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ABSTRACT 

MICROHYDRODYNAMIC, KINETIC AND THERMAL MODELING OF WET 

MEDIA MILLING FOR PROCESS OPTIMIZATION AND INTENSIFICATION 

 

by 

Gulenay Guner 

 

Nanoparticle production by wet stirred media milling (WSMM) is a common method for 

the formulation of poorly water-soluble drugs. While most of the studies in the WSMM 

literature focus on the formulation aspects to overcome the stability challenges, a thorough 

mechanistic understanding of the process is lacking, and the process is slow, costly, and 

energy-intensive. This dissertation presents experimental and modeling work with the 

ultimate goals of (i) gaining a deeper and more mechanistic understanding of the WSMM 

process and breakage kinetics of the particles using a microhydrodynamic model with 

various improvements and advancements, (ii) examining the heat dissipation during the 

WSMM as a function of various process parameters, and (iii) optimizing and intensifying 

the WSMM using novel approaches such as bead mixtures of two different bead materials 

and mixtures of differently sized beads. 

 To achieve the aforementioned goals, an nth-order breakage kinetics model is 

formulated to provide the best representation of the experimental median particle size 

evolution with time upon the milling of drug suspensions. Microhydrodynamic parameters 

are used to predict the breakage rate constant via a subset selection method, where the 

predictions are improved when the packing limit of the beads is taken into account. The 

analysis of heat generation–transfer experimental results suggest a significant rise in 

temperature during the milling, and stirrer speed is the most influential parameter followed 



by bead loading and bead size. An enthalpy balance model (EBM) is formulated to fit the 

experimental temperature profiles and determine the fraction of the mechanical power 

converted to heat, which is predicted using power law and machine learning approaches. 

As a low-fidelity alternative to the EBM, a semi-theoretical lumped-parameter model 

(LPM) is also formulated, which requires less experimental information though still 

provides a better estimation of temperature rise during WSMM as compared with the EBM. 

To improve the process, two novel process optimization approaches via bead mixtures are 

evaluated. When two bead materials, which are polystyrene and zirconia, are compared, 

polystyrene is found to be more efficient in terms of lower power consumption and heat 

generation, whereas zirconia beads are found to be better for fast breakage kinetics. 

Mixture of bead materials is introduced as a novel operational technique, to optimize the 

process from a holistic cycle time–power consumption–heat generation perspective. A 

decision tree for the composition of the bead mixture for various pharmaceutical 

application scenarios is developed. While the mixtures of polystyrene–zirconia beads help 

to reduce cycle time with acceptable temperature rise and power consumption, the mixtures 

of different bead sizes do not provide any significant benefit as compared with narrowly-

sized individual beads. Overall, this dissertation addresses various process challenges of 

WSMM such as long cycle time and temperature rise, and formulates novel experimental 

solutions such as mixture of beads and predictive modeling techniques using various 

machine learning algorithms. Besides generating fundamental insights into the processing, 

the research hints at a new path to modeling the WSMM process via a combination of the 

microhydrodynamic model and population balance model augmented with machine 

learning approaches. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation for Bioavailability Enhancement of Drugs 

Formulation and delivery of Active Pharmaceutical Ingredients (APIs) in the form of 

efficacious, stable pharmaceutical dosages is an important objective in the drug 

development cycle. Improving the bioavailability, stability, and convenience of solid 

dosages to patients are important considerations in formulation development [1]. 

Bioavailability means the rate and extent to which the active substance or therapeutic 

moiety is absorbed from a pharmaceutical form and becomes available at the site of action 

[2]. According to the Biopharmaceutics Classification System (BCS), only 65% of the oral 

WHO essential drugs met the high solubility criterion, which requires the drug to be soluble 

in pH 1–7 of 250 ml aqueous fluid [2, 3]. About 30–40% of the considered set of 

established drugs have to be regarded as practically insoluble in water (<0.1 mg/mL 

according to the USP (United States Pharmacopeia) definition) [4]. While the fraction of 

“practically insoluble” drugs is 70% in the pharmaceutical compounds in development [5], 

the fraction of BCS class II and IV drugs among new molecular entities has been estimated 

to be as high as 90% [6]. The trend toward the identification of more lipophilic and/or 

larger new molecular compounds by modern drug discovery methods is generally 

accompanied by a decrease in aqueous solubility [7]. Challenges related to poor aqueous 

solubility may occur already early in the drug development process and, consequently, 

there are increasing efforts to link the drug discovery and development process with early 

formulation strategies [8]. 
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 The techniques to overcome poor solubility entails either chemical or physical 

modifications for which some aspects were mentioned in the following table [9]. 

Table  1.1  Commonly Used Techniques in Bioavailability Enhancement of Poorly Soluble 

Drugs

Chemical 

Modifications 

Salt Formation The most common method for increasing the solubility and 

dissolution rate of acidic and basic drugs 

Co-

crystallization 

Crystalline material consists of two or more molecular (& 

electrical neutral) species held together by non-covalent 

forces. Important as an alternative to salt formation for 

neutral drugs 

Co-solvency Solvent used to increase solubility known as co-solvent. It 

is also commonly referred to as solvent blending. 

Hydrotropic It improves solubility by complexation involving weak 

interaction between hydrophobic agents (e.g., sodium 

alginate, urea) & solute.  

Solubilizing 

agent 

The solubility of poorly soluble drugs can also be improved 

by various solubilizing materials. Ex. PEG 400 is 

improving the solubility of hydrochlorothiazide 

Nanotechnology For many new chemical entities of very low solubility, 

micronization is not sufficient because the micronized 

product has a very low effective surface area for dissolution 

and the next step taken was nanonization.  

Physical 

Modifications 

Particle size 

reduction 

This can be done mainly by micronization & nanonization. 

As particle size decreases, surface area of particle increases 

resulting in increase in dissolution rate. Nanonization has 

overlap with “Nanotechnology”.  

Modification of 

the crystal habit 

Different polymorphs of drugs are chemically identical, but 

they exhibit different physicochemical properties including 

solubility, melting point, density, texture, stability. 

(Solubility ranking: Amorphous >Metastable polymorph 

>Stable polymorph) 

Complexation Complexation is the association between two or more 

molecules to form a non-bonded entity with a well-defined 

stoichiometry which relies on relatively weak forces such 

as London forces, hydrogen bonding and hydrophobic 

interactions  

Solubilization 

by surfactants 

The presence of surfactants may lower the surface tension 

but increases solubility of drug within an organic solvent. 

Drug 

dispersions in 

carriers  

The dispersion of one or more active ingredients in an inert 

carrier in a solid-state, frequently prepared by the melting 

method, solvent method, or fusion solvent method. Usually, 

the drug is kept amorphous (ASDs). 
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 Among these approaches, particle size reduction (wet stirred media milling, a.k.a., 

nanonization or nanomilling) [10] and amorphous solid dispersions (ASDs) [2] have been 

the most widely used and become platform approaches. Amorphous drugs lack distinct 

intermolecular arrangement of a crystalline structure. They exhibit lower thermodynamic 

stability and higher apparent solubility than their crystalline counterparts [11]. While 

amorphous drugs have higher solubility and dissolution rates, they are generally less stable 

physically and chemically than their corresponding crystal forms [12-14]. ASDs can 

generate significant supersaturation during in vitro and in vivo dissolution even for drugs 

with extremely low solubility, thus enhancing the dissolution rate [11]. On the other hand, 

nanomilling could lead to the formation of drug nanocrystals that have a large surface area, 

and such a large surface area has been shown to increase the dissolution rate and enhance 

bioavailability [15]. In the prevalent pharmaceutical nanotechnology literature, particles 

with sizes ~10 nm up to 1000 nm [16], including the colloids domain, have been broadly 

regarded as nanoparticles, while in most practical pharmaceutical applications 

nanoparticles refer to 50–300 nm particles [10, 17].  Due to their relatively stable nature in 

the solid-state, drug nanocrystals in dry form are advantageous to ASD-based dosages from 

a storage stability perspective. Besides higher dissolution rates leading to improved 

bioavailability, other advantages of drug nanoparticles include the elimination of food 

effects, safe dose escalation, and enhanced efficacy and tolerability profiles [18]. 

Moreover, drug nanoparticles in suspension form have been used for a multitude of 

delivery routes: oral, parenteral, inhalation, dermal, etc. Despite these advantages, 

obviously, drug nanocrystals cannot be effective if the bioavailability is limited by the 

extremely low solubility of the drug (thermodynamic limit).  
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In view of the above pros/cons and considering the widespread use and significance 

of drug nanoparticles, this dissertation mainly focuses on the formation of drug 

nanoparticles via wet stirred media milling (WSMM) process. In Section 1.2, before 

delving into a review of the WSMM process in Section 1.3, a quick review of drug 

nanoparticle production is presented.  Section 1.4 will present a summary of the approaches 

that have been used to model the WSMM process and give the details of the 

microhydrodynamic model used in this dissertation. Section 1.5 presents the knowledge 

gaps and research needs for WSMM that are addressed in this dissertation and Section 1.6 

presents the objectives.  

1.2 Preparation of Drug Nanoparticles and Their Suspensions 

Nanoparticles, which can be prepared in the form of nanosuspensions, have been 

demonstrated to improve the dissolution rate for many drugs since they have a larger 

specific surface area and higher overall solute transfer coefficient compared with their 

micro-sized counterparts [10]. If their particle size is decreased further, especially less than 

~100 nm, the apparent solubility becomes higher according to the Ostwald-Freundlich 

theory [16]. Overall, all these features exhibited by nanoparticles improve the dissolution 

rate according to the Noyes–Whiney equation, where m is the mass dissolved, A is the 

surface area, D is diffusion coefficient of the drug, h is the diffusion layer thickness, Cs is 

saturation solubility and C is the concentration of the solution at time t  [19]; the increase 

in dissolution rate, in turn, enhances the bioavailability of drugs [20]. 

(
𝑑𝑚

𝑑𝑡
) =

𝐴𝐷(𝐶𝑠 − 𝐶)

ℎ
 

(1.1) 
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Drug nanosuspensions can be prepared by top-down, bottom-up, or combinative 

methods. Top-down methods such as high-pressure homogenization (HPH) [16], wet 

stirred media milling [21, 22], and ball milling [23] involve high shear–impact forces to 

achieve size reduction of as-received drug crystals down to micro or nanometer scale. 

Bottom-up methods involve building up particles by precipitation of dissolved molecules 

via liquid anti-solvent precipitation (LASP) [24] and precipitation by supercritical fluids 

[25, 26]. Melt emulsification is another example of a bottom-up technique that can be used 

for drugs with low melting points [27, 28]. Combinative methods include a combination of 

bottom-up and top-down approaches [29]. Among various methods used for the production 

of drug nanoparticles, wet stirred media milling (WSMM) has found the most common use 

in the pharmaceutical industry owing to its unique advantages: WSMM is organic solvent-

free, scalable, and environmentally benign [10]. Moreover, WSMM allows producing 

nanosuspensions with high drug loading, which exhibits low excipient side effects. Also, 

it has continuous processing capability and can be applied universally to any poorly water-

soluble drug. Nanosuspensions also have the advantage of higher mass packing (higher 

dose) per injection volume and improved physical stability owing to the use of stabilizers 

such as polymers and/or surfactants [16, 30]. 

1.3 Wet Stirred Media Milling (WSMM) Process 

A schematic of the WSMM process operating in the recirculation mode is illustrated in 

Figure 1.1. Inside a holding tank, a pre-suspension of the drug at 2–30% w/w loading [31] 

is typically prepared by adding drug powder to an aqueous solution of stabilizers such as 

polymers, surfactants, etc. The homogeneous pre-suspension is circulated through the 

milling chamber and back to the holding tank using peristaltic or other positive-
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displacement pumps for accurate feeding. To minimize media contamination, the milling 

chamber is lined with hard, wear-resistant ceramics or stainless steel and pre-loaded 

typically with 50–90% v/v of the chamber wear-resistant media (beads) such as yttrium-

stabilized zirconia (YSZ) or cross-linked polystyrene (CPS). Silica, steel, iron, and alumina 

balls have also been used for non-pharmaceutical applications [10, 17, 32]. Typical bead 

sizes range from 100 µm to 3000 µm; however, both larger and smaller beads have also 

been used for some specific applications or modeling purposes [33]. A screen with a 

nominal opening size that is about half the size of beads is located at the outlet of the 

milling chamber. The screen retains the beads while allowing the passage of the drug 

suspension. A stirrer (rotor), with mixing elements emanating from the stirrer body (Figure 

1.2), stirs the slurry of beads and drug suspension in the chamber, causing turbulent flow 

and fluctuating motion of the beads [34]. As the suspension passes through the milling 

chamber, drug particles are captured, compressed, and broken by the beads. The rotational 

speed of the stirrer is scale-dependent, while the tip speeds range from 4–20 m/s [10]. Both 

the milling chamber and the holding tank are equipped with a chiller unit, which keeps the 

suspension temperature in the holding tank and the milling chamber under control. 
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Figure  1.1  Schematic of a wet stirred media mill in recirculation mode of operation. 

 
Figure  1.2  A ceramic (YSZ) stirrer with mixing elements at the periphery (left) inside a 

Netzsch Microcer horizontal wet stirred media mill used in the experimental work (right). 

         A schematic of possible particle change mechanisms occurring during the wet media 

milling of drugs is shown in Figure 1.3. [10]. Particle size during milling generally 

depends on (i) process–equipment parameters; (ii) mechanical and physicochemical 

properties of drug particles; and (iii) physical stability of the milled suspension, i.e., 

mitigation of aggregation and/or Ostwald ripening in the presence of various stabilizers 

[35, 36]. Preparation of a drug nanosuspension with desired particle size and adequate 
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storage stability entails selecting a proper stabilizer formulation and effective process–

equipment parameters for the WSMM. The selection of optimal stabilizer formulation is a 

laborious and resource-demanding task, yet an important one with potentially serious 

consequences. A poorly formulated drug nanosuspension may undergo aggregation, 

Ostwald ripening, fast sedimentation of particles, and cake formation during 

milling/storage, which will lead to various issues in downstream processing of the 

respective suspensions and poor product performance from the final dosages such as 

unexpectedly slow dissolution (see [10] and references cited in there). Obviously, potential 

particle size increase/growth during milling and storage can lead to loss of high surface 

area associated with the drug nanoparticles, which reduces the significant benefits intended 

from the nanomilling process. 

 
Figure  1.3  Schematic of particle change mechanisms during the WSMM process. 

1.3.1 Formulation aspects 

As mentioned before, WSMM is the most popular production method for nanosuspension 

production, however, it suffers from some challenges. A major issue is the aggregation–

growth tendency of the milled drug particles in the aqueous suspensions during milling or 
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storage which results in loss of surface area [10]. In the milling process, two mechanisms 

happen conversely. While the breakage of the particle continues depending on the 

mechanical stress that the milling applies, aggregation takes place due to the highly 

attractive interparticle forces such as van der Waals and hydrophobic forces [37]. On the 

other hand, the drug particles in the suspension may grow due to a process called Ostwald 

ripening in which dissolved drug molecules from smaller drug particles are transported into 

larger particles as a function of increasing solubility [38]. Therefore, the physical stability 

of the drug nanosuspensions by various stabilizers [39, 40], also known as dispersants, is 

required during milling and storage for proper downstream processing and adequate shelf-

life. 

The physicochemical properties of drugs such as surface energy, solubility, 

molecular weight, type and number of the functional groups, crystal structure, mechanical 

and thermal properties may have an impact on the particle size distribution of the 

nanosuspension [39, 41, 42]. A rational criterion for the selection of excipient and process 

conditions according to the drug properties is not established yet, but some empirical 

studies find a correlation between the quality attributes of nanosuspensions and fusion 

enthalpy [43], surface energy [44], and molecular weight [45] of the drugs. To ensure a 

stable drug nanosuspension, both the type of the stabilizer and the drug-to-stabilizer mass 

ratio should be selected judiciously so that the stabilizer adsorbs on drug particles and its 

concentration is high enough to prevent aggregation and low enough not to cause Ostwald 

ripening [46, 47]. Depending on the type of excipient, stabilization can be provided via 

steric, electrosteric, or a combination of both mechanisms via the adsorption of polymers 

and/or surfactants on drug particle surfaces [47-50]. Nonionic polymers or nonionic 



 

10 

 

surfactants (e.g., poloxamers, cellulosic derivatives, polysorbates, and povidones, etc.) 

usually provide steric stability by preventing the particles from getting into the range of 

attractive van der Waals forces. However, a high concentration of nonionic polymer is 

needed to obtain a stable system which is not favorable since it lowers the drug loading if 

the suspension is intended for a solid dosage form. Electrostatic stabilization is usually 

imparted by ionic surfactants, e.g., sodium dodecyl sulfate (SDS), dioctyl sulfosuccinate 

sodium salt (DOSS), and benzethonium chloride (BKC). In electrosteric stabilization, 

nonionic polymers or surfactants along with ionic surfactants stabilize the particles, acting 

simultaneously. However, despite their effectiveness as dispersants, usage of surfactants 

should be minimized as they could pose several challenges upon usage above their critical 

micelle concentration (CMC) such as particle growth via Ostwald ripening due to micellar 

solubilization during milling/storage [46, 51-53].  

In addition to polymers and surfactants, colloidal superdisintegrants such as sodium 

starch glycolate (SSG) and croscarmellose sodium (CCS) were shown to provide enhanced 

kinetic and electrostatic stability in the presence of an adsorbing polymer [54-57]. For 

example, a study was conducted to investigate the efficiency of three methods of 

fenofibrate (FNB: drug) suspension stabilization, i.e., usage of high concentrations of 

hydroxypropyl methylcellulose (HPMC) polymer, the combination of HPMC with SDS 

surfactant, and combination of HPMC with a superdisintegrant [54].  As can be seen in 

Figure 1.4, while the usage of 2% HPMC was not sufficient to prevent FNB nanoparticle 

aggregation, the 2% HPMC–0.075% SDS combination effectively suppressed aggregation 

leading to much finer sizes because electrosteric stabilization was attained due to the usage 

of adsorbing neutral polymer (HPMC) and the anionic surfactant (SDS). Similarly, the 



 

11 

 

colloidal superdisintegrants, SSG or CCS (wet-milled during the milling of FNB) along 

with HPMC resulted in a stable suspension, and the stabilization provided by 

superdisintegrant depends on their swelling capacity. As the superdisintegrant particles 

absorbed water, the actual concentration of the polymer in the suspension increased. At 

higher polymer concentrations, the extent of adsorption of the polymer onto the drug 

particles appeared to increase, which in turn enhanced steric stabilization [54]. The kinetic 

stabilization effect could also get more pronounced as the viscosity of the suspension 

became higher and the mobility of the drug particles decreased when the superdisintegrant 

was present.  

 
Figure  1.4  Volumetric frequency distribution of milled FNB nanosuspension with 

different formulations.  
Source: [54] 

Overall, the review of existing literature and analysis of the comprehensive review 

papers [10, 17] reveals that while aggregation and Ostwald ripening have a negative impact 

on the physical stability of drug nanosuspensions prepared by WSMM, the judicious use 

of stabilizer(s) and their combinations [47] as well development of novel classes of 

stabilizers [54, 58] such as the colloidal superdisintegrants appears to have largely 
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mitigated such formulation challenges. Hence, this dissertation will mainly focus on 

process-related challenges associated with WSMM.  

1.3.2 Processing aspects and current challenges 

Interestingly, while hundreds of studies generating voluminous experimental data on the 

formulation, stabilization, and drying of nanosuspensions exist in the pharmaceutical 

nanotechnology literature (see e.g., refs. [10, 18, 31, 34, 59] and the references cited 

therein), relatively scarce and somewhat scattered information is available on the process 

development–optimization of pharmaceutical WSMM [17, 57, 60]. Several challenges, 

technical barriers, and knowledge gaps regarding processing–operational aspects of 

WSMM include (bolded items are in the scope of this dissertation):  

(i) the process is expensive due to its energy–intensive and inefficient nature [61];  

(ii) it is relatively slow with processing times from an hour(s) to a day(s) depending 

on process conditions, batch size, and equipment scale [31, 57];  

(iii) our understanding of the impact of stabilizers on the milling process beyond 

stabilization is inadequate [62];  

(iv) the product (drug nanosuspension) is contaminated due to media wear, which must 

be minimized and controlled [10, 63, 64];  

(v) the process scale-up is rather empirical (see e.g., [65]), lacking a first-principle 

mechanistic approach;  

(vi) high heat dissipation and temperature rise during milling that may jeopardize 

the physicochemical stability of the drug suspensions, which necessitates a 

process shutdown;  

(vii) Blockage of mill screen with coarse particles especially at high suspension flow 

rates 

 Solving the aforementioned processing issues entails a mechanistic understanding 

of the impact of process variables such as the stirrer speed, the type and size of the beads, 

the beads loading, the suspension flow rate, and the drug loading on the breakage kinetics, 
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specific energy consumption, media wear, and milling time required for the desired product 

fineness [57, 66].  

The stirrer speed in WSMM or circumference speed in planetary ball mills plays an 

important role in determining the final particle size of the nanosuspensions [57]. Stirrer 

speeds of 2.65–14.7 m/s and circumference speeds of 150–6000 rpm have been reported 

[10]. The apparent breakage rate increased with an increase in the stirrer speed [57]. On 

the other hand, the volumetric bead loading greatly varied in the literature from 17% to 

94% of the milling chamber volume. The percentage is generally expressed in terms of 

apparent bead volume relative to the true milling chamber volume. Afolabi et al. [57] 

demonstrated that a larger volume fraction of the beads resulted in faster breakage of 

griseofulvin particles. In terms of the impact of drug loading, Afolabi et al. [57] found that 

an increase in griseofulvin concentration from 5% to 30% w/v led to a sharp decrease in 

the milling intensity factor and consequently slower breakage. Literature review showed 

that the milling media (beads) made up of zirconia, alumina, or cross-linked polystyrene 

with various sizes have been used in wet media milling [10]. Bitterlich et al. [38] reported 

that the milling performance was influenced by the choice of bead material and shape. 

Comparing zirconia and alumina beads of the same size, they concluded that zirconia beads 

transferred more energy per collision due to their higher density, therefore inducing faster 

breakage to drug particles during milling. In addition, the milling process with spherical 

alumina beads was more efficient than the process with irregularly shaped alumina beads 

[38]. Other studies concerning the impact of process parameters will be considered in 

Section 1.4 within the context of modeling studies. 
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1.4 Mechanistic Modeling of Wet Stirred Media Milling 

As mentioned in the previous sections, the formulation aspect of nanosuspensions has been 

addressed to a large extent and there are several formulation solutions to physical stability 

problems. On the other hand, process challenges (i)–(vii) mentioned in Section 1.3 have 

not been thoroughly investigated, which requires a mechanistic understanding of the 

process and well-designed process studies dedicated to the specific challenges. Of course, 

such an understanding cannot be gained by mere experimentation. In our recent literature 

review, it has been noted that there are only a few studies that made use of mechanistic 

models for analyzing WSMM in the pharmaceutical industry [32]. Most of the 

pharmaceutical WSMM studies (70%, 21 out of Np = 30) used statistically-based models: 

empirical regression fit, response surface methodology (RSM), etc. [65, 67-86] instead of 

the mechanistic models (30%). Surprisingly, our literature search on pharmaceutical 

WSMM found only one study (3.3% of Np = 30) with the population balance model (PBM) 

alone [87] and no studies with the computational fluid dynamics (CFD), discrete element 

method (DEM), or any coupled methods. Two studies (6.7%) with the stress intensity-

number model (SI–SN model) [64, 88] and 6 studies (20%) with the microhydrodynamic 

model (MHD model) [33, 57, 62, 63, 89, 90] were found, where MHD turn out to be the 

most used mechanistic models.  

Among the non-pharmaceutical WSMM studies (based on Nnp = 41), there are 8 

studies (19.5%) with the PBM alone [91-98], 4 studies (9.8%) with the CFD alone [99-

102], 9 studies (24.4%) with the DEM alone [103-111], 13 studies (31.7%) with the 

coupled methods (CFD–DEM, CFD–PBM, etc.) [112-124], 13 studies (31.7%) with the 

SI–SN model [98, 111, 121-131], and only one study (2.4%) comparing the SI–SN model 

with the MHD model [127].  
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The statistically-based models correlated the drug particle size/specific surface area 

and/or predicted them based on process parameters such as milling time [65, 67-80, 86], 

stirrer speed [69, 71-73, 76, 77, 80-84], bead loading [74-76, 81, 82, 85, 86], bead size [80, 

81, 83] or pump speed [77]. Some studies also correlated polydispersity index [74, 76, 77, 

79, 80, 86], zeta potential [69, 71-74, 76, 77, 79, 80, 86], and saturation solubility [68, 73, 

86] to the process parameters.  

1.4.1 Comparison of the capabilities of the different modeling approaches 

None of the models could simulate all aspects of the WSMM process. Each modeling 

approach is typically good at analyzing a certain aspect of the process, and has various 

pros/cons. Table 1.2 presents the modeling approaches and respective pros/cons. 

Table  1.2  Modeling Approaches Used for Simulating the WSMM Process and Their 

Pros/Cons 
Model Type* Pros/Cons 

Eulerian-

Eulerian (EE) 

CFD 

Pros: provides the spatiotemporal variation of all flow variables 

Cons: does not consider individual beads, or stresses developed by bead–bead 

collisions; no microhydrodynamic information except granular temperature; 

does not simulate particle breakage; requires weeks of computation time 

 

Eulerian- 

Lagrangian 

(CFD–DEM) 

Pros: provides the spatiotemporal variation of all flow variables and the bead–

bead collisions information with full microhydrodynamic parameters 

Cons: limitation on the number of beads (huge computer memory requirement) 

and computationally more expensive and demanding than EE CFD approach; 

may emulate particle breakage, but particle breakage for the whole milling 

duration is intractable in DEM  

 

 

PBM 

Pros: simulates evolution of the particle size distribution and describes particle 

breakage for the whole milling duration 

Cons: does not provide flow/motion information about the suspensions and 

beads; no microhydrodynamic information; limiting cases of particle mixing 

scenarios can be considered (well-mixed, plug flow, well-mixed cells in-series); 

no computational issue (very fast) 

MHD Pros: a simple semi-theoretical model that provides “average” values of 

microhydrodynamic parameters; no computational issue (very fast) 

Cons: no flow information, no breakage kinetics information 

*The SI–SN model is purely phenomenological and inferior to the MHD model; hence, it is not worth 

considering in the above analysis separately. 
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Based on comprehensive review of the modeling approaches and their pros/cons 

[32] due to its simplicity and descriptive power, we use the MHD model and intend to 

improve and advance it for developing a deep process understanding and gaining various 

insights into the frequency and intensity of the bead–bead collisions and capture frequency 

of drug particles between the beads in this dissertation.  

1.4.2 The microhydrodynamic model and impact of process parameters  

Eskin et al. [34, 132] developed a comprehensive microhydrodynamic model to calculate 

the mean velocity of bead oscillations in a well-mixed slurry using the kinetic theory of 

gases and the fundamental granular energy balance [133]. Bilgili’s group adapted and 

refined the model for application to pharmaceutical WSMM in a series of papers [33, 57, 

62, 63, 89, 90]. Readers are referred to [34, 132] for full details of the model as well as the 

underlying assumptions, while salient features of the model will be covered here. The 

power applied by the mill stirrer is uniformly applied throughout the whole volume of the 

slurry (beads and suspension, see Figure 1.1) and equals the total energy dissipation rate 

εtot. The model inherently assumes well-mixedness (no spatial gradients), average power 

consumption during the milling, and a pseudo-steady-state in terms of power consumption. 

This power dissipates through fluctuating motions of the beads at the micro-scale. Hence, 

εtot is described as  

collviscwtot   P  (1.2) 

where Pw is the power applied by the rotor per unit volume, εvisc is the energy dissipation 

rate due to both the liquid–beads' viscous friction and lubrication, and εcoll 
is the energy 

dissipation rate due to partially inelastic bead–bead collisions. Bilgili and Afolabi [62] 

added a third term, εht, i.e., the power spent on shearing equivalent liquid (milled drug 
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suspension) of the slurry at the same shear rate but calculated (or measured approximately) 

as if no beads were present in the slurry. Then, following Eskin et al. [34], Equation (1.2) 

was modified as  

htcollviscw  P  (1.3) 

𝑃𝑤 =
54μ𝐿𝑐𝜃𝑅𝑑𝑖𝑠𝑠

𝑑𝑏
2 +

12

𝑑𝑏√𝜋
(1 − 𝑒2)𝑔0𝑐2ρ𝑏θ3/2 + 𝜀ℎ𝑡 

(1.4) 

where L is the apparent shear viscosity of the equivalent liquid (drug suspension) and c is 

the bead loading in the milling chamber.  is the granular temperature defined as the bead–

equivalent liquid relative mean-square velocity, Rdiss is the dissipation or effective drag 

coefficient, db 
is the bead size (taken as the median size), e is the restitution coefficient for 

the bead–bead collisions, b is the density of the beads and g0 is the radial distribution 

function at contact. The dissipation coefficient Rdiss is a function of the bead Reynolds 

number Reb, c, and the non-dimensional bead–bead gap thickness at which the lubrication 

force stops increasing and becomes a constant [57]. Wylie et al. [134] give Rdiss as  

𝑅𝑑𝑖𝑠𝑠 = 𝑅𝑑𝑖𝑠𝑠 0(𝑐) + 𝐾(𝑐)𝑑𝑏𝜌𝐿𝜃0.5/𝜇𝐿 (1.5) 

where L is the density of the suspension and K is a coefficient given by an empirical 

correlation of bead concentration c  

𝐾(𝑐) = (0.096 + 0.142𝑐0.121)/(1 − 𝑐)4.45 (1.6) 

 Rdiss0 in Equation (1.5) is the dissipation coefficient taking into account the 

squeezing of the milled suspension film between two approaching beads and is expressed 

as follows: 

𝑅𝑑𝑖𝑠𝑠 0(𝑐) = 𝑘1(𝑐) − 𝑘2(𝑐) ln 𝜀𝑚 (1.7) 
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 In Equation (1.7), εm is the non-dimensional bead–bead gap thickness at which the 

lubrication force stops increasing and becomes a constant and can be taken as 0.003 [135]. 

Rdiss0 was calculated by Sangani et al. [135] who employed a modified multiple method for 

simulation of Stokes flow in a liquid and correlations for k1 and k2 were found as: 

𝑘1(𝑐) = 1 + 3√𝑐 2⁄ + (135 64⁄ )𝑐 𝑙𝑛 𝑐 + 11.26𝑐(1 − 5.1𝑐 + 16.57𝑐2

− 21.77𝑐3) 

(1.8) 

𝑘2(𝑐) = 𝑐𝑔0 (1.9) 

 Equations (1.5–1.9) were used in Equation (1.4) to calculate the granular 

temperature . The microhydrodynamic model in previous studies [33, 57, 62, 63, 90] 

incorporated the following Carnahan and Starling model [136] for g0: 

𝑔0 =
1 − 0.5𝑐

(1 − 𝑐)3
 (1.10) 

The solution of Equation (1.4) for  entails the measurement of the equivalent liquid 

properties, i.e., shear viscosity µL and density L of the drug suspension, the average stirrer 

power per unit volume in the presence of the beads Pw, and the energy dissipation rate for 

shearing the equivalent liquid εht by viscometry and milling experiments [62]. Three 

approaches can be used to determine Pw or εht (without beads). First, Pw can be directly 

measured by the electric motor’s power consumption and/or torque measurements. Second, 

a general correlation for power consumption can be developed by dimensionless analysis 

including Euler number Eu, Reynolds number Re, and Froude number Fr for a specific 

mill and such a correlation can be used for estimating Pw [137]. Finally, Pw can also be 

estimated by an EL–EL (KTGF) simulation of the mill via CFD. Along with the bead 

material properties, µL, L, εht, and Pw are incorporated into Equation (1.4), which can then 
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be solved for  using any nonlinear equation solver. Finally, all MHD parameters are 

determined using the calculated  as an input parameter.  

The average bead oscillation velocity ub and the frequency of single-bead 

oscillations  are determined using the calculated  and the following expressions: 

 𝜈 =
24𝑐

𝑑𝑏
𝑔0√

𝜃

𝜋
     and    𝑢𝑏 = √

8𝜃

𝜋
 (1.11) 

 In a comprehensive microhydrodynamic model, Eskin et al. [132] considered the 

elastic contact deformation of the beads along with the elastic–perfectly plastic 

deformation of the particles caught between them. While the beads frequently collide due 

to their fluctuating motions in a slurry, which are characterized by , ub, and , the beads 

capture and compress (deform) fine drug particles to be milled. The average maximum 

normal force Fb
n during the collision of two identical elastic beads, the radius of the contact 

circle formed at the contact of two beads αb, and the maximum contact pressure at the center 

of the contact circle σb
max were calculated using 

𝐹𝑏
𝑛 = 1.96 (

𝑌𝑏

1 − 𝜂𝑏
2)

2/5

𝜌𝑏
3/5

𝑅𝑏
2𝜃3/5 (1.12) 

𝛼𝑏 = [
3(1 − 𝜂𝑏

2)

4𝑌𝑏
𝑅𝑏𝐹𝑏

𝑛]

1/3

 
(1.13) 

σ𝑏
𝑚𝑎𝑥 =

3𝐹𝑏
𝑛

2πα𝑏
2  

(1.14) 

where Yb, and b are the Young modulus and Poisson’s ratio of the bead material, Rb is the 

bead radius and was taken as half of db. The probability p of a single (drug) particle with 

radius Rp being caught between beads was estimated as the ratio of the volume containing 
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the caught particles to the volume of milled drug suspension falling on a pair of the milling 

beads as follows: 

𝑝 = 0.97
𝑐

1 − 𝑐
[
𝜌𝑏(1 − 𝜂𝑏

2)

𝑌𝑏
]

2/5

𝜃2/5
𝑅𝑝

𝑅𝑏
 (1.15) 

 The multiplication of the probability p of a single particle caught between the beads 

(Equation (1.15)) and the frequency of single-bead oscillations  (Equation (1.11)) gives 

the average frequency of drug particle compressions a:   

𝑎 = 𝑝ν = 11.64
𝑐2𝑔0

√𝜋(1 − 𝑐)
[
𝜌𝑏(1 − 𝜂𝑏

2)

𝑌𝑏
]

2/5
𝑅𝑝

𝑅𝑏
2 𝜃9/10 (1.16) 

where Rp may be taken as the initial radius of the drug particles for convenience. However 

it should be noted that a decreases directly proportional with the decreasing particle size 

during milling as plotted in ref. [138]. The energy dissipation rate resulting from the 

deformation of the drug particles per unit volume Π also characterizes the grinding 

intensity and is expressed as follows: 

𝛱 = 4.46
𝑐2𝑔0

π5/2σ𝑦
(

𝑌𝑏

1 − η𝑏
2)

18/15

(
𝑌∗

𝑌𝑝
)

γ

ρ𝑏
4/5 𝑅𝑝

𝑅𝑏
2 θ13/10 (1.17) 

where , Y*, Yp, b, σy, Rp, and Rb respectively denote volumetric fraction of the solid 

(drug) particles to be ground in the slurry (the bead–drug suspension), shortly referred to 

as the solid (drug) volume fraction, reduced elastic modulus of the bead–drug particle 

contact, elastic modulus of the drug particles, Poisson’s ratio of the beads, contact pressure 

in a drug particle captured when the fully plastic condition is obtained, radius of the drug 

particle, and radius of the bead. The reduced elastic modulus of the bead–particle contact 

Y* was calculated as: 
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1

𝑌∗
=

1 − η𝑏
2

𝑌𝑏
+

1 − η𝑝
2

𝑌𝑝
 (1.18) 

In order to calculate Π using the expressions derived by Eskin et al. [132], one must 

either find the mechanical properties of the drug particles (Yp, p, σy) from the literature or 

measure them. In general, it is difficult to find reliable mechanical properties of small drug 

particles as they are difficult to measure reliably [139]. For young modulus, 

nanoindentation experiments could be used where the load versus depth data can be fitted 

by using an equation developed for elastic contact of spherical surfaces [140]  by inserting 

the Poisson’s ratio, which can be assumed as 0.3 for drugs [139]. Hence, Afolabi et al. [57] 

factorized Π into a material-dependent factor , which are hard to measure, and a process-

dependent factor F considering only one size of beads: 

18/15
4/5 *

pb b

5/2 2 2

y b p b

2.23
1

RY Y

Y R






  

  
        

 (1.19) 

 

2
13/10

3

(2 ) 1

1

c c
F

c








 

(1.20) 

 To explain the impact of various bead sizes, Li et al. [33] suggested a slightly 

different factorization of Π into  and F for multiple bead sizes as follows: 

18/154 5 *
b b

5/2 2

y b p

2.23
1

pR Y Y

Y






  

  
        

 (1.21) 

 

2
13/10

3 2

b

(2 ) 1

1

c c
F

Rc








 

(1.22) 

 Both studies referred to F as the milling intensity factor and used it to gain insight 

into the impact of the process parameters. On the other hand, it is debatable if the bead size 

should be regarded as a process parameter or an equipment design parameter because beads 
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are an integral part of the wet media mill. In a recent study [90], instead of calculating Π, 

the researchers calculated a pseudo energy dissipation rate Π∙σy, which is directly 

proportional to Π, by making use of the mechanical properties of the two types of beads 

used: crosslinked polystyrene (CPS) and yttrium-stabilized zirconia (YSZ).   

𝛱𝜎𝑦 = 4.46
𝑐2𝑔0

π5/2
(

𝑌𝑏

1 − η𝑏
2)

18/15

(
𝑌∗

𝑌𝑝
)

γ

ρ𝑏
4/5 𝑅𝑝

𝑅𝑏
2 θ13/10 (1.23) 

The use of MHD model led to significant insights into the impact of the viscous 

dampening phenomenon and various process–bead parameters on the breakage kinetics, 

and media wear [33, 57, 62, 63, 89, 90]. The MHD-predicted effects of stirrer speed, bead 

size, and drug (solids) loading on the average single bead oscillation velocity ub, to be 

discussed below, qualitatively agree with and exhibit similar trends to those of the 

experimentally measured effects [106, 107] of the same variables on the bead velocity. 

Unfortunately, quantitative comparisons are not possible due to different ranges of the 

process variables used, and these studies only reported the time-averaged bead velocity. 

Also, it is difficult to measure most of the microhydrodynamic parameters, but, some recent 

attempts to experimentally measure the stress energy–frequencies using mechanically 

well-characterized spherical metal particles as surrogate beads seem to be promising [131, 

141]. In a recent collaborative study, EE two-phase flow simulations (two-week 

computation time per simulation) performed by GlaxoSmithKline and Tridiagonal [142] 

reveal that the spatio-temporally averaged microhydrodynamic variables from these 

simulations were of the same order of magnitude as those calculated with the simple MHD 

model, giving further credence to the MHD model.  
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The significant interplay between stabilization–suspension rheology and breakage 

kinetics has been well-established in nanomilling [62, 88, 131]. Bilgili and Afolabi [62] 

found an optimal polymer concentration in WSMM of griseofulvin suspensions in the 

presence of polymer–surfactant, which was explained by a combined MHD–polymer 

adsorption analysis. An increase in the polymer concentration had two counteracting 

effects: reduction in θ and by extension all other microhydrodynamic parameters at the 

higher suspension viscosity (viscous dampening) and higher polymer adsorption on drug 

nanoparticles, which suppressed aggregation effectively. The optimally selected stabilizer 

formulation for griseofulvin nanosuspensions was used in the MHD studies below to 

minimize any confounding effect of particle aggregation. 

Several MHD studies [57, 60, 63] demonstrated that when stirrer tip speed u was 

increased, more mechanical energy was imparted at higher Pw, and all microhydrodynamic 

parameters increased monotonically, i.e., higher u led to higher θ, ν, a, ub, σb
max, and F 

(Figure 1.5). To put it differently, higher u led to higher bead velocity, which is 

qualitatively in line with the experimental work [106, 107, 113], more frequent and 

energetic/forceful bead–bead collisions, and more frequent–intense drug particle 

compressions. On the other hand, as can be seen from Figure 1.6, as the drug loading was 

increased, there was a slight, relatively weak, linear decrease in all microhydrodynamic 

parameters, except F, which exhibited a sharper decrease, thus explaining the reduced 

breakage rate experimentally observed at the higher drug loading [57]. 
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Figure  1.5  Effects of the stirrer tip speed on (a) the granular temperature θ, the average 

bead oscillation velocity ub, and the frequency of single-bead oscillations v and (b) the 

maximum contact pressure σb
max, the milling intensity factor F, and the average frequency 

of drug particle compressions a.  
Source: [57] 
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Figure  1.6  Effects of the drug loading on (a) the granular temperature θ, the average 

bead oscillation velocity ub, and the frequency of single-bead oscillations v and (b) the 

maximum contact pressure σb
max, the milling intensity factor F, and the average frequency 

of drug particle compressions a. 
Source: [57] 

Figure 1.7 presents the MHD analysis of the impact of bead size db. There were 

two major counteracting effects of db. A decrease in db led to lower θ, ub, σb
max and higher 

ν and a  [33, 63], i.e., more bead–bead collisions with lower collision energy–force. These 

counteracting effects of the MHD parameters provide a mechanistic, quantitative 

explanation for the origin of the optimal bead size observed experimentally [33]. Also, the 

differences in terms of microhydrodynamics parameters associated with small vs. large 

beads were largely in agreement with the findings of ref. [114] with CFD–DEM 
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simulations. Unlike the case for u, the overall effect of db on the observed breakage kinetics 

could not be explained by F alone; other microhydrodynamic parameters such as ν and a 

seem to explain the bead size impact better than F. F can successfully be used to explain 

the impact of all process parameters such as stirrer speed, bead loading, and drug loading 

and correlate their combined effect on the milling time constant p uniquely for a specified 

mill [57] (Figure 1.8). However, it appears that it is inadequate to explain the impact of 

bead size, which is usually regarded as an equipment parameter in media milling [33].  

 
Figure  1.7  Effects of bead size db on (a) the granular temperature θ, the average bead 

oscillation velocity ub, and the frequency of single-bead oscillations v at and (b) the 

maximum contact pressure σb
max, the average frequency of drug particle compressions a, 

and the milling intensity factor F at ω = 2800 rpm. 
Source: [33] 
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Figure  1.8  Scatter plots for the characteristic time constant τp versus the specific 

energy Ps, the milling intensity factor F, and the stirrer power per unit volume Pw. Fit: an 

exponential decay correlation.  
Source: [57] 

Figure 1.9. illustrates that the optimal bead size exhibited a negative power-law 

correlation with either the specific energy consumption or any of the MHD parameters; the 

fits were excellent when the MHD parameters were used as opposed to the specific energy: 

R2  0.997 vs. R2 = 0.947 [33]. Hence, the MHD model has rationalized the use of smaller 

beads for more energetic wet media milling and provided an overarching explanation as to 

the use of smaller beads in WSMM than in low-energy mills such as ball mills including 

centrifugal or planetary ball mills. Moreover, such a relationship between optimal bead 

size and the MHD parameters guided the design of an intensified WSMM process to 

produce drug nanosuspensions of two drugs with d50 < 100 nm at reduced energy 

consumption and low media contamination [63]. The same study [63] revealed drastically 

lower media wear and product contamination upon use of smaller beads (50 µm vs. 800 
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µm beads), which could be explained by the lower σb
max and higher strength of the smaller 

beads.  

 
Figure  1.9  Scatter plots and power-law scaling for the dependence of optimal bead size 

on the stirrer tip speed u, the specific energy consumption E*, the frequency of singe-bead 

oscillations ν, the average frequency of drug particle compression a, and the milling 

intensity factor F.  
Source: [33] 

 Similar to the case for db, two counteracting effects of volumetric bead 

concentration c were noted. The MHD analysis reveals that for all three stirrer speeds, ν 

and a were higher, whereas θ, ub, and σb
max were lower when c was increased [57, 90] 

(Figure 1.10). In other words, more bead–bead collisions and drug particle compressions 

occurred albeit with less energetic/forceful collisions/compressions at higher c. Higher 

speeds led to a monotonic increase in all MHD parameters, as discussed earlier. The overall 

positive impact of c on the breakage kinetics, i.e., faster breakage of the drug particles at 



 

29 

 

higher c, could be explained by the increase in the milling intensity factor F [57] or Π∙σy 

[90]. 

 
Figure  1.10  Effects of CPS bead loading c on granular temperature θ and average bead 

oscillation velocity ub (left panel) as well as on the maximum contact pressure σb
max and 

the average frequency of drug particle compressions a at various three different stirrer 

speeds.  
Source: [90] 

   In a rare analysis in WSMM literature, Parker et al. [90] compared the performance 

of crosslinked polystyrene (CPS) beads and yttrium-stabilized zirconia (YSZ) beads with 

similar sizes. Faster breakage occurred with YSZ beads as compared with CPS beads 

because all MHD parameters, except the radius of contact circle αb, were higher for YSZ 

than for CPS (Figure 1.11), favoring YSZ over CPS. With higher fluctuating kinetic 

energy, YSZ beads having a higher modulus of elasticity (Yb  200 GPa) than the CPS 

beads (Yb  1.5 GPa) experienced a higher maximum contact pressure σb
max and a lower 

radius of contact circle αb than the CPS beads at the same stirrer speed. This is the first 
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quantitative verification of the commonly held notion that softer beads (CPS) should allow 

for a larger contact circle than harder beads (YSZ), which is advantageous to capturing fine 

drug particles during the milling. However, despite this advantage of the CPS beads, due 

to their lower θ and ub, their use led to smaller frequency of drug particle compressions a 

than the YSZ beads (except at ω = 2000 rpm). For ω = 2000 rpm, CPS beads had a slightly 

higher a than YSZ; yet they caused a lower breakage rate. This can possibly be explained 

by the lower σb
max and Π∙σy generated by CPS beads at the lowest stirrer speed used [90].   

 
Figure 1.11  Effects of stirrer speed on (a) granular temperature θ, (b) the average 

frequency of drug particle compressions a, (c) the maximum contact pressure σb
max, 

and (d) radius of the contact circle αb when CPS and YSZ beads were used.  
Source: [90] 

1.5 Research Needs and Approaches 

In this section, the knowledge gaps in the literature that were addressed in this dissertation 

along with detailed approaches taken in each chapter will be introduced. 
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1.5.1 Breakage kinetics in wet stirred media milling  

Despite its significant advantages, development of a WSMM poses several challenges. 

Most studies on WSMM have focused on formulation challenges such as aggregation and 

crystal growth via Ostwald ripening (see [10, 17] and references cited therein). In contrast, 

relatively scant information is available about the processing–operational challenges such 

as energy-intensive operation, high cost due to high energy consumption, long operation 

time, and contamination of drug particles by the beads [10, 32, 61]. Overcoming them 

entails a mechanistic understanding of the impact of process variables such as the stirrer 

speed, the size–material of the beads, and the bead loading on the breakage kinetics, milling 

time required for a desired product fineness, energy consumption, and media wear [57, 66]. 

The breakage kinetics is important to pharmaceutical industry as it relates to production 

cycle time: faster breakage results in shorter processing to achieve a desired nanoparticle 

size of the poorly soluble drugs. 

Pharmaceutical engineers–formulators and academia have used various modeling 

approaches to investigate the WSMM process [32]. A recent survey [32] revealed that 

statistically-based methods such as empirical regression and response surface method 

methodology are the most widely-used modeling approaches. On the other hand, breakage 

kinetics during WSMM of drugs was also investigated using phenomenological and 

mechanistic models such as the population balance model (PBM) [143] and the 

microhydrodynamic model [33, 57, 90]. The effects of the bead size [33, 63], the stirrer 

speed [57, 90], the bead material [90], the bead loading [33, 57, 90], and the drug loading 

[33] on the particle size distribution of griseofulvin particles and a breakage time constant 

were investigated. In these studies, the use of the microhydrodynamic model shed light on 

the roles of bead–bead collisions in WSMM. However, in general, these studies did not 
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attempt to directly correlate the microhydrodynamic model parameters to the breakage rate 

constant, which determines the cycle time in the manufacturing of drug suspensions. 

Another issue is that all these studies and others [92, 144] used a first-order breakage 

kinetic model. This model is known to have a limitation, i.e., the need to eliminate the 

kinetic data obtained during early milling times of WSMM [62, 92]. Hence, a head-to-head 

fair comparison and discrimination of several breakage kinetic models for WSMM is 

highly warranted.  

In view of the literature review above, Chapter 2 examined the impact of stirrer 

speed and bead material–loading on the breakage kinetics during WSMM via three 

breakage kinetic models and a microhydrodynamic model. Experimentally, the evolution 

of drug median particle size was tracked during WSMM operating at 3000–4000 rpm stirrer 

speed with 35–50% (v/v) loading of polystyrene or zirconia beads in a 3-factor, 2-level 

full-factorial design of experiments (DOE). In addition to the well-known first-order 

kinetic model, nth-order and warped-time kinetic models were developed; all kinetic 

models were fitted to the experimental data with the objective of identifying the best kinetic 

model based on statistical analysis and physical plausibility considerations. The 

microhydrodynamic model parameters were calculated using the measured process 

variables, power consumption, and suspensions viscosity–density. A subset selection 

algorithm was used along with Multiple Linear Regression Model (MLRM) to delineate 

how the breakage rate constant k was affected by the microhydrodynamic parameters. As 

a comparison, a purely empirical correlation for k in terms of the process parameters and 

bead properties was also developed. Four additional WSMM experiments were conducted 

at the center points and outside the domain of the DOE to test the predictive capability of 
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the kinetic–microhydrodynamic correlation and the purely empirical correlation. The 

limitations of the models as well as future strategies for the development and improvement 

of predictive models were discussed. Overall, this chapter offers the first comprehensive 

treatment of breakage kinetics during WSMM in view of the fundamental physics 

(microhydrodynamics) and explores the microhydrodynamic parameters that govern the 

breakage kinetics. It is expected that such a comprehensive analysis of breakage kinetics 

with consideration of the actual physics in the mill will provide insights, quantitative 

process understanding regarding the impact process parameters–bead material on the 

breakage kinetics and cycle time, as well as some predictive capability. 

1.5.2 Improvement of microhydrodynamic (MHD) model 

Unfortunately, previous MHD studies [33, 34, 57, 62, 90, 132] did not consider the possible 

impact of high bead concentrations, especially close to the packing limit, and the packing 

limit concentration on the breakage kinetics during WSMM. This impact can be accounted 

for by the radial distribution function at contact (RDF), which adjusts the collision 

probability of two beads as a function of the bead concentration [145]. Eskin et al. [34, 

132] developed their microhydrodynamic model using the Carnahan–Starling RDF [136], 

which has been used in most subsequent MHD studies. The Carnahan–Starling RDF is a 

commonly used equation for rigid-sphere dense fluids in the kinetic theory of gases. It 

predicts unrealistically smooth variations of the RDF at concentrations close to the packing 

limit concentration [146]. Wang et al. [145] showed that the difference between an RDF 

that accounts for and an RDF that does not account for the packing limit gets larger when 

the concentration approaches the packing limit volume fraction for mono-dispersed 

systems (~0.63) [147]. Since the RDF affects almost all microhydrodynamic parameters, 
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the impact of the packing limit needs a thorough investigation via comparative assessment 

of various RDFs in the MHD modeling, which has not been done before. The Lun RDF 

[148] has been used very recently for microhydrodynamic analysis of the WSMM process 

for the first time [149-151]. However, the impact of the bead packing limit, as modeled by 

different RDFs, on the microhydrodynamic parameters and the breakage kinetics has not 

been examined.  

In Chapter 3, we investigated the impact of bead packing limit on the breakage 

kinetics and microhydrodynamic parameters during WSMM of a drug (fenofibrate) 

suspension. The timewise evolution of the median particle size was tracked by offline laser 

diffraction measurements. To quantify the breakage kinetics, an nth-order breakage 

kinetics model was fitted to the median particle size evolution data; thus, enabling us to 

estimate the breakage kinetic parameters. For various process conditions and bead types, 

we calculated the microhydrodynamic parameters using three RDFs: the Carnahan–

Starling RDF [136], the Lun RDF [148], and the Ma–Ahmadi RDF [146]. The Lun RDF 

and the Ma-Ahmadi RDF take into account the packing limit concentration of the beads, 

whereas the Carnahan–Starling RDF does not. Analysis of the MHD parameters enables 

us to evaluate the impact of the stirrer speed, the bead loading, and the bead type on milling 

and elucidate the effects of the bead packing limit at the bead–bead collision scale. 

Moreover, advancing our earlier work [150], we formulated a new subset selection 

algorithm with a leave-one-out cross-validation (LOOCV) technique. This algorithm 

allowed us to determine the best multiple linear regression models (MLRMs) of the 

breakage rate constant k with the microhydrodynamic parameters (semi-theoretical 

MLRM) or the process–bead parameters (empirical MLRM) as predictors. Experimental k 
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data from 10 milling runs were used to calibrate and cross-validate the MLRMs; then, these 

MLRMs were used to predict the median particle size evolution in four additional milling 

experiments that had not been used as part of the model calibration/cross-validation to 

discern the predictive capability. Overall, this comprehensive experimental–theoretical 

study presented in Chapter 3 is expected to yield fundamental insights about the role/impact 

of bead concentration limit on the microhydrodynamic parameters and breakage rate in 

WSMM. 

1.5.3 Understanding heat generation–transfer during WSMM 

One aspect that received no attention in the WSMM literature is the high heat generation 

inside the mill during WSMM [149], which could lead to a significant temperature rise. 

Only a small fraction of the mechanical energy spent on mixing the drug suspension–bead 

mixture is used to deform the drug particles [34]. Most is eventually converted into heat 

through dissipative processes such as viscous losses, inelastic bead–bead  and bead–wall 

collisions, etc. [62]. Temperature plays an important role and needs to be controlled during 

the WSMM of drug suspensions because the physical and/or chemical stability of a drug 

suspension could be susceptible to temperature. A higher temperature during WSMM or 

storage could facilitate Ostwald ripening and growth of drug nanoparticles [46, 53, 152, 

153]. Surface modification and amorphization occurred when temperature was raised from 

25 oC to 37 oC in the case of a bezafibrate nanosuspension [154]. Moreover, a polymer like 

hydroxypropyl cellulose (HPC), which is a commonly used steric stabilizer in drug 

nanosuspensions, has a gelation temperature of ~44–50 oC [155]. HPC may start 

precipitating out of aqueous solution at or above this temperature, which may, in turn, cause 

physical destabilization of drug nanosuspensions.  
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 Despite the significant potential impact of temperature on the product quality and 

process performance, some WSMM studies [156-158] did not even report the milling 

temperature. Other studies attempted to keep the milling/processing temperature below a 

set value such as 40 oC [159], 35 oC [57], and 25 oC [160]. In some milling studies, 

researchers milled the drug suspension intermittently to be able to keep the temperature 

below the set value; they shut down the mill, cooled it without further milling, and repeated 

this cycle several times [33, 90, 149, 161]. It must be emphasized that none of the above-

mentioned studies investigated the impact of process parameters on heat generation and 

temperature rise during the WSMM. This situation is similar regarding the production of 

non-pharmaceutical suspensions by WSMM; the temporal evolution of temperature during 

the WSMM has been rarely explored. Garcia et al. [162] reported the evolution of 

temperature in a batch WSMM of calcite; however, batch milling is not used for industrial 

operations. Moreover, they did not investigate the impact of processing variables on the 

temperature rise during the milling. Hence, there is a huge gap in the general WSMM 

literature regarding heat generation–temperature evolution and understanding the factors 

that govern heat generation. 

 As a first attempt in the pharmaceutical nanotechnology literature, Chapter 4 

examined the timewise evolution of the suspension temperature as a function of 

intermittent milling and cooling time and examine the impact of the milling parameters on 

the temperature rise. We hypothesized that the temperature is a strong function of power 

consumption. To this end, the precursor suspensions of fenofibrate, a model BCS Class II 

drug, were milled at three different stirrer speeds, bead loadings, and bead sizes. The power 

consumption and the suspension temperature at the mill outlet were measured and 
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recorded; the particle sizes after 60 min milling were measured by laser diffraction. 

Moreover, a newly defined thermal desirability score was used to evaluate and compare 

the performance of the milling runs. A connection between process conditions, power 

supplied by the mill stirrer, and thermal characteristics were established by utilizing 

dimensionless numbers such as the power number and the Reynolds number. Overall, this 

heat generation analysis will yield significant insights into temperature rise during the 

WSMM and the governing process variables. An optimal set of milling conditions will be 

identified based on a holistic analysis of the thermal desirability score, cycle time, power 

consumption, and median drug particle size. 

1.5.4 Enthalpy balance model (EBM) for simulation and prediction of heat 

generation during milling 

As discussed and addressed in Chapter 4, the temperature of drug suspensions during 

WSMM must be monitored and controlled because high temperatures can cause physical 

instability as well as chemical degradation and/or amorphization of drugs [163, 164]. 

Ostwald ripening and growth of drug nanoparticles are facilitated at a higher temperature 

during WSMM or storage [46, 53, 152]. To this end, modeling could significantly help 

engineers to gain fundamental insights into the WSMM process, which could facilitate 

process development and optimization. Bilgili and Guner [32] surveyed various modeling 

approaches used for WSMM, and found that about 70% of the models in pharmaceutical 

WSMM are based on statistically-based approaches; 30% of the models are of 

phenomenological or mechanistic nature. For example, the breakage kinetics can be 

represented with first-order exponential decay [151] or nth-order models [150] through 

empirical fits, where breakage rate constants delineate the breakage trends with respect to 
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varying process parameters. Recently, the breakage rate constants have been correlated 

with the microhydrodynamic parameters [150, 165], which enabled the inclusion of physics 

at the bead–bead collision scale in a modeling framework that enabled some good 

predictive capability for the evolution of particle size at various milling conditions. 

Unfortunately, to the best of our knowledge and based on the review paper [32], the 

literature is devoid of a model for simulating and predicting the temperature evolution 

during the WSMM.   

 Chapter 5 presents a first attempt in the WSMM literature to explore the 

temperature evolution during nanomilling of drug suspensions in a wet stirred media mill 

within the context of a simple enthalpy balance model. To this end, fenofibrate suspensions 

were milled at various stirrer speeds, bead loadings, and bead sizes; the mill outlet 

temperature was recorded over time during the milling. A dynamic enthalpy balance model 

was developed for simulating the temperature at the mill outlet, and the holding tank, 

including the temperatures of the beads and/or the stirrers in the mill chamber and the 

holding tank. This model is simple, with only one unknown parameter, i.e., the fraction of 

mechanical power converted to heat ξ, as it is ultimately intended for practical engineering 

use in the pharmaceutical industry. Out of the 32 milling runs, 27 runs were used as a 

training set for model calibration, and the remaining 5 runs formed the test set.  In the 

model calibration, ξ was estimated for each run in the training set by fitting the simulated 

mill outlet temperature profile obtained from the enthalpy balance model to the 

experimentally measured profile. To test the predictive capability of the model, initial and 

final power consumptions P0, Pf, and ξ for the five test runs were predicted by a power-law 

(PL) correlation and machine learning (ML) algorithms. Then, the enthalpy balance model 
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augmented with these predicted P0, Pf, and ξ was used to generate the temperature profile, 

which was compared to the measured temperature profile in the test runs. This systematic, 

comprehensive experimental–modeling chapter is expected to generate significant 

practical and theoretical insights into heat generation and its controlling milling parameters 

during the WSMM. 

1.5.5 Lumped parameter model (LPM) for semi-theoretical modeling of heat 

generation during WSMM 

Chapter 5 presents the first modeling attempt of the temperature profile during WSMM 

[166] by using an enthalpy balance model (EBM). The EBM necessitates the simultaneous 

solution of five ordinary differential equations along with a sophisticated optimizer for 

parameter estimation. The EBM considers all salient physical features of the process such 

as the recirculating suspension, the configuration of the mill, the jacketed cooling of the 

mill and the holding tank, while necessitating the all physical–thermal properties of the 

suspension and mill–bead materials of construction as input [166]. It is fair to state that the 

EBM is not a simple model and requires some notable time and effort, justifying the 

development of simpler models. 

 In Chapter 6, we present a simple semi-theoretical lumped-parameter model 

(LPM), which can be easily adopted by pharmaceutical scientists and engineers, to simulate 

and predict the temperature evolution during the WSMM and compare its performance to 

the EBM. The LPM parameters, i.e., the apparent heat generation rate Qgen and the apparent 

overall heat transfer coefficient times surface area UA, were obtained by direct fitting of 

the LPM to the experimentally measured temperature profiles. Then, these parameters were 

estimated as a function of the process parameters for the 27 training runs and predicted as 
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a function of the process parameters for the five test runs using a power law (PL) model 

and a machine learning (ML) model. The advantages and disadvantages of the LPM and 

the EBM as well as the limitations of the LPM were discussed. Not only will this study 

reveal the fitting capability of the LPM as compared with the EBM, but it will also enable 

us to assess their comparative predictive capabilities and usefulness for process 

development and understanding.  

1.5.6 Optimization of the WSMM process via bead mixtures of different materials 

The optimization of the WSMM process has been performed by solely considering the 

process parameters and milling time in prior studies [69, 71]. However, such an 

optimization approach is quite limited and does not offer much flexibility when the 

optimization entails multiple objectives such as low cycle time, low power consumption, 

and low heat generation. Unlike any study in the WSMM literature including non-

pharmaceutical fields, as a major novelty, Chapter 7 explored the feasibility of cross-linked 

polystyrene (CPS)–yttrium-stabilized zirconia (YSZ) bead mixtures as a novel 

optimization approach for fast, efficient production of drug nanosuspensions via WSMM. 

While both CPS and YSZ beads were utilized in prior WSMM studies [70, 90], they have 

not been used in a bead mixture. We hypothesize that bead mixtures allow for optimal 

milling of drug suspensions from a combined energy–cycle time–heat dissipation 

perspective. While this hypothesis is proven, as a corollary, we aim to rationalize the use 

of bead mixtures as opposed to single type of beads based on judicious balancing of particle 

breakage kinetics–cycle time, power consumption, and heat dissipation considerations. 

Fenofibrate (FNB) was selected as a poorly water-soluble model drug. A total of 20 

experiments were conducted at two stirrer speeds (3000 and 4000 rpm) and two volumetric 
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fractional bead loadings (0.35 and 0.50) with five CPS–YSZ bead mixtures including CPS 

alone and YSZ alone (CPS:YSZ 0:1‒1:0 v/v). To characterize the breakage kinetics, three 

different kinetic measures were defined and analyzed including the apparent breakage rate 

constant of an nth-order kinetic model. A modified microhydrodynamic model was used 

to elucidate the different microhydrodynamic behavior of the CPS vs. YSZ beads and their 

pros/cons. Various optimization criteria based on industrial considerations were adopted 

and relevant merit scores were calculated. Kinetic parameters and specific power–energy 

consumption were used together to assess the impact of bead mixtures. This combined 

experimental–modeling chapter will reveal various insights as to why bead mixtures vs. 

YSZ or CPS beads alone offer much needed flexibility for WSMM optimization and enable 

development of a decision tree for bead mixture selection. 

1.5.7 Impact of bead mixtures of different bead sizes 

Patel et al. [167] investigated a possible synergistic effect in combining smaller and larger 

beads and performed experiments in varying ratios of smaller (200 and 400 m) and larger 

beads (800 m), while keeping all other process parameters of the WSMM constant. That 

study concluded that adding smaller beads to larger beads achieved smaller particles with 

lower energy consumption during milling. Moreover, they stated that it can lead to some 

other advantages such as savings on grinding media costs since a small amount of costly 

small-sized media can be used in mixtures. Additionally, Altun et al. [168] used a mixture 

of 1.5–2.5 mm and 3.0–4.0 mm alumina balls in dry stirred ball milling of limestone and 

compared their performance to those of the single ball size fractions in terms of milled 

particle size at various specific energy consumptions. The mixture performance lay in 

between the two individual ball size fractions although some caveats were mentioned for 
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the extremes of low and high energy consumption. While Patel et al. study has been the 

first attempt at assessing the feasibility of mixtures of beads with different nominal sizes, 

shortly referred to as bead mixtures hereafter, in the WSMM literature [167], it did not 

examine the impact of various stirrer speeds and bead loadings, and no microhydrodynamic 

explanation has been provided regarding the impact of various bead sizes. Moreover, the 

temperature and heat generation during the milling was not discussed at all. 

 Chapter 8 provides a comprehensive analysis of the impact of bead sizes and bead 

mixtures on the breakage rate, power consumption, and number of intermittent milling 

cycles experimentally and theoretically using a microhydrodynamic model. To this end, 

we used narrowly-sized zirconia beads with 100, 200 and 400 µm nominal sizes, and their 

half-and-half mixture combinations under 3000 and 4000 rpm stirrer speeds and 0.35 and 

0.50 fractional bead loadings. The pre-suspensions of 10% griseofulvin, 7.5% 

hydroxypropyl cellulose, and 0.05% sodium dodecyl sulfate were milled for 3 h, while the 

particle sizes were measured at certain intervals via laser diffraction along with mill outlet 

temperature and average power consumption. The breakage kinetics was analyzed by 

fitting an nth-order breakage kinetics model to the experimentally measured median 

particle sizes. Microhydrodynamic parameters were calculated to examine the impact of 

process parameters and average bead sizes. Then, machine learning models were employed 

to predict the breakage kinetics in the test runs based on the microhydrodynamic 

parameters and process conditions. A merit score that factors in breakage rate, power 

consumption and number of intermittent milling was defined to compare the performance 

of different processing conditions and enable us to assess the impact of bead mixtures. This 

comprehensive analysis allows us to test the hypotheses that (i) bead mixtures can 
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significantly improve the WSMM process through synergistic effects in terms of breakage 

kinetics, power consumption, and number of intermittent milling cycles and that (ii) they 

will be superior to the narrowly-sized constituent beads. 

1.6 Objectives, Hypotheses, and Dissertation Outline 

In this dissertation, a better understanding of wet stirred media milling (WSMM) is aimed, 

and each chapter focuses on a different process optimization–intensification problem and 

associated modeling approach. Chapter 1 provides a review of the drug nanosuspension 

studies and clearly revealed that WSMM is the most widely used process both in industry 

and academia. Moreover, Chapter 1 presents challenges in WSMM process research and 

various modeling approaches used for process modeling. While there are 

formulation/stabilization challenges in developing drug nanosuspensions, most of these 

issues have been resolved via judicious stabilizer selection strategies with about 30 years 

of extensive research. However, the chemical engineering challenges associated with 

“processing” drug nanosuspensions have remained largely unresolved: the process is 

energy intensive and costly; it entails long cycle times even for small batch sizes, and high 

heat dissipation could either cause unacceptable temperature rise or limit the optimization 

domain of the process. Although these processing challenges are well-known for a long 

time, a great majority of the pharmaceutical nanotechnology literature has been devoted to 

formulation/stabilization aspects. Only during the last decade, more mechanistic 

understanding of the process has started to emerge. Hence, this dissertation present 

experimental and modeling work with the ultimate goals of (i) gaining a deeper and more 

mechanistic understanding of the WSMM process and breakage kinetics of the particles 

using the existing MHD model with various improvements and advancements, (ii) 
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examining the heat dissipation during the WSMM extensively with both experimental and 

modeling approaches, and (iii) optimizing and intensifying the WSMM using novel 

approaches such as bead mixtures of two different bead materials and mixtures of 

differently sized beads. 

Toward achieving the above goals, breakage kinetics of drug particles during 

WSMM at different stirrer speeds and loadings of two different bead materials was 

investigated, and various kinetic models were developed/calibrated, while the breakage 

rate constant was correlated with various MHD parameters (Chapter 2). In Chapter 2, we 

hypothesize that not only can a statistically significant nth-order kinetic model–MHD 

model describe and explain the observed breakage kinetics, but also such a combined 

model has superior predictive capability as compared with a standard, purely empirical 

model. Chapter 3 examines the impact of bead packing limit on the microhydrodynamic 

parameters and breakage kinetic constant–MHD model correlations when different radial 

distribution functions at contact are used in the MHD model. In Chapter 2, bead packing 

has been considered for the first time by incorporating the Lun model [148] instead of the 

Carnahan-Starling model [136] of the radial distribution function at contact into the MHD 

model. This was a significant improvement in the accurate estimation of the 

microhydrodynamic parameters. However, the extent to which different radial distribution 

functions at contact affect the MHD parameters and the kinetics–MHD model correlations 

have not been examined before. Chapter 3 presents a comparative assessment of the 

Carnahan-Starling model [136] (no bead packing limit) with the models that incorporate 

bead packing limit, i.e., the Lun model [148] and the Ahmadi model [146]. We 

hypothesized that models that factor in the bead packing predict significantly different 
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microhydrodynamic parameters, which also affects the predictive capability of the kinetic–

microhydrodynamic correlations.  

 In Chapter 4, we hypothesize that the mechanical energy conversion into heat can 

be modulated by judicious selection of WSMM parameters in a model-guided fashion. 

Then, we showed and compared how the selection of process parameters could drastically 

alter the temperature rise during WSMM. Toward gaining a more mechanistic 

understanding, Chapter 5 hypothesizes that the process could be simulated by an enthalpy 

balance model and the derived model could successfully fit the experimental data, which 

allows one to find what fraction of the power is converted to heat during the milling. That 

fraction was correlated with process conditions, and predictions were made by simulating 

the temperature profiles during test milling runs. The hypothesis that a simpler semi-

theoretical model could also simulate and predict the time-wise temperature evolution was 

tested in Chapter 6, where the fitting and prediction capability of the derived Lumped 

Parameter Model (LPM) was as good as the Enthalpy Balance Model (EBM). Besides, the 

LPM is more advantageous as it entails obtaining less information about the mill set up and 

the physicochemical properties of the materials.  

In Chapter 7, we hypothesize that bead mixtures allow for optimal milling of drug 

suspensions from a holistic energy–cycle time–heat dissipation perspective. While this 

hypothesis is tested, as a corollary, we aim to rationalize the use of bead mixtures as 

opposed to single type of beads based on judicious balancing of particle breakage kinetics–

cycle time, power consumption, and heat dissipation considerations. Chapter 7 also 

presents a decision tree in terms of using various single beads vs. bead mixtures depending 

on various industrial considerations. Finally, Chapter 8 hypothesizes that mixtures of 
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different bead sizes could improve WSMM from a combined energy–cycle time–heat 

dissipation perspective. Chapter 9 discusses the overall conclusions and presents ideas for 

potential future work. 
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CHAPTER 2 

BREAKAGE KINETICS MODELS AND MICROHYDRODYNAMIC 

CORRELATIONS FOR WET STIRRED MEDIA MILLING 

 

This chapter aims to examine the impact of stirrer speed and bead material type–

concentration on fenofibrate particle breakage during wet stirred media milling (WSMM) 

via three kinetic models and a microhydrodynamic model. Evolution of fenofibrate median 

particle size was tracked via laser diffraction during WSMM operating at 3000–4000 rpm 

with 35–50% (v/v) concentration of polystyrene or zirconia beads. First-order, nth-order, 

and warped-time breakage kinetic models were developed and fitted to the data. Main 

effects plots helped to visualize the influence of the milling variables on the breakage 

kinetics and microhydrodynamics parameters. A subset selection algorithm was used along 

with Multiple Linear Regression Model (MLRM) to delineate how the breakage rate 

constant is affected by the microhydrodynamic parameters. Our experimental and fitting 

results suggests that the nth-order model was found to be the best model to describe the 

temporal evolution; a nearly second-order kinetics (n ≅ 2) was observed. When the process 

was operated at the higher stirrer speed and/or bead concentration with zirconia beads as 

opposed to polystyrene beads, the breakage occurred faster. A statistically significant (p 

value ≤ 0.01) MLRM of three microhydrodynamic parameters explained the variation in 

the breakage rate constant best (R2  0.99). The average frequency of drug particle 

compressions interacting with the pseudo energy dissipation rate and the radius of the 

bead–bead contact circle governed the breakage kinetics in WSMM. The combined 

breakage kinetic model–microhydrodynamic model was demonstrated to have reasonable 

predictive power. Hence, the kinetic models and kinetic–microhydrodynamic correlation 
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enable deeper process understanding toward developing a WSMM process with reduced 

cycle time.  

2.1 Materials and Methods 

2.1.1 Materials 

Fenofibrate (FNB, BP grade), which is a BCS Class II drug with an aqueous solubility of 

0.8 mg/L at room temperature [169], was purchased from Jai Radhe Sales (Ahmedabad, 

India). The suspension formulation included a non-ionic cellulosic polymer (HPC: 

hydroxypropyl cellulose, L grade, Nisso America Inc, New York, NY, USA) and an 

anionic surfactant (SDS: sodium dodecyl sulfate, ACS grade, GFS chemicals, Columbus, 

OH, USA). Zirmil Y grade YSZ beads with a density of 6000 kg/m3 were purchased from 

Saint Gobain ZirPro (Mountainside, NJ, USA). CPS beads with a density of 1040 kg/m3 

were purchased from Norstone Inc. (HCC grade, Bridgeport, PA, USA). While the nominal 

sizes of both beads are 400 µm, the actual median sizes of CPS and YSZ beads were 

measured as 444 µm and 405 µm, respectively, via laser diffraction using a Helos/Rodos 

particle size analyzer (Sympatec, NJ, USA) in dry dispersion mode. Microhydrodynamic 

calculations were performed using the actual median sizes of the beads. Drug suspensions 

were prepared in deionized water as the liquid medium. 

2.1.2 Wet stirred media milling 

The formulation was selected according to the detailed stability studies by our group on 

FNB [46, 47, 54]. 235 g pre-suspensions that have 10% FNB, 7.5% HPC-L, and 0.05% 

SDS with respect to 200 g DI water were prepared under constant shear mixing (Cat#. 14-

503, Fisher Scientific, Pittsburgh, PA, USA) for 2 h at 300 rpm. As will be demonstrated 
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in Section 2.2, not only did this particular formulation ensure physical stability and mitigate 

aggregation and growth of FNB particles via ripening, but also it built up sufficiently high 

suspension viscosity, which in turn led to an accurate measurement of the power 

consumption during the milling and accurate calculation of the microhydrodynamic 

parameters. After overnight storage at 8 oC, the pre-suspensions were milled by Microcer 

wet stirred media mill (Netzsch Fine Particle Size Technology, LLC, Exton, PA, USA) for 

180 min using the process variables presented in Table 2.1. Runs 1–8 correspond to a 3-

factor, 2-level, full-factorial DOE.  

Table  2.1  Process Variables and Bead Materials Used in the Wet Media Milling of the 

Fenofibrate Suspensions 

Run No. Stirrer Speed, ω (rpm) Bead Loading, c (-) Bead Material 

1a 3000 0.35 CPS 

2a 3000 0.35 YSZ 

3a 3000 0.50 CPS 

4a 3000 0.50  YSZ 

5a 4000 0.35  CPS 

6a 4000 0.35  YSZ 

7a 4000 0.50 CPS 

8a 4000 0.50 YSZ 

9b 3500 0.425 CPS 

10b 3500 0.425 YSZ 

11c 2550 0.298 CPS 

12c 2550 0.298 YSZ 
a3-factor, 2-level, full-factorial DOE used in the parameter estimation of the models. bCenter points 

of the original DOE for the CPS and the YSZ beads. cExperiments whose variables are outside the 

domain of the DOE. 

 

 The experimental data from these runs were used in the kinetic parameter 

estimation. The low–high values of the stirrer speed and the bead loading as well as the 

total milling time for the DOE were selected based on our prior wet milling studies using 

FNB [46, 54], limitations of our equipment, and the requirements of the breakage kinetic 

models (refer to Section 2.1.4). The design limit of the equipment (4200 rpm) dictates 4000 
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rpm as the high value with a safety margin, while the bead loading above 0.50 would entail 

more frequent, additional intermittent cooling; hence, it was not selected.  

 Runs 9 and 10, corresponding to the center points of the DOE for CPS and YSZ, as 

well as Runs 11 and 12, whose variables were selected outside the domain of the DOE, 

were used to test the predictive capability of the nth-order kinetic model–

microhydrodynamic model correlation, i.e., k = k(a, σb
max, αb, Πσy) and the purely empirical 

correlation, i.e., k = k(, c, ρb, Yb). As  was close to the design limit, we could not increase 

it beyond the high value (4000 rpm) of the DOE. Hence, for Runs 11 and 12,  and c were 

both selected to be 15% smaller than the respective low values in the DOE (Runs 1 and 2). 

As will be demonstrated later, Runs 11 and 12 were quite different from Runs 1–8 in terms 

of the observed breakage kinetics. Practically, such low energetic conditions, inducing 

relatively low power consumption and heat dissipation, may be used to handle temperature-

sensitive drugs, minimize the extent of amorphization and form conversion [4], and reduce 

YSZ bead contamination [24]. As we expected a slower breakage in Runs 11 and 12, based 

on the kinetic results from Runs 1–8, we purposefully prolonged the milling to 7 h for CPS 

(Run 11) and 6 h for YSZ (Run 12), thus attempting to meet the requirements in Section 

2.1.4. 

The mill has a chamber volume Vmc of 80 mL, lined with zirconia and a zirconia 

shaft. The bead loadings were calculated by dividing the true volumes of the beads by the 

volume of the milling chamber (v/v). Suspensions were recirculated between the holding 

tank and the milling chamber at a volumetric flow rate of 126 mL/min, using a peristaltic 

pump (Cole-Palmer, Master Flex, Vermont Hills, IL, USA). A 200 µm nominal-sized 

stainless-steel screen was used to hold the beads in the milling chamber. The temperature 
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of the milling chamber and the holding tank was kept below 35 oC by using a chiller (Model 

M1-.25A-11HFX, Advantage Engineering, Greenwood, IN, USA). Due to the limited 

cooling capacity of our chiller, YSZ beads caused overheating especially at the high stirrer 

speed; hence, intermittent cooling was applied, like in [63, 90, 161], to keep the 

temperature below 35 oC. Samples were taken from the outlet of the mill at certain time 

intervals (2s, s = 0, 1, 2,...7) with additional time points of 40 s, 24 min, 48 min, 96 min, 

and 180 min. The sampling procedure was modified to accommodate longer milling in 

Runs 11 and 12. The final sample was taken from the holding tank and all samples were 

characterized.  

2.1.3 Characterization techniques 

Particle size distribution (PSD) of the FNB suspensions at various milling times was 

determined by laser diffraction using LS 13-320 Beckman Coulter instrument (Brea, CA, 

USA). Polarized intensity differential scattering (PIDS) was kept between 40% and 50% 

while the obscuration was maintained below 8% in all measurements. The software 

computed the PSD using Mie scattering theory by taking the refractive indices of FNB and 

the measurement medium (water) 1.55 and 1.33, respectively. Prior to each measurement, 

about 1.0 mL suspension sample was dispersed into 5.0 mL of the stabilizer solution of the 

used formulation using a vortex mixer (Fisher Scientific Digital Vortex Mixer, Model No: 

945415, Pittsburgh, PA) at 1500 rpm for a minute. Measurements were repeated four times 

(n = 4) and the average and standard deviation (SD) of these measurements were calculated. 

To assess the physical stability after 7 days and assess aggregation–Ostwald ripening upon 

aging, the milled nanosuspensions were stored at 8 oC in the refrigerator. They were mixed 

for 30 min prior to the particle size measurement and allowed to reach room temperature.  
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The apparent shear viscosities L of the milled suspensions were measured using 

R/S plus rheometer (Brookfield Engineering, Middleboro, MS, USA) with a water jacket 

assembly Lauda Eco (Lauda-Brinkmann LP, Delran, NJ, USA). A CC40 coaxial cylinder 

with a jacketed setup was used to impart a controlled shear rate on the samples from 0 to 

1000 1/s in 60 s at 25 ± 0.5 °C. The raw data were analyzed using the Rheo3000 software 

and the apparent shear viscosity at 1000 1/s was used in the microhydrodynamic model. 

The density was calculated in triplicate based on the weight of 35 ml nanosuspension. 

Run 10 was selected for solid state characterization since it was milled using the 

center point of the DOE with the YSZ beads. The nanosuspension was poured into a petri 

dish as a thin layer and it was let dry overnight in a vacuum chamber. About 6–7 mg sample 

of the milled and dried particles, the physical mixture, the as-received fenofibrate, and 

HPC-L was weighed, put in an aluminum pan of 40 µL, and sealed. A Mettler–Toledo 

polymer analyzer DSC (Model DSC 3, Columbus, OH, USA) was used to determine the 

fusion enthalpy and the melting point of FNB. All samples were heated at a rate of 5 °C/min 

with a temperature range of 25–150 °C. Nitrogen was used at a flow rate of 60 mL/min. 

Data analysis was performed using the STARe V16.20 software provided by Mettler–

Toledo. 

Before scanning electron microscope imaging (SEM), 0.1 mL of the Run 10 

nanosuspension was diluted with 10 ml deionized water and centrifuged (Compact II 

centrifuge, Clay Adams® Brand, Sparks, MD, USA) at 3200 rpm for 10 min to separate 

the drug from the aqueous phase with excess polymer. This dilution-centrifugation process 

was repeated two more times where 8 mL of the aliquot was decanted and replaced with 

fresh deionized water. After the third step, a droplet from the aliquot of the sample was put 
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on top of a carbon specimen holder, and it was placed in a desiccator for overnight drying 

under vacuum. The dried sample was then sputter coated with gold using BAL-TEC 

MED020 (BAL-TEC, Balzers, Switzerland) to reduce possible charging during SEM 

imaging. The morphology of the particles was examined using a JEOL JSM 7900F field 

emission SEM (JEOL USA, Inc., Peabody, MA, USA) operated at 2 kV. SEM images were 

taken at x15k and x30k magnification.  

2.1.4 Breakage kinetic models 

In the preparation of drug nanosuspensions via WSMM, breakage of the particles in a well-

stabilized suspension is expected to be the dominant mechanism as compared to 

aggregation and particle growth (due to ripening) [94]. Therefore, the median particle size 

d50 monotonically decreases over time t until a limiting size dlim, a.k.a. grinding limit, is 

attained or approached during prolonged milling [46]. Two experimental requirements 

emerge for an accurate and meaningful kinetic analysis: (i) the experimental d50–t profile 

should attain or approach to an asymptote (limiting size) at sufficiently long, yet practically 

feasible, milling times and (ii) it should not exhibit a size increase regardless of the 

underlying mechanism. As will be demonstrated in Section 2.2, these requirements were 

largely met due to judicious selection of the formulation and process conditions. When 

these requirements are met, the breakage rate may be described by a breakage rate constant 

k and the difference between the median particle size and the limiting size raised to the 

power n:  

𝑑𝑑50(𝑡)

𝑑𝑡
= −𝑘[𝑑50(𝑡) − 𝑑lim]𝑛  with   𝑑50(0) = 𝑑50,0 (2.1) 
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 In previous investigations, n was commonly taken as 1 (first-order kinetics), and 

application of separation of variables followed by integration of both sides yielded the 

following widely used model [33, 90, 170, 171]: 

Here, d50,0 is the initial median size. Equation (2.2) with a single process time constant τp 

= 1/k was not able to fit the whole experimental data governed by two or potentially more 

characteristic time constants [172]. Hence, in many studies (see e.g., [62, 92]) the initial 

median particle size at 0th min was discarded, thus making the first time point (e.g., 1st min 

median size) the initial size for better fitting capability. Depending on the initial PSD and 

initial breakage kinetics, even eliminating one data point may not allow accurate fitting of 

the experimental data.  

 As a commonly used approach in chemically reacting systems [173, 174], an nth-

order kinetic model may be considered with the objective of resolving the inadequacy of 

the first-order kinetic model. Separation of the variables in Equation (2.1) with n  1 

followed by integration of both sides yielded the following equation:  

𝑑50(𝑡) = 𝑑lim + [(𝑑50,0 − 𝑑lim)
1−𝑛

− (1 − 𝑛)𝑘𝑡]
1/(1−𝑛)

 (2.3) 

 To the best of authors’ knowledge, this general nth-order model has not been used 

for describing the breakage kinetics in WSMM before. Note that in ref. [174], a second-

order kinetic model was assumed without fitting n to describe the mass fraction of only 

coarse particles as a function of time, not the median size of the whole PSD, and it was 

only applied to the dry ball milling of narrow, coarse sieve cuts > 2.5 mm. It did not 

consider the grinding limit and dlim either.   

𝑑50(𝑡) = 𝑑lim + (𝑑50,0 − 𝑑lim) exp(−𝑘𝑡)     (2.2) 
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 Another kinetic modeling approach entails consideration of a time-dependent 

breakage rate parameter k(t) as follows: 

𝑑𝑑50(𝑡)

𝑑𝑡
= −𝑘(𝑡)[𝑑50(𝑡) − 𝑑lim]  with   𝑑50(0) = 𝑑50,0 (2.4) 

with k(t) = k0(t). Unlike the constant k in Equations (1–3), here, k0 is a breakage rate 

constant. The time-dependent function (t) can be obtained from a first-order differential 

equation d/dt = (t) with (0) = 0 at t = 0, where  is referred to as the warped- (false-) 

time. This warped-time concept was introduced in the context of a population balance 

model before [175, 176], but it has not been used to derive the evolution of median size, as 

done here for the first time. With the above defining differential equation for , Equation 

(2.4) was transformed to a first-order differential equation in  as follows:   

𝑑𝑑50()

𝑑
= −𝑘0[𝑑50() − 𝑑lim]   with   𝑑50(0) = 𝑑50,0 (2.5) 

We take, without loss of generality,  = 𝑡𝑛 as it is the simplest relation with one 

parameter (n), which satisfies the initial condition for  and simply reduces to the first-

order model when n = 1. Hence, the breakage rate parameter takes the form: 𝑘(𝑡) =

𝑘0𝑛𝑡𝑛−1 and the solution of Equation (2.5) leads to the following warped-time kinetic 

model:  

𝑑50(𝑡) = 𝑑lim + (𝑑50,0 − 𝑑lim) exp(−𝑘0𝑡𝑛) (2.6) 

 Marquardt-Levenberg algorithm was used to fit the three models described by 

Equations (2.2), (2.3), and (2.6) to the experimental median sizes and dlim, k or k0, and n 

were estimated by SigmaPlot software. In the fitting, dlim was constrained to be smaller 
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than the final median particle size [90]. Statistical analysis of the fits was performed to 

discriminate the models and main effects plots of the parameters were prepared.  

2.1.5 Microhydrodynamic analysis  

The microhydrodynamic parameters, i.e., granular temperature , average bead oscillation 

velocity ub, frequency of a single bead oscillation , maximum contact pressure b
max, 

radius of contact circle b, average frequency of drug particle compressions a, and pseudo 

energy dissipation rate for the drug particles y for all 8 runs were calculated as described 

in Section 1.4.2 via Equations (1.2)–(1.23). The restitution coefficient for the bead–bead 

collisions e was taken as 0.9 and 0.76 for YSZ and CPS beads, respectively [177, 178]. 

Unlike [34, 132], we used a more accurate g0 model here, i.e., the Lun model [148]. As the 

bead loadings are high, the bead volume fraction at random packing clim = 0.63 [147] must 

be factored in for the g0 calculation as follows:  

𝑔0 = [1 − (𝑐/𝑐lim)1/3]
−1

 (2.7) 

 We measured µL, L, and Pw (reported in Table A.1. of Appendix A); εht was found 

to be negligibly small and disregarded, similar to [90]. The fsolve function in MATLAB 

(see Section A.1 in Appendix A for a sample MATLAB code) was used to solve for the 

only unknown in Equation (1.4), i.e., θ, which was then used to calculate the frequency of 

single-bead oscillations  and the average oscillation velocity of the beads ub. The values 

of ηb and Yb were taken as 0.33 and 1.5 GPa for CPS beads [179] and 0.2 and 200 GPa for 

YSZ beads [180], respectively.  is the fraction of the drug particles in the suspension 

(0.074), and γ is a coefficient which can be taken as 1/3 for elastic contact between the 

particle and the bead [132]. Young modulus and Poisson’s ratio for FNB particles were 
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taken as 8.93 GPa and 0.3 [181]. Since a reliable value for σy of FNB particles were not 

found in the literature, a pseudo energy dissipation rate was used. 

2.1.6 Multiple linear regression and subset selection algorithm 

Main effects plots were drawn to visualize how the microhydrodynamic parameters varied 

upon changes in the stirrer speed and loading of the beads with different materials (CPS 

and YSZ) in the 3-factor, 2-level DOE. In addition, a relationship between the calculated 

microhydrodynamic parameters and the breakage rate constant k of the nth-order kinetic 

model of the general form k = k(a, σb
max, αb, Πσy) was sought for by the subset selection 

algorithm (see Algorithm 1 below), which was modified from ref. [182].  

Algorithm 1: Subset Selection 

Input: Training Data: (𝑥𝑖
1, 𝑥𝑖

2, … , 𝑥𝑖
𝑇; 𝑦𝑖)𝑖=1

𝐼  

For 

each 
𝑗 = 1, 2, … , 𝐽: 

 (a) 
Fit linear regression model for all combinations (𝑇

𝑗
) of 

predictors. 

 (b) 
Set the best model 𝐵𝑀𝑗 as the one with the highest coefficient 

of determination 𝑅2 

Select overall best models (BMs) among 𝐵𝑀1, 𝐵𝑀2, … , 𝐵𝑀𝐽 as the one(s) that 

have adjusted 𝑅2 ≥ 0.99 and all predictors have a statistically significant 

relationship (𝑝 𝑣𝑎𝑙𝑢𝑒 ≤ 0.01) with the response. 

 

Our analysis includes three multiple linear regression model (MLRM) approaches 

to determine the relationship between the breakage rate constant k (response) and 4 

microhydrodynamic parameters σb
max, αb, a, and Πσy, i.e., first-order MLRM, second-order 

MLRM, and MLRM with interaction terms. For all three approaches, the training set 
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consists of 𝐼 = 8 observations (runs) and the available number of predictors T varies in 

each approach. In the first-order MLRM, we assume that the response and 4 predictors 

have a direct relation such that there is no interaction or second order term (𝑇 = 4). The 

second-order MLRM includes the squared values of the predictors when fitting to the 

regression (𝑇 = 8). The MLRM with interaction terms incorporates the pairwise 

interactions of the predictors (𝑇 = 10) to the linear regression model. We considered 

MLRMs that have a maximum of 4 predictors (𝐽 = 4) because the number of data was 

limited and a better understanding of the impact of the predictors without forming too 

complex relations was desired. In fact, even without considering more than 4 predictors in 

each model, many models had predictors whose coefficients were statistically insignificant 

(p value > 0.01) due to limited data set, as will be discussed later. Our analysis was done 

on R 4.0.3 using lm function to fit the MLRMs [183]. We utilized ggplot2 package to plot 

the selected MLRM [184] (see Section A.2 in Appendix A for the R code).  

 Besides the kinetic–microhydrodynamic model, a purely empirical correlation 

between k and the process parameters–bead properties of the general form k = k(, c, ρb, 

Yb) was sought for using the subset selection algorithm. As this correlation does not use 

any microhydrodynamic variable that directly connects with some aspect of the bead–bead 

collisions, we refer to it as the purely empirical correlation. 

2.2 Results and Discussion 

2.2.1 Elucidation of the particle change mechanisms 

Figure 2.1 presents the particle sizes in the FNB suspensions after 180 min milling and 

after 7-day refrigerated storage (Runs 1–8, DOE runs). The median sizes d50 were all below 
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200 nm and the 90% volume passing sizes d90 were all below 300 nm. As the particle sizes 

did not change significantly upon 7-day storage, all milled FNB suspensions were 

physically stable, and impact of nanoparticle aggregation and/or particle growth through 

ripening processes was negligible. As will be shown in Section 2.2.2., the timewise 

evolution of d50–t profiles were all monotone-decreasing, which also confirms the 

mitigation of particle aggregation–growth to a large extent. Hence, the requirements (refer 

to Section 2.1.4) for an accurate analysis of the breakage kinetics were generally satisfied 

by our experiments; the particle breakage was the dominant particle change mechanism 

during the WSMM runs. 

Earlier work on the WSMM of FNB suspensions stabilized by 

hydroxypropylmethyl cellulose (HPMC) and SDS revealed critical insights about the roles 

of the stabilizers [46, 54]: excessive HPMC was required to suppress FNB nanoparticle 

aggregation in the absence of SDS; an optimal concentration of SDS exists (~0.05% w/w), 

which minimizes aggregation without facilitating Ostwald ripening. Ripening process was 

rather slow (occurred over days) and quite dependent on the SDS concentration as the 

solubility of FNB increased with an increasing SDS concentration [169]. Knieke et al. [46] 

demonstrated via laser diffraction and SEM imaging of the milled/stored fenofibrate 

nanoparticles in suspension form that the ripening process had no impact on the milled 

particle size during the milling time-scale at the SDS concentration range of 0.05%–0.25% 

w/w. Only at 0.25% w/w SDS and upon 7-day storage, notable particle growth (significant 

increase in d50 and d90) and formation of new rhombohedron shape crystals were reported 

[46]. Considering that our current study used 0.05% w/w SDS, based on Knieke et al. [36] 

alone, one would not expect that ripening process would have any effect on the breakage 
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kinetics. Indeed, the monotone decreasing profile of d50 during the milling (Section 2.2.2), 

invariance of d50 and d90 during the 7-day storage (Figure 2.1), and absence of large 

rhombohedron shape drug crystals in the SEM images (Figure 2.2) clearly refute that 

aggregation or Ostwald ripening played a significant role during the milling–storage.  

 Apparently, 7.5% HPC–0.05% SDS combination mitigated nanoparticle 

aggregation without facilitating Ostwald ripening. Such neutral polymer–anionic 

surfactant combinations have been successfully used to stabilize a multitude of drug 

nanosuspensions and their success has been attributed to an electrosteric stabilization 

mechanism as well as enhanced wettability of the relatively hydrophobic drug and 

deaggregation of drug nanoparticle clusters during the milling [39, 46, 47, 54, 62, 185]. 

Moreover, besides their steric stabilizing action upon adsorption on drug nanoparticles, 

cellulosic polymers such as HPC and HPMC are well-known to inhibit nucleation and/or 

crystal growth (see e.g., [41]), which could have helped to mitigate Ostwald ripening [46]. 
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Figure  2.1  Volume-based particle size statistics of the milled FNB suspensions after 

milling (180 min) and after 7-day storage at 8 °C: (a) median particle size d50 and (b) 90% 

cumulative passing size d90. 

 
Figure  2.2  SEM image of 180 min milled FNB particles in Run 10 (ω = 3500 rpm, c = 

0.425, and YSZ beads): (a) ×15k magnification (scale bar: 1 µm) and (b) ×30k 

magnification (scale bar: 100 nm). 

 

Milling can change the solid state of a material due to mechanically induced defects 

and disorder of the crystal lattices and even conversion of the crystalline material to 
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amorphous form [186-188]. The DSC traces in Figure 2.3 depicts an endothermal event 

(fusion) for the as-received crystalline FNB particles, while such an event was absent from 

the amorphous polymer (HPC). The fusion enthalpy of FNB was reduced approximately 

in proportion to the amount of amorphous HPC in the physical mixture and the dried 

nanosuspension. The comparison of the DSC traces of the physical mixture and the dried 

nanosuspension reveals a 2.4 oC melting point depression, which could be attributed to 

nanocrystalline nature of the FNB and the presence of mechanically-induced defects.  

 
Figure  2.3  DSC traces, with the fusion enthalpy ΔHf and the peak melting point 

temperature Tm, of as-received FNB, HPC-L, the unmilled physical mixture, and the dried 

nanosuspension prepared in Run 10 (ω = 3500 rpm, c = 0.425, and YSZ beads). 

2.2.2 Breakage kinetic analysis via first-order, nth-order, and warped-time models 

The kinetics of FNB particle breakage during WSMM was examined using three kinetic 

models, i.e., the first-order model, the nth-order model, and the warped-time model. To 



 

63 

 

discriminate these models and identify the best model, the experimental temporal evolution 

of the median size d50 as well as the fittings of the models are presented for CPS beads and 

YSZ beads in Figures 2.4 and 2.5, respectively.  

 
Figure  2.4  Temporal evolution of the median particle size d50 during the wet milling of 

fenofibrate with CPS beads and fitting of the data by various breakage kinetic models:  

(a)  = 3000 rpm and c = 0.35, (b)  = 3000 rpm and c = 0.5, (c)  = 4000 rpm and c = 

0.35, and (d)  = 4000 rpm and c = 0.5. 

Figures 2.4 and 2.5 depict that the coarse FNB particles break much faster (within 

the first 2–10 min) than the particles in the colloidal size range (< 1 µm). It should be noted 

that the time axis is logarithmic. The median size decreased monotonically in time and 

tended toward or attained a limiting size, which is the typical dynamic behavior for a well-

stabilized suspension, which confirms the judicious selection of the stabilizers based on 

our earlier studies. As the impact of particle aggregation and growth was negligible (refer 

to Section 2.2.1), these observations can be explained by slowing breakage kinetics during 

WSMM, which can be attributed to the higher strength of the finer particles than the coarser 
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particles and the reduced probability of capturing the finer particles between the beads [57, 

62, 90]. 

 
Figure  2.5  Temporal evolution of the median particle size d50 during the wet milling of 

fenofibrate with YSZ beads and fitting of the data by various breakage kinetic models:  

(a)  = 3000 rpm and c = 0.35, (b)  = 3000 rpm and c = 0.5, (c)  = 4000 rpm and c = 

0.35, and (d)  = 4000 rpm and c = 0.5. 

Regardless of the used bead material, the trends in Figures 2.4 and 2.5 also suggest 

that the first-order kinetic model failed to fit the experimental data for all conditions. This 

observation was supported by the fitting statistics in Table 2.2, where the model parameters 

were found to be statistically significant (p value ≤ 0.01); however, the fitting was poor 

with adjusted R2 < 0.90 for all conditions. Even though the first-order kinetic model is 

popular, as discussed earlier, it was inadequate to represent the whole experimental kinetic 

data governed by two or potentially more breakage rate constants [172]. As we want to 

perform a fair, head-to-head comparison of all models, all experimental data collected were 

used in the parameter estimation. While the fitting may be improved by removing some of 
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the initial data points [62, 92], this would come at the expense of reduced robustness of the 

model. Therefore, no experimental data was disregarded here.  

Table  2.2  Statistical Summary of Parameter Estimation Using the First-Order Kinetic 

Model 

Run Parameter Value p value R2 Adj. R2 SSR 

1 
dlim (µm) 0.185 0.0036 

0.818 0.803 1.32 
k (min-1) 0.420 0.0006 

2 
dlim (µm) 0.166 0.0013 

0.805 0.789 1.16 
k (min-1) 0.992 0.0002 

3 
dlim (µm) 0.165 <0.0001 

0.866 0.854 0.786 
k (min-1) 1.70 <0.0001 

4 
dlim (µm) 0.159 0.0001 

0.851 0.838 0.767 
k (min-1) 2.54 <0.0001 

5 
dlim (µm) 0.174 0.0009 

0.832 0.818 1.04 
k (min-1) 0.91 0.0002 

6 
dlim (µm) 0.161 0.0005 

0.820 0.805 0.994 
k (min-1) 2.09 <0.0001 

7 
dlim (µm) 0.164 <0.0001 

0.884 0.875 0.600 
k (min-1) 2.80 <0.0001 

8 
dlim (µm) 0.157 <0.0001 

0.889 0.880 0.554 
k (min-1) 4.17 <0.0001 

9 
dlim (µm) 0.166 0.0010 

0.817 0.802 1.09 
k (min-1) 1.10 0.0002 

10 
dlim (µm) 0.161 0.0004 

0.823 0.809 0.934 
k (min-1) 2.18 <0.0001 

11 
dlim (µm) 0.190 0.0001 

0.838 0.830 1.728 
k (min-1) 0.115 <0.0001 

12 
dlim (µm) 0.174 0.0001 

0.796 0.794 1.710 
k (min-1) 0.445 <0.0001 

 

The first-order model performed poorly compared to the nth-order and the warped-

time models (refer to Figures 2.4 and 2.5). The latter two models followed the 

experimental breakage trends very well. The fitting statistics presented in Tables 2.3 and 

2.4 confirm that the nth-order model and the warped-time model had both statistically 

significant parameters and their fitting capability was excellent: adjusted R2  0.99, except 
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for the fitting of Run 1 data by the warped-time model. When all 12 runs were considered, 

the nth-order model fitted the experimental data better than the warped-time model, as can 

be inferred from the higher R2 and adjusted R2 as well as the lower sum-of-squared 

residuals (SSR) (except for Runs 8 and 12). 

Table  2.3  Statistical Summary of Parameter Estimation Using the nth-order Kinetic 

Model 
Run Parameter Value p value R2 Adj. R2 SSR 

1 dlim (µm) 0.161 0.0015 

0.989 

 

0.077  k (µm(n-1)min-1) 0.105 0.0002 0.987 

 n (-) 1.86 <0.0001  

 dlim (µm) 0.132 <0.0001 

0.995 

 

0.029 2 k (µm(n-1)min-1) 0.217 <0.0001 0.994 

 n (-) 2.06 <0.0001  

 dlim (µm) 0.158 <0.0001 

0.996 

  

3 k (µm(n-1)min-1) 0.432 <0.0001 0.996 0.022 

 n (-) 1.90 <0.0001   

 dlim (µm) 0.142 <0.0001 

0.997 

 

0.013 4 k (µm(n-1)min-1) 0.686 <0.0001 0.997 

 n (-) 2.08 <0.0001  

 dlim (µm) 0.152 <0.0001 

0.995 

 

0.030 5 k (µm(n-1)min-1) 0.215 <0.0001 0.994 

 n (-) 1.95 <0.0001  

 dlim (µm) 0.137 <0.0001 

0.997 

 

0.016 6 k (µm(n-1)min-1) 0.461 <0.0001 0.997 

 n (-) 2.10 <0.0001  

 dlim (µm) 0.154 <0.0001 

0.996 

 

0.023 7 k (µm(n-1)min-1) 0.806 <0.0001 0.995 

 n (-) 1.96 <0.0001  

 dlim (µm) 0.143 <0.0001 

0.998 

 

0.009 8 k (µm(n-1)min-1) 1.28 <0.0001 0.998 

 n (-) 2.12 <0.0001  

 dlim (µm) 0.142 <0.0001 

0.996 

 

0.023 9 k (µm(n-1)min-1) 0.264 <0.0001 0.995 

 n (-) 2.00 <0.0001  

 dlim (µm) 0.136 <0.0001 

0.996 

 

0.023 10 k (µm(n-1)min-1) 0.527 <0.0001 0.995 

 n (-) 2.12 <0.0001  

 dlim (µm) 0.093 <0.0001 

0.999 

 

0.015 11 k (µm(n-1)min-1) 0.023 <0.0001 0.998 

 n (-) 2.09 <0.0001  

 dlim (µm) 0.125 <0.0001 

0.994 

 

0.050 12 k (µm(n-1)min-1) 0.092 <0.0001 0.993 

 n (-) 2.11 <0.0001  
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Table  2.4  Statistical Summary of Parameter Estimation Using the Warped-Time Kinetic 

Model 

Run Parameter Value p value R2 Adj. R2 SSR 

1 dlim (µm) 0.185 0.0003 

0.976 

 

0.173  k0 (min-n) 1.34 <0.0001 0.972 

 n (-) 0.368 <0.0001  

 dlim (µm) 0.166 <0.0001 

0.992 

 

0.045 2 k0 (min-n) 2.12 <0.0001 0.991 

 n (-) 0.281 <0.0001  

 dlim (µm) 0.165 <0.0001 

0.990 

 

0.056 3 k0 (min-n) 2.49 <0.0001 0.989 

 n (-) 0.281 <0.0001  

 dlim (µm) 0.159 <0.0001 

0.996 

 

0.020 4 k0 (min-n) 3.06 <0.0001 0.996 

 n (-) 0.231 <0.0001  

 dlim (µm) 0.174 <0.0001 

0.987 

 

0.078 5 k0 (min-n) 1.89 <0.0001 0.985 

 n (-) 0.313 <0.0001  

 dlim (µm) 0.161 <0.0001 

0.996 

 

0.020 6 k0 (min-n) 2.83 <0.0001 0.996 

 n (-) 0.240 <0.0001  

 dlim (µm) 0.164 <0.0001 

0.992 

 

0.039 7 k0 (min-n) 3.09 <0.0001 0.991 

 n (-) 0.250 <0.0001  

 dlim (µm) 0.157 <0.0001 

0.999 

 

0.005 8 k0 (min-n) 3.71 <0.0001 0.999 

 n (-) 0.203 <0.0001  

 dlim (µm) 0.166 <0.0001 

0.992 

 

0.047 9 k0 (min-n) 2.17 <0.0001 0.991 

 n (-) 0.287 <0.0001  

 dlim (µm) 0.160 <0.0001 

0.995 

 

0.025 10 k0 (min-n) 2.88 <0.0001 0.994 

 n (-) 0.236 <0.0001  

 dlim (µm) 0.190 <0.0001 

0.989 

 

0.120 11 k0 (min-n) 0.948 <0.0001 0.987 

 n (-) 0.343 <0.0001  

 dlim (µm) 0.174 <0.0001 

0.996 

 

0.032 12 k0 (min-n) 1.59 <0.0001 0.995 

 n (-) 0.306 <0.0001  
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2.2.3 Effects of process variables on the kinetic parameters 

As both the nth-order model and the warped-time model were found to have excellent 

fitting capability, the impact of process variables on their model parameters, i.e., the 

limiting size dlim, the breakage rate constant k or k0, and the exponent n was explored. For 

the nth-order model parameters, the main effects plots in Figure 2.6 and the fitted 

parameters in Table 2.3 (DOE Runs 1–8) suggest the following major trends: (i) the 

breakage rate constant k was significantly higher at the higher stirrer speed, the higher bead 

loading, and upon the use of the YSZ beads as opposed to the CPS beads; (ii) dlim varied in 

a narrow range from 132–161 nm with an 8-run average of 148±11 nm (RSD = 7.4%); it 

decreased slightly at the higher speed and with the use of the YSZ beads and increased 

slightly at the higher bead loading; (iii) n slightly increased upon an increase in the stirrer 

speed and the use of the YSZ beads, and the bead loading had almost no effect. The changes 

were so small that the breakage kinetics was nearly second order overall (n = 2.00±0.06 

from an 8-run average, RSD = 3.0%). As compared to the drastic variation in k, the 

variation in n and dlim for a given bead material (CPS or YSZ) was relatively small, thus, 

justifying one to use constant, average values of n and dlim for a specific bead material.   
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Figure  2.6  Main effects plots for the parameters of the nth-order kinetic model as a 

function of the process variables: (a) grinding limit dlim, (b) breakage rate constant k, and 

(c) exponent n. The center point experimental data (Runs 9 and 10) were added to the right-

most panel. 

The variation of the breakage rate constant k0 of the warped-time model with the 

process parameters (see Figure 2.7 and refer to Table 2.4) was like that of k of the nth-

order model. However, both dlim and n were lower at the higher stirrer speed, the higher 

bead loading, and upon the use of the YSZ beads as opposed to the CPS beads. While dlim 
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again varied in a narrow range from 157–185 nm with an 8-run average of 166±9 nm and 

the impact of the process parameters was rather limited (RSD = 5.4%), the relative change 

in n was notable for different processing conditions: 8-run average of 0.271±0.03 (RSD = 

11%).  

 
Figure  2.7  Main effects plots for the parameters of the warped-time kinetic model as a 

function of the process variables: (a) grinding limit dlim, (b) breakage rate constant k0, and 

(c) exponent n. The center point experimental data (Runs 9 and 10) were added to the right-

most panel. 



 

71 

 

 

Although the warped-time model has excellent fitting capability, two issues warrant 

discussion. First, the grinding limit dlim was found to be equal to the final milled particle 

size at 180 min, which is somewhat unrealistic as in the limit t the limiting particle size 

must be smaller than that at 180 min. This was correctly captured by the smaller dlim of the 

nth-order model (see Table 2.3 vs. Table 2.4). Second, unlike the case for k and n of the 

nth-order model, both k0 and n drastically changed in opposite directions and considering 

the time-dependence of 𝑘(𝑡) = 𝑘0𝑛𝑡𝑛−1, the impact of the processing variables on the 

overall breakage rate is hard to interpret without further quantitative analysis. Along with 

the better fitting capability of the nth-order model, these physical considerations led us to 

choose the nth-order model as the best kinetic model and use it for the microhydrodynamic 

correlations. If we were to choose the warped-time model, there would be two separate 

kinetic–microhydrodynamic correlations, one for k and another for n, and this would 

clearly be undesirable situation. 

Figures 2.6 and 2.7 (right-most panel) show that the center-point responses (Run 9 

for CPS and Run 10 for YSZ) and the mean values for CPS (Runs 1, 3, 5, and 7) and YSZ 

(Runs 2, 4, 6, and 8) deviated although they yielded similar trends in terms of 

increase/decrease of the kinetic parameters upon use of the CPS beads vs. the YSZ beads. 

We have not used the main effects plots to establish a quantitative model between the 

kinetic parameters and the process parameters. The kinetic–microhydrodynamic 

correlation of the form k = k(a, σb
max, αb, Πσy) implicitly achieves that task (see Section 

2.2.4). As will also be shown in Section 2.2.5, the purely empirical correlation of the form 

k = k(, c, ρb, Yb) was not linear; there exist several interactions among the independent 

variables. 
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2.2.4 Microhydrodynamic origin of the calculated breakage rate constant 

The microhydrodynamic parameters, i.e., granular temperature , average bead oscillation 

velocity ub, frequency of a single bead oscillation , maximum contact pressure b
max, 

radius of contact circle b, average frequency of drug particle compressions a, and pseudo 

energy dissipation rate for the drug particles y for all 8 runs were calculated and 

presented in Table A.1 of Appendix A. The main effects plots (Figures 2.8 and 2.9) and 

Table A.1 show that all microhydrodynamic parameters were significantly higher at the 

higher stirrer speed, signifying more frequent collisions of the beads with higher stress 

intensity and ensuing higher frequency of drug particle compressions. This is the 

microhydrodynamic origin of the higher breakage rate k at the higher stirrer speed (refer to 

Figure 2.6 and Table 2.3). The use of the YSZ beads as opposed to the CPS beads also led 

to significantly higher microhydrodynamic parameters due to the much higher density of 

the YSZ beads, albeit with two notable exceptions (Figures 2.8 and 2.9). Owing to their 

lower modulus of elasticity, CPS beads had higher b than the YSZ beads (Figure 2.9b); 

hence, the CPS beads could capture more drug particles per CPS–CPS bead collision. This 

effect was counteracted by the higher , ub, , b
max, and y of the YSZ beads, signifying 

a higher number of more energetic/forceful YSZ bead–bead collisions. These two 

counteracting effects led to a slight increase in the frequency of drug particle compressions 

a when the YSZ beads vs. the CPS beads were used (Figure 2.9c), which favored breakage 

(refer to Figure 2.6 and Table 2.3). We also note from Figures 2.8 and 2.9 (right-most 

panel) that the center-point responses (Run 9 for CPS and Run 10 for YSZ) and the mean 

values for CPS (Runs 1, 3, 5, and 7) and YSZ (Runs 2, 4, 6, and 8) yielded similar trends 
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in terms of increase/decrease of the microhydrodynamic parameters upon use of CPS vs. 

YSZ. 

When a higher bead loading c was used, two counteracting effects were observed 

(Figures 2.8 and 2.9). Due to the occurrence of higher drag forces and more bead–bead 

squeezing events at the higher c, the energy dissipation due to viscous losses and inelastic 

collisions were higher, which led to lower , ub, b, and b
max (lower energy/less forceful 

bead collisions) and did not favor particle breakage. However, the dramatic increase in the 

number concentration of the beads along with higher g0 led to more frequent collisions, 

signified by higher , a, and y, which favors breakage. It appears that higher , a, and 

y (favorable for breakage) is much more influential on k than lower , ub, b, and b
max 

(unfavorable for breakage), as inferred from the positive impact of c on k (refer to Table 

2.3 and Figure 2.6).  
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Figure  2.8  Main effects plots for the microhydrodynamic parameters as a function of the 

process variables: (a) granular temperature θ, (b) average bead oscillation velocity ub, and 

(c) frequency of a single-bead oscillation ν. The center point experimental data (Runs 9 

and 10) were added to the right-most panel. 
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Figure  2.9  Main effects plots for the microhydrodynamic parameters as a function of the 

process variables: (a) maximum contact pressure σb
max, (b) radius of contact circle αb,  

(c) average frequency of drug particle compression a, and (d) the pseudo energy dissipation 

rate Πσy. The center point experimental data (Runs 9 and 10) were added to the right-most 

panel. 
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A statistically and physically significant relationship between the 

microhydrodynamic parameters and the breakage rate constant k was expected based on 

the microhydrodynamic insights and was examined via multiple linear regression models 

(MLRMs). Three different MLRM approaches were investigated, i.e., the first-order 

MLRM, where the microhydrodynamic parameters are considered to have a linear 

relationship with k; the second-order MLRM, where the squares of the microhydrodynamic 

parameters are considered to have an impact on k as well; and the MLRM with interaction 

terms, where the multiple of two microhydrodynamic parameters may affect k. On purely 

physical grounds, k must be zero if any microhydrodynamic parameter is zero, suggesting 

a zero intercept. Indeed, when the intercept was included in the models, one or more 

MLRM coefficients, including the intercept, were generally found to be statistically 

insignificant (see Table A.2 in Appendix A). Hence, the intercept was set to zero in the 

models. We selected σb
max, αb, a, and Πσy as the predictive microhydrodynamic parameters 

since they are not directly correlated to each other and each of them represents a different 

aspect of the bead–bead collisions (σb
max and αb) and the compression frequency/energy of 

the captured drug particles (a and Πσy). 

As the maximum allowed number of predictors J was chosen as 4, the algorithm 

considers 4 best models (BM1, BM2, BM3, and BM4) for each MLRM. As can be seen from 

Table 2.5, BM1 has the average frequency of drug particle compression a as the predictor 

with the adjusted R2 of 0.91 for all three MLRMs. BM2 was found to have the same two 

predictors for all MLRMs again where maximum contact pressure σb
max and a were found 

to have the most impact on k. For BM3, the algorithm selected radius of contact circle αb in 

addition to the predictors used in BM2 when the first-order MLRM was used. On the other 
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hand, when the second-order MLRM was used, the algorithm selected a2 in addition to the 

predictors used in BM2 for BM3. Besides, BM3 of MLRM with interaction term model 

suggests a should be used together with its interaction with αb and Πσy. For BM4, the 

selected predictors contain all available predictors of the first-order MLRM. For the 

second-order MLRM, the algorithm removed σb
max from BM3 and added Πσy and αb

2 for 

BM4. Finally, for the MLRM with interaction terms, the algorithm kept all BM3 predictors 

for BM4 with the addition of Πσy. To select the best model among all the models presented 

in Table 2.5, the following criteria were used: adjusted R2  0.99 and p value ≤ 0.01. Only 

the following 3-parameter MLRM with interaction terms satisfied the criteria: 

𝑘 = 1.87 × 10−2𝑎 − 3.25 × 10−3𝛼𝑏𝑎 − 9.77 × 10−5(𝛱𝜎𝑦)𝑎 (2.8) 

The k predicted by Equation (2.8) vs. the actual k of the nth-order kinetic model is presented 

in Figure 2.10. Overall, these results corroborate that a is the most important 

microhydrodynamic parameter that explains most of the process related variation of the 

breakage rate constant k along with its interaction with αb and Πσy.  

 
Figure   2.10  The breakage rate parameter k of the nth-order model predicted with the 

MLRM with interaction terms, 3-parameter (Equation (2.8)) vs. the experimentally 

determined k. This is the only MLRM that satisfied adjusted R2  0.99 and p value ≤ 0.01 

for all coefficients. 
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Table  2.5  Statistical Summary of the Estimated MLRM Coefficients Correlating the 

Breakage Rate Constant k of The nth-order Kinetic Model to the Microhydrodynamic 

Parameters 

aStatistically insignificant (p value > 0.01) parameters are bolded. Πσy is treated as a single parameter as σy 

is a constant. bThe coefficients have the units that make the MLRM equation dimensionally homogeneous. 

 

 To gauge the usefulness of the proposed kinetic–microhydrodynamic correlation 

in Equation (2.8), we compared it to a purely empirical correlation, which does not require 

Approach 

Best 

Model 

Parameter Model 

Symbola Coefficientb p value R2 Adj. R2 SSR p value 

First-

order 

MLRM 

BM1 a (mHz) 5.6610-3 3.9110-5 0.922 0.911 0.253 3.9110-5 

BM2 
σb

max (GPa) 1.5210-1 8.4510-3 
0.978 0.970 0.073 1.1210-5 

a (mHz) 4.6810-3 4.0510-5 

BM3 

σb
max (GPa) 1.5210-1 1.8610-2 

0.978 0.964 0.073 1.5010-4 αb (µm) 1.8610-3 9.2410-1 

a (mHz) 4.6410-3 6.8810-4 

BM4 

σb
max (GPa) 1.5110-1 1.0810-1 

0.978 0.955 0.073 1.4710-3 

αb (µm) 2.0710-3 9.4110-1 

a (mHz) 4.6310-3 1.1910-2 

Πσy (10-16 

J2/m6s) 
1.0610-4 9.9010-1 

Second-

order 

MLRM 

BM1 a (mHz) 5.6610-3 3.9110-5 0.922 0.911 0.253 3.9110-5 

BM2 
σb

max (GPa) 1.5210-1 8.4510-3 
0.978 0.970 0.073 1.1210-5 

a (mHz) 4.6810-3 4.0510-5 

BM3 

σb
max (GPa) 1.40 10-1 1.9010-2 

0.982 0.971 0.060 9.1410-5 a (mHz) 6.1110-3 7.7410-3 

a2 (mHz2) -7.3810-6 3.3910-1 

BM4 

a (mHz) 1.2210-2 1.2710-3 

0.994 0.988 0.020 1.1410-4 

Πσy (10-16 

J2/m6s) 
1.1910-2 1.8110-2 

αb
2 (µm2) -1.1610-2 4.1410-2 

a2 (mHz2) -3.6410-5 4.8810-3 

MLRM 

with 

interactio

n terms 

BM1 a (mHz) 5.6610-3 3.9110-5 0.922 0.911 0.253 3.9110-5 

BM2 
σb

max (GPa) 1.5210-1 8.4510-3 
0.978 0.970 0.073 1.1210-5 

a (mHz) 4.6810-3 4.0510-5 

BM3 

a (mHz) 1.8710-2 2.7410-4 

0.992 0.988 0.024 9.9810-6 
αba (µm.mHz) -3.2510-3 1.2010-3 

aΠσy (10-16 

mHz J2/m6s) 
-9.7710-5 6.6710-3 

BM4 

a (mHz) 1.5310-2 3.2010-4 

0.998 0.997 0.005 6.5010-6 

Πσy (10-16 

J2/m6s) 
1.8610-2 1.5410-2 

αba (µm.mHz) -2.4810-3 1.3110-3 

aΠσy (10-16 

mHz J2/m6s2) 
-1.5110-4 8.9610-4 
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any fundamental understanding of the underlying microhydrodynamics. The breakage rate 

constant was simply assumed to be a function of the process parameters  and c as well as 

the bead properties ρb and Yb, i.e., k = k(, c, ρb, Yb). The bead properties were different for 

different bead materials.  

Table  2.6  Statistical Summary of the Estimated MLRM Coefficients Correlating the 

Breakage Rate Constant k of the nth-order Kinetic Model to the Process Parameters–Bead 

Properties (The Purely Empirical Model) 

Approach Best Model 
Parameter Model 

Symbola Coefficientb p value R2 Adj. R2 SSR p value 

First-order 

MLRM 

BM1 c (-) 1.31 1.5110-3 0.783 0.752 0.707 1.5110-3 

BM2 
c (-) 1.08 2.7110-2 

0.809 0.745 0.623 6.9610-3 
Yb (GPa) 4.0210-3 4.0310-1 

BM3 

c (-) 3.68 2.4310-2 

0.908 0.853 0.299 5.0210-3 ρb (kg/m3) -1.1710-3 6.7610-2 

Yb (GPa) 3.0710-2 6.1710-2 

BM4 

ω (rpm) 3.3110-4 3.0310-2 

0.975 0.950 0.081 1.8110-3 
c (-) 3.68 5.3710-3 

ρb (kg/m3) -2.3310-3 7.0410-3 

Yb (GPa) 5.9510-2 6.6210-3 

Second-

order 

MLRM 

BM1 c2 (-) 2.98 4.7810-4 0.843 0.820 0.512 4.7810-4 

BM2 
c2 (-) 2.52 8.1310-3 

0.868 0.824 0.431 2.3010-3 
Yb

2 (GPa2) 4.8110-6 3.2710-1 

BM3 

c (-) -4.23 5.8610-2 

0.930 0.888 0.228 2.5710-3 ω2 (rpm2) 4.7210-8 8.0310-2 

c2 (-) 9.30 2.4510-2 

BM4 

ω (rpm) 3.3110-4 3.0310-2 

0.975 0.950 0.081 1.8110-3 
c (-) 3.68 5.3710-3 

Yb (GPa) -1.56 7.0610-3 

Yb
2 (GPa2) 7.7710-3 7.0410-3 

MLRM 

with 

interaction 

terms 

BM1 ωc (rpm) 3.8310-4 5.3810-4 0.838 0.814 0.530 5.3810-4 

BM2 
ω (rpm) -3.0110-4 4.4410-2 

0.922 0.895 0.256 4.8310-4 
ωc (rpm) 1.0710-3 8.1010-3 

BM3 

Yb (GPa) -8.3210-1 2.4410-3 

0.980 0.969 0.063 1.0710-4 ωc (rpm) 9.5610-4 4.5110-4 

ρbYb (GPa.kg/m3) 1.3810-4 2.4310-3 

BM4 

ω (rpm) -3.0110-4 2.4910-3 

0.993 0.985 0.024 1.6110-4 
ωc (rpm) 1.5010-3 7.5810-4 

cρb (kg/m3) -1.8710-3 1.4210-2 

cYb (GPa) 5.0210-2 1.1710-2 
aStatistically insignificant (p value > 0.05) parameters are bolded. bThe coefficients have the units that make 

the MLRM equation dimensionally homogeneous. 

 

The statistical results from the MLRM and the subset selection algorithm are 

presented in Table 2.6. As most MLRMs for the purely empirical correlation have 
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relatively low R2, high SSR, and mostly statistically insignificant parameters (at 99% 

confidence level), we relaxed the statistical significance criterion from 99% confidence 

level to 95% confidence level, i.e., p ≤ 0.05, which has also been used widely in the 

literature. Hence, BM4 with the interaction terms was selected as it satisfied adjusted R2  

0.99 with all statistically significant coefficients at the 95% confidence level. This purely 

empirical correlation, Equation (2.9), signifies multiple binary interactions among the 

independent variables.       

𝑘 = −3.01 × 10−4𝜔 + 1.50 × 10−3𝜔𝑐 − 1.87 × 10−3𝑐𝜌b

+ 5.02 × 10−2𝑐𝑌b 
(2.9) 

 

2.2.5 Predictive capability of the kinetic-microhydrodynamic model and the purely 

empirical model 

The timewise evolution of the median size in Runs 9–12, which were not used in the 

calibration of the kinetic–microhydrodynamic correlation and the purely empirical 

correlation, was directly fitted by the nth-order kinetic model first (Figure 2.11a). Table 

2.7 presents the statistical summary. As expected, Figure 2.11a and Table 2.7 show that 

the kinetic model fitted the data well (R2 > 0.99). Then, we estimated the k value of the nth-

order model using the kinetic–microhydrodynamic correlation (Equation (2.8)) and the 

purely empirical correlation (Equation (2.9)). As the n and dlim values varied in a much 

smaller range than the k values for the DOE (Runs 1–8), in the predictions, we assumed 

constant values for n and dlim by calculating their average values for the CPS beads (Runs 

1, 3, 5, and 7) and the YSZ beads (Runs 2, 4, 6, and 8). A comparison of these average n 

and dlim values in the predictions vs. the directly fitted n and dlim values for Runs 9–12 

(Table 2.7) reveals that this assumption was generally valid, and the deviations from the 
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fitted values were reasonable small with the only exception of Run 11 dlim. The relatively 

low estimated dlim value was most likely related to the fact that even after 7 h milling, the 

profile did not attain or approach to a plateau under the lowest energetic conditions with 

the CPS beads. In general, the alternative approach of developing correlations for n and 

dlim, like those for k, appears to be unwarranted.     

Figure 2.11b presents the temporal evolution of the median size in Runs 9–12 

predicted by the kinetic–microhydrodynamic correlation (Equation (2.8)), while Figure 

2.11c presents the same predicted by the purely empirical model (Equation (2.9)). Having 

a cursory look at Table 2.7 and visual assessment of these figures, we find that the purely 

empirical correlation did not even predict the evolution at the center point conditions (Runs 

9 and 10). The reason for this is that the empirical correlation needs many more data points 

or experimental milling runs: e.g., 18 runs for a 3-level (low-medium-high) values of the 

stirrer speed and the bead loading with the CPS and YSZ beads, which would increase the 

resources, time, and effort by 125% as compared with the current 8-run DOE. Such an 

expanded DOE could enable the empirical model to have statistically more reliable 

parameters and perhaps additional terms in Equation (2.9) for better fitting capability. 

However, it is unclear if that could resolve the second major issue with the purely empirical 

model, i.e., its utter failure to predict the profiles of Runs 10 and 11 with the experimental 

conditions outside the domain of the 8-run DOE. In fact, it predicts a negative k value for 

Run 11 (no prediction curve presented in Figure 2.11c)! Hence, as expected, the purely 

empirical model had little to no predictive capability. In contrast, the kinetic–

microhydrodynamic correlation has remarkable prediction capability for Runs 9 and 10, as 

signified R2 > 0.99 and low SSR values that are close to those of the direct fitting. Similarly 
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excellent prediction was made for Run 12, which was outside the DOE. Although the 

kinetic–microhydrodynamic model underpredicted the median size after 10 min milling in 

Run 11, this prediction was reasonable and certainly superior to that by the purely empirical 

model, which predicted a negative k.  

 
Figure  2.11  Temporal evolution of the median particle size d50 during the wet milling of 

fenofibrate and (a) its direct fit by the nth-order kinetic model in Equation (2.3), (b) the 

predicted evolution of d50 using k estimated by Equation (2.8), and (c) the predicted 

evolution of d50 using k estimated by Equation (2.9). 
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Table  2.7  Statistical Summary of the Parameters of the nth-order Model Fitting vs. 

Predictions by the Kinetic–Microhydrodynamic Model (Equation (2.8)) and the Purely 

Empirical Model (Equation (2.9)) 

Run 
Direct fit,  

Prediction 
dlim (µm) 

k 

(µmn-1min-1) 

n 

(-) 
R2 SSR 

9 

nth order model fit 0.142 0.264 2.00 0.996 0.023 

Prediction by Equation (2.8) 0.156 0.280 1.92 0.995 0.028 

Prediction by Equation (2.9) 0.156 0.383 1.92 0.986 0.086 

10 

nth order model fit 0.136 0.527 2.12 0.996 0.023 

Prediction by Equation (2.8) 0.139 0.574 2.09 0.995 0.026 

Prediction by Equation (2.9) 0.139 0.676 2.09 0.837 0.257 

11 

nth order model fit 0.093 0.023 2.09 0.999 0.015 

Prediction by Equation (2.8) 0.156 0.041 1.92 0.978 0.156 

Prediction by Equation (2.9) 0.156 -0.185 1.92 N/A N/A 

12 

nth order model fit 0.125 0.092 2.11 0.994 0.050 

Prediction by Equation (2.8) 0.139 0.093 2.09 0.993 0.055 

Prediction by Equation (2.9) 0.139 0.021 2.09 0.644 2.65 

2.2.6 Limitations of the models 

The main assumptions and limitations of the microhydrodynamic model have been 

mentioned in Section 2.2.6. Here, we focus on those related to the kinetic models. In the 

DOE, we considered a fixed batch size and suspension flow rate, and investigated the 

impact of the stirrer speed, bead loading, and bead type. Hence, the models in this chapter 

are strictly valid only at the respective experimental scale–batch size for the given flow 

rate in the recirculation mill. In the recirculation mill, two separate characteristic times 

exits: the mean residence time in the mill (m = Vsm/Q), where Q is the suspension flow rate 

and Vsm is the suspension volume in the mill, and the mean residence time in the holding 

tank (T = VT/Q), where VT is the volume (or batch size) in the holding tank. Hence, the 

milled particle size distribution (PSD) and the overall breakage kinetics depend on these 

two characteristic times. Unfortunately, our simple kinetic models cannot rigorously 

capture the impact of recirculation. A rigorous analysis of the recirculation could be made 

using a population balance model (PBM) for both the mill and the holding tank by 
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assuming well-mixedness or determining the residence time distribution experimentally. 

Interestingly, even most of the existing PBMs for the recirculation mode of WSMM used 

the equations valid for a batch mill without any consideration of the holding tank and two 

different mean residence times (e.g., [96, 97]). We found two PBM studies that correctly 

accounted for the recirculation effects [87, 189]. However, Diemer [189] did not consider 

WSMM; Annapragada and Adjei [87] used a specific breakage rate kernel that 

incorporated an unrealistic physical model (see [32]). To the best knowledge of the authors 

[32], a PBM that incorporates underlying microhydrodynamic parameters does not exist.  

In this chapter, we did not investigate the impact of the batch size and the 

suspension flow rate, which can be rigorously examined using a PBM. The batch size is 

typically set; it has rarely been varied and examined in the pharmaceutical WSMM 

literature [10]. A comparison of the first-order time constants estimated for the breakage 

kinetics of identical griseofulvin suspensions under nearly identical process conditions in 

the same recirculation mill [62, 89] suggests that the particles were coarser at any given 

time when the batch size was 440 mL vs. 220 mL, except when the milling time was long 

enough for the particles to reach the limiting size. At any milling time, the number of 

theoretical passes of the holding tank content through the mill was halved (mean residence 

time doubled) when the batch size was doubled. For a fixed batch size, an increase in the 

suspension flow rate led to a higher number of theoretical passes of the entire mill content 

through the mill as well as a lower mean residence time both in the mill and in the holding 

tank, which was found to result in finer particles [87] and a sharper PSD at a given time 

[87, 89]. 
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2.3 Conclusions  

This chapter aimed to examine the FNB breakage rate in WSMM operating at various 

stirrer speeds and volumetric loading of CPS–YSZ beads via three kinetic models. The 

newly developed nth-order kinetic model with n ≅ 2 turned out to be the best overall model 

that described the temporal evolution of the median size well. While the emergence of 

nearly second-order kinetics is interesting, further research is warranted if this finding has 

general applicability to multiple drugs and broader range of processing conditions. The 

breakage rate constant of this model was found to be higher at the higher stirrer speed, the 

beads loading, and upon use of YSZ vs. CPS beads. Hence, cycle time will be greatly 

reduced by running the WSMM at 4000 rpm with 50% YSZ beads. The 

microhydrodynamic parameters provided valuable insights and a physical basis for the 

observed breakage behaviors under different operating conditions. A statistically 

significant (p ≤ 0.01) MLRM of three microhydrodynamic parameters explained the 

variation in the breakage rate constant best (R2  0.99). The average frequency of drug 

particle compressions interacting with two other microhydrodynamic parameters, i.e., 

pseudo energy dissipation rate and the radius of the bead–bead contact circle govern the 

breakage kinetics in WSMM. These models are expected to be useful to pharmaceutical 

engineers who can (i) describe the breakage kinetics for the WSMM process quantitively 

and (ii) gain advanced process understanding and insights through modeling during 

pharmaceutical development of a WSMM process with reduced cycle time. This chapter 

also hints the need for developing a microhydrodynamically inspired population balance 

model to predict the timewise evolution of the whole drug particle size distribution, not 

just the median particle size, during the WSMM. 
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CHAPTER 3 

EFFECTS OF BEAD PACKING LIMIT CONCENTRATION ON 

MICROHYDRODYNAMICS-BASED PREDICTION OF BREAKAGE KINETICS 

IN WET STIRRED MEDIA MILLING  

 

This chapter evaluated wet-milling kinetics of a drug in a stirred mill using a 

microhydrodynamic model with various radial distribution functions at contact (RDFs). An 

nth-order kinetics model was fitted to the median size evolution data at several stirrer 

speeds and loadings of polystyrene/zirconia beads to identify the breakage rate constant k. 

Microhydrodynamic parameters were calculated using three RDFs: Carnahan–Starling, 

Lun, and Ma–Ahmadi. The first one, used in previous microhydrodynamic studies, does 

not account for the bead packing limit concentration. The Lun and the Ma–Ahmadi RDFs 

similarly predicted much higher frequency of less energetic–forceful bead–bead collisions 

than the Starling RDF. A subset selection algorithm determined the best multiple linear 

regression models (MLRMs) of k with the microhydrodynamic parameters (semi-

theoretical) or the process–bead parameters (empirical) as predictors. The Lun RDF-based 

MLRM had the best fitting–predictions of the kinetics among the semi-theoretical 

MLRMs, which outperformed the empirical MLRMs. 

 

3.1 Materials and Methods 

3.1.1 Materials 

The model poorly water-soluble drug used in this chapter was fenofibrate (BP grade), 

purchased from Jai Radhe Sales (Ahmedabad, India). The aqueous solubility of FNB is 0.8 

mg/L at room temperature [169]. Hydroxypropyl cellulose (HPC, L grade, Nisso America 

Inc, New York, NY, USA) was used as a non-ionic polymeric stabilizer, and sodium 
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dodecyl sulfate (SDS, ACS grade, GFS chemicals, Columbus, OH, USA) was used as an 

anionic surfactant. Zirmil Y grade yttrium-stabilized zirconia (YSZ) beads (Saint Gobain 

ZirPro, Mountainside, NJ, USA) and HCC grade crosslinked polystyrene (CPS) beads 

(Norstone Inc., Bridgeport, PA, USA) with a nominal size of 400 µm were selected as they 

have distinctly different density and mechanical properties. While both having 400 µm 

nominal sizes, YSZ beads have 6000 kg/m3 density and 405 µm actual median size, 

whereas CPS beads have 1040 kg/m3 and 444 µm, respectively. The actual particle sizes 

were measured via laser diffraction in dry dispersion mode by Helos/Rodos particle size 

analyzer (Sympatec, NJ, USA). 

3.1.2 Wet stirred media milling 

A suspension of FNB, HPC-L, and SDS was prepared using a shear mixer (Cat.# 14-503, 

Fisher Scientific, Pittsburgh, PA, USA) at 300 rpm for 2 h. The formulation was selected 

as 10% FNB, 7.5% HPC-L, and 0.05% SDS based on a prior study [150]. The coarse 

suspensions were stored at 8 oC overnight prior to the milling in a Microcer wet stirred 

media mill (Netzsch Fine Particle Size Technology, LLC, Exton, PA, USA) for 180 min 

with the parameters presented in Table 3.1. The experimental design (Runs 1–8) is based 

on OFAT (one-factor-at-a-time) with three parameters at two-levels: low–high and YSZ–

CPS. Runs 9 and 10 were appended to the design to emphasize practically achievable high 

values of the bead loading (0.60) without serious heat dissipation problem in our set-up. 

Experimental k data from Runs 1–10 were used to “calibrate” the MLRMs; then, these 

MLRMs were used to predict the median particle size evolution in Runs 11–14, which had 

not been used as part of the model calibration, to test the predictive capability.  
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Table  3.1  Experimental Conditions of the WSMM Process 

Run  no. Stirrer speed, ω (rpm) Bead loading, c   (-) Bead material 

1a 3000 0.35 CPS 

2a 3000 0.35 YSZ 

3a 3000 0.50 CPS 

4a 3000 0.50 YSZ 

5a 4000 0.35 CPS 

6a 4000 0.35 YSZ 

7a 4000 0.50 CPS 

8a 4000 0.50 YSZ 

9a 3500 0.60 CPS 

10a 3500 0.60 YSZ 

11b 3500 0.425 CPS 

12b 3500 0.425 YSZ 

13b 2550 0.298 CPS 

14b 2550 0.298 YSZ 
aRuns used for training the models. bRuns used for testing the prediction capability of the models. 

 

 The bead loading was calculated as the true volume of the beads over the mill 

chamber volume Vm = 80 ml (v/v). A peristaltic pump (Cole-Palmer, Master Flex, Vermont 

Hills, IL, USA) recirculated the suspension between the holding tank and the milling 

chamber at a volumetric flow rate Q of 126 ml/min. Stainless-steel screen with openings 

that have half size of the nominal bead size (200 µm) was used to keep the beads in the 

milling chamber. The setup was cooled with the help of a chiller (Model M1-.25A-11HFX, 

Advantage Engineering, Greenwood, IN, USA) to keep the temperature under control; 

intermitting milling cycles were applied when/if the temperature reached 35 oC [149, 150]. 

The average power consumption P was determined by dividing the cumulative energy 

consumption read from the control panel of the mill by the milling time. The average stirrer 

power per unit volume Pw was calculated for all runs by Pw = P/Vm. The power 

consumption during the stirring of the suspension in the absence of the beads εht was found 

by the same method. The power consumption when there was no material in the mill (no-

load) was obtained and subtracted during the calculation of Pw and εht. 
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3.1.3 Characterization techniques 

PSD of the drug suspensions at various milling times was determined by laser diffraction 

using LS 13-320 Beckman Coulter instrument (Brea, CA, USA). The samples were taken 

from the outlet of the mill at certain time intervals (2s, s = 0, 1, 2,...8) with the addition of 

40 s, 24 min, 48 min, and 96 min. The final sample was taken from the holding tank. Before 

each measurement, a ~1.0 mL suspension sample was diluted with 5.0 mL of the respective 

stabilizer solution using a vortex mixer (Fisher Scientific Digital Vortex Mixer, Model No: 

945415, Pittsburgh, PA) at 1500 rpm for one min. During measurements, polarized 

intensity differential scattering (PIDS) was maintained between 40% and 50% while the 

obscuration was maintained below 8%. PSD was provided by the software which used the 

Mie scattering theory. The refractive indices of FNB and water were taken as 1.55 and 

1.33, respectively. Measurements were repeated four times and the average and standard 

deviation (SD) of these measurements were determined.  

 

The apparent shear viscosities L of the milled suspensions were measured using R/S 

plus rheometer (Brookfield Engineering, Middleboro, MS, USA) with a water jacket 

assembly Lauda Eco (Lauda-Brinkmann LP, Delran, NJ, USA). A CC40 coaxial cylinder 

with a jacketed setup was used to impart a controlled shear rate on the samples from 0 to 

1000 1/s in 60 s. The jacket temperature was kept constant at 25 ± 0.5 °C. The raw data 

were analyzed using the Rheo3000 software and the apparent shear viscosity at the 

maximum shear rate was taken. The density of the milled suspension was measured by 

weighing 35 ml of the milled suspension and dividing the mass of the suspension by its 

volume. The measurements were performed thrice, and the average value was reported.  

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/rheometer
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3.1.4 Microhydrodynamic model 

In most studies that employed the MHD model for the WSMM [33, 57, 62, 63, 89, 90, 

127], the following Carnahan–Starling RDF was used:  

𝑔0 =
1 − 0.5𝑐

(1 − 𝑐)3
 (3.1) 

 In addition to the Carnahan-Starling RDF, we used the Lun RDF, mathematically 

expressed in Equation (3.2), which was suggested for multiphase flow systems that have 

high solids concentrations  [148, 190], where clim is the bead volume fraction at random 

close packing assuming mono-dispersed spheres.  

𝑔0 = [1 − (𝑐/𝑐lim)1/3]
−1

 (3.2) 

 Ma and Ahmadi proposed another RDF, Equation (3.3), that is similar to the Lun 

RDF, in which the complexity in the denominator ensures the proper asymptotic behavior 

at the limiting concentration [146]. 

𝑔0 = 1 + 4𝑐
1 + 2.5𝑐 + 4.5904𝑐2 + 4.515439𝑐3

[1 − (𝑐/𝑐lim)3]0.67802
 (3.3) 

For mono-dispersed spherical particles (beads here), a random packing fraction of 0.63 has 

been used [147]. While the YSZ and CPS beads are perfectly spherical and smooth and 

they have a relatively narrow PSD [90, 149], they are not mono-dispersed. The potential 

impact of bead size polydispersity was not considered here or in refs. [31,32]. The MHD 

model must be reformulated to account for the size polydispersity, which is outside the 

scope of this chapter. The MHD parameters were found for each RDF, as described in 

Section 1.4.2 and 2.2.5. 

3.1.5 Breakage kinetics and multiple linear regression models (MLRMs) 

Breakage of the particles during the WSMM of a well-stabilized suspension is expected to 
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be the dominant mechanism compared to particle aggregation [10, 94]. Our recent study 

established that (i)  the fenofibrate suspensions were stable during the milling and storage 

and that (ii) the nth-order breakage kinetics model could fit the temporal evolution of the 

median particle size d50 better than the first-order model and the warped-time model [150]. 

Therefore, the following nth-order breakage kinetics model was used to describe the 

median size d50 evolution in time t:  

𝑑50(𝑡) = 𝑑lim + [(𝑑50,0 − 𝑑lim)
1−𝑛

− (1 − 𝑛)𝑘𝑡]
1/(1−𝑛)

 
(3.4) 

wherein d50,0 is the initial median size, dlim is the limiting median size, and k is the breakage 

rate constant. Marquardt–Levenberg optimization algorithm in Sigmaplot (Version 12.5) 

was used to fit the log-transformed experimental median sizes at various time points by 

Equation (3.4), and dlim, n, and k were estimated. In the fitting, a constraint was placed on 

the limiting particle size, which should be smaller than the final median particle size [90]. 

As will be discussed in Section 3.2, dlim and n were relatively insensitive to the changes in 

the processing conditions and bead type (Runs 1–10) unlike k. Hence, average values of 

dlim and n for CPS and YSZ beads were calculated and used in the MLRMs for k, as 

described below.   

 A relationship between the estimated breakage rate constant k of the nth-order 

kinetic model and either the calculated MHD parameters with various RDFs (semi-

theoretical MLRM) or the process parameters–bead properties (the purely empirical 

MLRM) was sought for by a subset selection algorithm with leave-one-out cross-validation 

(LOOCV, see Algorithm 1 in Appendix B for all details). Our analysis focused on the use 

of various MLRMs to predict the breakage rate constant k, using “features” of the system 

such as the microhydrodynamic parameters σb
max, αb, a, and Πσy or the empirical parameters 
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of the process–beads (, c, b, and Yb). In all fits, the constant term in the MLRMs was set 

to zero as it was found to be statistically insignificant (similar to [150]). The first-order 

MLRM assumes a linear relationship between 4 predictors (T = 4) and response. In the 

second order MLRM, we have included the squared values of predictors to be considered 

in the calculation of the linear relationship (T = 8). Finally, in the MLRM with interaction 

terms, we have incorporated the pairwise interaction terms into our dataset to measure the 

non-additive relationship (T = 10). Our milling experiments consist of 14 observations 

(runs). First 10 runs were used for subset selection with LOOCV algorithm (I = 10) and 

remaining 4 runs were used as an independent test set to assess the predictive power of the 

selected MLRMs. Our analysis was done on R 4.0.3 using lm function to fit the MLRMs 

[183]. We utilized ggplot2 package to plot the selected MLRM [184]. 

3.2 Results and Discussion 

3.2.1 Production of drug nanoparticles using the WSMM process and the breakage 

kinetics  

All fenofibrate suspensions were successfully milled to reach a median size d50 below 

0.185 µm after 180 min milling, as can be seen in Figure 3.1a. While d50 and d90 of the 

180 min milled suspensions were slightly lower for the YSZ beads than for the CPS beads 

at the higher stirrer speed  and the higher bead loading c, their values did not vary 

significantly among Runs 1–10: d50 was 0.164 ± 0.01 µm and d90 was 0.229 ± 0.02 µm. 

The values of d50 and d90 in Runs 1–10 followed a distribution that is not statistically 

different from a normal distribution, as signified by the Anderson–Darling normality test 

results: p values of 0.088 and 0.140, respectively. These findings overall suggest that the 

particle size statistics of the final product suspensions alone do not yield much information 
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about the milling process and the breakage kinetics. They are not surprising at all because 

given sufficiently long milling time (180 min), the median size of the particles tends to 

approach and/or attain a grinding limiting size [57]. 

 
Figure  3.1  Milling characteristics of Runs 1–10: (a) Median particle size d50 and 90% 

passing size d90 after 180 min milling and (b) breakage rate constant k obtained from fitting 

nth-order breakage kinetics model. 

 In the previous studies of our group that used similar formulations, we found that 

the sizes of the fenofibrate particles in the SEM images closely matched the laser 

diffraction measurements, which suggested minimal aggregation of the particles in the 
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suspensions [46, 47, 54]. The fenofibrate suspensions were physically stable at least for a 

week [150], which is not surprising considering the synergistic stabilization action of the 

HPC–SDS combination for multiple drugs [46, 47]. Hence, the present chapter focused 

only on the breakage kinetics as significant confounding from any aggregation and/or 

Ostwald ripening of the fenofibrate particles is especially unlikely at the time scale of the 

milling experiments from which the kinetic parameters were estimated.   

 The timewise evolution of the median size d50 and its fitting by nth-order kinetic 

model as well as the MLRM predictions are depicted in Figures B.1 and B.2 (Appendix 

B), which illustrate the characteristic breakage kinetic profile for a well-stabilized 

suspension [62], i.e., a monotonic decrease of d50 and the breakage rate with an approach 

to a grinding limiting size [46, 57]. This could be attributed to formation of finer particles, 

especially colloidal/nanoparticles, with lower capture probability between the beads and 

their higher strength as compared with the coarser particles [94, 191, 192]. The nth-order 

kinetic model successfully fitted the timewise evolution in Runs 1–10 well, as indicated by 

adjusted R2 ≥ 0.99 (refer to Table B.5 of the Appendix B). Based on Table B.5, we 

calculated the mean±SD values of dlim, k, and n for all Runs 1–10 as 0.144±0.01 µm, 

0.935±0.93 µmn-1min-1, and 2.11±0.24 µm, respectively. The Anderson–Darling normality 

tests indicate that the dlim values obeyed a distribution that is not statistically different from 

a normal distribution (p value: 0.538 > 0.05), whereas k and n values originated from a 

non-normal distribution (p values of 0.020 and 0.027, respectively). These statistics and 

Table B.5 clearly indicate that dlim and n were much less sensitive to the changes in the 

processing conditions–bead type than k, which varied remarkably among Runs 1–10 

(Figure 3.1b). Figure 3.1b illustrates that when the milling was carried out at a higher 
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stirrer speed and/or higher bead loading with the YSZ beads vs. the CPS beads, k was 

higher. Since n and dlim varied in a narrower range than k, as a first approximation, the 

impact of the process parameters and bead type on the breakage kinetics was directly 

described by k alone: higher k signified faster breakage.  

 The stirrer power Pw was higher at the higher stirrer speed  and/or the higher bead 

loading c of the (denser) YSZ beads vs. the CPS beads (Figure 3.2a). Under turbulent 

conditions, the power number correlations for various mixers and stirred vessels [137, 193] 

suggest that Pw increases with  and ρm only, while in the transition region the viscosity 

µm plays a role too. The viscosity µm and density ρm of the bead–milled suspension mixtures 

were estimated using the following correlations [194]: 

µm = µ𝐿[1 + 2.5𝑐 + 10𝑐2 + 0.0019 𝑒𝑥𝑝(20𝑐)] (3.5) 

ρm = ρ𝑏𝑐 + ρ𝐿(1 − 𝑐) (3.6) 

 The values of µm and ρm were shown in Figure 3.2b and c. As can be seen, both 

the density and the viscosity of the mixtures were higher at the higher YSZ bead loadings; 

thus, explaining the higher Pw. Additionally, ρm was significantly higher for the YSZ 

mixtures vs. the CPS mixtures owing to the density differences of the respective bead 

materials (6000 vs. 1040 kg/m3). Therefore, Pw was higher for the YSZ mixtures than that 

for the CPS mixtures at the same  and c. 
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Figure  3.2  Milling characteristics of Runs 1–10: (a) the average stirrer power per unit 

volume Pw, (b) the viscosity of the bead–milled drug suspension mixture µm, and (c) the 

density of the bead–milled drug suspension mixture ρm.  

3.2.2 Variation of the stressing frequency and the impact of bead packing limit 

concentration 

The MHD parameters were calculated using three RDFs, i.e., Carnahan–Starling, Lun, and 

Ma–Ahmadi, considering the processing conditions, bead properties, and suspension 

properties in Runs 1–14.  
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 Frequency of single-bead oscillations ν and the average frequency of drug particle 

compressions a were calculated and their values are presented in Figure 3.3. A cursory 

look at Figure 3.3 from the perspective of the different RDFs suggests that all three RDFs 

provide a similar impact of the stirrer speed and the bead type/loading qualitatively. 

Overall, regardless of the RDF used in the MHD calculations, both ν and a increased when 

the stirrer speed and/or the bead loading were increased, which can explain the faster 

breakage depicted in Figure 3.1b. This observation could be partly explained by the higher 

Pw at the respective conditions (refer to Figure 3.2a) and partly by the higher bead 

concentration and the ensuing higher g0 (see Figure 3.4) in the mill chamber at the higher 

bead loading. Under the specific conditions studied here, we note that an increase in the 

bead loading has a more pronounced effect on ν and a than the stirrer speed.  

 
Figure  3.3  Effects of the bead type–loading c and the stirrer speed  on (a) the frequency 

of a single-bead oscillation ν and (b) the average frequency of drug particle compression a 

calculated using various RDFs in the microhydrodynamic model. 
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 Another general trend depicted in Figure 3.3 is that ν and a values calculated with 

the Lun RDF and the Ma–Ahmadi RDF were similar as both RDFs took into account the 

bead packing limit concentration clim, whereas the Carnahan–Starling RDF significantly 

underpredicted ν and a. The Lun RDF led to higher ν and a compared to the Carnahan–

Starling RDF and slightly higher compared to the Ma–Ahmadi RDF. The Lun and Ma–

Ahmadi RDFs markedly differed from the Carnahan–Starling RDF, especially at the higher 

bead loadings. For example, while the Carnahan-Starling RDF provided around 30% and 

20% lower ν and a compared to the Lun RDF at  = 3000 rpm–c = 0.35, the differences 

rose to around 60% and 30%, respectively, at  = 3500 rpm–c = 0.6.  

 
Figure  3.4  Variation of the radial distribution function at contact g0 with the bead 

loading c according to the Carnahan–Starling, Lun, and Ma–Ahmadi models. Note that the 

Lun and Ma–Ahmadi models predict a vertical asymptote (dashed line) as c → clim = 0.63. 

 As the RDF is a dimensionless measure of the distance s between the beads, g0 = 

1+Db/s, a higher g0 corresponds to a smaller inter-bead distance and the higher bead 

collision probability. Overall, as can be seen from Figure 3.4, both the Lun RDF (Equation 

(4.4)) and the Ma–Ahmadi RDF (Equation (3.3)) predicted a much sharper increase in g0 

at the higher bead loading, especially as c approaches the vertical asymptote at clim, as 

compared with the Carnahan–Starling RDF (Equation (3.1)). Such sharp increase in g0 at 
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high solids concentrations (0.4 < c <  0.6) has been experimentally confirmed in gas–solids 

multiphase flows [145], which is very difficult to measure in WSMM. Our 

microhydrodynamic calculations suggest that the Carnahan–Starling RDF is less realistic 

than the Lun RDF and the Ma–Ahmadi RDF for denser bead–drug suspensions especially 

near the bead packing limit. This finding is in line with studies on liquid–solid fluidized 

beds and suspension flows wherein the Lun RDF and/or the Ma–Ahmadi RDF have been 

preferentially used [147, 195, 196]. The differences among the RDFs illustrated in Figure 

3.4 provide the fundamental theoretical basis for the bead packing effects on the ν and a 

values. Overall, the Ma–Ahmadi RDF was close to the Lun RDF, the Carnahan–Starling 

RDF deviated from them drastically at c > 0.4. 

3.2.3 Variation of the stress intensity and the impact of bead packing limit 

concentration 

The microhydrodynamic parameters that determine how forceful the bead collisions are, 

i.e., the stress intensity, are the granular temperature θ, the average bead oscillation velocity 

ub, and the maximum contact pressure σb
max (Figure 3.5). Similarly for the stress frequency 

parameters, all three RDFs predicted qualitatively the same pattern in terms of the impact 

of the stirrer speed and the bead type/loading on the stress intensity related parameters. 

These parameters θ, ub, and σb
max were all higher for the YSZ beads and increased with the 

stirrer speed. An increase in Pw provides an increase in the fluctuating energy source to the 

beads, which leads to more forceful/intense collisions between the beads causing faster 

breakage of the drug particles. On the other hand, an increase in bead loading resulted in a 

decrease in the stress intensity despite the concomitant increase in Pw. This can be 

explained mainly by an increase in the total drag force (interphase momentum exchange) 
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between the drug suspension and the bead phase at higher c. This energy dissipation 

differences are governed by the different g0 given by different RDFs. 

 
Figure  3.5  Effects of the bead type–loading c and the stirrer speed  on (a) the granular 

temperature θ, (b) the average bead oscillation velocity ub, and (c) the maximum contact 

pressure σb
max calculated using various RDFs in the microhydrodynamic model. 
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 The MHD parameters θ, ub, and σb
max estimated with the Lun RDF were 

significantly smaller than those with the Carnahan–Starling, and slightly smaller than those 

estimated with the Ma–Ahmadi RDF. The Carnahan–Starling RDF overpredicted the stress 

intensity due to its inability to account for the bead packing effects at high bead loadings 

and its associated impact on the energy dissipation mechanisms (viscous losses and losses 

due to inelastic collisions). Again, the difference got more pronounced at the higher bead 

loadings. For example, the Carnahan–Starling RDF provided correspondingly around 55%, 

25%, and 9% higher values of θ, ub, and σb
max than the Lun RDF at  = 3000 rpm–c = 0.35. 

These differences increased to about 300%, 100% and 30%, respectively, at   = 3500 

rpm–c = 0.6, close to the bead packing limit concentration. 

 
Figure  3.6  Effects of the bead type–loading c and the stirrer speed  on (a) the radius of 

contact circle αb and (b) the pseudo energy dissipation rate Π∙σy calculated using various 

RDFs in the microhydrodynamic model.  
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3.2.4 Other microhydrodynamic (MHD) parameters 

Radius of the contact circle αb and the pseudo energy dissipation rate Π∙σy are examined 

separately from other MHD parameters because they could not be grouped with them (see 

Figure 3.6). Unlike any other MHD parameter, at the same  and c, αb was always higher 

for the CPS beads than for the YSZ beads (Figure 3.6a), which made CPS beads more 

favorable in terms of capturing small particles. This observation can be explained by the 

fact that the CPS beads deform more than the YSZ beads due to their lower Young’s 

modulus. With an increase in the stirrer speed, αb increased, whereas with an increase in 

the bead loading, it decreased. These observations are in line with the positive impact of 

the stirrer speed and the negative impact of the bead loading on the stress intensity, i.e., at 

the higher stress intensity, αb was higher. For all the runs, the Lun RDF provided the 

smallest αb, albeit close to the Ma–Ahmadi RDF, but the Carnahan–Starling RDF 

significantly overpredicted αb. The αb difference between the Carnahan–Starling RDF and 

the Lun RDF was more pronounced at the high bead loadings: 9% at  = 3000 rpm–c = 

0.35, and 30% at  = 3500 rpm–c = 0.6.  The pseudo energy dissipation rate Π∙σy was 

higher at the higher   and c (Figure 3.6b). The YSZ beads had four-orders of magnitude 

higher Π∙σy than the CPS beads due to their much higher Young’s modulus and density. 

Moreover, the higher Pw and the smaller number of drug particles captured by the YSZ 

beads with lower αb led to increased work done on deforming the drug particles captured. 

Regarding the effect of the RDFs on Π∙σy, unlike other MHD parameters: there were no 

clear trends.  This could be due to the fact Π∙σy is associated with both the stress intensity 

and the stress frequency, which are oppositely affected by the choice of the three RDFs.  
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3.2.5 Overall impact of the MHD parameter changes on the breakage kinetics 

An increase in the stirrer speed led to higher Pw and higher MHD parameter values, which 

signifies more intense collisions of the beads as well as capturing and compressing the drug 

particles more frequently and more forcefully. These MHD parameters qualitatively 

explain why and how the higher k values occurred at the higher stirrer speed. Two 

counteracting effects of the bead loading on the MHD parameters were observed: 

dramatically higher frequency of stressing events signified by the higher ν and a (note the 

log-scale in Figure 3.3) and the smaller stress intensity signified by the lower values of θ, 

ub, and σb
max (note the linear scale in Figure 3.5). It appears that the first effect was stronger 

than the second, which led to the higher k at the higher bead loading overall. Due to their 

higher density and Young’s modulus, the YSZ beads led to higher stress intensity (higher 

θ, ub, and σb
max) than the CPS beads. The CPS beads deformed more (higher αb) than the 

YSZ beads, which counteracted the impact of the higher θ on a. Consequently, both types 

of beads are characterized by 𝑎 of the same order-of-magnitude, which appears to be the 

dominant MHD parameter for the breakage kinetics. This can explain why CPS beads 

remain competitive to the YSZ beads while the YSZ beads overall cause faster breakage 

(refer to Figure 3.1b). All these findings on the milling of fenofibrate suspensions agree 

well with those on the milling of griseofulvin suspensions, another poorly soluble drug [57, 

90]. This appears to confirm the generality of our findings for the milling of relatively soft 

materials like drugs. It is supposed that the drug particles are broken due to fatigue caused 

by repeated bead–bead compressions even at the relatively low stress intensities. This 

hypothesis is supported by the fact that despite exerting relatively low stress intensity, the 

CPS beads provide smaller, albeit the same order-of-magnitude k compared with the YSZ 



 

104 

 

beads (refer to Figure 3.1b), and a is the governing MHD parameter (see Section 3.2.3) in 

comparison with the stress intensity related parameters, i.e., σb
max and Πσy.      

3.2.6 Semi-theoretical MLRMs vs. empirical MRLMs and prediction of the 

breakage rate constant 

To simplify the development of MLRMs for prediction of the breakage kinetics, mean 

values of dlim and n, i.e., 0.152 µm and 2.04 for the CPS beads and 0.137 µm and 2.18 for 

the YSZ beads, were assumed in the MLRMs and only k was predicted. A statistically 

significant correlation between the breakage rate constant k and the MHD parameters 

(σb
max, αb, a, and Πσy), which were calculated using the three RDFs, was sought for by using 

the subset selection algorithm with LOOCV. Besides these semi-theoretical MLRMs, a 

purely empirical MLRM was also sought for by considering the process–bead parameters 

as predictors similarly. Table 3.2 presents a statistical summary of the fitting of the 

breakage rate constant k in Runs 1–10 by the best semi-theoretical MLRMs with the 

Carnahan–Starling, Lun, and Ma–Ahmadi RDFs (Equations (3.7–3.9), respectively), the 

best empirical MLRM (Equation (3.10)), and other empirical MLRMs (Equations (3.11) 

and (3.12).  

𝑘 = 2.80 × 10−2𝑎 − 4.39 × 10−3𝛼𝑏𝑎 − 1.67 × 10−20(𝛱𝜎𝑦)𝑎 (3.7) 

𝑘 = 1.61 × 10−2𝑎 + 1.58 × 10−18𝛱𝜎𝑦 − 2.65 × 10−3𝛼𝑏𝑎  − 1.45

× 10−20(𝛱𝜎𝑦)𝑎 

(3.8) 

𝑘 = 1.79 × 10−2𝑎 + 1.12 × 10−18𝛱𝜎𝑦 − 3.05 × 10−3𝛼𝑏𝑎 − 1.42

× 10−20(𝛱𝜎𝑦)𝑎 

(3.9) 

𝑘 = −44.1𝑐 + 5.82𝑌𝑏 + 56.3𝑐2 − 2.89 × 10−2𝑌b
2 (3.10) 
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𝑘 = 4.70 × 10−4 − 12.2𝑐 + 22.1𝑐2 (3.11) 

𝑘 = −8.01 × 10−4 + 2.24 × 10−3𝑐 + 4.14 × 10−7𝑌𝑏 (3.12) 

 For the sake of completeness, the statistical analysis summary for the subset 

selection algorithm with LOOCV is provided for each RDF and the empirical MLRM in 

Tables B.6–B.9 of the Appendix B. Moreover, the prediction of the temporal evolution of 

d50 by each MLRM for Runs 1–10 is provided in Figures B.1 and B.2 of the Appendix B. 

Table  3.2  The Statistical Summary of the Fitting of the Breakage Rate Constant k for 

Runs 1–10 by the Semi-Theoretical MLRMS and the Empirical MLRMS. 

Type of MLRM R2 Adj. R2 SSR p value 

MHD-based with the Starling RDF, 

Equation (3.7)  
0.995 0.993 0.446 1.8110-8 

MHD-based with the Lun RDF, Equation 

(3.8) 
1.000 0.999 0.034 1.3510-10 

MHD-based with the Ahmadi RDF, 

Equation (3.9)      
0.999 0.998 0.146 2.9410-9 

Empirical, Equation (3.10) 0.982 0.970 0.715 2.3510-5 

Empirical, Equation (3.11) 0.946 0.923 1.780 8.2810-5 

Empirical, Equation (3.12) 0.905 0.864 3.402 5.9710-4 

 

 The best MHD-based, semi-theoretical MLRMs have the same common predictors: 

a, αba and aΠσy. While the MLRM with the Carnahan–Starling RDF, Equation (3.7), has 

three MHD parameters as predictors, the MLRMs with the Lun RDF and the Ma–Ahmadi 

RDFs, Equations (3.8) and (3.9), respectively, have four predictors with the common 

addition of Πσy. The average number of drug particle compressions a turned out to be the 

dominant MHD parameter in predicting k, which supports the probable fatigue mechanism 

discussed in Section 3.2.5. In fact, even a as a single MHD parameter led to R2 of 0.969, 

0.941, and 0.945 for the statistically significant MLRMs with the Carnahan–Starling RDF, 
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the Lun RDF, and the Ma–Ahmadi RDF, respectively (BM1 in Tables B.6–B.8). The 

deviation between the experimental k, obtained from the nth-order model fitting, and the k 

predicted by the MLRMs is displayed in Figure 3.7, along with the statistical summary 

presented in Table 3.2. Overall, the MHD-based semi-theoretical MLRMs outperformed 

the purely empirical MLRMs as indicated by higher R2, higher adjusted R2, and lower SSR 

(Table 3.2) as well as more data points falling onto the equivalency line (Figure 3.7). The 

goodness-of-fit was rank-ordered as follows: MLRM with the Lun RDF > MLRM with the 

Ma–Ahmadi RDF > MLRM with the Carnahan–Starling RDF > the empirical MLRMs.  

 
Figure  3.7  Experimental values of the breakage rate constant k in Runs 1–10 and its 

prediction by the best semi-theoretical MLRMs of the microhydrodynamic parameters, 

which were calculated using (a) the Carnahan–Starling RDF, (b) the Lun RDF, and (c) the 

Ma–Ahmadi RDF, as well as (d) the empirical MLRMs of the process variables–bead 

properties. 
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 A discerning way to assess the predictive capability of the MLRMs is to see how 

they predict the experimental d50–t data (Runs 11–14), which were not used in the 

calibration of the MRLM coefficients (Runs 1–10). The k value predicted by each MLRM 

was used to predict the temporal evolution of the median size. In this prediction, the dlim 

and n values were taken as the average of the nth-order kinetic model fits of all CPS runs 

(see Table B.5) for the prediction of Runs 11 and 13 and all YSZ runs for the prediction 

of Runs 12 and 14. Figures 3.8 and 3.9 present the experimental d50 evolution and its direct 

fitting by the nth-order kinetic model vs. the d50 evolution predicted by the MHD-based 

semi-theoretical MLRMs and the purely empirical MLRMs, respectively. The data 

presented in Table 3.3 and Figures 3.8 and 3.9 suggest that the empirical MLRMs have 

poor predictive capability. The best empirical MLRM given by Equation (3.10) and the 

empirical MLRM given by Equation (3.12) predicted a negative breakage rate constant for 

Runs 12 and 14 and Runs 13 and 14, respectively. Moreover, even though Equation (3.10) 

has better overall fitting capability for Runs 1–10 than Equation (3.12), Equation (3.12) 

predicted the median size evolution better than Equation (3.10) whenever these two 

empirical MLRMs did not yield a negative k in Runs 11–14, which is unexpected. Hence, 

the empirical MLRMs are unreliable in prediction. On the other hand, all semi-theoretical 

MLRMs predicted positive k and reasonable prediction of the experimental data (Figure 

3.8). The small deviations could be partly ascribed to the use average values of dlim and n 

for the CPS and YSZ beads. It is likely that the prediction could be improved by developing 

an additional MLRM especially for n, which has non-normal distribution; however, such 

an approach is not warranted as the predictions by Equations (3.8) and (3.9) are reasonably 

good and n variations are small. The semi-theoretical MLRMs that considered bead 
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packing limit concentration (the Lun RDF and the Ma–Ahmadi RDF) have better 

prediction capability compared to the Carnahan–Starling RDF that does not account for the 

bead packing limit concentration, as reflected by the higher R2 and lower SSR values in 

Table 3.3. Figure 3.8 illustrates the same findings visually. 

 
Figure  3.8  Experimentally measured temporal evolution of the median particle size in 

Runs 11–14 and (a) its direct fitting by the nth-order breakage kinetics model and the 

evolution predicted by the semi-theoretical MLRMs of the microhydrodynamic 

parameters, which were calculated using (b) the Carnahan–Starling RDF, (c) the Lun RDF, 

and (d) the Ma–Ahmadi RDF.  
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Table  3.3  Statistical Summary of the nth-order Kinetics Model Fits for Runs 11–14 and 

Predictions of the Breakage Rate Constant k by Various Semi-Theoretical MLRMS and 

Two Empirical MLRMS 

Run 
Type of fit and 

prediction 

 dlim       

(µm) 

  n 

 (-) 

k 

(µmn-1min-1) 

R2           

(-) 

SSR           

(-) 

11 

nth-order model fit 0.142 2.00 0.264 0.996 0.023 

Prediction with the Starling RDF 0.152 2.04 0.344 0.986 0.083 

Prediction with the Lun RDF 0.152 2.04 0.267 0.995 0.030 

Prediction with the Ahmadi RDF 0.152 2.04 0.284 0.994 0.034 

Empirical (Equation (3.10)) 

prediction 0.152 2.04 0.092 0.822 1.06 

Empirical (Equation (3.12)) 

prediction 0.152 2.04 0.531 0.937 0.378 

12 

nth-order model fit 0.136 2.12 0.527 0.996 0.023 

Prediction with the Starling RDF 0.137 2.18 0.678 0.988 0.064 

Prediction with the Lun RDF 0.137 2.18 0.650 0.990 0.053 

Prediction with the Ahmadi RDF 0.137 2.18 0.657 0.990 0.056 

Empirical (Equation (3.10)) 

prediction 0.137 2.18 –0.573a N/A N/A 

Empirical (Equation (3.12)) 

prediction 0.137 2.18 0.818 0.975 0.132 

13 

nth-order model fit 0.093 2.09 0.023 0.999 0.015 

Prediction with the Starling RDF 0.152 2.04 0.049 0.955 0.508 

Prediction with the Lun RDF 0.152 2.04 0.037 0.985 0.157 

Prediction with the Ahmadi RDF 0.152 2.04 0.037 0.985 0.163 

Empirical (Equation (3.10)) 

prediction 0.152 2.04 0.523 0.294 8.43 

Empirical (Equation (3.12)) 

prediction 0.152 2.04 –0.339a N/A N/A 

14 

nth-order model fit 0.125 2.11 0.093 0.993 0.050 

Prediction with the Starling RDF 0.137 2.18 0.110 0.987 0.106 

Prediction with the Lun RDF 0.137 2.18 0.105 0.989 0.092 

Prediction with the Ahmadi RDF 0.137 2.18 0.101 0.990 0.084 

Empirical (Equation (3.10)) 

prediction 0.137 2.18 –0.142a N/A N/A 

Empirical (Equation (3.12)) 

prediction 0.137 2.18 –0.129a N/A N/A 
aPhysically implausible. The d50–t prediction was not generated; therefore, SSR and R2 were not determined 

 

 The best empirical MLRM, Equation (3.10), is a function of the bead loading, the 

Young’s modulus of the beads, and their squares, but disregards the stirrer speed. This is 

physically implausible because of the significant impact of the stirrer speed on Pw, the 

MHD parameters, and the breakage kinetics. Interestingly, most of the empirical BMs 
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identified by the subset selection did not even have any bead properties, e.g., Equation 

(3.11).  This also seems physically implausible because the YSZ beads led to faster 

breakage than the CPS beads (Figure 3.1b). There was no need to illustrate the evolution 

predicted by Equation (3.11) for Runs 11–14 in Figure 3.9 because Equation (3.11) cannot 

even differentiate the impact of YSZ vs. CPS beads. Unlike in Figure 3.8, two of the four 

curves (CPS) would unfortunately not be different from the other two (YSZ), if included 

in Figure 3.9. When the empirical MLRM with all process parameters and at least one 

bead property is considered, e.g., Equation (3.12), the predictive power of the empirical 

MLRM was still poor. These findings point out that the empirical MLRMs must have more 

than 4 terms, possibly including higher-order terms (e.g., cubic terms) as well as more 

interaction terms (binary as well as ternary interaction terms). However, such an MLRM 

with more than 4 terms would require a much denser set of experimental data (more process 

runs) for acceptably low error and statistical significance of the associated coefficients. 

One should note that many of the best models with only 4 terms (see Tables B.6–B.9) have 

statistically insignificant parameters. Without performing additional experiments, addition 

of higher-order terms will most likely result in higher errors of the parameter estimates and 

statistical insignificance of the parameters. All these issues have been circumvented owing 

to the use of microhydrodynamic parameters as predictors in the semi-theoretical MLRMs. 
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Figure  3.9  Experimentally measured temporal evolution of the median particle size in 

Runs 11–14 and the evolution predicted by the empirical MLRMs expressed by  

(a) Equation (3.10) and (b) Equation (3.12). Note that the empirical MLRMs failed to 

predict a physically plausible k, i.e., a positive k, for some of the runs; hence, the median 

size evolution for these runs was not calculated. 

3.3 Conclusions 

This chapter aimed to investigate the impact of bead packing limit concentration in wet 

stirred media milling by analyzing the microhydrodynamic parameters calculated with 

various RDFs and their prediction of the breakage kinetic constant k. The Lun RDF and 

the Ma–Ahmadi RDF, accounting for the bead packing limit concentration, predicted much 

higher frequency of less forceful bead–bead collisions than the Starling RDF that neglects 

the packing limit concentration. A subset selection algorithm allowed us to determine the 

best MLRMs of k with the microhydrodynamic parameters (semi-theoretical MLRM) or 

the process–bead parameters (empirical MLRM) as predictors. The Lun RDF-based 

MLRM showed the best predictions of the breakage kinetics among the semi-theoretical 

MLRMs, which outperformed all empirical MLRMs. The use of microhydrodynamic 
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parameters in the regression models has obviated the need for introducing non-linearity in 

the prediction of k because the MHD parameters themselves depend on the process 

parameters and the bead properties in a coupled, nonlinear manner. This is why the 

microhydrodynamics-based semi-theoretical MLRMs with only 4 terms had much better 

predictive capability than the purely empirical MLRMs. The current chapter has 

demonstrated the necessity of using an RDF correlation accounting for the bead packing 

concentration in the calculations of the MHD parameters. The Lun RDF appears to be the 

best choice due to its simplicity and the highest predictive power. 
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CHAPTER 4 

ANALYSIS OF HEAT GENERATION DURING THE PRODUCTION OF DRUG 

NANOSUSPENSIONS IN A WET STIRRED MEDIA MILL 

 

Although heat is generated during the wet stirred media milling of drug suspensions, 

leading to notable temperature rise, a comprehensive analysis of heat generation during 

WSMM does not exist. Hence, in this chapter, we investigated the impact of stirrer speed, 

bead loading, and bead size at three levels on the evolution of suspension temperature at 

the mill outlet during the milling of fenofibrate. The particle sizes and viscosities of the 

milled suspensions and power were measured. Our results suggest that stirrer speed had 

the most significant impact on the temperature increase, followed by bead loading and bead 

size. Both the time when the temperature reached 22 oC and the temperature at 5 min of 

milling were strongly correlated with the power. Assessing the impacts of the process 

parameters on the temperature rise, cycle time, power, and median particle size holistically, 

an optimal milling process was identified: 3000 rpm with 50% loading of 200 or 400 µm 

beads. A power number correlation was established to calculate power at any milling 

condition which determines the heat generation rate. Overall, this chapter indicated the 

importance of developing a good understanding of heat generation during nanomilling for 

development of a robust milling process especially for thermally labile drugs. 

 

4.1 Materials and Methods 

4.1.1 Materials 

Fenofibrate (Jai Radhe Sales, Ahmedabad, India) was used as a model poorly water-soluble 

drug with 0.8 mg/L aqueous solubility at room temperature [169]. Its aqueous suspension 
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with hydroxypropyl cellulose (HPC, L grade, Nisso America Inc, New York, NY, USA) 

and sodium dodecyl sulfate (SDS, ACS grade, GFS chemicals, Columbus, OH, USA) was 

used as pre-suspension in all experiments. The milling media were Zirmil Y grade yttrium-

stabilized zirconia (YSZ) beads with three different nominal sizes: 200, 400, and 800 µm 

(Saint Gobain ZirPro, Mountainside, NJ, USA). All suspensions were prepared in 

deionized water. 

4.1.2 Wet stirred media milling and temperature measurements 

The pre-suspension formulation was selected as 10% FNB, 8% HPC-L, and 0.05% SDS 

(all w/w with respect to 200 g of DI water), which is similar to the stable formulation used 

in our prior studies [149, 150], with a slight increase in the polymer concentration to 

determine the power more accurately. The pre-suspensions were prepared in a shear mixer 

(Cat#. 14-503, Fisher Scientific, Pittsburgh, PA, USA) at 300 rpm for 2 h and then stored 

in a refrigerator at 8 oC overnight. After storage, they were taken out of the refrigerator and 

mixed for 30 min prior to milling in a Microcer (Netzsch Fine Particle Size Technology, 

LLC, Exton, PA, USA) wet stirred media mill. This 30 min mixing aimed to homogenize 

the pre-suspension as the coarse particles could have settled during the storage. The 

temperature of the precursor suspensions increased by the time they were transferred to the 

holding tank of the mill. The setup was cooled with the help of a chiller (Model M1-.25A-

11HFX, Advantage Engineering, Greenwood, IN, USA). The coolant (20% v/v glycol–

water mixture) follows a loop through the system: it first flows around the cooling jacket 

of the mill chamber, and then flows around the cooling jacket of the holding tank, finally 

returning to the chiller (refer to Figure 4.1). When the chiller liquid temperature reached 

~6 oC and the suspension temperature at the mill outlet, shortly milloutlet temperature, was 
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at or below 18 oC, the milling started.  

 
Figure  4.1  Schematic of the recirculation operation mode of wet stirred media milling. 

 The design of the experiments is as follows: three different stirrer speeds, bead 

loadings and bead sizes were explored to examine their impact on the timewise evolution 

of suspension temperature at the mill outlet (Table 4.1). The bead loading refers to the 

ratio of the true volume of the beads over the mill chamber volume Vm = 80 ml (v/v). A 

peristaltic pump (Cole-Palmer, Master Flex, Vermont Hills, IL, USA) recirculated the 

suspension between the holding tank and the milling chamber at a volumetric flow rate Q 

of 126 ml/min. A stainless-steel screen, which has openings half size of the nominal bead 

size (100, 200, and 400 µm for Db = 200, 400, and 800 µm, respectively), was used to keep 

the beads in the milling chamber. 
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Table  4.1  Process Parameters for the Milling of FNB Suspensions 

Run No. Stirrer Speed, ω (rpm) Bead Loading, c (-) Bead size, Db (µm) 

1 2000 0.4 200 

2 2000 0.4 400 

3 2000 0.4 800 

4 2000 0.5 200 

5 2000 0.5 400 

6 2000 0.5 800 

7 2000 0.6 200 

8 2000 0.6 400 

9 2000 0.6 800 

10 3000 0.4 200 

11 3000 0.4 400 

12 3000 0.4 800 

13 3000 0.5 200 

14 3000 0.5 400 

15 3000 0.5 800 

16 3000 0.6 200 

17 3000 0.6 400 

18 3000 0.6 800 

19 4000 0.4 200 

20 4000 0.4 400 

21 4000 0.4 800 

22 4000 0.5 200 

23 4000 0.5 400 

24 4000 0.5 800 

25 4000 0.6 200 

26 4000 0.6 400 

27 4000 0.6 800 

 

 We aimed to keep the mill outlet temperature below 45 oC, which is the gelation 

temperature of HPC-L [155]. Moreover, this temperature was close to the processing 

temperature (40 oC) used by [159]. Finally, the use of lower temperature than 45 oC would 

make the analysis of temperature rise in runs with 4000 rpm more difficult and less 

accurate. The mill was shut down with continued cooling whenever the outlet temperature 

reached 45 oC, which led to multiple intermittent milling/cooling cycles for some highly 
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energetic milling runs. As the mill outlet temperature was recorded every 30 s (see below) 

by reading it from the mill screen, we would be able to capture fewer data points if a lower 

temperature than 45 oC were used for the mill shutdown for further cooling. This would 

make the shape of the temperature evolution profile less apparent. The fenofibrate particles 

in all runs were subjected to a total of 60 min milling; however, the actual cycle time tc was 

longer especially when multiple intermittent milling–cooling cycles were implemented. 

The suspension temperature at the mill outlet and the chiller liquid temperature were 

recorded every minute (ω=2000 or 3000 rpm) or every 30 s (ω=4000 rpm), to be able to 

capture the rapid increase when operated at the highest stirrer speed. For the sake of 

completeness, the evolution of the chiller temperature is presented in Figures C.1–C.3 

(Appendix C). The average power supplied by the mill stirrer P was determined by dividing 

the cumulative energy consumption read from the control panel of the mill by the milling 

time. The milled suspensions were characterized as described in the following section. To 

demonstrate the reproducibility of the milling and the temperature evolution, Run 15 was 

replicated. 

4.1.3 Characterization techniques 

Particle size distributions (PSDs) of the drug suspensions at the end of milling were 

determined by laser diffraction using LS 13-320 Beckman Coulter instrument (Brea, CA, 

USA). Before each measurement, a ~1.0 mL suspension sample was diluted with 5.0 ml of 

the respective stabilizer solution using a vortex mixer (Fisher Scientific Digital Vortex 

Mixer, Model No: 945415, Pittsburgh, PA) at 1500 rpm for one min. During 

measurements, polarized intensity differential scattering (PIDS) was maintained between 

40% and 50% while the obscuration was maintained below 8%. PSD was provided by the 
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software, which used the Mie scattering theory. The refractive index of FNB and water was 

taken as 1.55 and 1.33, respectively. Measurements were repeated four times (n = 4) and 

the average and standard deviation (SD) of these measurements were reported.  

 

 The apparent shear viscosities L of the unmilled suspension and the milled 

suspensions were measured using R/S plus rheometer (Brookfield Engineering, 

Middleboro, MS, USA) with a water jacket assembly Lauda Eco (Lauda-Brinkmann LP, 

Delran, NJ, USA). A CC40 coaxial cylinder with a jacketed setup was used to impart a 

controlled shear rate on the samples from 0 to 1000 1/s in 60 s. Unless otherwise indicated, 

the jacket temperature was kept constant at 25 ± 0.5 °C. To illustrate the temperature 

dependence of the suspension viscosity, the viscosity of the milled suspension (Run 15) 

was measured at 18, 25, 37, and 45 °C. The raw data were analyzed using the Rheo3000 

software and the apparent shear viscosity at the maximum shear rate was taken. The density 

of the milled suspension was measured by weighing 35 ml of the milled suspension and 

dividing the mass of the suspension by its volume. Both the viscosity and density 

measurements were performed thrice (n = 3). Before the measurements, the milled 

suspension samples were stored to allow for sufficient deaeration. For the apparent shear 

viscosity, the average and standard deviation (SD) of these measurements were reported. 

For the density, only the average value was reported for brevity as the standard deviation 

was negligibly small.  

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/rheometer
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4.2 Results and Discussion 

4.2.1 Properties of the drug nanosuspension and general observations about the 

WSMM process   

Prior to milling, the FNB particles had d10 of 8.09 µm, d50 of 20.3 µm, and d90 of 38.9 µm. 

At the end of 60 min effective milling time, all drug suspensions were milled down to a d10 

of 0.103–0.212 µm, d50 of 0.149–0.400 µm, and d90 of 0.223–1.63 µm (Table 4.2).  

Table  4.2  Particle Size Statistics for the Milled Suspensions 

Run no. d10 (µm) d50 (µm) d90 (µm) 

1 0.178 ± 0.003 0.314 ± 0.004 0.566 ± 0.014 

2 0.190 ± 0.012 0.326 ± 0.011 0.592 ± 0.025 

3 0.212 ± 0.008 0.400 ± 0.015 1.63 ± 0.016 

4 0.158 ± 0.049 0.263 ± 0.009 0.454 ± 0.015 

5 0.140 ± 0.006 0.296 ± 0.053 0.490 ± 0.015 

6 0.185 ± 0.002 0.335 ± 0.007 0.661 ± 0.016 

7 0.120 ± 0.001 0.204 ± 0.001 0.344 ± 0.002 

8 0.123 ± 0.001 0.238 ± 0.002 0.382 ± 0.001 

9 0.100 ± 0.011 0.241 ± 0.003 0.468 ± 0.011 

10 0.122 ± 0.001 0.199 ± 0.006 0.325 ± 0.025 

11 0.113 ± 0.002 0.221 ± 0.023 0.421 ± 0.016 

12 0.167 ± 0.014 0.317 ± 0.019 0.642 ± 0.041 

13 0.120 ± 0.005 0.174 ± 0.001 0.249 ± 0.001 

14 0.121 ± 0.001 0.175 ± 0.001 0.246 ± 0.000 

15 0.071 ± 0.002 0.223 ± 0.006 0.446 ± 0.015 

16 0.111 ± 0.001 0.162 ± 0.001 0.235 ± 0.000 

17 0.112 ± 0.001 0.162 ± 0.000 0.234 ± 0.001 

18 0.102 ± 0.008 0.165 ± 0.005 0.258 ± 0.001 

19 0.116 ± 0.004 0.172 ± 0.002 0.250 ± 0.001  

20 0.111 ± 0.003 0.173 ± 0.002 0.256 ± 0.000 

21 0.088 ± 0.005 0.244 ± 0.002 0.490 ± 0.003 

22 0.109 ± 0.001 0.159 ± 0.001 0.232 ± 0.001 

23 0.111 ± 0.001 0.162 ± 0.000 0.235 ± 0.000 

24 0.105 ± 0.001 0.196 ± 0.001 0.384 ± 0.007 

25 0.103 ± 0.002 0.149 ± 0.001 0.223 ± 0.001 

26 0.106 ± 0.004 0.154 ± 0.003 0.229 ± 0.001 

27 0.106 ± 0.007 0.179 ± 0.008 0.329 ± 0.054 
aThe standard deviation refers to multiple measurements by laser diffraction (n = 4). It is not a 

descriptor of a Gaussian particle size distribution. 

 

 Final particle sizes were overall in agreement with the previous findings in the 

literature [33] in terms of the impact of the stirrer speed, bead loading, and the bead sizes: 
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smaller drug particles were obtained at the higher stirrer speeds and when a higher bead 

loading of smaller beads were used. Even though the power consumption was quite 

different for different milling runs (refer to Table 4.3), as expected due to changes in the 

process parameters, the final median particle sizes d50 appeared to stay in a relatively 

narrow range (Table 4.2). For example, if the aim of WSMM is to obtain nanoparticles 

that have a d50 smaller than 0.400 µm, all process parameters used in this chapter could 

achieve that objective. However, the selection of the process conditions may be limited due 

to cycle time, power/energy consumption, and associated temperature rise concerns.  

Regarding a possible crystallinity change due to milling, readers are referred to our 

extensive characterization studies on a similar formulation of the milled fenofibrate 

suspension [149, 150], which concluded that fenofibrate remained crystalline, based on 

XRPD and DSC results.  

 
Figure  4.2  Timewise evolution of mill outlet temperature during (a) the lowest energetic 

run (Run 1) with ω = 2000 rpm, c = 0.4, and Db = 200 µm, (b) a medium/high energetic 

run (Run 23) with ω = 4000 rpm, c = 0.5, and Db = 400 µm, and (c) the highest energetic 

run (Run 27) with ω = 4000 rpm, c = 0.6, and Db = 800 µm. 
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 Figure 4.2 illustrates how the suspension temperature at the mill outlet evolved 

over time for Runs 1, 23, and 27. Note that this temperature is also equal to the temperature 

of the suspension in the mill chamber as the well-mixedness in the milling chamber has 

been established as a valid approximation to the residence time distribution in small mills 

(small length-to-diameter ratio) [87, 93]. Figure 4.2a depicts the temperature evolution for 

the milling run at the lowest energetic level (Run 1), which was operated with the lowest 

stirrer speed, the lowest bead loading, and the smallest beads. The temperature 

monotonically increased by 6 °C at the end of 60 min of milling, and the whole operation 

was completed in one milling–cooling cycle as the temperature did not reach 45°C. The 

run with the medium/high energetic level (Run 23) caused a temperature increase to 45 °C 

in around 9 min with a total of 8 intermitting milling-cooling cycles to attain 60 min total 

milling of the drug. The most energetic level with the highest stirrer speed, bead loading, 

and the biggest beads (Run 27) caused a jump from 18 °C to 45 °C in around 2 min with a 

total of 33 cycles. The drug was subjected to milling for 60 min in Runs 1, 23, and 27; 

however, the cycle time tc for the milling–cooling cycles was 64, 159, and 388 min, 

respectively (Table 4.3). Although producing relatively fine particles as compared with 

those of Run 1 (Table 4.2), Run 27 is extremely undesirable due to high power 

consumption, significant/fast heat generation–temperature rise, and long cycle time (Table 

4.3). These results suggest that at a higher power, the heat generation due to conversion of 

mechanical shaft work into heat became faster and higher in magnitude, which led to higher 

temperature and/or more frequent intermittent milling cycles. Hence, the data presented in 

Figure 4.2 and Tables 4.2 and 4.3 for these runs support the hypothesis that the heat 
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generation rate–temperature rise is largely determined by the power (rate of shaft work 

applied by the mill stirrer). 

Table  4.3  Power Supplied by the Mill Stirrer, Number of Milling Cycles, Cycle Time, 

Viscosity–Density–Reynolds Number for the Milled Suspension and the Milled 

Suspension–Bead Mixture, and Power Number. 
Run 

no. 

P  

(kW) 
Nmc 

(–) 

tc 

(min)a 

µL    

(mPa·s)b
 

ρL  
(kg/m3)b 

ReL  

(–)b 

µm 
(mPa.s)c 

ρm  
(kg/m3)c 

Rem  

(–)c 

Np  

(–)c
 

1 0.03 1 64 168 ± 1.39 1030 999 1560 3020 316 0.160 

2 0.03 1 64 175 ± 1.00 1030 962 1620 3020 304 0.160 

3 0.03 1 64 175 ± 0.62 1030 959 1620 3020 303 0.160 

4 0.04 1 65 158 ± 0.02 1030 1060 7360 3520 78 0.183 

5 0.04 1 66 163 ± 0.21 1030 1030 7610 3520 75 0.183 

6 0.05 1 64 166 ± 0.68 1030 1010 7740 3520 74 0.229 

7 0.05 1 68 150 ± 1.25 1030 1120 47300 4010 14 0.200 

8 0.06 1 65 151 ± 0.48 1030 1120 47600 4010 14 0.240 

9 0.06 1 65 149 ± 0.25 1030 1130 47000 4010 14 0.240 

10 0.06 1 76 150 ± 1.12 1030 1690 1390 3020 534 0.095 

11 0.08 1 75 163 ± 3.66 1030 1540 1510 3020 489 0.126 

12 0.08 1 70 165 ± 1.50 1030 1530 1530 3020 484 0.126 

13 0.09 1 75 108 ± 1.95 1030 2340 5020 3520 171 0.122 

14 0.10 1 76 118 ± 0.25 1030 2140 5500 3520 157 0.135 

15 0.10 1 71 120 ± 0.99 1030 2100 5600 3520 154 0.135 

16 0.09 1 72 51.3 ± 0.60 1030 4920 16200 4010 61 0.107 

17 0.13 1 77 71.5 ± 0.12 1030 3530 22500 4010 44 0.154 

18 0.14 1 73 83.1 ± 0.15 1030 3040 26200 4010 37 0.166 

19 0.14 2 92 106 ± 0.91 1030 3180 980 3020 1010 0.093 

20 0.15 5 136 105 ± 0.51 1030 3210 972 3020 1010 0.100 

21 0.15 5 125 138 ± 2.08 1030 2440 1280 3020 772 0.100 

22 0.16 4 118 66.3 ± 0.51 1030 5070 3090 3520 371 0.091 

23 0.18 8 159 67.5 ± 0.04 1030 4990 3140 3520 365 0.103 

24 0.18 9 135 91.8 ± 0.67 1030 3670 4280 3520 269 0.103 

25 0.23 10 174 25.7 ± 0.08 1030 13100 8100 4010 162 0.115 

26 0.24 13 175 32.8 ± 0.06 1030 10300 10300 4010 127 0.120 

27 0.31 33 388 30.7 ± 0.06 1030 10900 9700 4010 135 0.155 
aCycle time: 60 min milling and the additional cooling time including the intermittent milling 

cycles, excluding loading–discharge times.bProperties of the milled suspensions.cProperties of the 

milled suspension–bead mixture (calculated) and parameters calculated based on the mixture 

properties.  

 

 Reproducibility of the WSMM process in terms of final milled particle sizes and 

evolution of the particle size distribution has been well-established in the literature (see 

e.g., Bilgili and Afolabi, 2012; Li et al., 2017). However, the reproducibility of the 

temperature evolution has not been established. To demonstrate the reproducibility of the 

temperature evolution, Run 15 was repeated. Figure 4.3 demonstrates excellent 
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reproducibility of the temperature evolution in the replicate Run 15. Also, the temperature 

dependence of this suspension’s viscosity was determined (see Section 4.1).   

 
Figure  4.3  Timewise evolution of mill outlet temperature during Run 15 with ω = 3000 

rpm, c = 0.5, and Db = 800 µm, and its replicate experiment. 

4.2.2 Impact of stirrer speed on the timewise evolution of suspension temperature 

at the outlet 

Figure 4.4 depicts the impact of stirrer speed for different bead loadings (plotted as 

subfigures) at a constant bead size of 400 µm (medium value of the experimental design). 

Readers can find an alternative presentation, looking at the impact of stirrer speed for 

different bead sizes (plotted as subfigures) at a constant bead loading of 0.5 (center 

condition of the experimental design) in Figure C.4. Figure 4.4 illustrates a typical 

temporal evolution curve during the milling: the temperature rose monotonically due to 

heat generation in the mill albeit at a decreasing rate, and it attained a plateau value clearly 

at 2000 and 3000 rpm. At 4000 rpm, the increase was steeper; while a plateau temperature 

was approached, it was not attained. The monotonic increase could be explained by the 

higher rate of heat generation than that of cooling provided by the chiller liquid and that of 

the bulk convective cooling provided by the recirculating suspension. Note that the 

difference between the suspension temperature at the mill outlet and the chiller liquid 

temperature is the driving force for the overall heat transfer from the milling chamber. 

Obviously, when the heat generation rate was equal to the heat removal rate, an apparent 
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steady state was reached. An increase in the stirrer speed led to a higher rate of temperature 

rise (higher slope) and a higher maximum temperature Tmax until 45 oC was reached 

(Figure 4.4). At 4000 rpm, the temperature always reached a Tmax of 45 °C; hence, multiple 

intermitting milling–cooling cycles were performed to keep temperature at or below 45 °C 

until the drug was milled for a total of 60 min.  

 
Figure  4.4  Impact of stirrer speed on the timewise evolution of mill outlet temperature 

for Db = 400 µm beads at various loadings: (a) c = 0.4 (Runs 2, 11, 20), (b) c = 0.5 (Runs 

5, 14, 23), and (c) c = 0.6 (Runs 8, 17, 26). 

 The decreasing rate of temperature evolution observed in Figure 4.4 could be 

ascribed to a decrease in the instantaneous power consumption during the milling, which 

originates from the reduction of viscosity at the higher temperatures and particle size 

reduction during the milling [88, 197]. To this end, we measured the unmilled suspension 

viscosity at 25 oC as well as the viscosity of Run 15 milled suspension as a function of 

temperature. The unmilled suspension had an apparent shear viscosity of 198 ± 3.20 mPa·s 
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at 25 oC and all milled suspensions had lower apparent shear viscosity at 25 oC (see Table 

4.3), which proves that the milled suspension with smaller particles had lower viscosity 

than the unmilled suspension with coarser particles. Analysis of Tables 4.2 and 4.3 

suggests that the suspensions milled at higher speeds tend to have smaller d50 and d90 and 

lower apparent shear viscosity. It is conjectured that higher amount of polymer adsorption 

onto finer particles generated at the higher stirrer speeds could also play a role in the 

observed reduction in viscosity. A lower polymer concentration in the bulk suspension 

upon higher amount of polymer adsorption onto finer particles could result in a lower 

suspension viscosity than the case when the polymer remains dissolved and smaller amount 

is adsorbed onto the drug particles with coarser sizes. It is known that a higher polymer 

concentration in drug nanosuspensions results in higher apparent shear viscosity (see e.g., 

Bilgili and Afolabi, 2012). Hence, thorough understanding of the impact of particle size on 

the suspension viscosity warrants a detailed investigation of polymer adsorption onto the 

drug particles. Figure 4.5 illustrates that the apparent shear viscosity of the Run 15 milled 

suspension decreased with increasing temperature. Based on these findings, overall, we 

confirm that both the size reduction and increase in the suspension temperature during the 

milling could explain the viscosity reduction and in turn the decrease in instantaneous 

power and associated heat generation during the milling.  
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Figure  4.5  The effect of temperature on the apparent shear viscosity of a milled FNB 

suspension (Run 15).  

 The comparison of the temperature profiles in Figures 4.4a, b, and c for the same 

stirrer speed suggests that at a higher bead loading, the heat generation–temperature rise 

was faster and the impact of stirrer speed became more remarkable. While the difference 

between the maximum temperatures caused by 2000 rpm and 3000 rpm in Figure 4.4a was 

12 °C, this difference increased to 16 °C in Figure 4.4c. The same conclusion cannot be 

drawn by comparing 2000 rpm and 4000 rpm or 3000 rpm and 4000 rpm because the 

maximum temperature was limited to 45 oC in 4000 rpm runs. Therefore, we could 

compare the number of milling cycles Nmc as a more relevant measure (Table 4.3). Nmc 

difference between 4000 rpm run and 2000 rpm run in Figure 4.4a is 4, and it is 12 in 

Figure 4.4c, signifying the enhanced influence of higher stirrer speed on heat generation 

at the higher bead loadings.  

 For an easier and more direct quantitative comparison of the temperature profiles 

of various runs, we defined some characteristic measures; in fact, two of them were already 

mentioned in the previous paragraph: maximum temperature Tmax and number of milling 

cycles Nmc. Note that Tmax fails to differentiate 4000 rpm runs (as Tmax = 45 °C); Nmc fails 
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to differentiate 2000 and 3000 rpm runs (as Nmc = 1). Therefore, some additional 

characteristic temperatures and times were defined:  Tt(5), Tt(10), and Tt(30) is the suspension 

temperature at 5, 10, and 30 min milling, respectively. Similarly, tT(22), tT(32), tT(42), and tT(45) 

is the time when the suspension temperature reached 22, 32, 42, and 45 °C, respectively. 

All these characteristic measures are reported in Table C.1 of Appendix C. To perform 

interpolation when needed, MATLAB’s pchip function, which is based on piecewise cubic 

Hermite polynomial interpolation, was used. In line with theoretical expectations for a 

monotone increasing function T = T(t), the following rank-ordering was observed: tT(22) < 

tT(32) < tT(42) <  tT(45) and Tt(5) < Tt(10) < Tt(30) (Table C.1). Among these measures, tT(22) and 

Tt(5) were the most useful for subsequent data analysis and fitting as all runs yielded a tT(22) 

value and only two runs (Runs 26 and 27) were excluded for Tt(5); Runs 26 and 27 reached 

45 °C before 5 min.          

 Figure 4.6 illustrates that tT(22) was lower at the higher stirrer speed due to the faster 

increase in the temperature. However, since 22 °C was very close to the initial temperature, 

and the temperature rise was very fast, typically within the first few minutes of the 

experiments especially at higher stirrer speeds and bead loadings, the discerning power of 

tT(22) was low at c = 0.6 (Figure 4.6c). Tt(5) and Tmax had similar trends: they both increased 

with increasing stirrer speed. While Tt(5) had almost a linear relationship with the stirrer 

speed, Tmax had a lower slope from 3000 rpm to 4000 rpm. This could be attributed to the 

fact that for the 4000 rpm runs, Tmax was constrained to 45 °C. If those experiments were 

let run longer, Tmax would be higher and Tt(5) and Tmax would probably be parallel to each 

other. For the characteristic times and temperatures of the runs corresponding to Figure 

C.4, readers are referred to Figure C.5, which shows the impact of stirrer speed for 
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different bead sizes (plotted as subfigures) at a constant bead loading of 0.5 in an alternative 

presentation. 

 
Figure  4.6  Impact of stirrer speed on the characteristic time and temperatures for Db = 

400 µm beads at various loadings: (a) c = 0.4 (Runs 2, 11, 20), (b) c = 0.5 (Runs 5, 14, 23), 

and (c) c = 0.6 (Runs 8, 17, 26).  

4.2.3 Impact of bead loading on the timewise evolution of suspension temperature 

at the outlet 

Figure 4.7 depicts the impact of bead loading for different bead sizes (plotted as 

subfigures) at a constant stirrer speed of 3000 rpm (at the center of the experimental 

design). Readers can find an alternative presentation, looking at the impact of bead loading 

for different stirrer speeds (plotted as subfigures) at a constant bead size of 400 µm 



 

129 

 

(medium value of the experimental design) in Figure C.6 (Appendix C). An increase in the 

bead loading while keeping all other parameters constant led to a faster heat dissipation, as 

signified by the higher slope of the temperature evolution curve and a higher temperature 

at the same milling time (Figure 4.7).  

 
Figure  4.7  Impact of bead loading on the timewise evolution of mill outlet temperature 

for ω = 3000 rpm and various bead sizes: (a) Db = 200 µm (Runs 10, 13, 16), (b) Db = 400 

µm (Runs 11, 14, 17), and (c) Db = 800 µm (Runs 12, 15, 18). 

 Although the differentiation was not as drastic as it was for the stirrer speed because 

an increase in bead loading did not cause an increase in Nmc, the temperature profiles were 

clearly separated without any crossover. While the temperature profiles of 0.4 and 0.5 bead 

loading runs were somewhat close to each other, the temperature profile of the 0.6 bead 

loading runs were distinctly higher than those of the 0.5 bead loading runs. Both Tt(5) and 

Tmax increased upon an increase in bead loading, while tT(32) decreased (Figure 4.8). Here, 

we consistently used tT(32) instead of tT(22) because tT(22) could not discern the differences 
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well when the temperature reading frequency was not sufficient to capture the initial fast 

increase. The temperature rise was higher when bigger beads were used as can be seen 

from the upward shifting characteristic temperature curves through Figure 4.8a to 4.8c. 

Figures C.6 and C.7 illustrate that the impact of higher bead loading became more 

pronounced at the higher stirrer speed. This is most notable from the greater separation of 

curves at the higher stirrer speeds and the emergence of intermittent milling cycles at 4000 

rpm (Figure C.6c) vs. 2000 and 3000 rpm (Figure C.6a and b). This trend was also seen 

in Section 4.4.2.  

 
Figure  4.8  Impact of bead loading on the characteristic time and temperatures for ω = 

3000 rpm and various bead sizes: (a) Db = 200 µm (Runs 10, 13, 16), (b) Db = 400 µm 

(Runs 11, 14, 17), and (c) Db = 800 µm (Runs 12, 15, 18). 



 

131 

 

4.2.4 Impact of bead size on the timewise evolution of suspension temperature at 

the outlet 

Figure 4.9 depicts the impact of bead size for different stirrer speeds (plotted as subfigures) 

at a constant bead loading of 0.5 (at the center of the experimental design). Readers can 

find an alternative presentation, looking at the impact of bead size for different bead 

loadings (plotted as subfigures) at a constant stirrer speed of 3000 rpm (at the center of the 

experimental design) in Figure C.8 (Appendix C). The impact of the bead size on heat 

dissipation appears to be the weakest among all process parameters (Figure 4.9). At 2000 

rpm (Figure 4.9a), the temperature profiles were almost identical, and the slopes of the 

characteristic temperatures were very low (Figure 4.10). As expected, tT(22) was the most 

discriminating parameter due to the slow increase in the temperature. At the higher stirrer 

speeds, the temperature rise originating from the increasing bead size became more 

apparent. At 4000 rpm, Nmc was higher for the larger beads. In Figure 4.10c, tT(45) was used 

instead of Tmax because all runs reached 45 °C because it discerned the heat generation 

differences better. In Figure C.8, we could not observe a better differentiation between 

subfigures unlike Figure 4.9 suggesting the impact of bead size was weaker when it was 

analyzed at the higher bead loading (Figure C.8) vs. higher stirrer speed (Figure 4.9). 

Supporting this, the slopes of the profiles between 200 and 400 µm were shallower in 

Figure C.9 than those in Figure 4.9.  

 Overall, the results presented in Sections 4.2.2–4.2.4 are also in agreement with the 

hypothesis of the strong correlation between heat dissipation and power, as power values 

were also the same or very close to each other when different bead sizes were used as 

opposed to when different stirrer speeds and/or different bead loadings were used (refer to 
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Table 4.3). Overall, the influence of the process parameters on the heat dissipation can be 

rank-ordered qualitatively as stirrer speed > bead loading > bead size.  

 
Figure  4.9  Impact of bead size on the timewise evolution of mill outlet temperature for 

c = 0.5 and various stirrer speeds: (a) ω = 2000 rpm (Runs 4–6), (b) ω = 3000 rpm (Runs 

13–15), and (c) ω = 4000 rpm (Runs 22–24). 
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Figure  4.10  Impact of bead size on the characteristic time and temperatures for c = 0.5 

and various stirrer speeds: (a) ω = 2000 rpm (Runs 4–6), (b) ω = 3000 rpm (Runs 13–15), 

and (c) ω = 4000 rpm (Runs 22–24). 

4.2.5 Variation of initial mill outlet temperature and evolution of chiller liquid 

temperature  

Due to variations in the temperature of the pre-suspensions during their preparation (refer 

to Section 4.1.2) and different times it took for the chiller liquid temperature to attain 6 oC 

, the initial mill outlet temperature exhibited slight variations, on the order of 1–3 oC, 

among most runs, which can be seen from Figures 4.4, 4.7, and 4.9. For example, the 

initial mill outlet temperature for Runs 2, 11, and 20 (Figure 4.4a) was 17, 15, and 16 oC, 

respectively. Despite its highest initial mill outlet temperature among these runs, Run 2 

exhibited the lowest mill outlet temperature during the rest of the milling due to its lowest 
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power consumption. This finding is not surprising: as the heat generation rate is determined 

by power consumption and both the heat generation rate and the heat removal rate govern 

the evolution of the mill outlet temperature during the milling, the slight differences in the 

initial mill outlet temperatures did not significantly affect the whole temperature profiles 

comparatively.    

 Figures C.1–C.3 of the Appendix C depict that the temperature of the chiller liquid 

(coolant), which was pumped into the cooling jacket of the milling chamber, increased as 

milling progressed. Due to the limited cooling capacity of our chiller and the significant 

heat generation during the milling, the coolant temperature increased along with the 

increase in suspension temperature at the mill outlet. As the coolant (20% v/v glycol–water 

mixture) follows a loop through the system (see Figure 4.1), the coolant temperature is 

intimately linked to the heat generation in the milling chamber and suspension temperature. 

Unfortunately, such a coupling between the coolant temperature and the heat generation in 

the mill makes it difficult to analyze the potential impact of the evolving coolant 

temperature on the suspension temperature. The presence of intermittent milling cycles 

also complicates this analysis. For example, although Run 26 (4000 rpm) had much higher 

power consumption and sharper increase of mill outlet temperature than Run 8 (2000 rpm) 

at c = 0.6 with Db = 400 µm beads (Table 4.3), Run 26 coolant temperature remained flat 

at 5–6 oC whereas Run 8 coolant temperature rose to 13 oC (Fig S1(c)). This was ascribed 

to the 13 intermittent milling cycles with prolonged, additional cooling in Run 26 vs. Run 

8 with one cycle of milling–cooling.  Overall, a detailed analysis of how this evolution of 

the coolant temperature affects the process can only be done within the context of an 

enthalpy balance model for the first milling cycle considering the mill, the holding tank, 
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and the chiller, which is beyond the scope of this manuscript. 

4.2.6 Correlation between the heat generation dynamics and the power 

consumption  

To investigate the hypothesis of a possible correlation between the heat generation 

dynamics and the power consumption, tT(22) and Tt(5) data were fitted by P. Even though 

these measures were somewhat arbitrary and other measures can be used, tT(22) and Tt(5) 

were available for the majority of the runs (refer to Table C.1). Two parameter power-law 

models were fitted to tT(22) and Tt(5) vs. P using SigmaPlot 12.5. All parameters and models 

were found to be statistically significant with p-value < 0.05. The equations are given 

below:  

𝑡𝑇(22) = 0.0018𝑃−2.76 (4.1) 

𝑇𝑡(5) = 82.1𝑃0.422 (4.2) 

 As expected, an increase in power leads to faster heat generation as signified by the 

higher temperature at 5 min and faster attainment of 22 oC (shorter time), which can be 

seen visually in Figure 4.11. Above 0.1 kW, while tT(22) does not change much, Tt(5) 

continues to increase with P remarkably, which makes the relevant milling runs less 

desirable from a thermal perspective. Equation (4.2) provided a better fit compared to 

Equation (4.1), which may be due to lack of sensitivity of tT(22) data for some fast heat 

generation cases, as discussed previously.  
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Figure  4.11  Scatter plots and power-law scaling for dependence of characteristic time and 

temperature on the power required by the mill stirrer. 

 To establish a quantitative correlation between the temperature rise and the process 

parameters, the normalized temperature rise was expressed as a power-law function of the 

normalized process parameters as follows:  

𝑇𝑡(5) − 𝑇ini

𝑇ini
= 2.16 (

𝜔

𝜔max
)

2.26

(
𝑐

𝑐lim
)

0.706

(
𝐷b

𝐷b,max
)

0.119

 
 

(4.3) 

where ωmax is the maximum stirrer speed of our mill (design limit: 4200 rpm), clim is the 

packing limit (0.63), and Db,max is the maximum bead size used (800 µm). It is reasonable 

to infer from this power-law correlation with R2 = 0.96 that the process parameters that 

affect the temperature rise most can be rank-ordered as stirrer speed > bead loading > bead 

size, which is in line with the temperature profiles in Figures 4.4, 4.7, and 4.9.  

4.2.7 Thermal desirability score (TDS) and selection of optimal milling conditions 

To guide pharmaceutical scientists and engineers decide if a given set of milling conditions 

is desirable from a heat generation–temperature rise perspective, a thermal desirability 
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score TDS was defined below: 

𝑇𝐷𝑆 = 100(𝑁mc 𝑇max 𝑇ini⁄ )−1/3 (4.4) 

 If the process were isothermal (Tmax/Tini = 1 and Nmc = 1), TDS would be 100, which 

is practically impossible to achieve due to high heat generation rate during WSMM as 

compared with the heat removal rate from the jacketed walls of the mill and the holding 

tank. As the process deviates from isothermality because Tmax/Tini exceeds one and 

intermittent milling is required at the highest Tmax/Tini, the TDS decreases. In view of the 

specific form used for the TDS here, roughly speaking, a TDS within the range 90–100 

would correspond to near-isothermality (excellent) with low temperature rise. A milling 

process with 80–89, 70–79, and <69 TDS may be regarded as good, acceptable, and poor, 

respectively. We label a TDS score <69 poor because it is likely associated with Nmc > 1, 

which also implies a higher cycle time due to multiple intermittent milling–cooling cycles 

(see Table 4.3). It is critical to emphasize that TDS is not the sole criterion for process 

selection (see the discussion below), and its use is dependent on the specific drug 

formulation and the sensitivity of the drug to temperature. For example, the exponent (1/3) 

of Equation (4.4) may be increased if the early development data for a drug compound 

indicates high thermal sensitivity (e.g., thermally labile drugs). Here, the choice of 1/3rd 

power is for illustrative purposes. Another caveat to mention is that the values of Nmc and 

any characteristic time–temperature including Tmax and Tini obviously depend on the 

specific milling equipment, chiller capacity, and scale. For example, if one uses a chiller 

with much higher cooling capacity than the one used in this chapter, the characteristic times 

tT(22), tT(32), tT(42), and tT(45) will be higher, and the characteristic temperatures Tt(5), Tt(10), 

Tt(30), and Tmax will be lower. With a decrease in Nmc, some runs at 4000 rpm could become 
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feasible.  However, the general trends for the impact of process parameters on the 

temperature profiles will most likely be similar. 

 
Figure   4.12  Variation of thermal desirability score TDS for the milling process and the 

median particle size d50 of the 60 min milled suspensions (separately shown for different 

bead sizes used) as a function of the power supplied by the stirrer and their fits by Equations 

(4.3–4.6). 

 Figure 4.12 illustrates how TDS and final drug median particle size d50, which is 

another major process selection criteria, vary as a function of the average power supplied 

P. In general, an increase in P led to a lower d50 (favorable) and lower TDS (unfavorable). 

The power consumption is a relatively rough, bulk measurement that cannot directly 

explain the microhydrodynamics of bead–bead collisions and it cannot be used to predict 

the breakage rate [33, 57, 150]. On the other hand, for a given bead size, a higher power 

consumption is associated with higher values of the microhydrodynamic parameters 

including the granular temperature of the beads at the higher stirrer speed and higher 

number of drug particle compressions at the higher bead loading [165]. Hence, it is not 
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surprising to find lower d50 at the higher power consumption. In general, the smaller beads 

(200 and 400 µm) yielded finer drug particles than 800 µm beads. A plateau median size 

was approached above 0.1 kW for 200 and 400 µm beads whereas TDS deteriorated. An 

empirical 3-parameter exponential decay function was used to describe the dependence of 

final median particle size d50 for each bead size on P.  

𝑑50(200 μm) = 0.160 + 0.711 exp(−50.5𝑃) (4.5) 

𝑑50(400 μm) = 0.154 + 0.353 exp(−23.4𝑃) (4.6) 

𝑑50(800 μm) = 0.185 + 0.385 exp(−20.5𝑃) (4.7) 

 R2 of the fits for Equations (4.5–4.7) are 0.97, 0.98 and 0.80, respectively. Except 

for Equation (4.7), all models provided a good fit with statistically significant parameters.  

 Toward the selection of an optimal process, let us take a conservative approach and 

limit the maximum milling temperature to 37 oC as no surface modification and 

amorphization occurred when temperature was raised from 25 oC to 37 oC for a fenofibrate 

nanosuspension stabilized by HPC–SDS [154].  For an intended product specification of 

d10 < 150 nm, d50 < 200 nm, and d90 < 250 nm, a holistic consideration of TDS, power 

(energy) consumption, and total cycle time (Table 4.3) suggests that Run 13 or 14 had the 

optimal set of milling conditions: 3000 rpm with 50% loading of 200 or 400 µm beads. 

While having good TDS, Runs 1–12 had too low power that resulted in a relatively a coarse 

and wide particle size distribution. Despite producing finer particles than those of Runs 1–

12, Runs 19–27 had unacceptably high power/energy consumption (≥ 0.14 kW) that 

entailed multiple intermittent milling cycles with relatively long cycle times, which is 

signified by TDS <57. Although Runs 13, 14, 16, and 17 had acceptable TDS and meet the 
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particle size specifications, only Runs 13 or 14 allow for a maximum allowed temperature 

of  37 oC during the milling. 

4.2.8 Power consumption correlation as a function of process–suspension 

properties 

As power consumption governs the heat generation during the WSMM, it is important to 

estimate from a correlation. It is common to correlate the dimensionless power number Np, 

a.k.a Newton number,  

𝑁p =
𝑃

𝐷5𝑁3𝜌
 

(4.8) 

to the process parameters. Here, N is the stirrer speed and D is the diameter of the mill 

stirrer. The use of Np–Reynolds number Re correlation is a common practice in WSMM 

literature [198]. These correlations can be developed based on the suspension properties 

for the Re as in [137] or the suspension–bead mixture properties [34, 193]. We have 

adopted the latter approach and calculated the mixture viscosities µm and densities m as 

follows [194]: 

𝜇m = 𝜇L[1 + 2.5𝑐 + 10𝑐2 + 0.0019 exp(20𝑐)] (4.9) 

𝜌m = ρb𝑐 + ρL(1 − 𝑐) (4.10) 

Rem =
𝜌m𝑁𝐷2

𝜇m
 

(4.11) 

 Rem changes mostly with the varying stirrer speed in each run as can be seen in 

Table 4.3. In order to capture the impact of all process parameters, Np is not only correlated 

with Rem but also with the dimensionless numbers of the bead size and bead loading: Db/D 

and c/clim, where clim (0.63) is the packing limit of the monodispersed spherical beads [147]. 

A power-law correlation was found by fitting the parameters using Minitab 18 as follows: 
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𝑁p = 0.89Rem
−0.33(𝐷b/𝐷)0.105(𝑐/𝑐lim)−1.44 (4.12) 

 As can be seen from Figure 4.13, the fit was fairly good with some deviation, which 

may be due to the size–temperature dependent variation of the suspension viscosity during 

the milling (refer to Figure 4.5) and ensuing change in instantaneous power as well as the 

limited accuracy of the mixture correlations, expressed by Equations (4.9) and (4.10).  

 
Figure  4.13  Power number Np values that were calculated using experimental properties 

and its prediction by the power law correlation. 

4.3 Conclusions 

This chapter has explored the impact of stirrer speed, bead loading, and bead size on the 

temperature evolution during the WSMM of a drug suspension for the first time in the 

milling literature. We have demonstrated that the mechanical power converted into heat 

led to temperature rise. Stirrer speed was found to be the most influential process parameter 

on the temperature increase, followed by bead loading and bead size. Correlations between 

characteristic time–temperature of the temperature profile with power consumption were 

established. The newly defined thermal desirability score, based on deviations from an 
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ideal isothermal operation, enabled a rough guidance to help optimal process selection. 

While an increase in power consumption was associated with finer drug particles, it also 

led to a significant deterioration of the thermal desirability of the milling process. Once 

maximum temperature allowed and the desirable particles sizes were specified, a milling 

process with 3000 rpm with 50% loading of 200 or 400 µm beads was identified to be 

optimal for the production of fenofibrate nanosuspensions upon consideration of thermal 

desirability score, cycle time, and power/energy consumption holistically. Overall, we have 

established the importance of examining the heat generation during the WSMM of drug 

suspensions as an integral part of robust process development–optimization.  
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CHAPTER 5 

AN ENTHALPY-BALANCE MODEL FOR TIMEWISE EVOLUTION OF 

TEMPERATURE DURING WET STIRRED MEDIA MILLING OF DRUG 

SUSPENSIONS 

 

This chapter explores the temperature evolution during the production of drug 

nanosuspensions in a wet stirred media mill using a coupled experimental–enthalpy 

balance approach. For this aim, milling was performed at three levels of stirrer speed, bead 

loading, and bead sizes. Temperatures were recorded over time, then simulated using an 

enthalpy balance model by fitting the fraction of power converted to heat ξ. Moreover, 

initial and final power, ξ, and temperature profiles at 5 different test runs were predicted 

by power-law (PL) and machine learning (ML) approaches. Heat generation was higher at 

the higher stirrer speed and bead loading/size, which was explained by the higher power 

consumption. Despite its simplicity with a single fitting parameter ξ, the enthalpy balance 

model fitted the temperature evolution well with root mean squared error (RMSE) of 0.40–

2.34 °C. PL and ML approaches provided decent predictions of the temperature profiles in 

the test runs, with RMSE of 0.93–4.17 and 1.00–2.17 °C, respectively. We established the 

impact of milling parameters on heat generation–power and demonstrated the simulation–

prediction capability of an enthalpy balance model when coupled to the PL–ML 

approaches. 

   

5.1 Materials and Methods 

5.1.1 Materials 

BP grade fenofibrate (FNB, BCS Class II) was purchased from Jai Radhe Sales, 

Ahmedabad, India. L grade hydroxypropyl cellulose (HPC, non-ionic cellulosic polymer) 
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was donated by Nisso America Inc, New York, NY, USA. ACS grade sodium dodecyl 

sulfate (SDS, anionic surfactant) was purchased from GFS chemicals, Columbus, OH, 

USA. Zirmil Y grade Yttrium stabilized zirconia beads (YSZ) with nominal sizes of 100, 

200, 400, and 800 µm, were purchased from Saint Gobain ZirPro, Mountainside, NJ, USA.  

5.1.2 Wet stirred media milling 

About 236 g of pre-suspensions that have 10% FNB, 8% HPC-L, and 0.05% SDS (w/w 

with respect to 200 g deionized (DI) water) were prepared under constant shear mixing at 

300 rpm (Cat#. 14-503, Fisher Scientific, Pittsburgh, PA, USA) for 2 h and were kept under 

8 oC overnight. This stable suspension formulation and process conditions were selected 

based on (i) our prior studies with fenofibrate [149, 150] and (ii) the rationale that a high 

polymer concentration could help to ensure sufficiently high power consumption that could 

be measured accurately. The pre-suspensions were milled by Microcer wet stirred media 

mill (Netzsch Fine Particle Size Technology, LLC, Exton, PA, USA).  

 
Figure  5.1  Schematic of the wet stirred media mill and the cooling system. 

 Figure 5.1 presents a schematic of the recirculation operation mode of the mill. The 

mill has a chamber volume Vm of 80 ml, lined with zirconia, and a zirconia stirrer/shaft. 
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Suspensions were recirculated between the holding tank and the milling chamber at a 

volumetric flow rate of 126 mL/min, using a peristaltic pump (Cole-Palmer, Master Flex, 

Vermont Hills, IL, USA). Stainless-steel screens with nominal opening sizes of 50, 100, 

200 and 400 µm were used for 100, 200, 400 and 800 µm nominal-sized beads, 

respectively, to hold the beads inside the milling chamber. The milling chamber and the 

holding tank were cooled by a Model M1-.25A-11HFX chiller (Advantage Engineering, 

Greenwood, IN, USA).  

Table  5.1  Process Parameters for the Milling of FNB Suspensions. 

Run No. Stirrer Speed, ω (rpm) Bead Loading, c (-) Bead size, Db (µm) 

1a 2000 0.4 200 

2a 2000 0.4 400 

3a 2000 0.4 800 

4a 2000 0.5 200 

5a 2000 0.5 400 

6a 2000 0.5 800 

7a 2000 0.6 200 

8a 2000 0.6 400 

9a 2000 0.6 800 

10a 3000 0.4 200 

11a 3000 0.4 400 

12a 3000 0.4 800 

13a 3000 0.5 200 

14a 3000 0.5 400 

15a 3000 0.5 800 

16a 3000 0.6 200 

17a 3000 0.6 400 

18a 3000 0.6 800 

19a 4000 0.4 200 

20a 4000 0.4 400 

21a 4000 0.4 800 

22a 4000 0.5 200 

23a 4000 0.5 400 

24a 4000 0.5 800 

25a 4000 0.6 200 

26a 4000 0.6 400 

27a 4000 0.6 800 

28b 2500 0.45 400 

29b 2500 0.55 400 

30b 3500 0.45 400 

31b 3500 0.55 400 

32b 4200 0.35 100 
 aRuns that were used in the training set, bRuns that were used in the test set. 
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 The milling conditions are presented in Table 5.1.  The stirrer speed, the bead 

loading, and the bead size were varied at 3 levels in a full-factorial design of experiments. 

These 27 runs were used to train our models, and additional 5 runs were performed to test 

the predictive capability of the developed models. Runs 28–31 correspond to the middle 

conditions of the training runs and run 32 is in an extrapolated region where the highest 

stirrer speed (design limit of the mill) and the lowest practical loading of the smallest beads 

(100 µm) were used.  

 The milling of the pre-suspension started when the chiller temperature reached ~6 

oC and the mill outlet temperature was below 18 oC. Both temperatures were recorded at 

every minute for 2000 rpm and 3000 rpm runs and at every 30 s for 4000 rpm runs. If the 

mill outlet temperature was below 45 oC for the whole duration of 60 min milling, the mill 

was cooled down to 18 oC (outlet temperature) at the end of 60 min while temperature 

recording continued. Else, the mill was shut down whenever the temperature reached 45 

oC, and the cooling was continued to attain a mill outlet temperature of 18 oC. In this second 

scenario, this intermittent milling–cooling cycle was repeated various times until the 

suspension was milled for a total of 60 min, and the mill outlet was cooled down to 18 oC 

in the end. It is reported that 8% HPC has a gelation temperature of 45 °C despite its high 

aq. solubility at room temperature, which originates from the aggregation of the polymer 

chains at or above the gelation temperature [155]. This reversible phenomenon might 

negatively affect the suspension stability during the milling, which was why the milling 

was stopped at 45 oC. Although we have only considered the first cycle in our heat 

generation–transfer analysis, a sample from 60 min milled suspension was taken for 

particle size analysis to confirm that drug nanoparticles were produced under all milling 
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conditions. The instantaneous power at the start (0 min) and end of milling (60 min) was 

recorded (Table D.1 of the Appendix D). The average power during the whole milling was 

determined by dividing the cumulative energy consumption, read from the control panel of 

the mill, by the milling time.  

5.1.3 Characterization techniques 

The apparent shear viscosities L of the suspensions were measured using R/S 

plus rheometer (Brookfield Engineering, Middleboro, MS, USA) with a water jacket 

assembly Lauda Eco (Lauda-Brinkmann LP, Delran, NJ, USA). A CC40 coaxial cylinder 

with a jacketed setup was used to impart a controlled shear rate on the samples from 0 to 

1000 1/s in 60 s. The jacket temperature was kept constant at 25 ± 0.5 °C. The raw data 

were analyzed using the Rheo3000 software and the apparent shear viscosity at the 

maximum shear rate (1000 1/s) was used in the calculations as this shear rate emulates the 

high shear rate in the mill [63]. The density of the suspensionsL was measured by 

weighing 35 ml of the suspension and dividing the mass of the suspension by its volume. 

All measurements were repeated thrice and averages were taken. The measured L and L 

values can be found in Table D.1 of the Appendix D.  

 Particle sizes of the milled suspensions were measured by laser diffraction using an 

LS 13-320 Beckman Coulter instrument (Brea, CA, USA). Polarized intensity differential 

scattering (PIDS) was kept between 40–50%, and the obscuration was maintained below 

8% in all measurements. Mie scattering theory was used by software to compute PSD by 

taking the refractive indices of FNB and water (1.55 and 1.33, respectively). Prior to each 

measurement, about 1.0 mL of suspension sample was dispersed into 5.0 mL of the 

stabilizer solution of the used formulation, using a vortex mixer (Fisher Scientific Digital 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/rheometer
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Vortex Mixer, Model No: 945415, Pittsburgh, PA, USA) at 1500 rpm for 1 min. 

Measurements were repeated four times, and the average of these measurements was 

calculated. The particle size statistics of the 60 min milled suspensions can be found in 

Table D.2 of Appendix D. Zeta potential of the milled suspension of Run 23 was measured 

using a zeta potential analyzer thrice (Delsa Nano C, Beckman Coulter, CA, USA). 

 As-received FNB particles were observed using an Axio Scope.A1 polarized light 

microscope (PLM) (Carl Zeiss Microscopy GmbH, Göttingen, Germany). Image of milled 

FNB particles in Runs 23 was taken by a JEOL JSM 7900F field emission scanning 

electron microscope (SEM) (JEOL USA, Inc., Peabody, MA, USA) operated at 2 kV. 

About 0.1 mL of the suspension sample was diluted with 10 ml deionized water and 

centrifuged (Compact II centrifuge, Clay Adams® Brand, Sparks, MD, USA) at 3200 rpm 

for 10 min to separate the drug particles from the aqueous phase with excess polymer. This 

dilution–centrifugation procedure was repeated two more times and a droplet from the 

aliquot of the sample was put on top of a carbon specimen holder and it was placed in a 

desiccator for overnight drying under vacuum. The dried sample was then sputter coated 

with gold using BAL-TEC MED020 (BAL-TEC, Balzers, Switzerland) to reduce possible 

charging during imaging. 

5.1.4 Formulation of the enthalpy balance model 

Assuming well-mixedness in the holding tank and the milling chamber, with continuous 

recirculation of the suspension between them, the following macroscopic transient 

enthalpy balance can be written for the suspension, beads, and stirrer, respectively, in the 

milling chamber: 
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𝑀s,m𝐶p,s 𝑑𝑇s,m 𝑑𝑡⁄

= 𝜌𝐹𝐶p,s𝑇s,ht − 𝜌𝐹𝐶p,s𝑇s,m + 𝑃𝜉 + 𝑄ch,m

− ℎB,m (
6𝑀b

𝜌b𝐷b
) (𝑇s,m − 𝑇b) − ℎB,m𝐴st,m(𝑇s,m − 𝑇st,m) ,

at 𝑡 = 0,  𝑇s,m(0) = 𝑇s,m,0 

(5.1) 

𝑀b𝐶p,b 𝑑𝑇b 𝑑𝑡⁄ = ℎB,m (
6𝑀b

𝜌b𝐷b
) (𝑇s,m − 𝑇b), at 𝑡 = 0,  𝑇b(0) = 𝑇b,0 

(5.2) 

𝑀st,m𝐶p,st,m 𝑑𝑇st,m 𝑑𝑡⁄ = ℎB,m𝐴st,m(𝑇s,m − 𝑇st,m), at 𝑡 = 0,  𝑇st,m(0)

= 𝑇st,m,0 

(5.3) 

where subscript m is reserved for the mill chamber (suspension s, beads b, and stirrer st) 

and subscript ht is reserved for the holding tank (suspension s and stirrer st). Also, M is the 

mass, Cp is the specific heat capacity, T is temperature, t is time, P is power (shaft work 

done by the stirrer in the milling chamber per unit time), ξ is the fraction of the power P 

converted into heat, F is the volumetric flow rate of the recirculating suspension (126 

ml/min), ρ is the density of the suspension, which was measured as 1.03 g/ml, and Qch is 

the rate of heat removal via the jacket of the mill chamber through which the chiller liquid 

passes. Equations (5.2) and (5.3) describe the heat transfer between the drug suspension 

and the beads and the stirrer, respectively. Within the temperature range of interest, it is 

reasonable to assume the constancy of the heat capacities, and all properties measured at 

25 °C were taken from the literature. The well-mixedness in the milling chamber has been 

established as a valid approximation to the residence time distribution in small mills (small 

length-to-diameter ratio) [87, 93].  

 A similar enthalpy balance equation can be formulated for the holding tank content 

as follows:  
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𝑀s,ht𝐶p,s,ht 𝑑𝑇s,ht 𝑑𝑡⁄                                                                                                  

= 𝜌𝐹𝐶p,s𝑇s,m − 𝜌𝐹𝐶p,s𝑇s,ht + 𝑄ch,ht                                          

− hb,htAst,ht(Ts,ht − Tst,ht), at 𝑡 = 0, 𝑇s,ht(0) = 𝑇s,ht,0       

(5.4) 

𝑀st,ht𝐶p,st,ht 𝑑𝑇st,ht 𝑑𝑡⁄ = ℎB,ht𝐴st,ht(𝑇s,ht − 𝑇st,ht), at  𝑡 = 0,

𝑇st,ht(0) = 𝑇st,ht,0 

(5.5) 

 One should note that there are no beads in the holding tank, but only the drug 

suspension and the mixing element. Hence, the power input due to stirring in the holding 

tank was neglected. Cp,s was calculated to be 3.74 J/g°C, by the weighted average of the 

specific heat capacities of water, FNB, and HPC in the suspension, which were taken as 

4.18 J/g°C [199], 1.22 J/g°C [200], and 1.34 J/g°C [201], respectively. Cp,b and Cp,st,m are 

the specific heat capacities of zirconia beads and the zirconia stirrer element, which were 

taken as 0.46 J/g°C [202]. Cp,st,ht is the specific heat capacity of the stainless steel stirrer 

element in the holding tank, which was taken as 0.47 J/g°C [199]. Mst,m and Ast,m were 400 

g and 0.0268 m2, which are constant for all runs; however, as several bead loadings were 

used in the experiments, the mass of the beads in the mill chamber differed. Therefore, the 

volume and mass available for the suspension to occupy in the mill chamber varied. All 

the portion of the suspension that was not in the mill chamber was assumed to be in the 

holding tank, neglecting the suspension in the recirculation connection tubes (~4% of the 

total suspension). The height of the stirrer element that is in contact with suspension in the 

holding tank varied as well. Therefore, Mb, Ms,m, Mst,ht, Ms,ht,  Ast,ht, hB,m, and hB,ht changed 

upon changes in the bead loading. Note that Qch expression was derived in Appendix D; 

hB,m and hB,ht are the internal heat transfer coefficients, which were also calculated as 

described in Appendix D. 
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 The chiller liquid (20% glycol–water volumetric mixture) follows a loop through 

the system: it first flows around the cooling jacket of the mill chamber, and then flows 

around the cooling jacket of the holding tank, finally returning to the chiller. The heat 

removal rates from the milling chamber and the holding tank, i.e., Qch,m, and Qch,ht, 

respectively, are different. The chiller liquid temperature entering the milling chamber Tch,in 

was measured and recorded for each sampling time. The chiller liquid temperature exiting 

the mill chamber Tch,out as well as Qch,m, and Qch,ht were determined by performing a separate 

enthalpy balance for the chiller liquid (refer to Appendix D):  

𝑄ch,m = 𝑚ch 𝐶p,ch(𝑇ch,in − 𝑇s,m)[1 − exp(− 𝑈𝐴m 𝑚ch𝐶p,ch⁄ )] (5.6) 

𝑇ch,out = 𝑇s,m + (𝑇ch,in − 𝑇s,m) exp(− 𝑈𝐴m 𝑚ch𝐶p,ch⁄ ) (5.7) 

𝑄ch,ht = 𝑚ch 𝐶p,ch(𝑇ch,out − 𝑇s,ht)[1 − exp(− 𝑈𝐴ht 𝑚ch𝐶p,ch⁄ )] (5.8) 

 One cautionary note for the readers is that Tch,out, Qch,m, and Qch,ht are not constants 

as they depend on Tch,in, Ts,m, and Ts,ht,  which vary with time. Here, mch is the mass flow 

rate of the chiller liquid, which was experimentally measured as 830 g/min. Cp,ch was found 

to be 3.97 J/g°C for a weighted average of Cp for the glycol–water mixture. UA is the 

product of the overall heat transfer coefficient and the pertinent heat transfer surface area, 

which were calculated for the mill chamber and the holding tank separately, as described 

in Appendix D.  

 The parameters required to solve the set of five ordinary differential equations 

(odes), Equations (5.1–5.5), were entered as input in a MATLAB (R2020b) code. Some of 

these parameters are presented in Table 5.2. Only the initial and final instantaneous power 

consumption, P0 and Pf, were recorded, and a drop in power consumption was 

experimentally observed. Hence, instead of using the average power consumption, this 
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variation in P during milling was expressed by utilizing P0 and Pf values and assuming the 

simplest mathematical form, a linear drop of power consumption over the milling time 

during the first milling cycle tf: P = P0+(Pf – P0)t/tf.  As we want to develop a simple 

mathematical model for easy industrial use, we have not sought for detailed experimental 

measurements of power and more complicated mathematical expressions in this first 

attempt for a heat generation–transfer analysis of WSMM. Equations (5.1–5.8) were then 

solved via the ode solver, ode15s, and fitted to experimentally recorded mill outlet 

temperatures to estimate the only unknown parameter, i.e., ξ, in Runs 1–27 by using a 

nonlinear optimizer, fmincon [203]. The optimizer minimizes the objective function of ξ, 

i.e., the root mean squared errors (RMSE) between the measured and simulated Ts,m during 

milling. For fmincon, the absolute error tolerance (AbsTol) and relative error tolerance 

(RelTol) were set at 10-3. ξ was constrained between 0 and 1 to have physically meaningful 

fits. For ode15s, AbsTol=10-6 and RelTol= 10-4 were set with a maximum step size of 0.1 

min.  

 We also simulated the temperature evolution in time for Runs 28–32 in the test set 

to assess the predictive capability of the model.  To this end, the power consumption and ξ 

for these five test runs were predicted by a power-law (PL) correlation and machine 

learning (ML) algorithms based on the training on the first 27 runs. Several ML algorithms 

were trained to predict P0, Pf, and ξ based on ω, c, and Db with sklearn package of Python 

3 [204] using the computational platform Google Colab. Then, the enthalpy balance model 

with these predicted P0, Pf, and ξ was used to simulate the temperature profile, which was 

compared to the measured profile. The MSE and mean absolute errors (MAE) of various 
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ML algorithms are presented in Table D.4 in Appendix D, along with the power-law 

correlations. 

5.2 Results and Discussion 

5.2.1 General experimental observations and trends 

All experimental runs led to formation of fenofibrate nanosuspensions with median sizes 

d50 below 400 nm and 90% passing sizes below ~700 nm, except for Run 3 with low power 

consumption and the largest beads (800 µm) (refer to Table D.2 of Appendix D). The as-

received FNB particles had d10 of 8.09 µm, d50 (median size) of 20.3 µm, and d90 of 38.9 

µm; so, WSMM achieved a size reduction ratio of 50–140 based on the median size values 

in Table D.3. Figure 5.2 allows visualization of this drastic particle size reduction and 

conversion of as-received, micron-sized FNB particles into nanoparticles. These findings 

overall confirm that the selection of the formulation and milling parameters was 

appropriate for producing drug nanosuspensions within 60 min. As we focus on the heat 

generation–transfer analysis of WSMM in this work, the readers are referred to earlier work 

[149, 150, 165] for a comprehensive study of other important aspects such as breakage 

kinetics, short-term storage stability, and crystallinity of the wet-milled FNB suspensions. 

It suffices to state, based on these XRD, DSC, and SEM studies of the milled FNB particles, 

that the WSMM did not alter the crystallinity of FNB (refer to Figure D.1 of the Appendix 

D). As all milled aq. FNB suspensions had identical composition (10% FNB, 8% HPC-L, 

and 0.05% SDS), we measured the zeta potential of a representative nanosuspension (Run 

23). The zeta potential was measured to be –0.01 mV, i.e., almost 0. This result may suggest 

that in the presence of a neutral adsorbing polymer (HPC) at a very high concentration as 

compared with the anionic surfactant at 0.05% (well below critical micelle concentration), 
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the physical stability was mainly afforded by HPC through the steric effects. Presence of 

HPC could have masked the electrostatic charge provided by SDS [205]. 

 
Figure  5.2  (a) Polarized light microscope image of as-received FNB particles (Scale bar: 

20 µm) and (b) SEM image of the milled FNB particles in Run 23 (Scale bar: 100 nm). 

 When the stirrer speed was either 2000 or 3000 rpm, the maximum value of the 

suspension temperature at the mill outlet Ts,m (henceforth referred to as mill outlet 

temperature or temperature) was less than 45 oC. Consequently, 60 min milling was 

completed in one cycle; whereas, at 4000 rpm, multiple intermittent milling cycles were 

required (Table D.2 of Appendix D). The number of the intermittent cycles increased from 

2 up to 33 upon an increase in bead loading and bead size at 4000 rpm. This finding 

suggests a smaller feasible design space from an operational perspective as milling at 4000 

rpm causes a significant temperature rise. An increase in any of the three milling 

parameters led to higher power P exerted by the stirrer, which in turn was converted into 
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heat via various dissipation mechanisms. We hypothesize that the power P (shaft work 

done by the stirrer of the mill) or heat generation rate Pξ is the driving force (source term 

in the enthalpy balance model) for the temperature rise. Figure 5.3 illustrates that there 

exists a strong correlation between temperature rise Trise at 6 min and average P or Pξ (Runs 

1–25). The fitting was performed using the nonlinear regression function of Minitab v.21.1. 

The empirical Gompertz growth model described the Trise as a sole function of P and Pξ 

separately with excellent goodness-of-fit (R2 = 0.99), and the detailed fit statistics are 

presented in Table D.3 of Appendix D. The empirical power-law model, which is 

commonly used in chemical engineering correlations, was used to describe the same data 

via the stirrer speed , bead loading c, and bead size Db   

𝑇rise = 41.4(𝜔/𝜔max)2.23(𝑐/𝑐lim)0.912(𝐷b/𝐷b,max)0.160 (6.9) 

 The milling parameters were normalized by the maximum design speed of the 

stirrer max = 4200 rpm, the packing limit of the monodispersed spherical beads clim = 0.63 

[147], and the maximum bead size Db,max = 800 µm used here. The fit quality of this power-

law model was reasonable (R2 = 0.92, RMSE = 2.7 oC). Equation (5.9) indicates that the 

most remarkable positive impact on Trise arose from the stirrer speed, while the bead loading 

had a linear impact, and the impact of bead size was much weaker. The empirical models 

presented in Figure 5.3 and in Equation (5.9) were also physically plausible in the limit 

P→0 and Pξ →0 as they predict negligibly small (<0.1 oC) or 0 temperature rise.  
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Figure  5.3  Temperature rise at 6 min of milling vs. average power consumption and 

average heat generation rate (Runs 1–25). 

 Although its choice is somewhat arbitrary, 6 min was selected because Trise was 

notable experimentally for most runs while only two runs (Runs 26 and 27) out of 27 were 

excluded. Note that Runs 26 and 27 were in the cooling phase at 6 min. Any sampling time 

above 13 min would have to exclude 7 or more runs out of 27 runs. As our purpose was to 

illustrate the impact of P, Pξ, and milling parameters, we were content with the selection 

of 6 min, especially considering that a more rigorous and thorough analysis was performed 

within the context of the enthalpy balance model. 

5.2.2 Temperature evolution during the WSMM and its fitting by the enthalpy 

balance model 

The measured outlet temperatures during the milling phase were plotted along with the 

simulated temperatures that were obtained via the enthalpy balance model fits to ξ for 0.4, 

0.5, and 0.6 bead loadings (see Figures 5.4, 5.5, and 5.6, respectively). Note that the 

suspension temperature at the mill outlet is also equal to the suspension temperature in the 

mill Ts,m due to the well-mixedness assumption. Let us first analyze the experimental data.  
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Figure  5.4  Temporal evolution of the mill outlet temperature measured experimentally 

and simulated–fitted via the enthalpy balance model for various stirrer speeds (increasing 

from top to bottom) and bead sizes (increasing from left to right) when the bead loading 

was 0.4. Training set: Runs 1–3, 10–12, and 19–21. 

 The temperature monotonically increased with time albeit at a decreasing rate, 

attaining or tending toward a plateau. The temperature measurement has an uncertainty of 

±0.5 oC. Because of this, when the heat generation rate was relatively low (2000 and 3000 

rpm vs. 4000 rpm runs), experimentally measured temperature profiles belonging to 2000 

and 3000 rpm exhibited several discrete step-like increase.  In addition, the increase in 

chiller temperature during the milling might have contributed to this type of profile. In 

Figures 5.4-5.6, the impact of bead size can be seen in each row, and the impact of stirrer 

speed can be seen in each column. To see the impact of bead loading, the corresponding 

subfigures of Figures 5.4-5.6 should be compared. Overall, stirrer speed had the most 
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significant impact on temperature rise: 4000 rpm milling caused the temperature to reach 

45 °C, which is the maximum allowed temperature, in all conditions in less than 60 min; 

therefore, during the first intermittent milling cycle, 4000 rpm experiments run shorter 

compared to all other experiments. Bead loading was the second important process 

parameter for the temperature rise, while the bead size had the least impact. The difference 

of maximum temperatures between 200 µm and 800 µm beads in most of the 2000 and 

3000 rpm runs was about 1 oC; only for c = 0.6 (Runs 16–18), the difference was as high 

as 9 oC. At 4000 rpm and constant bead loading, larger beads reduced the time to reach 45 

oC. Regardless, the impact of bead size was not as significant as that of the stirrer speed 

and the bead loading. As will be explained in the discussion, the power required to stir 

beads with larger nominal sizes was either the same or slightly higher. Overall, the 

qualitative analysis of the temperature profiles in Figures 5.4-5.6 agrees with the empirical 

model of Trise (Equation (5.9)) as a function of the milling parameters.  

 Despite its simplicity with only one fitting parameter, i.e., , the enthalpy balance 

model could fit the experimental temperature evolution well, with RMSE between 0.40–

2.34 oC in Runs 1–27. Except for a few runs at 3000 rpm and 0.5–0.6 bead loading, the 

model captured salient features and experimental trends regarding the temperature rise 

during the milling, as illustrated in Figures 5.4-5.6: (i) a monotonic increase of temperature 

during the milling, (ii) a monotonic decreasing rate of temperature rise during the milling, 

(iii) an approach to or attainment of a plateau temperature, (iv) attainment of maximum 

temperature of 45 oC only at 4000 rpm, thus corroborating the need for multiple intermittent 

milling cycles, (v) earlier attainment of this maximum temperature at the higher loading of 



 

159 

 

larger beads, and finally (vi) relative impact ranking on temperature rise: stirrer speed > 

bead loading > bead size.  

 
Figure  5.5  Temporal evolution of the mill outlet temperature measured experimentally 

and simulated–fitted via the enthalpy balance model for various stirrer speeds (increasing 

from top to bottom) and bead sizes (increasing from left to right) when the bead loading 

was 0.5. Training set: Runs 4–6, 13–15, and 22–24. 

 Although the suspension temperature in the holding tank was not measured, our 

model also simulated its evolution (see Figure D.2 as an illustration in Appendix D). The 

suspension temperature in the holding tank was always lower (about 2–14 oC) than the 

suspension temperature at the mill outlet, and its rise was slower as compared with that in 

the milling chamber. Hence, the choice of examining the mill outlet temperature 

experimentally and computationally in this chapter is a conservative approach from a 

process development perspective. In addition, the bead and stirrer temperatures for selected 
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runs are depicted in Figure D.2. The temperature of the suspension, the beads, and the 

stirrer in the milling chamber were almost identical, signifying a thermal equilibrium in the 

mill chamber content (bead–drug suspension–stirrer). This finding is not surprising 

considering the high stirrer speeds (2000–4000 rpm) in the mill chamber. However, we 

caution the readers that the length scale of the heat transfer also plays a role in reaching 

thermal equilibrium; hence, thermal equilibrium may not be achieved in pilot or 

commercial scale mills. The temperature in the holding tank also increases, albeit at a 

decreasing rate, due to recirculating suspension between the mill chamber and the holding 

tank. However, that temperature rise is lower in extent and slower due to negligible heat 

generation due to relatively small shaft work associated with mixing in holding tank.  

 
Figure  5.6  Temporal evolution of the mill outlet temperature measured experimentally 

and simulated–fitted via the enthalpy balance model for various stirrer speeds (increasing 

from top to bottom) and bead sizes (increasing from left to right) when the bead loading 

was 0.6. Training set: Runs 7–9, 16–18, and 25–27. 
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 The above dynamic trends can be explained as follows: Equation (5.1) suggests a 

competition between heat generation rate Pξ and heat removal rate Qch. As the suspension 

temperature in the mill and the holding tank increased, the driving force for external 

cooling and therefore Qch increased (refer to Equations 5.6 and 5.8). Moreover, as can be 

seen from Table D.1 of Appendix D, except for Runs 1–3, a notable drop in power 

consumption from P0 to Pf was observed, which could be explained by a decrease in 

suspension viscosity upon reduction in particle size (see e.g., [88]) and an increase in 

temperature [197] during the milling. Indeed, the unmilled FNB suspension had an 

apparent shear viscosity of 198 ± 3.20 mPa·s and the milled FNB suspensions had lower 

apparent shear viscosity (see Table D.1). Moreover, Figure D.3 corroborates the 

theoretically expected decrease of apparent shear viscosity upon an increase in temperature 

up to 45 oC. As the power consumption is a positive source term and Qch is a negative 

source term in Equation (5.1) and that the former decreases during the milling while the 

latter increases, the net heat generation–removal rate decreases in time, which mostly 

explains the general dynamic trends during the milling. Note that a “bulk cooling effect” 

in the mill also arises from the recirculating suspension, as explained by the first two terms 

on the r.h.s. of Equation (5.1) and Ts,ht < Ts,m. In view of the monotonic increase in 

suspension temperature in the holding tank, albeit more slowly as compared with the 

suspension temperature in the mill (Figure D.2), this effect remains somewhat invariant 

during the milling due to constancy of the temperature difference Ts,ht – Ts,m (after an initial 

rise). So, at least for the specific scale of the mill/chiller used, we assert that the observed 

general trends mostly originate from the competition between decreasing Pξ and increasing 

Qch during the milling. 
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 Let us discuss some of the quantitative deviations observed in Figures 5.4–5.6. The 

average RMSE for 2000, 3000, and 4000 rpm runs is 0.54, 1.24, and 1.67 oC, respectively. 

In some runs at 3000 rpm, the simulated temperature profile exhibited a maximum 

followed by about 1 oC drop (c = 0.5) and 2–4 oC drop (c = 0.6).  This suggests that after 

some time, the heat generation rate became lower than the heat removal rate. One 

explanation could be related to the assumption of linear decrease of power consumption in 

time. While this assumption was simple and allowed for a good fit, it is likely that the 

decrease in power consumption may have a non-linear pattern (not examined in this 

chapter). It is also worth-mentioning that the assumptions made in the model development, 

e.g., constant thermo-physical properties and the specific correlations used for the overall 

and internal/external heat transfer coefficients could partly explain the observed deviations. 

For example, for a given set of fixed milling parameters, i.e., stirrer speed, bead loading, 

and bead size, the suspension viscosity decreases with time (see e.g., the experimental data 

in [88]) due to increase in temperature and/or decrease in particle size during milling. When 

we mention particle size effect on viscosity, we should also consider the mechanism: we 

speculate that higher amount of polymer adsorption onto finer particles generated at the 

higher stirrer speeds and/or bead loading could account for the observed reduction in 

viscosity. A lower polymer concentration in the bulk suspension upon higher amount of 

polymer adsorption onto finer particles could result in a lower suspension viscosity than 

the case when the polymer remains dissolved and smaller amount is adsorbed onto the drug 

particles with coarser sizes. A more elaborate model could consider such evolution of 

viscosity as well as variation of power consumption during the whole milling time, not just 

initially and at the end of milling (for the power). Since measuring timewise evolution of 
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viscosity at multiple milling time points and temperatures for 27 experimental runs is a 

laborious task, it was not performed in this first attempt to model the temperature rise 

during the WSMM process, especially considering the success of the rather simple one-

parameter model with a linear drop of power in time.  

Table 5.2  Properties Used in the Enthalpy Balance Model as well as the Fitted ξ 

Parameter Statistics 

Run 

no. 

Mb    

(g) 

Ms,m    

(g) 

Mst,ht    

(g) 

Ms,ht    

(g) 

hB,m 

(J/min

℃m2) 

hB,ht 

(J/min

℃m2) 

UAm 

(J/min

℃) 

UAht 

(J/min℃) 

ξ     

(-) 

RMSE 

(℃) 

1 192 49.44 10.29 186.1 211492 5299 63.31 69.34 0.76 0.41 

2 192 49.44 10.29 186.1 211492 5299 63.31 69.34 0.80 0.40 

3 192 49.44 10.29 186.1 211492 5299 63.31 69.34 0.78 0.47 

4 240 41.20 10.15 194.3 142703 5807 71.53 67.03 0.79 1.17 

5 240 41.20 10.15 194.3 142703 5807 71.53 67.03 0.81 0.59 

6 240 41.20 10.15 194.3 142703 5807 71.53 67.03 0.67 0.42 

7 288 32.96 10.00 202.5 86097 6384 80.85 62.78 0.77 0.44 

8 288 32.96 10.00 202.5 86097 6384 80.85 62.78 0.67 0.49 

9 288 32.96 10.00 202.5 86097 6384 80.85 62.78 0.61 0.49 

10 192 49.44 10.29 186.1 277133 5299 63.31 70.54 0.77 1.30 

11 192 49.44 10.29 186.1 277133 5299 63.31 70.54 0.63 1.14 

12 192 49.44 10.29 186.1 277133 5299 63.31 70.54 0.64 0.99 

13 240 41.20 10.15 194.3 186993 5807 71.53 68.70 0.62 0.69 

14 240 41.20 10.15 194.3 186993 5807 71.53 68.70 0.55 1.39 

15 240 41.20 10.15 194.3 186993 5807 71.53 68.70 0.57 1.15 

16 288 32.96 10.00 202.5 112818 6384 80.85 65.25 0.55 0.92 

17 288 32.96 10.00 202.5 112818 6384 80.85 65.25 0.57 2.00 

18 288 32.96 10.00 202.5 112818 6384 80.85 65.25 0.54 1.62 

19 192 49.44 10.29 186.1 335723 5299 63.31 71.23 0.58 1.66 

20 192 49.44 10.29 186.1 335723 5299 63.31 71.23 0.63 1.23 

21 192 49.44 10.29 186.1 335723 5299 63.31 71.23 0.67 1.38 

22 240 41.20 10.15 194.3 226526 5807 71.53 69.67 0.51 2.09 

23 240 41.20 10.15 194.3 226526 5807 71.53 69.67 0.58 1.28 

24 240 41.20 10.15 194.3 226526 5807 71.53 69.67 0.62 1.81 

25 288 32.96 10.00 202.5 136670 6384 80.85 66.72 0.55 1.83 

26 288 32.96 10.00 202.5 136670 6384 80.85 66.72 0.61 1.37 

27 288 32.96 10.00 202.5 136670 6384 80.85 66.72 0.63 2.34 

28 192 49.44 10.29 186.1 211492 5299 63.31 69.34 0.72 0.51 

29 192 49.44 10.29 186.1 211492 5299 63.31 69.34 0.62 0.59 

30 192 49.44 10.29 186.1 211492 5299 63.31 69.34 0.53 1.56 

31 240 41.20 10.15 194.3 142703 5807 71.53 67.03 0.58 1.01 

32 240 41.20 10.15 194.3 142703 5807 71.53 67.03 0.56 1.13 

 

 The fitted fraction of power converted to heat ξ varied between 0.51–0.81 with an 

overall mean ± standard deviation of 0.65 ± 0.09 (Table 5.2). Relatively high ξ values 

confirm the well-established notion in the WSMM literature that a small fraction of power 
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applied is spent on (drug) particle deformation–breakage and most of it dissipates as heat 

[34, 162]. In fact, some of the shaft work is spent on generating new surfaces (surface 

energy), sound, and elastic part of bead–bead and bead–wall collisions. We must mention 

the caveat that as the model is too simplistic with a multitude of assumptions, the ξ values 

may not reflect the actual fraction of power converted to heat as ξ is, by and large, a fitting 

parameter affected by the accuracy of the experimental measurements and the assumptions 

made in the model development. Predicting ξ based on bead–particle–bead and bead–

particle–wall collisions in the bead–drug suspension mixture and their impact on energy 

spectra is extremely difficult, if not impossible; such an approach does not exist in the open 

literature. Hence, explaining variation of ξ on fundamental grounds appears to be elusive. 

On the other hand, microhydrodynamic analysis of bead–bead collisions [34, 57, 150] has 

provided some insights into mechanisms of energy dissipation arising from both the liquid–

beads viscous friction and lubrication, partially inelastic bead–bead collisions, and shearing 

of the equivalent liquid (milled drug suspension). However, no connection has been made 

between the heat generation rate and the energy dissipation rates within the context of the 

microhydrodynamic model yet. 

5.2.3 Predictive capability of the model: temperature profiles in test runs 

Most of the required input parameters for the enthalpy balance model were either measured 

or calculated. Once the initial and final power values were measured, one could run the 

optimizer to fit ξ, as we have done in this chapter for Runs 1–27 (training set). To be able 

to predict the temperature profile for any new set of milling conditions, e.g., Runs 28–32 

(test set), one should first predict P0, Pf, and ξ. In other words, one should be able to predict 

the temperature profiles without performing any new experiments (Runs 28–32). To this 
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end, power-law (PL) correlations and machine learning (ML) algorithms were 

implemented following their training on the Runs 1–27 data. P0 and Pf were correlated with 

the milling parameters through power number Np, which is a commonly used dimensionless 

number in mixing studies and WSMM [34, 137]. 

𝑁p = 𝑃 (𝐷5𝑁3𝜌mix)⁄  (6.10) 

where N is the stirrer speed (1/s) and D is the diameter of the stirrer element (0.07 m). Np,0 

and Np,f were calculated based on P0 and Pf. In this analysis, the mixture Np was calculated 

using the density and viscosity of the milled suspension–bead mixture (see Equation (D.16) 

of Appendix D). In order to capture the impact of all process parameters, Np,0 and Np,f were 

correlated with the stirrer speed, the bead size, and the bead loading after putting them into 

non-dimensional forms: /max, Db/D, and c/clim. The following power-law correlations 

were found by fitting the parameters using Minitab 21.1, with the fit statistics for P0 and 

Pf shown in Table D.4 of Appendix D. 

𝑁p,0 = 0.33(𝜔/𝜔max)−0.81(𝑐/𝑐lim)0.77(𝐷b/𝐷)0.14 (5.11) 

𝑁p,f = 0.26(𝜔/𝜔max)−1.2(𝑐/𝑐lim)0.55(𝐷b/𝐷)0.18 (5.12) 

 We also sought for power-law correlations of ξ with P0, stirrer speed, bead loading, 

and bead size in different combinations and the best prediction was found when ξ was 

correlated to P0 as follows:  

𝜉 = 2.68𝑃0
−0.16 (5.13) 

where the fitting statistics for the test and training sets can be seen in Table D.4. An 

alternative fitting of Np using the mixture Reynolds number Rem is presented in “Power 

Number Correlation with Reynolds Number and Process Parameters” of Appendix D. 

Equation (D.6) illustrates P scales with µm
0.33 (weak dependence) and N2.67 (strong, close 
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to cubic dependence). This explains why the power consumption and thus the temperature 

rise were higher at the higher stirrer speed despite the lower viscosity at higher stirrer speed. 

Table 5.3  Experimentally Measured–Fitted and Predicted P0, Pf, and ξ Values as well as 

the RMSE Of The Simulated Temperature Profiles 

Run 

no. 

Direct fit approacha PL predictionb ML predictionb 

P0 

J/min 

Pf 

J/min 

ξ (-) 

RMSE 

℃ 

P0 

J/min 

Pf 

J/min 

ξ (-) 

RMSE 

℃ 

P0 

J/min 

Pf 

J/min 

ξ (-) 

RMSE 

℃ 

28 4200 3600 0.72 0.514 4530 3785 0.69 0.927 4440 3600 0.72 1.02 

29 6000 4800 0.62 0.592 6093 4873 0.66 1.02 5760 4440 0.68 0.999 

30 9600 7200 0.53 1.56 9475 6996 0.62 2.22 9720 6960 0.60 2.17 

31 11400 9600 0.58 1.01 12744 9007 0.59 1.17 12480 8640 0.57 1.29 

32 9600 7800 0.56 1.13 8157 5620 0.63 4.17 9480 6720 0.62 1.63 

aP0 and Pf were measured; ξ was estimated by fitting the simulated temperature from the enthalpy balance 

model to the experimentally measured temperature. RMSE was calculated comparing the simulated and 

experimental temperature profiles. bP0, Pf, and ξ were all predicted via the empirical power-law (PL) model 

and the machine learning (ML) approach.  RMSE was calculated comparing the simulated and experimental 

temperature profiles. 

 

 The predicted P0, Pf, and ξ values for Runs 28–32 by PL and ML approaches are 

reported in Table 5.3 and the respective predictions of the temperature profiles are 

illustrated in Figure 5.7. Table 5.3 and Figure 5.7 also present a “Direct fit” approach 

wherein P0 and Pf were experimentally determined, and ξ was obtained from direct fitting 

to the experimental temperature profiles. In the PL approach, P0, Pf. and ξ were predicted 

by Equations (5.10–5.13). Among all machine learning (ML) algorithms, k-nearest 

neighborhood (KNN) algorithm with k = 5 was selected because it provided the lowest 

MSE and MAE in predicting P0, Pf. and ξ in the test runs, Runs 28–32 (refer to Table D.4 

in Appendix D). The differences between the predicted P0 and Pf values using the PL and 
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ML approaches and the experimental P0 and Pf values did not follow a particular trend 

(Table 5.3) and most of them were statistically insignificant. On the other hand, the 

predicted ξ values by both approaches tend to be higher than those obtained by direct fitting 

to the experimental data; but some values are similar or slightly lower.  

 
Figure  5.7  Temporal evolution of the mill outlet temperature measured experimentally, 

simulated–fitted via the enthalpy balance model, and simulated using P0, Pf, and ξ, which 

were predicted via the empirical power-law (PL) model and the machine learning (ML) 

model with the KNN algorithm. Test Set: Runs 28–32. 
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 Predicted P0, Pf, and ξ were entered in MATLAB and simulations were performed 

with the enthalpy balance model to generate the temperature profiles presented in Figure 

5.7. The predicted profiles were close to the experimental data points visually; the 

predictions for Runs 28, 29, and 31 were almost as good as the direct fits, as also signified 

by RMSE values in Table 5.3. For Run 30, the model predictions showed a clear 

maximum, which was ~3 °C higher than the experimentally measured highest temperature. 

After 5 min, PL prediction for Run 32 underpredicted the temperature, with a ~7 °C 

maximum difference from the experiment; whereas the ML prediction was reasonably 

accurate. The average RMSEs for all five test runs were calculated as 1.90 and 1.42 oC for 

the PL approach and ML approach. Overall, these results demonstrate that the enthalpy 

balance model with the PL and ML approaches has a decent predictive capability. Even 

though both PL and ML approaches can be used to obtain predictions, the ML approach 

performed slightly better based on the smaller MSE and MAE of the P and ξ predictions 

(Table D.4) and smaller RMSE of the predicted temperature profiles (Table 5.3).  

5.3 Conclusions 

This chapter has presented the first systematic and comprehensive exploration of the 

temperature evolution, heat generation, and heat transfer aspects of the wet stirred media 

milling of a drug suspension. Analysis of the experimental results and the simulations 

performed with the enthalpy balance model has pointed out that the shaft work done per 

unit time (mechanical power consumption) by the mill stirrer is the sole source of the 

temperature rise, and the milling parameters impacted the temperature rise in the order: 

stirrer speed > bead loading > bead size.  The present chapter has also demonstrated that 

the enthalpy balance model, along with the power-law fitting and machine learning 
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approaches, can be used to predict the timewise evolution of temperature profiles in various 

milling conditions. It is hoped that the presented simple modeling framework will be used 

by pharmaceutical engineers/formulators in process design and optimization especially 

when they are confronted with developing a thermolabile drug nanosuspension via the 

WSMM process.  
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CHAPTER 6 

PREDICTING THE TEMPERATURE EVOLUTION DURING NANOMILLING 

OF DRUG SUSPENSIONS VIA A SEMI-THEORETICAL LUMPED-

PARAMETER MODEL 

 

Chapter 5 has provided a comprehensive enthalpy balance model (EBM) for the simulation 

of timewise evolution of temperature during the wet stirred media milling process. Chapter 

6 aims to establish both descriptive and predictive capabilities of a semi-theoretical lumped 

parameter model (LPM) for temperature evolution. In the experiments, the mill was 

operated at various stirrer speeds, bead loadings, and bead sizes, while the temperature 

evolution at the mill outlet was recorded. The LPM was formulated and fitted to the 

experimental temperature profiles in the training runs, and its parameters, i.e., the apparent 

heat generation rate Qgen and the apparent overall heat transfer coefficient times surface 

area UA, were estimated. For the test runs, these parameters were predicted as a function 

of the process parameters via a power law (PL) model and machine learning (ML) model. 

The LPM augmented with the PL and ML models was used to predict the temperature 

evolution in the test runs. The LPM predictions were also compared with those of an 

enthalpy balance model (EBM) developed in Chapter 6. The LPM had a fitting capability 

with root-mean-squared error (RMSE) smaller than 0.9 ℃, and a prediction capability, 

when augmented with the PL and ML models, with RMSEs smaller than 4.1 and 2.1 ℃, 

respectively. Overall, the LPM augmented with the PL model had both good descriptive 

and predictive capability, whereas the one with the ML model has comparable predictive 

capability. Despite being simple with two parameters and obviating the need for 

sophisticated numerical techniques for its solution, the semi-theoretical LPM generally 
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predict the temperature evolution similarly or slightly better than the EBM, warranting its 

use by pharmaceutical engineers for the modeling of the nanomilling process.    

6.1 Materials and Methods 

6.1.1 Materials 

A BCS Class II API, fenofibrate (FNB), was used as a model poorly water-soluble drug, 

which was purchased from Jai Radhe Sales (BP grade, Ahmedabad, India). Hydroxypropyl 

cellulose (HPC) was used for stabilizing the drug suspension as a non-ionic polymer, which 

was generously donated by Nisso America Inc. (L grade, NY, USA). Besides, an anionic 

surfactant, sodium dodecyl sulfate (SDS), was used for wettability enhancement, and it was 

purchased from GFS chemicals (ACS grade, OH, USA).  

6.1.2 Wet stirred media milling 

The suspension formulation was the same for all runs where the w/v % of the ingredients 

was 10% FNB, 8% HPC-L, and 0.05% SDS with respect to 200 ml of deionized water. 

Based on our prior studies, this formulation is known to be physically stable during milling 

and storage [149, 165]. A pre-suspension was prepared by adding the powders to deionized 

water gradually under constant mixing with a shear stirrer (Cat#. 14-503, Fisher Scientific, 

PA, USA) operating at 300 rpm for 2 h. The theoretical batch size was fixed for all 

processing runs: 236 g. Pre-suspensions were stored at 8 ℃ overnight prior to milling, to 

let it settle and get rid of the foaming that occurred during shear mixing. On the milling 

days, suspensions were stirred on a magnetic stirrer until they equilibrated close to room 

temperature.  
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 A Microcer wet stirred media mill (Netzsch Fine Particle Size Technology, LLC, 

PA, USA) was used for milling the pre-suspensions. It has an 80 ml chamber volume lined 

with zirconia, a zirconia shaft, and stainless steel screens whose openings are of half the 

size of the yttrium stabilized zirconia beads (YSZ, Saint Gobain ZirPro, NJ, USA). A Cole-

Palmer peristaltic pump (Master Flex, 9 IL, USA) recirculated the suspension between the 

holding tank and mill chamber at a 126 ml/min flow rate, which was kept the same for all 

processing runs. The milling conditions are shown in Table 6.1, where 27 experiments 

were used as training runs and 5 additional runs were used for testing the model prediction 

capability. Stirred speed, bead loading, and bead size were varied at 3 levels for the training 

runs.  

 Despite the use of a chiller with an initial temperature of 6.1 ℃, the temperature 

rise during the process was inevitable due to heat generation as the drug suspension with 

the beads was stirred. Milling was started when the chiller temperature reached 6.1 ℃, and 

the mill outlet temperature was equal to or below 18 ℃. Even though keeping the initial 

temperatures for both the chiller and the mill outlet the same would be a better approach, 

only the initial chiller temperature could be kept the same; the initial temperature at the 

mill outlet varied in a narrow range (13–18 oC) due to variation in the ambient temperature, 

the pre-suspension temperature, and operator practice. During experiments, mill outlet 

temperature was recorded every minute (Runs 1–17) or every 30 s (Runs 18–27). The 

effective milling time was the same for all runs (60 mins), whereas the operating time was 

variable (60–380 min) due to intermitting milling to prevent temperature exceeding the 

gelation temperature of the polymer (45 oC) [155]. In an intermittent milling cycle, the mill 

was shut down while cooling continued, and whenever the mill outlet temperature reached 
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18 ℃, the milling continued. Note that we considered only the first milling cycle in the 

simulations. The average power consumption P was calculated by dividing the total energy 

consumption read in the mill panel by the effective milling time.  

Table  6.1  Process Parameters for the Milling of FNB Suspensions 

Run No. Stirrer Speed, ω (rpm) Bead Loading, c (-) Bead Size, Db (µm) 

11 2000 0.4 200 

21 2000 0.4 400 

31 2000 0.4 800 

41 2000 0.5 200 

51 2000 0.5 400 

61 2000 0.5 800 

71 2000 0.6 200 

81 2000 0.6 400 

91 2000 0.6 800 

101 3000 0.4 200 

111 3000 0.4 400 

121 3000 0.4 800 

131 3000 0.5 200 

141 3000 0.5 400 

151 3000 0.5 800 

161 3000 0.6 200 

171 3000 0.6 400 

181 3000 0.6 800 

191 4000 0.4 200 

201 4000 0.4 400 

211 4000 0.4 800 

221 4000 0.5 200 

231 4000 0.5 400 

241 4000 0.5 800 

251 4000 0.6 200 

261 4000 0.6 400 

271 4000 0.6 800 

282 2500 0.45 400 

292 2500 0.55 400 

302 3500 0.45 400 

312 3500 0.55 400 

322 4000 0.35 100 
1Runs that were used in the training set, 2Runs that were used in the test set. 
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6.1.3 Formulation of the lumped-parameter model (LPM) 

During the milling of drug suspensions, heat is generated because of the conversion of 

mechanical energy input by the stirrer of the mill. The heat generated is removed by a 

coolant passing through the jacket of the milling chamber. Ignoring the enthalpic effects 

associated with the suspension recirculation between the holding tank and the milling 

chamber, we can come up with a simple, low-fidelity model that retains the essential 

elements of the heat generation–transfer. The difference between the heat generation rate 

and heat removal rate will cause the internal energy build-up in the mill as milling 

continues and temperature in the mill rises. These aspects are captured by the following 

semi-theoretical lumped-parameter model:

 𝑚𝐶p

𝑑𝑇

𝑑𝑡
= 𝑄gen − 𝑈𝐴(𝑇 − 𝑇ch) 

(6.1) 

where t is milling time, m is the mass in the mill chamber, Cp is the specific heat capacity, 

T is the temperature at the mill outlet, Qgen is the apparent heat generation rate during 

milling, UA is the apparent overall heat transfer coefficient times surface area, and Tch is 

the chiller temperature. Strictly speaking, Equation (6.1) represents a transient enthalpy 

balance for a perfectly mixed batch process. The perfect mixing implies that the mill outlet 

temperature is equal to the temperature of the suspension in the mill chamber. The well-

mixedness in the milling chamber has been established as a valid approximation to the 

residence time distribution in small mills (small length-to-diameter ratio) [87]. Hence, for 

a recirculation mill operating with a fixed batch size and recirculation rate, Qgen and UA 

may only represent the heat generation rate and overall heat transfer coefficient times 

surface area, in some approximate, apparent, and statistical manner because they are 

obtained by fitting to experimental data directly. While UA can be estimated based on heat 
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transfer correlations for the internal and external convective heat transfer coefficients 

[166], such correlations are approximate, and none exists for the specific stirrer–mill 

chamber geometry. We also assumed time-invariant, constant Qgen, Cp, UA, and Tch (6.1 

℃.). 

 Upon separating the variables in Equation (6.1), integrating both sides, and 

imposing the initial condition, i.e., 𝑡 = 0, 𝑇 = 𝑇0, the following equation for the time-wise 

evolution of mill outlet temperature (shortly temperature hereafter) was obtained: 

𝑇 = 𝑇(𝑡) = (𝑇ch +
𝑄gen

𝑈𝐴
) + (𝑇0 − 𝑇ch −

𝑄gen

𝑈𝐴
) exp (−

𝑈𝐴

𝑚𝐶p
𝑡) 

(6.2) 

 Here, m and Cp were determined considering the materials in the mill chamber: the 

beads (zirconia, Cp = 0.46 J/g℃ [202]), the suspension (10% FNB with respect to water, 

Cp = 3.93 J/g℃), and the stirrer element (zirconia, Cp = 0.46 J/g℃). While the stirrer 

element mass was constant, the bead and suspension mass varied when bead loading was 

changed in various runs (refer to Table 6.1). The Cp was calculated as the weighted average 

of the Cp of individual materials and the mCp was found to be 465.6, 455.2, 444.8, 460.4, 

450.0, and 470.9 J/℃ for 0.4, 0.5, 0.6, 0.45, 0.55, and 0.35 bead loadings respectively.  

6.1.4 Fits by the LPM and predictions by the LPM augmented with the PL and ML 

models 

By fitting Equation (6.2) to the experimental T vs. t data in SigmaPlot 12, Qgen and UA 

were estimated. Then, these parameters were mathematically expressed as a function of the 

process parameters for the 27 training runs and predicted as a function of the process 

parameters for the five test runs using a power law (PL) model and a machine learning 

(ML) model. Minitab was used for the PL predictions, whereas Google Colab was used for 

the ML predictions. Among the several applied machine learning approaches using Google 
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Colab, as shown in Table E.1 of Appendix E, k-nearest neighborhood (KNN) with k = 5 

was selected due to its low mean squared error (MSE) and mean absolute error (MAE) 

compared to other methods for the test runs. Therefore, ML refers to KNN (k = 5) for the 

rest of this study. 

6.2 Results and Discussions 

6.2.1 Properties of the milled suspensions and particles 

As the scope of this study is the simulation of temperature rise during WSMM via a 

lumped-parameter model, readers are referred to previous investigations for full 

characterization of particle sizes, viscosity, crystallinity, and morphology of the particles 

after milling [166, 206]. Here, it suffices to summarize the key findings. All runs yielded 

nanoparticles upon 60 min milling, where the median particle sizes varied between 149–

400 nm. The HPC–SDS combination successfully stabilized the drug nanoparticles by 

mitigating their aggregation during milling and storage. The nanoparticles were visible in 

SEM, confirming the laser diffraction results. XRD results of the nanoparticles showed the 

characteristic peaks of as-received FNB, indicating the crystal structure of the FNB was 

largely preserved during the milling.  

6.2.2 Fitted LPM parameters and the origin of temperature rise during the milling 

The data on the timewise evolution of the mill outlet temperature was fitted by the LPM, 

as represented by Equation (6.2) for each training run (Runs 1–27). The fitted parameters 

are presented in Table 6.2 along with the root-mean-squared error (RMSE). The RMSE 

values ranged between 0.15–0.90 oC. Such low RMSE values suggest that the LPM has 

excellent fitting or descriptive capability of the temperature profiles despite having only 
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two parameters. Figure 6.1 demonstrates that the apparent heat generation rate Qgen is 

linearly and strongly correlated with the average mechanical power consumption P (R2 = 

0.97). The value of the constant slope of the linear correlation in Figure 6.1 indicates that 

about 64% of the power consumption (rate of shaft work) dissipates as heat. This is not 

surprising at all: only a small fraction of the mechanical energy spent on mixing the 

suspension–bead mixture is used to deform the particles [34]. Most is converted into heat 

through dissipative processes such as viscous losses, inelastic bead–bead and bead–wall 

collisions, etc. [62]. Some of the shaft work is also spent on generating new particle 

surfaces (surface energy), sound, and elastic bead–bead and bead–wall collisions [33].  

Table  6.2  Fitted Parameters of the LPM and Associated Statistics for the Training Runs 

Run No: 

Identifier 
Qgen (J/min) UA (J/min℃) RMSE (℃) 

1:  2000 0.4 200 755.2 47.79 0.40 

2:  2000 0.4 400 1616 103.5 0.46 

3:  2000 0.4 800 787.4 48.08 0.56 

4:  2000 0.5 200 441.4 25.82 0.32 

5:  2000 0.5 400 720.8 40.18 0.33 

6:  2000 0.5 800 1296 72.88 0.39 

7:  2000 0.6 200 1343 68.63 0.44 

8:  2000 0.6 400 2625 131.9 0.15 

9:  2000 0.6 800 1822 89.95 0.50 

10: 3000 0.4 200 1402 53.92 0.55 

11: 3000 0.4 400 2938 107.0 0.57 

12: 3000 0.4 800 2798 101.0 0.66 

13: 3000 0.5 200 1837 61.49 0.40 

14: 3000 0.5 400 3243 107.3 0.72 

15: 3000 0.5 800 3307 107.4 0.83 

16: 3000 0.6 200 2624 94.08 0.43 

17: 3000 0.6 400 4598 128.2 0.76 

18: 3000 0.6 800 4542 124.4 0.80 

19: 4000 0.4 200 5075 135.1 0.42 

20: 4000 0.4 400 6266 162.7 0.41 

21: 4000 0.4 800 6245 162.5 0.51 

22: 4000 0.5 200 6116 162.7 0.90 

23: 4000 0.5 400 8490 220.0 0.30 

24: 4000 0.5 800 9359 238.1 0.60 

25: 4000 0.6 200 8383 208.9 0.62 

26: 4000 0.6 400 10600 261.7 0.28 

27: 4000 0.6 800 10740 171.9 0.34 
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Figure  6.1  Correlation between apparent heat generation rate Qgen and power 

consumption P. 

 Before we delve into the experimental temperature profiles and their fitting by the 

LPM, let us quickly assess how the temperature rise Trise in the mill at 6 min was affected 

by the apparent heat generation rate Qgen parameter of the LPM. Based on Equation (6.1), 

we expect that Qgen is the driving force for the temperature rise, which was illustrated in 

Figure 6.2. Overall, the temperature rise was more pronounced for higher Qgen or higher 

P, in view of Figure 6.1. The Gompertz growth function in Equation (6.3) fitted the 

temperature rise well (R2 = 0.95). For Qgen = 0, it predicts a negligibly small temperature 

rise (~0.7 oC).   

𝑇rise = 26.67 exp[− exp(1.30 − 6.02 × 10−4𝑄gen)] (6.3) 

 It is worth mentioning the caveat that the LPM is too simplistic with a multitude of 

assumptions; therefore, the Qgen values do not reflect the actual heat generation rate; by and 

large, Qgen is a fitting parameter affected by the accuracy of the experimental measurements 

and the assumptions made in the model development. On the other hand, Figures 6.1 and 

6.2 and the correlations therein strongly associate Qgen with the underlying physics of the 

conversion of shaft work (power consumption) into heat and ensuing temperature rise. The 
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upshot of these findings is that the LPM differs from a purely empirical model. The latter 

would fit temperature evolution as a function of time with parameters that have no 

connection to the physics of the heat generation–transfer phenomena. 

 
Figure  6.2  Temperature rise at 6 min as a function of the apparent heat generation rate 

(Runs 1–25). 

6.2.3 LPM-fitted temperature profiles and LPM–PL/LPM-ML predictions in the 

training runs 

Figures 6.3–6.5 depict the experimental time-wise evolution of the temperature profiles at 

various bead loadings and sizes for stirrer speeds of 2000, 3000, and 4000 rpm, 

respectively, and their direct fitting by the LPM. In agreement with the low RMSE values 

(Table 6.2), the fitted profiles visually corroborate that the LPM has excellent fitting 

capability despite its simplicity. A cursory look at the experimental temperature profiles 

suggests that the mill outlet temperature rose during the milling due to the conversion of 

the shaft work into heat and ensuing heat generation. While the temperature rise was 

monotonic, the temperature attained a steady-state value for 2000 and 3000 rpm runs. The 

heat generation was so high at 4000 rpm that the mill was shut down earlier than 60 min 

and many intermittent milling cycles were conducted. In all profiles, the slope of the 
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temperature profile decreased during the milling. Guner et al. [206] attributed the 

decreasing rate of temperature rise to a decrease in the instantaneous power consumption 

during the milling, which originates from the reduction of viscosity at the higher 

temperatures and particle size reduction during the milling [88, 197]. Figures 6.3–6.5 also 

imply that a higher stirrer speed led to higher heat generation rate; stirrer speed is the 

dominant process parameter, whereas the impact of the bead size is the weakest.    

 
Figure  6.3  Experimental temperature profiles, direct fits by the lumped parameter model 

(LPM), and predictions by the LPM coupled with a power law (PL) model and a machine 

learning (ML) model. Left-to-right: increasing bead size, top-to-bottom: increasing bead 

loading, stirrer speed: 2000 rpm.  
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Figure  6.4  Experimental temperature profiles, direct fits by the lumped parameter model 

(LPM), and predictions by the LPM coupled with a power law (PL) model and a machine 

learning (ML) model. Left-to-right: increasing bead size, top-to-bottom: increasing bead 

loading, stirrer speed: 3000 rpm. 

 To quantify the impact of the process parameters, motivated by our earlier work 

[166], a power-law (PL) model and machine learning (ML) model were trained using the 

directly fitted values of Qgen and UA in Runs 1–27, which were conducted at various stirrer 

speeds ω, bead loadings c, and the bead sizes Db. For the PL model training, Minitab was 

used, and Equations (6.4) and (6.5) were obtained via fitting. 

𝑄gen = 6.56 × 10−8𝜔3.02𝑐1.29𝐷b
0.22 (6.4) 

𝑈𝐴 = 1.32 × 10−4𝜔1.68𝑐0.77𝐷b
0.12 (6.5) 

 Equations (6.4) and (6.5) signify through their exponents that the stirrer speed and 

the bead loading had the most significant impact on Qgen and UA, whereas the bead size 
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impact was much weaker. The relative impact of these parameters can be rank-ordered as 

follows: stirrer speed > bead loading >> bead size. It is well-known that an increase in the 

stirrer speed and bead loading increases the power consumption in a wet stirred media mill 

[34, 137], which in turn leads to higher Qgen. Similarly, it is well-known that an increase in 

stirrer speed and bead loading also leads to an increase in the internal convective heat 

transfer coefficient in the mill chamber, which could lead to a higher UA [207, 208]. 

 Augmenting the PL model, Equations (6.4) and (6.5), and the ML model (KNN) 

with the LPM, we predicted the temperature profiles and compared them with the 

experimental profiles as well as the profiles generated by direct fitting with the LPM alone 

(see Figures 6.3–6.5). The associated mean squared error (MSE) and mean absolute error 

(MAE) are reported in Table E.1 of Appendix E. The predictions by the LPM–PL and the 

LPM–ML deviated from the experimental data more than the direct fits by the LPM alone, 

which is intuitively expected. These deviations can be reduced by expanding the number 

of training runs through additional experiments at other stirred speeds and bead loadings. 

Both the LPM–PL and the LPM–ML predicted the profiles very well in many runs (e.g., 

Run 2, 12, 21). The LPM–PL predictions were generally closer to the experimental profiles 

than the LPM–ML predictions, with a few notable exceptions for each stirrer speed. The 

maximum deviation between the LPM–PL prediction and the experimental data ranged 

from 1.5 to 6.5 oC, with a mean and standard deviation of 3.1 ± 1.3 oC. Overall, the LPM 

captured successfully some salient qualitative patterns of the temperature profiles: (i) the 

monotonic temperature increase with a decreasing rate, (ii) attainment or approach to a 

steady-state temperature, (iii) the drastic decrease of time to reach 45 oC at 4000 rpm, and 

(iv) the relative impact of the process parameters.  
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Figure  6.5  Experimental temperature profiles, direct fits by the lumped parameter model 

(LPM), and predictions by the LPM coupled with a power law (PL) model and a machine 

learning (ML) model. Left-to-right: increasing bead size, top-to-bottom: increasing bead 

loading, stirrer speed: 4000 rpm. 

6.2.4 Comparative analysis of LPM and EBM fits and their predictions for the test 

runs 

We reserved Runs 28–32 data for testing the simple LPM in comparison to the more 

elaborate EBM. We first fitted the LPM and the EBM to the experimental temperature 

profiles directly and estimated Qgen and UA (see the RMSE in Table 6.3) and illustrated 

the fitted profiles in Figure 6.6. The EBM data were retrieved from Guner et al. [166] for 

comparison. Figure 6.6 and Table 6.3 data suggest that the LPM fitted the experimental 

temperature profiles slightly better than the EBM. The average ± standard deviation of the 

RMSEs are 0.50 ± 0.12 ℃ for the LPM and 0.96 ± 0.43 ℃ for the EBM, where LPM has 
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a lower deviation from the experimental data and is more consistent, according to the lower 

standard deviation.  

Table  6.3  Parameters of the LPM Estimated by Direct Fitting as well as Predicted Using 

the PL and ML Models Coupled to the LPM along with the Associated Statistics  

Runs 

Direct fitting PL prediction ML prediction 

Qgen 

(J/min) 

UA 
(J/min℃

) 

LPM 

RMS

E 
(℃) 

EBM 

RMS

E 
(℃)1 

Qgen 
(J/min

) 

UA 
(J/min℃

) 

LPM 

RMS

E 
(℃) 

EBM 

RMS

E 
(℃)1 

Qgen 
(J/min

) 

UA 
(J/min

℃) 

LPM 

RMS

E 
(℃) 

EBM 

RMS

E 
(℃)1 

  2500 

0.45 

400 

1481 68 0.35 0.51 1634 78 0.74 0.93 1792 77 1.51 1.02 

2500 

0.55 

400 

2495 101 0.42 0.59 2118 91 1.49 1.02 2506 95 1.44 1.00 

3500 

0.45 

400 

4084 118 0.50 1.56 4519 137 1.56 2.22 4555 132 0.59 2.17 

2500 

0.55 

400 

5567 147 0.56 1.01 5856 160 1.02 1.17 5911 162 1.19 1.29 

4200 

0.35 

100 

3185 84 0.66 1.13 4180 129 4.13 4.17 4359 124 2.08 1.63 

1RMSE data were taken from Guner et al. 2022 [166] for comparison with the LPM. 

 

 The LPM–PL and LPM–ML model predictions are compared with the EBM-PL 

and the EBM–ML predictions, which were retrieved from Guner et al. [166], in Figures 

6.7 and 6.8. While all LPM predictions approached an asymptote as the experimental data 

did, the EBM predictions tended to have a maximum temperature (Figure 6.7). Besides, 

there are better and worse prediction examples when the LPM and EBM predictions are 

compared. The average ± standard deviation of the RMSEs are 1.57 ± 0.99 ℃ for all LPM 

predictions and 1.66 ± 1.00 ℃ for all EBM predictions. Overall, the LPM is better for 

predictions but based on the average RMSEs, the difference is not as drastic as it is when 

the RMSEs associated with direct fitting is compared.  

 The average ± standard deviation of the RMSEs are 1.79 ± 1.35 ℃ and 1.36 ± 0.54 

℃, respectively, for the LPM–PL and LPM–ML predictions. The LPM–PL exhibited better 
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or similar predictive capability for most of the test runs as can be seen from Figure 6.8, 

which represents the comparative RMSEs visually. However, the LPM–PL prediction for 

Run 32 was notably bad. A similarly bad prediction was made by the EBM–PL for the 

same run. Interestingly, despite its larger deviations for the training runs, when augmented 

with either the LPM or the EBM, the prediction with the ML model had much lower RMSE 

than that with the PL model for Run 32. The process conditions of this run were 

purposefully chosen to be outside the domain of the training runs to test the models under 

extreme cases. They are not likely used in a lab or industrial setting due to unrealistically 

low bead loading and very small bead sizes. In general, small beads like 100 µm are more 

difficult to handle compared with 300–600 µm beads during the operations. Nonetheless, 

these findings suggest that either the EBM or the LPM should be used with caution outside 

the domain of the training runs.  

6.2.5 The LPM and the EBM comparison and the limitations of the LPM 

The full EBM developed by Guner et al. [166] is a comprehensive model of the heat 

generation–transfer in WSMM that considers recirculation and batch size as well as the 

cooling rate provided by the jackets of the milling chamber and the holding tank. It entails 

using the values of power consumption, physico-chemical properties of the fluid and the 

beads, and the dimensions of the mill setup, which were needed for the calculation of the 

U and Am. The EBM is so versatile that it can be used to investigate the impacts of different 

coolant types and flow rates as well as the material of construction of the mill on the cooling 

rate and temperature evolution. Despite all these capabilities and higher fidelity to the 

actual milling process, its use entails more time, effort, and accurate numerical methods 

for the simulations/parameter estimation. Moreover, one must obtain appropriate data and 
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correlations for the physical–thermal–heat transfer properties. The EBM consists of five 

ordinary differential equations (ODEs) with the fraction of power converted into heat ξ as 

the sole parameter. The estimation of ξ entails using a sophisticated optimizer coupled to 

the ODE solver. Hence, for facile modeling of the temperature profiles, improved process 

understanding into the impact of the process parameters, and effective control and 

optimization of the WSMM process, development of simple, low-fidelity models like the 

LPM is warranted.  

 

Figure  6.6  Direct fitting of the experimental temperature profiles via the lumped 

parameter model (LPM) and the enthalpy balance model (EBM) for the test runs (Runs 28–

32).  
Source for EBM fits: [166] 
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Figure  6.7  Predictions by power law (PL) and machine learning (ML) models coupled 

with the lumped parameter model (LPM) and the enthalpy balance model (EBM) for the 

test runs (Runs 28–32).  
Source for EBM predictions: [166] 

 In contrast to the EBM, the LPM is a simple semi-theoretical model, with two 

adjustable parameters, which was developed based on various assumptions mentioned in 

Section 2.2.2. Hence, it has a closed-form analytical solution and can be easily used without 

much effort and time, while obviating the need for sophisticated ODE solvers/optimizers. 

The main limitation of the LPM is that it is only valid for a given mill set-up with constant 

batch size and recirculation rate. This aspect may not be critical because, to the best 
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knowledge of the authors, these parameters are usually kept invariant while the impacts of 

the stirrer speed, the bead loading, the bead size, and milling time have been investigated 

in most WSMM process studies (see e.g., the reviews [10, 17]). Another limitation of the 

LPM is that while it can predict the temperature of the suspension in the milling chamber, 

it does not provide any information about the temperatures of the suspension in the holding 

tank, temperatures of the beads, the stirrer of the mill chamber, and the stirrer of the holding 

tank. Contrarily, the EBM predicted the lower temperature of the suspension in the holding 

tank than that in the milling chamber and establishment of thermal equilibrium among the 

suspension, the stirrer element, and the beads owing to fast convective heat transfer and 

relatively small size of the beads and the mill stirrer [166]. 

 
Figure  6.8  Comparison of the root-mean-squared errors of the direct fits and the 

predictions made by the power law (PL) and machine learning (ML) models coupled with 

the lumped parameter model (LPM) and the enthalpy balance model (EBM).  
Source for EBM RMSEs: [166] 

 Despite its simplicity, when augmented with the PL and the ML models, the LPM 

predictions of the temperature profiles in the test runs were better than or similar to the 
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EBM predictions (refer to Figures 6.7 and 6.8). Moreover, the LPM predicts a monotone 

decreasing temperature profile with a steady-state temperature approached for sufficiently 

long milling, which is in excellent qualitative agreement with the profiles in Figures 6.3–

6.7. In fact, Equation (2) clearly shows that in the limit t →∞, the temperature reaches a 

steady-state temperature of Tch + Qgen/UA. Although the EBM has higher fidelity to the real 

WSMM operation, its predictions could be worse, and some predictions exhibited a 

maximum and ensuing drop in temperature instead of a monotonic approach to a steady-

state in the temperature profiles (Figure 6.7). In general, the temperature drop from the 

maximum is within a couple of degrees Celsius, and this error was acceptable. Note that 

even the EBM has its own assumptions and sources of modeling errors; refer to Guner et 

al. [166] for a detailed discussion of the modeling errors. For example, in the UAm 

calculations, the mixture correlations for the physical properties and the internal/external 

convective heat transfer coefficients have some errors. The LPM is free of that source of 

modeling error because UA was used as a fitting parameter; therefore, having two fitting 

parameters, as opposed to the one fitting parameter of the EBM, enhanced its fitting and 

prediction capability.  

 The main drawback of the LPM is that it does not consider the enthalpic effects 

associated with the recirculation of the drug suspension and the thermal inertia effects 

associated with the batch volume of the suspension in the holding tank. Precisely because 

of this simplification, the LPM is referred to as a semi-theoretical model here, which 

considers some physical aspects of the process in some time-average, approximate, and 

statistical sense. Its Qgen and UA are fitting parameters that are not equal to the true heat 

generation rate and the product of the overall heat transfer coefficient and the heat transfer 
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surface area. In fact, the actual heat generation rate and even the overall heat transfer 

coefficient vary with time and temperature [166, 206]. However, as established in this 

study, Qgen is strongly and positively correlated with the power consumption and is the 

driver for temperature rise, while the UA correlation with the process parameters revealed 

a similar qualitative dependence of the convective heat transfer coefficients on the process 

parameters in their correlations (refer to such correlations in [33]).  

 The LPM’s treatment of the recirculation operation as an equivalent batch operation 

seems unreasonable for the modeling of temperature profiles on purely theoretical grounds. 

Being aware of this limitation, we accept resulting modeling error for the sake of simplicity 

as LPM is intended to be a low-fidelity model for industrial use. Also, it is worth-

mentioning that a similar approach has already been adopted for the modeling of the 

evolution of the median particle size and even the whole particle size distribution during 

the recirculation operation of the WSMM by multiple research groups (e.g., [57, 96, 97]).  

6.3 Conclusions  

This study has developed and implemented a semi-theoretical, lumped-parameter model 

(LPM) as an alternative to the recently developed enthalpy balance model (EBM) for 

simulating and predicting the temperature evolution during the nanomilling of drug 

suspensions. It has two fitting parameters which make it more flexible compared to 

enthalpy balance model; therefore, it provides better fitting results. While the apparent heat 

generation rate and the apparent heat transfer coefficient multiplied by the heat transfer 

surface area are not equal to the actual values, they could be predicted by process conditions 

via the machine learning (ML) and the power-law (PL) approaches. The fittings and 

predictions of the LPM were found to be slightly better than those of the EBM. Overall, 
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our experimental and modeling results suggest that the LPM has excellent 

descriptive/fitting capability besides its reasonably good predictive capability. Coupled 

with its simplicity that obviates the need for using a sophisticated coupled optimizer–ODE 

solver, it could be selected for facile modeling of the WSMM process. Hence, we provide 

pharmaceutical engineering literature with two different models, the LPM and the EBM, 

which can be used on a fit-for-purpose basis. If a quick analysis and modeling of the 

temperature profiles are needed without significant effort/time, then the LPM is 

advantageous and should be used. The LPM can also be used for process control easily. 

However, if the aim is to intensify and optimize the process that entails a detailed and deep 

understanding of the impact of the recirculation rate, batch size, cooling type/capacity, and 

material of construction, then the EBM must be used. In that case, power consumption, 

physico-chemical and thermal properties of the suspensions and the beads as well as 

reliable correlations for the convective heat transfer coefficient must be obtained from the 

literature and/or determined experimentally.  
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CHAPTER 7 

USE OF BEAD MIXTURES AS A NOVEL PROCESS OPTIMIZATION 

APPROACH TO NANOMILLING OF DRUG SUSPENSIONS 

 

Chapters 2–6 have presented an experimental and theoretical analyses of the impacts of the 

process parameters on the breakage kinetics–cycle time, power consumption, and heat 

generation–temperature rise. The results suggest that by modulating the process parameters 

such as stirrer speed, bead loading, bead size–material, etc., one can optimize the WSMM 

process. This chapter, on the other hand, evaluates the feasibility of cross-linked 

polystyrene (CPS)–yttrium-stabilized zirconia (YSZ) bead mixtures as a novel 

optimization approach for fast, effective production of drug nanosuspensions during 

WSMM. Aqueous suspensions of 10% fenofibrate (FNB, drug), 7.5% HPC-L, and 0.05% 

SDS were wet-milled at 3000–4000 rpm and 35%–50% volumetric loading of CPS:YSZ 

bead mixtures (CPS:YSZ 0:1–1:0 v:v). Laser diffraction, SEM, viscometry, DSC, and 

XRPD were used for characterization. An nth-order model described the breakage kinetics, 

while a microhydrodynamic model allowed us to gain insights into the impact of bead 

materials. CPS beads achieved the lowest specific power consumption, whereas YSZ beads 

led to the fastest breakage. Breakage followed second-order kinetics. Optimum conditions 

were identified as 3000 rpm and 50% loading of 0.5:0.5 v/v CPS:YSZ mixture from 

energy–cycle time–heat dissipation perspectives. The microhydrodynamic model suggests 

that YSZ beads experienced more energetic/forceful collisions with smaller contact area as 

compared with CPS beads owing to the higher density–elastic modulus of the former. The 

work presented in this chapter demonstrated the feasibility of CPS–YSZ bead mixtures and 
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rationalized its optimal use in WSMM through their modulation of breakage kinetics, 

energy utilization, and heat dissipation.  

7.1 Materials and Methods 

7.1.1 Materials 

Fenofibrate (FNB, BP grade), which is a BCS Class II drug, was purchased from Jai Radhe 

Sales (Ahmedabad, India). The aqueous solubility of FNB is 0.8 mg/L at room temperature 

[169]. Two stabilizers were used: a non-ionic cellulosic polymer (HPC: hydroxypropyl 

cellulose, L grade, Nisso America Inc, New York, NY, USA) and an anionic surfactant 

(SDS: sodium dodecyl sulfate, ACS grade, GFS chemicals, Columbus, OH, USA). Zirmil 

Y grade YSZ beads and HCC grade CPS beads, both with a nominal size of 400 µm, were 

purchased from Saint Gobain ZirPro (Mountainside, NJ, USA) and Norstone Inc. 

(Bridgeport, PA, USA), respectively. The density of the YSZ beads and the CPS beads are 

6000 kg/m3 and 1040 kg/m3.  

7.1.2 Wet stirred media milling 

The stabilizer types and their concentrations were selected based on detailed stability 

studies of FNB suspensions performed by our group [46, 47, 54]. About 235 g pre-

suspensions that have 10% FNB, 7.5% HPC-L, and 0.05% SDS with respect to 200 g 

deionized (DI) water were prepared under constant shear mixing at 300 rpm (Cat#. 14-503, 

Fisher Scientific, Pittsburgh, PA, USA) for 2 h and were kept under 8 oC overnight. The 

rationale for this formulation selection was as follows: not only did this formulation ensure 

physical stability, but also it built up sufficiently high suspension viscosity, which in turn 

led to accurate measurement of the power consumption and accurate calculation of the 



 

194 

 

microhydrodynamic parameters. The pre-suspensions were milled by Microcer wet stirred 

media mill (Netzsch Fine Particle Size Technology, LLC, Exton, PA, USA) for 180 min 

under the conditions presented in Table 7.1. The low–high values of the stirrer speed and 

the bead loading (volume fraction in the mill chamber) were set based on earlier studies 

[57, 90] along with the objective of approaching a limiting particle size within 180 min and 

the design constraint of the mill (4200 rpm). The percent volume ratio of CPS:YSZ in the 

bead mixtures were varied between 100:0−0:100. The mill has a chamber volume Vm of 80 

ml, lined with zirconia, and a zirconia shaft. Suspensions were recirculated between the 

holding tank and the milling chamber at a volumetric flow rate of 126 mL/min, using a 

peristaltic pump (Cole-Palmer, Master Flex, Vermont Hills, IL, USA). A 200 µm nominal 

sized stainless-steel screen was used to hold the beads inside the milling chamber. The 

temperature of the milling chamber and the holding tank was kept below 35 oC by using a 

chiller (Model M1-.25A-11HFX, Advantage Engineering, Greenwood, IN, USA). Due to 

limitation of our water-cooled chiller, additional intermittent cooling during which the mill 

was stopped while cooling continued was adopted from [63, 90, 161] when the temperature 

reached 35 oC in Runs 9–20. At the end of milling experiments with bead mixtures, the 

beads were transferred to a separation funnel with an aqueous 2.1 M salt (magnesium 

sulfate) solution. The beads were easily separated due to their stark density differences in 

the salt solution. The CPS beads floated and YSZ beads sank, which were collected at the 

bottom of the separation funnel. The separated beads were washed with copious DI water 

and dried for reuse. 
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Table  7.1  Process Parameters and the Volume Percentage of CPS and YSZ Beads 

(CPS:YSZ) in The Bead Mixtures Used for the Milling of FNB Suspensions 

Run No. Stirrer Speed, ω (rpm) Bead Loading, c (-) CPS:YSZ  (%:%) 

1 3000 0.35 100:0 

2 3000 0.35 75:25 

3 3000 0.35 50:50 

4 3000 0.35  25:75 

5 3000 0.35  0:100 

6 3000 0.50  100:0 

7 3000 0.50 75:25 

8 3000 0.50 50:50 

9 3000 0.50 25:75 

10 3000 0.50 0:100 

11 4000 0.35 100:0 

12 4000 0.35 75:25 

13 4000 0.35 50:50 

14 4000 0.35 25:75 

15 4000 0.35 0:100 

16 4000 0.50 100:0 

17 4000 0.50 75:25 

18 4000 0.50 50:50 

19 4000 0.50 25:75 

20 4000 0.50 0:100 

 

Samples were taken from the outlet of the mill at certain time intervals (2s, s = 0, 1, 

2,...7) with the additional sampling at 20 s, 40 s, 24 min, 48 min, 96 min, and 180 min. The 

final sample was taken from the holding tank, and all samples were immediately 

characterized via laser diffraction. Nanosuspensions were stored in a refrigerator at 8 oC 

for 7 days for short-term stability testing. Before the characterization experiments, the 

refrigerated nanosuspensions were mixed and allowed to reach thermal equilibrium with 

the room temperature.  

The average power consumption P during the milling was determined by dividing 
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the cumulative energy consumption read from the control panel of the mill by the milling 

time. The average stirrer power per unit volume Pw was calculated via Pw = P/Vm. The 

power consumption during the stirring of the suspension in the absence of the beads εht was 

determined similarly. The power consumption, when there was no material in the mill (no-

load), was also measured and subtracted during the calculation of Pw and εht. 

7.1.3 Characterization techniques 

Particle size distribution (PSD) of the FNB suspensions at various milling times and after 

their storage was determined by laser diffraction using LS 13-320 Beckman Coulter 

instrument (Brea, CA, USA). The polarized intensity differential scattering was maintained 

between 40% and 50% while the obscuration was maintained below 8%. PSD was 

computed by the software using the Mie scattering theory. Refractive indices of 1.55 and 

1.33 were used for FNB and water (measurement medium), respectively. Before each 

measurement, a ~1.0 mL suspension sample was dispersed into 5.0 mL of the stabilizer 

solution using a vortex mixer (Fisher Scientific Digital Vortex Mixer, Model No: 945415, 

Pittsburgh, PA) at 1500 rpm for one minute. Measurements were repeated four times and 

the mean ± standard deviation (SD) was reported. The sizes of the milling beads were 

measured via laser diffraction in dry dispersion mode (Helos/Rodos, Sympatec, NJ, USA). 

The measured median sizes of the beads were used in the microhydrodynamic calculations. 

Images of 180 min milled FNB particles in Runs 1 and Run 20 were taken by a 

JEOL JSM 7900F field emission scanning electron microscope (SEM) (JEOL USA, Inc., 

Peabody, MA, USA) operated at 2 kV. About 0.1 mL of the suspension sample was diluted 

with 10 ml deionized water and centrifuged (Compact II centrifuge, Clay Adams® Brand, 

Sparks, MD, USA) at 3200 rpm for 10 min to separate the drug particles from the aqueous 
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phase with excess polymer. This dilution–centrifugation procedure was repeated two more 

times where 8 ml of the aliquot was decanted and replaced with fresh deionized water. 

After the third step, a droplet from the aliquot of the sample was put on top of a carbon 

specimen holder and it was placed in a desiccator for overnight drying under vacuum. The 

dried samples were then sputter coated with gold using BAL-TEC MED020 (BAL-TEC, 

Balzers, Switzerland) to reduce possible charging during imaging.  As-received FNB 

particles as well as the YSZ and CPS beads that were separated from the bead mixture at 

the end of Run 19 were observed using an Axio Scope.A1 polarized light microscope 

(PLM) (Carl Zeiss Microscopy GmbH, Göttingen, Germany). 

The crystallinity of the as-received drug as well as that of the drug in the unmilled 

physical mixture of FNB‒HPC‒SDS that has the same formulation as the milled 

suspensions, and overnight dried, milled suspensions (Runs 1 and 20) were examined using 

XRPD (PANalytical, Westborough, MA, USA), provided with Cu K radiation (λ = 1.5406 

Å). The samples were scanned for 2θ ranging from 5o to 40o at a scan rate of 0.165 s–1. A 

Mettler–Toledo polymer analyzer DSC (Model: DSC 3) (Columbus, OH, USA) was used 

to obtain the peak melting temperature Tm and fusion enthalpy ∆Hf of as-received FNB as 

well as FNB particles in the physical mixture and after milling (Run 1 and Run 20). 

Nanosuspension samples were dried and weighed before being placed in a sealed 

perforated aluminum pan of 40 µL and loaded into the DSC. All samples were heated at a 

rate of 5 °C/min with a temperature range of 25–150 °C. Nitrogen was used at a flow rate 

of 60 mL/min. Data analysis was performed using STARe V16.20 software provided by 

Mettler–Toledo. 
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The apparent shear viscosities L of the milled suspensions were measured using 

R/S plus rheometer (Brookfield Engineering, Middleboro, MS, USA) with a water jacket 

assembly Lauda Eco (Lauda-Brinkmann LP, Delran, NJ, USA). A CC40 coaxial cylinder 

with a jacketed setup was used to impart a controlled shear rate on the samples from 0 to 

1000 1/s in 60 s. The jacket temperature was kept constant at 25 ± 0.5 °C. The raw data 

were analyzed using the Rheo3000 software and the apparent shear viscosity at the 

maximum shear rate (1000 1/s) was used in the microhydrodynamic model as this shear 

rate emulates the high shear rate in the mill [63]. The density of the milled suspension was 

measured by weighing 35 ml of the milled suspension and dividing the mass of the 

suspension by its volume. 

7.1.4 Analysis of breakage kinetics and energy utilization 

For a well-stabilized suspension, the median particle size d50 usually decreases over time t 

until a limiting size dlim is reached [46]. In general, the breakage rate can be described by 

a differential equation of the form: dd50 = –k(d50 – dlim)n, where k is a breakage rate constant 

k and n is the kinetic exponent. The solution of this first-order differential equation by 

separation of variables leads to the following nth-order breakage kinetic model:  

𝑑50(𝑡) = 𝑑𝑙𝑖𝑚 + {[𝑑50(0) − 𝑑𝑙𝑖𝑚]1−𝑛 − (1 − 𝑛)𝑘𝑡}
1

1−𝑛 (7.1) 

in which d50(0) is the initial median size. Marquardt-Levenberg algorithm was used to fit 

Equation (7.1) to d50–t data, except 20 s (less than one mean residence time), and dlim, k, 

and n were estimated. The following constraint was imposed during the parameter 

estimation: dlim < d50 (180 min) [90].  

In addition to k, two other kinetic measures were used: td50 and td90, similar to [33, 

90]: td50 is the time required for the drug particles to reach a d50 of 0.25 µm and td90 is the 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/rheometer
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time for d90 to reach 0.5 µm. While any d50 and d90 lower than 1 µm can be selected for td50 

and td90 for the kinetic analysis, a targeted particle size can also be selected based on 

intended delivery route, specific pharmaceutical application, and drug formulation. 

MATLAB’s pchip function, which is based on piecewise cubic Hermite polynomial 

interpolation, was used to calculate td50 and td90. The specific energy consumption by the 

mill at td50 and td90 was calculated as follows: 

𝐸𝑡𝑑50 =
𝑃𝑤𝑉𝑚𝑡𝑑50

𝑚𝐷
   and   𝐸𝑡𝑑90 =

𝑃𝑤𝑉𝑚𝑡𝑑90

𝑚𝐷
 (7.2) 

where mD is the total mass of the drug in the suspension, Vm is the milling chamber volume. 

Normalized td50, Etd50, and Pw were defined in Equation (7.3) and a merit score for process 

optimality was defined and calculated for each run (Equation (7.4)). 

𝑡𝑑50̅̅ ̅̅ ̅ =
𝑡𝑑50

𝑡𝑑50,max − 𝑡𝑑50,min
,   𝐸𝑡𝑑50

̅̅ ̅̅ ̅̅ ̅ =
𝐸𝑡𝑑50

𝐸𝑡𝑑50,max − 𝐸𝑡𝑑50,min
, and  𝑃𝑤

̅̅ ̅

=
𝑃𝑤

𝑃𝑤,max − 𝑃𝑤,min
 

(7.3) 

Merit score =
1

𝑤1H(𝑃𝑤
̅̅ ̅ − 0.407) + 𝑤2𝐸𝑡𝑑50

̅̅ ̅̅ ̅̅ ̅ + 𝑤3𝑡𝑑50̅̅ ̅̅ ̅
 (7.4) 

where max and min refer to maximum and minimum values, w1, w2, and w3 are the 

weighting coefficients [0–1], H is the Heaviside unit step function, and 0.407 is the 

normalized Pw value above which the mill was shut down for intermittent cooling once or 

multiple times (Runs 9–20). Microhydrodynamic model has been utilized as described in 

Sections 1.4.2 and 2.2.5. 
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7.2 Results and Discussion 

7.2.1 Wet media milling and properties of FNB particles 

Table 7.2 presents the characteristic particle size statistics d10, d50, and d90 of the FNB 

suspensions after 180 min milling and 7-day storage. The median sizes of all 20 milled 

suspensions varied in a narrow range from 0.156–0.185 µm (Table 7.2). Considering that 

as-received FNB particles had d10 = 3.82 µm, d50 = 27.6 µm, and d90 = 55.5 µm, the laser 

diffraction results signify drastic FNB particle size reduction during the WSMM. The PLM 

image of the as-received FNB particles and SEM images of the milled particles in Runs 1 

and 20 are presented in Figure 7.1. The as-received particles with sizes from a few microns 

to ~50 µm having various shapes such as rounded, angular, and irregular (Figure 7.1a) 

underwent drastic size reduction and formed drug nanoparticles after milling even at the 

least energetic milling conditions in Run 1 (Figure 7.1b) and most energetic conditions in 

Run 20 (Figure 7.1c), corroborating the laser diffraction results. Despite the multiple 

dilution–centrifugation steps for the SEM sample preparation, adsorbed HPC on FNB 

surfaces and excess HPC partially covered and even encapsulated some of the FNB 

particles in the SEM images, somewhat lowering the image quality (Figure 7.1b,c). As can 

be seen from the PLM images (Figure 7.2a,b), both the CPS and YSZ beads were intact 

even after the most aggressive milling process for CPS (Run 19) at  = 4000 rpm and c = 

0.50 when the softer CPS beads were hit by the harder YSZ beads with 1:3 CPS:YSZ 

volume ratio for 180 min. The median sizes of the CPS beads and the YSZ beads were 

measured as 444 µm and 405 µm, respectively, via laser diffraction (see Figure 7.2c for 

the volumetric density distributions). For runs that utilized bead mixtures, the bead mixture 
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separation into CPS beads and YSZ beads for subsequent use was facile. Except the 

intermittent cooling (Runs 9–20), there was no processability issue. 

Table  7.2  Particle Size Statistics of the FNB Suspensions After Milling and 7-Day 

Storage 

Run No. 
Particle Sizes After Milling (µm) Particle Sizes After 7-Day Storage (µm) 

d10 ± SDa d50 ± SDa d90 ± SDa d10 ± SDa   d50 ± SDa d90 ± SDa 

1 

0.118 ± 

0.001 0.185 ± 0.001 0.271 ± 0.004 

0.118 ± 

0.003 0.186 ± 0.002 0.273 ± 0.001 

2 

0.116 ± 

0.001 0.179 ± 0.001 0.267 ± 0.007 

0.112 ± 

0.001 0.185 ± 0.007 0.267 ± 0.001 

3 

0.110 ± 

0.000 0.168 ± 0.000 0.247 ± 0.000 

0.110 ± 

0.003 0.168 ± 0.002 0.247 ± 0.000 

4 

0.115 ± 

0.001 0.169 ± 0.001 0.242 ± 0.001 

0.113 ± 

0.003 0.170 ± 0.002 0.247 ± 0.000 

5 

0.114 ± 

0.001 0.167 ± 0.001 0.244 ± 0.001 

0.110 ± 

0.001 0.170 ± 0.004 0.245 ± 0.000 

6 

0.119 ± 

0.001 0.165 ± 0.001 0.227 ± 0.001 

0.118 ± 

0.000 0.163 ± 0.001 0.227 ± 0.000 

7 

0.117 ± 

0.002 0.163 ± 0.001 0.226 ± 0.001 

0.116 ± 

0.001 0.162 ± 0.001 0.228 ± 0.001 

8 

0.116 ± 

0.001 0.162 ± 0.001 0.224 ± 0.001 

0.114 ± 

0.001  0.160 ± 0.001 0.226 ± 0.000 

9 

0.115 ± 

0.001 0.157 ± 0.001 0.218 ± 0.001 

0.113 ± 

0.001 0.158 ± 0.001 0.221 ± 0.000 

10 

0.117 ± 

0.003 0.159 ± 0.001 0.213 ± 0.000 

0.115 ± 

0.001 0.157 ± 0.001 0.215 ± 0.001 

11 

0.114 ± 

0.001 0.174 ± 0.001 0.251 ± 0.000 

0.114 ± 

0.001 0.174 ± 0.001 0.250 ± 0.001 

12 

0.117 ± 

0.002 0.166 ± 0.001 0.233 ± 0.001 

0.115 ± 

0.002 0.166 ± 0.002 0.234 ± 0.001 

13 

0.117 ± 

0.001 0.164 ± 0.001 0.229 ± 0.001 

0.114 ± 

0.001 0.162 ± 0.001 0.230 ± 0.000 

14 

0.116 ± 

0.001 0.164 ± 0.000 0.228 ± 0.000 

0.111 ± 

0.001 0.160 ± 0.001 0.230 ± 0.001 

15 

0.115 ± 

0.001 0.161 ± 0.001 0.225 ± 0.000 

0.115 ± 

0.001 0.161 ± 0.001 0.226 ± 0.001 

16 

0.123 ± 

0.004 0.164 ± 0.001 0.212 ± 0.005 

0.119 ± 

0.001 0.158 ± 0.001 0.212 ± 0.001 

17 

0.123 ± 

0.006 0.162 ± 0.001 0.208 ± 0.001 

0.122 ± 

0.001 0.159 ± 0.001 0.210 ± 0.001 

18 

0.125 ± 

0.001 0.159 ± 0.000 0.208 ± 0.001 

0.120 ± 

0.000 0.156 ± 0.000 0.209 ± 0.000 

19 

0.121 ± 

0.001 0.156 ± 0.001 0.209 ± 0.000 

0.114 ± 

0.001 0.151 ± 0.001 0.211 ± 0.000 

20 

0.124 ± 

0.001 0.157 ± 0.001 0.208 ± 0.001 

0.119 ± 

0.003 0.154 ± 0.002 0.209 ± 0.001 
aStandard deviation (SD) of the particle size statistic based on four size measurements.  
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Figure  7.1  (a) PLM image of as-received FNB particles, (b) SEM image of 180 min 

milled FNB particles in Run 1 (30,000 magnification, scale bar: 100 nm), and (c) SEM 

image of 180 min milled FNB particles in Run 20 (30,000 magnification, scale bar: 100 

nm). Run 1 refers to milling at ω = 3000 rpm, c = 0.35, and CPS:YSZ = 100:0; Run 20 

refers to milling at ω = 4000 rpm, c = 0.5, and CPS:YSZ = 0:100.  

After the storage of the nanosuspensions for 7 days, the particle sizes did not 

increase notably due to either aggregation or Ostwald ripening, signifying their good short-

term stability (see Table 7.2). Figure F.1 (Appendix F) depicts the apparent shear viscosity 

µ vs. shear rate  profiles of the milled suspensions, while Table F.1 (Appendix F) presents 

the estimated parameters of the power–law viscosity model: µ = µ0
q–1. The viscosity 

profiles displayed slight pseudoplasticity (shear-thinning), tending to near-Newtonian 

behavior (exponent q ≅ 0.9–1). Stable, wet-milled suspensions of itraconazole [209] and 

griseofulvin [205] were obtained when stabilized by HPC–SDS, and such suspensions had 

similar q values. In those studies, the unstable suspensions with low HPC concentration 

and/or without SDS had large drug aggregates which exhibited strong pseudoplasticity (q 

as low as 0.1–0.3). Overall, the orthogonal measurements via laser diffraction and 
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viscometry suggest that the 10% FNB formulation with 7.5% HPC and 0.05% SDS led to 

stable suspensions at all processing conditions and that the milling dynamics were largely 

dominated by breakage rather than aggregation. These findings are not surprising as the 

combined use of cellulosic polymer–anionic surfactant provided physical stability for 

many drug nanosuspensions owing to the electrosteric stabilization and wettability 

enhancement [10, 46, 47, 54, 205]. 

 
Figure  7.2  Microscopic images of (a) CPS beads and (b) YSZ beads as well as their (c) 

their size distributions after Run 19. Run 19 refers to milling at ω = 4000 rpm, c = 0.5, and 

CPS:YSZ = 25:75. Q3 refers to cumulative volume fraction, while q3 refers to volume 

density distribution.  
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Figure  7.3  XRPD diffractograms of as-received FNB, HPC-L, unmilled physical 

mixture, and dried nanosuspensions prepared in Runs 1 and 20. Run 1 refers to milling at 

ω = 3000 rpm, c = 0.35, and CPS:YSZ = 100:0; Run 20 refers to milling at ω = 4000 rpm, 

c = 0.5, and CPS:YSZ = 0:100.  

WSMM may alter the crystalline nature of the drug. Hence, XRPD diffractograms 

of the dried–milled suspensions from the least energetic run (Run 1 with the lowest Pw) 

and the most energetic run (Run 20 with the highest Pw) were compared with those of the 

unmilled physical mixture of the same formulation and as-received FNB and HPC (Figure 

7.3). SDS was not analyzed as its concentration was very low in the formulation. The 

shortened characteristic peaks of FNB for the physical mixture and the milled samples can 

be attributed to the dilution and surface coverage of FNB particles by HPC [210]. 

Moreover, the milled samples have slightly shorter peaks compared to the physical 

mixture, which can be due to either a better coverage of drug particles by the polymer or 

defect formation during milling [89]. DSC traces (Figure 7.4) exhibited endotherms 



 

205 

 

associated with the fusion of FNB in the physical mixture and dried FNB nanosuspensions, 

whereas a halo was observed for the amorphous HPC. The fusion enthalpy decreased 

proportional to the presence of HPC in the physical mixture. The FNB in dried 

nanosuspensions had slightly smaller ∆Hf and 2–3 oC Tm
 reduction as compared with FNB 

in the physical mixture. The presence of smaller crystals (nanocrystals) in the suspensions 

and defect formation could largely account for this small reduction. Overall, both the 

XRPD and DSC results suggest that the crystalline nature of FNB was largely preserved 

after milling while formation of defects and a small fraction of amorphous FNB cannot be 

totally ruled out.   

 
Figure  7.4  DSC traces, with fusion enthalpy ∆Hf and peak melting point temperature Tm, 

of as-received FNB, HPC-L, unmilled physical mixture, and dried nanosuspensions 

prepared in Runs 1 and 20. Run 1 refers to milling at ω = 3000 rpm, c = 0.35, and CPS:YSZ 

= 100:0; Run 20 refers to milling at ω = 4000 rpm, c = 0.5, and CPS:YSZ = 0:100.  
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7.2.2 Breakage kinetics and microhydrodynamic analysis 

The temporal evolution of d50 and d90 during the WSMM as a function of YSZ loading 

(volume fraction in the CPS–YSZ bead mixture) cYSZ was depicted in Figure 7.5a,b for 

low–high values ω and c. For the sake of completeness, the evolution of d10 is illustrated 

in Figure F.2 (Appendix F) as d10 data have not been used in the analysis of breakage 

kinetics and assessment of the extent of breakage [61, 211]. While Figure 7.5 presents the 

direct impact of YSZ loading in the CPS:YSZ mixtures, the same data are also illustrated 

in an alternative way to depict the impact of the stirrer speed ω and the bead loading c 

directly (Figure F.3, Appendix F).  

 Before delving into a detailed analysis of breakage kinetics and impact of bead 

mixtures, it is important to recognize the salient features of the temporal evolution depicted 

in Figure 7.5. Both d50 and d90 decreased monotonically in all experiments, which indicates 

breakage was the dominant mechanism as opposed to aggregation during the time scale of 

the milling, again owing to the good stabilization provided by the HPC–SDS combination. 

For all runs except the ones with  = 3000 rpm–c = 0.35, d50 approached or almost attained 

a limiting median size dlim, which is also known as the apparent “grinding limit” [65, 130], 

within 180 min. One can see from Figure 7.5 and Figure F.3 that the time to approach this 

limit got shorter at higher ω and c. Reproducibility of the WSMM process has been well-

established (see the reviews [10, 17] and the references cited therein). Here, the whole 

preparation–milling for Runs 4 and Run 14 was repeated. As expected, the time-wise 

evolution of d10, d50, and d90 was almost identical in the repeated runs; and negligibly small 

deviations were within experimental accuracy of the size measurements (Figure F.4, 

Appendix F).  
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Figure  7.5  Effects of YSZ loading (volume fraction in the CPS-YSZ bead mixture) 

cYSZ on the time-wise evolution of (a) d50 and (b) d90 for various stirrer speed , bead 

loading c. 

One way to assess the overall impact of the bead mixtures and process parameters on 

the breakage kinetics qualitatively is to compare particle sizes at various time points on the 

d50 temporal evolution curve. For example, at any given time, a higher bead loading c 

resulted in smaller particles when the stirrer speed ω was kept constant; and at constant c, 

higher ω did the same (Figure F.3, Appendix F). Doing this for the curves in Figure 7.5a, 

with a focus on the inset, reveals that YSZ beads led to faster breakage than the CPS beads 
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and that the CPS:YSZ bead mixtures generally exhibited evolution curves in between of 

those of CPS alone and YSZ alone. However, this analysis does not consider all points 

simultaneously, and the visual discrimination becomes difficult in the nano-size domain; 

the best discrimination between the performances of the mixtures could be made within the 

first 20 min of milling. Hence, a quantitative analysis of the breakage kinetics was 

performed using the nth-order kinetic model (Equation (7.1)) and the characteristic time 

measures like td50 and td90: lower td50–td90 and higher k both suggest faster breakage. The 

nth-order kinetic model fitted the data well: R2  0.99, and both the model and its three 

parameters n, dlim, and k were statistically significant: p-value < 0.05 (Table F.2, Appendix 

F). The dlim values were lower than d50 values at 180 min, which gives credence to the 

model, and they varied from 0.118–0.161 µm for all 20 runs (0.143±0.011 µm with 7.7% 

RSD). Surprisingly, the overall breakage kinetics was almost second-order, i.e., n ≅ 2 

(2.03±0.086 with 4% RSD). Hence, the breakage rate constant k is an excellent quantitative 

parameter that can be used for comparing the kinetics in different runs. A cursory look at 

the k, td50, and td90 values in Figure 7.6 suggests that the three kinetic measures reveal 

similar trends in terms of the impact of cYSZ, ω, and c and that they agree reasonably with 

the qualitative assessment based on the temporal evolution curves discussed above. In 

general, an increase in cYSZ, ω, and c led to faster breakage: higher k and lower td50 and td90. 

However, since the differences between the kinetics with different bead mixtures were not 

drastic, the increase in the YSZ concentration did not provide a monotonic decrease in td50 

and td90 in a few cases which could be due to the experimental error in the particle size 

measurements but k is not affected by these experimental errors as much, suggesting 

monotonic increase with YSZ concentration since it considers all particle size data. Figure 
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7.6a,c illustrates that when the total bead loading was low (c = 0.35), the impact of YSZ 

fraction in the mixture did not have a drastic impact on the kinetic measures for cYSZ  0.5 

compared to cYSZ < 0.5 according to the td50-td90 curves. Especially at low bead loadings, 

CPS beads caused some clogging and addition of small concentrations of YSZ beads 

helped with this issue and increased the initial breakage rate more. However, at cYSZ = 0.50 

there were no clogging and increasing cYSZ further just provided faster breakage kinetics 

since there was no practical clogging issue anymore and this caused the decreasing slope 

of td50-td90 curves. Although the absolute values of td50 and td90 varied less upon changes in 

cYSZ at c = 0.50, the relative changes were still notable. For example, td50 and td90 decreased 

by 29% and 27% (Figure 7.6b) and 48% and 50% (Figure 7.6d), respectively, when cYSZ 

was varied from 0 to 1.          

 
Figure  7.6  Effects of YSZ loading (volume fraction in the CPS–YSZ bead mixture) cYSZ 

on characteristic milling times td50, td90, and apparent breakage rate constant k, during the 

milling of FNB particles at various stirrer speeds ω and bead loadings c.  

 As the current microhydrodynamic theory is restricted to beads of one material type 

(CPS or YSZ, but not both), we consider here non-mixture runs with cYSZ = 0 (CPS) and 

cYSZ = 1 (YSZ) to gain fundamental insights into the distinct breakage kinetics associated 
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with CPS and YSZ. Figure 7.7 presents the impact of bead material on td50 at two stirrer 

speeds  and beads loadings c. Figure 7.8 presents the calculated parameters of the 

microhydrodynamic model (actual data available in Table F.3, Appendix F). All 

microhydrodynamic parameters were higher at the higher speed (Figure 7.8), which 

physically explains the lower td50 in Figure 7.7 in terms of more frequent and 

energetic/forceful bead–bead collisions. On the other hand, an increase in c caused two 

major counteracting changes: the drug particles were compressed more frequently (higher 

a) between beads that fluctuate more frequently (higher ) due to higher g0 and reduced 

inter-bead distance. On the other hand, the beads moved slower (lower ub) with lower 

fluctuating kinetic energy (lower ), leading to less energetical/forceful collisions (lower 

maximum contact pressure σb
max with lower αb).  As the first favorable change was 

dominant over the second less favorable change, perhaps attributable to the drastic change 

in a as compared with the other relatively smaller changes, overall, breakage occurred 

faster at higher c (see Figure 7.7). These findings are in line with our previous study on 

the WSMM of griseofulvin [90]. 

  
Figure  7.7  Milling time required to attain a median drug particle size d50 of 0.25 µm in 

the milling runs with CPS beads alone and YSZ beads alone (Runs 1, 5, 6, 10, 11, 15, 16, 

and 20).  
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The YSZ beads were associated with higher values of all microhydrodynamic 

parameters, except the radius of the contact circle αb and a, than the CPS beads (Figure 

7.8). Due to their higher density and associated higher power consumption, the YSZ beads 

engaged in more energetic/forceful collisions (higher σb
max), leading to a higher energy 

dissipation rate associated with the deformation of the drug particles (higher Πσy). 

Surprisingly, albeit having higher  and , YSZ beads resulted in similar a to CPS beads 

at 3000 rpm and slightly higher a than CPS beads at 4000 rpm. The larger αb, which stems 

from the lower modulus of elasticity of CPS, as well as lower  and  of CPS beads 

counteracted each other, ultimately leading to these close values of a. However, as most 

other parameters were higher for the YSZ beads, it is not surprising to see that the YSZ 

beads led to faster drug particle breakage than the CPS beads (Figure 7.7). Based on these 

microhydrodynamic considerations of the CPS and YSZ beads, even without having a new 

microhydrodynamic theory for the mixtures, one could argue that the bead mixtures would 

not be more favorable than the YSZ beads from a breakage kinetics (cycle time) perspective 

alone. 
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Figure  7.8  Effects of the stirrer speed ω and the bead loading c on (a) radial distribution 

function at contact g0, (b) granular temperature θ, (c) average bead oscillation velocity ub, 

(d) frequency of a single-bead oscillation ν, (e) maximum contact pressure σb
max, (f) radius 

of contact circle αb, (g) average frequency of drug particle compression a, and (h) the 

pseudo energy dissipation rate Πσy for milling runs with CPS beads alone and YSZ beads 

alone (Runs 1, 5, 6, 10, 11, 15, 16, and 20).  
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7.2.3 Power–specific energy consumption and heat dissipation related issues 

Interestingly, in pharmaceutical WSMM literature, an analysis of power–specific energy 

consumption, as well as heat transfer aspects, are sorely missing. Figure 7.9 depicts the 

change in average power consumption per unit volume Pw and specific energy consumption 

to reach a median size of 0.25 µm, i.e., Etd50 as a function of the YSZ loading in the bead 

mixtures cYSZ at various –c. Clear trends are illustrated by Figure 7.9a: Pw increased with 

higher cYSZ, , and c;  maximum values were observed for the YSZ beads. The higher Pw 

can be explained by the higher density ρm and viscosity µm of the bead–milled drug 

suspension mixture (see Table F.1, Appendix F), which were calculated using the 

following equations [194]: 

µm = µL[1 + 2.5𝑐 + 10𝑐2 + 0.0019 exp(20𝑐)] (7.5) 

ρm = [ρYSZ𝑐YSZ + ρCPS(1 − 𝑐YSZ)]𝑐 + ρ𝐿(1 − 𝑐) (7.6) 

 As can be seen from Equations (7.5–7.6), an increase in the total bead concentration 

c causes an increase in both ρm and µm. An increase in the volume fraction of the denser 

beads cYSZ (ρYSZ > ρCPS) results in an increase in ρm. Besides, an increase in the stirrer speed 

is known to increase the power consumption [137]. The non-linear trends of Pw with cYSZ 

can be explained by the low precision readings of the values from the mill screen, and also 

by the small variation in the suspension viscosity from run to run, due to measurement 

errors of powder weights and liquid volumes while preparing the suspension. 

 Interestingly, Etd50 exhibited a more complex, non-monotonic response in contrast 

with Pw (Figure 7.9b). The difference originates from the contradicting trends effect of td50 

and Pw on Etd50; breakage kinetics accounts for the difference. As can be seen from Figure 

7.9b (data in Table F.4, Appendix F), while Etd50 and Etd90, in general, were higher at the 
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higher  at constant c; they were lower with the higher c at constant . Even though Pw 

was higher at the higher c (constant ), the breakage was faster too (lower td50–td90 and 

higher k); hence, Etd50 and Etd90 were lower. The lowest Etd50 and Etd90 occurred when 

milling was performed with the CPS beads at  = 3000 rpm and c =0.50 (Figure 7.9b). 

On the other hand, the lowest Pw was achieved when milling was performed with the CPS 

beads at  = 3000 rpm and c =0.35 (Figure 7.9a).  

 
Figure  7.9  Effects of YSZ loading (volume fraction in the CPS–YSZ bead mixture) cYSZ, 

the stirrer speed ω, and the bead loading c on (a) the average stirrer power per unit volume 

Pw and (b) the specific energy consumption during td50, Etd50.  
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 Etd50 or Etd90 can be used to determine the electric utility costs required for milling 

the drug particles to the desired target size, while Pw appears to affect the heat dissipation 

and associated cooling load/cost. While costs associated with milling and cooling could be 

important in manufacturing–operations, they are not necessarily the most important 

aspects. In this chapter, although we did not perform a heat transfer analysis, it was clear 

that Pw was positively correlated with the temperature rise and frequency of intermittent 

cooling events during the milling. The mill was shut down for intermittent cooling due to 

limited cooling capacity of our water-cooled chiller and the milling chamber wall’s ceramic 

lining as opposed to a stainless-steel lining. No intermittent cooling was needed for Runs 

1–8 for which Pw was less than 0.9 MW/m3 (Table F.1, Appendix F). Intermittent cooling 

was applied once during Runs 9–11. The milling was interrupted only a few times in Runs 

12–17.  It is possible that a chiller with much higher cooling capacity might have obviated 

the need for intermittent cooling for these runs. Unfortunately, the intermittent cooling was 

applied periodically (mill shutdown every ~8–10 min) for Runs 18–20, which is clearly an 

operational failure mode. The Pw profiles in Figure 7.9a and these intermittent cooling 

episodes overall imply that the YSZ beads are less favorable than the CPS beads when low 

heat dissipation/temperature rise is desired during the milling.  

7.2.4 Various process optimality criteria and associated merit scores 

The upshot of the analysis above is that CPS beads are superior to YSZ beads when lower 

Pw and avoidance of heat dissipation related shutdowns are desired, which is contrary to 

what fast breakage/low cycle time would demand (YSZ beads alone). This implies that a 

CPS–YSZ bead mixture, as opposed to CPS or YSZ beads alone, is expected to yield an 

optimal process. Here, we consider several process optimality criteria to gain insights into 
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the selection of bead mixtures and WSMM process conditions. In general, selecting an 

optimal WSMM process is a complex, multi-faceted task, requiring consideration of 

various factors including the properties of the drug formulation and the targeted particle 

size as well as costs, cycle time, absence of out-of-specification events, etc. If the physical 

or chemical stability of a drug suspension is extremely susceptible to temperature [53, 153] 

or temperature rise during the milling, then a process which does not lead to high Pw should 

be designed with a high-capacity chiller. A process with 35–50% CPS beads loading 

running at 3000 rpm may be a good candidate. However, we will not consider details of 

such extreme scenarios here. 

 
Figure   7.10  Effects of YSZ loading (volume fraction in the CPS–YSZ bead mixture) 

cYSZ, the stirrer speed ω, and the bead loading c on the merit score for various weights:  

(a) w1 = w2 = w3 = 1, (b) w1 = 0.1, w2 = w3 = 1, (c) w2 = 0.1, w1 = w3 = 1, and d) w3 = 0.1, w1 

= w2 = 1.  

b) 

c) 
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 In general, an ideal WSMM process should produce a targeted drug particle size at 

the shortest cycle time with the lowest energy expenditure without serious heat dissipation–

temperature rise/control issues. Hence, we defined a merit score, Equation (7.4), to guide 

our optimal process selection. We considered three major factors: heat dissipation related 

issues, energy expenditure (cost), and cycle time, and created four different scenarios with 

different values of the weighting coefficients w1, w2, and w3 in the merit score calculation. 

A higher merit score indicates that the operating parameters and bead mixtures selected are 

more desirable within the context of specific process optimization criteria considered. 

Figures 7.10a, b, c, and d, respectively, correspond to a base-case scenario wherein all 

three factors contribute to the merit score equally (w1 = w2 = w3 = 1), a scenario wherein 

heat dissipation related process shutdowns as related to Pw are partly mitigated by a high-

capacity chiller (reduced w1, w1 = 0.1), a scenario wherein energy expenditure is considered 

less significant compared to cycle time and temperature related process shutdowns (most 

likely scenario in pharmaceutical industry as compared with other industries, reduced w2:  

w2 = 0.1), and a scenario wherein milling cycle time is considered less important than other 

two factors (reduced w3, w3 = 0.1). Based on the merit scores, a decision tree for the 

selection of optimal bead mixtures was developed and presented in Figure 7.11.  

As can be seen from Figures 7.10 and 7.11, in many scenarios, bead mixtures as 

opposed to single type of beads should be selected for optimal performance. 
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Figure  7.11  A decision tree for the selection of bead mixtures constructed based on merit 

scores for various scenarios.  Unless otherwise indicated, the weighting coefficients used 

in the merit score calculations are w1 = w2 = w3 = 1.  

7.3 Conclusions 

In wet media milling of FNB, the YSZ beads were more favorable than the CPS beads 

when faster breakage and shorter milling cycle time were desired, whereas the CPS beads 

were superior to the YSZ beads in terms of reduced power consumption and reduced 

likelihood of process shutdowns stemming from high heat dissipation and temperature rise. 

The microhydrodynamic model attributed the faster breakage with the YSZ beads 

compared to the CPS beads to their more frequent, energetic/forceful collisions than those 
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of CPS beads owing to the higher density–elastic modulus of the YSZ beads. Mixtures of 

two different bead types, YSZ and CPS, achieved optimal wet stirred media milling 

(WSMM) when three factors, i.e., specific energy consumption (cost), milling cycle time 

(breakage kinetics), and heat dissipation related process shutdowns were simultaneously 

considered. In 9 out of 16 total cases examined (4 different processes with various –c in 

4 different scenarios), a bead mixture had the highest merit score as compared to CPS or 

YSZ beads alone. A decision tree was developed based on various scenarios with different 

relative importance of the three factors. CPS alone is optimal when cycle time is considered 

less significant than the other two factors or when a drug with extreme sensitivity to 

temperature rise during the milling is considered. Obviously, these scenarios are rather 

unlikely. In the most likely pharmaceutical manufacturing scenario wherein specific energy 

consumption is less significant than the other two factors, 0.5:0.5 v/v CPS:YSZ is optimal. 

When all factors are equally important or the heat dissipation originated shutdowns are 

considered less significant, the 0.25:0.75 CPS:YSZ bead mixture is optimal. Stable 

fenofibrate nanosuspensions were prepared under all processing conditions; yet, the overall 

optimal process conditions were found to be 3000 rpm and 50% loading of 0.5:0.5 v/v 

CPS:YSZ.
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CHAPTER 8 

DO MIXTURES OF BEADS WITH DIFFERENT SIZES IMPROVE WET 

STIRRED MEDIA MILLING OF DRUG SUSPENSIONS? 

 

The aim of this study is to investigate the impacts of bead sizes and their mixtures under 

various stirrer speeds and bead loadings on breakage kinetics, the number of milling cycles 

applied to prevent overheating, and power consumption during the nanomilling of drug 

(griseofulvin) suspensions. To this end, narrowly sized zirconia beads with 100, 200, and 

400 µm nominal sizes and their half-and-half binary mixtures were investigated at two 

stirrer speeds and two bead loadings. Particle size evolution was measured during the 3 h 

milling experiments using laser diffraction, and the number of milling cycles were recorded 

along with the power consumption. An nth-order breakage model was fitted to the 

experimental median particle size evolution, and various microhydrodynamic parameters 

were calculated. In general, the beads and bead mixtures with smaller median sizes tend to 

achieve faster breakage. While the microhydrodynamic model highlighted counteracting 

effects of bead size, it has limited applicability to the bead mixtures. For additional test 

runs performed, the kinetics model augmented with a decision tree model using process 

parameters outperformed that augmented with an elastic-net regression model using the 

microhydrodynamic parameters. Based on a proposed process merit score, the use of bead 

mixtures did not lead to notable process improvement; 100 µm beads outperformed bead 

mixtures and coarser beads in terms of fast breakage, low power consumption, and low 

intermittent milling cycles, albeit the clogging issue prevalent especially at the lowest 

energetic conditions. 
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8.1 Materials and Methods 

8.1.1 Materials 

BP/EP grade micronized griseofulvin (GF) was purchased from Letco Medical (Decatur, 

AL, USA). GF is a BCS Class II drug and has a solubility of 14.2 mg/L at 37 °C [212]. 

Hydroxypropyl cellulose (HPC, L grade, Nisso America Inc, New York, NY, USA) was 

used as a non-ionic polymeric stabilizer, and sodium dodecyl sulfate (SDS, ACS grade, 

GFS chemicals, Columbus, OH, USA) was used as an anionic surfactant. Zirmil Y grade 

yttrium-stabilized zirconia (YSZ) beads (Saint Gobain ZirPro, Mountainside, NJ, USA) 

with 6000 kg/m3 density and 100, 200 and 400 µm nominal sizes were used. Their actual 

median sizes were 112, 194, and 403 µm, respectively, as measured by a laser diffraction 

particle size analyzer in the dry mode of dispersion (Helos/Rodos, Sympatec, NJ, USA). 

As can be seen from Table 8.1, these beads had a relatively narrow distribution with span 

values well below 1. In this Chapter, we refer to these beads received from the supplier as 

narrowly-sized beads to distinguish them from their binary mixtures which had wider 

distributions. The actual median sizes were used in microhydrodynamic calculations. 

Table  8.1  Characteristic Sizes d10, d50, and d90 of the As-received Beads and Their Spans 
Nominal size (µm) d10 (µm) d50 (µm) d90 (µm) Spana 

100 87 112 145 0.524 

200 140 194 263 0.633 

400 293 405 560 0.659 

aspan = (𝑑90 − 𝑑10)/𝑑50. 

8.1.2 Experimental methods 

A suspension of GF, HPC-L, and SDS was prepared using a shear mixer (Cat.# 14-503, 

Fisher Scientific, Pittsburgh, PA, USA) at 300 rpm for 2 h. The formulation was selected 
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as 10% GF, 7.5% HPC-L, and 0.05% SDS based on our prior investigations [90, 150]. The 

pre-suspensions were stored overnight at 8 oC after preparation and before milling. 

Microcer wet stirred media mill (Netzsch Fine Particle Size Technology, LLC, Exton, PA, 

USA) was operated for 3 h with the parameters presented in Table 8.2, where the stirrer 

speed ω, bead loading c, and the mass fraction of the beads with 100, 200, and 400 µm 

nominal bead sizes, i.e., (x100–x200–x400), were varied.  

Table  8.2  Process Conditions Used for Milling Including the Mass % of 100–200–400 

µm Beads 

Run no. 
Stirrer speed 

(rpm) 

Bead  

loading (-) 
x100 (%)a x200 (%)a x400 (%)a 

1 3000 0.35 100 0 0 

2 3000 0.35 50 50 0 

3 3000 0.35 0 100 0 

4 3000 0.35 50 0 50 

5 3000 0.35 0 50 50 

6 3000 0.35 0 0 100 

7 3000 0.50 100 0 0 

8 3000 0.50 50 50 0 

9 3000 0.50 0 100 0 

10 3000 0.50 50 0 50 

11 3000 0.50 0 50 50 

12 3000 0.50 0 0 100 

13 4000 0.35 100 0 0 

14 4000 0.35 50 50 0 

15 4000 0.35 0 100 0 

16 4000 0.35 50 0 50 

17 4000 0.35 0 50 50 

18 4000 0.35 0 0 100 

19 4000 0.50 100 0 0 

20 4000 0.50 50 50 0 

21 4000 0.50 0 100 0 

22 4000 0.50 50 0 50 

23 4000 0.50 0 50 50 

24 4000 0.50 0 0 100 

T1b 3500 0.43 100 0 0 

T2b 3500 0.43 0 100 0 

T3b 3500 0.43 0 0 100 

T4b 2500 0.30 33 33 33 
aMass percentage. bTest runs that were used to evaluate the prediction capability of the models. 

The bead loading was calculated as the ratio of the true volume of the beads over the mill 

chamber volume Vm = 80 ml (v/v), which is filled by the recirculating drug suspension. A 
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peristaltic pump (Cole-Palmer, Master Flex, Vermont Hills, IL, USA) recirculated the 

suspension between the holding tank and the milling chamber at a volumetric flow rate Q 

of 126 ml/min. Stainless-steel screen that has half size of the smallest nominal bead size 

used in the mixtures was used to keep the beads in the milling chamber. The setup was 

cooled with the help of a chiller (Model M1-.25A-11HFX, Advantage Engineering, 

Greenwood, IN, USA) to keep the temperature under control; additional intermitting 

milling cycles were applied when/if the temperature reached 35 oC [149, 150]. The number 

of milling cycles were recorded during the experiments, which was also used in the process 

merit score calculation. The average power consumption P was determined by dividing the 

cumulative energy consumption read from the control panel of the mill by the milling time. 

The average stirrer power per unit volume Pw was calculated for all runs by Pw = P/Vm. 

The power consumption during the stirring of the suspension in the absence of the beads 

εht was found by the same method. The power consumption when there was no material in 

the mill (no-load) was obtained and subtracted during the calculation of Pw and εht. 

Particle size distribution (PSD) of the drug suspensions at various milling times was 

determined by laser diffraction using LS 13-320 Beckman Coulter instrument (Brea, CA, 

USA). The samples were taken from the mill outlet, where the temperature was measured, 

at certain time intervals (2s, s = 0, 1, 2,...7) with the addition of 40 s, 24 min, 48 min, 96 

min, 128 min and 180 mins. The final sample was taken from the holding tank and all 

samples were measured with laser diffraction [89]. Before each measurement, a ~2.0 mL 

suspension sample was diluted with 5.0 mL of the respective stabilizer solution using a 

vortex mixer (Fisher Scientific Digital Vortex Mixer, Model No: 945415, Pittsburgh, PA) 

at 1500 rpm for a min. During measurements, polarized intensity differential scattering 
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(PIDS) was maintained between 40% and 50% while the obscuration was maintained 

below 8%. PSD was provided by the software which used the Mie scattering theory. The 

refractive indices of GF and water were taken as 1.65 and 1.33, respectively. Measurements 

were repeated four times and the average and standard deviation (SD) of these 

measurements were determined.  

 

The apparent shear viscosities L of the milled suspensions were measured using R/S 

plus rheometer (Brookfield Engineering, Middleboro, MS, USA) with a water jacket 

assembly Lauda Eco (Lauda-Brinkmann LP, Delran, NJ, USA). A CC40 coaxial cylinder 

with a jacketed setup was used to impart a controlled shear rate on the samples from 0 to 

1000 1/s in 60 s. The jacket temperature was kept constant at 25 ± 0.5 °C. The raw data 

were analyzed using the Rheo3000 software and the apparent shear viscosity at the 

maximum shear rate was taken. The density of the milled suspension was measured by 

weighing 35 ml of the milled suspension and dividing the mass of the suspension by its 

volume. The measurements were performed thrice and the average value was reported.  

8.1.3 Modeling methods 

Microhydrodynamic model with Lun RDF has been utilized here, as described in previous 

chapters. Since a different drug was used here, Young modulus of the drug particles and  

Poisson’s ratio of the drug particles were taken from ref. [139] as 11.5 GPa and 0.3. And 

the volume fraction of the drug particles in the suspension was calculated as 0.061.   

The following nth-order breakage kinetics model derived by Guner et al. [150] were 

used to fit the experimental median particle sizes:  

𝑑50(𝑡) = 𝑑lim + [(𝑑50,0 − 𝑑lim)
1−𝑛

− (1 − 𝑛)𝑘𝑡]
1/(1−𝑛)

 
(8.1) 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/rheometer
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wherein d50,0 is the initial median size, dlim is the limiting median size, and k is the breakage 

rate constant. Marquardt–Levenberg optimization algorithm in Sigmaplot (Version 12.5) 

was used to fit the log-transformed experimental median sizes at various time points by 

Equation (8.1), and dlim, n, and k were estimated. In the fitting, a constraint was placed on 

the limiting particle size, which should be smaller than the final median particle size [90]. 

A relationship between the estimated parameters of the nth-order model (k, n, dlim) 

and the calculated microhydrodynamic parameters (σb
max, αb, a, and y ) and process 

parameters (ω, c, x100-x200-x400) were sought using machine learning algorithms. Google 

Colab was used for this analysis, where sklearn package of Python was utilized. Most of 

the models used were capable of doing regression for all responses at the same time and 

provided the total of root mean squared errors of all responses. On the other hand, gradient 

boosting was not suitable for doing regression to multiple responses, so 

MultiOutputRegressor command which consists of fitting one regression per response was 

used and total RMSE was reported as well. For the model selection, the models are 

calibrated using the training set which consists of 24 experiments with full factorial DOE 

and they were tested using four test runs where the first three were operated at the average 

conditions of the design space with individual bead sizes and the last test run is in the 

extrapolated region where a lower stirrer speed and bead loading was used with 1/3rd 

mixture of all bead sizes. Leave-one-out cross validation was used in the training set to 

gain an overall idea about the prediction capability of the models and RMSEs were 

reported. Finally, the models were selected as the ones that give the lowest test RMSE. 

Please note that experimental data (power and viscosity) were used to estimate the 

microhydrodynamic parameters, which are the predictors in the test set for 
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microhydrodynamic-based prediction. 

In order to rank-order the performance of the WSMM process with different milling 

conditions and assess the impact of bead mixtures vs. nominal single-sized beads, a merit 

score was defined similarly to refs. [90, 149]. In the merit score, normalized values of 

inversed breakage rate constant 1/k (as a rough measure of cycle time), the power P, and 

number of intermittent milling cycles Nmc were used as follows: 

1/𝑘̅̅ ̅̅ ̅ = (1/𝑘 − 1/𝑘min )/(1/𝑘max − 1/𝑘min) (8.2) 

𝑃̅ = (𝑃 − 𝑃min )/(𝑃max − 𝑃min) (8.3) 

𝑁mc
̅̅ ̅̅ ̅ = (𝑁mc − 𝑁mc,min )/(𝑁mc,max − 𝑁mc,min) (8.4) 

𝑀𝑒𝑟𝑖𝑡 𝑆𝑐𝑜𝑟𝑒 =
100

10(1/𝑘 ̅̅ ̅̅ ̅̅ +𝑃̅+𝑁𝑚𝑐)̅̅ ̅̅ ̅̅ ̅̅ /3
 

(8.5) 

 

8.2 Results and Discussion 

8.2.1 Breakage kinetics and power consumption 

Figure 8.1 shows the time-wise evolution of the median particle size where each subfigure 

is for a stirrer speed–bead loading pair and each curve in each subfigure is for a different 

bead size (narrowly-sized beads and binary bead mixtures). The percentages of the three 

narrowly-sized beads in the bead mixture are given in the legend. Just for the sake of 

representation, the nominal bead sizes and their averages are indicated in the figures and 

the text, while the actual median bead sizes from the laser diffraction (refer to Table 8.1) 

were used for the microhydrodynamic calculations. In this context, the average sizes in the 

bead mixtures were calculated as 100, 150, 200, 250, 300, 400 µm for the 100–0–0, 50–

50–0, 0–100–0, 50–0–50, 0–50–50, and 0–0–100 mass fractions of the 100, 200, and 
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400µm narrowly-sized beads, respectively, which are shown from top to bottom in legends. 

 
Figure  8.1  Timewise evolution of the median drug particle size d50 during 180 min of 

milling with various mass fractions of 100–200–400 µm beads at different stirrer speeds 

–bead loadings c. 

The feed GF particles had the characteristics sizes of d10 = 4.30 µm, d50 = 11.4 µm, 

and d90 = 23.5 µm, while the GF particles had a median size below 200 nm upon 3 h milling 

at all process conditions studied, signifying the drastic size reduction during the WSMM 

process. A general observation from Figure 8.1 is that the decrease in the median size of 
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the drug particles was monotonic and the median size approached a limiting particle size 

in all process conditions.  As the stirrer speed and the bead loading increased, the apparent 

breakage rate increased as indicated by the smaller median size after a certain milling time.  

When the breakage rates of different bead sizes and their mixtures are compared, 

we note that usually the smaller the beads, the more rapid the breakage. While the 

separation of the profiles is not as clear at the lowest energetic condition (Runs 1–6: 3000 

rpm, 0.35), the profiles are more distinguishable at the higher energetic conditions. The 

reason for that is at the low stirrer speed and bead loading, the small beads (100 µm) could 

not nip the coarse drug particles initially present effectively, which caused an operational 

problem, i.e., clogging of the mill screen. Regardless, upon further milling, drug particles 

became smaller; 100 µm beads caught up quickly and provided even faster breakage 

towards the end of 3 h milling, as compared with coarser beads (400 µm). For other stirrer 

speed bead–loading combinations, especially at 0.5 bead loading cases, and as the average 

bead size increased, a slower breakage was observed throughout the milling. There is no 

evidence for a synergistic effect of the combination of beads with different sizes in binary 

mixtures on the breakage kinetics when the binary bead mixtures were compared to 

narrowly-sized beads with nominal sizes of 100, 200, and 400 µm. The profiles of the 

median size evolution of the bead mixtures approximately fell within the profiles of 

individual bead sizes. This finding is in agreement with previous studies on wet and dry 

stirred media milling [167, 168]. No clogging was observed for the 200 and 400 µm beads 

under any process conditions. The binary mixtures of 100 µm beads with 200 or 400 µm 

beads and the narrowly-sized 100 µm beads at the higher energetic conditions exhibited a 

less severe clogging issue (shorter duration) as compared with the narrowly-sized 100 µm 
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beads in Run 1.    

As the profiles of the median size evolution are close to each other, the differences 

may be hard to discern between the 6 curves for the different bead sizes/mixtures. 

Therefore, we fitted the nth-order breakage model and compared the breakage rate 

constants. The fitted parameters and statistics are presented in Table 8.3. Overall, the fits 

were successful with the average adjusted R2 of 0.97, and only one run had it below 0.90: 

0.87 in Run 13. The average and standard deviation of dlim were found to be 0.125 ± 0.026. 

The average n was found to be ~2 similar to previous studies [149, 150], but with a higher 

standard deviation of 0.36. The difference might be due to the usage of different bead 

sizes/mixtures and drug in this study. Besides, usage of bead mixtures could be causing a 

different order of breakage kinetics from two because coarser beads could be more 

effective in breaking only the coarse drug particles initially present (typically about >10 

µm), whereas small beads are more effective for breaking all particles below 5 µm, 

especially those in the colloidal size domain. This argument is based on the notion of an 

optimal bead size:feed particle size ratio of 20:1, recommended for WSMM of hard 

materials like quartz [213],  as well as the median sizes of the feed GF particles and the 

narrowly-sized beads.  

 Figure 8.2 presents the impact of process conditions on the breakage rate constant 

k and a characteristic time for the median size to reach 0.2 µm td50. A higher k value and a 

lower td50 value is an indication of faster breakage and they trends are usually opposite to 

each other.  
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Table  8.3  Statistics of the nth-order Breakage Model Fits 

Run identifier 
k 

(µm1-n/min) 
n (-) dlim (µm) R2 Adj R2 SSR 

3000 0.35 100-0-0 0.292 1.62 0.148 0.992 0.991 0.066 

3000 0.35 50-50-0 0.191 2.25 0.083 0.965 0.958 0.263 

3000 0.35 0-100-0 0.214 2.07 0.107 0.978 0.974 0.167 

3000 0.35 50-0-50 0.116 2.26 0.048 0.960 0.953 0.310 

3000 0.35 0-50-50 0.248 2.01 0.117 0.976 0.972 0.183 

3000 0.35 0-0-100 0.210 2.37 0.076 0.954 0.946 0.343 

3000 0.50 100-0-0 1.54 1.89 0.130 0.969 0.964 0.189 

3000 0.50 50-50-0 1.46 1.91 0.139 0.968 0.962 0.184 

3000 0.50 0-100-0 1.39 1.92 0.142 0.973 0.968 0.158 

3000 0.50 50-0-50 1.18 2.01 0.138 0.980 0.976 0.123 

3000 0.50 0-50-50 1.28 1.99 0.141 0.990 0.988 0.062 

3000 0.50 0-0-100 0.85 1.85 0.150 0.996 0.995 0.027 

4000 0.35 100-0-0 1.22 1.18 0.133 0.890 0.870 0.777 

4000 0.35 50-50-0 1.17 1.27 0.136 0.938 0.927 0.427 

4000 0.35 0-100-0 0.571 1.88 0.140 0.981 0.977 0.149 

4000 0.35 50-0-50 0.511 2.01 0.130 0.986 0.983 0.109 

4000 0.35 0-50-50 0.808 1.76 0.156 0.997 0.997 0.018 

4000 0.35 0-0-100 0.497 2.10 0.127 0.976 0.971 0.181 

4000 0.50 100-0-0 5.10 2.46 0.119 0.996 0.995 0.014 

4000 0.50 50-50-0 4.65 2.71 0.113 0.995 0.994 0.018 

4000 0.50 0-100-0 3.08 2.64 0.114 0.994 0.992 0.025 

4000 0.50 50-0-50 2.42 2.28 0.126 0.997 0.996 0.013 

4000 0.50 0-50-50 1.87 2.23 0.128 0.995 0.994 0.024 

4000 0.50 0-0-100 1.53 1.92 0.153 0.990 0.989 0.063 

  

 While there are some deviations from the general trends for 0.35 bead loading 

cases, in general, the data presented in Figure 8.2 and Table 8.3 suggest that (i) higher k 

and lower td50 occurred at the higher stirrer speed and/or higher bead loading, (ii) k 

decreased and td50 increased when the average size of the beads was increased, and (iii) the 

stirrer speed and the bead loading had a stronger impact on the breakage kinetics than the 

bead size. The slopes were the steepest for 4000 rpm, 0.5 bead loading case, where the k 

for the smallest beads was 3.3 fold of the k of the largest beads. The 100 µm beads alone 

outperformed coarser beads and the bead mixtures in terms of faster kinetics although 
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clogging of the screen during the initial phase of the milling was noted with these beads. 

 
Figure  8.2  Impact of the average bead size on the breakage rate constant k and the time 

needed for the median particle size to reach 0.20 µm td50 for various stirrer speeds –bead 

loadings c. Average bead sizes of 150, 250, and 300 µm correspond to 50%–50% w/w 

mixtures of 100–200 µm, 100–400, and 200–400 µm beads, respectively.   

The impact of process conditions on the power consumption during milling and the 

apparent shear viscosity of the milled suspensions is illustrated in Figure 8.3. While the 

values are significantly different in each subfigure, the curves are rather flat showing the 

bead size impact is not as influential as the stirrer speed and the bead loading. Still, coarser 

beads (200 and 400 µm) require more power to operate, which makes smaller beads even 

more advantageous if power consumption is a concern. This increase in the power with 

increasing stirrer speed, bead loading, and bead size was also reflected in the number of 

milling cycles Nmc as can be seen in Table G.2 in the Appendix G. Numerous cycles had 

to be applied especially at 4000 rpm runs, which were more frequent compared to prior 

heat transfer study [166], due to prolonged milling time and lower value of maximum 
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temperature allowed in this study: 45 oC in [166] vs. 35 oC here.  

 
Figure  8.3  Impact of the average bead size on the average power consumption and the 

apparent shear viscosity of the milled suspension for each ω–c pair. Average bead sizes of 

150, 250, and 300 µm correspond to 50%–50% w/w mixtures of 100–200 µm, 100–400, 

and 200–400 µm beads, respectively.   

These findings are not surprising as Guner et al. [166, 206] established that heat 

generation and ensuing temperature rise during the WSMM is positively and strongly 

correlated with the power consumption. Shutting down a mill for cooling without milling 

(Nmc > 1) is undesirable for pilot and commercial scale operations. However, this 

intermittent milling is unavoidable if one ones to keep the temperature under control in 

small scale milling equipment at highly energetic processing conditions expolored here. 

The main reason for this is the inadequate bulk convective cooling provided by the 

recirculating suspension as the thermal inertia of the suspension batch placed in the holding 

tank of a small-scale mill is orders of magnitude smaller than that in the pilot–commercial 

scale equipment. Of course, relatively low cooling capacity of the particular chiller of our 
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mill could partly contribute to the need for intermittent milling. Figure 8.3 also shows that 

similar to power, viscosity of the milled suspensions was lower when smaller beads were 

used. Besides, it decreased with higher bead loading and stirrer speed, as the smaller drug 

particles in the suspensions led to lower viscosity [88].  

8.2.2 Microhydrodynamic basis of the impact of the processing conditions 

The microhydrodynamic model was formulated with the major assumption that the beads 

are spherical and monodispersed. [34, 132]. Although the as-received beads with nominal 

sizes of 100, 200, and 400 µm have a relatively narrow distribution (refer to Table 8.1), 

the bead mixtures automatically have much wider distributions due to 50%–50% 

combination of the respective bead sizes. Hence, the microhydrodynamic model is 

expected to be more accurate for the narrowly-sized beads than for the bead mixtures. To 

correlate the breakage rate to the microhydrodynamic parameters for the case of bead 

mixtures, the average of the median bead sizes of the relevant narrowly-sized beads in the 

50%–50% binary mixtures were used in the calculations, as a crude first approximation. 

All microhydrodynamic parameters are reported in Table G.1 in Appendix G.  

Figures 8.4–8.7 show the change in each microhydrodynamic parameter with 

increasing average bead size, where each figure is for a given stirrer speed–bead loading 

pair. Since the assumption of the usage of a single average bead size for the bead mixtures 

is not validated yet, runs with bead mixtures are shown separately in the figures. The 

microhydrodynamic trends for the impacts of bead size are very similar to those observed 

in Li et al. [33]. On one hand, the fluctuating motion of the smaller beads was less vigorous, 

as signified by the lower granular temperature θ (see also Table G.1 in Appendix G). This 

effect can be explained by the lower applied power Pw (see Figure 8.3) and the higher bead 
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number concentration. The slower fluctuating motion of the smaller beads was also 

reflected in the lower average bead oscillation velocity ub, which led to the development 

of a lower maximum contact pressure σb
max, i.e., lower stress intensity. Up to this point, 

one may argue that the drug particle breakage would be slower with the use of smaller 

beads as the aforementioned changes in the microhydrodynamic parameters do not favor 

particle breakage. On the other hand, while the frequency of bead oscillations ν is 

somewhat similar for 3000 rpm runs (Figures 8.4 and 8.5), it increased when smaller beads 

were used, at 4000 rpm runs (Figures 8.6 and 8.7). Moreover, while the average frequency 

of drug particle compressions a is similar for all bead sizes in the lowest energetic case 

(Figure 8.4), it was higher for the smaller beads in the 3000 rpm 0.5 bead loading case 

(Figure 8.5) and the difference became more pronounced at 4000 rpm runs. This effect of 

the smaller beads, especially on a, favors faster breakage. In addition, the radius of contact 

circle was greater for the bigger beads. The pseudo energy dissipation rate was higher for 

the bigger beads, except for the highest energetic condition (Figure 8.7) as a result of 

contrary trends in stress intensity (σb
max)–stress frequency (a). Overall, these 

microhydrodynamic parameters suggest that smaller beads lead to more frequent bead–

bead collisions with lower stress intensity, and a seems to be the most impactful 

microhydrodynamic parameter on the observed breakage kinetics as it indicates smaller 

beads are advantageous for faster breakage. It can also explain why the difference in the 

performance of the different bead sizes is very small in the 3000 rpm 0.35 run (refer to 

Figures 8.1 and 8.2) because a values are very close to each other.  It should be noted that 

for soft, brittle materials like most drugs, the stress frequency as signified by a is expected 

to be more important than the stress intensity as signified by σb
max provided the stress 
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intensity is sufficiently high.   

 
Figure  8.4  Impact of average bead size on the microhydrodynamic parameters when the 

stirrer speed was 3000 rpm, and the bead loading was 0.35. Average bead sizes of 150, 

250, and 300 µm correspond to 50%–50% w/w mixtures of 100–200 µm, 100–400, and 

200–400 µm beads, respectively.   
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Figure  8.5  Impact of average bead size on the microhydrodynamic parameters when the 

stirrer speed was 3000 rpm, and the bead loading was 0.50. Average bead sizes of 150, 

250, and 300 µm correspond to 50%–50% w/w mixtures of 100–200 µm, 100–400, and 

200–400 µm beads, respectively.  
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Figure  8.6  Impact of average bead size on the microhydrodynamic parameters when the 

stirrer speed was 4000 rpm, and the bead loading was 0.35. Average bead sizes of 150, 

250, and 300 µm correspond to 50%–50% w/w mixtures of 100–200 µm, 100–400, and 

200–400 µm beads, respectively.   
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Figure  8.7  Impact of average bead size on the microhydrodynamic parameters when the 

stirrer speed was 4000 rpm, and the bead loading was 0.50. Average bead sizes of 150, 

250, and 300 µm correspond to 50%–50% w/w mixtures of 100–200 µm, 100–400, and 

200–400 µm beads, respectively.   

When the microhydrodynamic parameters of non-mixture runs (narrowly-sized 

beads) and bead mixture runs are compared, those of the bead mixtures usually fell around 

the trendlines of the narrowly-sized beads. However, significant deviations from the 

trendlines were observed for a and Π∙σy at the higher energetic runs (Figures 8.5–8.7). This 

is partly due to nonlinearity of a and Π∙σy trends with bead sizes, where a was shown to 

have an exponential decay-like relationship with bead size in ref. [63]. Most importantly, 

these deviations originate from the oversimplification of treating the bead mixture as an 



 

239 

 

equivalent monodispersed bead with the calculated average bead size. In the 

microhydrodynamic model, there is no distinction between different types of collisions of 

beads with different sizes and associated radial distribution functions at contact. The radial 

distribution function at contact was assumed to be a function of bead concentration alone 

for monodispersed spheres, but not the bead sizes. It is also possible that beads with 

different sizes have different granular temperatures [214]. Unfortunately, the existing 

microhydrodynamic model does not treat mixtures of different bead sizes. New, expanded 

microhydrodynamic models must consider different bead sizes for accurate prediction of 

the bead mixtures. In the literature for two-phase gas–solid flows, mixtures of different 

particle sizes have been considered for polydisperse powders, and different values of the 

radial distribution function at contact g0 were determined [214, 215]. For example, in the 

context of a binary mixture of fine–coarse particles, different g0 expressions have been 

formulated for the various types of particle collisions, i.e., fine–coarse, fine–fine, and 

coarse–coarse. Such approaches must be adopted in advancing the microhydrodynamic 

model for bead mixtures. 

8.2.3 Breakage kinetics predictions 

The fitted parameters of nth-order model, i.e., k, n and dlim, were predicted using i) the 

following microhydrodynamic parameters: maximum bead contact pressure b
max, radius 

of contact circle b, average frequency of drug particle compressions a, and pseudo energy 

dissipation rate for the drug particles y and ii) the following process parameters: stirrer 

speed ω, bead loading c, and mass fraction of the bead sizes in the mixture x100–x200–x400. 

Several machine learning approaches were examined to find the best model (refer to Table 

G.3 in Appendix G). For the training data set, leave one out cross validation RMSE values 
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were small and close for some of the approaches, indicating those models are not 

overfitting and safe to be used. Among those models, the one with smallest test RMSE was 

selected; elastic-net regression and decision tree when microhydrodynamic parameters and 

process parameters were used as predictors, respectively. The predicted parameters and 

RMSE of the predicted median particle sizes were reported in Table 8.4, and the predicted 

evolution of the median particle size is illustrated in Figure 8.8.  

Table  8.4  nth-order Model Parameters for the Test Runs Obtained via Direct Fit, and 

Predicted with MHD Parameters via Elastic-Net Regression, and Predicted with Process 

Parameters via Decision Tree 
Run 

Identifier 

Model k  

(µm1-n/min) 
n (-) dlim (µm) RMSE (µm) 

3500 0.43 

100-0-0 

Direct fit 1.45 1.78 0.144 0.623 

Microhydrodynamic 

prediction 
1.17 1.91 0.125 0.604 

Empirical 

prediction 
1.54 1.89 0.130 0.668 

3500 0.43    

0-100-0 

 

Direct fit 
1.28 1.88 0.144 0.049 

Microhydrodynamic 

prediction 
0.953 1.92 0.125 0.092 

Empirical 

prediction 
1.39 1.92 0.142 0.081 

3500 0.43    

0-0-100 

 

Direct fit 
0.814 2.07 0.144 0.066 

Microhydrodynamic 

prediction 
0.612 2.01 0.125 0.183 

Empirical 

prediction 
0.854 1.85 0.150 0.120 

2500 0.30   

33-33-33 

 

Direct fita 0.282 2.01 0.214 0.027 

Microhydrodynamic 

predictiona 0.606 1.88 0.125 0.144 

Empirical 

predictiona 0.191 2.25 0.083 0.072 

aData between 0.66-16 min were excluded due to clogging issue. 
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Figure  8.8  Experimental time-wise evolution of the median particle size for the test runs, 

their direct fit by the nth-order breakage kinetics model, their prediction by the nth-order 

breakage kinetics model augmented with elastic-net regression using the 

microhydrodynamic parameters, and their empirical prediction by the nth-order breakage 

kinetics model augmented with a decision tree using the process parameters. 

According to the RMSEs in Table 8.4 and the predicted profiles in Figure 8.8, the 

process parameter-based predictions were superior to the microhydrodynamic parameter-
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based predictions. Except for the 3500, 0.43, 100-0-0 run (Run T1), the process parameter-

based predictions agreed well with the experimental data. The poor performance of the 

microhydrodynamic parameter-based approach originates from the inability of the 

microhydrodynamic model to treat poly-dispersed beads, especially bead mixtures, 

accurately. The microhydrodynamic model treats bead mixtures as equivalent 

monodispersed spheres with average bead size of the constituent beads. Although the beads 

are almost spherical [149] and narrowly-sized (refer to Table 8.1), they are not 

monodispersed. As the microhydrodynamic model is limited to monodisperse beads, its 

predictions were not successful. Indeed, when the bead size was fixed and no bead mixture 

was used in an earlier study for the milling of another drug, the microhydrodynamic 

parameter-based predictions were superior to the process parameter-based predictions 

[150]. Here, process parameter-based predictions were reasonably good, even for the 

extrapolated test run (Run T4: 2500, 0.30, 33-33-33). This extrapolated test run had severe 

clogging problem because it was operated at a very low energetic condition, which does 

not represent a typical WSMM operation, and the milling data from 0–16 min was not 

considered in the fitting/prediction.  

8.2.4 Identification of the optimal process–bead sizes based on merit scores 

To assess the impact of the process parameters and bead sizes, merit scores were calculated 

and presented in Table G.2 in Appendix G. Per Equation (5), the merit score factors in 

cycle time through 1/k, power P, and the extent of heat generation–temperature rise through 

the number of intermittent milling cycles Nmc. In general, higher 1/k, P, and Nmc are not 

desirable, as signified by their negative impact on the merit score. Figures 8.9 and 8.10 

depict the variation of the process merit scores when Nmc was considered or disregarded, 
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respectively, in the calculation along with the power P and the inverse of the breakage rate 

constant 1/k.  

 
Figure  8.9  Impact of bead size mixtures on the merit score (based on the breakage rate 

constant, the power, and the number of intermittent milling cycles) for each ω–c pair. 

Average bead sizes of 150, 250, and 300 µm correspond to 50%–50% w/w mixtures of 

100–200 µm, 100–400, and 200–400 µm beads, respectively.   

 A cursory look at Figure 8.9 immediately reveals that an increase in stirrer speed 

from 3000 to 4000 rpm led to a remarkable decrease in the merit score at both bead loadings 

due to a simultaneous increase in both P and Nmc. Note that Nmc relates to strict temperature 

control and prevention of temperatures exceeding the maximum temperature allowed (35 

oC). For non-pharmaceutical products that are not temperature-sensitive, consideration of 

Nmc is not warranted as higher maximum temperatures are allowed. For such a scenario, 

Nmc was disregarded; the merit scores were lower when the stirrer speed was increased 

from 3000 to 4000 rpm; but, the change was less drastic (Figure 8.10). 
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Figure  8.10  Impact of bead size mixtures on the merit score (based on the breakage rate 

constant and the power) for each ω–c pair. Average bead sizes of 150, 250, and 300 µm 

correspond to 50%–50% w/w mixtures of 100–200 µm, 100–400, and 200–400 µm beads, 

respectively.   

Both Figures 8.9 and 8.10 illustrate that there exist an optimal set of process 

conditions:  = 3000 rpm and c = 0.50. At these optimal conditions, the merit scores were 

less sensitive to the average bead sizes. In general, narrowly sized 100 µm beads alone (not 

in a binary mixture) are more advantageous as they provide a higher merit score in terms 

of power consumption, breakage kinetics, and heat generation. Based on merit score 

ranking, except for the lowest energy case, 50–50–0 binary mixture of the beads is the 

second best, while the narrowly-sized 400 µm beads alone were the worst. The ranking of 

other beads/bead mixtures were different for different –c pairs. As the breakage kinetics 

results did not follow a clear pattern in terms of bead size impact for the lowest–energy 

case ( = 3000 rpm and c = 0.35)  due to clogging issues, it is understandable why its 
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associated merit scores did not follow a general trend in Figures 8.9 and 8.10.  

8.2.5 Overall assessment and additional considerations 

Guner et al. [149] established that a judicious combination of crosslinked polystyrene and 

yttrium-stabilized zirconia beads in mixtures led to highest merit scores and significant 

process improvement. Unlike the mixtures of beads with different materials of 

construction, mixtures of beads with widely different sizes did not bring any advantage 

because the smallest beads (100 µm) themselves have all of the benefits related to the 

process considerations. However, it is worth mentioning that there are some challenges 

with these small beads, which may make the second-best performer (50–50 mixture of the 

100–200 µm) more appealing: handling of the 100 µm beads is harder during the bead 

loading/cleaning steps than that of the coarser beads. Clogging of the mill screen was 

observed with the 100 µm beads and its binary mixtures during the first 8–16 min of the 

respective runs, and we managed to prevent a process shut-down by changing the flow 

direction of the pump to reverse and reverse-back the flow of the suspension multiple times 

until the drug particle size became small enough not to cause further clogging during 

prolonged milling. Obviously, this practice is not desirable in an industrial setting. The 

clogging issue became less notable and of shorter duration for the mixtures of the 100 µm 

beads with the 200 and 400 µm beads, although it was not eliminated. Therefore, when 100 

µm beads are to be used in an industrial scale operation, pre-milling of the drug particles, 

e.g., by a rotor-stator mill, could be the surest solution to this clogging problem. 

Alternatively, drug particles could be added to the holding tank of the mill gradually over 

a period of ~16 min to reduce particle concentration in the milling chamber during the 

initial phase of the milling where clogging occurred. Along with this approach, the 
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suspension flow rate could be ramped up from 0–126 ml/min slowly over the first 8–16 

min, which will also help to reduce clogging. In this study with the small-scale mill, 

multiple flow reversals during the initial phase of milling helped to reduce clogging issue, 

and these other methods were not employed.  

The upshot of our results is that there is no notable advantage to using either bead 

mixtures or coarser beads alone (200 and 400 µm) except for some ease of handling during 

the manufacturing operations with the coarser beads and lower price of the coarser beads. 

This latter advantage of the coarser beads has been highlighted by Patel et al. [15] for 

justifying the use of bead mixtures containing fine–coarse beads. Table G.2 in Appendix 

G shows the bead prices calculated for each run and it is inversely proportional to the 

average bead sizes. However, this simplistic cost analysis misses several important points. 

First, small beads wear at a lower rate and extent than coarse beads [63]; thus, they have a 

longer operational lifetime before discarding than the coarse beads. Hence, during the 

manufacturing, the coarse beads would necessitate more frequent replenishment than the 

small beads. Moreover, small beads are preferable from a wear–product contamination 

perspective, which is important to pharmaceutical products. Second, when in a bead 

mixture, the small beads are nipped between the coarse beads, which may increase the wear 

rate of the smaller beads, and this aspect needs further investigation. In fact, we 

purposefully limited the size ratio between the coarsest beads to the smallest beads to 4:1. 

The use of coarser beads, e.g., 800 µm beads, could have caused a higher extent of damage 

to the smaller beads and is purposefully excluded.   

8.3 Conclusions 

In this study, we have explored the impacts of bead size and use of bead mixtures on the 
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breakage kinetics, the power consumption, and the number of intermittent milling cycles. 

The breakage kinetics were predicted reasonably well by the nth-order kinetic model 

augmented with decision trees using the process conditions. In general, 3000 rpm and a 

volumetric bead concentration of 50% along with the smallest beads (100 µm alone) had 

the highest process merit score, and the bead mixtures did not provide any synergistic 

improvement. The microhydrodynamic analysis attributed the fastest breakage with the 

100 µm beads to the high frequency of drug particle compressions between the beads. 

However, serious deviations from the microhydrodynamic trends were observed when the 

model was applied to the bead mixtures especially at the higher energetic conditions. 

Hence, this study also highlighted the need for the development of a new 

microhydrodynamic model which considers poly-dispersed beads. We conclude that while 

200 and 400 µm beads may have some operational ease of handling and lower cost, a more 

detailed analysis suggested these advantages are overrated. Considering lower media wear 

associated with the 100 µm beads as compared with the 200 and 400 µm beads, the driver 

for utilization of small beads gets even stronger for pharmaceutical applications where 

product contamination must be mimimized. The pre-milling of the drug suspension in a 

rotor-stator mill is expected to eliminate any clogging issue associated with the 100 µm 

beads during the initial phase of milling, which is only notable at the low stirrer speed and 

the bead loading conditions. Other practical approaches such as gradual addition of the 

drug powder into the stabilizer solution and ramping-up the suspension flow rate during 

this phase could also alleviate this practical operational issue with the 100 µm beads. These 

practical aspects will be considered in a future study.
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CHAPTER 9 

CONCLUSIONS AND FUTURE WORK 

 

9.1 Conclusions 

The upshot of our review of the publications on the modeling of WSMM presented in 

Chapter 1 is that (i) more widespread use of mechanistic modeling is warranted as most 

modeling efforts in pharmaceutical nanomilling have been dedicated to empirical, 

statistically-based models, (ii) none of the models could simulate all aspects of the WSMM 

process, and (iii) each modeling approach is typically good at analyzing a certain aspect of 

the process, and has various pros/cons. Chapter 1 also discussed that the MHD model is 

superior to the SI–SN model due to its simplicity and capability of accounting for 

microhydrodynamics without long and computationally expensive CFD simulations. As it 

allows natural coupling with CFD EE model through the “granular temperature” and 

provides a path to the development of a PBM with mechanistic breakage kernels, coupled 

models involving MHD, are expected to yield a more detailed process understanding at a 

reasonable computational cost. To this end, in this dissertation, we have decided to use and 

improve/advance the MHD model in the modeling of WSMM and developed a combined 

kinetic–microhydrodynamic modeling approach noting that there is no PBM with accurate 

mechanistic kernels for WSMM in the literature. Hence, instead of using PBM, we 

experimentally tracked the evolution of the average kinetic behavior during WSMM, i.e., 

the timewise evolution of the median size of the milled suspensions and developed new 

empirical kinetic models to describe the breakage kinetics and relate the kinetic parameters 

to the MHD model (Chapters 2 and 3). It is expected that such coupled kinetic–
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microhydrodynamic models will stimulate development of mechanistic breakage kernels 

through coupled PBM–MHD in the future. 

Chapter 2 showed us that although first order breakage kinetic model has been 

widely used in the literature, nth-order model (n2) had a better fitting capability to the 

timewise evolution of the median particle size during milling when all data points, 

including early measurements, were considered. Unlike the purely empirical correlation 

between the breakage rate constant and the process parameters, the kinetic–

microhydrodynamic correlation was proved to have a great prediction competence for both 

center point experiments and extrapolated experiments, which were outside the range of 

the DOE used for the model calibration. Chapter 3 investigated how microhydrodynamic 

parameters were affected when the packing limit of the beads was taken into account. The 

results showed that MHD parameters could explain the experimental breakage kinetics 

better when Lun and Ma-Ahmadi radial distribution functions at contact were used instead 

of Carnahan-Starling, in which the packing concentration limit was disregarded. This 

impressive outcome proved the worthiness of this physically driven model. Besides 

providing us with significant insights, such models can be used for process development, 

optimization, and intensification as a complementary tools to experiments.  

Chapters 4–6 presented the first comprehensive studies on the combined 

experimental–theoretical analyses of heat generation–transfer during WSMM. Chapter 4 

revealed a drastic temperature rise during the milling which was affected by stirrer speed, 

bead loading, and bead size. An increase in any one of these variables led to a higher 

temperature rise while their impact was ranked ordered in the following manner: stirrer 

speed > bead loading >> bead size. Chapter 5 formulated an enthalpy balance model (EBM) 
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to successfully simulate the temperature evolution during milling considering all related 

heat transfer properties of the system by only one fitting parameter, which could be 

predicted via process conditions. Chapter 6 derived a lumped parameter model (LPM) as 

an alternative approach, which was more flexible with 2 fitting parameters. Since the 

overall heat transfer coefficient was not calculated but fitted, the need for correlations and 

properties to calculate it was eliminated and it did not require the power consumption 

information, unlike the EBM. In other words, the LPM had some advantages compared to 

the EBM since it required less information and provided good estimations of the 

temperature profile. However, both mechanistic models like the EBM and semi-theoretical 

models like the LPM have usage areas as one could provide more insight about the process 

and the other could be more practical.  

Chapter 7 used CPS–YSZ bead mixtures for the first time in the milling literature 

and concluded that while CPS beads were more energy efficient and YSZ beads led to 

faster breakage of the drug particles, their mixtures could optimize the process holistically, 

especially when heat dissipation was considered. This work also enabled us to design a 

decision tree for the judicious selection of various bead mixtures for specific considerations 

in the pharmaceutical industry. Finally, small beads were found to be superior to other bead 

sizes and their mixtures in terms of cycle time, heat dissipation, and power consumption 

with some handling and cost drawbacks (Chapter 8). MHD analysis of the bead size 

mixtures was done based on the average bead size in the mixtures. While this approach 

could be considered as over-simplification, it provided some insights into the role of bead 

size in particle breakage. 
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Overall, this dissertation has attempted to resolve major process challenges facing 

the WSMM process: relatively slow and inefficient process, high heat dissipation, high 

energy consumption, etc. using combined experimental and theoretical approaches with 

the modified microhydrodynamic model. For the first time in literature, heat generation–

transfer aspects of the process have been investigated. The EBM and LPM models have 

provided significant insights into the evolution of temperature during milling. This 

dissertation has established that the process can be effectively optimized via three distinctly 

different approaches: (i) optimize the stirrer speed and bead loading for a given bead size–

material of construction, (ii) optimize the composition of bead mixtures with different bead 

materials at a fixed set of stirrer speed–bead loading, and (iii) simultaneous optimization 

of bead mixture composition at various stirrer speed–bead loadings. Unfortunately, 

mixtures of beads with different sizes do not provide sufficient optimization flexibility. 

From a modeling perspective, the microhydrodynamically and enthalpy-driven 

mechanistic or phenomenological models as well as various correlations developed in this 

dissertation will help engineers to simulate and predict the impact of various parameters 

and identify optimal processing conditions along with failure modes. 

9.2 Future Work 

In Chapter 2, excellent descriptive (fitting) capability of the nth-order kinetic model as well 

as the good predictive capability of the kinetic–microhydrodynamic correlation has been 

established. Not only do these models provide mechanistic process understanding of the 

bead–bead collisions and capture frequency of the drug particles in the mill, but they also 

enable engineers to predict the evolution of the median particle size for a multitude of 

stirrer speed–bead loading–bead type combinations. This could save effort, time and 
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materials as well as allow engineers to identify failure modes and optimal processing 

conditions and bead type. However, the current kinetic–microhydrodynamic correlation is 

not independently predictive as the power consumption data needed for Runs 9–12 were 

still obtained from the experiments. To obviate the need for measuring the power 

consumption Pw without too many additional experiments, one can use the Pw values 

obtained from the DOE (Runs 1–8) and develop a general correlation for Pw as a function 

of the dimensionless Euler number Eu, Reynolds number Re, and Froude number Fr for a 

specific mill and such a correlation can be used for predicting Pw [137]. Alternatively, Pw 

can be estimated by a relatively inexpensive Eulerian–Eulerian simulation, with Kinetic 

Theory of Granular Flow (KTGF) for the beads phase (see e.g., [102]), of the torque 

required to rotate the stirrer of the mill via computational fluid dynamics (CFD), and the 

approach can be validated using the existing data from Runs 1–8. Such simulations will 

also allow a thorough understanding of the recirculation effects. As discussed in Section 

2.2.7, the impact of recirculation on the particle size can be analyzed using a PBM for the 

mill–holding tank. Clearly, there is a strong need for a mechanistic PBM that incorporates 

the microhydrodynamic parameters in its specific breakage rate, which is analogous to k 

here. Hence, the current chapter and the establishment of the k correlation with the three 

microhydrodynamic parameters motivate the development of a mechanistic PBM. 

Development of such a mechanistic PBM will allow for predicting the temporal evolution 

of the whole particle size distribution, rather than the median size alone. In addition, the 

kinetic–microhydrodynamic model informs future mechanistic PBM–MHD coupled 

models in terms of how specific breakage rate kernels of PBM can be formulated in terms 
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of most relevant microhydrodynamic parameters, i.e., of which the average frequency of 

drug particle compressions between the beads turns out to be the most important parameter.  

For developing a further understanding of the temperature increase during milling, 

the impact of polymer–surfactant concentration on the viscosity of the suspensions and 

heat generation should be investigated as well. Also, to develop a more fundamental 

understanding of the variation of the fraction of power converted into heat at various 

milling conditions, various energy dissipation mechanisms at the bead–bead collision scale 

should be evaluated within the context of a microhydrodynamic model.  Since temperature 

rise has been a recently addressed challenge, it needs attention for investigating its other 

various aspects, for example, the impact of other process parameters such as different bead 

material, flow rate, drug loading, and their modeling. Besides, it should be studied at 

different scales and our hypothesis is the temperature increase would be lower at larger 

scales due to the cooling effect of the recirculated suspension from the holding tank. The 

EBM model could be improved by deriving more realistic correlations for calculating the 

overall heat transfer coefficient. Also, instead of empirical correlations, a mechanistic 

estimate for the fraction of power converted to heat could be sought. 

The successful use of bead mixtures will pave the way to develop robust, optimal 

WSMM processes while providing unprecedented flexibility in process design and 

optimization. Future work can focus on the examination of the impact of bead mixtures on 

media wear and contamination. Besides, there is a need for developing MHD analysis for 

bead mixtures of both different materials and different sizes, which could be a subject of a 

future study. 
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APPENDIX A 

SUPPLEMENTARY DATA FOR CHAPTER 2 

This appendix contains supplementary tables and codes related to the breakage kinetics 

models and microhydrodynamic correlations, which was studied in Chapter 2. 

Table  A.1  Average Stirrer Power per Unit Volume Pw, Apparent Shear Viscosity L 

and Density L of the Milled Drug Suspensions as well as the Calculated 

Microhydrodynamic Parameters for the Wet Milling Experiments 
Run 

no. 

Pw 

(W/m3) 

µL  

(mPa·s)a 

ρL  

(kg/m3) 

103  

(m2/s2) 

ub  

(m/s) 

ν  

(kHz) 

σb
max  

(GPa) 

αb  

(µm) 

a  

(mHz) 

Πσy   

(J2/m6s) 

1 2.81105 160 1030 1.28 0.06 2.15 1.8410-2 3.82 15.9 1.901012 

2 8.65105 119 1030 4.32 0.10 4.32 1.58 2.41 16.7 2.731016 

3 4.90105 118 1030 0.74 0.04 5.60 1.6510-2 3.42 61.7 4.551012 

4 9.48105 57.4 1030 2.35 0.08 10.9 1.40 2.13 61.5 6.051016 

5 1.03106 144 1020 5.15 0.11 4.31 2.4310-2 5.04 55.5 1.161013 

6 1.49106 67.4 1030 12.4 0.18 7.31 1.94 2.97 43.9 1.071017 

7 1.16106 81.0 1030 2.50 0.08 10.3 2.1110-2 4.37 185 2.221013 

8 2.49106 32.5 1030 9.53 0.16 22.0 1.85 2.82 217 3.731017 

9 5.31105 113 1030 1.77 0.07 4.44 1.9710-2 4.07 51.2 6.171012 

10 1.45106 57.6 1030 7.29 0.14 9.86 1.75 2.67 64.5 1.151017 

11 1.15105 174 1030 0.78 0.04 1.15 1.6710-2 3.46 5.50 5.831011 

12 5.31105 123 1030 4.08 0.10 2.88 1.56 2.38 8.57 1.481016 

 aTaken at the shear rate  of 1000 1/s.
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Table  A.2  Statistics of the Estimated MLRM Coefficients, Including the Intercept, 

Correlating the Breakage Rate Constant K of the nth-order Kinetic Model to the 

Microhydrodynamic Parameters 

Fit 

Parameter Model 

Symbola Coefficientb p value R2 
Adj 

R2 
SSR p value 

First-order 

MLRM, BM2 

Intercept (µm(n-1)min-1) 1.4410-1 1.7610-1 0.82

8 

0.79

9 
0.182 1.7210-3 

a (mHz) 4.6510-3 1.7210-3 

First-order  

MLRM, BM3 

Intercept (µm(n-1)min-1) 6.1510-1 3.6510-3 
0.96

3 

0.94

8 
0.039 2.6110-4 αb (µm) -1.4410-1 7.8010-3 

a (mHz) 4.8510-3 1.0810-4 

First-order  

MLRM, BM4 

Intercept (µm(n-1)min-1) 5.4910-1 1.9610-2 

0.96

9 

0.94

5 
0.033 1.8210-3 

αb (µm) -1.2310-1 4.7610-2 

a (mHz) 4.4310-3 2.7910-3 

Πσy (10-16 J2/m6s) 3.6610-3 4.4610-1 

First-order  

MLRM, BM5 

Intercept (µm(n-1)min-1) 5.4310-1 1.5310-1 

0.96

9 

0.92

7 
0.033 1.3610-2 

σb
max (GPa) 1.3710-3 9.8210-1 

αb (µm) -1.2110-1 1.7210-1 

a (mHz) 4.4410-3 1.2810-2 

Πσy (10-16 J2/m6s) 3.5510-3 6.2410-1 

Second-order 

MLRM, BM4 

Intercept (µm(n-1)min-1) 5.5010-1 1.0010-2 

0.97

5 

0.95

6 
0.026 1.1610-3 

αb (µm) -1.5610-1 8.2610-3 

a (mHz) 8.0510-3 2.6410-2 

a2 (mHz2) -1.3510-5 2.3910-1 

Second-order 

MLRM, BM5 

Intercept (µm(n-1)min-1) 3.6510-1 1.9810-2 

0.99

5 

0.98

9 
0.005 8.3610-4 

αb (µm) -1.1610-1 9.7610-3 

a (mHz) 9.2310-3 4.9210-3 

Πσy (10-16 J2/m6s) 7.8510-3 3.8510-2 

a2 (mHz2) -2.28x10-2 2.7010-2 

MLRM with 

interaction  

terms, BM4 

Intercept (µm(n-1)min-1) 7.1110-2 1.3710-1 

0.98

7 

0.97

8 
0.013 2.310-4 

a (mHz) 1.6310-2 1.6810-3 

αba (µm.mHz) -2.8110-3 3.9110-3 

aΠσy (10-16 mHz J2/m6s2) -7.3510-5 2.9810-2 

MLRM with 

interaction  

terms, BM5 

Intercept (µm(n-1)min-1) 4.2610-2 6.4010-2 

0.99

9 

0.99

7 
0.001 1.0610-4 

a (mHz) 1.2510-2 1.3210-3 

σb
maxa (GPa.mHz)  2.1810-3 1.3310-2 

αba (µm.mHz) -1.9110-3 4.1610-3 

aΠσy (10-16mHz J2/m6s2) -1.4510-4 2.7010-3 

aStatistically insignificant (p value > 0.01) parameters are bolded. Πσy is treated as a single 

parameter as σy is a constant. bThe coefficients have the units that make the MLRM equation 

dimensionally homogeneous. 
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A.1 Sample MATLAB Code for the Microhydrodynamic Calculations 

Main.m 
global Pw     % Power applied to the stirrer per unit volume, W/(m^3) 

global Db     % Milling bead diameter, m  

global c      % solids volumetric concentration  

global g0     % radial distribution function at contact  

global k      % restitution coefficient for bead-bead collisions 

global Rdiss0 % dissipation coefficient taking into account squeezing the liquid film 

global ub     % average particle oscillation velocity, m/s 

global v      % frequency of the single bead oscillation, 1/s 

global Em     % non-dimensional particle-particle gap thickness at which the lubrication force stops 

continous increase and becomes a constant 

global visliq  % dynamic viscosity of the equivalent liquid to be measured from viscometer, kg/ms 

global dliq  % density of the equivalent liquid, kg/(m^3) 

global dbeads  % density of the media beads, kg/(m^3) 

global K       % empirical correlation coefficient for correction for large Reynolds numbers 

global Eht       % granular energy balance for a well-mixed slurry in the mill 

global Rb  %m radius of bead 

global etab %Poisson ratio of the bead 

global Yb  %Young modulus of the bead 

global Rp  %radius of the particle 

global eps  %volume fraction of the drug in the suspension 

global Ystar %reduced elastic modulus of the beads 

global Yp   %Young modulus of the particle 

global etap  %Poisson ratio of the particle 

global gamma  

global clim  %maximum bead concentration 

  

y0=[1e-6]; % case with 1 unknown, 1 equation, the initial guess was gotten from Eskin's paper at 3200rpm 

  

% Solver based on medium scale Gauss-Newton optimization with quadcubic line search 

% Do NOT change the solver parameters below: 

options=optimset('Diagnostics','on','Display','iter','Largescale','off','TolX',[1e-6],'TolFun',[1e-10],... 

'MaxIter',[2e4],'MaxFunEvals',[2e4],'TolCon',[1e-10],'DiffMaxChange',[1e-8],'DiffMinChange',[1e-10]); 

[y,fval,exitflag,output]=fsolve(@Equationset,y0,options); 

  

% y(1) is equal to the granular temperature theta 

ub=sqrt((8/pi)*y(1)); %m/s 

V=((24*c*g0)/Db)*sqrt(y(1)/pi); %Hz 

v=V/1000 ; %KHz 

Fbn=1.96*(Yb/(1-etab^2))^(2/5)*(dbeads^(3/5))*(Rb^2)*(y(1)^(3/5)); 

Alphab=(0.75*(1-etab^2)/Yb*Rb*Fbn)^(1/3); %m 

alphab=Alphab*10^6 ; %micrometer 

sigmabmax=3*Fbn/(2*pi*(Alphab)^2)/10^9; %GPa 

p=0.97*c/(1-c)*((dbeads*(1-etab^2)/Yb)^(2/5))*(y(1)^(2/5))*Rp/Rb; 

A=p*V; %Hz 

a=A*1000; %mHz 

pisigmaA=2.23*(c^2)*2*g0/((pi^(5/2))*eps); 

pisigmaB=(Yb/(1-etab^2))^(18/15); 

pisigmaC=((Ystar/Yp)^gamma); 

pisigmaD=(dbeads^(4/5))/Rb^2*(y(1)^(13/10)); 

pisigma=2.23*(c^2)*2*g0/((pi^(5/2))*eps)*((Yb/(1-

etab^2))^(18/15))*((Ystar/Yp)^gamma)*(dbeads^(4/5))*Rp/Rb^2*(y(1)^(13/10)); %(J2/m6.s) 

granulartemperature=y; %m2/s2 
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% END OF MAIN PROGRAM % 

g0 

granulartemperature %m2/s2 

ub %m/s 

v %KHz 

sigmabmax %GPa 

alphab %(micrometer) 

a %mHz 

pisigma %J2/m6.s) 

format shortg 

Result=[g0; y(1); ub; v; sigmabmax; alphab; a; pisigma] 

 

Equationset.m 
global Pw     % Power applied to the stirrer per unit volume, W/(m^3) 

global Db     % Milling bead diameter, m  

global c      % solids volumetric concentration  

global g0     % radial distribution function at contact  

global k      % restitution coefficient for bead-bead collisions 

global Rdiss0 % dissipation coefficient taking into account squeezing the liquid film 

global ub     % average particle oscillation velocity, m/s 

global v      % frequency of the single bead oscillation, 1/s 

global Em     % non-dimensional particle-particle gap thickness at which  the lubrication force stops 

continuous increase and becomes a constant 

global visliq  % dynamic viscosity of the equivalent liquid to be measured from viscometer, kg/ms 

global dliq  % density of the equivalent liquid, kg/(m^3) 

global dbeads  % density of the media beads, kg/(m^3) 

global K       % empirical correlation coefficient for correction for large Reynolds numbers 

global Eht       % granular energy balance for a well-mixed slurry in the mill 

global Rb   %m radius pf bead 

global etab  %Poisson ratio of the bead 

global Yb   %Young modulus of the bead 

global Rp   %radius of the particle 0min 

global eps   %volume fraction of the drug in the suspension 

global Ystar  %reduced elastic modulus of the beads 

global Yp   %Young modulus of the particle 

global etap  %Poisson ratio of the particle 

global gamma  

global clim %maximum bead concentration 

Pw=822916.6667; % please get from data % Power applied to the stirrer per unit volume, W/(m^3) 

Eht=0; % please get from data % granular energy balance for a well-mixed slurry in the mill 

%other parameters 

c= 0.55;% please get from data %  solids volumetric concentration i.e (50 ml bead powder *void 

fraction)/total volume of chamber 

k= 0.76; % particle-particle restitution coef. ref. Tatsumi see coefficient of restitution paper 0.76 for YSZ, 

0.9 for CPS 

Em=0.003;   % non-dimesnional particle-particle gap thickness  

visliq=0.048390987;%kg/(m·s) Please measure for each sample 

dliq= 1026; %kg/(m^3) Please measure for each sample 

dbeads=6000;%kg/(m^3)% measured  

Db= 0.000405; %m please include the diameter of the bead with different sizes. 

Rb= Db/2; %m radius of the bead 

etab=0.2; %poisson ratio of the bead  (0.2 for YSZ 0.33 for CPS) 

Yb=200*10^9; %Pa Young modulus of the bead (200 GPa for YSZ, 1.5 GPa for CPS)  

Rp=13.723*10^-6; %0 min (m)radius of the particle 

eps=0.07444882; %volume fraction of the drug in the suspension 
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Ystar=((1-etab^2)/Yb+(1-etap^2)/Yp)^(-1); %reduced elastic modulus of the beads 

Yp=8.93*10^9; %Pa Young modulus of the particle 

etap=0.3; %Poisson ratio of the particle 

gamma=1/3; 

clim=0.63; 

% calculate the emprical correlation coefficient 

K=(0.096+0.142*c^0.212)/((1-c)^4.454); 

  

%Calculate the radial distribution function at contact  

g0=(1-(c/clim)^(1/3))^-1 

 

% Dissipation Coefficient 

Rdiss0=1+3*((0.5*c)^0.5)+(135/64)*c*log(c)+11.26*c*(1-5.1*c+16.57*(c^2)-21.77*(c^3))-

log(Em)*g0*c; 

Re=Db*dliq*(y(1)^0.5)/visliq; 

  

Rdiss=Rdiss0+Re*K; 

nb=6*c/(pi*(Db^3)); 

epsvis= 9*pi*visliq*Db*nb*y(1)*Rdiss; 

epscoll=(12/(Db*sqrt(pi)))*(1-(k^2))*(c^2)*dbeads*g0*(y(1)^1.5); 

func(1)=Pw-epsvis-epscoll-Eht; 

A.2 R Code for the Subset Selection Algorithm 

for (i in c(1:4)) { 

  print(paste("running variable", i)) 

  bestAdjR=0 

  bestRSS=Inf 

  regnames=combn(colnames(data[,!(names(data) %in% c('k'))]),i) 

  for (j in c(1:length(regnames[1,]))) { 

    model=paste0("k~",paste("0",paste(regnames[,j],collapse="+"),sep = "+")) 

    #model=paste0("k~",paste(regnames[,j],collapse="+")) 

    fit=lm(as.formula(model),data = data) 

    adjR=summary(fit)$adj.r.squared  

    RSS=anova(fit)["Residuals", "Sum Sq"] 

    R2=summary(fit)$r.squared 

    Pvalue=summary(fit)$coefficients[,4]   

    Pmodel=lmp(fit) 

    if (adjR>=bestAdjR) { 

      bestAdjR=adjR 

      bestRSS=RSS 

      bestModel=model 

      bestR2=R2 

      bestcoef=coef(fit) 

      bestPvalue=Pvalue 

      bestfit=fit 

      bestPmodel=Pmodel 

    } 

     

  } 
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  print("best model") 

  print("best coef") 

  print(formatC(bestcoef, format="e", digits = 2)) 

  print("best Pvalue") 

  print(formatC(bestPvalue, format="e", digits = 2)) 

  print("Best R2") 

  print(bestR2) 

  print("adj r") 

  print(bestAdjR) 

  print("bestRSS") 

  print(bestRSS) 

  print("bestPmodel") 

  print(formatC(bestPmodel, format="e", digits = 2)) 

   

} 
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APPENDIX B 

SUPPLEMENTARY DATA FOR CHAPTER 3 

This appendix contains the subset selection algorithm and supportive tables and figures 

related to the bead packing limit concentration study as described in Chapter 3. 

B.1 Details of the Subset Selection Algorithm 

Subset selection algorithms are used to find a subset of predictors that are most related to 

the response variable. For each number of predictors, all subsets of features with a fixed 

number of predictors are considered for model fitting, and the best model is selected among 

Algorithm 1: Subset Selection with LOOCV 

Input: Data Set: (𝑥𝑖
1, 𝑥𝑖

2, … , 𝑥𝑖
𝑇; 𝑦𝑖)𝑖=1

𝐼  

For each 𝑗 = 1, 2, … , 𝐽: 

 
For 

each  
z  combination (𝑇

𝑗
) of predictors 

  
For 

each 
𝑖 = 1, 2, … , 𝐼: 

   
(a) Set training set: (𝑥𝑟

𝑧; 𝑦𝑟) ∀ 𝑟 = 1,2, … , 𝑖 − 1, 𝑖 +

1, … , 𝐼 

   (b) Set test set: (𝑥𝑖
𝑧; 𝑦𝑖) 

   (c) Fit the model using training set 

   
(d) Calculate the squared error 𝑒𝑖

2 using test set and fitted 

model 

  (a) Set 𝑆𝑆𝑅𝑧 = ∑ 𝑒𝑖
2𝐼

𝑖=1  

 (a) Set the best model 𝐵𝑀𝑗 as the one with the lowest 𝑆𝑆𝑅𝑧 

Select overall best models (BMs) among 𝐵𝑀1, 𝐵𝑀2, … , 𝐵𝑀𝑗 as the one(s) that have 

lowest SSR and all predictors have a statistically significant relationship (p value ≤

0.01) with the response. 
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them using a criterion such as SSR or adjusted 𝑅2. In this chapter, we modified the subset 

selection algorithm presented in ref. [182]. Cross-validation techniques have been 

commonly used to estimate the predictive power of trained models in a realistic setting 

[216]. Our choice of sampling technique is known as leave-one-out cross-validation 

(LOOCV), which works well in datasets with small sample sizes [217]. Algorithm 1 

presents the subset selection with LOOCV. Our dataset was divided into two parts: training 

sets and test sets. In this resampling paradigm, the test set consisted of only one observation 

(milling run), whereas the training set included all the remaining observations. The model 

was fitted with the samples in the training set and error was calculated using the sample in 

the test set. This process was repeated the number of times as the number of observations 

until each observation was used as the test set only once. The performance of the model 

was evaluated by summing the errors for each fitted model using the single observation in 

the test. LOOCV is less biased compared to other cross-validation techniques such as 

validation set approach and k-fold cross-validation [182]. A disadvantage of LOOCV is 

the high computational cost of the model fitting. Our subset selection algorithm with 

LOOCV did not have this disadvantage; fitting the MLRM was very fast as the sample size 

was not too large.  

 In the implementation of the subset selection algorithm, we set J = 4 as the 

maximum number of features (independent variables) for our experiments. Then, for each 

number of features considered, we generated a combination (𝑇
𝑗
) of features. This set is 

{{1},{2},{3},{4}} when j = 1, {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}} when j = 2,  

{{1,2,3},{1,2,4},{1,3,4},…} when j = 3, and similarly for the case T = 4. In the same way, 

feature sets were generated for the cases when T = 8 and T = 10. We iterated through these 
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subsets to calculate the LOOCV error. For each observation, we assigned the training set 

to be all observations, except one, and the test set to be the remaining observation. I = 10 

is the set for the subset selection algorithm. We fitted a model with a selected subset of 

features using the training set and calculated squared error using the test set. The squared 

errors were summed to calculate the SSR for a certain feature set. Then, an MLRM model 

was selected using the lowest SSR as the best model (BM) for a certain number of features 

considered. Finally, overall BM was selected as the model with the lowest SSR.   
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B.2 Supportive Tables and Figures 

Table  B.1  The Average Stirrer Power per Unit Volume Pw, the Apparent Shear 

Viscosity L and the Density L of the Milled Drug Suspensions (Measured In Runs 1–14), 

as well as the Viscosity M and the Density M of the Bead–Milled Drug Suspensions 

(Estimated) 

 

Run No. Pw (W/m3) µL (mPa·s)a ρL (kg/m3) µm (mPa·s)b ρm (kg/m3)c 

1 2.81105 160 1030 829 1030 

2 8.65105 119 1030 616 2770 

3 4.90105 118 1030 5520 1040 

4 9.48105 57.4 1030 2680 3520 

5 1.03106 144 1020 748 1030 

6 1.49106 67.4 1030 349 2770 

7 1.16106 81.0 1030 3780 1030 

8 2.49106 32.5 1030 1520 3520 

9 1.11106 76.5 1030 24100 1040 

10 2.16106 16.9 1030 5330 4010 

11 5.31105 113 1030 1490 1030 

12 1.45106 57.6 1030 761 3140 

13 1.15105 174 1030 586 1030 

14 5.31105 123 1030 414 2510 
aTaken at the shear rate  of 1000 1/s. bµm = µ𝐿[1 + 2.5𝑐 + 10𝑐2 + 0.0019 𝑒𝑥𝑝(20𝑐)] cρm = ρ𝑏𝑐 + ρ𝐿(1 −
𝑐) 

 

Table  B.2  Microhydrodynamic Parameters Calculated Using the Carnahan–Starling 

RDF 
Run 

No. 
g0 (-)  (m2/s2) ub (m/s) ν (kHz) σb

max (GPa) 
αb 

(µm) 
a (mHz) Πσy (J2/m6s) 

1 3.00 2.0410-3 7.2010-2 1.45 2.0210-2 4.19 12.9 1.851012 

2 3.00 6.7710-3 1.3110-1 2.89 1.72 2.63 13.4 2.611016 

3 6.00 1.5710-3 6.3210-2 3.63 1.9210-2 3.98 53.9 5.381012 

4 6.00 4.7010-3 1.0910-1 6.88 1.60 2.45 51.1 6.631016 

5 3.00 8.0810-3 1.4310-1 2.88 2.6610-2 5.52 44.5 1.111013 

6 3.00 1.8610-2 2.1810-1 4.80 2.11 3.22 33.3 9.741016 

7 6.00 5.1010-3 1.1410-1 6.53 2.4310-2 5.03 156 2.491013 

8 6.00 1.6710-2 2.0610-1 12.9 2.06 3.15 159 3.431017 

9 10.9 2.2910-3 7.6310-2 9.58 2.0710-2 4.29 248 2.301013 

10 10.9 9.1610-3 1.5310-1 21.0 1.83 2.80 305 4.141017 

11 4.14 3.0810-3 8.8610-2 2.98 2.2010-2 4.55 42.9 6.441012 

12 4.14 1.2010-2 1.7510-1 6.44 1.93 2.95 51.4 1.121017 

13 2.46 1.1610-3 5.4310-2 0.76 1.8110-2 3.74 4.25 5.261011 

14 2.46 6.0810-3 1.2410-1 1.91 1.69 2.58 6.67 1.351016 
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Table  B.3  Microhydrodynamic Parameters Calculated Using the Lun RDF 
Run 

No. 
g0 (-)  (m2/s2) ub (m/s) ν (kHz) σb

max (GPa) 
αb 

(µm) 
a (mHz) 

Πσy 

(J2/m6s) 

1 5.62 1.2810-3  5.7210-2 2.15 1.8410-2 3.82 15.9  1.901012 

2 5.62 4.3210-3 1.0510-1 4.32 1.58 2.41 16.7 2.731016  

3 13.5 7.4110-4 4.3410-2 5.60 1.6510-2 3.42 61.7 4.551012  

4 13.5 2.3510-3 7.7410-2 10.9 1.40 2.13 61.5 6.051016 

5 5.62 5.1510-3 1.1510-1 4.31 2.4310-2 5.04 55.5 1.161013 

6 5.62  1.2410-2 1.7710-1  7.31 1.94 2.97 43.0 1.071017 

7 13.5  2.5010-3  7.9810-2  10.3  2.1110-2  4.37  184  2.221013  

8 13.5  9.5310-3  1.5610-1  22.0  1.85  2.82  217  3.731017  

9 62.0 4.1210-4 3.2410-2 23.0 1.4710-2 3.04 301 1.401013 

10 62.0 2.6510-3 8.2210-2 64.0 1.43 2.18 567 4.681017 

11 8.13 1.7710-3 6.7210-2 4.44 1.9710-2 4.07 51.2 6.161012 

12 8.13 7.3010-3 1.3610-1 9.87 1.75 2.67 64.5 1.151017 

13 4.53 7.6610-4 4.4210-2 1.14 1.6610-2 3.44 5.4 5.671011 

14 4.53 4.0810-3 1.0210-1 2.88 1.56 2.38 8.6 1.481016 

 

Table  B.4  Microhydrodynamic Parameters Calculated Using the Ma–Ahmadi RDF 
Run 

No. 
g0 (-)  (m2/s2) ub (m/s) ν (kHz) σb

max (GPa) 
αb 

(µm) 
a (mHz) 

Πσy 

(J2/m6s) 

1 5.18  1.3710-3  5.9010-2  2.05  1.8710-2  3.87  15.5  1.911012  

2 5.18  4.6010-3  1.0810-1  4.12  1.60  2.44  16.3  2.731016  

3 13.7  7.3110-4  4.3110-2  5.64  1.6510-2  3.41  61.8  4.541012  

4 13.7  2.3210-3  7.6910-2  11.0  1.39  2.12  61.7  6.041016  

5 5.18  5.4810-3 1.1810-1  4.10  2.4710-2  5.11  54.1  1.161013  

6 5.18  1.3110-2  1.8310-1 6.94  1.97  3.00  41.8  1.061017  

7 13.7  2.4710-3  7.9310-2  10.4  2.1010-2  4.35  185  2.211013  

8 13.7  9.4310-3  1.5510-1  22.2  1.84  2.81  218  3.731017  

9 48.6 5.2610-4 3.6610-2 20.4 1.5410-2 3.20 294 1.511013 

10 48.6 3.2810-3 9.1410-2 55.8 1.49 2.28 538 4.841017 

11 8.06 1.7910-3 6.7410-2 4.41 1.9710-2 4.08 51.1 6.171012 

12 8.06 7.3510-3 1.3710-1 9.82 1.75 2.68 64.4 1.151017 

13 3.92 8.5010-4 4.6510-2 1.04 1.7010-2 3.52 5.1 5.621011 

14 3.92 4.5110-3 1.0710-1 2.62 1.59 2.43 8.1 1.461016 
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Table  B.5  Statistical Summary of Parameter Estimation (Runs 1–10) Using the nth-

order Kinetic Model 

Run Parameter Value 
p value 

(-)_ 

R2 

(-) 

Adj. R2 

(-) 

SSR 

(-) 

 

 dlim (µm) 0.161 0.0015 

0.989 

 

0.077 1 k (µmn-1min-1) 0.105 0.0002 0.987 

 n (-) 1.86 <0.0001  

 dlim (µm) 0.132 <0.0001 

0.995 

 

0.029 2 k (µmn-1min-1) 0.217 <0.0001 0.994 

 n (-) 2.06 <0.0001  

 dlim (µm) 0.158 <0.0001 

0.996 

  

3 k (µmn-1min-1) 0.432 <0.0001 0.996 0.022 

 n (-) 1.90 <0.0001   

 dlim (µm) 0.142 <0.0001 

0.997 

 

0.013 4 k (µmn-1min-1) 0.686 <0.0001 0.997 

 n (-) 2.08 <0.0001  

 dlim (µm) 0.152 <0.0001 

0.995 

 

0.030 5 k (µmn-1min-1) 0.215 <0.0001 0.994 

 n (-) 1.95 <0.0001  

 dlim (µm) 0.137 <0.0001 

0.997 

 

0.016 6 k (µmn-1min-1) 0.461 <0.0001 0.997 

 n (-) 2.10 <0.0001  

 dlim (µm) 0.154 <0.0001 

0.996 

 

0.023 7 k (µmn-1min-1) 0.806 <0.0001 0.995 

 n (-) 1.96 <0.0001  

 dlim (µm) 0.143 <0.0001 

0.998 

 

0.009 8 k (µmn-1min-1) 1.28 <0.0001 0.998 

 n (-) 2.12 <0.0001  

 dlim (µm) 0.134 <0.0001 

0.995 

 

0.021 9 k (µmn-1min-1) 2.41 <0.0001 0.994 

 n (-) 2.52 <0.0001  

 dlim (µm) 0.129 <0.0001 

0.996 

 

0.018 10 k (µmn-1min-1) 2.74 <0.0001 0.995 

 n (-) 2.56 <0.0001  
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Table  B.6  Statistical Summary of the Estimated MLRM Coefficients Correlating the 

Breakage Rate Constant k to the Micro-Hydrodynamic Parameters Calculated with the 

Carnahan–Starling RDF 

Approach 
Best 

Model 

Parameter Model 

Symbola Coefficientb p value R2 Adj. 

R2 SSRc p value 

First 

order-

MLRM 

BM1 a (mHz) 8.6710-3 4.1610-8 0.969 0.966 0.679 4.1610-8 

BM2 
αb (µm) -1.9010-2 5.2510-1 0.971 

 

0.963 

 

0.704 

 
7.2910-7 

 a (mHz) 9.0310-3 2.1710-6 

BM3 

σb
max (GPa) 8.7810-2 2.5110-1 

0.976 

 

0.966 

 

0.847 

 
4.8510-6 

 
αb (µm) -2.7710-2 3.6310-1 

a (mHz) 8.7510-3 8.5310-6 

BM4 

σb
max (GPa) 1.8110-1 1.4810-1 

0.980 

 

0.967 

 

1.124 

 
3.0710-5 

 

αb (µm) -4.8010-2 2.0210-1 

a (mHz) 9.6510-3 1.2710-4 

Πσy (10-16 J2/m6s) -1.1310-2 3.1110-1 

Second 

order-

MLRM 

BM1 a (mHz) 8.6710-3 4.1610-8 0.969 0.966 0.679 4.1610-8 

BM2 
a (mHz) 9.1710-3 6.5610-7  

0.974 

 

0.967 

 

0.656 

 

4.7010-7 αb
2  (µm2) -6.8010-3 2.6810-1 

BM3 

αb (µm) 1.5610-1 1.1410-1 
0.982 

 

0.974 

 

0.661 

 
1.7610-6 

 
a (mHz) 8.5810-3 3.9010-6 

αb
2  (µm2) -3.8310-2 7.2710-2 

BM4 

a (mHz) 3.3210-3 9.9410-2 

0.990 

 

0.983 

 

0.845 

 
4.3510-6 

 

Πσy (10-16 J2/m6s) 6.4810-2 2.2510-2 

a2 (mHz2) 2.3510-5 1.8110-2 

Πσy
2(10-32 

J4/m12s2) 
-1.8110-3 2.2810-2 

MLRM 

with 
interactio

n 

BM1 a (mHz) 8.6710-3 4.1610-8 0.969 0.966 0.679 4.1610-8 

BM2 
αb (µm) -1.9010-2 5.2510-1  

0.971 

 

0.963 

 

0.704 

 

7.2910-7 a (mHz) 9.0310-3 2.1710-6 

BM3 

a (mHz) 2.8010-2 5.3110-5  

 

0.995 

 

 

 

0.993 

 

 

 

0.446 

 

 

 

1.8110-8 

 

αba (µm.mHz) -4.3910-3 4.9010-4 

aΠσy (10-16 

mHz∙J2/m6s) 
-1.6710-4 1.0410-3 

BM4 

a (mHz) 1.3210-2 7.5010-6 

0.995 

 

0.992 

 

0.332 

 
3.8910-7 

 

σb
maxαb

  (GPa∙µm) 4.4410-2 2.9710-2 

σb
maxΠσy  (10-16 

GPa∙J2/m6s) 1.38102 1.6410-3 

αbΠσy  (10-16 

µm∙J2/m6s) -9.05101 1.6410-3 
 aStatistically insignificant (p value > 0.01) parameters are bolded and the best model was indicated by red 

color. Πσy is treated as a single parameter as σy is a constant; bThe coefficients have the units that make the 

MLRM equation dimensionally homogeneous; cThe unit of SSR is µm2n-2min-2. 
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Table  B.7  Statistical Summary of the Estimated MLRM Coefficients Correlating the 

Breakage Rate Constant k to the Micro-Hydrodynamic Parameters Calculated with the 

Lun RDF 

Approac

h 

Best 

Model 

Parameter Model 

Symbola Coefficient
b p value R2 

Adj. 

R2 
SSR p value 

First-

order 

MLRM 

BM1 a (mHz) 5.5510-3 7.7010-7 0.941 0.935 2.355 7.7010-7 

BM2 
σb

max (GPa) 6.9010-2 5.4610-1 0.944 

 

0.930 

 

2.536 

 
9.8610-6 

 a (mHz) 5.3610-3 1.3210-5 

BM3 

σb
max (GPa) 2.2710-1 9.6610-2 

0.966 

 

0.951 

 

2.437 

 
1.7210-5 

 

a (mHz) 6.4610-3 3.8410-5 

Πσy (10-16 

J2/m6s) 
-2.2010-2 7.3210-2 

BM4 

σb
max (GPa) 2.6710-1 1.3410-1 

0.967 

 

0.945 

 

3.164 

 
1.4310-4 

 

αb (µm) -1.9610-2 6.7110-1 

a (mHz) 6.7310-3 4.4010-4 

Πσy (10-16 

J2/m6s) 
-2.5010-2 1.0310-1 

Second-

order 

MLRM 

BM1 a (mHz) 5.5510-3 7.7010-7 0.941 0.935 2.355 7.7010-7 

BM2 
a (mHz) 5.3710-3 1.0010-5    

0.944 

  

0.930 

 

2.465 

 

9.6610-6 σb
max2 (GPa2) 4.1010-2 5.2510-1 

BM3 

a (mHz) 6.8110-3 1.2410-5 

0.975 

 

0.965 

 

1.601 

 
5.4610-6 

 

Πσy (10-16 

J2/m6s) 
4.4910-2 6.4910-2 

Πσy
2(10-32 

J4/m12s2) 
-1.4410-3 2.6510-2 

BM4 

a (mHz) 6.8610-3 5.3110-5 

0.976 

 

0.960 

 

1.733 

 
5.3410-5 

 

Πσy (10-16 

J2/m6s) 
7.3410-2 3.1010-1 

σb
max2 (GPa2) -6.9910-2 6.6410-1 

Πσy
2(10-32 

J4/m12s2) 
-2.0110-3 1.9110-1 

MLRM 

with 

interactio

n terms 

BM1 αba (µm∙mHz) 2.0710-3 4.0210-6 0.915 0.906 2.041 4.0210-6 

BM2 

a (mHz) 7.1510-3 5.1310-6 
 

0.970 

 

0.963 

 

1.479 

 

7.7610-7 
aΠσy (10-16 

mHz∙J2/m6s) 
-4.8010-5 2.3110-2 

BM3 

a (mHz) 6.9810-3 1.3710-5 
 

 

0.976 

 

 

 

0.966 

 

 

 

1.461 

 

 

 

4.7810-6 

 

σb
max αb 

(GPa∙µm) 
3.7610-2 2.2910-1 

aΠσy (10-16 mHz 

J2/m6s) 
-5.0610-5 1.8210-2 

BM4 

a (mHz) 1.6110-2 2.2210-8 

1.000 

 

0.999 

 

0.034 

 
1.3510-10 

 

Πσy (10-16 J2/m6s) 1.5810-2 1.4910-5 

αba (µm∙mHz) -2.6510-3 6.1110-7 

aΠσy (10-16 

mHz∙J2/m6s2) -1.4510-4 7.6010-8 
 aStatistically insignificant (p value > 0.01) parameters are bolded and the best model was indicated by red 

color. Πσy is treated as a single parameter as σy is a constant; bThe coefficients have the units that make the 

MLRM equation dimensionally homogeneous; cThe unit of SSR is µm2n-2min-2. 
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Table  B.8  Statistical Summary of the Estimated MLRM Coefficients Correlating the 

Breakage Rate Constant k to the Micro-Hydrodynamic Parameters Calculated with the 

Ma–Ahmadi RDF 

Approach 
Best 

Model 

Parameter Model 

Symbola Coefficient
b p value R2 

Adj. 

R2 
SSR p value 

First 

order-

MLRM 

BM1 a (mHz) 5.7710-3 5.5410-7 0.945 0.939 1.963 5.5410-7 

BM2 

a (mHz) 6.0110-2 5.8510-1 

0.947 

 

0.934 

 

2.181 

 

7.6410-6 

 

Πσy (10-16 

J2/m6s) 5.5910-3 1.0610-5 

BM3 

σb
max (GPa) 2.1010-1 1.0310-1 

0.968 

 

0.955 

 

2.033 

 

1.3010-5 

 

a (mHz) 6.7110-3 2.9910-5 

Πσy (10-16 

J2/m6s) -2.1010-2 6.8910-2 

BM4 

σb
max (GPa) 2.6410-1 1.1710-1 

0.970 

 

0.951 

 

2.502 

 

1.0210-4 

 

αb (µm) -2.7110-2 5.4410-1 

a (mHz) 7.1210-3 3.4010-4 

Πσy (10-16 

J2/m6s) -2.5310-2 8.3510-2 

Second 

order-

MLRM 

BM1 a (mHz) 5.7710-3 5.5410-7 0.945 0.939 1.963 5.5410-7 

BM2 

a (mHz) 6.9810-3 1.4110-5 

 

0.963 

 

0.953 

 

2.113 

 

1.9610-6 
Πσy

2(10-32 

J4/m12s2) -3.6210-4 9.0610-2 

BM3 

a (mHz) 7.0310-3 1.2710-5 

0.975 

 

0.965 

 

1.377 

 

5.4210-6 

 

Πσy (10-16 

J2/m6s) 3.7110-2 9.8710-2 

Πσy
2(10-32 

J4/m12s2) -1.2010-3 3.8010-2 

BM4 

a (mHz) 7.7810-3 5.0910-5 

0.983 

 

0.971 

 

1.297 

 

2.1110-5 

 

Πσy (10-16 

J2/m6s) 4.8310-2 4.5010-2 

αb
2 (µm2) -1.1410-2 1.6810-1 

Πσy
2(10-32 

J4/m12s2) -1.5810-3 1.8310-2 

MLRM 

with 

interactio

n 

BM1 a (mHz) 5.7710-3 5.5410-7 0.945 0.939 1.963 5.5410-7 

BM2 

a (mHz) 7.2310-3 5.9210-6  

0.969 

 

 

0.962 

 

 

1.398 

 

 

8.8710-7 

 
aΠσy (10-16 

mHz∙J2/m6s) -4.3310-5 3.6910-2 

BM3 

a (mHz) 1.7610-2 2.2810-5 

0.995 

 

0.993 

 

0.822 

 

2.2110-8 

 

αba (µm∙mHz) -2.9310-3 5.8610-4 

aΠσy (10-16 

mHz∙J2/m6s) -1.1810-4 8.9410-5 

BM4 

a (mHz) 1.7910-2 5.6110-7 

0.999 

 

0.998 

 

0.146 

 

2.9410-9 

 

Πσy (10-16 

J2/m6s) 1.1210-2 1.8510-3 

αba (µm∙mHz) -3.0510-3 1.0210-5 

aΠσy (10-16 

mHz∙J2/m6s2) -1.4210-4 2.1510-6 
 aStatistically insignificant (p value > 0.01) parameters are bolded and the best model was indicated by red 

color. Πσy is treated as a single parameter as σy is a constant; bThe coefficients have the units that make the 

MLRM equation dimensionally homogeneous; cThe unit of SSR is µm2n-2min-2. 
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Table  B.9  Statistical Summary of the Estimated Empirical MLRM Coefficients 

Correlating the Breakage Rate Constant k to the Process Parameters–Bead Properties 

Approach Best Model 
Parameter              Model 

Symbola Coefficientb p value R2 Adj. R2 SSR p value 

First-order 

MLRM 

BM1 c (-) 2.28 1.4610-3 0.694 0.660 6.723 1.4610-3 

BM2 
ω (rpm) -4.6210-4 9.8810-2 0.787 

 

0.733 

 

5.685 

 

2.0710-3 

 c (-) 5.65 1.6110-2 

BM3 

c (-) 7.87 2.1210-3 

0.890 

 

0.844 

 

3.777 

 

9.6810-4 

 

ρb (kg/m3) -2.8210-3 9.4310-3 

Yb (GPa) 7.1910-2 9.4210-3 

BM4 

ω (rpm) 3.3110-4 4.0010-1 

0.904 

 

0.839 

 

4.181 

 

3.3210-3 

 

c (-) 7.87 3.4110-3 

ρb (kg/m3) -3.9710-3 3.8710-2 

Yb (GPa) 1.0110-1 3.7610-2 

Second-order 

MLRM 

BM1 c2 (-) 4.88 1.3310-4 0.817 0.797 4.281 1.3310-4 

BM2 
c (-) -4.84 1.4310-2 0.918 

 

0.897 

 

2.153 

 

4.6110-5 

 c2 (-) 1.43101 1.6210-3 

BM3 

ω (rpm) 4.7010-4 9.5610-2 

0.946 

 

0.923 

 

1.780 

 

8.2810-5 

 

c (-) -1.22101 1.9610-2 

c2 (-) 2.21101 2.6310-3 

BM4 

c (-) -4.41101 3.4910-3 

0.982 

 

0.970 

 

0.715 

 

2.3510-5 

 

Yb (GPa) 5.82 6.4210-3 

c2 (-) 5.63101 1.5110-3 

Yb
2 (GPa2) -2.8910-2 6.4310-3 

MLRM with 

interaction 

terms 

BM1 ωc (rpm) 6.5410-4 1.1610-3 0.708 0.676 6.397 1.1610-3 

BM2 

ω (rpm) -7.6010-4 6.1110-3  

 

0.892 

 

 

0.865 

 

 

2.897 

 

 

1.3610-4 

 

ωc (rpm) 2.2410-3 9.2210-4 

BM3 

ω (rpm) -8.0110-4 6.7410-3 

0.905 

 

0.864 

 

3.402 

 

5.9710-4 

 

ωc (rpm) 2.2410-3 1.4210-3 

ωYb (rpm∙GPa) 4.1410-7 3.6610-1 

BM4 

ωc (rpm) 2.2910-3 1.5010-2  

 

 

0.905 

 

 

 

0.842 

 

 

 

5.060 

 

 

 

3.1910-3 

ωρb (rpm∙kg/m3) -8.1710-7 2.6210-2 

ωYb (rpm∙GPa) 2.1010-5 3.9910-2 

cρb (kg/m3) -5.2110-5 9.1610-1 
 aStatistically insignificant (p value > 0.01) parameters are bolded and the best model was indicated by red 

color; bThe coefficients have the units that make the MLRM equation dimensionally homogeneous; cThe unit 

of SSR is µm2n-2min-2. 
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Figure  B.1  Timewise evolution of the median particle size: experimental data, nth-order 

kinetics model fit, and predictions by Equations (6.7–6.10) with averaged dlim and n values 

for each bead material (Runs 1–6). 
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Figure  B.2  Timewise evolution of the median particle size: experimental data, nth-order 

kinetics model fit, and predictions by Equations (6.7–6.10) with averaged dlim and n values 

for each bead material (Runs 7–10). 
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APPENDIX C 

SUPPLEMENTARY DATA FOR CHAPTER 4 

This appendix contains supportive tables and figures about the thermal analysis of wet 

stirred media milling as referred in Chapter 4. 

Table  C.1  Characteristic Temperatures and Times for Each Milling Run 

Run 

No. 

tT(22) 

(min)
b 

tT(32) 

(min)
b 

tT(42) 

(min)b 

tT(45) 

(min)b 

Tt(5)  

(℃)c 

Tt(10) 

(℃)c 

Tt(30) 

(℃)c 

Tmax 

 (℃)c 

Nm

c 

TD

S (-) 

1 31 N/A N/A N/A 19 20 21 22 1 91.0 

2 28 N/A N/A N/A 20 21 22 22 1 91.0 

3 24 N/A N/A N/A 20 21 22 23 1 89.7 

4 23 N/A N/A N/A 19 19 22 23 1 89.7 

5 10 N/A N/A N/A 21 22 24 24 1 88.4 

6 5 N/A N/A N/A 22 22 24 24 1 88.4 

7 3 N/A N/A N/A 23 24 25 26 1 86.1 

8 3 N/A N/A N/A 24 25 26 26 1 86.1 

9 2.6 N/A N/A N/A 24 25 26 27 1 85.0 

10 3.3 30 N/A N/A 24 27 32 32 1 80.3 

11 1.6 12 N/A N/A 28 31 33 34 1 78.7 

12 1.3 12 N/A N/A 28 31 34 35 1 78.0 

13 2.4 10 N/A N/A 27 32 36 36 1 77.2 

14 1.4 7 N/A N/A 31 33 36 37 1 76.5 

15 0.8 5 N/A N/A 32 34 37 38 1 75.9 

16 1.3 5 N/A N/A 32 38 41 41 1 74.0 

17 0.9 3.4 20 N/A 35 39 42 42 1 73.4 

18 0.9 3.0 17 N/A 36 39 43 43 1 72.8 

19 0.4 2.7 10 31 38 42 44 45 2 56.9 

20 0.8 2.3 6.5 12.8 40 44 N/A 45 5 41.9 

21 1.0 2.2 7 12.2 39 43 N/A 45 5 41.9 

22 1.0 2.0 7.5 18.5 40 42 N/A 45 4 45.2 

23 0.5 1.5 5 8.5 42 N/A N/A 45 8 35.9 

24 0.5 1.3 4 7 43 N/A  N/A 45 9 34.5 

25 0.7 1.3 4 6.8 43 N/A N/A 45 10 33.3 

26 0.6 1.3 3.5 4.7 N/A N/A  N/A 45 13 30.5 

27 0.3 0.8 1.7 2 N/A N/A  N/A 45 33 22.4 
astirrer speed (rpm), bead loading (-), bead size (µm).btime required for the mill outlet temperature (oC) to 

reach the specified temperature; N/A: this temperature was not reached within 60 min milling. cmill outlet 

temperature at the specified milling time (min). N/A: mill shut down at 45 oC for additional cooling prior to 

the specified milling time.   
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Figure  C.1  Impact of stirrer speed on the timewise evolution of chiller liquid temperature 

for Db = 400 µm beads at various loadings: (a) c = 0.4 (Runs 2, 11, 20), (b) c = 0.5 (Runs 

5, 14, 23), and (c) c = 0.6 (Runs 8, 17, 26). 

 
Figure  C.2  Impact of bead loading on the timewise evolution of chiller liquid 

temperature for ω = 3000 rpm and various bead sizes: (a) Db = 200 µm (Runs 10, 13, 16), 

(b) Db = 400 µm (Runs 11, 14, 17), and (c) Db = 800 µm (Runs 12, 15, 18). 
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Figure  C.3  Impact of bead size on the timewise evolution of chiller liquid temperature 

for c = 0.5 and various stirrer speeds: (a) ω = 2000 rpm (Runs 4–6), (b) ω = 3000 rpm 

(Runs 13–15), and (c) ω = 4000 rpm (Runs 22–24). 

 
Figure  C.4  Impact of stirrer speed on the timewise evolution of mill outlet temperature 

for c = 0.5 at various bead sizes: (top) Db = 200 µm (Runs 4, 13, 22), (middle) Db = 400 

µm (Runs 5, 14, 23), and (bottom) Db = 800 µm (Runs 6, 15, 24). 
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Figure  C.5  Impact of stirrer speed on the characteristic time and temperatures for c = 

0.5 at various bead sizes: (a) Db = 200 µm (Runs 4, 13, 22), (b) Db = 400 µm (Runs 5, 14, 

23), and (c) Db = 800 µm (Runs 6, 15, 24). 
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Figure  C.6  Impact of bead loading on the timewise evolution of mill outlet temperature 

for Db = 400 µm at various stirrer speeds: (top) ω = 2000 rpm (Runs 2, 5, 8), (middle) ω = 

3000 rpm (Runs 11, 14, 17), and (bottom) ω = 4000 rpm (Runs 20, 23, 26). 
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Figure  C.7  Impact of bead loading on the characteristic time and temperatures for Db = 

400 µm at various stirrer speeds: (a) ω = 2000 rpm (Runs 2, 5, 8), (b) ω = 3000 rpm (Runs 

11, 14, 17), and (c) ω = 4000 rpm (Runs 20, 23, 26). 



 

278 

 

 
Figure  C.8  Impact of bead size on the timewise evolution of mill outlet temperature for 

ω = 3000 rpm at various bead loadings: (top) c = 0.4 (Runs 10–12), (middle) c = 0.5 (Runs 

13–15), and (bottom) c = 0.6 (Runs 16–18). 
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Figure  C.9  Impact of bead size on the characteristic time and temperatures for ω = 3000 

rpm with varying bead loadings: (a) c = 0.4 (Runs 10–12), (b) c = 0.5 (Runs 13–15), and 

(c) c = 0.6 (Runs 16–18). 
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APPENDIX D 

SUPPLEMENTARY DATA FOR CHAPTER 5 

 

This appendix contains the derivation of some correlations used for enthalpy balance 

model, as well as supportive figures and tables which was studied in Chapter 5. 

D.1 Derivation of Heat Removed by the Chiller 

The integration of a differential enthalpy balance for the coolant (chiller liquid) passing 

through the jacket (51) of the milling chamber leads to following expression for the heat 

removal rate from the milling chamber and overall enthalpy balance for the chiller liquid:  

𝑄ch = 𝑈𝐴m

𝑇ch,in − 𝑇ch,out

ln((𝑇ch,in − 𝑇s,m)/(𝑇ch,out − 𝑇s,m))
 

(D.1) 

𝑚ch𝐶p,ch(𝑇ch,out − 𝑇ch,in) = −𝑄ch = 𝑈𝐴m

𝑇ch,out − 𝑇ch,in

ln((𝑇ch,in − 𝑇s,m)/(𝑇ch,out − 𝑇s,m))
  

(D.2) 

In the derivation of the above expressions, one assumes plug flow of the chiller liquid 

inside the jacket (51) and makes a pseudo steady-state approximation due to time-

dependence of the variables along with the well-mixedness assumption for the suspension 

in the mill and the holding tank (spatial invariance of Ts,m and Ts.ht). The chiller liquid 

temperature entering the milling chamber Tch,in was measured and recorded for each 

sampling time. Rearrangement of Equation D.2 yields 

ln ((𝑇ch,in − 𝑇s,m)/(𝑇ch,out − 𝑇s,m)) =
𝑈𝐴m

𝑚ch𝐶p,ch
 

(D.3) 

This equation can be simplified by defining number of transfer units (NTU) as follows: 

𝑈𝐴m

𝑚ch𝐶p,ch
= NTU       ln (

𝑇ch,in − 𝑇s,m

𝑇ch,out − 𝑇s,m
)  = NTU 

(D.4) 

𝑇ch,out = 𝑇s,m + (𝑇ch,in − 𝑇s,m) exp(−NTU)   (D.5) 

which is identical to Equation (5.7) in the main text. Continuing derivation as: 
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𝑇ch,in − 𝑇ch,out =  𝑇ch,in(1 − exp(−NTU)) − 𝑇m(1 − exp(−NTU)) = − (𝑇ch,in

− 𝑇s,m) (1 − exp(−NTU)) 

(D.6) 

The r.h.s. of Equation (D.2) could be rewritten with NTU as follows: 

𝑄ch = 𝑈𝐴m(𝑇ch,in − 𝑇ch,out) NTU⁄  (D.7) 

By inserting Equation (D.6) and NTU definition into Equation (D.7), Equation (5.6) was 

obtained. Equation (5.8) was obtained in a similar fashion. 

D.2 Overall Heat Transfer Coefficient Calculation 

Overall heat transfer coefficient U for the mill chamber and holding tank was calculated 

from [218]: 

1

𝑈
=

1

ℎB
+

(𝑅o − 𝑅i)𝐴𝑖

𝑘wall𝐴lm
+

𝐴i

𝐴oℎj
 

(D.8) 

where hB is the heat transfer coefficient of the liquid (product batch) inside the mill 

chamber or the holding tank, hj is the heat transfer coefficient of the jacket side chiller 

liquid, R and A are the radius and surface area of the respective chambers, where i and o 

indices stand for inside and outside. Alm is the logarithmic mean of inside and outside areas. 

kwall is the thermal conductivity of the wall, which is zirconia for mill chamber with 2.5 

W/m°C [219] and stainless steel for holding tank with 15 W/m°C [220]. When U is written 

in the form as in Equation (D.8), the surface area in UA is taken as Ai. hB was calculated 

using: 

ℎB =
𝑘𝐴2

𝐷
Re2/3 Pr1/3, Re =

𝐷2𝑁𝜌

𝜇
, Pr =

𝐶p𝜇

𝑘
 

(D.9) 

in which k is the thermal conductivity of the liquid, A2 is a constant that depends on agitator 

type, which was taken as 0.54 for mill chamber (disk agitator) and 0.36 for holding tank 

(paddle agitator). D is the diameter of the chamber, Re is the Reynolds number, and Pr is 

the Prandtl number. N is the stirrer speed (1/s), µ is viscosity and ρ is density. For the mill 

chamber, k, µ and ρ were found for the bead–suspension mixture as follows [194, 221]: 
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𝑘mix =
𝑘b + (𝑛 − 1)𝑘s + (𝑛 − 1)(𝑘b − 𝑘s)𝑐

𝑘𝑏 + (𝑛 − 1)𝑘𝑠 − (𝑘𝑏 − 𝑘𝑠)𝑐
𝑘b 

(D.10) 

µmix = µL [1 + 2.5𝑐 + 10𝑐2 + 0.0019 exp(20𝑐)] ,

𝜌mix = 𝜌b 𝑐 + 𝜌L (1 − 𝑐) 

(D.11) 

where kb and ks are thermal conductivities of the beads and the suspension, respectively. kb 

is 1.8 W/m°C [222] and ks is assumed to be equal to that of water, i.e., 0.607 W/m°C [223]. 

n was taken as 3 for spherical beads [221]. c is the bead loading. µL and ρL are the viscosity 

and density of the drug pre-suspension, which were measured as 198 mPa.s and 1030 

kg/m3. For hj, the following correlation [218] was used:  

ℎj =
𝑘j𝐴1

𝐷j
Rej

2/3
 Prj

𝑏 , Rej =
𝐷j𝑣𝜌j

𝜇j
 

(D.12) 

Here, A1 and b are constants that are recommended to be 0.0265 and 0.3, respectively, for 

a cooling system (jacket). v is the jacket liquid velocity. ρj, µj, and Prj were taken as 1.13 

g/cm3, 1.448 mPa.s, and 15 respectively, for the glycol–water mixture [224] used in our 

chiller. 

D.3 Power Number Correlation with Reynolds Number and Process Parameters 

As power consumption governs the heat generation during the WSMM, it is important to 

estimate from a correlation. It is common to correlate the dimensionless power number Np, 

a.k.a, Newton number,  

𝑁p =
𝑃

𝐷5𝑁3𝜌
 

(D.13) 

to Reynolds number Re and the process parameters. Here, N is the stirrer speed and D is 

the diameter of the mill stirrer. The use of Np–Re correlation is a common practice in 

WSMM literature [198]. These correlations can be developed based on the suspension 

properties for the Re as in [137] or the mixture (suspension–bead) properties [34, 193]. We 
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have adopted the latter approach and calculated the mixture viscosities µm and densities m 

as follows [194]: 

𝜇m = 𝜇L[1 + 2.5𝑐 + 10𝑐2 + 0.0019 exp(20𝑐)] (D.14) 

𝜌m = ρb𝑐 + ρL(1 − 𝑐) (D.15) 

Rem =
𝜌m𝑁𝐷2

𝜇m
 

(D.16) 

 Rem changes mostly with the varying stirrer speed in each run as can be seen in 

Table D.1. In order to capture the impact of all process parameters, Np is not only correlated 

with Rem but also with the dimensionless numbers of the bead size and bead loading: Db/D 

and c/clim, where clim  = 0.63 is the packing limit of the monodispersed spherical beads 

[147]. A power-law correlation was found by fitting the parameters using Minitab 18 as 

follows: 

𝑁p = 0.89Rem
−0.33(𝐷b/𝐷)0.105(𝑐/𝑐lim)−1.44 (D.17) 

Equation (D.17) can be re-written after plugging in the defining equations of Np and Rem 

as follows: 

𝑃 = 0.89𝜌m
0.67𝑁2.67𝐷4.235𝜇m

0.33𝐷b
0.105(𝑐/𝑐lim)−1.44 (D.18) 

It should be noted that Equation (D.18) is not fully explicit in terms of c-dependence 

because µm and m depend on c as per Equations (D.14) and (D.15). One can easily plug 

Equations (D.14) and (D.15) into Equation (D.18) to obtain a fully explicit dependence of 

P on c. Equations (D.17) and (D.18) are not intended for scale-up; additional geometric 

factors are needed for scale-up (2), and the experiments did not make use of data from any 

large-scale equipment with different geometric factors in this chapter. 
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D.4 Supportive Tables and Figures 

Table  D.1  Viscosity, Density, Reynolds Number, Initial–Final Power Consumption, 

and Calculated Power Number 
Run 

no. 

µL  

(mPa·s)a
 

ρL  

(kg/m3)a 

ReL  

(–)a 

µm  

(mPa.s)b 

ρm  

(kg/m3)b 

Rem  

(–)b 

P0 

(kJ/min) 

Pf 

(kJ/min) 

Np,0  

(–)b
 

Np,f  

(–)b 

1 168 1030 999 1560 3020 316 2.40 2.40 0.213 0.213 

2 175 1030 962 1620 3020 304 2.40 2.40 0.213 0.213 

3 175 1030 959 1620 3020 303 2.40 2.40 0.213 0.213 

4 158 1030 1060 7360 3520 78 3.00 2.40 0.229 0.183 

5 163 1030 1030 7610 3520 75 3.00 2.40 0.229 0.183 

6 166 1030 1010 7740 3520 74 3.60 3.00 0.274 0.229 

7 150 1030 1120 47300 4010 14 3.60 3.00 0.240 0.200 

8 151 1030 1120 47600 4010 14 4.80 3.60 0.320 0.240 

9 149 1030 1130 47000 4010 14 4.80 4.80 0.320 0.320 

10 150 1030 1690 1390 3020 534 4.80 3.60 0.126 0.095 

11 163 1030 1540 1510 3020 489 6.00 4.80 0.158 0.126 

12 165 1030 1530 1530 3020 484 6.00 4.80 0.158 0.126 

13 108 1030 2340 5020 3520 171 6.60 5.40 0.149 0.122 

14 118 1030 2140 5500 3520 157 7.80 6.00 0.176 0.135 

15 120 1030 2100 5600 3520 154 7.80 6.00 0.176 0.135 

16 51.3 1030 4920 16200 4010 61 8.40 6.00 0.166 0.119 

17 71.5 1030 3530 22500 4010 44 9.60 7.20 0.190 0.142 

18 83.1 1030 3040 26200 4010 37 10.8 7.80 0.214 0.154 

19 106 1030 3180 980 3020 1010 10.2 7.80 0.113 0.086 

20 105 1030 3210 972 3020 1010 12.6 7.80 0.140 0.086 

21 138 1030 2440 1280 3020 772 12.0 7.80 0.133 0.086 

22 66.3 1030 5070 3090 3520 371 13.8 9.60 0.131 0.091 

23 67.5 1030 4990 3140 3520 365 15.6 10.8 0.149 0.103 

24 91.8 1030 3670 4280 3520 269 15.6 10.8 0.149 0.103 

25 25.7 1030 13100 8100 4010 162 18.0 13.2 0.150 0.110 

26 32.8 1030 10300 10300 4010 127 21.0 13.2 0.175 0.110 

27 30.7 1030 10900 9700 4010 135 24.0 18.6 0.200 0.155 
aProperties of the milled suspension (measured), bproperties of the suspension–bead mixture (estimated by 

correlations).  



 

285 

 

Table  D.2  Cycle Numbers During WSMM and Particle Size Statistics of the Milled 

Suspensions 
Run  

no. 

Total no. 

cyclesa 

d10  

(µm) 

d50  

(µm) 

d90  

(µm) 

Spanb 

1 1 0.178 0.314 0.566 1.24 

2 1 0.190 0.326 0.592 1.23 

3 1 0.212 0.400 1.63 3.56 

4 1 0.158 0.263 0.454 1.14 

5 1 0.115 0.296 0.490 1.18 

6 1 0.185 0.335 0.661 1.42 

7 1 0.120 0.204 0.344 1.10 

8 1 0.123 0.238 0.382 1.09 

9 1 0.090 0.241 0.468 1.53 

10 1 0.122 0.199 0.325 1.02 

11 1 0.113 0.221 0.421 1.39 

12 1 0.167 0.317 0.642 1.50 

13 1 0.120 0.174 0.249 0.741 

14 1 0.121 0.175 0.246 0.719 

15 1 0.071 0.223 0.446 1.68 

16 1 0.111 0.162 0.235 0.769 

17 1 0.112 0.162 0.234 0.755 

18 1 0.102 0.165 0.258 0.944 

19 2 0.116 0.172 0.250 0.776 

20 5 0.111 0.173 0.256 0.841 

21 5 0.085 0.244 0.490 1.66 

22 4 0.109 0.159 0.232 0.779 

23 8 0.111 0.162 0.235 0.769 

24 9 0.105 0.196 0.384 1.42 

25 10 0.103 0.149 0.223 0.803 

26 13 0.106 0.154 0.229 0.799 

27 33 0.106 0.179 0.329 1.24 
aOne cycle: milling–cooling followed by cooling only. bspan = (𝑑90 − 𝑑10)/𝑑50. 

Table  D.3  Estimated Parameters and Associated Statistics Upon Fitting Trise vs. P and 

Pξ 

Trise to P 

(MSE = 2.62)a 

Trise to Pξ 

(MSE = 4.38)a 

Trise to /max, c/clim, Db/D 

(MSE = 7.30)b 

Paramete

r 
Estimate 

Standard 

error of 

estimate 

Paramete

r 
Estimate 

Standard 

error of 

estimate 

Paramete

r 

Estimat

e 

Standar

d error 

of 

estimate 

𝛽1 27.63 1.27 𝛽1 26.70 1.23 𝛽1 84.68 27.92 

𝛽2 1.70 0.16 𝛽2 2.39 0.30 𝛽2 2.23 0.19 

𝛽3 3.95×10
-4 

4.51×10
-5 

𝛽3 8.94×10
-4 

1.22×10
-4 

𝛽3 0.91 0.23 

      𝛽4 0.16 0.06 
aEquations in the form of 𝑦 = 𝛽1 exp(− exp(𝛽2 − 𝛽3𝑥)) with x being predictor and y being response. 
bEquation in the form of 𝑦 = 𝛽1𝑥1

𝛽2𝑥2
𝛽3𝑥3

𝛽4  with x1, x2, x3  being predictors and y being response.  
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Table  D.4  Mean Squared Error (MSE) and Mean Absolute Error (MAE) of the Model 

Predictions For ξ, P0, And Pf in the Training and Test Runs 

Model 

ξ (-) P0 (J/min) Pf (J/min) 

Train Test Train Test Train Test 

MSE 

(-) 

MAE 

(-) 

MSE 

(-) 

MAE 

(-) 

MSE 

(J2/mi

n2) 

MAE 

(J/mi

n) 

MSE 

(J2/mi

n2) 

MAE 

(J/mi

n) 

MSE 

(J2/mi

n2) 

MAE 

(J/mi

n) 

MSE 

(J2/mi

n2) 

MAE 

(J/mi

n) 

Power-

law 

3.09

×10-3 

4.90×
10-2 

1.25

×10-2 

2.10×
10-1 

6.68

×105 

1.54

×104 

2.24

×106 

2.13×
103 

7.92

×106 

6.06×
104 

3.39

×106 

3.25

×103 

Linear 

regressio

n 

3.29

×10-3 

5.02×
10-2 

3.91

×10-3 

5.06×
10-2 

3.33

×106 

1.42

×103 

1.19

×106 

8.98×
102 

2.09

×106 

1.02×
103 

5.49

×105 

6.38

×102 

Lasso 

regressio

n 

7.85

×10-3 

7.45×
10-2 

6.40

×10-3 

7.46×
10-2 

3.33

×106 

1.42

×103 

1.19

×106 

9.00×
102 

2.09

×106 

1.02×
103 

5.49

×105 

6.38

×102 

Ridge 

regressio

n 

3.44

×10-3 

5.20×
10-2 

4.16

×10-3 

5.50×
10-2 

3.33

×106 

1.42

×103 

1.03

×106 

9.16×
102 

2.54

×106 

1.05×
103 

4.80

×105 

5.57

×102 

Elastic 

net 

regressio

n 

7.85

×10-3 

7.45×
10-2 

6.40

×10-3 

7.46×
10-2 

3.33

×106 

1.42

×103 

5.09

×106 

1.78×
103 

9.79

×106 

2.37×
103 

2.12

×106 

1.22

×103 

Decision 

tree 
0.00 0.00 

1.08

×10-2 

8.50×
10-2 

4.35

×106 

1.52

×103 

9.72

×106 

2.76×
103 

0.00 0.00 
3.31

×106 

1.68

×103 

Gradient 

boost 

1.12

×10-4 

8.01×
10-3 

1.07

×10-2 

8.34×
10-2 

2.08

×107 

3.67

×103 

9.80

×106 

2.76×
103 

5.44

×103 

5.87×
101 

3.28

×106 

1.66

×103 

Random 

forest 

5.63

×10-4 

1.91×
10-2 

9.62

×10-3 

8.65×
10-2 

0.00 0.00 
1.04

×107 

2.98×
103 

1.74

×105 

2.71×
102 

3.58

×106 

1.74

×103 

k-nearest 

neighbor

hood 

2.22

×10-3 

3.99×
10-2 

2.62

×10-3 

4.15×
10-2 

1.08

×104 

7.14

×101 

3.17

×104 

1.68×
102 

3.25

×106 

1.06×
103 

8.06

×104 

2.40

×102 

Support 

vector 

regressor 

4.92

×10-3 

6.03×
10-2 

5.23

×10-3 

6.60×
10-2 

3.33

×106 

1.42

×103 

9.13

×106 

2.76×
103 

1.61

×107 

3.02×
103 

3.52

×106 

1.80

×103 

Multilaye

r 

perceptro

n 

7.90

×10-3 

6.63×
10-2 

1.88

×10-2 

1.17×
10-1 

3.33

×106 

1.42

×103 

7.12

×107 

7.92×
103 

5.21

×107 

6.10×
103 

3.71

×107 

5.80

×103 
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Figure  D.1  (a) XRD of as-received drug, polymer, physical mixture, and milled and 

overnight dried suspension (Run 23) and (b) DSC traces of as-received drug, polymer, 

physical mixture, and milled and overnight dried suspension (Run 23), Adapted from 

Guner et al. (ref. [29] of the main text). 
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Figure  D.2  Measured mill outlet temperature, simulated temperature of the suspension, 

the beads, and the stirrer in the mill chamber as well as that of the suspension and the stirrer 

in the holding tank when 400 µm beads at 0.5 fractional loading were stirred at 2000 rpm 

(top), 3000 rpm (middle), and 4000 rpm (bottom).  

 

2000 rpm, 0.5, 400 μm 

3000 rpm, 0.5, 400 μm 

4000 rpm, 0.5, 400 μm 
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Figure  D.3  The effect of temperature on the apparent shear viscosity of a milled FNB 

suspension (Run 15).  

 

 



 

290 

 

APPENDIX E 

SUPPLEMENTARY DATA FOR CHAPTER 6 

This appendix contains the statistics of the models used for the lumped parameter model 

study which was introduced in Chapter 6. 

Table  E.1  Mean Squared Error (MSE) and Mean Absolute Error (MAE) of the Model 

Predictions for Qgen and UA in the Training and Test Tests 

Model name 

Qgen (J/min) UA (J/min℃) 

Train Test Train Test 

MSE MAE MSE MAE MSE MAE MSE MAE 

Power law  
3.28×105 

4.64×1

02 

2.86×10
5 

4.50×102 8.28×102 22.0 5.48×102 19.4 

Linear regression  1.27×106 
9.23×1

02 

1.55×10
6 

9.27×102 9.53×102 24.0 1.00×103 22.2 

Lasso regression  1.27×106 
9.22×1

02 

1.56×10
6 

9.28×102 9.70×102 24.0 1.13×103 23.3 

Ridge regression  1.55×106 
9.98×1

02 

1.27×10
6 

8.86×102 1.05×103 25.0 8.52×102 19.9 

Elastic net 

regression  
6.00×106 

2.03×1

03 

1.66×10
6 

1.15×103 2.57×103 40.1 8.44×102 24.8 

Decision tree  0.00 0.00 
2.69×10

6 
1.45×103 0.00 0.00 1.84×103 39.4 

Gradient boost   8.66×103 
7.40×1

01 

2.51×10
6 

1.38×103 4.64×101 5.21 1.34×103 33.7 

Random forest  1.18×105 
2.72×1

02 

3.01×10
6 

1.50×103 1.60×102 10.0 1.63×103 36.3 

K nearest 

neighborhood 
1.58×106 

9.30×1

02 

3.63×10
5 

4.62×102 8.88×102 22.4 4.32×102 16.9 

Support vector 

regressor 
1.09×107 

2.48×1

03 

2.11×10
6 

1.18×103 3.66×103 46.3 6.83×102 22.4 

Multilayer 

perceptron 
2.37×107 

3.79×1

03 

1.01×10
7 

3.11×103 2.07×103 39.5 1.06×103 29.4 
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APPENDIX F 

SUPPLEMENTARY DATA FOR CHAPTER 7 

This appendix contains supplementary tables and figures used for the zirconia-polystyrene 

bead mixture study which was described in Chapter 7. 

Table  F.1  Average Stirrer Power per Unit Volume Pw, Apparent Shear Viscosity L 

and Density L of the Milled Drug Suspensions (Measured), Power-Law Model 

Parameters as well as Dynamic Mixture Viscosity M and Mixture Density M of the 

Slurries (Estimated) 

Run No. 
Pw  

(W/m3) 

µL 

(mPa·s)a 

µ0 

(mPa∙sq)b 

q  

(–)b 

R2  

(–)b 

ρL 

(kg/m3) 

µm 

(mPa·s)c 

ρm 

(kg/m3)d 

1 2.81105 160 222 0.92 0.97 1030 829 1030 

2 5.31105 148 203 0.92 0.94 1030 767 1470 

3  5.73105 137 215 0.89 0.95 1030 711 1900 

4 6.15105 121 164 0.93 0.98 1030 625 2340 

5 8.65105 119 170 0.91 0.98 1030 616 2770 

6 4.90105 118 188 0.89 0.99 1030 5520 1040 

7 5.73105 96.6 134 0.92 0.99 1030 4500 1650 

8 6.98105 87.0 109 0.95 0.94 1020 4050 2270 

9 9.06105 67.2 89.4 0.93 0.99 1030 3130 2890 

10 9.48105 57.4 74.0 0.94 0.99 1030 2680 3520 

11 1.03106 144 216 0.91 0.94 1020 748 1030 

12 1.16106 111 144 0.94 0.96 1020 576 1460 

13 1.28106 97.9 144 0.91 0.95 1020 507 1890 

14 1.36106 90.8 119 0.94 0.97 1020 471 2330 

15 1.49106 67.4 82.3 0.95 0.98 1030 349 2770 

16 1.16106 81.0 113 0.92 0.98 1030 3780 1030 

17 1.61106 71.0 91.5 0.94 0.95 1030 3310 1650 

18 2.07106 49.7 64.2 0.94 0.98 1030 2320 2270 

19 2.11106 34.4 36.7 0.97 0.95 1030 1600 2890 

20 2.49106 32.5 38.6 0.96 0.91 1030 1520 3520 
aTaken at the shear rate  of 1000 1/s. bµ = µ0𝛾𝑞−1 cµm = µ𝐿[1 + 2.5𝑐 + 10𝑐2 + 0.0019 exp(20𝑐)] d𝜌m =
𝑐[𝜌YSZ𝑐YSZ + 𝜌CPS(1 − 𝑐𝑌𝑆𝑍)]  + (1– 𝑐)𝜌𝐿 
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Table  F.2  The Time it Takes Drug Particle Median Size d50 to Reach 0.25 µm td50 and 

d90 to Reach 0.5 µm td90 and Estimated Parameters of the nth-order Kinetic Model 

(Equation (7.1)) Obtained via Fitting to the Evolution of the Median Particle Size 

Run 

No. 

Stirrer 

Speed 

ω 

(rpm) 

Bead 

Loadin

g 

c (-) 

CPS:Y

SZ 

Characteristic 

Milling Timesa 

Parameters of the nth-

order Kinetic Model Fit 

 

(v/v, %

) 
td50 

(min) 

td90 

(min) 

dlim 

(µm) 

k 

(µm1-

n/min) 

n R2 

1 3000 0.35 100:0 94.5 83.0 0.161 0.105 1.86 0.989 

2 3000 0.35 75:25 83.0 69.3 0.152 0.130 1.89 0.990 

3 3000 0.35 50:50 53.2 46.6 0.118 0.168 2.09 0.998 

4 3000 0.35  25:75 49.6 44.4 0.134 0.202 2.02 0.996 

5 3000 0.35  0:100 46.7 41.7 0.133 0.217 2.06 0.995 

6 3000 0.50  100:0 26.5 23.6 0.158 0.432 1.90 0.996 

7 3000 0.50 75:25 23.9 20.8 0.159 0.520 1.89 0.997 

8 3000 0.50 50:50 22.2 19.4 0.143 0.513 2.07 0.999 

9 3000 0.50 25:75 19.8 18.8 0.142 0.569 2.06 0.997 

10 3000 0.50 0:100 18.8 17.3 0.142 0.686 2.09 0.997 

11 4000 0.35 100:0 50.6 41.1 0.152 0.215 1.95 0.995 

12 4000 0.35 75:25 36.5 32.3 0.129 0.275 2.10 0.997 

13 4000 0.35 50:50 29.2 29.2 0.129 0.340 2.10 0.997 

14 4000 0.35 25:75 30.5 32.0 0.146 0.438 2.03 0.998 

15 4000 0.35 0:100 26.8 28.3 0.137 0.461 2.10 0.997 

16 4000 0.50 100:0 17.7 16.8 0.154 0.806 1.96 0.996 

17 4000 0.50 75:25 14.1 15.1 0.143 0.939 2.12 0.999 

18 4000 0.50 50:50 11.3 11.1 0.146 1.034 2.05 0.999 

19 4000 0.50 25:75 10.4 10.7 0.144 1.153 2.08 0.998 

20 4000 0.50 0:100 9.23 8.38 0.143 1.283 2.12 0.998 
aCalculated by Hermite interpolation. 

Table  F.3  Microhydrodynamic Parameters Calculated Using the Lun Model for Runs 

with CPS Alone and YSZ Alone  

Run 

No. 
g0 (–)  (m2/s2) ub (m/s) ν (kHz) σb

max (GPa) αb (µm) a (mHz) 
Πσy 

(J2/m6s) 

1a 5.62 1.2810-3  5.7210-2 2.15 1.8410-2 3.82 15.9  1.901012 

5b 5.62 4.3210-3 1.0510-1 4.32 1.58 2.41 16.7 2.731016  

6a 13.5 7.4110-4 4.3410-2 5.60 1.6510-2 3.42 61.7 4.551012  

10b 13.5 2.3510-3 7.7410-2 10.9 1.40 2.13 61.5 6.051016 

11a 5.62 5.1510-3 1.1510-1 4.31 2.4310-2 5.04 55.5 1.161013 

15b 5.62  1.2410-2 1.7710-1  7.31 1.94 2.97 43.0 1.071017 

16a 13.5  2.5010-3  7.9810-2  10.3  2.1110-2  4.37  184  2.221013  

20b 13.5  9.5310-3  1.5610-1  22.0  1.85  2.82  217  3.731017  
aCPS alone (100:0 CPS:YSZ), bYSZ alone (0:100 CPS:YSZ) 
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Table  F.4  Values for Characteristic Milling Times (td50 and td90), Specific Energy 

Consumed during td50 (Etd50), Specific Energy Consumed During td90 (Etd90), and Merit 

Scores 

Run td50 td90 Etd50 Etd90 Merit Score (–) 

No.  (min) (min) (kJ/g) (kJ/g) w1=1,      

w2=w3=1 

w2=0.1, 

w1=w3=1 

w1=0.1, 

w2=w3=1 

w3=0.1, 

w1=w2=1 

1 94.5 83.0 6.38 5.60 0.56 0.85 0.56 1.27 

2 83.0 69.3 10.6 8.83 0.48 0.92 0.48 0.82 

3 53.2 46.6 7.31 6.41 0.71 1.43 0.71 1.19 

4 49.6 44.4 7.31 6.55 0.74 1.52 0.74 1.20 

5 46.7 41.7 9.69 8.64 0.63 1.54 0.63 0.92 

6 26.5 23.6 3.11 2.77 1.56 2.91 1.56 2.77 

7 23.9 20.8 3.28 2.85 1.59 3.18 1.59 2.66 

8 22.2 19.4 3.72 3.24 1.52 3.33 1.52 2.37 

9 19.8 18.8 4.30 4.09 0.91 1.45 1.37 1.12 

10 18.8 17.3 4.27 3.94 0.91 1.44 1.40 1.11 

11 50.6 41.1 12.5 10.2 0.42 0.84 0.51 0.54 

12 36.5 32.3 10.1 8.96 0.49 0.94 0.64 0.61 

13 29.2 29.2 8.97 8.98 0.53 0.98 0.74 0.64 

14 30.5 32.0 10.0 10.5 0.49 0.92 0.67 0.58 

15 26.8 28.3 9.57 10.1 0.50 0.92 0.72 0.58 

16 17.7 16.8 4.93 4.66 0.80 1.28 1.28 0.94 

17 14.1 15.1 5.46 5.84 0.68 1.05 1.22 0.75 

18 11.3 11.1 5.61 5.55 0.60 0.88 1.22 0.65 

19 10.4 10.7 5.28 5.41 0.61 0.88 1.28 0.65 

20 9.2 8.4 5.52 5.00 0.55 0.77 1.24 0.58 
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Figure  F.1  Effects of CPS:YSZ ratio on apparent shear viscosity vs. shear rate of the 

milled FNB suspensions at various stirrer speeds ω and bead loadings c: (a) ω = 3000 rpm, 

c = 0.35, (b) ω = 3000 rpm, c = 0.5, (c) ω = 4000 rpm, c = 0.35, and (d) ω = 4000 rpm, c 

= 0.5. 

 
Figure  F.2  Effects of CPS:YSZ volume percentages on the time-wise evolution of d10 

during the milling of FNB particles at various stirrer speeds ω and bead loadings c: (a) ω 

= 3000 rpm, c = 0.35, (b) ω = 3000 rpm, c = 0.5, (c) ω = 4000 rpm, c = 0.35, and (d) ω = 

4000 rpm, c = 0.5. 
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Figure  F.3  Effects of the stirrer speed ω and the bead loading c on the time-wise 

evolution of d50 and d90 during the milling of FNB particles at various volume percentages 

of the CPS:YSZ bead mixtures: (a) 100:0, (b) 75:25 (c) 50:50, (d) 25:75 and (e) 0:100. 

ω=3000 rpm, c=0.35 

ω=3000 rpm, c=0.5 

ω=4000 rpm, c=0.35 

ω=4000 rpm, c=0.5 
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Figure  F.4  Time-wise evolution of d10, d50 and d90 during wet stirred media milling of 

(a) Run 4 and (b) Run 14. Circles represent the experimental data in the original runs, while 

triangles represent the experimental data in the repeated runs. 
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APPENDIX G 

SUPPLEMENTARY DATA FOR CHAPTER 8 

This appendix has supportive tables to the bead size mixtures study as referred and 

explained in Chapter 8. 

Table  G.1  Power per Unit Volume, Apparent Viscosity, and MHD Parameters 
Run 

No. 

Pw 

(W/m3) 

µL 

(mPa.s) 
g0 (-)  (m2/s2) ub (m/s) ν (kHz) σb

max (GPa) 
αb 

(µm) 
a (mHz) 

Πσy 

(J2/m6s) 

1 4.90x105 119 5.62 1.93x10-4 2.22x10-2 3.30 0.846 0.357 5.53 3.15x1015 

2 5.31x105 102 5.62 4.54x10-4 3.40x10-2 3.71 1.00 0.579 6.40 5.14x1015 

3 5.73x105 104 5.62 7.70x10-4 4.43x10-2 3.81 1.12 0.816 6.40 6.36x1015 

4 5.73x105 100 5.62 1.41x10-3 5.99x10-2 3.87 1.26 1.22 6.23 7.86x1015 

5 5.73x105 113 5.62 1.67x10-3 6.52x10-2 3.64 1.30 1.47 5.41 7.31x1015 

6 5.73x105 93 5.62 3.61x10-3 9.58x10-2 3.97 1.52 2.31 5.95 1.09x1016 

7 8.23x105 51.0 13.5 1.85x10-4 2.17x10-2 11.1 0.839 0.354 34.0 1.47x1016 

8 8.23x105 66.6 13.5 2.63x10-4 2.59x10-2 9.68 0.900 0.519 24.9 1.24x1016 

9 9.06x105 72.6 13.5 4.26x10-4 3.29x10-2 9.71 1.00 0.725 23.9 1.44x1016 

10 8.23x105 70.9 13.5 6.99x10-4 4.22x10-2 9.36 1.09 1.06 21.1 1.55x1016 

11 9.06x105 72.4 13.5 1.01x10-3 5.08x10-2 9.71 1.18 1.33 22.0 1.87x1016 

12 9.90x105 63.8 13.5 2.20x10-3 7.48x10-2 10.6 1.38 2.09 24.3 2.82x1016 

13 1.36x106 76.8 5.62 8.27x10-4 4.59x10-2 6.84 1.11 0.478 20.5 2.09x1016 

14 1.41x106 81.2 5.62 1.51x10-3 6.19x10-2 6.75 1.28 0.736 18.8 2.44x1016 

15 1.45x106 70.4 5.62 2.85x10-3 5.52x10-2 7.31 1.45 1.06 20.8 3.48x1016 

16 1.41x106 73.7 5.62 4.57x10-3 0.108 6.98 1.59 1.55 18.0 3.64x1016 

17 1.49x106 82.1 5.62 5.84x10-3 0.122 6.80 1.67 1.89 16.7 3.72x1016 

18 1.57x106 107 5.62 8.50x10-3 0.147 6.09 1.80 2.74 12.9 3.34x1016 

19 1.78x106 27.1 13.5 7.47x10-4 4.36x10-2 22.3 1.11 0.468 119 8.97x1016 

20 1.78x106 40.5 13.5 9.40x10-4 4.89x10-2 18.3 1.16 0.670 78.4 6.48x1016 

21 1.91x106 30.9 13.5 2.03x10-3 7.19x10-2 21.1 1.36 0.991 97.5 1.10x1017 

22 1.91x106 52.0 13.5 2.16x10-3 7.41x10-2 16.4 1.37 1.33 58.3 6.72x1016 

23 1.91x106 47.7 13.5 3.08x10-3 8.86x10-2 16.9 1.47 1.66 59.8 7.94x1016 

24 1.99x106 59.0 13.5 4.66x10-3 0.109 15.5 1.60 2.43 47.7 7.48x1016 

T1 7.40x105 68.8 8.37 2.49x10-4 2.52x10-2 6.86 0.890 0.376 17.8 9.84x1015 

T2 1.16x106 124 8.37 6.47x10-4 4.06x10-2 6.38 1.08 0.788 14.0 1.14x1016 

T3 1.20x106 94.9 8.37 3.65x10-3 9.64x10-2 7.30 1.52 2.31 15.4 2.50x1016 

T4 2.40x105 142 4.56 5.53x10-4 3.75x10-2 1.83 1.04 0.937 1.75 1.64x1015 
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Table  G.2  Supportive Data such as Specific Time for Median Particle Size to Reach 

0.20 µm, Power Consumption, Number of Milling Cycles, Merit Scores and Cost of the 

Beads for Each Run 

Run No. td50 (min) P (kW) Nmc (#) Merit Score (-)a Merit Score (-)b Price ($) 

1 25.2 0.047 1 74.4 64.2 92.3 

2 37.7 0.050 1 61.7 48.5 72.4 

3 40.8 0.053 1 63.7 50.8 52.5 

4 39.7 0.053 1 44.5 29.7 59.6 

5 36.2 0.053 1 67.5 55.4 39.7 

6 38.0 0.053 1 63.2 50.2 26.9 

7 12.4 0.073 6 78.0 72.7 132 

8 11.4 0.073 8 76.6 72.4 103 

9 11.6 0.080 7 73.7 67.6 75.0 

10 11.7 0.073 10 74.4 70.8 85.1 

11 12.1 0.080 12 70.7 67.0 56.7 

12 14.3 0.087 11 65.8 59.6 38.5 

13 17.4 0.117 28 49.6 46.9 92.3 

14 25.1 0.120 38 44.9 45.2 72.4 

15 16.5 0.123 46 38.2 38.7 52.5 

16 18.3 0.120 49 37.5 38.9 59.6 

17 15.2 0.127 48 38.7 40.2 39.7 

18 22.5 0.133 61 31.4 33.9 26.9 

19 4.62 0.150 56 34.5 37.1 132 

20 5.71 0.150 75 30.0 37.0 103 

21 7.12 0.160 77 27.5 33.1 75.0 

22 6.23 0.160 75 27.6 32.7 85.1 

23 6.83 0.160 78 26.8 32.2 56.7 

24 9.65 0.167 106 20.7 29.7 38.5 
aMerit score calculated via 1/k, P and Nmc. bMerit score calculated via 1/k and P (without Nmc). 

 

Table  G.3  Root Mean Squared Errors of the Machine Learning Models Based on 

MHD and Process Parameters 

Model 
MHD parameters Process parameters 

Traina Test Traina Test 

Linear regression 0.346 0.241 0.553 0.493 

Lasso regression 0.806 0.358 0.806 0.358 

Ridge regression 0.332 0.213 0.523 0.491 

Elastic net 

regression 
0.440 0.180 0.518 0.465 

Decision tree 0.400 0.526 0.474 0.116 

Gradient boost 0.394 0.361 0.508 0.179 

Random forest 0.414 0.308 0.489 0.198 

k-nearest 

neighborhood 
0.382 0.242 0.472 0.643 

Multilayer 

perceptron 
0.427 0.236 0.426 0.151 

aRMSE of the leave-one-out cross validated predictions are reported
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