large number of Knock Code users, 700,000–2,500,000 in the US alone.

Since Knock Codes have not been studied, we performed a joint study2 to evaluate

the security and usability of Knock Codes. We conducted two online user studies on

Amazon Mechanical Turk: a preliminary study (n = 218) and a main study (n = 351),

analyzing a total of 1,138 Knock Codes (436 in the preliminary study and 702 in the

main study). In the main study, we evaluated three between-group treatments: a

control treatment, where participants used the current 2x2 Knock Code interface; a

blocklist treatment, where participants selected 2x2 Knock Codes with some popular

codes, as measured in the preliminary study, being disallowed; and finally, a big grid

treatment, where participants selected Knock Codes on a larger, 2x3 grid. While

seeming like a straightforward attempt to increase security, an expanded Knock Code

grid to 2x3 does not increase, and sometimes worsens, security compared to 2x2 Knock

Codes. After 30 attempts, a simulated attacker correctly guesses more 2x3 Knock

Codes compared to 2x2 (41% vs. 37%). However, blocklisting common Knock Codes

(as collected in the preliminary study) is more effective at improving guessing security:

only 19% of these codes were guessed within 30 attempts in simulation. Overall,

participants perceived Knock Codes (across treatments) as secure; however, among

all treatments, participants were more hesitant to rate Knock Codes as more secure

than PINs, Android Unlock Patterns, or alphanumeric passwords. Despite the fact

that participants reported Knock Codes as “simple” and “memorable”, responses to

the SUS [48] questions averaged to “marginal” or “ok” usability (69.8, 68.1, and 64.3,

for the control 2x2 treatment, the larger 2x3 treatment, and the blocklist informed

2x2 treatment, respectively). Entry and recall times for Knock Codes were also much

slower than what was reported for PINs and Android patterns [76, 103], suggesting

lower usability.

2Joint work appeared as: Knock, Knock. Who’s There? On the Security of LG’s Knock
Codes by Raina Samuel, Philipp Markert, Adam J. Aviv, and Iulian Neamtiu at USENIX
Symposium on Usable Privacy and Security (SOUPS) 2020 Virtual Conference.
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These results indicate that users are interested in new forms of mobile

authentication, in particular ones that have options for unlocking with the display

off. However, given the usability and security challenges of Knock Codes, we would

not recommend further deployment as currently configured. For users and developers

who wish to continue to use Knock Codes, we would recommend using a blocklist to

inform selection as it provides increased security with small effects on usability.

3.2 Methodology

We collected data via Amazon Mechanical Turk (MTurk) using an online survey

whereby participants were directed to use their mobile devices (checked via the user-

agent) to select two Knock Codes as well as answer general questions about Knock

Codes and their demographics. The two Knock Codes were primed based on different

security scenarios, as informed by prior work of Loge et al. [98]. We found some,

but minor, differences between Knock Codes in each scenario, similar to Loge et al.’s

findings for Android patterns.

We conducted two studies: a preliminary study and a main study which is

based on the preliminary study and presented here. The main difference between the

two studies is that the main study was focused on participants using mobile devices

while the preliminary allowed participants to use traditional computers. From the

preliminary study, we were able to refine the main study as well as develop a blocklist

of the 30 most common Knock Codes selected in the preliminary study (see Table

3.1).

Estimating US Knock Code Usage. We generalized our participants’ device

usage and authentication methods based on age, normalizing the demographic to the

US population using census data [144, 145]. We saw that LG’s market share in the

US had a range between 8% to 12% among the estimated 285,300,000 smartphone

users [56, 133]. Using that, as well as a 95% confidence interval, as our lower and upper
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Table 3.1 Top 28 4-Grams with at Least 13 Occurrences

Rank 4-Gram No. %

1 68 9.1%
2 62 8.3%
3 47 6.3%

47 6.3%
5 41 5.5%
6 37 4.9%

37 4.9%
8 31 4.1%
9 27 3.6%
10 26 3.5%

26 3.5%
12 24 3.2%
13 23 3.1%

23 3.1%
15 20 2.7%
16 19 2.5%

19 2.5%
19 2.5%

19 18 2.4%
20 17 2.3%
21 16 2.1%

16 2.1%
16 2.1%

24 15 2.0%
25 14 1.9%

14 1.9%
14 1.9%

28 13 1.8%

bounds, we conclude that there are potentially many Knock Code users: 728,693

to 2,567,207 in the US alone. We believe, though, that the actual adoption rate

is most likely on the lower end. While an optimistic estimate, the numbers still

suggest that there is a substantial number of Knock Code users in the general public,

particularly worldwide. Even though Knock Codes are not as widely adopted as

other traditional methods of mobile authentication, it is still important to study user

behavior with real-world, deployed authentication systems. In addition, on Google

Play many Knock Code apps can be installed on any Android device, thus not limiting
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Table 3.2 Top 30 Most Frequent Knock Codes in Control 2x2

Rank Knock Code No. %

1 16 6.9%
2 9 3.9%
3 8 3.5%
4 6 2.6%
5 5 2.2%

5 2.2%
6 4 1.7%

4 1.7%
4 1.7%
4 1.7%
4 1.7%
4 1.7%

13 3 1.3%
3 1.3%
3 1.3%
3 1.3%
3 1.3%
3 1.3%
3 1.3%
3 1.3%
3 1.3%
3 1.3%

23 2 0.9%
2 0.9%
2 0.9%
2 0.9%
2 0.9%
2 0.9%
2 0.9%
2 0.9%

Knock Codes to solely LG devices. For instance, the most highly rated Knock Code

app on Android, “Knock Lock,” boasts more than 1 million installations and claims

that it is an innovative lock screen that “will leave intruders baffled” [90]. This app

is just one among the plethora of Knock Code knock-off apps that can be found on

Google Play, indicating that this authentication method may have a higher adoption

rate and influence on mobile authentication systems than appears initially.
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Table 3.3 Top 30 Most Frequent Knock Codes in Blocklist 2x2

Rank Knock Code No. %

1 6 2.6%
2 5 2.2%

5 2.2%
4 3 1.3%

3 1.3%
3 1.3%
3 1.3%
3 1.3%
3 1.3%
3 1.3%
3 1.3%
3 1.3%
3 1.3%
3 1.3%
3 1.3%

16 2 0.9%
2 0.9%
2 0.9%
2 0.9%
2 0.9%
2 0.9%
2 0.9%
2 0.9%
2 0.9%
2 0.9%
2 0.9%
2 0.9%
2 0.9%
2 0.9%
2 0.9%

3.3 Results

The first step in analyzing Knock Codes is to determine the frequency statistics. Table

3.2, 3.3, and 3.4 display the 30 most frequent patterns across the scenarios for three

treatments of the main study. The frequencies which we observed in the preliminary

study are shown in Table 3.1. The preliminary study codes and the con-2x2 codes

have a lot of overlap, with 42.0% of the Knock Codes from the preliminary study

appearing in the top-30 most frequent codes in the Control 2x2 treatment. This

helps justify using the most frequent preliminary study codes as the basis of the

blocklist for the bl-2x2 treatment.

The frequencies of the Knock Codes show different characteristics depending on

the assigned treatment, suggesting natural, human tendencies in the selection that
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Table 3.4 Top 30 Most Frequent Knock Codes in Large 2x3

Rank Knock Code No. %

1 11 4.6%
2 10 4.2%
3 9 3.8%

9 3.8%
5 8 3.4%
6 7 2.9%

6 2.5%
8 5 2.1%

5 2.1%
5 2.1%

11 4 1.7%
4 1.7%
4 1.7%

14 3 1.3%
3 1.3%
3 1.3%
3 1.3%
3 1.3%
3 1.3%
3 1.3%

21 2 0.8%
2 0.8%
2 0.8%
2 0.8%
2 0.8%
2 0.8%
2 0.8%
2 0.8%
2 0.8%
2 0.8%

can be leveraged in predicting and guessing Knock Codes. We take advantage of

this observation when guessing codes. Participants in the blocklist group use more

repeated taps whereas codes created for the 2x3 treatment make use of the larger

grid and follow directional patterns. Knock Codes created for the control depict a

mix and follow both strategies equally.

Start/End Quadrant Frequency. The foremost property that can be leveraged

is the tendency to start and end in certain quadrants. There is a strong tendency to

begin codes in the upper-left. Similar observations were made for Android Graphical
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Patterns [143] and is likely due to the left-to-right nature of the English language

which is dominant among our participants. The least common starting points in the

preliminary study as well as the control and blocklist treatment were in the lower row.

In the big treatment, on the other hand, the middle row is used the least often. We

found significant differences between both the control and big treatment (p < 0.001)

as well as blocklist and big (p < 0.001), suggesting that the larger grid size affected

how participants chose to start and end their codes.

Code Length. We also analyzed the Knock Codes with respect to length. The

average code length was 6.4, 6.5, and 6.2 in each treatment, con-2x2, bl-2x2,

and big-2x3, respectively. We observed statistical differences using ANOVA (f =

11.57, p < 0.001) between the treatments. In post hoc analysis, using pairwise t-test

comparison, the difference lies primarily in the longer big-2x3 Knock Codes, which

was statistically different from both bl-2x2 (p < 0.001) and the con-2x2 (p < 0.001).

Surprisingly, the larger grid size encouraged slightly shorter Knock Codes. Regardless,

the vast majority of Knock Codes were of length 6, which was the median value, or

8, with a few codes of length 10.

Security Analysis. Across all comparisons, we find that Knock Codes in the

control 2x2 are significantly weaker in terms of their guessability. This means Knock

Codes as they are currently deployed are more guessable than both 4- and 6-digit PINs

as well as Android Patterns. When considering the First-Entry dataset, the differences

are less distinct, but even in this ideal case, the inferiority of Knock Codes remains.

Aviv et al. conjectured, and we do so here as well, that there may be a false sense

of security that the larger set of choices offers, whereby users believe their individual

choice matters less in the face of the increased number of possibilities. Analyzing other

grid sizes, such as 3x2 or 3x3, would offer additional insight; nevertheless, providing

more complexity in how to select Knock Codes does not increase the security. Finally,
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we observed strong security improvements with the introduction of a blocklist. As

compared to the control, the blocklist cuts the success rate of an attacker within the

first 30 attempts by 30% to 50% and increases the guesswork by roughly 1.5 bits

when considering an offline attacker. The blocklist clearly encouraged more diverse

choices but also had the side effects of increasing user frustration and usability, as we

describe later.

Usability Analysis. In this section, we focus on the usability metrics of Knock

Codes. We first report results on the setup and recall times. Afterwards, we will

focus on memorability and recall rates within our study, followed by the qualitative

and quantitative responses to security and usability prompts.

Setup and Recall Times. Participants needed on average 16.2 s and 18.4 s to

select and confirm a 2x2 and 2x3 Knock Code, respectively. This is faster than the

blocklist treatment (22.5 s), where participants also had to make more attempts due

to blocklisting (1.5 vs. 1.1 attempts). In comparison, setting up a 4- or 6-digit PIN

takes on average only 7.9 and 11.5 seconds respectively [103] which is significantly

faster than Knock Codes. While the described discrepancy between Knock Codes and

PINs is distinct, the numbers for PINs may be lower since users are presumably more

familiar with PINs as compared to Knock Codes. The differences may decrease with

increased familiarity with Knock Codes. In terms of the recall, which can be compared

to unlocking a smartphone, the 2x2 (7.2 s per attempt) and 2x3 Knock Codes (7.1 s

per attempt) are more efficient than Knock Codes selected with a blocklist (7.4 s

per attempt). With 1.2 attempts per entry, participants took 11.3 seconds to enter

their Knock Codes for the blocklist treatment Compared to entering an Android

pattern (3.0 s) or a PIN (4.7 s) [76], clear usability issues with Knock Codes emerge

as entering them is twice as slow. With greater use of Knock Codes, these differences
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may decrease. However, we find it unlikely that Knock Codes will be as efficient to

use as patterns or PINs.

Memorability. Memorability depicts an important benchmark for any authenti-

cation method. We analyzed the memorability of Knock Codes by looking at the

recall rates at the end of the survey. While recall rates are an imperfect measure

for the memorability, as the survey took most participants less than 10 minutes to

complete, it does speak to potential underlying usability issues, particularly if codes

were not properly recalled in this short window. We separated the recall rates based

on each treatment. The con-2x2 treatment participants successfully recalled their

codes 88.8% of the time. The participants with the larger 2x3 grid had higher recall

rates of 92.9%, which may suggest an interesting usability vs. security trade-off as

this group chose shorter and also some of the weakest Knock Codes. However, we

did not find significant differences between the con-2x2 and big-2x3 recall rates using

a χ2 test. We would expect long term memorability rates to be equally high, but

further studies would be needed to confirm that conjecture. The worst recall rate

came from participants in the bl-2x2 treatment: 80.6% successfully recalled their

Knock Code, and the result was significantly different from the other two recall rates

(p < 0.0001 for both comparison tests). This could be attributed to the impact of

the blocklist, where participants who hit the blocklist had lower recall rates (66.0%)

than those that did not (84.9%). Most likely, the blocklist affected users in two ways.

First, participants who chose blocklisted codes were forced to select multiple codes

until landing on one that was not blocklisted. The average number of blocklisting

events per user who hit the blocklist was 1.4. Second, the final Knock Code chosen

ended up being more complex (as evident in the prior section), and thus harder to

recall. Again, this suggests a clear trade-off between usability and security. We also

analyzed the number of attempts to successfully recall a Knock Code. We found no
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statistical differences across all treatments between the attempts made in recalling

the first or second scenario Knock Code correctly. In the big-2x3 treatment and

the con-2x2 treatment, participants took an average 1.1 attempts when recalling a

Knock Code correctly, with 3 attempts as the maximum. For the bl-2x2 group,

users took on average 1.2 attempts to correctly recall a Knock Code, again having a

maximum of 3 attempts. Again, we find bl-2x2‘s result to be significantly different

in terms of the number of attempts made in the other treatments (p < 0.001 vs.

big-2x3 and p < 0.001 vs. con-2x2), thus showing that the blocklist has an impact

on recalling Knock Codes, even for those participants that eventually correctly do

so. It is important to note though, that users had a maximum limit of 3 attempts

to recall their code before we considered it “cannot be recalled” for the purpose of

expediting the survey. We also analyzed how participants failed to recall their Knock

Codes by calculating the average edit distances between the submitted code and the

true code for both recall attempts, one for each scenario. We determined that there

was no statistical difference between the average edit distances among treatments.

The average edit distance between correct and incorrect recalls was 3.6, suggesting

that when users get a code wrong, they get it wrong by a large margin, as the median

length Knock Code is 6.

User Responses. Users provided their opinions and insights regarding Knock

Codes’ usability and security. We coded these free responses using two independent

reviewers where disputes in coding were resolved until consensus was reached. The

specific codes and their frequencies are presented in the Appendices. Overall Knock

Codes were perceived positively by users, citing that they were “Easy,” “Quick,”

and “Hard to Guess.” The uniqueness of Knock Codes also appealed to users

who indicated they especially liked the fact that it is a “Discreet” and “Secure”

authentication method which can be inconspicuous and hidden from others. For
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many of the participants, Knock Codes were a new method of authentication. Users

employed various tactics when choosing their Knock Codes. We observed such

strategies in determining memorable yet secure codes. To make the Knock Code more

memorable, the majority of users opted to use some sort of “Pattern” or “Variation”

that would be “Simple.” Other techniques users employed include “Directional,”

“Shape,” “Game,” and “Repeated.” Often, users would create codes based on

something “Personal” to them, such as the letter of a word that had meaning to the

user. While many users did not have a specific strategy for security and still focused on

making their code “Easy to Remember” as the main priority, others determined that

using “All Quadrants” or “ Multiple Regions,” as well as making the code “Long” or

“Random” or being “Unexpected” and “Different” would secure their codes. Making

their codes “Hard to Guess” often included attempts to obfuscate the number of clicks

and the regions, using speed and potentially unpredictable tactics. Users continued

to use similar tactics for memorability to double as security in their Knock Codes,

for instance having “Repeated” regions. Upon comparing Knock Codes with other

forms of security, on average, users found passwords, PINs, and Android patterns

to be more secure than Knock Codes (see Figure 3.1). Overall, users found Knock

Codes adequately secure, i.e., being difficult to hack, resistant to smudge attacks

and shoulder surfing. However, they were not completely convinced about Knock

Codes’ security. Users expressed what they disliked overall, specifically that they

found Knock Codes “Hard to Remember” and “Insecure,” paving the way for an

attacker to easily guess a Knock Code. They also found the interface provided “No

improvement” and disliked how it was “ Hard to type-in” the Knock Codes.

To have a more general opinion of the overall usability of Knock Codes, we

employed the System Usability Scale (SUS). The average response for the con-2x2

treatment is 69.8, the big-2x3 is 68.1, and the bl-2x2 is 64.3. These scores are generally

30



Group Question

Knock Codes are a secure authenticator.

con-2x2 0 20 40 60 80 100

bl-2x2 0 20 40 60 80 100

big-2x3 0 20 40 60 80 100

Knock Codes are more secure than PIN codes.

con-2x2 0 20 40 60 80 100

bl-2x2 0 20 40 60 80 100

big-2x3 0 20 40 60 80 100

Knock Codes are more secure than alphanumeric passwords.

con-2x2 0 20 40 60 80 100

bl-2x2 0 20 40 60 80 100

big-2x3 0 20 40 60 80 100

Knock Codes are more secure than Android patterns.

con-2x2 0 20 40 60 80 100

bl-2x2 0 20 40 60 80 100

big-2x3
0 20 40 60 80 100
Strg. Agr. Agr. Neut. Disagr. Strg. Disagr.

Figure 3.1 Likert response to comparisons to other mobile authentication methods.

rated as “ok” or “marginal,” with only the control treatment potentially offering some

above-average usability.

3.4 Conclusions

Overall, while most participants offered some positive thoughts, their perception of

the security of Knock Codes lagged behind other deployed options, and the SUS values

for all schemes were “ok” or “marginal.” The positive feedback regarding Knock

Codes suggests an openness to new designs in mobile authentication, particularly

to authentication that can be entered while the phone screen is off. There were

also increased perceptions of security from targeted attacks. It is reasonable to view

Knock Codes as offering new design concepts that can ultimately improve mobile
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authentication. However, we find that Knock Codes, as currently deployed, provide

weaker security than other available knowledge-based, mobile unlock methods, such as

4-/6-digit PINs and Android patterns. This is far from the “perfect security” promised

by LG’s advertisement of Knock Codes. As such, we cannot recommend deploying

Knock Codes in their current form as compared to alternative authentication options.

Our results also indicate that a straightforward improvement such as increasing the

grid size to 2x3 may offer little or worse security. Blocklisting common Knock Codes,

on the other hand, does provide more resilience to a throttled attacker, as has been

found in password authentication [74] and PINs [103]. Yet, blocklisting runs the

risk of increasing user frustration during selection, but since selecting a Knock Code

is a one-time event, the usability trade-off of adding a blocklist may be extremely

worthwhile if Knock Codes continue to be available to LG users. Nevertheless, these

results simply show the importance of maintaining a clear balance of security and

usability when designing mobile authentication schemes for daily use. Neither facet of

system design should be compromised in order to bolster the other as such lapses result

in unusable and insecure systems, in this case, authentication. Mobile authentication

is one of the first layers of security for a user’s device to be protected from any physical

threats and is very important to not be overlooked in security research. As we have

looked at the first aspect of mobile security, we will now look into forms of deceptive

app behavior and system vulnerabilities once a user has access to their device.
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CHAPTER 4

SELF HIDING BEHAVIOR IN ANDROID APPLICATIONS

We will now discuss deceptive app behavior found among apps in Android. Deceptive

app behavior begins with apps that conceal certain activities from users. This chapter

details and observes the use of 12 “self hiding” behaviors found in Android apps.

4.1 Introduction

Apps which hide deceptive behavior should be treated as suspicious for both end

users and app marketplaces. Primarily, app marketplaces or platforms should protect

users from potentially malicious or suspicious behavior in apps. As a result, concealed

activities and furtive behaviors are not disclosed to users, ultimately putting them at

risk.

Mobile security research has mostly focused on malware activation, malicious

payloads, permission abuse, or sensitive data leaks. Little attention has been paid to

deceptive mechanisms that are essential for the success of malware, i.e., how malware

manages to get installed, and continues to stay operating on the phone without the

users noticing anything suspicious. To do so, malware uses a range of “self hiding”

(SH) techniques, e.g., hiding the app, hiding app resources, blocking calls, deleting

call records, or blocking and deleting text messages. However, SH behavior is not

limited to simply malicious apps. Surprisingly, extremely popular “benign” apps

such as Airbnb, Instagram, Viber, Yelp, and Waze also employ certain SH techniques

in the name of user convenience.

In this joint work1, we focus on characterization and detection of such

techniques, e.g., hiding the app or removing traces, which we call “self hiding” (SH)

1Joint work appeared as: Self-Hiding Behavior in Android Apps: Detection and
Characterization by Zhiyong Shan, Iulian Neamtiu, and Raina Samuel at International
Conference on Software Engineering (ICSE) 2018 in Gothenburg, Sweden.
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behavior. SH behavior has not been studied, rather it has been reported on only as

a byproduct of malware investigations. We address this gap via a study and suite of

static analyses targeted at SH in Android apps.

We believe that SHB is fundamentally deceptive and that having tools that

perform accurate and early detection of SHB is key. First, Google Play or other app

marketplaces, should be able to detect SHB, so that the existence of SHB can be

considered in the decision to publish an app. Even if an app with SHB is published

on the marketplace, users should be forewarned about the SHB so they can decide

whether to install the app on the phone or not.

4.2 Defining SHB

In this section, we provide a comprehensive description of SH behaviors. We define

SH as a behavior meant to hide the app or its actions from being viewed (or heard!) by

the user. Note that we exclude those behaviors meant to evade security mechanisms,

e.g., anti-malware tools or access control mechanisms – which have been studied

thoroughly and are outside the scope of this chapter. Our characterization is based

on manual analysis of about 200 malicious apps and automated analysis of about

3,000 other malicious apps. We found 12 SH behaviors; few are even mentioned

in the research community, let alone characterized thoroughly, and some, including

“Hide icon” and “Hide activity”, are not mentioned at all. Users could employ three

main approaches for identifying the presence of malicious apps: inspecting app objects

(icon, app, activity), analyzing remote communication (SMS, MMS, and phone calls)

or checking system reminders (system dialogs, sound, system logs, notifications, recent

apps list, etc). Malware typically attempts to hide itself from these three aspects. To

set up the discussion, in Figure 4.1 we show the number of SHBs in sample sets of

1,000 malicious and benign apps, respectively.
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Figure 4.1 The numbers of SH behaviors in two sample sets of 1,000 malware apps

and 1,000 benign apps, respectively.

SH Behavior 
reports

APK
Detection Rules

Bytecode

XML files

Static 
Analysis

Manual 
Verification of SH 

Behavior

Figure 4.2 Tool overview.

4.3 Detecting SHB

We will now provide an overview of our tool; the tool design is shown in Figure 4.2.

Using an APK file as input, we employed an automated static analysis2 to produce an

SH report, i.e., potential SH behavior. To verify the report, we performed a manual

dynamic analysis of the behavior.

4.4 Self-hiding Behavior in Benign Apps

For each SHB category our tool has found in benign apps, we performed a targeted

manual investigation – Why does this behavior occur? andWhat are the consequences

for the user? – by focusing on widely-popular apps (e.g., with more than 100 million

installs). This section summarizes some of our findings; we limit the discussion to 8

SHBs for brevity.
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4.4.1 Hide App

Many popular benign apps, such as Airbnb, Instagram, and Foursquare start

themselves as a service after receiving the BOOT COMPLETED event. This event,

which requires the permission RECEIVE BOOT COMPLETED, notifies the app that the

system has rebooted. Our tool reports this as “Hide app” SHB. Apps employ this

technique as a means to initialize app-specific information and functions upon startup.

While one could argue that the app is not hiding in the malicious sense (rather it is

running in the background to have access to certain types of data – most commonly,

location services), we believe that users should know when such apps are running:

(1) so they understand why the battery is draining, and (2) so they understand the

privacy implications of apps accessing and transmitting sensitive information (e.g.,

location) in the background.

4.4.2 Hide Notification

Well-known benign apps, such as Truecaller, Viber, and Booking.comuse

NotificationManager. cancel () or NotificationManager. cancelAll () to block notifications

without user intervention. As a result these apps have been marked as having

the “Hide notification” SHB. This is due to the nature of the command cancel ()

or cancelAll () which cancels all previously-shown notifications. Apps employ this

technique as a means to update the user to the most recent notification or to

consolidate notifications, especially in messaging apps such as Viber. Consolidated

notifications may appear convenient to the user, however the app does not have

a means to show high-priority notifications first (other than through chronological

order). Therefore, users might prefer to receive notifications for all messages to reduce

the risk of missing an important notification.

2The static analysis was not a contribution of this work.
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4.4.3 Hide Activity

Our tool reports apps which use finish () and Window.addflags() or Window.setflags()

as having the “Hide activity” SHB. Normally, apps use finish() to call the method

onDestroy() as a means to kill the current activity and close any action the activity

was managing, effectively bringing the user directly to the prior activity. We

found that apps CleanMaster and BatteryDoctor use finish () for an activity called

‘MarketCatalogActivity’. One can infer that this activity may check what other apps

are installed on the user’s device, possibly for advertisements, building a list, and

killing the activity. After that, the apps may periodically poll the list to show ads for

apps that users do not have. This behavior is intrusive to the user and can be easily

manipulated to have activities which monitor user behavior in the background.

4.4.4 Mute Phone

Our tool discovered the use of AudioManager.setRingerMode() in the supposedly benign

app Camera360. As its name states, this is a camera app which edits and takes photos,

having more than 100 million installs and was “Best App of 2016 on Google Play in

several countries”.3 The mere notion that a camera app has access to the device’s

ringer is suspicious. Our tool also discovered the “Mute phone” SHB in certain

benign messaging apps like Viber and Whatsapp due to the use of Vibrator . cancel ()

and AudioManager.setRingerMode(). Even though it seems reasonable for messaging

apps to exhibit this behavior, we believe that muting the phone should be done by

the user through a system-wide control rather than silently by the app.

4.4.5 Block Message

As the BroadcastReceiver is usually a dormant app component, it is not surprising

that the BroadcastReceiver’s methods can be categorized as SH behaviors, especially

3https://play.google.com/store/apps/details?id=vStudio.Android.Camera360&h

l=en
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abortBroadcast(). As a result, many benign apps can exhibit this behavior. Interestingly,

these apps are not limited to those which rely heavily on BroadcastReceiver. For

example, the popular navigation app Waze uses abortBroadcast() which can be

construed as the “Block Message” SH behavior. The abortBroadcast() method is

used to prevent other receivers from obtaining the broadcast, thus blocking the

communication. It might be justified that Waze employs this tactic as a means to

prevent itself from getting location-based alerts that may be irrelevant or annoying to

the user. While the intentions of the app appear benign, it removes decision-making

from the user and can interfere with usability.

4.4.6 Block Call

Apps which use ITelephony.endCall() are considered to have the “Block Call” SHB.

The benign app Truecaller has the sole purpose to identify and block spam calls,

hence it was obviously marked to have this behavior. Despite explicitly stating that

Truecaller automatically blocks calls, any app which decides for the user spam calls

can be maliciously manipulated.

4.4.7 Hide Icon

‘Hide icon’ achieves its goal by manipulating category .LAUNCHER. While category .

LAUNCHER merely indicates that activity should appear as an initial activity of a

task, it is evident that apps can use it to promote other activities, masking itself

beneath. Many popular benign apps such as Yelp, Accuweather, BBC, and ESPN

have this behavior. By having various activities and controlling the launcher’s top

level apps, these apps should not have full autonomy to decide which activity is

top-level.
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4.4.8 Delete Call Log

Examples of this SHB include Quick Heal Mobile Securityand Camera 360. Here the

method used is fairly straightforward, via ContentResolver.Delete(). Again, while not

typically dangerous, both of these apps are very suspicious to have such SH behavior.

For instance, Quick Heal Mobile Security deletes the call log as part of the call filtering

services it provides. However, the user does not know that this behavior is in fact

a feature of this security application. On a similar note, Camera 360 as mentioned

earlier, has nothing to do with a user’s call logs in theory, yet the app shows signs of

this behavior. Here, we feel that the marketplace hosting the app should scrutinize

such dubious behavior further before publishing.

4.5 Conclusions

To conclude, we defined a set of self-hiding behaviors and verified static analysis

reports to reveal such behavior. Our experiments indicate that the presence of

self-hiding behavior is strongly associated with malicious behavior in a given app.

Nevertheless, we also found plenty of benign, widely-popular apps that employ hiding

techniques, which suggests that end-users and marketplaces would benefit from using

an approach like ours to shed light on potential nefarious behavior in Android apps

and improve overall user experience. This comes to show though that deceptive

behavior is not limited to malware but can also be employed by trusted benign apps

with the claim to aid the user. While we have revealed deceptive behavior that

conceals activities from the user, this is only one facet of mobile security. In many

cases, deceptive app behavior may occur from abusing capabilities or permissions that

have been granted by the end user. In the following chapter, we will continue our

study of deceptive app behavior regarding permission abuse.

39



CHAPTER 5

DEVICE ADMINISTRATOR ABUSE

As we have seen, apps are able to conceal behaviors and activities from users.

However, deceptive behavior can also occur when providing an app access to certain

sensitive capabilities. This chapter shows abuses regarding the device administrator

functionality granted to apps. We found three types of device administrator abuses

across various devices and Android versions.

5.1 Introduction

Device administration (DA) in Android provides capabilities in company settings to

control over a wide range of security capabilities and features according to company

policy, such as: enforce password strength and expiration; or lock/wipe devices

remotely. Users, of course, do not realize that such critical permissions are granted to

an app as they simply want the app to function as intended. These capabilities can

be, and have been, abused. One such widely-abused capability is leveraging active DA

permissions to prevent app uninstallation. To the best of our knowledge, there are no

tools or studies for understanding the DA ecosystem: detecting DA use and abuse,

characterizing benign and malicious DA behavior, understanding consequences of

malicious behavior and recovery strategies, grouping malicious behavior into families,

etc. In this joint work,1 we fill this gap with an automated, effective and efficient

approach to detect, and a study to characterize, DA-based abuse. Specifically, apps

employ techniques to (1) conceal their DA status so the user is unaware of these

apps’ privileges, or (2) prevent the DA status from being deactivated – a practice

that compromises device security and can render the device unusable until a factory

1Joint work appeared as: Device Administrator Use and Abuse in Android: Detection and
Characterization by Zhiyong Shan, Raina Samuel, and Iulian Neamtiu at International
Conference on Mobile Computing and Networking (MobiCom) 2019 in Los Cabos, Mexico.
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reset. We name such apps Deathless Device Administrator (DDA) apps. We have

studied a wide range of malware and benign apps that have DA permissions, and

defined three DDA categories: DDA Reset, DDA Hide, and DDA Expert. We have

discovered all three classes of DDA behavior in numerous apps that are still on Google

Play.

5.2 Overview of Device Administrator

DA – a set of “extra” app privileges allowing tighter control, or even remote control,

over Android devices – was originally introduced in Android 2.2 to facilitate enterprise

apps and management of device fleets. Starting with Android 5, an alternative,

superior set of features, “Android for Work”, was introduced, but apps have continued

to use, and unfortunately, abuse, DA. We first discuss the DA timeline and then the

lifecycle of a DA app on a device.

5.2.1 DA Timeline

Android 2.2 (May 2010): DA policies introduced. DA support was introduced,

supporting the following policies:

1. Enforcing password strength, reuse and expiration requirements, and forcing a
password change.

2. Enforcing inactivity locks.
3. Forcing a certain storage area to be encrypted.
4. Disabling the camera.
5. Remote device locking.
6. Remote device wiping.

Android 5.0 (Nov. 2014) – Android 8.0 (Aug. 2017): Android for Work

introduced, expanded. Android for Work (later, Android Enterprise, “AE” [37])

has introduced the concepts of managed devices, employed-owned devices, or work

profiles; this is a set of features/policies somewhat similar to DA but broader, more

secure, and with clearer roles.
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Dec. 2017: Google announces planned DA deprecation. Google recommends

that apps transition away from DA to AE and announces that DA will gradually be

deprecated [141].

Android 9 (Aug. 2018): enterprise & soft deprecation. Starting with

Android 9, DA was deprecated for enterprise use. For non-enterprise use, several

policies (password expiration, disabling camera) were soft-deprecated, i.e., marked as

deprecated but apps continue to function [36].

Android 10: hard deprecation. The aforementioned soft-deprecated policies

were hard-deprecated starting with Android 10, i.e., apps targeting 2019+ API levels

that attempt to use the policy will trigger a SecurityException . Nevertheless, at least

three policies – forcing a device lock, wipe, password reset – will continue to be

supported [36].

DA use and abuse. DA features can benefit organizations, IT admins, or parents.

Unfortunately, when abused, DA can be turned against users. To uninstall a DA

app, the user must first deactivate the app’s DA capabilities, and then attempt to

uninstall the app. Therefore, if the app can prevent deactivation, it can prevent

uninstallation. For benign apps, the consequences can be a nuisance (unless the app

is buggy, which can render the device unusable). For malicious apps, preventing

uninstallation can mean unlimited/unfettered access and opens the door to abuse,

e.g., ransomware. The “hard” DA deprecation in Android 9 (enterprise) and Android

10 (apps with 2019 target API) mitigates this issue. However in the remaining cases

(non-enterprise apps, apps with API target <2019) the DDA potential persists: the

underlying cause is the assumption that apps will cooperate when asked to give up

DA privileges.
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DA vs. Root. DA privileges do not require root access. “Rooting” a device (to

gain root privileges) usually voids the device’s warranty, whereas for an app to become

DA the user simply needs to install the app and activate DA.

5.2.2 Deactivation Procedure

Next we will discuss how the DA status is deactivated by the user in normal conditions.

By going to the Android Settings app, the user can deactivate the DA status for an

app. When the user proceeds to cancel DA privileges for a DA app, the Settings

app will invoke stopAppSwitch() to restrict activity switches for a period of time and

then request the DA removal warning message from the app. Once the user confirms

the action, DA privileges are deactivated by calling removeActiveAdmin(). Once the

DA status is removed, only then, can a user uninstall the app. However, an app

can interfere with this procedure to prevent users from deactivating the app’s DA

privileges, which ultimately prevents apps from being uninstalled.

5.3 Characterization

5.3.1 Benign Device Administrator Characterization

When installing a DA app, in theory the user should make an informed choice, and be

familiar with DA app behavior or the policies the DA app enforces; in practice though,

the user has close to zero knowledge of the consequences. Moreover, DA apps can

come preinstalled. Therefore users may not understand entirely what these behaviors

entail, or when it is appropriate to grant an app such privileges. In this section we

discuss the most prevalent “benign” DA behaviors we found via a separate analysis,

focused on benign DA usage, on a sample set2 of 151 benign DA apps from Google

Play. First we characterize the behaviors, then study which Google Play categories

2To ensure a representative sample of popular apps, we chose apps from across all 34
categories on Google Play; median number of installs across the sample set: 1,000,000+.
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Table 5.1 Most Common DA Behaviors

Behavior # Apps

Lock screen 68
Set password rules 34
Change the screen-unlock password 33
Monitor screen unlock attempts 32
Erase all data 31
Set lock screen password expiry 20
Disable cameras 19
Set storage encryption 16
Disable features in keyguard/screenlock 10

contain the highest concentrations of DA apps. The most common behaviors (by

number of apps having that behavior) are provided in Table 5.1, and described next.

Lock Screen. This capability allows the DA app to control how and when the

screen locks; it was most commonly found in screen lock apps, and also in parental

control apps, antivirus apps, and enterprise management apps.

Set Password Rules. This controls the length and characters allowed in screen

unlock passwords. There were 34 appearances of this behavior, in enterprise

management apps, antivirus apps and remote phone security apps (which are used

when a phone is lost or stolen).

Change Screen Lock. This behavior changes the screen lock password. There

were 33 instances, primarily in enterprise and parental control apps. Unfortunately

this capability can be detrimental if the implementation is buggy – the DA app can

lock the device with a password or PIN unknown to the user, rendering the device

useless until it is factory-reset.

Monitor Screen Unlock Attempts. This DA functionality monitors the number

of incorrect passwords typed when unlocking the screen and will lock the phone or

erase all the phone’s data if too many incorrect passwords are typed. The functionality
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was used in 32 apps, mainly phone security apps (which is typical and the function

of such apps), and enterprise management apps.

Erase Data. Phone data is erased without warning by performing a factory data

reset; there were 31 cases, predominantly in security, antivirus, and enterprise

management apps.

Disable Cameras. We found 19 instances, in enterprise management and security

apps. As this is not a standard feature, disabling cameras might be puzzling or

unsettling; based on the general nature of these apps, the user would expect the

camera to work.

Storage Encryption. This encrypts the device’s storage – a quasi-mandatory

feature for enterprise management apps as well as phone security apps; we found

16 instances.

Disable features in keyguard/screenlock. This allows an app to disable the

screen lock or any code that is involved with unlocking the device. Should it be

misused, this is a potential major security breach for the device.

5.3.2 DA Across App Categories

As of March 2019, Google Play lists 34 app categories (aside from a 35th Games

category which has its own subcategories). To find out which categories host the most

DA apps, we performed a DA analysis on Top-600 apps in each category. Figure 5.1

shows the percentage of apps which fall into a certain category.

While Tools and Business are expected to be close to the top, surprisingly,

Parenting had the second highest prevalence of DA apps. As to the reasons for

requesting DA privileges, we note that 21% of the DA apps were in the Tools category

with Lock Screen as the most prevalent DA behavior.
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Figure 5.1 Percentage of DA apps per category.

Productivity and Personalization each make up 10% of the DA apps and they

both have Lock Screen as their top DA behavior; in fact, for Personalization apps,

Lock Screen is their only DA behavior. This is expected, as many Personalization

apps are often various types of themed lock screen launchers.

5.3.3 Deathless Device Administrator

Deathless Device Administrator (DDA) apps represent DA apps that prevent the user

from uninstalling the app. To do so, DDAs exploit vulnerabilities or weaknesses in

the procedures Android uses for handling DAs. Accordingly, we introduce three types

of DDA and exemplify that behavior on actual apps. We derived these three types of

behavior via a semi-automated process (installing, checking DA status, attempting

to deactivate DA) on 4,135 apps that had DA permissions. A static analyser tool was

constructed to expose potential DDA behavior.

DDA Reset. DDA Reset apps prevent the user from disabling an app’s DA

capabilities; DDA Reset is irrecoverable – the only way to remove an app that uses

DDA Reset is to restore the phone to factory settings.
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Figure 5.2 Capsule Warning (left); locked screen (right).

Example 1. Sberbank Online disguises itself as an online banking app (for Russian

bank Sberbank), to steal user credentials. The malware asks for administrator

privileges upon installation, which, if permitted, can inflict serious harm to the

victim’s device. The app can also intercept SMS messages and incoming calls which

could be a step to sidestep the bank’s OTP (One Time Password) requirements.

The app becomes “deathless” by preventing users from deactivating the app’s DA

privileges. As a result, the user had no chance to see and heed the warning dialog and

to permit DA deactivation.

Example 2. Check Point Capsule Connect, a VPN app [53], was found as DDA

Reset in December 2018, reported to Google in February 2019, and removed from

Google Play around March 2019. As shown in Figure 5.2, when deactivating DA,

the app pops a warning dialog and locks the phone with an unknown password.
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Figure 5.3 Mobile Tracker crashes Settings app (left); SAP Mobile Secure pop-ups

(right).

Unfortunately, to recover access to the device, the user must perform a factory reset.

Example 3. Mobile Tracker is a popular app (1,000,000+ installs) [106] that

we detected as DDA Reset. We reported it to Google in February 2019; its DA

capabilities have been removed while this paper was being prepared. The app

can track device activity, delete files when the device is lost/stolen, etc. When

disabling DA, clicking the deactivation button renders the Settings app unresponsive

for extensive periods; eventually the app pops up a window finally asking the user to

confirm the DA deactivation. Even if the user selects OK, the DA checkbox is still

checked, and the Settings app crashes, which is shown in 5.3. After restarting the
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phone, Mobile Tracker ’s DA checkbox remains checked. We found that the app keeps

verifying the “checked” status of the DA checkbox.

DDA Hide. Apps in the DDA Hide category hide themselves from the DA list in

the Settings app, i.e., the user cannot even see that the app is operating as a DA.

Example. Bandwidth Meter monitors network connections and displays Internet

speed. When the user attempts to uninstall the app, Android shows a message that

the app cannot be uninstalled, as the app is DA. However, the app does not appear in

Settings ’ DA app list. The Hidden Device Admin Scanner app by Trend Micro failed

to find this app. While Trend Micro’s Mobile Security & Antivirus flags Bandwidth

Meter as a potential unwanted app, it does not remove the app (it can only find it).

This hiding behavior is caused by a security vulnerability in the Settings app, which

omits to show a DA app in the list. Specifically, when updating the DA app list, the

Settings app will first get the list of all activated DA apps and the list of all enabled

DA. Only when an app is in both the Activated and Enabled lists, the Settings app

will show it. However, some apps can be activated without being enabled, and use

this artifact to hide from the Settings ’ DA app list.

DDA Expert. DDA Expert apps could in principle be deactivated but doing so is

difficult for the average user. For example, malware Dowgin modifies the appearance

of the check box in the DA list to disguise the fact that the app is still DA-active

after deactivating the DA. The user can click the check box again to deactivate the

DA. In actuality, this activates DA again. However, the user does not realize this

trick and assumes that the DA cannot be deactivated.

Example 1. MaaS360 Mobile Device Management is a cloud-based mobile device

management app (1,000,000+ installs) [100]; we found DDA Expert behavior which
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Figure 5.4 Overview of our workflow.

we reported to Google; the behavior has been corrected. Essentially when a user

attempted to deactivate DA after multiple presses, Settings crashed, deactivating

eventually. While it may not seem serious at a glance, many users have recently

reported and vehemently complained of the inability to uninstall the app.3 We

found that Settings ’ crash is caused byMaaS360 sending the intent DEVICE ADMIN

DISABLED to Settings on a continuous basis.

Example 2. SAP Mobile Secure for Android is a device management client. As

of March 17, 2019 the app is still available on Google Play [84], with DDA behavior

still present. The app becomes “resistant” once the user attempts to deactivate DA.

Specifically, as shown in 5.3 (right), upon deactivating DA, the app keeps popping

up a notification with sound and shows the DA activation dialog, which forces the

user to re-activate DA. Even after restarting the phone, the notification and sound

resume. Only when DA is re-activated, the notification and sound would stop.

5.4 Methodology

We now describe our workflow, testbed, and Ground Truth procedure used for

discovering and confirming DDA which we illustrate in Figure 5.4.

3Excerpts from two recent reviews on Google Play: (1)“This freaking app locked my phone
completely cant even use my own home screen or my other apps is in emergency mode wont
let me do a thing how in the hell do I remove it???” (2) “not letting me uninstall a single
thing in my phone. I cant even deactivate this app to uninstall it lmao. Its dictating what
i can and cant have on my phone... dont download it” [100].
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Automatic Analysis. All 39,459 apps’ manifests were checked for the BIND

DEVICE ADMIN permission using two separate procedures: (1) using our static analysis

tool 4 and (2) using grep on the Manifest extracted via Apkanalyzer.5 We confirmed

that we could check for the permission using at least one of these methods; this

yielded 4,135 apps. We then used the static analysis tool to determine DA behavior.

Manual. We manually confirmed suspected DA behavior by:

• Attempting to deactivate DA, restart Settings and check whether DA is still
deactivated, revealing DDA Reset and DDA Expert apps.

• Checking those cases where an app had the DA permission but was not
appearing in the Settings’ list, revealing DDA Hide apps.

This split the 4,135 apps into 3,350 that were not DDA and 785 that were actual

observed DDA, or reported DDA by the tool.

Replication testbed. All behaviors, either revealed by the tool or manually (in

the 785 apps), were verified on at least three phones from a five-phone pool: two

Google Nexus 5s running Android 4.4.4 and 6.0.1, respectively; an LG G4 running

Android 5.1; a Google Pixel 3 running Android 9; and a Galaxy J7 Crown running

Android 8.

Ground Truth. Ground Truth is essential for finding False Positives or False

Negatives, hence determining effectiveness. We determined Ground Truth via the

automated and manual process described above (steps 2 and 3): we manually checked

all 4,135 apps with DA permission, which was efficient due to batch processing and

the fact that 3,350 apps were not DDA. The remaining 785 DDA or reported as

DDA by our tool were subject to extensive analysis (step 3). The process yielded 578

true DDAs aka True Positives (with confirmed, replicated DDA behavior on multiple

devices).

4The static analysis is not a contribution of this dissertation.
5https://developer.android.com/studio/command-line/apkanalyzer
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5.5 Results

We performed a longitudinal study to measure the effectiveness of each DDA attack

vector, and see how the Android version influences (permits or prohibits) DDA

manifestation. While an app was deemed DDA if it could be confirmed on at least

three devices/versions, here we only focus on apps that could be installed and run

on five Android versions (5.1, 6.0.1, 7.1, 8.0, and 9.0), i.e., March 2015–August 2018,

as this allows us to make more conclusive longitudinal observations. This stronger

selection criterion reduced the number of apps to 301 malicious and 42 benign apps

(compared to 468 malware and 110 benign apps for the three-version setup) for two

main reasons. First, many apps were designed for late versions of Android hence failed

to install on early versions; e.g., if the manifest specifies android:minSdkVersion=23,

which corresponds to Android 6.0, the app will not install on Android 5.1. Second,

old versions of apps that still run on Android 5.1 would immediately force an

upgrade when started on 8.0 or 9.0; however, allowing the upgrade would violate

our requirement to run the same APK on all five OS versions.

Figure 5.5 shows DDA prevalence: percentage of apps exhibiting that behavior

in a particular Android version. We begin with several general observations. First,

DDA Expert was the most prevalent behavior for both malicious and benign apps,

respectively. Second, only three malicious apps employed DDA Hide; no benign apps

employed it. Third, as DDA Reset apps cannot be uninstalled, these techniques are

very rarely employed by benign apps (one app, Check Point Capsule Connect). We

now make several longitudinal (evolution) observations.

Benign apps. Among benign apps with DDA Reset, the behavior is the same

regardless of the Android version. However, DDA Expert apps have decreased with

more recent Android versions. This is due to app behavior being ameliorated by the

OS version, as explained shortly.
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Figure 5.5 DDA prevalence across five Android versions in malicious apps (top)

and benign apps (bottom).
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Malicious apps. DDA Reset was prevalent in older versions of Android until

Android 7.1 where the trend switched to DDA Expert. This is due to the following

reasons that are purely OS oriented. Apps with DDA Reset in older versions often

had an overlay that would prevent the user from, powering down the phone, accessing

Settings, or the device itself, thus blocking the user from initiating any further

activities and forcing the user to perform a factory reset. However, starting in Android

8.0, for some apps with an invasive overlay, a notification in the Notification Drawer

[38] warns the user that the specified app has access to draw over other apps. When

opening the notification, the system sends the user to the Settings option for the

app hence allowing the user to disable the app’s ability to draw over other apps and

ultimately bypassing the invasive app overlay. Once that happens, the user is able to

deactivate the DDA and uninstall the app. This is why in later versions of Android

the DDA Reset behavior for some apps becomes DDA Expert.

In addition, starting in Android 7.1 the user has the ability to uninstall a DA

app directly within Settings (not just disable DA). In older versions, some apps with

DDA Reset would incessantly keep popping up the Settings option to activate DA

once the user would deactivate the DA. With no other way to remove the app and

stop the harassment, the user would end up having to factory-reset the phone. In

Android 7.1 and later, however, once the behavior manifests, the user can uninstall

the app immediately once the Settings option pops up. Despite improvements in the

Android OS, DDA Reset behavior still exists, albeit in smaller numbers.

5.6 Conclusions

Overall, we characterized and quantified the legitimate, as well as the nefarious, use

of DA capabilities in Android apps. Based on these observations we have constructed

a static analyzer that exposes potential DDA behavior in a given Android app. We

ran static and dynamic analyses on large corpora of benign apps and malicious apps.
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We have revealed potential issues in more than 500 apps; the confirmed issues have

been reported to Google’s Android Security team. Our study and tool can improve

Android security by helping end-users, developers, and app marketplaces analyze

DA behavior. We have revealed examples of deceptive behavior among apps and

clear lapses in mobile security which threaten users. We will now change focus,

while keeping user interests at hand, and look further into the vast app landscape

of Google Play, namely the Health & Fitness and Medical categories, and perform a

comprehensive characterization of these apps revealing their functionality as well as

potential risks and claims provided.
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CHAPTER 6

HIGH LEVEL MEDICAL APP FRAMEWORK

There is a proliferation of medical mobile apps: Google Play alone has thousands

of apps in the “Medical” category. Many such apps perform critical tasks (e.g.,

are used with a medical device or in lieu of a device); handle sensitive patient

related information; perform diagnosis; or treat diseases. However, there are wide

gaps between an app’s claims and users’ expectations as well as between app

implementations and regulatory frameworks’ mandates. This chapter presents our

analysis and characterization of 2,215 Android apps. We begin by introducing

an automated classification scheme that integrates textual information extracted

from multiple sources to establish the purpose and target audience for an app,

based on fine-grained traits and high-level categories; we found that the most

common functionalities involved connecting to medical devices (e.g., hearing aids,

glucometers), offering tele-health services, or patient management. We then dive

deeper into app nature and characterize it according to the function and domain of

the app. We reveal actionable findings found in various facets of medical applications,

regulatory frameworks and user privacy and safety.

6.1 Introduction

Over the past decade, digital/mobile health has been an area of mobile computing that

has been developing as devices have become more advanced and more ubiquitous [51].

On the Android platform alone, this pervasiveness has led to tens of thousands of apps

in the Health & Fitness and Medical categories. Furthermore, virtually all hospitals

have enabled patients to access their health information via portal apps in both the

outpatient and inpatient setting [85].
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Many users of these medical apps are unfamiliar with the app landscape and

unsuspectingly trust that the apps are safe. Users should not be expected to judge the

legitimacy of a medical app or know what the app is doing with their personal data.

Medical apps can be valuable tools but there is no universal standard for effective app

checking, e.g., to not put personal data at risk. A 2015 study on apps that evaluate

symptoms for self-diagnosis and triage reveal that many deficits exist in both aspects

[125]. Such lapses in accuracy are potentially an issue of public health since these apps

are often used to make healthcare decisions. Moreover, with the widening scope of

medical apps, their capabilities and intended audience remain unclear. For example,

the app Instant Heart Rate: HR Monitor & Pulse Checker has over 10,000,000

installs; the app’s description states that it is the “most accurate” heart app and

has been used in research. While the functionality is legitimate, the disclaimer

states that “Instant Heart Rate should be used for entertainment purposes”. In order

to triage potential app abuses or misleading claims, a clear consistent classification

scheme of apps and their functionalities is essential. In this joint work,1 we present

a characterization of medical apps. Using a dataset of 2,215 apps, we begin by

categorizing apps using a multifaceted analysis employing three main sources from

an app’s metadata: app description, XML (extensible markup language) assets, and

image assets (Section 6.2). By this process, we extract relevant medical keywords.

The keywords are used to determine orthogonal fine-grained traits that describe app

functionality (e.g., sending patient data, found in 775 apps, or handling insurance,

found in 376 apps). Combining these traits leads to a higher-level categorization

scheme that allows us to better understand the app’s intended audience. We establish

six categories: virtual visit, patient portal, medical device, professional, reference,

and patient. Virtual visit apps allow users to interact with medical professionals

1Joint work appeared as: Characterizing Medical Android Apps by Raina Samuel, Iulian
Neamtiu, Sydur Rahaman, and James Geller at the 16th Multi Conference on Computer
Science and Information Systems (E-Health) 2022 in Lisbon, Portugal.
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Figure 6.1 Trait extraction.

remotely. Patient portal apps allow users to access information regarding visits or

book appointments. Medical device apps interface with an external device, such

as a glucometer. Professional apps are intended for medical professional uses in

office management or patient care. Reference apps provide study and reference

material. Finally, patient apps are intended for general personal health reminders.

We find that the most popular category is patient, with 1,993 apps, followed by

reference with 1,590 apps. Our classification scheme shows that the most common

functionalities of medical apps involve connecting to medical devices, tele-health, and

medical calculators. In Section 6.3 we discuss actionable findings from our research.

We investigate possible lapses found in the way regulatory agencies approve and

determine medical apps and their functionalities. We discuss privacy implications of

handling user data and how developers and marketplaces should be more transparent

in how sensitive data is handled.

6.2 Characterization

App characterization – understanding the nature, purpose, and target audience of

an app – is challenging, as detailed next. To address these challenges, we use
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multi-source information along with a multi-rater human approach. First, we use

information retrieval to extract terms of interest. Then we define first-order low-level

traits. Building upon traits, we establish high-level categories.

Challenges. Characterization is a major challenge for several reasons. First, apps

may serve more than one purpose, e.g., an app may manage a patient’s prescription,

help locate the nearest emergency room, and support video chats with a provider.

Second, such features are hard to automate and detect automatically (e.g., video

chat can be home-made as opposed to using a video chat library). Similarly,

location/mapping services can serve multiple purposes so the presence of such a

library simply indicates that the app provides location-relevant services. Third, the

app description on Google Play is at the developers’ latitude and can be incomplete,

inaccurate, or misleading (e.g., we found “medical prank” apps that are trying to

pass as legitimate apps). Fourth, actual app functionality can only be reconstituted

from heterogeneous sources via a multi-faceted analysis of app description, embedded

images, app bytecode, etc. We started by retrieving all apps from Google Play’s

Medical category along with their descriptions. We only retained those apps which

had English descriptions and at least 1,000 installs, for a total of 2,215 apps. The

design of our approach for extracting relevant text is shown in Figure 6.1. Next we

describe the sources, methodology, and characterization results.

6.2.1 Sources

An APK is essentially an archive of directories and files that include bytecode,

resource files, assets, and libraries. Among all these files, we find that text relevant to

app functionality and user interactions with the app appears in three main locations:

XML assets, images, and app descriptions, as shown on the left of Figure 6.1. We

describe each of these and provide evidence why all three sources are needed.
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XML Assets. Layout XML files, stored in the app’s res directory, define the user

interface by storing all text views, buttons, and other UI elements. We are interested

in these features as we can discover what information the app is requesting from the

user and what kind of information the user provides to the app by interacting with it.

String XML files store strings accessed by the application, which constitute another

key location of medical terminology that can be extracted.

Image Assets. Image assets, also stored in the app’s res directory, are relevant

as well. For example some apps may opt to use an image as a button rather than

using it in an XML asset. In other cases, images may have text included making

it important to be analyzed as well. We use the Tesseract OCR (optical character

recognition) package [136] on image files to extract English text present in images.

Descriptions. App descriptions are found on Google Play and not within the app

itself. As a result, the description of an app allows a user to understand what an

app does prior to installation. As the description is the first impression a user has

of the app, its functionalities should be clearly defined in a way that help users

establish an app’s purpose confidently and securely. However, as the description is

usually written by the app developers themselves, the app is often portrayed in a

flattering and overly positive way to attract users. Therefore, app descriptions can

be inaccurate, misleading, or incomplete, which we found to be another essential

aspect of an app that should be considered in our analysis.

Why all three sources are necessary. Table 6.1 illustrates why using only one

of the three aforementioned sources is insufficient: the table shows, for three apps,

where the relevant keywords are located. For app SimplePharmacology, 69% of the

relevant keywords are in the image assets while the description contains no relevant

keywords whatsoever. In contrast, for app MyNM, all the keywords are found in the
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XML assets; images and the description contain no relevant terms. Finally, for app

AnthroCalc, all keywords are in the app description. Therefore we need to analyze

and integrate information from all three sources.

Table 6.1 Location and Frequency of Relevant Keywords

App Frequency (%)

XML Assets Image Assets Description

SimplePharmacology 31 69 -

MyNM by North- 100 - -

western Medicine

AnthroCalc - - 100

6.2.2 Methodology

In order to create a clear classification scheme based on app functionality, we referred

to ICD-11 (International Classification of Diseases) [10] and PHI (Protected Health

Information)[78] terms. ICD codes provide a reliable established standard of diseases

and health conditions. PHI terms allow us to obtain a broad idea of what data is

required from users in certain apps to determine their functionalities. We began our

text processing with extracting the descriptions. First, the descriptions had stop

words removed to focus on conceptual information in the text, followed by a TF-IDF

(term frequency – inverse document frequency) analysis [17] based on ICD keywords

and PHI terms. As a result, we could provide a preliminary classification of each

application based on keyword matches and frequencies. The process was repeated for

XML and image assets. With the resulting keywords extracted, we observed which

resources provided the most relevant results. More keywords were found in the XML

files of apps as opposed to image files (via Tesseract), or app descriptions. This

evidences that descriptions do not paint a complete picture.
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Figure 6.2 Category determination based on traits.

Defining Traits and Categories. We employed a multiple-raters approach [71] to

determine traits and categories: three human raters had to come to 100% agreement

on what constituted and differentiated the various traits. Raters had to agree first

on what should be considered a unique trait of a medical app and which keywords

should be used in determining that trait (traits essentially define low-level orthogonal

functionality “facets” for apps). As a result, 19 traits were determined. Subsequently,

raters would then agree on what combination of traits would dictate the category of

an app. Once the baseline was set, the app was classified using traits into categories,

as illustrated in Figure 6.2. In this way, some apps may have multiple traits and

various categories. In this way, some apps may have multiple traits and belong to

various categories. However, such categorization provides a more nuanced view on

the general functionality of certain medical apps. We now discuss our findings.

62



Table 6.2 Most Common Traits Found in Apps

Trait Description %Apps

Anatomy Anatomy reference material 61%

Well-being reminder Keeps track of patient habits (e.g., sleeping, water intake, exercise) 51%

Medical student study aids Exam and practice questions for medical students 38%

Medical calculator Calculates readings without saving patient information 37%

Sends acquired patient data Sends inputted patient data such as blood sugar etc. to a provider 35%

Handles prescription data Patient information regarding prescriptions and treatments 28%

Manages patient clinical data Stores the medical history of a patient 27%

Visual guide Visual reference material used by students and medical professionals 26%

Medical procedures Procedural reference material intended for medical professionals 22%

Patient journal/diary Patient behavior or progress combating disease or nutrition 20%

Disease name Disease reference material used by medical professionals or students 20%

Handles patient/physician comm. Stores and transmits patient information between patient and provide 20%

Patient symptom tracker Keeps track of various symptoms, may lead to diagnosis 19%

Drug name Drug name and pharmaceutical reference material 18%

Handles insurance Stores patient medical history related to insurance policy 17%

Immediate consultation Virtual consultations with a provider 16%

Dose calculator Calculations for patients and providers to administer medication 16%

Locate nearest emergency room Using current location to find an ER 14%

Device measuring patient data Using an external device to collect readings such as blood pressure etc. 14%

6.2.3 Traits

Traits are defined as single aspects of app functionality, orthogonal to other aspects.

Apps can exhibit multiple traits, as apps can provide several functionalities. We

determined traits by finding common ICD terms and medical keywords. As a result,

we defined 19 unique traits; their definitions and frequencies are shown in Table 6.2.

Many of the traits are self-explanatory and commonly used, such as ‘Anatomy’

and ‘Locate nearest emergency room’. There are certain traits that needed further

refinement, specifically those dealing with patient data management. While creating

and characterizing these traits, we also evaluated the potential risk that apps with

certain traits have versus apps which do not. Table 6.2 reveals that many common

traits involve reference material for medical professionals. For instance, Medical

Student Study Aids are found in the top five traits in medical apps, as well as medical

calculators, which are often used by professionals.
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Table 6.3 Category Determination From Traits

Trait
Category R
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Sends acquired patient data • •
Handles prescription data • •
Handles patient/phys. comm. • • •
Handles insurance • • •
Manages patient clinical data • •
Device measuring patient data •
Patient symptom tracker •
Well-being reminder •
Dose calculator • •
Patient journal/diary •
Immediate consultation • •
Anatomy • •
Medical student study aids • •
Medical calculator • •
Disease name •
Medical procedures •
Visual guide •
Drug name • •
Locate nearest ER • • •
Total number of apps 1,590 327 509 1,993 1,269 609
Total percentage of apps 72% 15% 23% 89% 57% 27%

6.2.4 Categories

The various combinations of certain traits allow us to determine specific categories

of medical apps as is evident in Table 6.3. We established six unique categories that

apps may fall into.

Reference. These apps serve either as general references regarding medical terms

or first-aid procedures. Some apps are study aids or provide quizzes for medical

professionals in training.

Patient Portal. Users can schedule and make appointments with their medical

providers and view their lab results or test results and data from their visits. In

addition, users can search for nearby providers.
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Professional. These apps are directed towards medical professionals ranging from

medical staff to office assistants. Many apps help medical clinics with scheduling and

handling patient data in a professional setting.

Patient. Apps in this category are aimed at patients to help them log their daily

progress or daily habits such as sleeping or pill reminders.

Virtual Visit. These apps provide for virtual visits, e.g., via a video call with a medical

professional. In doing so, users often provide personal information and discuss their

symptoms.

Medical Device. These apps are considered as medical devices or work in tandem with

devices, such as hearing aids, glucometers, or sphygmomanometers for hypertension.

Apps in this category can be used to store device readings and be maintained as a

log or can be used as a remote control for the device.

6.3 Actionable Findings

Our categorization has revealed that medical apps serve a broad audience and variety

of purposes. However, because many such purposes are sensitive or even critical, and

not intended for a general audience, there should be barriers for app access control.

Theoretically, as these apps are free, and found on a public app distribution platform,

anyone can download and use them, even though the apps are meant exclusively

for professionals. Generally, apps that are meant for professionals in a hospital or

clinical setting usually require credentials to access such systems. However, there

are professional apps which can potentially result in a diagnosis or interface with

a medical device for a procedure; if such apps are available for general use, it can

lead to possible user harm. Hence there is a need for strong regulatory frameworks

protecting end-users. We now describe actionable findings covering various aspects of

medical apps. We review current regulations and definitions regarding mobile health

and medical apps established by various legal entities throughout the world, while
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also finding certain lapses and difficulties in implementing these guidelines. From

these definitions, we discuss potential privacy implications and user safety concerns.

6.3.1 Regulatory Framework Enforcement

Actionable finding: Regulatory frameworks should be clearer defined and more

accessible for developers when creating medical apps managing user data. Medical

apps can perform critical functions that involve patient data or other sensitive

information. Overall, app users generally assume that apps are “certified” and

trustworthy when making medical decisions. The question that arises is whether these

apps are indeed approved by regulators and safe for use. For example, in the United

States, the FTC (Federal Trade Commission) provides definitions and guidelines for

app developers. The guidelines indicate whether the app is a medical device, or a

medical app; as well as whether the FTC will apply any regulatory oversight [69].

Additionally, the FDA (United States Food and Drug Administration) regulates

functions of mobile devices that use device sensors (camera, light, vibrations) to

perform medical device functions (e.g., measuring blood pressure), connecting a

mobile device to a medical device and being able to manipulate it from the mobile

device (e.g., alter settings of an implant), or active patient monitoring (e.g., acquiring

signals from a cardiac monitor) [64]. We further discuss US regulations and their scope

in Chapter 9. EU regulation of mobile medical apps focuses on potential privacy

concerns that may arise. Mobile health apps must comply with data protection

laws (Data Protection Directive) that were enacted, as well as ensuring that apps

provide “clear and unambiguous information about processing to end users before

app installation” [60]. Some Asian countries, such as China and Japan, regulate

standalone medical software as medical devices, though depending on the overall

software class, whose definition is based on functionality [72]. Overall, regulatory

bodies have general guidelines on medical app behavior and functionality. However,
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there is no clear standard for app developers to easily refer to when developing

a medical app. Having an accessible flowchart or a streamlined explanation of

definitions would aid developers as well as app markets (Google Play, Apple’s App

Store) in managing the apps, especially apps handling users’ medical data.

6.3.2 User Security and Safety

Actionable finding: Medical apps should be more transparent regarding user data

management prior to installation. App functionality plays a large role in determining

whether the app falls under a regulatory framework. Medical apps often manage

identifiable and private health information, that is, demographic information related

to a user’s health or condition that can be used to identify the user. For instance,

in the US, if such apps work with health care providers or HIPAA entities, they

are subject to HIPAA rules regarding security [78] and privacy [79] and what must

be done when a breach has occurred [77]. However, not all data acquired by an

app is considered identifiable health information. For example, an app measuring

a user’s weight and blood pressure is not considered a big security risk, compared

to an app that tracks patient activity and prescriptions. Thus, certain apps pose

lower risks to user privacy and would not need to be under scrutiny from regulatory

bodies. An example would be apps that are general aids or of general purpose (e.g.,

magnifying glass); automate general office functions in healthcare and are not used for

diagnosis; and educational apps (e.g., flashcards, encyclopedias, textbooks). These

apps are neither regulated nor will have any discretionary enforcement exercised on

them. However, as discussed previously, many medical apps handle patient data,

and despite regulations and guidelines, users do not know how securely their data is

managed or transmitted. App developers and markets must be more forthcoming and

transparent about patient data management, by concisely explaining to users prior

67



to installation what happens to their private health information. Potentially, these

entities should be held accountable, should any leaks occur.

6.4 Conclusions

Medical apps across many categories have been implemented and publicized; these

apps serve millions of users and provide a multitude of functions. To better

understand the app landscape, our study categorizes medical apps based on stated

and observed functionality. Overall, our research makes several contributions. First,

we provide an automated approach and study that characterize medical apps into

sub-categories to better understand their purposes and functionalities. Second,

we observe the most common functionalities of medical apps. Third, we discuss

regulatory frameworks and user privacy practices. By doing so, we are better equipped

to undertake further studies into app behavior, app security, app claims, etc.; and

ultimately improve the health and well-being of app users.
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CHAPTER 7

CHARACTERIZING MEDICAL APPS

Now we will discuss how medical apps may over-claim and overstate their intended

purposes. This chapter presents the classification of claimed app behavior based on

ICD conditions and provides a categorization of misleading claims. To determine

potential gaps between app claims and app behavior, as well as between app claims

and user expectations, we conducted a study on over 2,000 Android apps. We

first developed an information retrieval approach that maps an app’s description

to medical (ICD) terms, hence delineating the app’s medical scope and stated goals.

Next, based on app functionality, we categorize apps into (a) apps that measure or

manage a physiological parameter, (b) apps that claim to treat conditions, and (c)

apps for self-assessment.

7.1 Introduction

Due to the convenience and ubiquity of medical apps, users trust medical apps

and generally assume that apps are validated and accurate. However, there is

no direct evidence on whether a medical app is performing its claimed functions.

For instance, in a study regarding blood pressure monitoring apps, users liked the

perceived accuracy; however, the app under-reported users’ actual systolic pressure

and provided inaccurate results which gave users a false sense of security [113]. This

joint work 1 involved us conducting a study on more than 2,000 Android apps collected

from Google Play to understand (1) the medical conditions targeted by medical

apps, and (2) the claims apps make, e.g., regarding diagnosis or cures; revealing

and categorizing lapses between app claims and actual functionality. To define app

1Joint work appeared as: Could Medical Apps Keep Their Promises by Raina Samuel,
Iulian Neamtiu, and Sydur Rahaman at the 16th Multi Conference on Computer Science
and Information Systems (E-Health) 2022 in Lisbon, Portugal.
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Figure 7.1 Overview of methodology.

behavior and nature, we mapped app metadata terms onto ICD-11 (International

Classification of Diseases) codes. Using ranked retrieval text analysis, we were able

to accurately shed light on common conditions apps may claim to treat or manage

(Section 7.3). For apps that perform measurement and tracking, we found that most

ICD codes were related to physiological management, such as weight loss or heart

rate measurement. For apps that address conditions, we found that the most common

conditions include Elevated blood glucose level (MA18.0) and Speech therapy

(QB95.5).

Next, we focus on exposing questionable claims found in app descriptions.

We classified apps into three main categories of claimed behavior: physiological

(Section 7.5), treatment (Section 7.6), and self-assessment (Section 7.7). Focusing

on app descriptions allows us to better observe what may possibly convince users

into installing certain apps. We established keywords and frequencies to categorize

suspicious behaviors accordingly. Within each category, we investigated app claims

and compared these claims with what an app can actually accomplish on a mobile

device; we found a wide gap between claims and attainable functionality. Overall, we

make the following contributions:

1. A classification of app behavior based on medical conditions established by
international standards (ICD-11).

2. A classification of possible misleading claims found in Medical apps.
3. A discussion of app disclaimers and misleading description terms.
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7.2 Methodology

We begin by describing our overall methodology illustrated in Figure 7.1. We acquired

app descriptions and apps (APK files) from Google Play’s Medical, as well as Health

& Fitness, categories. This resulted in a total of 2,339 English language apps that had

1000+ installs. From these apps, we used their descriptions and relevant text-based

app metadata to determine ICD codes and observe claimed app functionality and

misleading claims. We map the medical conditions that apps may claim to treat

(or monitor) onto an established ontology, ICD-11 codes. ICD – the classification of

diseases used by the World Health Organization – provides an international standard

for uniform naming of diseases and health conditions. Extracting ICD terms from app

metadata not only enables us to identify possible conditions apps may claim to treat or

monitor, but also (1) can reveal lapses in app descriptions regarding functionality and

(2) help us understand further the general medical app landscape. App descriptions

and text metadata were processed, removing stop-words and irrelevant terms. We will

next discuss how we managed to extract ICD codes and categorize app functionalities

via information retrieval. We categorize these apps based on claimed behavior

mentioned in app descriptions and result in four main categories shown in Table

7.1.

Table 7.1 Categories of Problematic Descriptions

Category Number of Apps
Physiological 430
Heart Rate Measurement 115
Optometry 98
Blood Sugar Measurement 87
Hearing Test 42
Skin Cancer 41
Body Temperature Measurement 31
Weight Loss 16

Treatment 320
Natural Home Remedy 200
Hypnotherapy/Brain Wave Therapy 71
Pain Relief 49

Self Assessment 500
Mental Health 309
Symptom Tracking 106
Pregnancy Quizzes 85
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7.2.1 ICD code mapping challenges

We begin by describing the process and challenges faced when extracting ICD codes

from apps. We used 106 ground truth apps as a basis to determine the score threshold

for matched terms. The first challenge was determining relevant app metadata. Using

irrelevant terms and certain stop words can result in inaccurate ICD mappings or

even no matches. We compared extracted keywords between the app description and

XML files in order to understand common medical app functionalities and which

source would be the most effective in mapping with ICD codes. We found that XML

files provided less relevant results despite having more medically related keywords,

especially for apps used as reference material, intended for patients, or to interact

with patient portals. This is because XML files contain more fragmentation and

individual words rather than cohesive sentences to provide any meaningful input. The

second challenge involved finding the best method to map and extract terms from app

descriptions. We began with an initial mapping with a TF-IDF (term frequency –

inverse document frequency) analysis, which showed that most apps correlated to the

ICD code MA13.1 (Finding of alcohol in blood). However, when we attempted

a ranked retrieval text analysis, we found much more accurate ICD terms mapped to

keywords.

Using a naive approach leads to inaccuracy in text extraction, and we show such

discrepancies in Table 7.2. Here we compare the keywords extracted from TF-IDF

analysis versus those from ranked retrieval; the text in red indicates inaccurate or

irrelevant keywords that do not map to the accurate ICD code displayed. We see that

ranked retrieval provided the most accurate results. Thus, we used ranked retrieval

to obtain each app’s ICD code.
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Table 7.2 Keyword Discrepancies in ICD Conditions

App Name TF-IDF Ranked Retrieval Category ICD term

com.ebsco.dha ‘management’,
‘difficulty’,
‘disorder’,
‘condition’

‘health’,‘refer’,‘clinic’,‘care’ Patient Portal QB10 (Medical
services not
available in
home)

com.sonova.easyline.rcapp ‘fitting’,‘extent’,
‘period’, ‘carried’

‘control’,‘connect’,
‘hearing’, ‘remote’

Medical Device QB31.4 (Fitting
or adjustment of
hearing aid)

com.pocketprep.nptepta ‘disease’,
‘specified’,
‘defect’, ‘vertical’

‘brain’,‘test’,‘therapy’,
‘nervous system’

Reference MB72 (Results of
function studies
of the nervous
system)

com.ninezest.stroke ’therapy’,
’devices’,
’malignant’,
’miscellaneous’

’stroke’,’therapy’,
’speech’, ’enhance’

Patient QB95.5(Speech
therapy)

com.srems.protocol ‘malignant’,
‘miscellaneous’,
‘classified’,‘harm’

‘region’,‘clinic’,
‘treatment’, ‘cardiac
arrest’

Reference MC82.1
(Bradycardic
cardiac arrest)

com.easymobs.pregnancy ‘milestone’,
‘pelvic’,
‘muscle’,
‘certain’

‘help’,‘week’,‘care’,
‘pregnant’

Patient MF34(Pregnancy
symptom or
complaint)

com.beltone.hearplusapp ’devices’,’general’,
’specified’,
’miscellaneous’

’manage’,’sound’,
’aid’,’tinnitus’

Medical Device QB31.4 (Fitting
or adjustment of
hearing aid)

de.qurasoft.amsspiroapp ‘lung’,
‘pulmonary’,
‘eye’,
‘communicating’

‘asthma’,‘device’,
‘measure’, ‘symptom’

Medical Device J45.8 (Asthma)

spm.nashres ‘cirrhosis’,‘score’,
‘voice’, ‘progress’

‘liver’,‘disease’,
‘histology’, ‘fibrosis’

Reference DB92.0
(Non-alcoholic
fatty liver
disease)

com.usatineMediaLLC. dermoscopyTwoStep ‘need’,‘full’,
‘contain’,
‘pattern’

‘melanoma’,
‘carcinoma’,‘diagnosis’,
‘treatment’

Professional 2C31.Z
(Cutaneous
squamous cell
carcinoma)

7.2.2 Categorizing claimed app functionalities

Next, we will discuss how we categorized app behavior. Here we focused solely on app

descriptions, as they are the initial reasons why users download apps. We used 33 apps

as ground truth, which we had manually determined as potentially misleading due to

specific terms in their descriptions. We focused on generic terms such as “diagnosis,”

“entertainment purposes,” “instant,” and “camera” and applied a TF-IDF analysis

on the full dataset, resulting in a subset of 1,250 apps matching these criteria. Once

the subset was established, we then manually reviewed common patterns based on

general functionality to create a categorization. We developed another set of keywords

to categorize the 1,250 apps into three categories using TF-IDF analysis. Finally, to

better refine our categories and the broad functions we found, we further characterize
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Table 7.3 Top 10 ICD Codes Based on Matched Medical Terms in App Descriptions

ICD Code ICD Title #Apps Use

MG43.5 Excessive weight loss 511 Weight Control
MC82.1 Bradycardic cardiac arrest 255 Heart Rate

Measurement
QB30.3 Adjustment or management

of vascular access device
242 Pacemaker

Management
QF21 Fitting or adjustment of

hearing aid
232 Hearing Aid

MA18.0 Elevated blood glucose level 135 Diabetes
Management

M54.5 Low back pain, unspecified 120 Pain Management
QA41 Pregnant State 104 Pregnancy

Tracking
CA23 Asthma 84 Asthma

Management
QB95.5 Speech Therapy 75 Speech Aphasia

Treatment
H93.1 Tinnitus 70 Hearing Aid

them into more specific subcategories. In doing so, we reveal possible lapses in claimed

behavior and their legitimacy, especially in popular apps.

7.3 Medical Conditions

We will now present our findings. First, we will discuss the results of the ICD code

analysis and the top codes found. Then we will describe the claimed app behaviors

found in app descriptions.

7.3.1 Top ICD Conditions

ICD codes extracted from app descriptions help us ascertain whether descriptions

accurately describe/explain app functionality. Table 7.3 displays the top ICD codes

along with an explanation of how it is used and its categorization. We found that most

of the ICD codes relate to weight loss apps due to the frequency of the term: MG43.5

(Excessive weight loss). We also see many ICD codes related to apps which connect

to external medical devices, especially with pacemakers (QBB30.3: (Adjustment

or management of vascular access device) and hearing aids (QB31.4: Fitting

or adjustment of hearing aids). Among the top ICD codes, we found very few
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apps for professional use relate to any, if at all. This is because many app descriptions

related to professionals or clinicians are either very vague or too complex to map

correctly to a single specific ICD code. Nevertheless, we were able to accurately map

ICD codes to medical conditions in apps that claimed to treat said diseases.

7.4 Claimed App Behavior

We characterized app functionalities into three main categories: Physiological,

Treatment, and Self-Assessment. Apps in these categories are examples of behavior

that may potentially require regulations or further scrutiny and exemplify the need

to categorize claimed app functionality. Apps should be clearer about their true

functionalities in their descriptions while being explicit in their disclaimers; many

times, disclaimers are hidden in the text or towards the end of the Google Play

description; when the description is lengthy, users may end up ignoring or missing

the caveat completely. We will now describe each category and subcategory found in

Table 7.1 starting with Physiological, Treatment, and Self-Assessment.

7.5 Physiological

Apps in this category claim to be able to measure certain physiological parameters

such as heart rate or blood pressure, using the camera and other smartphone sensors.

Concerningly, these apps claim to provide some form of diagnosis based on the

measurement; furthermore, the apps claim that their measurements are accurate.

We have found 430 such apps, categorized as follows.

Heart Rate. Heart rate-measuring apps use the smartphone camera’s flash feature

to measure a person’s pulse. Measuring heart rates via a smartphone camera is

not inherently inaccurate or deceptive, though a study has found differences between

results obtained with apps versus results gather via clinical monitoring [58]. However,

users should not solely rely on such apps for diagnosis or treatment. For example
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app, Cardiac diagnosis (arrhythmia), with over 1,000,000 installations, states no

disclaimers or recommendations to seek a medical professional or use an actual heart

monitor along with the app. The accuracy is generally unknown, especially how

the app manages to detect such conditions. Unless these apps work in conjunction

with an external medical device, such as a blood pressure meter or heart monitor, the

accuracy of such apps should not be relied on for diagnosis. Moreover, we believe that

(1) such apps should include a disclaimer or recommendation to consult a medical

professional, and (2) the term ‘diagnosis’ should be removed from apps’ titles.

Optometry. Optometry apps claim to measure vision acuity by providing eye

exams testing for astigmatism, near and far-sightedness or color blindness. While

these apps may provide a basic benchmark for vision, without a medical professional’s

diagnosis, the apps should not be used as a sole medical opinion. As a result, all

apps with this functionality must include a recommendation to report their results

to qualified ophthalmologists or optometrists before taking any sort of action.

Blood Sugar. Blood sugar apps claim to measure or track blood sugar. While

many of these apps do have this behavior, as they work with a glucometer, many do

not – the apps simply serve as a journal. Apps claiming to measure or track blood

sugar without connecting to a glucometer or any sort of device can be misleading.

Additionally, some apps whose name contains “Blood Sugar Test” have disclaimers

stating the app cannot measure blood sugar but provides information on how to

manage diabetes. Thus, these apps should modify their titles to better reflect app

functionality, e.g., “Blood Sugar Tracking” or “Blood Sugar Log”.

Hearing Test. Hearing test apps are different from hearing aid apps, which tend

to connect to an external hearing aid device, serving as a remote control. These

apps claim to provide (1) tests regarding tinnitus and (2) therapies for hearing issues;
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nevertheless, users need to see an ENT or audiologist for a reliable and accurate

diagnosis.

Skin Cancer. Skin cancer apps use the device’s camera to take pictures of skin and

then use an AI algorithm to provide a preliminary diagnosis regarding skin cancer.

Apps claiming to detect skin cancer solely through a device’s camera and without a

blood test are deceptive and misleading. An example would be the app Medgic which

uses AI to check for dermatological conditions or diseases by using the device’s camera.

While AI algorithms have been able to detect conditions before, prognoses cannot be

solely confirmed by a simple photo of one’s skin – other tests must be administered

in order to make a conclusion. The app’s description contains a disclaimer, albeit at

the end, stating how the app is not a replacement for medical advice and that not all

results are 100% guaranteed. Another app, Visus, states that it is an experimental

app that is publicly deployed and that its algorithm is “30% more sensitive and precise

than a conventional board-certified radiologist”.

Body Temperature. Body temperature apps claim to measure users’ temperature,

e.g., to detect a fever. However, this is ultimately misleading, as mobile devices do

not have any means to measure temperature in their sensors. Instead, these apps

serve as a mere journal to track user-inputted values for body temperature.

Weight Loss. Weight loss apps are numerous by nature, as seen in our ICD

mapping. However, in this specific categorization we focused on apps that over-

promise results within an arbitrary or unrealistic time frame or even “instant” results.

We found that many apps do not urge the users to seek medical opinions prior to

attempting weight loss. For example, the app. Lose Weight Fast at Home - Workouts

for Women, with over 1,000,000 installs, claims that users following the app’s regimen

will lose weight in 30 days. However, there are no mentions in the app description of
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the influence other crucial factors such as diet, water intake, or genetic factors, have

in weight loss.

7.6 Treatment

These apps claim to be able to cure diseases. We have found a total of 320 apps,

falling into several subcategories.

Hypnotherapy/Brain Wave Therapy. These therapies are complementary

forms of medicine (i.e., used to supplement traditional treatment methods). Apps

in this category tend to not mention the importance of standard or clinically

proven medical treatments to be used in conjunction with their suggested therapies.

Hypnotherapy results are generally not clinically proven and may have adverse effects

on users who are prone to epilepsy or other neurological conditions [73]. For example,

the app Atmosphere: Binaural Therapy Meditation which has over 500,000 installs,

states that it is able to “heal your DNA” with its guided breathing and meditation;

nevertheless, the app description contains a disclaimer that the app is only for

“entertainment purposes” and should not be a substitute for medical treatment.

Natural Remedy. These apps provide references to natural remedies, e.g., certain

herbs or foods, to manage and treat specific diseases, such as skin diseases or even

cancer. They also claim to help users “self-cure” certain conditions. Although apps

that provide home remedies are not malicious or intentionally misleading, they should

never be a replacement for actual treatment prescribed by a medical professional.

While there are natural remedies to basic non-life-threatening illnesses or wounds,

an app is not an alternative to prescribed treatment from a medical provider. For

example, the app Doctor at Home, which has over 100,000 installs, claims it can

provide treatment for “110 diseases” and “cure diseases at home”. Examples of three

conditions – cholera, angina, pneumonia – and app-prescribed “cures” are shown in
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Figure 7.2 Doctor at Home claims to be able to ‘cure’ critical diseases naturally.

Figure 7.2. Additionally, the app states that the user can be a home doctor, defined as

“you are yourself a doctor”. Herbal treatments and reference material cannot replace

professional diagnosis or treatment. While the app has useful tips for treating simple

symptoms and issues, such as coughing and dandruff, it also has claims for treating

more serious cases such as stomach ulcers and cholera.

Pain Relief. These apps rely on providing exercises and remedies to address various

types of muscular pains or migraines. While such apps can offer a catalogue of

exercises that can address certain types of pain, they should be used in conjunction

with medical advice. Apps which work in tandem with qualified pain coaches can

be a convenient way to help manage pain remotely. However, for many pain relief

apps, pain is addressed through virtual exercises with claims that they are “proven

to ease pain”, such as in app Lower Back Pain and Sciatica Relief Exercises. Note

that the issue is not whether exercises are effective or not; rather the issue is that

app descriptions do not suggest seeking professional medical advice prior to app
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installation. Additionally, certain pain exercises, when performed incorrectly or

without supervision, can lead to further damage and pain in many cases [99].

7.7 Self Assessment

We have found 500 apps which emphasize the use of assessments and self-help,

categorized as follows.

Mental Health. Mental health apps rely on self-assessments without a professional

entity providing feedback. Note that there is a lack of direct scientific evidence

found in descriptions of apps that claim to help with mental health or behavioral

patterns [93]. Many mental health apps do not provide confirmation or verification

that the app is indeed vouched for by professionals. For example, the self-help app

MoodSpace is focused on depression and mental well-being. While the description

claims that the app is “a well-being app driven by research”, there is no evidence of

any research or authoritative proof accessible to users prior to installation. As with

prior examples, the app’s description contains a disclaimer and an emphasis that

users should seek medical advice, but the disclaimer is found at the very end of the

description, increasing the chance to be ignored by users.

Symptom Tracking. Symptom tracking apps are based on user input (rather

than physiological measurements as prior discussed) to determine possible diagnoses.

These apps are useful for a cursory understanding of certain symptoms but should not

be used for a diagnosis. Many of these apps are extremely popular, such as Ada-check

your health, with over 5,000,000 installs and classified as a Class I Medical Device,

meaning it is considered as a device with low risk to the user in the European Union.

While Ada-check your health is an example of a well-regulated medical app, there

are many apps that claim to perform similar functions but are not as well scrutinized
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or moderated by government or marketplace entities, such as the Disease Detector

which claims to detect diseases in a few seconds.

Pregnancy Quizzes. These apps ask a series of questions and claim to determine

whether the user shows early signs of pregnancy. While a collection of certain

symptoms can help determine the likelihood of pregnancy, it can only be validated

through an actual physical pregnancy test. As a result, the framing and naming of

these apps are misleading. An example was the app Real Pregnancy Test Quiz –

removed from Google Play during this research – which suggested that it was “an

easy quiz for pregnancy. Just reply the quiz questions”.

7.8 Conclusions

Medical mobile apps are understandably convenient and appealing to users. However,

app quality and app description quality remain sorely lacking. These lacunae

are particularly concerning in this (medical) domain because app reliability can

directly affect/impact user safety and well-being. Our approach and study found

that the functionality landscape of medical apps is broad and varied; however, the

functionalities claimed in app descriptions are not entirely reliable. Our findings

show a need for better regulation and scrutiny of medical apps in-app marketplaces

to better protect users and their health.
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CHAPTER 8

VERIFICATION FOR MEDICAL SCORES AND SCORE

CALCULATOR APPS

We will now discuss issues regarding medical score calculator apps. In this chapter,

we discuss and reveal inaccuracies found in medical score calculator apps and in their

respective reference charts. Mobile medical score calculator apps are widely used

among practitioners to make decisions regarding diagnosing and treating patients.

Errors in score definition, input, or calculations can result in severe and potentially

life-threatening situations. We address these issues via interval-based reference

score verification as well as app verification and validation, as follows. We first

introduce a model for checking the correctness of the reference scoring systems (score

specification). Specifically, we reduce score correctness to partition checking (coverage

and non-overlap) over score parameters’ ranges.

8.1 Introduction

The adoption of mobile medical apps in a clinical setting is already strong.1 While

these apps are appealing by helping practitioners compute scores or dosages, app

reliability has received little attention. Reliability is particularly important in acute

care, where accuracy can decisively influence outcomes. For example, a 2021 study

regarding emergency department personnel has revealed that 91.8% of those surveyed

used medical apps on their devices during their shifts in the midst of heavy workloads

and a stressful environment. Among the most used apps, 66.7% were medical

scoring calculators [81]. Another study showed that 98% of acute care nurses used a

smartphone in acute settings “to access information on medications, procedures, and

diseases” [67].

1Clinical smartphone use among physicians: 70% and above as early as 2012 [110, 148].
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Our focus is the accuracy of medical score calculators, i.e., apps that compute

a medical score based on supplied parameters. Such scores are ubiquitous in triage,

the ICU, and determining the rate of rapid decline. For example, the Modified Early

Warning Score (MEWS) determines whether a patient’s state is likely to deteriorate

quickly, potentially warranting ICU admission. The Sepsis-related Organ Failure

Assessment (SOFA) is used in the ICU to determine the rate of organ dysfunction

in ICU patients. Traditionally, scores were calculated manually from reference tables

which map parameter values to several score components. These components are

added to obtain an overall score, which is checked against an action threshold.

Reference tables are usually defined in medical research papers or regulatory

documents. According to our observations, two main issues impact score calculator

apps’ correctness. First, the reference tables themselves can be inconsistent, which

can lead to erroneous scores even when the score is computed manually. Second,

the implementation of these scoring systems in apps can be incorrect, either due to

developer errors in general or due to developer confusion induced by attempting to

implement an inconsistently-defined score.

Incorrect scores can have dire consequences. For example, the Modified Early

Warning Score (MEWS) [70] determines whether a patient should be moved to the

ICU or not based on the score value being≥ 4. Thus, when a score calculator produces

an incorrectly low score, the severity of the condition is underestimated, resulting in

misdiagnosis and other negative patient outcomes.

This area continues to be under-scrutinized and under-regulated. We are not

aware of any prior attempts to verify reference scores themselves or to validate apps

automatically.

Other prior efforts, whether targeted studies on apps implementing calculators

for dosing parameters for opiate medications [75] or insulin [82], as well as medical

app meta-studies [30], have revealed significantly different results across apps for the
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Figure 8.1 SOFA Score (from Vincent et al. [147]).

same calculation, incorrect dosages, potential harmful recommendations, and a lack

of medical professionals involved in app creation.

Hence there is an impetus for medical score calculators and medical apps in

general to be highly scrutinized. In practice they are not, as they fall out of the

scope of many regulatory bodies. For instance, in the US, the FTC (Federal Trade

Commission) currently only regulates mobile medical apps that are used as a device

or connect with a device, e.g., an insulin pump [69].

8.2 Motivation

We first define the key terms and concepts used throughout the chapter, and then

provide a suite of examples – actual reference tables and app errors – to justify our

approach.

8.2.1 Definitions

Reference Table. We use the term reference table for the table in the form it was

first introduced in a medical research article or a regulatory agency document. For

example, the Sequential Organ Failure Assessment (SOFA) score, shown in Figure 8.1

and discussed shortly, was introduced by Vincent et al. [147] in the Intensive Care

Medicine research journal in 1996. The NEWS (National Early Warning Score),
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another score we consider, was introduced by the UK’s National Health Service (NHS)

in 2012 and later updated in 2017 to NEWS2 [23]. Score tables are structured as

follows: most commonly, each cell in the table contains intervals for one physiological

parameter, while the row or column header contains a numeric value, typically 0–4.

For example, in SOFA’s reference table (Figure 8.1) the third row shows intervals

1.2–1.9, 2.0–5.9, and so on, for parameter Bilirubin. The header row in the table

shows numeric values, in SOFA’s case 1 through 4, which correspond to individual

scores for the intervals in that column. Occasionally, a table entry contains just a

threshold value, e.g., MAP < 70 mmHg in SOFA’s fourth row. Finally, a cell can

contain intervals or thresholds for more than one parameter, e.g., Dopamine > 15 or

norepinephrine > 0.1 in SOFA’s fourth row. Next we describe score computation.

Score. A score is computed by adding the individual scores corresponding to

each cell. For example, a patient with Respiration=350(score=1), Coagulation=90

(score=2), Liver=7.0 (score=3), Central nervous system=13 (score=1), Renal=1.5

(score=1) would have an overall SOFA score:

SOFAscore = 1 + 2 + 3 + 1 + 1 = 8

The overall score value determines the course of action. In Table 8.2 (discussed at

length later) we show action thresholds, e.g., “aggressive treatment if HEART score

≥ 7”; hence an accurate value is critical for patients’ health outcomes.

As we will illustrate shortly, many errors, in reference tables themselves

or the apps implementing the tables, stem from violations of the following two

partition conditions: coverage (exhaustion), and non-overlap (disjointness). Coverage

violations occur when specific interval values are not covered. For example, for

intervals [0-3] and [4-6] over real numbers, any values between 3 and 4 are not covered,

resulting in a violation. Non-overlap violations occur when there are overlapping
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Table 8.1 Medical Scores Analyzed, the Year Scores Were Introduced, Errors Found,
Score Ranges, and Action Thresholds

Score Year Errors Range Thresholds
Name Interval/Value Overlap

Not Covered
E
rr
o
r
F
o
u
n
d

SOFA 1996 Bilirubin=12.0 Bilirubin 0-24 ≥ 11: “higher mortality rate” [66]
Creatinine=5.0 ([102-204],

(10,414 citations) [<204])
HEART 2008 Age([≤45], 0-10 4-6:“cannot discharge;

[45-65], admit for clinical observation,
[≥ 65]) noninvasive investigation”

≥ 7: “early aggressive treatment
(522 citations) including invasive strategies” [126]

Pulmonary 2002 Resp. rate (<6 yrs)=30 0-9 9 “severe exacerbation” [127]
Asthma Score Resp. rate (≥6 yrs)=20

(150 citations)
APACHE II 1985 Age=44 0-71 25: “predicted mortality of 50%”
(21,152 citations) ≥ 35 “predicted mortality of 80%” [47]
RAPS “retold” 2004 Respiratory rate=5 0-20 ≥ 7 “increased mortality” [109]

Heart rate=39
(357 citations) Mean arterial press.=49

N
o
er
ro
r
fo
u
n
d

MEWS 2006 0-18 ≥ 4:“surgical team should be
informed immediately” [70]

NEWS 2012 0-18 Any value of 3 in a parameter:
“urgent ward based response”
5 or 6: “key threshold for urgent response”
≥ 7: “urgent or emergency response” [49]

NEWS2 2017 0-21 5 or 6: “patient should be monitored”
≥ 7: “urgently inform a clinician competent
in the assessment of acutely ill patients” [108]

Child Pugh 1973 0-15 8-10: “increased mortality”
≥ 11:“hepatic failure” [163]

HAS-BLED 2010 0-9 ≥ 3 “high risk of bleeding” [97]
CHA2DS2VASc 2010 0-9 ≥ 2 “high risk of stroke

and thromboembolism” [96]
Glasgow 1974 3-15 13-15: “mild neuroemergency ”
Coma Scale 9-12:“moderate neuroemergency”

6-8:“aggressive triage and prompt neurosurgical
and critical care management”
3-5 “mortality is high and long-term
neurological outcomes are generally poor” [33]

ranges: for intervals [0-3] and [3-5], 3 is found in both intervals, resulting in a

non-overlap violation.

8.2.2 Error Source #1: Inconsistent Reference Table

Inconsistent definitions in reference tables are the most concerning kind of errors

we found, because, unlike apps, tables are difficult to update or fix. Moreover,

as our evaluation shows, an incorrect reference table is likely to lead to incorrect

implementations in apps, because developers tend to implement tables ad literam.

Finally, an inconsistent table will lead to an inconsistent GUI that confuses app users

and invites score calculation errors.

We illustrate several such inconsistencies on the SOFA Score reference table.

The SOFA score, introduced in 1996, predicts ICU mortality by evaluating the

dysfunction of six systems by scoring each organ from 0, which is considered normal
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Figure 8.2 Inconsistent GUI errors in three apps: Nursing Calculator (left),

Child-Pugh Score (center), SOFA 1.2.0 (right).

functionality, to 4, the most abnormal [147]. Thus the highest possible score to obtain

would be 24, indicating severe morbidity, and the lowest would be 0.

The reference table for the SOFA score is shown in Figure 8.1. Notice how for

Liver (Bilirubin), the second-to-last interval is defined as 6.0–11.9. As the parameter

is a real number, the actual interval specification is [6.0, 12.0). That is, a value such

as 11.95 would still be in the interval because only the first decimal is specified. The

last interval for bilirubin is > 12.0. Hence the interval-based specification for these

two entries is: [6.0, 12.0) and (12.0,max). This squarely violates the coverage property

of the partition, because value 12.0 is not covered by any interval. The same issue is

present for parameter Renal (Creatinine), where value 5.0 is not covered. It is unclear

how developers are supposed to cope with this incorrect specification, e.g., the SOFA

score of a patient with Bilirubin=12 and Creatinine=5 can be off by as much as 2

points, depending on how the table is interpreted.

Finally, when bilirubin is specified in µmol/l, the table’s last column shows

‘(< 204)’ which is incorrect: the entry should be ‘(> 204)’ (note how values < 204

are already covered in the preceding intervals). If the developer implements the table

87



Score 
should be 2
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should be 4

Figure 8.3 Top: MEWS reference table. Bottom: Nursing Calculator incorrect

score (left); MEWS Brasil incorrect scores for Temperature and overall

(right).

ad literam and offers ‘(< 204)’ as a GUI option, the SOFA score of a patient can

be off by as much as 3 points. Note that even a off-by-one error can affect patients’

condition classification between “patient should be monitored” and “urgently inform

a clinician.” Section 8.4.2 discusses these issues at length.

8.2.3 Error Source #2: Inconsistent GUI

We now turn to the first kind of implementation errors, where the GUI is inconsistent.

Our approach detects two kinds of errors. In the first kind, the user can input the

same parameter value into two different GUI boxes, which impacts the score. In the

second kind, there is no input box for a certain value. These embody violations of the
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coverage and non-overlap conditions, respectively. We discuss how we check GUIs for

such errors automatically via dynamic analysis and constraint solving.

Example 1: SOFA score in app Nursing Calculator. The app Nursing

Calculator 2, with over 50,000 installs, provides a variety of medical calculators,

including the SOFA score. The app’s GUI has two inconsistency errors (first kind),

as highlighted in Figure 8.2 (left), and described next. The option for Bilirubin shows

a range of 1.0–5.9 when it is supposed to be 2.0–5.9. Moreover, for Creatinine the

range in the app is 1.0–3.4, when it should be 2.0–3.4. Due to these errors, a patient’s

score can be off by as much as 2 points.

Example 2: Child-Pugh score in app Child-Pugh Score. The Child-Pugh

score is generally used to assess the potential for liver diseases, mainly cirrhosis. The

app Child-Pugh Score3 has an inconsistency error (first kind) regarding values for

INR, as highlighted in Figure 8.2 (center): the first option should be ‘< 1.7’ instead

of ‘> 1.7’. Due to this error, a patient’s score can be off by as much as 2 points.

Example 3: SOFA score in app SOFA 1.2.0. This app exemplifies the second

kind of error. The app, SOFA 1.2.0,4 removed from Google Play in the course of our

research, exhibited a GUI inconsistency error as highlighted in Figure 8.2 (right). Note

that the reference table’s last column in the Cardiovascular row specifies the score for

. . . norepinephrine > 0.1; the app however incorrectly lists ‘norepinephrine < 0.1’.

The app offers no option where the provider can indicate the norepinephrine > 0.1

condition, potentially altering the score by 1 point.

2https://play.google.com/store/apps/details?id=com.niya.lijo.nursingcalcula

tors
3https://play.google.com/store/apps/details?id=br.child pugh
4https://apksos.com/app/com.varendrasoft.sofascore
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8.2.4 Error Source #3: Incorrect Score Calculation

Even with a consistent table and consistent GUI, apps can still be prone to errors

in score calculation, such as an instance where the table the score is 4, but the app

displays 6. These calculation errors are silent and particularly pernicious since the

user does not have any indication that the calculation has gone awry.

We now present several examples based on the Modified Early Warning Score

(MEWS), which is used by professionals to determine whether or not a surgical

in-patient requires intensive care [70]. The reference table, which we verified as

consistent, is shown in Figure 8.3 (top).

When the app Nursing Calculator starts, parameter values are in their default

settings, where individual scores are 0 corresponding to a MEWS score of 0. After

the user changes the Heart rate to 40, the output score is 1 instead of the expected

value of 2 (screenshot in Figure 8.3 bottom-left). Note that a higher MEWS value

indicates a more severe situation.

Another example is found in MEWS Brasil [25], shown in Figure 8.3 bottom-

right. Suppose the user inputs Heart rate between 41–50 and BP between 41–50;

cumulatively, the score is 3. The error manifests when the patient temperature is

in the interval 35.1–36; per the table, the individual temperature score value is 1.

In the app however, the value is 0, hence the displayed overall MEWS score, 3, is

incorrect (the correct value is 4). This error is particularly problematic, because 4 is

a threshold value: “[at ≥ 4] surgical team should be informed immediately” [70].

These incorrect implementations can potentially lead to a big difference in

medical decision-making and outcomes, making it crucial to verify these scoring

systems. The target audience of these scoring apps is also concerning. There is

evidence that users of medical calculator apps are clinicians and nurses, especially

inexperienced and younger doctors, according to a 2021 study [81]. Another study

among surgeons from 2015 found that “Junior doctors were more likely to use medical
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Figure 8.4 Overview of our approach and toolchain.

apps over their senior colleagues (p = 0.001) as well as access the Internet on their

smartphone for medical information (p <0.001)” [112].

8.3 Approach

We now summarize our approach to finding errors in reference tables, app GUIs,

and app score calculations. In the first stage for each scoring system, we extract

a formal specification for the reference table, which our toolchain then checks for

consistency. We then fix the inconsistency found in the reference table before using

it as a reference. Next, for a given APK implementing that score, our toolchain first

performs a dynamic analysis5 to extract a GUI specification. The GUI specification

is (a) validated against the correct reference table specification, and (b) verified for

consistency. Finally the app’s output score is verified against the reference score for

that input parameter combination.

5The consistency check for formal specifications and the dynamic analysis are not
contributions of this work.
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8.4 Verifying Reference Scores

We evaluated our approach on 12 medical scores. We focused on scores used in critical

settings, where errors have serious implications. The scores, ranges, potential errors

and action thresholds are shown in Table 8.2. We first discuss scores’ nature, argue

why score accuracy is critical, and then present the errors we found.

8.4.1 Reference Scores

We only provide details and citations numbers in (Table 8.2, first column) for those

scores that contain errors.

The SOFA (Sequential Organ Failure Assessment) score predicts the mortality

rate of an ICU patient based on the functionality of six organ systems. The score is

updated and calculated every 24 hours until the patient is discharged [147].

The HEART (History, EKG, Age, Risk Factors, Troponin) score is used to

predict the risks of a major cardiac event while taking into account risk factors from

a patient’s history or age and other parameters [126].

The RAPS (Rapid Acute Physiology Score) is used to predict mortality of a

patient in a critical care transport [121].

The Pulmonary Asthma Score was developed to simplify a measure to determine

asthma severity in children [127].

APACHE II (Acute Physiology and Chronic Health Enquiry II) is used to

provide a general measure of disease severity while taking into account current

measurements, age, and health history [89].

The remaining scores do not contain errors (though apps implementing the

scores do); the scores’ domains are as follows: identifying the severity of patients’

conditions in critical care (MEWS [70], NEWS [49], NEWS2 [23]); chronic liver

disease severity (Child-Pugh [163]); risk of bleeding (HAS-BLED [97]); stroke risk

(CHA2DS2VASc [96]); and severity of a brain injury (Glasgow Coma Scale [134]).
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Table 8.2 Medical Scores Analyzed, the Year Scores Were Introduced, Errors Found,
Score Ranges, and Action Thresholds

Score Year Errors Range Thresholds
Name Interval/Value Overlap

Not Covered
E
rr
o
r
F
o
u
n
d

SOFA 1996 Bilirubin=12.0 Bilirubin 0-24 ≥ 11: “higher mortality rate” [66]
Creatinine=5.0 ([102-204],

(10,414 citations) [<204])
HEART 2008 Age([≤45], 0-10 4-6:“cannot discharge;

[45-65], admit for clinical observation,
[≥ 65]) noninvasive investigation”

≥ 7: “early aggressive treatment
(522 citations) including invasive strategies” [126]

Pulmonary 2002 Resp. rate (<6 yrs)=30 0-9 9 “severe exacerbation” [127]
Asthma Score Resp. rate (≥6 yrs)=20

(150 citations)
APACHE II 1985 Age=44 0-71 25: “predicted mortality of 50%”
(21,152 citations) ≥ 35 “predicted mortality of 80%” [47]
RAPS “retold” 2004 Respiratory rate=5 0-20 ≥ 7 “increased mortality” [109]

Heart rate=39
(357 citations) Mean arterial press.=49

N
o
er
ro
r
fo
u
n
d

MEWS 2006 0-18 ≥ 4:“surgical team should be
informed immediately” [70]

NEWS 2012 0-18 Any value of 3 in a parameter:
“urgent ward based response”
5 or 6: “key threshold for urgent response”
≥ 7: “urgent or emergency response” [49]

NEWS2 2017 0-21 5 or 6: “patient should be monitored”
≥ 7: “urgently inform a clinician competent
in the assessment of acutely ill patients” [108]

Child Pugh 1973 0-15 8-10: “increased mortality”
≥ 11:“hepatic failure” [163]

HAS-BLED 2010 0-9 ≥ 3 “high risk of bleeding” [97]
CHA2DS2VASc 2010 0-9 ≥ 2 “high risk of stroke

and thromboembolism” [96]
Glasgow 1974 3-15 13-15: “mild neuroemergency ”
Coma Scale 9-12:“moderate neuroemergency”

6-8:“aggressive triage and prompt neurosurgical
and critical care management”
3-5 “mortality is high and long-term
neurological outcomes are generally poor” [33]

8.4.2 Why is Score Accuracy Critical?

We chose these scores because they capture critical conditions where action is urgently

needed. Errors in the app-calculated scores can result in under-estimating the real

score, which potentially means that time-sensitive life-saving interventions will not be

taken. Conversely, errors that result in the app over-estimating the real score might

lead to an overly aggressive, disproportionate intervention, as well as unnecessary use

of resources (personnel and ICU beds). For each score, Table 8.2’s second-to-last and

last columns show the range of possible values and threshold values, respectively; the

third and fourth columns show errors (if any) and will be discussed. The threshold

column is particularly revealing, as it indicates the score value(s) at which a more

aggressive intervention is warranted, or values where the prognosis turns dim. For

example, for the HEART score, a patient who “scores” ≤ 3 can be discharged; a

patient who scores 4–6 would be admitted for noninvasive investigation; whereas a
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patient who scores ≥ 7 will receive “early aggressive treatment including invasive

strategies.” Hence a score calculation error at or around the threshold value is

particularly concerning.

8.4.3 Inconsistent Reference Table

We found errors in the original reference tables for 4 of the 11 scores. We also found

errors in one score as defined in follow-up work to the original reference table; these

errors are shown in the top part of Table 8.2.

For SOFA, the partition condition (1) coverage, is violated for Bilirubin=12.0

and Creatinine=5.0; these values do not appear in the table though values lower or

higher do appear in (Figure 8.1). The second issue for SOFA was a violation of the

partition condition (2) non-overlap, where multiple table entries satisfy Bilirubin <

204. While the latter issue might be alleviated if an app/medical system does not

use the µmol/l units, it is unclear how an app developer is supposed to deal with the

former issue: should the 12.0 and 5.0 values be included into the left or right cells in

the table?

The HEART score’s reference table (relevant excerpt shown in Figure 8.5a)

violates the non-overlap condition at two points: Age=45 and Age=65; a possible

resolution for app developers is to change the 45-65 interval to 46-64.

The Pulmonary Asthma Score’s reference table (relevant excerpt in Figure 8.5b)

violates coverage at two points: Respiratory Rate=30 and Respiratory Rate=20; it is

unclear how an app developer is supposed to cope with these, and whether the scores

for those values should be 0 or 1.

The APACHE II reference table [89] violates the coverage condition for Age=44.

This table would be particularly challenging to verify manually as it has 117 entries

(13 rows by 9 columns).
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The “RAPS retold” score was an interesting find. Note that the original RAPS

score, introduced by Rhee et al. [121], does not violate the partition conditions. A

new score, REMS, was introduced by Olsson et al. [109] to improve upon RAPS;

the paper presents both scores, but the “retold” RAPS table (Figure 8.5d) has three

coverage violations, as shown in Table 8.2.

8.5 Verifying Apps Score Implementations

We have evaluated our approach on a dataset of 90 apps. The selection processes are

explained next, followed by discussing the errors we found, effectiveness and efficiency.

8.5.1 App Dataset

We selected our apps from the Medical category on Google Play. We scraped 3,762

apps and their descriptions from Google Play; using ranked retrieval, we identified

556 apps classified as any kind of medical calculator. We then focused on apps which

computed one or more among the 12 scores we verified, resulting in a total of 90 apps.

8.5.2 App Errors: Inconsistent GUI

We now present our findings: coverage violations and non-overlap violations.

Coverage Violations. Table 8.3 shows the results; we found 23 coverage errors in

11 apps. In the first column we show the official app name on Google Play, in the

second column we show the affected score calculator, and in the third column we show

values or ranges that are not covered. Interestingly, though somewhat predictably,

the “original sin” in the SOFA reference table (no coverage for Bilirubin=12.0 and

Creatinine=5.0) leads to non-coverage issues for the same parameter values in four

apps.
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Overlapped 
boundaries: should 

be 46-64

(a) The HEART score has two non-overlap violations for Age.

Missing 
value 20

Missing 
value 30

(b) Pulmonary Asthma Score has two coverage violations for

Respiratory Rate.

(c) APACHE II has a coverage violation for Age=44.

(d) RAPS “retold” has three coverage violations for Respiratory

rate, Heart rate, and Mean arterial pressure.

Figure 8.5 Reference tables with no straightforward fixes.

Non-overlap Violations. Table 8.4 shows the results: we found 18 coverage errors

in 8 apps. The parameters with overlapping ranges are shown in the third column. In

this case only one error, in the app HEART Score, appears attributable to the error

in the original HEART reference table (Table 8.2).

8.5.3 App Errors: Incorrect Score Calculations

Table 8.5 shows errors in score calculation: we found 16 calculation errors in 16

apps. The Calculation Errors grouped columns show the parameter values for which

96



Table 8.3 Inconsistent GUI: Coverage Violations

App Name Score Parameter value(s)
Sepsis APACHE II Hct(%) =60
Clinical Guide
Child Pugh Calculator Child Pugh INR =1.7
Child-Pugh Score Child Pugh INR < 1.7,
(Blue Rock) INR > 2.2
HAS-BLED Score HAS-BLED Age=65
Nursing Calculator MEWS Systolic BP=70

Resp=8
Temp=35.0

Quick EM SOFA PaO2 ≥ 400
Dopamine=5

Nursing SOFA Bilirubin=12.0
Creatinine (mg/dl)=5.0

SOFA Score SOFA GCS=15
fn(widebitsbd) PaO2 ≥ 400

Platelets ≥ 150
Creatinine (mg/dl) <1.2

SOFA Score SOFA Bilirubin=12.0
(Blue Rock) Creatinine (mg/dl)=5.0

Dopamine=5
Merck Manual SOFA Bilirubin=12.0
Professional Creatinine (mg/dl)=5.0
SOFA SOFA Bilirubin=12.0

Creatinine (mg/dl)=5.0

the errors manifest, and the app value vs. reference score value. We make several

observations. First, app errors lead to both under-estimating the true score (e.g., apps

Atrial fibrillation risk calc, MEWS, Nursing Calculator -MEWS) and over-estimating

the true score (e.g., apps Sepsis3 or MediCalc). Both of these error types are

problematic due to potential under-treating and over-treating patients respectively.

Second, as the last column indicates, certain errors “straddle” the threshold, which,

as discussed previously, can put the patient in a different class.

We have reached out to erroneous apps’ developers. So far, 6 apps (listed in

Table 8.6) have been fixed and updated.

8.6 Conclusions

Mobile health apps are increasingly utilized in acute care settings, and mobile

app developers (including developers who are not medically qualified) are eager

to capitalize on the surging demand for mobile health apps. Though errors in
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Table 8.4 Inconsistent GUI: Non-Overlap Violations

App Name Score Overlapping Ranges
Child-Pugh Child- INR: [>1.7], [1.7-2.2]
Score Pugh
HEART HEART Age: [≤45], [45-65], [ ≥ 65]
Score
REBELEM HEART Age: [≤45], [45-65], [ ≥ 65]
MEWS MEWS Heart Rate: [51-101], [101-111]

Respiratory rate: [15-21], [21-30]
Systolic BP: [71-81], [81-101]
Temperature: [≤35], [35-38.5], [≥38.5]

Nursing SOFA Bilirubin: [1.2-1.9], [1.0-5.9]
Calculator Creatinine (mg/dl): [1.2-1.9] [1.0-3.4]

Platelets: [≥ 150], [100-150]
SOFA Score SOFA Creatinine (µmol/L): [110],
(Blue Rock) [110-170],[300-440],[440]
SOFA SOFA Norepinephrine: [≤0.1], [<0.1]
Sepsis SOFA Creatinine (mg/dl): [≤1.2],
Clinical [1.2-1.9] Platelets:
Guide [≥ 150], [≤ 150]

Table 8.5 Calculation Errors in Apps
App Name Score Calculation Errors Meets or Exceeds

Parameter Option App Score Ref. Table Threshold
Score

Atrial fibrillation risk calc CHA2DS2VASc Age=75 1 2 N
Child-Pugh Score (KSoft Apps) Child Pugh INR=2.3 11 10 Y
Child-Pugh Score (Blue Rock) Child Pugh INR=2.3 11 10 Y
Child-Pugh Score Child Pugh INR=2.3 11 10 Y
Calculator - Liver Disease
Nursing Calculator MEWS Heart rate=40 3 4 N
MEWS MEWS Temperature=[35.1-36] 3 4 N
Nursing Calculator SOFA Platelets=150 12 11 Y
Sepsis 3 SOFA Dopamine=5 12 11 Y
Nursing SOFA PaO2=300 12 11 Y
MediCalc SOFA Dopamine=5 12 11 Y
SOFA Score(widebitsbd) SOFA Creatinine (µmol/L)=106 12 11 Y
Merck Manual Professional SOFA PaO2=300 12 11 Y
SOFA SOFA Creatinine(µmol/L)=106 12 11 Y
SOFA - Sepsis-related SOFA Dopamine=5 12 11 Y
Organ Failure Assessment
Sepsis Clinical Guide SOFA Bilirubin=1.2 12 11 Y
Sepsis SOFA Calculator SOFA Platelets=20 4 3 Y

medical scores and score calculator apps can have severe negative consequences,

such scores and apps are subject to little scrutiny. We have uncovered errors in

long-standing medical reference articles. We found that incorrect specifications

translate to incorrect app implementations and that even correct specifications can be

implemented incorrectly, affecting the resulting scores. Our findings indicate a need

for tighter scrutiny of reference scores themselves, as well as the apps implementing

these scores.
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Table 8.6 Apps Fixed Thanks to Our Reporting
App Name Package Name #Installs
Nursing pe.com.codespace.nurse 100,000
MEWS Brasil appinventor.ai blinkeado.InformaticasaudeMEWS 500
Atrial fibrillation risk calc com.gumptionmultimedia.atrialfibrillationriskscore 5,000
Nursing Calculator com.niya.lijo.nursingcalculators 50,000
Sepsis Clinical Guide app.escavo.sepsis 100,000
SOFA-Sepsis-related Organ Failure Assessment gumptionmultimedia.com.sofascore 1,000
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CHAPTER 9

REGULATING MEDICAL APPS

Supplementing the previous chapters’ discussions of medical applications and uses,

this chapter explains the regulations set in place to protect users. Medical mobile

health apps provide a plethora of benefits, from helping patients keep track of

their health, to allowing professionals to reference guidelines and access information

conveniently. We break down the regulations of three medical entities within the US.

We also classify whether medical apps should be regulated by the FTC and find a

total of 192 potential apps that may require further scrutiny.

9.1 Introduction

Medical apps perform critical functions that involve patient data and other sensitive

information. Overall, users of medical apps assume that apps are ‘certified’ and

trustworthy when making medical decisions. A recent literature review from 2019

reveals that many consumer health apps have false content, poor design, and bad

functionality [29]. Moreover, with the growing accessibility of mobile medical apps,

there have been many cases of medical apps ultimately hurting the user. For example,

an assessment of insulin dose apps revealed that the majority of such apps were

inaccurate, leading to overdoses and deleterious mismanagement of glucose levels

[83]. The question that arises is how many applications are federally approved and

safe for use. The vast nature of mobile platforms makes it impossible to strictly

regulate applications. Thus, analyzing federal guidelines regarding medical apps

and determining whether applications are compliant towards federal mandates is

necessary. While mobile health apps are used globally, there are many regulatory

agencies and jurisdictions to keep track of. In an effort to provide a thorough analysis,

we focus our research on US-based entities, namely the FDA and FTC, along with
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HIPAA laws. After we define their bylaws and their rules overall, we will then check

to see if applications fall within their scrutiny. By analyzing and classifying app

metadata, mainly app descriptions and features, based on a subset of known regulated

applications, we hope to reveal the vast number of applications that are not regulated

but should be.

9.2 Regulatory Frameworks

We begin by introducing and defining the regulatory frameworks that will be the

center of this study.

9.2.1 FDA

The FDA, or Food and Drug Administration, is a US federal agency specialized in

protecting the public from health hazards. The FDA approve and regulate medical

devices; however, they also have jurisdiction over medical apps. Generally, their

regulatory oversight focuses more on software functionality which directly impacts

users. Outlined in the Policy for Device Software Functions and Mobile Medical

Applications Guidance, which was first issued in 2013, then later updated in 2015,

2019, and 2022, the subset of software functions that are scrutinized are apps that

turn the phone to a medical device [27]. These apps are all regulated under the

Federal Food, Drug, and Cosmetic (FD&C) Act:

• Apps that connect to external medical devices, such as insulin pumps or
glucometers, that are able to control and analyze data

• Apps connecting to hearing aids and are able to calibrate them
• Apps that transform the mobile device into a medical device via sensors or
attachments, or by functionalities that are similar to these devices

• Apps that provide patient related analyses and output for health professionals
and non professions, and are used for diagnosis and treatment (e.g., risk and
dosage calculators)

The FDA, however does NOT regulate apps that do the following:

101



Figure 9.1 Mole Detective (left) and MelApp(right).

• Help users manage diseases without specific treatment
• Remind users to take medications
• Coach users with healthy life tips such as nutrition and weight
• Automate clinical calculations and basic tasks for health professionals
• Uses the camera to document or send images in consultations
• Provides reference material or information to professionals and students

Overall, if an app is FDA-approved, the developers themselves initiated the process

of getting it approved, as opposed to the FDA’s monitoring of new apps before

publication.

9.2.2 FTC

The Federal Trade Commission (FTC) enforces laws aimed to protect consumers from

fraud, unfair practices, and deception. Regarding medical apps, the FTC is concerned

with user privacy and security. There are two laws that medical apps must comply

with. The first, the FTC Act, protects consumers from deceptive or misleading claims

regarding app functionality and harm to the user. Additionally, the FTC enforces

the Breach Notification Rule which requires developers to notify users and the FTC

if there is a breach of unsecured personal health information. In other words, apps

which shared personal health information without user authorization are penalized.

Additionally, failure to comply results in a fine of $43,792 a day [69].
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To aid developers, the FTC provides an interactive tool to better understand

which laws and regulations comply with their application [69].

In 2015, the FTC filed a complaint against two melanoma detecting applications,

MelApp and Mole Detective. The apps claimed to detect melanoma via a user

provided photograph. The FTC stated that developers “must have scientific evidence

to support any health or disease claims that they make for their apps” [21]. As a

result, both apps were fined and removed from their respective app marketplaces.

Another example includes the female health tracking app, Flo, where the FTC

filed a complaint against the app for exposing sensitive user data to third party apps

without user consent [9].

9.2.3 HIPAA

The US Department of Health and Human Services (HHS) enforces legal rights

via HIPAA (Health Insurance Portability and Accountability Act) which protects

sensitive private health data. Many mobile medical apps acquire various types of

user input related to their health. However not all user data is deemed vital or

sensitive. PHI is information that can uniquely identify an individual. There are 18

specific PHI identifiers that HIPAA prioritizes that deal with patient info, such as

name, date of birth, dates of treatments, account numbers and other information that

would uniquely identify the patient [78].

Regarding how PHIs are handled by medical apps, HIPAA details a variety of

scenarios explaining when an app would be under their jurisdiction [79].

Covered entities (e.g., health plans, providers) must comply with HIPAA Rules

regarding PHIs of patients. Business associates who create apps for covered entities

also are compliant. Apps that are subject to HIPAA rules are apps that involve or

are associated with covered entities (e.g., telemedicine, electronic health record apps).

103



APK

Filtered out 
legitimate appsMetadata:

● App 
description

Information 
Retrieval based 
on Conditions

(TF-IDF)

192 apps that 
should be 
regulated

Figure 9.2 Methodology.

Even if an app does collect protected health information, as long as it is for personal

use and will not be transmitted, it does not need to be cleared by HIPAA.

9.3 Challenges

There are many challenges involved in determining whether an app should be

regulated. Firstly, app usage of sensors on its own and looking at app permissions are

not reliable metrics for functionality and regulation; many apps suffer from having

more permissions than intended.

Additionally, searching for PHI terms in an app’s XML can also be misleading,

as many apps require basic input data such as name, date of birth, and an email, all

of which are PHIs according to HIPAA laws. Yet, they are also used in unregulated

non-medical apps as well, which makes the case for regulation harder to consider.

Due to these challenges, we decided to focus on FTC regulations aimed to

protect users from deception and fraud. Additionally, there are clear examples of

apps that have violated these regulations, making it easier to observe patterns which

can cause the FTC to act in response.

9.4 Results

Focusing on app descriptions allows us to observe how users can be misled and

deceived. We begin by curating a list of keywords containing terms, such as

‘treatment’, ‘cure’, ‘diagnosis’, and medical conditions to utilize in a TF-IDF analysis

of descriptions. We used a dataset of 1290 medical apps already kknown to have

dubious claims. As a result, we identify a grouping of 347 apps that should be
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scrutinized further by the FTC for not having any scientific basis or confirmation.

This grouping is achieved by apps that had a frequency of 6 or above, as these scores

yielded the most relevant results. We considered apps that contained disclaimers or

were recommended by medical professionals as false positives in our grouping. These

apps, while not reliable or a replacement for a medical provider, are not inherently

deceptive in practice as they do warn the user within the description. Thus, our false

positive rate was 44.7%, with 155 apps. We did not have any false negatives in our

analysis. Accordingly, there were 192 apps that we believe should be regulated.

We noticed certain patterns among the group of apps that should be FTC

regulated or moved to a different category on Google Play. First, there are certain

apps that contain the term “treatment” in their name, while not actually able

to provide treatment via the mobile device. For example, the app All Stomach

Disease & Treatment is a dictionary of various intestinal diseases. While it seems

mostly harmless, the app states that “This clinical diagnosis and treatment book

can help prevent brain problems by providing you with info about the brain eater

stomach/intestinal worms. However, if it’s late to prevent you just need to visit

your doctor for treatment”1. We also found skin cancer detecting apps, like MelApp

and Mole Detective, which were fined by the FTC and removed, that do not

have disclaimers on its usage and offer a noninvasive detection method. The app,

DermoApp: Skincancer detection, claims to have an accuracy rate of 96.8% which is

not verified by any reputable medical source.

However, perhaps the most egregious cases of possible FTC violations are apps

advertising various ancient, herbal, and religious treatments claiming to cure diseases.

One such example is Home Remedies Herbal Treatment, which contains an exhaustive

list of conditions ranging from mild cases like the common cold to more serious cases

such as malaria and stroke that can be cured with natural remedies. It states that “it

1https://play.google.com/store/apps/details?id=com.patrikat.stomachdiseases

andtreatment
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Figure 9.3 DermoApp (left); Home Remedies Herbal Treatment (right).

can help in curing 200+ of most common diseases” without providing any scientific

substance or evidence to substantiate any claims.2

9.5 Suggested Improvements

The FDA’s framework is designed to promote innovation in developing medical mobile

apps, meaning less regulations and a focus on apps that can be physically problematic

to patients [18]. While theoretically plausible, in practice, there are many applications

that can be problematic. Additionally, a voluntary pathway to approval is unrealistic;

most developers will not take the time, resources, and effort to seek FDA approval

when the option to publish almost instantly on an app marketplace exists. The fact

that HIPAA is only concerned with apps that work with covered entities is extremely

narrow and leads to many apps easily bypassing any type of scrutiny. Apps which sell

or distribute sensitive personal data to third parties without user consent should be

penalized. The FTC intends to further improve and enforce their Breach Notification

Rule as a priority and a means to ensure that entities that are not covered by HIPAA

2https://play.google.com/store/apps/details?id=com.zhystudio.NaturalHomeRem

edies&hl=en US
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are held accountable [26]. However, mobile marketplaces should also be scrutinized

and should promote stricter requirements for users developing medical apps. While

the developer bears responsibility for ensuring that the apps is safe for public use and

approved, they cannot be trusted to go through the lengthy process for approval. For

instance, in the app descriptions found on Google Play for medical apps:

• 97 apps mention being HIPAA certified
• 14 apps stating that they are FDA approved
• 88 apps containing disclaimers that it is not a medical device or regulated

Additionally, Google Play itself does not have any strict guidelines regarding

medical apps. The policies regarding health content and services are mainly limited to

health misinformation, the sale and use of illegal substances and prescription drugs,

and claimed app functionalities. Google states that apps which connect to external

devices, such as an oximeter, must contain a disclaimer “that they are not intended

for medical use, are only designed for general fitness and wellness purposes, are not

a medical device, and must properly disclose the compatible hardware model/device

model” [8].

Among thousands of medical apps available, we find it unlikely that these are

the only apps requiring regulation or that are actually regulated. Regulatory entities

should work with app marketplaces to ensure that apps, prior to publishing, are

approved. One possibility is to integrate the FTC’s set of questions for developers as

part of the process of submitting a medical application.

9.6 Conclusions

As mobile health apps continue to expand and perform critical tasks, it is essential

that users and their sensitive data are protected by local regulations. We detail

regulatory entities based in the US to better understand which apps should be

regulated. We automatically classify 192 apps that should be scrutinized by the FTC.

We determine that the majority of apps most likely require some form of regulation
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and that current regulatory entities and app marketplaces need to be more diligent

and stringent with approving medical apps for public usage.
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CHAPTER 10

RELATED WORK

Related work regarding this dissertation falls into several categories: program analysis

(Section 10.1), mobile malware detection (Section 10.2), suspicious behavior in

mobile apps (Section 10.3), Android permissions (Section 10.4), medical mobile apps

(Section 10.5), and mobile authentication (Section 10.6).

10.1 Static and Dynamic Analysis

As dynamic analysis and static analysis tools have been used in this dissertation,

we discuss such tools that have been created and implemented by other researchers.

Dynamic analysis tools analyze code as a program is being run, basing the analysis on

runtime information. Dynamic analysis, however, only finds defects in code that has

been executed. Additionally dynamic analysis tools are limited due to computational

resources required to achieve an accurate analysis. Many researchers have attempted

to improve dynamic analysis in the following ways. Andlantis is a scalable dynamic

analysis tool able to process over 3000 Android apps per hour [45], reducing the

overhead of dynamic analysis. Intellidroid configures inputs to a specific dynamic

analysis tool [155], allowing to trigger malicious behavior that may be undetected

by standard dynamic analysis. Using process traces or ptrace, DroidTrace monitors

selected system calls of targeted processes, which run dynamic payloads, and classifies

behaviors through system call sequences [160]. As a result, DroidTrace is able to

detect different dynamic loading behaviors found in apps, especially malware.

TaintDroid is a dynamic taint analysis tool which monitors how apps access and

manipulate personal data in realtime. Taintdroid was used with 30 randomly chosen

popular Android apps and discovered 68 cases of potential data misuse in two-thirds

of the apps studied [63].
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Static analysis tools analyze an app’s source code (bytecode) without running

the app. Static analysis is exhaustive and approximates most aspects of app code

that may not be present during runtime.

FlowDroid is a precise static taint analysis tool for Android apps that analyzes

callbacks from the Android framework. By modeling call back methods and

application lifecycles, FlowDroid is able to efficiently detect leaks without having

a high false positive rate that is normally associated with static analysis [39].

Amandroid provides an alternative form static analysis for Android apps by

tracking Android components and inter-component communication. As a result,

Amandroid can address security issues that can result from multiple components’

interactions within the same app or different apps [150].

Normally in taint analysis, data flow is tracked from sources to sinks and

is presented as a source/sink pair. As a result, taint trackers are unable to

handle complex concatenated sensitive identifiers that are usually processed in

Android. Rahaman et al. introduce “algebraic” taint analysis that produces rich

and expressive leak signatures, employing AND/XOR operators and exposing hashing

operations [116]. Algebraic taint analysis is able to identify precisely which IDs are

leaked, in what form, and how they are combined prior to leaking; their empirical

study has revealed the leakiest libraries as well as the leakiest apps in a corpus of

1,000 top Google Play apps.

10.2 Mobile Malware Detection

As a means to document and characterize Android malware, Zhou et al. observed

1260 Android malware samples in 49 different families. The results indicated that

roughly 86% of malware samples repackage legitimate apps, 37% contain platform

level exploits to have more privileges, and 93% have bot-like capabilities. Additionally,

they investigated the success of off-the-shelf commercial antivirus tools: 79.6% of
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malware were detected in best case scenarios while the worst case the tool could only

detect 20.2% of malware [161].

Malware found in both official and unofficial Android markets have proven

problematic. In a different study, Zhou et al. [162] present a too, DroidRanger,

to efficiently detect potential infection from known and unknown malware found in

five different Android marketplaces, including Google Play. DroidRanger uncovered

211 malicious apps and two zero day malware in all the Android app markets they

studied.

As malware has spread throughout mobile systems, the security community

becomes more inclined to employ automatic dynamic analyses. Consequently,

malware authors have not stopped trying to detect these systems and to evade

analysis. Vidas et al. [146] address various techniques that can detect whether an app

is being analyzed, or running in a virtualized environment. They discuss four major

categories of signals – analysis and virtualization indicators: behavior, performance,

hardware and software components, and system design choices.

10.3 Detecting Suspicious Behavior on Mobile Apps

Monitoring the behavior of individual apps on Android is effective at exposing

malware.

SpanDex is a set of extensions for Android’s Dalvik virtual machine which

ensures that apps do not leak user’s passwords. Spandex handles implicit flows by

using various techniques that quantify the amount of information a process’ control

flow reveals about a secret. SpanDex runs untrusted code in a data flow sensitive

sandbox. Experiments on 50 popular Android apps discovered that, for 90% of users,

an attacker is expected to need 80 or more login attempts to successfully guess their

password [59].
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ProfileDroid captures what apps actually do, while comparing with claimed app

behavior, the resources utilized, entities the app communicates with, and executions

of the same application [152].

AppsPlayground is a framework which attempts to automatically review

and analyze smartphone apps. By integrating various components for detection,

AppsPlayground evaluates the system using both benign and malicious apps. In

addition, the implementation on roughly 4,000 apps resulted in a 25% improvement

of testing. As a result, AppsPlayground is a scalable and automatic approach to

tackle the growing number of apps in the app market [118].

10.4 Permissions in Android

Wei et al. studied the evolution of permissions in the Android ecosystem from Android

1.5 to Android 4.0.3 [151]. After discussing the different types of permissions required

from various apps, Wei et al. mention the dangers of not only third party apps, but

also of preinstalled apps – apps coming from phone manufacturers or mobile carriers.

The evidence suggests that more and more apps wanted more dangerous permissions.

Through these findings, the paper states that Android needed to improve the way

permissions were handled to protect user privacy and security in a more proactive

and user-friendly manner.

The tool Stowaway delves deeper in the permissions systems of Android 2.2 and

detects over-privileged apps. Stowaway generates the maximum set of permissions an

application requires and compares to the permissions that are actually being used.

The paper concludes that the causes of over-privilege in many apps are developer

error and confusion [65].

Apps using custom permissions rather than system permissions is another

serious matter. Apps can have their functionality exposed or exploited when defining

app-specific permissions. Overall the security implications were relatively unknown
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until Li et al [95] evaluated the design of custom permissions. Using the tool,

CuPerFuzzer+, Li et al. were able to detect custom permission related vulnerabilities

found in the system by treating the permission mechanism as a black box and

executing massive targeted tests to trigger privilege escalation. As a result, 5,932

effective cases with 47 critical paths were discovered along with shortcomings in the

Android permission framework.

Apps are also able to circumvent the permission system by using side channels

and covert channels as discovered by Reardon et al. [119]. Apps can bypass

permissions for READ PHONE STATE (which provides the IMEI of a device) and

ACCESS NETWORK STATE (which provides the MAC address of an individual

device). Furthermore, geolocation was acquired by apps via incoming ad mediation

service packets which provided location data within the ad link using IP based geolo-

cation. When apps circumvent permissions, the behavior is not inherently malicious

or even intentional; however this successful circumvention reveals weaknesses within

the Android system.

10.5 Medical Apps and Devices

Safety concern regarding medical mobile apps has been a prominent subject of study.

Magrabi et al. [101] provide a commentary on the difficulties of regulating healthcare

apps due to the fact anyone can make an app. Magrabi et al. confirm that there

is little to no monitoring of use or formal evaluation of such apps. Mobile mental

health apps are aimed to help patients manage their mental health conveniently on

their mobile devices. However, there is an issue with the lack of clear regulations in

mobile mental health apps as addressed by Terry et al. [135]. This paper creates a

typology of the types of mobile mental health apps that exist. They also discuss the

difficulty in judging the quality and efficacy of mental health apps, especially since

many apps are developed outside of traditional healthcare spaces.
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Developing safe medical apps and understanding the risks that apps entail have

been a point of discussion and research. For example, Lewis et al. evaluate and create

a risk framework of medical apps based on functionality [94]. Additionally, Wicks et

al. provide methods on how one can develop a medical app safely and securely [153].

Several studies investigated the accuracy and overall usability of mobile health

apps. Bierbrier et al.’s 2014 study [44] tested medical scores (including Child-Pugh

and HAS-BLED) and calculations, e.g., BMI, in 14 apps (2 Android and 12 iOS)

with 10 values: 2 extreme values and 8 middle values. There were errors in two

Child-Pugh apps, though they were at the low score ranges hence would not place

the patient over the threshold or in a different class. Coppetti et al. studied the

accuracy of smartphone heart rate measurement apps and revealed that there were

substantial performance differences between heart rate apps and clinical monitoring

– as much as 20 beats per minute [58]. While the study focused on only 4 apps,

app discrepencies may persist with other apps of this nature. The importance of

responsible app marketplace safeguards regarding health apps is discussed by Wykes

et al. [156]. Their work expressed concerns with the “overselling of health apps” and

suggested a set of four principles that app marketplaces could use to guide the user to

more sensible choices. Their study was conducted on four apps, rather than a larger

dataset. Wisniewski et al.’s study on top-rated health apps confirmed our findings

that most medical apps “continue to have no scientific evidence to support their use”

[154]; their study is based on manual analysis of 120 apps. Tangari et al. [132]

discovered severe privacy issues in 88% of medical apps used in their study, namely

that medical apps could potentially share user data with third party advertising and

tracking services. Other studies show there is little evidence to whether health apps

work, finding that only a small fraction of apps is tested [52], leading to suggestions

of “prescribed health apps”, or having health apps vetted by medical professionals

as a prescription rather than being able to be freely installed. The reliability and
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safety of health apps is discussed by Akbar et al. with most concerns stemming

from the quality of content presented in apps, such as presenting incorrect and

incomplete information [30]. Regarding weight loss apps, Zaidan et al. addressed

the usability features of these apps by applying an evaluation framework [157]. The

framework revealed that app marketplace search engines had biases towards certain

titles and keywords that did not reflect the full functionality of the app and that

the most popular apps are not necessarily the most effective. Brown et al.’s review

of 76 pregnancy apps regarding nutrition determined that such apps should not be

considered as an appropriate resource for pregnant women due to unsound nutritional

advice and overall unreliability [50].

10.6 Mobile Authentication

The security of various mobile authentication systems has been widely investigated

and studied. Research has shown that users tend towards predictable and popular

choices, regardless of the authentication method. Bonneau et al. [46] studied 4-digit

PINs and concluded that while 4-digit PINs fare better in user choices, guessing a

birthday is an effective strategy to access a user’s account. Wang et al. showed

that 6-digit PINs have marginally better security than 4-digit PINs, yet both English

and Chinese users fall into certain patterns when choosing PINs [149]. Markert et

al. collected PINs specifically primed for mobile authentication and demonstrated

that 6-digit PINs offer little (and perhaps worse) benefit over 4-digit PINs against

a throttled attacker. Moreover, non-enforcing blocklists (as deployed by iOS) do

not increase security [103]. Patterns, or graphical passwords, have been studied in

multiple contexts, including smudge attacks [42], shoulder-surfing [68, 62, 102, 41],

and user strength perceptions [35, 34]. The selection process has also been

studied [143, 40, 128], and in all cases, users choices are predictable. Zhang et al.

attempt to remedy these vulnerabilities by changing the shape of patterns. Instead
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of a 3 x 3 layout, schemes that have stronger security than the original Android

pattern are considered [158]. Along with security, usability is an important facet of

authentication method adoption, thus, quantifying user feedback of such methods

is pertinent [124]. Regarding biometric adoption and perceptions, users considered

biometrics to be more secure than PINs according to Bhagavatula et al. [43]. In

addition, usability factors (such as poor lighting for facial recognition) contributed to

users’ negative feedback and reluctance to adopt this method versus a more convenient

method such as fingerprint recognition. Even biometrics can lead to users choosing

weaker forms of knowledge-based authenticators [54]. Zhang et al. offer a solution by

combining biometrics with voice and face recognition [159].
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CHAPTER 11

CONCLUSIONS AND FUTURE WORK

11.1 Conclusions

To conclude, we see how mobile devices are an integral part to modern society, and

how important it is to ensure that mobile apps are safe and secure. We provided

a discussion of the Android ecosystem, including apps. The broad scope of mobile

security, as we detail, extends from device authentication to deceptive app behavior.

We explained how device administrator systems can be exploited and characterize

medical apps. We showed how medical apps have a wide range of functions and

cater to wide audiences, but also may overstate their actual functionalities in order

to attract users. We looked into whether medical score calculators are accurate or not

and discovered that both implementations and specifications of critical scores have

errors. Finally, we discussed regulatory frameworks and enforcement for medical apps.

11.2 Future Work

In this dissertation, we have seen the broad scope of mobile security and how apps

can exploit user data without their knowledge. Additionally we have seen the broad

landscape of apps, especially in the Medical category, and the variety of functionalities

they may have and how they can affect users. With these concepts in mind, there are

further studies that can be completed and addressed. Supplementing our observations

on medical app regulations in the US, we intend on expanding our study to better

refine and find apps which lack federal approval and need regulation. We hope to

create a fully automatic process that can be implemented by Google Play and other

app marketplaces that can force developers of medical apps to go through the full

approval process. Last, we intend on expanding our regulatory framework by studying
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other countries’ and institutions’ regulations and searching for possible loopholes and

improvements that can be made.
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[61] Denis Crăciunescu. A short history of mobile malware, Nov 2020. https://proand
roiddev.com/a-short-history-of-mobile-malware-296570ed5c1b as of
December 22, 2022.

123



[62] Alexander De Luca, Marian Harbach, Emanuel von Zezschwitz, Max-Emanuel
Maurer, Bernhard Ewald Slawik, Heinrich Hussmann, and Matthew Smith.
Now You See Me, Now You Don’t: Protecting Smartphone Authentication
from Shoulder Surfers. In ACM Conference on Human Factors in Computing
Systems, CHI ’14, pages 2937–2946, Toronto, Ontario, Canada, April 2014.
ACM.

[63] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun,
Landon P. Cox, Jaeyeon Jung, Patrick Mcdaniel, and Anmol N. Sheth.
Taintdroid. ACM Transactions on Computer Systems, 32(2):1–29, 2014.

[64] FDA. Examples of software functions for which the fda will exercise enforcement
discretion, December 2019. https://www.fda.gov/medical-devices/devi

ce-software-functions-including-mobile-medical-applications/ex

amples-software-functions-which-fda-will-exercise-enforcement-

discretion.

[65] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
Android permissions demystified. In Proceedings of the 18th ACM conference
on Computer and communications security, pages 627–638, 2011.

[66] Flavio Lopes Ferreira. Serial evaluation of the sofa score to predict outcome in
critically ill patients. JAMA, 286(14):1754, 2001.

[67] Greir Ander Huck Flynn, Barbara Polivka, and Jodi Herron Behr. Smartphone use by
nurses in acute care settings. Comput. Inform. Nurs., 36(3):120–126, March
2018.

[68] Alain Forget, Sonia Chiasson, and Robert Biddle. Shoulder-Surfing Resistance with
Eye-Gaze Entry inCued-Recall Graphical Passwords. In ACM Conference on
Human Factors in Computing Systems, CHI ’10, pages 1107–1110, Atlanta,
Georgia, USA, April 2010. ACM.

[69] FTC. Mobile health apps interactive tool, December 2019. https://www.ftc.gov/
tips-advice/business-center/guidance/mobile-health-apps-intera

ctive-tool.

[70] J Gardner-Thorpe, N Love, J Wrightson, S Walsh, and N Keeling. The value of
modified early warning score (mews) in surgical in-patients: A prospective
observational study. The Annals of The Royal College of Surgeons of England,
88(6):571–575, 2006.

[71] Annette M Green. Kappa statistics for multiple raters using categorical classifications.
In Proceedings of the 22nd annual SAS User Group International conference,
volume 2, page 4, 1997.

[72] Ames Gross. Column - medical software regulations in asia 2017, Nov 2017. https:
//www.medtechintelligence.com/column/medical-software-regulation

s-asia-2017 as of December 22, 2022.

124



[73] John Gruzelier. Unwanted effects of hypnosis: A review of the evidence and its
implications. Contemporary Hypnosis, 17(4):163–193, 2000.

[74] Hana Habib, Jessica Colnago, William Melicher, Blase Ur, Sean M. Segreti, Lujo
Bauer, Nicolas Christin, and Lorrie Faith Cranor. Password Creation in the
Presence of Blocklists. In Workshop on Usable Security, USEC ’17, San Diego,
California, USA, February 2017. ISOC.

[75] Faye Haffey, Richard R. Brady, and Simon Maxwell. A comparison of the reliability
of smartphone apps for opioid conversion. Drug Safety, 36(2):111–117, 2013.

[76] Marian Harbach, Emanuel von Zezschwitz, Andreas Fichtner, Alexander De Luca,
and Matthew Smith. It’s a Hard Lock Life: A Field Study of Smartphone
(Un)Locking Behavior and Risk Perception. In Symposium on Usable Privacy
and Security, SOUPS ’14, pages 213–230, Menlo Park, California, USA, July
2014. USENIX.

[77] HHS. Breach notification rule, December 2019. https://www.hhs.gov/hipaa/for-
professionals/breach-notification/index.html.

[78] HHS. Health information laws, December 2019. https://www.hhs.gov/hipaa/for-
professionals/security/index.htmlas of December 2019.

[79] HHS. Summary of privacy rule, December 2019. https://www.hhs.gov/hipaa/fo

r-professionals/privacy/laws-regulations/index.htmlas of December
2019.

[80] Jerry Hildenbrand. What’s a kernel?, Jan 2012. https://www.androidcentral.com
/android-z-what-kernel as of December 22, 2022.

[81] Eveline Hitti, Dima Hadid, Jad Melki, Rima Kaddoura, and Mohamad Alameddine.
Mobile device use among emergency department healthcare professionals:
Prevalence, utilization and attitudes. Scientific Reports, 11(1), 2021.

[82] Kit Huckvale, Samanta Adomaviciute, José Tomás Prieto, Melvin Khee-Shing Leow,
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