

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

USING MATERIALIZED VIEWS FOR ANSWERING GRAPH
PATTERN QUERIES

by
Michael Lan

Discovering patterns in graphs by evaluating graph pattern queries involving direct

(edge-to-edge mapping) and reachability (edge-to-path mapping) relationships under

homomorphisms on data graphs has been extensively studied. Previous studies have

aimed to reduce the evaluation time of graph pattern queries due to the potentially

numerous matches on large data graphs.

In this work, the concept of the summary graph is developed to improve the

evaluation of tree pattern queries and graph pattern queries. The summary graph first

filters out candidate matches which violate certain reachability constraints, and then

finds local matches of query edges. This reduces redundancy in the representation of

the query results and allows for computation sharing during the generation of these

results. Methods using materialized graph pattern views are developed to improve

the efficiency of graph pattern query evaluation. A view is materialized as a summary

graph, which compactly records all the homomorphisms of the view to the data

graph. View usability is characterized in terms of query edge coverage to provide

necessary and sufficient conditions for answering queries using views, and algorithms

are developed for determining view usability and for summary graph construction.

Experimental evaluation shows that the methods using summary graphs

and its related concepts outperform previous state-of-the-art approaches. It also

demonstrates that the view materialization method outperforms, by several orders of

magnitude, a state-of-the-art approach which does not use materialized views, and

substantially improves upon its scalability.

USING MATERIALIZED VIEWS FOR ANSWERING GRAPH
PATTERN QUERIES

by
Michael Lan

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

December 2022

Copyright © 2022 by Michael Lan

ALL RIGHTS RESERVED

APPROVAL PAGE

USING MATERIALIZED VIEWS FOR ANSWERING GRAPH
PATTERN QUERIES

Michael Lan

Dr. Dimitri Theodoratos, Dissertation Advisor Date
Associate Professor, Department of Computer Science, NJIT

Dr. James Geller, Committee Member Date
Professor, Department of Computer Science, NJIT

Dr. Vincent Oria, Committee Member Date
Professor, Department of Computer Science, NJIT

Dr. Usman Roshan, Committee Member Date
Associate Professor, Department of Computer Science, NJIT

Dr. Yi Chen, Committee Member Date
Professor, Martin Tuchman School of Management, NJIT

BIOGRAPHICAL SKETCH

Author: Michael Lan

Degree: Doctor of Philosophy

Date: December 2022

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2022

• Master of Science in Statistics,
Rutgers University, New Brunswick, NJ, 2017

• Bachelors in Biomathematics,
Rutgers University, New Brunswick, NJ, 2015

Major: Computer Science

Presentations and Publications:

M. Lan, X. Wu, and D. Theodoratos, “Optimizing graph pattern queries using
materialized views,” Journal Paper In Preparation, 2022.

X. Wu, D. Theodoratos, N. Mamoulis, and M. Lan, “Evaluating hybrid graph pattern
queries using runtime index graphs,” Conference Paper Under Review, 2022.

X. Wu, D. Theodoratos, D. Skoutas, and M. Lan, “Efficient in-memory evaluation of
reachability graph pattern queries on data graphs,” International Conference
on Database Systems for Advanced Applications, pp. 55–71, 2022.

M. Lan, X. Wu, and D. Theodoratos, “Answering graph pattern queries using compact
materialized views,” International Workshop on Design, Optimization,
Languages and Analytical Processing of Big Data, pp. 51–60, 2022.

X. Wu, D. Theodoratos, D. Skoutas, and M. Lan, “Exploring citation networks with
hybrid tree pattern queries,” International Workshop on Assessing Impact and
Merit in Science, pp. 311–322, 2020.

X. Wu, D. Theodoratos, D. Skoutas, and M. Lan, “Leveraging double simulation to
efficiently evaluate hybrid patterns on data graphs,” International Conference
on Web Information Systems Engineering, pp. 255–269, 2020.

iv

X. Wu, D. Theodoratos, D. Skoutas, and M. Lan, “Evaluating mixed patterns on
large data graphs using bitmap views,” International Conference on Database
Systems for Advanced Applications, pp. 553–570, 2019.

X. Wu, D. Theodoratos, D. Skoutas, and M. Lan, “Efficiently computing
homomorphic matches of hybrid pattern queries on large graphs,”
International Conference on Data Warehousing and Knowledge Discovery, pp.
279–295, 2019.

v

As Above, So Below.

The Monad

vi

ACKNOWLEDGMENT

I would like to thank my advisor Dr. Dimitri Theodoratos for his continuous guidance

and support for this research.

I would like to thank Dr. James Geller, Dr. Vincent Oria, Dr. Usman Roshan,

and Dr. Yi Chen for taking time to serve in my committee.

I am appreciative of the Department of Computer Science at NJIT for years of

funding support, in particular to Dr. Baruch Schieber for additional funding support

in terms of a stipend.

Finally, I am thankful to Dr. Xiaoying Wu for providing technical support and

guidance for this research, and to collaborator Dr. Dimitrios Skoutas.

vii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Overview of Research . 3

1.3 Organization of the Dissertation . 4

2 LITERATURE REVIEW . 5

2.1 Isomorphic Mapping Algorithms . 5

2.2 Homomorphic Mapping Algorithms 6

2.3 Graph Simulation-Based Algorithms 8

2.4 Graph Pattern Query Evaluation Using Views 8

3 EVALUATION OF HYBRID TREE PATTERN QUERIES ON LARGE
DATA GRAPHS . 11

3.1 Preliminaries and Problem Definition 11

3.2 Query Answer Summarization, Counting and Enumeration 14

3.2.1 Query Answer Counting . 15

3.2.2 Query Answer Enumeration 18

3.3 Answer Graph Construction—A Bottom-up Approach 21

3.3.1 Main Algorithm . 21

3.3.2 Optimizing BUP . 25

3.4 Building the Answer Graph Using Graph Simulation 26

3.4.1 The Double Simulation Relation 27

3.4.2 The Simulation-Based Algorithm 34

3.5 Experimental Evaluation . 35

3.5.1 Experimental Setup . 35

3.5.2 Results on Query Counting . 39

3.5.3 Results on Query Answer Enumeration 43

viii

TABLE OF CONTENTS
(Continued)

Chapter Page

4 EVALUATING HYBRID GRAPH PATTERNQUERIES USING SUMMARY
GRAPHS . 54

4.1 Preliminaries and Problem Definition 54

4.2 A Lightweight Index as Compact Search Space 55

4.2.1 Summary Graph . 55

4.2.2 Refining a Summary Graph using Double Simulation 58

4.2.3 A Basic Algorithm for Computing Double Simulation 60

4.2.4 Efficiently Computing Double Simulation by Exploiting the
Pattern Structure . 62

4.2.5 Efficiently Building the Refined Summary Graph 65

4.3 A Multiway Intersection-based Enumeration Algorithm 67

4.4 Experimental Evaluation . 71

4.4.1 Experimental Setting . 71

4.4.2 Time Performance . 74

4.4.3 Scalability . 75

4.4.4 Effectiveness of New Framework 77

4.4.5 Comparison to Systems and Engines 81

5 ANSWERINGGRAPH PATTERNQUERIES USING COMPACTMATERIALIZED
VIEWS . 85

5.1 Preliminaries and Problem Definition 85

5.2 Materialized View Usability . 87

5.3 Algorithms . 91

5.4 Experimental Evaluation . 97

5.4.1 Experimental Setting . 97

5.4.2 Benefit of Using Materialized Views 101

5.4.3 Data Graph Size Scalability 101

5.4.4 Performances on View and Query Variations 102

ix

TABLE OF CONTENTS
(Continued)

Chapter Page

6 OPTIMIZING GRAPH PATTERN QUERIES WITH MATERIALIZED
VIEWS . 106

6.1 Preliminaries and Problem Definition 106

6.2 Algorithms . 110

6.3 Experimental Evaluation . 113

6.3.1 Benefit of Using Materialized Views 115

6.3.2 Scalability of Query Coverage using Views 115

6.3.3 Data Graph Size Scalability 117

6.3.4 Data Graph Label Scalability 118

7 CONCLUSION . 121

REFERENCES . 124

x

LIST OF TABLES

Table Page

3.1 Forward (F), Backward (B), and Double (FB) Simulation of the Query
Q on the Graph G of Figure 3.1 . 28

3.2 Key Statistics of the Real-World Graph Datasets 37

3.3 Parameters for Query Generation . 38

3.4 Runtime (sec) of SIM-TD and Neo4j Evaluating Different Types of
Queries on the Email Graph . 53

4.1 Forward (F), Backward (B), and Double (FB) Simulation of the Query
Q on the Graph G of Figure 4.1. 59

4.2 Key Statistics of the Graph Datasets Used 73

4.3 Effectiveness of Search Ordering Methods. 81

4.4 Runtime (sec) of Neo4j and GM for Hybrid Pattern Queries on a Fragment
of em Graph with 30K Nodes . 84

5.1 Key Statistics of the Graph Datasets Used 99

6.1 Key Statistics of the Graph Datasets Used 113

xi

LIST OF FIGURES

Figure Page

1.1 A query pattern for fraud detection over a financial graph database. . . 2

3.1 A data graph G and its inverted lists, a query Q and its answer on G,
and the occurrence sets of Q’s nodes. 14

3.2 The answer graph of Q on G (Figure 3.1) and the corresponding result
graph. 15

3.3 Snapshots of the answer graph during its construction using BUP on the
query Q and data graph G of Figure 3.1. 24

3.4 Hybrid pattern templates used for evaluation. 38

3.5 Performance comparison on Citation. 41

3.6 Performance comparison on Citeseerx. 42

3.7 Performance comparison on the randomly generated graphs. 42

3.8 Evaluating different types of queries on Email and Epinions. 44

3.9 Size and construction time of (candidate) answer graphs by different
algorithms on Email and Epinions. 46

3.10 Comparison of pruning techniques SIM and FLT on Email and Epinions. 48

3.11 Percentage of elapsed time of matching and enumeration over total time
evaluating hybrid queries on Email and Epinions. 50

4.1 A hybrid graph pattern query Q, a data graph G, a homomorphism from
Q to G, the answer of Q on G, and two summary graphs of Q on G. . 55

4.2 Node pruning of FBSimBas and FBSimDag for the query Q of Figure
4.1(a) on the graph G2. 62

4.3 Categorized graph pattern queries. 73

4.4 Performance comparison of GM with TM and JM using the categorized
graph pattern queries. 76

4.5 Performance comparison of GM with TM and JM using larger graph
pattern queries. 76

4.6 Elapsed time of queries on em when increasing the number of labels. . . 76

4.7 Elapsed time on increasingly larger subsets of dp. 77

xii

LIST OF FIGURES
(Continued)

Figure Page

4.8 Simulation relation building time on em. 78

4.9 Summary graph size and query time breakdown on ep. 79

4.10 Performance comparison of GM with RM for large queries on the
undirected Human data graph. 82

5.1 An example of graph homomorphism, an answer, and a summary graph 87

5.2 An example of view coverage and view materializations 87

5.3 Graph pattern query templates used in the evaluation. 99

5.4 Elapsed time of FltSim and MatView for various queries on a bs data
graph with 350K nodes and five labels. 101

5.5 Elapsed time of FltSim and MatView for various queries on dblp data
graph with 250K nodes and 20 labels. 102

5.6 Elapsed time of FltSim and MatView on increasingly larger number of
data subsets of the bs data subset with five labels. 103

5.7 Elapsed time of FltSim and MatView on increasingly larger number of
data subsets of the dblp data subset with 20 labels. 103

5.8 Elapsed time of MatView on queries run with varying covavg(Q,V) (top
label in x-axis) and a different number of covering views (bottom label
in x-axis) on a bs data set with 20 labels and 350K nodes. 104

5.9 Elapsed time of MatView using 2-edge views and 3-edge views for various
queries on a bs data subset with 20 labels and 350K nodes. 105

5.10 Elapsed time of FltSim and MatView on queries with a different edges on
a bs data subset with 20 labels and 350K nodes. 105

6.1 (a) A data graph G, (b) A graph pattern query Q and a homomorphism
from Q to G, (c) The answer of Q on G, (d) A summary graph GQ of
Q on G. 108

6.2 (a) A graph pattern query Q, (b) Views V1, V2, V3, and a homomorphism
from V1 to Q, (c) Summary graphs GV1 of V1 and GV2 of V2 on data
graph G of Figure 6.1(a). 109

6.3 (a) The intersection of summary graphs GV1 and GV2 , (b) Merging the
match sets of the uncovered query nodes and edges with Figure 6.3(a),
(c) The summary graph GQ obtained after pruning Figure 6.3(b). . . 109

6.4 Graph pattern queries used in the evaluation. 115

xiii

LIST OF FIGURES
(Continued)

Figure Page

6.5 Elapsed time of FltSim and MatView for various queries on a bs data
graph with 450K nodes and 20 labels. 116

6.6 Elapsed time of FltSim and MatView for various queries on a dblp data
graph with 300K nodes and 20 labels. 116

6.7 Elapsed time of FltSim and MatView on query and view sets, each view
with 2E edges, that increasingly cover more edges of the query. Run
on the bs data graph subset with 350K nodes and 20 labels 116

6.8 Elapsed time of FltSim and MatView on query and view sets, each view
with 2E edges, that increasingly cover more edges of the query. Run
on the dblp data graph subset with 250K nodes and 20 labels 117

6.9 Elapsed time of FltSim and MatView on increasingly larger number of
data subsets of the bs data subset with 20 labels. 117

6.10 Elapsed time of FltSim and MatView on increasingly larger number of
data subsets of the dblp data subset with 20 labels. 118

6.11 Elapsed time of FltSim and MatView on increasingly fewer number of
labels of the bs data subset with 350K nodes. 119

6.12 Elapsed time of FltSim and MatView on increasingly fewer number of
labels of the dblp data subset with 200K nodes. 119

xiv

CHAPTER 1

INTRODUCTION

1.1 Motivation

Graphs model complex relationships between entities in a multitude of modern

applications. A fundamental operation for querying, exploring and analyzing graphs

is graph pattern matching, which consists of finding the matches of a query graph

pattern in the data graph. Graph pattern matching is crucial in many application

domains, such as social network analysis [1, 2], protein interaction analysis [3], and

cheminformatics [4].

Existing approaches are characterized by: (a) the type of edges the query

patterns have, and (b) the type of morphism used to map the query pattern to

the data graph. An edge in a query pattern can be either a direct edge, which

represents a parent-child relationship in the data graph (edge-to-edge mapping)

[5, 6, 7, 8, 9, 10, 11, 12, 13], or a reachability edge, which represents a node reachability

relationship in the data graph (edge-to-path mapping) [14, 15, 16]. The morphism

determines how a pattern is mapped to the data graph and, in this context, it can

be an isomorphism (an injective mapping) or a homomorphism (a mapping more

general than an isomorphism). Earlier contributions considered isomorphisms and

edge-to-edge mappings, while more recent ones also focus on homomorphic mappings.

By allowing edge-to-path mapping on graphs, patterns with reachability edges

are able to extract matches “hidden” deeply within large graphs which might be

missed by patterns with only direct edges. On the other hand, the patterns with

direct edges can discover important parent-child relationships in the data graph which

can be missed by patterns with only reachability edges. In our work, we employ a

1

general framework that considers patterns which allow both direct and reachability

edges. This framework incorporates the benefits from both types of edges.

To demonstrate an example of the applicability of using reachability edges in

graph pattern queries, consider a large financial graph database which consists of

customers, companies, money transfers, relationships between individuals, and more.

There are different ways to characterize companies, such as by their trustworthiness.

A shell company is a company that may serve as a vehicle for business transactions

without itself having any significant assets or operations. Money laundering often uses

multiple transfers between shell companies and individuals to hide the origin of their

funds. Figure 1.1 shows a pattern query which can be used for fraud detection over

this financial graph database. The single-lined arrows in the query pattern (direct

edges) represent edges in the data graph, while the double-lined arrows in the query

pattern (reachability edges) represent paths in the data graph.

Figure 1.1 A query pattern for fraud detection over a financial graph database.

Graph pattern matching is an NP-hard problem, even for isomorphic matching

of patterns with only direct edges [17]. Finding the homomorphic matches of query

patterns which involve reachability edges on a data graph is more challenging.

Reachability edges in a query pattern increase the number of results since they are

offered more chances to be matched to the data graph compared to direct edges, and

finding matches of reachability edges to the data graph is an expensive operation

which requires the use of a node readability index [18, 19, 20]. Furthermore, most

of the algorithms that allow edge-to-path mapping for graphs [21, 22, 15, 23, 16] are

2

tied to a specific reachability index, thus being unable to utilize recent, more efficient,

reachability indexing schemes like [20, 24, 25]. Despite the use of reachability indexes,

evaluating reachability edges remains a costly operation. Existing approaches for

evaluating pattern queries with reachability relationships produce a huge number of

intermediate results (that is, results for subgraphs of the query graph which do not

appear in any result for the query). As a consequence, existing approaches do not

scale satisfactorily when the size of the data graph increases. Thus, the objective of

this dissertation is to improve upon existing methods for evaluating pattern queries

with reachability relationships.

1.2 Overview of Research

In this dissertation, we develop the following approaches to improve upon the field of

graph pattern matching:

• We aim to speed up the computation of homomorphic matches of hybrid tree
patterns on large graphs. This task lies at the core of graph pattern matching
techniques since a common approach followed by many graph pattern matching
methods [26, 27, 28, 29, 30, 31, 7, 13] is to first decompose or transform the
given graph pattern into one or more tree patterns using various methods, and
then use them as the basis for processing.

• We address the problem of evaluating graph pattern queries with reachability
edges (edge-to-path mapping) using homomorphisms over a data graph. This is
a general setting for graph pattern matching. We develop a new graph pattern
matching framework, which consists of two phases: (a) the summarization
phase, where a query dependent summary graph is built on-the-fly, serving
as a compact search space for the given query, and (b) the enumeration phase,
where query solutions are produced using the summary graph.

• We adopt a novel approach for materializing graph pattern views over data
graphs and for evaluating graph pattern queries that have all their edges
covered by views. A view materialization is a graph, in particular the view’s
summary graph, which is a compact representations of the view’s homomorphic
match results. A summary graph constitutes a search space for the view’s
homomorphic match results, and the view results can be enumerated by
applying multiway joins while traversing the graph.

3

• We extend our materialized views approach to cases of graph pattern queries
partially covered using views. We define node coverage and weakly usable views
to consider views which may help speed up graph pattern query evaluation time,
but do not have to cover graph pattern query edges. These views can be used
for optimizing the evaluation of graph pattern queries.

Originality and Significance. This dissertation introduces novel approaches to

improve the performance times of graph pattern matching. These approaches involve

compactly summarizing enumeration results as a summary graph representation, and

materializing graph pattern views over data graphs, both which can significantly

speed up the computation of query matches to the data graph.

1.3 Organization of the Dissertation

We will begin by conducting a literature review, introducing important terminology

and theory. Here, we will discuss key concepts and issues in graph pattern matching

that are necessary to understand our modeling, along with current approaches for

addressing those issues. Next, we present our work by starting with our novel

approach to using compact summary graphs for tree pattern matching and graph

pattern matching. We build upon previous results to design algorithms for answering

graph pattern queries using exclusively materialized views. These results are extended

to provide algorithms for optimizing graph pattern queries using materialized views.

In each chapter, we present an experimental evaluation and we analyze the results of

our methods. Finally, we will conclude and discuss future work.

4

CHAPTER 2

LITERATURE REVIEW

We review related work on graph pattern query evaluation algorithms. Our discussion

focuses on in-memory algorithms that find all occurrences of a graph pattern in a

single large data graph. We categorize the related work by the type of morphism used

to map the patterns to the data structure. The morphism determines how a pattern

is mapped to the data graph: a homomorphism is a function from pattern nodes to

data graph nodes, while an isomorphism is a one-to-one function from pattern nodes

to data graph nodes.

2.1 Isomorphic Mapping Algorithms

A recent survey [9] studied the performance of representative in-memory isomorphic

mapping algorithms [32, 33, 34, 35, 30, 7, 31]. It compared their methods for node

filtering, matching order, result enumeration and algorithm optimization. Several

recent algorithms [29, 30, 31, 7] first generated a breadth-first-search tree of the query,

and used the tree as the processing unit for building an auxiliary data structure (ADS)

to maintain edge sets between candidate nodes. Then, they used this ADS to generate

a good matching order. Finally, they enumerated query results with the assistance of

the ADS along with the matching order. The majority of algorithms for isomorphic

mapping adopted a backtracking method to enumerate the query answer [5]. This

method recursively extended partial matches by mapping query nodes to data graph

nodes. Many optimization techniques designed for isomorphic mapping algorithms

do not apply to homomorphisms since they focused on reducing the search space for

the case of injective functions and edge-to-edge mapping.

5

2.2 Homomorphic Mapping Algorithms

Homomorphisms for mapping graph patterns similar to those considered in this paper

were introduced in [14] (called p-hom), which did not address the problem of efficiently

computing graph pattern matches; instead, the paper used the notion of p-hom to

resolve a graph similarity problem between two graphs.

Existing homomorphic graph pattern matching algorithms mainly employed the

edge-join approach (EJ). Given a graph pattern query Q, EJ first computes binary

relations corresponding to the edges of the query by matching the edges against the

data graph. The query is then evaluated by joining together these individual matches.

Homomorphic mapping algorithms such as R-Join [15] and database management

systems such as PostgreSQL, MonetDB and Neo4j use the edge-join approach. The

more recent approaches including EmptyHeaded [13] and Graphflow [8, 11] roughly

fall in this category.

The algorithm R-Join was proposed by Cheng et al. [15]. An important

challenge for join-based algorithms is finding a good join order. To optimize the join

order, R-Join used dynamic programming to exhaustively enumerate left-deep tree

query plans. Due to the large number of potential query plans, R-Join was efficient

only for small queries that had less than 10 nodes. As was typical with join-based

algorithms (algorithms that join smaller matches together to compute matches),

R-Join suffered from the problem of computing a large number of intermediate results.

As a consequence, its performance degraded rapidly when the graph became larger

[16]. R-Join was adopted as the underlying pattern matching method in D-join [36]

for evaluating graph patterns whose edges carried the same connectivity constraint

(a constraint that bounds the number of nodes in the image’s data paths).

The EmptyHeaded system [13] decomposed the input query into a tree of

subqueries, computed each subquery using a multiway join algorithm, and combined

subquery occurrences using Yannakakis’ algorithm [37]. Graphflow [8, 11] was a more

6

recent join-based homomorphic mapping algorithm. Like EmptyHeaded, Graphflow

pruned relations based on labels. But unlike EmptyHeaded, which picked a join order

using a simple heuristic, Graphflow designed a cost model to pick an optimal join

plan. Both EmptyHeaded and Graphflow considered only edge-to-edge homomorphic

mappings.

Another well known approach for evaluating tree-pattern queries over data

graphs is the path-join approach (PJ) [22, 26, 29, 30]. Unlike EJ, PJ first generates

occurrences to each root-to-leaf path of the tree pattern, and then generates the

final answer by merge-joining the path occurrences. A typical representative of a PJ

approach is TwigStackD [38, 22], a tree-based pattern matching algorithm on directed

acyclic graphs (dags). TwigStackD used stacks for identifying candidate nodes and

stored (partial) solutions in array-like data structures. Specifically, it traversed the

tree pattern QT in a top-down manner, and put a data node v to the stack of the

corresponding query node q if v was in a solution of the subtree rooted at q in QT . It

generateed the final answer by merge-joining the path occurrences of the root-to leaf

paths of QT . Like edge-join algorithms, TwigStackD may produce a large number

of unnecessary intermediate results. Similar to TwigStackD, the evaluation process

of the isomorphic graph matching algorithms [29, 30] also involved enumerating and

merge-joining occurrences of query paths of a spanning tree of the input graph query.

Zeng et al. [23, 16] proposed a proprietary graph matching method called TPQ-

3Hop. The matching process was tightly coupled with a specific reachability indexing

scheme to support reachability edge-only tree patterns. However, this approach could

not be effectively applied to hybrid pattern query evaluation.

A graph pattern matching algorithm called DagStackD was developed in [22].

DagStackD implemented a tree-based approach. Given a graph pattern query Q,

DagStackD first found a spanning tree QT of Q, then evaluated QT , filtering out

tuples that violated the reachability relationships specified by the edges of Q missing

7

in QT . To evaluate QT , a tree pattern evaluation algorithm was presented. This

algorithm decomposed the tree query into a set of root-to-leaf paths, evaluated each

query path, and merge-joined their results to generate the tree-pattern query answer.

2.3 Graph Simulation-Based Algorithms

Simulation-based pruning was proposed recently as a powerful node pruning technique

in graph matching [39, 40]. It used subgraph simulation or some variants to filter

unnecessary tuples before answering queries. A number of approaches used graph

simulation-based semantics to match the graph pattern queries against the data graph

[41, 42, 43]. Unlike morphism-based graph pattern matching, which is NP-complete,

graph simulation-based graph pattern matching algorithms could be performed in

cubic-time. However, simulation and its extensions [41, 42] could not preserve the

structural properties of the graph pattern. One consequence of this was that they

they may have returned an excessive number of undesirable matches. To address this

issue, [44] leveraged simulation to compute the query answer without producing any

redundant intermediate results.

2.4 Graph Pattern Query Evaluation Using Views

Answering queries using materialized views is a well known technique for improving

the performance of query evaluation and for evaluating queries without accessing the

base data, in particular in a distributed environment [45, 46, 47, 48, 49]. The idea

is to pre-compute and store the matches of views and to rewrite an incoming query

using exclusively the view materializations, if the query language is closed [45], or to

otherwise provide a process for computing the query’s match results from the view

materializations [46].

Using materialized views for answering queries has been extensively studied for

relational data and tree data [50, 51, 52, 47, 53]. Due to the importance of graph

8

pattern matching in many application domains and the need to improve pattern

matching time on large graph data, there have recently been quite a few contributions

[54, 48, 55, 56, 57, 49] addressing the problem of answering graph pattern queries using

views.

Fan et al. [48] investigated this problem for graph pattern queries based on

graph simulation and studied its complexity. Under this setting, they characterized

graph pattern matching using graph pattern views based on pattern containment, and

provided algorithms for answering graph pattern queries using a set of materialized

views. This work was extended to address answering graph queries using views

in terms of subgraph isomorphism [56]. Another extension [55] studied the

approximation of graph pattern queries using views based on both graph simulation

and subgraph isomorphism.

More recently, Trindade et al. [49] presented a graph query optimization

framework called Kaskade which materialized graph views to enable efficient query

evaluation. Kaskade considered two types of views: path views which matched to

a path of data nodes with bounded length, and relational counterparts which were

filters and aggregates. Kaskade only supported query rewriting/answering using a

single view. Unlike previous work, it focused on leveraging structural properties of

graphs and queries to enumerate views and to select the best views to materialize

based on a budget constraint.

To speed up graph query processing, Wang et al. [54] proposed to acquire and

utilize knowledge from the results of previously executed queries, which are essentially

materialized views. Views considered for answering a new query were subgraphs or

supergraphs of the query. Unlike previous approaches, this approach considered the

framework of a collection of small data graphs and aimed at minimizing the number of

isomorphism tests that needed to be performed to find the data graphs that contained

the query pattern.

9

Wu et al. [57] studied the problem of using materialized views for homomorphic

pattern matching on data graphs, but considered only tree-pattern queries. Le et al.

[58] studied the problems of rewritting SPARQL queries using views, but did not

consider materializing these views.

The problem we address in this dissertation is different than those addressed by

existing graph view approaches. We consider general graph patterns and not simply

paths or trees. Our patterns contain direct and reachability edges, allowing for both

edge-to-edge and edge-to-path matches to the data graph. Patterns are mapped

to the data graph using homomorphisms which relax the strict one-to-one mapping

entailed by isomorphisms and, unlike graph simulation, preserve the topology of the

data graph.

10

CHAPTER 3

EVALUATION OF HYBRID TREE PATTERN QUERIES ON LARGE
DATA GRAPHS

We begin by discussing our work on evaluating tree pattern queries on large data

graphs. The techniques we apply to studying tree pattern queries will later be

extended to graph pattern queries in Chapter 4. The concepts and algorithms

introduced in this chapter lay a foundation to understand the methods discussed

in later chapters of this dissertation.

3.1 Preliminaries and Problem Definition

Given a labeled data graph G and a tree pattern query Q, our goal is to efficiently find

the matches of Q on G. We begin by introducing definitions for pattern matching.

We describe the data model, which is in the form of a data graph. Next, we discuss

edge-to-path mappings, which is necessary to describe the concept of reachability

edges in graph pattern queries.

Definition 3.1.1 (Data Graph). A data graph is a directed node-labeled graph G =

(V,E) where V denotes the set of nodes and E denotes the set of edges (ordered

pairs of nodes). Let L be a finite set of node labels. Each node v in V has a label

label(v) ∈ L associated with it.

For each label l ∈ L, the inverted list Ia contains the nodes in G with label a.

Definition 3.1.2 (Node reachability). A node u is said to reach node v in G, denoted

by u ≺ v, if there exists a path from u to v in G. Clearly, if (u, v) ∈ E, then u ≺ v.

Abusing tree notation, we refer to v as a child of u (or u as a parent of v) if (u, v)

∈ E, and v as a descendant of u (or u is an ancestor of v) if u ≺ v.

11

Given two nodes u and v in G, in order to efficiently check whether u ≺ v, graph

pattern matching algorithms use a reachability indexing scheme. In most reachability

indexing schemes, the data graph node labels are the entries in the index for the

data graph [20]. Our approach can flexibly use any labeling scheme to check node

reachability. In order to check if v is a child of u, the adjacency lists of the graph G

can be used.

Queries. We consider tree pattern queries that involve direct and/or reachability

edges.

Definition 3.1.3 (Hybrid Tree Pattern Query). A hybrid tree pattern query is a tree

Q = (VQ, EQ), where VQ is the set of nodes of Q and EQ = Ec
Q∪Ed

Q is the set of edges

of Q. Every node x ∈ VQ has a label label(x) ∈ L. There can be two types of edges

in EQ. A direct edge ec ∈ Ec
Q denotes a child relationship between the respective two

nodes, whereas a reachability edge ed ∈ Ed
Q denotes a descendant relationship.

Intuitively, a direct edge represents an edge in the data graph G. A reachability

edge represents a path of edges inG. Figure 5.1(b) shows a queryQ. Single line arrows

denote direct edges while double line arrows denote reachability edges. Direct edges

can also be called child edges, and reachability edges can also be called descendant

edges.

Homomorphisms. Queries are matched to the data graph using an extension

of homomorphism called ep-homomorphism (for edge-to-path homomorphism). In

this dissertation, we use the terms of homomorphism and ep-homomorphism inter-

changeably, as we do not refer to any other type of homomorphism other than

ep-homomorphism.

Definition 3.1.4 (Pattern Homomorphism). Given a hybrid tree pattern query Q

and a labeled data graph G, a homomorphism from Q to G is a function m mapping

the nodes of Q to nodes of G, such that: (1) for each node x ∈ VQ, label(x) =

12

label(m(x)); (2) for any edge (x, y) ∈ Ec
Q, (m(x),m(y)) is an edge of G; (3) for any

edge (x, y) ∈ Ed
Q, m(x) ≺ m(y) in G.

Clearly, a reachability edge in the query can be mapped by a homomorphism

to a direct edge in the data graph.

Definition 3.1.5 (Pattern Occurrence). An occurrence of a pattern query Q on a

data graph G is a tuple indexed by the nodes of Q whose values are the images of

the nodes in Q under a homomorphism from Q to G.

Definition 3.1.6 (Query Answer). The answer of Q on G, denoted as Q(G), is a

relation whose schema is the set of nodes of Q, and whose instance is the set of

occurrences of Q under all possible homomorphisms from Q to G.

If x is a node in Q labeled by a, the occurrence set of x on G is a subset Sx of

the inverted list Ia containing only those nodes that occur in the answer of Q on G

for x (that is, nodes that occur in the column x of the answer). The elements of Sx

are called occurrences of x on G.

Let (qi, qj) be a query edge in Q, and vi and vj be two nodes in G, such that

label(qi) = label(vi) and label(qj) = label(vj). The pair (vi, vj) is called a match of the

query edge (qi, qj) if: (a) (qi, qj) is a direct edge in Q and (vi, vj) is an edge in G, or

(b) (qi, qj) is a reachability edge in Q and vi ≺ vj in G. The pair (vi, vj) is called an

occurrence of the query edge (qi, qj) if there is a homomorphism from Q to G which

maps qi to vi and qj to vj.

13

a1

b1

d1

c1

d2

a2 a4

a3

a5

b2

c2 d3 d4

d5

b3

c3

A1

A2

B

C D

 A1 A2 B C D

 a2 a3 b2 c2 d3

 a2 a3 b2 c2 d4

 a2 a3 b2 c2 d5

 a2 a5 b2 c2 d3

 a4 a5 b2 c2 d3

 a5 a3 b2 c2 d5

(c) Query Q

(a) Data graph G

 (d) Answer of

 Q on G

d6

Ia ={a1,a2,a3,a4,a5}

Ib ={b1,b2,b3}

Ic ={c1,c2,c3}

Id ={d1,d2,d3,d4,d5,d6}

(b) Inverted lists of G

SA1 ={a2,a4,a5}

SA2 ={a3,a5}

SB ={b2}

SC ={c2}

SD ={d3,d4,d5}

(e) Occurrence sets

 of Q on G

Figure 3.1 A data graph G and its inverted lists, a query Q and its answer on G,
and the occurrence sets of Q’s nodes.

3.2 Query Answer Summarization, Counting and Enumeration

In this section, we propose the concept of the answer graph to compactly and losslessly

encode all possible homomorphisms of a query in a graph. We also provide algorithms

for counting and enumerating query results. Answer graph construction algorithms

are presented in Sections 3.3 and 3.4.

Definition 3.2.1 (Answer Graph). The answer graph GA of a pattern query Q on

a data graph G is a k-partite graph where k is the number of nodes in Q. Graph GA

has k disjoint sets of data graph nodes, one for every node q ∈ VQ. The node set for

node q in GA is the occurrence set Sq of q. Moreover, there is an edge (vx, vy) in GA

between a node vx ∈ Sx and a node vy ∈ Sy if and only if there is an edge (x, y) ∈ EQ

and (vx, vy) is an occurrence of (x, y) in G (i.e., there is a homomorphism from Q to

G which maps x to vx and y to vy).

The answer graph reduces redundancy in the representation of the query results

and allows for computation sharing during the generation of these results. The

concept has analogies to the factorized representation of query results studied in

the context of relational databases and probabilistic databases [59].

A different way of compacting graph pattern query results uses a concept called

the result graph [41]. Unlike the answer graph, which is a k-partite graph that

14

a2 a4

a3

a5

b2

c2 d3 d4

d5

(a) Answer graph GA (b) Result graph

a2 a4 a5

a3 a5

d3 d4 d5c2

b2

SA1:

SA2:

SB:

SC: SD:

A1

A2

B

C D

 A1 A2 B C D

 a2 a3 b2 c2 d3

 a2 a3 b2 c2 d4

 a2 a3 b2 c2 d5

 a2 a5 b2 c2 d3

 a4 a5 b2 c2 d3

 a5 a3 b2 c2 d5

 (c) Answer tuples

Figure 3.2 The answer graph of Q on G (Figure 3.1) and the corresponding result
graph.

encodes query homomorphisms, a result graph is a subgraph of the data graph which

represents pattern matchings defined in terms of (an extension of) graph simulation

[39]. As such, it is not capable of compactly encoding homomorphic matches.

Variations of the result graph data were used in [29, 30, 31, 7]. These variants of

result graphs are different than answer graphs as: (a) they serve as a search space

for subgraph isomorphisms, (b) they are designed for undirected graphs, and (c) they

are built for a subgraph of the original query graph, and thus may contain redundant

nodes.

Figure 3.2(a) shows the answer graph GA of query pattern Q on the data graph

G of Figure 3.1. As a comparison, Figure 3.2(b) shows the result graph of Q on

G as defined in [41]. Clearly, the answer graph representation of a query answer is

much more compact than the relational representation of the query answer. As an

example, the query answer in Figure 3.2(c) (repeated here from Figure 3.1(d)) has 75

data graph node labels (15 five-label tuples), while the corresponding answer graph

in Figure 3.2(a) only has 10 node labels.

3.2.1 Query Answer Counting

Given the answer graph GA of Q on G, we can calculate the total number of solutions

of Q on G from GA without explicitly enumerating the tuples. Algorithm 1 describes

15

the method. Its core procedure, called count, calculates the number of occurrences

of the subquery of Q rooted at q ∈ VQ when q is matched to nq ∈ Sq (Sq is the

independent node set of GA for q). In particular, when q is a leaf node, count

returns one. For other query nodes q, Procedure count exploits dynamic programming

techniques to obtain the result based on the results of the children of q and nq (Lines

2-5).

Algorithm 1: Query counting using a query answer graph.
Input : Query pattern Q, and answer graph GA of Q on data graph G.
Output: The number of solutions of Q on G.

1 cnt := 0 ;
2 q := root(Q) ;
3 for (nq ∈ Sq) do
4 cnt := cnt + count(q, nq) ;
5 end
6 return cnt

7 Procedure count(q, nq):
8 c := 1 ;
9 for (qi ∈ children(q)) do

10 ci := 0 ;
11 for (every nqi ∈ Sqi that is a child of nq in GA) do
12 ci := ci + count(qi, nqi) ;
13 end
14 c := c ∗ ci ;
15 end
16 return c;

As an example, in Figure 3.2(a), count returns 1 for the nodes in the occurrence

sets {c2} and {d3, d4, d5} of the query nodes C and D, respectively, since these two

query nodes are leaves in Q. The occurrence set of B is {b2}. Therefore, count returns

3, on B and b2 as the occurrence sets of the children C and D of B have 1 and 3

nodes, respectively. On A2, count returns 3 for both a3 and a5. Finally, count returns

6, 6, and 3 on the nodes a2, a4 and a5 in the occurrence set of A1. Hence, the total

number of solutions of Q is 15.

16

Algorithm 2: DP: A dynamic programming method for tuple
enumeration from a query answer graph.

Input : Pattern query Q, and answer graph GA of Q on data graph G.
Output: The answer of Q on G.

1 OC := ∅ ;
2 q := root(Q) ;
3 for (nq ∈ Sq) do
4 OC := OC ∪ enumerate-D(q, nq) ;
5 end
6 return OC ;

7 Procedure enumerate-D(q, nq):
8 if (q is a leaf node of Q) then
9 return {nq} ;

10 end
11 OC := ∅ ;
12 for (qi ∈ children(q)) do
13 OCi := ∅ ;
14 for (every nqi ∈ Sqi which is a child of nq in GA) do
15 OCi := OCi ∪ enumerate-D(qi, nqi) ;
16 end
17 OC := OC ×OCi ;
18 end
19 OC := {nq} ×OC ;
20 return OC ;

17

3.2.2 Query Answer Enumeration

Given query pattern Q and its answer graph GA, we present two different algorithms

for enumerating result tuples of Q from GA. The first one leverages dynamic

programming techniques to avoid redundant computations, while the second one

focuses on minimizing memory consumption.

A Dynamic Programming Method (DP). Let q be a node of Q and Qq be

the subquery of Q rooted at q. The first algorithm (Algorithm 2) generates the query

answer by dynamic programming. For each q ∈ VQ, it invokes procedure enumerate-D

to generate the result tuples (the answer) of Qq. When q is a leaf node, the answer

of Qq is a single-column relation containing the data nodes in the occurrence set Sq.

When q is an internal node of Q, enumerate-D is recursively called on every child

node of q and then computes the Cartesian product of the relations returned. The

answer of query pattern Q is the union of the results obtained for the nodes in the

occurrence set of the query root.

Similar to Algorithm 1, we can speed up the computation by caching expressions,

the memoization technique. Consider, for instance, the example of Figure 3.1. We

can store the answer for the subpattern rooted at node B when it is first generated

while traversing the data graph G from a3 in SA2 and refer to it using a pointer when

every subsequent node in SA2 is considered. When generating the query answer, a

check is performed to examine whether the answer of the subpattern we are about to

compute has already been computed. If this is the case, a reference to it in the cache

is returned. If not, the answer to the subpattern is computed and saved in the cache.

Through subquery answer caching, Algorithm 2 avoids repeatedly generating

intermediate results. It has worst-case complexity linear in the sum of input and

output sizes but independent of the size of intermediate results. Therefore, it is

optimal among all sequential enumeration algorithms that read the entire input (i.e.,

GA). This contrasts with many existing join-based graph pattern evaluation methods

18

[60, 15, 36, 61, 8]. These methods evaluate the given query by executing a sequence

of binary joins, which may generate more redundant intermediate results than the

actual query results.

Nevertheless, Algorithm 2 expands subquery occurrences aggressively and must

maintain results generated for each subquery. As a result, its memory consumption

can be very high for dense queries, i.e., queries having a large number of occurrences.

A Top-Down Method (TD). We now present another enumeration method

(Algorithm 3) which has small memory footprints. It is a top-down method which

recursively extends the prefix of a query occurrence by mapping the next query node

to a data graph node. More concretely, the algorithm first picks a topological order

q1, . . . , qn for the query nodes. Then, it calls procedure enumerate-T, which performs

an iterative search on the query node occurrences sets according to the selected query

node order to construct occurrences for the query.

Let qi be the current query node under consideration, and Si be the independent

node set of qi in the answer graph GA (which is the occurrence set of qi). Let also t be

a tuple of length n, where t[1], . . . , t[i− 1] contains an occurrence of the subquery of

Q defined by the query nodes q1, . . . , qi−1. Procedure enumerate-T identifies a subset

S ′
i of Si which is computed as follows: If i = 1, qi is the root of Q and S ′

i is just

Si. When i > 1, S ′
i is computed by intersecting Si with adjacency-list(t[j]), where

j ∈ [1, i − 1] is the index of the parent, qj, of qi in the topological query node order

and adjacency-list is a function that returns the forward adjacency list of a given node

in GA (lines 4-6).

Next, enumerate-T iterates over the occurrences of qi in S ′
i (line 7). In every

iteration, it assigns the occurrence at hand to t[i] (line 8) and then proceeds to the

next recursive step (line 9). When i = n+1, tuple t contains one occurrence of query

Q which is outputted as a result tuple of Q (line 2).

19

Algorithm 3: TD: A top-down method for tuple enumeration from a
query answer graph

Input : Pattern query Q, and answer graph GA of Q on data graph G.
Output: The answer of Q on G.

1 Pick a topological order q1, . . . , qn for the nodes of Q, where n = |VQ| ;
2 Let t be a tuple where t[i] is initialized to be null, i ∈ [1, n] ;
3 Let Si be the independent node set of qi in GA (the occurrence set of qi) ;
4 enumerate-T(1, t) ;

5 Procedure enumerate-T(index i, tuple t):
6 if (i = |VQ|+ 1) then
7 return t ;
8 end
9 S ′

i := Si; if (i > 1) then
10 Let j be the index of the parent of qi in Q, j ∈ [1, i− 1] ;
11 S ′

i := Si ∩ adjacency-list(t[j]) ;
12 end
13 for (every node vi ∈ S ′

i) do
14 t[i] := vi ;
15 enumerate-T(i+ 1, t)) ;
16 end

DP vs. TD. Both algorithms have different memory consumption during execution.

DP decomposes the given query into a set of subqueries and computes the result

tuples for each subquery by joining the result tuples of the subqueries rooted at its

children. In contrast, TD executes in a pipelined fashion, returning one tuple of the

given query at a time, thus avoiding keeping large intermediate results. When tuples

in the query result are dumped to the secondary storage upon need, TD has very

low memory consumption, which is linear on the size of the largest label inverted

list. Hence, it is very well suited for in-memory evaluation. Yet, storing and reusing

intermediate results can offer a substantial performance improvements in the presence

of significantly skewed data [62].

So far, we have shown how the answer graph can be used for query result

counting and enumeration. In the next two sections, we present methods for efficiently

constructing the answer graph of an input query.

20

3.3 Answer Graph Construction—A Bottom-up Approach

In this section, we present a bottom-up dynamic programming algorithm which

incrementally builds the answer graph for the pattern query, based on the answer

graphs constructed for the sub-patterns rooted at the children of the node under

consideration. We first present the main algorithm, and then introduce several

optimizations.

3.3.1 Main Algorithm

Algorithm Overview. The algorithm presented in Algorithm 4, called BUP, takes

as input a data graph G and a tree-pattern query Q, and builds the answer graph GA

of Q on G by performing a postorder traversal on Q.

We first define the concept of candidate occurrence set. A candidate occurrence

set CSq of a query node q in Q is the occurrence set of the root of the subquery of Q

rooted at q. Clearly, when q is a leaf node in Q, CSq = Ilabel(q). In general, we have

CSq ⊆ Ilabel(q) and Sq ⊆ CSq.

Algorithm BUP proceeds in two phases. In the first phase, it generates the

candidate occurrence sets for the query nodes in Q and links their nodes with edges.

In this phase, it essentially applies multiway structural joins. A data node v ∈ Ilabel(q)

is added to the candidate occurrence set CSq of node q ∈ V (Q) if there exist data

nodes v1, . . . , vk for the child query nodes q1, . . . qk of q such that: (a) for every

i ∈ [1, k], vi ∈ CSqi , and (b) for every i ∈ [1, k], (v, vi) is an occurrence in G of the

edge (q, qi) ∈ Q. For every i ∈ [1, k], an edge is added to GA from node v ∈ CSq to

node vi ∈ CSqi if and only if (v, vi) is an occurrence of the edge (q, qi) ∈ Q. Due to

the bottom up traversal of Q, the candidate occurrence sets of the child nodes qi of a

node q are available from the previous iteration of the algorithm when q is considered.

In the second phase, BUP eliminates nodes in the candidate occurrence sets

CSq which are not in occurrence sets Sq, by executing a top-down traversal of the

21

Algorithm 4: Algorithm BUP for building a query answer graph.
Input : Data graph G, and pattern query Q
Output: Answer graph GA of Q on G

1 Initialize GA to be a k-partite graph without edges having one data node
set CSq for every node q ∈ V (Q) ;

2 CSq := ∅, ∀q ∈ Q;
3 traverse(root(Q)) ;
4 for (every q ∈ Q, q ̸= root(Q), in a top-down manner) do
5 Remove the data nodes of CSq which do not have an incoming edge ;
6 end

7 Procedure traverse(q):
8 if (isLeaf(q)) then
9 CSq := Ilabel(q) ;

10 return
11 end
12 for (qi ∈ children(q)) do
13 traverse(qi) ;
14 end
15 for (vq ∈ Ilabel(q)) do
16 expand(q, vq) ;
17 end

18 Procedure expand(q, vq):
19 Append vq to CSq ;
20 for (qi ∈ children(q)) do
21 for (vqi ∈ CSqi) do
22 if ((vq, vqi) is an occurrence of the query edge (q, qi)) then
23 Add the edge (vq, vqi) to GA ;
24 end
25 end
26 if (no occurrence of (q, qi) is found in G) then
27 remove vq from CSq ;
28 return
29 end
30 end

22

answer graph GA under construction. In this phase, the algorithm eliminates nodes

(and their outgoing edges) which do not have incoming edges.

Detailed Description. The bottom-up processing phase in BUP is realized by

procedure traverse. Let q be the current query node under consideration. For each

node vq in Ilabel(q), procedure traverse evokes procedure expand to potentially expand

GA by putting vq into the candidate occurrence set CSq and by adding incident edges

to GA (lines 6-7 in traverse).

Initially, CSq is empty. Line 1 of Procedure expand puts vq temporarily to CSq.

Then, line 2 iterates over every child qi of q. For each node vqi in the candidate

occurrence set CSqi of qi, line 4 determines whether (vq, vqi) is an occurrence of the

query edge (q, qi). If this is the case, the edge (vq, vqi) is added to GA. The following

two cases are considered: (a) (q, qi) is a reachability edge, and (b) (q, qi) is a direct

edge.

For case (a), a reachability index is used to check whether vq ≺ vqi . For case (b),

the adjacency lists of the graph G can be used to check the child/parent relationship

between vq and vqi . This edge verification operation requires a runtime proportional

to the degree of vq or vqi , whichever is the smaller. When the adjacency list is sorted

(by node id), the runtime reduces to log of that degree. While an adjacency matrix

representation for the data graph, like the one adopted by CFLMatch [30] with size

|V | × |V |, would overcome this overhead, it can only be used with small data graphs.

We will later present a more efficient way to check child constraints.

After the last element of CSqi is accessed, if for some (q, qi) no match is found, vq

is removed from CSq, and the procedure terminates (lines 6-8 of Procedure expand).

When Procedure traverse terminates after processing the root of Q, we have

CSroot(Q) = Sroot(Q). The candidate occurrence lists CSq for other nodes q of Q might

contain data nodes that are not in Sq. To eliminate these nodes, a breadth first

traversal of Q is performed. For every node q of Q encountered (other than the root

23

(a) After C and D are processed

c1CSC: c2 c3 C

CSD:

(b) After B is processed

(c) After A2 is processed (d) After A1 is processed

d3 d4 d5d1 d2 Dd6

b1CSB: B

c1CSC: CSD: c2 c3 C D

b2

d3 d4 d5d1 d2 d6

a3 a4 a5CSA2: A2a1 a2

b1CSB: B

d3 d4 d5c1CSC: CSD: c2 c3 d1 d2C D

b2

d6

a3 a4 a5 A2a1 a2

b1 B

d3 d4 d5c1 c2 c3 d1 d2C D

b2

a3 a4 a5 A1

d6

a1 a2

CSA2:

CSB:

CSC:

CSA1:

CSD:

Figure 3.3 Snapshots of the answer graph during its construction using BUP on
the query Q and data graph G of Figure 3.1.

node), all the data nodes which do not have an incoming edge are removed from

GA along with their incident outgoing edges (lines 6-7 in the main procedure). The

resulting graph is the answer graph GA of Q.

Figure 3.3 shows different snapshots from the answer graph construction when

running BUP on the query Q and the data graph G of Figure 3.1. The final answer

graph GA is shown in Figure 3.2(a). In each snapshot, we mark in red those nodes

which are not in the answer of the corresponding subquery of Q. A subsequent

top-down traversal of the answer graph under construction recursively eliminates

these marked nodes.

The following lemma is useful for showing the output of Algorithm BUP is the

answer graph.

Lemma 1. Algorithm BUP adds a data node vq ∈ Iq in node set CSq if and only if

it is in the candidate occurrence set of the root of the subquery of Q rooted at q.

Proof. The “only-if” direction is obvious by the bottom-up processing nature of the

algorithm. We now prove the “if” direction of the lemma, that is, we prove that if a

data node v ∈ Iq is in the candidate occurrence list of the root of the subquery of Q

24

rooted at q, it will be put into CSq. We prove it by induction on the height d of the

query nodes in Q (the height of leaf nodes is 0).

Base Case: d = 0. If q is a leaf query node, then every data node vq ∈ Iq is in the

candidate occurrence set of q and is put into CSq by BUP.

Inductive Case: Assuming that the claim holds for d ≤ k − 1, let the height of the

query node q under consideration by BUP be k. Let also vq be a node in Iq which is

in the occurrence set of the root of the subquery of Q rooted at q. By the inductive

assumption, all the data nodes which are in the candidate occurrence sets of the roots

of the subqueries of Q rooted at child query nodes qi of q (their height is ≤ k − 1)

have been put into CSqi . Then, there exist nodes vqi in each CSqi , such that (vq, vqi)

is an occurrence of the query edge (q, qi). Consequently, node vq will be put in CSq

by algorithm BUP. �

Theorem 1. The graph returned by Algorithm BUP when a query Q and a data

graph G is given as input is the answer graph GA for Q on G.

The proof follows from Lemma 1 by letting node q be the root node of the query

pattern Q.

3.3.2 Optimizing BUP

We now discuss techniques to further improve the performance of BUP on large data

graphs.

Early expansion termination. When expanding GA with a node vq ∈ Ilabel(q), it

is not always necessary to scan the entire set CSqi for every child node qi of q. When

the input data graph G is a dag, we can associate each node u in G with an interval

label, which is an integer pair (begin, end) denoting the first discovery time of u and

its final departure time in a depth-first traversal of G. Nodes in Ilabel(q) are accessed

in ascending order of the begin value of their interval labels, and nodes satisfying the

query q are appended to CSq in the same order. Interval labelling guarantees that

25

node vq does not reach node vqi if vq.end < vqi .begin. Therefore, once such a node

vqi is encountered, the expansion over CSqi can be safely terminated since all the

subsequent nodes have a begin value which is larger than vqi .begin.

Intersection-based child relationship checking. As aforementioned, in order

to find all the elements vqi in CSqi having a child relationship with vq, the edge

verification-based method needs to verify the existence of an edge between vq and vqi .

This can be time costly. We now present an efficient method which can find all the

vqis in CSqi having a child relationship with vq in one step.

The child relationship checking is converted into a set intersection operation.

More concretely, let Avq denote the adjacency list of vq; every element vqi in the

intersection Avq ∩CSqi is a child of vq in CSqi . We store Avq and CSqi as bit vectors,

and implement the intersection using a bitwise AND operation. Our method is able

to obtain all the nodes in CSqi satisfying a child relationship with vq in one step.

Node pre-filtering. The performance of BUP can be improved by pruning

redundant nodes from the inverted lists. A node pre-filtering technique was proposed

in [22, 26] to filter out nodes not participating in the query answer before the query

evaluation starts. The technique conducts two graph traversals and maintains data

structures that record, for each data node, whether it has ancestors or descendants

matching a particular query node. Our experimental results in Section 3.5 show

that the pre-filtering technique can improve the time performance of graph matching

algorithms. However, as this technique is designed for reachability edge-only tree

patterns, it has limited pruning power for queries involving also direct edges.

3.4 Building the Answer Graph Using Graph Simulation

The BUP algorithm reduces the generation of redundant intermediate results by

applying multi-way structural joins between the candidate occurrence set of a node

and those of its child nodes in the query. However, it may still do redundant

26

computations since it is unable to check structural join conditions globally. In this

section, we introduce a method which exploits graph simulation in order to build the

answer graph, extended to account for reachability edges. Our method is holistic and

does not generate any redundant intermediate results.

3.4.1 The Double Simulation Relation

Different types of simulation have been implemented in different graph database

applications [63, 41, 43, 40] As opposed to a homomorphism, which is a function,

a simulation is a binary relation on the node sets of two directed graphs. It provides

one possible notion of structural equivalence between the nodes of two graphs.

Double simulation. Since the structure of a node in a graph is determined by its

incoming and outgoing paths, we define a type of simulation called double simulation,

which handles both the incoming and the outgoing paths of the graph nodes. Double

simulation is an extension of dual simulation [43] to allow edge-to-path mappings. In

this paper, we consider the double simulation of hybrid tree pattern queries on graph

data.

Definition 3.4.1 (Double Simulation). The double simulation of a tree pattern query

Q = (VQ, EQ) by a directed data graph G = (VG, EG) is the largest binary relation S

⊆ VQ × VG such that, whenever (q, v) ∈ S, the following conditions hold:

1. label(q) = label(v).

2. For each (q, q′) ∈ EQ, there exists v′ ∈ VG such that (q′, v′) ∈ S and (v, v′) is a
match of the edge (q, q′) .

3. If q ̸= root(Q) and (q′, q) ∈ EQ, there exists v′ ∈ VG such that (q′, v′) ∈ S, and
(v′, v) is a match of the edge (q′, q).

Recall that a pair (v, v′) of data graph nodes is a match of an edge (q, q′) in

Q if: (a) (q, q′) is a direct edge in Q and (v, v′) is an edge in G, or (b) (q, q′) is a

reachability edge in Q and v ≺ v′ in G.

27

Table 3.1 Forward (F), Backward (B), and Double (FB) Simulation of the Query
Q on the Graph G of Figure 3.1

q F(q) B(q) FB(q)

A1 {a2, a4, a5} {a1, a2, a3, a4, a5} {a2, a4, a5}

A2 {a1, a2, a3, a4, a5} {a3, a5} {a3, a5}

B {b1, b2} {b2, b3} {b2}

C {c1, c2, c3} {c2} {c2}

D {d1, d2, d3, d4, d5, d6} {d3, d4, d5, d6} {d3, d4, d5}

Just as in Chapter 3, the double simulation of Q by G is unique, since there

is exactly one largest binary relation S satisfying the above three conditions. This

can be proved by the fact that, whenever we have two binary relations S1 and S2

satisfying the three conditions between Q and G, their union S1 ∪ S2 also satisfies

those conditions.

We call the largest binary relation that satisfies conditions 1 and 2 forward

simulation of Q by G, and we call the largest binary relation that satisfies conditions 1

and 3 backward simulation. We denote the forward, backward, and double simulation

by F , B, and FB, respectively. For q ∈ VQ, F(q), B(q), and FB(q) denote the set

of all nodes of VG that forward, backward, and double simulate q, respectively. FB

preserves both incoming and outgoing edge types (direct or reachability) between Q

andG, whereas F and B preserve only outgoing and incoming edge types, respectively.

Table 3.1 shows the simulations F , B, and FB of the query Q on the graph G

of Figure 3.1. In particular, for the reachability query edge (B,D) of Q, the matches

considered for double simulation are (b2, d3), (b2, d4), (b2, d5).

28

The following theorem shows the significance of double simulation in graph

pattern matching: all graph data nodes captured by the double simulation participate

in the query’s final answer.

Theorem 2. Given a tree pattern query Q and a data graph G, there exists a

homomorphism from Q to G that maps node q ∈ VQ to node v ∈ VG if and only if

v ∈ FB(q).

Proof. The “only if” direction is obvious since the structural constraints imposed by

a homomorphism from Q to G imply those imposed by the FB simulation of Q by

G. We prove next the “if” direction of the theorem.

Let Qq denote the subquery of Q that consists of the path from the root of Q to

q and the subtree rooted at q in Q. We first prove the following claim: if v ∈ FB(q),

there exists a homomorphism from Qq to G that maps node q ∈ VQ to node v ∈ VG.

We prove this by induction on the height k of q in Q. The height of a node in Q is the

length of the longest path from that node to a leaf node; a leaf has height 0, and the

root of Q has the largest height. First, let k = 0 (in this case, q is a leaf in Qq). Let

qr, . . . , q1, q0 = q be the path from the root qr of Q to q. Since v ∈ FB(q), there is a

path of nodes vr, . . . , v1, v0 = v in G such that vi+1 ∈ FB(qi+1), and (vi+1, vi) ∈ EG

(resp. vi+1 ≺ vi in G) if (qi+1, qi) is a direct (resp. reachability) edge in EQ, for every

i ∈ [0, r−1]. Clearly, the mapping that maps the query nodes qr, . . . , q1, q to the data

graph vr, . . . , v1, v, respectively, is a homomorphism from Qq to G.

Assuming that the claim holds for k ≤ i, we next show that it also holds for

k = i + 1. Let c1, c2, . . . , cn be the child nodes of q in Qq. Since v ∈ FB(q), for each

cj (1 ≤ j ≤ n), there exists a node vcj ∈ VG such that vcj ∈ FB(cj) and (v, vcj) ∈ EG

(resp. v ≺ vcj in G) if (q, qcj) is a direct (resp. reachability) edge in EQ. As the height

of cj is ≤ i, by the inductive assumption, for each Qcj there exists a homomorphism

hcj from Qcj to G that maps node cj ∈ VQ to node vcj ∈ VG. We can construct a

29

mapping h from the nodes of Q to nodes in G such that for every j ∈ [1, n], h coincides

with hcj on the nodes of the subtree of Q rooted at cj. Further, h(q) = h(v). Finally,

the nodes in the path root(Q) = qr, . . . , q1, q0 = q in Q are mapped by h to nodes

vr, . . . , v1, v0 = v, respectively, in G such that vi+1 ∈ FB(qi+1), and (vi+1, vi) ∈ EG

(resp. vi+1 ≺ vi in G) if (qi+1, qi) is a direct (resp. reachability) edge in EQ, for every

i ∈ [0, r − 1]. The later node mapping is possible because v ∈ FB(q). Clearly, h is a

homomorphism from Qq to G. �

Computing double simulation. The computation of the double simulation of a

graph pattern query by a data graph is the algorithmic basis of our simulation-based

method. Note that, for every node q ∈ VQ, FB(q) ⊆ F(q) and FB(q) ⊆ B(q), but,

in general, FB(q) ̸= F(q) ∩ B(q). An example of this inequality can be seen in Table

3.1. Therefore, we cannot compute FB(q) simply by intersecting F(q) and B(q).

We develop a 2-pass algorithm called FBSim to compute FB for query Q

and data graph G by traversing the nodes of Q two times. FBSim leverages the

acyclic nature of the rooted tree pattern. It first computes the forward simulation F

(considering outgoing query edges), and then refines F by computing a subset of the

backward simulation B (considering the incoming query edge) which is equal to FB.

Algorithm 5 shows the pseudocode for FBSim. The algorithm first invokes

procedure getFSim() to compute F by traversing nodes of Q in a bottom-up way

(line 2). When q ∈ VQ is a leaf node in Q, variable Fq is equal to Ilabel(q) (Ilabel(q)

is the inverted list of nodes in G having the label of query node q). When q is an

internal node, a node v ∈ Ilabel(q) is added to Fq if there are nodes v1, . . . , vk ∈ VG for

the child query nodes q1, . . . qk of q such that: for every i ∈ [1, k], vi ∈ Fqi , and (v, vi)

is an occurrence of the query edge (q, qi) in G. Due to the bottom-up traversal, the

set Fqi for each child node qi of q ∈ VQ is available from the previous iteration.

Based on the forward simulation relation F , FBSim proceeds to compute the

forward and backward simulation relation FB (by computing node sets FBq for

30

every q ∈ Vq) using procedure getBSim() (line 3). The procedure computes FBq

by traversing nodes q of Q in a top-down manner. When q is the root node of Q,

FBq = Fq = F(q). Otherwise, let q′ be the parent of q in Q. A node v ∈ Fq is in FBq

if there exists node v′ ∈ FBq′ , such that (v′, v) is an occurrence of the edge (q′, q) ∈ Q

in G .

As we show below in Theorem 3, after procedure getBSim() terminates, for

every node q ∈ VQ, FBq = FB(q) ⊆ Fq = F(q). Based on Theorem 2, Fq is equal to

the occurrence set Lq for every q in Q.

Algorithm 5: Algorithm FBSim for computing double simulation.
Input : Data graph G, pattern query Q
Output: Data node set FBq for every q ∈ VQ (the double simulation FB

of Q by G)

1 Fq := ∅ and FBq := ∅, ∀q ∈ VQ ;
2 getFSim() ;
3 getBSim() ;
4 return FBq for every q ∈ Vq ;

5 Procedure getFSim():
6 Fq :=Ilabel(q), for all leaf nodes q ∈ VQ ;
7 for (every internal node q in VQ in a bottom-up order) do
8 for (vq ∈ Ilabel(q)) do
9 if (∀ child qi of q in Q,∃vqi ∈ Fqi s.t. (vq, vqi) is an occurrence of

(q, qi) ∈ EQ) then
10 Fq := Fq ∪ {vq} ;
11 end
12 end
13 end

14 Procedure getBSim():
15 r := root(Q) ;
16 FBr := Fr ;
17 for (every non-root node qi in VQ in a top-down order) do
18 q := parent(qi) ;
19 for (vqi ∈ Fqi) do
20 if (∃vq ∈ FBq s.t. (vq, vqi) is an occurrence of (q, qi) ∈ EQ) then
21 FBqi := FBqi ∪ {vqi} ;
22 end
23 end
24 end

31

Consider again the example of Figure 3.1. Using procedure getFSim(), we obtain

the forward simulation of Q by G, F , shown in Table 3.1. Based on F , we call

getBSim() to compute FB.

Note that the order of execution of the two phases in FBSim is significant.

Algorithm FBSim first computes F , then based on F , it computes a subset of F and

B to return FB. Applying first a top-down traversal on Q to compute the backward

simulation B and then a bottom-up traversal on Q to obtain the forward simulation

F might erroneously add a data graph node to FBq. Consider the following scenario

where edge (p, q) of query Q has only one match (u, v) in graph G, node u is in B(p)

but not in F(p) and node v is in F(q). In this setting, based on definition 3.4.1, v is

not in FB(q). Assume that the algorithm computes B first by a top-down traversal

on Q. Since p is a parent of q, p is processed before q. Given that u ∈ B(p) and (u, v)

is a match of (p, q), the algorithm derives that v ∈ B(q). Once B is computed, the

algorithm computes F using B with a bottom-up traversal on Q. Since q is a child

of p, q is processed before p. As v will be discovered to be in F(q), and v has been

added to B(q) in the top-down processing phase, v will be wrongly added to FBq.

An example is data graph node d6 in Figure 3.1 which, as Table 3.1 shows,

appears in F(D) and B(D) but not in FB(D). Node d6 will be (incorrectly) outputted

as an element of FB(D) if a top-down traversal of query Q precedes a bottom-up

traversal.

Theorem 3. Algorithm FBSim correctly computes the double simulation FB of Q

by G.

Proof. Algorithm FBSim first incrementally constructs F in a bottom-up way on

the query pattern by considering all pairs of query nodes q and data graph nodes

from Ilabel(q) and by disqualifying pairs violating the conditions of the definition of

forward simulation (Definition 3.4.1). All the nodes in Iq for leaf nodes q ∈ VQ

32

trivially satisfy the forward simulation conditions. For internal nodes q in Q, nodes

in Ilabel(q) are eliminated when they do not have the required child/descendant nodes

in VG. Since all possible pairs of nodes are considered and the elimination is done in

a bottom-up way the computed relation is indeed the forward simulation F of Q by

G.

Based on the computed forward simulation relation F , FBSim incrementally

computes FB by considering nodes in the query pattern in a top-down manner and

by disqualifying pairs of nodes violating the conditions of the definition of backward

simulation (Definition 3.4.1). Nodes in F(q) for the root q of Q trivially satisfy the

backward simulation conditions. For other query nodes q ∈ VQ, data graph nodes in

F(q) are discarded only when they do not have the required parent/ancestor node

in VG. Since Q is a tree, each internal node q has only one parent in Q. Therefore,

data graph node removal from F(q) will not make other data graph nodes violate the

forward simulation conditions. Thus, the resulted binary relation is the largest one

satisfying both the forward and backward simulation conditions, hence it is equal to

FB. �

Analogy to a full reducer. We can draw an analogy between FBSim and the full

reducer problem for semi-joins on relational databases [64]. Given an acyclic query

Q, a full reducer aims at removing all the dangling tuples from relations of Q, defined

as tuples that do not participate in the result of Q. A full reducer as realized by

[37], first forms a join tree of Q, and then applies semi-joins in a bottom-up and a

top-down phase. It have been shown that the two semi-join sequences remove all

dangling tuples.

Like full reducer, FBSim has a bottom-up phase and a top-down phase.

However, the two methods work with different data structures and have different

outputs: a full reducer works on relations, removes dangling tuples and returns

reduced relations of the query, whereas FBSim works on the data graph, prunes

33

all the nodes from the candidate occurrence sets of the query nodes that are not in

the query answer and returns occurrence sets of the query nodes.

3.4.2 The Simulation-Based Algorithm

We now present SIM, our holistic pattern matching algorithm that builds the answer

graph for a given pattern query in two phases. First, it computes the double

simulation relation to find all the answer graph nodes, filtering out those that do

not participate in the final answer. Then, it links the answer graph nodes with edges

to construct the final answer graph.

The outline of SIM is presented in Algorithm 6. The algorithm takes as input

a data graph G and a pattern query Q. The two phases of the construction of the

answer graph GA of Q on G are: (a) the node selection phase, and (b) the node linking

phase.

Algorithm 6: Algorithm SIM for building a query answer graph
Input : Data graph G, pattern query Q
Output: Answer graph GA of Q on G

1 Use Algorithm FBSim to compute FB of Q by G ;
2 Initialize GA as a k-partite graph without edges having one independent

set for every node q ∈ VQ which is the occurrence set Sq = FB(q) ;
3 for (q ∈ VQ in a top-down order) do
4 for (vq ∈ Sq) do
5 expand(q, vq) ;
6 end
7 end
8 return GA ;

9 Procedure expand(q, vq)):
10 for (qi ∈ children(q)) do
11 for (vqi ∈ Sqi) do
12 if ((vq, vqi) is an occurrence of edge (q, qi) ∈ EQ) then
13 Add the edge (vq, vqi) to GA ;
14 end
15 end
16 end

34

The node selection phase computes the double simulation relation of Q by G

using algorithm FBSim of Algorithm 5 (line 1). As shown in Section 3.4.1, after

relation FB is computed, the occurrence set Sq for each node q of Q is available

(line 2). The node linking phase traverses Q in a top-down manner and links nodes

in the occurrence sets Sq with edges to produce the answer graph GA (lines 3-5).

This is implemented by procedure expand. Let q be the current query node under

consideration. For each node vq ∈ Sq, procedure expand expands GA by adding

incident edges to vq. More concretely, it iterates over every child qi of q (line 1). For

each node vqi ∈ Sqi of qi, it determines whether (vq, vqi) is an occurrence of the query

edge (q, qi) (line 4). If so, it adds the edge (vq, vqi) to GA (line 5).

Checking query edge occurrence. Checking whether (vq, vqi) is an occurrence of

the query edge (q, qi) is a core operation needed by two different processes in SIM:

for the computation of FB, and for linking nodes with edges. For this, we apply the

intersection-based child relationship checking method described in Section 3.3.2.

Consider building the answer graph of the pattern query Q on the data graph G

of Figure 3.1 with SIM. With the node selection phase, the relation FB is computed

(Table 3.1). Using FB as input, the node linking phase of SIM is executed and returns

the answer graph GA shown in Figure 3.2(a).

3.5 Experimental Evaluation

In this section, we present a thorough evaluation of our proposed approach.

3.5.1 Experimental Setup

Evaluated methods. We implemented four variants of our approach. The

optimizations described in Subsection 3.3.2 were applied to the algorithms in the

implementation:

35

• BUP-DP and BUP-TD: the bottom-up algorithm (BUP) for constructing the
query answer graph (Section 3.3), combined with the dynamic-programming
(DP) and the top-down method (TD), respectively, for enumerating answer
tuples (Section 3.2.2).

• SIM-DP and SIM-TD: the simulation-based algorithm (SIM) for constructing
the query answer graph (Section 3.4), combined with the dynamic-programming
(DP) and the top-down method (TD), respectively, for enumerating answer
tuples (Subsection 3.2.2).

Existing pattern matching algorithms can be broadly classified into the edge-join

approach (EJ) and the path-join approach (PJ). EJ first computes the occurrences

for each edge of the input query on the data graph, then finds an optimized join

plan for joining these binary relations, and finally uses this plan to evaluate the query

[15, 13, 8, 11]. PJ produces the query answer in two phases. It first generates solutions

to each root-to-leaf path of the given query, and then generates the query answer by

joining the path solutions [22, 26, 29, 30].

We implemented both approaches for finding homomorphisms of graph pattern

queries on data graphs. In our implementation of EJ, in order to evaluate the binary

joins, an optimized left-deep join plan is found through dynamic programming as

suggested in [15]. Finding the occurrences of the reachability edges of the query

pattern was implemented using a recent efficient reachability scheme called Bloom

Filter Labeling (BFL) [20], which was shown to greatly outperform most existing

schemes. For PJ, the solutions of each root-to-leaf path of the given query are merge-

joined in order to generate the query answer as suggested in [26], and Bloom Filter

Labeling was used for this approach too. As a preprocessing step, we often applied

to both approaches (EJ and PJ) the node pre-filtering technique described in [26].

Our implementation was coded in Java. All the experiments reported here were

performed on a workstation running Ubuntu 16.04 with 32GB memory and 8 cores

36

Table 3.2 Key Statistics of the Real-World Graph Datasets

Domain Dataset # of nodes # of edges # of labels Avg #incident edges

Citation Networks Citation1 1,397K 3,021K 16,4421 4.32

Citeseerx2 6.3M 14.3M 1K∼10K 4.59

Social Networks Epinions 76K 509K 20 6.87

Communication Networks Email 265K 420K 20 2.6

of Intel(R) Xeon(R) processor (3.5GHz). The Java virtual machine memory size was

set to 16GB.

Data graphs. We used both real-world and synthetic datasets to evaluate the

algorithms in comparison. We provide their details below.

Real-world datasets. We selected four real-world graph datasets which have been

used extensively in previous works [8, 31, 9, 65]. The datasets have different structural

properties and come from a variety of application domains: citation networks, social

networks, and communication networks. Table 6.1 lists the properties of the datasets.

The average number of incident edges listed in the last column refers to both incoming

and outgoing edges per node. It should be noted that the original Citeseerx graph

does not have labels. Therefore, we randomly assigned distinct labels to nodes. This

is a technique commonly used for generating labeled data graphs [30, 31, 9]. We

generated ten labeled Citeseerx graphs whose numbers of labels range from 1K to

10K.

Synthetic datasets. We implemented a random graph generator to generate

synthetic datasets. Given three input parameters n, m, and l, the generator first

creates a random graph with n nodes and m edges; then, it randomly assigns l

distinct labels to the nodes. Using this graph generator, we generated five graphs

1www.aminer.cn/citation, Last accessed on 2022/09/20.
2citeseerx.ist.psu.edu, Last accessed on 2022/09/20.

37

HQ1

HQ2 HQ5

HQ6

HQ3

HQ4

Figure 3.4 Hybrid pattern templates used for evaluation.

Table 3.3 Parameters for Query Generation

Parameters Range Description

Q 300 to 3300 Number of queries

D 6 to 16 Maximum depth of queries

DS 0 to 1 Probability for an edge to be a reachability edge (‘//’)

NP 1 to 3 Number of branches per query node

varying the number of nodes n from 300K to 1.5M, setting the number of edges m to

2× n, and the number l of labels to 5K.

Queries. We designed three query sets for each of the two data graphs Epinions and

Email, which are distinguished by the type of queries contained: direct edge-only,

reachability edge-only, and hybrid. Each query set contains 3 path queries and 3 tree

queries, respectively. The templates of the hybrid query set are shown in Figure 3.4.

Double line edges of a query template denote reachability edges, while single line

edges denote direct edges. The number associated with each node of a query template

denotes the node id. Query occurrences are generated by assigning labels to nodes.

The direct-only and reachability-only query sets contain queries having the same

structure as the hybrid queries, with their edges being exclusively direct edges and

reachability edges, respectively.

For the Citation, Citeseerx and synthetic datasets, we used randomly generated

queries. We implemented a query generator that creates a set of tree pattern queries

based on the parameters listed in Table 3.3. For each data graph, we first generated

38

a number of queries (with cardinality ranging from 300 to 3300) using different value

combinations of the parameters listed in Table 3.3, and then formed a query set by

randomly selecting 10 of these queries. The number of nodes of each query ranges

from 3 to 22.

Metrics. We measured the runtime of individual queries in a query set. For query

listing, this includes two parts: (1) the matching time, which consists of the time spent

on filtering data graph nodes, building auxiliary data structures such as answer graphs

and generating query plans (for EJ only), and (2) the tuple enumeration time, which

is the time spent on enumerating results. The number of matches for a given query on

a data graph can be quite large. Following usual practice [31, 9], we terminated the

evaluation of a query after finding 107 matches covering as much of the search space

as time allowed. We stopped the execution of a query if it did not complete within

10 minutes, so that the experiments could be completed in a reasonable amount of

time. We refer to these queries as unsolved. For tuple counting, we measured the

time spent on counting the result tuples instead of the time spent on enumerating

tuples. To evaluate an algorithm on a query set instead of an individual query, we

reported the average runtime of the queries in the query set.

3.5.2 Results on Query Counting

We first compare the four algorithms SIM, BUP, PJ and EJ on query counting.

Given a query, the first three algorithms build the answer graph, then use the answer

graph to compute the number of result tuples without enumerating them, as shown in

Section 3.2. Our experimental results show that calculating the result number using

the answer graph takes almost no time for all the queries. The main difference among

the three algorithms lies in the query matching process. In contrast, EJ does not

construct the answer graph. It executes a sequence of binary joins to evaluate the

query. We implemented binary joins using the classical hash join operator. For the

39

query counting task, EJ generates tuples for each intermediate binary join. For the

last binary join, EJ only counts the number of matching tuples in the hash table for

each probing tuple, without computing the join. The sum of these matching numbers

is returned as the total number of query results.

Performance Comparison on Citation Graph We compare the performance

of SIM, BUP, EJ and PJ running 10 randomly generated queries over Citation with

and without applying node pre-filtering. The average number of nodes per query is

7. Among the ten queries, Q0, Q1 and Q2 are very sparse, with less than 103 result

tuples; the number of results of Q4 and Q6 ranges from 104 to 105; Q3, Q5, Q7 and Q8

are dense, and their result numbers range from 1010 to 1012. Query Q9 has the largest

number of results which lies in the order of 1017. Figure 3.5 shows the experimental

results. A general observation is that the pre-filtering technique can improve the time

performance of graph matching algorithms, especially for PJ, for which this technique

was originally designed.

Overall, in Figure 3.5, the best performer is SIM, followed by BUP, PJ and EJ

in this order. SIM solves 100% of the queries both with or without pre-filtering. Both

BUP and PJ solve 90% of the queries with pre-filtering, but without pre-filtering

this percentage drops to 40% due to timeout, so they only solve Q1, Q2, Q5, and

Q8. Without pre-filtering, EJ only solves Q1 and Q2, getting a timeout warning for

the other eight queries. With pre-filtering, EJ solves four more queries. It gets an

out-of-memory error when computing Q4, Q6, and Q8.

The experiment confirms the benefits of our technique which uses query answer

graphs for the query counting task. It also shows that the matching method of both

SIM and BUP greatly outperforms that of PJ.

40

 0.1

 1

 10

 100

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Q
u
er

y
 T

im
e

(s
ec

)

Random Hybrid Query

SIM BUP PJ EJ

(a) No Pre-filtering

 0.1

 1

 10

 100

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Q
u
er

y
 T

im
e

(s
ec

)

Random Hybrid Query

SIM BUP PJ EJ

(b) With Pre-filtering

Figure 3.5 Performance comparison on Citation.

Scalability Comparison on Citeseerx and Random Graphs

Varying data labels. In this experiment, we examine the impact of the total

number of distinct graph labels on the query counting performance of the algorithms

in comparison. We used the aforementioned labeled Citeseerx graph, to produce

10 versions of it where the number of labels increases from 1K to 10K. For each

labeled graph, we generated a query set of 10 distinct queries whose average number

of nodes per query ranges from 3 to 4. Queries in the query sets are sparse in general.

Figure 3.6 reports on the execution time of the four algorithms with and without

applying node pre-filtering. In this experiment, the four algorithms are able to solve

all the queries in all the cases.

As can be seen in Figure 3.6, the execution time of the algorithms tends to

increase while decreasing the total number of graph labels. In particular, the increase

rate becomes steeper when the number is close to 1K. This is reasonable since the

average cardinality of the input label inverted lists in a graph increases when the

number of distinct labels in the graph decreases.

As with the experiment on Citation, SIM has the best overall performance and

BUP comes next, while PJ and EJ show similar performance when the cardinality of

the input inverted lists is high.

41

 0.01

 0.1

 1

 10

 1 2 3 4 5 6 7 8 9 10

E
va

lu
at

io
n

T
im

e
(s

ec
)

Number of Different Labels in Data (x1000)

SIM BUP PJ EJ

(a) No Pre-filtering

 0.01

 0.1

 1

 10

 1 2 3 4 5 6 7 8 9 10

E
va

lu
at

io
n

T
im

e
(s

ec
)

Number of Different Labels in Data (x1000)

SIM BUP PJ EJ

(b) With Pre-filtering

Figure 3.6 Performance comparison on Citeseerx.

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16

E
va

lu
at

io
n

T
im

e
(s

ec
)

Number of Nodes in Data (x100,000)

SIM BUP PJ EJ

(a) Time

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16

S
o
lv

e
d
 Q

u
e
ri

e
s

(%
)

Number of Nodes in Data (x100,000)

SIM BUP PJ EJ

(b) Solved Queries

Figure 3.7 Performance comparison on the randomly generated graphs.

In contrast to the results on Citation, in the experiment on Citeseerx we observe

an increase in the execution time of the algorithms when the pre-filtering technique

is applied to graphs with a large (>1K) number of labels. The reason is that when

the number of graph labels is large, the cardinality of the inverted lists is relatively

small. In this case, the potential benefit of reducing intermediate results during graph

matching can be offset by the overhead of node pre-filtering (the node pre-filtering

needs to traverse the whole data graph two times [26]).

Varying random graph sizes. In this experiment, we evaluate the performance

of the algorithms on randomly generated graphs. We used the aforementioned five

42

random graphs where the number of nodes was increased from 300K to 1,500K, while

the total number of labels is fixed to 5,000. For each random graph, we generated

a query set with 10 distinct queries. The average number of nodes per query ranges

from 4 to 7. The average numbers of solution tuples per query ranges from 1K to

265K. Prefiltering was applied in all cases.

Figure 3.7 shows the results. As expected, the execution time for all algorithms

increases with the increase of the total number of graph nodes. SIM shows

significantly better time performance than the other algorithms across the entire

range of random graphs (Figure 3.7(a)). In terms of solved queries, SIM solves 100%

of queries in all the cases. BUP solves only 50% queries when the number of graph

nodes increases to 1500K. Both PJ and EJ show especially poor scalability. When

the number of nodes increases from 700K to 1500K, the number of queries solved by

these algorithms decreases sharply from 80% to merely 10% due to timeout.

3.5.3 Results on Query Answer Enumeration

We now compare the three algorithms SIM, BUP, and EJ on query enumeration.

We omit PJ here since we have shown in Subsection 3.5.2 that the performance of

its matching method (the construction of the answer graph) is greatly outperformed

by both SIM and BUP. For the query listing task, both SIM and BUP first build

the answer graph for the given query, then call either algorithm DP (dynamic-

programming) or TP (top-down) to enumerate the result tuples from the answer

graph. In contrast, EJ first generates a query plan, then executes a sequence of binary

joins to generate the result tuples for the query. We conduct the experiment on two

data graphs, Epinions and Email, evaluating query instances of 6 query templates.

Figure 3.4 shows the templates of hybrid queries.

Query Time. Figure 3.8 shows the elapsed time of the different algorithms on

evaluating direct-edge-only, hybrid, and reachability-edge-only queries on Email and

43

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

CQ1 CQ2 CQ3 CQ4 CQ5 CQ6 AVG

Q
u
er

y
 T

im
e

(s
ec

)

Child-only Query

SIM-TD
SIM-DP

BUP-TD
BUP-DP

EJ

(a) Email

 0.05

 0.1

 0.15

 0.2

 0.25

CQ1 CQ2 CQ3 CQ4 CQ5 CQ6 AVG

Q
u
er

y
 T

im
e

(s
ec

)

Child-only Query

SIM-TD
SIM-DP

BUP-TD
BUP-DP

EJ

(b) Epinions

 0.1

 1

 10

 100

HQ1 HQ2 HQ3 HQ4 HQ5 HQ6 AVG

Q
u
er

y
 T

im
e

(s
ec

)

Hybrid Query

SIM-TD
SIM-DP

BUP-TD
BUP-DP

EJ

(c) Email

 1

 10

 100

HQ1 HQ2 HQ3 HQ4 HQ5 HQ6 AVG

Q
u
er

y
 T

im
e

(s
ec

)

Hybrid Query

SIM-TD
SIM-DP

BUP-TD
BUP-DP

EJ

(d) Epinions

 1

 10

 100

DQ1 DQ2 DQ3 DQ4 DQ5 DQ6

OMOMOMOMOMO
M

O
M

O
M

O
M

O
M

Q
u
er

y
 T

im
e

(s
ec

)

Descendant-only Query

SIM-TD
SIM-DP

BUP-TD
BUP-DP

EJ

(e) Email

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

DQ1 DQ2 DQ3 DQ4 DQ5 DQ6

OMOMOMOMOM

Q
u
er

y
 T

im
e

(s
ec

)

Descendant-only Query

SIM-TD BUP-TD EJ

(f) Epinions

Figure 3.8 Evaluating different types of queries on Email and Epinions.

Epinions. Pre-filtering is applied in all cases except for the SIM algorithm on query

patterns with direct-only edges where it is not beneficial.

The general trends observed in Figure 3.8 are as follows: (1) As the percentage of

reachability edges in a query increases, the query evaluation time of all the algorithms

44

increases; and (2) TD is in general more efficient than DP on tuple enumeration, in

particular for dense queries, both on BUP and SIM.

More specifically, in Figures 3.8(a) and 3.8(b), we observe that all the algorithms

can solve child edge-only queries very efficiently, within 0.5 and 0.2 seconds per query

on Email and Epinions, respectively. This can be explained by the fact that the

child edge-only queries are usually sparse, with the total number of result tuples per

query being less than 1.9K on each data graph. Algorithm SIM outperforms the other

algorithms by far followed by BUP and then by EJ.

For hybrid queries, the best performer is again SIM, and then BUP and EJ

follow in this order. As shown in Figures 3.8(c) and 3.8(d), the max speedup of

SIM-TD over EJ is around 13× (for HQ4) and 5× (for HQ6) on Email and Epinions,

respectively. BUP-TD outperforms EJ on average elapsed time by around 7× and 90%

on Email and Epinions, respectively. The average speedup of SIM-TD over SIM-DP

is around 3× and 50% on Email and Epinions, respectively, while the average speedup

of BUP-TD over BUP-DP is around 2× and 40% on Email and Epinions, respectively.

For reachability edge-only queries, BUP-TD slightly outperforms SIM-TD, in

general, but the performance gap between SIM-TD and EJ is much more prominent

(Figures 3.8(e) and 3.8(f)). The average elapsed time is not shown in figures 3.8(e)

and 3.8(f) as most queries are unsolved by some algorithms. EJ solves only DQ1

on Email and Epinions, and is unable to finish the rest of the queries due to an

out-of-memory error. The enumeration method DP performs bad as well. Like EJ,

both SIM-DP and BUP-DP solve only DQ1 on Email, and are unable to solve any

query on Epinions due to an out-of-memory error. The main reason is that as the

reachability-edge-only queries are very dense, both Algorithm EJ and the DP method

have to generate a large number of intermediate results which exceed the allocated

memory.

45

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

C
Q

1
C
Q

2
C
Q

3
C
Q

4
C
Q

5
C
Q

6
H

Q
1

H
Q

2
H

Q
3

H
Q

4
H

Q
5

H
Q

6
D

Q
1

D
Q

2
D

Q
3

D
Q

4
D

Q
5

D
Q

6

%
 o

f
D

at
a

G
ra

p
h
 S

iz
e

Query

SIM BUP FLT

(a) Email

 0.001

 0.01

 0.1

 1

 10

C
Q

1
C
Q

2
C
Q

3
C
Q

4
C
Q

5
C
Q

6
H

Q
1

H
Q

2
H

Q
3

H
Q

4
H

Q
5

H
Q

6
D

Q
1

D
Q

2
D

Q
3

D
Q

4
D

Q
5

D
Q

6

%
 o

f
D

at
a

G
ra

p
h
 S

iz
e

Query

SIM BUP FLT

(b) Epinions

 0.01

 0.1

 1

 10

 100

C
Q

1
C
Q

2
C
Q

3
C
Q

4
C
Q

5
C
Q

6
H

Q
1

H
Q

2
H

Q
3

H
Q

4
H

Q
5

H
Q

6
D

Q
1

D
Q

2
D

Q
3

D
Q

4
D

Q
5

D
Q

6

C
o
n
st

ru
ct

io
n
 T

im
e

(s
ec

.)

Query

SIM BUP FLT

(c) Email

 0.01

 0.1

 1

 10

 100

C
Q

1
C
Q

2
C
Q

3
C
Q

4
C
Q

5
C
Q

6
H

Q
1

H
Q

2
H

Q
3

H
Q

4
H

Q
5

H
Q

6
D

Q
1

D
Q

2
D

Q
3

D
Q

4
D

Q
5

D
Q

6

C
o
n
st

ru
ct

io
n
 T

im
e

(s
ec

.)

Query

SIM BUP FLT

(d) Epinions

Figure 3.9 Size and construction time of (candidate) answer graphs by different
algorithms on Email and Epinions.

Answer Graph Size and Construction Time. In this experiment, we examine

the size and construction time of the answer graphs for different queries on Email

and Epinions. As usual, the size of a graph is measured by the total number of nodes

and edges. We compare three different algorithms. For the first algorithm, SIM, we

have shown in Subsection 3.4.1 that the double simulation produced by SIM for a

given query contains exactly the nodes appearing in the query answer. For the second

algorithm, BUP, recall also that the graph built by BUP may contain redundant

nodes (nodes not appearing in the query answer). We call this graph a candidate

answer graph. For comparison with the candidate answer graph built by PJ, we used

46

a process which first runs the node pre-filtering procedure to prune nodes from the

inverted lists, then builds a candidate answer graph based on the pruned inverted

lists in a top-down manner. This process, the third algorithm, is denoted as FLT.

Figure 3.9 reports on the results. The Y-axis of Figures 3.9(a) and 3.9(b) shows the

(candidate) answer graph size as a percentage of the input data graph size. Figures

3.9(c) and 3.9(d) report on the construction time of (candidate) answer graphs by

SIM, BUP and FLT on Email and Epinions, respectively. The reported time for each

query includes the time for node pre-filtering which is applied before the execution of

the graph construction algorithms on hybrid and reachability-edge only queries.

By design, for a given query, SIM always generates the smallest graph, followed

by BUP, then FLT which generally produces the largest graph among the three. This

is confirmed by the results shown in Figures 3.9(a) and 3.9(b) The size differences

are more prominent on direct-edge-only and hybrid queries. We also observe that the

sizes of graphs generated by each method increase significantly when the percentage

of reachability edges in a query increases. In all cases, the size of (candidate) answer

graphs is significantly below the theoretical bound of |Q| × |Imax|2 (cf. Section 3.2).

The results also confirm that the answer graph size is affected by the corresponding

query density.

In Figures 3.9(c) and 3.9(d), we observe that for reachability-edge-only queries,

the graph construction time of BUP is slightly faster than that of FLT, while SIM

takes a little bit longer than the other two, due to a small overhead in computing

double simulation. However, for hybrid queries and reachability-edge only queries,

SIM takes the smallest time on constructing answer graphs, outperforming BUP and

FLT (on hybrid queries by up to 4.6× and 15×, respectively). This demonstrates the

efficiency of the double simulation technique on pruning redundant nodes.

Pre-filtering vs. Simulation. In this experiment, we compare the pruning power

of the two node pruning techniques, namely double simulation and pre-filtering, and

47

 1

 10

 100

C
Q

1
C
Q

2
C
Q

3
C
Q

4
C
Q

5
C
Q

6
H

Q
1

H
Q

2
H

Q
3

H
Q

4
H

Q
5

H
Q

6
D

Q
1

D
Q

2
D

Q
3

D
Q

4
D

Q
5

D
Q

6

%
 o

f
N

o
d
es

 A
cc

es
se

d
 f

ro
m

 I
n
v
L

is
ts

Query

SIM FLT

(a) Email

 1

 10

 100

C
Q

1
C
Q

2
C
Q

3
C
Q

4
C
Q

5
C
Q

6
H

Q
1

H
Q

2
H

Q
3

H
Q

4
H

Q
5

H
Q

6
D

Q
1

D
Q

2
D

Q
3

D
Q

4
D

Q
5

D
Q

6

%
 o

f
N

o
d
es

 A
cc

es
se

d
 f

ro
m

 I
n
v
L

is
ts

Query

SIM FLT

(b) Epinions

 0.01

 0.1

 1

 10

 100

C
Q

1
C
Q

2
C
Q

3
C
Q

4
C
Q

5
C
Q

6

A
V

G
H

Q
1

H
Q

2
H

Q
3

H
Q

4
H

Q
5

H
Q

6

A
V

G
D

Q
1

D
Q

2
D

Q
3

D
Q

4
D

Q
5

D
Q

6

A
V

G

Q
u
er

y
 T

im
e

(s
ec

)

Query

SIM FLT

(c) Email

 0.01

 0.1

 1

 10

 100

C
Q

1
C
Q

2
C
Q

3
C
Q

4
C
Q

5
C
Q

6

A
V

G
H

Q
1

H
Q

2
H

Q
3

H
Q

4
H

Q
5

H
Q

6

A
V

G
D

Q
1

D
Q

2
D

Q
3

D
Q

4
D

Q
5

D
Q

6

A
V

G

Q
u
er

y
 T

im
e

(s
ec

)

Query

SIM FLT

(d) Epinions

Figure 3.10 Comparison of pruning techniques SIM and FLT on Email and
Epinions.

examine their effect on the graph matching performance. To this end, we run the

procedures for node pre-filtering and double simulation to prune nodes from the

inverted lists used by the queries. After the filtering, both procedures proceed in

the same way, building a (candidate) answer graph based on the pruned inverted lists

in a top-down manner. As in the previous experiments, they are referred to as FLT

and SIM, respectively. Figure 3.10 reports on the results.

Figures 3.10(a) and 3.10(b) show the percentage of nodes from the inverted

lists left for evaluating each query after the pruning processes of SIM and FLT are

applied to the input inverted lists of Email and Epinions, respectively. We observe

that for direct-only (resp. hybrid) queries, FLT leaves up to 54× (resp. 3×) and 20×

48

(resp. 2×) more nodes than SIM on Email and Epinions, respectively. This confirms

that the node pruning power of double simulation is significantly higher than that of

pre-filtering, for direct edge-only and hybrid queries. Both procedures leave almost

the same number of nodes for evaluating reachability edge-only queries. The reason

for the inferior performance of pre-filtering is that as it is designed to prune nodes

for reachability edge-only queries, it misses nodes violating the child relationships in

the data graph.

Figures 3.10(c) and 3.10(d) report on the elapsed time of the two algorithms

on evaluating different types of queries on Email and Epinions, respectively. We

observe that for direct edge-only (resp. hybrid) queries, SIM outperforms FLT by

around 4× (resp. 5×) and 2.8× (resp. 2.6×) on the average on Email and Epinions,

respectively. On reachability-only queries, FLT outperforms SIM by about 0.96×

and 0.15× on Email and Epinions, respectively. This is due to the fact that the

pre-filtering procedure identifies redundant nodes on any type of query by traversing

the input data graph two times and does not require a reachability index. In contrast,

the method based on double simulation needs a reachability index to check the

connectivity between two data graph nodes whose corresponding query nodes are

linked with a reachability edge. A reachability index like the BFL indexing scheme

we used in our implementation might require traversing the data graph. Hence double

simulation may incur more overhead than pre-filtering in identifying redundant nodes

when queries with reachability edges are involved. However, the double simulation

method has higher pruning power for direct edge-only and hybrid queries and this

speeds up the answer graph construction process for this type of queries. This explains

the time differences between SIM and FLT for query evaluation.

Figures 3.10(c) and 3.10(d) report on the elapsed time of the two algorithms

on evaluating different types of queries on Email and Epinions, respectively. We

observe that for direct edge-only (resp. hybrid) queries, SIM outperforms FLT by

49

 20

 30

 40

 50

 60

 70

 80

SIM-TD SIM-DP BUP-TD BUP-DP EJ

%
 o

f
T

o
ta

l
E

v
al

u
at

io
n
 T

im
e

Algorithm

Match Enumerate

(a) Email

 20

 30

 40

 50

 60

 70

 80

SIM-TD SIM-DP BUP-TD BUP-DP EJ

%
 o

f
T

o
ta

l
E

v
al

u
at

io
n
 T

im
e

Algorithm

Match Enumerate

(b) Epinions

Figure 3.11 Percentage of elapsed time of matching and enumeration over total
time evaluating hybrid queries on Email and Epinions.

around 4× (resp. 5×) and 2.8× (resp. 2.6×) on the average on Email and Epinions,

respectively. On reachability-only queries, FLT outperforms SIM by about 0.96×

and 0.15× on Email and Epinions, respectively. This is due to the fact that the

pre-filtering procedure identifies redundant nodes on any type of query by traversing

the input data graph two times and does not require a reachability index. In contrast,

the method based on double simulation needs a reachability index to check the

connectivity between two data graph nodes whose corresponding query nodes are

linked with a reachability edge. A reachability index like the BFL indexing scheme

we used in our implementation might require traversing the data graph. Hence double

simulation may incur more overhead than pre-filtering in identifying redundant nodes

when queries with reachability edges are involved. However, the double simulation

method has higher pruning power for direct edge-only and hybrid queries and this

speeds up the answer graph construction process for this type of queries. This explains

the time differences between SIM and FLT for query evaluation.

Matching Time vs. Result Tuple Enumeration time. In this experiment,

we evaluate the six hybrid queries on Email and Epinions using the five algorithms

SIM-TD, SIM-DP, BUP-TD, BUP-DP, and EJ. Node prefiltering was applied in all

50

cases. Unlike previous experiments, we did not limit the query evaluation time by

restricting the number of result tuples returned. We break down the evaluation time

of each query into two parts: the matching time (pruning inverted lists, constructing

the candidate answer graph and generating query plans—the latter for EJ only) and

the result tuple enumeration time, and compare their respective ratio over the total

evaluation time. Figure 3.11 reports on the the average matching time and the average

enumeration time for each algorithm under comparison. Note that not all the six

queries can be solved by EJ, BUP-DP, and SIM-DP due to an out-of-memory error.

For instance, on Email, EJ failed on HQ1, HQ4 and HQ6.

A general trend in Figure 3.11 is as follows: (1) on all the queries that EJ can

solve, EJ spends most of its time on the matching phase, which computes matches

for each query edge; and (2) both SIM and BUP generally take more time on the

enumeration phase when using the DP method.

Comparison with Neo4j. In this experiment, we compared SIM-TD with the

most popular graph DBMS Neo4j on evaluating pattern queries. Cypher, Neo4j’s

query language, uses patterns to match desired graph structures. However, Cypher

does not offer node reachability semantics for reachability edges in a query pattern.

Instead, Cypher adopts path finding semantics: consider a query pattern Q with a

reachability edge (p,q). Cypher finds not only the matches of Q but also all the paths

from the image of p to the image of q in each query match. This, of course, penalizes

Cypher in pattern matching compared to algorithms that adopt node reachability

semantics. For a fair comparison of the pattern evaluation times, we implement the

node reachability semantics in Cypher using the Neo4j APOC (Awesome Procedures

On Cypher) procedures. An APOC procedure expands to subgraph nodes reachable

from the start node following relationships to max-level adhering to specified label

filters [66].

51

Like EJ, Neo4j uses binary joins to evaluate pattern queries. We used Neo4j

v.4.2.1 and expressed the queries of the aforementioned three query sets (see Section

3.5.1) in Cypher. Both SIM-TD and Neo4j were configured to find all the query

matchings. The timeout was set to be 1 hour.

Table 3.4 shows the results on the Email graph. We denote by CQi, DQi,

and HQi, direct-edge-only, reachability-edge-only, and hybrid queries, respectively

(Figure 3.4). As Neo4j was unable to solve any hybrid or reachability edge-only

query within 1 hour on the original Email graph, we used only 30k-sized and 3k-sized

Email graphs, respectively, to compare the query time of the two approaches on

evaluating these types of queries. As one can see in Table 3.4, SIM-TD is significantly

faster than Neo4j, even by orders of magnitude in many cases. This result is

even more pronounced for dense queries or queries with reachability relationship

constraints. This clearly demonstrates the advantage of our proposed new framework

for evaluating different types of pattern queries on graphs as well as the need to extend

Neo4j with efficient reachability query evaluation support [67]. We nevertheless

note that Neo4j is a full-fledged graph database system with many functions that

our prototype implementation does not support, and this may also account for the

performance gap between our framework and Neo4j.

52

Table 3.4 Runtime (sec) of SIM-TD and Neo4j Evaluating Different Types of
Queries on the Email Graph

CQ1 CQ2 CQ3 CQ4 CQ5 CQ6

Email SIM-TD 0.05 0.09 0.04 0.07 0.06 0.07

(|V |=265k) Neo4j 0.32 0.35 0.56 1.02 0.33 12.35

HQ1 HQ2 HQ3 HQ4 HQ5 HQ6

Email SIM-TD 0.33 0.1 0.12 0.51 0.08 1.2

(|V |=30k) Neo4j 83 5.68 37.6 738.3 72.1 793

DQ1 DQ2 DQ3 DQ4 DQ5 DQ6

Email SIM-TD 0.06 0.16 0.32 0.16 0.52 1.83

(|V |=3k) Neo4j 11.74 126.9 677 656.6 1779 >1 hour

53

CHAPTER 4

EVALUATING HYBRID GRAPH PATTERN QUERIES USING
SUMMARY GRAPHS

In Chapter 3, we considered tree pattern queries on large data graphs. In Chapter 4,

we extend our approaches for tree pattern queries to graph pattern queries on large

data graphs, with the difference between a tree and a graph being that in a graph,

there is no unique node designated as the root, thus allowing for loop edges. Given

a large directed graph G and a pattern query Q, our goal is to efficiently find the

answer of Q on G. We present a novel approach for efficiently finding homomorphic

matches for hybrid graph patterns, where each pattern edge may be mapped either

to an edge or to a path in the input data, thus allowing for higher expressiveness and

flexibility in query formulation. A key component of our approach is a lightweight

index structure that leverages graph simulation to compactly encode the query answer

search space. The index can be built on-the-fly during query execution and does not

have to persist on the disk. Using the index, we design a multi-way join algorithm to

enumerate query solutions without generating an exploding number of intermediate

results.

4.1 Preliminaries and Problem Definition

We consider graph pattern queries that involve direct and/or reachability edges. The

concepts of data graphs, inverted lists, node reachability, homomorphism, answer,

and occurrence provided in Chapter 3, Section 3.1, are extended to graph pattern

queries.

Definition 4.1.1 (Graph Pattern Query). A query is a graph Q. Every node x in

Q has a label label(x) from L. There can be two types of edges in Q. A direct (resp.

reachability) edge denotes a child (resp. descendant) structural relationship between

54

Figure 4.1 A hybrid graph pattern query Q, a data graph G, a homomorphism
from Q to G, the answer of Q on G, and two summary graphs of Q on G.

the respective two nodes. A graph pattern that contains both direct and reachability

edges is a hybrid graph pattern.

Definition 4.1.2 (Graph Pattern Homomorphism to a Data Graph). Given a graph

pattern Q and a data graph G, a homomorphism from Q to G is a function h mapping

the nodes of Q to nodes of G, such that: (1) for any node x ∈ Q, label(x) =

label(h(x)); and (2) for any edge (x, y) ∈ Q, if (x, y) is a direct edge, (h(x), h(y))

is an edge of G, while if (x, y) is a reachability edge, h(x) ≺ h(y) in G.

Figure 4.1(a,b) shows a homomorphism h of query Q to the data graph G.

Query edges (A1, B2) and (C1, B2) which are direct edges, are mapped by h to an

edge in G. The other edges of Q which are reachability edges are mapped by h to a

path of edges in G (which can possibly consist of just a single edge).

4.2 A Lightweight Index as Compact Search Space

4.2.1 Summary Graph

Given a pattern query Q and a data graph G, we propose the concept of a summary

graph to serve as a search space of the answer of Q on G. The summary graph differs

from the answer graph concept presented in Chapter 3 in that the answer graph is

55

the smallest possible summary graph, such that the answer graph only contains edges

and nodes which participate in the answer, while the more general concept of the

summary graph may contain nodes and edges which do not participate in the answer.

Match Sets. The match set ms(x) of a node x in Q is the inverted list Ilabel(x) of

the label of node x. A match of an edge e = (x, y) in Q is a pair (u, v) of nodes in G

such that label(x) = label(u), label(y) = label(v) and: (a) u ≺ v if e is a reachability

edge, while (b) (u, v) is an edge in G if e is a direct edge. The match set ms(e) of e

is the set of all the matches of e in G.

The match set ms(e) of an edge e = (x, y) on a data graph G can be computed

using the match sets ms(x) and ms(y) along with reachability information on the

nodes of G (if e is a reachability edge), or the adjacency lists for the nodes of G (if e

is a direct edge).

Definition 4.2.1 (Summary Graph). A summary graph of pattern query Q over

data graph G is a k-partite graph GQ where k is the number of nodes in Q. For

every node q ∈ Q, graph GQ has an independent node set, denoted cos(q), such that

os(q) ⊆ cos(q) ⊆ ms(q). Set cos(q) is called the candidate occurrence set of q in GQ.

For every edge eQ = (p, q) in Q, graph GQ has a set cos(eQ) of edges from nodes in

cos(p) to nodes in cos(q) such that os(eQ) ⊆ cos(eQ) ⊆ ms(eQ). Set cos(eQ) is called

the candidate occurrence set of eQ in GQ.

By definition, we can have many summary graphs of a given query Q on data

graph G. Among them, the largest one is called the match summary graph of Q on

G, denoted as Gm
Q , and the smallest one is called the answer summary graph of Q on

G, denoted as Ga
Q. The answer summary graph can also be called the answer graph,

as it is referred to in Chapter 3. For any edge e in Q, the candidate occurrence set

for e in Ga
Q is the occurrence set os(e), while the candidate occurrence set for e in

Gm
Q is the match set ms(e). Figures 4.1(d) and (e), respectively, show the match

56

summary graph and the answer summary graph for query Q on the data graph G in

Figure 4.1(b).

A summary graph GQ losslessly summarizes all the occurrences of Q on G as

shown by the proposition below.

Proposition 1. Let GQ be a summary graph of a pattern query Q over a data graph

G. Assume that there is a homomorphism from Q to G which maps nodes p and q of

Q to nodes vp and vq, respectively, of G. Then, if (p, q) is an edge in Q, (vp, vq) is an

edge of GQ.

By Proposition 1, GQ encodes all the homomorphisms from Q to G. Thus,

it represents a search space of the answer of Q on G. Similarly to factorized

representations of query results studied in the context of classical databases and

probabilistic databases [59], GQ exploits computation sharing to reduce redundancy

in the representation and computation of query results. Besides recording candidate

occurrences sets for the edges of query Q, a summary graph also records how the

edges in the candidate occurrence sets can be joined to form occurrences for query Q.

We later present an algorithm for enumerating the results of Q on G from a summary

graph GQ.

Summary graph vs. other query related auxiliary data structures. A

number of recent graph pattern matching algorithms also use query related auxiliary

data structures to represent the query answer search space [41, 29, 30, 31, 7, 49].

These auxiliary data structures are designed to support searching for (an extension of)

graph simulation [41] or subgraph isomorphisms [29, 30, 31, 7, 49]. Unlike summary

graph, they are subgraphs of the data graph, hence they do not contain reachability

information between data nodes, and consequently, they are not capable of compactly

encoding edge-to-path homomorphic matches.

57

4.2.2 Refining a Summary Graph using Double Simulation

A summary graph GQ can contain redundant nodes and edges, that is, nodes and

edges that are not in the query answer. To further reduce the query answer search

space, we would like to refine a summary graph GQ as much as possible by pruning

redundant nodes and edges. Ideally, we would like to build the answer summary

graph Ga
Q before computing the query answer. However, when Q is a graph which is

not a tree, finding Ga
Q is a NP-hard problem.

Most existing data node filtering methods are either simply based on query

node labels [13, 11], or apply an approximate subgraph isomorphism algorithm [33]

on query edge matches, or use one or more subtrees of the query to filter out data

nodes violating children or parent structural constraints of subtrees [31, 7, 10]. They

are unable to prune nodes violating ancestor/descendant structural constraints of

the input query. While the recent node pre-filtering method [68] can prune nodes

violating ancestor/descendant structural constraints, it is unable to prune data nodes

violating children or parent structural constraints. Moreover, that pruning technique

does not capture the specific structure among those ancestors and descendants.

Inspired by the graph simulation technique used in [69, 63] which constructs a

covering index for queries over graph data, we propose to leverage an extension of

traditional graph simulation [39] to construct a refined summary graph. The refined

summary graph can serve as a compact search space for queries over graphs.

Double simulation. In Chapter 3, we discussed double simulation in the context of

tree pattern queries; now, we will extend double simulation to graph pattern queries.

This definition for double simulation is mostly similar to the definition previously

defined, with slight modifications.

Definition 4.2.2 (Double Simulation). The double simulation FB of a graph pattern

query Q = (VQ, EQ) by a directed data graph G = (V,E) is the largest binary relation

S ⊆ VQ × V such that, whenever (q, v) ∈ S, the following conditions hold:

58

Table 4.1 Forward (F), Backward (B), and Double (FB) Simulation of the Query
Q on the Graph G of Figure 4.1.

q F(q) B(q) FB(q)

A {a1, a2} {a0, a1, a2} {a1, a2}

B {b0, b1, b2} {b0, b2, b3} {b0, b2}

C {c0, c1, c2} {c0, c1, c2} {c0, c1, c2}

1. label(q) = label(v).

2. For each edge eQ = (q, q′) ∈ EQ, there exists v′ ∈ V such that (q′, v′) ∈ S and
(v, v′) ∈ ms(eQ).

3. For each edge eQ = (q′, q) ∈ EQ, there exists v′ ∈ V such that (q′, v′) ∈ S and
(v′, v) ∈ ms(eQ).

For q ∈ VQ, let FB(q) denote the set of all nodes of V that double simulate q.

In Section 4.2.5, we will show how to use FB to construct a refined summary graph

of Q on G.

The double simulation of Q by G is unique, since there is exactly one largest

binary relation S satisfying the three conditions of Definition 4.2.2. This can be

proved by the fact that, whenever two binary relations S1 and S2 satisfy the three

conditions, their union S1 ∪ S2 also satisfies these conditions.

We call the largest binary relation which satisfies the conditions 1 and 2

of Definition 4.2.2 above forward simulation of Q by G, while the largest binary

relation which satisfies conditions 1 and 3 of Definition 4.2.2 above is called backward

simulation. While the double simulation preserves both incoming and outgoing edge

types (direct or reachability) between Q and G, the forward and the backward

simulation preserve only outgoing and incoming edge types, respectively.

Table 4.1 shows the simulations F , B, and FB of the query Q on the graph G

of Figure 4.1. In particular, for the reachability query edge (B,C) of Q, the matches

59

considered for double simulation are (b0, c0), (b0, c1), (b1, c0), (b1, c2), (b2, c0), (b2, c1),

(b2, c2).

4.2.3 A Basic Algorithm for Computing Double Simulation

To compute FB, we present first a basic algorithm called FBSimBas (Algorithm 7).

Algorithm FBSimBas is based on an extension of a naive evaluation strategy originally

designed for comparing graphs of unknown sizes [39, 43]. While the original method

works for edge-to-edge mappings between the given two graphs, FBSimBas allows

edge-to-path mappings from a reachability edge in the pattern graph to a path in the

data graph.

Given a query Q and a data graph G, FBSimBas implements the following

strategy: starting with the largest possible relation between the node sets of Q and

G, it incrementally disqualifies pairs of nodes violating the conditions of Definition

4.2.2. The process terminates when no more node pairs can be disqualified.

More concretely, FBSimBas works as follows. Let FB be an array structure

indexed by the nodes of Q. The algorithm initializes FB by setting FB(q) to be

equal to the match set ms(q) of q, for each q ∈ VQ. The main process consists of

two procedures which iterate on the edges of Q and check the conditions of Definition

4.2.2 in different directions. The first procedure, called forwardPrune, checks the

satisfaction of the forward condition in Definition 4.2.2 by visiting each edge eQ =

(qi, qj) ∈ EQ from the tail node qi to the head node qj. Specifically, forwardPrune

removes each vqi from FB(qi) if there exists no vj ∈ FB(qj) such that (vi, vj) is in

ms(eQ). The second procedure, called backwardPrune, checks the satisfaction of the

backward condition in Definition 4.2.2 by visiting each edge in the opposite direction.

The above process is repeated until FB becomes stable, i.e., no more changes can be

made to FB.

The table of Figure 4.2(b) shows the node pruning steps performed by Algorithm

FBSimBas for the query Q of Figure 4.1(a) on the graph G2. We assume that the

60

Algorithm 7: Algorithm FBSimBas for computing double simulation.
Input : Data graph G, pattern query Q
Output: Double simulation FB of Q by G

1 Let FB be an array indexed by the nodes of Q ;
2 Initialize FB(q) to be ms(q) for every node q in VQ ;
3 repeat
4 forwardPrune() ;
5 backwardPrune() ;
6 until FB has no changes;
7 return FB ;

8 Procedure forwardPrune():
9 for (each edge eQ = (qi, qj) ∈ EQ and each node vqi ∈ FB(qi)) do

10 if (there is no vqj ∈ FB(qj) such that (vqi , vqj) ∈ ms(eQ)) then
11 delete vqi from FB(qi) ;
12 end
13 end

14 Procedure backwardPrune():
15 for (each edge eQ = (qi, qj) ∈ EQ and each node vqj ∈ FB(qj)) do
16 if (there is no vqi ∈ FB(qi) such that (vqi , vqj) ∈ ms(eQ)) then
17 delete vqj from FB(qj) ;
18 end
19 end

61

0

0 1

1

2

2

0

1

3

2

0

1

2

3 4

5

6

7

8 9

(a) Data graph G2

Step FB(A) FB(B) FB(C)

a0 a1 a2 b0 b1 b2 b3 c0 c1 c2

1 ×

2 × × ×

3 × × ×

4 ×

5 ×

6 ×

(b) FBSimBas

Step cs(A) cs(B) cs(C)

a0 a1 a2 b0 b1 b2 b3 c0 c1 c2

1 ×

2 × × ×

3 × × × ×

4 × ×

(c) FBSimDag

Figure 4.2 Node pruning of FBSimBas and FBSimDag for the query Q of Figure
4.1(a) on the graph G2.

edges of Q are considered in the order: (A,B), (A,C), and (B,C). The first column

shows the step number. Odd numbers correspond to Procedure forwardPrune while

even numbers correspond to Procedure backwardPrune. The other three columns

show the nodes pruned at each step from the candidate FB sets for the query nodes

A, B, and C. An ‘×’ symbol indicates that the corresponding node is pruned. Notice

that Q has an empty answer on G. Algorithm FBSimBas detects and prunes all the

redundant nodes and hence Q has an empty summary graph.

4.2.4 Efficiently Computing Double Simulation by Exploiting the Pattern
Structure

Recall that FBSimBas picks an arbitrary order to process/evaluate the query edges.

It has been shown in [40], and also verified by our experimental study, that the order

in which the edges are evaluated has an impact on the overall runtime similar to the

impact of join order on join query evaluation. We would like to explore the pattern

structure to design a more efficient algorithm for computing relation FB for Q by G,

62

which not only converges faster because of a reduced number of iteration passes of

FBSimBas but also reduces the computation cost. In order to do so, we first describe

an algorithm for computing FB for dag pattern queries.

An algorithm for computing FB for dag patterns. Leveraging the acyclic

nature of the dag query pattern, we develop a multi-pass algorithm called FBSimDag

which is based on dynamic programming. As with FBSimBas, FB is initially set to be

the largest possible relation between the nodes sets VQ and V. Unlike FBSimBas which

visits each edge of Q in two directions in each pass, FBSimDag traverses nodes of Q by

their topological order two times, first bottom-up (reverse topological order) and then

top-down (forward topological order). During each traversal, nodes of G violating

the conditions of Definition 4.2.2 are removed from FB. As we will show later, the

bottom-up traversal computes a forward simulation of Q by G, while the top-down

traversal computes a backward simulation ofQ byG. In contrast, FBSimBas traverses

pattern edges in an arbitrary order. The algorithm terminates when no more nodes

can be removed from FB.

Algorithm 8 shows the pseudocode of FBSimDag. The algorithm first invokes

procedure forwardSim to check for nodes vq ∈ FB(q) which satisfy the forward

simulation condition. Procedure forwardSim considers outgoing query edges of q

by traversing nodes of Q in a bottom-up way. When q ∈ VQ is a sink node

in Q, vq trivially satisfies the forward simulation condition. Otherwise, if edge

eQ = (q, qi) ∈ EQ but there is no vi ∈ FB(qi) such that (v, vi) is in ms(eQ), vq

is removed from FB(q).

When the bottom-up traversal terminates, FBSimDag proceeds to do a top-

down traversal of Q using procedure backwardSim. This procedure checks whether

nodes vq ∈ FB(q) satisfy the backward simulation condition by considering incoming

query edges of q. When q ∈ VQ is a source node in Q, vq trivially satisfies the

63

Algorithm 8: Algorithm FBSimDag for computing double simulation.
Input : Data graph G, dag pattern query Q
Output: Double simulation FB of Q by G

1 Lines 1-2 in Algorithm FBSimBas ;
2 repeat
3 forwardSim() ;
4 backwardSim() ;
5 until FB has no changes;
6 return FB ;

7 Procedure forwardSim():
8 for (each q ∈ VQ in a reverse topological order and each vq ∈ FB(q)) do
9 if (∃eQ = (q, qi) ∈ EQ s.t. for no vqi ∈ FB(qi), (vq, vqi) ∈ ms(eQ)

then
10 delete vq from FB(q) ;
11 end
12 end

13 Procedure backwardSim():
14 for (each q ∈ VQ in a topological order and each vq ∈ FB(q)) do
15 if (∃eQ = (qi, q) ∈ EQ s.t. for no vqi ∈ FB(qi), (vqi , vq) ∈ ms(eQ)

then
16 delete vq from FB(q) ;
17 end
18 end

64

backward simulation condition. Otherwise, if edge eQ = (qi, q) ∈ EQ but there is no

vi ∈ FB(qi) such that (vi, v) is in ms(eQ), vq is removed from FB(q).

The above process is repeated until FB stabilizes, i.e., no FB(q), q ∈ VQ, can

be further reduced. When Q is a tree pattern, a single pass is sufficient for FB to

stabilize [44].

The main difference of the two algorithms is that FBSimDag considers query

nodes in a (forward and backward) topological order, whereas FBSimBas considers

query nodes in an arbitrary order. The table of Figure 4.2(c) shows the node pruning

steps performed by Algorithm FBSimDag for the query Q of Figure 4.1(a) on the

graph G2. Comparing the table with that of Figure 4.2(a), one can see that it takes

FBSimDag fewer steps than FBSimBas to converge.

Dag+∆: an efficient FB algorithm. Based on FBSimDag, we design a new FB

algorithm called FBSim. The algorithm first decomposes the input graph pattern Q

into a dag Qdag and a set Ebac of back edges (∆). The main body of the algorithm

has two phases: it first calls FBSimDag to compute FB on Qdag. After that, it calls

FBSimBas on Ebac to update FB. The above process is repeated until FB becomes

stable.

4.2.5 Efficiently Building the Refined Summary Graph

We now present Algorithm BuildSummaryGraph (Algorithm 9) for building a refined

summary graph in two phases: in the node selection phase (line 1), all the summary

graph nodes are obtained by pruning redundant data nodes. This is achieved by

computing the double simulation relation. In the node expansion phase (lines 2-3),

the summary graph nodes are expanded with incident edges to construct the final

summary graph graph. During the summary graph construction, once node vq ∈

cos(q) has been expanded, the outgoing and incoming edges of vq are indexed by

the parents and children of query node q. This allows efficient intersection operations

of adjacency lists of selected nodes in the summary graph graph. These efficient

65

Algorithm 9: Algorithm BuildSummaryGraph for building a refined
summary graph

Input : Data graph G, pattern query Q
Output: Summary Graph GQ of Q on G

1 select() ;
2 for (each edge (qi, qj) ∈ EQ) do
3 expand(qi, qj) ;
4 end
5 return GQ ;

6 Procedure select():
7 Use Algorithm FBSimBas or FBSim to compute FB of Q by G ;
8 Initialize GQ as a k-partite graph without edges having one

independent set cos(q) for every node q ∈ VQ, where cos(q) = FB(q) ;

9 Procedure expand(p, q):
10 for (each vp ∈ cos(p)) do
11 for (each vq ∈ cos(q)) do
12 if ((vp, vq) ∈ ms(eQ), where eQ = (p, q) ∈ EQ) then
13 Connect vp to vq with a directed edge ;
14 end
15 end
16 end

intersection operations are useful in the phase of query occurrence enumeration as we

will show in Section 4.3.

As an example, consider building a refined summary graph for query Q on graph

G in Figure 4.1 using Algorithm 9. After the first phase, we obtain the following

FB relation: FB(A) = {a1, a2}, FB(B) = {b0, b2} and FB(C) = {c0, c1, c2}. The

summary graph generated from the second phase is shown in Figure 4.1(e). The

summary graph has one more edge than the answer summary graph (shown by a

red dashed line), but it has fewer nodes and edges than the match summary graph

(Figure 4.1(d)).

Speedup convergence for simulation computation. As described in Section

4.2.2, the computation of FB terminates only when no more nodes can be pruned

from the candidate occurrence sets of the query nodes during the multi-pass process.

This process can be costly since we need to repeatedly check the candidate occurrence

66

sets of the query nodes. We describe below optimizations to speedup the convergence

of the process.

First, if no change is made to candidate occurrences corresponding to a subquery

of Q in the last pass, then the computation on that subquery for the current pass can

be skipped. To achieve this, we associate with each query node q a flag indicating

whether nodes were pruned from its candidate occurrence set FB(q) during the last

pass. The flags are consulted in the current pass to decide whether the computation

can be skipped.

Second, as aforementioned, the node selection enforces the existence semantics.

A data node v is retained in its candidate occurrence set as long as there exist nodes

in the parent and child node lists that make v satisfy the conditions of Definition

4.2.2. Checking node v in the current pass can be skipped if the nodes guaranteeing

its existence are not removed in the last pass. We therefore design an index on the

nodes in the candidate occurrence sets of the query nodes. Specifically, the index

records for each data node v ∈ FB(q) of query node q those nodes in the candidate

sets of q’s parent and child nodes in Q that guarantee v’s existence in FB(q). The

index structure is maintained throughout the multi-pass process.

4.3 A Multiway Intersection-based Enumeration Algorithm

We now present our graph pattern answer enumeration algorithm, called MJoin,

which is shown in Algorithm 10.

High level idea. Given a query Q and data graph G, relation cos(e) contains

the candidate occurrences of query edge e on G. Conceptually, MJoin produces

occurrences of Q by joining multiple such relations at the same time. Instead of

using standard query plans that join one relation (i.e., query edge) at a time, MJoin

considers a new style of multi-way join plans which join one join key (i.e., query

node in graph terms) at a time. A query-node-at-a-time style join plan considers

67

Algorithm 10: Algorithm MJoin
Input : Graph pattern query Q and the summary graph GQ of Q on G
Output: The answer of Q on G.

1 Pick an order q1, . . . , qn for the nodes of Q, where n = |V (Q)| ;
2 Let t be a tuple where t[i] is initialized to be null for i ∈ [1, n] ;
3 Enumerate(1, t) ;

4 Procedure Enumerate(index i, tuple t):
5 if (i = |V (Q)|+ 1) then
6 return t;
7 end
8 Ni := {qj | (qi, qj) ∈ EQ or (qj, qi) ∈ EQ, j ∈ [1, i− 1]} ;
9 cosi := cos(qi) ;

10 for (every qj ∈ Ni) do
11 cosji := {vi ∈ cosi | (vi, t[j]) ∈ E(GQ) or (t[j], vi) ∈ E(GQ)} ;
12 cosi := cosi ∩ cosji ;
13 end
14 for (every node vi ∈ cosi) do
15 t[i] := vi ;
16 Enumerate(i+ 1, t) ;
17 end

only the distinct join key values if a specific join key value occurs in multiple tuples.

Also, all joins are executed in a pipeline to avoid materializing intermediate results.

Hence, it can avoid enumerating large intermediate results that typically occur with

Selinger-style binary-joins (query-edge-at-a-time joins in graph terms) [70].

This new style multi-way joins are called worst case optimal joins [71] and have

been exploited in recent graph matching algorithms [72, 13, 65]. The main difference

between MJoin and those algorithms lies in the implementation of the new style

multi-way joins. MJoin exploits the summary graph GQ to perform multi-way joins.

We show below how this can be done by multi-way intersecting node adjacency lists

of GQ.

The algorithm. Algorithm MJoin first picks a search order to search solutions.

This is a linear order of the query nodes. A search order heavily influences the query

evaluation performance. We will discuss how to choose a good search order later.

Then, MJoin performs a recursive backtracking search to find occurrences of the

68

query nodes iteratively, one at a time by the given order, before returning any query

occurrences.

More concretely, let’s assume that the chosen search order is q1, . . . , qn. Let

Qi denote the subquery of Q induced by the nodes q1, . . . , qi, i ∈ [1, n]. Algorithm

MJoin calls a recursive function enumerate which searches for potential occurrences

of a single query node qi in each recursive step. The index i of the current query

node is passed as a parameter to enumerate. When i > 0, the backtracking nature of

enumerate entails that a specific occurrence for the subquery Qi−1 has already been

considered in the previous recursive steps. The second parameter of enumerate is a

tuple t of length n, where t[1 : i] is an occurrence of Qi. Initially, i is set to 0 and all

the values of t are set to null.

At a given recursive step i, function enumerate first determines query nodes that

have been considered in a previous recursive step and are adjacent to the current node

qi. These nodes are collected in the set Ni. Let cosi be a node set of qi in GQ, initially

set to be equal to cos(qi). To reduce the size of cosi, for each qj ∈ Ni, enumerate

intersects cosi with the forward adjacency list of t[j] in GQ when (qi, qj) is an edge

of Q, or with the backward adjacency list of t[j] when (qj, qi) is an edge of Q (lines

5-7). If after this process cosi is not empty, function enumerate iterates over the

nodes in cosi (line 8). In every iteration step, a node of cosi is assigned to t[i] (line

9) and enumerate proceeds to the next recursive step (line 10). If cosi is empty or

all the nodes in cosi have been considered, enumerate backtracks to the last matched

query node qi−1, reassigns an unmatched node (if any) from cosi−1 to t[i − 1], and

recursively calls enumerate. In the final recursive step, when i = n+1, tuple t contains

one specific occurrence for all the query nodes and is returned as an occurrence of Q

(line 2).

In our running example, let GQ be the refined summary graph, i.e., the graph

of Figure 4.1(e) including the red dashed edge. Assume the search order of Q is

69

A,B,C. When i = 1, Algorithm MJoin first assigns a1 from cos(A) to tuple t[1],

then recursively calls Enumerate(2, t). The intersection of a1’s adjacency list with

cos(B) is {b0}. Node b0 is then assigned to t[2]. When i = 3, since the intersection of

forward adjacency lists of a1 and b0 with cos(D) is {c0, c1}, MJoin assigns c0 and c1

to t[4], and returns two tuples {a1, b0, c0} and {a1, b0, c2} in that order. Then, MJoin

backtracks till i = 1, assigns the next node a2 from cos(A) to t[1] and proceeds in

the same way. It finally returns another two tuples {a2, b2, c0} and {a1, b0, c2}. Note

that edge (b2, c1) (the red dashed edge in Figure 4.1(e)) is not filtered out by the

double simulation pruning process and its redundancy is detected only after MJoin

is executed.

Search order. A search order σ is a permutation of query nodes that is chosen for

searching query solutions. The performance of a query evaluation algorithm is heavily

influenced by the search order [73]. As the number of all possible search orders is

exponential in the number of query nodes, it is expensive to enumerate all of them.

The search order σ for query Q is essentially a left-deep query plan [33]. The

traditional dynamic programming technique would take O(2|VQ|) time to generate an

optimized join order. This is not scalable to large graph patterns, as verified by our

experimental evaluation in Section 4.4.

Therefore, we use a greedy method to find a search order for Q leveraging

statistics of GQ. Our greedy method is based on the join ordering strategy proposed

in [33]. We refer to this method as JO. JO selects as a start node of σ a node q in

VQ with the smallest candidate occurrence set cos(q) in GQ among the nodes in VQ.

Subsequently, JO iteratively selects as the next node in σ a node q′ ofQ which satisfies

the following two conditions: (a) q′ is a new node adjacent in Q to some node in σ, and

(b) cos(q′) is the smallest among all the nodes q′ satisfying condition (a). The rationale

here is to enforce connectivity in order to reduce unpromising intermediate results

caused by redundant Cartesian products [30] as well as to minimize (estimated) join

70

costs. Different from the original method which uses the cardinality of the inverted

lists of the data graph G [33], JO uses the cardinality of the candidate occurrence sets

of a refined summary graph GQ, which provide a better cost estimation for generating

an effective search order.

In our experiments, we also implemented a well known ordering method called

RI [34]. Unlike JO, RI generates σ based purely on the topological structure of

the given query, independently of any target data graph. The rationale of RI is to

introduce as many edge constraints as possible and as early as possible in the ordering.

Roughly speaking, vertices that are highly connected with vertices previously present

in the ordering tend to come early in the final ordering. In our enumerate procedure,

edge constraints will translate into intersection operations to produce candidate

occurrence sets for the query nodes under consideration. Intuitively, the search order

chosen by RI is likely to reduce the computation cost, since it tends to ensure the

search space of enumerate would be reduced significantly after each iteration. We

examine this intuition and compare the effectiveness of RI with JO for different

workloads in the experiments.

4.4 Experimental Evaluation

We conduct extensive performance studies to evaluate the effectiveness and efficiency

of our proposed summary graph-based graph pattern matching approach.

4.4.1 Experimental Setting

Setup. We compare the performance of our approach, abbreviated as GM, with the

join-based approach (JM) [15, 13, 11], and the tree-based approach (TM) [26, 30,

31, 7]. Among all the existing algorithms in JM and TM, only the contributions

[15] and [26] are capable of directly finding homomorphisms of hybrid graph pattern

queries on data graphs. As the source code of [15] and [26] are not publicly available,

we implemented the algorithms described in [15] and [26], abbreviated as JM and

71

TM, respectively, in the plots. For the TM approach, we implemented the recent

algorithm for evaluating tree patterns on graphs described in [44], which has been

shown to outperform other existing algorithms. In our implementation, we applied

the node pre-filtering technique described in [22, 26] to both approaches, JM and TM.

For checking node reachability in the data graph, all three algorithms under

comparison use a recent efficient indexing scheme, called Bloom Filter Labeling (BFL)

[20], which was shown to greatly outperform most existing schemes [20].

Our implementation was coded in Java. All the experiments reported were

performed on a 64-bit Linux workstation equipped with an Intel(R) Xeon(R) processor

(3.5GHz) and 32GB RAM.

Datasets. We ran experiments on six real-world graph datasets from the Stanford

Large Network Dataset Collection which have been used extensively in previous works

[8, 31, 9, 65]. The datasets have different structural properties and come from a

variety of application domain: biology, social networks, and communication networks.

Table 4.2 lists the properties of the datasets.

Queries. For the three biology datasets hu, hp and yt in Table 4.2, we used

randomly generated queries that were originally used in [9] for finding subgraph

isomorphisms. We modified those queries by turning query edges with 50% probability

into reachability edges. The number of nodes of the queries ranges from 4 to 20 for

hu, and from 4 to 32 for hp and yt.

For the other three datasets of Table 4.2, we used designed queries. We

generated 20 graph pattern query templates, shown in Figure 4.3. These query

templates involve direct and reachability edges. They have various and complex

structures. Instances (with only reachability or only direct edges) of many of them

were used in previous work [15, 11]. The number associated with each node of a query

template denotes the node id. Query instances are generated by assigning labels to

nodes. We group the 20 query templates into four classes: acyclic, cyclic, clique, and

72

Table 4.2 Key Statistics of the Graph Datasets Used

Domain Dataset |V | |E| |L| davg

Biology Yeast (yt) 3.1K 12K 71 8.05

Human (hu) 4.6K 86K 44 36.9

HPRD (hp) 9.4K 35K 307 7.4

Social Epinions (ep) 76K 509K 20 6.87

DBLP (db) 317K 1049K 20 6.62

Communication Email (em) 265K 420K 20 2.6

HQ0

HQ2 HQ3 HQ4 HQ5

HQ6 HQ7 HQ8

HQ9 HQ10HQ11 HQ12

HQ13 HQ14 HQ15 HQ16

HQ17

HQ18

HQ19

HQ1

Figure 4.3 Categorized graph pattern queries.

combo patterns. We call a graph pattern query acyclic if its corresponding undirected

graph is acyclic, and cyclic otherwise. A pattern is called combo if its undirected graph

contains more than two cycles. A pattern is called clique if its undirected graph is

complete.

Metrics. We measured the runtime of individual queries in a query set. For query

listing, this includes two parts: (1) the matching time, which consists of the time

spent on filtering vertices, building auxiliary data structures such as summary graphs

73

(summary graphs), and generating query plans (or search order), and (2) the result

enumeration time, which is the time spent on enumerating occurrences. The number

of occurrences for a given query on a data graph can be quite large. Following usual

practice [31, 10, 9], we terminated the evaluation of a query after finding a limited

number of matches (this number was set to 107 in the experiments) covering as much

of the search space as time allowed. We stopped the execution of a query if it did

not complete within 10 minutes, so that the experiments could be completed in a

reasonable amount of time. We recorded the elapsed time of these stopped queries as

10 minutes.

4.4.2 Time Performance

We run this experiment to compare the time performance of the three algorithms JM,

TM, and GM on evaluating categorized query instances of pattern templates from

Figure 4.3 as well as larger random graph pattern queries on realworld datasets.

Categorized graph patterns. Figure 4.4(a) and 4.4(b) shows the performance

of GM against JM and TM for categorized graph pattern queries on em and ep

data graphs, respectively. We omit the other bigger data graphs because JM and

TM cannot compute the queries either due to an out-of-memory error or due to an

extensively long execution time (hours). The figures show the results of three queries

from each of the acyclic, cyclic, clique, and combo pattern classes.

The overall best performer is our approach GM, which outperforms JM and TM

by up to two and three orders of magnitude, respectively. Both TM and JM were

unable to solve all the queries either because of timeout or out-of-memory errors.

In particular, TM has the worst performance on the acyclic query HQ5 and the

combo patterns. Unlike GM which evaluates the graph pattern directly, TM works

by evaluating a tree query of the original graph query. For each tuple of the tree query,

74

it checks the non-tree edges for satisfaction. Hence, its performance is enormously

affected when the number of tree solutions is very large.

JM performs badly especially on cyclic patterns and clique patterns. It could

not compute HQ14 on em because of an out-of-memory error (Figure 4.4(a)). For

these types of queries, JM will typically perform a large amount of computations

generating redundant intermediate results.

Larger graph patterns. Figure 4.5(a), 4.5(b), and 4.5(c) show the results of

evaluating five random hybrid queries on the graphs hp, yt and hu, respectively.

The x-axis represents the number of nodes of each query, and ranges from 4 to 32.

GM again significantly outperforms TM and JM. It is able to solve all the

queries, whereas both TM and JM fail on several queries. JM had a high percentage

of unresolved cases on queries with more than 10 nodes. In three cases, JM reports

an out-of-memory error due to the large number of redundant intermediate results

generated during the query evaluation. Another reason of the inefficiency of JM is

the join plan selection. As described in [15], in order to select an optimized join plan,

JM uses dynamic programming to exhaustively enumerate left-deep tree query plans.

For queries with more than 10 nodes, the number of enumerated query plans can be

huge.

TM has relatively good performance on hp, because it has small candidate

tuples to compute; but it failed for more than half of the times on the dense dataset

hu whose average node degree is 36.9 (Table 4.2).

4.4.3 Scalability

Varying data labels. In this experiment, we examine the impact of the total

number of distinct graph labels on the performance of the algorithms in comparison.

We produced four versions of the em graph where the number of labels increases from

5 to 20 (the size of the graph is fixed). On these versions of em, we evaluated one set

of 20 hybrid query instances of the query templates shown in Figure 4.3.

75

 0.1

 1

 10

 100

 1000

H
Q 0

H
Q 3

H
Q 5

H
Q 6

H
Q 8

H
Q 17

H
Q 11

H
Q 12

H
Q 19

H
Q 10

H
Q 14

H
Q 16

Q
u
e
ry

 T
im

e
 (

se
c
)

GM TM JM

ComboCliqueCycAcyc

(a) em

 0.1

 1

 10

 100

 1000

H
Q 0

H
Q 3

H
Q 5

H
Q 6

H
Q 8

H
Q 17

H
Q 11

H
Q 12

H
Q 19

H
Q 10

H
Q 13

H
Q 16

Q
u
e
ry

 T
im

e
 (

se
c
)

GM TM JM

ComboCliqueCycAcyc

(b) ep

Figure 4.4 Performance comparison of GM with TM and JM using the categorized
graph pattern queries.

 0.01

 0.1

 1

 10

 100

 1000

4N 8N 16N 24N 32N

Q
u
e
ry

 T
im

e
 (

se
c
)

GM TM JM

(a) hp

 0.01

 0.1

 1

 10

 100

 1000

4N 8N 16N 24N 32N

Q
u
e
ry

 T
im

e
 (

se
c
)

GM TM JM

(b) yt

 0.1

 1

 10

 100

 1000

4N 8N 12N 16N 20N
Q

u
e
ry

 T
im

e
 (

se
c
)

GM TM JM

(c) hu

Figure 4.5 Performance comparison of GM with TM and JM using larger graph
pattern queries.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 6 8 10 12 14 16 18 20

Q
ue

ry
 T

im
e

(s
ec

)

Number of Labels in Data

GM
TM
JM

(a) HQ2

 0.1

 1

 10

 100

 1000

 6 8 10 12 14 16 18 20

Q
ue

ry
 T

im
e

(s
ec

)

Number of Labels in Data

GM
TM
JM

(b) HQ4

 0.1

 1

 10

 100

 1000

 6 8 10 12 14 16 18 20

Q
ue

ry
 T

im
e

(s
ec

)

Number of Labels in Data

GM
TM
JM

(c) HQ7

Figure 4.6 Elapsed time of queries on em when increasing the number of labels.

Figure 4.6 reports on the query time of the three algorithms on the queries

HQ2, HQ4, and HQ7. The other queries gave similar results in our experiments. We

observe that the execution time of the algorithms tends to increase while decreasing

76

 0.01

 0.1

 1

 10

 100

 1000

 0 50 100 150 200 250 300

Q
ue

ry
 T

im
e

(s
ec

)

Number of Nodes in Data (x1000)

JM TM GM

(a) HQ8

 0.01

 0.1

 1

 10

 100

 1000

 0 50 100 150 200 250 300

Q
ue

ry
 T

im
e

(s
ec

)

Number of Nodes in Data (x1000)

JM TM GM

(b) HQ12

Figure 4.7 Elapsed time on increasingly larger subsets of dp.

the total number of graph labels. This is reasonable since the average cardinality of

the input label inverted lists in a graph increases when the number of distinct labels

in the graph decreases.

GM has the best performance in all the cases. While TM has comparable

performance with GM on the tree pattern query HQ2, it is outperformed by GM

by several orders of magnitude compared to the other graph pattern queries. In

particular, it could not complete within 10 minutes the evaluation of HQ4 on all four

versions of em. JM is up to 13× slower than GM for HQ2, HQ4, and HQ7.

Varying graph sizes. In this experiment, we evaluated the scalability of the three

algorithms as the data set size grows. We recorded the elapsed query time on

increasingly larger randomly chosen subsets of the DBLP data. Figure 4.7 shows

the results of the three algorithms evaluating instantiations of the query templates

HQ8 and HQ12 shown in Figure 4.3. The other queries gave similar results in our

experiments. As expected, the execution time for all algorithms increases when the

total number of graph nodes increases. GM scales smoothly compared to both TM

and JM for evaluating the two queries.

4.4.4 Effectiveness of New Framework

In this subsection, we evaluate the effectiveness of our proposed techniques and

strategies for reducing the overall querying time.

77

 1

 10

HQ3 HQ5 HQ6 HQ10 HQ11 HQ14 HQ16 HQ17

B
u
il

d
in

g
 T

im
e

(s
ec

)

DagMap
Dag
Bas

Figure 4.8 Simulation relation building time on em.

Simulation relation construction. We compare three methods to construct the

double simulation relation FB. The first one, denoted here as Bas, is the basic

algorithm described in Subsection 4.2.3. The second one, denoted as Dag, is described

in Subsection 4.2.4. This method explores the pattern structure to construct FB, thus

it can converge faster by reducing the number of iteration passes of Bas. The third

one, called DagMap, applies the optimization techniques described in Subsection 4.2.5

to achieve further speedup on top of Dag.

Figure 4.8 shows the running time of the three methods when evaluating hybrid

queries from different categories using GM on the data graph em. As we can see,

DagMap consistently outperforms the other two and Dag comes the next.

Summary graph size. In this experiment, we examine the size of summary graph

graphs achieved by different query evaluation methods. As usual, the size of a graph

is measured by the total number of nodes and edges—the smaller the size of the

summary graph achieved, the better. We design two variants of GM referred to here

as GM-F and GM-T. Unlike GM, GM-F does not compute the double simulation

FB, but only applies node pre-filtering to prune nodes from inverted lists. Then, it

builds a summary graph based on the pruned inverted lists. GM-T first transforms

the graph pattern query into a tree query and builds a refined summary graph for the

tree query. A similar procedure for evaluating pattern queries is also used in [30, 31].

78

 0.01

 0.1

 1

 10

 100

HQ5 HQ10 HQ12 HQ17 HQ19

%
 o

f
D

at
a

G
ra

p
h
 S

iz
e

GM
GM-T
GM-F

(a) Summary Graph Size (b) Query time breakdown

Figure 4.9 Summary graph size and query time breakdown on ep.

We compare the sizes of the summary graph graphs generated by GM, GM-T and

GM-F for different queries on data graphs. Figure 4.9(a) reports on the results for

evaluating queries on the data graph ep. The Y-axis shows the summary graph graph

size as a percentage of the input data graph size.

Filtering and refinement reduce the size of summary graph significantly. In all

cases, GM generates the smallest summary graph graph, with the average percentage

over all 20 queries on ep being around 0.4%. Notice that query HQ19 has an empty

answer on ep, and this case is detected by GM at an early stage of the query evaluation.

The average percentage is around 4.2% for GM-F. This demonstrates that the double

simulation technique has much better pruning power than the node pre-filtering. On

HQ17 and HQ19, the summary graph size of GM-T is around 45× and 10× that of

GM-F, respectively. In the rest of the cases, however, the former is much smaller

than the latter.

Summary graph benefit and overhead. The overhead for constructing and using

a refined summary graph for query result enumeration is insignificant compared to its

benefits. To experimentally verify this, we design two variants of GM. One is GM-F

introduced above. The other one is called GM-N. Variant GM-N does not construct

a summary graph but uses the simulation relation FB to directly compute the query

79

occurrences. As shown in Figure 4.9(b), query result enumeration by GM with a

refined summary graph (including the computation of the simulation relation and the

overhead for the construction of the summary graph), is up to 3 orders of magnitude

faster than query result enumeration by GM-F with an unrefined summary graph

as well as query result enumeration by GM-N using directly a simulation relation.

This speedup comes from several factors including reduced search space, filtering and

refinement, and computation sharing provided by the summary graph.

Search order. In this experiment, we compare the effectiveness of four search

ordering strategies for homomorphic pattern matching: JO, BJ , RI, and TD. JO

is described in Section 4.3. BJ finds an optimal left-deep join plan of the given

query through dynamic programming. Unlike JO and BJ , RI [34] generates a search

order based only on the topological structure of the given query. Roughly speaking,

vertices that are highly connected with vertices previously present in the ordering

tend to come early in the final ordering produced by RI. TD works on dag queries.

It considers the query nodes according to their topological order in the query graph.

An ordering strategy similar to this one is adopted in [31]. We integrate JO, RI, BJ

and TD with Algorithm MJoin which is used by the approach GM for enumerating

query occurrences (Section 4.3).

Table 4.3 shows the experimental results comparing the four ordering strategies

for evaluating hybrid queries on graph em and ep. Except for query HQ15 on graph

em, JO gives the best performance and BJ comes next. BJ is able to find a good

query plan, but it does not scale to large queries with tens of nodes [73]. RI does not

perform well on most of these homomorphically matched hybrid queries, even though

it is found to be an effective technique in recent research on subgraph isomorphism

matching [9]. Comparative results between JO and RI for evaluating direct-edge only

queries are shown in Subsection 4.4.5. Unlike JO which uses cardinalities of node sets

in summary graph graphs to do cost estimation, RI produces a search order based

80

Table 4.3 Effectiveness of Search Ordering Methods.

Query em ep

RI JO BJ TD RI JO BJ TD

HQ2 3.64 1.88 2.45 4.43 7.00 2.02 2.09 13.54

HQ4 3.06 1.05 1.05 5.95 4.67 0.67 0.88 7.98

HQ15 1.33 7.32 1.79 13.91 6.33 6.66 6.33 272.23

HQ18 7.07 0.99 1.36 7.97 441.94 30.18 38.15 420.96

exclusively on the topological structure of the given query, independently of the input

data graph. TD gives the worst performance in most cases.

This experimental result demonstrates that an effective search ordering strategy

for homomorphic pattern matching should take into account both the query graph

structure and the data graph statistics.

4.4.5 Comparison to Systems and Engines

We compare the performance of GM with the graph query engine RapidMatch [10]

and the graph DBMS Neo4j. All these engines/systems were designed to process

graph pattern queries whose edges are mapped with homomorphisms to edges in the

data graph (therefore, they do not need a reachability index). Our approach is more

general since at allows edge-to-edge and edge-to-path homomorphic mappings.

Comparison with RapidMatch. RapidMatch [10] (abbreviated as RM here) is

a recent graph query engine which outperforms the state of the art graph matching

approaches CFL [30], DAF [31] and GraphFlow [8, 11]. The source code of RM1is

publicly available at GitHub. RM is a tree-based graph query engine that adopts

worst-case optimal (WCO) style joins in its result enumeration. It proposes a

sophisticated search order method based on the nucleus decomposition of query

81

10
1

10
2

10
3

10
4

10
5

8N 12N 16N 20N AVG

M
ea

n
 o

f
Q

u
er

y
 T

im
e

(m
s)

GM-JO GM-RI RM

(a) Dense query sets

10
0

10
1

10
2

10
3

10
4

8N 12N 16N 20N AVG

M
ea

n
 o

f
Q

u
er

y
 T

im
e

(m
s)

GM-JO GM-RI RM

(b) Sparse query sets

Figure 4.10 Performance comparison of GM with RM for large queries on the
undirected Human data graph.

graphs. To improve its enumeration efficiency, RM adopts several optimizations,

including advanced set intersection methods [72, 74], the intersection caching [8, 11],

and the failing set pruning [31].

We compare RM with two variants of GM, denoted as GM-JO and GM-RI,

which use JO and RI as their respective search order method. We use the

recommended configuration for RM1 to compute homomorphic matches. We follow

also the experimental setting described in [10] by setting the time limit at 5 minutes

and the max. number of matches at 105. We run the experiment on the data graphs

and query workloads used in [10]. RM considers undirected graphs. Our approach,

GM is more general as it considers directed graphs. In order to compare with RM,

we replace each edge of the undirected data graph by two directed edges in opposite

direction and we use this graph as input to GM for the experiment. Each data graph

has one dense query set (the degree of each query node is at least 3) and one sparse

query set (the degree of each query node is less than 3). Each set contains 200

connected query graphs with the same number of nodes.

Figures 4.10(a) and 4.10(b) present the mean of query time on different query

sizes of dense and sparse query sets, respectively, on the Human data graph. We

choose the Human data graph since it is a real dataset and it is very dense and most

of its nodes have the same label making the graph matching particularly challenging

1https://github.com/RapidsAtHKUST/RapidMatch, Last accessed on 2022/09/20.

82

[9, 10]. The number of nodes for queries on the graph varies from 8 to 20. Query sets

with i nodes are denoted as iN. For the dense query sets, GM-JO has, overall, the

best performance. It runs more than 2 times faster than RM on average. GM-RI runs

slightly slower than RM on average. In contrast, for the sparse query sets, GM-JO

gives the worst performance, while GM-RI achieves up to two order of magnitude

average speedup over the other two algorithms.

When our algorithm runs much slower than competing algorithms, it is because

it generates ineffective search orders for a number of queries. Both RI and the search

order method of RM prioritize the dense sub-structure of a query Q. When this

assumption in the heuristic search rule does not hold on the workloads, they can

generate ineffective searching orders. JO performs well on dense queries, but worse

on sparse ones because the cardinality differences of candidate occurrence sets among

query nodes tend to be very small for sparse queries, thus making it difficult to choose

an effective search order. Advanced subgraph cardinality estimation methods [75] can

help JO to improve its search order quality.

In summary, our experimental results on the Human graph demonstrate that

GM with two simple search order methods beats the highly optimized RM that comes

with a sophisticated search order method, in most tested workloads, despite the fact

that it is more general since it considers directed data graphs and allows also for

edge-to-path mapping.

Neo4j comparison. In this experiment, we compared GM with the most popular

graph DBMS Neo4j on evaluating hybrid pattern queries. Cypher, Neo4j’s query

language, uses patterns to match desired graph structures. The pattern matching

in Cypher adopts the path finding semantics, whereas we adopt the path existence

semantics for pattern matching. For a fair comparison on pattern evaluation,

we enforce the path existence semantics in Cypher using Neo4j APOC (Awesome

Procedures On Cypher) procedures [66].

83

Table 4.4 Runtime (sec) of Neo4j and GM for Hybrid Pattern Queries on a Fragment
of em Graph with 30K Nodes

Alg. Acyc Cyc Clique Combo

HQ0 HQ3 HQ5 HQ6 HQ8 HQ17 HQ11 HQ12 HQ19 HQ10 HQ13 HQ16

Neo4j 51.952 457.034 > 3600 60.119 35.86 118.709 54.104 > 3600 > 3600 319.064 > 3600 476.426

GM 0.29 0.22 0.32 0.09 0.05 0.02 0.02 0.02 0.04 0.04 1.31 0.16

We used Neo4j v.4.2.1 and expressed queries in Cypher. Both GM and Neo4j

were configured to find all the query matchings. The timeout was set to one hour. The

results on a fragment of em graph with 30K nodes are shown in Table 4.4. We note

that Neo4j was unable to finish within 1 hour for all the tested queries on the original

em graph. GM is significantly faster than Neo4j, in most cases by orders of magnitude.

These results demonstrate the advantage of our proposed approach for evaluating

pattern queries on graphs as well as the need to extend Neo4j with efficient reachability

query evaluation support [67]. We however note that Neo4j is a full-fledged graph

database system with many functions that our prototype implementation does not

support, and this may also account for the performance gap between our framework

and Neo4j.

84

CHAPTER 5

ANSWERING GRAPH PATTERN QUERIES USING COMPACT
MATERIALIZED VIEWS

In Chapter 4, we introduced the concept of a summary graph. In this chapter, we use

the summary graph as a compact representation of an intermediate result for query

answers, which is stored for use in future query cases. Specifically, we refer to this

intermediate result as a view materialization.

Answering queries using materialized views is a well known technique for

improving the performance of query evaluation and for evaluating queries without

accessing the base data, in particular in a distributed environment [45, 46, 47, 48, 49].

The idea is to pre-compute and store the answers of views and to rewrite an incoming

query using exclusively the view materializations, if the query language is closed [45],

or to otherwise provide a process for computing the query answer from the view

materializations [46]. Materialized views can also be effectively used for addressing

the data scalability problem of queries. In this dissertation, we adopt a novel approach

for materializing graph pattern views over data graphs, which builds off algorithms

that we introduced in Chapter 4.

5.1 Preliminaries and Problem Definition

In Chapter 4, we defined homomorphisms between a graph pattern and a data graph.

To define which views can be used for a query, homomorphisms can be also defined

between query graph patterns as follows.

Definition 5.1.1 (Homomorphism between Graph Patterns). Given a graph pattern

V and another graph pattern Q, a homomorphism from V to Q is a function h

mapping the nodes of V to nodes of Q, such that: (1) for any node x ∈ V , label(x)

85

= label(h(x)); and (2) for any edge (x, y) ∈ V , if (x, y) is a direct edge, (h(x), h(y))

is a direct edge of Q, while if (x, y) is a reachability edge, h(x) ≺ h(y) in Q.

Note that if (x, y) is a reachability edge in V , the path (of direct and/or

reachability edges) in Q from h(x) to h(y), can be a single direct or reachability

edge.

Views and View Materializations. A view is a named query. The class of views

is not restricted. Any type of query can be a view. We materialize views on a data

graph by storing a summary graph of this view.

Definition 5.1.2 (View Materialization). The materialization of a view V on a data

graph G is a summary graph of V on G. A view is characterized as materialized if it

has a materialization.

A summary graph constitutes a search space for the view answer and its matches

can be enumerated by applying multiway joins while traversing the graph.

To show how views can have a homomorphism to a query, and get a sense of

how view materializations are related to query summary graphs, we first show an

example of a query with a homomorphism to a data graph. Figure 5.1(a,b) depicts

a homomorphism h of query Q to the data graph G. Figures 5.2(a) and (b) show a

query Q and a view V1 with a homomorphism from V1 to Q.

Figure 5.1(c) displays the answer of a query Q on a data graph G, and Figure

5.1(d) shows a summary graph GQ for the query Q of Figure 5.1(a). Then Figure

5.2(c) shows a summary graph for the query (view) V2 of Figure 5.2(b). The summary

graph of Figure 5.2(c) is also the materialization of view V2. One can see that this

summary graph is the answer graph of V2. Figure 5.2(c) bears many similarities to

Figure 5.1(d), the summary graph of the query. Later in this chapter, we will show

how a view’s materializations, for a view which has a homomorphism(s) to a query,

can be used to construct a query’s summary graph.

86

Figure 5.1 (a) A data graph G, (b) A graph pattern query Q and a homomorphism
from Q to G, (c) The answer of Q on G, (d) A summary graph GQ of Q on G.

Figure 5.2 (a) A graph pattern query Q, (b) Views V1, V2, V3, V4, and a
homomorphism from V1 to Q, (c) A summary graph GV2 of V2 on data graph G
of Figure 5.1(a).

5.2 Materialized View Usability

We define now when a view is usable in answering a graph pattern query and we

provide necessary and sufficient conditions for answering a query using materialized

views.

View Usability in Graph Pattern Query Answering. Graph pattern queries

can be evaluated by computing the match sets of their edges on a data graph G and

then joining them on their common query nodes. Let eq be an edge in a query Q. The

match set of eq is ms(eq) and its occurrence set is os(eq) (recall that os(eq) ⊆ ms(eq)).

If there is a materialized view V which has an edge ev such that os(eq) ⊆ os(ev) ⊆

87

ms(eq) for every data graph, then V can be used for evaluating Q since os(ev) can

be used instead of ms(eq) in the join. That is, ev “covers” eq. In addition, as os(ev)

is not bigger than ms(eq), this option is, in general, beneficial in the evaluation of

Q. We define view usability in query answering based on this remark. As we will see

later, when this happens, other edges of view V might cover an edge in Q as well,

in which case, their occurrence sets can also be exploited in evaluating query Q. We

now formalize query edge coverage:

Definition 5.2.1. An edge eq of a query Q is covered by an edge ev of a view V if

os(eq) ⊆ os(ev) ⊆ ms(eq) on any data graph G.

In the example of Figure 5.2, one can see that the edge (B1, B2) of view V1

covers the edge (B1, B2) of query Q1 since for every mapping m of Q to G, there is a

mapping of V1 to G which is a restriction of m. We can now define view usability.

Definition 5.2.2. A view V is usable in answering a query Q if there is an edge in

Q which is covered by an edge in V .

View Usability Conditions. We characterize query edge coverage in terms of

homomorphisms from a view to the query. We say that a homomorphism h from a

view V to a query Q maps an edge e = (x, y) in V to an edge e = (u, v) in Q if

h(x) = u and h(y) = v.

Theorem 4. Let eq be an edge in a graph pattern query Q and ev be an edge in a

view V . Edge eq in Q is covered by edge ev in V iff there is a homomorphism from V

to Q that maps ev to eq such that if eq is a direct edge then ev is also a direct edge.

Proof. If part: Assume there is a homomorphism h from V to Q that maps ev to eq

such that if eq is a direct edge then ev is also a direct edge. Let G be a data graph and

let there be homomorphism h′ from Q to G that maps eq in Q to an occurrence (a, b)

in G. By homomorphism composition, (a, b) is also an occurrence of ev. Therefore,

88

oc(eq) ⊆ oc(ev). Since ev and eq have the same labels, edge direction and are both

direct or reachability edges, ms(ev) = ms(eq). As oc(ev) ⊆ ms(ev), oc(ev) ⊆ ms(eq).

Thus, eq is covered by ev.

Only if part: (1) Let’s assume that edge eq in Q is covered by edge ev in V and

there is no homomorphism from V to Q. Let G be a data graph that is the same as

query Q except the reachability edges in Q are replaced by regular edges. Then Q

has a homomorphism to G but V does not; that is, eq has an occurrence in G while

ev does not have any. As os(eq) ̸⊆ os(ev), our assumption that edge eq in Q is covered

by edge ev in V is contradicted.

(2) Let’s now assume that edge eq in Q is covered by edge ev in V and there

is a homomorphism from V to Q but no homomorphism that matches ev to eq. Let

G be a data graph that is the same as query Q except that reachability edges in Q

are replaced by regular edges. Let also h1 be a homomorphism which maps every

node of Q to its corresponding node in G. Then the occurrence of eq produced by h1

on G is not an occurrence of ev on G, that is os(eq) ̸⊆ os(ev). This contradicts our

assumption that edge eq is covered by edge ev.

(3) Let’s finally assume that edge eq in Q is covered by edge ev = (x, y) in V

and there is a homomorphism from V to Q which matches ev to eq but eq is a direct

edge while ev is a reachability edge. Let G be a graph which is the same as view V

except that reachability edges other than ev in V are replaced by regular edges in

G, and ev is replaced by a path of two edges where the internal node is labeled by a

label not appearing in Q. Then, since eq is a direct edge and there is no edge from

x to y in G, (x, y) is an occurrence of ev on G but not a match of eq in G. This is a

contradiction since as ev covers eq, os(ev) ⊆ ms(eq) on any data graph. �

In the example of Figure 5.2, the edge (B1, B2) of view V1 covers the edge

(B1, B2) of query Q1. In contrast, (C1, B2) in Q is not covered by (C1, B2) in V1

since the former is a direct edge and the latter is a reachability edge, and (E1, B2) in

89

V1 does not cover any edge in Q since it cannot be mapped to any edge in Q by a

homomorphism from V1 to Q.

Redundant Query Edges. Two graph pattern queries are equivalent if they have

the same answer on any data graph. A graph pattern query can have redundant edges.

An edge in a query Q is redundant if its removal from Q results in a query which is

equivalent to Q. A reachability edge e = (x, y) in a query Q is transitive if there is

a path from x to y in Q other than edge e. Clearly, a transitive edge is redundant.

Therefore, transitive edges can be removed from Q without altering the answer of Q.

Answering a Graph Pattern Query Using Multiple Views. In the presence

of one or multiple materialized views, it is possible that the answer of query Q can

be computed using only the answers of the materialized view(s).

Definition 5.2.3. Let Q be a query and V be a set of materialized views which can

be used for answering Q. Query Q can be answered using the views in V if, for every

data graph, the answer of Q can be computed from a relational algebra expression in

{σ, π, ◃▹,∪} involving exclusively the answers of the views in V .

The following theorem provides necessary and sufficient conditions for answering

a query using exclusively a set of materialized views.

Theorem 5. Let Q be a query and V be a set of usable views. Query Q can be

answered using the views in V if and only if every non-redundant edge in Q is covered

by an edge of a view in V .

Proof. If part: Clearly, if every edge eq of Q is covered by an edge ev of a view in V ,

the answer of Q can be obtained by joining the occurrence sets oc(ev) of the covering

view edges on their common query nodes. As oc(eq) ⊆ oc(ev) no query occurrence in

the answer of Q is missed.

Only if part: Let’s assume that Q can be answered using the views in V and

there is a non-redundant edge eq in Q which is not covered by any edge of the views

90

in V . Since Q can be answered using V , it can be computed by a relational algebra

expression E which joins the answers of the views in V . Since, eq is not redundant,

it is not a transitive edge in Q. Let G be a data graph which has the nodes of Q

and an edge for every edge in the transitive closure of Q except for eq. The answer

of Q on G is empty while E returns a non empty answer on G. This contradicts our

assumption that Q can be answered using the views in V . �

In the example of Figure 5.2, one can see that query Q can be answered using the

view set V = {V1, V2, V3, V4} as all its edges are covered by edges of the views in V .

Given an edge e in a query Q and a view V , the covering set of e in V , denoted

cov(e, V), is the set of edges in V which cover e. Given a set of views V , the covering

set of e in V , denoted cov(e,V), is defined as cov(e,V) =
∪

V ∈V cov(e, V). Based on

Theorem 5, Q can be answered using V if cov(e,V) ̸= ∅ for every non-redundant edge

e of Q.

Minimal Set of Views. A query edge can be covered by multiple view edges of the

same and/or different views. However, it is possible that not all of the usable views

are needed for answering the query.

Definition 5.2.4. Let Q be a query and let V be a set of views such that Q can be

answered using the views in V . Set V is minimal if there is no proper subset V ′ of V

such that Q can be answered using the views in V ′.

Set V ′ does not have redundant views. In the example of Figure 5.2, query Q can

be answered using the view set {V1, V2, V4} which is minimal. We present in Section

5.3 an algorithm which computes a minimal set of views for answering a query.

5.3 Algorithms

In this section, we present an algorithm called SumGraphBuildViews which computes

a summary graph for a pattern query Q using the materializations (summary graphs)

of the views in a view set V . Algorithm SumGraphBuildViews uses another algorithm,

91

called FindQCover, which computes the covering set cov(e, V) of a view V for each

query edge e. Therefore, Algorithms SumGraphBuildViews and FindQCover can be

used to check if a query can be answered using the view set V . Finally, we present an

algorithm called FindMinimalVSet which finds a minimal set of views for answering

a query from a view pool.

Computing the Covering View Edges for a Query Edge. Algorithm

FindQCover, shown in Algorithm 11, takes as input a query Q and a view V and

returns the covering sets of the edges and nodes of Q in V through a function cov

on the nodes and edges of V . The covering set of a query node in a view is defined

analogously to the covering set of a query edge in a view. Algorithm FindQCover

first calls procedure homEnumerate to enumerate all the homomorphisms from V to

Q that satisfy the condition of Theorem 4 (line 5). It encodes homomorphisms as

n-ary tuples, where n is the number of nodes in V (lines 1,2). The homomorphisms

found are stored in set H (line 4). cov(e) denotes the covering set of query edge e in

V and cov(q) denotes the covering nodes of query node q in V (line 6). Procedure

homEnumerate performs a recursive backtracking search to find (candidate) matches

in Q for the nodes of V iteratively, one at a time, according to the chosen order

(line 1) before returning any generated homomorphism. Finding homomorphisms

of graphs to graphs is an NP-hard problem but this is not an issue in this context

since the number of nodes and edges of queries and views is restricted. Using set H,

Algorithm FindQCover calls procedure findCover to compute the covering nodes and

edges of Q in V .

Algorithm SumGraphBuildViews on the query Q and the view V1 of Figure 5.2

will return cov((B1, B2)) = {(B1, B2)}, cov((C1, B2)) = ∅, and cov((D1, B2)) = ∅, as

there is only one homomorphism from V1 to Q.

Computing a Query Summary Graph from the Summary Graphs of the

Materialized Views. Algorithm SumGraphBuildViews, shown in Algorithm 12,

92

Algorithm 11: FindQCover
Input : Graph pattern query Q, and graph pattern view V.
Output: Function cov on the nodes and edges of Q.

1 Pick an order v1, . . . , vn for the nodes of V ;
2 Let t be a n-tuple initialized so that t[i] is null for i ∈ [1, n];
3 Let Si be the set of nodes of Q having the same label as view node vi;
4 H := ∅ /* set H records the homomorphisms from V to Q */

homEnumerate(1, t);
5 For every node q in Q and for every edge e in Q, cov(q) = ∅ and cov(e) = ∅;
6 findCover();
7 return cov;

8 Procedure homEnumerate(i, t):
9 if (i=n+1) then

10 add t to H and return;
11 end
12 Ni := {vj | (vi, vj) ∈ V or (vj, vi) ∈ V, j ∈ [1, i− 1]};
13 S ′

i := Si;
14 for (every vj ∈ Ni) do
15 S ′

i := {q ∈ S ′
i | q ≺ t[j] or t[j] ≺ q};

16 for (every q ∈ S ′
i) do

17 if ((vj, vi) is a direct edge in V and (t[j], q) is not a direct edge
in Q) or ((vi, vj) is a direct edge in V and (q, t[j]) is not a
direct edge in Q) then

18 Remove q from S ′
i;

19 end
20 end
21 end
22 for (every node q ∈ S ′

i) do
23 t[i] := q;
24 homEnumerate(i+ 1, t);
25 end

26 Procedure findCover():
27 for (every tuple t ∈ H) do
28 for (every node v ∈ V) do
29 add v to cov(t[v]);
30 end
31 for every edge (vi, vj) in V do
32 if e = (t[vi], t[vj]) is an edge in Q which is a direct edge if

(vi, vj) is a direct edge then
33 add (vi, vj) to cov(e);
34 end
35 end
36 end

93

takes as input a query Q and a set of materialized views (summary graphs) V , and

produces a summary graph for Q in the form of a function cov on the nodes and

edges of Q representing their candidate occurrence sets. The algorithm consists of

two phases: the first phase initializes the candidate occurrence sets (cos) of the nodes

and edges of Q (line 1) and the second phase builds a summary graph by iteratively

refining the candidate occurrence sets generated in the first phase until a fixed point

is reached (lines 2-4).

To initialize function cos for the node and edges of Q, SumGraphBuildViews

begins by computing the covering sets of the nodes and edges of Q with respect to

each view V in V using algorithm FindQCover (Algorithm 11) (lines 3-4 in Procedure

initializeCos()). Then, for every node q in Q, the algorithm intersects the occurrence

sets cos(v) of the covering nodes v ∈ cov(q) to obtain the candidate occurrence set

cos(q) (lines 5-6). Similarly, for every edge eq in Q, it intersects the occurrence sets

cos(ev) of the covering edges ev ∈ cov(eq) to obtain the candidate occurrence set

cos(eq) (lines 7-11).

In the second phase, SumGraphBuildViews refines function cos using two

procedures, which iterate on the edges ofQ in different directions. The first procedure,

called forwardPrune(), visits each edge eq = (qi, qj) ∈ Q from the tail node qi to

the head node qj, and removes node nqi and its associated outgoing edges from

cos(qi) and cos(eq), respectively, if there is no nqj ∈ cos(qj) such that (nqi , nqj) is

an occurrence of eq in cos(eq). The second procedure, called backwardPrune(), visits

each edge eq = (qi, qj) ∈ Q from the head node qj to the tail node qi and removes nqj

and its associated incoming edges from cos(qj) and cos(eq), respectively, if there is

no nqi ∈ cos(qi) such that (nqi , nqj) is an occurrence in cos(eq). The above process is

repeated until function cos becomes stable, i.e., no further removals can be applied

to it.

94

Algorithm 12: Algorithm SumGraphBuildViews
Input : Graph pattern query Q and set V of materialized views on G

which can be used for answering Q.
Output: A summary graph of Q on G (represented by function cos on

the nodes and edges of Q).

1 initializeCos();
2 while (cos has changes) do
3 forwardPrune();
4 backwardPrune();
5 end
6 return cos;

7 Procedure initializeCos():
8 For every node q ∈ Q, initialize cos(q) to be ms(q).;
9 For every edge eq ∈ Q, initialize cos(eq) to be ∅;

10 for (every view V ∈ V) do
11 cov := FindQCover(Q, V);
12 for (every node q ∈ Q) do
13 cos(q):=cos(q) ∩v∈cov(q) cos(v);
14 end
15 for (every edge e ∈ Q) do
16 if (cos(e) = ∅) then
17 cos(e) := ∩ev∈cov(e)cos(ev);
18 else
19 cos(e) := cos(e) ∩ev∈cov(e) cos(ev);
20 end
21 end
22 end

23 Procedure forwardPrune():
24 for (each edge eq = (qi, qj) ∈ Q and each nqi ∈ cos(qi)) do
25 if (there is no nqj ∈ cos(qj) such that (nqi , nqj) is an occurrence in

cos(eq)) then
26 Remove nqi and its associated outgoing edges from cos(qi) and

cos(eq), respectively;
27 end
28 end

29 Procedure backwardPrune():
30 for (each edge eq = (qi, qj) ∈ Q and each nqj ∈ cos(qj)) do
31 if (there is no nqi ∈ cos(qi) such that (nqi , nqj) is an occurrence in

cos(eq)) then
32 Remove nqj and its associated incoming edges from cos(qj) and

cos(eq), respectively;
33 end
34 end

95

Finally, the refined function cos representing the summary graph of Q is

returned to the user (line 5).

Consider the query Q and the views V1, V2, V3 and V4 in the example of Figure

5.2. Algorithm SumGraphBuildViews on the answer graph for V1 of Figure 5.2(c) and

the answer graphs for the views V2, V3 and V4 (not shown in figure) will return the

summary graph of Figure 5.1(d) which is, in fact, the answer graph of Q.

Note that the candidate occurrence sets of the query node and edges can be

stored as bitmaps on data graph nodes resulting not only in space savings but also in

substantial performance savings as all candidate occurrence set intersection operations

can be implemented as bit-wise AND operations.

Algorithm 13: Algorithm FindMinimalVSet.
Input : Graph pattern query Q and a set V of views which can be used

for answering Q.
Output: A minimal set V ′ ⊆ V of views which can be used for answering

Q.

1 V ′ := ∅ ;
2 findViews();
3 removeRedundant();
4 return V ′;

5 Procedure findViews():
6 U := edges(Q); /* the set of uncovered edges of Q */ ;
7 while (U ̸= ∅) do
8 Select an edge e in U ;
9 Find a view V in V which has an edge covering e;

10 Let C be the set of edges in Q which are covered by V ;
11 V ′ := V ′ ∪ {V };
12 U := U − C;
13 end

14 Procedure removeRedundant():
15 for (every view V ∈ V ′) do
16 if (Q can be answered using exclusively V ′ − {V }) then
17 Remove V from V ′ ;
18 end
19 end

96

Finding a Minimal View Set. Algorithm FindMinimalVSet, shown in Algorithm

13, takes as input a set of views V which can be used for answering Q and returns

a minimal subset V ′ of V which can be used for answering Q. The algorithm begins

with an empty set of views V ′. It adds a view to V ′ as long as this view covers at

least one query edge not covered by the set of views already selected in V ′. After all

the query edges are covered, the algorithm eliminates redundant views by checking

if the removal of that view would cause a query edge to be uncovered by the set of

views in V ′.

In the example of Figure 5.2, Algorithm 13 will initially add to V ′ all the

views V1, V2, V3 and V4 if the views are considered in the order V1, V2, V3, V4. It will

subsequently identify the view V3 as redundant and it will remove it from V ′ to return

the minimal view set {V1, V2, V4}.

As our experiments show, considering additional views for answering a query Q

beyond a set of views that cover all the edges of Q does not significantly reduce the

query evaluation cost. Thus, a minimal set of views from the materialized view pool

constitutes a reasonable choice for answering a query.

5.4 Experimental Evaluation

In this section, we present an experimental evaluation of our materialized view

approach in terms of time performance and scalability.

5.4.1 Experimental Setting

Algorithms in comparison. We implemented our approach for answering queries

using materialized views. In our implementation of Algorithm SumGraphBuildViews,

we used bitmaps to represent query and view node occurrence sets and adjacency

97

lists and bit-wise AND operations for intersecting sets. We refer to this approach in

this section as MatView.

We compare MatView with the algorithm Algorithm BuildSummaryGraph, the

approach presented in Chapter 4 for evaluating hybrid graph pattern queries using

homomorphisms over a large graph. In this section, we refer to the algorithm from

Chapter 4 as FltSim. Since FltSim constructs a summary graph for the input query

on a data graph, it can be directly compared with MatView, which also constructs

a summary graph for the input query. Algorithm FltSim first applies a filtering

technique to prune nodes and edges from the data graph that do not participate in

the query answer, and uses the pruned data graph to construct an initial summary

graph. It then refines this summary graph using double simulation to exclude nodes

and edges that are unlikely to be part of the query answer before returning it to the

user.

The main difference between FltSim and MatView lies in the summary graph

edge construction: FltSim needs to access a reachability index onG in order determine

the existence of reachability relationships between nodes in the candidate occurrence

sets and connect them by edges. In contrast, MatView obtains edges for the candidate

occurrence sets of the query edges from the candidate occurrence sets of the covering

view edges. This is much cheaper than using a reachability index and gives the upper

hand to MatView, which benefits from the materialized views. We refer to the base

approach that does not use materialized views as FltSim.

We do not compare MatView with other approaches as FltSim was shown in

Chapter 4 to outperform previous state-of-the art approaches [15, 23, 11, 68] for this

type of query patterns on data graphs.

Datasets. We ran experiments on two real-world graph datasets which have been

used in previous works [8, 9]. The datasets have different structural properties

and come from different application domains, such as the web and social networks.

98

Table 5.1 lists the properties of the datasets. Its last column displays the average

number of incident edges (both incoming and outgoing) per node. For our scalability

experiments we vary the number of nodes and edges of the data graphs and their

number of distinct labels.

Table 5.1 Key Statistics of the Graph Datasets Used

Domain Dataset # of nodes # of edges Avg #incident edges

Web BerkStan (bs) 685K 402K 11.76

Social DBLP (db) 317K 1049K 6.62

Queries. We generated 10 graph pattern query templates, shown in Figure 5.3.

These hybrid query templates involve direct and reachability edges. They have various

and complex structures and many of them were used in previous work [15, 11]. The

number associated with each node of a query template denotes the node id. Query

instances are generated by assigning labels to nodes.

Figure 5.3 Graph pattern query templates used in the evaluation.

Views. For every run using MatView, a query Q was run with a set of views V . Each

view was randomly generated from the query graph.

A query edge eq can be covered by more than one view edge. Algorithm

SumGraphBuildViews initially intersects the candidate occurrence sets of its covering

view edges in order to compute the candidate occurrence set of a query edge. The more

99

covering edges on eq are intersected, the smaller their resulting candidate occurrence

set would be when this is computed by algorithm SumGraphBuildViews.

Let cov(eq,V) be the number of view edges in view set V that cover query edge

eq from the edge set E(Q) of query Q. The average number of covering edges for a

query edge eq in Q in a view set V is calculated using the following equation:

covavg(Q,V) =
∑

eq∈E(Q) cov(eq,V)
|E(Q)|

(5.1)

When covavg(Q,V) = 1, each query edge is covered by exactly one view edge.

We expect that the higher covavg(Q,V) is, the smaller the summary graph GQ will

be. The lowest value for covavg(Q,V) is produced by a minimal set V .

For each query computation, we used a set of views V with the same number of

edges. With the exception of the experiment where covavg(Q,V) is varied, covavg(Q,V)

is manitained within a fixed range: 1 ≤ covavg(Q,V) ≤ 2.

For the experiments ”Benefit of Using Materialized Views”, ”Data Graph Size

Scalability”, and ”Varying the Number of Query Edges”s, all sets of views V used by

MatView contained views with mixed edges and exactly two edges, and were chosen

to be minimal using Algorithm 13.

Metrics. We measured the evaluation time of the queries in a query set in seconds

(sec). In the case of FltSim, this includes the preprocessing time (i.e., the time spent

on filtering data graph nodes and edges). Given that the number of query results can

be very large, we terminated the evaluation of a query after finding 107 matches.

Our implementation was coded in Java. All the experiments reported were

performed on a 64-bit Linux machine equipped with an Intel Xeon 6240 @ 2.60 Hz

processor and 768GB RAM.

100

5.4.2 Benefit of Using Materialized Views

Benefit of Using Materialized Views. Figure 5.4 displays the elapsed time of

FltSim versus MatView for all the queries of Figure 5.3 on a bs data graph with 350K

nodes and five labels. The scale of the y-axis is logarithmic. We observe that for all

queries, MatView is several orders of magnitude better than FltSim; in most cases,

MatView is approximately three orders of magnitude better than FltSim.

Figure 5.5 displays the elapsed time of FltSim versus MatView for all the queries

of Figure 5.3 on a dblp data graph with 250K nodes and 20 labels. The scale of the

y-axis is logarithmic. As in the bs data graph, for all queries, MatView is several orders

of magnitude better than FltSim. In the case of Q10, which has many reachability

edges, MatView is five order of magnitude better than FltSim.

Figure 5.4 Elapsed time of FltSim and MatView for various queries on a bs data
graph with 350K nodes and five labels.

5.4.3 Data Graph Size Scalability

Data Graph Size Scalability. In this experiment, we evaluated the performance of

the two algorithms as the data set size grows. We ran queries on increasingly larger

randomly chosen subsets of a data graph, such that each increasingly larger subset is

a superset of the previous subset, and recorded the elapsed time. The x-axis shows

the size of the data graph in terms of 1k nodes (for instance, 100 means 100k). Figure

101

Figure 5.5 Elapsed time of FltSim and MatView for various queries on dblp data
graph with 250K nodes and 20 labels.

5.6 shows the results, on a logarithmic scale for y-axis, for queries Q5 and Q6 on the

bs data graph with five labels. Figure 5.7 shows the results, on a logarithmic scale

for the y-axis, for queries Q7 and Q9 on the dblp data graph with 20 labels.

In all cases, the execution time for all algorithms increased when the total

number of graph nodes increased. MatView provided significantly better performance

than FltSim for evaluating the two queries. In addition, the slope of FltSim is much

steeper than that of MatV iew.

We also observed that in Figure 5.7, for the data point with 100K nodes, the

evaluation time for MatView was very small. This is because, in contrast to the other

data points, there were no matches for query Q7; while FltSim had to spend time to

filter out irrelevant nodes and edges from the data graph before it discovered that the

query has an empty answer, MatView was able to quickly discover that this query

has empty answer.

5.4.4 Performances on View and Query Variations

Varying the Number of Covering View Edges. We ran experiments comparing

the performance of MatView when varying covavg(Q,V) (using a different number of

views). All views had mixed edges and exactly two edges. We started by evaluating

102

(a) Q5 (b) Q6

Figure 5.6 Elapsed time of FltSim and MatView on increasingly larger number of
data subsets of the bs data subset with five labels.

(a) Q7 (b) Q9

Figure 5.7 Elapsed time of FltSim and MatView on increasingly larger number of
data subsets of the dblp data subset with 20 labels.

103

a query using a minimal set of views, where each query edge is covered by only

one covering edge, and gradually added one view at a time. Each time a new view

was added, covavg(Q,V) increased slightly. In Figure 5.8, we plotted the value of

covavg(Q,V) for each new set of views V on the top row label of the X-axis, and

plotted the number of views in V on the bottom row label of the X-axis.

The results for two of these queries, Q5 and Q7, that are run on the bs data

graph with 20 labels and 350K nodes are shown in Figure 5.8. We observed that

for sets of views with a higher covavg(Q,V), the summary graphs obtained were only

smaller, but the differences did not have much impact on the evaluation times. Thus,

selecting a minimal view set for evaluating query Q is a viable solution.

(a) Q5 (b) Q7

Figure 5.8 Elapsed time of MatView on queries run with varying covavg(Q,V) (top
label in x-axis) and a different number of covering views (bottom label in x-axis) on
a bs data set with 20 labels and 350K nodes.

Varying the Number of Edges per View. We compared the performance of

MatView using views with two edges versus views with three edges. Both the set of

views with two edges and the set of views with three edges met the condition where

1 < covavg(Q,V) < 2; this was achieved by varying the number of views within V such

that, for each query Q, the set with three-edge views contained less views than the

set with two-edge views. The results for all 10 queries evaluated on the bs data graph

with 20 labels and 350K nodes are shown in Figure 5.9. Overall, for nine out of ten

queries, we found that using views with three edges obtained better evaluation times

104

than using views with two edges, while for one of the queries (Q3), they obtained

approximately the same evaluation time.

Figure 5.9 Elapsed time of MatView using 2-edge views and 3-edge views for various
queries on a bs data subset with 20 labels and 350K nodes.

Varying the Number of Query Edges. We measured the execution time of the

two approaches varying the number of edges in the queries. To obtain these queries,

we started with the original query, then removed one edge at a time. The results for

two of these queries, Q2 and Q5, on the bs data graph with 20 labels and 350K nodes

using a logarithmic scale are shown in Figure 5.10. We can see that the execution

time does not follow a specific pattern as adding on more edge to a query can increase

or decrease the number of query results.

(a) Q2 (b) Q5

Figure 5.10 Elapsed time of FltSim and MatView on queries with a different edges
on a bs data subset with 20 labels and 350K nodes.

105

CHAPTER 6

OPTIMIZING GRAPH PATTERN QUERIES WITH MATERIALIZED
VIEWS

In Chapter 5, we focused on views which cover every edge of a query, such that a query

can be answered exclusively using the views without needing to use a reachability

index. However, views do not have to cover every edge of a query to be used by

a query; we can use views whose edges only cover some of the edges of a query to

improve the performance times of algorithms which find the query’s answer. In this

chapter, we investigate views which only need to partially cover a query, meaning

only at least one edge of a query is covered by a view. Additionally, we can also use

views that just cover query nodes, even if they do not cover any edges, as the query

nodes that are covered can reduce the candidate occurrence set sizes of the query’s

summary graph.

6.1 Preliminaries and Problem Definition

We now formally define what it means for a view node to cover a query node.

Definition 6.1.1 (Node Coverage). A node xq of a query Q is covered by an node

xv of a view V if os(xq) ⊆ os(xv) ⊆ ms(xq) on any data graph G.

To show how views are used to cover a query and partially contribute

to summary graph construction, we first show an example of a query with a

homomorphism to a data graph. Figure 6.1 shows a homomorphism h of query

Q to the data graph G, along with its answer and summary graph. Then in Figure

6.2, one can see that node B1 of query Q from 6.1 is covered by the node B1 of query

V4 since for every homomorphism of Q to G, there is a homomorphism of V4 to G.

Furthermore, the node A1 of view V1 covers the node A1 of query Q and the edge

(B1, C1) of view V1 covers the edge (B1, C1) of query Q since for every homomorphism

106

h of Q to G, there is a homomorphism of V1 to G which is a restriction of h. Later on

in Section refsec:optAlgo, it will be shown how the materializations of views V1 and

V2 are used in the summary graph construction of query Q.

We can now define view usability. A Usable View is defined in Chapter 5,

defined as a view with having at least one edge of Q covered by an edge of V . We will

now formally define a Weakly Usable View, as used for optimizing summary graph

construction times.

Definition 6.1.2 (Weakly Usable View). A view V is weakly usable for optimizing a

query Q if at least one node of Q is covered by a node of V .

We characterize query node coverage in terms of homomorphisms from a view

to the query. In this chapter, we refer to homomorphisms as ’ep-homomorphisms’, to

more specifically refer to them as ’edge-path’ homomorphisms.

Theorem 6. Let xq be a node in a graph pattern query Q and xv be a node in a

view V . Node xq in Q is covered by node xv in V iff there is a ep-homomorphism

from V to Q that maps xv to xq.

Proof. If part: Assume there is an ep-homomorphism h from V to Q that maps

xv to xq. Let G be a data graph and let there be an ep-homomorphism h′ from Q

to G that maps xq in Q to an node u in G. The composition of h and h′, h ◦ h′,

is a homomorphism from V to G which maps xv to u. Therefore, os(xq) ⊆ os(xv).

Since xv and xq have the same labels, ms(xv) = ms(xq). As os(xv) ⊆ ms(xv),

os(xv) ⊆ ms(xq). Therefore, os(xq) ⊆ os(xv) ⊆ ms(xq). Thus, xq is covered by xv.

Only if part: (1) Let’s assume that node xq in Q is covered by node xv in V and

there is no homomorphism from V to Q. Let G be a data graph that is the same as

query Q except that reachability edges in Q are replaced by regular edges. Then Q

has a homomorphism to G but V does not; that is, xq has an occurrence in G while

107

Figure 6.1 (a) A data graph G, (b) A graph pattern query Q and a homomorphism
from Q to G, (c) The answer of Q on G, (d) A summary graph GQ of Q on G.

xv does not have any, and thus os(xq) ̸⊆ os(xv), contradicting our assumption that

node xq in Q is covered by node nv in V .

(2) Let’s now assume that node xq in Q is covered by node xv in V and there

is a homomorphism from V to Q but no homomorphism that matches xv to xq. Let

G be a data graph that is the same as query Q except that reachability edges in Q

are replaced by regular edges. Let also h1 be a homomorphism which maps every

node of Q to its corresponding node in G. Then the occurrence of xq produced by h1

on G is not an occurrence of xv on G, that is os(xq) ̸⊆ os(xv). This contradicts our

assumption that node xq is covered by node xv.

Therefore if xq is covered by xv, there is an ep-homomorphism from V to Q

that maps xv to xq.

�

In the example of Figure 6.2, V4 is a weakly usable view because it has a

homomorphism to Q and while it does not cover any edges of Q, its node E2 covers

the node E2 in Q. The edge (B1, A1) of view V3 covers the edge (B1, A1) of query Q1.

In contrast, (C1, B2) in Q does not cover (C1, B2) in V1 since the former is a child

edge and the latter is a descendant edge, and (E1, B2) in V1 does not cover any edge

in Q since it cannot be mapped to any edge by a homomorphism from V1 to Q.

108

Figure 6.2 (a) A graph pattern query Q, (b) Views V1, V2, V3, and a homomorphism
from V1 to Q, (c) Summary graphs GV1 of V1 and GV2 of V2 on data graph G of Figure
6.1(a).

Figure 6.3 (a) The intersection of summary graphs GV1 and GV2 , (b) Merging
the match sets of the uncovered query nodes and edges with Figure 6.3(a), (c) The
summary graph GQ obtained after pruning Figure 6.3(b).

109

6.2 Algorithms

We present an algorithm called SumGraphBuildOptimize which computes a summary

graph for a pattern query Q using the materializations (summary graphs) of the

views in a view set V . Algorithm SumGraphBuildOptimize uses Function Cov,

which computes the covering set cov(e, V) of a view V for each query edge e.

These algorithms are very similar to Algorithms FindQCover and SumGraphBuild in

Chapter 5, with the main difference being that this algorithm can handle uncovered

nodes and edges.

Figure 6.3 demonstrates steps performed by Algorithm SumGraphBuildOptimize.

This example uses views V1 and V2 to cover query Q, leaving the node sets D1 and

E2, along with the edges (D1, B1), (E2D1), and (E2, A2) as uncovered. Figure 6.3(a)

shows a summary graph obtained by intersecting the materializations of views V1

and V2. Then Figure 6.3(b) shows the summary graph obtained after combining the

intersection of the summary graphs of V1 and V2 with the uncovered node sets and

edges. Finally, Figure 6.3(c) gives the summary graph after performing the procedures

forwardPruning() and backwardPruning(). After pruning, the nodes which do not

have candidate occurrence edges to nodes they should have edges to, according to the

query Q, are eliminated. For instance, node d5 does not have an edge to any node in

node set E2, but Q requires there to be an edge (E2D1), so d5 cannot belong to an

answer and is thus eliminated.

110

Algorithm 14: Function Cov
Input : Graph pattern query Q and a set V of materialized views
Output: Function Cov on the nodes and edges of Q.

1 For every node q in Q and for every edge e in Q, Cov(q) = ∅ and
Cov(e) = ∅ ;

2 for every view V ∈ V do
3 Pick an order v1, . . . , vn for the nodes of V ;
4 Let t be a n-tuple initialized so that t[i] is null for i ∈ [1, n];
5 Let Si be the set of nodes of Q having the same label as view node vi;
6 H := ∅ /* set H records the homomorphisms from V to Q */

homEnumerate(1, t);
7 For every node q in Q and for every edge e in Q, cov(q) = ∅ and

cov(e) = ∅;
8 findCover();
9 end

10 return cov;

11 Procedure homEnumerate(index i, tuple t):
12 if (i=n+1) then
13 add t to H and return;
14 end
15 Ni := {vj | (vi, vj) ∈ V or (vj, vi) ∈ V, j ∈ [1, i− 1]};
16 S ′

i := Si;
17 for (every vj ∈ Ni) do
18 S ′

i := {q ∈ S ′
i | q ≺ t[j] or t[j] ≺ q};

19 for (every q ∈ S ′
i) do

20 if ((vj, vi) is a child edge in V and (t[j], q) is not a child edge in
Q) or ((vi, vj) is a child edge in V and (q, t[j]) is not a child
edge in Q) then

21 Remove q from S ′
i;

22 end
23 end
24 end
25 for (every node q ∈ S ′

i) do
26 t[i] := q;
27 homEnumerate(i+ 1, t);
28 end

29 Procedure findCover():
30 for (every tuple t ∈ H) do
31 for (every node v ∈ V) do
32 add v to cov(t[v]);
33 end
34 for every edge (vi, vj) in V do
35 if e = (t[vi], t[vj]) is an edge in Q which is a child edge if (vi, vj)

is a child edge then
36 add (vi, vj) to cov(e);
37 end
38 end
39 end

111

Algorithm 15: Algorithm SumGraphBuildOptimize
Input : Data Graph G, graph pattern query Q and set V of materialized

views on G
Output: A summary graph of Q on G (represented by function cos on the

nodes and edges of Q)

1 Procedure cosInitialization(); repeat
2 forwardPruning();
3 backwardPruning();
4 until (until cos has no changes);
5 return cos;

6 Procedure cosInitialization():
7 for every node q ∈ Q do
8 if Cov(q) ̸= ∅ then
9 cos(q) := ∩v∈Cov(q)cos(v) ;

10 else
11 cos(q) := ms(q) ;
12 end
13 end
14 for every edge e = (qi, qj) ∈ Q do
15 if Cov(e) ̸= ∅ then
16 cos(e) := ∩ev∈Cov(e)cos(ev) ;
17 else
18 cos(e) := ∅ ;
19 for every node ni ∈ cos(qi) do
20 for every node nj ∈ cos(qj) do
21 if ReachIndex(ni, nj) = true then
22 cos(e) := cos(e) ∪ {(ni, nj)} ;
23 end
24 end
25 end
26 end
27 end

28 Procedure forwardPruning():
29 for (each edge eq = (qi, qj) ∈ Q and each ni ∈ cos(qi)) do
30 if (there is no nj ∈ cos(qj) such that (ni, nj) ∈ cos(eq)) then
31 Remove ni and its associated outgoing edges from cos(qi) and

cos(eq), respectively;
32 end
33 end

34 Procedure backwardPruning():
35 for (each edge eq = (qi, qj) ∈ Q and each nj ∈ cos(qj)) do
36 if (there is no ni ∈ cos(qi) such that (ni, nj) ∈ cos(eq)) then
37 Remove nj and its associated incoming edges from cos(qj) and

cos(eq), respectively;
38 end
39 end

112

6.3 Experimental Evaluation

Algorithms in comparison. We examine the impact that views have on improving

query pattern matching algorithm performance times. Just as in Chapter 5, in our

implementation of Algorithm SumGraphBuildOptimize we used bitmaps to represent

query and view node occurrence sets and adjacency lists and bit-wise AND operations

for intersecting sets. We refer to this approach in this section as MatView. We

compare MatView with algorithm FltSim, used by the approach presented in Chapter

4 for evaluating hybrid graph pattern queries using homomorphisms over a large

graph. Our approach differs from before as we do not fully cover a query using views.

Datasets. We ran experiments on two real-world graph datasets which have been

used in previous works [8, 9]. The datasets have different structural properties

and come from different application domains, such as the web and social networks.

Table 6.1 lists the properties of the datasets. Its last column displays the average

number of incident edges (both incoming and outgoing) per node. For our scalability

experiments we vary the number of nodes and edges of the data graphs and their

number of distinct labels.

Table 6.1 Key Statistics of the Graph Datasets Used

Domain Dataset # of nodes # of edges Avg #incident edges

Web BerkStan (bs) 685K 402K 11.76

Social DBLP (db) 317K 1049K 6.62

Queries. We generated 8 graph pattern queries, shown in Figure 6.4. These hybrid

query templates involve child and descendant edges. The number associated with

113

each node of a query template denotes the node id. Query instances are generated

by assigning labels to nodes.

Views. For every run using MatView, a query Q was run with a set of views V . Each

view was randomly generated from the query graph.

A query edge eq can be covered by more than one view edge. Algorithm

SumGraphBuildOptimize initially intersects the candidate occurrence sets of its

covering view edges in order to compute the candidate occurrence set of a query edge.

The more covering edges on eq are intersected, the smaller their resulting candidate

occurrence set would be when this is computed by algorithm SumGraphBuildOptimize.

The average number of covering edges for a query edge eq in Q in a view set

V , denoted as covavg(Q,V), is computed using Equation 5.1 from Chapter 5. For

each query computation, we used a set of views V with the same number of edges.

With the exception of the experiment where covavg(Q,V) is varied, covavg(Q,V) is

manitained within a fixed range: 1 ≤ covavg(Q,V) ≤ 2.

For all the experiments in this section, all sets of views V used by MatView

contained views with mixed edges and exactly two edges, and were chosen to be

minimal using Algorithm 13.

Metrics. We measured the evaluation time of the queries in a query set in seconds

(sec). In the case of FltSim, this includes the preprocessing time (i.e., the time spent

on filtering data graph nodes and edges). Given that the number of query results can

be very large, we terminated the evaluation of a query after finding 107 matches.

Our implementation was coded in Java. All the experiments reported were

performed on a 64-bit Linux machine equipped with an Intel Xeon 6240 @ 2.60 Hz

processor and 768GB RAM.

114

Figure 6.4 Graph pattern queries used in the evaluation.

6.3.1 Benefit of Using Materialized Views

Figure 6.5 displays the elapsed time of FltSim versus MatView for all the queries of

Figure 6.4 on a bs data graph with 450K nodes and 20 labels. For each query, between

70% to 80% of query edges are covered by view edges. The percentage of query edges

covered are given at the bottom line of the x-axis in the plots. We observe that for all

queries, our algorithm MatView is better than the current state of the art algorithm,

FltSim. In most cases, our algorithm MatView has at least a 3x better performance

compared to FltSim. In the best case, we see MatView has an approximately 4x better

performance compared to FltSim.

For the results run on the dblp data graph with 300K nodes and 20 labels in

Figure 6.6, we observe that in most cases, we see our algorithm MatView has a 2x

better performance compared to FltSim. In the best case, we see MatView has an

approximately 4x better performance compared to FltSim

6.3.2 Scalability of Query Coverage using Views

We analyzed the performance of our algorithm MatView as we increase the percentage

of query edges covered by view edges. Figure 6.7 shows the results for queries Q4 and

Q5 on the bs data graph with 350K nodes and 20 labels, with the first data point

showing the performance on an uncovered graph pattern query. demonstrating that

the performance of the algorithm improves as more edges of the query are covered by

115

Figure 6.5 Elapsed time of FltSim and MatView for various queries on a bs data
graph with 450K nodes and 20 labels.

Figure 6.6 Elapsed time of FltSim and MatView for various queries on a dblp data
graph with 300K nodes and 20 labels.

(a) Q4 (b) Q5

Figure 6.7 Elapsed time of FltSim and MatView on query and view sets, each view
with 2E edges, that increasingly cover more edges of the query. Run on the bs data
graph subset with 350K nodes and 20 labels

116

(a) Q1 (b) Q2

Figure 6.8 Elapsed time of FltSim and MatView on query and view sets, each view
with 2E edges, that increasingly cover more edges of the query. Run on the dblp data
graph subset with 250K nodes and 20 labels

view edges. In Figure 6.8, we also see that the performance of the algorithm improves

as more edges are covered by view edges in the case of the dblp data graph with 250K

nodes and 20 labels for queries Q1 and Q2.

6.3.3 Data Graph Size Scalability

(a) Q1 (b) Q5

Figure 6.9 Elapsed time of FltSim and MatView on increasingly larger number of
data subsets of the bs data subset with 20 labels.

In this experiment, we evaluated the performance of the two algorithms as the

data set size grows. We ran queries on increasingly larger randomly chosen subsets of

a data graph, such that each increasingly larger subset is a superset of the previous

subset, and recorded the elapsed time. We expect that since the size of the inverted

117

(a) Q4 (b) Q6

Figure 6.10 Elapsed time of FltSim and MatView on increasingly larger number of
data subsets of the dblp data subset with 20 labels.

list grows as the data graph gets larger, the evaluation time would also increase. The

x-axis of our plots shows the size of the data graph in terms of 1k nodes (eg., 100

means 100k).

Figure 6.9 shows the results for queries Q1 and Q5 on the bs data graph with 20

labels. Q1 has 0.71% of its query edges covered, and Q5 has 0.73% of its query edges

covered. Figure 6.10 shows the results for queries Q4 and Q6 on the dblp data graph

with 20 labels. Q4 has 0.78% of its query edges covered, and Q6 has 0.75% of its query

edges covered. In both cases of the bs and dblp data graphs, as the execution time for

all algorithms increased when the total number of graph nodes increased, MatView

demonstrated better performance than FltSim for evaluating the two queries.

6.3.4 Data Graph Label Scalability

For this experiment, we examine the impact that the total number of distinct data

graph labels has on the performance of the algorithms. We first randomly added a

specified number of distinct labels to a data graph. To increase the number of labels

in the same data graph, we randomly chose half of the existing labels to turn into new

labels. Thus, each new data point doubles the number of labels from the previous

data point.

118

(a) Q7 (b) Q8

Figure 6.11 Elapsed time of FltSim and MatView on increasingly fewer number of
labels of the bs data subset with 350K nodes.

(a) Q4 (b) Q6

Figure 6.12 Elapsed time of FltSim and MatView on increasingly fewer number of
labels of the dblp data subset with 200K nodes.

119

For these experiments, we used queries with 20 labels at all data points. We

expect that the more labels there are in a data graph, the less matches there are, so

evaluation time would be faster.

In Figure 6.11, we analyze the performance of the algorithms on increasingly

fewer number of data graph labels for the bs data graph subset with 350K nodes for

queries Q7 and Q8. Q7 has 0.75% of its query edges covered, and Q8 has 0.71% of

its query edges covered. As the number of labels decreased, MatView demonstrated

better performance and scalability than FltSim.

In Figure 6.12, we analyze the performance of the algorithms on increasingly

fewer number of data graph labels for the dblp data graph subset with 200K nodes

for queries Q4 and Q6. Q4 has 0.78% of its query edges covered, and Q6 has 0.75%

of its query edges covered. As in the case with the bs data graph, as the number

of labels decreased, MatView demonstrated better performance and scalability than

FltSim.

120

CHAPTER 7

CONCLUSION

This dissertation demonstrates that our methods based on using the summary graph

and view materializations outperform state-of-the-art methods for hybrid graph

pattern query evaluation. The results show that further work should be developed in

the direction of storing local results for use in later cases.

We have addressed the problem of evaluating different types of tree-pattern

queries over a large graph. The core of our framework lies at the concept of answer

graph proposed to compactly represent pattern matching results. Using the answer

graph, we designed efficient algorithms for query counting and query listing tasks.

We further designed two holistic algorithms, one that exploits multi-way structural

joins on inverted lists of data graph nodes, and one that leverages graph simulation

to fully prune redundant data graph nodes, to efficiently build the answer graph.

An extensive experimental evaluation verified the efficiency and scalability of our

proposed approach, showing that it largely outperforms the state of the art methods.

We have also addressed the problem of efficiently evaluating hybrid graph

patterns using homomorphisms over a large data graph. By allowing edge-to-path

mappings, homomorphisms can extract matches “hidden” deep within large graphs

which might be missed by edge-to-edge mappings of subgraph isomorphisms. We

introduced the concept of the summary graph to compactly encode the pattern

matching search space. To further reduce the search space, we designed a novel graph

simulation-based node-filtering technique to prune nodes that do not contribute to

the final query answer. We have also designed a novel join-based query occurrence

enumeration algorithm which leverages multi-way joins realized as intersections of

adjacency lists and node sets from the summary graph. Extensive experimental

121

evaluation were conducted to verify the efficiency and scalability of our approach

and showed that it largely outperforms state-of-the-art approaches.

We have addressed the problem of answering graph pattern queries exclusively

using graph pattern materialized views to efficiently evaluate such queries on large

data graphs under homomorphisms. We considered a broad class of pattern queries

that involve both node reachability and direct relationships. We suggested an

original approach which materializes views as summary graphs, therein compactly

representing the homomorphic matches of the views. In this context, we characterized

the view usability problem in terms of query edge coverage, and provided necessary

and sufficient conditions for answering graph pattern queries exclusively using views.

We designed algorithms for deciding whether a query can be exclusively answered

from materialized views, for computing query summary graphs from the summary

graphs of the views, and for producing minimal sets of views for answering a query.

Our experimental results showed that our approach outperforms, by several orders

of magnitude, an approach that does not use materialized views, and provides much

better scalability.

Lastly, we have addressed the problem of answering partially graph pattern

queries using graph pattern materialized views to efficiently evaluate such queries

on large data graphs under homomorphisms. We extended our approach for

answering exclusively graph pattern queries using graph pattern materialized views

by characterizing the view usability problem in terms of query edge coverage, and

provided necessary and sufficient conditions for answering graph pattern queries

partially using views. We then designed algorithms for optimizing queries using

materialized views. Our approach, for different levels of coverage, was experimentally

shown to outperform a state of the art approach that does not use materialized views.

We are currently working on the problem of selecting materialized views for

optimizing the graph pattern query evaluation and view maintenance cost in the

122

presence of different types of constraints (e.g., space constraints, view maintenance

cost constraints). A variety of algorithms have been used for this problem in the past

in the context of relational databases. We are interested to see if neural network

algorithms, such as deep reinforcement learning techniques, may be exploited to

outperform existing approaches in the framework of graph pattern queries.

123

REFERENCES

[1] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan, “One trillion
edges: Graph processing at facebook-scale,” International Conference on Very
Large Data Bases, pp. 1804–1815, 2015.

[2] P. Gupta, V. Satuluri, A. Grewal, S. Gurumurthy, V. Zhabiuk, Q. Li, and J. Lin,
“Real-time twitter recommendation: Online motif detection in large dynamic
graphs,” International Conference on Very Large Data Bases Endowment,
vol. 7, no. 13, pp. 1379–1380, 2014.

[3] N. Przulj, D. G. Corneil, and I. Jurisica, “Efficient estimation of graphlet frequency
distributions in protein-protein interaction networks,” Bioinformatics, vol. 22,
no. 8, pp. 974–980, 2006.

[4] A. M. Smalter, J. Huan, Y. Jia, and G. H. Lushington, “GPD: A graph pattern
diffusion kernel for accurate graph classification with applications in chemin-
formatics,” Institute of Electrical and Electronics Engineers Association
for Computing Machinery Transactions on Computational Biology and
Bioinformatics, vol. 7, no. 2, pp. 197–207, 2010.

[5] J. R. Ullmann, “An algorithm for subgraph isomorphism,” Journal of the Association
for Computing Machinery, vol. 23, no. 1, pp. 31–42, 1976.

[6] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub)graph isomorphism
algorithm for matching large graphs,” Institute of Electrical and Electronics
Engineers Transactions on Pattern Analytics and Machine Intelligence, vol. 26,
no. 10, pp. 1367–1372, 2004.

[7] B. Bhattarai, H. Liu, and H. H. Huang, “CECI: compact embedding cluster index for
scalable subgraph matching,” Association for Computing Machinery’s Special
Interest Group on Management of Data Conference, pp. 1447–1462, 2019.

[8] A. Mhedhbi and S. Salihoglu, “Optimizing subgraph queries by combining binary
and worst-case optimal joins,” International Conference on Very Large Data
Bases, pp. 1692–1704, 2019.

[9] S. Sun and Q. Luo, “In-memory subgraph matching: An in-depth study,” Association
for Computing Machinery’s Special Interest Group on Management of Data
Conference, pp. 1083–1098, 2020.

[10] S. Sun, X. Sun, Y. Che, Q. Luo, and B. He, “Rapidmatch: A holistic approach
to subgraph query processing,” International Conference on Very Large Data
Bases, pp. 176–188, 2020.

124

[11] A. Mhedhbi, C. Kankanamge, and S. Salihoglu, “Optimizing one-time and continuous
subgraph queries using worst-case optimal joins,” Association for Computing
Machinery Transactions on Database Systems, vol. 46, no. 2, pp. 6:1–6:45,
2021.

[12] H. Kim, Y. Choi, K. Park, X. Lin, S. Hong, and W. Han, “Versatile equivalences:
Speeding up subgraph query processing and subgraph matching,” Association
for Computing Machinery’s Special Interest Group on Management of Data
Conference, pp. 925–937, 2021.

[13] C. R. Aberger, A. Lamb, S. Tu, A. Nötzli, K. Olukotun, and C. Ré, “Emptyheaded: A
relational engine for graph processing,” Association for Computing Machinery
Transactions on Database Systems, vol. 42, no. 4, pp. 20:1–20:44, 2017.

[14] W. Fan, J. Li, S. Ma, H. Wang, and Y. Wu, “Graph homomorphism revisited for graph
matching,” International Conference on Very Large Data Bases, pp. 1161–
1172, 2010.

[15] J. Cheng, J. X. Yu, and P. S. Yu, “Graph pattern matching: A join/semijoin
approach,” Institute of Electrical and Electronics Engineers Transactions on
Knowledge and Data Engineering, vol. 23, no. 7, pp. 1006–1021, 2011.

[16] R. Liang, H. Zhuge, X. Jiang, Q. Zeng, and X. He, “Scaling hop-based reachability
indexing for fast graph pattern query processing,” Institute of Electrical and
Electronics Engineers Transactions on Knowledge and Data Engineering,
vol. 26, no. 11, pp. 2803–2817, 2014.

[17] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness. San Francisco, CA: W. H. Freeman, 1979.

[18] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick, “Reachability and distance queries
via 2-hop labels,” The Society for Industrial and Applied Mathematics Journal
on Computing, vol. 32, no. 5, pp. 1338–1355, 2003.

[19] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry, “3-hop: a high-compression indexing scheme
for reachability query,” Association for Computing Machinery’s Special Interest
Group on Management of Data Conference, pp. 813–826, 2009.

[20] J. Su, Q. Zhu, H. Wei, and J. X. Yu, “Reachability querying: Can it be even faster?,”
Institute of Electrical and Electronics Engineers Transactions on Knowledge
and Data Engineering, vol. 29, no. 3, pp. 683–697, 2017.

[21] Z. Vagena, M. M. Moro, and V. J. Tsotras, “Twig query processing over graph-
structured XML data,” International Workshop on the Web and Databases,
pp. 43–48, 2004.

[22] L. Chen, A. Gupta, and M. E. Kurul, “Stack-based algorithms for pattern matching
on dags,” International Conference on Very Large Data Bases, pp. 493–504,
2005.

125

[23] Q. Zeng, X. Jiang, and H. Zhuge, “Adding logical operators to tree pattern queries on
graph-structured data,” International Conference on Very Large Data Bases,
pp. 728–739, 2012.

[24] J. Zhou, J. X. Yu, Y. Qiu, X. Tang, Z. Chen, and M. Du, “Fast reachability queries
answering based on rcn reduction,” Institute of Electrical and Electronics
Engineers Transactions on Knowledge and Data Engineering, pp. 1–1, 2021.

[25] Z. Su, D. Wang, X. Zhang, L. Cui, and C. Miao, “Efficient reachability query with
extreme labeling filter,” International Conference on Web Search and Data
Mining, pp. 966–975, 2022.

[26] Q. Zeng and H. Zhuge, “Comments on ”stack-based algorithms for pattern matching
on dags”,” International Conference on Very Large Data Bases, pp. 668–679,
2012.

[27] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li, “Efficient subgraph matching on
billion node graphs,” International Conference on Very Large Data Bases,
pp. 788–799, 2012.

[28] J. Cheng, X. Zeng, and J. X. Yu, “Top-k graph pattern matching over large graphs,”
International Conference on Data Engineering , pp. 1033–1044, 2013.

[29] W. Han, J. Lee, and J. Lee, “Turboiso: towards ultrafast and robust subgraph
isomorphism search in large graph databases,” Association for Computing
Machinery’s Special Interest Group on Management of Data Conference,
pp. 337–348, 2013.

[30] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang, “Efficient subgraph matching
by postponing cartesian products,” Association for Computing Machinery’s
Special Interest Group on Management of Data Conference, pp. 1199–1214,
2016.

[31] M. Han, H. Kim, G. Gu, K. Park, and W. Han, “Efficient subgraph matching:
Harmonizing dynamic programming, adaptive matching order, and failing set
together,” Association for Computing Machinery’s Special Interest Group on
Management of Data Conference, pp. 1429–1446, 2019.

[32] H. Shang, Y. Zhang, X. Lin, and J. X. Yu, “Taming verification hardness: an efficient
algorithm for testing subgraph isomorphism,” International Conference on
Very Large Data Bases, pp. 364–375, 2008.

[33] H. He and A. K. Singh, “Graphs-at-a-time: query language and access methods
for graph databases,” Association for Computing Machinery’s Special Interest
Group on Management of Data Conference, pp. 405–418, 2008.

[34] V. Bonnici, R. Giugno, A. Pulvirenti, D. E. Shasha, and A. Ferro, “A subgraph
isomorphism algorithm and its application to biochemical data,” BioMed
Central Bioinformatics, vol. 14, no. S-7, p. S13, 2013.

126

[35] V. Carletti, P. Foggia, and M. Vento, “VF2 plus: An improved version of VF2 for
biological graphs,” International Workshop on Graph-Based Representations
in Pattern Recognition, pp. 168–177, 2015.

[36] L. Zou, L. Chen, M. T. Özsu, and D. Zhao, “Answering pattern match queries in
large graph databases via graph embedding,” International Conference on
Very Large Data Bases, pp. 97–120, 2012.

[37] M. Yannakakis, “Algorithms for acyclic database schemes,” International Conference
on Very Large Data Bases, pp. 82–94, 1981.

[38] N. Bruno, N. Koudas, and D. Srivastava, “Holistic twig joins: optimal XML pattern
matching,” Association for Computing Machinery’s Special Interest Group on
Management of Data Conference, pp. 310–321, 2002.

[39] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke, “Computing simulations on
finite and infinite graphs,” The Institute of Electrical and Electronics Engineers
Symposium on Foundations of Computer Science, pp. 453–462, 1995.

[40] S. Mennicke, J. Kalo, D. Nagel, H. Kroll, and W. Balke, “Fast dual simulation
processing of graph database queries,” International Conference on Data
Engineering , pp. 244–255, 2019.

[41] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu, “Graph pattern matching: From
intractable to polynomial time,” International Conference on Very Large Data
Bases, pp. 264–275, 2010.

[42] W. Fan, J. Li, S. Ma, N. Tang, and Y. Wu, “Adding regular expressions to
graph reachability and pattern queries,” International Conference on Data
Engineering , pp. 39–50, 2011.

[43] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo, “Strong simulation: Capturing
topology in graph pattern matching,” Association for Computing Machinery
Transactions on Database Systems, vol. 39, no. 1, pp. 4:1–4:46, 2014.

[44] X. Wu, D. Theodoratos, D. Skoutas, and M. Lan, “Leveraging double simulation to
efficiently evaluate hybrid patterns on data graphs,” International Conference
on Web Information Systems Engineering, pp. 255–269, 2020.

[45] A. Y. Halevy, “Answering queries using views: A survey,” International Conference
on Very Large Data Bases, pp. 270–294, 2001.

[46] M. Lenzerini, “Data integration: A theoretical perspective,” Association
for Computing Machinery’s Special Interest Group on Algorithms and
Computation Theory - Association for Computing Machinery’s Special Interest
Group on Management of Data - Association for Computing Machinery’s
Special Interest Group on Artificial Intelligence Symposium on Principles of
Database Systems, pp. 233–246, 2002.

127

[47] X. Wu, D. Theodoratos, and W. H. Wang, “Answering XML queries using
materialized views revisited,” The Conference on Information and Knowledge
Management, pp. 475–484, 2009.

[48] W. Fan, X. Wang, and Y. Wu, “Answering pattern queries using views,” Institute
of Electrical and Electronics Engineers Transactions on Knowledge and Data
Engineering, vol. 28, no. 2, pp. 326–341, 2016.

[49] J. M. F. da Trindade, K. Karanasos, C. Curino, S. Madden, and J. Shun, “Kaskade:
Graph views for efficient graph analytics,” International Conference on Data
Engineering , pp. 193–204, 2020.

[50] A. Arion, V. Benzaken, I. Manolescu, and Y. Papakonstantinou, “Structured
materialized views for XML queries,” International Conference on Very Large
Data Bases, pp. 87–98, 2007.

[51] J. Wang and J. X. Yu, “XPath rewriting using multiple views,” International
Conference on Database and Expert Systems Applications, pp. 493–507, 2008.

[52] N. Tang, J. X. Yu, M. T. Özsu, B. Choi, and K.-F. Wong, “Multiple materialized
view selection for XPath query rewriting,” International Conference on Data
Engineering, pp. 873–882, 2008.

[53] X. Wu, D. Theodoratos, W. H. Wang, and T. Sellis, “Optimizing XML queries:
Bitmapped materialized views vs. indexes,” Information Systems, vol. 38,
no. 6, pp. 863–884, 2013.

[54] J. Wang, N. Ntarmos, and P. Triantafillou, “Indexing query graphs to speedup
graph query processing,” International Conference on Extending Database
Technology, pp. 41–52, 2016.

[55] J. Li, Y. Cao, and X. Liu, “Approximating graph pattern queries using views,” The
Conference on Information and Knowledge Management, pp. 449–458, 2016.

[56] X. Wang, “Answering graph pattern matching using views: A revisit,” International
Conference on Database and Expert Systems Applications, pp. 65–80, 2017.

[57] X. Wu, D. Theodoratos, D. Skoutas, and M. Lan, “Evaluating mixed patterns on
large data graphs using bitmap views,” International Conference on Database
Systems for Advanced Applications, pp. 553–570, 2019.

[58] W. Le, S. Duan, A. Kementsietsidis, F. Li, and M. Wang, “Rewriting queries on
SPARQL views,” The World Wide Web Conference, pp. 655–664, 2011.

[59] D. Olteanu and M. Schleich, “Factorized databases,” Association for Computing
Machinery’s Special Interest Group on Management of Data Conference
Record, vol. 45, no. 2, pp. 5–16, 2016.

128

[60] T. Neumann and G. Weikum, “The RDF-3X engine for scalable management of RDF
data,” The Very Large Data Bases Journal, pp. 91–113, 2010.

[61] K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang, “A distributed graph engine for
web scale RDF data,” International Conference on Very Large Data Bases
Endowment, pp. 265–276, 2013.

[62] O. Kalinsky, Y. Etsion, and B. Kimelfeld, “Flexible caching in trie joins,”
International Conference on Extending Database Technology, pp. 282–293,
2017.

[63] R. Kaushik, P. Bohannon, J. F. Naughton, and H. F. Korth, “Covering indexes
for branching path queries,” Association for Computing Machinery’s Special
Interest Group on Management of Data Conference, pp. 133–144, 2002.

[64] P. A. Bernstein and D. W. Chiu, “Using semi-joins to solve relational queries,” Journal
of the Association for Computing Machinery, vol. 28, no. 1, pp. 25–40, 1981.

[65] M. J. Freitag, M. Bandle, T. Schmidt, A. Kemper, and T. Neumann, “Adopting worst-
case optimal joins in relational database systems,” International Conference
on Very Large Data Bases, pp. 1891–1904, 2020.

[66] “Awesome Procedures On Cypher (apoc).” https://neo4j.com/labs/apoc/, last
accessed on 10/27/2022.

[67] M. Hotz, T. Chondrogiannis, L. Wörteler, and M. Grossniklaus, “Experiences with
implementing landmark embedding in neo4j,” International Workshop on
Graph Data Management Experiences and Systems, pp. 7:1–7:9, 2019.

[68] X. Wu, D. Theodoratos, D. Skoutas, and M. Lan, “Efficient in-memory evaluation of
reachability graph pattern queries on data graphs,” International Conference
on Database Systems for Advanced Applications, pp. 55–71, 2022.

[69] T. Milo and D. Suciu, “Index structures for path expressions,” The International
Conference on Database Theory, pp. 277–295, 1999.

[70] D. T. Nguyen, M. Aref, M. Bravenboer, G. Kollias, H. Q. Ngo, C. Ré, and A. Rudra,
“Join processing for graph patterns: An old dog with new tricks,” International
Workshop on Graph Data Management Experiences and Systems, pp. 2:1–2:8,
2015.

[71] H. Q. Ngo, C. Ré, and A. Rudra, “Skew strikes back: new developments in the theory
of join algorithms,” Association for Computing Machinery’s Special Interest
Group on Management of Data Conference Rec., vol. 42, no. 4, pp. 5–16, 2013.

[72] T. L. Veldhuizen, “Triejoin: A simple, worst-case optimal join algorithm,” The
International Conference on Database Theory, pp. 96–106, 2014.

129

[73] T. Neumann and B. Radke, “Adaptive optimization of very large join queries,”
Association for Computing Machinery’s Special Interest Group on Management
of Data Conference, pp. 677–692, 2018.

[74] S. Han, L. Zou, and J. X. Yu, “Speeding up set intersections in graph algorithms using
SIMD instructions,” Association for Computing Machinery’s Special Interest
Group on Management of Data Conference, pp. 1587–1602, 2018.

[75] Y. Park, S. Ko, S. S. Bhowmick, K. Kim, K. Hong, and W. Han, “G-CARE: A
framework for performance benchmarking of cardinality estimation techniques
for subgraph matching,” Association for Computing Machinery’s Special
Interest Group on Management of Data Conference, pp. 1099–1114, 2020.

130

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication Page
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Literature Review
	Chapter 3: Evaluation of Hybrid Tree Patten Queries on Large Data Graphs
	Chapter 4: Evaluating Hybrid Graph Pattern Queries Using Summary Graphs
	Chapter 5: Answering Graph Pattern Queries Using Compact Materialized Views
	Chapter 6: Optimizing Graph Pattern Queries with Materialized Views
	Chapter 7: Conclusion
	References

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

