

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

EFFICIENT AND SCALABLE TRIANGLE CENTRALITY
ALGORITHMS IN THE ARKOUDA FRAMEWORK

by
Joseph Thomas Patchett

Graph data structures provide a unique challenge for both analysis and algorithm

development. These data structures are irregular in that memory accesses are not

known a priori and accesses to these structures tend to lack locality.

Despite these challenges, graph data structures are a natural way to represent

relationships between entities and to exhibit unique features about these relationships.

The network created from these relationships can create unique local structures

that can describe the behavior between members of these structures. Graphs can

be analyzed in a number of different ways including at a high level in community

detection and at the node level in centrality. Both of these are difficult to

quantitatively define because a “correct” answer is not readily apparent. The

centrality of a node can be subjective; what does it mean central in an amorphous

data structure? Further, even when centrality or community detection can be defined,

there are typically trade offs in detection and analysis. A fine grained method may

yield a more precise method but the run time may scale exponentially or even beyond.

For small datasets this may not be a concern but for graph datasets this can make

analysis prohibitive considering a social media networks where there are millions

of people with millions of connections. Based on these two criteria, we implement

several versions of a recently designed centrality measure called Triangle Centrality

which is a centrality metric that considers both connectivity of a node with other

nodes and the connectivity of a node’s neighbors. The connectivity is aptly measured

through the triangles formed by nodes. There are two ways to implement triangle

centrality; a graph based approach and an approach that utilizes linear algebra and

matrix operations. This implementation is done with graph based data structures and

to optimize this, we implement several versions of triangle counting based on prior

research into the high performance computing framework, Arkouda. We implement

an edge list intersection, a minimized search kernel method, a path merge method,

and a small set intersection method. To compare these methods, we include a

naive method and a comparison to a linear algebra implementation that uses the

SuiteSparse GraphBLAS library.

Our implementation utilizes an open-source framework called Arkouda which is

a distributed platform for data scientists and developers. It simplifies complex parallel

algorithms and the storage of datasets onto a back end Chapel server and allows

users to access these from an intuitive pythonic interface. Our results demonstrate

the scalability of the platform and are analyzed against different graph properties to

see how these affect the implementation.

EFFICIENT AND SCALABLE TRIANGLE CENTRALITY
ALGORITHMS IN THE ARKOUDA FRAMEWORK

by
Joseph Thomas Patchett

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer Science

August 2022

APPROVAL PAGE

EFFICIENT AND SCALABLE TRIANGLE CENTRALITY
ALGORITHMS IN THE ARKOUDA FRAMEWORK

Joseph Thomas Patchett

David A. Bader, Dissertation Advisor Date
Distinguished Professor of Data Science, New Jersey Institute of Technology

Ioannis Koutis, Committee Member Date
Associate Professor, New Jersey Institute of Technology

Zhihui Du, Committee Member Date
Research Scientist, New Jersey Institute of Technology

Author:

Degree:

Date:

Date of Birth:

BIOGRAPHICAL SKETCH

Joseph Thomas Patchett

Master of Science

August 2022

Place of Birth:

Undergraduate and Graduate Education:

• Master of Science in Computer Science
New Jersey Institute of Technology, Newark, NJ, 2022

• Bachelor of Science in Materials Science and Engineering
The Pennsylvania State University, University Park, PA, 2016

Major: Computer Science

Presentations and Publications:

Z. Du, O. Alvarado Rodriguez, J. Patchett, D. Bader, “Interactive Graph Stream
Analytics in Arkouda,” Algorithms, vol. 14, 2021.

Joseph Patchett, “K-Truss Implementation in Arkouda (Extended Abstract).”
Conference, IEEE HPEC, Virtual, 2021.

iv

This work is dedicated to several people. First and
foremost, to my family who have supported me in all of
my endeavors and have helped me get to where I am today.
Their unquestioning support and love are beyond measure
and I cannot even begin to thank them. Secondly, my
beloved girlfriend, Leah, who has been with me the entire
way and helped me work many long nights on my school
and research work. Her support has meant the world to
me.

v

ACKNOWLEDGMENT

I would like to thank my advisor Dr. Bader for his patience, providing constructive

feedback, and giving me direction. I would like to thank Dr. Zhihui Du from

my research group and committee. Zhihui Du always gave me excellent technical

knowledge and was happy to jump on calls with me. Bouncing ideas off of him was

invaluable in all research efforts I worked on. I want to thank Dr. Ioannis Koutis, who

provided guidance and a unique perspective on my research. I would like to thank

Timothy Hart at NJIT for guiding me in this journey. I could not have done anything

I did here without his help and support. Balancing all three of those is not an easy

task but Dr. Bader manages it deftly. I would like to thank everyone in our research

group as well especially Oliver Alvarado Rodriguez and Fuhuan Li. They have been

great friends for me at NJIT; not only are extremely intelligent individuals who helped

greatly with my research but they are also kind and warmhearted. Finally, I want

to acknowledge all the supporting administrative staff at NJIT whose unsung (yet

highly valuable) work has helped me get here.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Graph Definitions . 2

1.3 Arkouda . 2

1.3.1 Architecture . 3

1.4 Graph Representations . 3

1.5 Centrality as a Metric . 5

1.6 Graph Topology . 8

2 GRAPH DATASETS . 11

2.1 Background . 11

2.2 Graph Datasets . 11

2.2.1 Real World Networks . 12

2.2.2 Synthetic Datasets . 16

2.2.3 Dataset Properties . 16

3 RELATED WORK . 18

3.1 Graphs in Arkouda . 18

3.2 Triangle Counting . 20

3.3 Triangle Centrality . 24

4 EXPERIMENTS AND RESULTS . 27

4.1 Algorithms . 27

4.1.1 Naive Method . 29

4.1.2 Minimized Triangle Search . 30

4.1.3 Edge List Intersection . 31

4.1.4 Path Merge Method . 33

4.1.5 Small Set Intersection . 35

vii

TABLE OF CONTENTS
(Continued)

Chapter Page

4.2 Experimental Setup . 35

4.3 Results and Discussion . 36

5 CONCLUSION . 42

APPENDIX A GRAPH PROPERTIES RELATIONSHIP FIGURES 44

APPENDIX B DEGREE DISTRIBUTIONS OF GRAPHS 47

B.0.1 Real World Graphs . 47

B.0.2 Delaunay Graphs . 54

BIBLIOGRAPHY . 58

viii

LIST OF TABLES

Table Page

2.1 Dataset Descriptions . 17

4.1 Graph Processing Times (sec) . 37

ix

LIST OF FIGURES

Figure Page

1.1 Double index data structure. 4

2.1 Log-log plot of ca-Astro. 12

2.2 Log-log plot of ca-CondMat. 13

2.3 Log-log plot of ca-GrQc. 13

2.4 Log-log plot of ca-HepPh. 14

2.5 Log-log plot of ca-HepTh. 14

2.6 Log-log plot of email-enron. 15

2.7 Log-log plot of loc-brightkite. 16

3.1 Delaunay build efficiency. 18

3.2 Rgg build efficiency. 19

3.3 Kron build efficiency. 19

4.1 Log of edge processing speed vs. assortativity. 38

4.2 Log of edge processing speed vs. fraction of closed triangles. 39

4.3 Arkouda edge processing speed vs. assortativity. 40

4.4 Arkouda edge processing speed vs. fraction of closed triangles. 40

4.5 Arkouda edge processing speed vs. 90 percent diameter. 41

A.1 Log of edge processing speed vs. average cluster coefficient. 44

A.2 Log of edge processing speed vs. power law exponent. 44

A.3 Log of edge processing speed vs. diameter. 45

A.4 Arkouda edge processing speed vs. average cluster coefficient. 45

A.5 Arkouda edge processing speed vs. power law exponent. 46

B.1 p2p-gnutella04 degree distribution. 47

B.2 p2p-gnutella05 degree distribution. 48

B.3 p2p-gnutella06 degree distribution. 48

B.4 p2p-gnutella08 degree distribution. 49

x

LIST OF FIGURES
(Continued)

Figure Page

B.5 p2p-gnutella09 degree distribution. 49

B.6 p2p-gnutella24 degree distribution. 50

B.7 p2p-gnutella30 degree distribution. 50

B.8 p2p-gnutella31 degree distribution. 51

B.9 Oregon1_010331 degree distribution. 51

B.10 Oregon1_010407 degree distribution. 52

B.11 Oregon1_010414 degree distribution. 52

B.12 Oregon1_010421 degree distribution. 53

B.13 Oregon1_010428 degree distribution. 53

B.14 Delaunay_n10 degree distribution. 54

B.15 Delaunay_n11 degree distribution. 54

B.16 Delaunay_n12 degree distribution. 55

B.17 Delaunay_n13 degree distribution. 55

B.18 Delaunay_n14 degree distribution. 56

B.19 Delaunay_n15 degree distribution. 56

B.20 Delaunay_n16 degree distribution. 57

B.21 Delaunay_n17 degree distribution. 57

xi

CHAPTER 1

INTRODUCTION

1.1 Motivation

The world has become exponentially more connected over the past few decades. From

Usenet, the early days of the internet to its rapid adoption culminating in the rise

of social media, personal cell phones, and every other advancement in technology

devices, the amount of data we create every day has exploded. From this explosion of

data comes opportunity; software engineers are needed to build out phone and web

apps using the ever expanding library of technology, marketing managers now have

different ways to measure and reach out to new audiences, and the entire career of

data scientists have come to being.

Correspondingly, datasets have increased exponentially if not even more relative

to the growth of technology. Handling the massive datasets created by all these new

technological marvels can prove to be a challenge given that devices are gated by their

storage capacity and memory. Data scientists in particular may run into problems

when working with large datasets; their personal devices will not be able to store

these large and growing datasets in memory, let alone handle the space complexity

that comes with advanced machine learning algorithms like deep learning. Even for

datasets that fit on their machine, algorithms like those used in analytics for graphs

in cybersecurity, traffic, and knowledge graphs may take a prohibitive amount of time

to run.

Distributed systems solve both of these problems, a supercomputer will be able

not only to load large datasets, but also be able to rapidly perform operations on

that dataset. Executing operations in a parallel fashion can reduce the running time

by a significant margin. With respect to graph data, calculating the centrality of

1

every node in a graph could be prohibitive if done sequentially, but in parallel those

operations can be spread across multiple machines operating on multiple nodes in a

graph at once.

1.2 Graph Definitions

The graph data structure is made of two components: edges and nodes. The latter are

defined by an index and edges are connections between nodes. Consider two nodes, u

and v, if there is an edge between these two nodes that edge is defined by those two

nodes. In undirected graphs, this edge is bidirectional meaning that the edge goes

from both u to v and from v to u. In a directed graph, this edge is unidirectional such

that an edge (u, v) is only an edge from u to v. Additionally, edges can have weights

associated with them. The degree of a node is the number of edges that contain that

node. This definition of degree is important to understand for real world graphs later

on.

The amorphous nature of this results in many different types of graph topologies.

These will be explained in detail later on.

1.3 Arkouda

Arkouda is an open source framework designed to bridge the gap between the

limitations of personal computers and the ever-growing size of datasets. Originally

developed by Michael Merrill and William Reus [28], Arkouda is guided by the

principles of scalability and performance, an intuitive user interface, and productivity.

This leads to productivity not just for the data scientist but also for the developer

of algorithms within Arkouda. Arkouda’s back end server utilizes Chapel to speed

development of parallel algorithms. Chapel [12] is also an open-source compiler and

runtime system originally developed under the DARPA High Productivity Computing

2

Systems (HPCS) program. The front end Python and the back end Chapel are

coupled by a ZeroMQ [23] middleware.

1.3.1 Architecture

As discussed above, Arkouda’s architecture has 3 main components; a back end

Chapel server, a ZeroMQ middleware, and a Python front end. Datasets have grown

massively over time, from megabytes to terabytes and soon some may reach the

petabyte range. Traditionally, many data scientists have worked from their laptops

using Python frameworks such as NumPy and Jupyter notebooks. Arkouda leverages

the paradigms in those frameworks to build a front end that is intuitive and similar

to other tools. The massive datasets and complex parallel algorithms are abstracted

away from the practitioner allowing for seamless access from their personal device.

Chapel is a high level programming language with built in abstractions for parallel

programming without sacrificing performance. Chapel was designed with several

characteristics in mind: productivity, scalability, speed, portability, and open-source

usage. ZeroMQ is a framework for controlling the conversation between the Python

front-end and the Chapel back-end of Arkouda. This middleware allows for the server

to respond with the results of the back end and completely abstracts away the parallel

algorithms and the massive datasets.

1.4 Graph Representations

Graphs can be represented in a number of ways including adjacency lists, adjacency

matrices, compressed sparse rows, and from these, many different graph data

structures arise. The adjacency matrix is an n by n matrix where n is the number

of nodes. Each (i, j) value in this matrix refers to a potential edge in the graph. For

an undirected graph with no edge weights, a 1 at (i, j) indicates an edge between the

two nodes, (i, j). In the case of a directed graph, value at (i, j) only indicates an edge

3

from (i, j). For weighted edges, the cell in the matrix can hold the weight of an edge

in both directed and undirected graphs.

An adjacency list maintains the neighbors for each edge in a linked list format.

Each node, u in a graph G will be linked only to its neighbors. This limits the space

complexity caused by a sparse graph and allows for new nodes to be added much

faster but increases the complexity of adding in an edge between existing nodes.

I will focus primarily on the data structure in Arkouda and how this compares

to other implementations. Du et al [19] implemented a double index data structure

which forms the backbone for graphs in Arkouda.

Figure 1.1 Double index data structure.

The first double vector contains every node in the graph G. The nodes are

represented by the indices of the these vectors. The first entry contains the starting

index for that node’s edges in the edge index array. The next value is the number of

neighbors V for each u in G. These two values together gives a direct reference to

that node’s edge list in the edge array. To be explicit, for a node u, the edges that

contain that node start at the index x in the edge index array. That edge index then

has a number of edges V which contain u.

4

There are a number of benefits to using this method. The adjacent edges of a

node can be accessed in O(1) time which allows for quick triangle counting. Because

the edge list is also stored, operations on edges can be load balanced on the edge list

instead of the nodes. This strategy will improve the efficiency with real world graphs

that tend to have a skewed distribution.

1.5 Centrality as a Metric

Measuring the importance of a node in a network has been extensively researched.

The simplest being degree centrality; which in an undirected graph is ranking each

node by the number edges that node is included in. This calculation was originally by

Nieminen et al [30] done using an adjacency matrix and is the sum of the number of

edges for that node. There are some problems with this heuristic; the existence of an

edge is not a guarantee of importance. Consider a negative example: movie actors and

their agents. A movie actor may have a massive network of people that are influenced

by their actions and they have an agent that manages their brand. These agents may

not have broad influence themselves, but they may be the connected to many actors

and they may be the only connection between actors. A node with a low degree is not

guaranteed to have a low impact. A fake profile on a social network could send out

tons of friend requests and acquire a large friend network just for the sake of having a

high friend count. Further, one of the hallmarks of a community is interaction within

that community; if friends of friends don’t interact, is that really a good measure of

community structure? Network topology plays a strong role in identifying centrality;

structure of the surrounding graph plays a role in the importance of a node. This

paradigm is proven in later work.

The large number of different centrality metrics emerges from the many

differences in centrality paradigms. The above example illustrates an analytical reason

why the choice of centrality metric is a challenge. The second challenge is finding

5

an algorithm that either has a low computational complexity or at least is easily

parallelizable. Within these, centrality metrics can be categorized into geometric

distance like closeness centrality, spectral measures like PageRank, and path metrics

that utilize the paths going through a node like betweenness centrality.

The closeness centrality [4] takes into account the nearness of other nodes. In

other words, the closeness centrality considers the distance between a given node and

the other nodes in the network. This is formally represented as the inverse of the sum

of all the distances shown below.

CC(u) = n−1∑
w∈V

d(u,w)

This metric considers the entire graph now and the impact of each node on another.

There are still several questions that arise from this method; calculating the closenesss

centrality for single node is done in O(mn) time where m is the number of edges and n

is the number of nodes, and we still see that high degree nodes have a disproportionate

impact on the centrality ranking. In Saxena et al [34] this complexity can be reduced

to approximately a scalar multiple of O(m) but is an estimation and not an exact

metric. Even with the powerful tools available to data scientists in Arkouda, an

O(mn) run time can be prohibitive.

Building off of the work done for closeness centrality, Freeman [22] developed

betweenness centrality as a new metric. Instead of calculating the distance between

each node, the betweenness centrality considers the number of shortest paths through

two other nodes i and j and the number of times node u is in those paths given that

u ̸= i ̸= j.

BC(u) =
∑

u,i,j∈V
σij(u)

σij

This property calculates the flow of a network and potentially penalizes nodes

with higher degrees but more redundancy. The idea is similar to percolation

theory in power networks; how likely will removing a node change the flow of

6

electricity/information? Nodes with high ratios will disrupt more shortest paths if

removed. Again though, while this may capture network topology better than other

metrics, calculations are still done in O(mn) time which can be prohibitive.

Utilizing adjacency lists allows for matrix operations on graphs. The Eigenvector

centrality, developed by Bonacich [9], considers the centrality of each other node. For

each node u, in an adjacency matrix A and with eigenvalues λ, its centrality is defined

as the value in u-th index of a vector x where x is defined as follows.

Ax = λx

Vertices are penalized for connections to low degree vertices and rewarded for

connections with high degree vertices As with the other metrics, high degree nodes

have a disproportionate impact on their neighbor’s centrality. Further, eigenvectors

are calculated on adjacency matrices and in scale-free graphs these require matrices of

massive dimensions. Eigenvector centrality provides the basis for the next extremely

famous centrality metric: PageRank.

Powering Google’s search engine; PageRank [31] is a normalized form of

eigenvector centrality. Illustrating this method is best done using a web link example.

The centrality or authority of a page is determined by the rank of each incoming

page into it divided by the number of outgoing links from each respective page.

Additionally there is a damping factor which intuitively can be understood as an

individual’s propensity to traverse through a limited number of pages before they

reach their desired web page. The formula is shown below.

PR(u) = 1−d
N

+ d ∗∑
v ∈ N(u)PR(v)

kv

Because of the changing influence of a web page on another, this metric does not

converge in a single iteration. The harmonic centrality [8] of a node u is the sum of

the reciprocal distances from every other vertex v in the connected component to u.

This metric was developed to solve the problem of multiple connected components in

7

graph data sets and bounds the centrality into an easily understandable maximum of

n− 1. Formally, this is defined as follows:

HC(u) =
∑

v∈V andv ̸=u
1

d(u,v)

Higher values indicate greater centrality. In graphs with a large number of connected

components, harmonic centrality penalizes smaller components because of the smaller

impact of each node. This method has the same time complexity, O(mn) of the

closeness centrality because it calculates the distance for every node to each other

within the component.

1.6 Graph Topology

We employ several intrinsic features of a graph to examine how graph properties can

affect the performance of different implementations of Triangle Centrality.

The assortativity [29] of a graph is defined at a high level is the proclivity of

a vertex to have an edge with other vertices with similar degrees. Formally this is

the Pearson correlation coefficient, r, of the degrees of each edge over all edges and

is defined as follows:

r = 1
σ2
q

∑
jk jk(ejk − qjqk)

Where j and k are the degrees of each vertex in an edge, qk and qj are the normalized

degree distribution sans the opposite vertex, ejk is the normalized probability

distribution of the two vertices in an edge, and σ2 is the variance of the distribution.

A positive value indicates that high degree vertex will be comparatively more likely to

form an edge with another vertex of a similar degree, i.e. high degree vertex to high

degree vertex and low degree vertex to low degree vertex. A negative value indicates

the opposite; vertices preferentially form an edge with vertices with disparate degrees,

i.e. high degree to low degree and vice versa.

8

Many degree distributions in real-world graphs follow a power law distribution

[3]. This means that for any vertex in a graph and a degree k, the probability that

this vertex has this degree is given by the following:

p(k) = k−γ

Where γ is the degree exponent of the graph and a higher value results in a tighter

distribution. Practically, this results in a skewed distribution of degrees. A large

number of vertices will have a small degree and a small number of degrees will have

a large degree. This creates some load balancing challenges because of the skewed

distribution.

We also investigate three other much popular graph properties. The average

clustering coefficient measures how likely vertices in a wedge form a triangle or more

broadly, how likely vertices are to group together. Higher values means a higher

proclivity towards this behavior. The fraction of closed triangles is the ratio of closed

triangles over the number of 2 paths in a graph. These are measures of density in a

graph. The diameter of a graph is maximum shortest path between two vertices in

a graph. The 90th percentile diameter captures the smallest distance such that 90

percent of nodes are that distance from each other. This metric gives a more complete

view of a graph’s density because it avoids the impact of outliers. For graphs with

multiple connected components, only the largest is used in the metric.

In this thesis, we explore the insights of how graph algorithm and property

can affect the normalized performance by employing four different triangle centrality

algorithms and five typical graph properties.

There has been some work done on the effect of graph topology on graph

algorithms but not directly on the properties investigated here. Blanco et al [7]

explore how k-truss performs on different types of graphs based on the number of

edges, maximum degree, average degree, and several other aspects. The k-truss [16]

9

of a graph is the maximal subgraph such that each edge is incident to k− 2 triangles.

The k-truss is a strong comparison since triangle counting comprises the bulk of the

computations similar to triangle centrality. They also demonstrate that tuning an

algorithm to the specific types of graphs can improve the performance. Pearce et

al [33] use edge list partitioning to implement k-core, triangle counting and breadth

first search (BFS). To analyze their results they graph the edges processed per second

as a function of diameter in BFS and the run time as a function of the maximum

vertex degree in triangle counting. These are very intuitive metrics to consider and

we extend some of these paradigms into our own work.

10

CHAPTER 2

GRAPH DATASETS

2.1 Background

Before diving in to the specific datasets used, it is important to take a brief foray

into the some of the characteristics of real world graphs. The degree distribution

of a graph is one of the ways that real world graphs are distinguished. The degree

distribution of a graph is a histogram of the number of nodes that have an equivalent

degree.

Random degree values in this distribution will follow what is known as a Poisson

distribution. However, this was shown not to be the case for networks like the World

Wide Web in by Jeong et al [2]. Instead of following a Poisson distribution, the degree

distribution of the graph followed a power law and this is the case for most real world

graphs [35, 1, 21]. In a log-log plot, this can be seen as a straight line with a negative

slope.

Practically, this results in a smaller number of nodes having a large degree and

a large number of nodes having a small degree. This presents unique optimization

problems especially when counting triangles, the choice of how to iterate through

adjacency lists is important. Some lists will have a large amount of edges which

increases the number of iterations required.

2.2 Graph Datasets

Our experiments use a number of real world and synthetic datasets. Within these

datasets there are a few categories of types of datasets that will be utilized.

11

2.2.1 Real World Networks

The first set of real world datasets are collaboration networks where edges are created

when authors or coauthors write a paper together. The first is ca-AstroPh which

is a dataset that contains the contributions to the Astro Physics category of arxiv

[25]. Authors and coauthors represent nodes in the graph and the edges represent

collaboration in papers between them. There are several others of these types of

citation networks including ca-CondMat which is Condense Matter, ca-GrQc which is

General Relativity and Quantum Cosmology, ca-HepPh which is High Energy Physics

- Phenomenology, and ca-HepTh which is High Energy Physics - Theory.

Figure 2.1 Log-log plot of ca-Astro.

12

Figure 2.2 Log-log plot of ca-CondMat.

Figure 2.3 Log-log plot of ca-GrQc.

13

Figure 2.4 Log-log plot of ca-HepPh.

Figure 2.5 Log-log plot of ca-HepTh.

14

For each of these figures 2.1, 2.2, 2.3, 2.4, 2.5, the count of each nodes at a

certain degree is plotted. Note that each plot is a log-log plot; for power datasets,

when the degree distribution is plotted in this manner, the slope is a straight line.

The Email-Enron dataset [26] is derived from the collection of emails that were

made public by the Federal Energy Regulatory Commission during its investigation

of Enron. In this dataset, people represent nodes, and the emails between them

represent edges.

Figure 2.6 Log-log plot of email-enron.

The loc-brightkite dataset[13] was created from an old social network called

“Brightkite” that connected users based on their location. Friendships in this social

media network were directed, but an undirected network was derived and provides

the basis for this dataset.

15

Figure 2.7 Log-log plot of loc-brightkite.

The as-caida[24] dataset was built from autonomous systems. This maps

business arrangements between ISPs and each individual system is a node. Edges are

derived from several relationships, customer to customer, peer to peer, and sibling to

sibling.

2.2.2 Synthetic Datasets

Synthetic datasets are those that are generated algorithmically and as such, graphs

generated with the same algorithm will often have the same structure. For the

purposes of our experiments, we utilize the Delaunay graphs for comparison of run

times and provide another level of comparison for the algorithms.

2.2.3 Dataset Properties

16

Table 2.1 Dataset Descriptions

Graph Name Edges Vertices

Average

Cluster

Coefficient

Fraction of

Closed

Triangles

90th Percentile

Diameter
Assortativity

Power Law

Exponent

as-caida20071105 53381 26475 0.2082 0.002452 4.7 -0.194646 2.50865

ca-AstroPh 198050 18772 0.6306 0.1345 5 0.205129 1.494

ca-CondMat 93439 23133 0.6334 0.107 6.5 0.133955 2.23

ca-GrQc 14484 5242 0.5296 0.3619 7.6 0.659325 1.44

ca-HepPh 118489 12008 0.6115 0.3923 5.8 0.632275 2.29

ca-HepTh 25973 9877 0.4714 0.1168 7.4 0.267821 2.04

email-Enron 183831 36692 0.497 0.03015 4.8 -0.167768 2.651

facebook_combined 88234 4039 0.6055 0.2647 4.7 -0.668214 1.54

loc-brightkite_edges 214078 58228 0.1723 0.03979 6 0.0108158 1.88

Oregon1_010331 22002 10670 0.297 0.003121 4.4 -0.1863 1.14

Oregon1_010407 21999 10729 0.2921 0.00286 4.5 -0.1889 1.11

Oregon1_010414 22469 10790 0.2954 0.00316 4.4 -0.1937 1.11

Oregon1_010421 22747 10859 0.2968 0.003258 4.4 -0.1932 1.12

Oregon1_010428 22493 10886 0.294 0.002991 4.4 -0.195 1.11

p2p-Gnutella04 39994 10876 0.005 0.0018 5.5 -0.013 1.66

p2p-Gnutella05 31839 8846 0.008 0.0025 5.5 0.014 1.67

p2p-Gnutella06 31525 8717 0.008 0.0027 5.5 0.051 1.67

p2p-Gnutella08 20777 6301 0.02 0.0069 5.5 0.035 1.753

p2p-Gnutella09 26013 8114 0.017 0.0058 5.7 0.033 1.77

pnp-Gnutella24 65369 26518 0.0055 0.001371 6.1 -0.007728 1.985

pnp-Gnutella25 54705 22687 0.0053 0.001516 6.3 -0.172839 1.993

pnp-Gnutella30 88328 36682 0.0063 0.001727 6.6 -0.10337 2.03568

p2p-Gnutella31 147892 62586 0.0038 0.0013 6.8 -0.092 2.06

17

CHAPTER 3

RELATED WORK

3.1 Graphs in Arkouda

There has been significant work on Arkouda. Due to its novelty, the first steps were

establishing the viability of the framework. Du et al [19] introduce two breadth first

search papers; a high level algorithm and a low level one. The most important

conclusion that can be drawn is that the DI data structure and data structures

intrinsic to Chapel can be exploited to get high performance.

For Triangle Centrality and other Arkouda algorithms, they demonstrate how

graphs are built in Arkouda. Building the graph incurs overhead on all Arkouda

algorithms and efficient build times are important to prove. The efficiencies of

Arkouda is shown on these synthetic graphs.

Figure 3.1 Delaunay build efficiency.

Source: [19]

18

Figure 3.2 Rgg build efficiency.

Figure 3.3 Kron build efficiency.

19

In Fig. 3.1 as the number of edges increase, the efficiency of the build stays

constant across larger locales. Larger locales have a smaller efficiency but this can

be explained because there are more communications across locales required as the

number increases. Despite this, larger number of locales are more stable as higher

number of edges are added as shown in the decrease in efficiency from the 2 and 4

locales.

The Figures 3.2 and 3.3, the difference is not quite as stark, but the 2-locale

line in the Kron build graph begins to show this behavior at larger edge counts.

Because Arkouda was built to handle terabytes and beyond of data, this behavior is

encouraging.

3.2 Triangle Counting

Some graph algorithms include a form of graph isomorphism which would include

comparing a simple structure across a graph. Due to their simplicity, triangles are

often used for this type of isomorphism. Much work has been done on efficient triangle

counting in Arkouda and otherwise. To start, I will go through other work and end

with the current work done in Arkouda.

The GraphChallenge1 provides many benchmarks for triangle counting and

many other types of algorithms in different types of environments including shared

memory, distributed systems, and GPUs.

Shared memory methods while fast and efficient can’t handle larger graphs

simply because these graph can’t be held in memory. Nevertheless, exploring these

may yield some insight into how optimizations can be done on distributed systems.

Wolf et al [36] use a linear algebra based approach. According to their results, by

leveraging the KokkosKernel they can achieve up to 670,000 times speed up from the

C++ reference and 10,000 times speed when compared to Python. Improving upon

1https://graphchallenge.mit.edu/challenges

20

this using Cilk, Yaşar et al [37] get up to 7x efficiency compared state of the art

implementations and show a O(n) scalability when there is a momefnt of 4/3.

Other methods involve an efficient I/O method of triangle counting when the

graph cannot be fully loaded into main memory. To counteract this problem and

ensure fast output, Chu et al [14][15] utilize a graph partitioning method to handle

massive graphs and requires only 1 or 2 passes of the graph to get a complete picture.

Chapel and Arkouda do not yet support GPUs natively but some inspiration

may be taken from works in this area. Bisson et al [5] implement two algorithms:

a k-truss method and a triangle counting method. The former requires reassessing

the number of triangles for each edge to determine which edges can be removed

and because of this an efficient triangle counting method is required for optimal

performance of the k-truss algorithm. Utilized in this operation are set operations

on bitmaps. After this, in an update [6] they utilized a new GPU architecture and

a new method for adjacency list compaction to get significant improves upon their

old method. Their novel compaction method reduces the variance in the adjacency

lists and improves their ability to load balance critical steps of triangle counting

in both methods. Pandey et al [32] utilize an h-index sorting method, they use a

comparatively larger neighbor list M and a smaller neighbor list N to create hash

buckets from which the larger neighbor list can be iterated through. Their method

avoids the overhead required by preprocessing of sorting a neighbor list.

There has been significant research in distributed triangle counting. Burkhardt

[10] utilizes shared memory in a MapReduce model for an O(m
√
m) run time done

on an adjacency matrix.

There are a couple of challenges when comparing these to an Arkouda

implementation. The first is the difference between shared memory systems and

distributed systems; shared memory methods do not have the overhead that results

from communication between locales. The second limitation is that due to limitations

21

in Arkouda’s data structures, arrays are not possible, so methods can only be

implemented with 1 dimensional vectors.

The edge list intersection is the simplest algorithm to calculate the number of

triangles in a graph. Simply, by comparing the adjacency lists of a node u and a node

v, and the intersecting nodes, w, of this result make up the triangles created by edges

of these 3 nodes.

Algorithm 1: High level Edge List Intersection

1 TriangleCount(G(N,E))

2 TCount = 0

3 for Node u in E do

4 for Node v, in Nπ(u) do

5 for w > v in Nπ(u) do

6 if < w, v > in E then

7 TCount+ = 1;

8 return TCount

Where in 1, the Nπ(u) is the adjacency list of u. This represents all nodes to

which u has an edge. For any node v in this adjacency list, if there is also a node

w in Nπ(u) There have already been methods to implement fast triangle counting

in Arkouda [20]. Because triangle counting is critical to triangle centrality, a fast

counting method is required. This method utilizes the double index data structure

to provide an exact count of triangles in the graph.

In the above algorithm, the authors utilize the parallel abstractions inherent

to Chapel. Specifically, this means utilizing the coforall and the forall key words

to indicate that a process will be done in parallel. This is a form of an edge list

intersection method where the adjacency lists of two nodes are combined and if a

node matches, then a triangle is added. Concretely, for an edge < u, v >, they check

22

Algorithm 2: Edge Iterator Vertex Algorithm

1 Triangle_Count(G =< E, V >)

/* Gsk is the given graph sketch partition,Esk, Vsk are edge and

vertex sets. */

2 var localeTriSum=0: [0..numLocales-1] int;//store each locale’s number of

triangles

3 coforall (loc in Locales) do

4 if (current loc is my locale) then

5 var triCount=0:int; //Local triangle count

6 Adjust StartV er and EndV er based on locale to cover all vertices

and avoid overlapping

7 forall (u in startV er..endV er with (+ reduce triCount)) do

8 uadj = {x| < u, x >∈ Esk ∧ (x > u)} //build the u adjacency

vertex set in parallel

9 forall v ∈ uadj do

10 vadj = {x| < v, x >∈ Esk ∧ (x > v)} //build the v adjacency

vertex set in parallel
11 triCount+ = |uadj ∩ vadj|;

12 localeTriSum[here.id] = triCount;

13 return sum(localeTriSum)

23

the adjacency list of u and the adjacency list of v. Then for all nodes in the adju if

the same node exists in the adjv then a triangle is added to the locale and then finally

summed together with the other locales.

There are ways to improve upon this method. Referencing Fig. 2.4 and Fig.

2.5, we can see that a small number of nodes in the power law graph have a very

high degree and most nodes have a much smaller degree. We can exploit this using a

minimized search kernel. By choosing the smallest edge list of the 3 candidates, we

can dramatically reduce the number of operations that are performed while counting

triangles.
Algorithm 3: Minimized search kernel triangle counting

1 forall (edge e1 = {u, v} ∈ E) && (e1 is local) do

2 Let Luv be the lower degree vertex and Huv higher degree vertex in

{u, v}

3 Let AdjLuv be the adjacent vertices set of Luv

4 forall (x ∈ AdjLuv) do

5 Let e2 = {Luv, x}

6 if (∃ e3 = {x,Huv}) then

7 Increment the support of u,v,w, and G by 1

8 return Count of all triangles for all N in G, and triangle count in G

3.3 Triangle Centrality

The seminal work for Triangle Centrality was done by Paul Burkhardt [11] and details

the development in their paper. Triangle Centrality is a metric of how involved a

vertex is in the triangles of the graph. In an undirected graph G represented as

G = {V,E}, with respective vertex and edge sets, the Triangle Centrality of a node

v is given by Burkhardt as:

TC(v) =

1
3

∑
u∈N+

∆

∆(u)+
∑

w∈{ N(v)
N∆(v)

}
∆(w)

∆G

24

This metric falls within the closed range of [0,1] which is achieved by damping the

counting of triangles by one third to avoid over counting and then normalizing that

by all the triangles in the graph G. Burkhardt also introduces this method in linear

algebra form but that particularly paradigm will not be available to us in Chapel as of

writing this. Additionally Burkhardt proposes several theorems that prove that the

triangle counting can be done in O(m
√
m) time when done on an adjacency matrix.

In contrast to other definitions of centrality, Burkhardt proposes a time

complexity of O(m
√
m) which depending on the graph topology, may yield better

performance. Critically in triangle centrality, the value of a node is not given just

by the number of triangles in its adjacency but also by the triangles of its neighbors.

This allows this centrality metric to rank highly nodes that are connected to highly

cohesive nodes i.e. like the agents of movie stars.

According to Burkhardt, the advantages of triangle Centrality are 4 fold.

1. No need to make iterative updates and guaranteed convergence

2. Grants weight to nodes that are directly in a lot of triangles themselves if their

neighbors are highly connected

3. Is robust for each node because it takes consideration from not only the

neighbors, but also indirectly the neighbors of neighbors through triangle

counting

4. Efficient run time

Li and Bader [27] describes a succinct and novel implementation of Triangle

Centrality in GraphBLAS [18][17]. GraphBLAS is an API that represents graphs

as sparse matrices and allows developers to build graph algorithms using linear

algebra. This method was built in the SuiteSparse implementation of GraphBLAS

and provides the basis for our comparisons. Because this method is done GraphBLAS

25

with precise matrix methods, the algorithm should approach the optimal O(m
√
m)

time complexity that Burkhardt describes.

26

CHAPTER 4

EXPERIMENTS AND RESULTS

4.1 Algorithms

Much of the work for Triangle Centrality lies in counting triangles of which there are

three requirements for this method: triangle counts for the set of triangles belonging

to the neighborhood of each node which include said node, the number of triangles in

the adjacency of a node but do not include the node, and the total number of triangles

in the graph. We compare the results of 6 different implementations in Arkouda using

the Chapel back end for parallel computing. At a high level, each algorithm will have

similar data structures for the triangle centrality calcuations.

27

Algorithm 4: High Level Triangle Centrality

1 Let NeiTrNum be an array of length N

2 Let NeiNonTriNum be an array of length N

3 Let TriangleCentrality be an array of length N

4 TriNum, NeiAry, TriCount = CountTriangles(G)

5 coforall edges in locale do

6 if NeiAry[edge] is True then

7 Update NeiTriNum of u with v

8 Update NeiTriNum of v with u

9 else

10 Update NonNeiTriNum of u with v

11 Update NonNeiTriNum of v with u

12 coforall u ∈ G do

13 forall vinN(u) do

14 Update Curnum with the neighbor’s triangles

15 TriangleCentrality[u] =

(NeiNonTriNum[u] + ((NeiTriNum[u] + TriNum[u])) ∗ 1/3)/∆G

16 return Triangle Centrality of all vertices in G

In Alg. 4, the data structures utilized are common to all algorithms because

these are used for the calculations in Triangle Centrality. The variable triCount is

just a counter for the total count of triangles in the graph, the NeiAry is a binary

array which indicates if a triangle exists for an edge in G. The arrays NeiTriNum

and NeiNonTriNum are arrays of length E that maintain the number of triangles for

the open and closed set of triangles for each node v respectively. The array TriNum

maintains the triangle count for each vertex in the G. Because all of these methods

rely on the double index data structure, all of the aforementioned data structures are

used in the methods presented.

28

4.1.1 Naive Method

To illustrate the performance of each algorithm, we start with a naive method. This

method, like all of the others presented here utilize the same double index data

structure and all of the parallel abstractions inherent to Chapel. The only difference is

the actual triangle counting method. In the naive method, we simply iterate through

the edge list which contains edges (u, v). Then, we iterate through the adjacency

list of each of those vertices if we find a third edge that forms a triangle then we

make updates to three data structures. These data structures are common to all

algorithms because these are used for the calculations in Triangle Centrality. The

variable triCount is just a counter for the total count of triangles in the graph, the

NeiTriNum is a binary array which indicates if a triangle exists for an edge in G.

The array TriNum maintains the triangle count for each vertex in the G. Because all

of these methods rely on the double index data structure, all of the aforementioned

data structures are used in the methods presented.

29

Algorithm 5: Naive Triangle Centrality

1 Let NeiAry be a vector of length E

2 triCount = 0

3 Let TriNum be a vector of length N

4 coforall edges e1 = (u, v) ∈ E && (e1 is local) do

5 forall edge e2 (u,w) ∈ N(u) do

6 if edge e3 (w, v) ∈ E then

7 Increment TriCount

8 Update NeiAry

9 Update TriNum

10 forall edges e2 (v, w) ∈ N(v) do

11 if edge e3 (w, u)inE then

12 Increment TriCount

13 Update NeiAry

14 Update TriNum

4.1.2 Minimized Triangle Search

Notice that in Alg. 5 the search is done exhaustively searching both adjacency lists of

u and v to find triangles. If real world graphs had even degree distributions meaning

that every node had the same sized adjacency list then searching both lists would be

an acceptable assumption but this is not the case. Due to the distribution inherent

to a power law graph, some nodes will have a much higher adjacency list than others.

When searching for triangles within the graph, it may be advantageous to exploit this

distribution and search the smaller adjacency lists. This is the motivation behind the

Minimized Triangle Search.

30

Algorithm 6: Minimized Triangle Search

1 Let NeiAry be a vector of length E

2 triCount = 0

3 Let TriNum be a vector of length N

4 coforall (edge e1 = (u, v) ∈ E) && (e1 is local) do

5 Let uadj and vadj be sets

6 Let AdjLuv be the adjacent vertices set of Luv

7 smalladj = node with min(N(u), N(v))

8 largeadj = node with max(N(u), N(v))

9 forall (w ∈ N(minadj))) do

10 if (adj(N(w)) < adj(e)) then

11 e = findEdge(adj(ebig, w)

12 else

13 e = findEdge(adj(w, ebig)

14 if e ̸= −1 then

15 Increment TriCount

16 Update NeiAry for all edges

17 Update TriNum for all vertices

18 return TriCount, NeiAry, TriNum

In Alg. 6 iterations through both adjacency lists are done through the shortest

possible lists. In a highly skewed graph, this may reduce a large number of

computations.

4.1.3 Edge List Intersection

This is the traditional method for counting triangles and it is a good comparison for

our other methods. Like 5 the method iterates through both adjacency lists to find

potential pairings. The difference comes when finding if a triangle exists due to a

31

connecting third edge; in the naive method there is an explicit search for that third

edge. In the edge list intersection, potential connections are held in a set and then

compared later.
Algorithm 7: Edge List Intersection

1 Let NeiAry be a vector of length E

2 triCount = 0

3 Let TriNum be a vector of length N

4 coforall (edge e1 = (u, v) ∈ E) && (e1 is local) do

5 Let uadj and vadj be sets

6 forall (w ∈ N(u)) do

7 if (∃ e = (u,w)) then

8 Add w into uadj

9 forall (w ∈ N(v)) do

10 if (∃ e = (v, w) then

11 Add w into vadj

12 forall w ∈ uadj do

13 if w ∈ vadj then

14 Increment triCount

15 Update NeiAry

16 Update TriNum

17 return TriCount, NeiAry, TriNum

This is handled through Chapel’s parallel abstraction for a set. The structures

uadj and vadj contain the nodes that are adjacent to u and v respectfully and these

structures are then compared. If there exists a w in both uadj and vadj then this

indicates that there are edges (u,w) and (v, w) in G meaning there is a triangle.

32

4.1.4 Path Merge Method

This method exploits the sorting done in Arkouda’s graph processing. Edges are

sorted by value and this avoids the need to search for edges within a graph. Instead,

the comparisons of the two adjacency lists is done side by side and stops when the

counter on one side is greater than the length of its adjacency list. This does not

inherently exploit the power law nature of the graphs however; even if the adjacency

list of one is short, if the final node is a comparatively high value, it will be compared

all the other nodes in the other adjacency list. This method does avoid the second

for loop needed to compare v’s adjacency list however.

33

Algorithm 8: Path Merge Method

1 Let NeiAry be a vector of length E

2 Let TriCount = 0

3 Let TriNum be a vector of length N

4 coforall (edge e1 = (u, v) ∈ E) && (e1 is local) do

5 set LNI and RNI to the start of the left, right edge adjacency list

6 Iterate through the adjacency list

7 while (LNI < N(u) and RNI < N(v)) do

8 if dst[LNI] == v then

9 Increment LNI

10 Continue

11 if dst[RNI] == u then

12 Increment RNI

13 Continue

14 if dst[LNI] == dst[RNI] then

15 Increment TriCount

16 Update NeiAry

17 Update TriNum

18 Increment LNI and RNI

19 else

20 if dst[LNI] > dst[RNI] then

21 Increment RNI

22 else

23 Increment LNI

24 return TriCount, NeiAry, TriNum

34

4.1.5 Small Set Intersection

Paradigms from Alg. 7 and Alg. 6 can be utilized to create a new method. First this

method iterates through the smaller adjacency list and then utilizes binary search to

find a matching edge if it exists.
Algorithm 9: Small Set Intersection Method

1 Let NeiAry be a vector of length E

2 Let triCount = 0

3 Let TriNum be a vector of length N

4 coforall (edge e1 = (u, v) ∈ E) && (e1 is local) do

5 Let smalladj be the node of min(N(u), N(v))

6 Let largeadj be the node of max(N(u), N(v))

7 Let sset be an empty set

8 forall edge e2 = {smalladj, x} ∈ N(smalladj) do

9 if x ̸= largeadj then

10 Add x into sset

11 forall w ∈ sset do

12 if findEdge(w, largeadj) then

13 Update NeiAry for all edges

14 Increment TriNum for all vertices

15 Increment TriCount

16 return TriCount, NeiAry, TriNum

4.2 Experimental Setup

The experiments are run on an Ubuntu 20.04.3 LTS desktop with an Intel i7-10700K

on a single core with 16GB of RAM. Based on the capabilities of Arkouda and

Chapel, multilocale functionality is possible but slower because of the inter-locale

communications required especially on these smaller datasets.

35

The comparisons to the other implementation done by Li et al was done on the

same machine. The implications of this comparison will be discussed in the results

section. After running all of the experiments the results will be considered in two

ways. The first is raw result time: each of the methods implemented in Arkouda

are run on the same machine and so direct comparisons are applicable. Because the

other method is not a distributed system implementation it will not have some of the

overhead Arkouda has but running on a single locale will provide some equalization.

Each of these algorithms will be run multiple times and the average over the runs

will be taken.

In addition to a raw run time comparison, the edge processing speed will be

compared as a function of some of the graph properties mentioned. Algorithms that

perform well on certain types of graphs may not perform well on others, and showing

how each performs based on a certain property may help in future run time decisions.

The edge processing speed will be plotted as a function of properties including the

assortativity, the power law exponent, 90th percentile diameter, the average cluster

coefficient, and the fraction of closed triangles.

4.3 Results and Discussion

Results will be in interpreted as described previously, by the actual run time and an

examination of the edge processing speed based on different graph properties.

On initial view of Table 4.1 there is not a clear “best” algorithm. Both Alg.

6 and Alg. 8 have runs where one outperformed the other. On occasion, these

algorithms even ran faster than the shared memory method which seems to further

exemplify the speed of Chapel and by extension, Arkouda. On the aggregate, the

shared memory implementation the Arkouda methods which would be expected

because Arkouda is expected to handle distributed machines and communications

overhead. To see how each method performs relative to types of graphs, the processing

36

Table 4.1 Graph Processing Times (sec)

Graph GraphBLAS Naive
Minimum

Search

Path

Merge

Small

Search

List

Intersection

as-caida20071105 1.30e-4 7.69e-1 1.11e-1 8.45e-2 1.84e-1 1.57e+0

ca-AstroPh 3.96e-1 2.76e-1 1.76e-1 2.49e-1 3.69e-1 7.02e-1

ca-CondMat 1.08e-1 1.31e-1 8.87e-2 4.74e-2 1.56e-1 2.77e-1

ca-GrQc 1.66e-2 2.03e-2 1.46e-2 7.93e-3 2.51e-2 4.24e-2

ca-HepPh 2.83e-1 2.28e-1 2.01e-1 3.94e-1 4.55e-1 7.45e-1

ca-HepTh 3.16e-2 3.65e-2 2.61e-2 1.18e-2 4.33e-2 7.35e-2

email-Enron 1.20e-4 3.80e-1 1.71e-1 4.10e-1 3.35e-1 1.07e+0

facebook_combined 1.20e-1 1.87e-1 1.34e-1 2.32e-1 2.90e-1 5.02e-1

loc-brightkite_edges 5.73e-3 3.43e-1 2.04e-1 2.70e-1 3.65e-1 7.80e-1

Oregon1_010331 2.48e-1 4.75e-1 2.40e-2 7.45e-2 3.98e-2 6.80e-1

Oregon1_010407 2.34e-1 4.72e-1 2.39e-2 7.44e-2 3.93e-2 6.79e-1

Oregon1_010414 3.12e-1 4.55e-1 2.41e-2 7.99e-2 4.01e-2 6.73e-1

Oregon1_010421 2.52e-1 4.15e-1 2.44e-2 7.82e-2 4.06e-2 6.80e-1

Oregon1_010428 2.05e-4 4.76e-1 2.43e-2 7.88e-2 4.00e-2 6.99e-1

p2p-Gnutella04 2.05e-4 5.42e-2 3.98e-2 1.61e-2 7.02e-2 1.25e-1

p2p-Gnutella05 3.09e-4 4.26e-2 3.12e-2 1.32e-2 5.47e-2 9.88e-2

p2p-Gnutella06 3.13e-4 4.17e-2 3.07e-2 1.34e-2 5.40e-2 9.76e-2

p2p-Gnutella08 1.11e-3 2.84e-2 2.06e-2 1.07e-2 3.57e-2 6.54e-2

p2p-Gnutella09 1.91e-4 3.49e-2 2.59e-2 1.23e-2 4.49e-2 8.14e-2

p2p-Gnutella24 2.49e-4 9.03e-2 6.66e-2 2.96e-2 1.11e-1 2.03e-1

p2p-Gnutella25 1.24e-4 7.50e-2 5.53e-2 2.41e-2 9.14e-2 1.68e-1

p2p-Gnutella30 1.52e-4 1.23e-1 9.06e-2 4.06e-2 1.49e-1 2.75e-1

p2p-Gnutella31 1.14e-4 2.05e-1 1.53e-1 6.76e-2 2.49e-1 4.60e-1

delaunay_n10 1.93e-4 4.45e-3 3.28e-3 1.07e-3 5.35e-3 8.54e-3

delaunay_n11 1.50e-4 8.87e-3 6.53e-3 2.15e-3 1.06e-2 1.69e-2

delaunay_n12 1.18e-4 1.77e-2 1.30e-2 4.16e-3 2.13e-2 3.38e-2

delaunay_n13 2.82e-4 3.55e-2 2.60e-2 8.51e-3 4.23e-2 6.78e-2

delaunay_n14 2.45e-4 7.09e-2 5.18e-2 1.63e-2 8.46e-2 1.36e-1

delaunay_n15 4.03e-4 1.42e-1 1.07e-1 3.63e-2 1.72e-1 2.75e-1

delaunay_n16 2.93e-4 2.83e-1 2.08e-1 6.62e-2 3.38e-1 5.46e-1

delaunay_n17 3.74e-4 5.68e-1 4.16e-1 1.33e-1 6.78e-1 1.15e+0

37

speed of each method will be compared to different graph properties. Not all of the

properties were insightful but the figures are included in the appendix for reference.

Figure 4.1 Log of edge processing speed vs. assortativity.

In Fig. 4.1 the performance for GraphBLAS clusters around low assortativity

and is higher elsewhere. Because GraphBLAS had very high performance on certain

graphs, the edge processing speeds are scaled by a logarithm of base 2. Additionally,

when reading this, it is important to remember that depending on the property

the slope of the line is not necessarily important. In this result, the GraphBLAS

implementation performs much better on graphs with low assortativity meaning that

it performs well on graphs with moderate levels of mixing between high and low

degree vertices.

38

Figure 4.2 Log of edge processing speed vs. fraction of closed triangles.

The same interpretation is valid here in Fig. 4.2 where the processing speed

of GraphBLAS clusters around a low fraction of closed triangles. This might imply

that GraphBLAS is better suited to sparser graphs than Arkouda. The Arkouda

implementations have to search for triangles in all implementations as opposed to the

GraphBLAS implementation which utilizes matrix operations.

For the Arkouda implementations, the results are close enough that they can

be compared without the logarithm. Because these methods are implemented in the

same environment and framework, these can be compared directly.

39

Figure 4.3 Arkouda edge processing speed vs. assortativity.

Like Fig. 4.1, Fig. 4.3 shows a similar result for the Path Merge method, it

performs comparatively better at lower levels of assortativity than the other methods.

This said, there may be not enough data at high and low levels of assortativity to say

for sure.

Figure 4.4 Arkouda edge processing speed vs. fraction of closed triangles.

40

In Fig. 4.4 the Path Merge method performs significantly better in sparser

graphs. This may be due to the lack of searches used in the method since all the

other Arkouda methods utilize an edge search in some respect.

Figure 4.5 Arkouda edge processing speed vs. 90 percent diameter.

The 90 percent diameter is another metric for density; as stated it contains

the minimal distance such that 90 percent of nodes in graph are within that value;

lower values may imply a denser graph. Path Merge consistently outperforms other

methods at higher values but the minimum search method is stronger at lower values

which suggests again that path merge works better in sparser graphs.

Based purely on these results though, it seems that Alg. 8 is superior for a larger

number of graphs. In certain cases, particular denser graphs, Alg. 6 may be a better

option but additional research may be necessary to prove absolutely. It may also be

possible that the edge processing speed maybe better modeled through a combination

of multiple graph properties.

41

CHAPTER 5

CONCLUSION

An implementation of several different triangle counting methods have been imple-

mented for a novel centrality metric. Five methods for triangle counting were

presented, a naive method, a minimal search method, a path merge method, a small

set intersection method, and an edge list intersection method. These methods were

compared to each other and another open source implementation of this method

on GraphBLAS. Because the latter was done in a shared memory environment,

generally it performed better but in denser graphs the Arkouda methods performed

nearly equally or better. Of the Arkouda methods alone, the path merge method

performed the best most consistently in sparser graphs but the minimized search

method performed better in denser graphs.

The edge processing speed for each were then compared to different graph

properties including assortativity, average clustering coefficent, the 90 percent

diameter, the fraction of closed triangles, and the power law exponent. Based on these

metrics, the GraphBLAS implementation and the path merge method performed best

on sparser graphs however because the former is a shared memory implementation it

is not feasible for massive datasets.

Further research might be done as Arkouda expands their capabilities into arrays

with dimensions greater than one dimension. Having multidimensional arrays would

allow exploration into methods with adjacency matrices and applying linear algebra

methods for counting triangles. Regardless, due to the novelty of Arkouda there are

plenty of other centrality metrics that can be implemented in Arkouda.

This work further demonstrates the performance of Arkouda relative to even a

local implementation and adds a new tool for practitioners of Arkouda. Our work is

42

openly available at https://github.com/Bears-R-Us/arkouda-njit and all components

necessary to run our methods are open-source.

43

APPENDIX A

GRAPH PROPERTIES RELATIONSHIP FIGURES

Figure A.1 Log of edge processing speed vs. average cluster coefficient.

Figure A.2 Log of edge processing speed vs. power law exponent.

44

Figure A.3 Log of edge processing speed vs. diameter.

Figure A.4 Arkouda edge processing speed vs. average cluster coefficient.

45

Figure A.5 Arkouda edge processing speed vs. power law exponent.

46

APPENDIX B

DEGREE DISTRIBUTIONS OF GRAPHS

B.0.1 Real World Graphs

Figure B.1 p2p-gnutella04 degree distribution.

47

Figure B.2 p2p-gnutella05 degree distribution.

Figure B.3 p2p-gnutella06 degree distribution.

48

Figure B.4 p2p-gnutella08 degree distribution.

Figure B.5 p2p-gnutella09 degree distribution.

49

Figure B.6 p2p-gnutella24 degree distribution.

Figure B.7 p2p-gnutella30 degree distribution.

50

Figure B.8 p2p-gnutella31 degree distribution.

Figure B.9 Oregon1_010331 degree distribution.

51

Figure B.10 Oregon1_010407 degree distribution.

Figure B.11 Oregon1_010414 degree distribution.

52

Figure B.12 Oregon1_010421 degree distribution.

Figure B.13 Oregon1_010428 degree distribution.

53

B.0.2 Delaunay Graphs

Figure B.14 Delaunay_n10 degree distribution.

Figure B.15 Delaunay_n11 degree distribution.

54

Figure B.16 Delaunay_n12 degree distribution.

Figure B.17 Delaunay_n13 degree distribution.

55

Figure B.18 Delaunay_n14 degree distribution.

Figure B.19 Delaunay_n15 degree distribution.

56

Figure B.20 Delaunay_n16 degree distribution.

Figure B.21 Delaunay_n17 degree distribution.

57

BIBLIOGRAPHY

[1] Lada A Adamic, Bernardo A Huberman, AL Barabási, R Albert, H Jeong, and
G Bianconi. Power-law distribution of the world wide web. Science,
287(5461):2115–2115, 2000.

[2] Réka Albert, Hawoong Jeong, and Albert-László Barabási. Diameter of the world-
wide web. Nature, 401(6749):130–131, sep 1999.

[3] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks.
Science, 286(5439):509–512, 1999.

[4] Alex Bavelas. Communication patterns in task-oriented groups. The journal of the
acoustical society of America, 22(6):725–730, 1950.

[5] Mauro Bisson and Massimiliano Fatica. Static graph challenge on GPU. In 2017
IEEE High Performance Extreme Computing Conference (HPEC), pages 1–8.
IEEE, 2017.

[6] Mauro Bisson and Massimiliano Fatica. Update on static graph challenge on GPU. In
2018 IEEE High Performance extreme Computing Conference (HPEC), pages
1–8. IEEE, 2018.

[7] Mark Blanco, Tze Meng Low, and Kyungjoo Kim. Exploration of fine-grained
parallelism for load balancing eager k-truss on GPU and CPU. In 2019 IEEE
High Performance Extreme Computing Conference (HPEC), pages 1–7. IEEE,
2019.

[8] Paolo Boldi and Sebastiano Vigna. Axioms for centrality, 2013.

[9] P Bonacich. Factoring and weighing approaches to clique identification. Journal of
Mathematical Sociology, 92:1170–1182, 1971.

[10] Paul Burkhardt. Graphing trillions of triangles. Information Visualization, 16(3):157–
166, 2017. PMID: 28690426.

[11] Paul Burkhardt. Triangle centrality, 2021.

[12] Bradford L Chamberlain, Elliot Ronaghan, Ben Albrecht, Lydia Duncan, Michael
Ferguson, Ben Harshbarger, David Iten, David Keaton, Vassily Litvinov,
Preston Sahabu, and Greg Titus. Chapel comes of age: Making scalable
programming productive. Cray User Group, 2018.

[13] Eunjoon Cho, Seth A. Myers, and Jure Leskovec. Friendship and mobility: User
movement in location-based social networks. In Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’11, page 1082–1090, New York, NY, USA, 2011. Association
for Computing Machinery.

58

[14] Shumo Chu and James Cheng. Triangle listing in massive networks and its appli-
cations. In Proceedings of the 17th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’11, page 672–680, New York,
NY, USA, 2011. Association for Computing Machinery.

[15] Shumo Chu and James Cheng. Triangle listing in massive networks. ACM Trans.
Knowl. Discov. Data, 6(4), dec 2012.

[16] Jonathan Cohen. Trusses: Cohesive subgraphs for social network analysis. National
security agency technical report, 16(3.1), 2008.

[17] Timothy A. Davis. Graph algorithms via SuiteSparse: GraphBLAS: triangle counting
and k-truss. 2018 IEEE High Performance Extreme Computing Conference
(HPEC), pages 1–6, 2018.

[18] Timothy A. Davis. Algorithm 1000: SuiteSparse:GraphBLAS: Graph algorithms in
the language of sparse linear algebra. ACM Trans. Math. Softw., 45(4), dec
2019.

[19] Zhihui Du, Oliver Alvarado Rodriguez, David A Bader, Michael Merrill, and William
Reus. Exploratory large scale graph analytics in Arkouda. 2021.

[20] Zhihui Du, Oliver Alvarado Rodriguez, Joseph Patchett, and David A. Bader.
Interactive graph stream analytics in arkouda. Algorithms, 14(8), 2021.

[21] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-
law relationships of the internet topology. ACM SIGCOMM Computer
Communication Review, 29(4):251–262, 1999.

[22] Linton C Freeman. A set of measures of centrality based on betweenness. Sociometry,
pages 35–41, 1977.

[23] Pieter Hintjens. ZeroMQ: messaging for many applications. O’Reilly Media, Inc.,
2013.

[24] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time:
Densification laws, shrinking diameters and possible explanations. In
Proceedings of the Eleventh ACM SIGKDD International Conference on
Knowledge Discovery in Data Mining, KDD ’05, page 177–187, New York,
NY, USA, 2005. Association for Computing Machinery.

[25] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification
and shrinking diameters. 2006.

[26] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney.
Community structure in large networks: Natural cluster sizes and the absence
of large well-defined clusters, 2008.

59

[27] Fuhuan Li and David A. Bader. A GraphBLAS implementation of triangle centrality.
In The 25th Annual IEEE High Performance Extreme Computing Conference
(HPEC), 2021.

[28] Michael Merrill, William Reus, and Timothy Neumann. Arkouda: interactive data
exploration backed by Chapel. In Proceedings of the ACM SIGPLAN 6th on
Chapel Implementers and Users Workshop, pages 28–28, 2019.

[29] Mark EJ Newman. Assortative mixing in networks. Physical review letters,
89(20):208701, 2002.

[30] Juhani Nieminen. On the centrality in a graph. Scandinavian journal of psychology,
15(1):332–336, 1974.

[31] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: Bringing order to the web. Technical Report 1999-66,
Stanford InfoLab, November 1999. Previous number = SIDL-WP-1999-0120.

[32] Santosh Pandey, Xiaoye Sherry Li, Aydin Buluc, Jiejun Xu, and Hang Liu. H-index:
Hash-indexing for parallel triangle counting on GPUs. In 2019 IEEE High
Performance Extreme Computing Conference (HPEC), pages 1–7. IEEE, 2019.

[33] Roger Pearce, Maya Gokhale, and Nancy M Amato. Scaling techniques for
massive scale-free graphs in distributed (external) memory. In 2013 IEEE
27th International Symposium on Parallel and Distributed Processing, pages
825–836. IEEE, 2013.

[34] Akrati Saxena, Ralucca Gera, and S. R. S. Iyengar. A faster method to estimate
closeness centrality ranking, 2017.

[35] Andrew T Stephen and Olivier Toubia. Explaining the power-law degree distribution
in a social commerce network. Social Networks, 31(4):262–270, 2009.

[36] Michael M Wolf, Mehmet Deveci, Jonathan W Berry, Simon D Hammond, and
Sivasankaran Rajamanickam. Fast linear algebra-based triangle counting
with KokkosKernels. In 2017 IEEE High Performance Extreme Computing
Conference (HPEC), pages 1–7. IEEE, 2017.

[37] Abdurrahman Yaşar, Sivasankaran Rajamanickam, Michael Wolf, Jonathan Berry,
and Ümit V Çatalyürek. Fast triangle counting using Cilk. In 2018 IEEE
High Performance extreme Computing Conference (HPEC), pages 1–7. IEEE,
2018.

60

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1. Introduction
	Chapter 2: Graph Datasets
	Chapter 3: Related Work
	Chapter 4: Experiments and Results
	Chapter 5: Conclusion
	Appendix A: Graph Properties Relationship Figures
	Appendix B: Degree Distributions of Graphs
	Bibliography

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

