
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT 

BRAINLESS BUT SMART: INVESTIGATING COGNITIVE-LIKE BEHAVIORS 
IN THE ACELLULAR SLIME MOLD PHYSARUM POLYCEPHALUM 

 
 

by 
Subash Kusum Ray 

 

Evolutionary pressures to improve fitness, have enabled living systems to make 

adaptive decisions when faced with heterogeneous and changing environmental 

and physiological conditions. This dissertation investigated the mechanisms of 

how environmental and physiological factors affect the behaviors of non-neuronal 

organisms. The acellular slime mold Physarum polycephalum was used as the 

model organism, which is a macroscopic, unicellular organism, that self-organizes 

into a network of intersecting tubules. Without using neurons, P. polycephalum can 

solve labyrinth mazes, build efficient tubule networks, and make adaptive 

decisions when faced with complicated trade-offs, such as between food quality 

and risk, speed and accuracy, and exploration and exploitation. However, the 

understanding of the mechanisms used by P. polycephalum in exhibiting such 

behaviors is very limited. Therefore, the objective of this dissertation is to 

understand the mechanisms adopted by non-neuronal organisms to explore and 

exploit resources in the physical environment, using environmental and 

physiological information. 

To this end, the dissertation characterizes the direction and amount of 

influence between different regions of tubule-shaped P. polycephalum cells in 

binary food choice experiments. The results show that when the two food sources 



are identical in quality, the regions near the food source act as the drivers of P. 

polycephalum tubule behavior. Conversely, when one of the food sources is more 

enriched with nutrients, the regions near the rejected food source were found to 

drive the tubule behavior. Secondly, a generalized choice-making criterion was 

formulated to determine the choice-making behaviors of P. polycephalum, 

examine whether sufficient experimental time was given to make a choice, and 

determine the time point at which a choice was made. The criterion was tested on 

binary food choice experiments using P. polycephalum tubules. The results show 

that P. polycephalum made a choice for the option for the better food option, except 

when the differences in food quality were low. Moreover, the criterion was found 

to not determine the choice-making behaviors when the food sources presented 

were identical in quality. Thirdly, the dissertation investigated whether P. 

polycephalum cells modify their future exploratory behavior using their past 

foraging experience. The results did not find a strong influence of the past foraging 

experience on the exploratory networks formed by P. polycephalum cells. Finally, 

P. polycephalum exploratory behaviors were examined and compared when the 

cells were in high-energy versus low-energy physiological conditions. Interestingly, 

the study found the P. polycephalum cells in low-energy conditions show an 

increased tendency to split themselves into multiple autonomous cells. 

Additionally, the behavior is shown to increase the fitness of the cell by increasing 

its foraging efficiency. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Organisms are confronted with choices - such as what food to eat, where to live, 

and when to forage - throughout the course of their lifetime. These choices are 

essential as each available option of each choice can have a different impact on 

the fitness of the organism. For example, a food patch may be located at a farther 

distance relative to another patch; a particular food source may provide better 

nutrients than another food source; or the microclimatic conditions of a particular 

environment may provide better growing conditions than another environment. 

However, the environments inhabited by the organisms and their physiological 

conditions are heterogeneous and continuously changing. As a result, the range 

of options available for each choice is seldom available in advance, and the fitness 

consequences of pursuing each option is difficult to evaluate. Therefore, in order 

to increase fitness, natural selection has enabled organisms to evolve exploration 

and exploitation strategies that help make adaptive choices when faced with 

difficult environmental and physiological conditions. 

 For example, when organisms forage in patchy and unpredictable 

environments, they use a random walk based strategy to maximize their search 

area for resources while minimizing costs associated with exploration (e.g., in 

wandering albatross Diomedea exulans (1), spider monkeys Ateles geoffroyi (2), 

and blacked-backed jackal Canis mesomelas (3)). Conversely, when the 
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resources in the environment are predictable, organisms switch to more 

energetically efficient, systematic exploratory strategies (e.g., in bumblebees 

Bombus impatiens (4), hummingbirds Phaethornis longirostris and Selasphorus 

rufus (5, 6), and bison Bison bison (7)). Similarly, organisms in poor-nutritional 

conditions increase their exploratory and risk-taking behaviors to increase their 

chances of discovering food in the environment (e.g., in earthworm Pumbricus 

terrestris (8), pigs Sus domesticus (9), and black garden ants Lasius niger (10)). 

 Scientific studies exploring exploration and exploitation in various 

organisms have primarily focused on “neuronal” or so-called cognitive organisms. 

These organisms have evolved a neuron-based information processing system 

that helps them make such choices with ease. However, “non-neuronal” organisms 

- such as bacteria, fungi, plants, and protists - constitute the vast majority of living 

species on Earth (11), and have existed long before the evolution of neurons (12).  

Non-neuronal organisms live in complex and changing environments, and 

hence, are subject to the same challenges as neuronal organisms. For example, 

non-neuronal organisms must choose between multiple resources of varying 

quality, search for resources in their environments, select habitats with better 

microclimatic conditions, adapt to changing environmental and physiological 

conditions, and respond to multiple and conflicting sources of environmental 

information. However, the specific mechanisms used by non-neuronal organisms 

to process environmental and physiological information are not well understood. 

Therefore, the big question that I am trying to answer is how environmental and 

physiological factors affect the adaptive behaviors of non-neuronal organisms.  
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In this dissertation, I used the acellular slime mold Physarum polycephalum 

as a model organism to understand the mechanisms adopted by non-neuronal 

organisms to explore and exploit resources in the physical environment, using 

environmental and physiological information. 

 

1.2  Physarum polycephalum as a Model Organism 

P. polycephalum is a large, single-celled, multi-nucleated protist, belonging to the 

phylum Amoeboazoa and class Myxogastria. P. polycephalum is closer to the 

animal-fungal clade than compared to green plants (13). It inhabits shady, cool, 

and moist areas of temperate forests, and is primarily found in Australia, Europe, 

North America, and Japan. The life cycle of P. polycephalum is composed of 

multiple life stages that include plasmodia, fruiting body, and spores. The cell 

achieves a large, macroscopic size when in the plasmodium and fruiting body 

stage, and therefore, can be observed by an unaided eye. In this stage, the cell 

moves by extending pseudopods in an amoeba-like fashion to explore its 

environment, hence referred to as “multi-headed” (which translates to 

polycephalum in Latin). The exploratory search front of the cell advances in a 

dense fan-like shape, followed by an interconnected network of tubules (14), where 

the protoplasm (containing cytoplasm, organelles, nutrients, and signaling 

molecules) flows in a rhythmic back-and-forth manner called shuttle-streaming (15, 

16). In the presence of abundant food, the plasmodia are capable of covering an 

area exceeding 900 cm2 and moving up to a speed of 5 cm/hr (14). When under 

nutritional stress and light irradiation, the plasmodia form fruiting bodies called 
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sporangium that contain haploid spores of the organism. The haploid spores can 

get dispersed widely into different environments using wind or water currents. 

When the spores find hospitable habitats, they germinate to form microscopic 

myxamoebae. The myxamoebae are motile and can reproduce asexually. 

Moreover, when two strains of myxamoeba of different mating types meet, they 

fuse to form a diploid P. polycephalum plasmodia. 

Despite lacking a neuron-based information processing system, P. 

polycephalum can demonstrate complex behaviors. For example, a P. 

polycephalum cell can find the shortest path to connect two food sources in a 

complex labyrinth maze (17). Tero et al. (2010) found that P. polycephalum is 

capable of forming adaptive networks that have efficiency, cost, and fault tolerance 

similar to those found in human-made structures (18). While exploiting multiple 

food sources of varying quality, P. polycephalum can achieve its intake target (2:1 

protein to carbohydrate ratio), by allocating a precise amount of biomass to each 

food source based on its nutrient composition (19). In additiona, P. polycephalum 

can: 1) solve complex optimization problems that are challenging for computer 

programs (20); 2) anticipate periodic events (21); 3) avoid previously exploited 

areas by using its extracellular slime trail (22); 4) habituate to a repeated irrelevant 

stimulus (23, 24); and even 5) make economically irrational choices that before 

were considered a by-product of a neuron-based decision-making system (25). 

Additionally, P. polycephalum can integrate information from multiple and 

conflicting sources, and solve problems by making complicated trade-off 

decisions. For example 
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, in Latty and Beekman (2010), when an attractive resource (e.g. high-

quality food source) was placed in a repellent environment (e.g. bright-lit area), P. 

polycephalum chose the higher quality food source only when it was five times 

higher in concentration than the lower quality food source (26). Similarly, P. 

polycephalum has been observed to achieve trade-offs between risk and efficiency 

(27). When half of the region between two diagonally placed food sources was 

illuminated with light, P. polycephalum avoided the shortest path to join the food 

sources. The food sources were joined such that, the light exposure of the tubule 

was reduced, but the light was not completely avoided, as it might overly elongate 

the network (27). P. polycephalum cells are also subject to other well-studied 

trade-offs in cognitive sciences, such as between speed and accuracy while 

making foraging decisions (28), and between exploration and exploitation when 

foraging in unpredictable environments (29). 
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Figure 1.1  P. polycephalum plasmodia grown on 1% agar solution in a Petri plate 
(Ø = 10 cm, H = 1.5 cm) with oatmeal flakes as food embedded in the agar gel.  
 
  

P. polycephalum is a unique and novel model organism, which combines 

the experimental tractability of a macroscopic unicellular organism with the 

emergent, complex behaviors of multi-cellular organisms. Its behavior can be seen 

with the naked eye, and choice-making strategies can be observed in real-time 

(30). P. polycephalum is readily available and easy to culture, manipulate (it can 

be fashioned into different shapes and sizes), and control (such that past 
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experience, nutritional state, and extraneous information do not confound the 

results). Moreover, the complete genome of P. polycephalum was recently 

sequenced (31), and studies have shown that P. polycephalum is accessible to 

genetic manipulations (32, 33). All these qualities, coupled with its ability to 

demonstrate incredible problem-solving behaviors, make P. polycephalum an ideal 

system for the detailed study of cognitive-like capabilities in a non-neuronal 

organism.  

  

1.3  Objective 

The goal of this dissertation is to understand the mechanisms used by P. 

polycephalum in using information from the environment and physiological state to 

explore and exploit resources in the physical environment. To achieve this, I along 

with my collaborators, have tried answering four broad questions, with each 

question forming a chapter of this dissertation. The details are as follows: 

 

1) How does P. polycephalum process information when choosing between 

two food sources? 

The role of this chapter is to understand the flow of information between different 

regions of a P. polycephalum tubule when the cell is choosing between two food 

sources. I tested P. polycephalum tubules in two different food choice conditions, 

i.e., a symmetric food choice condition and an asymmetric food choice condition. 

In the symmetric food choice condition, the two food sources presented to the cells 

were identical in quality. Whereas, in the asymmetric food choice condition, one of 
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the food sources was more enriched with nutrients than the other. I used the 

information-theoretic tool of transfer entropy to measure the amount and direction 

of information flow between different regions of a tubule. I observed that in the 

symmetric food choice conditions, the tubule regions near the two food sources 

acted as the information source, and the regions in the middle were information 

destinations. However, contrary to our expectation, in the asymmetric food choice 

condition, I observed the tubule regions near the rejected food source acted as the 

sources of information, and the tubule region near the chosen food source acted 

as the destination of the information. In summary, I found that in the symmetric 

food choice condition, the regions near the two food sources acted as the driver of 

P. polycephalum tubule behavior, and in the asymmetric food choice condition, the 

regions near the rejected food source acted as the drivers of the cell behavior. 

 

2) Could there be a generalized criterion to decide whether P. polycephalum 

made a choice to exploit available resources? 

The objective of this chapter is to formulate a generalized criterion that can be used 

across different experimental frameworks to a) determine whether P. 

polycephalum can choose the best resources when presented with an option 

between two alternatives, b) examine whether the experimental time allotted was 

sufficient to make a choice, and c) determine the time point when the cell made 

the choice. The criterion formulated in this chapter tested the null hypothesis that 

the relative difference in foraging effort distributed by P. polycephalum cells 

towards the most rewarding resource would be proportional to the relative 
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difference in quality between the available resources. I tested this criterion by 

placing P. polycephalum tubules in binary food choice experiments with varying 

quality of the resources. The criterion found that the tubule chose the better 

resource, except in the case when the difference in quality between the resources 

was too small. In this case, the experimental time period was found to be 

insufficient for the tubules to make a choice. Moreover, the criterion did not 

determine choice-making in P. polycephalum tubules when the food sources 

presented were identical in quality. 

 

3) Can P. polycephalum integrate past foraging experience in its future 

exploration strategy? 

In this chapter, I investigated whether P. polycephalum modifies its exploratory 

behavior in response to the frequency of food sources encountered in its past. I 

conducted experiments with different distribution of food sources, and then studied 

the subsequent exploratory network formed by the P. polycephalum cells. Three 

different P. polycephalum network properties were measured, namely, Sparsity 

(i.e., a measure of scatteredness of the network), Isotropy (a measure of angular 

spread of the network), and rate of exploration (i.e., a measure of showing the rate 

of growth of the network). In this study, I did not find a strong influence of the past 

foraging environment in any of the network properties.  
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4) How does P. polycephalum explore its environment when in different 

physiological states? 

The role of this chapter was to explore and compare the difference in exploratory 

behavior of P. polycephalum cells, when in a high-energetic and a low-energetic 

states. I created P. polycephalum cells in the high-energetic state by providing cells 

access to food before measuring their behavior. Conversely, created low-energetic 

states by removing the cell’s access to food 24 hours before measuring their 

exploratory behavior. Interestingly, I found that cells in low-energetic or starved 

states split into multiple autonomous subunits to explore their environment. 

Moreover, using a conceptual agent-based model, I show that the property of 

starved cells to split into multiple autonomous units, increases the chances of at 

least one cell finding food in their environment. Such an adaptive strategy of 

splitting oneself to survive harsh physiological environments has not been 

observed in any organism before. 
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CHAPTER 2 

HOW DOES P. POLYCEPHALUM PROCESS INFORMATION WHEN 
CHOOSING BETWEEN TWO FOOD SOURCES? 

 

Originally published in Frontiers in Ecology and Evolution: 

Ray, S.K., Valentini, G., Shah, P., Haque, A., Reid, C.R., Weber, G.F., and 
Garnier, S. (2019). Information transfer during food choice in the slime mold 
Physarum polycephalum. Frontiers in Ecology and Evolution, 7:67. 

 

2.1 Introduction 
 
In order to develop, survive and reproduce, all living organisms have to make 

decisions regarding what resource to exploit, which microclimate to inhabit, when 

to forage in an environment, etc. Therefore, natural selection has led to the 

evolution of information processing capabilities in living systems that help them 

make adaptive choices in the face of complex and changing environmental 

conditions. The majority of the studies on decision-making has focused on 

organisms with a neuron-based information processing system, and it is only 

recently that researchers have started investigating non-neuronal organisms in the 

context of decision-making (see (34) and (12) for full review). Non-neuronal 

organisms - like plants, bacteria, fungi, and protist - constitute a majority of living 

species on Earth and do not possess cells and organs dedicated to integrating 

information from their multiple sensory systems. These  organisms have existed 

long before the evolution of neuronal organisms (12) and, despite lacking neurons, 

have the capability to process information in order to exploit their environment in a 

non-random, adaptive fashion. For example, Escherichia coli bacteria have been 

shown to select the best of multiple resources of varying quality (35). 
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Rhodospirillum and Rhodobacter bacteria (36), Dictyostelium discoideum protists 

(37), Phytophthora capsici oomycetes (38) actively move toward locations with 

microclimates more favorable to their development. Moreover, Paenibacillus 

dendritiformis bacteria (39, 40), Abutilon theophrasti plants (41), Phanerochaete 

velutina fungi (42), Dictyostelium discoideum protists (43) make compensatory 

decisions when faced with multiple conflicting sources of  environmental 

information. However, little is known about the mechanisms by which non-neuronal 

organisms integrate multiple, sometimes conflicting sources of information when 

navigating their environment in search for better living conditions.   

The acellular slime mold Physarum polycephalum has recently emerged as 

a model system for studying information processing and problem-solving in non-

neuronal organisms (30, 44). P. polycephalum is a unicellular, multi-nucleated 

protist that can cover an area of over 900 cm2 (14) and move up to a speed of 5 

cm/hour (45). Despite lacking neurons, P. polycephalum shows complex decision-

making behaviors. For example, it can solve labyrinth mazes (17); form adaptive 

networks balancing efficiency, cost and fault tolerance, similar to those found in 

man-made structures (18); solve complex optimization problems (20); anticipate 

periodic events (21); avoid previously exploited areas by using its extracellular 

slime trail as an externalized memory (22); habituate to repeated irrelevant stimuli 

(23); and even make economically irrational decisions that were previously 

deemed a by-product of neuronal decision-making only (25). Combined with its 

macroscopic scale and its experimental tractability, the cognitive-like abilities of P. 
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polycephalum make it a unique model organism to investigate the mechanisms of 

problem-solving in non-neuronal systems. 

Previous studies have suggested that the problem-solving abilities of the 

slime mold P. polycephalum are driven by a coupled-oscillator based sensorimotor 

system present in its membrane (46, 47). Indeed, P. polycephalum’s membrane is 

composed of multiple rhythmically contractile regions that lead to the emergence 

of a complex pattern of contraction-relaxation cycles at the organism level. The 

contractions occur about once every 60-120 seconds (48) and result from the 

activity of the actomyosin protein networks that comprise the cell cytoskeleton (49). 

The membrane contraction-relaxation cycles are coordinated at the organismal 

level such that they cause the protoplasm1 to flow rhythmically back and forth 

throughout the cell (50), a phenomenon called shuttle streaming. The individual 

contractile regions change their contraction intensity in response to both the quality 

of the local environment (51–54) and the contraction intensities of the neighboring 

regions (i.e., the coupling between the neighboring contractile regions) (46, 52). 

Previous studies have found that the contraction intensities in the slime mold P. 

polycephalum can change both in frequency (46, 52) and amplitude (55). When a 

region of a P. polycephalum encounters an attractive (e.g., a food source) or a 

repulsive (e.g., bright areas) stimulus in the local environment, the contraction 

intensity of the region increases or decreases, respectively. The coupling between 

the neighboring regions triggers a change in the pattern of membrane contractions 

 
1 Protoplasm: is the sol-like substance flowing within a P. polycephalum cell. The 
protoplasm contains the cell cytoplasm, organelles, nutrients and signaling molecules.  
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throughout the cell, followed by the movement of the cell towards attractive and 

away from repulsive stimuli (46, 52, 54). Therefore, this coupling is a potential 

mechanism for transferring information about the quality of the local environment 

to distant regions of the cell. 

This information processing mechanism in P. polycephalum is part of the 

broader class of distributed decision-making mechanisms present in numerous 

biological systems (56). Decision-making in these systems is decentralized (i.e., 

without a leader or a pre-designed blueprint), with different parts of the system 

changing their behavior based on information extracted from the local environment 

and/or transferred from neighboring parts (57). Information transfer between the 

parts is achieved via repeated interactions and enables the system to collectively 

integrate information about the environment and generate a response at the level 

of the group. For example, (58) showed that local visual interactions in schools of 

golden shiner fish (Notemigonus crysoleucas) allow individuals informed about the 

location of a resource to steer the entire group toward it. Non-neuronal organisms 

have also been observed to process information and solve problems in a 

distributed fashion (reviewed in (34)). For example, in Arabidopsis thaliana plants, 

information about a herbivore attack on a leaf is transferred to the undamaged 

parts through the transfer of molecular Ca2+ signals (59). This information is 

subsequently used by the undamaged parts to activate their defense responses 

against herbivory.  

Our objective in this study is to investigate the distributed information 

transfer between different contractile regions in P. polycephalum, in the presence 
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of an attractive stimulus (i.e., a food source). To this effect, we recorded the 

contraction-relaxation pattern of a straight tubule-shaped cell of P. polycephalum 

connected on both ends to two food sources. We tested two experimental 

conditions: a symmetric condition in which both food sources were identical in their 

nutrient concentration, and an asymmetric condition in which one food source was 

more concentrated with nutrients than the other one. We measured the contractile 

behavior of different parts on the tubule while the cell was integrating and 

processing information about the food sources. Finally, we used a model-free, 

information-theoretic tool known as transfer entropy to measure the relative 

influence of the contraction-relaxation pattern of each tubule regions on the others.  

The concept of transfer entropy is built upon the theoretical concept of 

Shannon entropy (60). Shannon entropy (hereafter simply referred to as entropy) 

is a measure that quantifies the degree of uncertainty in predicting the value of a 

random variable. For example, consider the thickness of a region of a P. 

polycephalum as a random variable determined by the cyclical pattern of 

contractile behavior of that region. In a condition with complete lack of contractions, 

i.e., constant thickness over time and no cycle, entropy is precisely zero, 

independent of the particular thickness value. When the cycles are more variable, 

i.e., changing in either frequency or amplitude over time, the thickness of the P. 

polycephalum region is characterized by high uncertainty and therefore high 

entropy. We can take a step further and look at how the entropy of different regions 

of a P. polycephalum are related to each other. Transfer entropy is a tool that 

measures the reduction in uncertainty in the future values of a focal random 
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variable when we take into consideration its past values as well as the current 

values of another random variable (61). It is the entropy in common between the 

present of one variable and the future of the other. Due to this directionality in time, 

it can be interpreted as the directed transfer of information between these two 

variables. In our case, it measures the reduction in uncertainty of the future 

thickness values of a focal region given knowledge of the current thickness of a 

different region. Conceptually, transfer entropy quantifies the direction and amount 

of predictive information between two dynamical processes (62). Although it is not 

a measure of causality, as it can lead to false positives, it can identify causal 

interactions when present. For this reason, transfer entropy has been used to infer 

leader-follower relationships in bats (63) and zebrafishes (64), to study animal-

robot interactions (65), neural connections in the brain (66, 67), decision-making 

in agent collectives (68) as well as information transfer between financial time-

series (69).   

Several attempts to characterize information transfer in P. polycephalum 

have been made before (46, 52, 55, 56), but none of them relied on a formal 

definition of information and formal tools to characterize its dynamics. Information 

theory provides us with a toolbox that we use here to quantify the direction and 

amount of information transferred between different contractile regions of P. 

polycephalum when choosing between two food sources. We find that the direction 

of information transfer in a P. polycephalum tubule differs with the food choice 

condition presented and the amount of information transferred is inversely 

proportional to the distance between the contractile regions along a P. 
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polycephalum tubule. Our results provide a characterization of information transfer 

in P. polycephalum, which can inform and guide the design of future experiments 

for understanding the functioning of this organism, and contribute to a more 

general understanding of the role of information and its fundamental processes - 

storage, transfer and modification (70) - in other distributed computing systems. 

 

2.2 Materials and Methods 

2.2.1  Biological Material 

The acellular slime mold P. polycephalum is a protist (phylum Amoebozoa, class 

Myxogastria) that inhabits shady, cool and moist areas of temperate forests. In its 

vegetative or “plasmodium” stage, it exists as a macroscopic cell with a large 

number of nuclei freely floating within the protoplasm, without any cellular plasma 

membrane separating them. The plasmodium moves through its environment by 

extending and retracting multiple tubular extensions (referred to as pseudopods) 

in an amoeba-like fashion (Figure 2.1A). As a consequence of this feature, it is 

referred to as the multi-headed (polycephalum in Latin) slime mold.  

For our experiments, P. polycephalum stocks were obtained from Carolina 

Biological Supply Company® and cultured in Petri plates (∅ = 10 cm, H = 1.5 cm) 

in a dark environment with a controlled temperature of 26°C. Each Petri plate was 

filled with a water solution with 1% w/v (weight/volume) non-nutrient agar to 

provide a gel-like, moist substrate, and 5% w/v blended oat flakes (Quaker Oats 

Company®) as food. Laboratory stocks were recultured on a weekly basis using 

new, 5% w/v oat-agar plates.   
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Figure 2.1 A) Picture of the setup used to make the tubule-shaped cells of P. 
polycephalum. B) Straightened tubule of P. polycephalum placed between 2 food 
sources (10% w/v oat-agar block on the left and 2% w/v oat-agar block on the 
right). The two black dots (∅ = 0.3 cm) at the bottom of the image were used as 
reference points and scale for the image analysis. Outset - Contractions were 
measured at 50 equidistant locations along the length of the tubule (shown by 
black circles along the tubule axis). C) The contractile behavior observed at the 
25th contractile location along the tubule axis. D) Discretized version of the raw 
data used in calculating the transfer entropy. A value of 0 or 1 is assigned when 
the contractions increase or decrease, respectively, in time. Derivatives for the first 
15 time steps of the raw data shown in C).  
 

2.2.2  Experimental Setup  

We studied information transfer during food choice in tubule-shaped cells of P. 

polycephalum. P. polycephalum tubules were obtained using the following 

procedure. Two agar blocks - an agar-only block and a 5% oat-agar block (or food 

agar) - were placed above the surface of a pool of water using a support (Figure 
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2.1A). The two agar blocks were separated by a distance of approximately 4 cm. 

A P. polycephalum biomass of approximately 0.5 g was placed on top of the agar-

only block and allowed to grow tubular extensions on the water surface. After about 

18-24 hours, P. polycephalum had formed a tubule network extending between 

the agar-only and food-agar blocks. Tubules of 2.5 cm in length were cut from the 

network, straightened, and placed between two food sources in the final 

experimental setup (Figure 2.1B). The final experimental setup was a Petri plate 

(∅ = 6 cm, H = 1.3 cm) with a substratum of 1% w/v non-nutrient agar that provided 

a gel-like, moist base. Two food blocks were embedded in the non-nutrient agar 

substrate separated by a distance of 2 cm (Figure 2.1B). The tubule was arranged 

on the two food blocks such that equal lengths of tubule interacted with food at 

each end. The P. polycephalum tubule was presented with two food choice 

treatments. In the first treatment, two identical food sources with 10% oat-agar 

were placed at each tubule end (hereafter referred to as the symmetric food choice 

condition). While in the second treatment, a 10% and 2% oat-agar food block were 

placed at the left and right tubule end, respectively (hereafter referred to as the 

asymmetric food choice condition).  

The contractile behavior of the P. polycephalum tubule was recorded with 

high-resolution time-lapse photography using a Panasonic® Lumix GH4 camera 

fitted with an Olympus® M.Zuiko Digital ED 60mm macro lens. Images were 

captured every second for a total of 9999 seconds (or approximately 2 hours and 

45 minutes, the maximum authorized by the camera in this configuration). In order 

to capture high-resolution images of the tubule, we recorded only the portion of the 
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experimental setup between the two food sources where the tubule lies the camera 

was zoomed in to the tubule to the closest extent possible. The experimental setup 

was illuminated from below using an LED panel (www.superbrightleds.com®) to 

allow the recording of high-definition tubule edges. As P. polycephalum is sensitive 

to and avoids UV and short wavelength visible light, we placed a 610 nm long-

pass filter (Newport Corporation®) between the experimental setup and the LED 

panel. Previous studies have shown that P. polycephalum is not sensitive to 

wavelengths of light passing through this filter (50).  

The use of 610 nm light filter made the slime mold growth on the food source 

appear indistinguishable from the food block background by the computer vision 

software. Therefore, we visually inspected the experimental setup at the end of the 

experiment to record the final food choice of the P. polycephalum tubule. When a 

distinguishable amount of biomass aggregation was visually observed on the left 

or right food source, the final choice was recorded as left or right choice, 

respectively. In the case in which the relative P. polycephalum biomass growth on 

the two food sources was visually indistinguishable, the final outcome of the 

experiment was recorded as undecided. 

The contractile behavior of the tubules was measured using a dedicated, 

computer vision script written in MATLAB®. For each time-lapse picture, the script 

detects the tubule edges, extracts it from the background, and measures the tubule 

thickness at 50 equally spaced locations along the length of the tubule (Figure 

2.1B outset). The script positions a circle at each location and adjusts their 

diameters to match the thickness of the tubule location. Over the course of the 
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experiment, changes in the circles’ diameters at each tubule location captures the 

contractile behavior of the tubule. Figure 2.1C shows the typical form of raw data 

that we obtained and used for the analysis. The contractile behavior of the tubule 

was measured within a centrally located 1.6 cm long segment, i.e., we disregarded 

0.2 cm of tubule section on each side as the overlapping of tubule with the food 

sources did not allow us to reliably track its contractions.   

2.2.3  Data Preprocessing 

As the tubule contracts over time, its thickness sampled at each location varies 

and produces a noisy, cyclical signal as shown in Figure 2.1C. To reduce the 

effects of noise, we filtered our raw data using a LOWESS smoothing algorithm 

(71). In our analysis, we varied the smoothing span, i.e., the fraction of data used 

to locally estimate the smoothed signal, between 0% (no smoothing) and 1% of 

the raw data. The smoothing span we use to filter raw data is given in Section 2.3.1 

and the rationale behind choosing a value is explained in the section below 

(Section 2.2.4). Finally, we discretize the filtered signals sampled at each of the 50 

locations of the tubule and obtain a set of 50 binary time series (one for each 

location). For each signal, we compute the derivative in time and construct a time 

series 2 = {3!, … , 3"} (see Figure 2.1D) by assigning a value of 3# = 0 when the 

tubule thickness increases at time 4 (i.e., positive derivative) or a value of 3# = 1 if 

the tubule thickness decreases at time 4 (i.e., negative derivative). 
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2.2.4  Metrics 

Final Tubule Choice  

A one-sample proportionality test with Yates’ continuity correction (72) was used 

to determine whether the tubules had a statistically significant preference for either 

of the two food sources. Under the null hypothesis (i.e., no preference for either of 

the two food sources) we expect the theoretical proportions of choosing either of 

the two food sources to be equal. However, the theoretical proportion of the 

undecided cases cannot be calculated as it would require knowing the exact 

decision-making mechanism. The undecided cases is nonetheless an essential 

piece of information indicating when P. polycephalum could not express a 

preference for either of the food sources, and therefore should not be discarded 

from the analysis. As a consequence, half of the undecided experimental trials 

were counted towards the left food source and the other half towards the right food 

source. This ensured that a lack of choice in one or more trials was represented in 

the final outcome of the analysis. 

 

Transfer Entropy 

Our analysis of information transfer underlying food choice by the slime mold P. 

polycephalum is based on the notion of transfer entropy introduced by Schreiber 

(61). Transfer entropy, 5$®	&, is an information-theoretic measure that quantifies 

the exchange of information originating from a process 6 and directed toward a 

process 2. In our analysis, process 2 and 6 correspond to a pair of oscillatory 

signals generated by the contractile behavior of the tubule at two different locations 
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and discretized as explained in Section 2.3. Transfer entropy 5$®	& from a location 

6 on the tubule toward a location 2 is given by 

 

 

In Equation 1.1, 7(∙) represents the empirical probability of a certain event 

(e.g., 3# 	= 	1 ) estimated from the time series 2 and 6 while 3#
(() =

	{3#*(+!, 3#*(+,, … , 3# 	} represents the "-history of 2 at time 4 and is given by the " 

consecutive values of the time series preceding and including 3#. In other words, 

transfer entropy provides a measure of the amount of information that we gain 

about the contractile behavior of the tubule at location 2 from knowledge of the 

same behavior at location 6 given the history of 2. All computations of transfer 

entropy were performed using package rinform-1.0.1 (73) in R version 3.4.3 (74).  

Based on transfer entropy, we then define different aggregation measures 

to study the dynamics of information transfer. We consider the total transfer 

entropy  55; over all locations of the P. polycephalum tubule defined as 

 

55; = 	 < 5$!→&"
!	.	/,			1	.	23,			/41

, (1.2) 

 

i.e., the sum of transfer entropy over all pairs of locations 3 and = on the tubule. 

We use 55; as a target measure to find the parameters that optimize and improve 

5$→& =	 < ! >"!+1, 	"!($), 	%!? log2
!@"!+1, 	%!	A	"!($))

!("!+1|	"!($))!@	%!	A	"!($))(!+1,	(!
(%),	+!

	. 
(1.1) 
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the quality of information transfer measurements in the food choice experiments. 

Specifically, we calculated 55; for different combinations of parameters, namely 

history length " and LOWESS smoothing span. The combination of " and 

LOWESS span that maximizes 55; is used in the computation of net transfer 

entropy C5;(3) values described in detail below.  

We define the net transfer entropy C5;(3) as a measure for the study of 

information transfer as a function of the location 3 Î {1, …, 50} of the tubule 

 

C5;	(3) = 	 < 5&"→$!
!	.	1	.23,			14/

	− 	 < 5$!→&"
!	.	1	.	23,			14/

. (1.3) 

 

C5;(3) computes the difference between outgoing information and incoming 

information for a particular location of the P. polycephalum tubule. That is, the 

difference between total information transferred from location 3 towards any other 

location =	 ≠ 3 of the tubule (outgoing information) and the total information 

transferred to location 3 from any other location =	 ≠ 3 of the tubule (incoming 

information). Positive values of C5;(3) indicate that location 3 is a source of 

predictive information about the system. Negative values of C5;(3), indicate 

instead that location 3 is an information destination. C5;(3) as defined above is a 

variation of the standard, pairwise net transfer entropy 

 

C5;&→$ =	5&→$ 	− 	5$→&	,						if		5&→$ > 5$→&, 

C5;&→$ =	 |	5&→$ 	− 	5$→&	|, if		5&→$ < 5$→&, 

(1.4) 
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between a pair of processes  and  (cf. (64)). We use C5;&→$ between a pair of 

locations 3 and = of the tubule to determine and visualize the flow of information 

across the tubule as a network and gain insight into the orientation of the 

information flow. We do so by grouping locations on the tubule in 5 sets of ten (i.e., 

{1, 2, …,10}, …, {41, 42, …, 50}). For each pair of groups, the total net transfer 

entropy was calculated as the sum of contributions of C5;&→$ between all pairs of 

locations belonging to the two groups. 

We computed all measures defined above considering also an artificially 

created dataset that we used as the control to define a reference level of zero 

transfer of information. We do so by computing transfer entropy 5$→& between 

pairs of locations 3 and = whose time series 2 and 6 have been collected from two 

different experimental trials (i.e., two different tubules). As the experimental trials 

are independent of each other, there is no real transfer of information happening 

across the two tubules. The results computed in this way allow us to discriminate 

between information transfer generated by intrinsic noise in our experimental 

procedure and actual information transfer happening among the tubule regions 

during an experiment. Additionally, by pairing signals collected by two different 

experimental trials, we effectively augment the size of the control dataset with 

respect to the actual number of trials (e.g., 42 ∙	41 for the asymmetric treatment 

with 42 trials). All results discussed in Sections 3.1 and 3.3 are reported at the net 

of the same measures computed over the control dataset based on 252 random 

pairs of trials. In Section 2.3.2., the results computed using the control dataset are 

visualized separately.  
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Figure 2.2 Distribution of final decisions (i.e., left food source, undecided, or right 
food source) taken by P. polycephalum tubules for the symmetric food choice 
condition with two 10% w/v oat-agar blocks (54 experimental trials with both left 
and right food sources being 10% w/v oat-agar food block) and the asymmetric 
food choice condition with 10% w/v and 2% w/v oat-agar blocks (42 experimental 
trials with left food source being 10% w/v oat-agar food block and right being 2% 
w/v oat-agar food block). 
 

2.3 Results 

We performed two series of experiments (or treatments) where the quality of the 

food source placed on the left side of the tubule was kept constant with a 10% w/v 

oat-agar block and varied that of the food source placed on the right side of the 

tubule with either 10% w/v (i.e., the symmetric food choice condition) or 2% w/v 

oat-agar blocks (i.e., the asymmetric food choice condition). Figure 2.2 shows the 

distributions of the final decisions of the P. polycephalum tubules over the different 

experimental trials. In the symmetric treatment, P. polycephalum does not show a 

significant preference for either of the two food sources (proportionality test: 7 = 

0.1696, 54 trials) with a large number (23 out of 54) of experimental trials 

concluding in an undecided state. However, in the asymmetric treatment, P. 

polycephalum shows a significant preference (proportionality test: 7 = 4.896e - 05, 
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42 trials) for the left block composed of 10% w/v oat-agar over the right block with 

2% w/v oat-agar. This result is consistent with the findings from a previous study 

by Latty and Beekman (26), which showed that P. polycephalum has a significant 

preference for the more nutrient concentrated food option when given a choice 

between two food sources with different nutrient concentrations.   

 

  

Figure 2.3 Total transfer entropy (55;) as a function of the history length (" Î {1, 
…, 20}) and of the LOWESS smoothing span (smoothing span Î {0.0001, …, 
0.01}). A) The symmetric food choice condition with two 10% w/v oat-agar blocks 
where TTE is maximized for history length " = 3 and smoothing span 0.001. B) 
The asymmetric food choice condition with 10% w/v and 2% w/v oat-agar blocks 
where 55; is maximized for history length " = 10 and smoothing span of 0.006.  
 

2.3.1 Analysis of the Parameter Space 

For both treatments, we calculated the total transfer entropy averaged over all 

experimental trials as a function of the history length " and of the LOWESS 

smoothing span. We performed the same calculations for the control dataset and 

computed the difference between the real results and the control ones. Figure 2.3 

shows the distribution of total transfer entropy (55;; adjusted to that of the control 

dataset) over the parameter space. The landscapes of 55; in the two experimental 

treatments are similar to each other, however, the particular parameters that 



 28 

maximize 55; differ. In the symmetric food choice condition, 55; is maximized for 

history length " = 3 and smoothing span 0.001 (see Figure 2.3A). In the 

asymmetric food choice condition instead, 55; is maximized for history length " = 

10 and smoothing span of 0.006 (see Figure 2.3B). While the accuracy of these 

parameter configurations is subject to the number of experimental trials, their 

values provide us with a good representation of information transfer occurring 

within the tubules. 

2.3.2  Information Sources and Destinations 

To understand how P. polycephalum process information during the food choice 

experiments, it is imperative to investigate where information is generated or 

gathered from the environment (i.e., source) and to which locations of the system 

it is transferred (i.e., destination). We examined the net transfer entropy as a 

function of the location on the P. polycephalum tubule. Figure 2.4 shows the results 

of our analyses for both experimental treatments and their control datasets 

arranged by the final decision of the P. polycephalum tubule. In the symmetric food 

choice condition with two 10% w/v oat-agar blocks, the net transfer entropy is 

symmetrically distributed around the center of the tubule (i.e., locations 25-26) with 

the extremities of the tubule characterized by positive values of C5; and the 

middle section characterized by negative values independently from the final food 

choice (cf. Figure 2.4A and 2.4B). Additionally, for both final food choices, the 

values of net transfer entropy were similar along the length of the tubule (in the 

range between -0.025 and 0.05 bits). However, in the asymmetric food choice 

condition, C5; is positive for locations on the P. polycephalum tubule that is 
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opposite to the chosen food source and negative for locations in the proximity of 

this source. Note that the scale of the y-axis in Figures 2.4A, B is different, with the 

C5; values being higher in the tubule regions near the chosen food source when 

the final choice was the 2% oat-agar food block (upper limit of the y-axis is 

approximately 0.4 bits) relative to the case when the tubule choice was the 10% 

oat-agar food block (upper limit of the y-axis is approximately 0.1 bits). Similarly, 

the regions near the rejected food source show lower C5; values when the tubule 

choice was 2% oat-agar food block (lower limit of the y-axis is approximately -0.3 

bits) than the case when the choice was 10% oat-agar food block (lower limit of 

the y-axis is approximately -0.05 bits). In Figure 2.4C, we aggregated the results 

of all experimental trials by inverting the order of the tubule locations for all trials 

where the tubule chose the right food source and half of the trials recorded as 

undecided. This allows us to visualize the results of C5; for all trials independently 

from the nutrient concentration of the food source chosen by the P. polycephalum 

tubule. While in the symmetric food choice condition information originates at the 

extremities of the tubules (i.e., from the tubule regions near the two food sources) 

and flows towards the center without a noticeable correlation with the final food 

choice (i.e., left), whereas in the asymmetric food choice condition, information 

originates at the opposite side of the chosen food source and flows towards the 

tubule region in its proximity. That is, when a more nutrient-rich food option is 

available, the contractile dynamics of the tubule in the proximity of the chosen food 

source are anticipated by those at the opposite extremity. 
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Figure 2.4 Net transfer entropy at the contractile locations along the length of the 
tubule ({1, …, 50}) for A) trials with final choice being the left food source, B) trials 
with final choice being the right food source, and C) all trials such that the chosen 
food source is on the left and rejected food source on the right. Parameters: 10% 
w/v versus 10% w/v (" = 3, smoothing span 0.001), 10% w/v versus 2% w/v (" = 
10, smoothing span 0.006).  
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Figure 2.5 Networks and their adjacency matrix of information flow between 
groups of adjacent locations (i.e., 1 = {1, 2, …, 10}, …, 5 = {41, 42, …, 50}) on the 
P. polycephalum tubule constructed from net transfer entropy averaged over all 
experimental trials. The orientation of the tubule in each trial is adjusted so that the 
final choice of the tubule is always on the left side of the network (i.e., vertex 1); 
edge width is proportional to the net transfer entropy. Parameters: 10% w/v versus 
10% w/v (" = 3, smoothing span 0.001), 10% w/v versus 2% w/v (" = 10, smoothing 
span 0.006).  
 

2.3.3  Information Flow Network 

Finally, we look at the direction and amount of information flow within the tubules 

of the slime mold P. polycephalum during the food choice experiment. 

Measurements were coarse-grained to obtain a simpler and clearer picture of 

information transfer. Adjacent locations on the P. polycephalum tubule were 

binned into five groups of ten locations each (i.e., we equally divided the tubule 

into 5 sub-segments or regions). Figure 2.5 shows the total net transfer entropy 

between these portions of the tubule averaged over all experimental trials and 

corrected with the results of the control dataset. As in the previous section, we 

reversed the orientation of the tubules in all experimental trials where the final 
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choice was the right food source and in half of the trials recorded as undecided. 

As a consequence of this, the left side of the networks (i.e., vertex 1) represents 

the extremity of the tubule in the proximity of the chosen food source regardless of 

its nutrient concentration. Likewise, the right side of the networks represents the 

extremity that is next to the rejected food source. Both the symmetric and 

asymmetric treatments show well-defined networks of information flow. However, 

the resulting network topologies are significantly different between the two food 

choice conditions. The symmetric food choice condition, shown in the top panel of 

Figure 2.5, is characterized by a flow of information originating from both 

extremities (i.e., vertex 1 and vertex 5) of the tubule and converging towards its 

center (i.e., vertex 3). As also shown by the corresponding adjacency matrix, the 

topology defined by the edges is approximately symmetric with respect to the 

center of the tubule. In contrast, in the asymmetric food choice condition, shown in 

the bottom panel of Figure 2.5, is characterized by a flow of information originating 

at the extremity of the tubule in contact with the rejected food source and directed 

towards the opposite extremity. As shown by the corresponding adjacency matrix, 

for each group of locations 1 < 4 £ 5, there are edges 4 ® J connecting the group 

to all groups J < 4 on its left. In both experimental conditions, the absolute values 

of net transfer entropy represented by the adjacency matrices in Figure 2.5 are 

inversely proportional to the distance between two regions of the tubule. Moreover, 

their amount differs between conditions: in the asymmetric food choice condition, 

the tubule transfers an amount of information (0.2092 ± 0.038 bits) that is 

approximately four times the amount transferred during the symmetric food choice 
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condition (0.0537 ± 0.0297 bits). That is, more information is transferred across 

the tubule when there is a contrast in the concentration of nutrients between the 

two available food options. 

 

2.4  Discussion 

We studied the relative influence between the contractile regions of a P. 

polycephalum tubule while it was choosing between two food sources. The tubule 

was presented with two food choice conditions, which were either symmetric or 

asymmetric in nutrient concentrations. We studied information transfer across the 

tubule by measuring the change of thickness at 50 equidistant locations and 

computing the transfer entropy between each of them.  

Our results show that P. polycephalum does not have a significant 

preference for either of the food options in the symmetric food choice condition, 

while it has significant preference for the more nutrient-rich option in the 

asymmetric food choice condition. We showed that the difference in food qualities 

affects information transfer between the contractile regions of P. polycephalum. In 

the symmetric food choice condition, the tubule locations near each of the two food 

sources act as the information sources while those near the center of the tubule 

act as information destinations. Information transfer is symmetrically distributed 

around the center of the tubule. These trends are similar regardless of the food 

source chosen by the tubule at the end of the experiment. Conversely, in the 

asymmetric food choice condition, the tubule locations near the chosen food 

source, regardless of the food source quality, act as the destinations of information 
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while those in the proximity of the rejected food act as the information sources).  

Therefore, the tubule sub-regions near the rejected food source transfer 

information towards the sub-regions near the chosen food source. Additionally, the 

amount of information transfer was found to be inversely proportional to the 

distance between the sub-regions, similar to the results obtained in the symmetric 

food choice condition. Interestingly, the amount of information transferred between 

the tubule regions in the asymmetric food choice condition was four times higher 

than that of the symmetric condition.  

Transfer entropy measures the amount of directed predictive information 

flow (or information transfer) between two processes, but establishing a causal 

relationship between the behaviors requires additional considerations (62). 

Therefore, values calculated in our study captures the net transfer of predictive 

information at each location (Figure 2.4) and between different sub-regions (Figure 

5) along the P. polycephalum tubule but, based on our results, we cannot claim 

yet a causal relationship between the behaviors of different locations and sub-

regions. However, the P. polycephalum tubule is a continuous system and all the 

locations that we observed are physically connected to each other and constantly 

interacting with one another through physical forces and chemical exchanges. 

Therefore, we preliminarily conclude that our results about information transfer 

capture causal interactions between physically adjacent locations. The existence 

of a causal relationship between the locations along the tubule will be formally 

tested in future experiments by physically intervening or perturbing the contractile 

behavior at a given location. 
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While our work indicates the occurrence of information transfer between 

contractile regions of the tubule, the precise medium of the information being 

transferred remains unknown. In view of this, it is important to note that the 

organism tested were reacting to external food stimuli. Although the information 

transfer that we observed in this study dominantly originates from the end of the 

P. polycephalum tubule in proximity to the lower nutrient concentrated food source, 

it would be naïve to neglect the apparent role that food has in stimulating and 

promoting the contractile behavior (46, 52, 54, 55). Food-containing vesicles both 

stimulate local changes in intracellular signal transduction and are degraded to 

yield sugars and amino acids that fuel all cellular functions. For example, the 

contraction-relaxation cycles of the membrane that generate protoplasmic flow 

involves dynamic rearrangements of actin cytoskeleton and signaling that require 

ATP (75) and Ca2+ (76), both of which are derived from food (77, 78). By this 

reasoning, information flow should originate from nutrient-rich food sources. While 

local contraction intensity may be increased by food stimuli, we suggest that the 

long-range coordination of the contractile behavior across the P. polycephalum 

(50) is influenced by the contractile behavior at the tubule end with lower nutrient 

concentrated food source. Information transfer in the form of molecular stimuli 

originating from the food source and related signal transduction events were not 

measured in the current work. Yet, this stimulus clearly drives the observed 

changes in contractile behavior patterns and is likely to represent the primary 

medium of information acquisition. Future work will be directed toward determining 
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the precise physicochemical signaling that is initiated by foods of differing quality 

and their impact to oscillatory regulation and ultimately decision-making in P. 

polycephalum. 

Previous studies have shown that when a P. polycephalum cell interacts 

with an attractive substance, the cell regions located in the vicinity of the substance 

acts as the information source and the regions located away from the attractive 

substance act as the information destination (46, 52, 55). Moreover, these studies 

show that the information transfer occurs via changes in contraction intensities that 

can be in the form of changes in frequency or amplitude. Our results do not indicate 

whether the information transfer occurs by increasing or decreasing the 

contraction frequency and/or amplitude. However, the results show that the tubule 

regions acting as information sources and destinations varied with respect to the 

food choice conditions presented to the P. polycephalum tubule. Additonally, this 

imbalance in the localized nature of predictive information with certain regions of 

the organism covering a more prominent role than the others is a reminiscent of 

the control kernel in yeast-cell regulatory networks (79) or of informed individuals 

playing leadership roles in a school of fishes (58). 

The two food choice conditions used in our study presented the P. 

polycephalum tubule with two different decision-making challenges. As the 

direction and amount of information transfer differed in the two treatments, this 

opens the question of whether the information transfer in P. polycephalum changes 

relative to the decision-making problem faced by the cell. The experiment we 

suggest to test this behavior in detail is to progressively increase the quality of the 
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lower concentrated food source and compare the effects on the direction and 

amount of information transfer.  

Finally, our analysis does not provide details about the dynamics of 

information transfer during the course of the experiment. A refined examination 

during various stages of decision-making may find information transfer 

relationships more specifically pertaining to food detection, nutrient transfer, and/or 

final decision execution. Experiments should be conducted for a longer period of 

time which would permit to repeat a similar analysis but at different phases of the 

experiment.  
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CHAPTER 3 

COULD THERE BE A GENERALIZED CRITERION TO DECIDE IF PHYSARUM 
POLYCEPHALUM MADE A CHOICE TO EXPLOIT AVAILABLE RESOURCES? 
 

3.1 Introduction 

Physarum polycephalum is a large, unicellular, multi-nucleated protist (phylum 

Amoebozoa, class Myxogastria) that inhabits shady, cool, and moist areas of 

temperate forest. When in the vegetative or plasmodial stage of its life cycle, the 

P. polycephalum moves in its environment by extending pseudopods in an 

amoeba-like fashion. The cell can extend multiple pseudopods to explore its 

environment, and is referred to as multi-headed (i.e., translates to polycephalum 

in Latin). P. polycephalum, without the help of a nervous system, can find the 

shortest path through a labyrinth maze (17), form efficient transport networks (18), 

solve complex optimization problems (20), anticipate periodic events (21), 

habituate to irrelevant environmental stimuli (23), and avoid previously exploited 

areas by using its extracellular slime trail (22). Additionally, numerous studies have 

claimed that P. polycephalum is capable of choosing the most rewarding option 

when presented with a set of multiple alternatives (25, 26, 28, 29, 80). However, 

the criteria used to determine such choice-making behaviors are either not 

generalizable to studies using different experimental designs or are ambiguous 

and open to other interpretations.  

 For example, Latty and Beekman (2010) used a criterion that considered P. 

polycephalum to make a choice for a resource when the cell moved its entire 

biomass towards the resource by the end of the experimental time period (26). 
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Moreover, in the cases when P. polycephalum allocated biomass to multiple 

resources, the authors designated them as “undecided”. When the authors used 

this criterion to determine whether P. polycephalum cells chose the best option 

when presented with two food sources of varying quality, they observed the choice 

of the more nutrient-rich option in >95% of the replicates. In the remaining <5% of 

the experimental replicates, the cells were undecided. Lastly, the cells did not 

choose the less nutrient-rich option in any of the experiments. Since the cells 

moved their entire biomasses exclusively towards the more nutrient-rich food 

source, the study demonstrated P. polycephalum’s capability to choose the most 

rewarding food option when given a choice between two alternatives. Nonetheless, 

the criterion used in this study was specific to the experimental framework 

employed, and might not apply to studies with different experimental designs. In 

particular, when using the criterion above, the experimental time period needs to 

be long enough to allow the cells to move their entire biomasses towards a 

particular resource. However, the foraging behavior of P. polycephalum cells is 

highly variable between the cells of the same (80) and different (81) strains. As a 

consequence, the time taken by P. polycephalum cells to make a choice could be 

unpredictable and vary with the changing complexities of different experimental 

environments. Therefore, it could make it challenging to design experiments 

comprising sufficient time periods that allow P. polycephalum to choose between 

a given set of options. Accordingly, we argue that in Latty and Beekman (2010), 

the replicates in which P. polycephalum allocated its biomass towards multiple 

resources were not necessarily undecided, but instead, the cells were in the 
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process of choosing between resources. As a result, the experimental time period 

was not long enough for these cells to move their entire biomass towards some 

resource in the environment.  

 Alternatively, Reid et al. (2016) and Vogel et al. (2018) used a criterion that 

compared the distribution of biomass on different resources to determine choice-

making in P. polycephalum (29, 80). In particular, these studies considered P. 

polycephalum cells to make a choice for a resource when the cells distributed a 

majority of their biomass towards the resource repeatedly and more often than 

predicted by chance alone. These studies examined the choice-making behaviors 

in P. polycephalum by introducing the cells into an experimental setup comprising 

two environments of varying quality (i.e., the environments differed in the number 

of food sources in Reid et al. (2016); and the concentration of an attractant in Vogel 

et al. (2018)). The studies tested the null hypothesis that the proportion of 

replicates distributing a majority of biomass towards an option due to chance is 

0.5. The authors found that P. polycephalum cells demonstrated a preference for 

the more rewarding environment in both studies. However, the significant deviation 

in proportion from the null hypothesis does not necessarily indicate a choice made 

by a P. polycephalum cell. The reason is that the above criterion does not 

differentiate between a situation when P. polycephalum explores resources 

relative to their qualities and when the cell is choosing an option over multiple 

alternatives. Suppose P. polycephalum cells are presented with two environments 

of different quality, and the cells are exploiting both resources by distributing their 

biomass in proportion to the relative quality of each resource. We would expect the 
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proportion of replicates with a majority of biomass distribution towards the higher 

quality option to be equivalent to the relative quality between the environments, 

and that the proportions would deviate from 0.5. As a result, in such a situation, 

the above criterion would designate such biomass distribution as a choice for the 

higher quality option, when in reality, the cells were exploiting both resources. The 

P. polycephalum would be considered to choose an environment when the 

proportion of replicates distributing a majority of biomass towards the particular 

environment is greater than its relative quality.  

Therefore, in this study, we devise an aggregate criterion that determines if 

1) P. polycephalum cells can choose the most rewarding option (will be referred to 

as the “better resource” from here onwards) when presented with a choice 

between two resources, and 2) examines if the experimental time period was 

sufficient for the cells to express their choice-making behavior. Our choice-making 

criterion tests the null hypothesis that the relative difference in foraging effort (i.e., 

amount of biomass and time) distributed by P. polycephalum cells towards the 

most rewarding resource would be proportional to the relative difference in quality 

between the available resources. In this criterion, we first make aggregate 

measurements of the relative difference in foraging effort invested by P. 

polycephalum cells on the better resource, over the experimental time period, and 

across all experimental replicates. And then, we compare the measurement results 

to the relative difference in quality between the resources. When the value of the 

relative difference in foraging effort exceeds the relative difference in quality 

between the food sources, the cells will be considered as having chosen the better 
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resource. Whereas, when the relative difference in foraging effort plateaus to a 

value equivalent to, or lesser than, the relative difference in quality between the 

food sources, we will consider the cell to not have chosen the better resource. 

Moreover, if the value of the relative difference in foraging effort does attain a value 

that is lesser than the relative difference in quality, we will conclude that the P. 

polycephalum cells were not given sufficient time to evaluate the options to make 

choices between the resources. 

We test this criterion to explore the choice-making capabilities in tubule-

shaped P. polycephalum cells. We introduce a P. polycephalum tubule to binary 

food choice experiments, where both ends of the tubule are connected to a food 

source. We test the tubule in multiple food choice conditions, by progressively 

increasing the quality of the lower concentration food source with each 

experimental condition. Next, we use our choice-making criterion to a) determine 

if the P. polycephalum tubules chose the better resource, b) examine if the 

experimental time period dedicated to the experiments was sufficient to make a 

choice, and c) estimate the time point at which the cells made the choice on 

aggregate. 

 

3.2  Materials and Methods 

3.2.1  Biological Material 

In our experiments, we used P. polycephalum when it was in the plasmodium stage 

of its life cycle. At this stage, the cell is large enough to be observed with an 

unaided eye (can cover an area up to several hundred square centimeters (14)) 
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and can move up to a speed of 5 cm/hr (45). In this study, we obtained P. 

polycephalum cultures from Carolina Biological Supply® (Burlington, North 

Carolina). The cells were cultured in Petri plates (Ø = 10 cm, H = 1.5 cm) containing 

water solution of 1% w/v (weight/volume) non-nutrient agar and 5% w/v blended 

rolled oats (Quaker Oats Company®). The laboratory P. polycephalum stocks 

were recultured into new Petri plates biweekly and maintained at 26°C under dark 

conditions.  

3.2.2  Experimental Setup and Protocol 

We studied the choice-making criterion in tubule-shaped P. polycephalum cells. 

The tubule-shaped cells were obtained using the following procedure. We placed 

two agar blocks, one non-nutrient agar-only block, and one 5% oat-agar (i.e., food 

agar) block, right above the surface of a pool of water using supports. Next, we 

introduced a P. polycephalum mass (approx 0.5 gm) on the surface of the non-

nutrient agar block. Within a few hours, the P. polycephalum cell could be observed 

extending tubular pseudopods on the water surface. The cell formed a tubular 

network encompassing the non-nutrient and food agar block after 18 - 24 hours 

since the introduction of P. polycephalum into the setup. We cut a tubule of length 

2.5 cm from the cell network (i.e., an edge from the tubular network), and placed it 

between the two food sources in the final experimental setup. The final 

experimental setup consisted of 1% w/v non-nutrient agar solution poured in a Petri 

plate (Ø = 6 cm and H = 1.3 cm). Two food agar blocks of concentrations, given in 

Table 3.1, were embedded into the agar. The agar blocks were placed such that 

the inner edge of the two blocks was separated by a distance of 2 cm. The P. 
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polycephalum tubule was carefully introduced to the setup, such that equal lengths 

of the tubule interacted with the two food sources. Table 3.1 shows the different 

food choice conditions, the relative quality of the poorer food source, and the 

number of experimental replicates conducted for each condition. 

 
Table 3.1 OUTLINE OF THE EXPERIMENTAL TREATMENTS TO TEST THE 
CHOICE-MAKING CRITERION 

Condition 
Number  

Food choice 
condition (w/v 

oat-agar 
concentration) 

Relative 
quality of 
the poorer 

food 
source 

Relative difference 
between the food 
sources (or the 
choice-making 

threshold) 

Number 
of 

replicates 

1 10% vs 1% 0.1 0.82 68 

2 10% vs 2% 0.2 0.67 42 

3 10% vs 4% 0.4 0.43 49 

4  10% vs 6% 0.6 0.25 22 

5 10% vs 8% 0.8 0.12 48 

6 10% vs 10% 1.0 0 52 

 

3.2.3  Data Collection  

The experiments were recorded using Panasonic® Lumix GH4 camera fitted with 

an Olympus® M.Zuiko Digital ED 60mm macro lens. The camera took a picture 

every second for a period of 9999 seconds (or approx 2 hours and 45 minutes, 

which was the maximum capacity allowed by the camera). The cameras were 

placed in a manner that the more enriched food source (i.e., the better resource) 

always appeared on the left-hand side of the image. In order to capture high-
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definition images of the P. polycephalum tubule, the setup was illuminated from 

below with an LED panel (www.superbrightleds.com®) fitted with a 610 nm long-

pass light filter (Newport Corporation®). Studies have shown that P. polycephalum 

is unreceptive to wavelengths of light passing through this filter (50). 

3.2.4  Relative Difference in Foraging Effort on the Better Resource 

We studied the relative difference in the foraging effort by measuring the aggregate 

proportion of occurrences of higher biomass growth on the better resource as a 

function of the experimental time period. First, we visually inspected the 

experimental images at 8 equidistant time points along the length of the 

experiment, and recorded the food source showing a distinguishable biomass 

growth by the P. polycephalum tubule. Next, we used this information to construct 

a discrete, binary time series showing the success or failure of the tubule to 

aggregate more biomass on the better resource (will be referred to as the “success 

time series” from here onwards). In particular, at each time point, when a 

distinguishable amount of P. polycephalum’s biomass growth was observed on the 

better resource, we considered it a “success” denoted by a value of 1. Whereas, 

when the tubule showed a distinguishable biomass growth on the inferior resource 

or when the amount of growth on both the food sources was indistinguishable (i.e., 

the case of being “undecided”), the cases were considered a “failure" (assigned a 

value of 0). Moreover, in the condition where the tubule was offered a choice 

between food sources that were identical in quality (i.e., the 10% vs 10% food 

choice condition in Table 3.1), we considered a success as the case when a 

distinguishable biomass growth was observed on the left food source. This 
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exercise was repeated for all experimental replicates across the experimental 

conditions, and was conducted by an individual who was not involved in any other 

parts of this study.  

 We fitted the success time series with a generalized linear mixed effects 

model (GLMM) using a binomial error distribution and logit link function. In this 

model, we treated the food choice conditions, time points, and an interaction 

between the food choice conditions and time points as fixed effects. Moreover, 

each experimental replicate was treated as a random effect. We used the relative 

quality of the poorer food source values as the inputs to the model for the different 

food choice conditions tested. The choice-making capabilities of the P. 

polycephalum tubule were examined using the probability of success estimates 

(i.e., the probability of observing distinguishable growth on the better resource) 

predicted by the model. The analysis was conducted in R version 4.1.2 (82), using 

the “lme4” package (83). 

3.2.5  Relative Difference in Quality Between the Food Sources 

The relative difference in quality (will be referred to as the “choice-making 

threshold”) was used as the threshold to determine whether the P. polycephalum 

tubules made a choice for the better resource (discussed in detail in the next 

section). The choice-making threshold for the different food choice conditions is 

given in Table 3.1, and the values were calculated using the Equation 3.1: 

 

KℎM4NO − PQ"4RS	TℎUOVℎMWX = 	
YZVMW[TO	X4\\OUORNO	4R	\MMX	][QW4T=

5MTQW	V[P	M\	TℎO	\MMX	][QW4T4OV
 (3.1) 
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3.2.6  Choice-making Criterion 

In order to determine whether P. polycephalum tubule made a choice for the better 

resource, we compared the probability of success estimates to the choice-making 

threshold, for each food choice condition. The choice-making threshold provides 

an estimate of the probability of success values when the P. polycephalum tubule 

is choosing the better resource according to the null hypothesis (i.e., the relative 

number of occurrences of higher biomass growth on the better resource is 

proportional to the relative difference in qualities between the presented food 

options). Therefore, we consider P. polycephalum tubule to make a choice for the 

better resource when the probability of success reaches a value that is greater 

than the choice-making threshold.  

 Figure 3.1 shows a schematic description of the choice-making criterion 

used in this study. The criterion compares the lower limits of the 95% confidence 

intervals (will be referred to as “lower confidence interval” from here onwards) of 

the probability of success estimates to determine the tubule choice. Such that, 

when the lower confidence interval exceeded the choice-making threshold, P. 

polycephalum tubules will be considered to choose the better resource. The 

comparison of the lower confidence interval to the choice-making threshold 

ensures that a significant majority of the probability of success estimates (i.e., 

97.5% of the estimates) is above the choice-making threshold. Moreover, the 

choice-making time point is defined as the time point when P. polycephalum made 

a choice for the better resource. The choice-making point was calculated as the 
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time point corresponding to the intersection point between the lower confidence 

interval and the choice-making threshold. 

In contrast, when the lower confidence interval is below the choice-making 

threshold, the cells will be considered to not have chosen the better resource. 

Additionally, in such cases, the shape of the probability of success estimates was 

used to determine if the P. polycephalum tubules were given sufficient 

experimental time to make the choice. In particular, when the probability of success 

estimates become constant (or plateaus) by the end of the experimental time 

period, this implies that the P. polycephalum tubule has reached the final 

probability of success state for the particular food choice condition. And therefore, 

the cell was given sufficient time to evaluate the options and make a choice. In 

contrast, when the shape of the probability of success estimates does not plateau, 

this implies that the P. polycephalum is still in the process of choosing between the 

food sources and has not reached the final probability of success state for the 

given experimental condition. 

 

3.3  Results 

We used a GLMM model using binomial error distribution and logit link function to 

analyze the relationship between the food choice conditions (i.e., the relative 

quality of the poorer food source), time points, and interaction between the food 

choice conditions and time points, on the probability of observing distinguishable 

growth on the better resource (i.e., the probability of success). We found that, when 

holding all the predictor variables constant, then for every 1 unit increase in the 
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time points, the odds ratio (OR) of the probability of success increased by a factor 

of 1.8924 (95% CI: 1.57 to 2.21, p < 2e-16). In other words, across all the food 

choice conditions the probability of success increased with the increase in 

experimental time (see Figure A.1 of the Appendix). The food choice conditions 

had a positive but a nonsignificant effect on the odds ratio of the probability of 

success (OR = 1.7612, p = 0.197, see Figure A.2 of the Appendix).  

 Importantly, the predictor variable comprising the interaction between the 

food choice condition and time points had a significant effect on the odds ratio of 

the probability of success (OR: -1.2882, CI: -1.77 to -0.99, p < 2.98e-12, Figure 

3.2). The results show that when the relative quality of the poorer food source is 

low (i.e., when the difference in the relative quality of the food source is high), the 

probability of success increases at a higher rate over the experimental time period. 

In contrast, at high values of the relative quality of the poorer food source, the 

probability of success increases at a lower rate. In other words, when the relative 

quality of the poorer food source decreased, the P. polycephalum was observed 

to aggregate a distinguishable amount of biomass on the better resource more 

frequently, with the increase in the experimental time period. The model 

diagnostics and performance are given in Figures A.3 and A.4, of the Appendix, 

respectively. 

 Next, we compared the lower confidence interval values of the probability 

of success estimates and the choice-making threshold to determine whether the 

P. polycephalum tubule made a choice for the better resource. Table 3.2 details 

the results of the analysis. The results show that the P. polycephalum was able to 
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choose the better resource in all but the 10% vs 8% food choice condition. The 

results can also be corroborated with Figure 3.2, showing the lower confidence 

intervals not exceeding the choice-making threshold in the 10% vs 8% food-choice 

condition. Lastly, when the tubules demonstrated a choice for the better resource, 

we calculated the time point at which the tubules made the choice. The results of 

the analysis are also shown in Table 3.2. Finally, in the 10% vs 10% food choice 

condition, the choice-making criterion determines the choice-making point to be at 

time points < 1, suggesting the non-applicability of the criterion when the food 

choices presented are identical in quality. 

 

3.4  Discussion 

We devised a choice-making criterion that determines whether P. polycephalum is 

capable of choosing the most rewarding option when given a choice between two 

sources, examines whether the P. polycephalum was given sufficient experimental 

time to make the choice, and obtains the time point at which the choice was made. 

The choice-making criterion tested the null hypothesis that the relative difference 

in the foraging effort (i.e., the amount of biomass and time) by P. polycephalum in 

moving towards the most rewarding resource would be proportional to the relative 

difference in quality between the available resources. We tested the criterion on P. 

polycephalum tubule in binary food choice experiments, with the quality of the 

inferior food source varying progressively with each experimental condition. We 

examined the foraging efforts in the terms of proportion of occurrences of higher 

biomass growth on the better resource over the experimental time period. The 
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results show that P. polycephalum cells made a choice for the better food source 

in each of the experimental conditions but the 10% vs 8% food choice conditions. 

Moreover, the choices made by the tubule were inconclusive in the 10% vs 10% 

food choice conditions. 

 
Table 3.2   SUMMARY OF THE APPLICATION OF THE CHOICE-MAKING 
CRITERION ON THE CHOICE-MAKING BEHAVIORS OF  P. POLYCEPHALUM 
TUBULES  

Food choice 
condition (w/v 

oat-agar 
concentration

) 

Relative 
quality of the 
poorer food 

source 

Choice-
making 

threshold 

Choice 
(Yes or 

No) 

Choice-
making point  

10% vs 1% 0.1 0.82 Yes 6.57 

10% vs 2% 0.2 0.67 Yes 6.34  

10% vs 4% 0.4 0.43 Yes 6.45  

10% vs 6% 0.6 0.25 Yes 7.16  

10% vs 8% 0.8 0.12 No Not enough 
experimental 

time 

10% vs 10% 1.0 0 Yes NA 
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Figure 3.1 Choice-making criterion used to determine tubule choices and the sufficiency of experimental time period to 
make food choices. The dotted line in the plots represents the choice-making threshold and was calculated using the formula 
given by Equation 3.1. The solid black line represents the mean estimate of the probability of success, and the gray envelope 
represents the confidence interval of the estimate. Note: The trends and values of the choice-making criterion and probability 
of success used are for example purposes only.
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Figure 3.2 Plot of the Probability of Success as a function of the Time points, for each experimental food-choice condition. 
The data were analyzed using a generalized mixed effects model (GLMM) with binomial error distribution and logit link 
function. The food-choice condition was inputted into the model as the relative quality of the poorer food source. The colored 
lines represent the probability of success (i.e., the probability of observing distinguishable growth on the better resource) as 
predicted by the GLMM model, for each food choice condition. The semi-transparent envelope around the curves represents 
the 95% confidence interval of the fit. A) Shows the probability of success estimates for all the food choice conditions. B) 
Shows the probability of success estimates for different food choice conditions. The food choice condition is stated in the 
title of each plot. The horizontal dotted lines represent the choice-making threshold for the particular food choice condition, 
and the values are shown by the numbers placed right above the lines.
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In this study, we used a strain of P. polycephalum cells that have previously 

been observed to show growth in the surface area that was in proportion to the 

qualities of the environment (29, 84). However, there could be a P. polycephalum 

strain that allocates a differential amount of biomass toward resources, while not 

showing any difference in the net surface area coverage. In such a scenario, the 

criterion used in this study would not work. Therefore, to examine the choice-

making behaviors of P. polycephalum in such situations, we propose an alternative 

criterion that measures the biomass distribution on the resources. And then use 

the precise biomass measurements to examine whether the distribution of the 

biomass on the better resource is significantly different from the expected 

distribution suggested by the null hypothesis. 

Since the lower confidence interval in the 10% vs 10% food choice scenario 

cannot achieve a value that is below zero, any proportion of occurrences of higher 

biomass growth on the left food source will show a choice as made for the 

particular resource. Moreover, our choice-making criterion only deciphers choice-

making behaviors when P. polycephalum cells are presented with options varying 

in a single attribute (i.e., food quality in this study). Our future work will be directed 

towards expanding the choice-making criterion to determine choice-making when 

the options available to the P. polycephalum cell are identical in quality and when 

the options vary in more than a single attribute. 
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CHAPTER 4 

CAN PHYSARUM POLYCEPHALUM USE INFORMATION FROM ITS PAST TO 
DIRECT ITS FUTURE FORAGING BEHAVIORS?  
 

4.1  Introduction 

Natural selection has enabled living organisms to exploit information from their 

past history to better survive and reproduce in challenging environmental 

conditions. Foraging organisms have been observed to integrate information from 

their past experiences, and use the information to adapt their future foraging 

behaviors (85–87). This allows organisms to increase their foraging efficiency by 

decreasing search time and energy expenditure for discovering resources in the 

environment (88, 89). For example, bumble bees Bombus spp (90, 91), 

hummingbirds Phaethornis longirostris and Selasphorus rufus (5, 6), tamarin 

monkeys Saguinus mystax and Saguinus fuscicollis (92), and bison Bison bison 

(7) adopt a non-random, goal-directed movement towards patches where they 

encountered high-quality and replenishable food sources in their past. Conversely, 

wildebeest Connochaetes taurinus and caribous Rangifer tarandus granti (93), and 

grizzly bears Ursus actos (94) avoid revisiting patches with non-replenishable food 

sources, and instead, focus their foraging activity on other unexplored patches in 

the environment. Moreover, honey bees Apis mellifera (95), golden shiner fish 

Notemigonous crysoleucus (96), macaques Macaca arctoides (97), and Risso’s 

dolphin Grampus griseus (98) adapt the timing of their foraging trips to the 

spatiotemporal distribution of food sources encountered in their past foraging 

efforts.  
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In all these examples, the organisms used a specialized information 

processing organ, i.e., a nervous system, to adapt their foraging behaviors in 

response to their past experiences. However, life on Earth is primarily composed 

of organisms that are “non-neuronal”, which have existed long before the evolution 

of neurons (12). Yet, most of the studies investigating the influence of past 

experience on foraging have primarily focused on neuronal organisms, seemingly 

ignoring a large portion of life on Earth.  

Non-neuronal organisms - such as bacteria, fungi, plants, and protists - lack 

a specialized organ for information processing, and yet many studies have shown 

that they can use information from their past to inform their future foraging 

behaviors. For example, Escherichia coli bacteria can detect the temporal pattern 

of nutritional changes in their local environment, and use this information to predict 

the future occurrences of a fitness-limiting nutrient (i.e., maltose) (99). Similarly, 

they can compare the quality of their local environment on a temporal scale and 

use this information to navigate towards attractive resources in the environment 

(100, 101). Mucor and Aspergillus spp. of fungi release chemical inhibitors that 

repel the fungal hyphae, preventing them from revisiting previously explored areas 

(102). Furthermore, clonal plants Potentilla reptans and P. anserina based their 

choice of placing a new rooting ramet (ramets are stem extensions that help a plant 

forage for resources from an environment where it is rooted) on the quality of the 

new environment as well as the quality of the environments encountered by older 

ramets (103).  
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While we have recorded examples of how non-neuronal organisms can 

exploit information from their past history to inform their future foraging behaviors, 

our understanding of the mechanisms involved is very poor. Therefore, in order to 

understand these mechanisms, we are using the acellular slime mold Physarum 

polycephalum as a model organism. 

P. polycephalum is a macroscopic, unicellular, multi-nucleated protist 

(phylum: Amoebozoa, class: Myxogastria) that lives in dark, cool, and moist areas 

of temperate forests. P. polycephalum can extend multiple pseudopods to explore 

its environment, hence referred to as “multi-headed” (i.e., translates to 

polycephalum in Latin). The exploratory search front of P. polycephalum advances 

in a dense fan-like shape, followed by a network of interconnected tubules (14), 

where the protoplasm (containing cytoplasm, organelles, nutrients, and signaling 

molecules) flows in a rhythmic back-and-forth manner called shuttle streaming 

(16). P. polycephalum, without the help of a single neuron, can exhibit complex 

problem-solving behaviors, such as finding the shortest path in a labyrinth maze 

(17), forming adaptive networks with properties similar to those found in human-

made structures (18), solving complex nutritional challenges (19), anticipating 

periodic events (21), and making irrational decisions similar to organisms with 

neurons (25). Moreover, P. polycephalum has been shown to have “internal” 

memory that helps the cell to habituate to repeated innocuous stimuli from the 

environment (23), and “external” memory in the form of extracellular slime that 

repels the cell from repeated exploration of the same area (22). In essence, the 

macroscopic size of the organism combined with the experimental tractability and 



 

 58 

problem-solving capabilities, make P. polycephalum an excellent model organism 

to understand the mechanisms used by non-neuronal organisms to exploit past 

information to direct future foraging behaviors. 

In a previous study by Latty and Beekman (2009), the authors showed that 

P. polycephalum could modify its network morphology depending on the quality of 

the recently exploited environment (104). When grown in a high-quality food patch 

of 10% quality (i.e., 10% oat-agar weight/volume), P. polycephalum’s subsequent 

foraging network was dense and localized, presumably in an attempt to maximize 

resource exploration in regions neighboring the high-quality food source. In 

contrast, P. polycephalum grown in a low-quality food patch (i.e., 1% oat-agar 

weight/volume) built a subsequent network that was sparse and thinly scattered in 

an effort to explore a larger area for food. These different exploratory strategies 

employed by the P. polycephalum cell were interpreted as adaptive responses 

induced by the organism’s recent experience of foraging environment quality. 

However, the study did not investigate the influence of foraging in environments 

with multiple and patchily distributed resources on the subsequent exploratory 

behavior of P. polycephalum. 

In this study, we examine how P. polycephalum alters its exploratory 

behavior in response to the experiences of foraging in environments with varying 

distribution of food sources. By predictably changing the number of food sources 

encountered by a P. polycephalum cell, we examine how the subsequent 

exploratory behavior is modified by the cell, in order to maximize resource 

acquisition in the experimental environment. We hypothesize that as the number 



 

 59 

of food sources encountered by a P. polycephalum cell decreases, the cell would 

increasingly engage in an exploratory strategy that helps detect resources in the 

far reaches of the experimental setup. To test our hypothesis and characterize the 

exploratory behavior, we quantify the P. polycephalum exploratory behavior by 

defining 3 morphological metrics: Sparsity, Isotropy, and Rate of exploration.  

Sparsity is a measure that quantifies how thinly scattered or sparsed is an 

exploratory network formed by P. polycephalum. That is, when the exploratory 

network formed by P. polycephalum is thinly dispersed and distributed, then the 

network will have high Sparsity. Conversely, an exploratory network that is dense 

and concentrated will have a low Sparsity. We expect that with decreasing number 

of food sources encountered by P. polycephalum, the Sparsity of the subsequent 

cell network would increase. This expectation is based upon the results of the 

study conducted by Latty and Beekman (2019), as discussed above. Specifically, 

when the cell encounters a lower number of food sources, a P. polycephalum cell 

would have an increased tendency to leave the current environment and explore 

resources that might be available in the far reaches of the experimental setup. 

Thereby forming a network that is highly scattered and thinly distributed. 

Isotropy is the measure that quantifies the angular distribution of the 

exploratory network formed by P. polycephalum. That is, when the exploratory 

network formed by P. polycephalum is growing equally in all directions (i.e., 

growing “isotropically” in all directions), then the network will have a high Isotropy. 

Conversely, an exploratory network growing in very few directions (i.e., growing 

“anisotropically”), the network will have a low Isotropy. We expect that with 
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decreasing number of food sources encountered by P. polycephalum, the Isotropy 

of the subsequent cell network would decrease. Our expectation is based on the 

results of previously conducted simulation-based studies, which showed that 

organisms adopting a straighter, unidirectional path are more successful at finding 

better resources away from their current foraging environment (105–107). 

Moreover, organisms such as prairie rattlesnake Crotalus viridis viridis (108), 

sharks (i.e., Galeocerdo cuvier, Alopias vulpinus, and Carchahinus melanopterus) 

(109), and eagle owls Bubo bubo (110) have been observed to use straighter paths 

having low sinuosity when exploring environments that are located at increased 

distances.  

Rate of exploration is a measure defined as the speed at which P. 

polycephalum explores (or moves) in the open arena. We expect that with 

decreasing number of food sources encountered by P. polycephalum, the rate of 

exploration would increase. This expectation is based on previous simulation 

studies showing that organisms attempting to move away (or disperse) from a low-

quality environment will efficiently discover new high-quality environments by 

moving quicker (i.e., making rapid movements) from their current environment 

(105, 107). Such exploratory patterns have been previously observed in eagle owls 

Bubo bubo (111) and goats Capra hircus (112). 
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4.2  Materials and Methods 

4.2.1  Biological Material 

We used P. polycephalum in the plasmodium stage of its life cycle, where the cell 

is large enough to be observed with the naked eye. In that stage, the cell can move 

in space up to a speed of 5 cm/hr (45) and can cover an area up to several hundred 

square centimeters (14).  

 We obtained P. polycephalum cultures from Carolina Biological Supply® 

(Burlington, North Carolina). It was cultured in Petri plates (Ø = 10 cm, H = 1.5 cm) 

containing water solution of 1% w/v (weight/volume) non-nutrient agar (referred to 

as blank agar in the rest of the document) and 5% w/v blended rolled oats (referred 

to as food agar in the rest of the document). We used rolled oats manufactured by 

Quaker Oats Company®. P. polycephalum stocks were recultured onto new Petri 

plates twice every week and maintained at 26°C under dark conditions. 

4.2.2  Experimental Setup  

To investigate how P. polycephalum modifies its foraging behavior in response to 

the distribution of food sources encountered, we tested cells in the experimental 

setup shown in Figure 4.1A. The setup is composed of 3 different sections, namely: 

1) a starting site, 2) a food track, and 3) an open arena. The boundary wall of the 

setup was 0.2 cm in thickness and 0.9 cm in height. The setup was 3d printed 

using MakerBot® PLA filament. The starting site was a 1.5 cm by 1.5 cm space 

where we introduced the P. polycephalum cell to the setup. The food track was a 

1 cm wide and 6 cm long passage that connected the starting site to the open 

arena. The food track contained a varying number of food sources (dimensions 1 
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cm in length, 0.1 cm in width, and 0.5 cm in height) depending on the experimental 

condition as given in Table 4.1 (see also next section). Since P. polycephalum 

feeds on the nutrients available on the surface of their foraging environment (113), 

the upper 1 cm x 0.1 cm (or 0.1 cm2) surface of the food sources were only 

available to the cell to forage. The open arena was a 10 cm wide and 6 cm long 

space where a P. polycephalum was free to form an exploratory foraging network 

after exiting the food track. 

 

 

Figure 4.1 A) Picture of the experimental setup used in the experiments. The 
details about the setup are described in the text. B) An example last image of an 
experiment with 11 food sources (Condition No. 4 in Table 4.1), and C) shows the 
final explored area image of the given example experiment. 
 

4.2.3  Experimental Protocol 

The experimental setup was filled with blank agar solution to a height of 0.5 cm. 

We began our experiments by carefully extracting 300 ± 5 mg of P. polycephalum 

biomass from our lab stocks and placing it at the starting site. When detached from 

the main cell, the biomass fragments begin to act as independent cells within a few 
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minutes after extraction (114). In each experimental condition, a food agar block 

was placed right at the entrance of the food track in order to motivate the P. 

polycephalum cell to begin exploring the experimental setup. The experimental 

setup was covered with a transparent acetate sheet. Since P. polycephalum is 

photophobic, we conducted the experiments in a dark chamber for a period of 48 

hours. The temperature of the experimental chamber was maintained at 26 °C, 

which has been observed to be the optimal temperature for cell growth in our lab 

cultures. The experiments were stopped once an edge from the P. polycephalum 

network contacted one of the three boundaries of the open arena that were not 

attached to the food track.  

The experiments were recorded using a Panasonic® Lumix GH3 camera 

fitted with Lumix® G Varia 14-140mm f/3.5-5.6 II lens. The camera took a picture 

once every 5 minutes, while an LED panel placed below the setups illuminated the 

experiments. The LED panel switched on for a period of 10 seconds while the 

camera took a picture, but at all other times, experiments were kept under dark 

conditions. 
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Table 4.1  OUTLINE OF THE EXPERIMENTAL CONDITIONS 
Condition No. Experimental 

Conditions (i.e., the no. 
of food sources 

offered to P. 
polycephalum) 

No. of replicates 

1 1 16 

2 3 35 

3 6 33 

4 11 36 

5 21 18 
 

4.2.4  Image Segmentation  

We processed and segmented the experimental images to extract different 

morphological features of P. polycephalum exploration using a custom-written 

computer vision script in MATLAB®. First, the script requires a user to manually 

select 4 corners of the open arena to create a mask that removes the background 

regions (i.e., the regions other than the open arena) of the experimental setup. 

Then, the script computes a threshold to segment the P. polycephalum network 

using a reference image and the last experimental image. The reference image 

was defined as an image with no P. polycephalum growth in the open arena. We 

chose the reference image to be the image taken one before the first image 

showing P. polycephalum growth in the open arena. The last experimental image 

was the image where a part of the P. polycephalum cell came in contact for the 

first time with one of the three boundaries of the open arena that were not attached 

to the food track. To calculate the threshold, we first converted the background 

and last experimental image from RGB (i.e., Red Green Blue) to HSV (Hue 
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Saturation Value) color space, as P. polycephalum showed the highest contrast in 

the saturation (i.e., S) channel of this colorspace.  Next, we subtracted the 

saturation channel of the background image from the saturation channel of the last 

image. We used this differenced image to obtain a threshold that could be used to 

get a binary image with white pixels representing the P. polycephalum cell and 

black pixels representing the other regions in the open arena. We tried different 

methods using trial and error to get the best segmented image. The best result 

was produced by taking the difference image, setting all the pixels with negative 

values to 0, and normalizing the pixel values between 0 and 1. Then, from the 

resulting image, the threshold was calculated as the elbow point of the image 

histogram (Figure 4.1C). Lastly, to get the binary images of P. polycephalum for 

each experimental image, the script used the calculated threshold on the image 

resulting from the difference in the saturation channels of the focal and reference 

image. 

 We used these binary images to create a new set of binary images that 

showed the area visited or explored by P. polycephalum until each experimental 

time step. That is, in each experimental image, if a pixel in the open arena was 

visited by a P. polycephalum cell at the current time step or in the past, then that 

pixel appeared as white in the binary image. From here onwards, we use the terms 

“explored area” and “explored area image” when referring to the total area explored 

until each experimental time step and the binary image showing the pixels visited 

by P. polycephalum, respectively. The different morphological metrics measured 
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to understand the exploratory behavior of P. polycephalum were calculated using 

the explored area image. 

4.2.5  Morphological Metrics to Quantify P. polycephalum Exploratory 

Behavior  

We computed three different metrics to investigate the performance of P. 

polycephalum in response to its past foraging experience. The metrics are 

discussed in detail below: 

1) Sparsity is the measure that defines how thinly scattered or distributed an 
exploratory network formed by P. polycephalum is. Sparsity (S) was calculated 
for each explored area image using Equation 4.1:  

 

! = 1 −	
&!
&"

 (4.1) 

 

with CN  representing the circumference of the explored area by a  P. 
polycephalum cell, and CS  representing the circumference of a semi-circle 
having the same surface area as that of the P. polycephalum exploratory 
network. In other words, if P. polycephalum explored systematically each and 
every portion (or pixel) of the open arena, then the cell would have allocated all 
its biomass into a shape that resembled a semi-circle with a circumference CS.  

As per Equation 4.1, a Sparsity value of 1 represents a network that is 
maximally sparsed. Conversely, a value of 0 represents a network that is 
maximally dense. 

 

2) Isotropy is defined as a measure of the angular distribution of P. polycephalum 
biomass in the open arena. We used an information-theoretic tool called 
Jensen-Shannon Divergence (i.e., JSD) to measure the Isotropy in P. 
polycephalum growth in the open arena. JSD is the measure of the symmetric 
distance between two probability distributions (115). The concept of JSD is 
based upon another information-theoretic measure called Kulback-Leibler 
Divergence (i.e., KLD) or relative entropy. The JSD between two discrete 
probability distributions P(x) and Q(x), defined over the same probability space 
X is given by: 
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'!((*(+)|./(+)0 = 	
1
2
(#$%(*(+)||2(+)) +	

1
2
(#$%(/(+)||2(+)) 

(4.2) 

 

Where, quantity 2(+) is the vector mean of *(+) and /(+), such that 
2(4) = 	

&
' 5*(+) + /(+)0. (#$%(7(+)||8(+) is the KLD measuring the 

divergence of the distribution 8(+) from the distribution 7(+), over the same 
probability space 4 (116),  and is given by: 

 

(#$%(7(+)|.8(+)0 = 	97(+) log
7(+)
8(+)

()*
 (4.3) 

 

When the JSD between two distributions is 0, then the two distributions are 
identical (i.e., having a statistical distance of 0 between the two distributions). 
Whereas, a JSD value of 1, means that two distributions are maximally different 
from one another. 
  To measure Isotropy, for each explored area image, we first divided the 
open arena into 180 sectors, with each sector subtending a 1° angle at the 
base point. The base point was defined as the point in the middle of the food 
track right at the entrance of the open arena (Figure 4.1A). Next, we calculated 
the proportion of P. polycephalum biomass occurring in each of the sectors. 
We then calculated the JSD between the distribution of the biomasses in the 
different sectors and the expected distribution if the P. polycephalum biomass 
was uniformly distributed among all the sectors (i.e., 1/180 parts or 0.5556% of 
the total biomass found in each sector). Therefore, when the JSD of an 
explored area is 0, then the growth of the P. polycephalum is completely 
isotropic (i.e., the biomass is equally distributed in all the sectors), i.e., the 
exploratory network has high Isotropy. In contrast, a JSD of value 1 would 
mean the P. polycephalum growth is completely anisotropic (i.e., the P. 
polycephalum is growing in only 1 sector in the open arena), i.e., the 
exploratory network has low Isotropy.  
 

3) Rate of exploration is a measure defined as the rate at which P. polycephalum 
explores or moves in the open arena. This was calculated by taking the 
difference of the explored area between two consecutive experimental images, 
from the time the P. polycephalum first appears in the open arena until the end 
of an experiment. 
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4.2.6  Statistical Analyses 

The Sparsity, Isotropy, and Rate of exploration were analyzed separately using a 

combination of a linear model and/or nonlinear least squares models. The details 

of the analyses are given below and were performed in R version 4.1.2 (82). We 

used the model diagnostics plots (Q-Q plot and standardized residuals vs fitted 

value) and the “DHARMa” package in R to test for the model performance (117) 

for all our analyses. 

 

Sparsity 

To investigate the influence of environments with a different number of food 

sources on Sparsity, we examined the change in Sparsity values as a function of 

the explored area for each experiment. In order to account for the behavior of 

Sparsity reaching an upper asymptote at high explored area values (see Appendix 

Figures B.1 – B.5), we fitted an asymptotic nonlinear least square model for each 

experimental data separately.  The model was of the form: 

 

= = > − (> − ?) ∗ 	A(,-	∗	*) (4.4) 

 

Where, = is the dependent variable (i.e., Sparsity in our analysis) and 4 is 

the independent variable (i.e., explored area in our analysis). The parameter > 

represents the upper asymptote of the model (i.e., the maximum achievable = 

value) and was set to a value of 1. This is because we expect the P. polycephalum 

exploratory network to be maximally thin and dispersed (i.e., Sparsity 
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approximating a value of 1) as the explored area of the network tends to infinity. 

The parameter ? represents the value of = when 4 = 0, and in our model, the value 

of ? was set to 0, as we expect Sparsity to be 0 when there is no P. polycephalum 

growth in the open arena. Next, the parameter c represents the relative rate at 

which = reaches an upper asymptote with increasing 4. In our analysis, B 

represents the rate of change of Sparsity towards the upper asymptote (it will be 

referred to as the rate of change of Sparsity from here onwards) as a P. 

polycephalum cell explores more of the open arena. The model parameter B was 

kept free and fitted to each experimental data separately. We tried a combination 

of transformations on the independent variable to find the best visual fit to our data. 

We found that a square root transformation on the independent variable produced 

the best fit (see Appendix Figures B.1 – B.5). Lastly, we analyzed the rate of 

change in Sparsity as a function of an increasing number of food sources 

encountered by P. polycephalum using a linear model.  

 

Isotropy 

To investigate the influence of different foraging environments on Isotropy, we first 

examined the change in JSD values as a function of explored area for each 

experiment. The change in JSD did not show any consistent pattern across 

different experiments (see Appendix Figures B.8 – B.12 for raw data). Therefore, 

we only considered the JSD in the final image, as it shows the overall exploratory 

behavior of P. polycephalum throughout the experimental time period (i.e., it shows 

everything visited by P. polycephalum during an experiment). We analyzed the 
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JSD in the final explored area image (will be referenced as “Final JSD” from here 

onwards) as a function of an increasing number of food sources encountered by 

P. polycephalum in the past using a general linear model.  

 

Rate of exploration 

To investigate the influence of different foraging environments on the Rate of 

exploration, we examined the change in the Rate of exploration as a function of 

time. The change in Rate of exploration didn’t show a consistent pattern across 

experiments (see Appendix Figures B.15 – B.19 for raw data), and therefore, we 

analyzed the mean Rate of exploration as a function of an increasing number of 

food sources encountered by P. polycephalum using a general linear model. 

 

4.3  Results 

4.3.1  Sparsity Analysis 

To understand the influence of environments with a different number of food 

sources on the Sparsity of the P. polycephalum exploratory network, we first 

examined the rate of change of Sparsity as a function of the explored area for each 

experiment. Sparsity initially increases with increasing explored area by the P. 

polycephalum cell, and then reaches an upper asymptote at high explored area 

values (see Appendix Figures B.1 – B.5). Additionally, this trend was corroborated 

by the positive parameter c values (i.e., the rate of Sparsity reaching an upper 

asymptote of values 1 in Figure 4.2) estimated for all experimental replicates 

across different experimental conditions. 
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Figure 4.2 Plot of the Rate of Sparsity reaching an upper asymptote of value 1 
(i.e., the rate of change of Sparsity, or the parameter c in Eq. 4.4) vs Number of 
food sources encountered in the past. Higher values of the rate of change of 
Sparsity show that a P. polycephalum reaches the upper asymptote faster than the 
values that are lower. The solid blue line represents the best linear model fit to the 
data (R2 = 0.04081, F1,136 = 5.787, and p = 0.01749) and the semi-transparent 
envelope represents the 95% confidence interval of the fit. The fitted regression 
model equation is given at the bottom of the figure (x is the number of food sources 
encountered). 
 

Next, we examined the rate of change of Sparsity as a function of the 

number of food sources encountered in the past using a linear model (Figure 4.2). 

The best-fitted regression model was 0.00944x + 0.786745 (where x is the number 
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of food sources encountered). Overall, the regression was found to be statistically 

significant (R2 = 0.04081, F1,136 = 5.787, and p = 0.01749). The model diagnostics 

and performance are shown in Appendix Figures B.6. and B.7, respectively.  

While the results of a linear model fit show the relationship between the rate 

of change of Sparsity and the number of food sources encountered to be 

significant, the increase in the rate of change of Sparsity with every additional food 

source encountered is extremely low (i.e., the effect size was found to be 0.00944, 

or a ~ 0.9% increase in the rate of change of Sparsity with every additional food 

source encountered). Moreover, the R-squared value of the model was found to 

be extremely low (i.e., a value of 0.04081). This means that there are other factors 

that significantly influenced the rate of change of Sparsity of a P. polycephalum 

exploratory network. Therefore, taking into account the low effect size and R-

squared value, we conclude that our analysis did not find any strong influence of 

the number of food sources encountered in the past on the rate of change of 

Sparsity.  
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Figure 4.3 Plot of the Jensen-Shannon Distance (JSD) vs Number of food sources 
encountered in the past. Higher JSD values represent low Isotropy in the P. 
polycephalum exploratory network, and vice-versa. The solid blue line represents 
the best linear model fit to the data (R2 = 0.05279, F1,136 = 7.579, and p = 0.006713) 
and the semi-transparent envelope represents the 95% confidence interval of the 
fit. The fitted regression model equation is given at the bottom of the figure (x is 
the number of food sources encountered). 
 

4.3.2  Isotropy Analysis 

To understand the influence of environments with a different number of food 

sources on the Isotropy of the P. polycephalum exploratory network, we examined 

the JSD in the final image (i.e., Final JSD) as a function of the number of food 

sources encountered in the past. We found the relationship to be best described 



 

 74 

by a linear regression model (Figure 4.3) of form 0.003936x + 0.358344 (where x 

is the number of food sources encountered). The regression was found to be 

statistically significant (R2 = 0.05279, F1,136 = 7.579, and p = 0.006713). The model 

diagnostics and performance are shown in Appendix Figures B.13 and B.14, 

respectively.  

The results show that with the increase in the number of food sources 

encountered in the past, the JSD of the exploratory P. polycephalum network 

increases (i.e., Isotropy decreases). However, the model showed the increase in 

JSD to be extremely small (i.e., JSD increases by a factor of 0.003936 or by ~0.4% 

with each additional food source encountered by the cell). Moreover, the fitted 

model showed an extremely low R-squared value (i.e., a value of 0.05279), 

suggesting that other factors were more influential in explaining the variability in 

the JSD values than the number of food sources encountered by the P. 

polycephalum in its past. In essence, given the extremely low effect size and R-

squared values of the fitted model, we conclude that the isotropy of P. 

polycephalum networks are not strongly influenced by the number of food sources 

encountered in the past. 
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Figure 4.4 Plot of the Mean rate of exploration vs Number of food sources 
encountered in the past. The solid blue line represents the best linear model fit to 
the data (R2 = 0.0001511, F1,136 = 0.01382, and p = 0.9066) and the semi-
transparent envelope represents the 95% confidence interval of the fit. The results 
show the relationship between the mean rate of exploration and the number of 
food sources encountered in the past was not statistically significant. 
 

4.3.3  Rate of Exploration 

To understand the influence of environments with a different number of food 

sources on the Rate of exploration of the P. polycephalum exploratory network, we 

examined the mean Rate of exploration as a function of the number of food sources 

encountered in the past. The results are shown in Figure 4.4 (see Appendix 
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Figures B.20 and B.21 for model diagnostics and performance, respectively), and 

we found that the relationship between the mean Rate of exploration and the 

number of food sources encountered in the past is not significant (R2 = 0.0001511, 

F1,136 = 0.01382, and p = 0.9066). Therefore, we conclude that the mean Rate of 

exploration of the P. polycephalum exploratory network is not influenced by the 

number of food sources encountered in the past. 

 

4.4  Discussion 

We studied the exploratory strategy adopted by P. polycephalum in response to 

the experiences of foraging in environments with a varying number of food 

sources. We introduced a P. polycephalum cell to experimental environments with 

a different number of food sources, and examined the subsequent exploratory 

behavior. The exploratory behavior was quantified using 3 morphological metrics, 

namely: Sparsity, Isotropy, and Rate of exploration. We hypothesized that with 

decreasing number of food sources encountered by a P. polycephalum in the past, 

the cell would increasingly adopt an exploratory strategy that helps detect 

resources in the far reaches of the experimental setup. We expected an increase 

in Sparsity and Rate of exploration and a decrease in Isotropy. However, our 

results did not validate our hypothesis. In particular, our results did not find support 

for any changes in Sparsity, Isotropy, and Rate of exploration as a function of the 

number of food sources encountered in the past (Figures 4.2 - 4.4). 

 Although P. polycephalum cells were introduced to experimental conditions 

of varying qualities - the number of food sources offered to a cell ranged from 1 to 
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as many as 21 (Table 4.1) -, it is highly possible that each of the experimental 

conditions was deemed as “low-quality” by the cell. Previous studies that observed 

changes in P. polycephalum foraging behavior in response to environments with 

different qualities, introduced a P. polycephalum cell in experimental setups that 

provided a higher quantity of food in relation to the cell size, as compared to the 

proportions used in this study. For example, Reid et al (2016) examined the 

exploration-exploitation trade-off in P. polycephalum using an experimental setup 

that comprised a food track with dimensions and number of food sources similar 

to the experimental conditions used here (29). However, the authors introduced a 

P. polycephalum biomass that weighed 25 ± 5 mg (i.e., < 1/10th or 10% of the 

biomass used by us) to conduct their experiments. Similarly, Latty and Beekman 

(2009) tested the exploitation performance of P. polycephalum cells weighing 27 ± 

2 mg in environments comprising 4 food agar disks (with quality similar to ours) 

each having a diameter of 1.5 cm (104). Specifically, the authors provided food 

sources to a P. polycephalum cell having a surface area (P. polycephalum only 

feeds on the nutrient available on the surface of their environment (113)) similar to 

that used in our experiments (i.e., a combined surface area of 1.76 cm2 in Latty 

and Beekman (2009) vs. 2.1 cm2 of a maximum combined surface area in 

Condition No. 5 in Table 3.1). But, the cells weighed < 10% of the P. polycephalum 

weight introduced in our study. Therefore, it is likely that in our experiments, none 

of the experimental conditions provided a P. polycephalum with enough nutrients 

that could enable the cell to explore regions neighboring the food track, in an effort 

to maximize resource acquisition within the experimental environment. As a result, 
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the cell might have adopted an exploratory behavior that would help discover 

resources in the far reaches of the experimental environment, thereby showing no 

differences in the morphological metrics measured in the study. 

Previous studies exploring the problem-solving behaviors of P. 

polycephalum neither justified their decision of using a cell of a particular size to 

conduct their experiments, nor explored the P. polycephalum’s problem-solving 

performance with changing cell sizes. Moreover, the amount and metric of P. 

polycephalum cells used in the studies were highly variable across different 

studies. For example, in a study by Reid et al. (2013), the authors introduced a P. 

polycephalum cell measured in square centimeters (used 3 cm2 of P. 

polycephalum) into a setup containing two food-agar disks of diameter 1.2 cm each 

(i.e., with a surface area of 1.13 cm2) located at a distance of 4 cm from the P. 

polycephalum inoculation site (118). Conversely, Dussutour (2010) used a setup 

that placed the food sources at the same distance from the P. polycephalum 

inoculation site as Reid et al. (2013), but introduced a cell that weighed in grams 

(i.e., weighing 0.014 gm) and food-agar disks with diameters of 2.0 cm (i.e., a 

surface area of 3.14 cm2) (19). Similarly, Smith-Ferguson et al. (2021) introduced 

P. polycephalum of length < 5 mm into setups containing food disks of a diameter 

of 2.0 cm (i.e., a surface area of 3.14 cm2) (119). In essence, the studies introduced 

P. polycephalum cells into setups that were similar in terms of food quality and 

structure but the amount of biomass used was incomparable, as the studies used 

different metrics to measure P. polycephalum biomass. Therefore, our results 

combined with the inconsistencies in P. polycephalum biomass size used in the 
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previous studies necessitate the need to establish a standard and explore the role 

of cell size in the problem-solving capabilities of P. polycephalum. Our future work 

will involve repeating the experiments as conducted in this study, but using P. 

polycephalum biomass weighing 10% of that used here (i.e., biomass weighing 

similar to that used by Reid et al. (2016) (29) and Latty and Beekman (2009) (104), 

described in the paragraph before). Additonally, we will investigate the changes in 

exploratory behavior as a function of the P. polycephalum biomass weight.  

Our experimental framework provides an excellent testbed to understand 

the influence of past foraging experiences on the future exploratory behaviors of 

P. polycephalum. Since P. polycephalum can simultaneously grow in multiple 

directions to forage in their environment, it could be difficult to examine and 

quantify the exploratory behavior of P. polycephalum in response to the quality of 

their foraging environment. However, our experimental setup (Figure 4.1A) 

overcomes this problem by limiting the scope of directions that could be adopted 

by a P. polycephalum cell to search for resources in the experimental environment. 

Moreover, the Sparsity and Isotropy morphological metrics, devised in this study, 

provide a standardized measure of scatteredness and directionality, respectively, 

of a P. polycephalum exploratory network. These metrics provide values that are 

normalized between 0 and 1, thereby, making it possible to compare the metrics 

between cell networks at different stages of an experiment. Lastly, the Rate of 

exploration metric used in this study provides a good measure to compute the 

speed of exploration of a cell over time, and has been used frequently to 

understand the exploratory behaviors in different organisms, such as, in juvenile 
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starlings Sturnus vulgaris  (120), frogs Xenopus tropicalis (121), rats Rattus rattus 

(122), and mycorrhizal fungi belonging to Glomeraceae and 

Claroideoglomeraceae families (123). 
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CHAPTER 5 
 

HOW DOES P. POLYCEPHALUM EXPLORE ITS ENVIRONMENT WHEN IN 
DIFFERENT PHYSIOLOGICAL STATES? 
 

5.1  Introduction 

Exploring the environment is an important activity performed by organisms to 

improve fitness. For example, exploration helps organisms discover new food 

sources (124–126), find habitats with better microclimates (127, 128), detect 

competitors (127, 129), seek refuge from predators (130, 131), etc. Conversely, 

exploration may result in fitness costs by exposing organisms to predators (132, 

133), and demanding high energy and time investments (134–137). Previous 

studies have shown that organisms, across taxa, employ exploration strategies 

that help them better explore their environments while minimizing costs from 

various risks. For example, the great tit Parus major and blue tit Parus caeruleus 

preferentially forage on food patches that provide high prey biomass and are 

located at distances closer to their nest, in order to optimize the prey delivery rate 

to their nestlings (138). The white-faced saki monkeys Pithecia pithecia exploit 

patches with highly productive food sources at the cost of traveling a longer 

distance, to minimize intragroup competition and maintain intergroup dominance 

over useful resources (139). Moreover, non-neuronal organisms, such as plants in 

tussock tundra, differentiate the exploitation (in the terms of timing, location, and 

chemical form) of a limiting nutrient (i.e., soil nitrogen) in their environment, to avoid 

competition with the heterospecifics (140). However, when faced with 

heterogeneous and changing environmental and physiological conditions, the 
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costs and benefits of an exploration strategy changes. For example, in summers 

juvenile Atlantic salmon Salmo salar forage during the day, despite increased 

predation risks from avian predators, as they have high escape responses caused 

by a high metabolic rate. However, this strategy is detrimental to the fitness of 

juvenile salmon in the winter as their metabolic rate drops, thereby causing slower 

escape responses from the predators (141).  

In order to adapt to changing conditions, organisms, therefore, switch or 

change their exploration strategies to increase fitness. For example, when 

resources in the environment are sparse and unpredictable, organisms may use a 

correlated random walk based strategy (e.g., Brownian walks (142, 143), and Lévy 

flights and walks (1, 3, 144, 145)) to search for food sources in the environment. 

Studies have shown that such movement strategies increase an organism's 

chances of locating a food patch by maximizing the exploratory area for resources 

while minimizing the mean distance traveled during exploration (142, 143, 146). 

However, when the resources are predictable, they switch to more direct, 

energetically efficient, and systematic foraging strategies (147–149). For example, 

bumblebees Bombus impatiens use repeatable, shortest, and energetically less 

expensive paths when foraging in patches with renewable resources (4). Similarly, 

organisms change their exploration strategies in response to variations in their 

energetic states. Studies show that when organisms are in a low-energy state 

(e.g., after a period of starvation), they increase their exploratory activity and risk-

taking behaviors, compared to their high-energy counterparts, in order to increase 

their chances of discovering food sources (see Moran et al. (2021) (150) for a full 
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review). For example, the earthworm Lumbricus terrestris in starved conditions 

preferentially foraged in environments comprising more profitable resources, but 

involved increased risks from predation and desiccation, more frequently than 

compared to the earthworms in good nutritional condition (8). Likewise, piglets Sus 

domesticus in starved conditions showed riskier foraging behaviors (i.e., foraging 

at the cost of being accidentally crushed by mothers), in order to increase the 

frequency and time period of obtaining food (9). Furthermore, organisms can 

switch their exploration strategies to increase fitness in response to the presence 

or absence of a predator (151–153), changing environmental conditions of their 

home range (154, 155), and managing costs of inter-or intraspecific competition 

(156, 157). 

In the aforementioned examples, the organisms functioned as single units 

(or individuals) that changed their behavior or movement patterns, to adapt to the 

changing environmental and physiological conditions. Nevertheless, in nature, 

there are organisms that are capable of fragmenting (or splitting) themselves into 

multiple autonomous subunits during reproduction in order to ensure the continued 

survival of their gene pool. For example, bacterial cells (e.g., Escherichia coli (158), 

and Prosthecomicrobium (159)), fungi (e.g., Penicillium marneffei (160), 

Trachipleistophora extenrec (161), Pneumocystis spp. (162)), and protists (e.g., 

Opalina spp. (163), Dictyostelium discoideum (164) are capable of splitting a single 

parent cell into two equal daughter cells using the process of binary fission. 

Bacterial cells (e.g., Hyphomicrobium vulgare (165), Pelodictyon clathratiforme 

(166), Rhodomicrobium vannielii (167)), fungi (e.g., Candida albicans (168), 
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Yarrowia lipolytica (169), and Saccharomyces cerevisae (170)), and cnidaria (e.g., 

Carybdea marsupialis (171), Paraconularia crustula (172)) are capable of splitting 

themselves into a small daughter cell and a larger parent cell using the process of 

budding.  

Studies investigating splitting as an adaptive strategy to survive in difficult 

environments have only been studied in organisms capable of producing multiple 

spores. In particular, when organisms - such as, bacterias, fungi, protists, and 

plants -  encounter harsh environmental and physiological conditions, the 

organisms split themselves into multiple spores (a metabolically dormant and 

stress-resistant form of an organism), which helps both survival in harsh 

environmental and physiological conditions and dispersal to favorable 

environments (173–176). For example, segmented filamentous bacteria 

Candidatus spp. form multiple spores in response to unfavorable environmental 

conditions (177, 178) and are capable of dispersing to favorable environments via 

horizontal host transmission (179). The fungi Apiocrea chryosperma produce 

multiple spores (or conidia) in response to environments lacking food sources that 

are dispersed to different environments by wind currents (180). The plants of 

species Ulota spp. form multiple spores when under harsh environmental 

conditions and are capable of dispersal by wind currents to search for 

environments with suitable habitats (181). Once a spore encounters a hospitable 

environment, it germinates to transform into a growing organism. The spores could 

disperse in different directions in the environment, thus, resulting in an increase in 

the chances of at least one of the spores discovering a favorable habitat (182). 
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Since the spores are clonal subunits of the organism, the increase in survival 

chances of one spore is equivalent to the increase in survival chances of the whole 

organism.  

Although sporulating organisms are capable of splitting and finding 

favorable environments, the spores produced are sedentary and are dependent 

on passive mechanisms (such as, dispersal by wind or water currents, or living 

hosts) to explore for suitable habitats. To the best of our knowledge, there is no 

existing literature investigating the adaptive exploration strategies in organisms, 

which split in response to harsh environmental or physiological conditions and 

actively explore environments in search of more suitable environments. 

Here, we show that the acellular slime mold Physarum polycephalum is 

capable of splitting into multiple autonomous subunits and changing its movement 

pattern in order to increase its chances of survival when faced with stressful 

physiological conditions. P. polycephalum is a single-celled, multinucleated protist 

(phylum: Amoebozoa, class: Myxogastria). It inhabits cool, dark, and moist areas 

of temperate forests. P. polycephalum can move up to a speed of 5 cm/h (45) and 

grow up to a size of several hundred square centimeters (14).  P. polycephalum 

moves by extending pseudopods in an amoeba-like fashion. It can spread multiple 

pseudopods to probe its environment, and therefore, is referred to as “multi-

headed” (polycephalum in Latin). The search front of P. polycephalum advances 

in a dense fan-like shape. This is followed by a network of interconnected tubules 

(14), where the protoplasm (containing cytoplasm, organelles, nutrients, and 

signaling molecules) flows in a characteristic back-and-forth manner called shuttle-
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streaming (16). Despite lacking neurons, P. polycephalum can demonstrate 

complex problem-solving behaviors, such as solving labyrinth mazes (17); forming 

networks with properties similar to human-made networks (18); solving complex 

optimization problems (20); anticipating periodic events (21); habituating to 

repeated innocuous environmental stimuli (23); avoiding previously explored areas 

using its extracellular slime (22); and, making irrational decisions that were 

previously believed to be a by-product of neuron-based decision-making (25).   

In this study, we measure and compare the exploratory activity of P. 

polycephalum cells in two different physiological conditions: a high-energy 

condition (i.e., fed cells) in which a P. polycephalum cell was supplied with a food 

source before recording its exploratory behavior, and a low-energy condition (i.e., 

starved cells) in which a P. polycephalum cell was starved for 24 hours before 

recording the exploratory behavior. We observed that the starved cells split sooner 

and into more autonomous subunits than the fed cells. In order to understand the 

foraging advantages of the splitting behaviors, we devise a conceptual model to 

understand whether the splitting behavior of starved cells increases the chance of 

at least one autonomous subunit discovering food sources in the environment. We 

hypothesize that the exploration strategy of splitting into multiple autonomous 

subunits will increase the chances of the organism to locate food sources in their 

environments, and therefore, increase the chances of survival of the organism. 

 

 

 



 

 87 

5.2  Materials and Methods 

5.2.1  Biological Material 

In our experiments, we used P. polycephalum when it was in the plasmodium stage 

of its life cycle. At this stage, the cell is large enough to be observed with an 

unaided eye (can cover an area up to several hundred square centimeters (14)) 

and can move in space up to a speed of 5 cm/hr (45). We obtained cultures of P. 

polycephalum from Ward’s Science® (Rochester, New York). We cultured P. 

polycephalum in Petri plates (dimensions of the plates used throughout this study 

were: Ø = 10 cm, H = 1.5 cm) at 26 °C and under dark environmental conditions. 

The Petri plates were filled with water solution of 1% w/v (weight/volume) non-

nutrient agar and 5% w/v blended rolled oats (Quaker Oats Company®). P. 

polycephalum stocks were recultured onto new Petri plates every alternate day.  

5.2.2  Experiments to Understand the P. polycephalum Exploratory Behavior 

in Fed versus Starved Cell Conditions 

Experimental Protocol 

We studied the exploratory behavior of P. polycephalum in two different 

physiological conditions i.e., a high-energy condition (i.e, fed cells) and a low-

energy condition (i.e., starved cells). To create the fed cells, P. polycephalum was 

grown on food-agar Petri plates (containing a solution of 1% w/v non-nutrient agar 

and 5% w/v blended oats) for a period of 48 hours before the beginning of our 

experiments. In contrast, we created the starved cells by extracting P. 

polycephalum from food-agar Petri plates and placing them on blank agar 
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(containing a solution of 1% w/v non-nutrient agar) for a period of 24 hours before 

the start of our experiments. 

 The experimental protocol to study the exploratory activity of P. 

polycephalum was the same for both the experimental conditions. The 

experiments were conducted on Petri plates filled with a solution of 1% blank agar 

to a height of 0.6 cm. We measured 150 ± 5 mg of P. polycephalum biomass, of 

either fed or starved cells, and placed it at the center of the experimental Petri 

plates (number of replicates (or n) = 30 for the fed cell conditions, and n = 31 for 

the starved cell condition). When P. polycephalum fragments are removed from 

the main cell, the individual fragments start functioning as independent cells within 

a few minutes after separation (114). Since P. polycephalum is photophobic, we 

conducted the experiments in a dark chamber for a period of 24 hours. The 

temperature of the experimental chamber was maintained at 26 °C, which has 

been observed to be the optimal temperature for cell growth in our lab cultures.  

 

Data Collection and Analysis 

We recorded the exploratory activity of the cells using a Panasonic® Lumix GH3 

camera fitted with Lumix® G Varia 14-140mm f/3.5-5.6 II lens. Pictures were taken 

once every 5 minutes for a period of 24 hours. The experimental setup was 

illuminated using an LED panel placed underneath the experimental plates. The 

LED panel would switch on for a period of 10 seconds every 5 minutes while the 

camera took a picture of the experiment. At all other times, experiments were 

conducted under dark conditions. 
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 The exploratory behavior of P. polycephalum was extracted using a custom-

made script written in R version 4.1.2 (82). The script processed each experimental 

image and extracted different exploratory characteristics of P. polycephalum cell 

growth, as given below: 

1) Number of cells: is the total number of autonomous P. polycephalum cells in 
an experimental image. 

2) Surface area of the cells: calculated as the amount of area covered by each 
autonomous cell(s) in an experimental image. 

3) Total surface area of the cells: calculated as the sum total of the surface area 
covered by all the cell(s) in an experimental image. 

4) Total explored surface area: defined as the total surface area that has been 
visited by the P. polycephalum cell(s) till each experimental time point. 

5) Total newly explored surface area: defined as the new surface area explored 
in an experimental image that was not visited by the P. polycephalum cell(s) 
previously. 

6) Normalized newly explored surface area: defined as the total new surface area 
explored by per unit surface area of the cell(s). It was calculated as the newly 
explored surface area of the cells divided by the surface area of the cells. 
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Figure 5.1 Final experimental images from A) High-energy condition (i.e., fed 
cells), and B) Low-energy condition (i.e., starved cells). 
 

5.2.3  Agent-based Model 

We studied the exploration strategy of the P. polycephalum when in fed versus 

starved physiological conditions using an agent-based model coded in Julia 

programming language version 1.7 (183). The purpose of this model was not to 

reproduce the P. polycephalum cell behaviors observed in the experiments, but to 

generally understand the fitness advantages of splitting in P. polycephalum. In 

particular, we used the model to investigate whether the splitting of P. 

polycephalum cells into autonomous subunits could potentially help increase the 

foraging success of the cell to find food in the environment. Foraging success was 

quantified by the time taken by the cells to find the first food in the environment. 
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Model Setup 

The spatial units of the model were in centimeters (cm) and time units were in 

minutes (min). The simulation arena comprised a circular grid of radius 5 cm with 

a mesh (or pixel) size of 0.005 cm along the horizontal and vertical axis. The 

simulations were run for a maximum of 1440 minutes (or 24 hours) with a time-

step size of 1 minute. P. polycephalum cells were represented as circular “agents”, 

and all the agents were initially located with the center of mass positioned at the 

center of the arena.  

 

Simulation Environments  

In order to test the foraging success of splitting in different environmental 

conditions, we created three different simulation environments that differed in the 

probability profiles of finding food in the arena. Each profile assigned a different 

number to each pixel of the arena, and these numbers represented the probability 

of finding food at the location. The description of the probability profiles is as 

follows: 

1) No food scenario: represents an environment where the probability of finding 
food at each pixel location is 0. This scenario is meant to understand the 
behavior of the agents when there is no food in the environment. 

2) Increasing probability profile: is an environmental scenario where the 
probability of finding food increases as a function of distance from the center of 
the simulation arena (Figure 5.2). In particular, this probability profile represents 
an environment where the chances of P. polycephalum cells discovering food 
sources increase when they explore regions of the simulation arena located 
away from the starting location. The probability of finding food at a pixel location 
was calculated using Equation 5.1: 
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(5.1) 

 

In this equation, x represents the distance of a pixel from the center of 
the simulation arena. Figure 5.2 shows the probability landscape at different 
pixel locations in the arena. The probability of finding food at each pixel location 
was normalized, such that the total sum of the probability of finding food in the 
whole arena equals a value of 1.  

 

Figure 5.2  Increasing probability profile of the simulation arena. A) Shows the 
heatmap of the probability of finding food at different pixel locations on the arena. 
B) Shows the trend of the probabilities as a function of distance from the center of 
the arena. The probability of finding food at every pixel location was calculated 
using Equation 5.1. The sum of all the probabilities at the different location in the 
arena add up to a value of 1. 

 

3) Decreasing probability profile: is an environmental scenario where the 
probability of finding food decreases as a function of distance from the center 
of the simulation arena (Figure 5.3). In particular, this probability profile 
represents an environment where chances of P. polycephalum cells 
discovering food sources are high when they explore regions neighboring the 
starting locations. The probability of finding food at a pixel location was 
calculated using the Equation 5.2: 
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(5.2) 

 

Similar to the increasing probability profile, x represents the distance of 
a pixel from the center of the simulation arena in Equation 5.2. Figure 5.3 shows 
the probability landscape at different pixel locations in the arena. Moreover, the 
probability of finding food at each pixel location was normalized, such that the 
sum total of the probability of finding food in the whole arena equals a value of 
1. 

 

 

Figure 5.3  Decreasing probability profile of the simulation arena. A) Shows the 
heatmap of the probability of finding food at different pixel locations on the 
simulation arena. B) Shows the trend of the probabilities as a function of 
decreasing distance from the center of the arena. The probability of finding food at 
every pixel location was calculated using Equation 5.2. The sum of all the 
probabilities at the different locations in the arena adds up to a value of 1. 
 

Simulation experiments 

At each time step, an agent moved and foraged for food in the simulation arena 

using the following procedure. We first computed a movement direction for each 

agent by generating a random number from a circular uniform distribution.  Then, 



 

 94 

we moved the agent in the direction suggested by the random number with a 

distance calculated by multiplying the speed of movement with the length of each 

time step. The speed of movement was an input parameter in our simulation (given 

in Table 3.1). Next, at each of the pixels traversed by the agent in the particular 

time step, we generated a random number from a binomial distribution with a 

probability of success given by the probability of finding food at the respective pixel 

locations. When the random number generates a value of 1 (i.e., success) at any 

of the pixels traversed, we consider the agent to have found food. Whereas in the 

cases when the number generated was all 0’s (i.e., failure), we considered the 

agent to have found no food. The simulations were run for a maximum time of 1440 

minutes, or until the time when any of the agents in the simulation found their first 

food. We used the total biomass area of the cells (i.e., the combined area of the 

agents), the number of biomass (i.e., the number of agents), and speed as the 

input parameters for each simulation experiment. The values of the parameters 

are given in Table 5.1.  

The simulation was run for 7x8x7 = 392 unique parameter combinations, for 

each of the probability profiles. Moreover, in order to account for random variation, 

30 simulations were run for each parameter combination. For each experiment in 

the increasing and decreasing probability profiles, we recorded the time taken to 

find the food as the output. On the contrary, in the no food scenario we recorded 

the proportion of area covered by the agents as the output. 

We expected the time taken to find food to decrease with the increase in 

the number of biomass in the simulation arena with an increasing probability 
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profile. Conversely, we expected the time taken to find food to increase with the 

increasing number of biomass in the arena with the decreasing probability profile. 

In addition, in both the probability profiles, we expected the time taken to find food 

to decrease with the increase in total biomass area of the cells and speed of cell 

movement. 

 

Table 5.1 VALUES OF THE DIFFERENT MODEL PARAMETERS 

Parameter  Values used 

Number of biomass (i.e., number of 
autonomous cells) 

1 to 8 

Total biomass area of the cells (cm2) 2, 4, 6, 8, 10, 12 & 14 

Speed (cm/min) 0.10, 0.15, 0.20, 0.30, 0.50, 0.80, & 
1.00 

 

Statistical analysis 

We used a generalized linear model (GLM) with beta error distribution and logit 

link function to analyze the influence of number of biomass, total biomass area, 

and speed on the time taken to find food. We entered the number of biomass, total 

biomass area, speed, the interaction between number of biomass and total 

biomass area, number of biomass and speed, and total biomass area and speed 

as fixed effects in our model. The analyses were conducted separately for the 

increasing and decreasing probability profiles The analysis was performed in R 

version 4.1.2 (82) using the “glmmTMB” r package (184). 
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5.3  Results 

5.3.1  Experiments to understand the P. polycephalum exploratory behavior 

in fed versus starved cell conditions 

In order to understand the exploratory behavior of P. polycephalum in the fed vs 

starved conditions, we measured and compared different characteristics of P. 

polycephalum cell growth in the two physiological conditions, as shown in Figure 

5.4. 

Figure 5.4A shows the mean number of P. polycephalum cells over the 

course of the experimental time period. The results show that the fed cells remain 

undivided for the most part of the experiments (i.e., the mean number of cells has 

a value of 1 across different replicates), and splits only after ~20 hours from the 

beginning of the experimental time period (Figure 5.1). The mean number of cells 

at the end of the experiments was found to be 1.20 cells. In contrast, the starved 

cells on average split after ~12 hours (will be referred to as the “starved cell splitting 

point” from here onwards), and they split into more number of cells than compared 

to the fed cells (Figure 5.1). Moreover, the splitting in the P. polycephalum cells 

increased over time, and the mean number of cells at the end of the experiments 

was found to be 1.8 cells. In summary, the starved cells show a tendency to split 

sooner and into greater number of autonomous cells than compared to the fed 

cells. 

Figure 5.4B shows the mean surface area of the P. polycephalum cells over 

time. The results show that during the time period before the starved cell splitting 

point, the cells in both conditions increased in surface area. However, the mean 
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surface area was higher in the starved cells. In addition, in the latter half of the 

experiments, the mean surface area of the fed cells increased to reach a maximum 

cell surface area but then decreased at the experimental time period > 20 hours 

(i.e., coinciding with the time period when fed cells showed splitting). The mean 

surface area of the starved cells decreased after the starved cell splitting point. In 

summary, the undivided starved cells had a higher mean surface area than the fed 

cells during the experimental time periods before the starved cell splitting point, 

and the mean surface area of both the cells decreased with the increase in splitting 

of P. polycephalum cells. 

Figure 5.4C shows the mean total surface area of the cells over time. Similar 

to the results in the mean surface area of the cells (Figure 5.4B), the starved cells 

showed a higher mean total surface area than compared to the fed cells in the 

experimental time period before the starved cell splitting point. In addition, in the 

experimental time period after the starved cell splitting point, the total surface area 

of the starved cells decreased. This shows that the starved cells after splitting 

became denser and concentrated more biomass into the autonomous cells. 

Figure 5.4D shows the mean total explored surface area over time. The 

results show that during the time period before the starved cell splitting point, the 

starved cells explored more surface area of the experimental arena than compared 

to the fed cells. However, during the time period post the starved cell splitting point, 

the total surface area explored was higher in the fed cells. A similar trend was 

observed in the mean newly explored surface area data (Figure 5.4E), with starved 
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cells exploring more new areas before the starved cell splitting point and fed cells 

exploring more new areas in the latter time periods.  

However, when the new surface area explored was normalized to the 

respective P. polycephalum cell sizes (Figure 5.4F), the starved cells explored 

more new surface areas of the experimental arena than compared to the fed cells, 

during a majority of the time periods both before and after the starved cell splitting 

point. This shows that the starved cells show a higher propensity to explore more 

surface area than the fed cells. Additionally, the lower total and newly explored 

area (shown in Figures 5.4D and E) in the starved cells could be due to the lower 

total surface areas (shown in Figure 5C) of the starved cells, causing the cells to 

overall explore less area of the experimental environment. 
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Figure 5.4 Different characteristics of the P. polycephalum cells exploration in the 
fed and starved conditions (referred to as fed and starved cells, respectively), 
across all experimental replicates, over the experimental time period of 24 hours. 
A) Mean number of P. polycephalum cells. B) Mean surface area (cm2) of the cells. 
C) Mean total surface area of the cells (cm2). D) Mean total explored surface area 
of the cells (cm2). E) Mean newly explored surface area (cm2) of the cells. F) Mean 
normalized newly explored surface area (cm2) of the cells (calculated as the newly 
explored surface area of the cells divided by the surface area of the cells). The 
solid lines represent the mean and the semi-transparent envelope represents the 
95% confidence intervals, of the respective P. polycephalum exploration 
characteristics. 
 

5.3.2  Simulation Results to Understand the Foraging Advantages of Splitting 

in P. polycephalum  

No food scenario 

We conducted simulation experiments in an environment with no food to 

understand the baseline behavior of the P. polycephalum agents. We used this 
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simulation to examine the change in proportion of simulation area covered by the 

agents as a function of the number of biomass and speed, for each value of total 

biomass area inputted into the simulation model. Figure 5.5 shows an example of 

the proportion of the simulation arena covered when the total biomass area was 2 

cm2. The results show that with the increase in the speed of movement, the 

proportion of area covered by the agents increased. Moreover, at higher speed 

values (i.e., when the speeds were 0.8 - 1.0 cm/min), the agents covered the whole 

surface area of the arena within the given simulation time period. However, at low 

and intermediate speed values the agents (i.e., when the speeds were 0.1 - 0.5 

cm/min), the proportion of area covered by the agents increased with the increase 

in number of cells. The patterns observed were identical for the other values of the 

total biomass area (results shown in Appendix Figures C.1 – C.6).  Overall, the 

results suggests that the P. polycephalum agents covered more surface area of 

the simulation arena with the increase in splitting and movement speed of the cells.  
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Figure 5.5  Shows the proportion of the simulation area covered as a function of 
number of biomass when the total biomass area was 2 cm2. The plots are 
sectioned by the different speed values (units in cm/min) tested, and the values 
are given in the title of each plot. 
 

Increasing probability profile 

We used a GLM model with a beta error distribution and logit link function to 

analyze the relationship between the different model input parameters (i.e., the 

number of biomass, total biomass area, and speed), and the different combinations 

of interaction between the parameters (i.e., an interaction between number of 

biomass and total biomass area, number of biomass and speed, and total biomass 
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area and speed) on the time taken to find food. The model diagnostics and 

performance are given in Figure C.7 in the Appendix. 

We found that, when all the other parameters values were set constant, 

then for every 1 unit increase in the number of biomass, the odds ratio (OR) of the 

time taken to find food decreases by a factor of -0.1827 (Figure 5.6A, 95% CI: -

0.2076 to -0.1577, p < 2e-16). In other words, across all the experimental trials, 

the time taken to find food decreases with the increase in the number of biomass. 

Similarly, with the increase in total biomass area, the time taken to find food 

decreased (Figure 5.6B, OR: -0.07379, 95% CI: -0.0880 to -0.0595, and p < 2e-

16). Furthermore, with the increase in speed, the time taken to find food decreased 

(Figure 5.6C, OR: -4.1658, 95% CI: -4.3862 to -3.9454, and p < 2e-16). In 

summary, with the increase in the number of biomass, total biomass area, and 

speed of the movement, the P. polycephalum agents were able to find food at an 

earlier time in the simulation time period. 

The predictor variable comprising the interaction term between the number 

of biomass and total biomass area had a significant effect on the odds ratio of the 

time taken to find food (Figure 5.6D, OR: 0.003410, 95% CI: 0.0009 to 0.0058, p 

= 0.00681). The results show that when the total biomass area is low, then with 

the increase in the number of biomass, the time taken to find food decreases at a 

higher rate. Whereas, when the total biomass area is high, then with the increase 

in the number of biomass, the time taken to find food decreases at a lower rate. In 

summary, when the number of biomass increases, the reduction in the time taken 

to find food decreases, with the increase in total biomass area. To put it another 
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way, P. polycephalum agents with low total biomass area gain more in terms of 

foraging success with the increase in splitting, than compared to the agents with 

higher total biomass area. 

The predictor variable comprising the interaction term between the number 

of biomass and speed has a significant effect on the time taken to find food (Figure 

5.6E, OR: 0.1259, 95% CI: 0.09431 to 0.1574, p < 5.62e-15). This shows at lower 

speed values, as the number of biomass increases, the time taken to find food 

decreases at a higher rate. Conversely, at higher speed values and increasing 

number of biomass, the time taken to find food decreases at a lower rate. In 

summary, when the number of biomass increases, the reduction in time taken to 

find food decreases, with the increase in speed of movement of the agents. In 

particular,  P. polycephalum agents with a lower speed of movement gain more in 

terms of foraging success, relative to the agents with high movement speed, with 

the increase in the number of biomass. 

Lastly, the predictor variable comprising the interaction between total 

biomass area and speed also has a significant effect on the time taken to find food 

(Figure 5.6F, OR: 0.0418, 95% CI: 0.0236 to 0.0599, and p < 6.12e-06). This 

shows that, as the total biomass area increase, the time taken to find a food source 

decreases at a higher rate. In comparison, at higher speed values and increasing 

total biomass area, the time taken to find food decreases at a lower rate. In 

summary, when the total biomass area increases, the reduction in time taken to 

find food decreases, with the increase in speed of movement of the agents. This 

shows that the P. polycephalum agents with a lower speed of movement gain more 
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in terms of foraging success, relative to the ones with high movement speed, with 

the increase in the total biomass area. 

Overall, the results are consistent with our expectations. The results show 

that splitting of P. polycephalum cells into autonomous subunits would help 

increase the foraging success of the cell to find food in the environment with an 

increasing probability profile. Moreover, the model predicts that increasing cell size 

and speed of movement would have a positive effect on the foraging success of 

the organism. 

 

Decreasing probability profile 

In the decreasing probability profile, we conducted the same analysis as in the 

increasing probability profile. The model diagnostics and performance are given in 

Figure C.8 in the Appendix. 

The results show that the odds ratio (OR) of the time taken to find food 

decreases, when the number of biomass (Figure 5.7A, OR: -0.1799, 95% CI: -

0.2069 to -0.1528, p < 2e-16), total biomass area (Figure 5.7B, OR: -0.1286, 95% 

CI: -0.1440 to -0.1132, p < 2e-16), speed (Figure 5.7C, OR: -3.001, 95% CI: -

3.2883 to -2.774, p < 2e-16), increases independently. In other words, the P. 

polycephalum agents find food sooner with the increase in the number of biomass, 

total biomass area, and speed. 

Moreover, the predictor variable comprising the interaction term between 

number of biomass and total biomass area (Figure 5.7D, OR: 0.1323, 95% CI: 

0.0070 to 0.0122, p = 5.61e-13), number of biomass and speed (Figure 5.7E, OR: 
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0.1113, 95% CI: 0.0781 to 0.1446, p = 5.06e-11), and total biomass area and 

speed (Figure 5.7E, OR: 0.08317, 95% CI: 0.0641 to 0.1022, p < 2e-16), have a 

significant effect on the odds ratio of the time taken to find food. This shows that 

when the total biomass area and speed of movement is high, the time taken to find 

food decreases at a lower rate, with the increase in the number of biomass. 

Conversely, at low total biomass area and speed of movement, the time taken to 

find food decreases at a higher rate, with the increase in the number of biomass. 

In other words, the cells with a lower total biomass area and lower speed have 

greater foraging success with the increase in the splitting of the cells (Figures 5D 

and E). Additionally, when the speed of movement is high, the reduction in time 

taken to find food increases, the time taken to find food decreases at a higher rate, 

with the increase in biomass area. And conversely, at a low speed of movement, 

the reduction in time taken to find food decreases at a lower rate, with the increase 

in total biomass area (Figure 5F). 

 Overall, the results are contrary to our expectations. We expected the 

splitting of P. polycephalum agents would have a negative effect on the foraging 

success of the organism in the decreasing probability profile. However, our results 

show that splitting will increase foraging success in such environments. 

Additionally, the results show that an increase in biomass size and speed of 

movement will increase the foraging efficiency to find food in the environment. 
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5.4  Discussion 

We examined and compared the exploratory behavior of P. polycephalum cells in 

two different physiological conditions, i.e., a high-energy condition (i.e., fed cells) 

and a low-energy condition (i.e., starved cells). We observed the starved cells split 

earlier in the experimental time period and into more autonomous subunits than 

the fed cells. Moreover, starved cells showed a higher propensity to explore new 

areas in the experimental environment. In order to understand the fitness 

advantages of splitting in P. polycephalum cells, we devised a conceptual agent-

based model to test whether splitting can help improve the foraging success of P. 

polycephalum in finding food in the environment. In a simulation environment with 

no food present, we observed that splitting in P. polycephalum cells (i.e., agents in 

the model) helps cover more surface area of the simulation environment. In 

addition, in the increasing and decreasing probability profiles of the simulation 

environments, the splitting behavior of the P. polycephalum agents helped find 

food sooner within the simulation time period. 

The simulation results show that splitting helps increase the foraging 

efficiency in both increasing and decreasing probability profiles. And therefore, the 

foraging advantages of P. polycephalum cells staying undivided are not 

understood clearly from our simulation experiments. In order to understand the 

foraging success of P. polycephalum cells in the undivided state, our future work 

would involve repeating the simulations in environments with probability profiles 

that are intermediary to the increasing and decreasing probability profiles used in 

this study. 
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Studies conducted by Kakiuchi et al. showed that P. polycephalum could 

split into multiple cells when exposed to low temperatures (185) and extreme light 

conditions (186). The studies found splitting to be transient (i.e., lasting around 6 - 

8 hours), with the cells eventually fusing back to form a single organism. The 

authors found the subunits to be extremely small in size (i.e., the cell diameters 

were about 10 μm in diameter) and could not be visible using an unaided eye. 

Additionally, the studies did not explore the fitness consequences of such 

behaviors. However, in this study, we show that the autonomous subunits of P. 

polycephalum cells persist as autonomous subunits for relatively prolonged 

periods of time, and exist as macroscopic-sized entities. In addition, using a 

conceptual model, we show that P. polycephalum can increase its foraging 

success in finding food in the environment by splitting itself into multiple 

autonomous subunits. 

In conclusion, our study shows a novel exploration strategy of splitting one’s 

self into multiple autonomous parts in order to survive in difficult environmental 

conditions. We show using a conceptual model that splitting would help the 

organisms to discover food faster, in environments with random food distributions. 

Moreover, the increase in exploratory activity in P. polycephalum when in low-

energy conditions is similar to that observed in brained organisms, such as in ants 

(10), flies (187), honey-bees (188), zebra finches (189). This suggests the 

presence of common adaptive strategies in organisms across disparate taxas. 
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Figure 5.5  Plot of Time taken to find food (In Increasing probability profile) as function of the different input 
parameters, namely, A) Number of biomass, B) Total biomass area (cm2), C) Speed of movement (cm/min), and the 
interaction terms between the input parameters, namely, D) Number of biomass and Total biomass area (cm2), E) 
Number of biomass and Speed of movement (cm/min), and F) Total biomass area (cm2) and Speed of movement 
(cm/min). The lines on each plot represents the predicted odd ratio (OR) of time taken to find food, and the semi-
transparent line represents the 95% confidence interval. The data was analyzed using GLM model with beta error 
distribution and logit link function. The model results are mentioned in the text. 
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Figure 5.6  Plot of Time taken to find food (In Decreasing probability profile) as function of the different input 
parameters, namely, A) Number of biomass, B) Total biomass area (cm2), C) Speed of movement (cm/min), and the 
interaction terms between the input parameters, namely, D) Number of biomass and Total biomass area (cm2), E) 
Number of biomass and Speed of movement (cm/min), and F) Total biomass area (cm2) and Speed of movement 
(cm/min). The lines on each plot represents the predicted odd ratio (OR) of time taken to find food, and the semi-
transparent line represents the 95% confidence interval. The data was analyzed using GLM model with beta error 
distribution and logit link function. The model results are mentioned in the text.
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CHAPTER 6 
 

CONCLUSION 
 

The big objective of this dissertation was to understand how environmental and 

physiological factors affect the adaptive behaviors of non-neuronal organisms. In 

order to answer this question, I used the acellular slime mold Physarum 

polycephalum as a model organism, as it combines the high experimental 

tractability of a macroscopic unicellular organism with the complex problem-solving 

behaviors of multi-cellular organisms. My dissertation focused on understanding 

the mechanisms adopted by P. polycephalum to explore and exploit resources in 

the physical environment using environmental and physiological information. To 

achieve this, in the first part of this dissertation (i.e., chapters 2 and 3), I studied 

the mechanisms used by P. polycephalum in exploiting resources when given a 

choice between two food sources. Additionally, in the second part of this 

dissertation, I studied the exploration strategy adopted by P. polycephalum in 

response to its past foraging experiences (i.e., chapter 4) and different 

physiological conditions (i.e., chapter 5). Overall, this dissertation shows that P. 

polycephalum can employ complex strategies that help integrate environmental 

and physiological information in order to exhibit problem-solving and adaptive 

behaviors. 

Chapter 2 investigated the direction and amount of influence of different P. 

polycephalum cell regions on the contractile behavior of the whole cell while it was 

choosing between two food sources. The results show that the cell regions 

controlling the contractile behavior changed with the choice-making challenge 
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faced by the cell. Interestingly, when the two food sources presented to the cell 

were asymmetric in quality, the cell regions near the rejected food source were 

observed to act as the drivers of the cell’s contractile behavior. To explain this 

result, my collaborators and I are currently working on a mechanistic model that 

suggests that the behavior of P. polycephalum may be driven by reduced 

contractile activity and stiffness in the cell region near the chosen food source. This 

creates a pressure differential within the cell, thereby generating a net flow of 

protoplasm and biomass accumulation towards the chosen food source. This 

model assumption is further supported by our finding that actin filaments are less 

polymerized in the cell region near the chosen food source. In summary, this work 

shows that choice-making in P. polycephalum can arise from the physical 

properties of the cell without requiring any form of communication between the 

different parts of the cell network. In my opinion, future efforts should be dedicated 

towards understanding the mechanisms used by P. polycephalum when choosing 

between three or more food sources and understanding the dynamics of the 

protoplasm movement through a 3-way tubular junction of a P. polycephalum cell 

network. 

Chapter 3 introduced a generalized criterion to examine whether P. 

polycephalum could choose the best resource when presented with an option 

between two alternatives, and determine the time point when the cell made a 

choice. My criterion tested the null hypothesis that the relative difference in 

foraging effort distributed by P. polycephalum cells towards the most rewarding 

resource would be proportional to the relative difference in quality between the 
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available resources. In my experiments, P. polycephalum successfully chose the 

better alternative in all the tested conditions, except when the difference in quality 

between the food sources was low. In this case, the experimental time period was 

insufficient to choose the better resource. This result suggests the existence of a 

comparative valuation process (also referred to as the “tug-of-war” model of 

decision-making by Kacelnik et al. (2010) (190)) in P. polycephalum, as the choice-

making time increased with the increase in the closeness of the option values. 

Chapter 4 tested the capability of P. polycephalum to alter its exploratory 

behavior in response to the foraging experiences gathered in the past. The results 

show a weak correlation between different P: polycephalum exploratory network 

properties and the past foraging environment. Since P. polycephalum has been 

shown to have a form of an internal memory, I believe repeating the experiments 

with lower P. polycephalum biomass would show a strong relationship between 

the different exploratory network properties and past foraging environments. 

However, if observed, the differences in the exploratory network properties can 

result from the differences in the fed state and not because of the differences in 

the distribution of the food sources. Therefore, I recommend the experiments be 

repeated by changing the distribution of food sources in each experimental 

treatment but keeping the total food content constant between the treatments. 

Chapter 5 examined whether P. polycephalum can employ different 

exploratory strategies in different physiological states. In this chapter, I show that 

P. polycephalum can split into multiple autonomous subunits to explore its 

environment when starved for 24 hours. I further show that this property of splitting 



 

 113 

into multiple subunits helps increase the chances of, at least one subunit, finding 

food in its environment. Moreover, the results show that the starved cells become 

denser and more compact after splitting. This suggests that P. polycephalum cells 

can demonstrate autophagy when under starvation stress. Previous literature has 

suggested that autophagy under starvation stress helps in homeostasis (191); 

however, I recommend that future research be dedicated to examining the 

adaptive value of autophagy in P. polycephalum when starved and uncovering the 

involved cellular processes.  

This dissertation shows that P. polycephalum can employ strategies that 

help them achieve the same fitness objectives as neuronal organisms. The 

information processing system used in exhibiting such adaptive behaviors is 

decentralized and driven by a plethora of complex, dynamic interactions occurring 

between molecules, such as genes, proteins, ions, and metabolites (12, 192). 

Such a cognitive architecture, i.e., one lacking a stable structure and static 

elements, has led some studies to refer to as “liquid” brains (193). However, our 

knowledge of the mechanisms used by such dynamic systems to achieve 

computation and the capability to encode and retrieve memory, is very limited. 

Therefore, in my opinion, uncovering such mechanisms should be the subject of 

scientific investigations aiming to understand problem-solving in non-neuronal 

organisms. 
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APPENDIX A 

SUPPLIMENTARY INFORMATION FOR PHYSARUM POLYCEPHALUM 
CHOICE-MAKING IN CHAPTER 3 

 

This appendix provides the supplementary information to the results described in 

Chapter 3.  

 

Figure A.1 The figure shows the plot of the probability of success vs the time 
points. The relationship was found to be significant (OR:1.8924, 95% CI: 1.57 to 
2.21, and p < 2e-16). That is, with every one-unit increase in the time point, the 
odds of the probability of success increased by a factor of 1.8924. 
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Figure A.2  The figure shows the plot of the probability of success vs relative 
quality of the poorer food source. The relationship was found to be non significant 
(OR = 1.7612, p = 0.197). 
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Figure A.3  Model diagnostics of using GLMM with binomial error distribution, logit 
link function, when analyzing the relationship between the relative quality of the 
poorer food source, time points, and interaction between the relative quality of the 
poorer food source and time points, on the probability of observing distinguishable 
growth on the better food source (i.e., the probability of success).  
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Figure A.4  Model performance of using GLMM with binomial error distribution, 
logit link function, when analyzing the relationship between the relative quality of 
the poorer food source, time points, and interaction between the relative quality of 
the poorer food source and time points, on the probability of observing 
distinguishable growth on the better food source (i.e., the probability of success).  
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APPENDIX B 

SUPPLIMENTARY INFORMATION FOR PHYSARUM POLYCEPHALUM 
EXPLORATORY NETWORK METRICS IN CHAPTER 4 

 

This appendix provides the supplementary information to the P. polycephalum 

exploratory network metrics described in Chapter 4.  

 

Figure B.1  Plot showing asymptotic fit on Sparsity data for experimental condition 
1 (i.e., number of food sources encountered = 1). The black dots represent the 
Sparsity values and the red curve shows the asymptotic fit. The numbers on the 
title of the plots show the replicate numbers of the experiments conducted for the 
specific experimental condition.  
  



 

 119 

 
Figure B.2  Plot showing asymptotic fit on Sparsity data for experimental condition 
2 (i.e., number of food sources encountered = 3). The black dots represent the 
Sparsity values and the red curve shows the asymptotic fit. The numbers on the 
title of the plots show the replicate numbers of the experiments conducted for the 
specific experimental condition. 
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Figure B.3  Plot showing asymptotic fit on Sparsity data for experimental condition 
3 (i.e., number of food sources encountered = 6). The black dots represent the 
Sparsity values and the red curve shows the asymptotic fit. The numbers on the 
title of the plots show the replicate numbers of the experiments conducted for the 
specific experimental condition. 
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Figure B.4  Plot showing asymptotic fit on Sparsity data for experimental condition 
4 (i.e., number of food sources encountered = 11). The black dots represent the 
Sparsity values and the red curve shows the asymptotic fit. The numbers on the 
title of the plots show the replicate numbers of the experiments conducted for the 
specific experimental condition. 
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Figure B.5  Plot showing asymptotic fit on Sparsity data for experimental condition 
5 (i.e., number of food sources encountered = 21). The black dots represent the 
Sparsity values and the red curve shows the asymptotic fit. The numbers on the 
title of the plots show the replicate numbers of the experiments conducted for the 
specific experimental condition. 
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Figure B.6  Residual plots of fitting a linear model to the rate of change of 
Sparsity vs Number of food source data. 
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Figure B.7 Performance of the linear model fit on the change of Sparsity vs 
Number of food source data using DHARMa R package. The Q-Q plot of the 
DHARMa R package looks different from the one shown in the previous plot, as 
the DHARMa R package normalizes the Observed and Expected quantiles 
between 0 and 1.  
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Figure B.8  Plot showing the changes in the Jensen-Shannon index (JSD) as 
function of area explored for experimental condition 1 (i.e., number of food sources 
encountered = 1). The black dots in the figure represent JSD values.  The numbers 
on the title of the plots show the replicate numbers of the experiments conducted 
for the specific experimental condition. 
  



 

 126 

 
Figure B.9  Plot showing the changes in the Jensen-Shannon index (JSD) as 
function of area explored for experimental condition21 (i.e., number of food 
sources encountered = 3). The black dots in the figure represent JSD values.  The 
numbers on the title of the plots show the replicate numbers of the experiments 
conducted for the specific experimental condition. 
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Figure B.10  Plot showing the changes in the Jensen-Shannon index (JSD) as 
function of area explored for experimental condition 3 (i.e., number of food sources 
encountered = 6). The black dots in the figure represent JSD values.  The numbers 
on the title of the plots show the replicate numbers of the experiments conducted 
for the specific experimental condition. 
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Figure B.11  Plot showing the changes in the Jensen-Shannon index (JSD) as 
function of area explored for experimental condition 4 (i.e., number of food sources 
encountered = 11). The black dots in the figure represent JSD values.  The 
numbers on the title of the plots show the replicate numbers of the experiments 
conducted for the specific experimental condition. 
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Figure B.12  Plot showing the changes in the Jensen-Shannon index (JSD) as 
function of area explored for experimental condition 5 (i.e., number of food sources 
encountered = 21). The black dots in the figure represent JSD values.  The 
numbers on the title of the plots show the replicate numbers of the experiments 
conducted for the specific experimental condition. 
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Figure B.13  Residual plots of the linear model fit to the Final Isotropy vs Number 
of food sources. 
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Figure B.14  Performance of the linear model fit on the Final Isotropy vs Number 
of food source data using DHARMa R package. The Q-Q plot of the DHARMa R 
package looks different from the one shown in the previous plot, as the DHARMa 
R package normalizes the Observed and Expected quantiles between 0 and 1.  
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Figure B.15  Plot showing the changes in the rate of exploration index as function 
of time for experimental condition 1 (i.e., number of food sources encountered = 
1). The black dots in the figure represent the rate of exploration values. The 
numbers on the title of the plots show the replicate numbers of the experiments 
conducted for the specific experimental condition. 
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Figure B.16  Plot showing the changes in the rate of exploration index as function 
of time for experimental condition 2 (i.e., number of food sources encountered = 
3). The black dots in the figure represent the rate of exploration values. The 
numbers on the title of the plots show the replicate numbers of the experiments 
conducted for the specific experimental condition. 
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Figure B.17  Plot showing the changes in the rate of exploration index as function 
of time for experimental condition 3 (i.e., number of food sources encountered = 
6). The black dots in the figure represent the rate of exploration values. The 
numbers on the title of the plots show the replicate numbers of the experiments 
conducted for the specific experimental condition. 
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Figure B.18  Plot showing the changes in the rate of exploration index as function 
of time for experimental condition 4 (i.e., number of food sources encountered = 
11). The black dots in the figure represent the rate of exploration values. The 
numbers on the title of the plots show the replicate numbers of the experiments 
conducted for the specific experimental condition. 
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Figure B.19  Plot showing the changes in the rate of exploration index as function 
of time for experimental condition 5 (i.e., number of food sources encountered = 
21). The black dots in the figure represent the rate of exploration values. The 
numbers on the title of the plots show the replicate numbers of the experiments 
conducted for the specific experimental condition. 
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Figure B.20   Residual plots of fitting a linear model to the Mean rate of exploration 
vs Number of food sources. 
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Figure B.21  Performance of the linear model fit on the Mean rate of exploration 
vs Number of food source data using DHARMa R package. The Q-Q plot of the 
DHARMa R package looks different from the one shown in the previous plot, as 
the DHARMa R package normalizes the Observed and Expected quantiles 
between 0 and 1.  
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APPENDIX C 

SUPPLIMENTARY INFORMATION FOR FED VS STARVED CELL 
EXPLORATORY BEHAVIOR SIMULATION STUDY IN CHAPTER 5 

 

This appendix provides the information to the analysis of simulation conducted in 

Chapter 5. 

 

Figure C.1  Proportion of the simulation area covered as function of Number of 
biomass when the total biomass area was 4 cm2. The plot is sectioned by the 
different speed values (units in cm/min). The speed values are given in the title of 
each subplot. 
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Figure C.2  Proportion of the simulation area covered as function of Number of 
biomass when the total biomass area was 6 cm2. The plot is sectioned by the 
different speed values (units in cm/min). The speed values are given in the title of 
each subplot. 
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Figure C.3  Proportion of the simulation area covered as function of Number of 
biomass when the total biomass area was 8 cm2. The plot is sectioned by the 
different speed values (units in cm/min). The speed values are given in the title of 
each subplot. 
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Figure C.4  Proportion of the simulation area covered as function of Number of 
biomass when the total biomass area was 10 cm2. The plot is sectioned by the 
different speed values (units in cm/min). The speed values are given in the title of 
each subplot. 
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Figure C.5  Proportion of the simulation area covered as function of Number of 
biomass when the total biomass area was 12 cm2. The plot is sectioned by the 
different speed values (units in cm/min). The speed values are given in the title of 
each subplot. 
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Figure C.6  Proportion of the simulation area covered as function of Number of 
biomass when the total biomass area was 14 cm2. The plot is sectioned by the 
different speed values (units in cm/min). The speed values are given in the title of 
each subplot. 
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Figure C.7 Model diagnostics and performance for the Increasing probability 
profile. Each bar of the of the Variance Inflation Factor (VIF) plot reads in the 
sequence as follows: A) Number of biomass, B) Number of biomass:Speed, C) 
Number of biomass:Total biomass area, D) Speed, E) Speed:Total biomass area, 
and F) Total biomass area. 
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Figure C.8  Model diagnostics and performance for the Increasing probability 
profile Each bar of the of the Variance Inflation Factor (VIF) plot reads in the 
sequence as follows: A) Number of biomass, B) Number of biomass:Speed, C) 
Number of biomass:Total biomass area, D) Speed, E) Speed:Total biomass area, 
and F) Total biomass area. 
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