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ABSTRACT 

FACETED NANOMATERIAL SYNTHESIS, CHARACTERIZATIONS AND 

APPLICATIONS IN REACTIVE ELECTROCHEMICAL MEMBRANE 

FILTRATION 

 

by 

Qingquan Ma 

 

Facet engineering of nanomaterials, especially metals and metal oxides has become an 

important strategy for tuning catalytic properties and functions from heterogeneous 

catalysis to electrochemical catalysis, photocatalysis, biomedicine, fuel cells, and gas 

sensors. The catalytic properties are highly related to the surface electronic structures, 

surface electron transport characteristics, and active center structures of catalysts, which 

can be tailored by surface facet control. The aim of this doctoral dissertation research is to 

study the facet-dependent properties of metal or metal oxide nanoparticles using multiple 

advanced characterization techniques. Specifically, the novel atomic force microscope-

scanning electrochemical microscope (AFM-SECM) and density functional theory (DFT) 

calculations were both applied to both experimentally and theoretically investigate facet 

dependent electrochemical properties, molecular adsorption, and dissolution properties of 

cuprous oxide and silver nanoparticles. 

To promote the facet engineered nanomaterials for environmental engineering 

apparitions, our research has evaluated the performances of electrochemically reactive 

membranes that were prepared with novel 2D nanomaterials with surface functioal 

modifications to enable electrochemical advanced oxidation processes (EAOPs) in 

membrane filtration process. Our results demonstrated many advantages such as tunable 

reactivity, tailored surface reactions, antifouling features, and feasibility of large-scale 



 

 

continuous operations. Specifically, this dissertation will introduce our electrochemical 

membrane synthesis, reactivity, aging, byproducts formation and electrochemical 

adsorption and desorption, oxidation of pollutants such as two typical per-and poly-

fluoroalkyl substances (PFAS), perfluorooctanoic Acid (PFOA) and perfluorobutanoic 

acid (PFBA).  
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CHAPTER 1 

LITERATURE REVIEW 

 

 

Because of the rapid growth of global population, explosive development of 

industrialization and greater demand of energy in the past century, water scarcity has 

already become a serious global emerging challenge that is predicted to be worse in the 

future. Hence, a much better clean, safe and drinkable water treatment technology with 

higher efficiency and more sustainability is urgently required. Membrane technology are 

favored over other technologies for water/wastewater treatment, such as distillation, 

photodegradation, electrolysis or adsorption method, because, in theory, they take lower 

energy consumption, need no regeneration of spend media, achieve higher separation 

selectivity, and operate in a continuous mode. Although membrane technologies have 

already played a significant role in water purification with efficient, selective, and reliable 

separation performances, membrane processes often suffer from membrane fouling, 

physical diverting, ineffective to micropollutants and organic compounds (especially, 

highly recalcitrant contaminants). Reactive Electrochemical Membranes (REM) combined 

membrane technologies coupled with electrochemical advanced oxidation processes 

(EAOPs) has shown the significant improvement in the removal efficiency of organic 

contaminants from wastewater and antifouling ability of membranes compared to 

conventional EAOPs and membrane processes. Nanomaterial and nanotechnology are the 

key as the best possible methods to overcome the limitations of REM, such as mass transfer 

limitations, membrane materials’ performance, stability and cost, life span of membranes. 

Firstly, a comprehensive understanding of shape-controlled syntheses factor and typical 
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mechanisms is in need for delineating and predicting the influences of morphology on 

nanomaterials properties. Secondly, proper characterization is the key to accurately 

evaluate shape dependent physical, chemical and electrochemical properties of 

nanomaterials on exploring the novel, highly efficient, cost-effective membrane materials. 

There still remains a challenge to perform rapid, in situ, and possibly real-time 

characterization and quantification of nanomaterials, which is crucial for unravel new 

information about nanomaterial properties. Thirdly, the potential for nanotechnology to 

enable reactive electrochemical membranes filtration may substantially improve the energy 

efficiency of water treatment and expand access to safe water. However, enabling the real 

application of nanotechnology to REM will require strategies for resolving operational 

risks: such as, electrode stability (membrane aging or fouling), trade-offs between 

electrodes material performance (novel electrode material and nanoarchitectures and 

transition towards earth-abundant metals), byproducts formation (realistic aquatic 

application), increasing pollutant selectivity (crystal facets, DFT enabling bottom-up 

electrode design), life cycle analyses for nano-REM. 

Nanomaterials often show enhanced activities or characteristics compared with 

their bulk counterpart materials owing to their unique morphological, electronic and 

chemical surface properties. These properties can be carefully tuned to modify the activity 

and selectivity of electrocatalytic reactions or other particular functionalities. In many 

cases, catalytic performance of a catalyst highly depends on size or shape of this catalyst. 

Size modulates the fraction of atoms of the topmost surface layer among all atoms of a 

nanoparticle, the fractions of atoms at corner and edge among all atoms of the topmost 

surface layer of the nanoparticle, and the specific surface area of a catalyst in unit of mm2 
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per gram. Other than these size-dependent fractions of under-coordinated sites, electronic 

state of a metal nanoparticle could vary or even transit from a metallic state to molecular 

along with the decrease of size. Catalyst nanoparticles with different shapes could have 

different crystallographic shapes, packing, density and even electronic state of atoms of 

different surfaces. 

These shape-dependent factors are closely related to surface chemistry and 

structure of a catalyst, which essentially determines catalytic performance. This is because 

a catalytic event at a solid–gas or solid–liquid interface is performed on a catalytic site of 

the catalyst surface through necessary elemental steps called surface adsorption. From 

surface science point of view, typically reactant molecules, dissociated species and 

intermediates must interact with atoms of a catalytic site if a catalytic reaction follows the 

Langmuir–Hinshelwood mechanism. For example, the binding configuration of reactant 

molecules, dissociated species, and intermediates, and even products, and the binding 

strengths could all influence the selection of a specific reaction pathway. Surface of a 

catalyst nanoparticle with a different facet could yield a different binding configuration and 

strength; thus, they provide different sites of surface terraces, steps and corners. Thus, the 

influences of shape of a catalyst nanoparticle on its catalytic performance are essentially 

reflected by variation of chemical and structural factors of surface of catalyst nanoparticles. 

The measured catalytic performance of an industrial catalyst is in fact a sum of 

contributions of individual nanoparticles with different structural and chemical variations. 

Due to the interplay between the structural and chemical factors, it is quite challenging to 

achieve fundamental insights into how each of these factors influences the catalytic 
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performance. Yet, such fundamental insights are crucial for rational design of a catalyst 

with high activity, selectivity and durability. 

Among different tools for probing nanomaterial properties, atomic force 

microscope (AFM) is one of the most attractive and unparalleled means that could 

characterize in situ surface properties at a nanometer resolution. AFM utilizes a cantilever 

with a sharp tip (radius of curvature: 5-10 nm) that oscillates over the surface of samples 

while scanning. The subtle changes in heterogeneity of local material surfaces will induce 

sensitive changes of the cantilever tip’s vibration amplitude and frequency. For example, 

AFM can measure hardness and elasticity, surface adhesiveness, surface energy and 

surface electrical properties. Particularly, Kelvin probe force microscopy (KPFM) operated 

in the electric mode of AFM generates mapping of the local surface work functions (or 

Fermi energy levels). Local work function can reveal surface defects, grain boundaries and 

surface charges on single crystal planes. Furthermore, scanning electrochemical 

microscopy–atomic force microscopy (SECM–AFM) can characterize electrochemical 

reactions or processes (e.g., corrosion) in real time, simultaneously collect nanomaterials’ 

topography and electrochemical properties at local material surfaces with high spatial 

resolution. Such local-scale characterizations are crucial for understanding nanomaterials’ 

structure-activity relationships. 

 

1.1 Shape Control of Metal and Metal-Oxide Nanomaterials 

Nanotechnology is design, fabrication and application of nanostructures or nanomaterials, 

and the fundamental understanding of the relationships between physical properties or 

phenomenon and material dimensions. Nanotechnology deals with materials or structures 

in nanometer scales, typically ranging from sub-nanometers to several hundred nanometers. 
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Advances in nanotechnology have significantly contributed to many science and 

engineering fields such as material science, biotechnology, environmental engineering, 

among other disciplines. Unique properties at the nanoscale have led to a large number of 

material applications in a wide range of commercial and industrial products such as 

catalysts, construction materials, electronic devices, and cosmetics, among others . It is 

estimated that by the year 2020, nanotechnology industries will reach to a market value of 

approximately $3 trillion. Among engineered nanomaterials, metal- and metal-oxide 

nanoparticles currently comprise a significant fraction of all produced and applied 

engineered nanoparticles. For example, nanoscale silver and nanoscale titanium are widely 

used in treated paints for car, outdoor, and indoor facilities. As a color additives, food 

industries have widely used titanium dioxide nanoparticles. Nano sized titanium dioxide 

and zinc oxide currently are also routinely used in skin cosmetics and sunscreens as 

ultraviolet (UV) filters. 

Along with unique material properties, the impacts of nanomaterials on 

environment and human health must also be evaluated for technology safety and 

sustainability. In 2007, Science Policy Council of U.S. Environmental Protection Agency 

published a "Nanotechnology White Paper" to address potential risks from environmental 

exposure to nanomaterials. The White Paper provided information regarding the potential 

risk of nanomaterials including human health (toxicity), fate, and transport research. Since, 

concerns regarding the possible unwanted release of nanoparticles into the environment 

during their production, usage, or disposal have been topics of considerable attention. 
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1.1.1 Metal and Metal-Oxide Nanomaterials  

Metal and metal-oxide nanomaterials exhibit different physiochemical properties and are 

different than their native bulk compounds in several respects which includes its surface, 

optical, thermal, magnetic, mechanical, biological and electrical properties. The properties 

that make the nanophase structures indispensable tools in modern nanotechnology are their 

various nonlinear optical properties, higher ductility at elevated temperatures than the 

coarse-grained ceramics, cold welding properties, superparamagnetic behavior, unique 

catalytic, sensitivity, and selective activity. For example, the melting point of the nanosized 

material is lower than that of a bulk material with the same composition. At the same time, 

NPs exhibit unusual adsorptive properties and fast diffusivities and they are not stable in 

critical conditions.  

Metal and metal-oxide nanomaterials with fundamental properties have been found 

to hold great potential and promise for use in biomedical, biosensor, pharmaceutical, 

catalytic, fuel cells, drug delivery, healthcare, cosmetics, household, agricultural, optical, 

chemical, magnetic data storage and antimicrobial applications.  Owing to their interesting 

properties, which are affected by their structural morphology, nanoparticles have been 

studied extensively, and many studies have synthesized nanoparticles via chemical and 

physical methods. 

Among above applications, electrocatalysis has broadly been employed in chemical 

reactions, separation, energy conversion and storage. For most electrocatalytic systems, the 

reasonable construction of active sites is important for catalytic activity and reaction 

mechanisms. For example, Figure 1.1a−e shows faceted CeO2 nanocrystals that are 

oriented along [110], with [111], [110], and [002] lattice planes imaged edge-on. Figure 

1.1f shows that the truncated octahedral CeO2 could be enclosed by [111] and [100] planes 
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that have different surface density of atoms [111] > [100]] and different surface energy 

[γ[111] < γ[100]] (Figure 1.1h−j). The exposed crystal facets greatly dictate the surface 

redox chemistry and catalytic activities of ceria nanomaterials. Rod-shaped nanostructures 

of CeO2 preferentially expose the reactive [110] and [100] planes, providing higher 

catalytic activity for CO oxidation. Adsorption mechanisms and reaction kinetics of 

acetaldehyde on [111] and [100] of CeO2 differ significantly. Similarly, a greater 

proportion of exposed polar surfaces of ZnO crystals has been found to have greater 

photocatalytic activity. Catalytic activities of high-index facets of Au NPs exhibit 

dramatically enhanced catalytic activities toward a variety of chemical and electrochemical 

reactions because high-index facets are open surface structures with high densities of 

coordinatively unsaturated atoms at the surface steps and kinks in comparison to the close-

packed low-index facets. 

 
Figure 1.1 (a−e) Typical high-resolution TEM images of CeO2 oriented along [110], 

showing the facet structures as defined by the [002] and [111] facets. (f) Structural models 

of the octahedral and truncated octahedral shapes. (g) Unit cell of the CeO2 structure. (h−j) 

The [100], [110], and [111] planes of the CeO2 structure. 
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1.1.2 Syntheses of Metal and Metal-Oxide Nanomaterials 

There has been great progress in the fabrication of various metal and metal-oxide 

nanostructures as well as the investigation of their field uses over the last two or three 

decades. The study and production of novel materials at the nanoscale are included in 

nanotechnology. In nanotechnology, a number of synthetic methods and techniques were 

employed. The "top-down" technique and the "bottom-up" approach are two main 

categories of synthetic strategies that can be used to produce and fabricate metal and metal-

oxide nanostructures, as shown in Figure 1.2.  

 
Figure 1.2 Two approaches to nanoparticle syntheses. 

 

In the top-down approach, nanoparticles are synthesized by size reduction, 

degenerating from the bulk material into fine particles. This process could be achieved 

through physical and chemical methods by lithographic, mechanical(e.g., milling, 

grinding), sputtering, chemical etching, thermal evaporation, pulsed laser ablation and 

photo reduction techniques. However, the top-down approach is based on the physical and 

lithographic principle of micro- and nanotechnology and starts from a large material entity. 
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The produced metal and metal-oxide nanoparticles (NPs) have sizes in the medium to lower 

nanometer range but with a relatively broad size distribution and uncontrollable shape. In 

the bottom-up approach, nanoparticle synthesis relies on chemical methods (e.g., chemical 

reduction/oxidation of metal ions), sol-gel chemistry, chemical vapour deposition(CVD), 

co-precipitation, microemulsion, pyrolysis, hydrothermal, solvothermal, radiation induced, 

and electrodeposition methods. In the bottom-up synthesis, also known as the self-

assembly approach, the nanoparticles with high structural purity and diverse shapes, sizes, 

compositions and surface properties are assembled from smaller units, for example, by 

ionic, atomic, molecular and smaller particles. Recently, a strong focus is placed on 

biological synthesis, where metal and metal-oxide NPs are extracted from fungi, algae, 

bacteria, and plants (usually terrestrial) in which a variety of metabolites act as reducing 

agents in NPs synthesis. Biosynthesis is a green synthetic approach that can be categorized 

as a bottom-up approach where the metal atoms assemble to form clusters and eventually 

nanoparticles. The biosynthetic process is similar to the chemical reduction process, but 

with the expensive and noxious reagents substituted by plant extracts to synthesize the 

nanoparticles. Amooaghaie et al and Kummara et al differentiated between the chemical 

reduction of AgNPs using green synthesis with plant extracts and a conventional wet-

chemistry method via monitoring of the toxic response by a comparison study. The 

resulting AgNPs from green synthesis showed significantly lower cytotoxicity and 

phytotoxicity than that of the AgNPs synthesized by chemistry approach, which confirmed 

that green approach Ag NPs are safer and can be extensively used in biomedical fields, 

particularly in cancer fields. Therefore, due to these reasons and the increased recognition 

regarding the importance of fundamental green chemistry techniques, biological synthesis 
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is a promising eco-friendly alternative that appears to offer the green approach and 

beneficial results. Despite the many advantages of plant extracts, there are several other 

obstacles that should be considered before they can be applied practically, such as the well-

defined control of the size, shape, structure, crystallinity and monodispersity of the plant-

synthesized nanoparticles. From the fundamental and functional viewpoints, the bottom-

up approach is far more popular in the synthesis of metal and metal-oxide NPs and is 

considered as a promising route to control the composition, growth, morphology and 

properties of metal and metal-oxide NPs. 

Metal and metal-oxide NPs obtained from the bottom-up approach have tunable 

novel properties due to the possibility of significantly affecting their dimensional shape. In 

terms of the dimensions of metal and metal-oxide NPs, shapes can be classified as zero 

dimensional (0D) (isotropic structure), one dimensional (1D), two dimensional (2D), and 

three dimensional (3D) (anisotropic structure). Zero dimensional are nanosized particles 

that have their length and width within the nanometer range, they are simply nanoparticles. 

One dimensional are shaped like filaments. If a filament with a nanometric diameter and 

having a length that is much bigger, then you have a 1D material. Two dimensional are 

thin films. The thickness is very small, but they extend in a 2D plane. Three dimensional 

materials are the old classical shaped objects. They have a length, a width and a thickness 

that are relatively beyond a few nanometers. The typical solid and hollow shapes of metal 

and metal-oxide NPs based on dimensionality are shown in Figure 1.3. In the case of 0D 

metal and metal-oxide NPs, typical shapes include spherical, pseudo-spherical, 

dodecahedral, tetrahedral, octahedral, cubic, and the corresponding hollow structure 

morphologies. One dimensional morphologies of metal and metal-oxide NPs are nanotubes, 
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nanoneedles, nanorods or nanowires, nanoshuttles, nanocapsules and hollow structures. 

Round disks, hexagonal/ triangular/ quadrangular plates or sheets, belts, mesoporous-

hollow nanospheres, hollow rings, etc. belong to the 2D shape class of metal and metal-

oxide NPs. Three dimensional morphologies of metal and metal-oxide NPs are complex, 

and include nanourchins, nanoflowers, nanostars, polygonal nanoframes, multiple hollow 

shelled NPs, hollow bunches.  

 
Figure 1.3 Typical morphologies of solid and mesoporous/hollow metal and metal-oxide 

nanoparticles with 0D, 1D, and 2D shapes and other 3D complex structures. 

 

Compared with the simple isotropic morphologies of metal and metal-oxide NPs, 

novel anisotropic morphologies of metal and metal-oxide NPs give rise to new features and 

unique physicochemical properties due to the number of step edges and kink sites on the 

surface and the high surface area-to-volume ratios in the nanoscale regime. For instance, 

polyhedral Au NPs with high-index facets exhibit excellent optical and catalytic properties, 

Au rods with different ratios of length and width display different transverse and 

longitudinal plasmon bands for surface enhanced Raman scattering and biomedicine, and 

branched Au NPs with multiple tips (such as stars and flowers) have been attracting 
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increasing interest in catalysis, surface-enhanced Raman scattering, and sensing. A great 

deal of effort has been devoted to the control over the shape of metal and metal-oxide NPs, 

and much progress in the synthesis of shape-controlled metal and metal-oxide NPs and 

their corresponding shape-dependent properties have been made over the past decades. 

Generally, the shape formation of metal and metal-oxide NPs can be controlled or varied 

by thermodynamic or kinetic control in the solution. Normally, the thermodynamically 

controlled morphology of metal and metal-oxide NPs was produced when the reaction was 

driven by the chemical potential of the reaction solution, which is directly related to the 

temperature and supersaturation of the solution. Kinetically controlled morphologies of 

different dimensions can be obtained by altering the reaction conditions and happens when 

freshly produced atoms are in rapid collision with a smaller number of embryos in local 

regions of high supersaturation for the formation of nucleus, according to nucleation theory. 

And then the growth of nucleus in kinetically controlled processes contributes to the 

formation of nanoparticles with anisotropic shapes. Thus, the synergistic effects of 

thermodynamic and kinetic aspects are considered as critical roles in determining the final 

shape of metal and metal-oxide NPs.  

Recently, most efforts in the literature have been placed on the effect of adjusting 

reaction parameters on the shape evolution in capping molecule-assisted synthesis and 

other innovative synthesis approaches. To design and delicately control the shape of 

nanocrystals is one of the most important issues in nanoscience, chemistry and physics 

owing to the close correlations of the surface morphologies with the electronic structure, 

bonding, surface energy, and chemical reactivity. The facets with different crystallographic 

characters have distinctive surface atomic structures, reconstructions, and atomic 
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termination features corresponding to sharp differences that have been demonstrated in 

light-sensing, gas and chemical reactivity, field emission properties etc. The ability to 

understand, predict and control the exposed surfaces and the corresponding volume 

fractions of nanocrystals is of critical importance to elucidate and explore shape-dependent 

chemical and physical properties. However, it is worth noting that there are no simple rules 

to determine the final shape of metal and metal-oxide nanomaterials. A comprehensive 

understanding of the basic principle of nucleation and growth that typically occurs in the 

bulk solution throughout all the reactions, and the corresponding influential reaction 

parameters including precursor concentration or supersaturation, reaction 

temperature/aging time and additives are indispensably important for the shape control of 

metal and metal-oxide NPs. 

1.1.3 Nucleation and Growth Theory of Metal and Metal-Oxide Nanomaterials 

1.1.3.1 Classical Nucleation. The definition and classification of nucleation have been 

described by Mullin since 1961, where nucleation is a process whereby a second phase is 

generated from one phase. In solution state, solid particles are considered as the second 

phase that generated from the precursor solution phase by the nucleation process. Here, if 

the solid nucleus are generated from a homogenous supersaturated bulk solution this is 

referred to as “primary nucleation”. Conversely, if the fresh nucleus are generated in a 

supersaturated bulk solution in the presence of other particles or materials with the same 

or different components (such as container surfaces, impurities, grain boundaries, 

dislocations), this is named “secondary nucleation” or “heterogeneous nucleation”, 

respectively. Additionally, heterogeneous nucleation and secondary nucleation are much 

easier than primary nucleation due to the low energy barrier, since stable nucleating sites 
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are already present in the system. As presented by Mullin and other researchers, the 

formation of homogeneous nucleus is considered as a thermodynamic process driven by 

the supersaturation of the bulk solution and decided by the total free energy (ΔG) of a NP, 

defined as the sum of the surface free energy and bulk free energy ΔGν , as shown in 

Equation (1.1) 

𝛥𝐺 = 4𝜋𝑟2𝛾 −
4

3
𝜋𝑟3𝛥𝐺𝑣 (1.1) 

where r and γ are the radius of the particle and the surface energy, respectively. With 

regards to the free energy of the bulk crystal ΔGν is defined as the free energy change for 

the transformation to a unit volume of particles, dependent upon temperature T, 

Boltzmann’s constant kB , its molar volume ν, and the supersaturation ratio of the bulk 

solution S. That is, 𝛥𝐺𝑣 =
−2𝛾

𝑟
=

−2𝑘𝐵𝑇 𝑙𝑛 𝑆

𝑣
. Particularly, S is defined as the ratio of the 

monomer concentration in solution C to the equilibrium monomer concentration C* in the 

crystals (S = C/C*).  

 
Figure 1.4 Schematic illustration of the free energy diagram for nucleation. 
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In homogeneous solution, the nucleation process is accomplished by assessing the 

increase in free energy to form an interface between the bulk solution and the surface solid 

nucleus. The radius of the formed nucleus are highly dependent on the supersaturation 

level, and the rapid increase and narrow distribution of supersaturation results in small 

particles in terms of the definition of the bulk free energy ΔGν . The critical value of ΔG 

and the critical radius of the nucleus that exist in the bulk solution are calculated by 

differentiating ΔG with respect to radius r and setting to zero, d(ΔGcrit )/dr = 0 , giving the 

critical free energy in Equation (1.2) 

𝛥𝐺𝑐𝑟𝑖𝑡 =
4

3
𝜋𝛾𝑟𝑐𝑟𝑢𝑡

2 = 𝛥𝐺𝑐𝑟𝑖𝑡
ℎ𝑜𝑚 𝑒 (1.2) 

Apparently, 𝛥𝐺𝑐𝑟𝑖𝑡𝑖𝑠
ℎ𝑜𝑚𝑜  required lowest energy barrier to obtain stable nucleus within 

homogenous solution (Figure 1.4). Then, the critical radius corresponds to the minimum 

size of nucleus surviving in solution without being redissolved, as defined in Equation (1.3) 

𝑟𝑐𝑟𝑖𝑡 =
−2𝛾

𝛥𝐺𝑣
=

2𝛾𝑣

𝑘𝐵𝑇 𝑙𝑛 𝑆
 (1.3) 

A nucleation rate of nucleus N formed per unit time per unit volume, was written in the 

form of the Arrhenius reaction velocity equation, which is commonly used for the rate of 

a thermally activated process: 

𝑑𝑁

𝑑𝑡
= 𝐴 𝑒𝑥𝑝( − 𝛥𝐺𝑐𝑟𝑖𝑡/𝑘𝐵𝑇) = 𝐴 𝑒𝑥𝑝(

−16𝜋𝛾3𝑣2

3𝑘𝐵
3𝑇3(𝑙𝑛 𝑆)2

) (1.4) 

where A is a pre-exponential factor. According to Equation (1.4), the nucleation rate can 

be varied by the experimental parameters involving supersaturation, temperature and 

surface free energy, and the detailed influence will be introduced in the following part. The 

higher concentration of monomer, high temperature and lower critical energy barrier favor 

a rapid nucleation rate, resulting in a high population of nucleus with small size, as 
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demonstrated by a large number of synthetic processes. Additionally, some non-classical 

nucleation theories, such as two-step nucleation for protein crystallization, and cluster 

aggregation for agglomeration of particles, were also explored to address the nucleation 

process. 

1.1.3.2 Classical Growth and Dissolution. After nucleation, the subsequent growth of 

nucleus strongly determines the shape of the nanomaterials, which is thermodynamically 

driven by the decreasing surface free energy of the generated particles. The growth process 

involves deposition of elementary units (including atoms, molecules, assemblies or 

particles) onto the preformed NPs in a growth medium (plasma, melt, solution, gel, etc.). 

And this attachment occurs at the sites of the nucleus surface. The density of existing sites 

on the preformed nucleus surface together with the kinetics of incorporation into these sites 

are crucial factors to determine the growth rate of NPs. In classical growth theory, there 

are two growth mechanisms including surface reactions and monomer diffusion to the 

particle surface. 

As described by Fick’s first law of diffusion, the diffusion rate of monomers through a 

surface of spherical NPs with radius x can be written as 

𝑑𝑚

𝑑𝑡
= 𝐽𝐴 = −4𝜋𝑥2𝐷

𝑑𝐶

𝑑𝑥
 (1.5) 

where J is the monomer flux and D is the diffusion constant. For the diffusion rate of the 

monomers at the surface of spherical NPs with radius r at steady state, the above equation 

can be written as 

𝑑𝑚

𝑑𝑡
= 4𝜋𝑟𝐷(𝐶𝑏 − 𝐶𝑖)  (1.6) 
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where Cb is the concentration of monomers in the bulk solution, and Ci is the concentration 

of monomers at the interface of the solid/liquid. Similarly, equations can be written for the 

rate of the surface reaction, 

𝑑𝑚

𝑑𝑡
= 4𝜋𝑟𝑘(𝐶𝑖 − 𝐶𝑟)  (1.7) 

where k is the mass transfer coefficient, and Cr is the equilibrium concentration of solid 

NPs. If the diffusion is the limiting factor and the particle size changes with time, the 

diffusion of monomers onto the surface of NPs is given by Equation (1.8). Similarly, if the 

surface reaction is the limiting factor, Equation (1.7)can be described in Equation (1.9) 

𝑑𝑟

𝑑𝑡
=

𝐷𝑣

𝑟
(𝐶𝑏 − 𝐶𝑟) (1.8) 

𝑑𝑟

𝑑𝑡
= 𝑘𝑣(𝐶𝑏 − 𝐶𝑟) (1.9) 

where Cr is the solubility of the NPs, and ν is molar volume of bulk NPs. If the limiting 

factor of the growth of nanoparticles is controlled neither by diffusion nor surface reaction, 

then the increase in particle size with time follows Equation (1.10) 

𝑑𝑟

𝑑𝑡
=

𝐷𝑣

𝑟 + 𝐷/𝑘
(𝐶𝑏 − 𝐶𝑟) (1.10) 

 

A scheme of crystal growth under limitation of diffusion or reaction with 

concentration changes is given in Figure 1.5. Diffusion-limited or reaction-limited 

processes with a different concentration of precursor monomer determine the shape of NPs 

by growth rate. Within a solution with a high concentration of precursor monomer solution, 

the growth rate is controlled by the diffusion-limited process. That is, diffusion of the 

precursor monomer is the rate-determining step. Then, the precursor monomers are 

precipitated immediately onto the surface of NPs through the bulk reaction medium and 



18 

 

solvent. In the case of the reaction-limited growth process, when the concentration of 

precursor monomer is low and growth is greatly limited by the surface reaction of 

monomers, the total growth rate is determined by the relative nucleation and growth rates 

of the monomers on the surface of the NPs. 

 
Figure 1.5 Diffusion-reaction model for crystal growth with concentration in the solution 

state. 

 

From Equation (1.8) and (1.9), both diffusion-limited and reaction-limited growth 

are driven by the precursor monomer concentration. Then, the diffusion-limited growth or 

reaction-limited growth is the decisive factor for the shape and size control of NPs. 

Normally, diffusion-limited growth is the desirable process for the production of NPs with 

monodispersity, but reaction-limited growth determines the final shape of the NPs. During 

the diffusion-limited growth process, organic ligands or surfactants adsorbed on the surface 

of the preformed NPs introducing a diffusion barrier is a flexible and effective approach to 

get controlled shape with monodisperse sizes. 

Here, it worth noting that the occurrence of growth is on condition of a positive 

concentration gradient between a higher bulk concentration of solution and the particle 
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equilibrium concentration. Whereas, dissolution of particles occurs in the case of a negative 

concentration gradient between the bulk concentration of the solution and the higher 

particle equilibrium concentration as the driving force. Generally, the dissolution of NPs 

is induced by temperature, pH, polymorphic form, and size. However, the thermodynamic 

parameter temperature has a negative effect on the dissolution of  metal and metal-oxide 

NPs. Thus, the common parameters for the dissolution of metal and metal-oxide NPs are 

the polymorphic form, and the pH change of solution. Practically, varying the pH of the 

solution is the most direct and effective route to get dissolution of metal and metal-oxide 

NPs (such as adding H+, OH−, NH3), and this principle is based on the combination ability 

of metal ions and hydroxyl ions, resulting in the increased concentration of the solution by 

dissolving the solid particles. Recently, intensive studies have been carried out to address 

novel shape control through a growth–dissolution–recrystallization process with the pH 

adjustment of bulk solution. Furthermore, the dissolution–recrystallization process has also 

been developed for the phase transformation of polymorphism of metal and metal-oxide 

NPs with different shapes, and for producing hollow structures. For instance, 3D 

rhombohedral α-Fe2O3 has been synthesized by the phase transformation of initial 

intermediate β-FeOOH nanowires through such a dissolution–recrystallization process, as 

reported by Lin and co-workers. The polynucleus but unstable β-FeOOH nanowires were 

hydrolyzed to form two-line ferrihydrite (α-Fe2O3) nucleus through dissolution–

recrystallization, then the small α-Fe2O3 nucleus formed went through the mechanisms of 

aggregation, orientation attachment and recrystallization of Ostwald ripening to form 3D 

rhombohedral α-Fe2O3 NPs. 2D or 3D hollow α-Fe2O3 nanostructures with tunable shapes 

(nanotubes, nanobeads, and nanorings) were formed with dissolution–recrystallization 
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control after 48 h via a hydrothermal route. The formation of α-Fe2O3 NPs with hollow 

structures obeyed the mechanisms of nucleation, aggregation, dissolution and re-

crystallization successively. Further, the dissolution process occurred on the (001) planes 

perpendicular to the c-axis due to the weak adsorption of the phosphate ion, resulting in 

the coordination effect between Fe3+ and phosphate ions to accelerate the dissolution 

process.44 Additionally, Wu and co-workers also found that the sulfate ions favored the 

dissolution of α-Fe2O3 owing to the coordinated effect with ferric ions during the synthetic 

process of 1D magnetic iron oxide short nanotubes. 

1.1.3.3 Conventional Factors for Shape Control. (a) Supersaturation. Supersaturation 

is generally expressed as a concentration difference, ΔC = Cb− Cr. In a typical synthetic 

process for metal and metal-oxide NPs, however, the reaction solution contains precursor, 

reductant agents, solvent, and stabilizers and other additives. Supersaturation refers to the 

precursor concentration or precursor ratio in a single or multiple precursor chemicals 

system, respectively. From classical nucleation and growth theory, supersaturation plays a 

major and direct role in determining the nucleation and growth rate. For the synthesis of 

metal and metal-oxide NPs in the solution, LaMer theory is a widespread accepted theory 

for the nucleation and growth of NPs, in which the nucleation and growth theory can be 

divided into two stages, as shown in Figure 1.6. 
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Figure 1.6 Scheme for the LaMer theory for nucleation and growth and the variation of 

particle numbers during the nucleation and growth process. 

 

In the initial stage, the concentration of free precursor monomers in the bulk 

solution increases rapidly and crosses into the metastable zone until the “burst nucleation” 

point is reached, consuming the concentration of free precursor monomers significantly in 

the solution and increasing the number of solid particles rapidly. During this process, the 

number of nucleus and the concentration consuming rate are mainly dependent on the 

nucleation rate. That is, a fast nucleation rate is able to decrease monomer concentration 

sharply and generates a huge number of nucleus rapidly. The nucleus formed under the 

control of the diffusion of monomers also consumes monomer concentration during the 

growth period, causing the monomer concentration in the solution to decrease continuously. 

Furthermore, aggregation/ agglomeration, or Ostwald Ripening and other mechanisms may 

occur among the preformed nucleus, reducing the number of solid particles until the 

equilibrium state of the bulk solution is reached. During the growth process, if the 

generated nucleus have a tendency to form low-energy NPs by supplying sufficient energy 
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to the bulk solution or by having a low concentration of precursor monomer under 

thermodynamic control, 0D spherical, pseudo-spherical, or other isotropic NPs are usually 

formed. Otherwise, the growth of nucleus driven by kinetic control forms anisotropic 

shapes at high precursor monomer concentrations. In other words, the producing rate and 

consuming rate of precursor monomer concentration have a strong influence on the 

nucleation and growth, which can be altered by the concentration of the precursor monomer 

directly, the coordination of the solvent, and the chelation effect of pH. 

 
Figure 1.7 Schematic illustration of many-faceted polyhedral Au nanoparticles changing 

with the concentration of the reductant using SEM images. 

 

(i) The concentration of the precursor and additives. Supersaturation is directly 

and significantly altered by the addition of precursor (injection or dumping), the reductant 

concentration or reductant ratio, coordination with other ions or agents in a one-pot 

synthesis or seed-mediated route. Particularly, for reducing agents, the ratio between the 

precursor and the reductant is also a significant parameter to control the depletion rate of 

the precursor monomer for the formation of metal and metal-oxide NPs. For example, 

Teranishi and co-workers have reported that by progressively increasing the concentration 

of the reducing agent (ascorbic acid) in the growth solution, polyhedral morphologies of 

Au NPs evolved from octahedral to truncated octahedral, cuboctahedral, truncated cubic, 

cubic, and finally trisoctahedral structures as facilitated in a facile seed-mediated route 

(Figure 1.7). The shape control of the Au NPs by the reductant (ascorbic acid) was 
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explained in terms of the effect of the exposed surface planes of the Au seeds in different 

concentrations of ascorbic acid. That is, with higher concentrations of ascorbic acid in the 

growth solution, the Au seeds were surrounded by higher lattice planes for a face-centered-

cubic structure due to the rapid growth of seeds, producing a thermodynamically unstable 

structure. Conversely, with the addition of a low concentration of ascorbic acid, the 

formation of a thermodynamically stable structure was favored by precipitating a small 

amount of atoms onto the Au seeds. Additionally, the amount of seed NPs also has a 

tremendous impact on the final shape of metal and metal-oxide NPs in the seed-mediated 

process due to the surface area for growth.  

  
Figure 1.8 Mother solution pH versus the concentrations of NaOH before (black squares) 

and after (red circles) hydrothermal reaction. The insets show the shape evolution of Cu2O 

nanocrystals from nanowires, through nanoparticle-aggregated spheres, and finally to 

truncated octahedra. Scale bars are 200 nm. 

 

(2) pH effect. Altering the pH through the addition of acid oralkali (H+ , OH− or 

NH3 ) results in the modulation of the state of a chemical species in solution and 

coordination bonding with ions in the precursor monomer solution to form a complex. 
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Eventually, promoting or postponing the release rate of ions from the coordination bonding 

for supersaturation enables the adjustment of the initial nucleation rate for shape control. 

This general trend is obviously observed in the synthesis of metal oxides or metal materials. 

Xue and coworkers have used pH-dependent precursor species Cu(OH)2 , Cu2(OH)3NO3, 

and Cu(OH)4
2− in a starch reduction solution to achieve Cu2O NPs with shapes evolving 

from 1D nanowires to 3D polyhedra. During this process, pH-dependent precursors were 

available to manipulate the reaction kinetics of the reduction and complexation reactions 

for exquisite control over the shape and composition of Cu2O NPs (Figure 1.8). 

Furthermore, high pH is of benefit to promote the reduction power of starch and the 

complexation ability of OH− facilitated the shape evolution of Cu2O NPs. Additionally, pH 

also adjusts the surface properties of the preformed NPs and the chemical or physical state 

of the surfactants or additives, leading to different adsorption modes or adsorption amounts 

on the surface of the preformed NPs. As a result, selective growth or 

aggregation/agglomeration, and self-assembly favor the shape evolution of metal and 

metal-oxide NPs. For instance, as presented by Wang and co-workers, α-Fe2O3 hierarchical 

nanostructures including 3D houseleek-like and 2D snowflake-like dendrites were 

produced by changing the pH via different formation mechanisms, as shown in Figure 1.9. 

The change in pH significantly affected the growth rate of α-Fe2O3 by adjusting the supply 

of Fe3+. When the pH≥6, 2D snowflake-like α-Fe2O3 dendrites were formed by the self-

assembly of primary α-Fe2O3 NPs preferentially along six crystallographically equivalent 

(1100) planes. Whereas, in the case of pH≤5, 3D houseleek-like α-Fe2O3 NPs were 

generated by the successive aggregation of round flakes with their top and bottom surfaces 

parallel to the (0001) plane, and continuous growth along [0001] for single crystalline 
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spindle-like α-Fe2O3, which continuously aggregated at each tip to form 3D houseleek-like 

α-Fe2O3 NPs. Furthermore, for some metal and metal-oxide nanomaterials with 

polymorphism, the adjustment of pH also promotes dissolution for phase transformation. 

 
Figure 1.9 Schematic illustration for the self-assembly of two kinds of α-Fe2O3 dendrites 

by altering the pH of the bulk solution and their corresponding TEM images. 

 

(3) Solvent. Solvents with different functional groups (such as ionic liquids) 

provide special coordination with the precursor monomer, which is advantageous for the 

formation process of metal and metal-oxide NPs under thermodynamic or kinetic control 

due to the adjustment of the supersaturation increase or depletion rate. In addition, the 

mixture of different solvents or solvents with different components enables the shape 

control of metal and metal-oxide NPs. For example, Zhang and co-workers have selectively 

prepared magnetic greigite nanosheets and NPs by altering the mixed ratio of ethylene 

glycol and water. That is, magnetic greigite nanosheets were generated in pure ethylene 

glycol, and irregular NPs were obtained in mixed solvents (EG+H2O). Surface-

coordinating ligands or selective adsorption from solvents on the surface of the NPs also 

help to define the monodispersity and shape of the NPs and have been frequently explored 

in the polyol process. For instance, Schaak and co-workers added different precursors 
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including rhodium(II) trifluoroacetate dimer [Rh2(TFA)4], rhodium bromide (RhBr3), and 

rhodium chloride (RhCl3) into the polyol solvents ethylene glycol (EG), diethylene glycol 

(DEG), triethylene glycol (TREG), and tetraethylene glycol (TEG) individually to yield 

different shapes of Rh NPs, as shown in Figure 1.10. When using precursor RhBr3 , a Rh 

truncated cube was produced in EG, a Rh cube with the highest quality was formed in 

DEG, but a concave cube, and mixed concave and branched morphology appeared in TEG. 

The reasonable explanation for the shape evolution of Rh NPs using different solvents is 

the surface-adsorbing species, based on each polyol solvent with only the anion changed. 

 
Figure 1.10 Representative TEM images of Rh nanoparticles synthesized using ethylene 

glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol solvents with the 

reagents (a–d) Rh2(TFA)4, (e–h) RhBr3, and (i–l) RhCl3 (TFA = trifluoroacetate). Outlined 

images indicate the set of reaction conditions which results in the most monodisperse yield 

of Rh icosahedra (red), cubes (green), and triangular plates (blue). Scale bars are 20 nm. 
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(b)Temperature. From classical nucleation and growth theory, temperature is a 

thermodynamic parameter of the reaction solution. High temperature indicates the 

energetic movement of molecules and ions, causing instability of the reaction solution due 

to a high Gibbs free energy. In the reaction solution for the synthesis of metal and metal-

oxide NPs, such an increase in the temperature of the reaction causes the supersaturation 

increase rate or the reduction rate of the precursor monomer in the solution to increase 

rapidly. Subsequently, the nucleation and growth process will be shortened by accelerating 

the nucleation and growth rate due to thermodynamic control of metal and metal-oxide 

NPs. Eventually, metal and metal-oxide NPs with pseudo-spherical or spherical 

morphologies are the preferential products. Thus, it is reasonable to control nucleation and 

growth processes at proper temperatures to modulate the nucleation and growth processes 

under kinetic control for the formation of anisotropic metal and metal-oxide NPs. 

Additionally, temperature also affects the growth kinetics of metal and metal-oxide NPs 

by shifting the equilibrium established between the metal and metal-oxide NPs and the 

participating species in the solution state through varying the activity of the stabilizers or 

additives and the chemical state of the metal and metal-oxide NPs. Hence, varying the 

temperature of the nucleation and growth process can be a useful route for the control of 

the shape of metal and metal-oxide NPs in the solution state. For instance, as observed by 

Zhu and co-workers, Au plates with a unique and well-defined morphology have been 

synthesized using an alternative temperature in the presence of PVP surfactants through a 

modified polyol process. When altering the formation and precipitation temperature of the 

Au NPs, the morphology of the final shape evolved from hexagonal, triangular and 

truncated triangular plates to novel star-like and shield-like Au plates, as shown in Figure 
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1.11. Additionally, controlling the heating rate to reach the desired reaction temperature is 

also another route for controlling the nucleation and growth rate. 

 
Figure 1.11 Schematic illustration of the temperature variation process for the evolution 

of Au plates and the corresponding SEM images. 

 

Generally, the proper reaction temperature is a critical factor to yield anisotropic 

shapes by managing the reaction procedure under kinetic control. However, it should be 

noted that high and low temperatures are a relative concept, for example, for the polyol 

method, the temperature should be varying over 120 °C. Under high temperature 

conditions, aggregation, orientated attachment, component diffusion (such as metal alloys) 

and phase transitions are common phenomena occurring among the existing particles due 

to the minimization of the free energy of the reaction system and the NPs. 

(c) Seeds and templates. Seeds or templates serve as common and effective 

mediators for the shape control of metal and metal-oxide NPs because the existing surface 

provides sites for further growth by depleting the precursor monomer in bulk solution. Here, 

it is worth noting that the seeds or templates component can be the same as or different to 

the final particles, eventually generating final NPs with homogenous or heterogeneous 

structures. The effective facilitated route of using seeds or templates for the shape control 
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of metal and metal-oxide NPs is referred to as the seed-mediated or template method. The 

seed-mediated or template growth procedure offers advantages for the shape control of 

metal and metal-oxide NPs, in which the activation energy barrier for the addition of 

precursor monomers onto preformed seeds or templates is much lower, compared with the 

formation of new nucleus from homogenous bulk solution. However, the shapes of the 

final metal and metal-oxide NPs from the seed-mediated and template routes have 

differences in that various shapes of metal and metal-oxide NPs can be obtained using the 

seed-mediated method, but the final shape of metal and metal-oxide NPs generated using 

the template method is highly dependent on the initial shape of the template. 

The size of seeds should be extremely small when the seed-mediated method is 

carried out because the final shape of metal and metal-oxide NPs is barely affected by the 

already formed shape of seeds if the size of the initial seed crystals is over the critical size. 

Furthermore, the seed amount, concentration of the precursor monomers, surfactants, 

temperatures, and pH are significant factors for the final shape of the metal and metal-oxide 

NPs. 84 Particularly, the presence of surfactants generally including CTAB/CTAC, PVP, 

SDS, etc. is also a necessary factor for generating metal and metal-oxide NPs with 

anisotropic shapes through such seed-mediated processes. For instance, Liz-Marzán and 

co-workers have synthesized Au@Ag NPs with diverse well-defined morphologies and 

crystalline structures through the kinetic control of slow reduction and stabilization of 

(100) facets, when employing benzyldimethylhexadecylammonium chloride as a stabilizer 

in the seed-mediated method. The adsorption of halide ions Cl− from the stabilizer caused 

a significant change in the surface energies of different facets, as confirmed by density 

functional theory calculations of the surface energies. Eventually, single crystalline core–
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shell Au@Ag cubes enclosed by six (100) facets evolved from initial single crystalline Au 

cores with octahedral and nanorod shapes due to the adsorption of Cl− on the (100) facet, 

while core–shell Au@Ag nanorods with an increased aspect ratio were produced from the 

originated pentatwinned Au nanorods by adsorption of AgCl on the (100) and (110) facets.  

 
Figure 1.12 (a) Schematic illustrating the relationship between the geometry and the 

bounding crystal facets (colored) of the wurtzite CdSe nanocrystal seeds and the 

nanocrystals produced in the seed-mediated synthesis. Typical TEM images of the wz-

CdSe nanocrystals with shapes of (b) hexagonal platelets, (c) cubes, and (d) rods. (e) TEM 

image from a similar synthesis conducted without using the CdSe nanocrystal seeds, 

resulting in elongated and misshapen particles. The scale bars each correspond to 50 nm. 

 

Additionally, the seed-mediated method is also easily achieved for metal and metal-

oxide NPs with high-index facets, core–shell structures, branches or alloys. For instance, 

colloidal wurtzite crystal structures (wz-CdSe) including nanocubes, hexagonal 

nanoplatelets, nanorods and bullet-shaped particles were yielded through a seed-mediated 
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method using small (2–3 nm) wz-CdSe nanocrystals as seeds, as shown in Figure 1.12. 

Selective growth of different facets on the seed nanocrystals drive the initial shape of wz-

CdSe to a different one. Radial growth from the (002) facet at high concentrations of 

precursor and a higher reaction temperature of 370 °C leads to wz-CdSe hexagonal 

platelets, while preferentially adding precursor monomers onto the (002) and (002) facets 

of the seeds at a low precursor concentration and a lower reaction temperature of 350 °C 

forms wz-CdSe nanorods. Additionally, a multi-step seed mediated technique can also be 

applied for the control of the shape of metal and metal-oxide NPs.However, the 

concentration of seeds and precursors, reaction temperature, pH and growth time are also 

significant parameters to control the anisotropic shape of metal and metal-oxide NPs during 

seed-mediated processes. 

(d) Surfactants or additives. Most metal and metal-oxide NPs have a strong 

tendency to aggregate into bigger particles with irregular and undesirable morphologies 

during the growth procedure in bulk solution due to their high surface free energy of 

nanoscale size. To address this shortcoming, surfactants and additives are considered as 

excellent candidates as shape modulators in bulk solution, with the expectation that 

surfactants or additives can adsorb onto some facets of the growing Ps dynamically to 

reduce their surface energy and render a controllable growth rate of specific facets for 

desirable morphologies of metal and metal-oxide NPs. Furthermore, stabilized layers 

formed by surfactants or additives on the surface of NPs also protect particles against 

aggregation in the solution state. Generally, surfactants or additives are composed of 

functional or coordinating groups, which are key as capping agents to adsorb onto the 

surface of the growing NPs. Thus, the adsorption ability and stability of the functional or 
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coordinating groups should be well considered for the selection of capping agents. As such, 

the capping agents commonly used for the synthesis of metal and metal-oxide NPs with 

tunable shapes are small molecules and polymers. The functional or coordinating groups 

from small molecules and polymers such as hydroxyl groups, amine groups (primary, 

secondary and tertiary amine groups), thiol groups, and long alkyl chains are considered as 

selectively adsorbed groups onto special facets of NPs. Common polymers are 

poly(vinylpyrollidone) (PVP), poly(acrylic acid) (PAA) and poly(allylamine 

hydrochloride) (PAH), polyetherimide (PEI), poly(vinyl alcohol) (PVA), poly(ethylene 

glycol) (PEG) and complexes of PEGylated polymers. Typical small molecules include 

cetyltrimethylammonium bromide (CTAB), cetyltrimethylammonium chloride (CTAC), 

oleic acid and/or oleylamine, trioctylphosphine oxide (TOPO), octadecylamine (ODA), 

trioctylphosphine (TOP), and sodium dodecyl sulfate (SDS). Additionally, strong 

interactions between halides (Cl−, Br−, I−) from small molecules and the surface of the NPs 

is another common control factor for the modulation of the shape of NPs by selective 

growth, particularly for novel metals. Adsorption of functional or coordinating groups onto 

different crystal planes of NPs is not limited to small molecules and long-chain polymers, 

and some solvents with functional or coordinating groups also provide similar adsorption 

abilities as the small molecules and polymers, such as N,N-dimethylformamide (DMF), 

and EG. Here, the relationships between the small molecules, polymers and solvents for 

the shape modulation of NPs and the typical shapes of different materials by the adsorption 

of functional or coordinating groups are clearly summarized in Figure 1.13.  
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Figure 1.13 Schematic of the additives/surfactants for the shape control of metal and 

metal-oxide nanoparticles with selective adsorption. 

 

 

1.2 Current Research on Reactive Electrochemical Membrane 

1.2.1 Background and Challenges 

Nearly 70.8% of the Earth’s surface is covered by water, accounting for about 361 million 

square kilometres. Only 2.5% of the water on Earth is fresh water; most of the available 

water should be purified before it is safe to drink or use for other purposes. Water is 

essential for maintaining an adequate food supply and a productive environment for the 

human population and for other animals, plants, and microbes worldwide. Importantly, due 

to population growth and industry development, there is ever increasing amounts of 

uncontrolled wastewater discharge; this not only reduces the clean water resources, but 

also causes serious environmental problems and even threatens the health and safety of 

human beings and other living organisms. Emerging water contaminants in natural waters 

such as rivers and groundwater aquifers is a widespread problem. These emerging 

contaminants could be persistent in the environment and pose adverse effects on 

ecosystems and human health. Environmentally persistent organic micropollutants may 
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include polyromantic hydrocarbons (PAHs), organophosphate flame retardants, endocrine 

disrupting compounds (EDCs), pesticides, herbicides, pharmaceuticals and personal care 

products (PPCPs). The wastewater containing various synthetic organic contaminants as 

associated with petrochemicals, pharmaceuticals, pesticides, and dyestuffs, has become a 

concern globally due to their toxicity, carcinogenicity and persistence. Over the past few 

decades, various technologies have been explored for the treatment of organic wastewater. 

In this case, such conventional processes as biological treatment, adsorption, sedimentation, 

and coagulation are not very effective for complete removal of organic pollutants. These 

technologies usually need complicated equipment, with a high energy consumption and 

high operating costs, and some of them also require large amounts of chemicals, resulting 

in by-products wastes and sludge. 

Membrane technology has been considered as one of the most promising methods 

for water decontamination owing to its advantages of high separation selectivity, low 

energy consumption, no requirements for additional chemicals, easy scale up and 

continuous operation. In recent years, membrane-based processes have been developed and 

applied for different applications, including particle filtration (PF), microfiltration (MF), 

ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), 

membrane distillation (MD) and membrane bioreactor (MBR). However, these membrane 

processes often suffer from their own “Achilles heel”. During the course of filtration, the 

retention and accumulation of pollutants on the membrane surface or/and inside the 

membrane pores as a result of the membrane rejection will lead to membrane fouling, 

which inevitably deteriorates the membrane performance. Moreover, membrane separation 

is a physical process, while it can concentrate the contaminants, the wastewater is actually 
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not “decontaminated”. And membrane filtration is not effective to remove small molecular 

weight compounds such as nitrate or nitrite, phosphate, metal ions and trace-level 

micropollutants. This is especially the case for wastewater with complex compositions 

where a complete retention of the contaminants is difficult or impractical.  

Advanced oxidation processes (AOPs) are widely studied to effectively treat 

biorefractory organic substances or resistant microbes.  Three categories of AOPs exist: (1) 

UV/O3; (2) Photocatalysis (TiO2 or other semiconductor particles under UV-vis 

illumination); (3) Fenton process (Fe2+ / H2O2), Photo Fenton process (Fe2+ / H2O2 / UV) 

and Photo-Fenton-like processes of homogeneous nature (Fe3+/ H2O2 / UV, Fe3+/ APS / 

UV and Fe2+/ APS / UV) and heterogeneous nature (Fe0 / oxidants) (where APS is 

(NH4)2S2O8). AOPs such as photocatalytic oxidation, photochemical oxidation, 

electrochemical oxidation, photochemical reduction, persulfate radical treatment, 

thermally induced reduction, and sonochemical pyrolysis involves the production of 

hydroxyl radicals (•OH) as potent, nonselective oxidants to degrade recalcitrant pollutants. 

However, continuous UV irradiation and consumption of chemical reagents (e.g., H2O2, 

O3, and ferrous iron) cause potentially high operation and maintenance costs. 

Coupling AOP with physical membrane filtration has been extensively studied to 

enable the destruction of organic pollutants by free radicals (mainly hydroxyl radicals or 

•OH) and antifouling capabilities. For instance, photocatalytic ceramic membranes (PCMs) 

utilize semiconducting inorganic materials, such as TiO2 and ZnO, as photocatalysts to 

enable surface reactions on water-permeable porous membranes. Along with the physical 

separation of contaminants in water through the porous structure of PCMs, the 

contaminants are chemically decomposed by reactive radical species generated on the 
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PCMs under UV radiation. However, there are still some practical challenges when 

implementing the PCMs technology, including: (1) difficulty in providing effective UV 

illumination; (2) the reduced light penetration in tabular and spiral membrane surfaces; (3) 

the reduced active surface on catalyst and membranes accessible to chemicals and photons. 

Therefore, other than photo irradiation, an alternative irradiation source that can evenly 

pass-through membrane modules and distribute energy to water, catalysts and membrane 

surface is highly needed. 

 
Figure 1.14 Treatment capabilities of electrochemical technologies. Examples include  

(a) electrochemical oxidation of phenol (C6H5OH); (b) electrochemical reduction of nitrate 

(NO3
−) to N2; (c) electro-deionization of NaCl; (d) microorganism inactivation by 

electrochemically produced Cl2 and OH•; (e) electrodeposition of lead; (f) electro-

coagulation of metals; and (g) electrosorption of arsenate. 
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On the other hand, electrochemical advanced oxidation processes (EAOPs) are also 

known as electrolytic treatment have emerged as promising technologies for the destruction 

of recalcitrant and complex waste. EAOPs are a group of emerging technologies which can 

decompose the organic compounds to fewer refractory products, and even mineralize them 

to CO2, H2O, and other inorganic species. In recent years, EAOPs have gained increasing 

attentions due to their favourable characteristics (i.e., no chemical reagents needed, easy 

process control, stabile performance, and environmental friendliness). However, there are 

some limitations for each individual EAOP to scale up for large-scale industrial 

applications. The efficiencies of conventional EAOP reactors are often limited by the weak 

mass transfer of the pollutant molecules in the reactor, and the energy consumption is still 

at a relative high level for commercial uses. Moreover, the EAOPs are not particularly 

feasible to treat large-volumes of wastewater at low contaminant concentrations. However, 

it is encouraging that the combination of membrane technology with EAOPs can 

effectively mitigate the membrane fouling problems, thereby improving the overall 

separation performance. As expected, a synergistic design of such coupling processes can 

further improve the process performance and reduce the energy consumption. 

In the past decade, many studies on the coupling process of membrane technology 

and EAOPs (membrane-EAOPs) for wastewater decontamination have been reported. 

Reactive Electrochemical Membranes (REM) or electrochemically reactive membranes 

combined electrochemistry with ceramic membranes may provide a solution by in situ and 

real-time production of chemical oxidants, higher flux, and less maintenance. This 

combination may help overcome some of limitations of traditional EAOP such as the 

intrinsic mass transport limitations associated with organic pollutants required to interact 
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with the electrode surface,  high cost of electrodes, and low current densities without high 

concentrations of electrolyte. Because the radicals can be generated in-situ via 

electrochemistry, which means the oxidation process can be driven by electricity rather 

than by chemicals to produce radicals. The reduced chemical consumption potentially leads 

to a more environment-friendly approach.  

1.2.2 The Design of Membrane Technology Coupled with EAOPs 

The combination of membrane filtration with EAOPs can be achieved in two modes: two-

stage coupling process and one-pot coupling process. 

 
Figure 1.15 Coupling of membrane processes with EAOPs (the two-stage processes). 

(a) Pre-treatment of feed; (b) Post-treatment of concentrate; (c) Advance treatment of 

permeate; (d) The one-pot process coupling membrane with EAOP. 
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In the two-stage coupling process, the membrane technology and EAOP are set as 

two stand-alone units. Depending on the location and function of the EAOP unit in the 

coupled processes, the following three process integrations are proposed. (a): The EAOP 

acts as a pre-treatment stage for the membrane process (Figure 1.15a). This process mode 

is usually used for decontamination of wastewater that imposes serious problems of 

membrane fouling. Pretreating the wastewater with an EAOPs will decrease the pollutant 

concentration and thus reduce or eliminate membrane fouling. (b): The EAOP acts as a 

post-treatment of the membrane concentrate (Figure 1.15b). The membrane process (e.g., 

NF, RO) will concentrate the organic compounds and salts, and “clean water” is generated 

on the permeate side of the membrane. The membrane concentrate is enriched with 

pollutants and must be further degraded so as to reduce its impact on the environment. In 

view of the electrical conductivity of the membrane concentrate due to increased salinity, 

the EAOPs are expected to be promising methods for post-treatment of membrane 

concentrate stream. (c): The EAOPs are used for further treatment of the membrane 

permeate (Figure 1.15c). This is, however, not particularly advantageous due to the 

relative low pollutant concentration and thus the low electric-conductivity in the permeate 

stream from membrane unit. In the one-pot coupling process, the removal of pollutants by 

membrane separation and EAOPs is accomplished simultaneously in a single unit (Figure 

1.15d). 

Compared with the two-stage coupling processes, the one-pot coupling process 

provides additional advantages in waste-water treatment: (a) The membrane process is 

enhanced under the assistance of electrical field due to such electro kinetic effects as 

electroosmosis, electrophoresis, and electrostatic interaction, thereby achieving a high 



40 

 

permeation flux and treatment efficiency. (b) The concentration polarization and 

membrane fouling are reduced by the in-situ electrochemical oxidation of the pollutants 

and the microflow disturbance near the electrode surface, which helps maintain the high 

permeation flux and extend the life span of the membrane. (c) The membrane and 

electrodes are set in one single reactor, yielding a small footprint because of its compact 

design.  

 
Figure 1.16 (a) A schematic of one-pot membrane-EAOP design using non-conductive 

membranes and A schematic of the one-pot membrane-EAOP design using conductive 

membranes (b) flat membrane; (c) tubular membrane. 

 

Moreover, in the one-pot coupling mode, two types of integration patterns are 

reported depending on the conductivity of membrane materials. Different from the system 

that integrate non-conductive membranes and electrodes for physical filtration and 

electrochemical degradation respectively (Figure 1.16a), the one-pot mode, which adopts 

a conductive membrane as the electrode, has several advantages. On the one hand, this 

makes the coupling system more compact, allowing it to achieve higher removal efficiency 

at the same voltage, thus reducing energy consumption (Figure 1.6b-c). On the other hand, 

the flow of the feed solution will drag the organic pollutants toward the surface of the 

membrane/electrode, which enhance the mass transfer coefficient in the liquid phase 

effectively. 
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1.2.3 Membrane Materials 

A large number of membrane materials with different unique properties have been 

synthesized and reported. Depending on the nature of the membrane materials, current 

membranes can be divided into organic membranes, inorganic membranes and inorganic-

organic hybrid membranes (Figure 1.17). They can also be categorized as isotropic and 

anisotropic membranes. Isotropic membranes are uniform in composition and structure, 

while anisotropic membranes include phase-separation membranes and composite 

membranes that are often asymmetric in structure. Furthermore, based on membrane 

geometry, the membranes may also be classified into flat sheet, tubular, capillary and 

hollow fiber membranes, which are aimed to suit for different engineering applications.  

 
Figure 1.17 The classification of membranes according to the nature of membrane 

materials.  

 

The electrical conductivity of the membrane materials has a significant effect on 

the structure, design and manner of coupling of a membrane-EAOP system and is also 
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relevant for treatment performance and energy consumption. Here, we briefly summarize 

the currently available membrane materials that have been applied in the membrane-

EAOPs and the conductive membranes that have been used in wastewater treatment. 

1.3.3.1. Non-conductive Membrane Materials. Non-conductive membranes are 

extensively used in the large-scale water purification applications, and thus they are also 

the primary constituent in the membrane-EAOPs. In the two-stage membrane-EAOP 

coupling mode, the membrane process is an stand-alone unit for physical separation, and 

ceramic membranes  and polymer membranes  have been used in such applications. On the 

other hand, in the one-pot membrane-EAOPs, membrane separation and EAOP are carried 

out simultaneously in the same unit, where, non-conductive membranes are predominately 

used as the separation media or as a substrate of composite conductive membranes. 

Recent studies show that polymeric membranes (e.g., PA, PVDF, PTFE and PS) 

and ceramic membranes (e.g., Al2O3 and TiO2) are commonly used as non-conductive 

membranes in the coupling membrane-EAOPs systems. Generally, when non-conductive 

membranes are used as the separation media in the one-pot coupling systems where they 

are located between the anode and the cathode, there is an electrical potential gradient 

across the membrane. Both good water permeability and pollutant retention by the 

membrane are necessary. For example, NF membranes have a high rejection for dye  and 

tetracycline molecules, and MF membranes are more suitable for NOM-water separation. 

Besides, the good resistance against electrochemical etch is an essential property of 

membrane materials to ensure the stability and life span of the membrane. In the case of a 

composite conductive membrane formed on a substrate, the overall membrane resistance 

to electrochemical etching is also important. Obviously, the substrate should offer 
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minimum resistance to water permeation. The PTFE membranes used as a substrate for 

composite membranes typically have a pore size of 5 μm, which is too big to reject such 

organic pollutants as phenol methanol, methylene blue and formaldehyde, at the same time, 

large mass transfer resistance does not occur. In addition, the mechanical strength and 

thermal stability of the substrate membranes are also critical when they are subjected to a 

high transmembrane pressure or thermal treatment is needed. In these cases, ceramic 

membranes such as alumina membranes  and TiO2 membranes are proper choices. 

1.3.3.2 Conductive Membrane Materials. At present, the most common types of 

conductive membrane materials applied for wastewater purification include conductive 

metal and metal oxide membranes, carbon-based membranes and conductive polymer 

membranes (CPMs). 

(a) Conductive metal and metal oxide membranes. The commonly used porous 

metal membranes are mainly fabricated by using press forming and sintering of metal 

powder. Among them, stainless steel membranes and porous titanium membranes are most 

widely investigated. Owning to their mechanical stability and low costs, stainless steel 

membranes are also widely used as porous support of composite membranes . However, 

stainless steel membranes are not stable when a positive potential is applied during the 

water treatment as a result of the electrochemical etching . On the other hand, porous Ti 

membranes have attracted attentions because of their good corrosion resistance and the 

feasibility of loading electro-catalysts. To today, porous Ti membranes have been applied 

in electrocatalytic membrane reactors (ECMR) where the Ti membranes serve as both an 

anode and filtration medium simultaneously for wastewater treatment . It is shown that the 

cell conductivity and mass transfer on the membrane electrode surface are improved, and 
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the treatment efficiency is considerably enhanced. Besides, the ECMR has also been used 

for controllable oxidation of such organic chemicals as n-propanol, cyclohexane, glucose, 

benzyl alcohol, and 2,2,3,3-tetrafluoro-1-propanol. Most metal oxides are non-conductive 

at room temperature, but the sub-stoichiometric titanium oxides TinO2n−1(n ≥3) (Magnéli 

phase) are an exception. These oxides (4≤n≤6) possess high electrical conductivity 

(∼166Ω−1 cm−1) at room temperature and good resistance to corrosion making them 

suitable for use as electrodes. It has been reported that the Ti4O7-based electrodes behave 

as both an active electrode for direct electron transfer reactions and an inactive electrode 

for producing ·OH via water oxidation. Consequently, the Ti4O7 electrode is a promising 

candidate for electrochemical wastewater remediation applications. Magnéli phase Ti4O7 

is usually produced by heating titanium oxide at a temperature above 900°C, followed by 

reduction in hydrogen. The ECMR using Ti4O7 based porous membranes for treatment of 

organic wastewater via electrochemical oxidation has attracted significant interest. 

Excellent performance has been observed for the removal of such organic compounds as 

phenols, oily wastewater, humic acid as well as bacteria deactivation.  

(b) Carbon-based conductive membranes. Carbon-based membranes (CBMs) 

are derived from the pyrolysis of carbonaceous materials (e.g., polymers) or fabricated 

directly from the carbon materials. Due to abundant resources, a wide range of species and 

good conductivity, CBMs have been investigated for various applications, including gas 

separation, vapor separation, fuel cells  and water treatment. As an important part of 

conductive membranes, CBMs become promising alternative top other conductive 

membranes in the electrochemically-assisted membrane processes for wastewater 

treatment. 
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Recent studies on CBMs for electrochemical-assisted water purification can be 

categorized into two groups: (1) carbon-based membranes fabricated from novel nano-

carbon materials; (2) carbon-based membranes derived from such conventional granular 

carbon materials as graphite and coal. Graphene and CNTs are representative nano-

structured carbon materials, and their unique physicochemical properties (e.g., high surface 

area, thermal conductivity, electron mobility and mechanical strength) make them a hot 

research subject for environmental applications. Conductive membranes derived from 

these nano-carbon materials are shown to perform well in wastewater treatment. Generally, 

composite conductive membranes with a nano-carbon conductive layer can be fabricated 

by deposition under pressure or via vacuum filtration. Free standing nano-carbon based 

membranes can also be prepared using the phase inversion process, with appropriate 

polymers such as PVA, PVDF and PVB being used as the binders. The conventional 

carbon-based membranes derived from graphite and coal have the advantages of low costs 

of raw material, good chemical and thermal stabilities. In addition, the simple preparation 

procedure makes them especially suitable for large scale productions. The novel design of 

membrane reactors that use coal-based carbon membranes (CBCM) as an electrode 

demonstrated excellent performance in decontamination of organic wastewater. 

(c) Conductive polymeric membranes. Polymers with conjugated backbones 

formed by a series of alternating single and double carbon bonds, tend to exhibit good 

electrical conductivity. The p-orbitals in the series of π-bonds overlap, allowing the 

electrons to be easily delocalized and to move freely between the atoms. The most common 

conductive polymers are polypyrrole(PPy), polyaniline (PANI), polythiophene and 
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polyacetylene. Due to their unique properties, membrane made from these polymers have 

attracted considerable attention. 

Among the conductive polymer membranes used for water treatment. PPy appears 

to be the most popular conductive polymer for the preparation of conductive membranes 

because of its relatively high conductivity and good environmental stability. Having a tight 

and rigid structure with weakly basic anion-exchangeable groups, PPy can be polymerized 

easily by chemical or electrochemical oxidation. Moreover, the conducting polymers are 

not readily soluble in common solvents, and membranes are difficult to cast with the 

solution casting technique. Thus, PPy conductive membranes are normally prepared via 

the chemical/electrochemical polymerization deposition method on appropriate porous 

supports. However, in contrast to carbon-based materials and other inorganic conductive 

materials (e.g., Ti4O7), conductive polymers generally have a low electro-conductivity and 

weak electrochemical activity. Since these polymers are vulnerable to corrosion by 

electrochemical oxidation, conductive polymeric membranes are always used to serve as a 

cathode in water treatment, and the enhancement in foulant rejection is mainly contributed 

to the electrostatic forces. 
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CHAPTER 2 

FACET DEPENDENT ELECTROCHEMICAL PROPERTIES OF Cu2O 

NANOCRYSTALS: EXPERIMENTAL AND THEORETICAL ASSESSMENT 

 

Work of this chapter is related to the publication: 

Qingquan Ma, Joshua Young, Sagnik Basuray, Guangming Cheng, Jianan Gao, Nan Yao, Wen Zhang. 

"Elucidating Facet Dependent Electronic and Electrochemical Properties of Cu2O Nanocrystals Using 

AFM/SCEM and DFT." Nano Today, 45 (2022): 101538. 
 

2.1 Introduction 

It is commonly known that the smaller nanoparticle size becomes, the larger their surface 

area, resulting in greater reactivity or mass transfer rates. However, recent studies have 

demonstrated that smaller size does not necessarily correlate with reactivity, suggesting 

that other aspects such as thoe exposed crystal surfaces or facets begin to govern the 

nanoparticle reactivity at nanoscale. For instance, metal-oxide nanoparticles such as Cu2O 

and Ag2O in cubic, cuboctahedron, octahedron, and rhombic dodecahedron shapes elicit 

facet-dependent catalytic, photocatalytic, and molecular adsorption. For example, Amanda 

et al. discovered that the adsorption of selenium oxyanions onto the [110] hematite facets 

was higher than that of [012] using extended X-ray absorption fine edge spectroscopy 

(EXAFS). Chen et al. demonstrated that [111] facets of Pt or Pd NPs are significantly more 

active than [001] facets toward carbon monoxide (CO) oxidation using diffuse reflectance 

infrared Fourier transform spectroscopy (DRIFTS). Wu et al. have pointed out reported 

that the water-splitting reactions on CeO2 [110] and [111] facets of CeO2 are 10 ~ 100 times 

faster than that on CeO2 [100] facet at temperature (T) < 950 K using DFT simulations. 

Furthermore, control of surface termination on TiO2 nanoparticles can enhance the 

electrochemical reaction selectivity and suppress the competing reaction pathways or 

byproduct interference. Peng et al. examined the electronic states and structures of TiO2 on 
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particular facets such as [001] and [101] using 31P nuclear magnetic resonance (NMR) in 

combination with trimethylphosphine (TMP) as a surface probe. They found that surface 

Ti cations on various facets with different Lewis acidities, surface energies, and steric 

arrangements are different. 

Characterizing the influences of surface crystal facets on their properties at 

nanoscale or an atomic scale still remains challenging, because many surface 

characterization techniques such as Raman mapping, electrochemical measurements, 

surface plasmon resonance, and fluorescence microscopy usually resolve the average 

information of surface properties or at the single nanoparticle level. Only a few techniqeus 

such as XAFS, NMR, DRIFTS, and liquid cell (high-resolution) transmission electron 

microscopy (LCTEM) were demonstrated to detect facet-level material properties. For 

example, Sung et al. reported the different etching redox behavior of [100] for reduction 

and [111] for oxidation of ceria-based nanocrystals under the control of redox-governing 

factors using LCTEM. By contrast, traditional electrochemical measurements, such as 

cyclic voltammetry (CV), linear sweep voltammetry (LSV), and electrochemical 

impedance spectroscopy (EIS), only resolves average surface information of bulk materials 

or aggregated nanoparticles. Interpretation of macroscale electrochemical measurement 

results may be affected by nanoparticle aggregation states or surface coverage of 

nanoparticles on the electrode surface. Recently, scanning probe techniques such as 

scanning electrochemical microscopy (SECM), scanning electrochemical cell microscopy 

(SECCM), scanning ion conductance microscopy (SICM), scanning ion conductance 

microscopy-scanning electrochemical microscopy (SICM-SECM), electrochemical 

scanning tunneling microscopy (EC-STM), atomic force microscopy-scanning 
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electrochemical microscopy (AFM-SECM) are applied for performing electrocatalytic 

current mapping at a typical spatial resolution of hundreds of nanometers. However, 

regular scanning electrochemistry microscopy (SCEM) employs microelectrode probes 

that thus achieves a micrometer resolution.  

AFM-SCEM has increasingly been used in simultaneously probing morphology 

and electrochemically active sites of various nanomaterials, such as dimensionally stable 

anodes, noble metal nanoparticles, functionalized electrodes, and soft electronic devices. 

For example, Mediator-tethered AFM-SECM successfully reveals the local 

electrochemical activity of 20-nm gold nanoparticles/nanodots functionalized by redox-

labeled PEG chains deposited on gold surface. Catalytic current mapping of oxygen 

reduction reaction or hydrogen peroxide generation on individual 300-nm Pt particles was 

achieved by AFM-SECM. However, imaging at the nanoscale is challenging, as 

nanoelectrode probes are fragile and subject to destruction by electrostatic effects and 

vibrations as well as contamination. Positioning and maintaining the tip at nm distances 

requires high positional stability. Unlike scanning tunneling and atomic force microscopy, 

in the SECM the tip does not ever contact the surface. This requires a high level of control 

of the positioners. AFM-SECM is one among the few scanning probe methods that provide 

independent current and positioning control. Consequently, we can apply any selected 

potential without interfering with the tip separation distance from the electrode. Thus, the 

catalytic particles' surface activity under activation controlled and diffusion controlled 

electrochemical reaction conditions could be measured.  

This study employed the AFM-SECM to examine the facet/shape-dependent 

electrochemical properties of individual cuprous oxide (Cu2O) nanocrystals of four shapes: 
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nanocubes with the dominant [100] facet, rhombic dodecahedron with the dominant [110] 

facet, octahedrons with the dominant [111] facet, and cuboctahedron with [111] and [100] 

facets. Cu2O is a p-type semiconductor with a direct band gap of about 2.17 eV, which 

emerges as a promising material in photocatalysis, catalysis, antibacterial activity, gas 

sensor, supercapacitors, lithium-ion batteries, ion detection, surface-enhanced Raman 

scattering (SERS), organocatalysis, and photoelectrochemical water splitting. Here, we 

performed in-situ AFM-SECM mapping on cuprous oxide (Cu2O) nanoparticles with 

different shapes or facets. A nanoelectrode probe was used to permit high spatial resolution 

topographical mapping and electro-chemical activity assessment on the local facet level. 

To support the facet-dependent electrochemical analysis, kelvin probe force microscopy 

(KPFM) was also conducted to measure the local work function of the different facets. 

Finally, density function theory (DFT) simulations were performed to assess the electron 

transfer at the interface of different cuprous oxide (Cu2O) nanocrystals and interpret the 

facet-dependent electrochemical properties.  

 

2.2 Materials and Methods 

2.2.1 Preparation of Cuprous Oxide (Cu2O) Nanoparticles with Different Exposed 

Facets 

Copper (II) chloride dihydrate (CuCl2·2H2O), Sodium hydroxide, Sodium dodecyl sulfate 

(SDS), and hydroxylamine hydrochloride (NH2OH3·HCl) were purchased from Fisher 

Scientific. The Deionized water was used to prepare all solutions which is produced from 

a Milli-Q water machine (Direct–Q 3UV, Millipore) that produces ultrapure water with 

resistivity of 18.2 MΩ·cm at 25 °C. To synthesize Cu2O nanocrystals with cubic and 

rhombic dodecahedral structures, 9.55, 9.35, 9.05, and 8.75 mL of deionized water were 
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respectively added to four sample vials labeled a, b, c, and d, which were placed in a water 

bath at 32-34 oC. Then, 0.1 mL of a 0.1-M CuCl2 solution and 0.087 g of SDS powder were 

added to each vial with vigorous stirring. After complete dissolution of the SDS powder, 

0.20 mL of a 1.0-M NaOH solution was added, which turned the solution color into light 

blue immediately, due to the formation of Cu(OH)2 precipitate. Finally, 0.15, 0.35, 0.65, 

and 0.95 mL of 0.2 M NH2OH3·HCl were quickly spiked within 5 s into vials a, b, c, and 

d, respectively. The total solution volume in each vial was now 10 mL. After the vials were 

stirred for 20 s, they were kept in the water bath for 2 h for nanocrystal growth. The 

suspension was centrifuged at 4000 g for 5 min. After the supernatant was decanted, the 

precipitate was washed with 6 mL of a 1:1 volume ratio of water and ethanol. The 

precipitate was centrifuged and washed again using the same water/ethanol mixture to 

remove unreacted chemicals and SDS. The final washing step used 5 mL of ethanol, and 

the precipitate was dispersed in 0.6 mL of ethanol for storage and analysis. 

2.2.2 Bulk Analysis of Particle Sizes, Shapes, Adsorptive and Electrochemical 

Properties 

2.2.2.1 Hydrodynamic Diameter and Zeta Potential. The average hydrodynamic radius 

with polydispersity index (PDI) and zeta potentials were determined by dynamic light 

scattering (DLS) on a Zetasizer Nano ZS instrument (Malvern Instruments, UK) using 0.8 

mL of 600 μg·L-1 different nanocrystal suspensions that were properly diluted with DI 

water in a standard macro-cuvette with a pass length of 10 mm. The measurement 

temperature was maintained at 25oC, and the scattering angle was 173°. A refractive index 

(RI) of 1.07 and an absorption value of 0.01 were used for the Cu2O nanocrystals. 

2.2.2.2 Morphology, Facet Identification and Facet Area Quantification. Scanning 

electron microscopy (SEM) images for four kinds of nanocrystal samples were taken by a 
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field emission scanning electron microscope (FE-SEM) (JSM-7900F, JEOL). Further facet 

identification and individual facet surface areas were determined statistically by a Verios 

460 e Extreme High-Resolution Scanning Electron Microscope (XHR-SEM). At least 50 

single nanocrystal particles of one kind were selected for XHR-SEM imaging. Titan Cubed 

Themis 300 double Cs-corrected Scanning/Transmission Electron Microscope (S/TEM) 

heir transmission electron microscopy (TEM) were operated to obtain the selected-area 

electron diffraction (SAED) patterns for facet identification. 

2.2.2.3 Adsorption Assay. The adsorption activities of the different shaped Cu2O 

nanocrystals were investigated using methyl orange (C14H14N3NaO3S) as the model 

adsorbate. Our hypothesis is that methyl orange exhibits a negative charge due to sulfonate 

(-SO3
-) and may have different interactions with different facets of Cu2O nanocrystals that 

render different charge densities. To validate this hypothesis, we conducted facet-related 

adsorption experiments using methyl orange. Briefly, 50 mg Cu2O polyhedrons with 

different shapes were dispersed into the methyl orange solution (100 mL, 15 mg·L─1). 

Under constant stirring in the dark, about 5 mL of the solution was taken out at different 

intervals. After centrifugation of the liquid samples (4000 ×g for 5 min), the UV-Vis 

spectrum of the supernatant was recorded at 465 nm to monitor the remaining concentration 

of the bulk methyl orange and to determine adsorption behavior (e.g., adsorption kinetics) 

on different shaped Cu2O. Attenuated total reflection-Fourier transform infrared 

spectroscopy (ATR-FTIR) was employed to characterize the surface deposition of methyl 

orange on the Cu2O nanocrystals. ATR-FTIR spectra were recorded on a bench top FTIR-

spectrometer (Cary 670, Agilent Technologies, USA) with a scanning range between 400 

and 4000 cm−1, the scanning time of 32 s and the resolution of 2 cm−1. 
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2.2.2.4 Electrochemical Analysis of Cu2O Nanocrystals. The Au coated copper electrode 

(Au/Cu electrode) was used as the substrate to deposit the four kinds of nanocrystal 

samples. These substrates were firstly polished carefully with 0.3-μm and 0.05-μm alumina 

slurry (Alumina polish powder, CH Instruments as shown in a tutorial video: 

https://www.youtube.com/watch?v=B1vndNRUnV4), and then rinsed thoroughly with DI 

water. Before deposition, the polished electrode was ultrasonicated in ethanol and DI water 

for 5 min, respectively. Subsequently, 5 μL of a Nafion solution (1%, v/v) in ethanol was 

first dropped onto the cleaned Au/Cu electrode surface to form a coated area of 0.05 cm2. 

Following this step, the Nafion modified electrode was immersed into the suspensions of 

different shaped Cu2O nanocrystals (0.2 mg·mL‒1) for 6 h for forming the electrode with 

attached one single layer of nanocrystals. The residual nanocrystals were slowly washed 

away with DI water. Finally, the finished electrodes were stored in a refrigerator at 4oC 

when not in use. 

All electrochemical measurements were performed in a conventional three-

electrode cell at ambient temperature using a CHI 700E electrochemical potentiostat (CH 

Instruments, USA). An Ag/AgCl electrode (CHI112, CH Instruments, in 1.0 M KCl) and 

a Pt wire (CHI115, CH Instruments) were employed as a reference electrode and counter 

electrode, respectively. Cyclic voltammetry (CV) measurements were performed at a 

sweep rate of 50 mV·s-1 with 5 mM K3[Fe(CN)6] as the redox probe in 0.1 M KCl solution. 

Before the CV measurements, the electrolyte was deoxygenated by bubbling ultrapure 

nitrogen (Airgas, Inc.) for 30 min. 

To examine the potential interfacial differences, electrochemical impedance 

spectrometry (EIS) was acquired on the prepared electrodes under open circuit potential 
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(OCP) at the frequency range of 100 kHz to 0.01 Hz in aqueous solution containing 5 mM 

K3[Fe(CN)6] with 0.1 M KCl solution. The EIS spectra were fitted in an equivalent circuit 

to determine the interfacial charge-transfer resistance parameters, including the charge-

transfer resistance at the electrode/solution interface (Rct, Ω·cm2), the electrolyte resistance 

(Rs, Ω·cm2), and W is the Warburg impedance (S·s1/2) where S = siemens =ohm-1, s = 

second. Instead of an ideal double-layer capacitance (C), the constant phase element (CPE), 

1

( )
CPE n

Z
Q wi

= , is employed due to the inhomogeneity of the interface between the the 

electrode/solution interface, where Q is capacitance, wi is angular momentum and n is 

exponential factor (n=1 describes an ideal capacitor while the case n=0 describes a pure 

resistor).  

2.2.3 Facet-Level Analysis of Surface Activity 

2.2.3.1 Work Function Determination by Kelvin Probe Force Microscopy (KPFM). 

Facet-dependent interfacial charge transfer process is influenced by the surface atomic 

configurations and their corresponding energy band structures on different facets. KPFM 

has been demonstrated in nanometer-scale imaging and surface potential mapping on a 

broad range of materials ranging from biomaterials such as proteins and DNA to 

semiconductor nanomaterials. The measured surface potential is the contact potential 

difference (CPD) due to the difference in work functions (or Fermi energy levels) between 

the sample surface and the tip. Surface work function is affected by surface charges, doping 

levels, defects or grain boundaries. This study employed a Bruker Dimension Icon® with 

the Frequency modulation KPFM (FM-KPFM) integrated with PeakForce Tapping mode 

to conduct KPFM on different shaped nanocrystals to reveal facet dependence of work 
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functions. Briefly, Platinum-Iridium (Pt/Ir) doped silicon cantilever probes (Bruker, USA) 

were used as the conductive probes that have a relative stable work function (Φtip), a force 

constant of approximately 3 N·m‒1 and a nominal resonance frequency of 75 kHz. Cu2O 

nanocrystals were immobilized on Silicon wafers (∅3” Silicon wafer, Type P/<111>, TED 

PELLA, Inc.) by depositing 5 μL of the Cu2O suspensions (10 mg·L-1) with ~30 min air 

drying. During the operation, the microscope was fully contained in an environmental 

chamber that controls temperature (25 ± 2 oC) and humidity (<10 %) as measured by a 

temperature/humidity thermometer. KPFM mapping images were collected in the 

PeakForce Tapping mode at a scan rate of 0.1 Hz with a scan size of 5×5 µm and a 

retraction height or the distance between the tip and the sample surface of 50 nm. 

Finally, the sample surface’s work function (Φsample) was calculated by CPD= 

−(Φtip- Φsample)/e. To determine the work function of the tip, we utilized three reference 

substrates, Au [111] substrate, highly oriented pyrolytic graphite (HOPG) and Si [111] 

substrates, which have stable work functions of 5.20–5.60 eV, 4.4–4.8 eV and 4.60–4.85 

eV respectively. Each cantilever tip we used went through the same calibration process to 

determine the individual work function. At least 50 different facet regions of each shape 

on the deposited sample were probed to achieve statistical significance of the CPD 

measurement.  

2.2.3.2 Local Surface Electrochemical Activity Measurement. Cu2O nanocrystals were 

deposited onto silicon wafers (∅3” Silicon wafer, Type P/[111], TED PELLA, Inc.) as 

illustrated in Figure 2.1a via spinning coating. Silicon wafer was cut into a single piece of 

38 mm×38 mm, followed by washing using ethanol, methanol and DI water to remove 

organic and inorganic contaminants. The water suspension of the nanocrystals (10 mg·L-1) 
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were dropped in a volume of 10 µL on four different red spots of the silicon wafer 

substrates as shown in Figure 2.1b to repeat the measurement on the same sample. The 

substrate was vacuum dried at 40oC for 1 hour before the following AMF/SCEM test.  

 
Figure 2.1 Deposition of Cu2O Nanoparticles on a Silicon Wafer. 

 

The SECM measurements were performed on the same Bruker Dimension Icon® 

that were equipped with standard PeakForce SECM accessories as detailed elsewhere.  

Both the probe and the sample are working electrodes sharing the same reference and 

counter electrodes. Prior to the PeakForce SECM measurement, all PeakForce SECM 

probes (tip radius of 25 nm and tip height of 215 nm, Bruker Nano Inc, CA, US) were 

tested by performing a few cyclic voltammetry in a standard three-electrode 

electrochemical cell with a Pt counter electrode and a standard Ag/AgCl reference 

electrode (CH Instruments, Inc.). The electrochemical cell was filled with 1.8 ml of 10 mM 

[Ru(NH3)6]Cl3 in 0.1 M KCl. A bipotentiostat (CHI700E, CH Instrument) was connected 

to the electrochemical cell to perform the cyclic voltammetry analyses with a scanning 

voltage from 0 to −0.4 V vs. Ag/AgCl at 50 mV·s‒1 applied to PeakForce SECM probes. 

Both the probe and the sample on the substrate are working electrodes sharing the same 

reference and counter electrodes. The probe and the sample are generally biased at different 

potentials, relative to the reference electrode, to enable different chemical reactions. In this 
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work, the probe reduces the [Ru(NH3)6]
3+ to [Ru(NH3)6]

2+ at −400 mV versus a pseudo 

Ag/AgCl reference electrode, while the sample is biased at +100 mV to oxidize 

[Ru(NH3)6]
2+ back to [Ru(NH3)6]

3+. We hypothesize that different dominant facets of Cu2O 

should generate different levels of tip-sample currents at a sensitivity of nA·V‒1 due to the 

reactivity differences and thus generate imaging contrast from the background or the 

silicon substrate that had negligible electrochemical oxidation reactions with [Ru(NH3)6]
3+. 

The PeakForce SECM scan was performed using an interleaved scan mode with a lift 

height of typically 40 to 150 nm between the probe and the sample surface. On each line 

scan during the main scan, the probe scans over the sample surface using the normal 

PeakForce QNM mode at a scan rate at 0.1 Hz and a scan size at 5×5 µm. After verifying 

SECM standard test sample (silicon nitride pattern cover on Pt layer) the sample-coated 

substrate was placed into the same fluidic cell to replace the SECM standard test sample. 

The same SCEM scanning procedure was performed on the sample surface at a DC bias of 

−400 mV and +100 mV applied to the probe and the sample substrate at the scan rate of 

0.1 Hz and a scan size is 5×5 µm.  

2.2.4 DFT Calculations of Surface Properties  

The Vienna Ab Initio Simulation Package (VASP) was used to perform all the density 

functional theory (DFT) calculations within the generalized gradient approximation (GGA) 

using the Perdew-Burke-Ernzerhof (PBE) formulation. We employed projected augmented 

wave (PAW) potentials to describe the ionic cores and took valence electrons into account 

using a plane wave basis set with a kinetic energy cutoff of 500 eV. Partial occupancies of 

the Kohn−Sham orbitals were allowed using the Gaussian smearing method with a width 

of 0.05 eV. The electronic energy was considered self-consistent when the energy change 
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was smaller than 10−6 eV. A geometry optimization was considered convergent when the 

force change was smaller than 0.02 eV·Å-1. Grimme’s DFT-D3 methodology was used to 

describe the dispersion interactions. 

The equilibrium lattice constants of Cu2O unit cell in the cubic 3Pm m  space 

group were optimized using a 3×3×1 Monkhorst-Pack k-point grid for Brillouin zone 

sampling. The [100], [110] and [111] surfaces of Cu2O were constructed with p(2×2×2) 

periodicity in the x, y and the z direction separated by a vacuum layer in the depth of 15 Å 

in order to separate the surface slab from its periodic duplicates. During structural 

optimizations, the Γ point in the Brillouin zone was used for k-point sampling.  

Surface energy is a measure of thermodynamic stability of the surface; a low 

positive value indicates a stable surface. The surface energy (γr ) of Cu2O facets of [100], 

[110] and [111] was calculated by:) of Cu2O facets of [100], [110] and [111] was calculated 

by: 

( ) / 2
surf bulkr E nE A = −  (2.1) 

where Esurf is the total energy of the surface (eV), Ebulk is the bulk energy of the unit cell 

(eV), A is the surface area (m2), the coefficient is 2 since there have the upper and lower 

surfaces, and n represents the number of unit cells that the surface contains. 

The work function was also computationally calculated by Equation (2.2) to 

compare with the experimental data from KPFM by: 

Φ = Evac– Ef (2.2) 

where Φ is the work function (eV), Evac is the electrostatic potential of vacuum level (eV), 

and Ef is the energy of Fermi level (eV) for different species Fermi level (from OUTCAR 

file).  
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The density of states (DOS) of the three Cu2O nanocrystal facets were also 

calculated with an increased Monkhorst-Pack k-point mesh of 3×3×1. The adsorption 

energy (Eads) of the adsorbate (i.e., H2O or Ru(NH3)6]
3+) is calculated by: 

Eads = EA/surf – Esurf –EA(g) (2.3) 

where EA/surf, Esurf and EA(g) are the energy of the adsorbate molecules on the surface (eV), 

the energy of clean surface (eV), and the energy of isolated A molecule (eV) in a cubic 

periodic box with a side length of 20 Å and a 1×1×1 Monkhorst-Pack k-point grid for 

Brillouin zone sampling, respectively. The atomic charges were obtained from Bader 

charge calculations and analysis based on the numerical implementation developed by 

Henkelman et al. 

2.2.5 Quality Assurance (QA) and Quality Check (QC) 

The following experiments were carried out with triplicate independent sampling or testing: 

(1) The hydrodynamic diameter and zeta potential measurements of the Cu2O nanocrystals; 

(2) Nanoparticle’s characterizations including UV-Vis spectrometry, ATR-FTIR and 

KPFM. (3) Electrochemical testing including CV and EIS; The presented results are 

presented with average values with standard deviation as error bars.  

 

2.3 Results and Discussion 

2.3.1 Size, Morphology, Crystallinity, Absorptivity and Electrochemical 

Characterization  

2.3.1.1 Hydrodynamic Diameters and Zeta potentials of Cu2O Nanocrystals. Table 2.1 

summarizes the average hydrodynamic radii of these nanocrystals are mostly in the range 

of 400-600 nm with polydispersity index (PDI) of 0.186, 0.156, 0.213, and 0.134 for cube, 
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cuboctahedron, octahedron and rhombic dodecahedron Cu2O nanocrystals, respectively. 

PDI is a dimensionless measure of the broadness of the size distribution. As all of these are 

less than 0.25, the Cu2O nanocrystals are considered well dispersed in the suspension 

without significant aggregation. The zeta potentials of four nanocrystals measured in the 

DI water ranged from −31.91 ± 0.86 to −34.06 ± 0.80 mV represent them are all 

electrostatically stabilized suspension.The zeta potentials of four nanocrystals measured in 

the DI water ranged from −31.91 ± 0.86 to −34.06 ± 0.80 mV represent them are all 

electrostatically stabilized suspension. 

Table 2.1 Average Particle Sizes and Polydispersity Index of Four Cu2O Nanocrystals 

Cu2O nanocrystals 

Average 

hydrodynamic 

diameters (nm) 

Zeta potential 

(mV) 

Polydispersity 

index (PDI) 

Cube 583 ± 104 −34.06 ± 0.80 0.186 

Cuboctahedron 540 ± 67 −31.91 ± 0.86 0.156 

Octahedron 460 ± 67 −32.16 ± 0.68 0.213 

Rhombic 

dodecahedron 
492 ± 64 −32.09 ± 0.40 0.134 

 

2.3.1.2 Morphology, Crystallographic Facet Indexing and Facet Area Quantification. 

To avoid the effect of the surface-capping ligands on catalytic activities, we synthesized 

the different shaped nanocrystals with the same coating molecule of SDS using the seed-

mediated approaches. Cube, cuboctahedron, octahedron and rhombic dodecahedron shapes 

formed due to the increasinge of the volumes of NH2OH3·HCl that change the amount of 

reductant added. The top panel of Figure 2.2 shows high resolution SEM images of Cu2O 

nanocrystals with different geometriess, which are agreed with previously reported results. 

For example, cubic nanocrystals are generally composed of six identical square [100] facets. 

Cuboctahedron nanocrystals have six squares [100] facets in addition to the eight [111] 

facets. Octahedral nanocrystals are those with an octahedral structure bound by only [111] 
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facets. There are twelve congruent rhombic [110] facets in a rhombic dodecahedron. 

Nanocrystals could have a slightly different crystal facet distribution due to the defect 

formation or other factors (e.g., temperature varies and stabilizers concentration difference). 

The second row of Figure 2.2 illustrates the 3-D models of the four shaped 

nanocrystals. The third row shows their typical TEM images. The fourth row shows SAED 

images. For a cubic particle made of six exposed [100] facets, when the electron beam was 

aligned to be perpendicular to the direction of the [001], a two-dimensional (2-D) square-

shaped projection should be observed in the TEM image. Four facets in the [100] family, 

which are parallel to [001] zone axis, are marked in Figure 2.2a. The HR-TEM images 

(Figure 2.2a) and the index of the spots in the SAED patterns indicate that indicate that 

this Cu2O nanocrystal product is single crystal, and these cubes mainly have their [100] 

crystal facets exposed.  

As for a cuboctahedron bounded by six square [100] and eight triangle [111] facets, 

when the electron beam is aligned to be perpendicular to [111], the TEM image exhibits as 

an equilateral hexagon projection constructed by the edges of [100] and [110]. The 

corresponding diffraction patterns in Figure 2.2b demonstrate the existence of [100] and 

[111] facets. The SAED pattern of Cu2O cuboctahedron (Figure 2.2b) gives two sets of 

lattice fringes of 0.21 nm and 0.246 nm with an intersection angle of 60o. These lattice 

fringes respectively correspond to the lattice fringe of the [-111] and [002] planes of the 

Cu2O structure (JCPDS card No. 34-1354).34-1354). 
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Figure 2.2 SEM images, sketch, bright TEM images and corresponding SAED patterns of 

the Cu2O nanocrystals with various morphologies: (a) cube, (b) cuboctahedron, (c) 

octahedron, and (d) rhombic dodecahedron. 

 

For an octahedral particle in Figure 2.2c, the projection is a parallelogram made of 

the projections of four [111] facets if the electron beam is in parallel with the [110] zone 

axis. The SAED pattern of Cu2O octahedron (Figure 2.2c) gives two sets of lattice fringes 

of 0.246 nm with an intersection angle of 60o. These lattice fringes respectively correspond 

to the lattice fringe of the [-111] and [-11-1] planes of the Cu2O structure (JCPDS card No. 

34-1354), which further indicates that octahedral Cu2O is composed of single crystals and 

these crystalline octahedrons mainly have their [111] crystal facets exposed. 
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For a rhombic dodecahedron particle in Figure 2.2d, the TEM projection is a 

hexagon shape if viewed from [110] zone axis. The six edges of the hexagon correspond 

to the edge of [110]. The lattice fringe of 0.30 nm of rhombic dodecahedron (Figure 2.2d) 

can be assigned to the [110] plane of the Cu2O structure. The TEM and SEAD pattern 

reveal that rhombic dodecahedron which mainly expose [110] facets of the single crystal. 

To analyze the distribution (%) of the crystal facets such as [100], [110] and [111], 

we computed the ratios of the specific facet areas over the total surface area of the 

nanocrystals of each shape. Figure 2.3 illustrates the model structures of single crystal 

units of Cu2O and the calculations of the volumes and surface areas of each particle shape 

assuming the same or uniform mass density of 6.0 g·cm−3. The number of particles and 

total surface copper atoms of each particle shape for 50 mg of Cu2O are summarized in 

Table 2.2. Firstly, we measured the edge of above 50 Cu2O nanocrystals of each shape and 

calculated their surface areas and volumes with formulas as shown in Figure 2.3. We 

calculated the number of particles corresponding 50 mg according to the density of Cu2O 

is 6 g·cm-2. Then we get the total surface area number of particles of 50 mg and correlated 

surface atoms according the surface copper atom densities of 10.98, 14.27, and 7.76 Cu 

atoms·nm−2 were reported for the (100), (111), and (110) planes of Cu2O, respectively. 

according Tthe surface copper atom densities of 10.98, 14.27, and 7.76 Cu atoms·nm−2 

were reported for the (100), (111), and (110) planes of Cu2O, respectively.  
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Table 2.2 Calculated Numbers of Particles and Surface Copper Atoms of Different 

Morphologies’ Cu2O nanocrystals Weighing 50 mg 

 Cube Cuboctahedron Octahedron Rhombic 

dodecahedron 

Average size 

(nm) 
404 295 448 363 

Weight 

(mg) 
50 50 50 50 

Surface area of each 

particle (nm2) 
979296 823613 695259 1825844 

Volume of each particle 

corresponding 50 mg 

(nm3) 

62939264 60510368 42386522 147284815 

Number of particles 

(unitless) 
1.26×1011 1.38×1011 1.97×1011 5.66×1010 

Total surface area (nm2) 1.24×1017 1.13×1017 1.37×1017 1.03×1017 

Surface atoms (unitless) 1.36×1018 1.38×1018 1.95×1018 8.02×1017 

 

 
Figure 2.3 Calculations of surface area and volume of a single Cu2O cube, cuboctahedron, 

octahedron, and rhombic dodecahedron. 

 



65 

 

 
Figure 2.4 Statistics determination of percentage of the predominant facet. 

 

Table 2.3a Calculated Facet Area Quantification (Cube) 

Particles 

Cube 

Edge (nm) 
Area of Facet 

[100] (nm2)  

Total area 

(nm2) 

Ratio of [100] over the 

total area (%) 

1 423 1.07×106 1.07×106 100 

2 443 1.18×106 1.18×106 100 

3 452 1.23×106 1.23×106 100 

4 481 1.39×106 1.39×106 100 

5 352 7.43×105 7.43×105 100 

6 481 1.39×106 1.39×106 100 

7 381 8.71×105 8.71×105 100 

8 384 8.85×105 8.85×105 100 

9 387 8.99×105 8.99×105 100 

10 421 1.06×106 1.06×106 100 

11 369 8.17×105 8.17×105 100 

12 352 7.43×105 7.43×105 100 

13 414 1.03×106 1.03×106 100 

14 505 1.53×106 1.53×106 100 

15 423 1.07×106 1.07×106 100 

16 455 1.24×106 1.24×106 100 

17 432 1.12×106 1.12×106 100 

18 429 1.10×106 1.10×106 100 

19 440 1.16×106 1.16×106 100 

20 379 8.62×105 8.62×105 100 

21 384 8.85×105 8.85×105 100 
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Table 2.3b Calculated Facet Area Quantification (Cuboctahedron) 

Particles 

Cuboctahedron 

Edge 

(nm) 

Area of 

Facet [100] 

(nm2) 

Area of Facet 

[111] (nm2)  

Total 

area 

(nm2) 

Ratio of 

[100] over 

the total area 

(%) 

Ratio of 

[111] over 

the total 

area (%) 

1 348 7.27×105 4.40×105 1.17×106 62.26 37.74 

2 313 5.88×105 3.53×105 9.41×105 62.48 37.52 

3 313 5.88×105 3.60×105 9.48×105 62.04 37.96 

4 221 2.93×105 1.78×105 4.71×105 62.26 37.74 

5 333 6.65×105 4.15×105 1.08×106 61.59 38.41 

6 288 4.98×105 2.99×105 7.96×105 62.48 37.52 

7 456 1.25×106 7.27×105 1.98×106 63.17 36.83 

8 421 1.06×106 6.57×105 1.72×106 61.81 38.19 

9 387 8.99×105 5.60×105 1.46×106 61.59 38.41 

10 285 4.87×105 2.81×105 7.69×105 63.40 36.60 

11 314 5.92×105 3.45×105 9.37×105 63.17 36.83 

12 428 1.10×106 6.54×105 1.75×106 62.71 37.29 

13 326 6.38×105 3.87×105 1.02×106 62.26 37.74 

14 377 8.53×105 5.17×105 1.37×106 62.26 37.74 

15 437 1.15×106 6.68×105 1.81×106 63.17 36.83 

16 453 1.23×106 7.18×105 1.95×106 63.17 36.83 

17 418 1.05×106 6.23×105 1.67×106 62.71 37.29 

18 335 6.73×105 4.16×105 1.09×106 61.81 38.19 

19 304 5.54×105 3.36×105 8.91×105 62.26 37.74 

20 371 8.26×105 5.10×105 1.34×106 61.81 38.19 

21 326 6.38×105 3.76×105 1.01×106 62.94 37.06 
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Table 2.3c Calculated Facet Area Quantification (Octahedron) 

Particles 

Octahedron 

Edge 

(nm) 

Area of 

Facet [111] 

(nm2) 

Area of Facet 

[100] (nm2)  

Total 

area 

(nm2) 

Ratio of 

[111] over 

the total area 

(%) 

Ratio of 

[100] over 

the total 

area (%) 

1 476 7.14×105 11011.59  7.25×105 98.48 1.52 

2 506 8.43×105 3840.54  8.46×105 99.55 0.45 

3 400 5.32×105 1536.00  5.34×105 99.71 0.29 

4 469 7.16×105 4751.16  7.21×105 99.34 0.66 

5 501 7.83×105 15060.06  7.98×105 98.11 1.89 

6 466 7.00×105 6384.39  7.06×105 99.10 0.90 

7 492 7.97×105 3630.96  8.00×105 99.55 0.45 

8 540 9.60×105 4374.00  9.64×105 99.55 0.45 

9 455 6.74×105 4471.74  6.79×105 99.34 0.66 

10 569 1.02×106 15734.78  1.04×106 98.48 1.52 

11 557 9.78×105 15078.10  9.93×105 98.48 1.52 

12 563 1.07×106 1711.63  1.07×106 99.84 0.16 

13 304 2.95×105 3548.77  2.98×105 98.81 1.19 

14 539 9.56×105 4357.82  9.60×105 99.55 0.45 

15 466 7.22×105 2084.70  7.24×105 99.71 0.29 

16 490 7.57×105 11668.86  7.69×105 98.48 1.52 

17 483 7.60×105 5039.04  7.65×105 99.34 0.66 

18 404 5.31×105 3525.47  5.35×105 99.34 0.66 

19 553 1.05×106 183.49  1.05×106 99.98 0.02 

20 474 7.32×105 4853.00  7.36×105 99.34 0.66 

21 332 3.59×105 2380.84  3.61×105 99.34 0.66 
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Table 2.3d Calculated Facet Area Quantification (Rhombic dodecahedron) 

Particles 

Rhombic dodecahedron 

Edge 

(nm) 

Area of 

Facet [110] 

(nm2)  

Area of 

Facet [100] 

(nm2) 

Total 

area 

(nm2) 

Ratio of 

[110] over 

the total 

area (%) 

Ratio of 

[100] over 

the total 

area (%) 

1 368 1.88×106 0 1.88×106 100.00 0.00 

2 405 2.27×106 229.64  2.27×106 99.99 0.01 

3 416 2.40×106 15505.82  2.41×106 99.36 0.64 

4 434 2.61×106 263.70  2.61×106 99.99 0.01 

5 290 1.17×106 1883.84  1.17×106 99.84 0.16 

6 380 2.00×106 3234.56  2.00×106 99.84 0.16 

7 417 2.41×106 243.44  2.41×106 99.99 0.01 

8 394 2.15×106 13909.15  2.16×106 99.36 0.64 

9 369 1.89×106 0.00  1.89×106 100.00 0.00 

10 360 1.80×106 14696.64  1.81×106 99.19 0.81 

11 364 1.84×106 2967.91  1.84×106 99.84 0.16 

12 418 2.42×106 8806.09  2.43×106 99.64 0.36 

13 441 2.69×106 272.27  2.70×106 99.99 0.01 

14 407 2.30×106 14842.15  2.31×106 99.36 0.64 

15 445 2.74×106 277.24  2.74×106 99.99 0.01 

16 293 1.19×106 480.75  1.19×106 99.96 0.04 

17 393 2.14×106 1946.06  2.14×106 99.91 0.09 

18 287 1.14×106 2882.92  1.14×106 99.75 0.25 

19 359 1.79×106 0.00  1.79×106 100.00 0.00 

20 315 1.37×106 5000.94  1.38×106 99.64 0.36 

21 358 1.78×106 4485.74  1.78×106 99.75 0.25 

 

2.3.1.3 Adsorption of Methyl Orange (MO) on Different Shaped Cu2O Nanocrystals. 

Figure 2.5a is a plot of adsorption kinetics of MO molecules on four various Cu2O 

nanocrystals in the dark. The adsorption rates and capacities of MO exhibited evident shape 

dependence, following an order of rhombic dodecahedron > octahedron > cuboctahedron > 

cube. The presented adsorption data were fitted with a pseudo-first-order kinetics model 

(Equation 2.4) and a modified pseudo-first-order kinetics model (Equation 2.5) to 

determine the relevant adsorption parameters and analyze their possible shape dependence. 

( ) 1ln lne t eq q q k t− = −   (2.4) 
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( )e e 1ln lns s s s

tq q q k t− = −  (2.5) 

where qe is adsorption capacity at adsorption equilibrium (mg·g-1), qt is adsorption capacity 

(mg·g-1) at time t (h), k1 is the pseudo-first-order adsorption rate constant (h−1), qe
s
 is 

adsorption capacity per surface area at equilibrium (mg·m-2), qt
s
 is adsorption capacity per 

surface area (mg·m-2) at time t (h), and k1
s is the modified pseudo-first-order adsorption 

rate constant (h−1). qt  and qt
s
 were both calculated by experimental data The total surface 

areas of the spiked Cu2O nanocrystals (15 mg L-1, 100 mL) shown in Table 2.2 were used 

in the calculations of qe
s
 and k1

s . 

The fitted values of 1k , k1
s, qe and qe

s summarized in Table 2.4 and 2.5, 

respectively. The rhombic dodecahedron with [110] facet has the highest adsorption 

capacity at equilibrium of 9778.70 mg·g-1, which is greater than other morphological Cu2O 

nanocrystals. Again, the adsorption capacity per surface area at equilibrium of four 

different Cu2O nanocrystals also show that rhombic dodecahedron has the highest value of 

100.94 mg·m-2. Guo et al. demonstrated that the adsorption ability of MO to the different 

shapes of Cu2O nanocrystals followed the sequence of octahedron > cuboctahedron > cubes. 

The exposed [111] facets of octahedron-Cu2O nanocrystals had positively charged “Cu” 

atoms that inclined to interact with the negatively charged groups –SO3
− in MO molecules 

(Figure 2.5b). Subsequently, the rhombic dodecahedron-Cu2O nanocrystals with only 

exposed [110] facets exhibited an excellent adsorption ability of MO because of the high 

density of Cu atoms on the surface. 
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Table 2.4 Pseudo-first-order Adsorption Kinetics Parameters of MO for Different Cu2O 

NPs 

Cu2O NPs 
Pseudo first-order 

kinetics equation 

Adsorption 

capacity at 

equilibrium, qe, 

(mg·g-1) 

Adsorption 

rate constant, 

k1, (h
−1) 

R2 

Cube y = 6.73 – 6.13×10-4x 836.91 6.13×10-4 0.94 

Cuboctahedron y = 8.63 – 3.20×10-4x 5594.70 3.20×10-4 0.94 

Octahedron y = 9.03 – 3.16×10-4x 8337.77 3.16×10-4 0.99 

Rhombic 

Dodecahedron 

y = 9.19 – 5.42×10-4x 9778.70 5.42×10-4 0.99 

  

Table 2.5 Modified Pseudo-first-order Adsorption Kinetics Parameters of MO for 

Different Cu2O NPs 

Cu2O NPs 
Modified Pseudo first-

order kinetics equation 

Adsorption 

capacity per 

surface area at 

equilibrium, qt
s, 

(mg·m-2) 

Adsorption 

rate constant, 

k1
s, (h−1) 

R2 

Cube y = 3.62 – 1.13×10-3x 37.33 1.13×10-3 0.94 

Cuboctahedron y = 4.43 – 2.00×10-3x 83.92 2.00×10-3 0.94 

Octahedron y = 4.57 – 3.84×10-3x 96.91 3.84×10-3 0.99 

Rhombic 

Dodecahedron 

y = 4.61 – 1.13×10-2x 100.94 1.13×10-2 0.99 

 

 

Figure 2.5 (a) Absorption (Ct/C0) of the aqueous solution of methyl orange (15 mg·L-1, 

100 mL) in the presence of Cu2O nanocrystals with different morphologies. (b) Crystal 

structures of Cu2O oriented to show the [100], [110], and [111] planes. Surface Cu atoms 

on the surfaces are shown with yellow circles.  
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The FTIR spectrum of the Cu2O nanocrystals before and after adsorption exhibits 

two strong vibration bands as shown in curve 1 in Figure 2.6. The band at 632 cm-1 

corresponds to the Cu–O bond (optically active lattice vibration in the oxide), and the peak 

at 1632 cm-1 is attributed to the –OH bending vibration, which originates from the surface-

adsorbed H2O. In comparison with the FTIR spectrum of the pure Cu2O nanocrystals, some 

new peaks appear in those of Cu2O NPs after adsorption (curves 1–4 in Figure 2.6). 

Combined with the FTIR of pure MO (curve 5 in Figure 2.6, the new peaks can be assigned 

to the characteristic vibration from MO. The peaks at 1449 cm-1 and 1385 cm-1 are the 

signals from the methyl group. The peaks at 697 cm-1, 1039 cm-1 and 1118 cm-1 come from 

the vibration of the sulfonic group.  Thus, the FTIR characterization provided solid 

evidence for the MO adsorption by Cu2O nanocrystals polyhedra. 

 
Figure 2.6 FTIR spectra of (1–4) the residual after the MO adsorption by Cu2O nanocube, 

cubooctahedron, octahedron, rhombic dodecahedron respectively. 
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2.3.1.4 Electrochemical Activity Measurement of Cu2O Nanocrystals. Cyclic 

voltammetry (CV) has been reported for use in detecting the “fingerprint” of specific lattice 

planes of nanoparticles such as gold, CeO2 and Co3O4. For instance, the oxidation peak for 

[100] and [111] of gold nanostructures in 0.01 M aqueous H2SO4 were reported to be +1.3 

and +1.1 V (vs Ag/AgCl, saturated KCl), respectively. For the four types of Cu2O 

nanocrystals, CV curves were obtained by immersing the nanocrystal-covered Au/Cu 

electrodes in 5 mM K3[Fe(CN)6] with 0.1 M KCl solution. Figure 2.7 shows the typical 

CV curves that exhibit different peak currents or corresponding applied potentials. For 

Cu2O nanocubes, a clear oxidation peak and a reduction peak is noted at around +0.38 V 

and +0.29 V (vs Ag/AgCl, 1.0 M KCl), respectively. Cu2O nanocubes have a peak-to-peak 

potential separation (∆Ep) of 113 mV (vs. Ag/AgCl) and relatively low redox peak currents, 

corresponding the presence of dominant [100] facets as shown in the HR-TEM results 

(Figure 2.1a). For cubooctahedron, the characteristic CV peaks reflect the influences from 

[111] and [100] planes. The oxidation peak current of Cu2O cuboctahedron is slightly 

higher that of Cu2O nanocubes, probably because the Cu2O’s [111] plane promoted the 

electron transfer or reactivity toward the probe molecules of [Fe(CN)6]
3−/4−. On the 

octahedron, a pair of well-defined redox peaks also appear with the ∆Ep of 103 mV, due to 

the increase of the [111] plane. Similarly, rhombic dodecahedron had ∆Ep of 87 mV (vs. 

Ag/AgCl), indicating a more reversible electron transfer process. 
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Figure 2.7 Characteristic cyclic voltametric curves of (a) cube, (b) cuboctahedron,  

(b) octahedron, (d) rhombic dodecahedron under different scan rate (ν) in 5 mM 

K3[Fe(CN)6] with 0.1 M KCl solution and (e) CV results under 50 mV·s–1 of four Cu2O 

nanocrystals and (f) The peak current plots versus the square root of scan rates (v1/2) (from 

10 to 500 mV/s).  
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The effect of scan rate (ν) on peak currents of the cyclic voltammograms is also 

monitored. It is observed that for all the ν studied, the ratio of the cathodic and anodic 

processes' peak currents is consistently nearing 0.95, indicating the chemical reversibility 

as expected for the [Fe(C.N.)6]
3-/4- redox process. Furthermore, as shown in Figure 2.7 (f), 

from 10 to 500 mV/s, peak currents density vs. square root of scan rate (v1/2) show good 

adherence to linearity, demonstrating classical Nernstian diffusion-controlled redox 

behavior. 

Figure 2.8 (a–e) shows the EIS complex-plane plots for the four types of Cu2O 

nanocrystal-covered Au/Cu electrodes, which were obtained at an open-circuit potential in 

5 mM K3[Fe(CN)6] with 0.1 M KCl solution in the frequency range from 0.1 to 106 Hz. 

The semicircle portion at high frequencies is due to the electron transfer limited process 

and the linear portion at lower frequencies results from a diffusion limited process. The 

distorted semicircle suggests that a double layer could be established at the interface of 

electrolyte/Cu2O nanocrystals on Au/Cu electrode. Smaller semicircle usually means faster 

interfacial charge transfer. ).  

Figure 2.8 also shows that Cu2O nanocrystals decorated Au/Cu electrodes 

possesses smaller semicircle than that after methyl orange (MO) adsorption, which could 

increase the interfacial electric resistance. To explain these results, the charge transfer 

resistance (Rct) was obtained by fitting the impedance data to an equivalent electric circuit 

model (Figure 2.8e). Table 2.6 shows that the Rct value increased from 104.1 ± 0.50 Ω to 

112.2 ± 0.36 Ω before and after methyl orange adsorption on the electrode surface covered 

by the cubic Cu2O nanocrystals. By contrast, upon deposition of cuboctahedron Cu2O 

nanocrystals on the Au/Cu electrode, the Rct value decreased to 89.7 ± 0.10 Ω, indicating 
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that the increased [111] facet facilitates electron transfer of the interfacial redox reactions. 

Rct for the rhombic dodecahedron nanocrystal modified Au/Cu electrode further decreased 

to 70.19 ± 0.18 Ω, suggesting a faster electron transfer at the rhombic dodecahedron Cu2O 

nanocrystals interface compared to that for cube, cuboctahedron and octahedron Cu2O. 

This result matches the observed facet-dependent photocatalytic properties of Cu2O 

nanocrystals, where rhombic dodecahedron with dominant [110] facets was reported to 

achieve greater efficiency to produce radicals, than octahedron and cube with dominant 

[111] and [100] facets respectively. The range of n(0.85~0.96) for CPE further supports 

the hypothesis that these electrode interfaces can be regarded as imperfect capacitors with 

non-ideal behavior of capacitance, attributed to surface heterogeneity. Moreover, the 

change ratio [change (%)=(After -Before)/Before] of Rct and CPE (F·sn) showed increasing 

from cube to rhombic dodecahedron which could be ascribed to adsorption ability of MO 

for four different Cu2O nanocraystal. 

 
Figure 2.8 Nyquist impedance plots for the pristine Cu2O nanocrystal-coated electrodes 

and those after methyl orange (MO)-adsorption: (a) cube, (b) cuboctahedra, (c) octahedra, 

(d) rhombic dodecahedra and (e) Equivalent circuit used to fit the Nyquist plots obtained 

via EIS. 
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2.3.2 Electric and Electrochemical Properties at a Facet Level 

2.3.2.1 Measurement of Surface Work Function. First, the work function of the Pt/Ir-

coated tip was obtained by measuring the contact potential difference (CPD) between the 

Pt/Ir-coated tip and the Au [111] substrate, since the Au surface are found to possess a 

work function of ∼5.2 eV. The work function for the AFM probe is 5.5±0.1 eV, which falls 

in the reported range for Pt (5.12~5.93 eV). To verify this result, we measured the CPD 

between the probe and HOPG substrate and determiened the work function (ΦHOPG) of 

∼4.8 eV, which matches the reported range between 4.4 and 4.8 eV. Similarly, the silicon 

wafer [111] was found to possess a work function of ∼4.6 eV that is consistent with the 

previously reported values between 4.60–4.85 eV. The CPD or work function mapping for 

different substrate surfaces is shown in Figure 2.9 with a schematic energy diagram in 

Figure 2.9d. The dotted line indicates the Fermi level of Pt. The cross correlation of data 

and statistical analysis of the various surface potentials allow us to make a semiquantitative 

assessment of the work function of the Cu2O nanocrystals.  
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Table 2.6 Fitted Results of the Interfacial Charge-Transfer Resistance Parameters in the 

Equivalent Circuit for Four Cu2O Nanocrystals Before and After the MO Adsorption 

Cu2O Parameters 
Before 

adsorption 
After adsorption 

Change (%) 

Cube 

Rs (ohm) 5.18 ± 0.14 5.09 ± 0.05 -1.74 

Rct (ohm) 104.1 ± 0.50 112.2 ± 0.36 7.78 

CPE (F·sn) 3.16×10−8 3.56×10−9 -88.73 

n for CPE (1) 0.87 0.85 -2.29 

W (S·s1/2) 0.00071 0.00052 -26.76 

Cuboctahedron 

Rs (ohm) 5.37 ± 0.04 5.66 ± 0.10 5.40 

Rct (ohm) 89.7 ± 0.10 107.7 ± 0.60 20.06 

CPE (F·sn) 3.99×10−8 3.68×10−9 -88.81 

n for CPE (1) 0.868 0.86 -0.92 

W (S·s1/2) 0.00083 0.00047 -43.37 

Octahedron 

Rs (ohm) 5.17 ± 0.02 5.04 ± 0.01 -2.51 

Rct (ohm) 81.54 ± 0.10 99.98 ± 0.60 22.61 

CPE (F·sn) 4.54×10−8 4.37×10−9 -90.37 

n for CPE (1) 0.95 0.86 -9.47 

W (S·s1/2) 0.00048 0.00043 -10.42 

Rhombic 

dodecahedron 

Rs (ohm) 4.99 ± 0.02 5.05± 0.02 1.20 

Rct (ohm) 70.19 ± 0.18 86.92 ± 0.01 23.83 

CPE (F·sn) 2.07×10−7 1.52×10−8 -92.65 

n for CPE (1) 0.94 0.92 -2.12 

W (S·s1/2) 0.00081 0.00073 -9.87 
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Figure 2.9 High-resolution images of the topography and surface potential of (a) Au 

surface, (b) HOPG and (c) Silicon [111] wafer. The cross-section profiles of the topography 

and surface potential were taken along the directions marked with the red dashed lines in 

each topography and surface potential. (d) Proposed energy band diagram of Pt, Au, HOPG 

and Si materials.  

 

KPFM was conducted on Cu2O to reveal the potential different electronic structures 

or work functions of the [100], [110], and [111] facets. Figure 2.10 shows the surface 

potential mapping of different Cu2O nanocrystals deposited on the silicon wafer. The 

surface potential of different facets of the Cu2O nanocrystals can be determined by 

comparing to the silicon wafer. Based on the analysis of over 15 different samples for each 

shape, the surface potentials (the CPD levels) correspond to +320±50, +350±70, and 

+400±58V for the [100], [110], and [111] surfaces, respectively. The corresponding surface 

work function of [100]-cubic, [110]-rhombic dodecahedral, and [111]-octahedral Cu2O are 

4.92, 4.95, and 5.00 eV, respectively. This result agrees with a study reported by Lee et. al, 

which indicated that the [100] surfaces and intermediate work functions of the [110] facet 
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of Cu2O had the lowest work functions. For the cuboctahedron Cu2O nanocrystals, we 

observed a difference between [100] and [111] surfaces of ∼80 mV. Comparing with the 

[100] and [111] facets, the [110] facet possesses the intermediate electronic work function. 

Practically, the electrochemical processes always combine into two categories: outer-

sphere redox processes, where there is little or no physical interaction between the redox 

species and electrode surface, and where questions relate to the influence of local electronic 

structure, solvent/electrolyte properties and double layer effects on electrochemical 

processes, and inner-sphere or catalytic redox processes, where the bonding or adsorption 

of reactants, intermediates, and/or products to the electrode surface has a profound effect 

on the electrode reaction kinetics. The DFT simulation results in the following section 

further investigate that adsorption of reactants on different facets and reveal 

electrochemical activity of four Cu2O nanocrystals related to its surface structure (such as 

DOS and work function) and interaction with probe molecules.  
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Figure 2.10 KPFM images and corresponding potential for (a) cube, (b) cuboctahedron, 

(c) octahedron and (d) rhombic dodecahedron Cu2O nanocrystals.  

 

2.3.2.2 Measurement of Surface Electrochemical Activity of Cu2O Nanocrystals. 

AFM-SECM was used to reveal facet/shape-dependent electrochemical properties of Cu2O 

nanocrystals immerged in the [Ru(NH3)6]Cl3/KCl solution. The topography and tip-sample 

current images of four types of Cu2O nanocrystals are presented in Figure 2.11. The right 

column of Figure 2.11 shows that when the tip approaches or sweeps over the Cu2O 

nanocrystals, a higher tip-sample current was achieved. The tip current was generated due 

to the reduction reaction of [Ru(NH3)6]
3+ to [Ru(NH3)6]

2+ with a DC bias potential at -0.4 

V applied to the tip as depicted in Figure 2.12e. When the tip approaches the sample 

surface, the enhanced tip current mainly results from a reaction loop, where the sample 

surface under a positive DC bias (+0.1 V) enabled oxidation of [Ru(NH3)6]
2+. The oxidized 
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product then diffused to the tip for reductive reactions, which led to a higher tip current. 

By contrast, the silicon substrate, though under the same positive DC bias, did not exhibit 

the same oxidative reactivity toward [Ru(NH3)6]
2+ and thus generate relatively low tip 

current enhancement.  

Furthermore, the tip-sample current exhibited slight dependence on the shape or 

exposed dominant facets of Cu2O nanocrystals. Cube, cuboctahedron, octahedron and 

rhombic dodecahedron of Cu2O nanocrystals yielded an average tip current of 205.4, 233.4, 

279.4 and 318.3 pA, respectively, at the same tip-sample distance of 100 nm. The observed 

tip current variations could be attributed to the effects of different facet surfaces or surface 

states (e.g., work functions and electrolyte/electrode interactions) that are further analyzed 

by DFT. For instance, the diffusion and concentration profile or distribution of the redox 

mediator from the bulk solution to the probe tip could be affected by the interactions of 

mediator molecules and facet surfaces. The interplay or overlapping of the two electric 

double layers of the samples and the probes affects the diffusion transport of the redox 

mediators and ultimately the redox reactions at the tip (or tip current). For example, the 

local concentration profile of [Ru(NH3)6]
3+ was reported to be influenced by the tip-sample 

interactions and could vary with the tip-sample distance, which can be estimated under the 

approximation of a semi-infinite spherical diffusion:  

0

2.3
(1 )

2.3

tip

d

tip

r
C C

d r
= −

+
 (2.6) 

where Cd is the  surface concentration at a tip-sample distance (d) following the central 

axis as shown in Figure 2.12a.  

Figure 2.12 evaluates the changes of tip current and redox mediator concentration 

around the tip surface. When the probe was far away (e.g., 1 mm) from an insulating 
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substrate (Figure 2.12a), a constant tip current of 718 pA was calculated using extended 

Butler–Volmer equation with releant parameters shown in Table 2.7. This tip current is 

also called a steady-state current (itip,∞), which is acquired when the tip is placed far away 

from the sample. When the probe is positioned at a distance of greater than 10 times rtip, 

the probe will be considered to stay in the bulk solution or far away from the sample surface 

and the measured tip current itip is equal to the steady-state current itip,∞. Figure 2.12b 

shows the concentration profile of the redox mediator when the tip was 10 nm away from 

the insulating surface. The resulting tip current decreased from 718 to 434 pA because inert 

surface  hinder diffusion of redox mediator to the tip by the substrate. Figure 2.12c shows 

that on a conducting substrate under a potential suitable to drive the oxidation reaction bias 

(+0.2 V), a positive feedback mode is achieved, where the [Ru(NH3)6]
3+ is reduced on the 

tip and returned to [Ru(NH3)6]
3+ near the conducting substrate. Consequently, the tip 

current increased from 748 to 1193 pA at the same tip-sample distance of 10 nm. To 

confirm the dependence of tip current on the tip-sample distance, we measured the tip 

currents on Au coated Si sample surface at different tip-sample distances (20, 50, 100, 150 

and 200 nm). Figure 2.12d shows the effective surface concentration (Cd) of the redox 

mediator calculated by Equation (2.7) using the obtained tip currents.  

, 04tip tipi nDFC r  =  (2.7) 

where the value of itip,∞ depends linearly on the mediator concentration and the tip radius 

for a conductive probe with a disk geometry, n is the number of the electrons transferred 

(n=1), D is the diffusion coefficient of the redox species in solution (3.52×10−4 cm2·s−1), F 

is the faradaic constant (96,485 C·mol−1), C0 is the effective concentration of mediator near 
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the electrode surface (e.g., 10 mM [Ru(NH3)6]Cl3 in 0.1 M KCl), and β is a geometrical 

factor. If the tip is conical, then β can be calculated by: 

3 0.36

0.23
1

( 0.81)gR
 = +

−
 (2.8) 

Here, Rg is a geometrical factor, which is the radius of the insulating sheath (rg) divided by 

the radius of the probe (rtip). Thus, Rg = rg / rtip (rg =390 nm and rtip =25 nm). 

 

Table 2.7 Parameters for COMSOL Simulation 

Parameters Value Unit 

Exchange current density (J) 0.5 A·m-2 

Electrode potential (E) -0.4 V 

Equilibrium potential (Eeq) -0.1 V 

Absolute temperature (T) 293 K 

Number of electrons involved in the reaction (z) 1 unitless 

Faraday constant (F) 96485 C·mol−1 

Universal gas constant (R) 8.314 J⋅K−1⋅mol−1 

Reduction charge transfer coefficient (αc) 0.5 unitless 

Oxidation charge transfer coefficient (αa) 0.5 unitless 

Activation overpotential (η) -0.3 V 
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Figure 2.11 Typical topography and tip-sample current images of (a) cube,  

(b) cuboctahedron, (c) octahedron and (d) rhombic dodecahedron Cu2O nanocrystals.  
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Figure 2.12 Simulation of the concentration profile of 10 mM [Ru(NH3)6]
3+ in 0.1 M KCl 

electrolyte near the nanoelectrode probe. (a) The probe is 1 mm away from an insulating 

substrate, (b) and (c) The probe is 10 nm away from an insulating substrate and a 

conducting substrate, respectively. (d) Different surface concentrations (Cd) on the tip 

calculated from the tip currents measured at different tip-sample distances. (e) Schematic 

of the electrochemical reactions at the tip and the sample surface. 

 

2.3.3 DFT Analysis of Facet Properties of Cu2O Nanocrystals 

2.3.3.1 Surface Energy and Work Function. With different facets exposing different 

surface atoms, tuning Cu2O morphology correspondingly controls its surface chemistry 

and reactivity. This is important when considering the (intrinsically linked) structural and 

electronic factors that contribute to binding target molecules. Depending on the atomic 

coordination and structural configuration of Cu2O surfaces, different proportions of cations 

and anions are accessible for reactant adsorption, thus greatly influencing the charge 

transfer between sorbent and sorbate and affecting the type and strength of binding and 

generation of products or reactive species. Furthermore, different atomic coordination 

results in distinct electron density configurations, also influencing the type and strength of 
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binding as well as band gap energies and positions. Because these electronic and binding 

characteristics and behaviors govern the mechanisms in sorption-dependent fields such as 

heterogeneous catalysis, gas sensing, or molecular reactions. 

The three low-index Cu2O surfaces: [100], [110] and [111], were constructed with 

each terminated in two ways as illustrated in Figure 2.13. The surfaces are denoted first 

by the facet followed by the species of the terminating atoms; for example, the Cu-

terminated [100] facet is denoted as [100]:Cu, the CuO-terminated [110] facet is denoted 

as [110]:CuO and the O-terminated [111] facet is denoted as [111]:O. We have calculated 

the surface energies and work function of the six different surface terminations as shown 

in Table 2.8. The surface energy of [100]:Cu and the [100]:O are similar (1.12 and 1.05 

J·m–2, respectively). Only O atoms are terminated in the [100]:O facet, which has a slightly 

lower surface energy than the Cu terminated facet. The [110]:Cu and [110]:Cu–O are the 

most two reactive surfaces with surface energy of 2.12 and 2.09 J·m–2. Finally, we found 

that a surface energy of 1.87 J·m–2 for the [111]:O surface that is lower than that of 

[111]:Cu (2.01 J·m–2), which agrees with the result reported by Soon et al. It is well 

established that the surface energy is closely related to the density of under-coordinated Cu 

atoms, a trend that we observe here. The [110] surface contains both doubly coordinated 

Cu atoms and undercoordinated, singly coordinated Cu atoms, with dangling bonds 

perpendicular to the surface. The [111]:Cu surface similarly exposes both Cu atoms and O 

atoms, but the density of dangling bonds is much less than the [110] surface. The surface 

energies of Cu2O generally follow the density of undercoordinated Cu atoms, [100] < [111] 

< [110]. A higher surface energy typically indicates a more reactive surface and therefore 

the highest surface energy of each facet correlates with the observed adsorptive 
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performance of the Cu2O nanocrystals, as measured on the cubic [100] crystals, octahedral 

[111] crystals, and rhombic dodecahedral [110] crystals.79 

Understanding of the electronic structure of a material is essential for its potential 

technological applications in numerous devices as it provides a comprehensive description 

of the optical, electronic and thermoelectric properties. To further determine the surface 

electronic structure of the three Cu2O nanocrystals, we calculated the electronic work 

functions and the electronic band gaps by the slab models of the three facets. The work 

function is a direct consequence of the electrostatic barrier induced by the dipole double 

layer at the surface. The presence of highly electronegative atoms, such as oxygen, at the 

surface increases the contribution of the dipole double layer to this electrostatic barrier, 

making it harder for an electron to leave the surface.  This is reflected in the work functions 

of both the [100]:O and [110]:Cu-O structures, which have values significantly higher than 

that of only Cu-terminated surfaces (although the work functions of [111]:Cu and [111]:O 

are similar). Conversely, the work function of the [110]:Cu structure is smallest in value 

when compared to that of the other surface which may result in better activity owing to the 

increased ease of electron transfer.  

The electronic band gaps (Eg) of the different surfaces are determined from the 

density of states (DOS) as the difference between the valence band maximum (VBM) and 

conduction band minimum (CBM), and the band gap energies for three low-index Cu2O 

surfaces with different termination are listed in Table 2.8. The [110]:Cu facet has the 

smallest bandgap due to the unsaturated Cu atoms at the surface giving rise to some gap 

states which are considered to be the active sites in catalytic reaction. With the decrement 
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of undercoordinated Cu atoms the bandgap energies increase, which is well consistent with 

previous findings. 

 
Figure 2.13. Relaxed Cu2O surfaces. Blue and red balls indicate Cu and O atoms 

respectively. 

 

Table 2.8 Calculated Relaxed Surface Energies (γr), Work Functions (Φ), and the 

Bandgaps (Eg) of Different Cu2O Surfaces, the Bandgaps (E*
g) of the [Ru(NH3)6]

3+ 

Adsorption on Different Cu2O Surfaces 

Surface γr 

(J·m–2)  

Φ 

(eV) 

Eg 

(eV) 

E*
g 

(eV) 

[100]:Cu 1.12 4.48 0.46 0.14 

[100]:O 1.05 5.58 0.97 0.56 

[110]:Cu 2.12 3.93 0.16 0.27 

[110]:Cu-O 2.09 5.66 1.25 0.36 

[111]:Cu 2.01 4.82 0.59 0.32 

[111]:O 1.87 4.67 0.49 0.45 

 

2.3.3.2 Density of States. We investigated the electronic density of states (DOS) with 

Fermi-level set to zero of those six Cu2O surfaces. The calculated projected DOS shows 

that both valence band maxima (VBM) and conduction band minima (CBM) mainly 

consist of O (p) and Cu (d) orbitals, respectively, while contributions from other orbitals 
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are much less. In the DOS for [100]:Cu (Figure 2.14a.), the unsaturated Cu atoms at the 

surface give rise to some gap states which are considered to be the active sites in catalytic 

reaction. DOS plots for [100]:O planes show semiconducting band structures. We observed 

a finite number of states near the Fermi level in the electronic DOS of the [110]:Cu and 

hence propose that this surface is conducting. The calculated electronic DOS for [110]:Cu–

O terminations also exhibits the semiconducting band structures. We calculated the 

electronic DOS for both terminations and found that the bandgaps for the [111] surfaces 

are quite low; these two surfaces are also found to be semiconducting. Soon et al. employed 

the technique of “ab initio atomistic thermodynamics” to identify the surface structures of 

the [110] and [111] planes, and found that both of them exhibit a metallic character, but 

their electronic structures are rather different. The [111] plane structure’s metallic character 

is largely bulk-like in nature, whereas that of the [110] plane structure is truly surface like, 

which may result in better catalytic activity related to the “Cu” dangling bonds of the [110] 

surfaces.  
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Figure 2.14. Electronic DOS of Cu2O (a) [100]: Cu, (b) [100]: O, (c) [110]: Cu, (d) [110]: 

Cu–O, (e) [111]: Cu and (f) [111]: O terminated surfaces. 

 

2.3.3.3 Adsorption energy. To gain further insights into the morphology–electrochemical 

activity relationship of Cu2O, we have conducted a series of DFT calculations to address 

the adsorption mechanism of molecular Hexaammineruthenium (III) cation ([Ru(NH3)6]
3+) 

on the Cu2O [100], [110] and [111] surfaces. Ruthenium hexamine ([Ru(NH3)6]
3+/2+) is one 

of commonly used redox couples for aqueous electrolytes. Its one electron redox process 
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is a good representation of the fictive species Oxidation and Reduction. The redox couple 

comes in the form of aqueous solutions from ruthenium hexamine (III) chloride or 

ruthenium hexamine (II) chloride, with the first one the more common choice. The most 

stable adsorption configurations are shown in Figure 2.15. The adsorption energies are 

also given in Table 2.9. The values of adsorption energies for all of the three crystal facets 

were negative, suggesting the adsorption processes are exothermic and spontaneous. 

We noted that the adsorption energy, Eads, correlates strongly with the surface 

energy, as shown in Table 2.8. The smallest surface energy [110]:Cu-O surface shows 

weak adsorption, while the largest surface energy [110]:Cu surface shows the strongest 

binding. Bandgaps of [Ru(NH3)6]
3+ adsorbed on Cu2O surfaces are shown in Table 2.8. 

The adsorption of [Ru(NH3)6]
3+ will narrow the bandgap mainly due to the presence of the 

N (p) impurity state, which can be found in the DOS of each Cu2O surface after 

[Ru(NH3)6]
3+ adsorption. 
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Figure 2.15. [Ru(NH3)6]

3+ cation on Cu2O surfaces. Blue, red, gray, light blue, pink balls 

indicate Cu, O, Ru, N and H atoms, respectively. 

 

Table 2.9. Adsorption Energies (Eads) of the H2O and [Ru (NH3)6]
3+ Adsorption on 

Different Cu2O Surfaces and the Charge Transfer between [Ru(NH3)6]
3+ Cation and 

Different Cu2O Surfaces. 

Surface Eads (H2O) 

(eV)  

Eads ([Ru (NH3)6]
3+) 

(eV)  

Charge transfer (e) 

[100]:Cu −1.28 −4.21 −0.76 

[100]:O −1.72 −4.86 −0.70 

[110]:Cu −2.95 −9.93 −1.11 

[110]:Cu-O −0.75 −4.44 −0.49 

[111]:Cu −1.77 −4.10 −0.58 

[111]:O −1.80 −4.59 −0.52 
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Figure 2.16. Electronic DOS of [Ru(NH3)6]

3+ adsorption on Cu2O (a) (100): Cu, (b) (100): 

O, (c) (110): Cu, (d) (110): Cu–O, (e) (111): Cu and (f) (111): O terminated surfaces. 

 

2.3.3.4 Bader Charge Analysis. To further investigate the electronic interactions between 

[Ru(NH3)6]
3+ cation and different crystal facets of Cu2O, the charge transfer was also 
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calculated for the adsorption of [Ru(NH3)6]
3+. There is obvious electron injection from 

different Cu2O surfaces to [Ru(NH3)6]
3+ cation (see Figure 2.17). The amount of charge 

transfer is listed in Table 2.9; it is found that the strength of electronic interaction between 

[Ru(NH3)6]
3+ cation and different crystal facets follows the order of [110] facets > [111] 

facets > [100] facets. The more charge transfer between [Ru(NH3)6]
3+ cation and these 

surfaces, the stronger the electronic interactions that form, which will lead to better 

catalytic activity. In this regard, [110] facets may be more suitable for [Ru(NH3)6]
3+ cation 

adsorption compared with that of [100] and [111] facets. The results may explain the 

significantly distinct effect of [Ru(NH3)6]
3+ cation decoration on the electrochemical 

catalytic performance of the different Cu2O support in our work. 

 
Figure 2.17. Three-dimensional charge density difference maps of [Ru(NH3)6]

3+ cation on 

Cu2O surfaces. The regions of charge depletion and charge accumulation are represented 

by the blue and yellow lobes. Blue, red, gray, light blue, pink balls indicate Cu, O, Ru, N 

and H atoms, respectively. 
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In comparison with Cu2O with [100] and [111] facets, rhombic dodecahedra Cu2O 

with [110] facet exhibited relative larger adsorption capacity and adsorption energy, further 

leading different electrochemical performance. The [110] faces are higher in surface 

energy and expected to be more catalytically active than the [100] and [111] facets. 

Furthermore, Cu2O crystals bounded by the [110] facet contain positively charged copper 

atoms at the surfaces, whereas those bounded by the [100] faces such as the cubes are 

electrically neutral.  

 

2.4 Conclusion 

In this work, for the first time, in situ AFM-SECM demonstrated the nanoscale level 

probing of the facet dependent electrochemical properties of Cu2O nanocrystals. 

AFM−SECM multidimensional imaging on the four different morphology particles 

unveiled the correlation between facets in Cu2O nanocrystals and AFM electrochemical 

images. We employed traditional electrochemical measurement including cyclic 

voltammetry and electrochemical impedance spectroscopy, and KPFM to improve the 

addressability of understanding facet dependent electrochemical properties of Cu2O 

nanocrystals, however the results do not identify all possible causes and more work is 

needed to elucidate the mechanisms that facet-dependent activities of different morphology 

nanoparticles. Lastly, DFT calculations evidenced that the higher surface energy and 

efficient electron transfer on [110] facet responsible for the higher electrochemical 

responses. AFM-SECM provides high spatiotemporal resolution, which shows promising 

potential in the area of energy materials, single-cell imaging, and analysis. 
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CHAPTER 3 

NANOSCALE HYDROPHOBICITY AND ELECTROCHEMICAL MAPPING 

PROVIDES INSIGHTS INTO FACET DEPENDENT SILVER NANOPARTICLE 

DISSOLUTION  

 

 

3.1 Introduction 

Morphologies such size and shape largely influence the physicochemical properties of 

many metal nanomaterials. For example, gold (Au), palladium (Pd), and platinum (Pt) 

nanomaterials in different shapes such as rods, wires, plates, tetrahedrons, shells, cubes, 

spheres, stars, and octahedrons have been widely explored in biomedicine, catalysis, 

surface plasmon resonance, surface-enhanced Raman scattering (SERS), and 

optoelectronic devices. Silver nanoparticles (Ag NPs) are probably the most widely used 

commercial nanomaterials, which have increasingly been incorporated in textiles, food 

containers, cosmetics, toys and medical devices as antimicrobial agents. The amicrobial 

activity of Ag NPs is largely attributed to the release of silver ions and internalization of 

Ag NPs that could both bind to thiol groups and disrupt cellular functions. Dissolution of 

Ag NPs usually occurs through oxidation of metallic silver into silver ions. This process is 

highly affected by intrinsic physicochemical properties (surface coating, shape and size) 

and extrinsic conditions such as the solution ionic strength, pH, dissolved oxygen 

concentration, temperature and dissolved complexing ligands. Studying the dynamic 

dissolution and ion release process of nanostructured silver and other metallic 

nanomaterials endows us the opportunity to comprehend the structure-activities 

relationships and the elicited antimicrobial properties. 

Recent studies have explored the toxicity of Ag NPs to a variety of organisms such 

as plants, algae, fungi, microorganisms, and human cells. The negative impacts of Ag NPs 
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on the environment and potentially humans may be long lasting and have been recently 

reviewed. While all of the mechanisms by which Ag NPs elicit a toxic effect remain unclear, 

it is generally considered that the toxicity of Ag NPs is at least partly driven by Ag+ ion 

release. Even if Ag+ release is only one of many pathways by which Ag NPs elicit toxicity, 

dissolution remains an important process that alters nanoparticle properties and is thus a 

critical aspect of Ag NP safety.  

Most prior studies examined the dissolution of Ag or other metallic nanoparticles 

at ensemble level by tracking particle size or shape changes and the released silver ion 

concentrations. The commonly employed techniques include ultraviolet−visible 

spectroscopy (UV−vis), dynamic light scattering (DLS), nanoparticle tracking analysis 

(NTA), inductively coupled plasma−mass spectrometry (ICP−MS), transmission electron 

microscopy (TEM) and atomic force microscopy (AFM). The relevant results show that 

the shape and size of Ag NPs both affect the Ag+ ion release and cytotoxicity. For example, 

the dissolution of spherical and prism Ag NPs has been evaluated scanning transmission 

electron microscopy and atomic absorption spectroscopy, the results showed Ag prisms 

has the faster dissolution than Ag sphere due to its higher surface energy. The aggregation 

of Ag NPs also decreased the available surface reactivity by at least an order of magnitude 

and consequently decreased the dissolution rate. Thus, it is critical to accurately unravel 

the dissolution process of Ag NPs at a single-particle level and eliminate the effects of 

aggregation and other factors. Atomic Force Microscopy-Scanning Electrochemical 

Microscopy (AFM-SECM) has been demonstrated as a powerful tool in material science 

for imaging composite material surfaces exhibiting electrochemically active sites, such as 

dimensionally stable anodes, noble metal nanoparticles,  functionalized electrodes, and soft 
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electronic devices.  AFM-SECM, which directly reveals the local electrochemical 

information by isolating a nanoscopic portion of the electrode for the electrochemical 

measurement, holds promising potential to unveil fundamental interfacial properties or 

activity at nanoscale. 

This study aims to elucidate the fundamental mechanisms of dissolution for Ag NPs 

of three different shapes (nanocube, nanorod, and octahedron) and to determine the 

facet/shape dependence. The facet/shape effects of Ag NPs on dissolution kinetics were 

examined by measuring the hydrophobicity and electrochemical activity at local surfaces 

of Ag NPs using novel approaches. For example, local surface hydrophobicity as a measure 

of the affinity toward water molecules was mapped to analyze the dissolution sites on 

different shaped Ag NPs. Furthermore, local reactive sites of Ag NPs were probed by 

AFM-SECM, which allows us to detect tip-sample currents at a sensitivity of nA·V‒1 due 

to the reactivity differences of local facets of Ag NPs. To explain the observed facet-

dependent dissolution behavior, density functional theory (DFT) calculations and 

COMSOL simulations were conducted. The ab initio molecular dynamics (AIMD) 

simulations were investigated to analyze the stability Ag facets, which aims to provide new 

insights into the dissolution of Ag nanoparticles and support functional nanomaterial 

design.  

 

3.2 Materials and Methods  

3.2.1 Preparation and Characterization of Ag NPs of Different Shapes 

Silver nitrate, sodium chloride, Iron (III) 2,4-pentanedionate, poly(vinylpyrrolidone) (PVP, 

MW 55000 g·mol−1) and anhydrous ethylene glycol were purchased from Fisher Scientific, 
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USA. All reagents were used as received without further purification. Ultrapure water 

(Millipore, 18.2 MΩ·cm) was used to prepare all solutions.  

Ag NPs are commonly synthesized using a polyol synthesis method that involves 

the heating of a polyol solution with a salt precursor and a polymeric capping agent to 

generate metal colloids. To synthesize silver nanorods, ethylene glycol (EG), silver nitrate 

(AgNO3), and poly(vinyl pyrrolidone) (PVP; MW = 55,000) were used as the polyol, salt 

precursor, and polymeric capping agent, respectively. Briefly, 5 mL of EG was heated in 

an oil bath at 160 °C for 1 h before simultaneously injecting 3 mL of two EG solutions, 

one containing 48 mg of AgNO3 and the other containing 48 mg of PVP. Nanorod 

formation also required that the reaction solution contained 60 μM of NaCl and 3 μM of 

Fe(III) acetylacetonate (Fe(acac)3) that were dissolved in the EG solution containing PVP. 

To synthesize silver nanocubes, we employed the same procedure for the nanorod 

synthesis but without adding 3 μM Fe(acac)3. The reaction mixture was heated at 160°C 

for 45 min. The product was dominated by cubic nanoparticles, with a small amount (5%) 

of silver nanorods. For the synthesis of octahedral Ag NPs, 60 μM of NaCl in the silver 

nanorod synthesis was substituted with 30 μM of NaBr with the rest procedure or materials 

that are the same as used in the nanorods synthesis.  

The average hydrodynamic radius was determined by dynamic light scattering 

(DLS) on a Zetasizer Nano ZS instrument (Malvern Instruments, UK) using 1.5 mL of the 

silver nanoparticle suspension in a standard macro-cuvette (pass length: 10 mm). The 

temperature was maintained at 25oC, and the scattering angle was 173°. A refractive index 

(RI) of 1.07 and an absorption value of 0.01 were used for Ag NPs. Scanning electron 

microscopy (SEM) images were taken by a field emission scanning electron microscope 
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(FE-SEM) (JSM-7900F, JEOL) to analyze morphology. The crystal phases were identified 

by a Philips, EMPYREAN X-ray powder diffractometer, equipped with a Co KR source. 

Samples were mounted on a zero-background sample holder. Diffraction patterns were 

collected in the 2θ range of 10-100° using a step size of 0.067°. 

3.2.2 Quantifying Local Surface Hydrophobicity 

Surface hydrophobicity of three Ag NPs was probed by a Bruker Dimension Icon AFM 

(Bruker, USA) using our reported method. The adhesion forces between surface 

functionalized AFM tips and sample surfaces were measured to indicate the hydrophobic 

interactions and local hydrophobicity. Briefly, silicon nitride (Si3N4) cantilever tips (NPG-

10, Bruker, USA) were purchased, which have gold coating both on the reflex side and 

surface of tip and a radius of curvature at 30 nm. The tips were hydrophobicized by 

immersion in 1 mM HS(CH2)11CH3 for 14 h to coat the tip surface with -CH3 groups. 

Before this hydrophobization, the tips were rinsed with deionized water and then methanol 

to remove any surface contaminants from probes. Next, gold (111) substrate surfaces 

(Agilent, USA) were used as a platform to create different hydrophobicity by surface 

coating with different alkanethiol self-assembled monolayers (SAMs) terminated with OH 

and CH3 groups. Briefly, the gold substrates were immersed in ethanol solutions containing 

1 mM HS(CH2)11CH3 and HS(CH2)11OH in various molar ratios (0:100, 20:80, 40:60, 

60:40, 80:20, and 100:0) for 14 h and then rinsed with ethanol before use. The -CH3 groups 

chemically bound to gold result in different hydrophobicity levels as the surface coverage 

of CH3 groups varies. Water contact angles were measured on these functionalized gold 

substrate surfaces to quantify the hydrophobicity degree. Table 3.1 shows that the water 

contact angle increases as molar fractions of CH3 on the SAM surfaces increase. A 
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calibration curve (Figure 3.1) was established by plotting the adhesion force between the 

gold substrate surfaces and the functionalized tip against the cosine value of the water 

contact angles. Due to the small sizes of Ag NPs, water contact angles are difficult to 

measure on single NPs. Thus, the local surface hydrophobicity of Ag NPs was measured 

similarly by probing the adhesion force between the surface-functionalized tips and Ag 

NPs that were spin-coated on a silicon wafer (Type P/<111>, TED PELLA, Inc.) that was 

pretreated by immersion in 5% (3-mercaptopropyl)-trimethoxysilane in methanol for 12 h 

to enhance adhesion between deposited NPs and the silicon wafer. For each Ag NPs, at 

least 40 locations were randomly selected to measure the adhesion force, and three force 

measurements were performed at each location. Using the measured adhesion forces and 

the obtained calibration curve, the local surface hydrophobicity was finally quantified 

using the calculated water contact angles.  

Table 3.1 Water Contact Angles for Various SAM-Functionalized Surfaces 

 

SAMs  
Molar fractions of CH3 (%) 

0 20 40 60 80 100 

Contact angle on Au {111} (°) 31.9 45.1 57.6 68.3 78.6 85.1 

Standard deviation (°) 0.6 0.3 0.6 0.7 0.5 0.9 



102 

 

 
Figure 3.1 Adhesion forces versus –cos(θ) values of different gold {111} substrate 

surfaces functionalized with alkanethiol self-assembled monolayers (SAMs). 

 

3.2.3 Surface Electrochemical Activity Measurement 

AFM-SECM was used to identify electrochemically reactive or active sites to unravel the 

redox-mediated dissolution mechanisms for Ag NPs. The SECM measurements were 

performed on the same Bruker Dimension Icon® and FastScan® AFM that is equipped with 

standard PeakForce SECM accessories as detailed elsewhere. Both the probe and the 

sample are working electrodes sharing the same reference and counter electrodes. Prior to 

the SECM measurement, all PeakForce SECM probes (tip radius of 25 nm and tip height 

of 215 nm, Bruker Nano Inc, CA, US) were tested by performing a few cyclic voltammetry 

in a standard three-electrode electrochemical cell with a platinum (Pt) counter electrode 

and a standard Ag/AgCl reference electrode (CH Instruments, Inc.). The electrochemical 

cell was filled with 1.8 ml of 10 mM [Ru(NH3)6]Cl3 (as the reversible redox probe or 

mediator) in 0.1 M KCl (as the background electrolyte). A bipotentiostat (CHI700E, CH 

Instrument) was connected to the electrochemical cell to perform the cyclic voltammetry 
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analyses with a scanning voltage from 0 to −0.4 V vs. Ag/AgCl at 50 mV·s‒1 applied to 

PeakForce SECM probes. In this work, the tip probe reduces [Ru(NH3)6]
3+ to [Ru(NH3)6]

2+ 

at −400 mV versus a pseudo Ag/AgCl reference electrode. We hypothesize that different 

dominant facets of Ag NPs may generate different levels of tip-sample currents to reflect 

the reactivity differences and the tip-sample current mapping could generate strong contrast 

from the background or the silicon substrate that had negligible electrochemical oxidation 

reactions with [Ru(NH3)6]
3+.  

An interleaved scan mode with a lift height of typically 40 to 150 nm between the 

probe and the sample surface was used in SCEM. On each line scan during the main scan, 

the probe scans over the sample surface using the normal PeakForce QNM mode at a scan 

rate at 0.1 Hz and a scan size at 5×5 µm. After verifying SECM on a standard test sample 

(a surface patterned silicon nitride on Pt), the Ag NPs-coated silicon substrate was placed 

into the same fluidic cell to replace the standard test sample. The same SCEM scanning 

procedure was performed on the sample surface at a DC bias of −400 mV and +100 mV 

applied to the probe and the sample substrate at the scan rate of 0.1 Hz and a scan size is 

3×3 µm.  

3.2.4 Nanoparticle Dissolution Experiments 

To reveal the shape dependent dissolution of Ag NPs, direct mapping of the immobilized 

Ag NPs was conducted on AFM. A similar approach was used to immobilize Ag NPs on a 

cleaned silicon wafer substrate, which was moved to 20 mL of the phosphate buffered 

solution (1 mM NaH2PO4; 1 mM Na2HPO4, pH=5.8) in a 50-mL polystyrene sample tubes 

(Fisher Scientific) and sealed with Parafilm. Additionally, NaCl was added at a final 

concentration of 550 mM to accelerate the dissolution of AgNPs. The PBS solutions with 
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different pHs (5.0, 7.0 and 9.0) were also prepared to examine the pH effect on dissolution 

of Ag NPs. pH value was adjusted by 50 mM PBS, the stock solution (100 mM, dissolved 

in 1 L DI) was prepared as follows: pH 5.2 (0.21 g Na2HPO4, 11.82 g NaH2PO4); pH 6.3 

(1.87 g Na2HPO4, 10.42 g NaH2PO4); pH 7.2 (8.55 g Na2HPO4, 4.77 g NaH2PO4); pH 8.0 

(13.32 g Na2HPO4, 0.74 g NaH2PO4) and pH 9.1 (14.10 g Na2HPO4, 0.79 g NaH2PO4). All 

dissolution experiments were conducted at room temperature (25 °C) in the dark. The 

substrates were taken after different times (e.g., 1−4 days) and dried under N2. The same 

Bruker Dimension Icon® and FastScan® AFM was used to scan the morphology of the 

remaining Ag NPs on silicon wafer using the silicon probes (Model: SCANASYST-Air, 

Bruker, USA) in a PeakForce mode using a 256 × 256-pixel resolution at a scan rate of 

0.1−0.5 Hz. An average number of 142 Ag NPs was used to measure the mean particle size 

at each time point.  

3.2.5 DFT Calculation and AIMD Simulation 

To identify the stability of different Ag facets and analyze the interactions of H2O and Cl 

ions with dominated facets of Ag NPs, the Vienna Ab Initio Simulation Package (VASP) 

was to perform relevant DFT calculations. A generalized gradient approximation (GGA) 

using the Perdew-Burke-Ernzerhof (PBE) formulation was employed. The projector 

augmented wave (PAW) pseudopotentials were used to describe the ionic cores with a plane 

wave basis set and kinetic energy cutoff of 600 eV to account for the valence electrons. 

Partial occupancies of the Kohn−Sham orbitals were allowed using the Gaussian smearing 

method and a width of 0.05 eV. The energy was considered self-consistent when the energy 

change was smaller than 10−6 eV. A geometry optimization was considered converged when 

the force change was smaller than 0.02 eV·Å-1. Grimme’s DFT-D3 methodology was used 
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to describe the dispersion interactions. The atomic charges were obtained from Bader’s 

analysis based on the numerical implementation developed by Henkelman et al. 

To construct two dominated surfaces’ structures of Ag NPs, firstly, the equilibrium 

lattice constants of the Ag unit cell in the cubic Fm-3m space group were optimized to be 

a=4.161 Å, b=4.161 Å, c=4.161 Å, α=90°, β=90°, and γ=90°, when using a 4×4×4 

Monkhorst-Pack K-point grid for Brillouin zone sampling. Then, we built a periodic 

surface with four layers for two different facets. The models contain 32 atoms for {100} 

facets and 64 atoms for {111} facets. Two typical facets, Ag {100} and {111}, was 

constructed with p(2×2) periodicity in the x, y and 1 stoichiometric layer in the z direction 

separated by a vacuum layer in the depth of 20 Å in order to separate the surface slab from 

its periodic duplicates. During structural optimizations, the gamma point in the Brillouin 

zone was used for K-point sampling. For both the crystalline Ag surfaces (that is, {100} 

and {111} surface) and adsorption calculations, a K-point grid of 2 × 2 × 1 was used. 

Models of two facets are shown in Figure 3.2. The optimal plane wave cutoff and k-point 

grid density were found by continually increasing them until the self-consistent energy 

changed by less than 1 meV/atom. The surface energies (γ) of Ag {100} and {111} surfaces 

were calculated by Equation (3.1) to assess the stability of the surface (e.g., a low surface 

energy indicates a stable state). 

( ) / 2surf bulkE nE A = −  (3.1) 

where Esurf is the total energy of {100} or {111} surface (J) as constructed in Figure 3.2, 

Ebulk is the bulk energy of the unit cell (J), A is the surface area of the supercell (m2), the 

coefficient 2 was used since the upper and lower surfaces are both optimized, and n 
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represents the number of unit cells that the surface contains. The total energy of the Ag 

surfaces was calculated using the total free energy in the OUTCAR after optimizations.  

The surface adsorption energy between water molecules or Cl- ions and the 

identified stable facets or surfaces of Ag NPs were calculated to assess if the facet-

dependence of Ag could exert a pivotal effect on the hydrophobicity activity and adsorption. 

Water molecule (H2O) was selected for this comparative study as the model molecule. We 

first optimized the molecular structures by putting the H2O molecule in a cubic periodic 

box with a side length of 20 Å and a 1×1×1 Monkhorst-Pack k-point grid for Brillouin zone 

sampling. Then, the relaxed molecule was place on bare Ag surfaces, and after optimization, 

the obtained energies were recorded. The adsorption energy (Eads) of the adsorbate (A) on 

different surfaces that were defined in previous section was calculated by Equation (3.2):  

Eads = EA/surf – Esurf – EA(g) (3.2) 

where EA/surf, Esurf and EA(g) are the energy of A adsorbed on the catalyst surface (eV), the 

energy of a clean catalyst surface (eV), and the energy of an isolated A molecule (eV), 

respectively. Ultimately, the adsorption sites and adsorption mechanisms (e.g., adsorbate-

adsorbent configurations and electron transfer) were evaluated by comparing the energies 

of different adsorption configurations and taking the lowest energy one as the most 

favorable. 

The Ab-initio molecular dynamics (AIMD) was used to elucidate the mechanisms 

of the silver dissolution at room temperature (298 K) coexisted with water. We simulated 

the system consisted of Ag {100} and {111} surfaces by keeping the bottom three layers 

fixed, H2O molecules, Cl- ion and Na+ cation concerning the ion pairs, PVP molecule as 

shown in Figure 3.3. To allow for the Ag surface−solvent interaction, the top two layers 
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of the Ag supercell are relaxed along with the solvent for 1000 ps trajectory. Similar 

methodologies to construct the interphase models have been opted in some of the previous 

studies and have successfully evaluated the detailed microscopic view of the involved 

electrochemical reactions. The spin polarization effects were neglected. Three Ag 

dissolution models are constructed by randomly inserting the optimized H2O molecules 

into the 20 Å vacuum of the supercells, maintaining an experimental density of H2O (1.00 

g·cm−3). Firstly, 100 H2O molecules and 65 H2O molecules are used to fill the empty 

volume of the Ag {100} and {111} surfaces, respectively. Then, same models with added 

one chloride ion and sodium cation as shown in Figure 3.3(e) and (f). Moreover, similar 

technique has been followed to construct models involving PVP molecule, one more PVP 

molecule with H2O molecules were constructed on the Ag surface.  

 
Figure 3.2 Schematic of atomic surface structures of (a) {100} facet and (b) {111} facet 

of Ag surfaces. Silver atoms are illustrated by silver color spheres. 
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Figure 3.3 Schematic of atomic surface structures of (a) {100} facet and (b) {111} facet 

of Ag surfaces, 94 and 65 water molecules on {100} facet (c) and {111} facet (d) of Ag 

surfaces, Cl− ion and Na+ cation coexisted with water molecules on {100} facet (e) and 

{111} facet (f) of Ag surfaces, one PVP molecule coexisted with water molecules on {100} 

facet (e) and {111} facet (f) of Ag surfaces. Silver, oxygen, carbon, nitrogen, hydrogen, 

chlorine, and sodium atoms are illustrated by sliver, red, brown, lavender, pink, green and 

yellow color spheres, respectively. 
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3.2.6 COMSOL Simulation of Ag NPs Shape-Dependent Dissolution  

The shape-dependent dissolution process of Ag NPs was simulated in using COMSOL 

Multiphysics (6.0) by considering the transport characteristics of dilute species near Ag 

NPs of three different shapes (such as, cube, rod and octahedron). Transport of dilute 

species and deformed geometry modules of the COMSOL were used. For two-dimensional 

(2D) modeling, finer and fine meshes and for the three-dimensional (3D) modeling, normal 

and finer mesh were used. To describe the mass transport of Ag ions, the diffusion equation 

in Equation (3.3) was solved using the finite element method to find the concentration 

profile, cAg, in the diffusion field after each time step. 

0
Ag

Ag

c
J

t


+ =


 (3.3) 

Ag Ag AgJ D c= −   (3.4) 

Ji is the mass flux diffusive flux of species Ag (mol·m-2·s-1); DAg is the diffusion coefficient 

of species Ag (m2·s−1) which was assumed to be independent of composition; cAg is the 

concentration of species Ag (mol·m−3). The initial average Ag concentration was set to 

zero in this study. 

The dimension (S) of the diffusion field for different particle geometries, cube, rod and 

octahedron, are calculated based on constant volume for the 3D modeling or constant area 

for the 2D modeling according to Equations (3.5)– (3.7)  

3 3S a= , 2 2S a=  cube  (3.5) 

3 21.72S a l= , 2 2 lS a=  rod  (3.6) 
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3 22

3
S a= , 

2 23

2
S a=  octahedron  (3.7) 

where ac in Equation (3.5) is the edge of cube. Parameter ar and lr in Equation (3.6) are the 

edge of pentagon and the length of the rod, respectively. Parameter ao in Equation (3.7) is 

the edge of octahedron.  

The model input parameters are presented in Table 3.2. cAg and DAg in this table are the 

concentration of Ag at the particle-matrix interface, diffusivity factor, respectively.  

Table 3.2 Parameters for COMSOL Simulation 

Physical Parameters Symbols Value Unit 

Diffusion coefficient DAg 1.0×10-9  m2
·s

-1 

Silver concentration cAg 100 mol 

Edge length of cube ac 1.0×10-6 m 

Edge length of rod ar 1.0×10-6 m 

Length of rod lr 5.0×10-6 m 

Edge length of octahedron ao 1.0×10-6 m 
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3.3 Results and Discussion 

3.3.1 Particle Size and Morphology of Ag NPs 

The average hydrodynamic radius and polydispersity index (PDI) of three kinds of Ag NPs 

are provided in Table 3.3. The sizes of these nanoparticles fall mostly in the range of 300-

400 nm. PDI is a dimensionless measure of the broadness of the size distribution reported 

from the Zetasizer Nano ZS instrument. The PDI values are 0.176, 0.213, and 0.134 for 

nanocube, nanorod, and octahedral Ag nanoparticles, respectively. As the PDI values are 

less than 0.25, Ag NPs are considered well dispersed in their water suspension without 

significant aggregation. All three shaped Ag NPs are mostly stabilized by PVP and have a 

negative zeta potential of around -25 mV.  

Table 3.3 Average Particle Sizes and Polydispersity Index of Three different Ag NPs in 

DI Water 

Ag NPs 

Average 

hydrodynamic 

diameters(nm) 

Standard 

deviations 

(%) 

Polydispersity 

index (PDI) 

Zeta Potential  

(mV) 

Nanocube 375 ± 71 19 0.176 −29.8 ± 5.8 

Nanorod 322 ± 56 17 0.213 −25.7 ± 4.3 

Octahedron 360 ± 57 16 0.134 −24.9 ± 2.9 

 

Figure 3.4 SEM images of the three kinds of Ag NPs: (a) nanocube, (b) nanorod, (c) 

octahedron. Scale bar = 1 µm. The inset figures on top right are 3D models with presumed 

dominant facets with corresponding indexes.  

 

Figure 3.4 presents the SEM images that compares the morphologies. As PVP can 

selectively bind to Ag {100} to make its surface free energy lower than that of Ag {111}, 
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the formation of nanocubes or cubic Ag nanocrystals composed of six square {100} facets 

are facilitated. Similarly, as the nanorod nanoparticles include the {100} and {111} facets, 

by adjusting the surfactants (PVP) or additives (NaCl or NaCl), the nanorod with two ends 

of the {111} facets could grow continuously throughout Ostwald ripening . Ag nanorods 

can elongate because its two end surfaces are largely uncovered and remain to reactive 

toward new silver atoms as previously reported , while the five rod surface {100} are 

passivated by PVP. Finally, octahedron Ag NPs formed because less stable {100} facets 

will gradually be replaced with the more stable {111} facets, leading to the formation of 

truncated cubes, cuboctahedrons, and finally octahedrons and exposed {111} facets. 

3.3.2 Local Surface Hydrophobicity of Three Different Shaped Ag NPs 

The local scale surface hydrophobicity of the three Ag NPs were measured using the 

reported AFM method . Figure 3.5 shows the calculated water contact angles of three 

shaped Ag NPs based on the adhesion force measurements using the calibration curve in 

Figure 3.1. In addition to the full distribution of data, this violin plot also displays summary 

statistics such as mean, interquartile ranges, and median. The measured adhesion forces 

between the Pt-coated tip and the surface of nanocube and nanorod Ag NPs seem to be 

significantly different from that on octahedron (p < 0.05). This difference may be attributed 

to the different tip-facet interactions, where the dominant {111} facet of octahedron Ag 

seems to have a greater adhesion force with the probe tip than the {100} facet on nanocube 

and nanorod Ag NPs.  The Ag NPs used in the Dpresent study were all stabilized by PVP, 

which binds preferably to {100} facet compared to {111} facet . Since the nanocube and 

nanorod Ag NPs have more exposed {100} facet surfaces are coated with PVP that is 

hydrophilic, the hydrophobicized AFM tip thus exhibited a lower adhesion force on 
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nanocube and nanorod Ag NPs than on octahedron Ag. Shen et al. reported that 

nanocrystals’ facets of TiO2 and α-Fe2O3 with larger surface energies exhibited lower 

surface hydrophobicity and higher adhesion forces with NOM with different molecular 

weights. 

 

Figure 3.5 Violin graphs of the measured adhesion forces and the calculated the water 

contact angles for three Ag NPs (nanocube, nanorod and octahedron). Violin plots are a 

combination of a box plot and density plot. A box indicates the interquartile range, which 

means that 50% of the data are contained in the box. The white circle represent median the 

data. The whiskers extended from the box display the lower (min) and upper (max) adjacent 

values. The shape of the violin plot shows the frequency of values. 

 

3.3.3 Shape-dependent Electrochemical Activity of Three Different Shaped Ag NPs 

The metal dissolution is one of the fundamental processes for many applications, including 

battery, corrosion, electrocatalyst degradation, and material synthesis. However, obtaining 

detailed structure–activity relationship for these processes at complex material interfaces 

remains challenging as some of the characterizations such as electrochemical studies are 

conventionally achieved using ensemble approaches. However, electrochemical behavior 

at nanomaterial interfaces is inevitably affected by defects, crystal grains of different 

orientations, and grain boundaries. The kinetics and mechanisms of metal dissolution are 

also expected to depend on the local surface structure and activity. Scanning probe 
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microscopy techniques, including scanning tunneling microscopy (STM) and atomic force 

microscopy (AFM), have been applied to study anodic dissolution reactions in situ, which 

provide insight into the dissolution mechanism. However, only processes of intermediate 

kinetics that match the time scale of STM or AFM can be probed directly. In addition, a 

direct correlation between the measured electrochemical activity (i.e., current) and the local 

topography changes is often missing due to the mismatched length scale: electrochemical 

signal (e.g., current) is associated with the entire millimeter-sized electrode, while the 

topography is only a nanoscopic portion of the entire electrode. AFM-SECM integrates 

classic SECM and AFM to achieve on-step acquisition of unparalleled high-spatial-

resolution surface topology and nanoscale electrochemical images and allows direct 

structure–activity correlation at complex electrochemical interfaces. Such measurements 

are crucial for understanding structure-activity relationships relevant to a wide range of 

applications in material science, life science and chemical processes.  

Figure 3.6 shows that the tip-sample current exhibited slight dependence on the 

shape or exposed facets of Ag NPs. Cube, nanorods and octahedron of Ag NPs yielded an 

average tip current of 110.5±10.8, 98.8±27.8 and 150.8±13.5 pA, respectively, at the same 

tip-sample distance of 100 nm. The observed shape dependence of tip currents is attributed 

to the different facet surface states (e.g., work functions) that caused different 

electrolyte/electrode interactions. In our operation mode, the tip-sample current is caused 

by redox reaction originated from different Ag nanoparticles on the substrate. The diffusion 

and concentration profile or distribution of the redox mediator ([Ru(NH3)6]Cl3) from the 

bulk solution to the probe tip could be affected by the local interactions of mediator 

molecules and facet surfaces. Moreover, the interplay or overlapping of the two electric 
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double layers of the samples and the probes affects the diffusion transport of the redox 

mediators and ultimately the redox reactions at the tip (or tip current). Our results indicate 

that compared with nanocube and nanorod, the octahedron of Ag NPs yield high 

electrocatalytic responses can be attributed to the exposed surface facet. 

 
Figure 3.6 Typical topography and AFM-SECM cross-sectional tip-sample current along 

the red lines in top images for three Ag NPs (a) nanocube, (b) octahedron and (c) nanorods. 
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3.3.4 Silver Nanoparticle Dissolution Experiments 

Dissolution and ion release of ENMs are often evaluated by inductively coupled plasma-

mass or optical emission spectrometry (ICP-MS or ICP-OES). Only two recent studies 

have employed AFM to conduct in situ characterization of dissolution of Ag NPs and to 

assess local morphological changes during dissolution. In this study, we hypothesized that 

faceted Ag NPs may dissolve differently along particular orientations of facets due to the 

local surface energies and reactivity of the different crystal facet as mentioned above. To 

verify this hypothesis, we have measured the high-resolution AFM images of three 

differently faceted Ag NPs. Briefly, Figure 3.7a-c show AFM images of the three different 

Ag NPs in a phosphate buffered solution (1 mM NaH2PO4; 1 mM Na2HPO4, pH=5.8). 

Cubic, nanorod and octahedral shapes are all resolved in AFM images with the measured 

heights (~300 nm) consistent with the results obtained from SEM images. However, the 

widths (400–600 nm) are larger than SEM results, possibly due to the tip convolution effect 

(e.g., the imaged width is a sum of the nanoparticle width and the tip diameter). To promote 

dissolution of Ag NPs, the PBS was additionally spiked NaCl at a high concentration of 

550 mM to induce the chlorination reaction where Ag ions release via oxidative dissolution  

and then complex with chloride ions . Formation of AgCl creates a core-shell Ag0-AgCl 

structure , which then affects the surface properties, reactivity, and bioavailability of Ag 

NPs. At a high Cl/Ag ratio (Cl/Ag = 26,750), the solid AgCl could be converted to the 

dissoluble species of AgClx
(x−1)−, which promotes the dissolution of AgNPs . The 

dissolution process is likely governed by local surface energies due to their geometrical 

shape and different stabilization of the different crystal faces.  

Figure 3.7d present the normalized height changes of three different shaped Ag 

NPs almost linearly decreased with the dissolution time. The height of cubic and nanorod 
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Ag NPs reduced to 30–50% after 4 days in the NaCl solution, whereas those of octahedron 

nanoparticles decrease down to 60–70%. The cross-section image of nanocube Ag NPs 

(Figure 3.6a) indicates that the edges of the cube dissolved to form a truncated cube after 

1 day’s exposure to the NaCl solution. Height changes and dissolutions are slightly 

different for three different morphologies of Ag NPs. The result in Figure 3.7d shows that 

the {111} facet of Ag NPs with a lower coordination number dissolves faster than the 

{100} facet. Thus, Ag NPs with {100} facet have higher resistance to dissolution in NaCl.  

Figure 3.7e illustrates the hypothetic shape changes of Ag NPs during dissolution, 

where the truncated cube is flattened gradually, and then the flat terrace-like structure 

appears again. Pointed peak of octahedron Ag NPs shrinks rapidly after first day espouse, 

giving flat terrace-like structure. After the terrace formed on the top, decrease of the height 

is nearly ceased. Some octahedral NPs, however, were observed to dissolve with the 

pointed peak of the cross section preserved for four days exposure. For Ag nanorod, the 

edges of the pentagon first dissolve and then cross section become more roundly like over 

time and the height was decreasing gradually. 
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Figure 3.7 The height change images of Ag nanoparticles (a) cube, (b) nanorod, (c) 

octahedron, (d) normalized mean Ag NPs height at different times and (e) dissolution 

models of Ag NPs of three different shapes. 
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3.3.5 Water Molecule Adsorption Configurations and Energies 

 The surface energies (γ) of the two different low-index Ag surfaces, {100} and {111} , as 

constructed in Figure 3.2 were calculated with Equation (3.1). Through structural 

optimization, the surface energies of the {100} and {111} facets are 1.60 J·m–2 and 1.27 

J·m–2, respectively. In general, the surface with a higher surface energy has a larger 

proportion of under-coordinated atoms, which can elicit higher reactivity in heterogeneous 

reactions .  

To evaluate the surface reactivity of the two {100} and {111} facets, the interaction 

behavior between water molecules and different Ag surfaces were investigated. To 

determine the optimal adsorption configuration of H2O on the Ag surfaces, the adsorption 

energy (Eads) of one H2O molecule on the constructed Ag surface was calculated using 

Equation (3.2) for several possible positions of H2O as illustrated in Figure. 3.8 and the 

one with the most negative Eads corresponds to the most favorable H2O adsorption 

configuration. The calculated adsorption energies at the atop, bridge and hollow sites of 

{100} facet are −0.94, −0.83 and −0.81 eV, respectively, which are consistent with a 

previous study that reported the adsorption energies of H2O on Ag  surface follow the order 

of: atop sites > bridge sites > hollow sites . Table 3.4 summarizes the adsorption energies 

of H2O on the different Ag surfaces. For both {100} and {111} facets, H2O is always 

forming a one-coordinated structure with an Ag-O bond length of 2.318 and 2.382 Å, 

respectively. The most favorable adsorption energies on the {100} and {111} facets were 

found to be −0.94 and −0.89 eV, respectively, indicating that H2O has a stronger affinity 

on the {100} facet than on the {111} facet, which is in agreement with the surface energy 

calculations.  



120 

 

Both the present work and previous studies found that the water molecule situated 

on an atop site is the optimum binding configuration. Our results in Table 3.4 also show 

that the most favorable binding site on the Ag {111} was atop an Ag atom, followed by the 

bridge site and then the hollow site, with interaction energies of −0.89, −0.79, and −0.67 

eV, respectively. A previous study of water adsorption on an Ag {100} cluster, performed 

at the configuration interaction level using ab initio embedding approach, obtained the 

adsorption energies of 50.2−32.2 kJ·mol−1, which are smaller than the values calculated in 

this study. However, both studies found the hollow site to be the most unfavorable 

adsorption site.   

Table 3.4. Water Molecule Adsorption Energies at Different Positions 

 

Ag facet 

Adsorption energy at different 

positions (eV) 
Adsorption energy of Cl ions 

(eV) 
atop bridge hollow 

{100}  −0.94 −0.83 −0.81 −1.35 

{111} −0.89 −0.79 −0.67 −0.27 
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Figure 3.8. Schematic of water molecule adsorption on (a, b, c) (100) facet and (d, e, f) 

(111) facet of Ag surfaces. Silver, oxygen and hydrogen atoms are illustrated by sliver, red 

and pink, respectively. 

 

3.3.6 Ag Surface Stability Assessment with AIMD 

Ab initio molecular dynamics (AIMD) simulations further explore the stability of 

different silver facets as indicated by Figure 3.9. AIMD follows the trajectories of all 

atoms while computing interatomic interactions quantum mechanically based on the 
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Hellmann-Feynman theorem. Three simulation cells containing Ag {100} or {111} 

surfaces were created with exposure to H2O (i.e., 100 molecules for {100} and 65 

molecules for {111}). Firstly, only water molecules were placed in the simulation cell 

arbitrarily, and a 1000 ps trajectory was performed. Figure 3.9 shows that the Ag {111} 

surface tend to interact with water molecule than Ag {100} surface as indicate by the 

unfixed two layer became more disordered, which supports the DFT-computed adsorption 

energies of water molecule on Ag surfaces.  

A second simulation cell containing one Cl− and Na+ as shown in Figure 3.9e-f, 

and 1000 ps trajectory was performed. This simulation shows that the Ag atoms of on the 

{100} surface prefer to migrate from Ag surface to phase which containing water molecules 

than that of Ag {111}. The Cl− ions (green sphere) tend bind to the one of Ag atoms, which 

agrees with Cl− ions is more stable on Ag {100} which found in the DFT-computed 

adsorption energies of Cl ions on Ag surfaces. Lastly, the third simulation cell contain one 

PVP molecule as shown in Figure 3.9g-h. After PVP bonding to the surface, the Ag {100} 

surface become more stable than that of {111} as indicated by the Ag atoms mostly kept 

at its own positions after 1000 ps trajectory simulation. This finding explains the 

mechanisms of the observed dissolution of facet dependent PVP coated Ag NPs when 

blended with NaCl and water. 
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Figure 3.9 Optimized atomic surface structures of (a) {100} facet and (b) {111} facet of 

Ag surfaces, 94 and 65 water molecules on {100} facet (c) and {111} facet (d) of Ag 

surfaces, Cl− ion and Na+ cation coexisted with water molecules on {100} facet (e) and 

{111} facet (f) of Ag surfaces, one PVP molecule coexisted with water molecules on {100} 

facet (e) and {111} facet (f) of Ag surfaces. Silver, oxygen, carbon, nitrogen, hydrogen, 

chlorine, and sodium atoms are illustrated by sliver, red, brown, lavender, pink, green and 

yellow color spheres, respectively. 



124 

 

3.3.7 Simulation Analysis of Dissolution Behavior of Ag NPs 

The three shaped particles’ evolution (nanocube, nanorod, and octahedron) of Ag NPs 

during dissolution in NaCl (100 mM) were acquired by COMSOL multiphysics 

simulations (Figure 3.10). Ag NPs dissolution is typically modeled using first-order 

reaction kinetics; however, solid-state reactions are dominated by interfacial interactions. 

Accordingly, the dissolution process may be affected by surface properties of different 

facet Ag NPs. The Ag NPs used in the present study are all stabilized by PVP. The 

dissolution rate of nanocube (as indicated by the volumetric reduction percentage) is lower 

than that of octahedron. The fast dissolution of the Ag octahedrons can be explained by 

their high surface energy after PVP binding (see above).  

 
Figure 3.10 Simulated dissolution of volumetric reduction of three different Ag NPs. 

 

 

3.4 Conclusion 

Dissolution of nanoparticles is an important process that alters their properties and affect 

their environmental fate or applications such as nanomedicine or chemical delivery. 

Studying nanoparticle dissolution at a crystalline facet level can promote safe-by-design 

nanomaterials and their applications. In this work, three different morphologies of silver 

NPs with PVP coating were used to study the facet or shape dependent dissolution 
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mechanisms. Through mapping the height changes of Ag NPs fabricated on silicon wafer 

by AFM, we discovered the height of octahedron nanoparticles decrease faster than cubic 

and nanorod Ag NPs. DFT simulations shows Ag {100} with high surface energy is more 

likely interactive with water molecule and Cl ion, however, the {100} surface became more 

stable than {111} after PVP adsorption. Finally, COMSOL simulation also revealed that 

volumetric reduction percentage of octahedron is faster than cubic or nanorod morphology. 

The experimental and DFT approaches, and the major findings could be useful to the 

analysis and prediction of the dissolution behavior of many other common metallic 

nanomaterials such as Cu, Ni, and Zn NPs.  
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CHAPTER 4 

ELECTROCHEMICAL AGING AND HALOGEN OXIDES FORMATION ON 

MULTIWALLED CARBON NANOTUBES (MWCNTS) AND Fe3O4@g-C3N4 

COATED CONDUCTIVE MEMBRANES 

 

Work of this chapter is related to the publication: 

Qingquan Ma, Jianan Gao, Courtney Potts, Xiao Tong, Wen Zhang. "Electrochemical Aging and Halogen 

Oxides Formation on Carbon Nanotube (CNT) and Fe3O4/g-C3N4 coated Conductive Membranes." Industrial 

and Engineering Chemistry Research (2022). 

 

 

4.1 Introduction 

Electrically charged or electrochemically reactive membranes (ERMs) integrate 

electrochemical advanced oxidation and/or electrochemical reduction reactions into 

membrane filtration to enhance pollutant degradation, rejection or transformation (e.g., 

nitrification) . Electrochemical membrane filtration has demonstrated promising 

concurrent rejection and degradation of diverse contaminants for water purification and 

wastewater treatment . For example, effective removal of persistent organic pollutants (e.g., 

polycyclic aromatic hydrocarbons and polychlorinated biphenyls), dyes, pharmaceutical 

residuals and personal care products, and perfluorochemicals as well as microbial species 

were reported . In a typical configuration, the constituents of influent serve as the 

electrolyte and ERMs the dual function of separation unit and electrode. Such a design can 

improve electrochemical kinetics and efficiencies by the increased electro-active surface 

area and the enhanced convective mass transfer of pollutants. When the proper electrode 

potentials (e.g., 1-2 V) are applied to ERMs, anodic or cathodic reactions may take place 

and generate diffusive radicals or reactive species such as reactive oxygen/chlorine species, 

causing direct or indirect oxidation or reduction of aqueous species . 

Electrochemical membranes are featured for high electrical conductivity, 

electrochemical activity and water permeability. Various organic and inorganic materials 
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have been reported to fabricate ERMs, including conductive polymers (e.g., polyaniline, 

polythiophene and polyacetylene) , carbon-based nanomaterials such as multi-wall carbon 

nanotubes (MWCNTs) and graphite , metallic membranes (e.g., Cu) , and ceramic/metal 

oxides membranes such as alumina (Al2O3), zirconia (ZrO2), and titania (TiO2)), silica 

(SiO2), and Magnéli phase Ti4O7). Conductive ceramic membranes particularly 

demonstrate high chemical inertness, excellent thermal stability, outstanding mechanical 

strength, and long service life. Except for Magnéli phase Ti4O7, most ceramic materials 

(e.g., Al2O3, ZrO2, and TiO2) are non-conductive and require the construction of a 

conductive catalyst layer for electrochemical reactions. For example, MWCNTs-based 

materials and carbon−metal nanohybrids (e.g., Fe3O4 conjugated with g-C3N4) as a 

conductive layer were reported due to their high conductivity and reactivity . Zhang et al. 

coated CNTs onto a ceramic membrane by pyrolysis for organic wastewater treatment . 

Wang et al. reported that CNT-functionalized ceramic membrane possessed high 

hydrophilicity, permeability, and conductivity, which promoted the generation of reactive 

(radical) chlorine species (RCS) through anodization of chloride ions for membrane self-

cleaning .  

Practical implementations of electrochemical membranes are largely hampered by 

electrode material stability and operational cost for long-term use . For instance, ERMs are 

often needed to operate at relatively high overpotentials to effectively degrade persistent 

pollutants. However, high electrode potentials not only cause high electrical consumption 

and risks of inducing undesirable water oxidation or oxygen evolution on anode or chlorine 

or hydrogen gas evolution on cathode . Furthermore, high electrode potentials may lead to 

detrimental impacts on electrochemical membrane properties (e.g., aging or passivation), 
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as characterized by the loss of conductivity, reactivity and even mechanical integrity or 

stability. Conversely, only a few studies have reported the membrane aging on limited 

materials such as the Magnéli phase Ti4O7 that could be oxidized into TiO2 or other titanium 

phases in oxidative environments . Halali et al. also reported that CNT/PVA coated 

electrically conductive membranes were physically unstable during the filtration as 

indicated by the PVA leaching under 2–4 V vs. Ag/AgCl reference electrode . Three 

standardized methods such as electrochemical oxidation, surface scratch testing, and 

pressurized leaching were employed to assess the electrochemical, chemical, and physical 

stability of such membrane coatings . The related aging mechanisms are not well 

understood and deserve research efforts to support the rational design and operation of 

electrochemical membrane systems. 

The other important concern is the formation of poisonous halo-oxyanions and 

halogenated by-products in the electrochemical treatment . Strong anodic oxidation could 

yield chlorate (ClO3
−), perchlorate (ClO4

−), and bromate (BrO3
−) in the treated water , 

especially when Cl− and Br− concentrations are high (500-4000 mM). ClO4
− is laborious to 

reduce to Cl− once it is formed and presents serious health risks. The halogenation of 

organic compounds can lead to the production of halogenated by-products such as 

trihalomethane and polybrominated biphenyl that are significantly more toxic than the 

precursor compounds. However, electrochemical production of these halogen oxides or 

halogenated organic matters requires certain reaction times due to relatively low reaction 

rate constants (e.g., the formation rate constant of ClO3
− is around 2.4–12×10−6 s−1) . To 

avoid these byproducts, applying proper electrode potentials is essential to address this 

critical challenge. 
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The objectives of this study aim to unravel electrochemical membrane aging 

mechanisms and byproducts formation using two model electrocatalyst-membranes: 

hybridized MWCNTs coated ceramic membrane (MWCNTs/CM) and Fe3O4@g-C3N4 

loaded ceramic membrane (Fe3O4@g-C3N4/CM), which have been reported for the 

degradation of organic dyes , tetrabromobisphenol A (TBBPA) , and diclofenac . For 

example, g-C3N4 hybrids with Fe3O4 composite has been reported owing better 

electrochemical performance than pure g-C3N4 . Membrane filtration experiments were 

performed in the single pass, permeate flow-through operational mode under variations of 

the initial concentrations of sodium chloride (NaCl) and sodium bromide (NaBr), solution 

pH and applied electrode potentials. The membrane aging of the two types of hybridized 

ERMs were thoroughly characterized by examining the changes of the membrane’s 

physicochemical and electrochemical properties. Halogenated byproducts in the filtrate 

were analyzed to establish connections with operational factors such as applied current 

densities and solution pH values. Ultimately, this work promotes the durable design and 

operations of efficient and safe electrochemical membrane water filtration. 

 

4.2 Materials and Methods 

4.2.1 Anode Membrane Preparation and Characterization 

4.2.1.1 Preparation of MWCNTs and MWCNTs-Coated Membrane (MWCNTs/CM). 

MWCNTs (>99%) were purchased from Fisher Scientific (USA). The illustration outer 

diameter and length of CNTs are 20−40 nm and 5−15 μm, respectively. To introduce 

oxygen-containing functional groups, which could interfere the electron transport in the 

sp2 carbonaceous structure, we prepared two kinds of MWCNTs, pristine or untreated 
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MWCNTs (p-MWCNTs) and oxidized MWCNTs (o-MWCNTs). p-MWCNTs were 

produced by hydrochloric acid treatment of the MWCNTs. Briefly, 0.2 g of the MWCNTs 

powder was dispersed in 200 mL of HCl (36%) and heated at 70 °C under refluxing for 12 

h. After heating, the solid sample was cooled to room temperature, rinsed by DI water, and 

vacuum-filtered to collect the p-MWCNTs. o-MWCNTs were prepared by the oxidation 

of the p-MWCNTs using a modified Hummers’ method , where 0.1 g of p-MWCNTs were 

dispersed in 60 mL of H2SO4 (78%) with 0.1 g of NaNO3 by stirring at an ice bath for 40 

min, followed by the addition of 0.2 g of KMnO4 and sonication at 40 °C for 2 h. 20 mL 

of H2O2 (30%) was then added and the mixture was stirred under reflux at 70 °C for 40 

min. After heating, the resulting mixture was centrifuged, diluted, vacuum-filtered, and 

rinsed with DI water to obtain the o-MWCNTs.  

A commercial ceramic membrane (47N014, Sterlitech Corporation, US) was 

chosen as a membrane support for catalyst coating. This flat-sheet membrane is made of a 

zirconia/titania (Zr/TiO2) coating on an alumina (α-Al2O3) owing a nominal pore size of 

140 nm, a diameter of 4.6 cm and an effective surface area of 17.34 cm2. The membrane 

was rinsed rigorously with deionized (DI) water before use to remove loosely attached 

particles or impurities. To obtain hybridized MWCNTs-coated membrane (MWCNTs/CM), 

p-MWCNTs and o-MWCNTs were dispersed in DMSO at 0.5 mg·mL−1 with a 10:1 mass 

ratio followed by ultrasonication for 15 min to obtain a hybridized MWCNTs suspension, 

which was then vacuum filtered through the planar ceramic membrane at a loading rate of 

1 mg·cm−2. The 10:1 mass ratio of p-MWCNTs and o-MWCNTs was chosen to obtain the 

optimal surface states of hydrophilicity and conductivity and high water permeability as 

reported previously . The fabricated membrane was then rinsed by sequential filtering of 
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50 mL of ethanol, 50 mL of 1:1 DI water/ ethanol, and 100 mL DI water to remove the 

residual DMSO, followed by desiccating at 70 °C for 60 min.  

4.2.1.2 Preparation of Fe3O4 NPs, Fe3O4 NPs@g-C3N4 and Fe3O4 NPs@g-C3N4-coated 

Membranes. To synthesize Fe3O4 nanoparticles (NPs), 0.67 g of the FeCl3 6H2O was 

dissolved in 50 mL of ethylene glycol to form a well-mixed solution. Then, the controlled 

amount of sodium acetate, (1.08 g) was added to the prepared ethylene glycol solution at 

room temperature under magnetic stirring. The resultant homogeneous mixture was then 

transferred to a 100 mL Teflon lined stainless steel autoclave and incubated at 200 oC for 

24 h. After the incubation, the black solid precipitates were collected by magnetic 

separation and washed with ethanol three times. The final products were dried in a vacuum 

oven at 40 oC for 6 h. Fe3O4@g-C3N4 composites were prepared via a two-step self-

assembly . The g-C3N4 solid was prepared by heating melamine to 550 oC for 2 h in N2 

atmosphere. After that, the g-C3N4 solid was grounded and mixed with 10 ml methanol 

under ultrasonic mixing for 30 min. Finally, the mixture of Fe3O4 and g-C3N4 with a weight 

ratio of 5 wt% (Fe3O4 to g-C3N4) was ultrasonicated for 30 min and stirred in a fume hood 

for 24 h to remove methanol. The obtained solids were calcined in a muffle furnace at 

150 °C for 4 h. 

The Fe3O4@g-C3N4 composite was dispersed in Dimethyl sulfoxide (DMSO) at 0.5 

mg·mL−1 and ultrasonicated for 15 min to obtain a Fe3O4@g-C3N4 suspension, which was 

loaded onto the ceramic membrane at 1 mg·cm−2 by vacuum filtration of the as-prepared 

Fe3O4@g-C3N4 suspension through the pristine ceramic membrane with an effective 

membrane area of approximately 17.34 cm2. The membrane was then rinsed by sequential 

filtering of 50 mL of ethanol, 50 mL of 1:1 DI water/ethanol, and 100 mL DI water to 
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remove the residual DMSO, followed by desiccation at 70 °C for 60 min. 

4.2.2 Membrane Surface Aging and Characterization 

Membrane aging experiments were performed by continuously filtering the 100 mM NaCl 

solution at 350 L·m−2·h−1 under pressure of 1.0 bar (14.5 psi) for 5 days (120 hours) through 

the modified membranes that were applied at an anodic potential of approximately 10 V 

(corresponding to a current density of 20 mA·cm-2). To analyze membrane aging, cyclic 

voltammetry (CV) was conducted to measure the electroactive properties of the anode 

membrane materials before and after applications of DC currents and liquid permeate 

filtration. Briefly, the standard three-electrode system was established with the two anode 

membranes as working electrode, the Ag/AgCl (in 1.0 M KCl) as reference electrode, and 

a 3-mm platinum wire as the counter electrode. CV curves will be mapped on a CHI 700E 

electrochemical workstation (CH Instrument, USA). All the measured electrochemical 

potentials are referenced to the Ag/AgCl electrode potential (considered as 0 V). The 

electrolyte solution is 10 mM K3Fe(CN)6 (a redox mediator) in 0.5 M KCl as a supporting 

electrolyte. The CV curves were obtained by sweeping from -0.4 to 1 V versus Ag/AgCl 

at a scan rate of 0.05 V·s-1. Chronoamperometry (CA) was also conducted in 100 mM NaCl 

electrolyte at 10 V versus Ag/AgCl. All electrochemical measurements (CV, CA and EIS) 

of the ERMs were performed using Ag/AgCl (in 1.0 M KCl) as reference electrode, and a 

3-mm platinum wire as the counter electrode. 

Electrochemical impedance spectrometry (EIS) will be further conducted to 

investigate the electrochemical properties of the anode membranes. The anode membranes 

were performed under open circuit potential (OCP) of 0.3 V vs Ag/AgCl at the frequency 

range of 100 kHz to 0.01 Hz in aqueous solution containing 10 mM K3Fe(CN)6 with 0.5 
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M KCl solution. Furthermore, the obtained EIS data were split/fitted into electrolyte 

resistance, charge-transfer resistance, and resistance of solid/electrolyte interface to 

examine the changes in electrode conductivity in detail. During EIS measurements, total 

impedance of the membrane system (Zm) is measured as a function of frequency (f) and the 

resulting data is represented on a Nyquist plot and the obtained data is interpreted by using 

a ZSim 3.0 software.  

The morphologies of the MWCNTs and Fe3O4@g-C3N4 composites or nanohybrids 

and ceramic membrane with/without catalyst coating were examined using scanning 

electron microscope coupled with an energy dispersive spectrometer (SEM-EDS, JEOL 

JSM-7900F). Hydrodynamic particle size distribution (PSD) and zeta potential of the 

MWCNTs and Fe3O4@g-C3N4 suspension were measured by dynamic light scattering 

(DLS) on a Zetasizer nano ZS instrument. Fourier transform infrared spectroscopy (FTIR) 

of the MWCNTs and Fe3O4@g-C3N4 nanohybrids were recorded on a bench top FTIR-

spectrometer (Cary 670, Agilent Technologies, USA) applied with Diamond ATR at 

classical transmission method. Raman spectroscopy (DXR2Xi Raman imaging microscope, 

Thermo Fisher Scientific, Madison, USA) was performed with the laser wavelength of 532 

nm and power of 8 mW. 

The surface chemical compositions tested using an X-ray photoelectron 

spectroscope (XPS, Specs Analyzer & Bruker IR, USA). Bulk scale contact angle 

measurement was conducted on an optical contact angle goniometer (JC2000DM, 

Powereach, Shanghai, China). The probing liquid selected for this investigation is 

deionized (DI) water (18.2 MΩ cm at 25 oC, Direct-Q® UV3 System, EMD Millipore, 

Bedford, MA, USA). The water contact angle was measured as following procedure. A 
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drop of DI water (∼5 µL) was placed on a dry membrane surface. At least three liquid 

drops at different locations were used to obtain the average contact angles for each ceramic 

membrane sample. The image of the liquid drop was taken within 10 s to determine the 

air–liquid–surface contact angles with the ImageJ software. 

4.2.3 Electrochemical Membrane Filtration Assessment  

Electrochemical membrane filtration experiments were conducted by a dead-end 

membrane filtration cell as illustrated in Figure 4.1. The Fe3O4@g-C3N4 loaded ceramic 

membrane (Fe3O4@g-C3N4/CM) or MWCNTs coated ceramic membrane (MWCNTs/CM) 

was served as the anode with a stainless-steel mesh (diameter 4.5 cm) as the cathode. The 

measured distance between set-up anode and cathode was 8 mm. A copper wire was 

directly connected to the coating layer of the membrane and then covered by epoxy to 

prevent exposure to water. Reactive oxygen species (ROSs), reactive chlorine species 

generation and bromate generation highly depend on the concentrations of chloride or 

bromide and applied anode potentials. Thus, the feed solution was prepared with the NaCl 

or NaBr concentrations of 50 mM, 100 mM, 200 mM and 400 mM. These high 

concentrations were selected to facilitate the detection of the byproducts during 

electrochemical experiments. Moreover, the high salinity conditions are relevant for the 

brine wastewater generated from oil and natural gas production, which may contain 

chloride and bromide at a wide range (e.g., 1∼200 g·L-1) . The applied cell voltage was 

applied within 3-15 V, resulting in the current density of 1, 5, 10, and 20 mA·cm-2 

(corresponding to an anodic potential of approximately 1 V, 2 V, 5 V and 10 V vs Ag/AgCl, 

respectively). During the electrochemical membrane filtration, the current densities were 

controlled at fixed levels by a DC power generator (DC power supply YH-302D). The 
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solution pH value can affect the formation of byproducts and was adjusted to 2.0, 7.0, and 

13.0, to compare the changes of byproduct formation. The pH value of the feed solution 

was adjusted with 1.0 M NaOH solution and 1.0 M HCl solution. Filtration lasted for about 

one hour. After stabilizing the electrochemical filtration for 15 minutes, the filtered solution 

was collected for sample testing every 10 minutes.  
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Figure 4.1 (a) Photographs of electrochemical membrane filtration system. (b) The zoom-

in photo of the electrochemical membrane cell and detailed illustration of the 

electrochemical membrane. 
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The overall porosity (Pr) of the membrane was determined by a gravimetric 

method. Briefly, the ceramic membranes were immersed in water and fully soaked (or ran 

filtration to allow water to flow through all pores. Then wet ceramic membranes weight 

(mw) was measured and the difference from the dry ceramic membranes (md) was 

determine. This difference represents the weight of pure water in the membrane pores, 

which can be used to calculate the overall porosity as defined in the following equation: 

w d
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m m
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=  (4.1) 

where mw is the weight of the wet membrane (after immersed in water for 24 hours); md is 

the weight of the dry membrane; A is the membrane effective area (m2), ρ is the water 

density (0.998 ×106 g∙m-3), and L is the membrane thickness (m).  

In addition, to determine the membrane mean pore radius (rm), the Guerout–Elford–

Ferry equation in Equation (4.2) on the basis of the pure water flux and porosity data was 

utilized: 
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where η is the water viscosity (8.9×10-4 Pa·s), Q is the volume of permeate water per unit 

time (m3∙s-1), and ΔP is the operation pressure (1.0×103 Pa). 

The permeate flux was calculated by the Darcy's equation in Equation (4.3), 

commonly expressed in units of liters per m2 of membrane per hour (L⋅m−2⋅h−1, LMH): 
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where Jw is the permeate flux (LMH), V is the permeate volume (L), t is the time of the 

permeate collection (h) and A is the effective surface area of the membranes (m2), TMP is 
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the transmembrane pressures (Pa), which defined the difference of the hydraulic pressure 

in the feed stream (PF) and the hydraulic pressure in permeate stream (Pp). PF was measured 

by a pressure gauge (PEM-LF SERIES, WINTERS), and Pp was regard as the atmospheric 

pressure. Rm (the inherent membrane resistance) and Rf (the fouling layer or coating layer 

resistance) contribute to the total membrane hydraulic resistance (for clean membranes, Rf 

= 0), and μ is the dynamic viscosity of water at 25°C (0.8937×10−3 N∙s∙m−2). 

Chloride, chlorite, chlorate, bromide and bromate concentrations in the permeate 

were measured by a Dionex ICS-1500 Ion Chromatography System (ICS-1500) equipped 

with the AS50 autosampler, and an IonPac AS22 column coupled to a conductivity detector 

(31 mA). For separation of those anions, we used 23 mM NaOH as the eluent. Operation 

was isothermic at 30°C with a flow rate of 1 mL·min-1. All synthetic standard solutions 

were prepared using deionized water (DI). The stock standard solutions containing 1000 

mg L-1 of chloride, chlorite, chlorate, bromide and bromate were purchased from Fisher 

Scientific of SPEX CertiPrep. Working standard solutions of all chemicals were carefully 

prepared by dilution of stock solutions using an opaque plastic volumetric flask and 

deionized water. The specific Ion Chromatography filters (IC Acrodisc Syringe Filters,13 

mm, 0.2 um) were purchased from Fisher Scientific. All liquid samples were filtered with 

0.22-μm IC Acrodisc filters to remove particles and prevent clogging. 

Visual MINTEQ (3.1) software was used to simulate the speciation and evolution 

of chemicals in the aqueous system at different applied potentials or redox potentials. Cl− 

ions concentrations at 0.05-0.4 M were used in modeling programs under a temperature of 

25 °C. The evaluation of various chlorine species versus redox potentials and solution pH 

were conducted.  
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4.3 Results and Discussion 

4.3.1 Membrane Filtration Performance Assessment 

Table 4.1 summarizes the measurements of permeate fluxes, porosity and pore sizes of the 

pristine and aged membranes. The electrochemical aging treatment did not result in 

remarkable changes to the filtration performance of the two membranes. However, the 

permeate flux increased slightly after the aging treatment due to the minor increase in 

surface hydrophilicity of the two modified membranes, as indicated by the smaller water 

contact angles as shown in Table 4.2. High surface hydrophilicity improves the water 

interactions and thus leads to a rise in permeation flux. The overall porosity and pore sizes 

before and after modification barely changed with variations from 16% to 18%. The mean 

pore size reduced slightly from 294±12 nm to 258±14 nm and 264±12 nm for 

MWCNTs/CM and Fe3O4@g-C3N4/CM respectively, due to the presence the dense layers 

of MWCNTs or Fe3O4@g-C3N4/CM. The overall porosity and pore sizes before and after 

aging treatment did not result in remarkable changes due to the minor electrocatalyst aging. 

Table 4.1 Properties of the Membrane Permeate Flux, Porosity and Mean Pore Radius 

Membrane 
Permeate flux 

(LMH) 
Porosity (%) Mean pore radius (nm) 

CM 1283.60±14 16.65% 294±12 

MWCNTs/CM 1300.20±22 18.57% 258±14 

Aged MWCNTs/CM 1309.71±20 18.37% 252±11 

Fe3O4@g-C3N4/CM 1328.16±24 18.28% 264±12 

Aged Fe3O4@g-C3N4/CM 1332.04±28 17.87% 260±16 

 

The water contact angle measurements on the pristine CM and two modified CMs 

are shown in Table 4.2. Multiwalled carbon nanotubes (MWCNTs) nanomaterial has 

hydrophobic nature. However, chemical treatments are usually used to provide 

hydrophilicity by introducing hydrophilic/functional moieties or macromolecules on a 
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MWCNTs surface. A hydrophilic MWCNTs modified membrane could produce excellent 

membrane properties due to higher hydrophilicity, higher porosity, and smoother surface 

structure. Those excellent membrane properties are followed by remarkable membrane 

performances such as increased permeability, increased rejection, anti-trade-off between 

permeability and selectivity. Compared with the pristine ceramic membranes, the presence 

of MWCNTs significantly increased the hydrophilicity as indicated by the decreased water 

contact angles. The increased surface hydrophilicity is ascribed to the abundance of 

hydrophilic oxygen-containing functional groups on the hybrids MWCNTs and 

hydrophilicity of Fe3O4. As shown in Table 4.2, the hydrophilicity of two modified 

membrane slightly increased after the aging treatment as indicated the contact angle 

decreased. The decreasing contact angle of the modified membranes is mostly due to the 

presence of hydrophilic hydroxyl groups and carboxylic groups presence after aging. 

Table 4.2 Average Contact Angles of the Pristine and Modified Membranes 

Membrane 
Contact angle of DI Water (o) 

As prepared Aged 

Pristine CM 62 ± 1 NA 

MWCNTs/CM 35 ± 2 33 ± 2 

Fe3O4@g-C3N4/CM 43 ± 3 41 ± 3 

 

4.3.2 Morphological Characterization Before and After Aging Treatment 

Figure 4.2 shows the typical SEM figures of the p-MWCNTs, o-MWCNTs, Fe3O4 NPs, g-

C3N4 sheet and Fe3O4@g-C3N4. The MWCNTs diameter and length distributions are 

20−40 nm and 5−15 μm as measured from Figure 4.2a. The pure Fe3O4 NPs exhibited a 

spherical morphology with a size diameter in the range of 200-300 nm (Figure 4.2c). 

Figure 4.2d shows the pure g-C3N4 sample was composed of different sizes crystals 

stacking layers. Figure 4.2e shows the conjugated state of Fe3O4@g-C3N4, where g-C3N4 
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is expected to be those irregular aggregated particles about several micrometers in size. 

Moreover, g-C3N4 has small pores due to the gas discharge from the melamine 

decomposition. Fe3O4@g-C3N4 exhibited a sheet-like structure with spherical Fe3O4 NPs 

deposited on the g-C3N4 sheet surfaces as marked in red circles. 

The top view and cross-section images of pristine CM, MWCNTs/CM and 

Fe3O4@g-C3N4/CM in Figure 4.3d show that the surface of pristine ceramic membranes 

contains pores with hundreds nanometers, which is consistent with the reported 140 nm 

pore size by the manufacturer. Figure 4.3e shows that the coating layer of MWCNTs/CM 

are in possession of the typical morphology of MWCNTs as shown in Figure 4.2a and 

4.2b. The cross section images of the MWCNTs/CM indicate that MWCNTs formed a 

layer with a thickness of ∼11 μm. For the Fe3O4@g-C3N4/CM, Figure 4.3f shows the 

ceramic membrane is covered with many irregularly shaped particles. The cross section 

image of the Fe3O4@g-C3N4/CM reveals the layer thickness of ∼7 μm. 
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Figure 4.2 SEM images of (a) p-MWCNTs, (b) o-MWCNTs, (c) Fe3O4 NPs, (d) g-C3N4 

sheet and (e) Fe3O4@g-C3N4. 

 

Figure 4.4 compares the surface morphology of the two functionalized membranes 

before and after aging treatment. There are no apparent visual differences for 

MWCNTs/CM, indicating that the aging treatment had no considerable impacts on the 

physical integrity of hybridized MWCNTs or its coating structure. Electrochemical 

oxidation of MWCNTs by the BDD anode was previously reported under 710-2840 
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mA·cm-2 . The oxidized MWCNTs has transformed from a highly bundled state to a de-

bundled state. The amorphous carbon tends to get smaller and become isolated after 

oxidation, which is not observed in our study 

 

Figure 4.3 (a)-(c) Photographs and (d)-(f) SEM images top view of the pristine CM, 

MWCNTs/CM, and Fe3O4@g-C3N4/CM, and (g)-(i) cross-section of the pristine CM, 

MWCNTs/CM, and Fe3O4@g-C3N4/CM. 

 

In addition, the SEM images in Figure 4.4 shows significant differences in surface 

morphology between the pristine and the aged Fe3O4@g-C3N4/CM. After aging, the bulk 

graphitic carbon nitride seems to be fractured and has an increased surface roughness. 

Oxidation treatment of g-C3N4 results in the formation of spherical nanoparticles , which 

may explain the increased surface roughness of the aged membrane. This morphological 
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change might be responsible for the formation of the mesoporous graphitic carbon nitride 

or oxidized g-C3N4 . 

 
Figure 4.4 Photographs of the pristine and aged MWCNTs/CM and Fe3O4@g-C3N4/CM. 

(The left column is obtained at a low magnification and the right column is at a high 

magnification) 
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4.3.3 Surface Chemical Characterization Before and After Aging 

Figure 4.5a shows the FTIR spectra of Fe3O4 that has one strong absorption at 590 cm−1 

assigned to the Fe-O stretching vibration . However, this peak declined in Fe3O4@g-C3N4 

samples due to the reduced content of Fe3O4 (5%). Both g-C3N4 and Fe3O4@g-C3N4 

yielded the absorption at 810 cm−1, 1100 cm−1, 1470 cm−1 and 1630 cm−1 attributed to the 

breathing and stretching vibrations related to C−N and C=N of triazine units of g-C3N4, 

respectively . Compared with the pristine Fe3O4@g-C3N4, the aged Fe3O4@g-C3N4 had an 

evident decrease of the peak intensity at 1100 cm−1 that is assigned to the stretching of C–

N bond (Figure 4.5b), due to the transformation of C–N into C–O during aging treatment . 

The FTIR spectra of the p-MWCNTs and o-MWCNTs show a peak at 1670 cm−1 that could 

be associated with the C=O stretch mode of carboxylic groups due to the acid treatment. 

Additionally, o-MWCNTs show four major peaks at 3230, 1670, 1530, and 1200 cm−1, 

respectively, which correspond to the hydroxyl groups, the C=C bond stretching, the C=O 

stretching, and the C–O bond stretching . Moreover, Figure 4.5b shows the peak intensities 

assigned to C=O and C–O bond are slightly higher for aging membrane when compared to 

that of the pristine membrane, probably because of the increase of the amount of the new 

functional groups (e.g., COOH). Li et al. reported two possible mechanisms of interactions 

between hydroxyl radicals and MWCNTs , radical attack on defect sites and unsaturated 

bonds of MWCNT sidewalls.  
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Figure 4.5 (a) FTIR spectra of Fe3O4, g-C3N4, Fe3O4@ g-C3N4, MWCNTs, p-MWCNTs 

and o-MWCNTs. (b) FTIR spectra of the pristine Fe3O4@ g-C3N4, aged Fe3O4@ g-C3N4, 

MWCNTs and aged MWCNTs. (c) Proposed mechanism of membrane aging and 

byproduct formation in filtration process. 

 

The XPS spectra show the C 1s, N 1s and Fe 2p peaks for the pristine Fe3O4@g-

C3N4 (Figure 4.7a, 4.7c and 4.7e) and the peaks of aged Fe3O4@g-C3N4 (Figure 4.7b, 4.7d 

and 4.7f). For instance, the C 1s peak at 284.5 eV is assigned to sp2 C=C bonds. The 

appearance peak at 286 eV (C−N or C−O bond) in the aged Fe3O4@g-C3N4, based on the 

deconvolution of the C 1s signal is likely related to carboxyl groups formed at the edges of 

the g-C3N4 sheets during aging treatment. The N 1s spectra (Figure 4.7b and 4.7d) are 

deconvolved into two peaks at 396.5 eV and 398.3 eV, which correspond to the sp2-

hybridized nitrogen in N−C=N groups and the amino function groups. The disappearance 
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of the N−C=N intensity at 396.5 eV suggests the oxidation of C=N to tertiary nitrogen, 

secondary amines and nitroso groups or even the loss of N element. Figure 4.7e and 4.7f 

shows the Fe 2p XPS spectrum of the Fe3O4@g-C3N4 composite. Two broad peaks at 724.2 

and 711.2 eV correspond to Fe 2p1/2 and Fe 2p3/2, respectively. The Fe 2p3/2 spectrum can 

be divided into two areas, which correspond to Fe2+ (710.2 eV) and Fe3+ (712.2 eV), 

respectively. After aging, the percentage of Fe3+ (712.2 eV) peak intensity relative to total 

Fe 2p3/2 intensity (45.2%) surpassed that of pristine Fe3O4@g-C3N4 (32.8%), signifying 

that electrochemical aging led to the transformation of Fe2+ to Fe3+. The C 1s spectra of p-

MWCNTs and o-MWCNTs can be deconvolved into five peaks at 284.5 eV, 285.4 eV, 

286.5 eV, 288.6 eV and 291.0 eV, which correspond to the C=C, C-C, C-O, C=O and C*(π-

π*). Compared to the p-MWCNTs, the peaks intensity of oxygen-containing functional 

groups (−OH, C−O, and C=O) in the o-MWCNTs increased (Figure 4.6a and 4.6b) which 

indicates that oxygen is introduced to the surface of the o-MWCNTs by the modified 

Hummers’ method. In addition, C1s XPS spectra of hybridized MWCNTs and aged 

hybridized MWCNTs (Figure 4.7g and 4.7h) also displayed five peaks. After aging, the 

percentage of carboxyl group peak intensity relative to total C 1s intensity (13.8%) 

surpassed that of pristine hybridized MWCNTs (10.7%), signifying that electrochemical 

aging promote the incorporation of carboxyl groups. This result is supported by a previous 

study reporting that carboxyl (–COOH) group could hinder the electrooxidation of 

pollutants and increase resistance of charge transfer .  Both Fe3O4@g-C3N4/CM and 

MWCNTs/CM aging mechanism is depicted in Figure 4.5c, C–O, C=N or C=C transfers 

COOH during aging treatment. 
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Figure 4.6 XPS spectra of C 1s of (a) p-MWCNTs and (b) o-MWCNTs. 

 

The relative intensity ratio of the D band to the G band (ID/IG ratio) represents the 

degree of disorder in multi-walled carbon nanotube structures. The pristine and 

electrochemically aged MWCNTs membranes show minor changes in the spectral peak 

intensity and shape. The aged MWCNTs (blue dotted line) shows a decrease in G band 

signal relative to the D band signal. The G’ bandwidth is also slightly increased due to the 

formation of defects or hydrogenated amorphous carbon. It is normal to use the D/G 

intensity ratio as proxy for overall MWCNTs structure order. The observed increase in the 

D/G band ratio from 0.92 ± 0.08 to 1.25 ± 0.13 (standard deviations at n = 3) indicates a 

rise in the relative nanotube structure ordering and implies that both disorder structures and 

the amount of the functional groups after the aging process.  
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Figure 4.7 XPS spectra of (a) C 1s spectrum of Fe3O4@g-C3N4 and (b) aged Fe3O4@g-

C3N4, (c) N 1s spectrum of Fe3O4@g-C3N4 and (d) aged Fe3O4@g-C3N4, (e) Fe 2p spectrum 

of Fe3O4@g-C3N4 and (f) aged Fe3O4@g-C3N4, (g) C 1s spectrum of hybridized MWCNTs 

and (f) aged hybridized MWCNTs.  



150 

 

Similarly, magnetite Fe3O4 nanoparticles could partially be oxidized under the 

radical attack or oxygen diffusion that converts Fe2+ to Fe3+ on the surface. By contrast, g-

C3N4 has relatively high stability and resistance to electrochemical oxidation largely due 

to the rich presence of C–N=C and C–NH–C structures. However, continuous oxidation 

could remove the N element and decrease the surface-active sites. The Raman spectra for 

Fe3O4@g-C3N4/CM in Figure 4.8 consist of two strong Raman modes of D and G around 

1342 cm−1 and 1564 cm−1, which represents the E2g symmetric vibration mode in the 

graphite-like structure and disordered sp2 microdomains introduced by linking with N 

atoms the presence of defects or disorder in the graphite structure and the stretching 

vibration modes of C=N and C-N heterocycles. The peak at 680 cm−1 is attributed to the 

conjugated Fe3O4 nanoparticles. Similarly, the G band intensity of the aged membrane 

decreased remarkably similar to the observation on MWCNTs, probably because of the 

increase of both disorder structures and the amount of the new functional groups (e.g., 

COOH) on Fe3O4@g-C3N4 after the aging process. Furthermore, the aged membrane had 

the reduced D-band and G-band intensities (corresponding to the red region in the Raman 

mapping in the bottom two rows in Figure 4.9). 

 
Figure 4.8 Raman spectra of the pristine and aged (a) MWCNTs and (b) Fe3O4@g-C3N4/ 

coated on the ceramic membrane (CM).  
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The surface aging of MWCNTs and Fe3O4@g-C3N4 modified membranes during 

electrochemical filtration was studied with Raman spectrometry. The top two rows in 

Figure 4.9 compare the surface Raman mapping of the pristine and aged MWCNTs/CM 

membranes. Pristine MWCNTs/CM samples typically exhibit three characteristic Raman 

peaks at 1344.5, 1581.2, and 2681.2 cm−1, respectively as shown in Figure 4.8a, which 

correspond to the D band, the G band, and the G’ band. The three columns, a, b and c are 

images generated based on the intensities of D band, G band and the ratio of D/G bands, 

where some regions have higher intensities (red dots) indicative of the presence of 

MWCNTs. The aged MWCNTs/CM surface had a remarkable reduction in intensity of 

these Raman signals compared to that of pristine MWCNTs/CM. The ratio between the 

intensity of D-band and the G-band is slightly higher for aging membrane when compared 

to that of the pristine membrane. Moreover, it is possible to identify the locations of the 

aged MWCNTs on the membrane surface from these mapping images. Similarly, the 

Raman spectra for the aged Fe3O4@g-C3N4 in Figure 4.8b show the G band intensity 

decreased remarkably similar to the observation on MWCNTs, probably because of the 

increase of both disordered structures and the amount of the new functional groups (e.g., -

COOH) on Fe3O4@g-C3N4 after the aging process. Accordingly, the ID/IG ratios of 

MWCNTs/CM and Fe3O4@g-C3N4/CM were found to increase from 20 % and 25 % to 40 % 

and 50 %, respectively, indicating that the two electrocatalyst membranes underwent 

different aging degrees. The ID/IG ratio changes also reflect the transformations of C–O, 

C=N or C=C groups into COOH groups. The loss of N increased the structural defects (e.g., 

nitrogen vacancies) on g-C3N4 as indicated by the relative higher band intensity ratio 

(ID/IG) . 
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Figure 4.9 Raman mapping of pristine and aged MWCNTs and Fe3O4@g-C3N4/CM: (a) 

D band mapping of the membrane surface, (b) G band mapping of the membrane, (c) ID/IG 

ratio contrast imaging of the membrane surface. 
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4.3.4 Electrochemical Activity Changes 

4.3.4.1 Cyclic Voltammetry Assessment for the Pristine and Aged Membranes. The 

aging degree is often associated with the reduction of the electrochemically active surface 

area or electroactive sites. Voltametric charge density (Q) is closely related to the amounts 

of electroactive sites of a porous electrode and was calculated by integrating the CV curves 

in Figure 4.10a-4.10d. Total voltametric charge density (QT, mC·cm−2) is the Q value 

obtained when the scan rate (v, mV·s−1) is zero as indicated by Equation (4.4) and 

represents the total electroactive surface charge per surface area. 

(Q)‒1= (QT)‒1 + kv1/2 (4.4) 

where k is a constant (no unit). Total voltametric charge density (QT) is equal to the sum of 

the outer voltametric charge density (QO) and the inner voltametric charge density (QI), 

which represent the charge related to the outer geometric and the inner unattainable 

electrode areas, respectively. The ratio between QI and QT (QI/QT) is equal to the 

electrochemical porosity. QO is related to the easiest attachable electroactive surface area. 

QT and QO for the pristine and aged MWCNTs/CM or Fe3O4 NPs@ g-C3N4/CM samples 

were determined using Equation (4.4) and (4.5) with the data in Figure 4.10e and 4.10f, 

respectively. 

Q = QO + kv−1/2 (4.5) 

 

The determined voltametric charges, electrochemical porosity, and roughness 

factor (Rr) are listed in Table 4.3, which shows the outer voltametric charge of the pristine 

MWCNTs/CM was greater than that of the Fe3O4 NPs@ g-C3N4/CM. Thus, the MWCNTs 
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Figure 4.10 (a) and (b) are the CV curves of the pristine MWCNTs/CM and Fe3O4 NPs@ 

g-C3N4 /CM at different scan rate; (c) and (d) are the CV curves of the aged MWCNTs/CM 

and aged Fe3O4 NPs@ g-C3N4 /CM at different scan rate; (e) Reciprocal voltammetric 

charge quantity (1/Q) vs. the square root of scan rate (v1/2); (f) Voltametric charge (Q) vs. 

the reciprocal square root of scan rate (v-1/2). 
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/CM yielded a greater number of active sites than Fe3O4 NPs@g-C3N4/CM. After aging 

treatment, the outer voltametric charge of the MWCNTs/CM or Fe3O4 NPs@g-C3N4/CM 

decreased due to the limited membrane aging. The electrochemical porosity of the 

MWCNTs/CM or Fe3O4 NPs@ g-C3N4/CM increase slightly, showing aging process exerts 

a minor influence on the catalytic behavior of the conductive membrane. Rr as an indicator 

or electrocatalytic activity is the electroactive surface area (ECSA) divided by the 

geometrical area of the electrode (i.e., Rr=ECSA/geometrical area) . The ECSA of 

membrane electrodes is often calculated using the normalization constant of 60 μC·cm−2. 

The geometrical area (17.34 cm2) was then used to calculate the roughness factor. Similar 

to voltametric charges, Rr of two membrane electrode decreased after aging, suggesting the 

loss of catalytic activity of the aged membrane .  

Table 4.3 Total, Outer and Inner Charge Density, QI/QT and Rr of the Pristine and Aged 

MWCNTs and Fe3O4 NPs@ g-C3N4 Coated Membranes 

Membrane 
QT 

(mC·cm−2) 

QO 

(mC·cm−2) 

QI 

(mC·cm−2) 

QI/QT 

(%) 

Rr 

(unitless) 

Pristine MWCNTs/CM 216.91 28.26 188.65 86.97% 3615.17 

Aged MWCNTs/CM 208.74 26.14 182.60 87.47% 3479.00 

Pristine Fe3O4@g-

C3N4/CM 
140.06 12.06 128.00 91.38% 2334.33 

Aged Fe3O4@g-

C3N4/CM 
130.77 11.11 119.66 91.50% 2179.50 

 

Furthermore, Figure 4.11a compares the CVs of the different membrane samples. 

Without surface coating, the pristine ceramic membrane yielded negligible peak currents 

at all the sweep potentials, suggesting low electrochemical activity. By contrast, with the 

coating of MWCNTs or Fe3O4@g-C3N4, the typical electrochemical reversible current 

curves are observed. The peak current of MWCNTs/CM is achieved at 0.04 V and is greater 

than that of Fe3O4@g-C3N4 at 0.14 V, which indicates a higher interfacial charge transport 
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on the MWCNTs coating surface. For the aged membrane, the peak currents, especially 

under the high positive potential bias, decreased significantly for both coated membranes, 

implying the partial loss of the electrochemical activity or reactive sites on MWCNTs and 

Fe3O4@g-C3N4 as mentioned above. To better assess their performance and stability during 

aging experiments, these two electrochemical membranes were subjected to 

chronoamperometry at 10 V vs Ag/AgCl. Figure 4.12 shows that MWCNTs/CM yielded a 

relatively stable current (~15 mA·cm-1) over time, whereas Fe3O4@g-C3N4/CM exhibited 

an initial high current density (~20 mA·cm-1) that progressively declined to 10 mA·cm-1 

and eventually dropped to 8 mA·cm-1 at day 5 due to the oxidative aging. The 

electrochemical activity of MWCNT/CM generally remained higher than that of Fe3O4@g-

C3N4/CM after the same aging treatment. 

 
Figure 4.11 (a) CV curves of the pristine and aged MWCNTs/CM and Fe3O4@g-C3N4/CM 

obtained at a sweeping rate of 0.05 V·s-1. (b) EIS spectra of the pristine and aged 

MWCNTs/CM and Fe3O4@g-C3N4/CM. (All electrochemical testing use Ag/AgCl (in 1.0 

M KCl) as reference electrode, and a 3-mm platinum wire as the counter electrode) 
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Figure 4.12. Chronoamperometry of MWCNT/CM and Fe3O4@g-C3N4/CM at 10 V vs 

Ag/AgCl in 0.1 M NaCl electrolyte for 5 days membrane aging experiments. 

 

4.3.4.2 Electrochemical impedance assessment for the pristine and aged membranes. 

To analyze the changes of the interfacial charge-transfer resistance before and after aging 

treatment, electrochemical impedance spectroscopy (EIS) of the brand-new and aged 

MWCNTs and Fe3O4@g-C3N4 modified membranes were studied in the same electrolyte 

solution (10 mM K3Fe(CN)6 and 0.5 M KCl) at an open circuit potential (0.3 V). The EIS 

spectra are presented as a Nyquist plot in Figure 4.11b. The diameter of semicircle arc of 

MWCNTs and Fe3O4@g-C3N4 modified electrodes were significantly smaller than 

diameter of semicircle arc of the pristine membrane, suggesting a faster interfacial charge 

transport on the coated membrane surface than on the pristine membrane surface68. The 

EIS spectra were fitted with an equivalent circuit as shown in the inset of Figure 4.11b, 

where Rct is the charge-transfer resistance at electrode/solution interface, Rs represents the 

electrolyte resistance, C is the electrode double-layer capacitance formed at 

electrode/solution interface. W is the Warburg impedance that models the diffusion process 

in dielectric spectroscopy. The value of Rct was further converted to resistivity (Rct
*) using 

the surface area and coating thickness of the catalyst layer. The results of Rct, Rct
*, Rs, C 
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and W are summarized in Table 4.4. Smaller resistances under MWCNTs composite were 

obtained compared to Fe3O4@g-C3N4 composite.  

Ceramic membranes made of alumina (Al2O3) and zirconia oxides (ZrO2) also 

exhibit electrochemical impedance responses as reported previously. Thus, Table 4.4 

demonstrates that the charge transfer resistance (Rct) of the pristine CM reached up to 1000 

ohm due to the semiconducting nature of ceramic membranes. The Rct values of MWCNTs 

(220.3 ± 12) and Fe3O4@g-C3N4 (290.2± 11ohm) modified membranes were significantly 

smaller than that of the pristine membrane, suggesting a good conductivity on the coated 

membrane surface and supporting MWCNTs and Fe3O4@g-C3N4 coating converted the 

pristine CM to a conductive CM. Li et al.  also have reported CNT coating could covert the 

charge transfer resistance of the Al2O3 CM support around 3000 ohm to the CNT-coated 

Al2O3 CM was only approximately 200 ohm . 

By contrast, the charge transfer resistance (Rct) of two aged electrochemical 

membranes increased from 220.3 ± 12 ohm to 248.1 ± 3 ohm and 290.2± 11ohm to 299.6 

± 3 ohm, respectively. This increase mainly resulted from the restructuring, irreversible 

phase transition, and reduction of electroactive sites . The decrease of the electrochemically 

active surface area results in a reduced electrode double-layer capacitance (C), which 

agrees with our results in Table 4.4. Warburg impedance (W) reflects the diffusion process 

of electrolyte. Table 4.4 shows that Warburg impedance increases after aging, implying 

that the diffusion resistance of the electrolyte within the solid electrode increased. This 

phenomenon could be caused by the expansion of electrode materials or pore clogging . 

The electrochemical aging process could have changed the pore size of membranes due to 

formation of holes, broken layers, partial unzipping and debundling of MWCNTs , which 
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will hinder efficient diffusion of redox species from the bulk electrolyte into the pores . 

Table 4.4 The Fitted Results of the Parameters in the Equivalent Circuit for Pristine CM 

and Two Modified CM Before and After the Aging Experiments. 

Electrode Parameters Before aging After aging 

Pristine CM 

Rs (ohm) 58 ± 10 NA 

Rct (ohm) 1015 ± 105 NA 

C (F) 8.51×10−9 NA 

W (S·s1/2) 0.0012 NA 

MWCNTs/CM 
Rs (ohm) 37.4 ± 3 35.4 ± 5 

Rct (ohm) 220.3 ± 12 248.1 ± 3 

 Rct
* (ohm·cm) 3820.1 ± 69.2 4302.2 ± 53.02 

 C (F) 3.95×10−7  3.65×10−7 

 W (S·s1/2) 0.0056 0.0068 

 Rs (ohm) 43.5 ± 5 44.5 ± 4 

 Rct (ohm) 290.2± 11 299.6 ± 3 

Fe3O4@g-C3N4/CM Rct
* (ohm·cm) 5032.1 ± 90.7 5195.2 ± 98.5 

 C (F) 3.68×10−7 3.45×10−7 

 W (S·s1/2) 0.0067 0.0075 

 

4.3.5 Analysis of Halogenated Byproduct Formation  

4.3.5.1 Comparison of Halogenated Byproduct Formation on two Electrochemical 

Membranes. The generation of chlorine related byproducts during electrochemical 

membrane filtration is initiated by the oxidation of chloride at the anode surface, which 

follow the general oxidation pathway as shown in Figure 4.5c (Cl−→ Cl·→HOCl/OCl− → 

ClO2
− → ClO3

− → ClO4
−). However, halogen oxides by-product generation highly depends 

on the electrode materials .The halogenated byproduct formation on the two presented 

composite conductive membranes has not been reported elsewhere. Figure 4.13 shows the 

halogenated anions such as ClO2
−, ClO3

− and BrO3
− present in the filtrate from the anodic 

membrane with the feed solutions made of different concentrations of NaCl or NaBr with 

two MWCNTs/CM and Fe3O4@g-C3N4/CM electrodes. Perchlorate was not detected in 

the filtered water under the current experimental conditions. During electrochemical 
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filtration, Cl- or Br- could directly react with the electrode or indirectly with reactive 

oxygen species (hydroxyl radicals or ozone) to produce oxyanions. Chlorate and bromate 

formed with a lower level in the Fe3O4@g-C3N4/CM experiment than that in the 

MWCNTs/CM experiment. The efficiency of oxidant generation in the electrochemical 

process depends on the applied anodic potential and adsorption enthalpy of M-OH on 

electrode materials . During electrolysis, •OH is produced from water as a surficial 

intermediate. M-OH denotes •OH radicals that are physically adsorbed at a surface site. 

The results suggest that MWCNTs provide more effective catalytic ability and generate 

more electrogenerated hydroxyl radicals than Fe3O4@g-C3N4 under the same anodic 

potentials. Wu et al. confirmed that carbon nanotubes electrodes could also produce 

hydroxyl radicals in electrolysis processes . After electrochemical aging process, the 

concentrations of all halogenated anions decreased due to the loss of catalyst activity or 

reactive sites. After membrane aging, the introduction of oxygen-containing functional 

groups, which are capable of interfering with electron transport in the sp2 carbonaceous 

structure . Fe3O4@g-C3N4/CM had a relativity higher reduction in halogenated byproduct 

production than MWCNTs/CM did, due to the relatively lower stability of g-C3N4 and 

Fe3O4 than MWCNTs during electrochemical aging as indicated XPS results (Section S4) . 

4.3.5.2 Effect of Current Density on Halogenated Byproduct Formation. Figure 4.13a 

shows the effect of the current density on the oxychloride anions distribution. The produced 

levels of chlorite, chlorate and bromate increased at high current densities (~20 mA·cm−2), 

which increase the electron transfer rates and favor hydroxyl radicals’ formation. Thus, the 

rate of chloride oxidation to chlorite or chlorate increased. More importantly, high current 

densities yield high anodic potentials, which is essential for activating the anodic oxidation 
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reactions of these halogen anions as listed in Equation (4.6)–(4.9). For instance, the Visual 

MINTEQ simulation indicates that hypochlorous acid (HOCl) and hypochlorite ions (OCl−) 

will be involved when the Oxidation/Reduction Potential higher than 1 V as shown in 

Figure 4.14. Even after electrochemical aging process, the concentrations of halogenated 

anions under a high current density only did not change significantly. By contrast, at low 

current densities (< 5 mA·cm−2), there were almost no chlorite, chlorate or bromate 

production. The electrochemical aging would significantly cause reduction (above 10%) of 

the chlorinated or brominated by-products under low current density. However, lowering 

current densities or anodic potentials could reduce the oxidation efficacy of water 

micropollutants. For example, anodic potentials of 3-14 V were needed to mineralize 1,4-

dioxane on TiO2 and Ti/IrO2−Ta2O5 . PFASs require even higher anodic potentials (e.g., 

4−15 V on Ti/RuO2) for oxidative degradation. Thus, when treating these recalcitrant 

micropollutants in saline water, there could be sizable amounts of halogen oxyanions 

produced. 

2 3 246
3

3 2 12 6
2

H H O ClO Cl O eClO H ++ → + + + +－ － －  (4.6) 

2 3 2

3
6 3 2 4 6 6

2
H O ClO OCl ClO H e++ → + + + +－ － － －  (4.7) 

2 33 6 6OC H O Cl Hl e++ → + +－ － －  (4.8) 

2 22 2lC OH C O H O elO + → + +－ － － －  (4.9) 

2 3 22 2lC OH C O H O elO + → + +－ － － －  (4.10) 
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Figure 4.13 Concentrations of chlorite, chlorate and bromate changes of two 

electrochemical membrane before and after electrochemical aging (a, d) 1-20 mA·cm-2 

current density with initial concentration 100 mM at pH=7; (b, e) initial pH=2-7 with initial 

concentration 100 mM and current density=10 mA·cm-2 and (c, f) initial concentration 50-

400 mM with current density = 10 mA·cm-2 at pH=7. (The sub-columns with line pattern 

are concentrations after aging and the labeled numbers stand for the percentage change 

after electrochemical aging) 

 

4.3.5.3 Effect of pH on Halogenated Byproduct Formation. The summarized major 

reactions in Eq. S5-S9 clearly indicates the involvement of protons in many reactions and 

thus the solution pH could sensitively affect the formation of oxyanions and their speciation. 

Our results in Figure 4.13b compare the electrochemical byproducts of 

oxychloride/bromide anions in acidic (pH =2), neutral (pH =7) and basic (pH =13) 

conditions using 100 mM NaCl or NaBr solutions under a current density of 10 mA cm−2. 

The formation of ClO2
− and ClO3

− increased with an increase in the initial pH values of the 

solution and remained constant at higher pH conditions. This result is due to the fact that, 

at acidic pH (pH =2), the dominant chlorine species is hypochlorous acid, and the 

electrochemical oxidation of HOCl (Eq. S5) would contribute less to the formation of 
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ClO3
− than does the OCl− (Eq. S6). If the solution pH is neutral or alkaline, HOCl is likely 

converted into of ClO2
− and ClO3

−, which agrees with experimental observations. 

 

 
Figure 4.14 Chloride (Cl−), hypochlorous acid (HOCl), hypochlorite ions (OCl−1) and 

perchlorate (ClO4
−) concentration evolution at different applied potential under different 

pH and initial Cl− concentration. 

 

The MINTEQ simulations in Figure 4.14 confirms that the HOCl concentration 

decreased as a function of pH increase. At acidic pHs, gaseous chlorine could be promoted, 

reducing available anionic oxychloride species for oxidation reactions and formation of 

halogenated oxyanions. Thus, for the aged MWCNTs/CM and Fe3O4@g-C3N4/CM, 

reducing the solution pH could greatly inhibit the byproduct formation. 

4.3.5.4 Effect of the Initial Concentration of Salts. Increasing the initial concentration of 

Cl‒ and Br‒ generally increases the reaction kinetics of electrochemical oxidation. Figure 

4.13c shows the formation of ClO2
− , ClO3

− and BrO3
− during the electrochemical filtration 

of the solutions with varied initial NaCl or NaBr concentrations (50, 100, 200 and 400 mM). 

The concentrations of chlorite, chlorate or bromate all increased appreciably with an 
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increase in the Cl− or Br− concentrations, which matches the result reported previously . 

After electrochemical aging, the percentage change of chlorate concentrations are 19.2, 4.0, 

4.5 and 1.3 % for the initial Cl− concentrations of 50, 100, 200 and 400 mM under 

MWCNTs/CM, respectively. The electrochemical aging process will not affect the 

chlorinated or brominated by-products formation when the initial Cl− concentrations is high. 

The amount of ClO2
− could not be precisely measured because the produced ClO2

− could 

rapidly react with other oxidants, such as O3 and •OH, or directly react on the anode to 

form stable ClO3
−. Less ClO4

− could be generated with a higher initial Cl− content (50−250 

mg·L−1) due to the limitation in reactive sites on the electrode . The reactive sites on the 

electrode will be occupied by excessive Cl− and then inhibit the ClO3
− to form ClO4

−.  

 

4. Conclusion 

Electrochemical membrane filtration has proven effective for pollutant degradation or 

chemical conversion in water/wastewater treatment and resource recovery. The high 

surface area, microporous structures and tunable reactivity of electrochemically reactive 

membranes garner the enhanced reaction efficiency and pollutant removal. However, the 

membrane properties could change with time due to the membrane fouling or aging. 

Particularly, the aging mechanisms for electrochemical membranes remain largely elusive, 

due to the lack of in-depth research and analysis. Most prior studies only employed limited 

testing time (1-5 hours) to evaluate the conductive membrane filters (e.g., CNT and β-PbO2) 

or employed electrolytes that have different water chemistries from reality . The presented 

electrochemical assessment (CV and EIS) combined with electron microscope imaging, 

FTIR, XPS, Raman spectrometry reveals a comprehensive picture of the interfacial 
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chemical state changes and electrochemical activity reduction of MWCNTs and Fe3O4@g-

C3N4 membranes after filtering high-salinity water under high currents (~20 mA·cm−2) and 

long-term operation (5 days). This aging assessment is essential for the development of 

novel electrode filters or membranes to fully understand the membrane aging risks and 

determine operational limits of the applied currents or potentials. The results lay 

groundwork to guide the practical and scalable applications of ERM filtration for 

water/wastewater treatment.  

The utilization of electrochemical membrane filtration as decentralized point-of-

use and point-of-entry water/wastewater treatment seems to be promising. However, the 

formation of potentially toxic or carcinogenic organic and inorganic byproducts on 

electrified filtration must be carefully addressed. The natural water may contain chloride 

(10-100 ppm) and bromide (1-2 ppm), which leads to inevitable formation of ClO3
−, ClO4

− 

or BrO3
− if electrochemical oxidation occurs. Our study examined the chlorite, chlorate 

and bromate byproducts formation under different current densities on different anode 

materials, different initial solution pHs and salt concentrations. Clearly, proper adjusting 

operational strategies may limit ClO3
− or BrO3

− formation, including lowering the anodic 

oxidization potential and lowering the feed solution pH values. The use of electrochemical 

membranes for water/wastewater treatment applications will require optimization of 

operating conditions and possibly a multi-barrier approach.  
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CHAPTER 5 

ELECTRO-SORPTION, DESORPTION AND OXIDATION OF 

PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAS, C4&C8) VIA HIGH 

PERFORMANCE MXENE MEMBRANE  

 

 

 

Per- and polyfluoroalkyl substances (PFAS) are bioaccumulative and persistent chemicals 

that have polluted natural waters and soils globally. The intensity of their concentration 

and increased frequency of detection around the world raises concerns about their presence 

in drinking water and the associated health risk. O-terminated MXene-based membrane 

has significantly higher adsorption capacity (215 mg·g−1) and a degradation rate constant 

(2.8×10−2 min−1) compared to those with the F and Cl terminations. Electrochemical 

oxidation treatment with an applied +6 V potential in the 0.1 M Na2SO4 solution 

yielded >99 % oxidation of the PFOA or PFBA (1 ppm) in 3 hours. The density functional 

theory (DFT) calculations revel the O-terminated MXene surface on Ti3C2O2 yielded the 

highest PFOA/PFBA adsorption energy. Bader charge analysis shows that when 

interacting with PFOA, Ti3C2O2 with surface defects accept 0.19 |e| and 0.28 |e| more 

electrons to PFOA relative to Ti3C2F2 and Ti3C2Cl2, respectively. Moreover, the reaction 

pathway of PFOA on Ti3C2O2 is most favorable among these three MXene structures as 

indicated by the greater negative free energies. 

 

5.1 Introduction 

Per-and poly-fluoroalkyl substances (PFAS) are a group of prevalent anthropogenic 

micropollutants that show an adverse and severe impacts on environmental and human 

health due to their intrinsic high toxicity, extraordinary prevalence and persistence, and 

instant bioaccumulation . The most notable PFASs are perfluorooctanoic acid (PFOA) and 
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perfluorooctane sulfonate (PFOS) due to their toxicity and recalcitrance to natural 

weathering processes such as hydrolysis, photolysis, microbial degradation, and 

metabolism by organisms. The U.S. Environmental Protection Agency (EPA) suggested 

the health advisory level of the combined PFOA and PFOS in drinking water should not 

exceed 70 ppt. Furthermore, ultra-short chain PFAS (C ≤ 2, e.g., C2F6, CHF3, CF4.) are 

volatile as well as highly water-soluble, and can easily enter the human body when 

breathing or consuming food or drinking water. The adverse health effects of PFAS are not 

only limited to humans; they could be equally harmful to animals and livestock. Therefore, 

it is an urgent task to develop advanced technologies for PFAS removal from contaminated 

water. 

Recent studies have shown that conventional water or wastewater treatment 

processes are ineffective at removing perfluorochemicals. At present, large-scale water 

treatment plants mainly reply on adsorption and ion exchange to remove PFASs. Among 

various technologies used for PFAS removal from contaminated water such as adsorption, 

oxidation, UV irradiation, sonochemical, microwave methods, membrane separation, and 

advanced oxidation/reduction processes (AOPs/ARPs), adsorption is highly favored owing 

to its simplicity and high efficiency, good selectivity, high flux, high capacity, reusability, 

and industrial scale-up feasibility in the purification process of contaminated water. 

Common adsorbents include powdered activated carbon (PAC) or granulated activated 

carbon (GAC), which are not generally regenerated. The cost of incorporating these 

adsorbents into existing water treatment processes can be high because a contact column 

is essential and the adsorbent needs to be continually replaced and purchased. The disposal 

of the adsorbents is also costly, usually requiring high-temperature incineration. Ion 
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exchange resin can also remove PFAS efficiently.  However, the exhausted ion exchange 

resin is difficult to regenerate, since it produces high salinity PFAS containing wastewater; 

if no regeneration is undertaken, considerable solid waste would be produced.  

Compared with the adsorption process, electro-sorption can significantly increase 

the removal rate and capacity by applying an external electric field or electric currents to 

the conductive adsorbent to enhance the adsorption. Under the action of an external electric 

field, charged ions in the solution move towards the electrode with the opposite charges. 

PFAS, though widely detected in various environmental media such as effluents of 

municipal wastewater treatment plants (WWTP) and industrial wastewaters, often have 

extremely low concentrations (e.g., 10-100 ng·L-1). Thus, enhanced adsorption could 

sequester and concentrate PFAS for further disposal or degradation treatment. For example, 

electro-assisted methods with carbonaceous materials were used for the controlled 

adsorption and desorption of short-chain PFAS. Carbonaceous materials such as activated 

carbon, carbon nanotubes (CNTs), and reduced graphene oxide (rGO) are commonly used 

as conductive adsorbents. Most of these conductive nanomaterials are prepared by 

electrodeposition and require polymer adhesives to bind up these nanomaterials into a 

stable structure. The chemical binders may reduce the electron transfer efficiency and 

increase the fabrication cost of the conductive adsorbents. In addition, the surface area and 

pore size of graphene were also reduced by electrophoretic deposition, which weakened 

the adsorption capacity of electrodes. Thus, the lack of reactivity and effective adsorbent 

preparation of carbonous materials lead to the low efficiency of PFAS adsorption.  

Recently, MXene, a family of novel atomically thin transition metal 

carbides/nitrides, have emerged as promising candidates for diverse electrical and 
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electrochemical applications. MXene are generally synthesized by selectively etching of 

their parent layered materials, the MAX phases, which have a formula Mn+1AXn, where M 

commonly stands for a transition metal (e.g., Ti, Mo, and V), A is one of group 13 to 16 

elements of periodic table (Al, Si, Ga, etc.), X is either carbon and/or nitrogen, and n is an 

integer from 1 to 4. After the extraction of X atoms from the MAX phase, the outer surfaces 

of the exfoliated layers are always terminated with F, OH, and/or O groups. The obtained 

2D MXenes with negative charge and hydrophilic surface have appealing characteristics 

to construct membranes with unique properties. Furthermore, MXenes have an excellent 

electrical conductivity of MXene (e.g., 2.6 × 104 S cm−1 for Ti3C2Tx MXene) is also 

beneficial to reducing the Joule loss upon conversion of electricity. Notably, the presence 

of different functional groups (such as –O and –OH), and high surface area make them 

ideal candidates for water treatment; further, they have remarkable catalytic performances 

toward different hazardous pollutants . The key features of MXenes that make them the 

ideal candidates for various applications are their exceptional structural characteristics like 

activated metallic hydroxide sites, biocompatibility, ease of functionalization, huge 

specific surface area, hydrophilicity, large interlayer spacing, remarkable chemical stability, 

and superior adsorption-reduction capacity. 

 Etched in HF-containing aqueous solution, the resulting MXene flakes contain 

surface terminations (Tx), such as =O, −OH, and −F, rendering them hydrophilic and 

capable of solution processing. MXenes are considered to be composed of metallic 

conductive transition metal carbide core and electrochemically reactive transition metal 

oxide-like surface. They hold the unique combination of several excellent properties, such 

as metallic conductivity (conductivity up to 24 000 S·cm−1 for MXene films, much higher 
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than most carbonous materials), surface plasmons, hydrophilicity, tunable surface groups 

and work function (theoretically in between 2 and 8 eV), and good water dispersibility 

without adding surfactants. These properties enable many promising applications of 

MXenes in energy storage, catalysis, electromagnetic shielding, strain sensing, biosensing, 

(photo)thermoelectrics, optoelectronics, and electronics. Recently, MXenes have 

demonstrated excellent adsorption ability for PFAS than a number of anionic ion exchange 

(IX) resins (A860) or nonionic IX resins (XAD and XAD. A novel MXene− thin-film 

nanocomposite (TFN) hollow fiber NF membrane was also shown to enhance PFOS 

removal from water without affecting salt rejection of membranes and enhanced the 

membrane flux. However, electrochemically assisted adsorption with MXenes has not yet 

been studied or reported. Moreover, the variations of surface functional group or 

terminations of MXenes may change the electronic structure and promote electrochemical 

activity constitutionally. Thus, termination modification of MXene could enhance the 

adsorption, desorption and degradation performances for PFASs, which has not been well 

elucidated.  

This study demonstrated a novel MXene-based membrane for electro-sorption and 

desorption of PFAS from water. Briefly, a Ti3C2Tx (T= Cl, F or O) layer was coated on a 

commercial porous Nylon hydrophobic membrane by vacuum filtration. The adsorption 

capacity and desorption of PFAS were evaluated under different anodic potentials (0−1.2 

V vs Ag/AgCl) on the three types of MXenes that are expected to exhibit different 

interaction affinities toward PFAS. Then, the oxidative degradation of PFOA and PFBA 

as model perfluoroakly carboxylic acids of C4 and C8 was evaluated on these MXene-

based membrane and compared with other reported conductive membranes. Moreover, the 
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effects of the solution matrix such as pH, organic matter, and co-anions on the 

PFOA/PFBA removal were evaluated. This study provides new insights into the electro-

sorption/desorption with potential concurrent oxidation of PFAS using MXene-based 

membraness. 

 

5.2 Materials and Methods  

5.2.1 Preparation of Ti3C2Tx MXenes with Three Different Dominant Termination  

Firstly, to prepare Ti3C2Tx with the main terminal groups (T) of F, 1 g of LiF powder was 

added to 20 mL of a 9 M hydrochloric acid solution and stirred for 5 min for complete 

dissolution. Then, 1 g of Ti3AlC2 powder was slowly added to the mixture at room 

temperature in a duration of over 10 min to prevent overheating. Then, the mixture was 

magnetice stirred at 500 rpm at 35 °C for 24 h and then, deionized water was added to the 

mixture for centrifugation at 3000 rpm for 5 min to separate the supernatant from Ti3C2Tx 

sediment. This washing step using DI water was repeated until the pH of the supernatant 

reached ~6. Then, the sediment was redispersed with deionized water by hand shaking for 

10 min and centrifuged at 3000 rpm for 1 h. The collected supernatant contained large 

Ti3C2Tx flakes. The precipitate (multilayered Ti3C2Tx powder) was vacuum filtered on a 

Nylon membrane (mean pore diameter: 0.45 μm, MilliporeSigma) and vacuum dried at 

room temperature. 

To synthesize Ti3C2Cl2, 1 g of Ti3AlC2 MAX-phase powder and 2.1 g of CuCl2 

powder were mixed (in a stoichiometric molar ratio of 1:3) and ground for 10 min. Then 

0.6 g of NaCl and 0.76 g of KCl were added to this mixture, which was ground for another 

10 min using a mortar under 100% nitrogen atmosphere in a glovebox. The mixture powder 
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was placed in an alumina crucible that was heated at 750 °C for 24 h in a tube furnace 

under the argon gas. After the molten-salt etching process, the product was washed with 

30 mL deionized water and 20 mL of the 0.1 M ammonium persulfate (APS, (NH4)2S2O8) 

solution respectively to remove the residual CuCl2 and Cu particles, and the final product 

was oven dried at 40 °C. 

To synthesize Ti3C2O2, the Ti3C2Cl2 powder (70 mg) was stirred in Cs2O/K2O/Li2O 

(25:18.9:56.1 molar ratio) solid using a mortar under the nitrogen gas in a glovebox. At 

least 3 times mole excess of mixed compound was further added to the MXene/salt mixture. 

The solid mixture was placed the alumina crucible and loaded into a tube furnace for 

sintering at 600°C (functionalization with O) for 24 h under Ar atmosphere. The solid 

product was dissolved in a 20 mL anhydrous N2H4 solution (or anhydrous formamide) 

followed by washing with anhydrous acetonitrile and anhydrous Methanol inside the N2 

filled glovebox in to avoid possible oxidation of the surface groups. 

Delamination of MXene. 0.1 g one of the above synthesized MXenes was added 

to 10 mL of TBAOH (tetrabutylammonium hydroxide) (40%) solution and was left in 

TMAOH for 72 h for delamination, in which the suspension was sonicated for 18 h again 

in an iced bath. The sonication was accomplished 6 h each day for 3 days and stored inside 

the freezer during the rest of the time. The suspension was centrifuged at 14000 g for 15 

min to precipitate all particles, and the TMAOH solution in the supernatant was removed 

using a pipet. Finally, the delaminated MXene was centrifuged at 6500 g for 8 min to 

eliminate the precipitate and obtain the delaminated MXene in the suspension was 

collected by vacuum filtration on a Nylon membrane (mean pore diameter: 0.45 μm, 

MilliporeSigma). 
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5.2.2 Preparation MXene Membrane 

Firstly, 1.2 g of the above three kinds of Ti3C2Tx was dispersed ultrasonically in a mixture 

of N-methyl-2-pyrrolidone (NMP) (27.4 g) and 4-methyl piperidine (4-MP) (1 g) for 30 

min, and then 0.3 g PANI powder was slowly added into the above suspension. The mixture 

was vigorously stirred (~300 g) overnight to obtain a Ti3C2Tx/PANI suspension, which was 

vacuum filtered on a Nylon membrane (mean pore size=0.45 μm, MilliporeSigma) and 

vacuum dried at room temperature. The PANI binder was added to strengthen the binding 

and intern-layer conductivity.  

5.2.3 MXene and Membrane Characterization 

The morphology and chemical compositions were analyzed by JSM-7900F field emission 

scanning electron microscope (FE-SEM) (JEOL, Japan) at 15 kV with coupled energy-

dispersive X-ray (EDX). The phase composition of the MXene materials was analyzed by 

XRD (Philips, EMPYREAN, PANalytical Almelo, The Netherlands) with a Co Ka 

radiation (λ =1.789 Å). XRD patterns were collected with 2θ steps of 0.02° with a 

collection time of 1 s per step. The chemical composition and bonding states were 

measured by X-ray photoelectron spectroscope (XPS, Specs Analyzer & Bruker IR, USA) 

with a monochromatic Al Kα radiation (hv =1486.6 eV) at a power of 96 W for the X-ray 

spot size of 700 × 300 μm. The pass energy of the XPS analyzer was set at 20 eV. The 

pressure of the analysis chamber was kept below 5×10−9 torr. All spectra were calibrated 

using the binding energy of C 1s (284.8 eV) as a reference. High-resolution TEM images 

were obtained using a Tecnai F20 (FEI) electron microscope at an acceleration voltage of 

200 kV. Structural and chemical analysis was carried out by high-resolution STEM 

imaging and STEM-EDS within Titan Cubed Themis 300 double Cs-corrected 
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Scanning/Transmission Electron Microscope (S/TEM) operated at 300 kV; STEM energy-

dispersive X-ray analysis was recorded with the embedded high-sensitivity Super-X 

detector. The sample for the STEM-EDS analysis was ultrasonically suspended in the 

ethanol solvent, and one or two droplets of this slurry were deposited on a copper grid.  

The morphologies of the MXene membranes were examined using atomic force 

microscopy (AFM, Dimension Icon, Bruker, USA) in the tapping mode in air. The height 

profile of a 10.0 μm × 10.0 μm sample region was acquired by AFM to estimate the root 

mean-square-roughness and mean roughness. To measure the membrane surface 

hydrophilicity, the static water contact angle was measured by a contact angle goniometer 

(JC2000DM, Powereach, Shanghai, China) equipped with a video camera using the sessile 

drop method. A 2 µL water droplet was used to minimize the gravity effect. At least 6 

various locations were chosen on one membrane surface, to get a reliable contact angle 

value.  

5.2.4 Electrochemical Tests of the MXene Membranes 

All electrochemical measurements were performed in a conventional three-electrode cell 

at ambient temperature by using a CHI700E electrochemical potentiostat (CH Instruments, 

USA). The MXene membranes (Diameter=4 cm; thickness=0.2 mm), an Ag/AgCl 

electrode (in 1.0 M KCl) and a Pt wire were employed as the working electrode, the 

reference electrode and counter electrode, respectively. Cyclic voltammetry (CV) 

measurements of the three different terminated MXene membranes were performed with a 

CHI 700E electrochemical workstation at a series of sweep rate (10−500 mV·s-1) in 60 mL 

of 0.1 M Na2SO4. Before the CV measurements, the electrolyte (0.1 M Na2SO4) was 
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degassed by bubbling nitrogen for 30 min. The capacitance of the MXene membrane was 

calculated using the following equation: 
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where C is the capacitance of a membrane unit area (F·cm−2), E1 and E2 are the cutoff 

potentials in used during CV, i(E) is the instantaneous current, 
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voltammetric charge obtained by integration of the positive and negative CV scan, ∆V is 

the potential window in the CV scan, v (V·s−1) is the CV scan rate, and A is the membrane 

area. Electrochemical impedance spectroscopy (EIS) was also conducted on these MXene 

membranes to obtain the Nyquist plots at open circuit potential (OCP) of 0.2 V in the 

frequency range of 100 kHz to 0.01 Hz in aqueous solution containing 0.1 M Na2SO4.  

5.2.5 Batch Electro-sorption and Desorption Experiments  

To compare the adsorption and desorption on MXenes, PFCAs with two different carbon 

lengths, PFBA (C=4) and PFOA (C=8), were purchased from Fisher Scientific (all 

purity >98%). The electro-sorption PFCAs was conducted in 100 mL Teflon beakers 

equipped with magnetic stir bars. The MXene membrane (diameter = 4 cm) served as the 

anode and was placed at a distance of 10 mm to a titanium rod as the cathode with a 

thickness of 1.3 mm and a diameter of 4.6 cm. Each electro-sorption PFCAs removal batch 

experiments were run in triplicate. To find the suitable applied potential, the electro-

sorption kinetics of 1000 µg L−1of PFCAs solution will be carried out in 60 mL 0.1 M 

Na2SO4 aqueous solution (pH 7.00 ± 0.10) with a voltage 0 V, 0.2, 0.4, 0.6 V, 0.8, 1.0 and 

1.2 V, respectively. The pH of the solution was adjusted to 7.0 ± 0.1 by either 0.1M NaOH 

or 0.1M HCl. A series of PFCAs concentrations (100, 200, 400, 600, 800, 1000 and 10 000 



176 

 

µg·L−1) were used to evaluate the electro-sorption capacity of MXene membrane using an 

anodic potential of + 0.8 V. The electro-sorption equilibrium time was 3h, which was 

determined based on the electro-sorption kinetic. 60 mL 0.1 M Na2SO4 aqueous solutions 

containing 100, 200, 400, 600, 800, 1000 and 10 000 µg·L−1 PFCAs were added into Teflon 

beaker. The whole process was carried out under shading condition. A maximum initial 

PFCAs concentration of 10 mg·L−1 was used to avoid precipitation of PFCAs during batch 

studies. Other electro-sorption conditions were as the same as that of electro-sorption 

kinetic experiment.  

The amount of PFOA and PFBA absorbed at equilibrium (qe, mg·g−1) was 

calculated by Equation (5.2). 

0( )e
e

C C V
q

m

− 
=  (5.2) 

where V is the volume of the treated solution (L), m is the mass of loaded MXene (20 mg), 

and C0 and Ce (mg·L−1) are the initial and final equilibrium concentrations of PFCAs in 

solution, respectively. The sorption data were fitted by Freundlich isotherm in Equation 

(5.3) as PFCAs are most likely multi-layer adsorption behaviours on MXene membrane. 

1/n

e f eq K C=  (5.3) 

where Kf is the Freundlich isotherm constant (mg·g−1), n is adsorption intensity, Ce is the 

equilibrium concentration of PFCAs (mg·L−1), and qe is the amount of PFCAs adsorbed 

per gram of the MXene at equilibrium (mg·g−1).  

To study the electro-assisted desorption kinetics, desorption experiments were 

performed in the same batch cell by adding cathodic potential of −1.0 V vs Ag/AgCl to the 

MXene membrane. First, the MXene membrane reached the adsorption equibrlium or 

capacity in a solution with an initial PFCAs concentration of 10000 µg·L−1 under a 



177 

 

potential bias of +0.8 V for 4 h in 0.1 M Na2SO4. After that, those MXene membranes were 

transferred to a 0.1 M Na2SO4 solution (no spiked PFAS) for desorption by applying a 

cathodic potential of −1.0 V to the MXene electrode for 1 h.  

5.2.6 Electro-sorption of PFBA and PFOA in Continuous Filtration   

In a typical continuous-flow electrosorption experiment, a modified syringe pump was 

used to transfer the feed solution of PFCAs (100 µg·L−1) and 10 mM Na2SO4 through a 

dead-end membrane filtration cell at various flow rates (200-500 LMH) as illustrated in 

Figure 5.4f. A positive voltage (0.8 V vs Ag/AgCl) was applied to the MXene membrane 

(surface area = 12.56 cm2) as the anode with a Ti mesh (diameter 4.6 cm) as the counter 

electrode and a Ag/AgCl reference electrode. As shown in Figure 5.4h, the distance 

between the working anode and counter electrode was also 10 mm.  

Each filtration experiments last four hours, where in the first hour, no potential was 

applied to the membrane surface and the baseline PFCAs removal of the membrane was 

determined by measuring the difference the PFCAs concentration in the feed (CF) and 

permeate (CP) stream using Equation (5.4). After the first hour, a +0.8 V potential was 

applied to the membrane electrode (with a corresponding cell potential of +1.0 V and a cell 

density of 0.5 mA·cm2 on the MXene membrane). All experiments were at least duplicated 

to obtain the mean PFCA removal (ɳ) under different conditions.  
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 (5.4) 

5.2.7 Adsorption Test on eQCM  

To accurately monitor the electro-sorption kinetics of PFCAs on MXene, we conducted the 

adsorption tests on an Electrochemical quartz crystal microbalance (eQCM, 10M, 
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GAMRY Instrument), which combines the QCM with a potentiostat (CH Instruments 760E) 

as shown in Figure 5.1. A typical three-electrode system was constructed with a gold 

crystal sensor (5 MHz, GAMRY Instrument), a platinum (Pt) wire, and an Ag/AgCl 

electrode as working electrode, counter electrode, and reference electrode respectively. The 

MXene suspension (10 mg⸱L−1) were dropped cast on the gold crystal sensor surface and 

air-dried overnight to form a layer of 0.001 g·cm-2. The catalyst-coated gold sensor was 

placed in a static cell filled with 0.1 M Na2SO4. Then, a constant voltage (+ 0.8 V) was 

applied to the gold sensor to enable PFCAs adsorption. The vibration frequency shift of 

the gold sensor was caused by the PFCA sorption that caused the mass changes. The 

frequency shift of the sensor was used to calculate the interfacial mass changes on a gold 

surface (e.g., gold) at an ng·cm−2 level based on the Sauerbrey equation in Equation (5.4) 

by the supporting software (Echem Analyst, GAMRY INSTRUMENT). 
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where ∆𝑓 is the frequency change (Hz), ∆𝑚 is the mass change (g), 𝑓0 is the resonant 

frequency (Hz), A is the piezoelectrically active crystal area (0.95 cm2), ρq is the density 

of quartz (13.92 g∙cm−3), and µq is the shear modulus of quartz for AT-cut crystal (2.9 × 

1011 g∙cm−1∙s−2). 
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Figure 5.1 The electrochemical quartz crystal microbalance (e-QCM) coupling with an 

electrochemical workstation system.  

 

5.2.8 DFT Calculation 

We have employed the Vienna Ab Initio Package (VASP) to perform all the density 

functional theory (DFT) calculations within the generalized gradient approximation (GGA) 

using the Perdew-Burke-Ernzerhof (PBE) formulation. We employed projected augmented 

wave (PAW) potentials to describe the ionic cores and took valence electrons into account 

using a plane wave basis set with a kinetic energy cutoff of 600 eV. Partial occupancies of 

the Kohn−Sham orbitals were allowed using the Gaussian smearing method and a width of 

0.05 eV. The electronic energy was considered self-consistent when the energy change was 

smaller than 10−6 eV. A geometry optimization was considered convergent when the force 

change was smaller than 0.02 eV/Å. Grimme’s DFT-D3 methodology was used to describe 

the dispersion interactions.Bader technique was used for quantifying the loss or gain of 

charges by the host material and adsorbed PFAS species. 
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The Ti3C2Tx (T = F, O, Cl) unit cell in the cubic P63/mmc space group were 

optimized, which using a 2×2×1 Monkhorst-Pack k-point grid for Brillouin zone sampling. 

Ti3C2Tx with different termination surface model was constructed with p(4×4×2) 

periodicity in the x, y and 1 stoichiometric layer in the z direction separated by a vacuum 

layer in the depth of 20 Å in order to separate the surface slab from its periodic duplicates. 

During structural optimizations, the gamma point in the Brillouin zone was used for k-

point sampling. A Monkhorst-Pack k-point mesh of 2× 2×1 was also used for calculation 

of the density of states (DOS). 

Surface energy is a measure of thermodynamic stability of the surface; a low positive 

value indicates a stable surface. The surface energy (γ) of Ti3C2Tx (T = F, O, Cl) can be 

calculated according to the following equation:  

( ) / 2
surf bulk

E nE A = −  (5.5) 

where Esurf is the total energy of the surface, Ebulk is the bulk energy of the unit cell, A is 

the surface area, the coefficient is 2 since both the upper and lower surfaces are optimized, 

and n represents the number of unit cells that the surface contains. 

The adsorption energies (Eads) of adsorbate PFBA and PFOA were defined as 

Eads = EA/surf – Esurf –EA(g) (5.6) 

where EA/surf, Esurf and EA(g) are the energy of adsorbate PFBA or PFOA adsorbed on the 

surface, the energy of clean surface, and the energy of isolated A molecule in a cubic 

periodic box with a side length of 20 Å and a 1×1×1 Monkhorst-Pack k-point grid for 

Brillouin zone sampling, respectively. 
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The work function is defined as the value of the lowest amount of energy required 

to relocate the electron from the Fermi level to vacuum level. This parameter can be 

calculated via the following formula: 

Φ = Evac– Ef (5.7) 

where Φ is the work function, Evac is the electrostatic potential of vacuum level, and Ef is 

the energy of Fermi level for different species Fermi level (from OUTCAR file).  

5.2.9 Determination Method of the PFCA Concentrations 

An Agilent 6470A triple quadrupole LC/QQQ system was used to detect the concentrations 

of PFCAs and intermediates (C2–C7) during degradation based on USEPA Method 537. A 

C18 column (Agilent poroshell 120 EC, 50 × 3 mm, 1.8 μm) was used at 40°C using a 

mobile phase of solvent A (5 mM ammonium acetate in distilled water) and B (5 mM 

ammonium acetate in 100% methanol). The injection volume of each sample is 5 µL with 

a flow rate of 0.5 ml∙min−1. The compounds were analyzed in an electrospray negative 

ionization mode. The mode of multiple reaction monitoring with −4.5 kV of ion spray 

voltage was used to perform the analysis. The fluoride ion in the solution was analyzed by 

Metrohm 881 Compact Ion chromatography (IC) Pro coupled with a Metrosep A Supp 5–

250 column. A solvent gradient was applied to separate different components in solution: 

0~5 min, NaOH (1.0 mM); 5.1~32 min, NaOH (15 mM); 32.1~36 min, NaOH (50 mM); 

36.1~46 min, NaOH (1 mM). The flow rate and temperature are kept at 1.5 mL·min-1 and 

30oC, respectively.  
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5.3 Results and Discussion 

5.3.1 Characterization of MXene and MXene-coated Membranes 

Figure 5.2a illustrates the preparation process of 2D MXene with different terminations. 

For example, the fluorine terminated MXene (Ti3C2F2) was obtained from etching of 

Ti3AlC2 MAX powder and subsequent liquid-phase delamination in the aqueous solution 

of hydrochloric acid and lithium fluoride . The synthesis of Ti3C2Clx from Ti3AlC2 is 

analogous to that of chemical etching of Ti3AlC2 in a HF solution, where Cu2+ and Cl− act 

as H+ and F−, respectively. The Ti3C2Cl2 powder were further immersed in ammonium 

persulfate (APS) solution to remove Cu particles from the Ti3C2Cl2. The Cl-MXene act 

similarly during the substitution/elimination reaction for the O-terminated MXene 

preparation.  

Figure 5.2b, 5.2c and 5.2d display the typical SEM image of the prepared three 

MXene materials (Ti3C2Cl2, Ti3C2F2, Ti3C2O2) and the respective EDX element mappings. 

The three MXene show the typical nanosheet structure with a rough surface and a 

multilayered structure. Element mappings reveal that Ti, C, Cl and O are uniformly 

distributed throughout the entire structure of Ti3C2Cl2 (Figure 5.2b). Table 5.1 indicates 

that the elemental ratio of Ti/C/Cl = 43.2:21.5:25.3 with small amounts of Cu (0.7 atom %), 

Al (2.9 atom %), and O (6.3 atom %). The presence of oxygen is probably ascribed to the 

reisdual Al (OH)3, which is the hydrolysis product of AlCl3. Moreover, a few Cl 

terminations might be replaced by O-containing terminals during processes such as water 

washing, which could also contribute to the oxygen element on the surface. EDX mapping 

also confirms the uniform distribution of Ti, C, F, and O for Ti3C2F2 (Figure 5.2c), which 

has Ti 42.1atom %, C 22.5 atom %, F 20.2 atom% and O 13.0 atom%. The O content 
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increased to 13.0 atom%, probably due to the water absortpion during the synthesis in the 

LiF-HCl solution. Finally, the Ti3C2O2 Mxene (Figure 5.2d) is verified to have elements 

of Ti, C, O and small amounts of Cl (5.8 atom%). 

Figure 5.2e-h shows the SEM images of the pristine Nylon membrane and F-

MXene-coated membrane surface and cross-section structures. The Nylon membrane 

surface had homogeneous pores with a mean pore diameter of 0.45 μm. The dense MXene 

layer on the membrane rendered a thickness of ~10 µm and reduced the effective pore 

diameter down to 0.12 μm as measured by the water permeability test. The cross-section 

SEM image also suggests the MXene layer has a laminar structure with narrow and regular 

interlayers that provide adsorption sites and molecular transport channels. 
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Figure 5.2 (a) Scheme of the synthesis of three different terminated MXene. Typical SEM 

images and corresponding EDX mapping of (b) Ti3C2Cl2, (c) Ti3C2F2, and (d) Ti3C2O2. 

SEM images of a Nylon membrane support (e) surface and (f) cross-section. (j) surface and 

(h) cross-section SEM images MXene membrane, respectively. 
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Table 5.1 Average Chemical Composition (atom %) of Ti3AlC2, Ti3C2Cl2, Ti3C2F2, and 

Ti3C2O2 MXene 

EDS analysis Ti Al C Cl O F 

Ti3AlC2 51.2 14.8 33.6 NA 0.4 NA 

Ti3C2Cl2 42.2 3.0 21.5 25.3 7.2 NA 

Ti3C2F2 42.1 1.2 22.4 NA 13.0 20.3 

Ti3C2O2 45.6 NA 23.8 5.8 23.1 NA 

 

Figure 5.3a shows the XRD patterns of the pristine Ti3AlC2 and the produced 

Ti3C2Cl2, Ti3C2F2 and Ti3C2O2, respectively. Compared to Ti3AlC2, most of the diffraction 

peaks such as the (107) peak at 39° disappeared in the final products with only the (00l) 

peaks as well as several broad and low-intensity peaks in the 2θ range from 5° to 60°; these 

features indicate the successful reduction of Ti3AlC2 into layered Ti3C2Tx, where the Al 

layers in Ti3AlC2 have been etched out by using the Lewis acid molten salt. The different 

terminal atoms also result in the different structure factors and caused the various relative 

intensity of the (00l) peaks of the MXenes. In addition, the (002) peak of Ti3C2Cl2 MXene 

shifted to a lower angle, indicates that the lattice spacing has increased due to the removal 

of the Al layer. Ti3C2F2 and Ti3C2Cl2 both have the intense (002) peaks corresponding to 

the interlayer spacing values of respectively 20.90 and 22.22 Å, which agree with previous 

reports. The increased interlayer spacing in Ti3C2Cl2 and Ti3C2O2 may result from the 

larger radii of oxygen and chlorine atoms that replaced the fluorine atoms. 
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Figure 5.3 (a) XRD patterns and (b) XPS surveys of the Ti3AlC2, Ti3C2Cl2, Ti3C2F2 and 

Ti3C2O2 MXenes. 

 

Figure 5.3b shows the XPS spectra of Ti3AlC2 (black) and three different 

terminated MXenes (–Cl, –F, and –O). For Ti3AlC2, the signals of Al 2p, C 1s, Ti 2p, and 

O 1s were found at 74.2, 284.1, 458.1, and 530.9 eV, respectively. The peak at 74.2 eV is 

assigned to Al(OH)3, which may be produced from the reaction of Ti3AlC2 with water. 

After etching by HF/CuCl2/LiO2 and further immersion in APS solution, only the signals 

of Ti 2p, O 1s, Cl 2p, F 1s and C 1s were detected on the three MXenes, suggesting the no 

significant amounts of Al, Cu and Li element remained. 

Figure 5.4 shows the deconvolution of XPS spectra for Ti 2p, C 1s, O 1s, F 1s and 

Cl 2p for Cl-, F- and O-terminated MXenes. In the Ti 2p region, the peaks at 455.4 and 

461.8 eV are assigned to the Ti−C bond. The peaks at 456.2 and 462.5 eV correspond to 

Ti−O, the peaks at 458.2 and 464.2 eV corresponding to the Ti−F bond, and the peak at 

458.8 eV attributed to the high-valency Ti compound, is assigned to the Ti-Cl bonds. The 

absence of a peak at around 459 eV indicates that no TiO2 formed during the sample 

preparation or the annealing process. The C 1s region is deconvoluted into four peaks at 

binding energies of 281.3, 284.3, 286.1 and 288.8, which are assigned to C–Ti, C–C, C–O 



187 

 

and O–C=O bonds, respectively. The peaks at 198.3 eV and 200.1 eV are associated with 

Cl-Ti (2p1/2) and Cl-Ti (2p3/2) bonds, which indicated the presence of Ti-Cl bonds in Cl- 

terminated MXene. Figure 5.4f shows single XPS peak in the F 1s core level (Ti–F bonds 

at 685.5 eV), clearly identifies the fluorine to be solely adsorbed on the A site. In the O 1s 

region (Figure 5.4i), the peaks at 530.8 eV, 531.7 eV, and 533.7 eV are assigned to the Ti-

O, Ti-C-O, and C-Ti-(OH)X bonds, respectively.   

 
Figure 5.4 XPS Spectra of Three MXene in the Ti 2p, C 1s, O 1s, F 1s and Cl 2p regions. 

 

Figure 5.5a presents the cyclic voltammetry (CV) curves of the different MXenes 

at the scan rate of 50 mV·s−1 with the voltage range of −0.4–0.8 V (vs. Ag/AgCl). The 

electrochemical capticatance of O-MXene is obviously larger than F-MXene and Cl-
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MXene as indicated by higher current respone at same potential. O-MXene also yielded a 

relatively higher specific capacitance (111.9 mF·cm−2) than Cl-MXene membrane (52.9 

mF·cm−2) and F-MXene membrane (79.7 mF·cm−2). Figure 5.6 also shows cyclic 

voltammetry (CV) of three MXene electrode with a mass loading of 20 mg at scan rates 

ranging from 10 mV·s−1 to 500 mV·s−1. Figure 5.5b shows that the specific capacitance 

had a linear relationship with square root of scan rate (v−1/2), demonstrating the classical 

Nernstian diffusion-controlled redox behavior. The shape of the CV curve barely changes 

as the scan rate gradually increases, indicating that the MXenes exhibited excellent 

capability and a low internal resistance. 

 
Figure 5.5 (a) Cyclic voltammograms of three different terminated MXenes in 0.1 M 

Na2SO4 with scan rate of 50 mV·s−1, (b) EIS plots of three different terminated MXenes 

under an open circuit potential, (c) Specific capacitance (C) vs. the reciprocal square root 

of scan rate (v-1/2) 10 to 500 mV·s−1, (d) PFCAs adsorption capacity and on three different 
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terminated MXenes in 0.1 M Na2SO4 with 10 ppm PFCAs at +0.8 V for 2 h, (e) 

regeneration efficiency via desorption in 0.1 M Na2SO4 at −1.0 V for 0.5 h, (f) The apparent 

PFCAs degradation rate constant (kPFCAS) on three different terminated MXenes in a batch 

mode (PFCAs = 1 ppm, anodic potential = +6 V and current density = 10 mA·cm−2), (f) 

The mass changes of MXene-coated Au sensor with/without the potential bias of 0.8 V, (h) 

Schematics of the MXene-based continuous filtration system and (i) PFOA in continuous 

filtration mode using three different MXene membranes (the initial concentration of PFOA 

was 100 µg·L−1). p indicates significance threshold in t-test (if p < 0.05, then that result is 

said to be statistically significant. If p > 0.05, then the result is insignificant.) 

 

To further reveal the electrical conductivity and capacitance of the three MXenes, 

the Nyquist plots in Figure 5.5c show a typical semicircle for three samples at high 

frequencies, which reflects the charge transfer resistance (Rct). The inclined line at the low 

frequency region corresponds to a Warburg diffusion process (W), which is associated with 

the ion diffusion in the porous electrode. The Ti3C2O2 electrode (O-MXene) showed a 

smaller semicircle than that of the other two MXene electrodes, suggesting the faster 

charge transport and lowest charge transfer resistance.  

 
Figure 5.6 CV curves performed on Cl-MXene Membrane, F-MXene Membrane and O-

MXene Membrane at Different Scan Rates (10 mV·s−1 to 500 mV·s−1). 

 

5.3.2 Effect of Termination on the PFCAs Adsorption and Desorption of MXene 

membrane 

The electrosorption capacities of two PFCAs on three MXenes are compared in Figure 

5.5d. The O-terminated MXene absorbed greater PFACs than F- and Cl-terminated 
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MXenes did (p<0.05). The Cl-MXene membrane achieved a relateively low 

electrosorption capacity of 117.3 ± 10.6 mg·g−1 for PFOA. In contrast, the F-terminated 

MXene and O-terminated MXene obviously both had increased electrosorption capacities 

of 158.8 ± 7.8 mg·g−1 and 215.9 ± 8.5 mg·g−1, respectively. The three MXenes consistently 

exhibited lightly lower adsorption capacities for PFBA especially on O-MXene (p<0.05), 

probably because the different hydrophobicity of PFBA and PFOA due to different chain 

length. For all cases, however, applying +0.8 V of positive potential led to greatly improved 

uptake, with O-terminated MXene membrane having the highest increase with the positive 

potential.  

To further confirm the adsorption behavior of PFCAs on three different terminated 

MXenes, the eQCM measurements were conducted to sensitively detect the interfacial 

adsorption of PFOA (1000 ppm) on the MXene-coated gold sensor or chips. Figure 5.5g 

shows that no mass changes were observed in the initial 50 s as indicated by the stable 

horizontal baselines when no positive potential was applied, suggesting the background 

adsorption of PFOA on MXene is negligible. After applying a positive voltage (0.8 V vs 

Ag/AgCl) to the sensor, the mass of gold chips dramatically increased and reached a stable 

level of 12, 15, and 18 µg·cm−2, respectively, which correspond to 120, 150 and 180 mg·g-

1 and match the results in Figure 5.5d.  

Figure 5.5f shows the electrodesorption efficiency of PFCAs from three MXenes 

at −1.0 V vs Ag/AgCl. Both PFOA and PFBA were found to desorb from MXene and reach 

the maximum dissolved concentrations within 1 h as compared in Figure 5.5d. About 80% 

of PFOA and 87% PFBA was released into the solution. The desorption efficiency seems 

to be lower for PFOA than for PFBA probably due to the greater hydrophobic binding 
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strength for PFOA on MXene. Similarly, the O-terminated MXene shows a lower 

desorption efficiency (75%) than the other MXenes due to its stronger adsorption capacity 

and affinity. 

After the electro-sorption of PFCAs at the initial concentration of 1 mg·L−1 in 0.1 

mM Na2SO4, the in situ degradation of PFOA and PFBA on the MXenes was evaluated by 

elevating the anoidic potential from 0.8 V to 6.0 V at 10 mA cm−2. Figure 5.5f compares 

the pseudo-first-order rate constants (kPFOA), which increased from 2.14 ± 0.28 min−1 for 

Cl-MXene to 3.92 ± 0.54 min−1 for O-MXene and 3.14 ± 0.68 min−1 for F-MXene. The 

electro-oxidation performance of MXene membranes on PFBA and PFOA were 

investigated by using 1 mg·L−1 PFBA or PFOA in 0.1 mM Na2SO4. In order to confirm the 

oxidation of PFBA or PFOA instead of electrosoprtion, desorption experiments were also 

performed after oxidation experiments.  No PFOA or PFBA was found in the desorption 

electrolyte, implying complete degradation of PFOA or PFBA.  

5.3.3 Mechanism of Surface Termination  

To better understand the fundamental mechanisms for adsorption and degradation of 

PFCAs on different terminated MXenes, we further conducted the DFT simulations to 

compare the adsorption energies of PFOA and PFBA on MXene sheets. Figure 5.7–5.9 

show four different adsorption configurations on three different terminated MXenes. The 

adsorption energies of PFBA and PFOA on MXene surfaces are summarized in Table 5.2, 

which indicate that surface vacancies are needed to get the PFCAs molecules to adsorb 

(they won’t adsorb on pristine surfaces); because such defects form spontaneously from 

the synthesis, it is likely this that leads to the good adsorption of PFCAs. Interestingly, we 

found that the PFCAs won’t adsorb on a Cl- MXene either with or without defects. Finally, 
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we found that the deprotonated PFCAs anions (which are typically present in water) adsorb 

more strongly that the protonated version, meaning these materials should perform very 

well in aqueous environments. 

 
Figure 5.7 The optimized different configurations of PFBA and PFOA adsorption on 

Ti3C2Cl2. Hydrogen, carbon, oxygen, fluorine, chlorine, and titanium atoms are shown in 

pink, brown, red, lavender, green and cyan spheres, respectively. 

 

Figure 5.8 The optimized different configurations of PFBA and PFOA adsorption on 

Ti3C2F2. Hydrogen, carbon, oxygen, fluorine, titanium atoms are shown in pink, brown, 

red, lavender and cyan spheres, respectively. 
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Figure 5.9 The optimized different configurations of PFBA and PFOA adsorption on 

Ti3C2O2. Hydrogen, carbon, oxygen, fluorine, titanium atoms are shown in pink, brown, 

red, lavender and cyan spheres, respectively. 

 

Table 5.2 PFBA and PFOA Adsorption Energies (eV) on Different Terminated MXene  

Configurations 
Materials 

Ti3C2Cl2 Ti3C2O2 Ti3C2F2 

P
F

B
A

 

(I) 1.64 0.81 1.47 

(I) with defect 1.24 −1.08 −0.80 

 (II) 1.32 0.79 −0.75 

(II) with defect  0.55 −1.33 −1.62 

(III) 1.63 0.80 1.47 

(III) with defect 1.11 −1.03 −1.64 

(IV) 1.89 1.07 1.24 

(IV) with defect 0.40 −3.30 −3.07 

P
F

O
A

 

(I) 2.34 0.05 3.31 

(I) with defect 0.31 −1.41 −0.63 

 (II) 0.63 2.22 2.89 

(II) with defect  0.34 −1.43 1.56 

(III) 1.84 3.64 6.46 

(III) with defect 1.45 1.75 4.18 

(IV) 1.47 3.08 5.80 

(IV) with defect −0.04 −1.26 −0.83 

  

The properties of MXene change with surface functionalization and its 

compositions. For example, the electronic work function (WF), the energy difference 

between the Fermi level and the vacuum level that depicts the minimum energy required 

to withdraw an electron from the MXene surface, is found to strongly depend on the 
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composition of the functional groups . Our calculated work functions for the −Cl, −F and 

−O terminated MXene are 4.54, 4.92 and 6.20 eV, respectively. The results agree with the 

previous studies showing that the work function of MXenes follows this trend: −O> −F > 

bare > −OH functionalized MXene . Table 5.3 summarizes the variations of the work 

functions for defected MXenes. The changes of work function could be associated with 

induced surface dipoles caused by the functional groups as well as by shifts in the Fermi 

level of the material due to electronic redistribution. Komsa et al. reported that work 

function depends linearly on the concentration of O, F, and OH . Different work functions 

of Ti3C2Tx with different surface termination may result from the alternation of direction 

and magnitude of electron transfer at the graphene/MXene interface . The resulting 

polarization of the interface enhanced the strength of interfacial adhesion and modified the 

band structure of graphene. 

Table 5.3 Calculated Work Function and Bader Charge of Three Different MXene. 

Sureface Work Function (eV) Bader Charge (e) 

Cl-MXene 4.54 0.12 

d-Cl-MXene 4.53 0.34 

F-MXene 4.92 0.56 

d-F-MXene 4.80 0.63 

O-MXene 6.20 0.61 

d-O-MXene 6.05 0.82 

 

To describe the electrochemical properties more comprehensively, we also 

calculated the density of states (DOS) of three different terminated MXenes. As shown in 

Figure 5.10, all three MXenes is metallic with the Fermi energy falling into a continuum 

of energy states. The DOS in the range from −2 to 2 eV are mainly contributed by the Ti 

3d orbitals and the DOS located between −5 and −2 eV come from the hybridization of Ti 

3d and C 2p orbitals. Moreover, the band structures of Ti3C2Cl2 and Ti3C2F2 are more 
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similar compared to Ti3C2O2. This is because both Cl and F groups demand receiving one 

more electron to be stabilized, whereas O is capable of receiving two more. According to 

the DOS of Ti3C2Cl2, Ti3C2F2 and Ti3C2O2 the p orbitals of surface functionalization 

groups all hybrid with the Ti 3d orbitals and shift the Fermi level downward to varying 

degrees. It is to be mentioned that the overlap DOS areas between O 2p and Ti 3d orbitals 

are much larger than those of Cl or F in the range from −5 to −2 eV, indicating much 

stronger hybridization between O 2p orbitals and Ti 3d orbitals. Consequently, the much 

stronger hybridization between O and Ti significantly reduces the number of 

delocalized/free electrons in pristine Ti3C2 MXenes, which finally results in a metal–

semiconductor transition of Ti3C2 after O functionalization (Ti3C2O2). Nevertheless, the 

continuous electronic states crossing Fermi level for O-terminated MXene indicate that its 

conductivity is still good. Hence, three different terminated MXenes owe retains 

outstanding electrical conductivity, implying its exceptional capability to transport 

electrons. We believe this unique merit of MXene renders it a superior co-catalyst 

outperforming its counterparts, such as graphene and carbon nanotubes, 
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Figure 5.10 The calculated density of states of three different terminated MXene, where 

the Fermi energy is set to zero. 

 

DFT simulation is capable of computing the charge distribution, according to which 

the charge transfer could be precisely determined using Bader analysis. Further insights 

which the enhanced adsorption and degradation for the PFOA on different terminated 

MXenes can be gained from the charge distribution behavior of anionic PFOA adsorption 

on Ti3C2Cl2, Ti3C2F2 and Ti3C2O2, Bader charge analysis as shown Table 5.3 also reveals 

that defect Ti3C2O2 donates 0.19 |e| and 0.28 |e| more electrons to C7F15COO– relative to 

Ti3C2F2 and Ti3C2Cl2, respectively. Moreover, it is proposed that the –O functional group 

in Ti3C2 MXene is more active in the redox reaction than –Cl and –F. The valence state of 

Ti element is also a very important parameter affecting pseudocapacitance. It was 

concluded that the Ti element in Ti3C2O2 possesses the most unfilled orbitals, followed by 

that of Ti3C2Cl2 and Ti3C2F2, which suggests that the chemical activity of Ti element in 

Ti3C2 MXene is significantly hindered by the –Cl and –F functional groups.  
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Figure 5.11 Reaction paths for the degradation of PFOA over Ti3C2Cl2, Ti3C2F2 and 

Ti3C2O2 surface. 

 

Furthermore, we also investigated the effect of surface termination on 

perfluorooctanoic acid (PFOA) degradation by DFT calculations. We screened possible 

intermediates and optimal paths for PFOA decomposition over three models (Ti3C2Cl2, 

Ti3C2F2 and Ti3C2O2). As we mentioned before, for Ti3C2O2, anionic PFOA (C7F15COO−) 

exhibited a chemical adsorption configuration with an adsorption energy of −1.26eV, 

followed by the dissociation of CO2 to form C7F15• radical. Loss of carbon from PFOA to 

produce CO2 is consistent with the first step of anodic oxidation of PFOA following the 

Kolbe one electron-transfer reaction. Conversion of C7F15• radical to C7F15OH has been 

proposed to involve •OH (C7F15• +•OH→C7F15OH) in an electrocatalytic system where 

abundant •OH formation was observed. Loss of fluorine through C−F bond breakage is 

believed to involve this unstable intermediate: perfluoroheptanol (C7F15OH). One electron 

from the terminal −OH function group will lose, leading to the formation of C6F13 COF. 

Based on the above analysis, perfluoroheptanol (C7F15OH) is an important intermediate in 

destructing of perfluorooctanoic acid. Moreover, the pathway of Ti3C2O2 was most 

favourable among three of different model which also indicates that O-terminated surface 

was much more effective than Cl- and F-terminated surface. 
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5.4 Conclusion 

We have demonstrated three different termination MXene (Ti3C2Cl2, Ti3C2F2 and Ti3C2O2) 

to adsorption, desorption and oxidation PFCAs (PFBA and PFOA). In addition, the oxygen 

functionalized on the surface of the Ti3C2 MXene nanosheets (Ti3C2O2), which can greatly 

reduce the interface resistance to accelerate the overall electron transport and improve the 

electrochemical reaction kinetics. Density functional theory (DFT) calculation shows that 

the excellent adsorption and interfacial interaction performance of the Ti3C2O2 with PFOA 

and PFBA, which may be result from the generation of numerous electrochemical active 

sites and the improvement of electronic conductivity. The electrochemical behaviors of the 

four MXene membrane electrodes suggest that the total capacitance can be divided into 

two parts: the diffusion-controlled part relating with the redox reaction from the bulk 

element, mainly dependent on the oxidation state of Ti element in Ti3C2 MXene, and the 

capacitor-like part consisting of electrochemical double layer mechanisms, which are 

strongly affected by interlayer spacing, surface absorption, and functional groups.  
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CHAPTER 6 

 

PERSPECTIVE FOR FUTURE RESEARCH 

 

Water treatment technologies with multipurpose, modular, scalable, robust, chemical-free, 

and energy-efficient are necessary to address the unresolved issues of worldwide water 

scarcity and water pollution. Developing conductive membranes for water purification and 

wastewater treatment has become the topic of numerous studies. Reactive electrochemical 

membrane systems have a limited commercial application due to a few issues, despite the 

increased treatment efficiency brought on by the synergetic effect of membrane filtration 

and electrochemical behaviors. For example, (1) trade-offs between electrode material 

performance, stability and cost, (2) formation of toxic halo-oxyanion and halogenated 

organic byproducts, (3) the limitations of mass transfer from the bulk solution to the 

electrode, and (4) improving energy efficiency by optimizing reactor design. The process 

of producing membrane active layers with high electrical conductivity and porosity is 

known as reactive electrochemical membrane preparation. Carbonaceous materials, metals, 

metal oxides, and polymers are the main conductive materials employed in the production 

of reactive electrochemical membranes. Although materials like CNTs and Magnéli phase 

Ti4O7, which are frequently utilized to prepare reactive electrochemical membranes, there 

are still some problems like corrosion, passivation, membrane fouling, complicated 

material synthesis conditions, and high cost. More efforts are required to develop 

electrochemical membranes that are superior in terms of porosity, conductivity, reactivity, 

and stability over a long-term operation. Electrochemical membrane fabrication techniques 

should also be simple, economical, and environmentally friendly. Beyond the development 



200 

 

of proper electrochemical membrane materials, it may be possible to embed specialized 

catalysts or nanomaterials into the conductive layer to provide quick and selective removal 

of target contaminants in complex water matrices. 

Facet engineering of functional nanocrystalline materials is an area of major 

scientific and technological interest. This is because in many important applications which 

rely on surface structure and chemistry, such as heterogeneous catalysis, gas sensing, and 

energy conversion and storage, the properties of the materials can be tailored by controlling 

the crystal structure, and morphology of the external surfaces of the constituent particles. 

For heterogeneous catalysis, scaling down the particle size not only increases the number 

of catalytic sites, but also modifies the electronic properties. Furthermore, the catalytic 

reactivity and selectivity changes by modifying the arrangement and coordination of the 

surface atoms, thus becoming very sensitive to the enclosing crystal facets. Constructed 

with inorganic metal-based centers and bridging organic linkers, metal–organic 

frameworks (MOFs) have attracted tremendous attention over the past two decades. Their 

unique characteristics such as unsaturated metal sites, high surface areas, and well-defined 

single active sites provide platforms for the scientific research in catalytic applications. 

Similar to other nanomaterials, the precise fabrication of crystal facets of MOFs is crucial 

for the catalytic performance due to the difference of the atomic arrangement among their 

crystal facets. Therefore, facet engineering on MOFs with specific catalytic activity and 

selectivity should be pay considerable attention in future heterogeneous catalysis. 

Metal-organic frameworks (MOFs) emerged as promising candidates for 

electrocatalysts owing to their large surface area, tunable porosity, as well as diverse 

compositions and metal centers. However, most of the MOFs are burdened with the 
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intrinsic poor electroconductivity due to the insulating properties of organic ligands and 

the poor conjugation of metal-organic connection. A variety of methods have been 

proposed to solve these issues, such as the exfoliation of MOFs into ultrathin layers, design 

of complicated linkers to obtain conductive MOFs, carbonization of MOFs, and so on. 

However, so far the electrocatalytic activities of MOF-based catalysts are still unsatisfied 

in comparison to state-of-the-art noble metal-based catalysts. In future work, it is a strategy 

to strongly enhance the catalytic performance of poorly conductive MOFs by confining 

them into two-dimensional MXene monolayer or few multilayers. MXenes possess a 2D 

morphology exhibiting a large surface area, elevated electrical conductivity, redox activity, 

and tunable physicochemical properties by altering the interlayer spacing. Their use as 

binders, fillers, and precursors for other materials finds a wide spectrum of applications. 

However, MXenes suffer from stability issues because of its oxidation and restacking, 

limiting their surface area and physicochemical and electrochemical properties. On the 

other hand, MOFs are well-known for their large surface area, tunable pore features, 

uniform pore size, and large redox activity. These properties have made them apt for 

applications in the field of electrochemical energy storage, sensing, electrocatalysis, water 

treatment, and various biomedical purposes. However, MOFs are challenged by mediocre 

stability, limited pore sizes, and most importantly their limited electrical conductivity. 

Interestingly, the intercalation of MOF scaffolds into MXene galleries has presented the 

possibility to improve the overall stability as well as physicochemical properties of the 

formed composite materials. MXene@MOF composites amalgamate the advantages of 

both MXene and MOFs with different structures, resulting in the further elevation of 
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specific surface area, electrical conductivity, mechanical/hydrolytic stability, porosity, and 

physicochemical as well as electrochemical properties in the resulting composite material. 

A number of novel materials (GO, TMDs, MXenes, MOFs, COFs, Liquid crystal 

polymers, vertically aligned CNTs or MXene) have shown promise as high selectivity 

membranes for desalination, water purification and resource recovery. In particular, 

materials that are prepared using the bottom-up approach demonstrate great versatility and 

tuneability necessary for removing the wide range of chemicals encountered in water and 

wastewater treatment. Nevertheless, the development of these novel membrane materials 

is still in its infancy and needs to transcend a number of challenges before practical 

application can be achieved. In particular, developing scalable fabrication methods to 

produce large, high quality, mechanically robust, and chemically stable water treatment 

membranes using these novel materials remains a critical research need. High selectivity 

membrane materials will play a major role in future water systems, where the vision of 

“one water” is realized by integrated water management with distributed, fit-for-purpose 

water treatment. In such integrated water management systems, high-rate, precise 

separation of chemicals from water is necessary not only for pollution control, but also for 

minimization of chemical and energy consumption, and for recycling and reuse of 

resources. 

Quantum chemical modeling is a powerful approach to developing new catalysts 

and chemical processes because it provides a fundamental description of atomistic systems 

and can accurately predict their properties ab initio. Electrochemical reactions are related 

to the events that occur in the electrochemical interface when an electric potential is applied 

and current passes. The applied electric potential may cause two different kinds of 
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processes: faradaic processes, the ones that involve charge transfers (redox reactions), and 

non-faradaic processes, such as adsorption or desorption. Both processes modify the 

electrochemical interface not only in its atomic structure but also in its electronic properties. 

Precise control of electrochemical processes, from energy conversion and storage to 

electrochemical wastewater treatment, corrosion, and electrodeposition, relies on 

understanding and manipulating the properties of the electrochemical interface. 

Computational design of new materials for these applications requires an accurate 

description of both chemical interactions from first-principles calculations and the effects 

of the electrochemical environment. For instance, the effects of pH value, ion solvation, 

electrolyte bonding, and potential at the solid-electrolyte interface must be considered 

when designing energy materials with increased operating voltage windows and energy 

storage capacity.  

Grand-canonical DFT (GC-DFT) provides a fundamentally correct description of 

electrified interfaces and a correct model of electrocatalysis when coupled with a 

sufficiently detailed solvent model of the solvent and electrolyte. GC-DFT calculates the 

grand free energy at an arbitrary potential by optimizing the grand free energy while self-

consistently solving for the number of electrons that matches the applied potential rather 

than calculating the electronic energy of the system with a fixed number of electrons. The 

grand free energy is defined as Φ = A−μN, where A, μ, and N are the Helmholtz free energy, 

chemical potential, and total number of electrons, respectively. GC-DFT enables accurate 

calculation of the electronic energy and adsorbate geometry and should thus provide a 

reliable prediction of the energetics of electrochemical reaction pathways. Furthermore, it 

enables the comparison of various possible reaction mechanisms at different applied 
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potentials. Combining computational and experimental methods is a powerful approach to 

understand the variables that govern catalyst performance and ultimately design improved 

materials. However, the effectiveness of this approach rests on the strength of the 

relationships between calculated parameters and experimental measurements. These 

relationships are complicated by the intricacy and dynamic behaviors of catalytic active 

sites, and by the non-trivial relationship between calculated reaction energetics and 

observed rates. As experimental and computational methods continue to become more 

powerful, clear connections between the two will maximize their utility to guide the design 

of efficient and selective electrocatalysts. 

In addition to water decontamination (organic pollutants, heavy metals, bacteria, 

virus) and fouling control (organic, inorganic and biofouling) through electrochemical 

oxidation, electrochemical reduction, electroadsorption and electrorepulsion, 

electrochemical membranes are also promising for environmental sensing and resource 

recovery. For example, incorporating electrochemical technique (CV, EIS, DPV) 

electrochemical membranes could provide superior sensitivity, flexibility, robustness, and 

selectivity as membrane-based electrochemical sensors. A variety of stimuli, including 

organic molecules, inorganic ions, and bacteria, could interact with the responsive sites on 

electrochemical membranes to enable on-site, real-time monitoring of pollutant removal, 

byproduct generation, fouling formation, and membrane wetting during filtration processes. 

Additionally, electrochemical membranes also provide opportunities to reclaim multiple 

valuable resources (such as, phosphorus recovery, nitrate reduction. H2O2 generation and 

heavy metals) from wastewaters by integrating electrochemical resource recovery methods 

into membrane processes. By transforming aqueous contaminants into nutrients or other 
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useful materials, rather than removing them and creating additional waste streams, 

electrochemical membranes for resource recovery could add economic value to the water 

treatment process. 

Finally, the success of these membrane materials for practical application not only 

depends electrode porosity, conductivity and stability (aging, corrosion and passivation), 

but also strongly on the availability, cost, safety, and environmental friendship of raw 

materials as well as that of the cost and scalability of the fabrication processes. Non-toxic, 

earth-abundant raw materials and environment-friendly synthesis methods should be used 

whenever possible to avoid health and environmental risks; secure immobilization of 

functional additives (e.g., engineered nanomaterials) is critical to not only product safety 

but also longevity.  Despite the fact that electrochemical membranes have shown to have a 

number of important benefits, there are still a number of obstacles in the way of their 

deployment. Overall, strategies for using electrochemical membranes in actual 

water/wastewater circumstances must be developed for practical applications. Further 

research should focus on reducing the occurrence of competing reactions and improving 

the selectivity and stability of electrocatalysts during long-term operation, especially in 

complicated water matrices, in order to produce sustainable and energy-efficient processes. 

Moreover, it's important to prevent the generation of harmful DBPs such oxyhalides and 

chlorinated organic compounds (like ClO4
−). It also is important to evaluate if 

electrochemical membranes are applicable to waters with relatively low salt contents when 

treating water for potable consumption or municipal wastewaters. The efficiency of EMs 

for pollutant removal should be 100% with high current efficiency and low energy 

consumption. Proper filtration operating mode plays an important role in prevent 
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membrane fouling, lowing operation and maintenance costs and minimizing the impacts of 

electrochemical side-reactions. To achieve membrane antifouling and appropriate water 

production, continual electrification of the membrane surface induces a potential-induced 

energy barrier to foulant attachment. However, the operation mode for continuous electro 

filtration uses a lot of energy. For practical applications, an intermittent application of 

voltage is more feasible. To prevent the membrane surface from developing an irreversible 

fouling layer, voltage must be applied when the water flux starts to fall. According to 

studies, irreversible organic foulants can be removed by short-term (1–10 min) in situ 

electrified membrane self-cleaning. A CNT-functionalized ceramic membrane obtained a 

nearly full water flux recovery under repeated fouling, backwashing, and self-cleaning 

cycles when combined with a quick backwashing process for eliminating reversible 

foulants.  In order to integrate electrochemical membrane modules with conventional 

membrane processes or applications for decentralized water treatment, the design of the 

modules needs to be enhanced.
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