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ABSTRACT

LOW-REYNOLDS-NUMBER LOCOMOTION VIA
REINFORCEMENT LEARNING

by
Yuexin Liu

This dissertation summarizes computational results from applying reinforcement

learning and deep neural network to the designs of artificial microswimmers in the

inertialess regime, where the viscous dissipation in the surrounding fluid environment

dominates and the swimmer’s inertia is completely negligible. In particular, works in

this dissertation consist of four interrelated studies of the design of microswimmers for

different tasks: (1) a one-dimensional microswimmer in free-space that moves towards

the target via translation, (2) a one-dimensional microswimmer in a periodic domain

that rotates to reach the target, (3) a two-dimensional microswimmer that switches

gaits to navigate to the designated targets in a plane, and (4) a two-dimensional

microswimmer trained to navigate in a non-stationary environment.

The first and second studies focus on how reinforcement learning (specifically

model-free, off-policy Q-learning) can be applied to generate one-dimensional trans-

lation (part 1) or net rotation (part 2) in low Reynolds number fluids. Through

the interaction with the surrounding viscous fluid, the swimmer learns to break the

time-reversal symmetry of Stokes flow in order to achieve the maximum displacement

(reward) either in free-space or in a periodic domain.

In the third part of the dissertation, a deep reinforcement learning approach

(proximal policy optimization) is utilized to train a two-dimensional swimmer to

develop complex strategies such as run-and-tumble to navigate through environments

and move towards specific targets. Proximal policy optimization contains actor-critic

model, the critic estimates the value function, the actor updates the policy distri-

bution in the direction suggested by the critic. Results show the artificial trained



swimmer can develop effective policy (gaits) such as translation and rotation, and

the swimmer can move to specific targets by combining these gaits in an intelligent

way. The simulation results also show that without being explicitly programmed, the

trained swimmer is able to perform target navigation even under flow perturbation.

Finally, in the last part of the dissertation, a generalized step-up reinforcement

method with deep learning is developed for an environment that changes in time. In

this work, the traditional reinforcement learning is combined with a high confidence

context detection, allowing the swimmer to be trained to navigate amphibious non-

stationary environments that consist of two distinct regions. Computational results

show that the swimmer trained by this algorithm adapts to the environments faster,

while developing more effective locomotory strategies in both environments, than

traditional reinforcement learning approaches. Furthermore, the effective policies

with traditional strategies are compared and analyzed. This work illustrates how

deep reinforcement learning method can be conveniently adapted to a broader class of

problems such as a microswimmer in a non-stationary environment. Results from this

part highlight a powerful alternative to current traditional methods for applications

in unpredictable, complex fluid environments and open a route towards future designs

of “smart” microswimmers with trainable artificial intelligence.



LOW-REYNOLDS-NUMBER LOCOMOTION VIA
REINFORCEMENT LEARNING

by
Yuexin Liu

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
and Rutgers, The State University of New Jersey – Newark
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Mathematical Sciences

Department of Mathematical Sciences
Department of Mathematics and Computer Science, Rutgers-Newark

August 2022



Copyright © 2022 by Yuexin Liu

ALL RIGHTS RESERVED



APPROVAL PAGE

LOW-REYNOLDS-NUMBER LOCOMOTION VIA
REINFORCEMENT LEARNING

Yuexin Liu

Dr. Yuan-Nan Young, Dissertation Co-Advisor Date
Professor of Mathematical Sciences, NJIT

Dr. On Shun Pak, Dissertation Co-Advisor Date
Associate Professor of Mechanical Engineering, Santa Clara University
Santa Clara CA

Dr. Jonathan Luke, Committee Member Date
Professor of Mathematical Sciences, NJIT

Dr. Michael Siegel, Committee Member Date
Professor of Mathematical Sciences, NJIT

Dr. David Shirokoff, Committee Member Date
Associate Professor of Mathematical Sciences, NJIT



BIOGRAPHICAL SKETCH

Author: Yuexin Liu

Degree: Doctor of Philosophy

Date: August 2022

Undergraduate and Graduate Education:

• Doctor of Philosophy in Mathematical Sciences,

New Jersey Institute of Technology, Newark, NJ, 2022

• Master of Science in Computer Engineering,
Florida International University, Miami, FL, 2015

• Bachelor of Science in Mathematical Sciences,
Northeast Dianli University, Jilin, China, 2011

Major: Mathematical Sciences

Presentations and Publications:

Z. Zou, Y. Liu, A. C. H. Tsang, Y.-N. Young, O. S. Pak, “Linear 3-sphere device in
a non-stationary environment via reinforcement learning context detection,”
Manuscript, 2022.

Z. Zou, Y. Liu, Y.-N. Young, O. S. Pak, A. C. H. Tsang, “Gait switching
and targeted navigation of microswimmers via deep reinforcement learning,”
Communications Physics, 5, 128, 2022.

Y. Liu, Z. Zou, A. C. H. Tsang, O. S. Pak, Y.-N. Young, “Mechanical rotation at low
Reynolds number via reinforcement learning,” Physics of Fluids, 33 062007,
2021.

Z. Zou, Y. Liu, O. S. Pak, Y.-N. Young, A. C. H. Tsang, “Artificial microswimmers
via reinforcement learning,” American Physical Society Division of Fluid
Dynamics Meeting Abstracts, Y11.00012, 2022.

Y. Liu, Z. Zou, O. S. Pak, Y.-N. Young, “Generating net rotational motion at
low Reynolds number via reinforcement learning,” American Physical Society
Division of Fluid Dynamics Meeting Abstracts, U09.006, 2020.

iv



Y. Liu, O. S. Pak, Y.-N. Young, “Generating net rotational motion at low Reynolds
number via reinforcement learning,” 73rd Annual Meeting of the American
Physical Society Division of Fluid Dynamics, November 22024, 2020.

G. Nita, M. Georgoulis, I. Kitiashvili, V. Sadykov, E. Camporeale, A. Kosovichev,
H. Wang, V. Oria, J. Wang, R. Angryk, B. Aydin, A. Ahmadzadeh, X. Bai,
T. Bastian, S. F. Boubrahimi, B. Chen, A. Davey, S. Fereira, G. Fleishman,
D. Gary, A. Gerrard, G. Hellbourg, K. Herbert, J. Ireland, E. Illarionov, N.
Kuroda, Q. Li, C. Liu, Y. Liu, H. Kim, D. Kempton, R. Ma, P. Martens, R.
McGranaghan, E. Semones, J. Stefan, A. Stejko, Y. Collado-Vega, M. Wang,
Y. Xu, S. Yu, “Machine learning in heliophysics and space weather forecasting:
a white paper of findings and recommendations,” arXiv, 2020.

Y. Liu, “Low-Reynolds-number locomotion via reinforcement learning,” Frontiers
in Applied & Computational Mathematics (FACM), Newark, NJ, May 20-21,
2022, Oral Presentation.

Y. Liu, “Gait switching and targeted navigation of microswimmers via deep
reinforcement learning,” Northeast Complex Fluids & Soft Matter (NCS)
Workshop, Jan 14, 2022, Oral Presentation.

Y. Liu, “Mechanical rotation at low Reynolds number via reinforcement learning,”
Northeast Complex Fluids & Soft Matter (NCS) Workshop, Aug 20, 2021, Oral
Presentation.

Y. Liu, “Introduction to Q-learning,” NJIT Machine Learning Group, Dec 10, 2020,
Oral Presentation.

Y. Liu, “Using reinforcement Q-learning to train a swimmer in a viscous fluid,” NJIT
MathBio Group Meeting, Nov 18, 2020, Oral Presentation.

Y. Liu, “Training a Stokes swimmer using machine learning,” Northeast Complex
Fluids & Soft Matter (NCS) Workshop, Jan 19, 2020, Oral Presentation.

Y. Liu, “Deep learning in modeling complex systems (Project ID# F18-12),” NJIT
NSF I-Corp, 2018, Oral Presentation.

v



This dissertation is dedicated to my beloved parents, Mingli Liu and Li Pan, who
always love, encourage and support me unconditionally. I am also dedicated to my

son, Ethan Jiang and my husband, Haodi Jiang, who bring love and joy.

vi



ACKNOWLEDGMENT

First and foremost, I would like to express my sincere gratitude to my advisors,

Dr. Yuan-Nan Young and Dr. On Shun Pak, for providing the insightful knowledge

and feedback throughout my study and their invaluable guidance and support of my

study and research throughout the years. Their expertise and professional dedication

to scientific research have had a profound effect upon me. They have taught me, with

great patience, how to conduct research project efficiently. The journey of being their

student is truly precious experience and a lifelong benefit.

Second, I would like to thank Dr. Jonathan Luke, Dr. Michael Siegel and

Dr. David Shirokoff, for being an important part of my scientific journey. I truly

appreciate for their valuable time and suggestions for my dissertation research and

serving on my dissertation committee.

It is worthwhile to note that without the generous support from the Department

of Mathematical Sciences, it would be harder for me to complete the PhD program.

And I would like to thank Ms. Clarisa Gonzalez-Lenahan and Dr. Sotirios Ziavras

who helped me to revise this dissertation.

Besides, I would like to thank my collaborators Dr. Alan Cheng Hou Tsang

and Zonghao Zou for their contributions to the work in the dissertation.

Most importantly, I truly appreciate my parents, Mingli Liu and Li Pan, for

their unwavering support and belief in me. To my husband, Haodi Jiang, for being

my emotional anchor. Especially to my son, Ethan Jiang, thank you for the happiness

you bring to me every day and your sweetest love throughout the years. I am truly

thankful for having you all in my life.

vii



TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Main Results and Dissertation Structure . . . . . . . . . . . . . . . . 2

2 USING Q-LEARNING TO TRAIN A STOKESIAN SWIMMER . . . . . . 5

2.1 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Reinforcement Learning for Three-sphere Swimmer . . . . . . . 11

2.2.4 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Linear Three-sphere Swimmer . . . . . . . . . . . . . . . . . . 15

2.3.2 Analytic Result . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Numerical Implementation and Results . . . . . . . . . . . . . 22

2.3.4 Results for Self-learning Linear Three-sphere Swimmer . . . . . 28

3 MECHANICAL ROTATION VIA REINFORCEMENT LEARNING . . . 31

3.1 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Geometric Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2 Low-Reynolds-number Hydrodynamics . . . . . . . . . . . . . 35

3.2.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 3-sphere Rotator . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 N -sphere Rotator . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

viii



TABLE OF CONTENTS
(Continued)

Chapter Page

4 DEEP REINFORCEMENT LEARNING FOR GAIT SWITCHING AND
TARGETED NAVIGATION OF MICROSWIMMERS . . . . . . . . . . 52

4.1 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Geometric Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.2 Hydrodynamic Interactions. . . . . . . . . . . . . . . . . . . . 56

4.2.3 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . 58

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 Targeted Navigation. . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.2 Multimodal Locomotory Gaits. . . . . . . . . . . . . . . . . . . 66

4.3.3 Gaits Categorization . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.4 Performance Evaluation. . . . . . . . . . . . . . . . . . . . . . 70

4.3.5 Path Tracing–“SWIM”. . . . . . . . . . . . . . . . . . . . . . . 73

4.3.6 Robustness Against Flows. . . . . . . . . . . . . . . . . . . . . 74

4.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 LINEAR 3-SPHERE DEVICE IN A NON-STATIONARY ENVIRONMENT
VIA REINFORCEMENT LEARNING CONTEXT DETECTION . . . . 80

5.1 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Non-Stationary Environment Formulation . . . . . . . . . . . . . . . . 80

5.2.1 Low Reynolds Number Hydrodynamics . . . . . . . . . . . . . 82

5.2.2 Dry Friction Dynamics . . . . . . . . . . . . . . . . . . . . . . 83

5.2.3 Reinforcement Learning Context Detection . . . . . . . . . . . 84

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.1 Performance Comparison and Effective Locomotory Policies . . 88

5.3.2 Performance across Various Non-Stationary Envrionment . . . 89

5.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . 92

ix



TABLE OF CONTENTS
(Continued)

Chapter Page

APPENDIX A SUPPLEMENTARY METHODS . . . . . . . . . . . . . . . . 93

A.1 Three-sphere Rotator . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.1.1 Problem Setup for Three-sphere Rotator . . . . . . . . . . . . 93

A.1.2 Simplification of the Torque Exert on Each Sphere . . . . . . . 94

APPENDIX B ADDITIONAL NUMERICAL RESULTS . . . . . . . . . . . 98

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

x



LIST OF FIGURES

Figure Page

2.1 Three linked spheres connected by two rods of negligible thickness.
Source: [71] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Example of classes of learning problems. . . . . . . . . . . . . . . . . . . 9

2.3 Schematic of reinforcement learning of a swimmer that progressively
learns how to swim by interacting with the surroundings. Source: [99]. 9

2.4 Flowchart of Q-learning method. . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Initialize Q-table. In the beginning of the Q-learning, all the entries in
this Q-table are initialized to zeros. . . . . . . . . . . . . . . . . . . . 14

2.6 Q-table update at the first learning step. . . . . . . . . . . . . . . . . . . 14

2.7 Q-table update at the second learning step. . . . . . . . . . . . . . . . . 15

2.8 An auxiliary (fictitious) movement in which the right arm has a constant
length δ while the left arm changes its length from D to D− ε. During
this movement the middle sphere will be displaced by an amount ∆f (δ).
Source: [42]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.9 The four step, cyclic motion of the linear three sphere swimmer [42]. To
analyze the motion of the system during one complete period of the
non-reciprocal cycle, introduce the auxiliary stroke: during one stroke,
the right arm has a constant length δ while the left arm changes it
length from D to D − ε with the constant velocity W . By symmetry,
we can related all the four steps in the non-reciprocal cycle to the above
stroke as follow: step(a): setting the length of right arm is δ = D while
the left arm changes length from D to D − ε with a constant velocity
W ; step(b): apply a reflection transformation with δ = D − ε; step(c):
apply a time-reversal transformation on the auxiliary stroke with the
right arm is δ = D−ε and the left arm is D; step(d): apply a reflection
transformation by a time-reversal transformation with δ = D. . . . . . 17

2.10 The net translation per cycle of the linear three-sphere swimmer, ∆ as a
function of the sphere displacement amplitude, ε. The region of x-axis
is ε/D = 0.2. The parameters used are: D = 25 and R = 3. The
blue dotted curve is the theoretical result presented by Earl et al., the
green dot-dashed curve is presented by Najafi and Golestanian, the cyan
dotted curve is my numerical result and the cyan dot-dashed curve is
Earl et al. simulation result. Source: [27], [42] . . . . . . . . . . . . . 22

2.11 Flowchart for linear three-sphere numerical scheme. . . . . . . . . . . . . 25

xi



LIST OF FIGURES
(Continued)

Figure Page

2.12 Dimensionless displacement of the swimmer in a complete cycle as a
function of the dimensionless relative displacement between neighboring
spheres. The solid green curve is obtained by solving the Oseen
tensor interaction between the spheres, the blue dotted line shows the
simulation result from Najafi and Golestanian, the parameters used
were D = 10R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.13 The shift per cycle of the linear three sphere swimmer, ∆, as a function of
the sphere displacement amplitude, ε. The parameters used were D=25
and R=3 for the Oseen tensor. The blue dotted line is the theoretical
expression given in Equation (2.8), the olive dash-dotted line is the
expression proposed by Golestanian, the green dotted line was obtained
by numerically solving the Oseen tensor equation and the cyan dash-
dotted line is the simulation result obtained by Earl et al.. Source: [27],
[42]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.14 A typical learning process of a self-learning swimmer, the dimensionless
cumulative displacement D of the swimmer evolves over learning steps.
The x-axis is the number of learning step, the y-axis is the cumulative
displacement of the body centroid. . . . . . . . . . . . . . . . . . . . . 28

2.15 Ten typical learning processes of a self-learning three-sphere swimmer
with the x-axis is the learning step and the y-axis is the cumulative
displacement of the body centroid. . . . . . . . . . . . . . . . . . . . . 29

2.16 Evolution of the differences of entries in the Q-matrix. As the learning
steps increases, the Q-matrix becomes steady. . . . . . . . . . . . . . . 30

2.17 Configurations of the linear three-sphere swimmer from learning step 123
to 131, the net translation is around 0.34. The bottom state is learning
step 198, the cumulative propel distance from step 123 to step 198 is
approximately 3.08. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Schematic diagram and notations of a mechanical setup based on Purcell’s
rotator by Dreyfus et al. [25]. The machine consists of three spheres of
radius R connected to the center P with connecting rods of length L.
The spheres are connected to the center of the circle P with connecting
rods. (a) In its initial configuration, the three spheres have equal
angular spacing, θe = 2π/3. There exist active elements that can
contract the angle θ21 or θ32 by an amount ϕ or expand by the same
amount to return to the value θe. In (b), we illustrate the configuration
of the machine after it contracts the angle θ32, which results an overall
change of the angular centroid of the machine, θ̄ (indicated by the red
dashed lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

xii



LIST OF FIGURES
(Continued)

Figure Page

3.2 Mechanical rotation at low Reynolds numbers via reinforcement learning.
The goal of the machine is to generate net rotation by performing
different configurational changes. Instead of designing a sequence of
locomotory gaits in advance, here we leverage Q-learning algorithm to
enable the machine to acquire effective locomotion strategy based on its
interaction with the surroundings. In each learning step, the machine
performs an action an (contracting or expanding on the active angles)
to transform from one configuration state sn to the next sn+1. The
reward rn, defined as the resulting difference of the angular centroid
(θ̄n+1 − θ̄n), measures the success of each action. The reinforcement
learning process progressively updates the Q-matrix, which encodes the
adaptive decision-making intelligence of the machine. Source: [105]. . 40

3.3 Reinforcement learning of a three-sphere (N = 3) rotator. (a) The net
rotation of the machine, measured by the change of angular centroid,
denoted as ∆θ̄, generated by a series of actions at different learning steps
n. (b) The rotator undergoes an initial learning stage by performing
different actions to interact with the surrounding environment and
learn from the resulting rewards. (c) Via reinforcement learning,
the machine eventually repeats a sequence of cyclic motions that
produce net rotation in the anti-clockwise direction. The strategy
acquired through reinforcement learning here coincides with that used
for Purcell’s rotator by Dreyfus et al. [25]. Inset in (a): the ε-greedy
scheme allows a small probability ε for the machine to act against the
Q-matrix and perform a random action for exploration. Here we set
ϕ = π/6, γ = 0.9, ϵ = 0.05, and R/L = 0.1. The rigid body rotation
illustrated in panels (b)–(c) are magnified by twenty times for better
visualization of the rotational motion. . . . . . . . . . . . . . . . . . . 41

xiii



LIST OF FIGURES
(Continued)

Figure Page

3.4 Reinforcement learning of a four-sphere (N = 4) rotator. (a) The net
rotation of the machine, measured by the change of angular centroid
∆θ̄, generated by a series of actions at different learning steps n. The
value of ϵ in the ε-greedy scheme affects the policies acquired by the
machine at the end of the learning process. (b) With ϵ = 0.05, the
machine has learned four-stroke cyclic motion same as that in the three-
sphere rotator (Figure 3.3b), without utilizing the active angle θ43. The
angular displacement per cycle ∆θ̄C = 0.008; the angular displacement
per cycle per stroke ∆θ̄S = 0.002. (c) With ϵ = 0.1, the machine
has learned an improved but sub-optimal six-stroke cyclic motion with
∆θ̄C = 0.0161 and ∆θ̄S = 0.0027. (d) With ϵ = 0.2, the machine
further improves the performance with another six-stroke cyclic motion
with ∆θ̄C = 0.0238 and ∆θ̄S = 0.004. The motion involves a sequential
contraction of all active angles θi+1,i from i = 1 to i = 3, followed by a
sequential expansion of all active angles θi+1,i from i = 1 to i = 3. This
policy, which consists of traveling waves of actuation propagating in
the anti-clockwise direction, represents an extension of the strategy in
Purcell’s rotator to the case four spheres with all active angles utilized
in the sequence. As a remark, the policy obtained with ϵ = 0.3 is the
same as that with ϵ = 0.2; yet the more frequent interruptions by the
random actions with ϵ = 0.3 leads to a smaller net rotation overall
compared with the case with ϵ = 0.2 as shown in (a). . . . . . . . . . 43

3.5 The effect of learning parameters α and γ for the case of N = 9. The
average net rotation of the machine, ⟨∆θ̄⟩, as a function of the learning
steps n for different values of (a) learning rate α, and (b) discount factor
γ, over 20 sample runs. In these simulations, ϕ = π/18, ϵ = 0.2, and
R/L = 0.1; γ = 0.9 in (a) and α = 1 in (b). . . . . . . . . . . . . . . . 44

3.6 The average net rotation of the 3-sphere model when only one degree of
freedom (blue) and when both degrees of freedom (red) are allowed to
change in each learning step. The results are averaged over 30 sample
runs. In these simulations, ϕ = π/6, γ = 0.9, ϵ = 0.05, and R/L = 0.1. 46

xiv



LIST OF FIGURES
(Continued)

Figure Page

3.7 Mechanical rotation of a N -sphere rotator via reinforcement learning
results. (a) The number of different policies Np adopted by a N -sphere
rotator when the learning process is stopped at different values of target
angular displacement, ∆θ̄T , in 20 sample runs. For each run, the
machine continues to learn until the net angular rotation ∆θ̄n reaches
∆θ̄T . With a relatively short learning process (∆θ̄T = 2π; top panel),
the three-sphere and four-sphere rotators converge to a single policy
in all runs (red bars), which correspond to the traveling wave policies.
For N > 4, the machine adopts a wider variety of different policies as
N increases (blue bars). With a longer training process (∆θ̄T = 50π;
middle panel), more rotators converge to the traveling wave policies at
the end of the learning process (red bars), with a reduced number of
policies for N ≥ 7. With a sufficiently long learning process (θ̄T = 350π;
bottom panel)), all rotators converge to the traveling wave policies.
(b) Characterization of the performance of the traveling wave policies
of individual N -sphere rotators by the net angular displacement per
cycle ∆θ̄C and the net angular displacement per cycle per stroke (inset)
∆θ̄S = ∆θ̄C/2(N − 1), where 2(N − 1) is the number of strokes in the
traveling wave policies. Both ∆θ̄C and ∆θ̄S increase with N . In these
simulations, ϕ = π/(2N), γ = 0.9, ϵ = 0.15, and R/L = 0.1. . . . . . 47

4.1 Schematics of the model microswimmer and the deep neural network
with Actor-Critic structure. a) Schematic of the model microswimmer
consisting of three spheres with raidus R and centers ri(i = 1, 2, 3).
We mark the leftmost sphere r1 as red and the other two spheres
r2, r3 as blue to indicate the current orientation of the swimmer. The
spheres are connected by two arms with variable lengths L1, L2 and
orientations θ1, θ2, where θ31 is the intermediate angle between two
arms. The swimmer’s orientation θo is defined based on the relative
position between the swimmer’s centroid rc =

∑
i ri/3 and r1 as

θo = arg(rc − r1). The swimmer is trained to swim along a target
direction θT . b) Schematic of Actor-Critic neural networks. Both
networks consist of three sets of layers (input layer, hidden layer, and
output layer). Each layer is composed of neurons (marked as nodes).
The weights of the neural network are illustrated as links in between the
nodes. The input layer has the same dimension as the observation. The
three linear hidden layers have the dimension of 64, 32, 32, respectively.
The output layer dimension of the actor network is the same as the
action space dimension, whereas the output layer of the actor network
has only 1 neuron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xv



LIST OF FIGURES
(Continued)

Figure Page

4.2 Example of target navigation utilizing three distinct locomotory gaits.
The Artificial Intelligence powered swimmer switches between distinct
locomotory gaits (steering, transition, translation) advised by the
reinforcement learning algorithm to steer itself towards a specified
target direction θT (black arrow) and swim along the target direction
afterwards. Different parts of the swimmer’s trajectory are colored to
represent the locomotion due to different locomotory gaits, where the
steering, transition, and translation gaits are marked as blue, red, green,
respectively. Schematics of the swimmer configurations (not-to-scale)
are shown for illustrative purpose, where the leftmost sphere is marked
as red and other two spheres marked as blue to indicate the swimmer’s
current orientation (grey arrows). The inset shows the change in
swimmer’s orientation θo over action steps. . . . . . . . . . . . . . . . 67

4.3 Analysis of configurational changes revealing three distinct modes of
locomotory gaits. The steering, transition, and translation gaits are
marked as blue, red, green, respectively. a) A 3D configuration plot
for a typical simulation which the swimmer aligns with the target
direction via a counterclockwise rotation, where L1, L2 are the arm
lengths and θ31 is the intermediate angle. Each dot represents one
specific configuration of a locomotory gait. The solid lines mark an
example cycle of each locomotory gait. b) The changes in the arm
lengths L1 and L2 and the intermediate angle θ31 with respect to
the configuration number for each locomotory gait. c) The average
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Swimming at microscopic scale, the dominance of viscous forces over inertial forces

imposes stringent constraints on locomotion at low Reynolds numbers (Re) [62, 79].

In the absence of inertia, common propulsion strategies become ineffective in the

microscopic world. Microorganisms have developed various locomotion strategies

to escape the constraints [31, 109]. In the past several decades, enormous efforts

have addressed the physical principles behind cell motility [30,60,83], which helps to

improve the general understanding of locomotion at low Re. Purcell first proposed

an elegant approach to generate net translation using the kinematically irreversible

motions [79]. Najafi et al. designed the one-dimensional three linked spheres in the

low Reynolds number fluid [71]. With designed locomotory gaits, it can generate

direct translation which allows the swimmer to propel along the horizontal-axis. In

addition to net translation, a more recent prototype known as Purcell’s “rotator” has

been proposed by Dreyfus et al. [25] that will allow a circular three-sphere swimmer

to generate net rotation in a nonreciprocal manner. With more advanced technology

involved, a variety of artificial microswimmers [28, 48, 89] have engendered in recent

years, which are capable of navigating biological environments showing promising

opportunities for biomedical and environment applications, such as micro-structures

target at cancer cells, perform optical surgery and targeted drug delivery, or use the

nanobots to remove Au droplets in the fluid [33,35,77].

Despite the successful applications of these synthetic microswimmers over the

past decades, existing microswimmers are having pre-designed locomotory gaits for

a specific type of fluid medium or environmental condition [14, 67, 73]. However, the
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locomotory gaits that are effective in one certain fluid may turn out to be ineffective in

a different medium. Thus, the performance of the microswimmers with pre-designed

locomotory gaits may not be robust to the change of the environment. On the

contrary, the natural microorganisms present robust performance of locomotion

through changing environments by the adaptivity of their locomotory gaits to the

environments [9, 65]. The adaptability of the design of the micro-structures just

like the microorganisms remains formidable in complicated environment with unpre-

dictable factors. The use of soft active materials and several approaches using modular

microrobotics have been proposed to tackle these challenges [16, 47, 50, 78, 97, 101].

Here the reinforcement learning method is employed to provide a new approach in

the design of the swimmers in low Re regime. Without prior knowledge, such as

the fluid medium or the pre-designed locomotory gaits, the reinforcement learning

approach can enable the artificial intelligent systems to perform complicated missions

without explicit programming [55]. This method also sparked new directions in fluid

mechanics, such as swarms of bacterial [53], wake detection [20], soaring birds [36,82],

fish schooling [37, 38, 54, 100], turbulence modeling [59], and navigation planning

[18, 70]. This study focuses on the use of reinforcement learning in the fundamental

challenge of generating self-propulsion at low Re. This work contributes to the

development of the design of the micro-structures by utilizing reinforcement learning

method. Without pre-designed locomotory gaits, this method is adaptive, and can

let a self-learning swimmer develop the effective propulsion strategies based on the

interactions with the environments.

1.2 Main Results and Dissertation Structure

The remaining of this dissertation is organized as follows. Chapter 2 introduces the

use of reinforcement learning, specifically Q-learning, to the design of the locomotory

gaits of a one-dimensional microswimmer in free-space that moves towards the target
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via translation. The results demonstrate that, without requiring any prior knowledge

on low Re locomotion, the linear swimmer can generate effective strategies to escape

Purcell’s scallop constraints for self-propulsion and can recover the strategy proposed

by Najafi and Golestanian [71]. This method provides a new approach to solve the

challenge of the microswimmers in complex environments.

Chapter 3 focuses on a one-dimensional microswimmer in a periodic domain

that rotates to reach the target. The use of reinforcement learning method to the

design of three-sphere rotator in net rotation generation. The result is consistent

with the strategy proposed by Dreyfus et al. [25] and this alternative approach in this

work is particularly desirable when a machine explores an environment with unknown

properties or bypasses the challenging of designing locomotory gaits in advance in

these situations.

Chapter 4 presents a two-dimensional microswimmer that switches gaits to

navigate to the designated targets in a plane. This work utilizes the deep

reinforcement learning method to let a three-sphere swimmer self-learns three distinct

locomotory gaits: steering, transition and translation. The result shows the swimmer

is capable of complex geometry tracing and shown to be robust against flow

perturbation. This ability of targeted navigation via adaptive gait-switching is

particularly desirable for the development of smart artificial microswimmers that can

perform complex biomedical tasks such as targeted drug delivery and microsurgery

in an autonomous manner.

Chapter 5 discusses a two-dimensional microswimmer trained to navigate in a

non-stationary environment based on the context detection and deep reinforcement

learning method. In contrast to previous works that utilize reinforcement learning

for a single environment, this study focuses on the device’s ability to navigate

non-stationary environments without prior knowledge of when an environment change

would occur. The results demonstrate that the reinforcement learning context
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detection method enables the device to master specialized locomotory gaits for each

environment and detect a context change quickly. The context detection and deep RL

approach present here offers a new avenue for designing artificial devices in navigating

complex fast changing environments.

Finally, in Chapter 6, the dissertation ends up with a few detailed discussions

to summarize the main results mentioned earlier in this dissertation, the conclusions

to be drawn, and the possible directions for future work.
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CHAPTER 2

USING Q-LEARNING TO TRAIN A STOKESIAN SWIMMER

2.1 Background and Related Work

Machine learning has been applied to an increasing range of physics and engineering,

and recently it has been applied in zero-Reynolds number flow for flow control and

designing of swimmers [36–38, 55, 59, 69, 70, 82, 100, 101]. Artificial micro-swimmers

in engineering and medical applications such as drug delivery and cell manipulation

show great success [33, 35, 77], however, hydrodynamic interactions in low Reynolds

number environments and the uncontrolled environmental factors will also influence

the swimmer’s behavior [79,94]. Here, we present a reinforcement learning paradigm

to design a new set of self-learning, adaptive linear N-sphere swimmer and Purcell’s

rotator [24] in a viscous Stokes fluid environment. Different from the typical designed

autonomous swimmers [71,79], the traditional microswimmers are typically designed

to have fixed locomotory gaits for a particular type of medium or environmental

condition. However, gaits that are optimal in one medium may become ineffective

in a different medium; hence, locomotion performance of synthetic microswimmers

with fixed locomotory gaits may not be robust to environmental changes [16, 47,

50, 78, 97, 101]. In contrast, natural organisms show robust locomotion performance

across varying environments by adapting their locomotory gaits to the surroundings.

Thus, we do not prescribe any propulsion gaits but allow the swimmer to self-learn

its own strategy based on its interactions with the surrounding environment through

reinforcement learning. We show the ability of the linear swimmer to obtain the

optimal propulsion policies. Our study illustrates the potential of reinforcement

learning in fluid mechanics and provides a new way for designing smart artificial

swimmers.
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Locomotion at the microscopic scale encounters stringent constraints due to

the absence of inertia. As a result of kinematic reversibility, Purcell showed that

animals such as scallops that are equipped with a single hinge cannot swim using

the simple opening and closing procedure [79], since the motion is reversible, after

finishing a cycle the scallop will end up being where it initially was. He also argued

that swimming strategies can only be successful in this regime if they involve a

cyclic and non-time-reversible motion. Here we apply a recent framework based

on reinforcement learning [99] to generate net translational motion at low Reynolds

numbers. Without prior knowledge of locomotion, the system develops effective

policies based on its interactions with the surrounding environment. We compare

the results with previously known strategies and remark on the possibility of more

complex maneuvers.

2.2 Formulation

2.2.1 Hydrodynamics

The interaction between the spheres and the surrounding viscous fluid is governed by

the Stokes equation subject to the incompressible condition:

∇p = η∇2u, in Ω,

∇ · u = 0, in Ω,

u = Vi, on Γ,

u→ 0,when r →∞,

(2.1)

where p represents the pressure field in the medium, u is the velocity field. Γ is

the boundary of the sphere and Ω is the exterior domain. Sphere i is moving inside

the fluid with velocity vectors Vi (with the index i denoting sphere i). The above

equations are solved with zero velocity at infinity and no-slip boundary conditions on

the spheres.
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The variables that determine the dynamics of the spheres are their velocities Vi

and the forces Fi acting on them. By solving the above equations, we will be able to

obtain the fluid velocity in the medium, and the corresponding stress tensor will give

us the required forces on the spheres. Since the Stokes equation is linear, the velocity

fields produced by each of the spheres simply add up, and we can express the relation

in the general form:

Vi =
N∑
j=1

HijFj. (2.2)

Assuming the separations between the spheres are sufficiently larger than the

sizes of the spheres. The Oseen tensor Hij is given by

Hij =


I/6πηR if i = j,

(1/8πη |rij|) (I+ rijrij/|rij|2) otherwise,

(2.3)

to the leading order. Here η is the fluid viscosity, I is the identity matrix, and

rij = rj − ri is the distance between spheres i and j.

Including the condition that there are no external forces such as gravity, the

system of spheres should be force-free and torque-free:
3∑

i=1

Fi = 0,

3∑
i=1

Fi × ri = 0.

(2.4)

The Najafi and Golestanian swimmer [71] is shown in Figure 2.1, that consists of

three spheres with radius R and are connected by negligible arms along the horizontal

direction.

Figure 2.1 Three linked spheres connected by two rods of negligible thickness.
Source: [71]
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2.2.2 Reinforcement Learning

Reinforcement learning is a type of Machine Learning algorithm which allows software

agents and machines to automatically determine the ideal behavior within a specific

context, to maximize its performance. Reinforcement learning is one of three basic

machine learning paradigms, alongside supervised learning and unsupervised learning.

Reinforcement learning differs from other types of machine learning paradigm.

As shown in Figure 2.2, in Supervised Learning, we are given a dataset, which consists

of data x and labels y. In this setting, for each example, we are provided the correct

label (classification problems) or a correct output (regression problems). Our goal

is to learn a model that takes the input: data x and learns to predict the labels

y. The example here is we have a picture of an apple and we want to train the

model to predict, there is an apple in the picture (it’s just a classification problem).

In contrast, if no labels are provided and we only have access to the data. Then we

move to unsupervised learning which refers to the methods that to find the underlying

structure in some data. In this case, we give two pictures of apples but the machine

don’t know what they are because no labels are here, by analyzing the structure of

these two, the model knows these two things are the same even if we don’t know that

they are specifically apples. However, in RL, we are given data in the form of what are

called state action pairs, we are dealing with making decisions and comparing actions

that could be taken, rather than making predictions, A RL agent may interact with

the world and receive some immediate, partial feedback signal, commonly called a

reward for each interaction. The agent here has no knowledge of the background,

the agent somehow learns to pick actions that will maximize a long term cumulative

reward. Because of the incomplete feedback provided by the reward signal we can

consider the RL to lie somewhere between supervised learning which gives strong feed

back with labeled data and unsupervised learning, with no feedback or labels.

8



Figure 2.2 Example of classes of learning problems.

Figure 2.3 Schematic of reinforcement learning of a swimmer that progressively
learns how to swim by interacting with the surroundings.
Source: [99].

Using reinforcement learning can let the swimmer progressively learn how to

act by interacting with the surrounding medium. The schematic of the method is

shown in Figure 2.3 [99]. For a given configuration of the swimmer (the state, sn) in

the n-th learning step, the swimmer can perform one translational (extend or shorten

the arm) or rotational (contract or increase the angle between spheres) action (the

action, an) to transforms from the current state to the next state/new state. Such

an action results in a displacement of the swimmer’s body centroid (the reward, rn),

which measures the immediate quality of the action relative to its final goal.

The implementation is carried out by a standard Q-learning algorithm.The

experiences obtained by the agent/swimmer is stored in a Q-matrix, with Q(sn, an) is
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an action-value function that captures the expected long-term reward for taking the

action a − n given the corresponding state sn. At each training step, the Q entries

will be updated using the following equation,

Q(sn, an)← Q(sn, an) + α[rn + γmax
an+1

Q(sn+1, an+1)−Q(sn, an)], (2.5)

with:

1. α: learning rate (0 ≤ α ≤ 1), determines to what extent new
information overrides old information in the Q-matrix. Fixed α = 1 to
maximize learning in a fully deterministic system.

2. rn: immediate reward.

3. max
an+1

Q(sn+1, an+1): maximum future reward at the next state.

4. γ: discount factor, assigns a weight to immediate versus future rewards
an+1 (0 ≤ γ < 1).

(a) when γ is small, the agent/swimmer is shortsighted and
tends to maximize the immediate reward;

(b) when γ is large, the agent/swimmer is farsighted and focuses
more on future rewards.

5. ϵ−greedy scheme (trade-off between exploration and exploitation):
in each learning step, the swimmer chooses the best action advised by
the Q-matrix with a probability 1 − ϵ or takes a random action with a
small probability ϵ, which allows the swimmer to explore new solutions
and avoids being trapped in only locally optimal policies. ϵ−greedy is
a simple method to balance exploration and exploitation by choosing
between exploration and exploitation randomly. The ϵ−greedy, where
ϵ refers to the probability of choosing to explore, exploits most of the
time with a small chance of exploring.

Action at learning step(t)

{
maxQt(a) with probability 1− ϵ

any action(a) with probability ϵ

(2.6)

Pseudo Code:
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p = random ( )
i f p < ep s i l o n :

pu l l random act i on
e l s e :

pu l l current−best ac t i on

2.2.3 Reinforcement Learning for Three-sphere Swimmer

2.2.4 Problem Setup

1. Goal: learn how to act by interacting with the fluid environment;

2. Agent(the N -sphere swimmer): N -spheres connected with N−1 extensible rods
of negligible diameters, each sphere has a radius R and each rod has length l
that can contract/extend by e (in the paper, they set l = 10R, e = 4R);

3. State(sn): configuration of the swimmer, N spheres has total 2N−1 config-
urations and each configuration can transition to N − 1 configurations by
extending or contracting one of the connecting rod, for example 3-sphere
swimmer has 4 states;

4. Action(an): extend/contract one of its rods;

5. Reward(rn): certain displacement of the body centroid of the swimmer(cn);

rn = ê∆cn

(a) body centroid of the swimmer is defined as : cn :=
∑N

i=1
xi(n)
N

(b) xi(n): position vector of i-th sphere;

(c) ê: desired direction (unit vector);

(d) ∆cn: transformation between states displaces cn, ∆cn = cn+1 − cn

6. D: cumulative displacement of the body centroid

D =
∑
n

ê∆cn

7. update Q(sn, an)

Q(sn, an)← Q(sn, an) + α[rn + γmaxQ(sn+1, an+1)−Q(sn, an)] (2.7)
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(a) α is the learning rate (0 ≤ α ≤ 1), which determines to what extent new
information overrides old information in the Q-matrix. Unless otherwise
specified, we fixed α = 1 to let the learning occur quickly;

(b) γ is the discount factor, which assigns a weight to immediate versus future
rewards (0 ≤ γ < 1). When γ is small, the swimmer is shortsighted and
tends to maximize the immediate reward; when γ is large, the swimmer is
farsighted and focuses more on future rewards;

8. In addition, we add an ϵ-greedy selection scheme (trade-off between exploration
and exploitation): in each learning step, the swimmer chooses the best action
advised by the Q-matrix with a probability 1 − ϵ or takes a random action
with a small probability ϵ, which allows the swimmer to explore new solutions
and avoids being trapped in only locally optimal policies. ϵ−greedy is a
simple method to balance exploration and exploitation by choosing between
exploration and exploitation randomly. The ϵ−greedy, where ϵ = 0.05 refers to
the probability of choosing to explore, exploits most of the time with a small
chance of exploring.

To implement the algorithm, let’s start by recollecting the states and map each

of the states to numbers:

l-e l-e
0: State 0

l l-e
1: State 1

l l
2: State 2

l-e l
3: State 3

Specify the parameters of the Q-Learning algorithm: ϵ, γ (discount factor), number

of steps n and add ϵ−greedy policy for the following steps

• if c = 0, p = 1− ϵ = 0.95, the agent will choose the max Q-value;

• if c = 1, p = ϵ = 0.05, the agent will act randomly.

The flowchart in Figure 2.4 shows the training process of Q-learning. Each of

the blue-colored box is one step. First is to initialize a Q-matrix. A Q-matrix or
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Q-table is just a fancy name for the lookup table where we calculate the maximum

expected future rewards for an action at certain state. Basically, this table will guide

us to the best action at each state.

Figure 2.4 Flowchart of Q-learning method.

First, we will use the linear three sphere swimmer as an example to build a

Q-table. It consists of n rows, with n represents the number of states of the linear

three sphere swimmer and m columns, where m denotes the number of actions for

each state. For the linear three sphere swimmer, it has four states and four actions

at each state. For instance, when a swimmer is at state 1, it can either extend the

left arm to transit to state 0 or it can contract the right arm to transit to state 2. In

our study, only one degree of freedom is allowed for each learning step, which means,

we can only perform one actuation at each step.

In the beginning, all the values of Q-entries are zeros, as shown in Figure 2.5,

then the training start and this Q-table will be improved at each iteration.

For instance, at the first learning step, the swimmer is at state 0 and knows

nothing about the environment, it picks a random action, a1, which is contract the

left arm. Due to this particular action, we calculate the displacement for the case of

D = 10R, arm length change is 4R, the middle sphere will have a negative x-direction

displacement about −1.35R. The corresponding Q-entry, Q(s0, a1) can be updated

13



Figure 2.5 Initialize Q-table. In the beginning of the Q-learning, all the entries in
this Q-table are initialized to zeros.

using Equation 2.7, with learning rate α = 1, discount factor γ = 0.8.

Q(s0, a1) = Q(s0, a1) + α[rn + γmaxQ(sn+1, an+1)−Q(sn, an)]

α=1−−−→
γ=0.8

rn + 0.8maxQ(sn+1, an+1).

Figure 2.6 Q-table update at the first learning step.

Similarly for the next learning step, now the swimmer is at state 1, and randomly

pick an action a2. According to this particular action, the middle of the swimmer will

have a displacement in the positive x-direction by an amount of 1.44R. Substitute the

values in the update formula, we can get the corresponding Q-entry, Q(s1, a2) = 1.44,

as shown in Figure 2.7.

To use this Q-table as a reference to dictate the motion of the swimmer. For

instance, in Figure 2.7, suppose we are currently at state 1, since only one actuation is

14



Figure 2.7 Q-table update at the second learning step.

allowed for each step, we can only transfer to state 0 or state 2 in this constraint. As

the value of Q(s1, a0) is less than Q(s1, a2), therefore, at state 2, action 2 is preferred

than action 1.

Above are the iterative process of updating the values, as we start to explore the

surrounding environment, this Q-function gives up better and better approximations

by continuously updating the Q-entries in the Q-table.

2.3 Results and Discussion

2.3.1 Linear Three-sphere Swimmer

Several authors have described models of swimmers at low Reynolds number. In 2004,

Najafi and Golestanian [42] proposed a one dimensional swimmer comprising three

connected spheres. Their model uses the cyclic motion that breaks time reversibility.

The swimmer is composed of three-spheres with fixed radius R. The central sphere

is connected to two other spheres by negligible rods and separated by an angle of

180◦ along the x-direction. The swimmer is immersed in the low-Reynolds number

fluid with viscosity η. There are two internal engines on the middle sphere, which

can make a nonreciprocal motion that is needed to propel the whole system. The
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microstructure moves by shortening and extending the lengths of the arms in a time

irreversible and periodic manner. The parameters for this device are,

1. D: the distance between the central sphere and an outer sphere at the
maximum arm length.

2. ε: the distance the arm shortens.

3. W : the speed at which the arms change their lengths.

4. R: the radius of each sphere.

Figure 2.8 An auxiliary (fictitious) movement in which the right arm has a constant
length δ while the left arm changes its length from D to D−ε. During this movement
the middle sphere will be displaced by an amount ∆f (δ).
Source: [42].
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Figure 2.9 The four step, cyclic motion of the linear three sphere swimmer [42].
To analyze the motion of the system during one complete period of the non-reciprocal
cycle, introduce the auxiliary stroke: during one stroke, the right arm has a constant
length δ while the left arm changes it length from D to D − ε with the constant
velocity W . By symmetry, we can related all the four steps in the non-reciprocal cycle
to the above stroke as follow: step(a): setting the length of right arm is δ = D while
the left arm changes length from D to D − ε with a constant velocity W ; step(b):
apply a reflection transformation with δ = D − ε; step(c): apply a time-reversal
transformation on the auxiliary stroke with the right arm is δ = D − ε and the left
arm is D; step(d): apply a reflection transformation by a time-reversal transformation
with δ = D.

Consider the initial state of the system such that the spheres numbered 2 and

3 are in equal distance D from the middle sphere and divide a complete cycle of the

nonreciprocal motion into four parts as above (see Figure 2.9).

1. In the first step of the motion, the right arm has fixed length, and the
length of the left arm is decreased with a constant relative velocity W ,
using one of the internal engines in the middle sphere. Denote the relative
displacement of the spheres 1 and 2 in this stage by ε.

2. For the second step, the left arm is fixed and the right arm decreases its
length with the same constant relative velocity W as before. The relative
displacement of the spheres 1 and 3 is again ε, like the previous stage.

3. During the third step, while the right arm is kept fixed, the left arm
increases its length with the same relative velocity W to reach its original
length D.
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4. Finally, in the last step, the left arm is kept fixed and the right arm
increases to its original length with the same constant velocity W . The
system is now in its original configuration.

The result of this cyclic, time irreversible motion is a net translation of the

swimmer along the x-axis; we define ∆ as the distance the swimmer translates in one

complete cycle. To obtain a net translational motion, the above cycle can be repeated

continuously.

In the auxiliary stroke one arm has a fixed length, δ, where δ is either D or

D − ε, and the other arm changes length from D to D − ε. We choose the x-axis

to be parallel to the line linking the spheres and directed away from sphere 2 (see

Figure 2.8). During the auxiliary stroke v1 = v3 and W = v2 − v1. To obtain the net

displacement of the middle sphere in the real problem, it is thus enough to solve the

dynamical equation for a single auxiliary movement. If we define the net displacement

of the middle sphere during the auxiliary step by ∆f (δ), then by considering the above

arguments we can calculate the total displacement ∆ of the real system through a

complete cycle as

∆ = 2[∆f (D)−∆f (D − ε)] (2.8)

2.3.2 Analytic Result

Velocity of middle sphere Since we are only interested in the dynamics of the

spheres, we can equivalently solve the set of Equation (2.2) and Equation (2.4).

∣∣∣∣∣∣∣∣∣∣∣∣∣

H11 H12 H13

H12 H11 H23

H13 H23 H11

1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
F1

F2

F3

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

v1

v1 +W

v1

0

∣∣∣∣∣∣∣∣∣∣∣∣∣
,
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with H11 =
1

6πηR
, H12 =

1
4πη(D−Wt)

, H13 =
1

4πηδ
, H23 =

1
4πη(δ+D−Wt)

.

After Gaussian elimination, solve for v1 and divide it by H11:

v1 =
−W (H11 −H12 −H23 +

H12H13+H13H23−H2
13

H11
)

[3H11 − 2(H12 + 2H13 + 2H23)− H2
12+H2

13+H2
23−2H12H13−2H12H23−2H13H23

H11
]
, (2.9)

collecting terms in O(1), O(ξ), O(ξ2):

O(1) : −W (H11 −H12 −H23)(3H11 − 2(H12 +H13 +H23)

O(ξ) : −W (H12 +H13 +H23)(3H11 − 2(H12 +H13 +H23)

−W (H11 −H12 −H23)(H12 +H13 +H23 − 2H12 − 2H13 − 2H23)

O(ξ2) : −W (H12 +H13 +H23)(H12 +H13 +H23 − 2H12 − 2H13 − 2H23)

Then, we drop the term in O(ε) and higher to get v1 in the form:

v1 ∼
−W (H11 −H12 −H23)

3H11 − 2(H12 +H13 +H23)
(2.10)

divide the above expression of v1 by H11:

v1 ∼
−W (H11 −H12 −H23)

3H11 − 2(H12 +H13 +H23)

divide by H11−−−−−−−→ −W
3

[
1− H12

H11
− H23

H11

1− 2
3
(H12

H11
+ H13

H11
+ H23

H11
)
],

with H13

H11
= 3R

2δ
, H12

H11
= 3R

2(D−Wt)
, H23

H11
= 3R

2(δ+D−Wt)
.

Ignoring terms of order (R/D)2 and greater the velocity of the middle sphere,

in the limit that the swimmer undergoes small deformations, is

v1(δ) ∼ −
W

3
[1− R

2(D −Wt)
+

R

δ
− R

2(δ +D −Wt)
], (2.11)
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δ is the distance between sphere 1 and sphere 3, R is the radius of sphere, D

is the distance between sphere 1 and sphere 2, W is the constant velocity of left

arm(distance between sphere 2 and 1) to decrease, t is the time.

Displacement of the Middle Sphere Integrating v1 over time t gives the

displacement over the auxiliary stroke:

∆a(δ) =

∫ ε/W

0

v1(δ)dt,

∆a(δ) is the displacement of the middle sphere, ε/W is the time for the stroke,

v1(δ) is the velocity of middle sphere.

Then the velocity for the middle sphere can be express as:
v1(δ) ∼ −W

3
[1− R

2(D−Wt)
+ R

δ
− R

2(δ+D−Wt)
]

v1(D) ∼ −W
3
[1− R

2(D−Wt)
+ R

D
− R

2(2D−Wt)
]

v1(D − ε) ∼ −W
3
[1− R

2(D−Wt)
+ R

D−ε
− R

2(2D−Wt−ε)
]

Integrate Equation (2.11) gives the displacement over the auxiliary stroke and

calculate the total displacement ∆ after complete cycle based on Equation (2.8),

∆ = −2W

3
[[
R

D
− R

D − ε
]
ε

W
+

R

2W
[−ln|2D − 2ε|+ 2ln|2D − ε| − ln|2D|]].

We can expand all the quantities in terms of ε/D,

1
1− ε

D
= 1 + ε

D
+ ( ε

D
)2 + ( ε

D
)3 +O((ε/D)4)

ln|2D(1− ε
D
)| = ln2D − ε

D
− 1

2
( ε
D
)2 − 1

3
( ε
D
)3 + h.o.t

ln|2D(1− 1
2

ε
D
)| = ln2D − 1

2
ε
D
− (1

8
ε
D
)2 − 1

24
( ε
D
)3 + h.o.t

collecting terms in O(1), O(( ε
D
)), O(( ε

D
)2), O(( ε

D
)3):
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
O( ε

D
) : 1− 1 = 0

O( ε
D
)2 : (−2

3
)R[−1 + 1

4
− 1

8
] = (−2

3
)R(−7

8
) = 7

12
R

O( ε
D
)3 : (−2

3
)R[−1 + 1

2
(1
3
− 1

12
)] = (−2

3
)R(−7

8
) = 7

12
R

Finally, the total displacement after the four step cycle, to second order in ε/D,

as

∆ =
7

12
R[(

ε

D
)2 + (

ε

D
)3]. (2.12)

In the limit of small internal deformation of the linear three-sphere swimmer,

the expression obtained by Najafi and Golestanian is as follows,

vs = 0.7W (
R

D
)(

ε

D
)2, (2.13)

∆ = 2.8R(
ε

D
)3. (2.14)

This appears to give good agreement for larger values of ε/D. While the result

is misleading, as in the limit of small ε/D it does not converge to the theoretical

solution, as shown in the figure below, and it should not be valid at higher values

of ε/D due to the assumptions made in the derivation. Figure 2.10 indicates the

theoretical solution (blue dotted curve) converges to the simulation result better. If

we consider the third stroke of the motion as shown in Figure 2.9, the swimmer must

translate in the same direction, while, Equation (2.14) suggests that the swimmer

propel in the reversed direction which is not correct.
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Figure 2.10 The net translation per cycle of the linear three-sphere swimmer, ∆ as
a function of the sphere displacement amplitude, ε. The region of x-axis is ε/D = 0.2.
The parameters used are: D = 25 and R = 3. The blue dotted curve is the theoretical
result presented by Earl et al., the green dot-dashed curve is presented by Najafi and
Golestanian, the cyan dotted curve is my numerical result and the cyan dot-dashed
curve is Earl et al. simulation result.
Source: [27], [42]

2.3.3 Numerical Implementation and Results

Numerical implementation The Oseen tensor allows us to consider the hydro-

dynamic interaction, in the limit of zero Reynolds number, between spheres that are

spaced far apart (R≪ D),

Set parameters:

1. D: distance between the central sphere and an outer sphere at the
maximum arm length;

2. R: the radius of each sphere;

3. W : constant velocity for length change;

4. ε: sphere displacement amplitude ε < D.

Divide the interval(range) of ε into n subintervals, for each εi, εi =
ε
n
i, follow

the four steps as shown in Figure 2.9.
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1. Step a:

(a) use the parameters above to compute the stokeslet Hii =
1

6πηRi
, Hij =

1
4πηrij

, with r12 = D − εi, r13 = D, r23 = 2D − εi;

(b) plug into equation vi(εi)a =
∑

HijFj and the force-free
condition, solve for vi(εi)a;

(c) for small ε, use equation ∆a ∼
∑n

i=1 vi(εi)a
εi
w

to solve for
the displacement after step a.

2. Step b:

(a) fix the distance r12 = D−ε, update the stokesletHii =
1

6πηRi
,

Hij =
1

4πηrij
, with r12 = D− ε, r13 = D− εi, r23 = 2D− ε− εi;

(b) plug into equation vi(εi)b =
∑

HijFj and the force-free
condition, solve for vi(εi)b;

(c) for small ε, use equation ∆b ∼
∑n

i=1 vi(εi)b
εi
w
to solve for the

displacement after step b.

3. Step c:

(a) fix the distance r13 = D−ε, update the stokesletHii =
1

6πηRi
,

Hij =
1

4πηrij
, with r12 = D−ε+εi, r13 = D−ε, r23 = 2D−2ε+εi;

(b) plug into equation vi(εi)c =
∑

HijFj and the force-free
condition, solve for vi(εi)c;

(c) for small ε, use equation ∆c ∼
∑n

i=1 vi(εi)c
εi
w
to solve for the

displacement after step c.

4. Step d:

(a) fix the distance r12 = D, update the stokeslet Hii =
1

6πηRi
,

Hij =
1

4πηrij
, with r12 = D, r13 = D − ε+ εi, r23 = 2D − ε+ εi;

(b) plug into equation vi(εi)d =
∑

HijFj and the force-free
condition, solve for vi(εi)d;

(c) for small ε, use equation ∆d ∼
∑n

i=1 vi(εi)d
εi
w

to solve for
the displacement after step d.
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5. compute the total displacement after a complete cycle:

∆ = ∆a +∆b +∆c +∆d.
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set parameters: D, R, w, a, ε < D

divide εi = ε
n
i

Compute Stokeslet: Hii, Hij

Use equation vi(εi)a =∑3
i=1HijFj and force-free

constraint to solve for vi(εi)a

Compute the total

length change of step a

fix r12, divide εi = ε
n
i,

update the Stokeslet:Hii, Hijb

use equation vi(εi)b =∑3
i=1HijbFj and force-free

constraint to solve for vi(εi)b

Compute the total

length change of step b

fix r13 = D − ε, divide εi =
ε
n
i,

update the stokeslet:Hii, Hijc

use equation vi(εi)c =∑3
i=1 HijcFj and force-free

constraint to solve for vi(εi)c

Compute the total

length change of step c

fix r12 = D, divide εi = ε
n
i,

update the stokeslet:Hii, Hijd

use equation vi(εi)d =∑3
i=1 HijdFj and force-free

constraint to solve for vi(εi)d

Compute the total

length change of step d

Compute the total displacement

after a complete cycle

Step a

Step b

Step c

Step d

Figure 2.11 Flowchart for linear three-sphere numerical scheme.
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Numerical results Najafi and Golestanian introduced the linear three-sphere

swimmer and calculated its swimming velocity by solving the linear governing

equations. The swimmer uses the periodic internal motion to propel itself under

low Reynolds number environment. The advantage of this model, as compared to

previously known model swimmers, is that the analysis of the hydrodynamics problem

can be performed easily.

Figure 2.12 gives the results for a single linear three-sphere swimmer. The

graph shows how the total displacement of the swimmer over one cycle, ∆, varies as a

function of the amplitude of the stroke ε. As we increase the amplitude of the stroke

ε, the net translational displacement will also increase over one cycle. Our numerical

result is consistent with Najafi and Golestanian’s result.

Figure 2.12 Dimensionless displacement of the swimmer in a complete cycle as
a function of the dimensionless relative displacement between neighboring spheres.
The solid green curve is obtained by solving the Oseen tensor interaction between the
spheres, the blue dotted line shows the simulation result from Najafi and Golestanian,
the parameters used were D = 10R.

Figure 2.13 shows how the total displacement of the swimmer over one cycle, ∆,

varies as a function of the amplitude of the stroke ε. The parameters used were D=25
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and R=3 for the Oseen tensor. The green dotted line was obtained by numerically

solving the Oseen tensor equation and the cyan dash-dotted line is the simulation

result obtained by Earl et al. [27]. The graph shows our numerical result is consistent

with Earl et al. simulation result.

Figure 2.13 The shift per cycle of the linear three sphere swimmer, ∆, as a function
of the sphere displacement amplitude, ε. The parameters used were D=25 and R=3
for the Oseen tensor. The blue dotted line is the theoretical expression given in
Equation (2.8), the olive dash-dotted line is the expression proposed by Golestanian,
the green dotted line was obtained by numerically solving the Oseen tensor equation
and the cyan dash-dotted line is the simulation result obtained by Earl et al..
Source: [27], [42].
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2.3.4 Results for Self-learning Linear Three-sphere Swimmer

The swimmer struggles to find a policy to propel in the positive direction at the

beginning, therefore it will moves back and forth for the first 60 training steps, with

D remains close to 0. Then the swimmer keeps exploring the surrounding environment

by taking different actions and updating its propulsion policy. After accumulating

enough experiences, the linear three-sphere swimmer develops an effective propulsion

policy that repeats the same sequence of actions, except when a random action is

chosen, and propel in the positive direction with increasing D. The propulsion

policy obtained by Q-learning algorithm for a three-sphere swimmer is consistent

with Najafi-Golestanian’s swimming gaits, which indicates Q-learning can train a

swimmer to obtain its propulsion gaits without prior knowledge of low Reynolds

number locomotion.

Figure 2.14 A typical learning process of a self-learning swimmer, the dimen-
sionless cumulative displacement D of the swimmer evolves over learning steps. The
x-axis is the number of learning step, the y-axis is the cumulative displacement of the
body centroid.

28



Figure 2.15 shows ten learning processes of a self-learning three-sphere swimmer,

the dimensionless cumulative displacement D of the swimmer evolves over learning

steps. The swimmer initially struggles to find a policy to propel in the positive

direction after sufficient steps (e.g., learning step around 60), then the swimmer

develops an effective propulsion policy and moves in the positive direction with

increasing D.

Figure 2.15 Ten typical learning processes of a self-learning three-sphere swimmer
with the x-axis is the learning step and the y-axis is the cumulative displacement of
the body centroid.

Figure 2.16 indicates as the learning step greater than 120, the difference of

each row in the Q-matrix becomes steady.

Figure 2.17 illustrates the effective propulsion policy for the linear three-sphere

swimmer is in the ”travelling wave” pattern which is consistent with Najafi-

Golestanian’s swimmer [42].
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Figure 2.16 Evolution of the differences of entries in the Q-matrix. As the learning
steps increases, the Q-matrix becomes steady.

Figure 2.17 Configurations of the linear three-sphere swimmer from learning step
123 to 131, the net translation is around 0.34. The bottom state is learning step 198,
the cumulative propel distance from step 123 to step 198 is approximately 3.08.
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CHAPTER 3

MECHANICAL ROTATION VIA REINFORCEMENT LEARNING

3.1 Background and Related Work

Swimming microorganisms inhabit a world dominated by the viscous force. The

Reynolds number, Re = ρUℓ/µ (where ℓ and U represent the characteristic length

and speed of the swimmer, and ρ and µ are fluid density and dynamic viscosity,

respectively), falls in the range of 10−4 to 10−2 for swimming bacteria and spermatozoa

[31,60,92]. The inertial force is therefore negligible compared with the viscous force.

At such low Reynolds numbers, common swimming strategies based on inertia at the

macroscopic scales become largely ineffective [62, 109]. Microorganisms have evolved

different strategies, including the use of flagellar rotary motors [11] or the action of

molecular motors within flagella [84], to swim effectively in their microscopic world.

There are growing interests in developing artificial microscopic machines that can self-

propel like their biological counterparts for potential biomedical and environmental

applications [34, 74]. However, without sophisticated biological molecular machines

possessed by microorganisms, it remains a challenge to design micromachines for

complex maneuvers in the viscously dominated flow limit [28].

Purcell’s work popularized the fundamental fluid dynamical aspects of swimming

at low Reynolds numbers [79]. In particular, his scallop theorem rules out any

reciprocal motion–sequence of motions with time reversal symmetry (e.g., opening

and closing the hinge of a single-hinged scallop) for self-propulsion without inertia.

To escape from the constraints by the scallop theorem, Purcell designed a three-link

swimmer that can perform kinematically irreversible cyclic motions for net translation

[10, 79]. Najafi and Golestanian [71] proposed another ingenious design consisting of

three linked spheres, which can translate by modulating the distances between the
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spheres; the mechanism inspired a wide variety of variants [6–8,27,41,72,91,103,104].

In addition to net translation, the design of mechanisms that can produce net

rotation at the microscale is important to the development of micromachines. To this

end, Dreyfus et al. proposed a mechanism (also known as Purcell’s “rotator”) [25],

which consists of three spheres linked like the spokes on a wheel (Figure 3.1),

as the rotational analogue of Purcell’s three-link swimmer for translation. The

rotator performs a prescribed sequence of motions that exploit the hydrodynamic

interaction between the spheres to produce net rotation. The mechanism of Purcell’s

rotator shares similarity with the conformational changes of some molecular motors

undergoing ATP- or photochemically-driven rotational movements [25,57,58].

These ingenious designs rely on knowledge of the surrounding environment

and the physics of locomotion within the environment, which may not be complete

or clear in more complex scenarios. In particular, for biological applications, the

properties of some highly complex, heterogeneous biological environments may not

be known a priori, posing additional challenges on the design of effective self-propelled

micromachines. Recent approaches have exploited the prowess of machine learning

in the studies of different aspects of locomotion in fluids [17,97], including individual

and collective motion of fish [13, 37, 38, 54, 75, 100, 107] and birds [81, 82], as well as

different navigation [2,70,80,108] and cloaking [68] problems of self-propelled objects.

In particular, an alternative framework based on reinforcement learning has enabled

a microswimmer to learn effective locomotory gaits based on its interactions with the

surrounding low-Reynolds-number environment [99]. Without any prior knowledge

of locomotion, such a “self-learning” microswimmer is able to acquire a previously

known propulsion strategy by Najafi and Golestanian [71] for net translation and

adapt its locomotory gaits in different media.

Similar in spirit, in this work we employ a reinforcement learning approach to

generate mechanical rotation at low Reynolds numbers. We adopt the mechanical
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configuration of the Purcell’s rotator shown in Figure 3.1 [25]; however, instead

of prescribing the locomotory gaits of Purcell’s rotator, we allow the machine to

progressively learn how to exploit hydrodynamic interactions to produce net rotation

via reinforcement learning on its own. We will examine the locomotion strategies

acquired by the learning process and consider more complex scenarios when the

number of spheres in the machine increases. This work is organized as follows:

in Section 3.2 we present the geometric setup (Section 3.2.1), formulation of

the hydrodynamic (Section 3.2.2) and the reinforcement learning (Section 3.2.3)

problems used in this work. We discuss the results in Section 3.3 for a three-sphere

rotator (Section 3.3.1), before extending the studies to configurations with a higher

number of spheres (Section 3.3.2). We conclude the investigation with some remarks

in Section 3.4.
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Figure 3.1 Schematic diagram and notations of a mechanical setup based on
Purcell’s rotator by Dreyfus et al. [25]. The machine consists of three spheres of
radius R connected to the center P with connecting rods of length L. The spheres
are connected to the center of the circle P with connecting rods. (a) In its initial
configuration, the three spheres have equal angular spacing, θe = 2π/3. There exist
active elements that can contract the angle θ21 or θ32 by an amount ϕ or expand by
the same amount to return to the value θe. In (b), we illustrate the configuration of
the machine after it contracts the angle θ32, which results an overall change of the
angular centroid of the machine, θ̄ (indicated by the red dashed lines).
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3.2 Formulation

3.2.1 Geometric Setup

We first illustrate the geometric setup using a three-sphere configuration similar to

Purcell’s rotator (Figure 3.1a), before considering systems with an increased number

of spheres. We place three spheres of radius R on an imaginary circle of radius L.

The spheres are individually connected to the center of the circle P with connecting

rods. Figure 3.1 shows an initial configuration with equal angular spacing (θe = 2π/3)

between the spheres, where the angle between spheres 2 and 1 (θ21) and the angle

between spheres 3 and 2 (θ32) attain their fully extended values (θ21 = θ32 = θe).

There exist two internal active elements that can contract θ21 or θ32 (referred to as

active angles here) by an amount ϕ (Figure 3.1b), or expand an angle back to its

fully extended value θe. The remaining angle between spheres 3 and 1 (θ13) only

reacts passively to the contraction and expansion. To measure the net rotation of

the machine, we define the angular centroid θ̄ =
∑3

1 θi/3, which is the average of

the angles of all spheres θi measured from the x-axis. The angular centroid of the

initial configuration shown in Figure 3.1a is given by θ̄ = 2π/3, as indicated by

the red dashed line. Actuating (contracting or expanding) any of the active angles

will alter the angular centroid of the machine as illustrated in Figure 3.1b. The

goal of the machine is to generate net rotation (i.e., a net increase in the angular

centroid θ̄) in the anti-clockwise direction by choosing different actions of the active

elements. Without requiring prior knowledge of low-Reynolds-number locomotion,

we will demonstrate a reinforcement learning approach in achieving this goal. We

next present the formulation of the hydrodynamic problem in Section 3.2.2 and its

integration with a reinforcement learning algorithm in Section 3.2.3.
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3.2.2 Low-Reynolds-number Hydrodynamics

We consider the hydrodynamics governed by the Stokes equation in the low Reynolds

number regime. Here we neglect the hydrodynamic influence of the connecting rods

and account for the leading-order hydrodynamic interaction between the spheres via

the Oseen tensor [25,44,71] in the limit R/L≪ 1. The forces Fi and velocities Vi of

the spheres (i = 1, 2, 3) are related as

Fi =
3∑

j=1

HijVj, (3.1)

where

Hij =


−6πµR I, if i = j

6πµR 3R
4Rij

(I+ R̂ijR̂ij), if i ̸= j

(3.2)

and Rij = ∥ri−rj∥ , ri is the position of sphere i from the center P, R̂ij = (ri−rj)/Rij,

and I is the identity matrix. The hydrodynamic torque about the origin in the

laboratory frame is given by Γi = Di×Fi = Di×
∑3

j=1 HijVj, whereDi is the position

vector of each spheres in the laboratory frame. Here we focus on pure rotation of the

machine and thus fix its center P to the origin in the laboratory frame. If the center

is not kept fixed, the machine can undergo both translation and rotation [25]. The

velocity of the spheres Vi = Lθ̇i êθ are therefore purely tangential to the imaginary

circle, where êθ is the unit vector tangent to the circle. In the absence of an external

torque, the system is torque-free

3∑
i=1

Γi = 0. (3.3)

The machine is allowed to actuate any one of the active elements in each step

to contract or expand the angle at a rate ω. For instance, in Figure 3.1 from (a) to

(b), the machine contracts the angle θ32 by an amount ϕ (i.e., θ̇3 − θ̇2 = −ω), while

maintaining the angle θ21 fixed (i.e., θ̇2 = θ̇1). Such action results an overall change of
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the angular centroid of the machine, θ̄ (indicated by the red dashed lines in Figure 3.1).

These kinematic constraints close the system of equations, which can be numerically

solved to determine the rotational dynamics of the machine for each action taken. We

remark that the linearity and time-independence of the Stokes equation leads to the

property of rate independence [62, 79]: any translational or rotational displacement

of the machine resulting from its configuratonal changes (contraction/expansion of

active angles) does not depend on the rate of configurational changes but only on the

sequence of the changes. We therefore follow Dreyfus et al. [25] and assume a uniform

rate of expansion and contraction ω in this work.

Allowing the rotator to both translate and rotate, we need to satisfy both force

and torque free condition.

3∑
i=1

F i = 0,
3∑

i=1

Γi = 0. (3.4)

To solve those system of equations, we parameterize the velocities of each sphere by

separating its translational and angular velocities in the laboratory frame:

Vi = VP + Lθ̇iUθi , (3.5)

where Vp is the translational velocity of the circle’s center P, θ̇i is the rotational

velocity of each sphere, and Uθi is the rotational velocity direction which is always

tangent to the circle.

Two more equations are needed to fully constraint the system. Those equations

are determined based on which element is active. The stroke shown in Figure 3.1(b)

is a contraction in θ23. We can write the following:

θ̇3 − θ̇2 = −ω (3.6)

θ̇2 = θ̇1 (3.7)

and ω is the constant speed of contraction, where ϕ = ∆tω.
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With the above construction, we allow both translation and rotation of our

rotator. However, as shown in by Dreyfus et al. [25], fixing P generates more net

rotation. We will therefore limit our reinforcement study on the no translation case

only. To fix P, we need to introduce an equal and opposite force at P, which indicates

the force free condition is no longer valid. Furthermore, we can set Di = ri,Vp = 0.

3.2.3 Reinforcement Learning

The goal of the machine is to generate net rotation by performing an effective sequence

of strokes. Instead of prescribing the sequence of strokes in the conventional approach,

here we use a simple reinforcement learning algorithm to enable the machine to

acquire effective locomotion strategies by itself. Such an approach does not rely

on prior knowledge of locomotion but allows the machine to learn and adapt its

locomotion strategies based on its experience interacting with the surroundings. Here

we implement the Q-learning algorithm for its simplicity and expressiveness compared

with other reinforcement learning algorithms [105].

Many model-free reinforcement learning algorithms have show their capabilities

in producing sub-optimal policies to mathematically complex and intractable problems.

For the rotator shown in Figure 3.1, We can mathematically trace out the effective

rotating policy for the model. However,the problem will quickly become intractable

when more choices are introduced with increasing spheres. Hence, we will employ

reinforcement learning. For all the results follow, we will implement Q-learning

algorithm due to its simplicity and expressiveness comparing to other potential

algorithms.

We first introduce four Q-learning concepts: states, actions, rewards, and Q-

matrix. States (sn) is a set containing all possible position of the model, where n

represents the number of steps. For our problem, we consider states as a set of all

geometric configurations. (A total of four combinations of contraction and extension
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in θ12 and θ23.) Actions (an) are all choices the model can make given a state, sn.

When making an action an, the rotator will move to the next state, sn+1. Two

sets of actions are available. The rotator can either choose to extend/contract θ12

or θ23. Rewards (rn) directly relate to action the rotator takes given a state. We

define rewards as the angular centroid difference after taking action, an, at state, sn.

(θ̄n+1 − θ̄n).

In a given learning step in Q-learning (for example, the n-th step in Figure 3.2),

the machine performs an action (an, contracting or expanding one of the active

angles), taking the machine from the current configuration state (sn) to the next

state (sn+1). The “success” of action an is measured by reward rn, which is defined

as the resulting difference of the angular centroid (i.e., rn = θ̄n+1− θ̄n). The expected

long-term reward for taking the action an given the state sn is quantified by the

Q-matrix, Q(sn, an), which is an action-value function that encodes the adaptive

decision-making intelligence of the machine. After each learning step, the Q-matrix

evolves based on the experience gained by the machine,

Q(sn, an)←Q(sn, an)+

α[rn + γmax
an+1

Q(sn+1, an+1)−Q(sn, an)],
(3.8)

where α is the learning rate (0 ≤ α ≤ 1) that determines to what extent new

information overrides old information and therefore control the learning speed of

the machine. Here we fixed α = 1 to maximize the learning speed. The discount

factor γ (0 < γ < 1) determines the trade-off between immediate reward rn and

maximum future reward at the next state maxan+1 Q(sn+1, an+1). When γ is small,

the machine is shortsighted and tends to maximize the immediate reward; when γ

is large, the swimmer is farsighted and takes actions that maximize the long-term

reward. In order to avoid the machine from being trapped in locally optimal policies,

we implemented an ϵ-greedy selection scheme: In each learning step, the machine
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chooses the best action recommended by the Q-matrix with a probability 1 − ϵ or

takes a random action with a small probability ϵ, which allows the machine to explore

new solutions.

We fixed α = 1 to maximize learning. γ is the discount factor (0 ≤ γ ≤ 1)

determines how far-slightness of the rotator. With large γ, the rotator will more likely

to take actions maximizing long term reward (net angular rotation). In addition, we

will also include an ϵ−greedy scheme: in each step, the rotator has an ϵ probability

to take a random action, and 1− ϵ probability to take the best action advise by the

current Q-matrix, which allows the rotator to explore new choices and avoids being

trapped in sub-optimal policies. For all runs, we will use α = 1.0 , γ = 0.9, and

ϵ = 0.15 unless otherwise specified.

As a remark, the configuration states considered here correspond to the shape

space in the literature, which contains all possible shapes of the machine without

considering the positions and orientations of the rotator.

The goal of the machine is to generate net rotation by performing different

configurational changes. Instead of designing a sequence of locomotory gaits in

advance, here we leverage a simple reinforcement learning algorithm (Q-learning) to

enable the machine to acquire effective locomotion strategy based on its interaction

with the surroundings. In each learning step, the machine performs an action an

(contracting or expanding on the active angles) to transform from one configuration

state sn to the next sn+1. The reward rn, defined as the resulting difference of the

angular centroid (θ̄n+1− θ̄n), measures the success of each action. The reinforcement

learning process progressively updates the Q-matrix, which encodes the adaptive

decision-making intelligence of the machine [105].
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Figure 3.2 Mechanical rotation at low Reynolds numbers via reinforcement
learning. The goal of the machine is to generate net rotation by performing different
configurational changes. Instead of designing a sequence of locomotory gaits in
advance, here we leverage Q-learning algorithm to enable the machine to acquire
effective locomotion strategy based on its interaction with the surroundings. In each
learning step, the machine performs an action an (contracting or expanding on the
active angles) to transform from one configuration state sn to the next sn+1. The
reward rn, defined as the resulting difference of the angular centroid (θ̄n+1 − θ̄n),
measures the success of each action. The reinforcement learning process progressively
updates the Q-matrix, which encodes the adaptive decision-making intelligence of the
machine.
Source: [105].
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Figure 3.3 Reinforcement learning of a three-sphere (N = 3) rotator. (a) The
net rotation of the machine, measured by the change of angular centroid, denoted
as ∆θ̄, generated by a series of actions at different learning steps n. (b) The rotator
undergoes an initial learning stage by performing different actions to interact with the
surrounding environment and learn from the resulting rewards. (c) Via reinforcement
learning, the machine eventually repeats a sequence of cyclic motions that produce net
rotation in the anti-clockwise direction. The strategy acquired through reinforcement
learning here coincides with that used for Purcell’s rotator by Dreyfus et al. [25].
Inset in (a): the ε-greedy scheme allows a small probability ε for the machine to
act against the Q-matrix and perform a random action for exploration. Here we set
ϕ = π/6, γ = 0.9, ϵ = 0.05, and R/L = 0.1. The rigid body rotation illustrated in
panels (b)–(c) are magnified by twenty times for better visualization of the rotational
motion.
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3.3 Results and Discussion

3.3.1 3-sphere Rotator

We first consider a three-sphere configuration in this section. Instead of prescribing

any sequence of strokes, we allow the rotator to take an action based on the Q-

matrix (Section 3.2.3) and use the resulting reward to update the Q-matrix, informing

the next action. We measure the net rotation of the machine ∆θ̄ = θ̄n − θ̄0 by

comparing the angular centroid at the n-th learning step (θ̄n) with the initial angular

centroid (θ̄0). Figure 3.3(a) shows a typical learning process of a 3-sphere rotator:

the rotator takes the initial steps to explore the viscous environment (Figure 3.3(b))

without forming an effective rotational strategy yet. As the machine learns from

its interaction with the environment progressively, it eventually repeats the same

sequence of cyclic motions that produce net rotation in the anti-clockwise direction

(Figure 3.3(c)). We note that the policy harvested by reinforcement learning here

coincides with the mechanism proposed by Dreyfus et al. for Purcell’s rotator [25].

As the analogue of the self-learning swimmer that produces net translation [99], our

example here demonstrates the first use of reinforcement learning to generate net

mechanical rotation in a low-Reynolds-number environment, without requiring prior

knowledge of locomotion.

As a remark, even when the machine is informed by the Q-matrix to repeat

the same sequence of strokes after sufficient learning steps (Figure 3.3a inset), the

use of the ε-greedy selection scheme allows a small but non-zero probability ϵ for the

machine to act against the Q-matrix and perform a random action for exploration.

The sequence of strokes is therefore sometimes interrupted with random actions

as shown in the inset. Such mechanism avoids being trapped around only locally

optimal policies. For the 3-sphere configuration, the machine eventually returns to

the Purcell’s rotator sequence after the random actions. We will examine the effect

of the magnitude of ε with more complex examples in the next section.
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Figure 3.4 Reinforcement learning of a four-sphere (N = 4) rotator. (a) The net
rotation of the machine, measured by the change of angular centroid ∆θ̄, generated by
a series of actions at different learning steps n. The value of ϵ in the ε-greedy scheme
affects the policies acquired by the machine at the end of the learning process. (b)
With ϵ = 0.05, the machine has learned four-stroke cyclic motion same as that in the
three-sphere rotator (Figure 3.3b), without utilizing the active angle θ43. The angular
displacement per cycle ∆θ̄C = 0.008; the angular displacement per cycle per stroke
∆θ̄S = 0.002. (c) With ϵ = 0.1, the machine has learned an improved but sub-optimal
six-stroke cyclic motion with ∆θ̄C = 0.0161 and ∆θ̄S = 0.0027. (d) With ϵ = 0.2,
the machine further improves the performance with another six-stroke cyclic motion
with ∆θ̄C = 0.0238 and ∆θ̄S = 0.004. The motion involves a sequential contraction
of all active angles θi+1,i from i = 1 to i = 3, followed by a sequential expansion of all
active angles θi+1,i from i = 1 to i = 3. This policy, which consists of traveling waves
of actuation propagating in the anti-clockwise direction, represents an extension of
the strategy in Purcell’s rotator to the case four spheres with all active angles utilized
in the sequence. As a remark, the policy obtained with ϵ = 0.3 is the same as that
with ϵ = 0.2; yet the more frequent interruptions by the random actions with ϵ = 0.3
leads to a smaller net rotation overall compared with the case with ϵ = 0.2 as shown
in (a).
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Effect of the Learning Parameters Here we show some simulations results with

different α and γ values of the 3-sphere model. The effect of different α and γ become

more apparent for systems with an increased number of spheres. To illustrate, we

use the results for the case of N = 9 in Figure 3.5 below. We show the average net

rotation of the machine, ⟨∆θ̄⟩ , as a function of the learning steps n over 20 sample

runs for different values of α (Figure 3.5(a) and γ (Fig. 3.5(b). The performance of the

machine generally increases with α: at a small learning rate (α = 0.2), the machine

is unable to learn the traveling wave policy for the given number of training steps,

resulting in the observed sub-optimal performance. The performance improves as α

is increased to α = 0.6, where the machine is able to learn the traveling wave policy

in some but not all sample runs. With a maximized learning rate α = 1, the machine

acquires the traveling policy in all sample runs, leading to improved performance as

shown in Figure 3.5 below.
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Figure 3.5 The effect of learning parameters α and γ for the case of N = 9. The
average net rotation of the machine, ⟨∆θ̄⟩, as a function of the learning steps n for
different values of (a) learning rate α, and (b) discount factor γ, over 20 sample runs.
In these simulations, ϕ = π/18, ϵ = 0.2, and R/L = 0.1; γ = 0.9 in (a) and α = 1 in
(b).

In contrast, the effect of the discount factor γ on the overall performance is non-

monotonic as shown in Figure 3.5(b). Similar to the case of translation, a sufficiently

large γ (e.g., γ ≥ 0.5) is required for the machine to learn the traveling wave policy.
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For a large value of γ = 0.9, the machine acquires the traveling wave policy in all

sample runs. However, a further increase in γ (e.g., γ = 0.99) leads to rotational

strategies other than the traveling wave policy, hindering the overall performance.

Based on these findings, we therefore set α = 1 and γ = 0.9 in the simulations.

Effect of Model’s Degree of Freedom Currently at each step, only one degree

of freedom of the model is allowed to perform. For example, for the 3-sphere model,

either θ32 changes or θ32 changes. We have performed additional simulations for a

3-sphere model, when the machine is allowed to change one or both angles in each

learning step, the machines takes more learning steps to explore different actions due

to the increase in sizes of the state space and the action space. This hinders the overall

performance compared with the case when only one degree of freedom is allowed to

change (Figure 3.6), but more rotational strategies emerge as a result. Interestingly,

these new strategies are sub-optimal compared with the traveling wave policies. Given

a sufficiently large number of learning steps, the machine still evolves to performing

the traveling wave policy when both degrees of freedom are allowed to change. This

suggests that the piecewise path of the shape deformations may be a good strategy,

at least for the 3-sphere model. However, more extensive investigations are required

to thoroughly address this interesting question, which we defer to a future study.

3.3.2 N-sphere Rotator

We next extend the analysis beyond the three-sphere configuration. For a config-

uration with N spheres, the description of the hydrodynamic force and velocity

via the Oseen tensor on sphere i can be readily extended from Equation 3.1 as

Fi =
∑N

j=1HijVj. Similarly, the torque free condition now reads
∑N

i=1 Γi = 0, where

Γi = Di ×
∑N

j=1HijVj. Similar to the case of three spheres, there are N − 1 active

elements that can contract or expand any one of the angles between two neighbouring

spheres by an amount ϕ, except for the angle θ1N , which only reacts passively to the
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Figure 3.6 The average net rotation of the 3-sphere model when only one degree of
freedom (blue) and when both degrees of freedom (red) are allowed to change in each
learning step. The results are averaged over 30 sample runs. In these simulations,
ϕ = π/6, γ = 0.9, ϵ = 0.05, and R/L = 0.1.

contraction and expansion of other angles. At each step, the Q-learning algorithm

informs one pair of neighbouring spheres (e.g., the i and i + 1 spheres) to extend or

contract their angle at a uniform rate ω: θ̇i+1 − θ̇i = ±ω, while keeping other angles

fixed (i.e., θ̇j = θ̇i for j = 1, 2, ..., i− 1 and θ̇j = θ̇i+1 for j = i + 2, i + 2, ..., N). The

goal is to learn effective strategies to generate net rotation based on the machine’s

interaction with the viscous environment.

We remark that as the number of sphere N in the machine increases, the angle

between the spheres in its initial (equally spaced) configuration reduces accordingly

as θe = 2π/N . This also limits the angle of contraction (ϕ) allowed as the number of

spheres increases in the machine. In order for ϕ to not exceed the maximum angle

between the spheres (θ), we set ϕ = θe/4 = π/(2N) in our simulations for a N -sphere

system. In other words, the machine uses a fixed portion of θe for contraction. The

machine, hence, has a smaller angle of contraction as the number of sphere increases.

We note that only a small portion (1/4) of θe is used for contraction here to ensure

that the spheres are sufficiently far apart for the hydrodynamic description via the

Oseen tensor to be valid (see Section 3.2.2).
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Figure 3.7 Mechanical rotation of a N -sphere rotator via reinforcement learning
results. (a) The number of different policies Np adopted by a N -sphere rotator when
the learning process is stopped at different values of target angular displacement, ∆θ̄T ,
in 20 sample runs. For each run, the machine continues to learn until the net angular
rotation ∆θ̄n reaches ∆θ̄T . With a relatively short learning process (∆θ̄T = 2π; top
panel), the three-sphere and four-sphere rotators converge to a single policy in all runs
(red bars), which correspond to the traveling wave policies. For N > 4, the machine
adopts a wider variety of different policies as N increases (blue bars). With a longer
training process (∆θ̄T = 50π; middle panel), more rotators converge to the traveling
wave policies at the end of the learning process (red bars), with a reduced number
of policies for N ≥ 7. With a sufficiently long learning process (θ̄T = 350π; bottom
panel)), all rotators converge to the traveling wave policies. (b) Characterization of
the performance of the traveling wave policies of individual N -sphere rotators by the
net angular displacement per cycle ∆θ̄C and the net angular displacement per cycle
per stroke (inset) ∆θ̄S = ∆θ̄C/2(N − 1), where 2(N − 1) is the number of strokes in
the traveling wave policies. Both ∆θ̄C and ∆θ̄S increase with N . In these simulations,
ϕ = π/(2N), γ = 0.9, ϵ = 0.15, and R/L = 0.1.
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When we have a larger number of spheres N in the machine, the increased

degree of freedom allows multiple effective strategies to emerge. The policy identified

by reinforcement learning largely depends on different learning parameters, including

the discount factor, the number of learning steps, and the value of ε in the ε-greedy

scheme. We illustrate some general characteristics using a four-sphere (N = 4)

configuration. Figure 3.4(a) shows that, for a fixed number of learning steps, a

four-sphere machine evolves different rotational policies depending on the value of

ε in the ε-greedy scheme. We can measure the performance of different policies by

the angular displacement per cycle (∆θ̄C) or the displacement per cycle per stroke

(∆θ̄S = ∆θ̄C/Ns); the latter measure divides the angular displacement per cycle by

the number of strokes involved in the cycle, Ns, to account for the difference in the

number of strokes in individual policies.

Similar to the case for translation [99], the value of ε in the ε-greedy scheme

plays an important role in the learning process. When there is not any exploration

scheme (ε = 0), the machine frequently gets trapped going back and forth between

two states, resulting in reciprocal motion that does not yield net rotation [99]. With a

small ε = 0.05 (blue line in Figure 3.4(a)), the machine is able to identify an effective

but sub-optimal policy for net rotation (Figure 3.4(b)); indeed the four-stroke policy

follows the same sequence of strokes as a 3-sphere Purcell’s rotator in Figure 3.3(c),

with the angle θ43 not participating in the gait at all (sphere 4 thus acts essentially

like a passive cargo). The angular displacement per cycle for this policy is given by

∆θ̄C = 0.008 and ∆θ̄S = ∆θ̄C/4 = 0.002 on a per stroke basis. As we increase the

exploration rate (ε = 0.1, red line in Figure 3.4(a)), the machine learns an improved

six-stroke policy (Figure 3.4(c)) with larger ∆θ̄C = 0.0161 and ∆θ̄S = ∆θ̄C/6 =

0.0027. For ε = 0.2 (green line in Figure 3.4(a)), the machine acquires another

six-stroke policy as shown in Figure 3.4(d) with further improved ∆θ̄C = 0.0238 and

∆θ̄S = ∆θ̄C/6 = 0.004. This policy here consists of contraction of all active angles
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in a sequential manner starting from θ21 in the anti-clockwise direction, followed by

expansion of all active angles again in a sequential manner starting from θ21. More

generally, we define such type of policies, namely a sequential contraction of angles

θi+1,i from i = 1 to i = N − 1 followed by a sequential expansion of angles θi+1,i from

i = 1 to i = N−1, traveling wave policies, because the sequence of action corresponds

to a propagation of traveling wave of actuation in the anti-clockwise direction. These

traveling wave policies therefore consists of 2(N − 1) strokes; indeed the sequence of

strokes in Purcell’s rotator (N = 3) in Figure 3.3(c) and the N = 4 policy in Figure

3.4(d) are both traveling wave policies. As a remark, the machine also learns the

traveling wave policy with an even higher exploration rate (ε = 0.3, black line in

Figure 3.4(a)); yet the overall displacement of the angular centroid is less compared

with the case with ε = 0.2 (green line) because the sequence of actions is frequently

interrupted by the random actions at the higher value of ε.

Next, we further increase the number of spheres in the system up to N =

9 and examine the number of different policies obtained by reinforcement learning

for different values of N . The policy eventually adopted by the machine largely

depends on the number of learning steps allowed. In Figure 3.7(a), we examine the

policy adopted by the machine when its rotation has reached a certain target angular

displacement, ∆θ̄T . For instance, when the machine is allowed to learn up to a target

angular displacement of ∆θ̄T = 2π (top panel, Figure 3.4(a)), all trials for N = 3 and

N = 4 machines converge to a single policy – the traveling wave policy. However,

increasingly more policies emerge in the trials for machines with a larger number of

spheres. When more learning is allowed by increasing the target angular displacement

to ∆θ̄T = 50π (middle panel in Figure 3.7(a)), more configurations converge to the

traveling wave policies (N = 3 to N = 6) with lower number of policies appearing

in the trials for N > 7. Finally, when sufficient amount of learning is allowed (e.g.,

∆θ̄T = 350π, bottom panel in Figure 3.7(a)), all configurations considered converge
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to a single policy, namely the traveling wave policy. These results demonstrate that

the larger the target angular displacement, the more chance the the machine can

learn to converge to the traveling wave policy, suggesting its optimality in generating

net rotation at low Reynolds number. We also note that the same trend applies to

swimmers consisting of linear chains of spheres for net translation [99]: given sufficient

amount of learning, the swimmers with different numbers of spheres all converge to

the same type of traveling wave policy via reinforcement learning.

In Figure 3.7(b), we quantify the performance of the traveling wave policy for

different values of N in terms of the angular displacement per cycle ∆θ̄C and the

angular displacement per cycle per stroke ∆θ̄S (inset). As the number of sphere N

increases, the traveling wave policy generates more displacement per cycle ∆θ̄C . Even

though the number of strokes in the traveling wave policy also increases as 2(N-1),

machine with a higher number of spheres still produce a larger displacement per cycle

per stroke, ∆θ̄S = ∆θ̄C/2(N − 1), as shown in the inset.

3.4 Concluding Remarks

In this work, we demonstrate the first use of reinforcement learning to generate

mechanical rotation at low Reynolds numbers. This alternative approach diverges

from the conventional way of prescribing a pre-defined sequence of strokes based on

knowledge of locomotion; instead we exploit a simple reinforcement learning algorithm

(Q-learning) to enable a machine to identify effective rotational policies based on its

interaction with the surroundings, without requiring prior knowledge of locomotion.

When the machine has the minimum degrees of freedom for net rotation (N = 3), it

recovers the strategy identified by Dreyfus et al. for Purcell’s rotator, which shares

similarity with the conformational changes of some molecular motors undergoing

ATP- or photochemically-driven rotational movements [25, 57, 58]. For an increased

number of spheres (N > 4), the machine is capable of identifying multiple effective
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policies for net rotation, depending on different learning parameters in the system.

However, when sufficient learning steps are allowed, the machine eventually evolves

to a single policy – the traveling wave policy. The traveling wave policy enables the

machine to generate net rotation by a sequential contraction (and then expansion) of

active angles in the machine. The sequence of strokes in Purcell’s ratotor is a special

case of this family of traveling wave policies. As a remark, the change in the angular

centroid is used as the reward in reinforcement learning here based on the goal to

maximize net rotation of the machine. Rewards accounting for energy consumption

due to different actions may also be considered in future work for optimization based

on energetic considerations. Recent works have also suggested traveling wavelike

deformations to be energy-optimal strokes for locomotion [1, 4, 27, 61].

The alternative approach in this work is particularly desirable when a machine

explores an environment with unknown properties or when the knowledge of

locomotion remains incomplete in more complex environments. The approach based

on reinforcement learning bypasses the challenging of designing locomotory gaits in

advance in these situations. As a proof of concept, we adopt a standard Q-learning

algorithm for its simplicity and expressiveness. There exists a vast potential in the

use of more advanced machine learning approaches [69, 86–88, 90, 96] for locomotion

problems involving more complex maneuvers in future works.
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CHAPTER 4

DEEP REINFORCEMENT LEARNING FOR GAIT SWITCHING

AND TARGETED NAVIGATION OF MICROSWIMMERS

4.1 Background and Related Work

The design of artificial microswimmer arises many recent interests because of its

potential biomedical application. Smart artificial microswimmers capable of adapting

their locomotion behaviors in response to surrounding environments offer exciting

opportunities for biomedical applications. Swimming microorganisms have evolved

versatile navigation strategies by switching their locomotory gaits in response to

their surroundings [62]. Their navigation strategies typically involve switching

between translation and rotation modes such as run-and-tumble and reverse-and-

flick in bacteria [12, 52, 93, 106], as well as run-stop-shock and run-and-spin in

eukaryotes [98, 102]. One fundamental challenge for applications of smart artificial

microswimmers is to achieve targeted navigation towards specific targets. Here

we employ a deep reinforcement learning algorithm to enable a reconfigurable

microswimmer to self-learn a set of locomotory gaits as well as the corresponding

gait-switching mechanisms for performing targeted navigation. Interestingly, the

navigation strategies learnt by the swimmer via artificial intelligence is reminiscent

to the gait-switching behaviors observed in biological cells due to natural selection.

Our results demonstrate the potential of using artificial intelligence to develop smart

artificial microswimmers that can adapt to complex biological environments similar

to biological cells. Such an adaptive, multimodal gait-switching ability is particularly

desirable for biomedical applications of artificial microswimmers such as targeted drug

delivery and microsurgery [15,32,39,51,110], which require navigation towards target
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locations in biological media with uncontrolled and/or unpredictable environmental

factors [14, 67,73].

Pioneering works by Purcell and subsequent studies demonstrated how simple

reconfigurable systems with ingenious locomotory gaits can generate net translation

and rotation, given the stringent constraints for locomotion at low Reynolds numbers

[79]. Yet, the design of locomotory gaits becomes increasingly intractable when more

sophisticated maneuvers are required or environmental perturbations are present.

Existing microswimmers are therefore typically designed with fixed locomotory gaits

and rely on manual interventions for navigation [22, 32, 48, 76, 78, 101]. It remains

an unresolved challenge in developing microswimmers with adaptive locomotory

strategies similar to that of biological cells that can navigate complex environments

autonomously. Modular microrobotics and the use of soft active materials [49, 50]

have been proposed to address the challenge.

More recently, the rapid development of artificial intelligence (AI) and its

applications in locomotion problems [13,36,38,54,82,100] have opened different paths

towards designing the next generation of smart microswimmers [17, 97]. Various

machine learning approaches have enabled the navigation of active particles in the

presence of background flows [2, 18], thermal fluctuations [70, 85], and obstacles

[108]. As minimal models, the microswimmers are often modeled as active particles

with prescribed self-propelling velocities and certain degrees of freedom for speed

variation and re-orientation. However, the complex adjustments in locomotory gaits

required for such adaptations are typically not accounted for. Recent studies have

begun to examine how different machine learning techniques enable reconfigurable

microswimmers to evolve effective gaits for self-propulsion [99] and chemotactic

repsonse [45].

Here, we combine reinforcement learning (RL) with artificial neural network

to enable a simple reconfigurable system to perform complex maneuvers in a
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low-Reynolds-number environment. We show that the deep RL framework empowers

a microswimmer to adapt its locomotory gaits in accomplishing sophisticated tasks

including targeted navigation and path tracing, without being explicitly programmed.

The multimodel gait switching strategies are reminiscent of that adopted by swimming

microorganisms. Furthermore, we examine the performance of these locomotion

strategies against perturbations by background flows. The results showcase the

versatility of AI-powered swimmers and their robustness in media with uncontrolled

environmental factors.

4.2 Formulation

4.2.1 Geometric Setup

We consider a simple reconfigurable system consisting of three spheres with radius

R and centers ri (i = 1, 2, 3) connected by two arms with variable lengths and

orientations as shown in Figure 4.1(a)). This setup generalizes previous swimmer

models proposed by Najafi and Golestanian [71] and Ledesma-Aguilar et al. [63]

by allowing more degrees of freedom. The interaction between the system and

the surrounding viscous fluid is modeled by low Reynolds number hydrodynamics,

imposing stringent constraints on the locomotive capability of the system. Unlike

the traditional paradigm where the locomotory gaits are prescribed in advance

[5, 8, 41, 63, 71, 103], here we exploit a deep RL framework to enable the system

to self-learn a set of locomotory gaits to swim along a target direction, θT . We

employ a deep neural network based on the Actor-Critic structure and implement

the Proximal Policy Optimization (PPO) algorithm [54, 88] to train and update the

agent (i.e., AI) in charge of the decision making process (Figure 4.1b)). The deep RL

framework here extends previous studies from discrete action spaces to continuous

action spaces [18, 64, 70, 99], enhancing the swimmer’s capability in developing more

versatile locomotory gaits for complex navigation tasks.
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a) b)

Figure 4.1 Schematics of the model microswimmer and the deep neural network
with Actor-Critic structure. a) Schematic of the model microswimmer consisting
of three spheres with raidus R and centers ri(i = 1, 2, 3). We mark the leftmost
sphere r1 as red and the other two spheres r2, r3 as blue to indicate the current
orientation of the swimmer. The spheres are connected by two arms with variable
lengths L1, L2 and orientations θ1, θ2, where θ31 is the intermediate angle between
two arms. The swimmer’s orientation θo is defined based on the relative position
between the swimmer’s centroid rc =

∑
i ri/3 and r1 as θo = arg(rc − r1). The

swimmer is trained to swim along a target direction θT . b) Schematic of Actor-Critic
neural networks. Both networks consist of three sets of layers (input layer, hidden
layer, and output layer). Each layer is composed of neurons (marked as nodes). The
weights of the neural network are illustrated as links in between the nodes. The input
layer has the same dimension as the observation. The three linear hidden layers have
the dimension of 64, 32, 32, respectively. The output layer dimension of the actor
network is the same as the action space dimension, whereas the output layer of the
actor network has only 1 neuron.
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We discuss the general idea as follows: based on the current observation, a

reinforcement learning agent decides the next action using the Actor neural network.

The next action is then evaluated by the Critic neural network to guide the training

process. The swimmer performs the action advised by the agent and interacts

with the hydrodynamic environment, leading to movements that constitute the next

observation and reward. Both the Actor and Critic neural network are updated

periodically to improve the overall performance. See more details in the Deep

Reinforcement Learning section.

4.2.2 Hydrodynamic Interactions.

The interaction between the spheres and their surrounding fluid is governed by the

Stokes equation (∇p = µ∇2u, ∇·u = 0). Here, p, µ and u represent, respectively, the

pressure, dynamic viscosity, and velocity field. In this low Reynolds number regime,

the velocities of the spheres Vi and the forces Fi acting on them can be related

linearly as

Vi = GijFj, (4.1)

where Gij is the Oseen tensor [23, 44,56] given by

Gij =


1

6πµR
I,

1
8πµ|ri−rj |(I+ r̂ij r̂ij).

(4.2)

Here, I is the identity matrix and r̂ij = (ri − rj)/|ri − rj| denotes the unit vector

between spheres i and j. The torque acting on the sphere i is calculated by Ti =

ri × Fi. The rate of actuation of the arm lengths L̇1, L̇2 and the intermediate angle

θ̇31 can be expressed in terms of the velocities of the spheres Vi. The kinematics

of the swimmer is fully determined upon applying the force free (
∑

i Fi = 0) and

torque-free (
∑

i Ti = 0) conditions. The Oseen tensor hydrodynamic description is
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valid when the spheres are not in close proximity (R ≪ L). We therefore constrain

the arm and angle contractions such that 0.6L ≤ L1, L2 ≤ L and 2π/3 ≤ θ31 ≤ 4π/3.

The actuation rate of the arm lengths L̇1, L̇2 can be expressed in terms of the

relative velocities of the spheres parallel to the arm orientations:

(V2 −V1) · r̂21 = L̇1, (4.3)

(V3 −V2) · r̂32 = L̇2, (4.4)

The actuation rate of the intermediate angle θ̇31 can be expressed in terms of the

relative velocities of the spheres perpendicular to the arm orientations:

(V2 −V1) ·
dr̂21
dθ1

= L1θ̇1, (4.5)

(V3 −V2) ·
dr̂32
dθ2

= L2θ̇2, (4.6)

θ̇1 − θ̇2 = θ̇31, (4.7)

where θ̇1 and θ̇2 are the arm rotation speeds. Together with the Oseen tensor

description of the hydrodynamic interaction between the spheres, Equations (4.1)–

(4.2) in the main text, and the overall force-free and torque-free conditions, the

kinematics of the swimmer is fully determined.

In presenting our results, we scale lengths by the fully extended arm length L,

velocities by a characteristic actuation rate of the arm Vc, and hence time by L/Vc

and forces by µLVc. We nondimensionalize lengths by the fully extended arm length

L, velocities by a characteristic actuation rate of the arms Vc. This results in the

characteristic time scale of T = L/Vc, force scale of µLVc, and torque scale of µL2Vc.

Here we impose a maximum possible actuation rate of the arms as 4Vc. We use

asterisks (∗) to denote the dimensionless variables: the arm lengths L∗
1 and L∗

2 vary

in the range of [0.6, 1.0]; the actuation rate of arms L̇∗
1 and L̇∗

2 vary in the range

of [−4, 4]; and the actuation rate of intermediate angle θ̇∗31 ∈ [−2π/3, 2π/3] . We
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further set R∗ = 0.1 to keep the spheres far apart. Following those scales, we have

the dimensionless rotlet flow strength γ∗ = γ/L2Vc.

In our simulations, we assume uniform actuation rates of L̇∗
1, L̇

∗
2, θ̇

∗
31 during each

action step. To determine the proper actuation rate, the swimmer first receives a

suggested action by the PPO agent and clips the given action based on the physical

constraints described above. The clipped action is then used to determine the

swimmer’s kinematics. We set the time duration for each action step as ∆t∗ = 0.1.

In the main text, we drop the asterisks for simplicity and only present dimensionless

variables.

4.2.3 Deep Reinforcement Learning

Reinforcement learning is a branch of machine learning that deals with how to learn

control strategies to interact with a complex environment. It is a framework for

learning how to interact with the surroundings from experience and it is inspired

by how biological systems. By trial and error through experience, through positive

and negative rewards and feedback, the agent learn how to interact with their

environment. Q-learning is a foundational algorithm in reinforcement learning. In

this paradigm, an agent can perceive its state and perform actions. After each

action, a numerical reward is given. The goal of the agent is to maximize the

total reward it receives over time. The experience gained by the agent is stored

in a Q-matrix, Q(sn, an), which is an state-action-value function that captures

the expected long-term reward for taking the action an at the given state sn.The

Q-learning algorithms involve estimating state-action value functions that indicate

how good it is to be in a given state (in terms of total expected reward in the long

term), or how good it is to perform a particular action in a certain state. The most

basic way to build this value function consists in updating a table that contains a

value for each state (or each state-action pair), but this approach is not practical
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for large scale problems and lack of computational efficiency. In order to deal with

tasks that have a very large number of states, it is necessary to use the generalization

capabilities of function approximators. The neural networks are a particular case of

such function approximators that can be used in combination with Q-learning which

can be used to map input states to (action, Q-value) pairs. The aim of the Deep

Q-Network (DQN) implementation is to improve the computational time of simple

Q-learning, find optimal hyperparameters and apply the framework to the problems

with large degrees of freedom.

Proximal Policy Optimization Policy gradient methods are a type of reinforcement

learning techniques that rely upon optimizing parameterized policies with respect to

the expected return (long-term cumulative reward) by gradient descent. A large

amount of theory behind RL lies under the assumption of The Reward Hypothesis

which in summary states that all goals and purposes of an agent can be explained by

a single scalar called the reward. The Reward Hypothesis : That all of what we mean

by goals and purposes can be well thought of as the maximization of the expected

value of the cumulative sum of a received scalar signal (called reward). The agent

must formally work through a theoretical framework known as a Markov Decision

Process which consists of a decision (what action to take?) to be made at each state.

This gives rise to a sequence of states, actions and rewards known as a trajectory,

S0, A0, R1, S1, A1, R2, . . . and the objective is to maximize this set of rewards.

To improve training stability, need to avoid parameter updates that change the

policy too much at one step. To solve this, the Proximal Policy Optimization (PPO)

is easy to tune and has better sample efficient. Different from Deep Q Network,

PPO doesn’t use a replay buffer to store past experiences (Deep Q Network has

experience replay. When the agent interact with the environment with policy π, it will

store transition experience (s, a, r, s′) in replay buffer. When learning with SGD, the
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agent sample batch-experience from replay buffer, learning batch by batch). Instead,

it learns directly from what the agent encounters in the env and once a batch of

experience used to do a gradient update the experience is then discarded and the

policy moves on and this also means that policy gradient methods are typically less

sample efficient than queue learning methods because they only use the collected

experience once for doing an update.

We use Proximal Policy Optimization Algorithm to train our RL agent for

the stationary environment and partial models in the non-stationary environment.

The agent’s motion control is managed with a neural network with an Actor-Critic

structure. The Actor network can be considered as a stochastic control policy

πϕ(at|ot), where it generates an action at given an observation ot following a Gaussian

distribution. Here, ϕ represents all the parameters of the actor neural network. The

Critic network is used to compute the value function Vφ by assuming the agent starts

at an observation o and acts according to a particular policy πϕ. The parameters in

the critic network is represented as φ.

To effectively train the swimmer, we divide the total training process into

episodes. Each episode can be considered as one round, which terminates after a fixed

amount of training steps (NL = 100). To ensure fully exploration of the observation

space, we randomly initialize the swimmer’s geometric configurations (L∗
1, L

∗
2) and

the target direction (θT ) at the beginning of each episode.

At time t, the agent receives its current observation ot and samples action at

based on the policy πϕ. Given at, the swimmer interacts with its surrounding and

calculates the next state st+1 and reward rt. The next observation ot+1 extracted

from st+1 is sent to the agent for the next iteration. All the observations, actions,

rewards and sampling probabilities are stored for the agent’s update. The update

process begins after running fix amount of episodes NE = 20 (Total training steps of
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an update is therefore: Ns = NE ∗NL = 2000). The goal for the update is to optimize

ϕ so that the expected long term rewards J(πϕ) = E[Rt=0|πϕ] is maximized.

The expectation is taken with respect to each running episode, τ . Here,

we use the infinite-horizon discounted returns rt =
∑∞

t′ γ
t′−trt′ , where γ is the

discount factor measuring the greediness of the algorithm. We set γ = 0.99 ensuring

its farsightedness. To solve this optimization problem, we use the typical policy

gradient approach estimation: ∇ϕJ(πϕ). More specifically, we implemented the

clipped advantage PPO algorithm to avoid large changes in each gradient update.

We estimated the surrogate objective J(πϕ) by clipping the probability ratio r(ϕ)

times the advantage function Ât. The probability ratio measures the probability of

selecting an action for the current policy over the old policy (r(ϕ) =
πϕ(a|o)Ns×1

πϕold
(a|o)Ns×1

).

The advantage function Ât describes the relative advantage of taking an action a based

on an observation o over a randomly selected action and is calculated by subtracting

the value function VNs×1 from the discounted return RNs×1 (Ât = RNs×1 − VNs×1).

We then update the parameters ϕ, φ via a typical gradient descent algorithm:

Adam optimizer. The full detail for our implementation in combination with high

confidence change point detection method is included in the Algorithm 1 and 2. Here,

Ke is the total epoch number. NL is the number of steps in one episode, and Ns is

the total number of steps for each update. The PPO algorithm uses fixed-length

trajectory segments τ . During each iteration, each of NA parallel actors collect T

time steps of data, then we construct the surrogate loss on these NAT time steps of

data, and optimize it with Adam for Ke epochs.

High Confidence Change Point Detection Method We first introduce joint

probability distribution pθk associated with a partial model k, which is a multivariate

Gaussian distribution parameterized by an ensemble of N neural networks predicting

the next observation and reward conditioned on the current observation and action
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through the mean and covariance:

pθnk (ot+1, rt|ot, at) = N (µθnk
(ot, at),Σθnk

(ot, at)) (4.8)

The weights of each neural network n is parameterized by θnk with µθnk
(ot, at),Σθnk

(ot, at)

the neural network outputs. We periodically update the network’s weighs by

minimizing the negative log prediction likelihood loss function:

J (θ,D) = E(ot,at,rt,ot+1) D[− log pθ(ot+1, rt|ot, at)], (4.9)

where D is the dataset contains all the simulation experience. Using the joint

probability distribution, we can calculate the log likelihood ratio at time t:

Lk,t = log(pθk(ot+1, rt|ot, at)/pθzt (ot+1, rt|ot, at)) (4.10)

where E[Lk,t] > 0 if partial model k seems more probable than the current partial

model. Lastly, the high confidence change point detection is realized by MCUSUM

statistics,

Wk,t ← max(0,Wk,t−t + Lk,t), k ∈ [1, 2] ∪ [new] (4.11)

, which can be interpreted as a quality signal inferring if a known partial model might

be better suited for the current environment or a new partial model should be created.

We further set a threshold h to determine the next partial model zt:

zt ←


argmaxkWk,t, if ∃k ∈ [1, 2] ∪ [new] s.t.Wk,t > h

zt1 , else

(4.12)

The detail of our implementation is included below in the Algorithm 1 and 2. A

complete description of the method can be found in [3].
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Algorithm Pseudocode

Algorithm 1 Context Detection RL

1: Input: Non-stationary environment E, threshold h, episode length Ne, policy

update step Ns, context detection update step F .

2: z0 ← 1;K ← 1; Wz0,0 ← 0; Wnew,0 ← 0

3: Initialize model pθz0 , policy πϕz0
, dataset Dz0 , initial state s0

4: M ← {pθz0}

5: for time step t = 0, 1, ... do

6: if mod(t, Ne) = 0 then

7: Reset state st

8: end if

9: Sample action at from policy πϕzt

10: Evaluate the next observation ot+1 and reward rt following the swimmer’s

hydrodynamics in non-stationary environment E

11: Update MCUSUM statistics Wk,t

12: Update zt

13: if zt ̸= zt−1 then

14: Reset MCUSUM statistics

15: if zt = new then

16: K ← K + 1; zt ← K

17: Initialize model pθzt and policy πϕzt

18: M ←M ∪ {pθzt}

19: end if

20: end if

21: Dzt ← Dzt ∪ {(ot, at, rt, ot+1)}

22: if mod(t, F ) = 0 then

23: θzt ← θzt − λp∇Jp(θzt , Dzt)

24: end if
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25: if t = 0 or mod(t, Ns) ̸= 0 then

26: append observation ot+1, action at, reward rt and action sampling

probability πϕzt
(at|ot) to lists oNs×2, aNs×2, RNs×1, and πϕold

(at|ot)Ns×1

27: else

28: Update the policy using Algorithm 2

29: end if

30: end for

Algorithm 2 PPO, Actor-Critic, Update the Agent

1: Input: Initial policy parameter ϕ, initial value function parameter φ

2: for i = 0, 1, 2, ...Ke do

3: Compute infinite-horizon discounted returns RNs×1

4: Evaluate expected returns VNs×1 using observations oNs×2 and value function

Vφ

5: Compute the advantage function: Ât = RNs×1 − VNs×1.

6: Evaluate the probability for policy πϕ using observations oNs×2 and actions

aNs×2, store the probability to πϕ(a|o)Ns×1

7: Compute the probability ratio: r(ϕ) =
πϕ(a|o)Ns×1

πϕold
(a|o)Ns×1

8: Compute the clipped surrogate loss function: LCLIP(ϕ) =

E[min(r(ϕ)Ât, clip(r(ϕ), 1− ϵ, 1 + ϵ)Ât)]

9: Compute the value-function loss: LVF(φ) = 1
2
E[(RNs×1 − VNs×1)

2]

10: Compute the entropy loss: LS = αS[πϕ]

11: Compute the total loss: L(ϕ, φ) = −LCLIP(ϕ) + LVF(φ)− LS

12: Optimize surrogate L wrt (ϕ, φ), with K epochs and minibatch size M ≤ NaT

13: ϕold ← ϕ, φold ← φ

14: end for
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4.3 Results and Discussion

4.3.1 Targeted Navigation.

We first use the deep RL framework to train the model system in swimming along

a target direction θT , given any arbitrary initial swimmer’s orientation θo. The

swimmer’s orientation is defined based on the relative position between the swimmer’s

centroid rc =
∑

i ri/3 and r1 as θo = arg(rc − r1) (Figure 4.1).

In the RL algorithm, the state s ∈ (r1, L1, L2, θ1, θ2) of the system is specified by

the sphere center r1, arm lengths L1, L2, and arm orientations θ1, θ2. The observation

o ∈ (L1, L2, θ31, cos θd, sin θd) is extracted from the state, where θ31 is the intermediate

angle and θd = θT − θo is the difference between the target direction θT and the

swimmer’s orientation θo; note that the angle difference is expressed in terms of

(cos θd, sin θd) to avoid discontinuity in the orientation space. The AI decides the

swimmer’s next action based on the observation using the Actor neural network: for

each action step ∆t, the swimmer performs an action a ∈ (L̇1, L̇2, θ̇31) by actuating

its two arms, leading to swimmer displacement. To quantify the success of a given

action, the reward is measured by the displacement of the swimmer’s centroid along

the target direction, rt = (rct+1 − rct) · (cos θT , sin θT ).

We divide the training process into a total of Ne episodes, with each episode

consisting of Nt = 150 learning steps. To ensure a full exploration of the observation

space o, both the initial swimmer state s and the target direction θT are randomized in

each episode. Based on the training results after every 20 episodes, the Critic neural

network updates the AI to maximize the expected long-term rewards E[Rt=0|πθ],

where πθ is the stochastic control policy, Rt =
∑∞

t′ γ
t′−trt′ is the infinite-horizon

discounted future returns, and γ is the discount factor measuring the greediness of the

algorithm [88,95]. A large discount factor γ = 0.99 is set here to ensure farsightedness

of the algorithm. As the episodes proceed, the Actor-Critic structure progressively

trains the AI and thereby enhances the performance of the swimmer.
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In Figure 4.2, we visualize the navigation of a trained swimmer along a

target direction θT , given a substantially different initial orientation, θo. The

swimmer’s targeted navigation is accomplished in three stages: (1) in the initial

phase (blue curve and regime), the swimmer employs “steering” gaits primarily for

re-orientation, followed by (2) “transition” phase (red curve and regime) in which

the swimmer continues to adjust its direction while self-propelling, before reaching

(3) the “translation” phase (green curve and regime), in which the re-orientation

is complete and the swimmer simply self-propels along the target direction. This

example illustrates how an AI-powered reconfigurable system evolves a multimodal

navigation strategy without explicitly programmed or relying on any prior knowledge

of low-Reynolds-number locomotion. We next analyze the locomotory gaits in each

mode in the evolved strategy.

4.3.2 Multimodal Locomotory Gaits.

Here we examine the details of the locomotory gaits acquired by the swimmer for

targeted navigation in the steering, transition, and translation modes. We distinguish

these gaits by visualizing their configurational changes in the three-dimensional (3D)

configuration space of the swimmer (L1, L2, θ31) in Figure 4.3. Here we utilize

an example of a swimmer navigating towards a target direction with |θd| > π/2

to illustrate the switching between different locomotory gaits (Figure 4.3a)). The

swimmer needs to re-orient itself in the counter-clockwise direction in this example;

an example for the case of clockwise rotation is included in the Appendix. The dots in

Figure 4.3a) represent configurations at different action steps. The configurations for

the steering (blue dots), transition (red dots), and translation (green dots) gaits are

clustered in different regions in the configuration space. A representative sequence

of configurational changes for each mode of gaits are shown as solid lines to aid

visualization (Figure 4.3a)).
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Figure 4.2 Example of target navigation utilizing three distinct locomotory
gaits. The Artificial Intelligence powered swimmer switches between distinct
locomotory gaits (steering, transition, translation) advised by the reinforcement
learning algorithm to steer itself towards a specified target direction θT (black arrow)
and swim along the target direction afterwards. Different parts of the swimmer’s
trajectory are colored to represent the locomotion due to different locomotory gaits,
where the steering, transition, and translation gaits are marked as blue, red, green,
respectively. Schematics of the swimmer configurations (not-to-scale) are shown for
illustrative purpose, where the leftmost sphere is marked as red and other two spheres
marked as blue to indicate the swimmer’s current orientation (grey arrows). The inset
shows the change in swimmer’s orientation θo over action steps.
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We further examine the evolution of L1, L2, and θ31 using the representative

sequences of configurational changes identified in Figure 4.3a) for each mode of

gaits. For the steering gaits (Figure 4.3b)), blue lines and Figure 4.3d), blue box,

the swimmer repeatedly extends and contracts L2 and θ31, but keeps L1 constant

(the left arm rests in the fully contracted state). The steering gaits thus reside in

the L2-θ31 plane in Figure 4.3a) (blue line). The large variation in θ31 generates

net rotation, substantially re-orientating the swimmer orientation with a relatively

small net translation (Figure 4.3c)). For the transition gaits (Figure 4.3b)), red

lines and Figure 4.3d), red box), the swimmer repeatedly extends and contracts all

L1, L2 and θ31, leading to significant amounts of both net rotation and translation

(Figure 4.3c)). In the configuration space (Figure 4.3a)), the transition gaits tilt

into the L1-L2 plane with an average θ31 less than π (red line). Compared with the

steering gaits, the variation of θ31 becomes more restricted (Figure 4.3b)), resulting

in smaller net rotation for fine tuning of the swimmer’s orientation in the transition

phase. Finally, for the translation gaits (Figure 4.3b)), green lines and Figure 4.3d),

green box), the swimmer’s orientation is aligned with the target direction (θd ≈ 0);

the swimmer repeatedly extends and contracts L1 and L2, while keeping θ31 close to π

(i.e., all three spheres of the swimmer are aligned), resembling the swimming gaits of

Najafi-Golestanian swimmers [40, 71]. In the configuration space (Figure 4.3a)), the

translation gaits reside largely in the L1-L2 plane with an approximately zero average

θ31, generating the maximum net translation with minimal net rotation (Figure 4.3c)).

The details of gaits categorization are summarized under Supplementary methods.

The swimming gaits can again be separated into three gaits: steering, transition,

and translation. For the steering gait, the swimmer prioritizes on rotation and only

actuates its right arm and intermediate angle θ31. Its left arm stays fully contracted.

For the transition gait, the swimmer utilizes all mechanical devices and performs

periodical actuation. The configuration space tilts in the upward direction. For

68



d)

1 7 10 23 24 27

1 4 5 6 8 11

12 15 16

1 2 3 4 5 8

10 11 13

13 net 
rotation

net 
rotation

net 
translation

b)

Configuration #

<latexit sha1_base64="R8peWWMvu5RMINpumxNRFyC1V5U=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5U1DJoY2ER0XxAcoS9zVyyZG/v2N0TwpGfYGOhiK2/yM5/4ya5QqMPBh7vzTAzL0gE18Z1v5zC0vLK6lpxvbSxubW9U97da+o4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdD31W4+oNI/lgxkn6Ed0IHnIGTVWur/teb1yxa26M5C/xMtJBXLUe+XPbj9maYTSMEG17nhuYvyMKsOZwEmpm2pMKBvRAXYslTRC7WezUyfkyCp9EsbKljRkpv6cyGik9TgKbGdEzVAvelPxP6+TmvDSz7hMUoOSzReFqSAmJtO/SZ8rZEaMLaFMcXsrYUOqKDM2nZINwVt8+S9pnlS98+rp3VmldpXHUYQDOIRj8OACanADdWgAgwE8wQu8OsJ5dt6c93lrwcln9uEXnI9vyzWNfA==</latexit>

L1

<latexit sha1_base64="k+jUlFqfc33AfFyJNGjFCqmJvIc=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe6iqGXQxsIiovmA5Ah7m0myZG/v2N0TwpGfYGOhiK2/yM5/4ya5QhMfDDzem2FmXhALro3rfju5ldW19Y38ZmFre2d3r7h/0NBRohjWWSQi1QqoRsEl1g03AluxQhoGApvB6GbqN59QaR7JRzOO0Q/pQPI+Z9RY6eGuW+kWS27ZnYEsEy8jJchQ6xa/Or2IJSFKwwTVuu25sfFTqgxnAieFTqIxpmxEB9i2VNIQtZ/OTp2QE6v0SD9StqQhM/X3REpDrcdhYDtDaoZ60ZuK/3ntxPSv/JTLODEo2XxRPxHERGT6N+lxhcyIsSWUKW5vJWxIFWXGplOwIXiLLy+TRqXsXZTP7s9L1essjjwcwTGcggeXUIVbqEEdGAzgGV7hzRHOi/PufMxbc042cwh/4Hz+AMy5jX0=</latexit>

L2

<latexit sha1_base64="I7NtLgE3qUAS55y35a6gZRE/8z4=">AAAB8nicbVBNS8NAEN3Ur1q/qh69BIvgqSRa1GPRi8cK9gPSUDbbabt0sxt2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZelAhu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVqBk2mhNKdiBoQXEITOQroJBpoHAloR+O7md9+Am24ko84SSCM6VDyAWcUrRR0cQRIe9mlP+2VK17Vm8NdJX5OKiRHo1f+6vYVS2OQyAQ1JvC9BMOMauRMwLTUTQ0klI3pEAJLJY3BhNn85Kl7ZpW+O1DalkR3rv6eyGhszCSObGdMcWSWvZn4nxekOLgJMy6TFEGyxaJBKlxU7ux/t881MBQTSyjT3N7qshHVlKFNqWRD8JdfXiWti6p/Va091Cr12zyOIjkhp+Sc+OSa1Mk9aZAmYUSRZ/JK3hx0Xpx352PRWnDymWPyB87nDw8FkR4=</latexit>

✓31

1
0.8

5 /6

0.6

7 /6

0.7 0.8 0.9 0.61

Transition
Translation

Steering

<latexit sha1_base64="k16sT+FmZPiUsbgpLr65hf6owF0=">AAAB63icbVA9SwNBEJ2LXzF+RS1tFoNgFe5U1DJoY2ERwXxAcoS9zSRZsrt37O4J4chfsLFQxNY/ZOe/8S65QhMfDDzem2FmXhAJbqzrfjuFldW19Y3iZmlre2d3r7x/0DRhrBk2WChC3Q6oQcEVNiy3AtuRRioDga1gfJv5rSfUhofq0U4i9CUdKj7gjNpMuu95pV654lbdGcgy8XJSgRz1Xvmr2w9ZLFFZJqgxHc+NrJ9QbTkTOC11Y4MRZWM6xE5KFZVo/GR265ScpEqfDEKdlrJkpv6eSKg0ZiKDtFNSOzKLXib+53ViO7j2E66i2KJi80WDWBAbkuxx0ucamRWTlFCmeXorYSOqKbNpPFkI3uLLy6R5VvUuq+cPF5XaTR5HEY7gGE7BgyuowR3UoQEMRvAMr/DmSOfFeXc+5q0FJ585hD9wPn8AADCNkA==</latexit>

L1

a)

<latexit sha1_base64="I7NtLgE3qUAS55y35a6gZRE/8z4=">AAAB8nicbVBNS8NAEN3Ur1q/qh69BIvgqSRa1GPRi8cK9gPSUDbbabt0sxt2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZelAhu0PO+ncLa+sbmVnG7tLO7t39QPjxqGZVqBk2mhNKdiBoQXEITOQroJBpoHAloR+O7md9+Am24ko84SSCM6VDyAWcUrRR0cQRIe9mlP+2VK17Vm8NdJX5OKiRHo1f+6vYVS2OQyAQ1JvC9BMOMauRMwLTUTQ0klI3pEAJLJY3BhNn85Kl7ZpW+O1DalkR3rv6eyGhszCSObGdMcWSWvZn4nxekOLgJMy6TFEGyxaJBKlxU7ux/t881MBQTSyjT3N7qshHVlKFNqWRD8JdfXiWti6p/Va091Cr12zyOIjkhp+Sc+OSa1Mk9aZAmYUSRZ/JK3hx0Xpx352PRWnDymWPyB87nDw8FkR4=</latexit>

✓31

<latexit sha1_base64="k+jUlFqfc33AfFyJNGjFCqmJvIc=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe6iqGXQxsIiovmA5Ah7m0myZG/v2N0TwpGfYGOhiK2/yM5/4ya5QhMfDDzem2FmXhALro3rfju5ldW19Y38ZmFre2d3r7h/0NBRohjWWSQi1QqoRsEl1g03AluxQhoGApvB6GbqN59QaR7JRzOO0Q/pQPI+Z9RY6eGuW+kWS27ZnYEsEy8jJchQ6xa/Or2IJSFKwwTVuu25sfFTqgxnAieFTqIxpmxEB9i2VNIQtZ/OTp2QE6v0SD9StqQhM/X3REpDrcdhYDtDaoZ60ZuK/3ntxPSv/JTLODEo2XxRPxHERGT6N+lxhcyIsSWUKW5vJWxIFWXGplOwIXiLLy+TRqXsXZTP7s9L1essjjwcwTGcggeXUIVbqEEdGAzgGV7hzRHOi/PufMxbc042cwh/4Hz+AMy5jX0=</latexit>

L2 0 5 10 15 20 25
2 /3

5 /6

7 /6
0 5 10 15 20 25

0.6
0.7
0.8
0.9
10 5 10 15 20 25

0.6
0.7
0.8
0.9
1

c)

Translation Rotation
0

0.01

0.02

0.03 Translation Rotation
0

0.005

0.01

Steering Transition Translation

<latexit sha1_base64="qucx2OPrDC+SlvWxyP3RkIkou1c=">AAACAHicbVC7TsMwFL0pr1JeAQYGFosKialKUAWMFSyMRaIPqYkqx3Vbq44T2Q6iirLwKywMIMTKZ7DxN7hpBmg5kqXjc+699j1BzJnSjvNtlVZW19Y3ypuVre2d3T17/6CtokQS2iIRj2Q3wIpyJmhLM81pN5YUhwGnnWByM/M7D1QqFol7PY2pH+KRYENGsDZS3z7yOBYjTpE3iHT6mCFP5ve+XXVqTg60TNyCVKFAs29/mQkkCanQhGOleq4Taz/FUjPCaVbxEkVjTCZ4RHuGChxS5af5Ahk6NcoADSNpjtAoV393pDhUahoGpjLEeqwWvZn4n9dL9PDKT5mIE00FmT80TDjSEZqlgQZMUqL51BBMJDN/RWSMJSbaZFYxIbiLKy+T9nnNvajV7+rVxnURRxmO4QTOwIVLaMAtNKEFBDJ4hld4s56sF+vd+piXlqyi5xD+wPr8AdJVlpE=</latexit>hẋi
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Figure 4.3 Analysis of configurational changes revealing three distinct modes of
locomotory gaits. The steering, transition, and translation gaits are marked as blue,
red, green, respectively. a) A 3D configuration plot for a typical simulation which
the swimmer aligns with the target direction via a counterclockwise rotation, where
L1, L2 are the arm lengths and θ31 is the intermediate angle. Each dot represents
one specific configuration of a locomotory gait. The solid lines mark an example
cycle of each locomotory gait. b) The changes in the arm lengths L1 and L2

and the intermediate angle θ31 with respect to the configuration number for each
locomotory gait. c) The average translational velocity ⟨ẋ⟩ and rotational velocity

⟨θ̇⟩ are calculated by averaging the centroid translation along the target direction
θT and the change of swimmer’s orientation θo over the total number of action
steps for each locomotory gaits. d) Representative configurations labelled with the
configuration number are displayed to illustrate the configurational changes for each
selected sequence of locomotory gaits for the steering (blue box), transition (red box),
and translation (green box) modes. The leftmost sphere of the swimmer is marked
as red and other two spheres are marked as blue to indicate the swimmer’s current
orientation. The grey arrows indicate the contraction/extension of the arms and
the intermediate angle. For illustration, the reference frame of the configurations
are rotated consistently such that the left arm of the first configuration is aligned
horizontally in each sequence.
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the translation gait, the swimmer focuses more on the arm actuation and limits its

angle rotation. The geometric configuration for the clockwise rotation can be roughly

viewed as a reflection around the r̂21 axis of the counterclockwise rotation for the

steering and transition gaits.

It is noteworthy that the multi-modal navigation strategy emerges solely from

the AI without relying on prior knowledge of locomotion. The switching between

rotation, transition, and translation gaits is analogous to the switching between

turning and running modes observed in bacterial locomotion [12, 52]. These results

demonstrate how an AI-powered swimmer, without being explicitly programmed,

self-learns complex locomotory gaits from rich action and configuration spaces and

undergoes autonomous gait switching in accomplishing targeted navigation.

4.3.3 Gaits Categorization

Through observing simulation results, we notice distinct locomotory gaits based on

the orientation of the swimmer relative to the target direction. For the purpose of

gait analysis, we define each gaits below: The steering gait is mainly used when the

target direction is oriented far away from the swimmer’s orientation: |θT − θo| > π/2.

The transition gait gets activated once the swimmer’s orientation reaches around π/2

of the target: |θT − θo| ≤ π/2. The translation gait occurs after the swimmer first

roughly aligns with the target orientation: |θT − θo| ≤ 5π/180.

4.3.4 Performance Evaluation.

Here we investigate the improvement of swimmer’s performance with increased

number of training episodes Ne. At initial stage of training with a small Ne, the

swimmer may fail to identify the right sets of locomotory gaits to achieve targeted

navigation due to insufficient training. Continuous training with increased number of

episodes would enable the swimmer to identify better locomotory gaits to complete
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Figure 4.4 Analysis of configurational changes revealing three distinct modes of
locomotory gaits. The steering, transition, and translation gaits are marked as blue,
red, green, respectively. (a) A 3D configuration plot for a typical simulation which the
swimmer aligns with the target direction via a clockwise rotation (b) The changes
in the arm lengths L1 and L2 and the intermediate angle θ31 with respect to the
configuration number for each locomotory gait. (c) The average translational velocity

⟨ẋ⟩ and rotational velocity ⟨θ̇⟩ are calculated by averaging the centroid translation
along the target direction θT and the change of swimmer’s orientation θo over the total
number of action steps for each locomotory gaits. (d) Representative configurations
labelled with the configuration number are displayed to illustrate the configurational
changes for each selected sequence of locomotory gaits for the steering (blue box),
transition (red box), and translation (green box) modes.
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navigation tasks. Here we measure the improvement of swimmer’s performance with

increased Ne by three locomotion tests: (1) Random target test: the swimmer is

assigned a target direction selected randomly from a uniform distribution in [0, 2π];

(2) Rotation test: the swimmer is assigned a targeted direction with a large angle

of difference with swimmer’s orientation (i.e., θd = ±π/2); (3) Translation test:

the swimmer is assigned a target direction equal to the swimmer’s orientation (i.e.,

θd = 0). A test is considered to be successful if the swimmer travels along the target

direction for a distance of 5 unit in 10000 action steps. These tests ensure that

the trained swimmer acquires a set of effective locomotory gaits to swim along any

specified direction with robust rotation and translation.

We consider the success rates of the three tests over 100 trials (Figure 4.5). For

Ne = 3 × 104, success rates of around 90% are obtained for the three tests. When

Ne is increased to 9× 104, the swimmer masters translation with a 100% success rate

but still needs more training for rotation. When Ne is increased further to 15× 104,

the swimmer obtains 100% success rates for all tests. This result demonstrates the

continuous improvement in the robustness of targeted navigation with increased Ne

up to 15× 104. As we further increase Ne, we found the relationship between Ne and

performance to be non-monotonic. For a total training episodes much greater than

Ne = 15 × 104, the overall success rate will begin to drop and eventually fluctuate

around 95%. We selected the trained result at Ne = 15 × 104 for the best overall

performance.

To better understand the swimmer’s training process, we also varied the number

of steps in each episodes, Nl. For a range from 100 to 300 and a fixed total episodes

Ne, we found Nl = 150 provides the most efficient way to balance translation and

rotation and require least amount of action steps to complete both the rotation and

translation tests. We remark that, when Nl = 100, the swimmer was only able to

translate but not to rotate, indicating the significant role Nl plays in learning.
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Lastly, we remark that the swimmer appears to require more training, both

in Ne and Nl, to learn rotation compared to translation. This may be attributed

to the inherit complexity of rotation gaits, where the swimmer needs to actuate its

intermediate angle in addition to the actuation of the two arms required in translation

gaits.

4.3.5 Path Tracing–“SWIM”.

Next we showcase the swimmer’s capability in tracing complex paths in an autonomous

manner. To illustrate, the swimmer is tasked to trace out the English word “SWIM”

(Figure 4.6). We note that the hydrodynamic calculations required to design the

locomotory gaits to trace such complex paths become quickly intractable as the

complexity increases. Here, instead of explicitly programming the gaits of the

swimmer, we only select target points (pi, i = 1, 2, ..., 17, red spots in Figure 4.6)

as landmarks and require the swimmer to navigate towards these landmarks with its

own AI, with the target directions at action step t+ 1 given by θTt+1 = arg(pi − rct).

The swimmer is assigned with the next target point pi+1 when its centroid is within

a certain threshold (0.1 of the fully extended arm length) from pi. The completion of

these multiple navigation tasks sequentially enables the swimmer to successfully trace

out the word “SWIM” with a high accuracy (Figure 4.6). In accomplishing this task,

the swimmer switches between the three modes of locomotory gaits autonomously

to swim towards individual target points and turn around the corners of the path

based on the AI-powered navigation strategy. It is noteworthy that the swimmer

is able to navigate around some corners (e.g., at target points 4 and 6) without

activating the steering gaits, which are employed for corners with more acute angles

(e.g., at target points 8, 14, and 16). While past approaches based on detailed

hydrodynamic calculations, manual interventions, or other control methods may
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also complete such tasks, here we present reinforcement learning as an alternative

approach in accomplishing these complex maneuvers in a more autonomous manner.

a) b)
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Figure 4.5 Analysis of the swimmer’s performance with increasing number of
episodes. Number of episodes Ne indicates the total training time of the swimmer.
Each episode during training contains a fixed amount of action steps Nl = 150. a) We
used three tests (random target test, rotation test and translation test) to measure
the swimmer’s performance in a fixed number of training steps Nl = 150. For all tests,
the swimmer starts with a random initial configuration to ensure a full exploration of
the observation space. A total of 100 trials are considered for each test with swimmers
trained at different Ne. A swimmer with insufficient training (3× 104 episodes) may
occasionally fails in the three tests (success rate ≈ 90%). At Ne = 9 × 104, the
swimmer masters translation and improves its rotation ability. When Ne increases to
1.5× 105, the swimmer obtains a 100% success rate in all tests. b) Schematics of the
random target test, rotation test, and translation test. The leftmost sphere is marked
as red and other spheres are marked as blue to indicate the swimmer’s orientation
θo (red dashed arrows). Given a random initial configuration, we test the swimmer’s
ability to translate along or rotate towards a target direction θT (solid red arrows).
The black dashed arrows indicate the swimmer’s intended moving direction.

4.3.6 Robustness Against Flows.

Simulations of Background Flow We consider the motion of a swimmer under

the influence of a background flow due to a rotlet at the origin

u∗
∞(r∗) = −γ∗ × r∗

r∗3
, (4.13)
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Figure 4.6 Demonstration of complex navigation capability of Artificial Intelligence
powered swimmer. The Artificial Intelligence powered swimmer switches between
various locomotory gaits autonomously in tracing a complex trajectory ”SWIM”.
The trajectory of the central sphere of the swimmer is colored based on the mode
locomotory gaits: steering (blue), transition (red), and translation (green). The
swimmer is given a lists of target points (1-17) with one target point at a time. The
black arrows at each point indicate the intended direction of the swimmer. From
the current target point, the swimmer determines the target direction for the next
action step t+1, θTt+1 and adapts the locomotory gaits based on its AI in navigating
towards that direction. Schematics of the swimmer configurations (not-to-scale) are
shown for illustrative purposes, where the leftmost sphere is marked as red and other
two spheres are marked as blue to indicate the swimmer’s current orientation.

where γ∗ = γ∗ez prescribes the dimensionless rotlet strength γ∗ in the z-direction.

To account for the background flow u∗
∞(r∗), the mobility relation is adjusted with the

hydrodynamic forces and torques on the spheres given by [23]

F∗
i =

3∑
j=1

M∗
ij ·V∗

j − 6πR∗u∗
∞(r∗i ) +

3∑
j=1,i ̸=j

36π2R∗2G∗
ij · u∗

∞(r∗i ), (4.14)

T∗
i = r∗i × F∗

i − 4πR∗3∇∗ × u∗
∞(r∗i ) +

3∑
j=1,i ̸=j

24π2R∗4∇∗ ×G∗
ij · u∗

∞(r∗i ), (4.15)

where M∗
ij is the inverse of G∗

ij and r∗i denotes the position of sphere i.

Last, we examine the performance of targeted navigation under the influence of

flows (Figure 4.7a),b)). In particular, to determine to what extent the AI-powered

swimmer is capable of maintaining its target direction against flow perturbations,

we use the same AI-powered swimmer trained without any background flow, and

impose a rotational flow generated by a rotlet at the origin [44,56], u∞ = −γ × r/r3,

where γ = γez prescribes the strength of the rotlet in the z-direction, r = |r| is the

75



magnitude of the position vector r from the origin (see Simulations of background

flow under Supplementary methods). Here the AI-powered swimmer is tasked to

navigate towards the positive x-direction under flow perturbations due to the rotlet.

We examine how the swimmer adapts to the background flow when performing this

task. For comparison, we contrast the resulting motion of the AI-powered swimmer

with that of an untrained swimmer (i.e., a Najafi-Golestanian (NG) swimmer that

performs only fixed locomotory gaits without any adaptivity [71]). Without the

background flow, both swimmers self-propel with the same speed. Both swimmers are

initially placed close to the rotlet with rc = −5ex and we sample their performance

with three different initial orientations: θo0 = −π/3, 0, and π/3, under different flow

strengths. Under a relatively weak flow (γ = 0.15, Figure 4.7a)), the AI-powered

swimmer is capable of navigating towards the positive x-direction regardless of

its initial orientations against flow perturbations. In contrast, the trajectories of

the NG swimmer are largely influenced by the rotlet flow passively depending on

the initial orientation of the swimmer. For an increased flow strength (γ = 1.5,

Figure 4.7b)), the NG swimmer completely loses control of its direction and is

scattered by the rotlet into different directions again due to the absence of any

adaptivity. Under such a strong flow, the AI-powered swimmer initially circulates

around the rotlet but eventually manages to escape from it, navigating to the positive

x-direction successfully with similar trajectories for all initial orientations. We note

that the vorticity experienced by the swimmer in this case is comparable with typical

re-orientation rates of the AI-powered swimmer. We also remark that when navigating

under flow perturbations, the AI-powered swimmer adopts the transition gaits to

constantly re-orient itself towards the positive x-direction and self-propels along that

direction eventually. These results showcase the AI-powered swimmer’s capability in

adapting its locomotory gaits to navigate robustly against flows.
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b)

Figure 4.7 Analysis of the performance of targeted navigation under the influence
of flows. a) The Artificial Intelligence powered swimmer and the Najafi-Golestanian
(NG) swimmer escape from a relatively weak rotlet flow, u∞ = −γ×r/r3, where γ =
γez prescribes the strength of the rotlet in the z-direction, r = |r| is the magnitude
of the position vector r from the origin (γ = 0.15). The leftmost sphere of the
AI-powered swimmer is marked as red and other spheres are marked as blue to indicate
the swimmer’s current orientation (blue dashed arrow). The NG swimmer is colored
red with its orientation marked as red dashed arrows. Three sets of trajectories
(dashed, dotted, and solid lines) are shown with different initial swimmer orientation
θo0 . The AI-powered swimmer travels to the right regardless of its initial orientation
whereas the trajectory for the NG swimmer is highly affected by the rotlet flow. b)
We compare the trajectories of the AI-powered swimmer and the NG swimmer in
a strong rotlet flow (γ = 1.5). The NG swimmer completely loses control in the
flow, while the AI-powered swimmer maintains its orientation towards the positive
x-direction, with similar trajectories for different initial orientations.
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4.4 Concluding Remarks

In this work, we present a deep RL approach to enable navigation of an artificial

microswimmer via gait switching advised by the AI. In contrast to previous

works that considered active particles with prescribed self-propelling velocities as

minimal models [18, 70, 85] or simple one-dimensional swimmers [45, 64, 99], here we

demonstrate how a reconfigurable system can learn complex locomotory gaits from

rich and continuous action spaces to perform sophisticated maneuvers. Through

RL, the swimmer develops distinct locomotory gaits for a multimodal (i.e., steering,

transition, and translation) navigation strategy. The AI-powered swimmer can adapt

its locomotory gaits in an autonomous manner to navigate towards any arbitrary

directions. Furthermore, we show that the swimmer can navigate robustly under the

influence of flows and trace convoluted paths. Instead of explicitly programming a

swimmer to perform these tasks in the traditional approach, the swimmer is advised

by the AI to perform complex locomotory gaits and autonomous gait switching

in accomplishing these navigation tasks. The multimodal strategy employed by

the AI-powered swimmer is reminiscent of the run-and-tumble in bacteria [12, 52].

Taken together, our results showcase the vast potential of this deep RL approach

in realizing adaptivity similar to that of biological organisms for robust locomotive

capabilities. Such adaptive behaviors are crucial for future biomedical applications of

artificial microswimmers in complex media with uncontrolled and/or unpredictable

environmental factors.

We finally discuss several possibilities for subsequent investigations based on

this deep RL approach. While we demonstrate only planar motion in this work, the

approach can be readily extended to three-dimensional navigation by allowing out-of-

plane rotation the swimmer’s arms with expanded observation and action spaces for

the additional degrees of freedom. Moreover, the deep RL framework is not tied to any

specific swimmers; a simple multi-sphere system is used in this work for illustration,
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and the same framework applies to other reconfigurable systems. We also remark that

the AI-powered swimmer is able to overcome some influences of flows even though

such flows were absent in the training. Subsequent investigations including the flow

perturbation in the training may lead to even more powerful AI that could exploit

the flows to further enhance the navigation strategies. Another practical aspect to

consider is the effect of Brownian noise [26, 46]. Specifically, the characterization of

the effect of thermal fluctuations in both the training process of the swimmer and

its resulting navigation performance is currently underway. In addition to flow and

thermal fluctuations, other environmental factors, including the presence of physical

boundaries and obstacles, may be addressed in similar manners in future studies.

The deep RL approach here opens an alternative path towards designing adaptive

microswimmers with robust locomotive and navigation capabilities in more complex,

realistic environments.
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CHAPTER 5

LINEAR 3-SPHERE DEVICE IN A NON-STATIONARY

ENVIRONMENT VIA REINFORCEMENT LEARNING CONTEXT

DETECTION

5.1 Background and Related Work

Swimming microorganisms live in a world where viscous force dominates. In

this low Reynolds number limit, due to their small scale, inertia effects become

negligible comparing to its viscous counterpart. Under such stringent constraints,

microorganisms have developed many versatile swimming strategies including using

flagella rotary motors [11, 62] and molecular motors [84]. Motivated by potential

biomedical and environmental interest [34, 74], recent studies have focused on

developing artificial microswimmers in complex environments.

Purcell’s leading work illustrates the challenges of developing microswimmers

from the perspective of low Reynolds number fluid dynamics [79]. Many subsequent

studies have demonstrated how a simple system can generate net locomotion

[71] or mechanical rotation [25]. However, the design of complex systems with

sophisticated maneuvers soon become intractable. More recently, reinforcement

learning techniques have been used in studies of various aspects of fluid locomotion

problems [17,97], including three sphere micro-swimmer locomotion [45,64,99], active

particle navigation [2, 19, 85], flow navigation [18, 43], and fish and bird like motions

[37,38,54,82].

5.2 Non-Stationary Environment Formulation

We consider a simple system composed of three identical spheres of radiusR connected

by two arms with variable arm length L1, L2 (Figure 5.1 bottom). This system

generalizes the one-dimensional swimmer proposed by Najafi and Golestanian [71] by
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Figure 5.1 Schematic of the Reinforcement Learning Context Detection algorithm.
The swimmer performs the given action and interacts with the non-stationary
environment (bottom), where the current environment is unknown to the swimmer.
Reward and observation is calculated based on the net centroid displacement and
geometric configuration change. Receiving the reward and the next observation, the
reinforcement learning agent utilizes its context detection method to determine which
model best fits the current environment and advises the next action to the swimmer
(Top). During training, the agent periodically updates its policy models and context
detection method.
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allowing continuous arm actuation. The dynamics of sphere interaction is described

by a non-stationary environment consisting of two distinct environments: (1) Viscous

environment. The interactions between the spheres and the surrounding fluid is

governed by the Stokes equation. In this low Reynolds number regime, the viscous

force dominates. (2) Frictional environment. The 3-sphere device is placed upon a

horizontal frictional surface, where its movement is determined by the arm driving

force and the isotropic Coulomb friction. We model the non-stationary environment

by constantly switching from one environment to another, where the change of

environment happens instantaneously in the eyes of the device. The instantaneous

environment change can be considered as the limiting case of the concentration signal

sensing problem [66], where the concentration signal stays constant until a sudden

jump due to the change of environment. The only difference is that our device has no

direct access to the concentration signal. We now describe the environment dynamics

below.

5.2.1 Low Reynolds Number Hydrodynamics

We consider a low Reynolds number environment (Viscous), where the interaction

between the device and the surrounding newtonian fluids is governed by the Stokes

equation (∇p = µ∇2u), where p, µ, u are the pressure, dynamic viscosity and

velocity field, respectively. Due to the linearity of the Stokes equation, we write down

the velocity and force coupling in the x direction as:

Vxi
= GijFxj

(5.1)

where Gij is the one-dimension Oseen tensor [23, 44,56] given by

Gij =


1

6πµR
,

1
4πµ|rxi−rxj |

.

(5.2)
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Here, rxi
is the x position of the sphere i, and |rxi

− rxj
| is distance between spheres

i and j. We then express constant arm actuation rate L̇i in terms of the sphere’s

horizontal velocities Vxi
:

Vx2 − Vx1 = L̇1 (5.3)

Vx3 − Vx2 = L̇2 (5.4)

Applying the force free condition
∑

i Fxi
= 0, the swimmer’s kinematic is fully

determined. We constrain the arm length (0.6L ≤ L1, L2 ≤ L) to ensure the validity

of the Oseen tensor approximation (R≪ L). In this work, we scale the length by fully

extended arm length L and the velocity by a characteristic arm actuation velocity Vc.

This results a time scale of T = L/Vc. For the Viscous environment, the forces are

scaled by µLVc.

5.2.2 Dry Friction Dynamics

Consider the same one dimension three sphere device placed on a horizontal

flat frictional surface (Frictional environment), and denote the sphere mass m,

acceleration ẍ, and the frictional coefficient µf . We can write down the equations

of motions of each spheres by accounting the driving forces Fdi induced by actuation

of arm Li on sphere i and the corresponding friction forces Ffi :

ẍi =
1

m
(Fdi − Fdi−1

+ Ffi) (5.5)

with Fd0 = Fd3 = 0. The friction forces on each sphere is written as:

Ffi =


−Fc(ẋi), if |Fdi − Fdi−1

| > Fc

−(Fdi − Fdi−1
), if |Fdi − Fdi−1

| ≤ Fc

(5.6)

where Fc = µfmg is the magnitude of the sliding friction exerted by the surface on

the sphere; a static friction equals to the sliding friction is assumed. We further

83



assume each arm applies only the minimum driving forces needed to satisfy the arm

actuation condition for constant rate at each action step, resulting the acceleration on

each sphere ẍi = 0. We note that under our assumption at least one sphere will stay

stationary during the actuation period. Summing over equation [5.5] for all spheres i,

we have
∑

i Ffi = 0. We can then determine the driving forces along the x direction

Fdxi
based on the values of L̇i:

Fdx1
, Fdx2

=



Fc, Fc if L̇1, L̇2 < 0

Fc, 0 if L̇1 < 0, L̇2 = 0

0, Fc if L̇1 = 0, L̇2 < 0

−Fc,−Fc if L̇1, L̇2 > 0

−Fc, 0 if L̇1 > 0, L̇2 = 0

0,−Fc if L̇1 = 0, L̇2 > 0

0, Fc if L̇1 ≥ 0, L̇2 ≤ 0, |L̇1| < |L̇2|

−Fc, 0 if L̇1 ≥ 0, L̇2 ≤ 0, |L̇1| > |L̇2|

−Fc/2, Fc/2 if L̇1 ≥ 0, L̇2 ≤ 0, |L̇1| = |L̇2|

0,−Fc if L̇1 < 0, L̇2 > 0, |L̇1| < |L̇2|

Fc, 0 if L̇1 < 0, L̇2 > 0, |L̇1| > |L̇2|

Fc/2,−Fc/2 if L̇1 < 0, L̇2 > 0, |L̇1| = |L̇2|

(5.7)

This is equivalent as determining the sphere that are made to translate during an

actuation. We similarly scale the length by L, velocity by Vc, and forces by mg.

5.2.3 Reinforcement Learning Context Detection

We first focus on a deep RL approach [45, 54, 88] training the swimmer in a single

environment to produce positive net locomotion in the x direction. In the RL
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Figure 5.2 Episode reward increases as the total training episode increases.
We plot the average episode reward across five agents and compare the training
performance of RLCD (blue), RL trained in frictional (red) and viscous (green)
environment. Because of the simple setup of our system, RL agents trained in
frictional and viscous environment learn effective policies quickly. With sufficient
training, RLCD, trained under a non-stationary environment, reaches approximately
the same performance in both environment.

algorithm, the state s ∈ (rx1 , rx2 , rx3) contains all the x positions of the spheres.

The observation o ∈ (L1, L2) is extracted from the state as geometric configurations.

The RL agent determines the next action based on the current observation through

the Actor neural network. The swimmer then performs the action a ∈ (L̇1, L̇2) by

actuating both of its arms for the duration of one action step, ∆t = 0.1. The RL

agent evaluates the success of the action by measuring the net centroid displacement:

rt = rct+1 − rct , where the centroid rc =
∑

i rxi
. The training process is divided into

Ne total episodes, with each episode containing Nt = 100 action steps. We randomly

initialize a state s0 at the beginning each episode to ensure full exploration of the

observation space. The Actor and Critic network is further updated for every 20

episodes by maximizing the expected long-term rewards E[Rt=0|πϕ]. Here, πϕ is the

stochastic control policy, Rt =
∑∞

t′ γ
t′−trt′ is the infinite-horizon discounted future

returns, and γ is the discount factor measuring the greediness of the algorithm. We

set γ = 0.99 ensuring the farsightedness of the RL algorithm.
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The RL framework described above has shown to be effective for generating

locomotory gaits for a single environment [54]. To adapt this RL framework to

the non-stationary environment, a straightforward approach is applying it on each

individual environment with a context change detection algorithm. We therefore

employ a recent high confidence change point detection method developed by Alegre et

al [3] and abbreviate this combination generally as “RLCD” (not to be confused with

the “RL-CD” algorithm [21]). Here, the term “context” indicates a type of dynamics

in a specific environment; hence, a context change corresponds to a change in the

environment in which the device is immersed. RLCD enables the agent to quickly

detect a change of environment and train a set of partial models, each specialized for

different environment dynamics (Figure 5.1).

Consider the non-stationary environment consisting of a list of environments

E1...EK . Let C be a random environment change point switching from Ei to Ej.

A proper detection method should consider two things: i) time it takes to detect

the change point C, ii) false detection before C occurs. RLCD minimizes both by

computing quality signals based on the experience (i.e., the action performed, state

transition, and reward) of the device. The quality signals, Wk,t = max(0,Wk,t−1 +

Lk,t), are computed for each partial model k at every action step t utilizing a

multivariate variant of cumulative sum (MCUSUM) method [3], where Lk,t is the

log-likelihood ratio indicating how likely a particular model k becomes a better fit

than the current model. The algorithm will activate the partial model with the

highest quality signal that surpasses threshold h and thereby enable the device to

adapt its locomotory gaits in response to the change of environment. Furthermore, in

the context detection algorithm, a new partial model will be generated when all other

partial models become ineffective in describing the current environment, allowing the

swimmer to explore unlimited distinct environments (Figure 5.1 top).
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Figure 5.3 Analysis the performance of RLCD (blue), RL module trained in
frictional (red) and viscous (green) environment in a non-stationary environment.
a) The non-stationary environment periodically switches from viscous (white) to
frictional (gray) environment. We test each agent’s ability to translate to the right.
Both RL trained in viscous and frictional environment performs well in their trained
environment, but fails to translate in the foreign environment. On the other hand,
RLCD masters both environment and detects a context change quickly, resulting the
most net centroid displacement. b) A sample cycle of N-G stroke and F stroke
variations are plotted alongside with geometric configurations. The grey dashed
arrows indicate the arm actuation. c) Stroke sequence for the discrete N-G stroke
and F stroke. We mark the net centroid displacement after each cycle as ∆rcx .

In Figure 5.2, we illustrate an average training result of RLCD agents in a non-

stationary environment (blue) with RL agents trained separately in viscous (green)

and frictional (red) environment. In the training process, RLCD agent gradually

builds up experience of the current environment. The experience is then used to

improve both its ability to accurately detect an environment change and develops the

locomotory strategies of the two partial models. Here, we periodically switch between

viscous and frictional environment every 100 episodes, corresponding to the frequent

oscillation shown in Figure 5.2 blue. We observe RLCD quickly acquires effective

locomotory strategies around 6 × 103 episodes for the viscous environment (green).
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Given sufficient time (roughly 2 × 104 episodes), RLCD learns a set of locomotory

gaits that generate similar rewards as the RL agents in both environment as well

as detecting a context change. We remark that the environment change detection

usually takes around 3 to 7 action steps, a very minimum time comparing to its total

training action steps, 2× 106.
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Figure 5.4 We evaluate the performance of RLCD (blue) and RL trained in viscous
(green) and frictional (red) across various ratio of the amount of time stays in
viscous environment over the total simulation. a) We plot the average net centroid
displacement as solid lines and each agent’s displacement as dots, with a total of 5
agents for each algorithm. At the viscous ratio of 20 percent and above, RLCD starts
to outperform all other algorithms. RLCD also has the most consistent result with a
smaller range across the 5 agents. b) We use RLCD’s average result as a benchmark
to examine the relative performance of other RL agents. A negative relative difference
indicates a worse performance than RLCD. For the most of the scenario, RL agents
have a relative difference below 0 indicating RLCD’s superior performance.

5.3 Results and Discussion

5.3.1 Performance Comparison and Effective Locomotory Policies

We next compare our RLCD agents with RL agents trained in the viscous or frictional

environment by placing them in a non-stationary environment. We illustrate their

performance difference by showing their net centroid displacement over a set amount

of action steps (Figure 5.3a)). We simulate the non-stationary environment by

periodically switching between the viscous (white shaded area) and frictional (grey

shaded area) environment for every 1000 action steps. We remark that even though

the environment is switched periodically, no agents have information on when the
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switch would occur. In addition, since our context detection only takes around three

to seven action steps, a randomly generated context change on the same scale wouldn’t

significantly affect the performance. Overall, the RLCD agents (blue) demonstrate

their superior performance by properly detecting the change of the environment and

utilizing the corresponding gait. In contrast, both RL agents trained in viscous

(green) and frictional (red) environment perform negatively in the other environment

as indicated by the slopes of the curves. We also observe a large performance

discrepancy between the RL agent trained in viscous and frictional environment due

to the inherent reward difference of the two environments. This reward difference

can be more clearly observed in Figure 5.2. Here, the effectiveness of one particular

RL agent greatly depends on the environment it was trained in. We now visualize

the actuation policies RLCD agent used in the viscous and frictional environment

by plotting the dimensionless arm length of a representative stroke sequence. For

the viscous environment (Figure 5.3b) green), RLCD utilizes a policy similar to a

discrete case optimal strategy studied by Najafi and Golestanian [71] (Figure 5.3c)

top). For the frictional environment (Figure 5.3b) red), RLCD develops an entirely

different policy identified as a variation of the F-stroke [29] (Figure 5.3c) bottom).

This example demonstrates RLCD’s ability to acquire effective locomotory gaits in

distinct environment and successfully navigate non-stationary environment.

5.3.2 Performance across Various Non-Stationary Envrionment

Last, we examine the RLCD’s performance by varying the viscous environment ratio

in a non-stationary environment. We define the ratio as the amount time device

spends in the viscous environment over the total time of the simulation. Figure 5.3a)

represents a case of viscous environment ratio equals 50 in percentage. (A ratio of 0%

or 100% indicate a pure frictional or viscous environment, respectively). Furthermore,

we model the non-stationary environment by periodically switching between viscous
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and frictional environment for a total of 19 times in Figure 5.4a). Here, we illustrate

the performance of RLCD (blue) and RL (red and green) agents by plotting the

average net centroid displacement (solid lines) with individual agents’ displacement

(dots). RLCD agents begin to outperform the other RL agents as the viscous ratio

rises above 20%. We observe, interestingly, a monotonic increase in the spread of the

RL agents (dots) as the ratio moves towards a foreign environment to the agents.

This happens because even though all RL agents have reached an almost identical

policy in their trained environment, the slight difference between each agent is greatly

amplified in a foreign environment, which impacts the consistency of RL agents in a

non-stationary environment. In contrast, RLCD always selects the proper policy for

the corresponding environment and makes the overall spread almost indistinguishable.

In Figure 5.4 b), we set the average RLCD net centroid displacement as a baseline

and compare the relative performance difference of the other RL agents. A relative

difference of 0 indicating the same performance as RLCD, whereas a negative value

signifies a worse performance. We shade the region where RLCD demonstrates

superior performance over the RL agents for better illustration; we observe clearly

that RLCD outperforms the other RL agents for viscous environment ratio between

20% to 100%. Those results showcase both the consistent performance and the wide

range effectiveness of the RLCD algorithm in a non-stationary environment.

5.4 Concluding Remarks

In this work, we present a context change detection method in combination with RL

algorithm allowing for developing effective locomotory gaits in distinct environments.

In contrast to previous works that utilize RL for a single environment [64, 99], we

focus on the device’s ability to navigate non-stationary environments without prior

knowledge of when an environment change would occur. We demonstrate that the

RLCD enables the device to master specialized locomotory gaits for each environment
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and detect a context change quickly. In presenting the result, we leave out the

comparison of RL agent trained in a non-stationary environment, which is observed

to perform worse than RL agent trained in the frictional environment. Last, we

briefly comment on the algorithm’s limitation. This context change detection method

assumes that the individual environments are distinct, meaning either the effective

locomotory strategies (observation transition function) or the reward (function) is

significantly different. For an environment with very similar observation transition

and reward function, the detection mechanism very likely would fail. In such case,

a RL agent might be sufficiently effective in the considered environment. Taken

together, our result demonstrates both robustness and superior performance over a

wide range of viscous environment ratio when comparing to the conventional RL agent

trained in a single environment.

We now discuss several possible future investigations based on this context

detection and deep RL approach. In this work, we primarily limit ourselves to two

distinct environments each required relatively “little” training, while our approach can

be employed with “infinite” numbers of distinct environments. A subsequent inves-

tigation would focus on designing a complex non-stationary environment involving

more environments and advanced navigation capability. Moreover, we assume an

instantaneous environment change, which can be considered as a limiting case of a

chemical sensing problem. A future work would incorporate the transition phase

between two environments in order to provide a complete picture of navigating the

non-stationary environment. The context detection and deep RL approach present

here offers a new avenue for designing artificial devices in navigating complex fast

changing environments.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

This dissertation addresses four interrelated problems in in the design of artificial

micro-swimmers: train a Stokesian swimmer via Q-learning, mechanical rotation in

low Reynolds number fluids, gait switching and targeted navigation of microswimmers

in Stokes flow and linear three-sphere device in a non-stationary environment. First,

this dissertation presents Q-learning method to generate one dimensional translation

in the low Reynolds number regime. Second, this dissertation shows the Q-learning

method can be applied to generate net rotation in the low Reynolds number fluids.

Third, this dissertation presents deep reinforcement learning combined with proximal

policy optimization method for two-dimensional swimmers that is able to navigate

to the target. Finally, this dissertation presents a generative adversarial network,

named reinforcement learning context detection, for generating effective policies in

the non-stationary environment.

This dissertation develops new reinforcement learning methods and deep neural

network to help develop the effective gaits for the artificial microswimmer. In the

future work, the intrinsic curiosity module with the advanced deep reinforcement

learning methods will be investigated and extended to more swimmer related tasks,

such as artificial swimmers in biomedical and environmental applications. The

curiosity driven method will be developed based on the all types of environments,

where those rewards will be collected based on a inverse and forward model. The

efficiency of the curiosity driven method will be studied and used to improve the

performance of the training process.
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APPENDIX A

SUPPLEMENTARY METHODS

This appendix summarizes the numerical results of the three-sphere rotator.

A.1 Three-sphere Rotator

A.1.1 Problem Setup for Three-sphere Rotator

Figure A.1 Complete 4-step cycle of the proposed non-reciprocal motion of a
rotational motor. The device experiences a net rotation after completion of a
cycle [24].

The complete cycle of rotation can be divided into four steps with no translational

motion allowed:

1. Step a: fix the angle between spheres 1 and 3, reduce the angle between
spheres 1 and 2 with a constant angular velocity, the angular position of
each sphere is define as θ1, θ2, θ3.

2. Step b: fix the angle between spheres 1 and 2, reduce the angle between
spheres 1 and 3 with the same constant angular velocity ω.
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3. Step c: fix the angle between spheres 1 and 3, increase the angle
between spheres 1 and 2 with the same constant angular velocity ω to
2π/3.

4. Step d: fix the angle between spheres 1 and 2 (2π/3), increase the
angle between spheres 1 and 3 with the same constant angular velocity ω
to 2π/3, now the rotator is in the original configuration.

5. compute the net angular displacement 2ε after the four steps: 2ε =∑d
i=a θ1i.

A.1.2 Simplification of the Torque Exert on Each Sphere

At low Reynolds number, the governing equations are the Stokes equation and the

incompressibility condition. Since both equations are linear, and if we denote by r⃗i

the position vector of sphere i measured from the center P , then there is a linear

tensor relation between the forces acting on each sphere F⃗i and their velocity V⃗i of

the form,

F⃗i =
3∑

j=1

HijV⃗j, with



Hii = −6πηRI

Hij = −6πηR 3R
4Rij

(I+ R̂ijR̂ij)

R̂ij =
r⃗i−r⃗j
r⃗i−r⃗j

Rij = r⃗i − r⃗j

(A.1)

where I is the identity tensor and η is the viscosity of the fluid. These equations

account for the leading-order hydrodynamic influences and for interactions among

each of the spheres treated as point forces (R/L ≪ 1). If we denote D⃗i as the

position of the center of sphere i measured from a fixed point in the laboratory frame,

an additional linear tensor relation between the torques acting on each sphere Γ⃗i and

the velocities of each sphere can be derived in the form:

Γ⃗i = D⃗i ∧
3∑

j=1

HijV⃗j. (A.2)
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Since no external force is present, the system is force-free and torque-free:

3∑
i=1

F⃗i = 0⃗ and
3∑

i=1

Γ⃗i = 0⃗. (A.3)

The system was parameterized as follows: a local cylindrical coordinates U⃗ri , U⃗θi is

defined for each sphere, so that the velocity of each sphere in the laboratory frame is

given by

V⃗i = V⃗p + Lθ̇iU⃗θi , (A.4)

where V⃗p is the translation velocity of the centre P . During each step of the

cycle, two other constraints are added; for example during the first step we set

θ̇2 − θ̇1 = −ω, (A.5)

and

θ̇1 = θ̇3. (A.6)

To simplify expression of the torque exert on each sphere:

1. let θi be the angular displacement of sphere i.

2. let R⃗i be the position of sphere i in Cartesian coordinates (points from
P to center of sphere i)

R⃗i = L

∣∣∣∣− sin(θi)θ̇i
cos(θi)θ̇i

∣∣∣∣ ,
with θ̇i = θit.

3. the point-to-point distance between two spheres is,

Rij = 2L sin(
θi − θj

2
).

4. the unit vector between two spheres is,

R̂ij =
R⃗ij

Rij

=
1

2 sin(
θi−θj

2
)

∣∣∣∣cos(θi)− cos(θj)
sin(θi)− sin(θj)

∣∣∣∣ .
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5. the force F⃗ij exerts on each sphere i by sphere j is,

F⃗ij = Hij v⃗j,

with

Hij = −6πηR
3R

4Rij

(I + R̂ijR̂ij),

then

F⃗ij = −6πηR,
3R

8L sin(
θi−θj

2
)
(v⃗j + R̂ij(R̂ij · v⃗j)),

v⃗j + R̂ij(R̂ij · v⃗j) can be expressed as follows:

Lθ̇j(

∣∣∣∣− sin(θj)
cos(θj)

∣∣∣∣+ sin(θi) cos(θj)− cos(θi) sin(θj)

4 sin(
θi−θj

2
)2

∣∣∣∣cos(θi)− cos(θj)
sin(θi)− sin(θj)

∣∣∣∣)
= Lθ̇j(

∣∣∣∣− sin(θj)
cos(θj)

∣∣∣∣+ sin(θi − θj)

4 sin(
θi−θj

2
)2

∣∣∣∣cos(θi)− cos(θj)
sin(θi)− sin(θj)

∣∣∣∣)
therefore

F⃗ij = −6πηR
3R

8 sin(
θi−θj

2
)
θ̇j(

∣∣∣∣− sin(θj)
cos(θj)

∣∣∣∣+ sin(θi − θj)

4 sin(
θi−θj

2
)2

∣∣∣∣cos(θi)− cos(θj)
sin(θi)− sin(θj)

∣∣∣∣)
= −6πηR 3R

8 sin(
θi−θj

2
)
θ̇j[

∣∣∣∣∣− sin(θj) +
1
2
cot(

θi−θj
2

)(cos(θi)− cos(θj))

cos(θj) +
1
2
cot(

θi−θj
2

)(sin(θi)− sin(θj))

∣∣∣∣∣]
with

sin(θi−θj)

4 sin(
θi−θj

2
)2

can be simplified as

sin(θi − θj)

4 sin(
θi−θj

2
)2

=
2 sin(

θi−θj
2

) cos(
θi−θj

2
)

4 sin(
θi−θj

2
)2

=
1

2
cot(

θi − θj
2

)

F⃗ii = −6πηRLθ̇j

∣∣∣∣− sin(θj)
cos(θj)

∣∣∣∣
6. the system is torque-free, compute the torque of each sphere (pointing
inward or outward the x-y plane in the z-axis)

Γ⃗i = R⃗iF⃗i
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R⃗iF⃗i =
9πηLR2θ̇j

4 sin(
θi−θj

2
)
[− cos(θi − θj)−

1

2

cos(
θi−θj

2
)

sin(
θi−θj

2
)
2 sin(

θi − θj
2

) cos(
θi − θj

2
)]

=
9πηLR2θ̇j

4 sin(
θi−θj

2
)
[−1 + 2 sin(

θi − θj
2

)2 − cos(
θi − θj

2
)2]

=
9πηLR2θ̇j

4 sin(
θi−θj

2
)
[3 sin(

θi − θj
2

)2 − 2]

Thus, the governing equations and torque-free constraint can be expressed as

follows:

Γ1 = −6πηL2Rθ̇1 +
9πηLR2(3 sin( θ1−θ2

2
)2 − 2)

4 sin( θ1−θ2
2

)
θ̇2 +

9πηLR2(3 sin( θ1−θ3
2

)2 − 2)

4 sin( θ1−θ3
2

)
θ̇3

(A.7)

Γ2 =
9πηLR2(3 sin( θ1−θ2

2
)2 − 2)

4 sin( θ1−θ2
2

)
θ̇1 − 6πηL2Rθ̇2 +

9πηLR2(3 sin( θ2−θ3
2

)2 − 2)

4 sin( θ2−θ3
2

)
θ̇3

(A.8)

Γ3 =
9πηLR2(3 sin( θ1−θ3

2
)2 − 2)

4 sin( θ1−θ3
2

)
θ̇1 +

9πηLR2(3 sin( θ2−θ3
2

)2 − 2)

4 sin( θ2−θ3
2

)
θ̇2 − 6πηL2Rθ̇3

(A.9)

0 = Γ1 + Γ2 + Γ3 (A.10)

with

1. Γi is torque in z-direction on sphere i;

2. L is the length from P to center of sphere i in the x-y plane;

3. η is the fluid viscosity;

4. R is the radius of each sphere;

5. θ̇i is the counterclockwise angular velocity of sphere i;

6. θi is the angular position of sphere i;

7. Θ is the internal angular change.
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APPENDIX B

ADDITIONAL NUMERICAL RESULTS

Figure B.1 shows the total angle of rotation of the Purcell’s rotator during a complete

four-stroke cycle as a function of the internal angular change for different values of

the ratio R
L
when the device cannot have translational motion. The results indicate

the net rotational motion depends significantly on the ratio of R
L
.

Figure B.1 Total angle of rotation as a function of the internal angular change when
the centre P is fixed (no translational motion). The different curves correspond to
different ratios of R/L, the dotted lines correspond to Fig. 2. in Dreyfus et al. paper,
the dash-dotted lines correspond to my numerical results for R/L = 0.1, 0.2, 0.3.
The graph shows our numerical results are consistent with the results presented in
Dreyfus’s paper.
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Figure B.2 Total angle of rotation as a function of the internal angular change when
the centre P is fixed (no translational motion). The different curves correspond to
the ratio of R/L = 0.02, 0.05, 0.08, 0.1, 0.2, 0.3, the result indicates the net rotational
motion depend significantly on the ratio of R

L
.

Q-Learning Results for Self-learning Three-sphere Rotator

Problem setup

1. Goal: learn how to act by interacting with the fluid environment;

2. Agent(the 3-sphere rotator): the rotator consists of three spheres of
radius R placed on an imaginary circle, each sphere is connected to a rod
of length L and the rods are connected at the centre P of the circle;

3. State(sn): configuration of the rotator, 3-sphere rotator has 4
configurations and each configuration can transition to 2 configurations
by moving the spheres closer or further apart;

4. Action(an): enlarge/contract angle between spheres;

5. Reward(rn): certain rotation angle of the angle centroid of the
rotator(cn);

rn = ê∆cn
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(a) ê: desired direction (set clockwise as the positive direction);

(b) angle centroid of the swimmer is defined as : cn :=
∑3

i=1 ai(n)

3
,

e.g. at state 1: set the angle of sphere 1 as 0 and clockwise as
the positive direction:

θ1 = 0 rad
θ2 = −2.0944 rad
θ3 = 0.5944 rad

c1 =
θ1 + θ2 + θ3

3
= −0.5 rad

(c) θi(n): angle position of i-th sphere;

(d) ∆cn: rotation between states displaces cn, ∆cn = cn+1 − cn

6. D: cumulative angular displacement of the sphere centroid

D =
∑
n

ê∆cn

update Q(sn, an)

Q(sn, an)← Q(sn, an) + α[Rn + γmaxQ(sn+1, an+1)−Q(sn, an)] (B.1)

with α = 1, γ = 0.8, ϵ = 0.05

To implement the algorithm, let’s start by recollecting the states define earlier

and map each of the states to numbers:

Figure B.3 From left to right are configurations of Purcell’s rotator from state 0
to state 3 respectively.

The three-sphere rotator has four different configurations. In each training step,

the device transit from one configuration to another and updates the corresponding

entry in the Q-matrix according to Equation (B.1). Figure B.4 depicts a typical
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self-learning process: the rotator initially struggles to rotate in the clockwise direction

thus rotate clockwise and counterclockwise with D remains close to 0. The device

continues exploring the surrounding environment by performing different actions and

adapting its propulsion policy. After accumulating enough experiences, the device

develops an effective rotation policy that repeats the same sequence of actions except

with ϵ probability when random action is chosen and rotate with increasing D. The

rotation gaits obtained by Q-learning algorithm for the Purcell’s rotator is consistent

with Dreyfus’s device [24].

Figure B.4 A typical learning process of a self-learning three-sphere rotator as
translation not allowed. The learning outcome is consistent with Dreyfus et al.’s
device.

Sudden change in the Q-entry verification Increase the number of learning

steps and check the evolution of the differences of entries in the Q-matrix and check

the evolution of each Q-entry. According to the update scheme of Q-learning and
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deterministic reward matrix(R),

R =



action0 action1 action2 action3

state0 −Inf −0.010681 0.010681 −Inf

state1 0.010681 −Inf −Inf −0.001486

state2 −0.010681 −Inf −Inf 0.001486

state3 −Inf 0.001486 −0.001486 −Inf


(B.2)

Figures B.5 and B.6 show when the learning step is greater than 230, the

difference of entries of each row in the Q-matrix remains the same, Figure 19 is the

plot of each Q-entry evolves over learning step, the learning step of sudden change

is the same as the Q-entry difference. If we consider 0.01 as the immediate reward,

for the corresponding state, the action with 0.01 reward is always preferred and gets

updated, thus the cumulative future reward can be expressed as 0.01 +0.01 +0.01

+..., which cause the sudden change in the Q-entry when apply the ϵ−greedy scheme,

the less preferred action with lower reward is performed and lead to the sudden change

in the Q-entry as shown in Figure B.6.

Figure B.5 The evolution of the differences of entries in the Q-matrix.
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Figure B.6 The evolution of the Q-entries in the Q-matrix.

The total number of learning step is 600 with γ = 0.8, ϵ = 0.05. To verify the

sudden change of difference in the entries of Q-matrix based on the immediate reward

matrix:

1. for Q[0:](row 0 in the Q-matrix), to check the magnitude of the
sudden change: check the change of Q-entry at training step 77, Q[0,
1] change from -0.002 to 0.018; Q[0, 2] remains the same as 0.031; the
magnitude of the sudden change is 0.020; the typical scale of the reward
is from approximately 0.01 to 0.001, according to the update scheme of
Q-learning, if we use 0.01 as the immediate reward, the cumulative future
reward can be expressed as 0.01 + γ0.01 + γ0.01 + ..., thus, the sudden
change in the Q-entry is in the range of future reward. This reason also
holds for the following conditions;

2. Q[1:](row 1 in the Q-matrix), to check the magnitude of the sudden
change: check the change of Q-entry at training step 156, Q[1, 3] change
from 0 to 0.022, Q[1, 0] remains the same as 0.035, the magnitude of the
sudden change is 0.022;

3. for Q[2:](row 2 in the Q-matrix) , to check the magnitude of the sudden
change: check the change of Q-entry at training step 234, Q[2, 0] change
from 0 to 0.014, Q[2, 3] remains the same as 0.025, the magnitude of the
sudden change is 0.014;

4. for Q[3:](row 3 in the Q-matrix), to check the magnitude of the sudden
change: check the change of Q-entry at training step 105, Q[3, 1] change
from 0 to 0.018, Q[3, 2] remains the same as 0.030, the magnitude of the
sudden change is 0.018.
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