

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

COMPUTATION OF RISK MEASURES IN FINANCE AND PARALLEL
REAL-TIME SCHEDULING

by
Yajuan Li

Many application areas employ various risk measures, such as a quantile, to assess risks.

For example, in finance, risk managers employ a quantile to help determine appropriate

levels of capital needed to be able to absorb (with high probability) large unexpected losses

in credit portfolios comprising loans, bonds, and other financial instruments subject to

default. This dissertation discusses the computation of risk measures in finance and parallel

real-time scheduling.

Firstly, two estimation approaches are compared for one risk measure, a quantile,

via randomized quasi-Monte Carlo (RQMC) in an asymptotic setting where the number

of randomizations for RQMC grows large, but the size of the low-discrepancy point set

remains fixed. In the first method, for each randomization, it computes an estimator of the

cumulative distribution function (CDF), which is inverted to obtain a quantile estimator,

and the overall quantile estimator is the sample average of the quantile estimators across

randomizations. The second approach instead computes a single quantile estimator by

inverting one CDF estimator across all randomizations. Because quantile estimators are

generally biased, the first method leads to an estimator that does not converge to the true

quantile as the number of randomizations goes to infinity. In contrast, the second estimator

does, and a central limit theorem is established for it. To get an improvement, we use

conditional Monte Carlo (CMC) to obtain a smoother estimate of the distribution function,

and we combine this with the second RQMC to further reduce the variance. The result is a

much more accurate quantile estimator, whose mean square error can converge even faster

than the canonical rate of O(1/n).

Secondly, another risk measure is estimated, namely economic capital (EC), which

is defined as the difference between a quantile and the mean of the loss distribution,

given a stochastic model for a portfolio’s loss over a given time horizon. This work

applies measure-specific importance sampling to separately estimate the two components

of the EC, which can lead to a much smaller variance than when estimating both terms

simultaneously.

Finally, for parallel real-time tasks, the federated scheduling paradigm, which assigns

each parallel task a set of dedicated cores, achieves good theoretical bounds by ensuring

exclusive use of processing resources to reduce interferences. However, because cores

share the last-level cache and memory bandwidth resources, in practice tasks may still

interfere with each other despite executing on dedicated cores. To tackle this issue, this

work presents a holistic resource allocation framework for parallel real-time tasks under

federated scheduling. Under the proposed framework, in addition to dedicated cores,

each parallel task is also assigned with dedicated cache and memory bandwidth resources.

This work also shows the study of the characteristics of parallel tasks upon different

resource allocations following a measurement-based approach and proposes a technique

to handle the challenge of tremendous profiling for all resource allocation combinations

under this approach. Further, it proposes a holistic resource allocation algorithm that

well balances the allocation between different resources to achieve good schedulability.

Additionally, this work provides a full implementation of the framework by extending the

federated scheduling system with Intel’s Cache Allocation Technology and MemGuard.

It also demonstrates the practicality of the proposed framework via extensive numerical

evaluations and empirical experiments using real benchmark programs. In the end, the

discussion about the application of risk measures for real-time scheduling is given for future

work.

COMPUTATION OF RISK MEASURES IN FINANCE AND PARALLEL
REAL-TIME SCHEDULING

by
Yajuan Li

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

August 2022

Copyright © 2022 by Yajuan Li

ALL RIGHTS RESERVED

APPROVAL PAGE

COMPUTATION OF RISK MEASURES IN FINANCE AND PARALLEL
REAL-TIME SCHEDULING

Yajuan Li

Jing Li, Dissertation Co-advisor Date
Assistant Professor of Computer Science, NJIT

Marvin K. Nakayama, Dissertation Co-advisor Date
Professor of Computer Science, NJIT

James M. Calvin, Committee Member Date
Professor of Computer Science, NJIT

Pan Xu, Committee Member Date
Assistant Professor of Computer Science, NJIT

Wenge Guo, Committee Member Date
Associate Professor of Mathematical Sciences, NJIT

BIOGRAPHICAL SKETCH

Author: Yajuan Li

Degree: Doctor of Philosophy

Date: August 2022

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2022

• Bachelor of Science in Information Management and Information Systems,
Beijing Forestry University, Beijing, P.R. China, 2017

Major: Computer Science

Presentations and Publications:

Yajuan Li, Zachary T. Kaplan, and Marvin K. Nakayama, “Monte Carlo Methods for
Economic Capital,” INFORMS Journal on Computing (in submission), 2022.

Lanshun Nie, Chenghao Fan, Shuang Lin, Li Zhang, Yajuan Li, and Jing Li, “Holistic
Resource Allocation under Federated Scheduling for Parallel Real-Time Tasks,”
ACM Trans. Embedd. Comput. Syst, vol. 1, No. 1, Article 1, 2022.

Marvin K. Nakayama, Zachary T. Kaplan, Yajuan Li, Bruno Tuffin, and Pierre
L’Ecuyer “Quantile Estimation via a Combination of Conditional Monte Carlo
and Randomized Quasi-monte Carlo,” Winter Simulation Conference, pp. 301–312,
2020.

Zachary T. Kaplan, Yajuan Li, Marvin K. Nakayama, and Bruno Tuffin, “Randomized
Quasi-monte Carlo for Quantile Estimation,” Winter Simulation Conference, pp.
428-439, 2019.

Zachary T. Kaplan, Yajuan Li, and Marvin K. Nakayama, “Monte Carlo Methods for
Economic Capital,” Winter Simulation Conference, pp. 1754-1765, 2018.

iv

Where there is a will, there is a way.

Albert Einstein

v

ACKNOWLEDGMENT

I really appreciate my advisors Jing Li and Marvin K. Nakayama’s responsible guidance

and precious suggestions in my research work and personal life.

I would also like to thank my committee members: James M. Calvin, Pan Xu, and

Wenge Guo for attending my proposal presentation and dissertation defense.

Thanks professor Marvin K. Nakayama for funding me with his National Science

Foundation funding during 2017 fall–2019 fall. Thanks professor Jing Li for funding me

with her university start-up funding during 2019 fall–2021 fall.

Finally, thank my beloved husband, Mr. Deng, for supporting me in everything,

which greatly encouraged me in everyday life. Also, thank my family for taking care of me

which gives me so much power.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 Quantile and Randomized Quasi-Monte Carlo 1

1.2 RQMC and Conditional Monte Carlo . 3

1.3 Economic Capital and Measure-Specific Importance Sampling 5

1.4 Federated Scheduling and Holistic Resource Allocation 7

2 RANDOMIZED QUASI-MONTE CARLO FOR QUANTILE ESTIMATION . . 11

2.1 Mathematical Background . 11

2.2 Monte Carlo . 13

2.2.1 Large-Sample Properties of MC Quantile Estimator 13

2.3 Quasi-Monte Carlo . 16

2.4 One Approach of Randomized Quasi-Monte Carlo 18

2.4.1 Large-Sample Properties of RQMC Quantile Estimator ξ RQMC,m,r . 20

2.5 Another Approach of RQMC for Quantile Estimation 22

2.5.1 Large-Sample Properties of RQMC Quantile Estimator ξ̃RQMC,m,r . 22

2.6 Numerical Results . 23

3 QUANTILE ESTIMATION VIA A COMBINATION OF CONDITIONAL MONTE
CARLO AND RANDOMIZED QUASI-MONTE CARLO 27

3.1 Mathematical Framework . 27

3.2 Monte Carlo . 29

3.3 Conditional Monte Carlo . 30

3.4 Quasi-monte Carlo . 32

3.5 Randomized Quasi-monte Carlo . 35

3.6 Combining CMC With RQMC For Quantile Estimation 38

3.7 Numerical Results . 39

4 MONTE CARLO METHODS FOR ECONOMIC CAPITAL 43

vii

TABLE OF CONTENTS
(Continued)

Chapter Page

4.1 Mathematical Framework . 44

4.2 Simple Random Sampling . 45

4.3 Importance Sampling . 47

4.4 Methods that Combine SRS and IS . 50

4.4.1 Measure-Specific Importance Sampling 51

4.4.2 Importance Sampling with a Defensive Mixture Distribution 52

4.4.3 Double Estimator . 53

4.5 Asymptotic Analysis of i.i.d. Sum . 55

4.5.1 Importance Sampling via Exponential Twisting 56

4.5.2 Relative Error and Work-Normalized Relative Error 57

4.5.3 (Approximate) RE and WNRE for Estimators of µ , ξ , and η . . . 60

4.6 Numerical and Simulation Results . 71

4.6.1 Exact and Approximate RE for i.i.d. Sum 72

4.6.2 Portfolio Credit Risk Model . 73

5 HOLISTIC RESOURCE ALLOCATION UNDER FEDERATED SCHEDULING
FOR PARALLEL REAL-TIME TASKS . 80

5.1 Related Work . 80

5.2 Impact of Resource Allocations on Parallel Real-Time Tasks 82

5.2.1 Experimental Setup . 82

5.2.2 Impact of Core, Cache and Memory Bandwidth Allocations 86

5.2.3 Fitting WCET using Nonlinear Regression 91

5.3 Problem Specification and Prior Results 94

5.4 Optimal Algorithm. 96

5.5 Holistic Resource Allocation for Federated Scheduling 102

5.5.1 Algorithm Overview . 103

5.5.2 Procedures of the Algorithm . 106

viii

TABLE OF CONTENTS
(Continued)

Chapter Page

5.5.3 Complexity of the Algorithm . 107

5.6 Numerical Evaluation . 108

5.6.1 Experimental Setup . 108

5.6.2 Schedulability Performance . 110

5.6.3 Running Time Efficiency . 111

5.6.4 Impact of Different Benchmarks 111

5.6.5 Ablation Study of Our Algorithm 112

5.6.6 Impact of Platform Configurations and Task Parameters 113

5.7 Empirical Evaluation . 113

5.8 Discussion and Future Work . 116

6 CONCLUSION . 124

APPENDIX A FURTHER NUMERICAL STUDY OF RELATIVE ERROR AND
ITS APPROXIMATION . 126

APPENDIX B PROOF OF THEOREM 2 . 129

APPENDIX C PROOF OF THEOREM 3 . 130

APPENDIX D PROOF OF THEOREM 4 . 131

APPENDIX E PROOF OF THEOREM 5 . 132

APPENDIX F PROOF OF THEOREM 6 . 134

APPENDIX G PROOF OF THEOREM 7 . 138

APPENDIX H PROOF OF THEOREM 8 . 140

APPENDIX I TWO-STEP IS TO ESTIMATE EXTREME QUANTILE AND
EC IN PCRM WITH RANDOM LOSS GIVEN DEFAULT 145

I.1 One-Step IS Conditional on Z to Estimate P(Y > x | Z) 146

I.2 Two-Step IS to Estimate P(Y > x) . 150

I.3 Two-step IS to Estimate Quantile . 153

REFERENCES . 155

ix

LIST OF TABLES

Table Page

4.1 Results Comparision . 79

5.1 Mean Relative Error of Fitting WCET . 92

5.2 Notations . 98

5.3 Overhead Measurement . 114

x

LIST OF FIGURES

Figure Page

2.1 The left plot shows RMSE for fixed m = 4096 as r increases, and the right
graph displays RMSE for fixed r = 32 as m increases. Both plots have
log-log scale. 25

3.1 The left panel shows the RMSE for fixed m = 4096 as r increases, and the
right panel displays the RMSE for fixed r = 32 as m increases. Both plots
have log-log scale. The notation “:d” in the legend specifies the problem
dimension without applying CMC. For CRv:d with d = 3 and 22, the plots
for v = 1 and 2 lie on top of each other. 41

4.1 For G0 as exponential (mean 1) and β = 1.1 in (4.31), the log-log plots show
the RE and its approximation RĔ, computed numerically (i.e., not estimated
via simulation), as functions of the dimension m. In the top two rows, the
plots display the exact RE of estimators of the EC η (top left panel), the
p-quantile ξ (middle row, left panel), and the mean µ (middle row, right
panel). The bottom left panel shows RE[η] and its approximation RĔ[η].
The middle panels do not give results for MSIS(θ?), which uses IS(θ?)
(resp., SRS) to estimate ξ (resp., µ). 74

5.1 The slowdown (i.e., 1/speedup) of benchmark programs when assigning
different numbers of cores, cache partitions, and memory bandwidth
(MBW) partitions. 118

5.2 The slowdown (i.e., 1/speedup) of Facesim when assigning different numbers
of cores, cache partitions, and memory bandwidth (MBW) partitions. . . . 119

5.3 Fitting the measured execution times of RemDup, Sort, and Fluid using
nonlinear regression. 120

5.4 Mean relative error of fitting the measured execution times of different
benchmarks when increasing the number of sampled data points used for
the nonlinear regression: the solid line is the “global” MRE calculated using
all the 2,600 data points, while the dashed line is the “local” MSE calculated
using only the sampled data points. 121

5.5 An example task set with 4 tasks on 4 cores with 6 cache partitions and 12
memory bandwidth partitions. The empty cells have a value of 0 for the
corresponding variable. 121

5.6 Comparison with the optimal variations for task sets on 13 cores with 10 cache
and 20 MBW partitions. 122

5.7 Experiments with a subset of benchmarks on 13 cores. 122

xi

LIST OF FIGURES
(Continued)

Figure Page

5.8 Experiments with specific type of benchmarks on 26 cores. 122

5.9 Ablation study of holistic algorithm on task sets with different percentages of
cache- and MBW-sensitive tasks on 26 cores, 20 cache partitions, and 40
MBW partitions. 123

5.10 Fraction of schedulable task sets with different task set generation parameters. 123

5.11 Empirical experiments on 13 cores. 123

A.1 For G0 as N(1,1) and β = 1.1 in (4.31), the log-log plots show the RE
and its approximation RĔ, computed numerically (i.e., not estimated via
simulation), as functions of the dimension m. In the top two rows, the
plots display the exact RE of estimators of the EC η (top left panel), the
p-quantile ξ (middle row, left panel), and the mean µ (middle row, right
panel). The bottom left panel shows RE[η] and its approximation RĔ[η].
The middle panels do not give results for MSIS(θ?), which uses IS(θ?)
(resp., SRS) to estimate ξ (resp., µ). 127

A.2 For G0 as Erlang (s = 8 stages, scale parameter 1) and β = 1.1 in (4.31), the
log-log plots show RE and its approximation RĔ, computed numerically
(i.e., not simulation), as functions of dimension m. In the top two rows, the
plots display the exact RE of estimators of the EC η (top left panel), the
p-quantile ξ (middle row, left panel), and the mean µ (middle row, right
panel). The bottom left panel shows RE[η] and its approximation RĔ[η].
The middle panels do not give results for MSIS(θ?), which uses IS(θ?)
(resp., SRS) to estimate ξ (resp., µ). 128

xii

CHAPTER 1

INTRODUCTION

In this chapter, we will give the introduction of the following four chapters’ topics, together

with their contributions.

1.1 Quantile and Randomized Quasi-Monte Carlo

Quantile yields valuable insights in applications such as risk management, where answers

to important questions lie in modeling the tails of the distribution. For a continuous random

variable Y with cumulative distribution function (CDF) F , the p-quantile (0 < p < 1) is the

smallest constant ξ such that P(Y ≤ ξ) = p; i.e., ξ = F−1(p). For example, the median

is the 0.5-quantile, also known as the 50th percentile. In finance, a quantile is called a

value-at-risk (e.g., see [58]), which is often used to specify appropriate capital levels.

Nuclear engineers employ a 0.95-quantile in probabilistic safety assessments (PSAs) of

nuclear power plants. When a PSA is performed using Monte Carlo (MC), the U.S. Nuclear

Regulatory Commission (NRC) requires accounting for the resulting sampling error; e.g.,

see [130], Section 3.2 of [128], and Section 24.9 of [131]. This can be accomplished by

providing a confidence interval (CI) for ξ . Risk management aims to protect a financial

institution from future uncertainties. For example, risk managers employ various risk

measures, such as quantile, (e.g., Section 2.3 of [91]) to help determine appropriate levels

of capital needed to be able to absorb (with high probability) large unexpected losses in

credit portfolios comprising loans, bonds, and other financial instruments subject to default.

The typical MC approach to estimate ξ first estimates the CDF F , and then inverts

the estimated CDF to obtain a quantile estimator; e.g., see Section 2.3 of [117]. Suppose

a response Y can be generated from d ≥ 1 independent and identically distributed (i.i.d.)

uniforms on [0,1). Then for a specified sample size n≥ 1, we can form an MC estimator of

F by drawing a random sample of n independent uniformly distributed points from the unit

1

hypercube [0,1)d; transforming each uniform vector into an observation of the response Y ;

and computing the empirical distribution function of the n values of Y .

In contrast, quasi-Monte Carlo (QMC) evaluates the response function at a deter-

ministic set of n points that are carefully placed so that they more evenly cover [0,1)d than

a typical random sample; see [99] and [79] for overviews of QMC. A QMC estimator of

a mean can have a faster rate of convergence than the corresponding MC estimator. But

providing explicit error bounds for a QMC estimator can be quite difficult.

Randomized QMC (RQMC) provides a way of producing computable error bounds.

RQMC randomizes a QMC point set r ≥ 2 independent times, where an estimator is

computed from each randomization. Taking the sample mean and sample variance across

the r randomizations, one can then compute a CI. RQMC has been implemented in various

ways, including random shift modulo 1 [23, 124], random digital shift [80], and scrambling

[104]. Previous work on applying QMC or RQMC for quantile estimation includes [109],

[56], [68], and [48], but these works do not consider the problem of constructing explicit

error bounds, as one wants for a nuclear PSA.

For an RQMC estimator of a mean when using a digital net with full nested

scrambling ([104, 106, 105, 107]), [87] establishes a central limit theorem (CLT) with

a normally distributed limit as the size m of the point set grows large, but the nested

scrambling can be computationally costly. For other ways of implementing RQMC, as

m gets large, an estimator computed from a randomization of the point set may not satisfy

a CLT with a Gaussian limit. For example, for estimators based on randomly shifting

(modulo 1) a lattice, [76] analyze the limiting distribution, which they generally find to be

nonnormal, and their Figures 15 and 19 show histograms displaying distinct asymmetry

and/or multiple modes. Thus, for a CI based on RQMC to be asymptotically valid, we may

need the number r of randomizations to grow to infinity, which is the large-sample setting

we now consider. In RQMC practice, though, it is common to choose r as not too large,

2

e.g., r = 30, motivated by a common rule of thumb for when the asymptotics of a CLT

roughly start holding.

Contribution Chapter 2 examines asymptotic properties of two RQMC estimators of

a quantile, where r grows large but the size m of the low-discrepancy point set remains

fixed. In one approach, for each randomized point set, we compute a CDF estimator,

which is inverted to obtain a quantile estimator. We then compute the sample average

of the quantile estimators across the r randomizations to obtain the final quantile estimator.

Because quantile estimators are generally biased, this estimator does not converge to the

true quantile in our asymptotic regime, which keeps m fixed. This is in contrast to the

corresponding RQMC estimator of a mean, which does converge to the true mean in this

large-sample framework.

Our second quantile estimator instead computes a single CDF estimator using the

responses from all randomizations, and then inverts the overall CDF estimator to obtain

a single quantile estimator. We show that this RQMC quantile estimator, even though it

is biased for fixed r and m, does converge to the true quantile as r grows large with m

fixed. This RQMC quantile estimator also satisfies a [12] representation and a CLT with a

Gaussian limit. We further provide numerical results comparing the two RQMC quantile

estimators, along with MC estimators, as either r or m grows large, with the other fixed.

1.2 RQMC and Conditional Monte Carlo

In Chapter 3, we do the quantile estimation by combining two techniques. The first

one, Conditional Monte Carlo (CMC), replaces the empirical CDF by an average of n

realizations of the CDF of Y conditional on partial information that does not completely

reveal Y , but from which we can easily compute its conditional CDF. It is often possible to

do that in a way that the resulting (average) conditional CDF is continuous and smooth.

The second technique replaces the independent samples of Y by RQMC samples.

More specifically, we assume that to simulate Y , we generate a vector U of d independent

3

random numbers uniform over (0,1) that drive the simulation, where d < ∞ is fixed, and

Y can be computed as a function of these random numbers. Many MC simulations work

that way, sometimes with a random (and bounded) d, but this is often not a problem [73,

70]. RQMC replaces the n independent realizations of U by a set of n RQMC points in d

dimensions. These points are not independent, but marginally, each of them has the uniform

distribution over (0,1)d , so each RQMC realization of Y has the correct distribution, and

the n points together cover the unit cube more evenly (in some sense) than independent

random points. If the CMC is designed so that the CDF estimator becomes a smooth

function of U in the neighborhood of ξp, then the combination with RQMC can be much

more effective, because the variance of the CDF estimator can then be reduced significantly,

and may converge at a faster rate than the canonical one.

Because we assumed that d < ∞ is fixed, our paper does not cover infinite-

dimensional problems, as can arise, e.g., when studying steady-state behavior or when

some variates are generated via acceptance-rejection (because the number of rejections

before acceptance is unbounded). But there are constructions that can dynamically add

new coordinates to an RQMC point set, or pad the first QMC-generated coordinates by

MC (pseudo-random) ones; e.g., see [100].

Prior work on applying QMC and RQMC for quantile estimation include [109], [56],

[68], [48], and [61], although none of these papers combined it with CMC. Using CMC

alone (without RQMC) for quantile estimation was proposed and studied in [95] and further

discussed in [8]. Combining CMC with RQMC for density estimation is studied in [78].

These authors mention a possible application to quantile estimation, but leave its study for

future work.

Contribution The standard estimator takes the p-quantile of the empirical distribution of

independent observations obtained by MC. To get an improvement, Chapter 3 uses CMC to

obtain a smoother estimate of the distribution function, and we combine this with RQMC to

4

further reduce the variance. The result is a much more accurate quantile estimator, whose

mean square error can converge even faster than the canonical rate of O(1/n).

1.3 Economic Capital and Measure-Specific Importance Sampling

Chapter 4 studies the economic capital (EC) η = ξ − µ , the difference between the p-

quantile ξ and the mean loss µ , where p ≈ 1; see [66, p. 5], [88, Section 2.4], and [116,

p. 194]. Also called the credit [59, p. 595], relative [57, p. 108] or mean-adjusted VaR

[91, p. 300], the EC is used to determine capital needed to cover unexpected losses with

high probability. Indeed, [24], p. 63, appears to employ EC with p = 0.999: “In line with

our economic capital framework, economic capital for credit risk is set at a level to absorb

with a probability of 99.9% very severe aggregate unexpected losses within one year. Our

economic capital for credit risk is derived from the loss distribution of a portfolio via Monte

Carlo Simulation of correlated rating migrations.” (The bank used p = 0.9998 before 2017;

see [24, p. 46].)

Monte Carlo simulation with simple random sampling (SRS) may produce noisy EC

estimates because the rarity of extreme losses makes estimating ξ with p≈ 1 difficult. This

motivates applying variance-reduction techniques (VRTs), such as importance sampling

(IS); e.g., see Chapters V and VI of [9] and Chapter 4 of [38] for overviews. [40]

develop IS methods for estimation of a tail probability of multifactor credit risk models

using a Gaussian copula to model dependencies of default events among obligors (e.g.,

corporations to which the bank extended loans). [15] extend the IS methods to incorporate

dependencies with non-Gaussian copulas.

While IS can be effective in reducing the variance of estimators of tail probabilities

and extreme quantiles, it may produce worse estimators of the mean loss, the other

component of the EC. An IS technique designed to work well for estimating an extreme

quantile typically samples more in the tail of interest and less around the mean, degrading

the mean’s estimator. This motivates separately estimating the quantile and the mean

5

via different simulation techniques. In particular, we use IS for the estimation of the

quantile and independently apply SRS for estimating the mean. [42] call this approach

measure-specific importance sampling (MSIS), which they employ to separately estimate

the numerator and denominator in a ratio of means in which only one mean corresponds to

a rare event. We also consider two more methods that combine IS and SRS in other ways.

One applies IS with a defensive mixture (ISDM), as developed by [50], in which the IS

distribution is a mixture of a new distribution and the original one. The other approach we

call a double estimator (DE), which utilizes both IS and SRS to estimate both ξ and µ .

We derive large-sample theory for the EC estimators, establishing a central limit

theorem (CLT) for each. When the loss Y is the sum of m independent and identically

distributed (i.i.d.) random variables, we also provide an analytical comparison of the

estimators of η , ξ , and µ , in an asymptotic regime where m→ ∞ and the quantile level

p simultaneously approaches 1. Originally developed by [41] to analyze SRS and IS

estimators of quantiles, this limiting framework also has practical relevance for studying

EC: bank portfolios can easily be exposed to thousands or even tens of thousands of

obligors, and extreme quantiles are used in industry. Our theoretical analysis shows that

MSIS can outperform the other methods to estimate η , which we additionally verify

numerically. Through simulation experiments with a more complex portfolio credit risk

model (PCRM), we further demonstrate the benefits when p≈ 1 of applying MSIS over the

other approaches for the estimation of η . For the models in [40] and [15], calculating µ may

not require simulation because of the tractability of their models. But more complicated

stochastic models may preclude analytically evaluating the mean loss.

Contribution In Chapter 4, we analyze five different estimators of the EC. Although

many of the techniques have been previously applied successfully to study problems arising

in operations research and management science, some may not have been used before in

a finance context. Our theoretical asymptotic analysis of the i.i.d. sum model (Section

6

4.5) provides insights into the behavior of the methods observed in experiments with the

more complicated PCRM (with dependent obligors) in Section 4.6. While the analysis

of SRS and IS quantile estimators in [41] covers only part (i.e., the numerator) of the

asymptotic variances, we extend the theory by employing some approximations to study

the entire asymptotic variances (both the numerators and denominators), providing a fuller

understanding of the methods. Furthermore, our analysis examines the other methods for

estimating quantiles and also studies all five estimators of the EC. The behavior of the

EC estimators on the i.i.d. sum model carries over to the simulation experiments with the

PCRM (Section 4.6.2): MSIS and ISDM greatly outperform the other methods, with MSIS

slightly better than ISDM.

1.4 Federated Scheduling and Holistic Resource Allocation

Because workload consolidation can effectively reduce the energy consumption, wiring

weight, hardware costs, and software complexity, recently there is a technology trend of

consolidating even more applications and services onto shared hardware for embedded

systems and edge servers. On the hardware side, there is a rapidly increasing penetration

of multi-core/many-core CPUs into systems, as well as an increased sharing of common

resources by computing units (e.g., memory bus and last-level cache). Moreover, the

applications running in embedded systems and edge servers today have increasingly high

computation needs and stringent timing constraints. For example, an edge server needs to

provide real-time responsiveness to various applications, such as augmented reality, video

analytics and traffic light controls, that offload computation to the shared edge [119, 115].

These technology trends mean that: (1) the parallel execution is critical for satisfying the

high computation needs and meeting the stringent real-time constraints of applications;

and (2) the execution of applications is more unpredictable due to computing units sharing

resources like cache and memory bus.

7

Among the different scheduling policies for executing parallel real-time tasks upon

multi-core platforms, the federated scheduling paradigm [82, 54, 127, 3, 14, 13, 123] has

attracted a lot of attention due to its good theoretical bounds and empirical advantages.

The key idea of the federated scheduling paradigm is to allocate a set of dedicated cores

to each task that needs to run in parallel on multiple cores to meet its deadline and

force the remaining tasks to execute serially on the remaining cores under some classical

multiprocessor scheduling algorithms. Because each task that runs in parallel has its

dedicated cores for execution, there is no preemption, migration, and interference on its

cores caused by other tasks. In addition to reducing practical overheads, each of such tasks

can be analyzed in isolation, which significantly reduces the pessimism of analyzing the

schedulability of complex parallel real-time tasks. Thus, federated scheduling achieves the

best performance bounds compared to other classical algorithms, such as global earliest

deadline first and global rate monotonic scheduling.

However, in today’s multicore hardware, cores share the last-level cache and memory

bandwidth resources, so tasks may interfere with each other despite executing on dedicated

cores. The interferences due to cache and memory bandwidth contention can be even

more severe for embedded platforms or edge servers, where the computing power and

cache/memory space are limited.

Chapter 5 aims to address the pressing demand for parallel real-time scheduling

over multicore platforms with shared cache and memory bus. Specifically, we focus on

platforms with multicore processors with L1 (and L2) caches private to each core and

shared Last Level Cache (LLC), which is connected via a shared memory bus to the shared

Direct Random Access Memory (DRAM). In this work, we take a measurement-based

approach and limit our attention to addressing the contention in the shared LLC and

memory bus for parallel real-time tasks. Note that there are other sources of interference

on modern platforms, such as Miss Status Holding Registers (MSHRs) [132], DRAM

bank conflicts [139, 63], and DRAM controller [112, 121], as well as the contention in

8

software systems like blocking due to shared internal kernel data structures [144]. Some of

these interferences (e.g., MSHRs contention) can be mostly incorporated into the measured

worst-case execution times by co-running the task with specially designed interfering

workloads during the profiling, while some have been mitigated by various mechanisms.

We leave the integration of the proposed strategy and the orthogonal mitigation mechanisms

to other resources, such as DRAM bank-level partitioning, as future work.

Contribution In Chapter 5, we first study the characteristics of parallel tasks upon

different resource allocations following a measurement-based approach. Since each task

can be allocated with different numbers of cores, cache partitions, and memory bandwidth

partitions, profiling the worst-case execution times for all the thousands of combinations

of resource allocation can take a tremendous amount of time. To address this issue, we

propose to perform the measurement only for a small number of combinations and apply a

non-linear regression to obtain estimations for the other combinations.

Next, we present a holistic cache and memory bandwidth resource allocation strategy

for parallel real-time tasks under federated scheduling. In addition to dedicated cores, each

parallel task is also assigned with dedicated cache and memory bandwidth resources to

reduce resource interferences between tasks. We leverage the insights from the heuristic

resource allocation strategy CaM[136] for allocating cache and memory bandwidth for

sequential tasks and extend the federated scheduling system using Intel’s Cache Allocation

Technology and MemGuard for allocating cache and memory bandwidth. To balance well

the allocation between different resources and achieve good schedulability, we develop

a mixed-integer nonlinear programming (MINLP) formulation that can optimally solve

this problem. Moreover, we propose a heuristic-based greedy algorithm that has good

schedulability and short running times that are orders of magnitude faster than solving

the MINLP. Additionally, we provide a full implementation of our framework by extending

the federated scheduling system with Intel’s Cache Allocation Technology and MemGuard.

9

Finally, we demonstrate the practicality of our proposed framework via extensive numerical

evaluations and empirical experiments using real benchmark programs.

10

CHAPTER 2

RANDOMIZED QUASI-MONTE CARLO FOR QUANTILE ESTIMATION

This Chapter considered two different randomized quasi-monte carlo (RQMC) quantile

estimators: the first estimator converges to the wrong value as randomization number goes

to infinity, in contrast, our other RQMC quantile estimator does converge to the desired

value of quantile.

The rest of this chapter unfolds as follows. Section 2.1 describes the basic

mathematical problem. In Sections 2.2 and 2.3, we review how to estimate a quantile

using MC and QMC, respectively. Sections 2.4 and 2.5 develop our two RQMC quantile

estimators. We provide numerical results in Section 2.6. All proofs will appear in a

follow-up paper.

2.1 Mathematical Background

For a given (deterministic) function wY : [0,1)d →ℜ with fixed integer d ≥ 1, let

Y = wY (U1,U2, . . . ,Ud) = wY (U) (2.1)

where U1,U2, . . . ,Ud , are i.i.d. U [0,1) (i.e., uniform on the interval [0,1)) random variables,

so U = (U1,U2, . . . ,Ud) ∼U [0,1)d . We call wY a response function, which may represent

a simulation program that produces a response Y using d i.i.d. uniforms as input. The

function wY can be quite complicated, first converting U ∼U [0,1)d into a random vector

Z with non-identically distributed components having a dependence structure, and then

performing computations using Z, to finally produce Y . Let F be the CDF of Y , which we

assume cannot be computed analytically nor numerically. For each y ∈ℜ, we have that

F(y) = P(Y ≤ y) = P(wY (U)≤ y) =
∫
[0,1)d

I(wY (u)≤ y)du, (2.2)

11

where I(·) denotes the indicator function, which equals 1 (resp., 0) when its argument is

true (resp., false).

For a fixed value 0 < p < 1, define ξ ≡ ξp = F−1(p) ≡ inf{y : F(y) ≥ p}, which is

the p-quantile of F (equivalently, of Y). Thus, in the case that F is continuous, exactly p

of the mass of F lies below ξ . Let f denote the derivative (when it exists) of F , and we

will assume throughout that f (ξ) > 0, which ensures that y = ξ is the unique solution of

the equation F(y) = p.

The goal is to estimate ξ using some form of Monte Carlo or quasi-Monte Carlo. The

general approach we will follow to estimate ξ = F−1(p) is to first estimate the CDF F and

then invert the estimated CDF to obtain a quantile estimator. We further want to provide a

measure of the error of our quantile estimator.

We next motivate the problem and illustrate the notation in the following example.

Example 1 Consider a system experiencing a random load L with a random capacity

C to withstand the load. The system fails when L ≥ C, so Y ≡ C− L is the system’s

safety margin, which has CDF F . An example is a nuclear power plant undergoing a

hypothesized accident, as studied in [28] and [118], where L denotes the peak cladding

temperature (PCT) during the postulated accident and C is the temperature at which the

cladding material suffers damage. It is reasonable to consider the PCT as a random variable

because it depends on unforeseen aspects of the events (e.g., time and size of a pipe break)

during the accident, and the capacity C may be unknown because of the variability of the

cladding’s material properties, which are modeled as random variables.

In Equation (2.2), we can think of the function wY as follows. It first takes d i.i.d.

uniforms as input, transforming them into an observation of (L,C), possibly with some

dependence structure. Then wY outputs Y =C−L.

Let θ = P(Y ≤ 0), which is the failure probability, and a regulator may specify that θ

must be less than a given threshold θ0, e.g., θ0 = 0.05. The requirement that θ < θ0 can be

equivalently reformulated in terms of a quantile: the θ0-quantile ξ of Y must satisfy ξ > 0.

12

2.2 Monte Carlo

We now describe how to apply MC to estimate ξ . Fix a sample size n ≥ 2, and

generate a sample of n independent random vectors Ui, i = 1,2, . . . ,n, where each Ui =

(Ui,1,Ui,2, . . . ,Ui,d)∼U [0,1)d . For each i = 1,2, . . . ,n, define Yi = wY (Ui), so Y1,Y2, . . . ,Yn

is a sample of n i.i.d. copies of Y , with each Yi ∼ F by Equation (2.1). Then we define the

MC estimator of F as the empirical distribution function

F̂MC,n(y) =
1
n

n

∑
i=1

I(Yi ≤ y). (2.3)

A natural estimator of ξ = F−1(p) is the MC quantile estimator

ξ̂MC,n = F̂−1
MC,n(p), (2.4)

which can be computed through order statistics. Specifically, let Y1:n ≤Y2:n ≤ ·· · ≤Yn:n be

the ordered values of the sample Y1,Y2, . . . ,Yn. Let d·e denote the ceiling function, and we

have that

ξ̂MC,n = Ydnpe:n. (2.5)

2.2.1 Large-Sample Properties of MC Quantile Estimator

A Bahadur representation [12], described next, provides a useful approach for analyzing

the large-sample properties of ξ̂MC,n. For n sufficiently large, there exists a neighborhood

Nn of ξ such that

F̂MC,n(y)≈ F̂MC,n(ξ)+F(y)−F(ξ) uniformly for y in Nn,

and Nn contains ξ̂MC,n with probability 1. Thus, because ξ̂MC,n = F̂−1
MC,n(p), we have that

p≈ F̂MC,n(ξ̂MC,n)≈ F̂MC,n(ξ)+F(ξ̂MC,n)−F(ξ)≈ F̂MC,n(ξ)+ f (ξ)(ξ̂MC,n−ξ),

13

where the last step follows from a first-order Taylor approximation. Under our assumption

from Section 2.1 that f (ξ)> 0, rearranging terms leads to

ξ̂MC,n ≈ ξ +
p− F̂MC,n(ξ)

f (ξ)
,

so the quantile estimator roughly equals the true quantile plus a linear transformation of a

CDF estimator evaluated at ξ .

Reference [12] formalizes the above discussion. Specifically, if f (ξ)> 0, then

ξ̂MC,n = ξ +
p− F̂MC,n(ξ)

f (ξ)
+Rn, (2.6)

with
√

nRn⇒ 0 as n→ ∞, (2.7)

where ⇒ denotes convergence in distribution (e.g., Section 25 of [17]). We call (2.6)–

(2.7) a (weak) Bahadur representation. Under the additional assumption that F is twice

differentiable at ξ , [12] actually proves a stronger result than (2.7), namely that Rn vanishes

at rate O(n−3/4 logn) almost surely (a.s.); see Section 2.5 of [117] for refinements.

The Bahadur representation implies that the MC quantile estimator satisfies a CLT.

From (2.6), we have

√
n
[
ξ̂MC,n−ξ

]
=

√
n

f (ξ)

[
p− F̂MC,n(ξ)

]
+
√

nRn. (2.8)

By Equation (2.3), F̂MC,n(ξ) averages i.i.d. copies of I(Y ≤ ξ), which has mean E[I(Y ≤

ξ)] = p and variance ψ2
MC ≡ Var[I(Y ≤ ξ)] = p(1− p). Thus, the ordinary CLT (e.g.,

Theorem 27.1 of [17]) ensures

√
n
[

p− F̂MC,n(ξ)
]
⇒ N(0,ψ2

MC) as n→ ∞, (2.9)

where N(a,b2) is a normal random variable with mean a and variance b2. Hence, using

(2.9) and (2.7) in (2.8), and applying Slutsky’s theorem (e.g., p. 19 of [117]), we get that

√
n
[
ξ̂MC,n−ξ

]
⇒ 1

f (ξ)
N(0,ψ2

MC)+0 D
= N(0,κ2

SRS) as n→ ∞, (2.10)

14

where D
= denotes equality in distribution, and

κ
2
SRS ≡

ψ2
MC

f 2(ξ)
=

p(1− p)
f 2(ξ)

. (2.11)

Therefore, even though ξ̂MC,n is not a sample average, it still obeys a CLT because

the Bahadur representation shows that the large-sample asymptotics of ξ̂MC,n can be

well-approximated by those of F̂MC,n(ξ),which is a sample average satisfying the CLT

in Equation (2.9).

One measure of the error of a Monte Carlo estimator is its (root) mean squared error

((R)MSE). For our MC quantile estimator ξ̂MC,n in (2.4), Theorem 2 of [10] shows that

MSE
[
ξ̂MC,n

]
= E

[
(ξ̂MC,n−ξ)2

]
= n−1

κ
2
SRS +o(n−1) = O(n−1)

as n→ ∞, where for two functions g1(n) and g2(n), we write that g1(n) = O(g2(n)) as

n→ ∞ if there exists a constant c such that |g1(n)| ≤ c|g2(n)| for all n sufficiently large,

and g1(n) = o(g2(n)) means that g1(n)/g2(n)→ 0 as n→ ∞. Thus, although ξ̂MC,n is

generally biased, its MSE is dominated by its asymptotic variance κ2
SRS from (2.11); also

see Lemma 1 of [10]. We then see that

RMSE
[
ξ̂MC,n

]
= n−1/2

κSRS +o(n−1/2) = O(n−1/2) (2.12)

as n → ∞, which provides a measure of the rate of convergence of the MC quantile

estimator.

Another way of describing the error in ξ̂MC,n is through a confidence interval. We

can unfold the CLT Equation (2.10) to obtain an asymptotic β -level (0 < β < 1) two-sided

CI for ξ as J′MC,n ≡ [ξ̂MC,n± z1−(1−β)/2κSRS/
√

n], where zq = Φ−1(q) for 0 < q < 1 and

Φ is the N(0,1) CDF (e.g., z0.95 = 1.96). However, this CI is not directly implementable

because f (ξ) in κ2
SRS of (2.11) is typically unknown. But it is possible (e.g., see [18]) to

construct a consistent estimator τ̂2
MC,n of κ2

SRS; i.e., τ̂2
MC,n⇒ κ2

SRS as n→ ∞. We can then

15

obtain a large-sample β -level two-sided CI for ξ as

JMC,n ≡
[
ξ̂MC,n± z1−(1−β)/2τ̂MC,n/

√
n
]
,

which is asymptotically valid in the sense that limn→∞ P(ξ ∈ JMC,n) = β , or equivalently,

P
(
|ξ̂MC,n−ξ | ≤ z1−(1−β)/2τ̂MC,n/

√
n
)
→ β , as n→ ∞.

As a consequence, we have that |ξ̂MC,n− ξ | = Op(n−1/2) as n→ ∞, where the notation

Xn = Op(an) for a sequence of random variables Xn, n≥ 1, and constants an, n≥ 1, means

that Xn/an is bounded in probability (Section 1.2.5 of [117]).

2.3 Quasi-Monte Carlo

Rather than estimating ξ with random sampling as in Monte Carlo, QMC instead evaluates

the response function at carefully placed deterministic points in [0,1)d , which are chosen

to be more evenly dispersed over [0,1)d than a typical random sample of i.i.d. uniforms.

Let Pn = {u1,u2, . . . ,un} be a low-discrepancy point set of size n, where each ui =

(ui,1,ui,2, . . . ,ui,d) ∈ [0,1)d . Such a Pn can be constructed deterministically as a lattice

[120] or a digital net, including ones designed by Halton, Faure, Sobol’, and Niederreiter;

see Chapters 3–5 of [99] or Chapter 5 of [79] for an overview.

The QMC estimator of F(y) in Equation (2.2) is

F̂QMC,n(y) =
1
n

n

∑
i=1

I(wY (ui)≤ y).

We call F̂QMC,n(·) the QMC CDF estimator, and we invert F̂QMC,n to obtain the QMC

quantile estimator

ξ̂QMC,n = F̂−1
QMC,n(p). (2.13)

16

Just as for the MC p-quantile estimator in Equation (2.5), we can compute ξ̂QMC,n in (2.13)

by sorting wY (ui), i= 1,2, . . . ,n, in ascending order, and setting ξ̂QMC,n equal to the dnpe-th

smallest one.

Recall that by Equation (2.12), the RMSE of the MC quantile estimator converges

at rate O(n−1/2), where n is the sample size, and we would like to provide analogous

(deterministic) error bounds for |ξ̂QMC,n−ξ |. One approach is to try the following. For the

moment, suppose that we are interested in computing the integral

γ ≡
∫
[0,1)d

h(u)du (2.14)

for some integrand h : [0,1)d→ℜ, and we estimate γ by the QMC estimator (1/n)∑
n
i=1 h(ui),

with low-discrepancy point set Pn = {u1,u2, . . . ,un}. Then the Koksma-Hlawka inequality

states that ∣∣∣∣∣1n n

∑
i=1

h(ui)− γ

∣∣∣∣∣≤ D∗(Pn)VHK(h), (2.15)

where D∗(Pn) is the star-discrepancy of Pn, which is a measure of the uniformity of Pn

over [0,1)d , and VHK(h) is the Hardy-Krause (HK) variation of the integrand h, specifying

its roughness; see Section 5.6 of [79] for details. Low-discrepancy point sets Pn often

have D∗(Pn) = O((logn)v/n) for some constant v > 0 (e.g., v = d−1 or v = d) as n→∞.

Hence, when the integrand h is sufficiently smooth so that VHK(h)< ∞, (2.15) implies that

the deterministic rate at which the QMC integration error decreases is O((logn)v/n) as

n→ ∞, better than MC’s rate of O(n−1/2).

But there are several problems with this approach of trying to bound the QMC error.

When estimating the CDF F(y) in Equation (2.2), the integrand is hy(u) = I(wY (u) ≤ y),

which is discontinuous in u and typically has VHK(hy) = ∞, so the upper bound in the

Koksma-Hlawka inequality (2.15) is infinite. Even if the HK variation of the integrand h

were finite, computing the bound in (2.15) is at least as difficult as computing the integral in

(2.14), and the bound can be quite conservative, making (2.15) impractical. Moreover, the

17

bound in (2.15) for integrand hy is for the QMC CDF estimator at y, not for |ξ̂QMC,n− ξ |,

which is what we are actually interested in.

2.4 One Approach of Randomized Quasi-Monte Carlo

Rather than trying to provide a deterministic error bound for the QMC quantile estimator,

we can instead attempt to use RQMC to obtain a CI for ξ . For a given low-discrepancy

point set, the basic idea is to randomize the set r≥ 2 independent times in a way that retains

the low-discrepancy property for each randomization, and compute an estimator from each

of the r independent randomizations. Then we can form a CI from the sample mean and

sample variance across randomizations. For a fair comparison to the p-quantile estimator

using MC in Equation (2.4) or via QMC in Equation (2.13), each of which is based on n

evaluations of the response function wY in Equation (2.1), we also want to apply RQMC

using the same total number n of function evaluations. We next describe details on how

RQMC may be implemented.

Let r ≥ 2 be the number of randomizations to use for RQMC, and let Pm =

{u1,u2, . . . ,um} be a low-discrepancy point set of size m = n/r, where each ui ∈ [0,1)d ,

and we assume that n/r is an integer. For each k = 1,2, . . . ,r, we want to perform a

randomization of Pm to obtain another point set

P
(k)
m = {X(k)

1 ,X(k)
2 , . . . ,X(k)

m }, (2.16)

with each X(k)
i = (X (k)

i,1 ,X (k)
i,2 , . . .X (k)

i,d), such that

X(k)
i ∼U [0,1)d, for each i = 1,2, . . . ,m, and each k = 1,2, . . . ,r, (2.17)

and

P
(1)
m ,P

(2)
m , . . . ,P

(r)
m are i.i.d. (2.18)

18

One simple way of constructing P
(k)
m in (2.16) satisfying (2.17) and (2.18) is through

independent random shifts. First generate S1,S2, . . . ,Sr as r independent random vectors,

where each Sk = (Sk,1,Sk,2, . . . ,Sk,d) ∼ U [0,1)d . For each k = 1,2, . . . ,r, we will shift

(modulo 1) each point in the original set Pm by Sk to obtain P
(k)
m . Specifically, for x =

(x1,x2, . . . ,xd)∈ℜd and y= (y1,y2, . . . ,yd)∈ℜd , define the operator⊕ as x⊕y= ((x1+y1)

mod 1,(x2 + y2) mod 1, . . . ,(xd + yd) mod 1). For each k = 1,2, . . . ,r, we then obtain a

shifted point set P
(k)
m in Equation (2.16) with each X(k)

i = ui⊕Sk; i.e., each point in the

original point set is shifted by the same random uniform Sk. It is easy to show that each

ui⊕Sk ∼U [0,1)d , so Equation (2.17) holds. Each shifted point set P
(k)
m uses the same

low-discrepancy point set Pm but a different random shift Sk. The m points in any P
(k)
m

will be stochastically dependent because they all share the same random shift Sk. But

the r shifted point sets P
(k)
m , k = 1,2, . . . ,r, are stochastically independent because Sk,

k = 1,2, . . . ,r, are independent, thereby implying Equation (2.18).

When the original point set Pm is a lattice, each shifted point set P
(k)
m retains a

lattice structure. But if Pm is a digital net, its random shift P
(k)
m may no longer be a digital

net. In this latter case, we instead can apply scrambling to obtain each P
(k)
m satisfying

Equations (2.17) and (2.18), where the scrambled point set still possesses the desirable

properties of the original point set; see [105, 106].

In whatever way we obtain the r randomized point sets P
(1)
m ,P

(2)
m , . . . ,P

(r)
m

satisfying Equations (2.17) and (2.18), for each randomization k = 1,2, . . . ,r, let

F̂RQMC,m,k(y) =
1
m

m

∑
i=1

I(wY (X
(k)
i)≤ y),

which is a CDF estimator computed from the randomized point set P(k)
m . Even though X(k)

i ,

i = 1,2, . . . ,m, are stochastically dependent, we still have that E[F̂RQMC,m,k(y)] = F(y) for

each y by Equation (2.17). We invert F̂RQMC,m,k to obtain

ξ̂RQMC,m,k = F̂−1
RQMC,m,k(p), (2.19)

19

where ξ̂RQMC,m,k, k = 1,2, . . . ,r, are i.i.d. Then an RQMC estimator of ξ is

ξ RQMC,m,r =
1
r

r

∑
k=1

ξ̂RQMC,m,k. (2.20)

As noted previously at the end of Section 2.3, when estimating the CDF in Equation

(2.2), the integrand I(wY (u) ≤ y) typically has infinite HK variation, making theoretical

bounds of the form in Equation (2.15) not useful. But when instead estimating the integral

in Equation (2.14) with an integrand h(u) having finite HK variation, applying RQMC leads

to certain benefits over MC and QMC. First, for the estimator from each randomization

in RQMC, the rate at which its variance decreases is O(m−2(logm)d) as m grows, and

even faster in some cases, as detailed by [80, 106, 125]. In contrast, the MC variance

of a sample of size m decreases at rate O(m−1). Compared to QMC, RQMC allows

for practical estimation of the approximation error through a CLT. Moreover, even when

the HK variation is infinite, making inequalities such as Equation (2.15) uninformative,

numerical experiments show that the empirical behavior of RQMC’s convergence rate can

be substantially better than that of MC [126].

2.4.1 Large-Sample Properties of RQMC Quantile Estimator ξ RQMC,m,r

The RQMC quantile estimator ξ RQMC,m,r in (2.20) satisfies the following CLT, where

(F̂RQMC,m, ξ̂RQMC,m) denotes a generic copy of (F̂RQMC,m,k, ξ̂RQMC,m,k).

Proposition 1 If τ ′2RQMC,m ≡ Var[ξ̂RQMC,m]< ∞, then for fixed m≥ 1,

√
r
(

ξ RQMC,m,r−E[ξ̂RQMC,m]
)
⇒ N(0,τ ′2RQMC,m) as r→ ∞. (2.21)

It is important to note that the centering constant on the left-hand side of CLT (2.21) is

not the true p-quantile ξ but rather E[ξ̂RQMC,m]. While F̂RQMC,m(y) is an unbiased estimator

of F(y) for each m and y, its inverse ξ̂RQMC,m = F̂−1
RQMC,m(p) is typically a biased estimator

of ξ because of the nonlinearity of the inversion operation. Because ξ RQMC,m,r averages r

20

i.i.d. copies of ξ̂RQMC,m, we see that

E[ξ RQMC,m,r] = E[ξ̂RQMC,m] 6= ξ (2.22)

in general for fixed m. In addition, for fixed m, we have that a.s.,

lim
r→∞

ξ RQMC,m,r = E[ξ̂RQMC,m] 6= ξ (2.23)

by the strong law of large numbers, so ξ RQMC,m,r converges to the wrong value as r→ ∞

for fixed m.

Because Bias[ξ RQMC,m,r] = Bias[ξ̂RQMC,m] = E[ξ̂RQMC,m]−ξ , we have that

MSE
[
ξ RQMC,m,r

]
=
(

Bias
[
ξ RQMC,m,r

])2
+Var

[
ξ RQMC,m,r

]
=
(

Bias
[
ξ̂RQMC,m

])2
+

1
r

Var
[
ξ̂RQMC,m

]
. (2.24)

Although the second term in (2.24) decreases at rate r−1 as r→ ∞, (2.22) implies that the

first is nonzero and does not shrink for fixed m, so

RMSE
[
ξ RQMC,m,r

]
= Bias

[
ξ̂RQMC,m

]
+o(1) = O(1) (2.25)

as r→ ∞ with m fixed. Thus, the RMSE of ξ RQMC,m,r does not converge to 0 as r→ ∞ for

fixed m.

Moreover, suppose we unfold the CLT (2.21) to build a β -level CI for ξ as

JRQMC,m,r = (ξ RQMC,m,r± z1−(1−β)/2τ̂
′
RQMC,m,r/

√
r), (2.26)

where τ̂ ′2RQMC,m,r = (1/(r−1))∑
r
k=1[ξ̂RQMC,m,k)−ξ RQMC,m,r]

2 is a consistent estimator of

τ ′2RQMC,m. Because the midpoint of JRQMC,m,r is the biased estimator ξ RQMC,m,r, the CI is

centered at the wrong point on average, which can lead to poor coverage as r→ ∞ with m

fixed. We can try to address this issue by also letting m→ ∞, but we would then need to

determine the relative rates at which m→ ∞ and r→ ∞ to ensure a CLT still holds.

21

2.5 Another Approach of RQMC for Quantile Estimation

As we explained in Section 2.4.1, the RQMC quantile estimator ξ RQMC,m,r in Equation

(2.20) does not converge to ξ as r → ∞ for fixed m. We next consider another RQMC

estimator that, although biased, does converge in this setting.

Rather than compute a quantile estimator from each of the r randomizations, as in

Equation (2.19), we instead construct a single overall CDF estimator from all r random-

izations, and then invert this to obtain a single overall quantile estimator. Specifically, first

define the CDF estimator based on all rm evaluations of the response function wY as

F̃RQMC,m,r(y) =
1
r

r

∑
k=1

F̂RQMC,m,k(y) =
1

rm

r

∑
k=1

m

∑
i=1

I(wY (X
(k)
i)≤ y), (2.27)

which we call the overall CDF estimator. We then invert this to obtain another RQMC

quantile estimator

ξ̃RQMC,m,r = F̃−1
RQMC,m,r(p). (2.28)

2.5.1 Large-Sample Properties of RQMC Quantile Estimator ξ̃RQMC,m,r

Because F̂RQMC,m,k, k = 1,2, . . . ,r, are i.i.d., with each 0 ≤ F̂RQMC,m,k(y) ≤ 1 for all y, we

have that the overall CDF estimator F̃RQMC,m,r in (2.27) at ξ satisfies a CLT

√
r
[
F̃RQMC,m,r(ξ)− p

]
⇒ N(0,ψ2

RQMC,m) as r→ ∞, with m fixed. (2.29)

By applying the theoretical framework developed in [21], we can establish the following

properties of the corresponding quantile estimator ξ̃RQMC,m,r in (2.28).

Theorem 1 If f (ξ)> 0, then for any fixed m > 0,

ξ̃RQMC,m,r = ξ +
p− F̃RQMC,m,r(ξ)

f (ξ)
+R′r, (2.30)

with
√

rR′r⇒ 0, as r→ ∞. (2.31)

22

Moreover, for each fixed m > 0,

√
r
[
ξ̃RQMC,m,r−ξ

]
⇒ N(0,τ2

RQMC,m) as r→ ∞, (2.32)

where τ2
RQMC,m = ψ2

RQMC,m/ f 2(ξ) for ψ2
RQMC,m in Equation (2.29). If in addition

{r(ξ̃RQMC,m,r−ξ)2 : r ≥ 1} is uniformly integrable (e.g., p. 338 of [17]), then

RMSE
[
ξ̃RQMC,m,r

]
= r−1/2

τ
2
RQMC,m +o(r−1/2) = O(r−1/2) (2.33)

as r→ ∞ for fixed m.

Note that (2.30) and (2.31) establish a Bahadur representation for ξ̃RQMC,m,r as r→∞

with m fixed. Also, even though ξ̃RQMC,m,r is biased for fixed r and m, the CLT in (2.32) is

centered at the true quantile ξ , in contrast to the CLT Equation (2.21). Comparing (2.33)

with Equation (2.25), we see the advantage of the RQMC quantile estimator ξ̃RQMC,m,r in

Equation (2.28) over ξ RQMC,m,r in Equation (2.20): as r→ ∞ with m fixed, the RMSE of

ξ̃RQMC,m,r shrinks to 0 but the RMSE of ξ RQMC,m,r does not. The RMSE of ξ̃RQMC,m,r

converges at rate r−1/2, which is the standard MC rate. But the numerical results in the

next section show that RQMC can lead to substantially smaller MSE than MC, so we view

RQMC as an MSE-reduction technique.

2.6 Numerical Results

We now present results from running numerical experiments with the model in Example 2

from Section 2.1, which is motivated by studies of nuclear power plants undergoing

hypothesized accidents; e.g., see [28], [118], and [2]. The goal is to estimate the

0.05-quantile ξ of the safety margin Y ∼ F , where Y = C− L. Let G denote the joint

CDF of (L,C), and let GL and GC be the marginal CDFs of the load L and the capacity C,

respectively. As in [28] and [118], we assume that L and C are independent, and we specify

GC as triangular with support [1800,2600] and mode 2200.

23

Paper [2] assumes that the load’s marginal distribution GL is a mixture of t = 4

lognormals, which we also use. Specifically, for each s= 1,2, . . . , t, let GL,〈s〉 be the CDF of

L〈s〉 = exp(µ〈s〉+σ〈s〉Z〈s〉), where Z〈s〉 ∼ N(0,1), and µ〈s〉 and σ〈s〉 > 0 are given constants,

so L〈s〉 has a lognormal distribution. Our experiments set µ〈s〉 = 7.4+ 0.1s and σ〈s〉 =

0.01+ 0.01s, which are as in [96]. Then define GL as a mixture of GL,〈s〉, 1 ≤ s ≤ t; i.e.,

GL(y) = ∑
t
s=1 λ〈s〉GL,〈s〉(y) for given positive constants λ〈s〉, 1 ≤ s ≤ t, summing to 1. We

set λ〈1〉= 0.99938×0.9981×0.919, λ〈2〉= 0.00062, λ〈3〉= 0.99938×0.9981×0.081, and

λ〈4〉 = 0.99938×0.0019, where the factors in each product match branching probabilities

given in an event tree in Figure 2 of [28].

We can define the function wY in Equation (2.1) to take d = 3 i.i.d. uniform inputs to

generate Y = wY (U1,U2,U3). The function wY uses U1 and U2 to generate the load L∼ GL

as follows. First it employs U1 to generate a discrete random variable K with support R =

{1,2, . . . , t} and probability mass function P(K = s) = λ〈s〉. If K = s, then generate L having

CDF GL,〈s〉, which is lognormal. Specifically, if K = s, let L = exp(µ〈s〉+σ〈s〉Φ
−1(U2))

where Φ is the N(0,1) CDF. Also, wY generates the capacity as C = G−1
C (U3). Finally,

wY returns Y =C−L. Because of the analytical tractability of the model, we were able to

numerically compute the 0.05-quantile as ξ = 11.79948572.

To examine the effect of the problem dimension d on RQMC, we also considered

another stochastically equivalent version of the model with larger d. Specifically, we

artificially increase the dimension by generating the lognormal L〈s〉 as the exponential

of a sum of d′ = 20 independent normals with different marginal variances so that for

each s, the sum of the d′ marginal variances equals σ2
〈s〉. To specify the different marginal

variances, we sampled d′ independent chi-square random variables Vs,1,Vs,2, . . . ,Vs,d′ , and

set the marginal variance of the jth summand as σ2
〈s〉Vs, j/∑

d′
j′=1Vs, j′ . The overall problem

dimension is then d = 22. We used the same marginal variances when running multiple

independent replications.

24

101 102

10−0.5

100

100.5

r

R
M

SE
MC1
MC2

RQMC1:22
RQMC2:22
RQMC1:3
RQMC2:3

103 104
10−1

100

m

R
M

SE

MC1
MC2

RQMC1:22
RQMC2:22
RQMC1:3
RQMC2:3

Figure 2.1 The left plot shows RMSE for fixed m= 4096 as r increases, and the right graph
displays RMSE for fixed r = 32 as m increases. Both plots have log-log scale.

Figure 2.1 presents two log-log plots of the RMSE for the estimators of ξ using

MC or RQMC, where we estimated the RMSEs from 103 independent replications. Each

estimator is based on a total of n= rm evaluations of the response function wY . For RQMC,

m represents the point-set size, and r is the number of randomizations. For each version

of the model dimension d (= 3 or 22), we compare two RQMC estimators of ξ , denoted

RQMCv:d for v = 1 or 2 in the figure. RQMC1:d is the estimator ξ RQMC,m,r in Equation

(2.20), and RQMC2:d is the estimator ξ̃RQMC,m,r in Equation (2.28). In the following, we

often simplify notation by omitting the “:d” in the discussions. For RQMC, we used a

lattice point set with a random shift modulo 1 for randomization, utilizing the code of [67].

We also ran experiments employing a Sobol’ point set with a random digital shift ([124]

shows this is a good practical choice), and the results (not shown) are qualitatively similar.

For MC, we also computed two different estimators, denoted MCv for v = 1 or 2 in

the figure. (For MC, we plot the results for only d = 22 and not for d = 3 because the results

are stochastically equivalent.) The v = 1 estimator (i.e., MC1) averages r independent

p-quantile estimators, where each estimator is calculated by inverting a CDF estimator

based on a sample of size m. The v = 2 estimator computes a single p-quantile estimator

by inverting a CDF estimator from all n = rm outputs.

25

The graph on the left side of Figure 2.1 has fixed m = 4096 and r increasing, and

the plot on the right has fixed r = 32 and m increasing. (We chose r = 32 for the right

plot as this corresponds to the common (but sometimes inadequate) rule of thumb that the

asymptotics of a CLT roughly start holding for sample sizes at least 30.) To interpret the

left plot of Figure 2.1, recall that MSE decomposes as bias squared plus variance. For

RQMC2, RMSE shrinks at rate O(r−1/2) as r grows with m fixed by Equation (2.33). But

for RQMC1, Equation (2.24) shows that the bias contribution to MSE does not change as

r increases with m fixed. (For v = 1,2, the RMSE of MCv behaves like that of RQMCv.)

For small r, the variance dominates the MSE for v = 1, and the RMSEs for v = 1 and 2 are

close. For v = 1, as r grows, the variance shrinks, but the bias does not change, so the bias

eventually dominates the RMSE, and the RMSEs for v = 1 and 2 then separate for large r.

For RQMC, the curves for d = 3 and d = 22 are qualitatively similar, but the RMSEs for

d = 3 are smaller, where the plots for v = 2 have equal slope but different intercepts.

For the right plot of Figure 2.1, for MC or RQMC, the v= 1 and 2 estimators’ RMSEs

differ for small m. But as m grows, we see that the RMSE for v = 1 and 2 eventually merge.

26

CHAPTER 3

QUANTILE ESTIMATION VIA A COMBINATION OF CONDITIONAL MONTE
CARLO AND RANDOMIZED QUASI-MONTE CARLO

In this chapter, we consider to estimate quantile by using the combination of condi-

tional Monte Carlo (CMC) and randomized quasi-Monte Carlo (RQMC). The chapter’s

remainder is organized as follows. In Section 3.1, we define the mathematical setting and

introduce an example that we carry all along the paper. In the five following sections,

we recall the basic definitions and properties of MC, CMC, QMC, RQMC, and the

CMC+RQMC combination, and we explain how each of them works to estimate a quantile.

Section 4.6 reports the results of numerical experiments with our running example.

3.1 Mathematical Framework

Consider a random variable Y (also called the response) defined by

Y = bY (U1,U2, . . . ,Ud) = bY (U) (3.1)

for a given (deterministic) response function bY : (0,1)d → R with fixed integer d ≥

1, where U1,U2, . . . ,Ud are i.i.d. U (0,1) (i.e., uniform on the interval (0,1)) random

variables, so U = (U1,U2, . . . ,Ud) ∼U (0,1)d . The function bY can be quite complicated,

first transforming U into a random vector V having a specified joint distribution, and then

using V in detailed computations to finally output a response Y ; e.g., see Example 2 below.

Let F be the CDF of Y :

F(y) = P(Y ≤ y) = P(bY (U)≤ y) =
∫
(0,1)d

I(bY (u)≤ y)du for all y ∈ R,

where I denotes the indicator function. We assume that we know how to compute Y for

any realization of U, but we do not know how to compute F or the quantiles analytically

or numerically. Our goal is to estimate the p-quantile ξ = ξp for a fixed p. We assume

27

f (ξ) = F ′(ξ) exists and is strictly positive, so that y = ξ is the unique root of F(y) = p.

To estimate ξ , we will estimate F , replace it by its estimator in the equation F(y) = p, and

take the root as our quantile estimator.

We illustrate the notation through the following example, motivated by a probabilistic

safety assessment (PSA) of a nuclear power plant (NPP); see Section 3.2 of [129].

Example 2 A system experiencing a random load L has a random capacity C to withstand

the load, and the system suffers damage when L >C. We define the system’s safety margin

as Y = C−L, and let F denote its CDF. This situation arises, e.g., in a NPP undergoing a

hypothesized accident, where L denotes the peak cladding temperature (PCT), and C is the

temperature at which the cladding is damaged; e.g., see [28]. Nuclear engineers model L as

a random variable as its value depends on unforeseen aspects of how the event progresses.

The capacity C is also considered as random because it involves uncertainties regarding the

cladding’s material properties.

Nuclear engineers employ detailed computer codes ([49]) to generate an observation

of (L,C), which often entails numerically solving systems of differential equations. We

express this through two deterministic functions bL : (0,1)d → R and bC : (0,1)d → R as

(L,C) = (bL(U),bC(U)), (3.2)

where U∼U (0,1)d . Note that we evaluate the functions bL and bC using the same uniform

vector U, so L and C can be dependent. The response function in (3.1) is bY (u) = bC(u)−

bL(u) for u ∈ (0,1)d , so we obtain an observation of the safety margin as Y = bY (U).

Let θ = P(Y < 0), which is the probability of sustaining damage during an event, and

suppose that a regulator has specified that θ must not exceed a given threshold p, e.g., p =

0.05. We can restate the requirement that θ ≤ p in terms of a quantile: the p-quantile ξ of

Y must satisfy ξ ≥ 0. A quantile provides information that can be more easily interpretable

than the probability θ because ξ is expressed in the same units (temperature) as L and

28

C. Indeed, nuclear risk studies are often performed using quantiles; e.g., see U.S. Nuclear

Regulatory Commission [129]. 2

3.2 Monte Carlo

To estimate ξ via MC, we generate n i.i.d. random vectors Ui ∼ U (0,1)d , i = 1,2, . . . ,n,

put Yi = bY (Ui) for each i, and define the empirical CDF by

F̂MC,n(y) =
1
n

n

∑
i=1

I(Yi ≤ y) =
1
n

n

∑
i=1

I(bY (Ui)≤ y), (3.3)

which is an unbiased MC estimator of F(y). The MC estimator of the p-quantile ξ is then

ξ̂MC,n = F̂−1
MC,n(p). (3.4)

It can be easily computed as ξ̂MC,n = Ydnpe:n where d·e denotes the ceiling function and

Y1:n ≤ Y2:n ≤ ·· · ≤ Yn:n are the n observations Y1,Y2, . . . ,Yn sorted by increasing order.

Under our assumption that f (ξ) > 0, the MC p-quantile estimator obeys a central

limit theorem (CLT):

√
n[ξ̂MC,n−ξ]⇒ N(0,τ2

MC) as n→ ∞,

where⇒ denotes convergence in distribution (Chapter 5 of [17]),

τ
2
MC =

Var[I(Y ≤ ξ)]

f 2(ξ)
=

p(1− p)
f 2(ξ)

(3.5)

is the CLT’s asymptotic variance, and Var[·] is the variance operator; see Section 2.3.3 of

[117].

We can construct a confidence interval (CI) for ξ as follows. Let τ̂2
MC,n be a

consistent estimator of τ2
MC, e.g., as in [18]; i.e., τ̂2

MC,n ⇒ τ2
MC as n→ ∞. Then for a

fixed confidence level 0 < β < 1, we define a CI for ξ as JMC,n = [ξ̂MC,n± zβ τ̂MC,n/
√

n],

where zβ =Φ−1(1−(1−β)/2) and Φ is the N(0,1) CDF. The CI is asymptotically valid in

29

the sense that limn→∞ P(ξ ∈ JMC,n) = β . There are also other approaches for constructing

a CI for ξ via MC; see [93].

As shown by [10], the root mean square error (RMSE) of ξ̂MC,n, defined as

(E[(ξ̂MC,n−ξ)2])1/2, decreases at the canonical MC rate of O(n−1/2) as n→ ∞. This is a

rather slow rate of convergence, as reducing the error by a factor of 10 requires a 100-fold

increase in n.

3.3 Conditional Monte Carlo

When estimating a mean, CMC (Section V.4 of [9]) reduces sampling error by analytically

integrating out some of the variability. [95] applies CMC with MC for quantile estimation

(also see [8]). [26] combine CMC with Latin hypercube sampling (LHS; [90]), which can

be viewed as a variant of stratified sampling in high dimensions, or as a primitive form of

RQMC [105].

To apply CMC for quantile estimation, we apply CMC to estimate F , then we invert

this CMC estimator of F to obtain the CMC quantile estimator. More specifically, let G

be a sigma-field not containing all of the information needed to compute Y (we discuss

specific examples of G below). Using iterated expectations (p. 448 of [17]), we can write

F(y) = E[I(Y ≤ y)] = E[E[I(Y ≤ y) | G]] = E[q(y,G)], (3.6)

where q(y,G) := P(Y ≤ y | G), which we assume is easily computable. Averaging n

i.i.d. realizations of q(y,G), say q(y,G1), . . . ,q(y,Gn), gives the following unbiased CMC

estimator of F(y):

F̂CMC,n(y) =
1
n

n

∑
i=1

q(y,Gi). (3.7)

By inverting F̂CMC,n, we get the CMC p-quantile estimator

ξ̂CMC,n = F̂−1
CMC,n(p). (3.8)

30

Computing ξ̂CMC,n typically requires employing a numerical root-finding method, such as

the bisection or Newton’s method (Chapter 7 of [102]), which incurs extra computation

cost.

In our setting where Y = bY (U) with U∼U (0,1)d , we may for example define G as

(the sigma-field generated by) a random vector

Z≡ (Z1,Z2, . . . ,Zl) = bZ(U) (3.9)

for a deterministic function bZ : (0,1)d → Rl for some l ≥ 1, using the same U (0,1)d

vector U from (3.1), making Y and Z generally dependent. Thus, bZ(U) has all of the

details needed to produce one realization of the information contained in the sigma-field

G . Although the function bZ is defined to take as input all d coordinates from U in (3.1), it

may not use all of them. By writing Zi = bZ(Ui), (3.7) becomes

F̂CMC,n(y) =
1
n

n

∑
i=1

q(y,Zi) =
1
n

n

∑
i=1

q(y,bZ(Ui)). (3.10)

Example 2 (continued) To apply CMC to our example, we define the conditioning vector

in (3.9) as Z = L, so bZ(U) = bL(U), where bL is from (3.2). As in [28], we now assume

that the load L and the capacity C are independent. From a modeling perspective, it is

reasonable to have L and C independent as L is determined by random variables that affect

how the hypothesized accident unfolds, whereas C depends on uncertainties about the

material properties of the cladding. Let GC be the marginal CDF of C. We then write

the CDF F of the safety margin Y =C−L as

F(y) = P(C−L≤ y) = E[P(C ≤ y+L | L)] = E[GC(y+L)] (3.11)

by the independence of L and C. Thus, we have that q(y,Z) = GC(y+L) = GC(y+bL(U)),

and (3.10) gives F̂CMC,n(y) = (1/n)∑
n
i=1 GC(y+bL(Ui)) as the CMC estimator of the CDF.

31

The independence of L and C holds, e.g., when the two functions bL(u) and bC(u) in

(3.2) depend only on disjoint subsets of the components of u = (u1,u2, . . . ,ud) ∈ (0,1)d .

Specifically, consider a subset S ⊂ {1,2, . . . ,d} of the coordinate indices, and let S̄ =

{1,2, . . . ,d}−S be its complement. For a vector u ∈ (0,1)d , let uS ∈ (0,1)|S | (resp.,

uS̄ ∈ (0,1)|S̄ |) be the projection of u onto the coordinates in S (resp., S̄). Now

assume that there exist functions b∗L : (0,1)|S | → R and b∗C : (0,1)|S̄ | → R such that

bL(u) = b∗L(uS) and bC(u) = b∗C(uS̄) for every u ∈ (0,1)d . Then L = bL(U) = b∗L(US)

and C = bC(U) = b∗C(US̄) are independent because US and US̄ are, as U∼U (0,1)d has

independent components. 2

As noted by [95], when f (ξ) > 0, the CMC p-quantile estimator obeys the CLT
√

n[ξ̂CMC,n−ξ]⇒ N(0,τ2
CMC) as n→ ∞, where

τ
2
CMC = Var[q(ξ ,G)]/ f 2(ξ). (3.12)

A variance decomposition (e.g., p. 456 of [17]) implies that for each y ∈ R,

Var[I(Y ≤ y)] = Var[E[I(Y ≤ y) | G]]+E[Var[I(Y ≤ y) | G]]

= Var[q(y,G)]+E[Var[I(Y ≤ y) | G]] ≥ Var[q(y,G)].

As a consequence, Var[F̂CMC,n(y)] = Var[q(y,G)]/n≤Var[I(Y ≤ y)]/n = Var[F̂MC,n(y)] for

each y ∈ R, and by taking y = ξ , this also gives τ2
CMC ≤ τ2

MC by (3.5) and (3.12). This

shows that CMC reduces the asymptotic variance of the p-quantile estimator compared to

MC, but the RMSE of ξ̂CMC,n still decreases at the canonical MC rate of O(n−1/2), although

with a smaller hidden constant.

3.4 Quasi-monte Carlo

QMC replaces the n independent random points Ui by a set Pn of n deterministic

points ui = (ui,1,ui,2, . . . ,ui,d) ∈ [0,1)d which cover the unit hypercube more evenly than

typical independent random points, in the sense that their empirical distribution has a low

32

discrepancy with respect to the uniform distribution over [0,1)d , lower than for typical

independent random points. Here we take the interval [0,1) closed on the left because

most constructions have points with coordinates equal to 0, but this will disappear when the

points are randomized with RQMC. (In practice, we want to avoid 0 and 1 because it causes

a problem when generating random variates by inversion from distributions having an

infinite tail.) The most common constructions of low-discrepancy point sets are integration

lattices [120] and digital nets [99, 25].

QMC theory was developed mainly for when we want to approximate an integral of

the form γ :=
∫
[0,1)d h(u)du for some function h : [0,1)d → R by the average γ̂QMC,n =

(1/n)∑
n
i=1 h(ui) over the points ui ∈Pn. There is a large variety of Cauchy-Schwarz-type

inequalities of the form ∣∣γ̂QMC,n− γ
∣∣≤ D(Pn) ·V (h),

where D(Pn) measures the discrepancy of Pn and V (h) measures the variation of h.

One special case is the classical Koksma-Hlawka inequality in which D(Pn) is the star

discrepancy D∗(Pn) and V is the Hardy-Krause variation VHK [99, Section 2.2], but it is

impractical because these quantities are too hard to compute. However, other more easily

computable discrepancies, together with matching definitions of V , also exist [25, 70, 75].

Explicit point-set constructions can achieve D(Pn) = O(n−α+ε) for any ε > 0, often for

α = 1 (e.g., for the star discrepancy) and for α > 1 for some discrepancies. Then, for

any h for which V (h) < ∞ for the corresponding V , the integration error converges to 0 at

the same rate (at worst) as D(Pn). It is true that the hidden constant in the convergence

order can increase very quickly with the dimension d, but there are nevertheless many

large-dimensional integrands for which QMC is much more accurate than MC. Typically,

this occurs when h can be decomposed approximately as a sum of low-dimensional

functions; see [110, 70, 25] and [75].

33

Reference [109] approximate F and ξ as in (3.3) and (3.4), with the random Ui’s

replaced by the QMC points ui. This gives

F̂QMC,n(y) =
1
n

n

∑
i=1

I(bY (ui)≤ y) (3.13)

and ξ̂QMC,n = F̂−1
QMC,n(p). One could think of applying QMC theory to show that F̂QMC,n(y)

converges to F(y) faster than F̂MC,n(y). But this CDF estimator corresponds to applying

QMC to the integrand h(u) = hy(u) := I(bY (u) ≤ y), which is a discontinuous function

of u. This discontinuity implies that the variation V (hy) is typically infinite, so there is

no error bound, and the gain from QMC is usually very small in that situation; see, e.g.,

Sections 15.12 and 16.5 of [108] and [71].

We saw earlier that CMC reduces the variance of a CDF estimator, but much more

importantly, it also provides a very powerful opportunity to make q(y,bZ(u)) continuous

and smooth in u. Then, its combination with QMC could give a much better approximation

of F than the QMC approximation in (3.13), and also a much better quantile estimator.

Assuming that the conditioning sigma-field G in (3.6) is defined by Z = bZ(U) in (3.9), the

idea is simply to replace each random Ui in (3.10) with ui ∈Pn to get a CDF approximation

F̂CQ,n(y), whose inversion gives an approximation ξ̂CQ,n = F̂−1
CQ,n(p) of the p-quantile.

(Here, the subscript “CQ” is an abbreviation for the combination CMC+QMC.)

CMC has already been applied in the setting of estimating the derivative of an

expectation or of a quantile with respect to some model parameter [77, 34, 33]. It was

also merged with QMC or RQMC to estimate a mean ([73] and [47]). [78] obtain large

gains by combining CMC with RQMC for density estimation.

A major limitation of QMC, however, is that it does not provide an easily computable

bound or estimate for the error on the CDF and for the errors |ξ̂QMC,n−ξ | and |ξ̂CQ,n−ξ |

on the quantile approximations. This motivates RQMC, described next.

34

3.5 Randomized Quasi-monte Carlo

RQMC turns QMC into a variance reduction method by randomizing the points in a way

that they retain their low discrepancy as a group, while each individual point has the

uniform distribution over the unit hypercube [104, 106, 73, 74, 79, 71]. By doing r ≥ 2

independent randomizations, one can obtain an unbiased estimator for the variance of

the CDF estimator by using the sample variance across randomizations, and eventually

an estimator for the variance of the quantile estimator and a confidence interval for the

quantile. But as noted by [61], one has to be careful in how to adapt the RQMC approach

for estimating a mean to estimating the quantile ξ instead, because the quantile estimator

is generally biased.

We now provide more details on RQMC. To have a fair comparison with the MC

and CMC estimators in Equations (3.4) and (3.8), which are based on n evaluations of

an integrand, we want to implement RQMC with the same total number of integrand

evaluations. Thus, we start with a low-discrepancy point set of size m < n, which we

randomize r = n/m times, where we assume that r ≥ 2 is integer-valued. Specifically,

let Pm = {u1,u2, . . . ,um} ⊂ [0,1)d be a low-discrepancy point set of size m. We

randomize this point set r = n/m independent times to obtain r independent randomized

point sets P
(k)
m , k = 1,2, . . . ,r, with P

(k)
m = {X(k)

1 ,X(k)
2 , . . . ,X(k)

m } and each X(k)
i =

(X (k)
i,1 ,X (k)

i,2 , . . .X (k)
i,d) has the uniform distribution over (0,1)d .

Appropriate randomizations of QMC point sets, which preserve the low-discrepancy

properties, depend on the type of point-set construction. For integration lattices, a

random shift modulo 1 is the most common and appropriate approach [23, 124, 73].

It works as follows. For the kth randomization, we generate a single random vector

Sk = (Sk,1,Sk,2, . . . ,Sk,d) ∼ U (0,1)d and we add it to all the points ui of the original

set Pm, modulo 1, component-wise. This gives a randomized point set P
(k)
m =

{X(k)
1 ,X(k)

2 , . . . ,X(k)
m }, where each X(k)

i =((ui,1+Sk,1) mod 1,(ui,2+Sk,2) mod 1, . . . ,(ui,d+

Sk,d) mod 1). Clearly, each X(k)
i has the uniform distribution over (0,1)d , and the point set

35

keeps its lattice structure; it becomes a shifted lattice. We get independent randomizations

simply by taking r independent random shifts Sk, k = 1,2, . . . ,r. When estimating a mean,

the resulting estimator is called a randomly-shifted lattice rule, and its variance properties

have been studied extensively [23, 124, 73, 75].

For digital nets, the uniformity is usually measured in terms of equidistribution of the

points for certain families of rectangular boxes, and a random shift does not preserve these

properties. Other types of randomizations such as random digital shifts [80, 25, 71], and

various scrambles [104, 106, 108], do preserve them.

To construct an asymptotically valid CI based on RQMC, it is desirable for the

RQMC estimator to obey a CLT with a Gaussian limit. When estimating a mean, [87]

proves such a CLT as the size m of the point set grows large for RQMC using a digital

net with full nested scrambling [104]. However, this scrambling is computationally more

expensive than random shifts (digital or modulo 1).

For mean estimators based on randomly-shifted lattice rules, [76] determine that the

limiting distribution (as m→∞) is generally not Gaussian, with histograms from numerical

studies exhibiting asymmetry and multiple modes. Also, to specify the number r of

randomizations, practitioners often choose r as not too large, e.g., r = 10 or 20 at most, to

be able take a larger m to exploit the power of RQMC. But this can result in a poor variance

estimator and a CI with poor coverage, especially when considering biased estimators (as

for a quantile) or when studying tail behavior (e.g., a p-quantile with p ≈ 0 or p ≈ 1).

Thus, as the computation budget increases, to obtain an RQMC CI that is asymptotically

valid, it can be useful to have the number r of randomizations increase to infinity to ensure

a CLT with a Gaussian limit and to allow for consistent estimation of the CLT’s asymptotic

variance.

We now describe one possible approach, which we call RQMC1, for quantile

estimation based on the typical RQMC method for estimating a mean, as described at the

36

beginning of this section. For each randomization k = 1,2, . . . ,r, compute

F̂RQMC1,m,k(y) =
1
m

m

∑
i=1

I(bY (X
(k)
i)≤ y) (3.14)

as an unbiased CDF estimator from the randomized point set P
(k)
m . Inverting F̂RQMC1,m,k

yields ξ̂RQMC1,m,k = F̂−1
RQMC1,m,k(p), and the ξ̂RQMC1,m,k, k = 1,2, . . . ,r, are i.i.d. Then the

RQMC1 quantile estimator is

ξ RQMC1,m,r =
1
r

r

∑
k=1

ξ̂RQMC1,m,k. (3.15)

Even if (3.14) is unbiased for F(y), the nonlinearity of the inverse operation leads to

ξ̂RQMC1,m,k having bias in general, so under the assumption that E[|ξ̂RQMC1,m,k|] < ∞, the

law of large numbers implies that

ξ RQMC1,m,r
w.p.1→ E[ξ̂RQMC1,m,k] 6= ξ , as r→ ∞ with m fixed; (3.16)

i.e., ξ RQMC1,m,r converges to the wrong value. While the bias of ξ RQMC1,m,r decreases

to zero as m grows, (3.16) considers the asymptotic regime in which r increases with m

fixed, causing the problems. If τ ′2RQMC1,m ≡ Var[ξ̂RQMC1,m,k] < ∞, then ξ RQMC1,m,r obeys

a CLT
√

r(ξ RQMC1,m,r−E[ξ̂RQMC1,m,k])⇒N (0,τ ′2RQMC1,m) as r→ ∞ with m fixed, where

τ ′2RQMC1,m = Var[ξ̂RQMC1,m,k] depends on m. However, the CLT uses E[ξ̂RQMC1,m,k] as the

centering constant rather than the true quantile ξ , so a CI based on the CLT will have poor

coverage, as the CI is anchored at ξ RQMC1,m,r, which on average does not equal the true

value ξ .

To address this, [61] propose a second RQMC quantile estimator that does converge

to ξ in the asymptotic setting of (3.16). Rather than use each randomization to compute

a quantile estimator, as in (3.15), we instead employ all r randomizations to compute a

single overall CDF estimator, which is inverted to obtain a single overall quantile estimator.

37

Specifically, first define the CDF estimator

F̃RQMC2,m,r(y) =
1
r

r

∑
k=1

F̂RQMC1,m,k(y) =
1

rm

r

∑
k=1

m

∑
i=1

I(bY (X
(k)
i)≤ y)

based on all rm evaluations of bY . Inverting this leads to the RQMC2 quantile estimator

ξ̃RQMC2,m,r = F̃−1
RQMC2,m,r(p). (3.17)

As with the RQMC1 quantile estimator, the RQMC2 estimator ξ̃RQMC2,m,r is also

biased. But unlike the bias of ξ RQMC1,m,r, which does not shrink as r→ ∞ with m fixed,

leading to the convergence to the wrong value in Equation (3.16), the bias of ξ̃RQMC2,m,r

decreases to 0. Indeed, it does so fast enough to ensure that under our assumption that

f (ξ)> 0, the RQMC2 quantile estimator obeys a CLT

√
r[ξ̃RQMC2,m,r−ξ]⇒N (0,τ2

RQMC2,m), as r→ ∞ with m fixed, (3.18)

as noted in [61], and the asymptotic variance is τ2
RQMC2,m = Var[F̂RQMC1,m,k(ξ)]/ f 2(ξ),

which depends on m. Thus, the CLT (3.18) has the desired centering constant ξ , in contrast

to the CLT for the RQMC1 estimator ξ RQMC1,m,r.

3.6 Combining CMC With RQMC For Quantile Estimation

We can combine CMC with RQMC for quantile estimation as follows. As in Section 3.4,

we assume that the conditioning sigma-field G in Equation (3.6) is defined by Z = bZ(U)

in Equation (3.9). Then just as we went from the QMC CDF estimator in Equation (3.13) to

the CQ CDF estimator by substituting I(bY (ui)≤ y) with q(y,bZ(ui)), we similarly replace

I(bY (X
(k)
i) ≤ y) in Equation (3.14) for the RQMC1 CDF estimator with q(y,bZ(X

(k)
i))

to obtain the combined CMC+RQMC1 (abbreviated CR1) estimator of the CDF from

randomization k as

F̂CR1,m,k(y) =
1
m

m

∑
i=1

q(y,bZ(X
(k)
i)).

38

Inverting F̂CR1,m,k yields ξ̂CR1,m,k = F̂−1
CR1,m,k(p), where ξ̂CR1,m,k, k = 1,2, . . . ,r, are i.i.d.

Then our CR1 quantile estimator is

ξ CR1,m,r =
1
r

r

∑
k=1

ξ̂CR1,m,k. (3.19)

But the CR1 quantile estimator also suffers from the problems in Equation (3.16) that the

RQMC1 quantile estimator has caused by bias (but perhaps less so, as we will see in the

numerical results of Section 4.6).

For the combined CMC+RQMC2 (shortened to CR2) quantile estimator, we first

compute the CR2 CDF estimator by

F̃CR2,m,r(y) =
1
r

r

∑
k=1

F̂CR1,m,k(y) =
1

rm

r

∑
k=1

m

∑
i=1

q(y,bZ(X
(k)
i))

based on all rm evaluations of function q. Inverting this leads to our CR2 quantile estimator

ξ̃CR2,m,r = F̃−1
CR2,m,r(p). (3.20)

Using the framework in [21], we can prove that under our assumption that f (ξ) > 0, the

CR2 quantile estimator obeys a CLT

√
r[ξ̃CR2,m,r−ξ]⇒N (0,τ2

CR2,m), as r→ ∞ with m fixed, (3.21)

with asymptotic variance τ2
CR2,m = Var[F̂CR1,m,k(ξ)]/ f 2(ξ), which depends on m.

3.7 Numerical Results

We now present numerical results from a stylized version of the model in Example 2, where

the goal is to estimate the 0.05-quantile ξ of the system’s safety margin Y =C−L. We first

describe the model, which is also considered in [96], [2], and [61]. As in some actual NPP

PSA studies (e.g., [28]), the CDF GC of the capacity C is assumed triangular with support

[1800,2600] and mode 2200, with L and C independent. The marginal CDF GL of the load

39

L is a mixture of t = 4 lognormals, as in [96]. Specifically, for each s = 1,2, . . . , t, let GL,〈s〉

be the CDF of L〈s〉 = exp(µ〈s〉+σ〈s〉Z〈s〉), where Z〈s〉 ∼N (0,1), and µ〈s〉 and σ〈s〉 > 0 are

given constants, so L〈s〉 has a lognormal distribution. Our experiments set µ〈s〉 = 7.4+0.1s

and σ〈s〉= 0.01+0.01s. Then GL is defined as GL(y) =∑
t
s=1 λ〈s〉GL,〈s〉(y) for given positive

constants λ〈s〉, 1 ≤ s ≤ t, summing to 1. We set λ〈1〉 = 0.99938× 0.9981× 0.919, λ〈2〉 =

0.00062, λ〈3〉 = 0.99938×0.9981×0.081, and λ〈4〉 = 0.99938×0.0019, where the factors

in each product match branching probabilities given in an event tree used in an NPP PSA

study by [28].

For this model, we can define the response function bY in Equation (3.1) to generate

the safety margin Y = bY (U1,U2,U3) using just d = 3 i.i.d. uniform inputs: one to choose

the component in the load mixture GL, another to generate the appropriate lognormal, and

the third to sample the capacity C. For CMC, we condition on L, as in Equation (3.11), so

Equation (3.10) uses q(y,Z) = GC(y+L) = GC(y+bL(U)), as in Example 2 of Section 3.3.

Thus, CMC requires only 2 uniforms, as the one for sampling C is integrated out by GC.

The analytical tractability of the model allows us to numerically compute the 0.05-quantile

as ξ = 11.79948572.

Given that the effectiveness of RQMC typically degrades as the problem dimension

d increases (Section 15.9 of [108]), we also consider for comparison a stochastically

equivalent artificial model with larger d, defined as follows. We generate the lognormal

L〈s〉 by exponentiating the sum of 20 independent normals, with parameters chosen so that

the sum still has mean µ〈s〉 and variance σ2
〈s〉. Thus, bY in Equation (3.1) now has d = 22.

We consider quantile estimation using two versions (v = 1 and 2) each of RQMC

and CMC+RQMC. RQMCv denotes version v of RQMC, so the RQMC1 estimator is

ξ RQMC1,m,r in Equation (3.15), and the RQMC2 estimator is ξ̃RQMC2,m,r in Equation (3.17).

We have two versions of the CMC+RQMC quantile estimator: the CR1 estimator ξ CR1,m,r

in Equation (3.19), and the CR2 estimator ξ̃CR2,m,r in Equation (3.20). In each case, our

RQMC point set is a randomly-shifted lattice rule of size m, and we make r independent

40

Figure 3.1 The left panel shows the RMSE for fixed m = 4096 as r increases, and the
right panel displays the RMSE for fixed r = 32 as m increases. Both plots have log-log
scale. The notation “:d” in the legend specifies the problem dimension without applying
CMC. For CRv:d with d = 3 and 22, the plots for v = 1 and 2 lie on top of each other.

random shifts. For MC and CMC, we consider only a single version v = 2, in which we

compute a single CDF estimator based on all n = rm outputs, and invert this to get the

MC2 and CMC2 quantile estimators. We also include CMC+LHS ([26]) corresponding to

version v = 2, which we write as CL2. (We also ran experiments with CL1, but omit those

results as they are indistinguishable from CL2 in plots with our r and m values.)

Figure 3.1 presents two sets of log-log plots of the RMSE, estimated from 103

independent replications, of the various quantile estimators. In the left plots, the number

r of randomizations increases, with a point set of fixed size m = 4096. On the right side,

m grows with fixed r = 32. The figures show the RQMC results for different problem

dimensions, where d (= 3 or = 22) in the notation “:d” represents the problem dimension

without applying CMC. For MC and CMC, changing d does not affect the RMSE, so

Figure 3.1 presents results for only d = 22.

We now compare the mean-square error (MSE) of each v = 2 method for r = 64

and m = 4096. With MC2 as the baseline, CMC2 (resp., RQMC2:22, CL2:22, and

CR2:22) reduces MSE by a factor of 2.0 (resp., 5.6, 17.3, and 168). Thus, while RQMC2

improves on MC2 and CMC2, the combination of CR2 performs substantially better,

illustrating the benefits of a smoother integrand for RQMC. Moreover, RQMC2:3 (not

shown in Figure 3.1) and CR2:3 reduce MSE (compared to MC2) by factors of 21.5

41

and 928, respectively, thus demonstrating the impact of the problem dimension d on

RQMC’s effectiveness. The MSE of CR2:22 is about a tenth of that of CL2:22, showing

CMC+RQMC’s advantage over CMC+LHS.

As previously explained in [61], RQMC1 has issues as r increases with m fixed, as

seen in Equation (3.16), which we next explain. To understand the left plots in Figure 3.1,

recall that the MSE decomposes as the sum of bias squared and variance. The variance of

the RQMC1 quantile estimator shrinks to 0 as r→ ∞ with fixed m. But because quantile

estimators are generally biased, the RQMC1 bias does not decrease because m is fixed.

Thus, the RMSE of RQMC1 will converge to a strictly positive value as r→ ∞ with m

fixed. We can see this start to happen in the left plots in Figure 3.1, where the RMSE of the

RQMC1 estimator is leveling off as r increases. (The other v = 1 estimators also eventually

suffer from the same problem, although it may not be clear for the range of r considered.)

In contrast, the RQMC2 quantile estimator obeys a CLT (as r → ∞ with m fixed) with

centering constant ξ , so its RMSE shrinks to 0. The left plots of Figure 3.1 demonstrate

the steady decrease in RMSE of the v = 2 estimators.

The right panel of Figure 3.1 shows that as m increases, the rate (i.e., slope) at which

the RMSE decreases for RQMC (especially for CRv:3) can be better than for MCv. This

demonstrates that RQMC can not only reduce variance but also improve convergence rates.

However, CMC+LHS, although having lower RMSE than MC and CMC, still converges at

the standard MC rate [71].

42

CHAPTER 4

MONTE CARLO METHODS FOR ECONOMIC CAPITAL

In this chapter, we analyze large-sample properties of EC estimators obtained via SRS only,

IS only, MSIS, IS using a defensive mixture, and a double estimator using both SRS and

IS to estimate both the quantile and the mean, establishing Bahadur-type representations

for the EC estimators and proving they obey central limit theorems. We also provide

asymptotic theory comparing the estimators when the loss is the sum of a large number

of independent and identically distributed random variables. Numerical results, including

for a large portfolio credit risk model with dependent obligors, complement the theory.

The rest of the chapter unfolds as follows. Section 4.1 gives our mathematical

framework. Section 4.2 presents the SRS estimator of η . It further establishes a type of

large-sample [12] representation for the estimator, and proves a CLT, which we also do for

the other methods considered. Section 4.3 applies IS to estimate η . Section 4.4 describes

the methods that combine IS and SRS: MSIS (Section 4.4.1), ISDM (Section 4.4.2), and

DE (Section 4.4.3). We provide in Section 4.5 our theoretical asymptotic comparisons of

the estimators of η , ξ , and µ when Y is the sum of m i.i.d. random variables as m→∞ with

the quantile level p simultaneously approaching 1. Section 4.6 gives numerical/simulation

results demonstrating the benefits of MSIS over the other methods, with Section 4.6.1

considering the model from Section 4.5, and Section 4.6.2 examining a more complicated

model, an extension of the PCRM from [40]. Chapter 6 gives concluding remarks. Proofs

are collected in appendices, which also provides additional numerical results and describes

the simulation methodology used on the PCRM in Section 4.6.2. Our theorems on the

Bahadur representations and CLTs for the SRS, IS, and MSIS estimators appear without

proofs in [60], which also describes batching and sectioning methods [9, Section V.5],

briefly covered here, to construct large-sample confidence intervals (CIs) for η . [60] do not

consider any of the material in Sections 4.4.2, 4.4.3, 4.5, 4.6 and the appendices.

43

4.1 Mathematical Framework

Let Y be a random variable for the loss of a credit-portfolio model over a given time horizon,

and let F be its cumulative distribution function (CDF). Assume that F is unknown or

computationally intractable, but we have a simulation model that generates an observation

of Y ∼ F , where ∼ denotes “is distributed as”. Let µ = E[Y] be the mean of Y ∼ F . For

a CDF H and 0 < q < 1, we define the q-quantile of H as H−1(q) = inf{y : H(y) ≥ q};

e.g., the median µ ′ is the 0.5-quantile, also known as the 50th percentile. Our goal is to use

simulation to estimate the EC η = ξ −µ , where ξ = F−1(p) for a given 0 < p < 1. (Note

that ξ ≡ ξp and η ≡ ηp depend on p, but we omit the subscript p to simplify notation.)

Sometimes but not always, we assume that the loss Y has the form

Y = c(X) (4.1)

for a known function c :Rd→R with d≥ 1, and random vector X= (X1,X2, . . . ,Xd) having

a specified joint CDF G, where G can allow the components of X to be dependent and

non-identically distributed. We view the function c in (4.1) as a (complicated) computer

code, transforming an input X∼ G into a loss Y ∼ F .

For example, Section 4.6.2 will consider a multi-factor portfolio-credit-risk model as

in [40], [15], and [88], in which the loss Y has a form in (4.1), with mutually independent

components in X, defined as follows. There are m≥ 1 obligors, and dependence among the

default events across obligors is induced through common factors. Let Z = (Z1, . . . ,Zr)

be a column vector of r ≥ 1 systematic risk factors, which are i.i.d. N(0,1) random

variables, modeling global, country, and sector factors that impact all obligors, where

N(q,s2) represents a normal random variable with mean q and variance s2. For each k =

1,2, . . . ,m, let εk be another independent N(0,1) random variable denoting the idiosyncratic

risk associated with obligor k. The loading factors are specified constant row vectors

ak = (ak, j : j = 1,2, . . . ,r), k = 1,2, . . . ,m, satisfying aka>k ≤ 1 for each k, where> denotes

transpose. Let bk = (1− aka>k)
1/2, so akZ + bkεk ∼ N(0,1) for each k. Let S > 0 be

44

another independent random variable denoting a common shock affecting all obligors. For

each k = 1,2, . . . ,m, obligor k defaults if and only if (akZ+ bkεk)/S > wk for a constant

wk chosen so that obligor k has a specified marginal default probability pk. [40] and [15]

assume that the loss given default (LGD) of obligor k is a constant ck, but they state their

methods also allow LGD to be stochastic (under certain conditions), as we will have in

Section 4.6.2. For obligor k, let Jk be another independent random variable, and define

the LGD for obligor k as vk(Z,S,ε1, . . . ,εm,Jk) for a given function vk : Rr+m+2 → R+.

Therefore, the LGD may depend on Jk, as well as the systematic and idiosyncratic risk

factors and common shock, as in [5] and [30]. Finally, let X = (Z,S,ε1, . . . ,εm,J1, . . . ,Jm),

which has d = r+ 2m+ 1 independent components, and the function c in Equation (4.1)

for the total loss is

c(X) =
m

∑
k=1

vk(Z,S,ε1, . . . ,εm,Jk) I
(

akZ+bkεk

S
> wk

)
, (4.2)

where I(·) is the indicator function, which equals 1 (resp., 0) if its argument is true (resp.,

false).

4.2 Simple Random Sampling

We begin with the application of SRS to estimate η , and in this section, the results do not

require that the loss Y ∼ F has the form in Equation (4.1). Let Y1,Y2, . . . ,Yn be a random

sample of size n from F ; i.e., Y1,Y2, . . . ,Yn are i.i.d. with CDF F . When Y has the form in

Equation (4.1), we generate X1,X2, . . . ,Xn as i.i.d. copies of X∼ G, and let Yi = c(Xi) for

each i = 1,2, . . . ,n. In general, define the SRS estimator of the mean as the sample mean

µ̂SRS,n =
1
n

n

∑
i=1

Yi. (4.3)

We define the SRS p-quantile estimator ξ̂SRS,n by inverting the empirical CDF F̂SRS,n:

ξ̂SRS,n = F̂−1
SRS,n(p), where F̂SRS,n(y) =

1
n

n

∑
i=1

I(Yi ≤ y). (4.4)

45

Then the SRS estimator of the EC η = ξ −µ is

η̂SRS,n = ξ̂SRS,n− µ̂SRS,n. (4.5)

We can compute ξ̂SRS,n by order statistics. Let Y(1) ≤ Y(2) ≤ ·· · ≤ Y(n) be the sorted

values of Y1,Y2, . . . ,Yn, and then ξ̂SRS,n = Y(dnpe), where d·e is the ceiling (i.e., round-up)

function. For simplicity, we do not consider other SRS quantile estimators, e.g., by

interpolating F̂SRS,n ([10]).

While the estimator µ̂SRS,n in Equation (4.3) of the mean is a sample average, the

p-quantile estimator ξ̂SRS,n = F̂−1
SRS,n(p) is not, so the EC estimator η̂SRS,n in (4.5) is also

not a sample average, complicating its analysis. However, [12] shows that ξ̂SRS,n can be

well approximated by a sample average of i.i.d. quantities when the sample size n is large,

and we will do the same for η̂SRS,n. To accomplish this, define f as the derivative (when it

exists) of the CDF F . Also let⇒ represent convergence in distribution (e.g., Chapter 5 of

[17]). Then (see Section 2.5 of [117]) if f (ξ)> 0, the p-quantile estimator satisfies

ξ̂SRS,n = ξ − 1
f (ξ)

[
F̂SRS,n(ξ)− p

]
+Rn, (4.6)

with
√

nRn⇒ 0 as n→ ∞. (4.7)

If F is twice differentiable at ξ , then [62] proves that for either choice of sign below,

limsup
n→∞

± n3/4Rn

(log logn)3/4 =
25/4[p(1− p)]1/4

33/4 f (ξ)
with probability 1. (4.8)

Note that (4.8) implies (4.7), and we call (4.6) with (4.7) (resp., (4.8)) a weak (resp.,

strong) Bahadur representation for ξ̂SRS,n. The key point of (4.6)–(4.8) is that they permit

analyzing the large-sample properties of ξ̂SRS,n through the simpler F̂SRS,n(ξ), which is a

sample average of i.i.d. terms by (4.4). As next seen, the SRS EC estimator η̂SRS,n has

similar Bahadur-type representations and obeys a CLT; see Appendix B for the proof.

Theorem 2 Suppose that Y1,Y2, . . . are i.i.d. with CDF F , and F is differentiable at ξ with

f (ξ)> 0.

46

(i) The SRS EC estimator in (4.5) then satisfies

η̂SRS,n = η− 1
n

n

∑
i=1

(
1

f (ξ)
[I(Yi ≤ ξ)− p]+ [Yi−µ]

)
+Rn (4.9)

with Rn from Equation (4.6), so Equation (4.7) holds. If also F is twice differentiable

at ξ , then Equation (4.8) further holds.

(ii) If in addition σ2
SRS ≡ Var[Y]< ∞, then

√
n
[
η̂SRS,n−η

]
⇒ N(0,ζ 2

SRS) as n→ ∞, where ζ
2
SRS =

χ2
SRS

f 2(ξ)
+σ

2
SRS +2

γSRS

f (ξ)
,

(4.10)

with χ2
SRS = p(1− p), and γSRS = Cov[I(Y ≤ ξ),Y] = E[I(Y ≤ ξ)Y]− pµ .

The Bahadur-type representations in Theorem 2(i) give useful insight into the large-

sample behavior of η̂SRS,n, showing that approximating η̂SRS,n−η by a sample mean of

the i.i.d. terms results in a remainder Rn that vanishes faster than 1/
√

n (by Equation (4.7)

or Equation (4.8)). This then implies the CLT in (4.10) when σ2
SRS < ∞.

Under an additional assumption that F has a density f and the second derivative of

F is bounded in a neighborhood of ξ , [85] prove that the SRS estimators of a quantile

and the mean obey a joint CLT, and [32] also shows the same under the weaker additional

assumption that the density f is continuous at ξ . While (4.10) follows from either result, the

Bahadur-type representations in Theorem 2(i) can be used to show the asymptotic validity

of a sectioning CI for η , as in [60].

4.3 Importance Sampling

When p≈ 1, estimators of ξ = F−1(p) and the corresponding

EC η = ξ − µ may have large variance, motivating the use of a variance-reduction

technique. We consider applying IS, but other VRTs are also possible. To use IS and the

methods in the next section, we assume Y has the form in Equation (4.1) from now on.

47

The mean of Y is then µ = EG[c(X)], where, for any CDF G† on Rd , EG† (resp.,

VarG† , CovG†) is the expectation (resp., variance, covariance) operator when X ∼ G†. Let

G̃ be a CDF on Rd such that (the measure of) G is absolutely continuous [17, p. 422] with

respect to G̃. By a change of measure,

µ =EG[c(X)]=
∫
Rd

c(x)dG(x)=
∫
Rd

c(x)
dG(x)
dG̃(x)

dG̃(x)=EG̃[c(X)L(X)], for L(x)=
dG(x)
dG̃(x)

(4.11)

as the likelihood ratio (LR), for x ∈ Rd . To estimate µ via IS, we sample i.i.d. Xi ∼ G̃,

i = 1,2, . . . ,n, and

µ̂IS,n =
1
n

n

∑
i=1

c(Xi)L(Xi) (4.12)

is an unbiased estimator of µ by (4.11). (IS reduces to SRS when G̃ = G as then L(x)≡ 1.)

Suppose that under both G and G̃, the components of X = (X1, . . . ,Xd) are mutually

independent. Then for G j (resp., G̃ j) denoting the marginal CDF of X j under G (resp., G̃),

we have G(x) = ∏
d
j=1 G j(x j) and G̃(x) = ∏

d
j=1 G̃ j(x j) for x = (x1, . . . ,xd). If we further

suppose that each G j (resp., G̃ j) has a density or probability mass function g j (resp., g̃ j),

the likelihood ratio in (4.11) becomes L(x) = ∏
d
j=1

g j(x j)
g̃ j(x j)

.

To estimate the p-quantile ξ by IS, we use an approach of [41]: first apply IS to

estimate the CDF F , and then invert the estimated CDF to obtain the IS quantile estimator.

Specifically, write

1−F(y) = EG[I(c(X)> y)] = EG̃[I(c(X)> y)L(X)] (4.13)

through a change of measure. By (4.13), we obtain an unbiased estimator of F(y) as

F̂IS,n(y), with

F̂IS,n(y) = 1− 1
n

n

∑
i=1

I(c(Xi)> y)L(Xi), and ξ̂IS,n = F̂−1
IS,n(p), (4.14)

48

where Xi ∼ G̃, i = 1,2, . . . ,n, are the same as in Equation (4.12). We call F̂IS,n(y) and

ξ̂IS,n the IS estimators of F(y) and ξ , respectively. To compute ξ̂IS,n, let Yi = c(Xi), and

let Y1:n ≤ Y2:n ≤ ·· · ≤ Yn:n be the sorted values of Y1,Y2, . . . ,Yn. Defining Xi::n as the X j

corresponding to Yi:n, we then have ξ̂IS,n = Yip:n, with ip the greatest integer for which

∑
n
`=ip

L(X`::n) ≥ n(1− p). Reference [21] establish that the quantile estimator obtained

via a combination of IS and stratified sampling obeys a weak Bahadur representation, with

ξ̂IS,n in Equation (4.14) being a special case of IS only; i.e., their Theorem 4.2 shows that

if

there exist constants ε > 0 and λ > 0 such that EG̃[I(c(X)> ξ −λ)L2+ε(X)]< ∞,

(4.15)

then

ξ̂IS,n = ξ − 1
f (ξ)

[F̂IS,n(ξ)− p]+ R̃n, with
√

nR̃n⇒ 0 as n→ ∞. (4.16)

The fact that F(y) = EG[I(c(X)≤ y)] = EG̃[I(c(X)≤ y)L(X)] suggests another CDF

estimator, F̂ ′IS,n(y) =
1
n ∑

n
i=1 I(c(Xi) ≤ y)L(Xi), with each Xi ∼ G̃, which leads to another

p-quantile estimator ξ̂ ′IS,n = F̂ ′−1
IS,n (p). Theorem 4.1 of [21] (resp., [122]) establishes a weak

(resp., strong) Bahadur representation for ξ̂ ′IS,n. When estimating the p-quantile with p≈ 1

using IS, [41] shows that for a simple example, the p-quantile estimator ξ̂IS,n in Equation

(4.14) has smaller asymptotic variance than the estimator ξ̂ ′IS,n. (But ξ̂ ′IS,n can have smaller

asymptotic variance than ξ̂IS,n when p≈ 0.)

The IS estimator of the EC is then

η̂IS,n = ξ̂IS,n− µ̂IS,n, (4.17)

with both ξ̂IS,n and µ̂IS,n computed from the same i.i.d. sample X1,X2, . . . ,Xn, with each

Xi ∼ G̃. The following result, proven in Appendix C, shows that η̂IS,n has a Bahadur-type

representation and obeys a CLT.

49

Theorem 3 Suppose that Y ∼ F has the form in Equation (4.1), and f (ξ) > 0. Suppose

that X1,X2, . . . ,Xn are i.i.d. with CDF G̃, where (the measure induced by) G is absolutely

continuous with respect to G̃. Also suppose that Equation (4.15) holds for L(x) in Equations

(4.11) and (4.13). Then the following hold.

(i) The IS EC estimator in Equation (4.17) satisfies

η̂IS,n = η− 1
n

n

∑
i=1

[
(1− I(c(Xi)> ξ)L(Xi))− p

f (ξ)
+ c(Xi)L(Xi)−µ

]
+ R̃n

with
√

nR̃n⇒ 0 as n→ ∞. (4.18)

(ii) If in addition σ2
IS ≡VarG̃[c(X)L(X)]< ∞, then

√
n
[
η̂IS,n−η

]
⇒N(0,ζ 2

IS) as n→∞,

where

ζ
2
IS =

χ2
IS

f 2(ξ)
+σ

2
IS−2

γIS

f (ξ)
, with χ

2
IS ≡ VarG̃[I(c(X)> ξ)L2(X)], and (4.19)

γIS ≡ CovG̃[I(c(X)> ξ)L(X),c(X)L(X)] = EG[I(c(X)> ξ)c(X)L(X)]− (1− p)µ.

(4.20)

4.4 Methods that Combine SRS and IS

Section 4.3 estimates ξ and µ from the same data generated from IS distribution G̃, but the

resulting estimator of η = ξ − µ can have large variance. When p ≈ 1, ξ is a property of

the right tail of F , whereas µ measures the distribution’s central tendency. Thus, a VRT

designed to analyze only the tail of F may fare poorly in estimating its mean, and vice

versa. A single IS method may not estimate both ξ and µ well.

When p ≈ 1, the heuristic reason that an IS CDF G̃ for X designed to estimate only

ξ can do poorly for µ arises from the LR in Equation (4.11) often being immense. To see

why, first express the second moment of the IS estimator of µ as m2 ≡ EG̃[c
2(X)L2(X)] =

EG[c2(X)L(X)] by a change of measure. The original CDF G assigns much of its

probability to points x with c(x) near the mean µ . But G̃ shifts most of that mass to

50

values x′ with c(x′)≈ ξ , making points x with c(x)≈ µ rare under G̃. Thus, the LR L(x) =

dG(x)/dG̃(x) is enormous for these common x under G, leading to m2 = EG[c2(X)L(X)]

and the variance σ2
IS = VarG̃[c(X)L(X)] of the IS estimator of µ being large (the first

moment is unchanged by Equation (4.11)).

4.4.1 Measure-Specific Importance Sampling

To address these issues, Measure-Specific Importance Sampling (MSIS) estimates only ξ

by IS and independently estimates µ using SRS. [42] apply MSIS to estimate a ratio of

means, in which only one corresponds to a rare event and is thus handled via IS, and the

other (non-rare) mean is simulated independently without IS. More generally, we can use

one VRT to estimate ξ and another to estimate µ , where we may employ VRTs other than

IS.

We next give the details of MSIS. For an overall sample size n, we specify a fraction

0 < δ < 1 of the sample size to estimate ξ by IS, and we use SRS to estimate µ with the

rest of the sample size. Let δn be the sample size estimating ξ via IS, and (1−δ)n be the

sample size estimating µ by SRS, both which we assume are integer-valued (if not, replace

δn and (1−δ)n by bδnc and b(1−δ)nc, respectively, where b·c is the floor function). Let

F̂IS,δn be the IS CDF estimator in Equation (4.14) but with sample size δn instead of n,

and ξ̂IS,δn = F̂−1
IS,δn(p) is the resulting p-quantile estimator. Also let µ̂SRS,(1−δ)n be the SRS

estimator of µ in Equation (4.3) with sample size (1− δ)n instead of n. Then the MSIS

estimator of η is

η̂MSIS,n = ξ̂IS,δn− µ̂SRS,(1−δ)n. (4.21)

We next give a weak Bahadur-type representation and CLT for η̂MSIS,n; Appendix D

provides the proof.

51

Theorem 4 Suppose that Y ∼ F has the form in Equation (4.1), f (ξ)> 0, Equation (4.15)

holds, and (the measure induced by) G is absolutely continuous with respect to G̃. Then

the following hold for any fixed 0 < δ < 1.

(i) As n→ ∞, the MSIS EC estimator in Equation (4.21) satisfies

η̂MSIS,n = η− 1
f (ξ)

[F̂IS,δn(ξ)−p]−(µ̂SRS,(1−δ)n−µ)+R̃n,δ , with
√

nR̃n,δ ⇒ 0.

(4.22)

(ii) If in addition σ2
SRS < ∞, then for χ2

IS from Equation (4.19),

√
n
[
η̂MSIS,n−η

]
⇒ N(0,ζ 2

MSIS) as n→ ∞, where ζ
2
MSIS =

χ2
IS

δ f 2(ξ)
+

σ2
SRS

1−δ
.

(4.23)

In contrast to Equations (4.10) and (4.19), Equation (4.23) has no covariance term

as MSIS estimates ξ and µ independently. Also, the value of ζ 2
MSIS depends on δ , with

δ ∗ = [χIS/ f (ξ)]/[σSRS +(χIS/ f (ξ))] minimizing ζ 2
MSIS. But we do not know σ2

SRS, χ2
IS

and f (ξ). However we can use a two-stage procedure, with a pilot run to roughly estimate

the unknown parameters, which are used in the second stage with estimated δ ∗.

4.4.2 Importance Sampling with a Defensive Mixture Distribution

To estimate simultaneously multiple metrics (including the mean and a tail probability),

[50] develops Importance Sampling with a Defensive Mixture Distribution (ISDM), which

applies IS, as in Section 4.3, with X∼ G̃ISDM ≡ δG∗+(1−δ)G, where G∗ (resp., G) is a

new (resp., original) joint CDF for X, and 0 ≤ δ ≤ 1 is a user-specified constant. We can

sample X from the mixture G̃ISDM by generating X from G∗ (resp., G) with probability δ

(resp., 1−δ). The ISDM EC estimator has the form (4.17) based on Equations (4.12) and

52

(4.14), with the LR in Equations (4.11) and (4.13) as

LISDM(x) =
dG(x)

dG̃ISDM(x)
=

dG(x)
δdG∗(x)+(1−δ)dG(x)

, so LISDM(x)≤ 1
1−δ

for all x.

(4.24)

Thus, for δ ∈ (0,1), ISDM prevents the LR from being too big (Section 4.4), making

G̃ISDM a defensive mixture. A special case of IS, the ISDM EC estimator obeys Theorem 3

(δ ∈ (0,1) ensures the assumed absolute continuity and Equation (4.15) hold). When δ = 0

(resp., δ = 1), ISDM reduces to SRS (resp., IS with X∼ G∗).

The CDF G∗ itself can be a mixture of r CDFs, so then G̃ISDM mixes r + 1 CDFs.

Other works using a mixture for IS include [103] and [39].

4.4.3 Double Estimator

A double estimator (DE) provides another way of combining IS and SRS to estimate the

EC. As with MSIS, DE generates an IS (resp., SRS) sample of size δn (resp., (1− δ)n),

with the two samples independent. But in contrast to MSIS, DE employs both the IS and

SRS samples to estimate both ξ and µ . More specifically, we use the IS sample of size δn

to construct estimators ξ̂IS,δn and µ̂IS,δn in Equations (4.14) and (4.12), respectively. Also,

we get estimators ξ̂SRS,(1−δ)n and µ̂SRS,(1−δ)n in Equations (4.4) and (4.3), respectively,

from the SRS sample of size (1− δ)n. For user-specified constants υ1,υ2 ∈ [0,1], we

define the DE EC estimator as

η̂DE,n =
[
υ1ξ̂IS,δn +υ

′
1ξ̂SRS,(1−δ)n

]
−
[
υ2µ̂IS,δn +υ

′
2µ̂SRS,(1−δ)n

]
≡ ξ̂DE,n− µ̂DE,n,

(4.25)

where υ ′1 = 1− υ1 and υ ′2 = 1− υ2. When υ1 = υ2, η̂DE,n is a weighted sum of two

independent EC estimators: η̂IS,δn of Equation (4.17) with an IS sample of size δn and

weight υ1 = υ2, and η̂SRS,(1−δ)n of Equation (4.5) with an SRS sample of size (1− δ)n

and weight υ ′1 = υ ′2. But Equation (4.25) also allows υ1 6= υ2, and DE becomes MSIS

53

when υ1 = 1 and υ2 = 0. Also, DE reduces to SRS (resp., IS) when υ1 = υ2 = δ = 0

(resp., υ1 = υ2 = δ = 1). The following, whose proof appears in Appendix E, gives a

Bahadur-type representation and CLT for η̂DE,n.

Theorem 5 Suppose that Y ∼ F has the form in Equation (4.1) and f (ξ) > 0. Suppose

that X1,X2, . . . ,X(1−δ)n are i.i.d. with CDF G, and X′1,X
′
2, . . . ,X

′
δn are i.i.d. with CDF G̃

(and independent of X1,X2, . . . ,X(1−δ)n), where (the measure induced by) G is absolutely

continuous with respect to G̃, which satisfies Equation (4.15). Then the following hold for

any δ ,υ1,υ2 ∈ [0,1].

(i) The DE estimator η̂DE,n in Equation (4.25), constructed from X1,X2, . . . ,X(1−δ)n and

X′1, X′2, . . . ,X
′
δn, satisfies

η̂DE,n = η−
[(

υ1

δn

δn

∑
i=1

[1− I(c(X′i)> ξ)L(X′i)]− p
f (ξ)

)
+(

υ ′1
(1−δ)n

(1−δ)n

∑
i=1

I(c(Xi)≤ ξ)− p
f (ξ)

)
−

(
υ2

δn

δn

∑
i=1

[
c(X′i)L(X

′
i)−µ

])

+

(
υ ′2

(1−δ)n

(1−δ)n

∑
i=1

[c(Xi)−µ]

)]
+(υ1R̃δn +υ

′
1R(1−δ)n),

with
√

n(υ1R̃δn +υ
′
1R(1−δ)n)⇒ 0 as n→ ∞, (4.26)

where R̃δn is from Equation (4.16) and R(1−δ)n from Equation (4.6).

(ii) If in addition σ2
IS < ∞ and σ2

SRS < ∞, then
√

n [η̂DE,n−η]⇒ N(0,ζ 2
DE) as n→ ∞,

where

ζ
2
DE =

[
υ2

1
δ

χ2
IS

f 2(ξ)
+

υ ′21
1−δ

χ2
SRS

f 2(ξ)

]
+

[
υ2

2
δ

σ
2
IS +

υ ′22
1−δ

σ
2
SRS

]
+

2
[
−υ1υ2

δ

γIS

f (ξ)
+

υ ′1υ ′2
1−δ

γSRS

f (ξ)

]
. (4.27)

54

For a fixed δ ∈ (0,1), the optimal choice of (υ1,υ2) to minimize ζ 2
DE satisfies

(υ∗1 ,υ
∗
2) =

(
a1

a0
,
a2

a0

)
, where (4.28)

a0 = V(ξ)
SRSV(µ)

IS −C2
IS +2CISCSRS−C2

SRS +V(ξ)
IS V(µ)

IS +V(ξ)
IS V(µ)

SRS +V(ξ)
SRSV(µ)

SRS,

a1 = V(ξ)
SRSV(µ)

IS +V(ξ)
SRSV(µ)

SRS +V(µ)
IS CSRS +V(µ)

SRSCIS +CISCSRS−C2
SRS, and

a2 = V(ξ)
IS V(µ)

SRS +V(ξ)
SRSV(µ)

SRS +V(ξ)
IS CSRS +V(ξ)

SRSCIS +CISCSRS−C2
SRS,

with V(ξ)
IS =

χ2
IS

δ f 2(ξ)
, V(ξ)

SRS =
χ2

SRS
(1−δ) f 2(ξ)

, V(µ)
IS =

σ2
IS
δ

, V(µ)
SRS =

σ2
SRS

1−δ
, CIS = γIS

δ f (ξ) , and

CSRS = γSRS
(1−δ) f (ξ) .

4.5 Asymptotic Analysis of i.i.d. Sum

We now provide a theoretical comparison of the EC estimators from Sections 4.2–4.4,

showing that MSIS (Section 4.4.1) can outperform the other methods. Our study considers

a loss Y as the sum of m i.i.d. random variables (i.e., a random walk, often a building

block in more complex models) in an asymptotic regime of [41], where m→ ∞ with the

quantile level p simultaneously approaching 1; see Equation (4.29) below. In addition to

its theoretical convenience, the framework also has practical relevance: bank portfolios are

commonly exposed to thousands of obligors (i.e., large m), and as noted in Section 1.3,

[24, p. 46], e.g., has used p = 0.999 and p = 0.9998 in its EC computations. Although

the analysis in this section is for an i.i.d. sum model, the dependent sum in the more

complicated PCRM (Section 4.6.2) can be reduced to an independent (but not necessarily

identically distributed) sum through appropriate conditioning arguments, as in [40] and

[15]. Thus, the asymptotics for the i.i.d. sum provide insights about how exponential

twisting may behave for factor models with dependence.

Assumption 1. The loss in Equation (4.1) is Y = c(X) = ∑
m
j=1 X j for d = m, where

X = (X1,X2, . . . ,Xm) ∼ G has i.i.d. components. Each X j has marginal CDF G0 that

does not depend on m, mean µ0 ≡ E0[X j] =
∫

xdG0(x), and variance σ2
0 ≡ Var0[X j] > 0,

55

where E0 and Var0 are the expectation and variance operators, respectively, when X j ∼G0.

The moment generating function (MGF) M0(θ) = E0[eθX j] =
∫

eθx dG0(x) of X j ∼ G0 has

domain ∆ = {θ ∈ R : M0(θ)< ∞} with interior ∆◦ containing 0. SRS samples i.i.d. copies

of c(X) with X ∼ G, and the computation (CPU) time to generate c(X) with X ∼ G is a

random variable (a constant being a special case) with expectation mτSRS for some constant

τSRS ∈ (0,∞). The quantile level p satisfies

p≡ pm = 1− e−βm, for some constant β > 0, (4.29)

and the derivative f of the CDF F of Y exists at ξ = F−1(p), with f (ξ)> 0.

The domain ∆ of M0 always contains 0, but its interior ∆◦ may not, as for heavy-tailed

distributions, e.g., lognormal or Pareto [9, Section VI.3]. Thus, the condition that 0 ∈

∆◦ in Assumption 1 restricts us to light-tailed summands [9, Section VI.2], e.g., normal

or gamma. In this case [17, p. 278], all moments of X j ∼ G0 are finite, and M0(θ) has

derivatives of all orders for θ ∈ ∆◦; let M′0(θ) =
d

dθ
M0(θ) and M′′0 (θ) =

d2

dθ 2 M0(θ). Define

Q0(θ) = lnM0(θ) as the cumulant generating function (CGF) of X j ∼ G0, with Q′0(θ) =

d
dθ

Q0(θ) and Q′′0(θ)
d2

dθ 2 Q0(θ).

We sometimes (but not always) emphasize the dimension m of X by writing η = ηm

for the EC, F =Fm as the CDF of Y , ξ = ξm =F−1
m (p) as the p-quantile of Y , and µ = µm =

EG[Y] = EG[c(X)]. Some of our asymptotic analysis will account for the computational

effort to construct an EC estimator, in which case our study will incorporate the expected

time mτSRS to generate c(X) with X∼ G from Assumption 1.

4.5.1 Importance Sampling via Exponential Twisting

A common IS approach applies exponential twisting, also called exponential tilting or

an exponential change of measure [9, Section VI.2]. We next describe methods IS(θ),

ISDM(θ), MSIS(θ), and DE(θ), which utilize twisting with parameter θ in various ways.

56

Assumption 2. Under IS(θ), random vector X has joint CDF G̃θ such that the components

X1, . . . ,Xm of X are i.i.d., where the marginal CDF of each X j is the exponential twist G̃0,θ

of G0, given by

dG̃0,θ (x) =
eθx dG0(x)

M0(θ)
= eθx−Q0(θ) dG0(x), x ∈ R, θ ∈ ∆

◦; (4.30)

for LR Lθ (x) ≡ dG(x)/dG̃θ (x) in (4.11), the expected time to generate (c(X),Lθ (X)),

X ∼ G̃θ , is mτIS(θ) for a constant τIS(θ) ∈ (0,∞). ISDM(θ) ≡ ISDM(θ ,δ) is IS

with X ∼ G̃ISDM(θ) ≡ δ G̃θ + (1 − δ)G and fixed δ ∈ (0,1); for LR LISDM(θ)(x) ≡

dG(x)/dG̃ISDM(θ)(x) in Equation (4.24), the expected time to generate (c(X),LISDM(θ)(X)),

X ∼ G̃ISDM(θ), is mτISDM(θ) for a constant τISDM(θ) ∈ (0,∞). MSIS(θ) ≡ MSIS(θ ,δ)

and DE(θ) ≡ DE(θ ,δ ,υ1,υ2) use IS(θ) as their IS, with fixed δ ∈ (0,1), and fixed

υ1,υ2 ∈ (0,1). There exists θ = θ? ∈ ∆◦ with θ? > 0 such that

−θ?Q′0(θ?)+Q0(θ?) =−β , for β > 0 in Equation (4.29). (4.31)

Reference [41] employs IS(θ?) to estimate the p-quantile ξ in our asymptotic regime

with m→∞ and p as in (4.29), showing that if there is a θ? > 0 solving (4.31), it is unique.

For each β > 0, such a θ? ≡ θ?(β)> 0 exists when, e.g., G0 is normal or gamma, but there

are cases of G0 and β > 0 when (4.31) has no root. For example, if G0 is the “perverted

exponential” [29, p. 74], which has density g0(x) = c0x−3e−xI(x ≥ 1) and ∆ = {θ ≤ 1},

where c0 ≡ 1/
∫

∞

1 x−3e−x dx .
= 9.116, then it can be shown that there exists θ? > 0 with

θ? ∈ ∆◦ solving (4.31) if and only if 0 < β < ln(c0/2)−2 .
= 0.483.

4.5.2 Relative Error and Work-Normalized Relative Error

We will compare our EC estimators in terms of their relative errors (e.g., [72]). We explain

this idea in a general context of a Monte Carlo method M (e.g., SRS, IS(θ), MSIS(θ),

ISDM(θ), or DE(θ)) for an estimand ϕ ≡ ϕm (e.g., η , ξ , or µ) of a sequence of stochastic

models indexed by a parameter m (e.g., dimension of X). Let ϕ̂M,n ≡ ϕ̂M,n,m be the M

57

estimator of ϕ based on a total sample size n. For each fixed m, assume the estimator obeys

a CLT
√

n[ϕ̂M,n−ϕ]⇒ N(0,ω2
M) as n→ ∞, where ω2

M ≡ ω2
M,m < ∞ is the asymptotic

variance. When ϕ 6= 0, we define the relative error (RE) of the M estimator of ϕ as

REM,m[ϕ] =
ωM

|ϕ|
≡

ωM,m

|ϕm|
, (4.32)

which we will study as m→∞. (Our definition of RE ignores that ϕ̂M,n may be biased, as is

often the case when ϕ = ξ or ϕ = η . But when applying SRS with fixed dimension m, the

simplification is reasonable because as n→ ∞, the SRS quantile estimator’s mean-squared

error is determined primarily by its asymptotic variance, with negligible contribution from

the bias [10, Theorem 2].)

To motivate the study of RE, consider a 95% confidence interval (ϕ̂M,n±1.96ωM/
√

n)

for ϕ based on the CLT for ϕ̂M,n. (In practice, ωM is typically unknown and is replaced

by a consistent estimator.) Suppose that we want to determine a sample size n so that

the CI is roughly (ϕ̂M,n± ε|ϕ̂M,n|) for a specified desired relative precision ε > 0; e.g.,

if ε = 0.1, then the desired CI has 10% relative half-width. Thus, we seek n so that

1.96ωM/
√

n ≈ ε|ϕ|, or equivalently, n ≈ (1.96REM,m[ϕ]/ε)2. If REM,m[ϕ] is bounded

(resp., grows to ∞) as m→ ∞, then the sample size n needed to achieve a fixed relative

precision ε remains bounded (resp., blows up) as m increases. [72] and [9, Chapter VI]

review a variety of simulation methods M that achieve the desirable property of bounded

or even vanishing RE when estimating some parameter ϕ for various stochastic models and

asymptotic regimes.

As m grows, the computation (CPU) time to generate one output for method M often

increases with m. For example, Assumption 1 specifies mτSRS as the expected CPU time to

generate an SRS output c(X) for X ∈ Rm with X ∼ G, and Assumption 2 imposes similar

structure for IS(θ) and ISDM(θ). For a method M that estimates ϕ through a single i.i.d.

sample of size n (as for SRS, IS(θ), and ISDM(θ)), let mτM be the expected CPU time

to generate one output, with τM > 0 a constant. To account for the CPU time for such a

58

method M, we define the work-normalized RE (WNRE) of the M estimator of ϕ 6= 0 as

WNREM,m[ϕ] =

√
mτMωM

|ϕ|
≡
√

mτMωM,m

|ϕm|
=
√

mτMREM,m[ϕ]; (4.33)

see [72]. To motivate the WNRE, suppose that we have a CPU budget b0 > 0. Within our

budget b0, method M obtains a sample of size approximately nM,b0 ≡ bb0/(mτM)c. When

nM,b0 ≥ 1, the resulting M estimator of ϕ based on budget b0 is then roughly ϕ̂M,nM,b0
,

whose variance is approximately ω2
M/nM,b0 ≈mτMω2

M/b0, which we can express through

the CLT
√

b0[ϕ̂M,nM,b0
−ϕ]⇒N(0,mτMω2

M) as b0→∞. (We can formalize this argument

through a random-time-change CLT, e.g., see [17, p. 369].) Thus, the budget-constrained

estimator’s standard deviation is roughly scaled by the square root of the expected time to

generate one output, which leads to the definition of the WNRE in Equation (4.33).

While Equation (4.33) is appropriate when M utilizes only a single i.i.d. sample,

MSIS(θ) and DE(θ) instead collect multiple samples, and we will define their WNRE

by slightly adjusting how these estimators are constructed. Consider estimating ϕ = µ or

ϕ = ξ via DE(θ). (Section 4.5.3 will explain how to handle ϕ = η and MSIS(θ); see

Equations (4.60) and (4.61).) DE(θ) takes two independent samples: one with IS(θ)

and the other with SRS. Rather than dividing the total sample size n between IS(θ)

and SRS using allocation parameter 0 < δ < 1, as in the DE(θ) estimator in Equation

(4.25), we instead split the CPU budget b0 when considering WNRE, where δb0 (resp.,

(1− δ)b0) of the budget is for IS(θ) (resp., SRS). Then the IS(θ) (resp., SRS) sample

has approximately size n′b0,1 ≡ bδb0/(mτIS(θ))c (resp, n′b0,2 ≡ b(1− δ)b0/(mτSRS)c), so

the variance of the budget-constrained IS(θ) (resp., SRS) estimator of ϕ is roughly

ω2
IS(θ)/n′b0,1 (resp., ω2

SRS/n′b0,2). We form the budget-constrained DE(θ) estimator of ϕ

as a weighted average of the budget-constrained IS(θ) and SRS estimators of φ using

respective weights υ and υ ′ = 1−υ , where υ = υ1 when ϕ = ξ , and υ = υ2 when ϕ = µ ,

with υ1 and υ2 as in Equation (4.25). As DE(θ) applies IS(θ) and SRS independently, the

variance of the budget-constrained DE(θ) estimator of ϕ is roughly
υ2ω2

IS(θ)
n′b0,1

+
υ ′2ω2

SRS
n′b0,2

≈

59

m
b0

[
τIS(θ)υ

2ω2
IS(θ)

δ
+

τSRSυ ′2ω2
SRS

1−δ

]
. Thus, we define the WNRE for the DE(θ) estimator of

ϕ 6= 0 for ϕ = ξ or µ as

WNREDE(θ),m[ϕ] =
1
|ϕ|

[
m

(
τIS(θ)υ

2ω2
IS(θ)

δ
+

τSRSυ ′2ω2
SRS

1−δ

)]1/2

. (4.34)

While we can derive the exact RE and WNRE for estimators of ϕ = µ , our analyses

for ϕ = ξ or ϕ = η will apply approximations to ϕ and asymptotic variance ω2
M, as

will be explained in Sections 4.5.3–4.5.3. Numerical results in Sections 4.6.1 and A will

demonstrate that our approximations are quite reasonable.

4.5.3 (Approximate) RE and WNRE for Estimators of µ , ξ , and η

To give limiting results (as m→ ∞) about our estimators of µ , ξ , and η in Theorems 6–8

below, we adopt the following asymptotic notation. For functions r1(m) and r2(m), we

write r1(m)=O(r2(m)) (resp., r1(m)=Ω(r2(m))) as m→∞ if there are constants ċ,m0 > 0

such that |r1(m)| ≤ ċ|r2(m)| (resp., |r1(m)| ≥ ċ|r2(m)|) for all m≥m0, so ċ|r2(m)| provides

an asymptotic upper (resp., lower) bound for |r1(m)|. Also, r1(m) = o(r2(m)) means

r1(m)/r2(m)→ 0 as m→ ∞.

Estimating µ First consider (4.32)–(4.34) with ϕ = µ = EG[c(X)] = EG̃θ
[c(X)Lθ (X)] =

mµ0. We want to analyze the asymptotic behavior (as m → ∞) of estimators of µ for

methods M= SRS (also used by MSIS(θ)), IS(θ), ISDM(θ), and DE(θ). The next result,

proven in Appendix F, provides expressions and bounds for the estimators’ exact variances,

the RE in Equation (4.32), and the WNRE in Equations (4.33)–(4.34).

Theorem 6 Under Assumption 1, the following hold for method-M estimators of µ =

EG[c(X)].

(i) The M= SRS estimator µ̂SRS,n in Equation (4.3) has variance = σ2
SRS/n, with

σ
2
SRS = VarG[c(X)] = σ

2
0 m, (4.35)

60

so when µ0 6= 0,

RESRS,m[µ]=

(
σ0

|µ0|

)
1√
m
→ 0 as m→ ∞, and WNRESRS,m[µ]=

√
τSRS σ0

|µ0|
for all m.

(4.36)

All of the remaining parts further impose Assumption 2, so θ ∈ ∆◦, and also assume −θ ∈

∆◦. In particular, the following hold for θ = θ?> 0 solving Equation (4.31) when±θ? ∈∆◦.

(ii) The M= IS(θ) estimator µ̂IS(θ),n in Equation (4.12) has variance σ2
IS(θ)/n, with

σ
2
IS(θ) ≡ VarG̃θ

[c(X)Lθ (X)] =

M0(θ)M′′0 (−θ)−µ2

0 for m=1,

m[α(θ)]m
(

m[Q′0(−θ)]2 +Q′′0(−θ)
)
−(mµ0)

2 for m≥2,

(4.37)

where α(θ)≡M0(θ)M0(−θ)≥ 1 and Q′′0(−θ)> 0. (4.38)

If θ 6= 0, then α(θ)> 1, so σ2
IS(θ) = Ω(m[α(θ)]m) as m→ ∞. If in addition µ0 6= 0,

then as m→ ∞,

REIS(θ),m[µ] = Ω([α(θ)]m/2/
√

m) → ∞, (4.39)

and WNREIS(θ),m[µ] = Ω([α(θ)]m/2) → ∞.

(iii) The M= ISDM(θ) estimator µ̂ISDM(θ),n in Equation (4.12) has variance σ2
ISDM(θ)/n,

with

σ
2
ISDM(θ) ≡ VarG̃ISDM(θ)

[c(X)LISDM(θ)(X)]≤
δ µ2

0
1−δ

m2 +
σ2

0
1−δ

m, (4.40)

so REISDM(θ),m[µ] = O(1) and WNREISDM(θ),m[µ] = O(
√

m) as m→ ∞.

(4.41)

61

(iv) For θ 6= 0, the M = DE(θ) estimator µ̂DE(θ),n in Equation (4.25) has variance

σ2
DE(θ)/n, with

σ
2
DE(θ) ≡

υ2
2

δ
σ

2
IS +

υ ′22
1−δ

σ
2
SRS = Ω(m[α(θ)]m) as m→ ∞, (4.42)

so REDE(θ),m[µ] = Ω([α(θ)]m/2/
√

m) → ∞ and WNREDE(θ),m[µ] = Ω([α(θ)]m/2) → ∞.

(4.43)

Theorem 6 shows that when we estimate µ via SRS or ISDM(θ), the variance, RE,

and WNRE behave polynomially in m as m→ ∞, by Equations (4.35), (4.36), (4.40), and

(4.41). But IS(θ) with any fixed θ 6= 0 results in exponential growth, by Equations (4.37)

and (4.39). As seen in Equation (4.42), DE(θ) takes on the asymptotic characteristics of

the worse of SRS and IS(θ). For some stochastic models of fixed dimension m, [50], who

proves Equation (4.40), provides numerical/simulation results showing that using an IS

method designed to estimate a tail probability leads to poor mean estimators compared to

SRS. Our Theorem 6(ii) provides rigorous supporting theory for the complementary setting

of a sum of m i.i.d. random variables as m→ ∞.

Estimating ξ Next take ϕ in Equations (4.32)–(4.34) as the p-quantile ξ = F−1(p). For

the methods M in Assumptions 1 and 2, the asymptotic variance ω2
M = κ2

M of the resulting

estimator ξ̂M,n has the form

κ
2
M =

χ2
M

f 2(ξ)
(4.44)

when f (ξ)> 0 (Assumption 1). The M= SRS estimator ξ̂M,n = ξ̂SRS,n in Equation (4.4)

has κ2
M = τ2

MC with χ2
M = χ2

SRS ≡ VarG[I(c(X) > ξ)] = p(1− p), as in Equation (4.10);

see [117, Section 2.3.3]. The M = IS(θ?) estimator ξ̂M,n = ξ̂IS(θ?),n in Equation (4.14)

has κ2
M = κ2

IS(θ?)
with χ2

M = χ2
IS(θ?)

≡VarG̃θ?
[L(X)I(c(X)> ξ)], as in Equation (4.19); see

[41]. Theorem 7 below defines χ2
M for M= ISDM(θ?) and DE(θ?).

62

We now want to study the RE and WNRE of the SRS, IS(θ?) (also used by

MSIS(θ?)), ISDM(θ?), and DE(θ?) estimators of ξ = F−1(p) when F ≡ Fm as m→ ∞

for quantile level p ≡ pm as in Equation (4.29). [41] analyzes (only) the numerator

χ2
M in Equation (4.44) for M = SRS and IS(θ?) in this asymptotic regime, proving that

limm→∞(1/m) ln(χ2
SRS) = −β and limm→∞(1/m) ln(χ2

IS(θ?)
) ≤ −2β . This indicates that

IS(θ?) can produce substantial variance reductions.

Further analyzing the quantile estimators’ RE and WNRE requires understanding the

asymptotic properties of ξ and the denominator f 2(ξ) in Equation (4.44). But the exact

values of ξ ≡ ξm and f (ξ)≡ fm(ξm) are usually analytically intractable for large m, so we

apply approximations. Specifically, we approximate ξ by

ξ̆ ≡ ξ̆m = mQ′0(θ?), which satisfies
ξ̆m−ξm

m
→ 0 as m→ ∞; (4.45)

see Theorem 2 in [41]. (For a generic quantity ϕ , we let ϕ̆ be a non-simulation

approximation.) Also, for studying f (ξ), the exact CDF F of the i.i.d. sum c(X) = ∑
m
j=1 X j

is the m-fold convolution of G0, but such a convolution for F (and f) is often intractable for

large m. Instead, we employ a saddlepoint approximation [53, Chapter 2] to f (x), x ∈ R,

given by (assuming θx below exists)

f̆ (x)≡ f̆m(x)=
1√

2πmQ′′0(θx)
exp [mQ0(θx)−xθx] , for θx∈∆◦ satisfying mQ′0(θx)=x.

(4.46)

(Section 4.6.1 and Appendix A will present numerical results for some particular summand

CDFs G0 showing that these approximations and others we will develop in Section 4.5.3

are quite reasonable.)

We now use (4.45) and (4.46) to approximate κ2
M in (4.44) for M = SRS, IS(θ?)

(also used by MSIS(θ?)), ISDM(θ?), and DE(θ?). Replacing f (ξ) by f̆ (ξ̆), which is

63

always positive, we will approximate κ2
M via

κ̆
2
M ≡

χ̆2
M

f̆ 2(ξ̆)
(4.47)

in Theorem 7 below. For ξ̆ 6= 0, we approximate REM,m[ξ] =
κM
|ξ | and WNREM,m[ξ] =

√
mτMREM,m by

RĔM,m[ξ]≡
κ̆M

|ξ̆ |
and WNRĔM,m[ξ]≡

√
mτMRĔM,m[ξ] (4.48)

when M 6= DE(θ?). For DE(θ?), we define WNRĔDE(θ?),m[ξ] as in (4.34) but with κ̆2
M′

replacing ω2
M′ = κ2

M′ for M′ = IS(θ?) and SRS. The next result, proven in Appendix G,

analyzes our quantile estimators.

Theorem 7 Under Assumptions 1 and 2, the following hold for method-M estimators of

ξ = F−1(p), where β > 0 is from Equation (4.29) and θ? from Equation (4.31) satisfies

Q′′0(θ?)> 0.

(i) For the M = SRS estimator ξ̂SRS,n in Equation (4.4), the approximation κ̆2
SRS in

Equation (4.47) to τ2
MC in Equation (4.44) satisfies

κ̆
2
SRS ≡

χ2
SRS

f̆ 2(ξ̆)
= [2πQ′′0(θ?)]m(1− e−βm)eβm, for χ

2
SRS = p(1− p) from (4.10),

(4.49)

so κ̆2
SRS = Ω(meβm) as m→ ∞. Moreover, if Q′0(θ?) 6= 0 (so ξ̆ 6= 0), then

RĔSRS,m[ξ] = Ω(eβm/2/
√

m)→ ∞ and WNRĔSRS,m[ξ] = Ω(eβm/2)→ ∞, as m→ ∞.

(4.50)

(ii) For the M = IS(θ?) estimator ξ̂IS(θ?),n from Equation (4.14), the approximation

κ̆2
IS(θ?)

in Equation (4.47) to the asymptotic variance κ2
IS(θ?)

in Equation (4.44), with

64

χ2
IS(θ?)

= VarG̃θ?
[Lθ?(X)I(c(X)> ξ)], satisfies

κ̆
2
IS(θ?) ≡

χ̆2
IS(θ?)

f̆ 2(ξ̆)
≤ [2πQ′′0(θ?)]m, for χ̆

2
IS(θ?) ≡ VarG̃θ?

[Lθ?(X)I(c(X)> ξ̆)],

(4.51)

so if Q′0(θ?) 6= 0,

RĔIS(θ?),m[ξ] = O(1/
√

m) → 0 and WNRĔIS(θ?),m[ξ] = O(1) as m→ ∞. (4.52)

(iii) For the M= ISDM(θ?) estimator ξ̂ISDM(θ?),n from Equation (4.14), the approximation

κ̆2
ISDM(θ?)

in Equation (4.47) to κ2
ISDM(θ?)

in Equation (4.44), with χ2
ISDM(θ?)

=

VarG̃ISDM(θ?)
[LISDM(θ?)(X)I(c(X)> ξ)], satisfies

κ̆
2
ISDM(θ?)

≡
χ̆2

ISDM(θ?)

f̆ 2(ξ̆)
≤

2πQ′′0(θ?)
δ 2 m, (4.53)

for χ̆
2
ISDM(θ?)

≡ VarG̃ISDM(θ?)
[LISDM(θ?)(X)I(c(X)> ξ̆)],

so if Q′0(θ?) 6= 0,

RĔISDM(θ?),m[ξ] = O(1/
√

m) → 0 and WNRĔISDM(θ?),m[ξ] = O(1) as m→ ∞.

(4.54)

(iv) For the M = DE(θ?) estimator ξ̂DE(θ?),n from Equation (4.25), the approximation

κ̆2
DE(θ?)

in Equation (4.47) to κ2
DE(θ?)

in Equation (4.44), with χ2
DE(θ?)

≡ υ2
1

δ
χ2

IS +

υ ′21
1−δ

χ2
SRS as in Equation (4.27), satisfies

κ̆
2
DE(θ?) ≡

χ̆2
DE(θ?)

f̆ 2(ξ̆)
= Ω(meβm) as m→ ∞, for χ̆

2
DE(θ?) ≡

υ2
1

δ
χ̆

2
IS +

υ ′21
1−δ

χ
2
SRS.

(4.55)

65

Moreover, if Q′0(θ?) 6= 0, then as m→ ∞,

RĔDE(θ?),m[ξ] = Ω(eβm/2/
√

m) → ∞, and WNRĔDE(θ?),m[ξ] = Ω(eβm/2) → ∞.

(4.56)

Theorems 6 and 7 show that SRS and IS(θ?) have opposite effects when estimating µ

and ξ . SRS (resp., IS(θ?)) leads to polynomial (resp., exponential) behavior (in m, as m→

∞) for the (asymptotic) variance, RE, and WNRE when estimating µ (Theorem 6(i)–(ii)),

but the estimator of ξ behaves exponentially (resp., polynomially) (Theorem 7(i)–(ii)). For

estimating ξ , ISDM(θ?) inflates the upper bound of the asymptotic variance of IS(θ?) by

a factor of 1/δ 2 (compare (4.51) and (4.53)), but as δ ∈ (0,1) is fixed, ISDM(θ?) still has

polynomial behavior. By (4.55), DE(θ?) adopts the limiting characteristics of the worse of

SRS and IS(θ?).

Estimating EC We now want to exploit Theorems 6 and 7 to establish results about the

approximate RE and WNRE of our EC estimators, which will require defining additional

approximations. Using (4.45) and for µm = mµ0, we approximate the EC η ≡ ηm = ξm−

µm by

η̆ ≡ η̆m ≡ ξ̆m−µm = [Q′0(θ?)−µ0]m, which satisfies
η̆m−ηm

m
→ 0 as m→ ∞.

(4.57)

For method M equaling SRS, IS(θ?), MSIS(θ?), or ISDM(θ?), we approximate the

asymptotic variance ζ 2
M in (4.10), (4.19), and (4.23) of the resulting η estimator by

ζ̆
2
M = ΛM

χ̆2
M

f̆ 2(ξ̆)
+Λ

†
Mσ

2
M+2Λ

‡
M

γ̆M

f̆ (ξ̆)
(4.58)

with f̆ from (4.46), and we next define the terms χ̆2
M, σ2

M, γ̆M, ΛM, Λ
†
M, and Λ

‡
M in (4.58)

for each M.

• M= SRS has χ̆2
M = χ2

SRS, σ2
M = σ2

SRS from (4.35), γ̆M = γSRS, and ΛSRS = Λ
†
SRS =

Λ
‡
SRS = 1, as in (4.10).

66

• M= IS(θ?) has χ̆2
M = χ̆2

IS(θ?)
from (4.51), σ2

M = σ2
IS(θ?)

from (4.37), γ̆M = γ̆IS(θ?) ≡
CovG̃θ?

[I(c(X) > ξ̆)Lθ?(X),c(X)Lθ?(X)] approximating γIS = γIS(θ?) in (4.20), and

ΛIS(θ?) = Λ
†
IS(θ?)

=−Λ
‡
IS(θ?)

= 1, as in (4.19).

• M = MSIS(θ?) has χ̆2
M = χ̆2

IS(θ?)
from (4.51), σ2

M = σ2
SRS from (4.35), γ̆M = 0 (ξ

and µ are estimated independently), ΛMSIS(θ?) = 1/δ , Λ
†
MSIS(θ?)

= 1/(1− δ), and

Λ
‡
MSIS(θ?)

= 0, as in (4.23).

• M= ISDM(θ?) has, as in (4.19), χ̆2
M = χ̆2

ISDM(θ?)
from (4.53), σ2

M = σ2
ISDM(θ?)

from

(4.40), γ̆M= γ̆ISDM(θ?)≡CovG̃ISDM(θ?)

[
I(c(X)> ξ̆)LISDM(θ?)(X),c(X)LISDM(θ?)(X)

]
approximating γISDM(θ?)=CovG̃ISDM(θ?)

[
I(c(X)> ξ)LISDM(θ?)(X),c(X)LISDM(θ?)(X)

]
in (4.20), and ΛISDM(θ?) = Λ

†
ISDM(θ?)

=−Λ
‡
ISDM(θ?)

= 1.

For M= DE(θ?), we can also write its asymptotic variance approximation to fit into

(4.58), but it is more convenient to treat it differently (to define its WNRĔ below in (4.60)).

We approximate ζ 2
DE(θ?)

in (4.27) by

ζ̆
2
DE(θ?) =

1
δ

(
υ

2
1

χ̆2
IS(θ?)

f̆ 2(ξ̆)
+υ

2
2 σ

2
IS(θ?)−2υ1υ2

γ̆IS(θ?)

f̆ (ξ̆)

)

+
1

1−δ

(
υ
′2
1

χ2
SRS

f̆ 2(ξ̆)
+υ

′2
2 σ

2
SRS +2υ

′
1υ
′
2

γSRS

f̆ (ξ̆)

)
(4.59)

(from rearranging (4.27)), where the approximations in (4.59) are from M= IS(θ?).

For each method M, we approximate its exact REM,m[η] = ζM/|η | by RĔM,m[η] =

ζ̆M/|η̆ |, if η 6= 0 and η̆ 6= 0. When M is SRS, IS(θ?), or ISDM(θ?), we approximate

the exact WNREM,m[η] =
√

mτMREM,m[η] by WNRĔM,m[η] =
√

mτMRĔM,m[η], as in

(4.33), which is for methods that use only a single i.i.d. sample.

As MSIS(θ?) and DE(θ?) utilize more than a single i.i.d. sample, we slightly adjust

the definitions of WNREM,m and WNRĔM,m for their η estimators. By similar reasoning

used to define WNREDE(θ),m[ϕ] for ϕ = ξ and µ in (4.34), we approximate the exact

67

WNREDE(θ?),m[η] by WNRĔDE(θ?),m[η], given by[
mτIS(θ?)

δ

[
υ2

1
χ̆2

IS(θ?)

f̆ 2(ξ̆)
+υ2

2 σ2
IS(θ?)

−2υ1υ2
γ̆IS(θ?)

f̆ (ξ̆)

]
+ mτSRS

1−δ

[
υ ′21

χ2
SRS

f̆ 2(ξ̆)
+υ ′22 σ2

SRS +2υ ′1υ ′2
γSRS

f̆ (ξ̆)

]]1/2

|η̆ |

(4.60)

Similarly, for MSIS(θ?), we define

WNRĔMSIS(θ?),m[η] =
1
|η̆ |

[
m

(
τIS(θ?)χ̆

2
IS(θ?)

δ f̆ 2(ξ̆)
+

τSRSσ2
SRS

1−δ

)]1/2

(4.61)

to approximate the exact WNREMSIS(θ?),m[η] defined analogously with approximations

(η̆ , χ̆2
IS(θ?)

, f̆ 2(ξ̆)) replaced by their exact values (η ,χ2
IS(θ?)

, f 2(ξ)).

Recall that (υ∗1 ,υ
∗
2) in (4.28) minimizes ζ 2

DE in (4.27) for fixed δ ∈ (0,1). Next

we define an approximation of (υ∗1 ,υ
∗
2) for our i.i.d. sum model. Since the value of

η does not depend on υ1 and υ2, minimizing ζ̆ 2
DE,δ ,υ1,υ2

or RĔDE(θ?),m[η] results in the

same approximate optimal value (ῠ∗1,m, ῠ
∗
2,m) = (

ă1,m
ă0,m

,
ă2,m
ă0,m

). Here, (ă0,m, ă1,m, ă2,m) is an

approximation of (a0,a1,a2) in (4.28) obtained by replacing V(ξ)
IS with V̆(ξ)

IS,m ≡
κ̆2

IS(θ?)
δ

from

(4.51), V(ξ)
SRS with V̆(ξ)

SRS,m ≡
κ̆2

SRS
1−δ

from (4.49), V(µ)
IS with V̆(µ)

IS,m ≡
σ2

IS(θ)
δ

from (4.37), V(µ)
SRS

with V̆(µ)
SRS,m ≡

σ2
SRS

1−δ
from (4.35), CIS with C̆IS,m ≡

γ̆IS(θ?)

δ f̆ (ξ̆)
and CSRS with C̆SRS,m ≡

χ2
SRS

(1−δ) f̆ 2(ξ̆)

from (4.59). We also define the approximate optimal value of (υ1,υ2) when minimizing

WNRĔDE(θ?),m[η] in the end of Appendix H of the appendices.

Theorem 8 Suppose that Assumptions 1 and 2 hold, so θ? ∈ ∆◦ with θ? > 0, and further

assume −θ? ∈ ∆◦. Then the method-M estimators of the EC η = ξ − µ satisfy the

following as m→ ∞, with Q′′0(θ?) > 0, Q′′0(−θ?) > 0, β > 0 from (4.29), and α(θ?) > 1

from (4.38).

68

(i) The M= SRS estimator η̂SRS,n in (4.5) has

ζ̆
2
SRS = [2πQ′′0(θ?)]m(1− e−βm)eβm +o(m(1− e−βm)eβm) = Ω(meβm), (4.62)

RĔSRS,m[η] = Ω(eβm/2/
√

m) → ∞, and WNRĔSRS,m[η] = Ω(eβm/2) → ∞.

(4.63)

(ii) The M= IS(θ?) estimator η̂IS(θ?),n in (4.17) has

ζ̆
2
IS(θ?) ≥ Q′′0(−θ?)m[α(θ?)]

m +o(m[α(θ?)]
m) = Ω(m[α(θ?)]

m), (4.64)

RĔIS(θ?),m[η] = Ω([α(θ?)]
m/2/
√

m)→ ∞, and WNRĔIS(θ?),m[η] = Ω([α(θ?)]
m/2)→ ∞.

(4.65)

(iii) The M= MSIS(θ?) estimator η̂MSIS(θ?),n in (4.21) has

ζ̆
2
MSIS(θ?) ≤

(
2πQ′′0(θ?)

δ
+

σ2
0

1−δ

)
m = O(m), (4.66)

RĔMSIS(θ?),m[η] = O(1/
√

m) → 0, and WNRĔMSIS(θ?),m[η] = O(1). (4.67)

(iv) The M= ISDM(θ?) estimator η̂ISDM(θ?),n in (4.17) has

ζ̆
2
ISDM(θ?)

≤
[

δ µ2
0

1−δ

]
m2 +

[
8πQ′′0(θ?)
(1−δ)

(
µ2

0
δ

+
σ2

0
mδ 2

)]1/2

m3/2 +

[
2πQ′′0(θ?)

δ 2 +
σ2

0
1−δ

]
m

= O(m2), (4.68)

RĔISDM(θ?),m[η] = O(1), and WNRĔISDM(θ?),m[η] = O(
√

m). (4.69)

69

(v) The M=DE(θ?) estimator η̂DE(θ?),n in (4.25) has, for s0≡ s0(θ?,β) =max[α(θ?),eβ]

> 1,

ζ̆
2
DE(θ?) ≥

[
υ2

2
δ

Q′′0(−θ?)

]
m[α(θ?)]

m +o(m[α(θ?)]
m)+

[
2υ ′21
1−δ

πQ′′0(θ?)
]

meβm +o(meβm)

= Ω(msm
0), (4.70)

RĔDE(θ?),m[η] = Ω(sm/2
0 /
√

m) → ∞, and WNRĔDE(θ?),m[η] = Ω(sm/2
0) → ∞,

(4.71)

for any fixed δ ,υ1,υ2 ∈ (0,1), as in Assumption 2. If instead (υ1,υ2) is allowed

to depend on m but with δ ∈ (0,1) still fixed, the approximate value of (υ∗1 ,υ
∗
2) in

(4.28) satisfies

lim
m→∞

(ῠ∗1,m, ῠ
∗
2,m) = (1,0). (4.72)

We now sketch Theorem 8’s proof, which is in Appendix H. For a method-M

estimator of η = ξ−µ , the growth rate (as m→∞) of its (approximate) asymptotic variance

ζ̆ 2
M in (4.58)–(4.59) is governed by the largest growth rate of the (approximate) variances

of its constituent estimators of ξ and µ . (Covariance terms in ζ̆ 2
M are nondominant, by the

Cauchy-Schwarz inequality.) Also, η̆m grows linearly in m by (4.57).

Applying these insights to SRS, we see that the exponential growth in (4.62) and

(4.63) is due to the quantile estimator’s exponential increase (Theorem 7(i)). For IS(θ?),

the exponential behavior in (4.64) and (4.65) arises from the mean estimator’s exponential

rate (Theorem 6(ii)). As DE(θ?) uses both SRS and IS(θ?) to estimate both ξ and µ , its

η estimator’s behavior is determined by the worst of those estimators; the base s0 of the

exponential term sm
0 in (4.70)–(4.71) is the larger of the SRS base eβ of (eβ)m in (4.62)

from Theorem 7(i) and the IS(θ?) base α(θ?) in (4.64) from Theorem 6(ii).

In contrast, the MSIS(θ?) (resp., ISDM(θ?)) estimator of η = ξ − µ behaves

polynomially in m because the same holds for its constituent estimators of ξ (with IS(θ?),

by Theorem 7(ii)) (resp., Theorem 7(iii)) and µ (with SRS, by Theorem 6(i)) (resp.,

70

Theorem 6(iii)). Specifically, Theorem 8(iii)–(iv) establish that as m→∞, the RĔ vanishes

(resp., remains bounded) for MSIS(θ?) (resp., ISDM(θ?)) by (4.67) (resp., (4.69)), and the

WNRĔ for MSIS(θ?) remains bounded by (4.67). While (4.69) shows that an upper bound

for the WNRĔ of ISDM(θ?) grows at most at rate
√

m, better than the exponential rates

for SRS, IS(θ?) and DE(θ?), this does not necessarily mean that the WNRĔ for ISDM(θ?)

blows up, only that its upper bound does. But our numerical results in Sections 4.6.1 and A

indicate that the RE and RĔ for ISDM(θ?) flatten out as m increases, so further scaling by
√mτISDM(θ?) would result in WNRE and WNRĔ growing polynomially in m. Finally, as

m→∞, (4.72) shows that when using the optimal approximate DE(θ?) weights to minimize

ζ̆ 2
DE,δ ,υ1,υ2

and RĔDE(θ?),m[η], the DE(θ?) estimator asymptotically reduces to MSIS(θ?).

The end of Appendix H also analyzes this in terms of minimizing WNRĔDE(θ?),m[η] from

(4.60), and we get the same result.

4.6 Numerical and Simulation Results

We next present results for two models of a loss Y = c(X) as in (4.1), but with different

definitions for c and X = (X1, . . . ,Xd). Section 4.6.1 studies the random-walk model in

Assumption 1 of Section 4.5, so c(X) = ∑
d
j=1 X j has i.i.d. summands with d = m; we

take the summand CDF G0 as exponential, whose analytical tractability permits numerical

computation. Section 4.6.2 examines a more complicated portfolio credit risk model

from (4.2), which we simulate. We compare EC estimators for SRS (Section 4.2), IS

(Section 4.3), MSIS (Section 4.4.1), ISDM (Section 4.4.2), and DE (Section 4.4.3). For

MSIS, ISDM, and DE, we let δ = υ1 = υ2 = 1/2 for all results. For each model,

we specify below the joint CDF G̃ of X for IS, MSIS, and DE, and we use this same

CDF as G∗ in ISDM; see (4.24). Although the PCRM is more complex, the results will

show that the methods behave similarly on the two models, with MSIS outperforming the

other approaches. Thus, our theoretical results (Section 4.5.3) for the i.i.d. sum provide

considerable insight into the methods.

71

4.6.1 Exact and Approximate RE for i.i.d. Sum

As in Assumption 1 of Section 4.5, we define here the loss as Y = ∑
m
j=1 X j, with the X j

as i.i.d. with marginal CDF G0, and the quantile level p ≡ pm satisfies (4.29). Theorem 8

establishes that as m→ ∞, the approximate relative errors of the SRS, IS(θ?), and DE(θ?)

estimators of the EC η ≡ ηm grow exponentially, but MSIS(θ?) (resp., ISDM(θ?)) has RĔ

that shrinks to 0 (resp., remains bounded). For each EC estimator, we want to investigate

numerically the behavior (as m increases) of the exact RE (based on (4.10), (4.19), (4.23),

or (4.27)) and also compare it to its approximation RĔ. We present here results for G0 as

exponential with mean µ0 = 1. (Appendix A gives other results when G0 is N(1,1) and

Erlang (s = 8 stages).)

The top two rows of Figure 4.1 plot the exact RE of our estimators of η , ξ , and

µ as functions of the dimension m. By (4.45) and (4.57), ηm, η̆m ξm, ξ̆m, and µm share

the same growth rate: linear in m. Thus, the RĔ and WNRĔ of η , ξ , and µ are directly

comparable, suggesting the same for RE and WNRE. As m grows, the top left panel shows

that the SRS, IS(θ?), and DE(θ?) estimators of η have exponentially increasing RE, which

agree with (4.63), (4.65), and (4.71) for the approximation RĔ. For SRS (resp., IS(θ?))

the RE of the estimator of η rises exponentially because the same holds for ξ (resp., µ)

by (4.50) (resp., (4.39)); see middle panels. Also, as explained after Theorem 8, the RE of

the DE(θ?) estimator of η is governed by the worst of the SRS and IS(θ?) estimators of ξ

and µ , which in this case is the SRS estimator of ξ , as seen in the middle-row panels of

Figure 4.1. (For other G0 in Appendix A, the IS(θ?) estimator of µ is worst.)

In contrast, the top two rows of Figure 4.1 also show that the MSIS(θ?) and

ISDM(θ?) estimators of η have decreasing RE as m grows; see (4.67) and (4.69) for

RĔ. As m gets large, MSIS(θ?) appears to be somewhat better than ISDM(θ?) when

estimating η , with MSIS(θ?) continually decreasing, but ISDM(θ?) flattening out. The

reason becomes apparent from the middle right panel: the estimator of µ using SRS

72

(which is how MSIS(θ?) estimates µ) has shrinking RE as m grows (see (4.36)), while

the ISDM(θ?) estimator of µ does not (see (4.41) and the last paragraph of Section 4.5.3).

The bottom-left panel of Figure 4.1 displays the exact RE and its approximation RĔ

for the SRS, IS(θ?), MSIS(θ?), and ISDM(θ?) estimators of η , as functions of m. For the

same method, the RE and RĔ plots often overlap substantially, especially as m increases,

so our approximations can be very accurate. But even when they exhibit some difference

for a particular method (as for SRS), the RE and RĔ plots follow the same trends. (We

simplified the figure by omitting DE(θ?); its RE and RĔ for η also behave similarly.) Thus,

we conclude that our approximations in Sections 4.5.3 and 4.5.3 are quite reasonable.

4.6.2 Portfolio Credit Risk Model

We next present simulation results from estimating EC on the model in (4.2) of the loss of

a credit portfolio with m = 1000 obligors and r = 10 factors. The model extends one in

[40], who assume a constant loss given default for each obligor k = 1, . . . ,m. We instead

let the LGD be a continuous random variable so that F is differentiable at ξ and f (ξ)> 0,

as required by our theorems.

Recall X = (Z,S,ε1, . . . ,εm,J1, . . . ,Jm) in (4.2) is an Rr+2m+1-valued random vector

with independent components. As in [40], we take the common shock to be S ≡ 1. Let

Dk = I(akZ+bkεk > wk) be the indicator function in (4.2) that obligor k defaults. Because

akZ+bkεk ∼N(0,1), if we set wk =Φ−1(1− pk) for some constant 0< pk < 1, where Φ(·)

is the N(0,1) CDF, then obligor k has marginal default probability P(Dk = 1) = pk. Our

experiments used pk = 0.01 · (1+ sin(16πk/m)), k = 1, . . . ,m, as in [40]. For each obligor

k = 1,2, . . . ,m, the constant LGD in [40] is modified to Ck = vk(Z,S,ε1, . . . ,εm,Jk) =

Jk ∼ Unif(0,βk), where βk = 2 · (d5k/me)2 and Unif(c0,c1) denotes a continuous uniform

distribution on (c0,c1). As in [40], we randomly generated the loading factors ak, j in (4.2)

once as independent Unif(0,1/
√

r), and used these values in all experiments.

73

Figure 4.1 For G0 as exponential (mean 1) and β = 1.1 in (4.31), the log-log plots
show the RE and its approximation RĔ, computed numerically (i.e., not estimated via
simulation), as functions of the dimension m. In the top two rows, the plots display the
exact RE of estimators of the EC η (top left panel), the p-quantile ξ (middle row, left
panel), and the mean µ (middle row, right panel). The bottom left panel shows RE[η] and
its approximation RĔ[η]. The middle panels do not give results for MSIS(θ?), which uses
IS(θ?) (resp., SRS) to estimate ξ (resp., µ).

74

We ran simulation experiments to estimate this model’s EC η for p = 0.999. For

this model we can compute analytically the mean as µ = 104.02, but this may not be

possible for more complicated models, and our simulation experiments treat µ as unknown,

requiring estimation. The value of ξ is not analytically tractable, and we obtained its “true”

value as ξ = 1884.6 from an SRS simulation with sample size 107, giving the “true” value

for EC as η = 1780.6.

We construct nominal 95% confidence intervals for η using two approaches:

batching and sectioning. For an estimation method M and total overall sample size n,

we first construct b ≥ 2 i.i.d. estimators η̂
(j)
M,n/b, j = 1,2, . . . ,b, of η , each based on a

sample size n/b. Batching uses their sample average η̄M,b,n = (1/n)∑
b
j=1 η̂

(j)
M,n/b and

sample variance S2
M,b,n = (1/(b−1))∑

b
j=1[η̂

(j)
M,n/b− η̄M,b,n]

2 to build an approximate α =

0.95-level CI IM,b,n = (η̄M,b,n± tb−1,0.95SM,b,n/
√

b), where tb−1,α = H−1
b−1(1−α/2), and

Hb−1 the Student-t CDF with b−1 degrees of freedom. Sectioning [9, Section V.5] replaces

η̄M,b,n in S2
M,b,n and IM,b,n with the overall point estimator η̂M,n to get a CI JM,b,n, centered

at η̂M,n. Because η estimators are biased, with the bias shrinking (nonmonotonically) as

the sample size increases, the sectioning CI can have better coverage than IM,b,n because

JM,b,n is better centered on average ([60]).

Table 4.1 gives results of coverage experiments to construct batching and sectioning

CIs for η using SRS, ISρ (explained below), MSIS, ISDM, and DE, each with overall

sample size n = 2000. We take b = 10, as suggested by [94]. From 103 independent

replications, we estimated the batching and sectioning CIs’ coverage and average relative

half width (ARHW), and the point estimators’ root-mean-squared relative error (RMSRE),

defined as
√

E[(η̂−η)2]/η for a generic estimator η̂ of η . When the coverage is low, the

ARHW and RMSRE results may not be reliable.

For SRS, the batching CI has poor coverage, while the coverage for sectioning is

reasonably close to nominal, because of the benefits of sectioning as we explained before.

75

Also, for sectioning, the ARHW (resp., RMSRE) for SRS is about 7 (resp., 13) times larger

than for MSIS.

ISρ is a modification of a method of [40] for estimating a tail probability P(Y > x) for

a given large threshold x to estimate P(Y > ρ), where ρ is either η or ξ , and then use the

generated IS data to compute an estimator of η . But as these choices for ρ are unknown,

we cannot directly apply the [40] IS algorithm to estimate P(Y > ρ). Rather, when ρ = ξ ,

we first run j0 = 5 pilot IS simulations, each with small sample size n0 = 100, to estimate

P(Y > x) at j0 different thresholds x, and then interpolate to obtain a crude approximation ξ̊

to ξ . Then ISξ runs another IS simulation with sample size n− j0n0 to estimate P(Y > ξ̊),

finally employing the generated IS data to estimate both ξ and µ to obtain an estimator of

η . Each independent replication repeated these steps. The full details of this approach for

ρ = ξ appear in Appendix I. For ISDM, the only difference from ISξ is that we sample

X∼ G̃ISDM in Section 4.4.2, where G∗ corresponds to ISξ .

For ISρ with ρ = η , we execute an additional pilot SRS simulation with sample size

n0 to produce an approximation µ∗ to µ , and compute η∗ = ξ̊ −µ∗ as an approximation to

η . Then ISρ for ρ = η runs an IS simulation with sample size n− (j0 + 1)n0 to estimate

P(Y > ρ) for ρ = η∗, and employs the resulting IS data to compute estimators of both ξ

and µ , resulting in our final estimator of η .

Table 4.1 shows that the coverage for each ISρ CI is at or close to 0 for all choices

of ρ . This occurs because in ISρ , we apply the same IS data from estimating ξ to also

estimate µ , leading to the problems discussed in Section 4.4 and the poor coverage for

our CIs. In particular, the average across 103 replications of the ISη estimator of µ is

about 11.1, quite far from the true value 104.02. As noted on pp. 134–135 of [9], these

types of discrepancies can occur with IS when the sample size is not sufficiently large,

especially when an IS approach is applied inappropriately for a given estimation problem.

(To investigate this further, we ran additional simulations (not reported) verifying that the

ISρ CIs approach nominal coverage with larger sample size n for p = 0.95. For larger p,

76

rather than conducting converge experiments, which would require a massive sample size

and extremely long CPU time (several months), we did experiments showing that the ISρ

estimators of η appear to converge to its “true” values as n gets larger, indicating that the

CIs should approach nominal coverage with a large enough sample size.) Also, the ARHW

and RMSRE results for ISρ may not be reliable because of the poor coverages.

For MSIS, we use a total sample of size j0n0 for computing the crude quantile

approximation ξ̊ , as is done with ISξ ; then generate an IS sample of size δ (n− j0n0)

to estimate P(Y > ξ̊), and use the resulting IS data to estimate ξ ; and finally employ

an SRS sample of size (1− δ)(n− j0n0) for the estimation of µ . Table 4.1 shows

that MSIS sectioning and batching CIs achieve nominal coverage, with about the same

ARHW, but with the sectioning point estimator having roughly 10% smaller RMSRE.

MSIS outperforms SRS for both batching and sectioning, with the mean-squared error

(MSE) for sectioning being reduced by a factor of (2.276e–01/1.801e–02)2 ≈ 160. In our

python implementations, the IS code, including the pilot runs to obtain the crude quantile

approximation ξ̊ , requires about thrice the CPU time as SRS to execute. Taking this into

account, MSIS improves work-normalized MSE by about a factor of 50 compared to SRS.

DE and MSIS differ only in computing their estimator of η from the generated data; see

(4.25) and (4.21).

We next compare the methods (MSIS, ISDM, DE of Section 4.4) that combine SRS

and IS. For the i.i.d. sum model in Section 4.5, recall that Theorem 8 and Figure 4.1

(Section 4.6.1) established the following properties for the methods’ (approximate and

exact) RE of η :

• MSIS does better than ISDM (but not by a lot);

• Both MSIS and ISDM greatly outperform DE; and

• DE behaves about the same as the worse of ISξ and SRS.

77

For the more complicated PCRM, Table 4.1 shows that the methods perform similarly in

terms of ARHW and RMSRE. First, by comparing MSIS and ISDM, we can see that MSIS

has about 30% smaller ARHW and RMSRE than ISDM for sectioning; while MSIS and

ISDM produce CIs that have close to nominal coverage, MSIS perhaps does a bit better.

Second, relative to MSIS, DE has about 5 (resp., 10) times larger ARHW (resp., RMSE) for

sectioning. While DE has sectioning coverage for η reasonably close to nominal, it is not

as good as MSIS. We expect DE to do about the same as the worse of SRS and ISξ , and the

ARHW and RMSRE of DE are reasonably close to those of SRS for sectioning, but ISξ has

very poor coverages so its ARHW and RMSRE results may not be reliable. The coverages

of batching and sectioning for DE differ substantially, which is similar to what we see for

SRS, and the reason for this difference is just like that of SRS as explained before. Both

ISDM and DE incur about the same CPU time as MSIS. Thus, the methods exhibit the

same behavior for the PCRM as we saw for the i.i.d. sum model. Also compared to SRS,

MSIS improved precision by reducing the ARHW of the sectioning CI from roughly 0.3 to

only 0.04.

78

Table 4.1 Results Comparision

Batching Sectioning

Method Coverage ARHW RMSRE Coverage ARHW RMSRE

MSIS 0.921 0.038 2.016e–02 0.956 0.041 1.801e–02

ISDM 0.867 0.060 5.199e–02 0.915 0.060 2.574e–02

DE 0.076 0.136∗ 2.274e–01∗ 0.884 0.220 1.803e–01

SRS 0.365 0.273∗ 2.633e–01∗ 0.892 0.292 2.276e–01

ISη 0.096 0.024∗ 7.253e–02∗ 0.087 0.024∗ 7.370e–02∗

ISξ 0.074 0.027∗ 5.212e–02∗ 0.047 0.028∗ 5.356e–02∗

Note: We ran 103 independent replications of the PCRM to estimate the coverage and
ARHW of sectioning and batching CIs with nominal 95% confidence level for the EC η for
p = 0.999 estimated with sample size n = 2000. Numbers marked with ∗ may not reliable
due to very low coverage

79

CHAPTER 5

HOLISTIC RESOURCE ALLOCATION UNDER FEDERATED SCHEDULING

FOR PARALLEL REAL-TIME TASKS

In this chapter, we present a holistic resource allocation framework for parallel real-time

tasks under federated scheduling. Under our proposed framework, in addition to dedicated

cores, each parallel task is also assigned with dedicated cache and memory bandwidth

resources. We study the characteristics of parallel tasks upon different resource allocations

following a measurement- based approach and proposes a technique to handle the challenge

of tremendous profiling for all resource allocation combinations under this approach.

Further, we propose a holistic resource allocation algorithm that well balances the

allocation between different resources to achieve good schedulability. Additionally, we

provide a full implementation of our framework by extending the federated scheduling

system with Intel’s Cache Allocation Technology and MemGuard. Finally, we demonstrate

the practicality of our proposed framework via extensive numerical evaluations and

empirical experiments using real benchmark programs.

5.1 Related Work

Parallel real-time scheduling. The problem of scheduling parallel real-time tasks has

been broadly studied. The earlier works develop a task decomposition technique to apply

the analysis of multiprocessor scheduling [69, 113, 65, 133, 97, 55]. For directly scheduling

parallel tasks, classic schedulers [6, 19, 81, 22, 92, 98] and Federated Scheduling that is

specifically designed for parallel tasks [82, 54, 127, 3] have been analyzed. All of them,

except for [3, 123, 121, 98], only consider how to allocate cores to parallel tasks and do

not consider the contention in cache and memory bandwidth. Alhammad and Pellizzoni,

for the first time, analyze the memory bandwidth allocation for parallel tasks, using a

80

theoretical approach. They model the memory time as part of the work and calculate a

task’s execution time given a certain number of cores and a certain amount of bandwidth

assigned to the task. For analyzing private cache, a private-cache-aware algorithm is

proposed for finding partitioned non-preemptive schedules for parallel tasks [98]. In

contrast, we consider both shared cache and memory bandwidth for parallel tasks and takes

an empirical approach based on measurements of WCET. E-WarP [121] is a framework that

analyzes the fine-grained memory demand of applications and uses the developed memory

enveloping to perform accurate WCET predictions under bandwidth regulation for both

CPU and accelerator workload. To analyze the fine-grained cache behavior of parallel

tasks, [123] incorporates the cache-aware BUNDLE-scheduling into federated scheduling

for parallel tasks. Both works focus on analyzing the fine-grained behaviors of individual

parallel tasks and improve their execution efficiencies. Thus, they are orthogonal to this

work and can be integrated for better performance.

Allocating cache and memory bandwidth. Cache partitioning techniques, such as page

coloring, have been studied extensively to reduce contention on cache [142, 35, 64, 11]

(see [43] for a survey). Interference due to cache has also been incorporated into scheduler

design and analysis [44, 20, 114, 137, 135]. Recent processors provide more efficient

hardware support for cache partitioning [52, 7]. Analyses on memory controllers achieve

deterministic memory access latency via detailed assumptions and/or modifications to

controller hardware [63, 46, 84, 143, 45]. In contrast, software-based techniques regulate

the memory bandwidth via throttling a core when the monitoring unit observes the

excessive memory requests of the core [140, 138, 1]. CaM [136] proposes to holistically

allocate cache and memory bandwidth to sequential tasks on multicore machines. This idea

is later incorporated into the compositional analysis for real-time virtualization to provide

better timing isolation among tasks in VMs. To address shared cache and memory bus

contention while ensuring task timing requirements in virtualized systems, Maracas [137]

adopts page coloring techniques and a latency-based memory throttling approach. All the

81

above research considers sequential tasks, while this work extends CaM for parallel tasks

with federated scheduling.

5.2 Impact of Resource Allocations on Parallel Real-Time Tasks

To investigate the characteristics of the worst-case execution times of parallel real-time

tasks when allocated with different amounts of cores, cache partitions, and memory

bandwidth resources, in this section, we conduct an empirical evaluation using real-world

parallel applications. Specifically, we extend parallel benchmark programs written in the

widely used OpenMP [101] language using Intel CAT [52] and MemGuard [140] for

dedicating resources in our experiments. The observations obtained from this empirical

study not only motivate the importance of holistic resource allocation for parallel real-time

tasks, but also stimulates us to apply a regression function on the measurement results. This

regression function is later used to reduce the tremendous profiling effort for all different

combinations of resource allocation in the measurement-based approach.

5.2.1 Experimental Setup

We first describe the resource allocation implementation and experimental setup for

measuring the worst-case execution times of parallel benchmark programs upon different

numbers of allocated cores, cache partitions, and memory bandwidth partitions.

CAT. Intel’s Cache Allocation Technology (CAT) [52], which is available to Intel

processors starting with the Xeon E5 v4 family, provides software-programmable control

over the amount of last-level cache (LLC) that can be consumed by software or hardware

threads. More specifically, CAT relies on mapping each running software or hardware

thread onto an intermediate construct called a Class of Service (CLOS). Then, CLOS

can be configured via the L3 capacity bitmasks to set the available cache partitions,

which associates the cache partitions with the software or hardware threads. Intel

Resource Director Technology Software Package provides the OS interface leveraging

82

Linux kernel extensions to achieve the assignment of cache partitions to a process

(i.e., task) or a set of cores. In our system implementation, we configure the Linux

kernel via CONFIG INTEL RDT A to enable the two OS interfaces pqos l3ca set and

pqos alloc assoc set for allocating cache partitions. For a parallel task executed on

multiple dedicated cores, we use these interfaces to assign cache partitions that are shared

only by the cores of the task.

Memguard. Our implementation leverages the reservation mechanism of MemGuard [140]

to allocate memory bandwidth to parallel tasks and cores. Specifically, MemGuard utilizes

the hardware performance monitoring counter via the Linux perf event infrastructure to

monitor the last-level cache miss of each core. Since each cache miss generates a memory

access request, one can calculate the maximumly allowed number of cache misses for a

duration without exceeding the specified memory bandwidth. When reaching this number,

MemGuard throttles the computation of this core by calling the cpu relax(). At the end of

the current duration, MemGuard resets the counter and wakes up the core for execution. In

this way, MemGuard is able to restrict the amount of memory bandwidth used by each core.

However, because the hardware counter can only monitor the cache misses for each core,

MemGuard only supports individually allocating a certain amount of memory bandwidth

to a core. But it does not allow allocating memory bandwidth that can be shared by a set of

cores or by the multiple parallel threads a process on different cores. Hence, for a parallel

task assigned with multiple dedicated cores, our implementation calculates the amount of

memory bandwidth to be allocated for each of these cores by using the number of cores to

divide the desired total amount of memory bandwidth allocated to this task. Then, we use

the interface provided by MemGuard to achieve this allocation.

Hardware. We conduct the experiments on a 14-core machine with an Intel Xeon Gold

5117 processor that supports Intel CAT. The cores in the processor share a 19.25MB L3

cache and 6-channel 32GB DDR4 DRAM with a maximum memory speed of 2400MHz.

The shared L3 cache can be divided into 11 equal-size partitions. The processor has 8

83

Class of Service (CLOS) registers, so it supports at most 8 sets of cache partitions, where

each set (i.e., each CLOS) must be assigned with at least one cache partition. We adopted

the DRAM controller saturation analysis in [121] for obtaining the maximum memory

bandwidth. For the workload with stores that always result in DRAM row misses, the

maximum memory bandwidth without fully saturating the DRAM controller is 7.83 GB/s.

In comparison, for the read-intensive workload that always results in cache misses, the

maximum memory bandwidth without fully saturating the DRAM controller is 17.97 GB/s.

We observe that the realistic benchmark programs described below typically generate more

loads than stores. Hence, we consider a maximum guaranteed memory bandwidth of

12GB/s assuming a ratio of roughly two stores and one load. To discretize the amount

of memory bandwidth that can be allocated to tasks, we divide the bandwidth into 20

partitions of 600MB/s each, where each task is assigned with one or multiple partitions.

This number is chosen considering the balance between the sufficient number of partitions

for the allocation and the sufficient size of each partition.

System configuration. Our experiments are run on Linux 4.15.0, where hyper-threading,

SpeedStep, and hardware cache prefetcher features are disabled to reduce the non-

determinism in the timing behavior of tasks. For both the benchmark profiling described

here and the empirical evaluation of our framework in Section 5.7, we run the benchmark

programs under the Linux real-time priorities. Note that Linux comes with a safeguard

mechanism that throttles the execution under real-time priorities when reaching 95%

CPU utilization by default. We disable the real-time scheduler throttling by setting

sched rt runtime us to−1. We further reserve one core (i.e., core 0) for system services,

dedicated one cache partition to this core using CAT, and restrict its memory bandwidth

usage using Memguard to limit the interference from system services to the experiments.

In summary, we leave 13 cores, 10 cache partitions, and 20 memory bandwidth partitions

for running experiments.

84

Parallel runtime system. We use GCC 7.4.0 with OpenMP 2.0 as the compiler and

runtime system for executing parallel benchmarks. We configure OpenMP to generate and

pin exactly one thread per core using omp set num threads() and

pthread setaffinity np(), so each parallel task uses and only uses its dedicated cores

without thread migrations. To further reduce the variation of parallel execution times, we

set OMP WAIT POLICY as active, disallow nested parallelism using omp set nested(0),

and set GOMP SPINCOUNT as infinity.

Workload. We modified 12 parallel benchmark programs to enable the allocation of

dedicated cores, cache partitions, and memory bandwidth partitions using the aforemen-

tioned interfaces provided by OpenMP, Intel CAT, and MemGuard, respectively. The 12

benchmark programs are converted from two widely used parallel benchmark suites that

collect real-world applications with various parallel structures and properties. Specifically,

Facesim, Bodytrack, Fluid Animate (Fluid), Swaptions, and Blackscholes are

from the Princeton Application Repository for Shared-Memory Computers (PARSEC)

benchmark suites [16]; While Ray Casting (RayCast), Breadth First Search (BFS),

Comparison Sort (Sort), Dictionary, Minimum Spanning Forest (MSF), Remove

Duplicates (RemDup), Nbody are from the CMU Problem Based Benchmark Suite (PBBS

benchmark suite) [111]. Note that the PBBS benchmark programs were originally written

using Cilk Plus [51] and are converted into OpenMP. These benchmark programs cover

a broad range of real-world applications, such as computational biology, graphics, basic

building blocks, finance, computer vision, and physics simulation algorithms. They also

include different representative parallel structures. For instance, Blackscholes performs

financial analysis and is parallelized by spawning and synchronizing OpenMP tasks;

Bodytrack is a computer vision application, which is parallelized with nested parallel

for loops and has ample parallelism; In contrast, Nbody is a scientific application and has

a more complex parallel structure with both parallel for loops and spawning tasks. The

85

different parallel structures not only affect the speedup of the benchmark programs, but

also have impacts on their sensitivities to different allocated resources.

5.2.2 Impact of Core, Cache and Memory Bandwidth Allocations

The goal of this empirical study is to examine how the timing behavior of real-world

parallel applications changes, when they are assigned with different numbers of dedicated

cores, cache partitions, and memory bandwidth partitions. For brevity, we use MBW or

bandwidth to refer to memory bandwidth in the rest of the paper.

Experiment. We run each benchmark program on increasing numbers of cores, cache

partitions, and memory bandwidth partitions. Under each resource allocation, we measure

the execution time of the benchmark. The profiling is conducted in a setup that mimics

the execution environment of co-running multiple tasks on their dedicated resources and

creates as much system-level interference as possible. Specifically, we run each benchmark

under profiling at a high real-time priority. Additionally, we co-run another interfering

parallel task at a lower real-time priority and allocate all the remaining resources to

this task. Extending the method in [141, 132], this interfering program is essentially a

parallel cache-bomb and memory-intensive program that we develop by parallelizing the

Stream Benchmark [89] (similar to the benchmarks in [132]) using OpenMP. This program

generates intensive memory access requests by performing read and write operations on

long-vectors with minimum data re-use (either in registers or in cache). In addition, it

runs in parallel on the assigned cores by OpenMP parallel for loops, which frequently

synchronizes using the underlying Linux futexes. In this way, it not only compete with the

benchmark under profiling on the shared DRAM controller and MSHRs, but also tries to

generate some contention over the internal kernel data structures related to futexes.

Ideally, one would run each benchmark program hundreds or thousands of times to

measure the worst-case execution time (WCET) of a benchmark. However, with 13 cores,

10 cache partitions, and 20 memory bandwidth partitions, there are a total of 2,600 distinct

86

combinations of resource allocations. Moreover, some benchmark programs take tens of

seconds for one run. Hence, the measurement of one benchmark for the 2,600 combinations

takes up to half a day, even when we run it once for each resource allocation. This

circumstance motivates us to develop a regression analysis in Section 5.2.3, which enables

using a much smaller number of measurements to guide the initial resource allocation for

tasks. In this study, our focus is on the variety of benchmark applications and the trend of

execution times upon different resource allocations, instead of obtaining the safe WCET

values. Hence, we only measure the execution time of each benchmark under each of the

2,600 combinations once.

Results. Figure 5.1 shows the measurement results of four representative benchmarks.

In particular, RayCast is a graphics rendering algorithm that uses the geometric algorithm

of ray tracing to render and calculate the first intersecting triangles for rays that penetrate

a 3-dimension bounding box containing a set of triangles. BFS performs a breadth-first

search on a graph with a reasonably large size. Blackscholes calculates the prices for

options using the Black-Scholes partial differential equation, which involves expensive

computation on relatively small data. Nbody calculates the motion of particles under the

influence of mutual gravitational forces in a dynamic system.

We calculate the speedup of a benchmark program upon a particular resource

allocation. The speedup is defined as the ratio between the execution time measured for

this resource allocation and the execution time when assigning only one core, one cache

partition, and one memory bandwidth partition, the latter of which is also the maximum

execution time of this benchmark. For better readability, we plot Figure 5.1 in terms

of slowdown, which is the inverse of speedup. The comparison between these three

representative benchmarks reveals the following observation.

Observation 1 The impact of the core, cache partition, and memory bandwidth allocations

varies across different parallel benchmark applications.

87

Not surprisingly, the timing behaviors of different applications vary, since they

have different characteristics. For example, Figures 5.1(a), 5.1(d), and 5.1(g) show the

speedup of the three benchmarks on increasing numbers of cores and cache partitions,

while the number of memory bandwidth partitions is fixed to one. By comparing them,

we can see that cache barely makes any effect on the execution times of Blackschole

and has a slightly larger impact on BFS, while it significantly affects the execution times of

RayCast. A similar trend can be seen for memory bandwidth partitions in Figures 5.1(b),

5.1(e), and 5.1(h). When memory bandwidth allocation increases, the running times of

RayCast and BFS decrease dramatically. In contrast, memory bandwidth has little impact

on Blackschole, especially when it is running on more than 2 cores. This is because both

RayCast and BFS perform computation on large data, while the intensive computation of

Blackscholes is performed on much smaller data.

In general, well-written parallel tasks are sensitive to cores in most cases. In fact,

in many cases, the execution times decrease the fastest when increasing the number of

allocated cores. But the specific speedup achieved by an application when running on

multiple cores depends on the parallelism of the application. For example, Blackschole

has ample parallelism and is able to achieve near-linear speedup. In comparison, Nbody

only has about a 25% reduction in execution times when assigned with 13 cores.

Depending on the characteristics of applications, some (e.g., RayCast) are sensitive

to both cache and memory bandwidth resources, and some are only sensitive to memory

bandwidth (e.g., BFS), while the others are not sensitive to cache nor memory bandwidth

(e.g., Blackschole and Nbody). Somewhat surprisingly, from the benchmark applications

that we profiled, we do not find any benchmark that is more sensitive to cache than to

memory bandwidth. We suspect that this is both related to the memory footprint and the

memory access pattern of an application.

Based on the above findings, we classify all the 12 benchmark applications into 3

large categories: cache- and MBW-sensitive benchmarks, MBW-sensitive benchmarks,

88

and cache- and MBW-insensitive benchmarks. As shown in Table 5.1, out of the 12

benchmark programs, there are 2 cache- and MBW-sensitive benchmarks, 6 MBW-

sensitive benchmarks, and 6 cache- and MBW-insensitive benchmarks. Note that there

is a continuous spectrum from being sensitive to both cache and memory bandwidth to

being sensitive to memory bandwidth only. Even for those benchmarks that are considered

MBW-sensitive, increasing the number of allocation cache partitions can still reduce its

execution times, albeit very slightly.

Observation 2 The impacts of cache and memory bandwidth partitions on the execution

times of a parallel benchmark are correlated.

Not surprisingly, this observation is also similar to what was observed for sequential

tasks [136]. Figure 5.2 presents the speedup of Facesim under different resource

allocations. We can see that increasing the number of cache partitions reduces the execution

times of Facesim more when given 1 memory bandwidth partition; whereas increasing the

number of cache partitions reduces its execution times extremely slightly when given 10

or 20 memory bandwidth partitions. This is because when a task receives little memory

bandwidth, it can be throttled frequently due to running out of bandwidth reservation.

Increasing the cache size can reduce the frequency of memory accesses, and thus reduce the

frequency of being throttled. In contrast, the time spent on computing dominates the overall

execution time, when the memory bandwidth is abundant. We observe similar behavior for

RayCast, Sort, and Dictionary.

Observation 3 For a particular cache and memory bandwidth allocation, the execution

time ê(thi) of a benchmark on thi dedicated cores follows the formula below:

ê(thi) = f∞ +
f1− f∞

(thi)c (5.1)

where c is some constant, f1 represents the total work, and f∞ represents the span (i.e.,

the execution time on an infinite number of cores) upon the particular cache and memory

bandwidth allocation.

89

Figure 5.3 shows how the execution times of RemDup, Sort and Fluid change on

increasing numbers of dedicated cores. In addition, we apply nonlinear regression using a

function in the form of Equation (5.1) to fit the profiling results. The design of the function

is inspired by the theoretical analysis of the running time e(p) of a parallel program when

executed by a work-conserving (i.e., greedy) scheduler on increasing numbers of cores,

which is essentially following the Amdahl’s Law [4]. In this analysis [82], the effects of

cache and memory bandwidth are ignored, and ep = e∞+ e1−e∞

p , where e1 is the total work,

e∞ is the span, and p is the number of allocated cores. Note that this classical result is

almost identical to our designed function, except that the constant c in Equation (5.1) is

always 1 under the theoretical analysis.

From Figure 5.3, we can first observe that RemDup and Sort are memory bandwidth

sensitive benchmarks, where the execution times decrease significantly given more memory

bandwidth partitions. Fluid, on the other hand, is insensitive to cache and memory

bandwidth. Moreover, the designed function can accurately approximate the trend of

the measurement results for Sort and the obtained constant c is 1. In contrast, to obtain a

low error in the regression, the constant c is 0.9 for Fluid and 1.9 for RemDup. Unlike

the classical analysis that assumes linear speedup of the parallel region, our profiling

results indicate that the speedup can be superlinear or sublinear. Hence, in our nonlinear

regression, we do not restrict c to 1. We also notice that allowing different values of c for

the same benchmark upon different cache and memory bandwidth can slightly improve the

accuracy of the regression. But the variation of c is relatively small. Hence, to reduce the

number of variables in the regression, we decide to use a single constant c for the same

benchmark.

Furthermore, we can see that the obtained values for f1 and f∞ for the same

benchmark program vary a lot when different numbers of cache and memory bandwidth

partitions are allocated to this benchmark. Intuitively, the cache and memory bandwidth

90

allocation affects the latency of obtaining the data for computing, which adds to the

computation time of the benchmark.

5.2.3 Fitting WCET using Nonlinear Regression

As discussed in Section 5.2.2, the enormous number of resource allocation combinations

causes the time to profile the worst-case execution time (WCET) of a benchmark program

tremendously long, if the profiling must be done for each of the combinations. This fact

motivates us to investigate applying nonlinear regression analysis to fit the measurement

results of benchmarks. Our goal here is two-fold: (1) we want to see how accurate the

nonlinear regression can be when a reasonable function is used; and (2) we want to see

whether it is possible to perform the measurement only for a small number of combinations,

apply the non-linear regression, and obtain relatively accurate estimations on the execution

times.

To answer the first question, we design the following function based on Observation 3

above for estimating the (worst-case) execution times ê(thi,cpi,mpi) of a benchmark

program when it is assigned with thi cores, cpi cache partitions, and mpi memory

bandwidth partitions:

ê(thi,cpi,mpi) = f∞(cpi,mpi)+
f1(cpi,mpi)− f∞(cpi,mpi)

thc00
i

(5.2)

where c00 is a coefficient. Similar to Equation (5.1), f1(cpi,mpi) and f∞(cpi,mpi) represent

the work and span of the benchmark upon cpi cache and mpi memory bandwidth partitions.

And the coefficient c00 corresponds to the parameter c in Equation (5.1), which can be

smaller, equal to, or larger than 1, as discussed under Observation 3.

The design of functions f1(cpi,mpi) and f∞(cpi,mpi) is inspired by Observation 2.

They try to capture the individual effect of cache or memory bandwidth allocations, as well

91

as the correlation between them. Specifically, they are in the following forms:

f1(cpi,mpi) = c11 ∗ (cpi + c12)
−c17 ∗ (mpi + c13)

−c18

+c14 ∗ (cpi + c12)
−c17 + c15 ∗ (mpi + c13)

−c18 + c16 (5.3)

f∞(cpi,mpi) = c21 ∗ (cpi + c22)
−c27 ∗ (mpi + c23)

−c28

+c24 ∗ (cpi + c22)
−c27 + c25 ∗ (mpi + c23)

−c28 + c26 (5.4)

where c11 to c28 are also coefficients.

Table 5.1 Mean Relative Error of Fitting WCET

Cache- and MBW-sensitive benchmarks:

Benchmark RayCast Facesim

MRE 0.05283 0.04706

MBW-sensitive benchmarks:

Benchmark BFS Sort Dictionary MSF RemDup

MRE 0.08200 0.03881 0.09334 0.0526 0.06961

Cache- and MBW-insensitive benchmarks:

Benchmark Bodytrack Blackscholes Fluidanimate Nbody Swaption

MRE 0.03749 0.05648 0.03948 0.00272 0.07791

Results. We use the nonlinear regression tool of curve fit in Python scipy.optimize

library to fit the measured execution times of benchmark programs. Other nonlinear

regression tools, such as Matlab Cftool, DataFit from Oakdale Engineering, Origin from

OriginLab, and 1stOpt from 7D-Soft, can also be used. We do not observe any difference

in the results in terms of relative errors when using different tools. We initialize all the

coefficients (i.e., c00 to c28) to 1, since this initialization often leads to faster convergence

in practice. One could also initialize the coefficients to any other random values. As long

as the regression converges and the relative error is small, the values of the coefficients

92

are similar. To evaluate the performance of the nonlinear regression, we calculate the

relative error of the approximated execution times from the measured execution times for

each allocation setting and report the mean relative error (MRE). Formally, mean relative

error is calculated as

MRE =
1
n

n

∑
1

|ẽ(thi,cpi,mpi)− ê(thi,cpi,mpi)|
ê(thi,cpi,mpi)

Table 5.1 summarizes the mean relative errors of the nonlinear regression results for

different benchmark programs. Results show that the mean relative errors of the fitted

execution times are smaller than 10% for all benchmarks. The accuracy of the regression

does not seem to be correlated to the type of benchmark programs. Note that although our

experiments apply the nonlinear regression to the measurement of execution time for one

run under each allocation setting, in principle, this approach is applicable to the WCET

measurements of multiple runs.

Regression using a smaller number of sampled data points. Here, we explore whether

using only a small number of measurements suffices to achieve comparable accuracy with

using the measurement results of all resource allocation settings. In particular, we start

with feeding the regression with only 125 sampled data points. The samples come from the

execution times when assigning [1, 3, 5, 7, 9] cache partitions, [1, 5, 10, 15, 20] memory

bandwidth partitions, and [1, 4, 7, 10, 13] cores. The 125 initial samples are specifically

chosen to evenly span the entire space. Next, we randomly sample 75 data points and add

them into the regression, with the hope that more data can improve the accuracy. We repeat

this process until all the 2,600 data points have been added to the regression.

Figure 5.4 presents the mean relative errors for 6 representative benchmark programs

when increasing the number of sampled data points used for the nonlinear regression. Note

that in practice, one can only calculate the mean relative error using the sampled data points.

Hence, in addition to reporting the mean relative errors calculated using all the 2,600 data

93

points (i.e., global data), we also report the mean relative errors calculated using only the

sampled data points.

First and foremost, we can see that, for all benchmarks, using only about 250 data

points the nonlinear regression can already achieve comparable performance to using all the

data points. Therefore, our designed regression function gives the potential of significantly

fewer measurements for soft real-time systems. For hard real-time systems, after obtaining

the candidate resource allocation for a task set, one can conduct extensive profiling of

WCET upon the allocated resources. If the WCET ends up exceeding the deadline, then

local refinement and profiling can be performed to adjust the resource allocation till all

tasks can meet their deadlines.

We also observe that the trends of the MRE calculated using the global data and

using the sample data are not necessarily similar. This leads to a natural question of when

to stop sampling more data points (i.e., conducting more measurements). For benchmarks

like Nbody, the initial 125 data points already achieve a very low error, which means that

the regression function can very nicely approximate the true data. For the other benchmark

programs, sampling another small amount of data points as a validation set and using it to

determine when to stop can be a good choice.

5.3 Problem Specification and Prior Results

The empirical study of benchmarks motivates the importance of holistic resource allocation

for parallel real-time tasks. This section presents the formal model for this scheduling

problem based on the timing characteristics of tasks observed in our measurements.

System model. We consider a machine with Nth cores, sharing an L3 cache with Ncp equal

partitions and a memory bus with Nmp equal memory bandwidth partitions. We extend the

federated scheduling [82] introduced in Section 5.1 for scheduling parallel real-time tasks

to incorporate cache and MBW allocation. In particular, federated scheduling forces all

low-utilization tasks to run sequentially. We assume that these tasks are scheduled either by

94

the partitioned earliest deadline first (EDG) algorithm or by the partitioned rate monotonic

(RM) algorithm on its partitioned core. Each of the remaining high-utilization tasks is

allocated with some dedicated cores, where it runs in parallel. The resource allocation is

done via the class of service (CLOS). A CLOS can either be associated with one parallel

task with a set of dedicated cores, or with one core with sequential tasks partitioned to it.

Additionally, a CLOS is assigned to a set of dedicated cache partitions and a number of

dedicated MBW partitions. The minimum number of cache and MBW partitions assigned

to a CLOS is one.

Task model. We seek to schedule a set of m tasks. Each task τk is modeled as

a 3-tuple τk = {ek(thi,cpi,mpi), pk,dk}, where pk is its period, dk is its deadline, and

ek(thi,cpi,mpi) is the measured WCET of the task when executed alone on thi cores

with cpi cache and mpi MBW partitions. In this work, we focus on tasks with implicit

deadlines where pk = dk. Similar to [136], we define rek = ek(1,Ncp,Nmp) as the reference

WCET and calculate the reference utilization as ruk = ek(1,Ncp,Nmp)/pk. In addition, we

also denote pek = ek(1,1,1) as the peak WCET of τk and calculate the peak utilization

as puk = ek(1,1,1)/pk. Thus, the speedup of a task under a certain resource allocation

is t speedupk(thi,cpi,mpi) = pek/ek. A task is schedulable if it can always finish its

execution before its deadline, and a task set is schedulable if all tasks are schedulable.

Problem/Objective. For a multicore machine with a shared L3 cache and memory bus, our

goal is to develop a strategy for allocating resources, including cores, cache, and memory

bandwidth partitions, to parallel real-time tasks, so that the task set is schedulable.

Most relevant work. The theoretical modeling, as well as the allocation strategy for

low-utilization tasks on the partitioned cores, follows the CaM proposed by Xu et al. [136].

Here, we briefly introduce the high-level strategy of CaM, which is slightly modified and

used as the subroutine of our proposed algorithm in Section 5.5. It first uses a clustering

algorithm to group the tasks by their sensitivity. It then tries to put tasks of the same group

onto the same core, while maintaining the reference utilizations of cores roughly the same.

95

Cache and MBW partitions are assigned to the over-utilized cores that have the maximum

decrease in their total utilizations of the partitioned tasks. Finally, it iteratively moves tasks

from over-utilized cores to under-utilized ones and re-assigns cache and MBW partitions,

until all cores become schedulable or it exceeds the maximum allowed iterations.

The main difference between the models in this work and in [136] is that tasks

are parallel and may need to run on multiple cores to meet their deadlines. To handle

parallel tasks, we proposed to extend federated scheduling by holistically allocating cache

and MBW resources. The original federated scheduling assigns dedicated cores to

parallel tasks with high-utilizations (i.e., utilization larger than one), forces the remaining

low-utilization tasks to run sequentially, and partition these sequential tasks on the

remaining cores.

Challenge. Incorporating cache and MBW resources for federated scheduling introduces

several challenges: (1) how to distinguish high- and low-utilization tasks when a task has

different utilizations given different numbers of cache and MBW partitions; (2) how to

allocate a reasonable combination of cores, cache, and MBW partitions to a high-utilization

task; (3) how to reserve enough cores, cache, MBW partitions for the set of low-utilization

tasks.

5.4 Optimal Algorithm.

In this section, we present our mixed-integer nonlinear programming (MINLP) with

nonlinear constraints for this resource allocation problem. Constructing the MINLP and its

corresponding constraints is not straightforward. One of the reasons is that high-utilization

tasks are allocated with dedicated cores while low-utilization tasks are partitioned onto

shared cores. For example, one needs to create MINLP variables to decide and distinguish

whether a task is high- or low-utilization. Furthermore, variables are also needed to

distinguish whether a core is shared by some low-utilization tasks or dedicated to a

high-utilization task. The core shared by low-utilization tasks needs to be allocated with at

96

least one cache partition and one memory bandwidth partition, in order to execute tasks. In

contrast, the cores that are dedicated to a high-utilization task share the cache and memory

bandwidth partitions allocated to that task.

We address all the above challenges and develop the following MINLP formulation,

which can be solved using the existing solver in SCIP Optimization Suite [36]. The

notations used in the MINLP formulation are summarized in Table 5.2. All the variables

except for the last one are non-negative integers. To illustrate the intuitions for the MINLP

formulation, we use the simple task set in Figure 5.5 as an example.

At a high level, the MINLP uses the binary variable βi to distinguish whether a task is

high-utilization (needs dedicated resources) or low-utilization (partitioned to a core shared

with other low-utilization tasks). For instance, in Figure 5.5 Task 2 is considered as a

high-utilization task. Note that a task may change from high to utilization by increasing the

allocated cache and memory partitions to reduce its execution time. Similarly, γ j specifies

whether a core is dedicated to a high-util task or shared by low-util tasks. For example,

Core 3 is shared by Tasks 1 and 3. The mapping between the tasks and cores is stored in

ζi, j, which is highlighted in green in Figure 5.5. Depending on whether a core is shared by

tasks and whether a task is assigned with multiple cores, we can distinguish the type of a

core and the type of a task, respectively.

The critical reason for the need for separate indicator variables to distinguish the

type of tasks and cores is that the cache and memory bandwidths associated with them

are different. In particular, low-utilization tasks that are partitioned onto the same core

share the cache and bandwidth partitions associated with this core (e.g., Tasks 1 and 3 on

Core 3 share 4 cache and 8 bandwidth partitions). In contrast, a high-utilization task has

dedicated cache and bandwidth partitions (e.g., Task 2 on Cores 2 and 4 has 1 cache and 2

bandwidth partitions), which are essentially shared by this task’s dedicated cores. Hence,

the constraints for cache and bandwidth partitions can only be properly formulated when

the task and core types are clear. Such information is specified by CPtaski and MPtaski for

97

high-utilization tasks, and by CPcore j and MPcore j for the cores shared by low-utilization

tasks. All these requirements are encoded into the MINLP constraints to obtain the optimal

solution to the resource allocation problem.

Table 5.2 Notations

m Number of tasks in the task set

Nth Number of cores on the hardware

Ncp Number of L3 cache partitions on the hardware

Nmp Number of memory bandwidth partitions on the hardware

αi Binary: if task i has a valid resource allocation

βi Binary: if task i is high-util with dedicated resources; or, low-util task

γ j Binary: if core j is dedicated to a high-util task; or, shared by low-util tasks

ζi, j Binary: if task i executes on core j

CPtaski Number of cache partitions allocated to (high-util) task i

MPtaski Number of bandwidth partitions allocated to (high-util) task i

CPcore j Number of cache partitions allocated to (low-util) core j

MPcore j Number of bandwidth partitions allocated to (low-util) core j

ei(T Hi,CPi,MPi) Measured WCET of task i when executed on the specified resources

We now formally describe the constraints that our MINLP formulation encodes.

C1) This constraint essentially distinguishes whether a task has a valid resource allocation

using properties of the task-core mapping ζi, j. The variable αi is only used in the

optimization objective to maximize the number of schedulable tasks. When task i does

not have a valid resource allocation (i.e., αi = 0), then no cores should have been allocated

to this task. When there exists a valid allocation, the number of assigned cores should not

98

exceed the total available cores Nth.

∀1≤ i≤ m : αi ≤
Nth

∑
j=1

ζi, j ≤ Nth ·αi

C2) In the task-core mapping ζi, j, high-utilization tasks (i.e., βi = 1) cannot share the same

core j. Similarly, a low-utilization task i (i.e., 1−βi = 1) cannot be assigned to more than

one core.

∀1≤ j ≤ Nth :
m

∑
i=1

(ζi, j ·βi)≤ 1

∀1≤ i≤ m :
Nth

∑
j=1

(
ζi, j · (1−βi)

)
≤ 1

C3) This constraint essentially distinguishes the type of a core using properties of the

task-core mapping. In the task-core mapping ζi, j, if core j is dedicated (i.e., γ j = 1), there

is exactly one high-utilization task (i.e., βi = 1) executing on this core. Otherwise, this core

is shared, so no high-utilization task should execute on this core.

∀1≤ j ≤ Nth :
m

∑
i=1

(ζi, j ·βi) = γ j

C4) This constraint essentially distinguishes the type of a task using properties of the

task-core mapping. If task i executes on one or multiple dedicated cores (i.e., γ j = 1), this

task must be high-utilization (i.e., βi = 1).

∀1≤ i≤ m :
Nth

∑
j=1

(
ζi, j · γ j

)
≤ βi ·Nth

C5-1) The next four sets of constraints restrict the allocation of cache and bandwidth

partitions. First, a dedicated core (i.e., γ j = 1) must share the partitions with the cores

belonging to the same high-utilization task, so it does not have any exclusive partitions.

∀1≤ j ≤ Nth : γ j ·CPcore j = 0 ∧ γ j ·MPcore j = 0

99

C5-2) Second, a shared core (i.e., γ j = 0) must have at least one cache partition and one

bandwidth partition.

∀1≤ j ≤ Nth : γ j +CPcore j ≥ 1 ∧ γ j +CPcore j ≥ 1

C5-3) Next, a low-utilization task (i.e., βi = 0) does not have any allocated cache or

bandwidth partition. For high-utilization tasks, the number of allocated partitions is

bounded by availability.

∀1≤ i≤ m : CPtaski ≤ βi ·Ncp ∧ MPtaski ≤ βi ·Nmp

C5-4) Lastly, a high-utilization task (i.e., βi = 1) must be allocated with at least one cache

partition and one bandwidth partition.

∀1≤ i≤ m : CPtaski ≥ βi ∧ MPtaski ≥ βi

C6) The next two constraints bound the total number of allocated cache (or bandwidth)

partitions.
m

∑
i=1

(βi ·CPtaski)+
Nth

∑
j=1

(
γi ·CPcore j

)
≤ Ncp

m

∑
i=1

(βi ·MPtaski)+
Nth

∑
j=1

(
γi ·MPcore j

)
≤ Nmp

C7-1) The last sets of constraints make sure the task is schedulable. For a high-utilization

task i that is allocated with ∑
Nth
j=1 ζi, j cores, CPtaski cache, and MPtaski bandwidth

partitions, its execution time ei should be no more than its implicit deadline pi. In addition,

we also require that this task is allocated with the minimum number of cores, i.e., reducing

one dedicated core would result in deadline misses.

∀1≤ i≤ m : βi · ei

(
Nth

∑
j=1

ζi, j,CPtaski,MPtaski

)
≤ pi

100

∀1≤ i≤ m : βi · ei

(
(

Nth

∑
j=1

ζi, j−1),CPtaski,MPtaski

)
≥ pi

C7-2) For a core with CPcorei allocated cache and MPcorei bandwidth partitions shared

by low-utilization tasks (i.e., 1− γ j = 1), the total utilization of these tasks cannot exceed

1.

∀1≤ j ≤ Nth : (1− γ j) ·
m

∑
i=1

(
(1−βi) ·ζi, j ·

ei(1,CPcore j,MPcore j)

pi

)
≤ 1

Objective: Our goal is to maximize the number of tasks that can be feasibly scheduled.

This can be formulated as follows using the indicator variable αi:

maximize
m

∑
i=1

αi

Improved MINLP implementation. While being optimal, the complexity of solving

this MINLP problem is extremely high, making it very inefficient to use in practice.

Moreover, the existing solvers for MINLP need to convert the MINLP to regular nonlinear

programming before adding the integer constraints, so the non-continuous and nonlinear

ek(thi,cpi,mpi) cannot be directly used. Instead, we must use Function (5.2) obtained from

fitting the measured data, which further reduces the efficiency. Thus, we further improve

the implementation of the MINLP formulation.

In particular, we separate the allocation to high- and low-utilization tasks and use a

brute-force method to enumerate all the good allocations for high-utilization tasks. Once

the allocation decisions for the high-utilization tasks are made, the remaining problem

becomes the resource allocation problem for sequential (low-utilization) tasks. For this

problem, there exists a mixed-integer programming (MIP) formulation [136], which is

much faster than the original MINLP formulation for the entire task set.

Thus, the key to a good improved implementation is on deciding (1) which tasks are

high-utilization tasks and (2) how many resources should be allocated to high-utilization

101

tasks. To maintain the optimality of the MINLP formulation, all possible choices for the

above two questions must be verified before determining that the task set is unschedulable.

However, not all choices have equal importance — the ordering of these choices crucially

affects the running time of the implementation for most task sets. This is because once a

schedulable allocation decision is found, all the remaining choices no longer need to be

verified.

With this intuition, we first construct all possible subsets of tasks in the original

task set. If one subset is chosen as high-utilization tasks, the supplement subset becomes

low-utilization tasks. Among these possible subsets, we sort them according to their total

reference utilization from large to small. Thus, the tasks with higher utilizations will

be considered as high-utilization tasks first. Next, for a considered subset, we verify

all combinations of resource allocation to these high-utilization tasks and see if any

combination can make all tasks schedulable. Here, we prune some combinations that are

clearly not feasible or reasonable. For example, if a task is not schedulable given a set of

resources, then it is also not schedulable given strictly fewer resources. Moreover, among

all the combinations that are schedulable, it is obviously more beneficial to the remaining

low-utilization tasks if strictly more resources remain. Hence, instead of running the MIP

formulation of the low-utilization tasks for all schedulable combinations, we prune those

that use strictly more resources. In this way, only the combinations at the Pareto boundary

are verified, which significantly reduces the running time of this implementation in practice.

5.5 Holistic Resource Allocation for Federated Scheduling

Although the improved MINLP implementation reduces the running time by a lot, it can

still take a long time to obtain the optimal results, especially when the problem size is

large. Therefore, we propose a heuristic-based strategy that has comparable or slightly

worse performance with a running time in orders of magnitude shorter than the MINLP

102

formulation. This section first gives an overview of our holistic resource allocation strategy

and then provides details of the algorithm.

5.5.1 Algorithm Overview

The holistic resource allocation algorithm for parallel real-time tasks leverages the

advantages of CaM [136] and federated scheduling [82], as well as insights obtained from

our empirical study using real-world benchmarks in Section 5.2. In particular, our holistic

algorithm is based on the following high-level strategies.

1. We assign dedicated cores, cache partitions, and memory bandwidth partitions to each
high-utilization task;

2. We use the Speedup profile t speedupk(thi,cpi,mpi) to cluster low-utilization tasks to
try to partition tasks with similar sensitivity onto the same core, while also maintaining
relatively balanced workload between low-utilization cores;

3. We use a dynamical threshold for distinguishing high-utilization and low-utilization
tasks;

4. We assign each available resource instance to the unschedulable task or core that
receives the largest positive benefit (i.e., the largest reduction in its utilization);

5. We allow an unschedulable core with low-utilization tasks to exchange resources with
a schedulable high-utilization task, under the condition that the high-utilization task
remains schedulable and the low-utilization core has a reduction in its total utilization
after the exchange.

Algorithm 2 gives the main steps of our holistic resource allocation algorithm, which

composes of five phases:

(1) Phase 1 (Lines 1–3) dynamically classifies all tasks into high- and low-utilization

tasks, by iteratively moving more tasks from low-utilization to high-utilization set. The

set of high-utilization tasks τhigh is initialized as the tasks with high reference utilizations

ruk = ek(1,Ncp,Nmp)/pi ≥ 1. At each iteration, one more low-utilization task with the

largest reference utilization is selected by the selectAddHT() procedure to be moved from

τ low to τhigh.

103

(2) Phase 2 (Lines 4–7) assigns cores, cache and MBW partitions to each high-

utilization task τk in τhigh until it can meet its deadline (i.e., ek(thi,cpi,mpi) ≤ dk). The

allocation follows the largest benefit first, to be explained in Section 5.5.2. During

the assignment, any task in τ low that was considered as low-utilization tasks but can

no longer meet its deadline by running sequentially on the remaining resources for

low-utilization tasks is moved to τhigh and participate the resource assignment process. If

the available resources are not even enough for high-utilization tasks, the system is deemed

unschedulable. Otherwise, the procedure initLR() calculates the unallocated resources to

be used for partitioning low-utilization tasks.

(3) Phase 3 (Lines 8–13) tries to cluster the low-utilization tasks based on their

speedup profile, partition them on the remaining cores, and assign cache and MBW

partitions to each core using the procedure CaMAllocLR. It is almost the same as the

heuristic resource allocation algorithm in CaM [136], except for some differences in its

balance procedure. In this procedure, a low-utilization task can be migrated from one core

to another. Here, we need to make sure that after the migration, this task still remains as a

low-utilization task and its original core does not become empty. If all low-utilization tasks

are schedulable on their partitioned cores, the task set is schedulable.

(4) Phase 4 (Lines 14–15) is only reached if there is some core with unschedulable

low-utilization tasks. In this case, via procedure resEx() the unschedulable low-utilization

cores try to use one or two types of resources to exchange for the other resource from

high-utilization tasks that could bring more benefit to these cores.

(5) Phase 5 (Lines 16–18) checks the schedulability of the low-utilization tasks. If the

low-utilization cores still cannot schedulable all the low-utilization tasks after the exchange,

it is possible that they contain some tasks with relatively high utilization. Thus, the next

iteration considers moving one more task to the set of high-utilization tasks. Otherwise, the

task set is schedulable.

104

Algorithm 1: Holistic Resource Allocator
Input: τ: task set; Nth: total number of cores; Ncp: total number of cache partitions;

Nmp: total number of MBW partitions; maxKM: the maximum iterations for KMeans;

maxPerm: the maximum iterations.

Output: Schedulable or Unschedulable.

1 {τhigh,τ low}← initHighTask(τ,Ncp,Nmp)

2 for maddH = 0 up to size(τ)− size(τhigh) by +1 do

3 {τhigh,τ low}← selectAddHT (τhigh,τ low,maddH)

4 {τhigh}← allocHR(τhigh,Nth,Ncp,Nmp)

5 sched = checkSched(τhigh)

6 if sched = unschedulable then break;

7 {Nlow
th ,Nlow

cp ,Nlow
mp }← initLR(τhigh,Nth,Ncp,Nmp)

8 sort(clusters← clusterTasks(τ low,Nth,maxKM))

9 sched = unschedulable

10 for j = maxPerm down to 0 by −1 do

11 perm clusters← permute(clusters)

12 {coresSched ,coresUSched ,sched}←

CaMAllocLR(perm clusters,Nlow
th ,Nlow

cp ,Nlow
mp)

13 if sched = schedulable then break;

14 τhigh,coresUSched ← resEx(τhigh,coresUSched)

15 coreslow = coresSched ∪ coresUSched

16 sched = checkSched(coreslow)

17 if sched = schedulable then break;

18 if sched = schedulable then break;

105

5.5.2 Procedures of the Algorithm

We now give details to the two main procedures in Algorithm 2.

Procedure allocHR() allocates resources to each high-utilization task for meeting

its deadline. The minimum numbers of cores thmin, cache partitions cpmin, and MBW

partitions mpmin for task τk are calculated such that ek(thmin,Ncp,Nmp)> dk,ek(Nth,cpmin,

Nmp) > dk, and ek(Nth,Ncp,mpmin) > dk. After initializing the minimum resources, the

procedure calculates the maximum benefit of allocating one instance of resource to one

unschedulable task. For example, the benefit of allocation an additional core to τk with

assignment (thi,cpi,mpi) is calculated as uk(thi + 1,cpi,mpi)− uk(thi,cpi,mpi). The

benefit of allocating one cache or MBW partition can be calculated similarly. Among

all the possible allocations with different available resources and different unschedulable

tasks, the procedure will choose the one that results in the largest benefit (i.e., the largest

reduction in utilization). Hence, this choice of allocation best utilizes the resources for

high-utilization tasks.

Procedure resEx() tries to exchange resources between unschedulable cores

partitioned with low-utilization tasks and schedulable high-utilization tasks. Note that

although Procedure allocHR() makes good allocation decisions for high-utilization tasks,

such a decision may not be globally optimal for low-utilization tasks. For example, the

cache may only result in a slightly better benefit than MBW for high-utilization tasks, but

allocHR() will assign all the available cache to high-utilization tasks. With no cache left,

the low-utilization tasks cannot be scheduled on the remaining cores. At a high level,

Procedure resEx() enumerates all valid resource exchange plans between a low-utilization

core and a high-utilization task. An exchange will only happen if the high-utilization task

remains schedulable and the low-utilization core has utilization benefits after the exchange.

Specifically, there are three steps in this procedure. First, if there are some empty

cores not used by any low-utilization tasks, then each of the unschedulable low-utilization

cores tries to use these empty cores to exchange for the cache and memory bandwidth

106

resources from each of the high-utilization tasks. This exchange is successful and will take

place if both of them are schedulable after the exchange. Note that some cores can be

empty while some other low-utilization cores are unschedulable. This is mainly because

there does not remain at least one cache partition and one memory bandwidth partition

to be associated with the empty core. Hence, when this happens, the empty cores can

be used by high-utilization tasks that are already allocated with some cache and memory

bandwidth. With extra cores, these high-utilization tasks may return some cache and

memory bandwidth partitions, while being schedulable. These resources can then be used

by the unschedulable low-utilization cores to improve their schedulability.

Second, if there is no empty core available, unschedulable low-utilization cores can

try to use some of their cache and memory bandwidth resources to exchange one or more

cores from high-utilization tasks. Lastly, we can also exchange the cache and memory

bandwidth resources between low-utilization and high-utilization tasks. This may help

balance these two types of resources and obtain the minimum number of cache partitions

and memory bandwidth partitions needed for scheduling the low-utilization tasks on their

cores. As a result, each core can be assigned the minimum resources.

5.5.3 Complexity of the Algorithm

We first discuss the complexity of the subprocedures and then summarize the total

complexity of the algorithm. The following procedures iterate over all tasks and take

O(m) time: initHighTask(), selectAddHT(), checkSched(), and initLR(). The allocHR()

procedure enumerates all unschedulable high-utilization tasks for finding the one with the

maximum benefit, and the number of times that this process repeats is at most the number

of remaining resources, so this procedure takes O(m · (Nth +Ncp +Nmp)) time. The sort()

procedure takes O(m logm) time. Since the maxKM and maxPerm are predetermined

constants, the clusterTask() procedure iterates over all clusters for all tasks for a constant

number of iterations (i.e., O(m ·Nth)). The permute() procedure takes a constant time.

107

The complexity of the CaMAllocLR() procedure depends on the number of low-utilization

tasks and the remaining resources. In the worst-case, all tasks are low-utilization, which

takes O(max{m logm,m ·Nth,Nth ·N2
cp ·N2

mp}) time. The resEx() procedure takes O(m ·

max{Nth,Ncp,Nmp}2) in the worst-case. Therefore, the entire algorithm has a complexity of

O(m ·max{m · (Nth +Ncp +Nmp),m2 logm ·Nth,Nth ·N2
cp ·N2

mp,m ·max{Nth,Ncp,Nmp}2}).

Algorithm 2: GPUSched1(α,Q)

1 while Q is not empty do

2 if |a| ≥ αm then

3 τi := Dequeue(Q);

4 assign min(|a|,χi) processors to τi

5 offload τi to its assigned processors;

6 execute τi on its assigned processors;

5.6 Numerical Evaluation

In this section, we conducted numerical experiments to evaluate our proposed holistic

resource allocation algorithms on task sets randomly generated using the profiling results

of realistic parallel benchmark programs in Section 5.2.

5.6.1 Experimental Setup

Workload generation. To evaluate the scalability of our proposed algorithms, we consider

four types of hardware systems. The smallest one has 13 cores with 10 cache partitions

and 20 MBW partitions, which is consistent with our real hardware platform described

in Section 5.2. A slightly larger one has twice the amount of resources, i.e., 26 cores with

20 cache partitions and 40 MBW partitions. We also consider the one with three times the

resources (i.e., 39 cores with 30 cache partitions and 60 MBW partitions) and the largest

108

one with four times the resources (i.e., 52 cores with 40 cache partitions and 80 MBW

partitions).

We vary the total reference utilization of task sets from 2 to the number of available

cores m. For each total utilization, we randomly generate 200 task sets with the desired

utilization. We generate a task’s reference utilization uniformly at random from the

utilization range from 0.2 to 0.5
√

m, where m is the number of available cores. For

each task, its WCET profile is randomly chosen from the empirical measurements of the

12 real-world benchmark programs described in Section 5.2. Each benchmark has an equal

probability of being chosen unless otherwise specified. Due to the long profiling time

discussed in Section 5.2.3, we were only able to measure each benchmark’s execution times

upon each resource allocation combination for one time, instead of multiple times for taking

the worst-case value. Thus, the measured execution times have some variances. Hence,

we refine the WCET profiles by making sure that the WCET upon a specific resource

allocation is the same or larger than all the WCETs upon resource allocations that have

strictly more allocated resources. Additionally, the measurements are performed on our

real hardware platform with a limited number of resources (i.e., 13 cores with 10 cache

partitions and 20 MBW partitions). In order to conduct larger-scale numerical experiments

considering larger machines with more resources and more tasks, we set the WCETs upon

more resources the same as the one upon 13 cores with 10 cache partitions and 20 MBW

partitions.

The period (and implicit deadline) of a task is obtained by using its reference WCET

to divide its reference utilization. For most of the experiment settings except for one, before

adding a task to the task set, we also check whether this task can meet its implicit deadline

when all the available resources of the hardware platform have been allocated to this task.

If it is still not schedulable, then we do not add this task to the task set; otherwise, the task

set will also become unschedulable no matter how resources are allocated to tasks.

109

5.6.2 Schedulability Performance

To the best of our knowledge, there are no existing solutions that address the core, cache,

and memory bandwidth resource allocation problem for parallel real-time tasks. Therefore,

in the first experiment, we evaluate our proposed holistic algorithm by comparing it against

the optimal solution that is based on solving the mixed-integer nonlinear programming

problem.

In this experiment, we consider four versions of the optimal. The first is the original

MINLP formulation (denoted as OPT) that is directly solved by the solver in the SCIP

Optimization Suite [36]. The next is the improved implementation (denoted as OPT-Imp).

As discussed in Section 5.4, the implementation of the optimal is extremely inefficient.

Even with our improved optimal variation, the running time is still very long. Moreover,

when there is no valid allocation, the solver used by all the optimal solutions will not

return any result. Therefore, we need to set a timeout for the optimal solutions. For

each task set, it is deemed unschedulable if the optimal algorithm does not return any

result by 15s, 1min, 10min, and 20min. Figure 5.6(a) shows the comparison results.

The original implementation with 20min running time performs the worst, simply because

directly solving the general MINLP is extremely hard. To verify that our implementation

is correct, for task sets that are schedulable using our holistic algorithm, we initialize the

corresponding variables in the MINLP formulation as the same as our generated allocation

decision. Once doing that, the MINLP solver can return in a shorter time and verify that

the encoded allocation decision passes all the optimization constraints. Compared with the

improved implementation, we can see that our algorithm has comparable performance with

the improved optimal algorithm with 1min running time limit and outperforms those that

have shorter running time limits.

110

5.6.3 Running Time Efficiency

Although our holistic algorithm achieves slightly lower schedulability than the best

performing optimal variation OPT (10min0.1s), it is significantly more efficient than any of

the optimal variations. As shown in Figures 5.6(b) and 5.6(c), the average running times of

all the optimal variations grow at an exponential rate. For example, the OPT variation that

solves a single MINLP problem needs 4min on average to obtain solutions for task sets with

reference utilizations that are as low as 3. For many schedulable task sets with reference

utilizations that are larger than 4.5, OPT cannot return the valid resource allocation even if

running for 2 hours.

The improved optimal variations have much faster running times, but they are still

many orders of magnitude slower than the holistic algorithm. For instance, when the

task set reference utilization is at least 5.5, OPT (10min0.1s) needs more than 1min on

average to find the schedulable resource allocations. Its running time rapidly increases

to 10min when the total reference utilization is 9.5. The fastest optimal variation OPT

(10s0.1s) that has worse schedulability than the holistic algorithm takes about 1.5min to

solve for task sets with reference utilization 10. In contrast, the average running times of our

holistic algorithm are all below 24s. This computation efficiency gap between the optimal

variations and the holistic algorithm increases when there are more available resources.

5.6.4 Impact of Different Benchmarks

As discussed in workload generation, in all of the other experiments, we only add a

randomly generated benchmark task into the task set if this task can at least meet its

deadline when monopolizing all the resources. Figure 5.7 motivates why it is necessary

to do so. In particular, BFS, Nbody, facesim, and MSF are memory-intensive benchmarks.

Because the reference utilization is defined as the WCET of a task on a single core with all

the available cache and MBW partitions, these memory-sensitive tasks already have high

speedup given all the MBW partitions. When their randomly generated utilizations are

111

high, allocating all the cores to them may not achieve sufficient additional speedup to allow

them to meet their deadlines. In Figure 5.7, we do not check the schedulability of a task

upon task set generation. Instead, we selectively exclude some of these 4 benchmarks in

the task set generation. The differences in schedulability, thus, reflect the impact of these

benchmarks.

To study the effect of different types of benchmarks, we also conduct an experiment

where we generate task sets with only one type of benchmark and compare the schedu-

lability results to the task sets with mixed types. Figure 5.8 shows that the fraction of

schedulable task sets drastically drops to 0 for task sets with cache- and MBW-sensitive

tasks. In contrast, when there are more cache- and MBW-insensitive tasks, there is

a fraction of task sets schedulable at high total reference utilizations. The noticeable

difference here also implicitly and partially verifies that our classification of benchmark

programs indeed distinguishes the different characteristics of tasks.

5.6.5 Ablation Study of Our Algorithm

The impact of the different phases of our holistic algorithm can be observed in Figure 5.9(b).

Specifically, version NoResEx disables the procedure resEx(), so there is not resource

exchange between low- and high-utilization tasks. Version NoL2H disable procedure

selectAddHT() and use a fixed threshold for classifying low- and high-utilization tasks. In

contrast, NoMaxBene does not use the maximum benefit strategy in procedure allocHR()

for finding the best resource to allocate to a high-utilization task and uses round-robin

instead. We can see that procedure allocHR() and selectAddHT() both have large

impacts on the schedulability of task sets, while procedure resEx() almost no impact

for the task sets that select benchmarks uniformly at random in Figure 5.9(a). Based on

our classification for benchmark programs, there are only 2 cache- and MBW-sensitive

benchmarks out of the 12 benchmarks. When a task set has few or no such benchmarks,

resource exchanges are unlikely to happen. To verify our hypothesis, we construct task

112

sets that select a cache- and MBW-sensitive benchmark with a probability twice the

probability of selecting the other ones. As shown in Figure 5.9(b), with more cache- and

MBW-sensitive benchmarks, resource exchange plays a more important role in finding a

good resource allocation.

5.6.6 Impact of Platform Configurations and Task Parameters

Finally, we also vary the task parameters and platform configurations to evaluate their

impact on the schedulability of task sets. As expected, increasing the number of available

resources allows task sets with higher total reference utilizations to be schedulable. And

the increase in schedulability is roughly proportional to the increase in the total resources,

as revealed in Figure 5.10(a). On the other hand, different types of resources have different

levels of impact on schedulability. As shown in Figure 5.10(b), decreasing the number

of cache partitions by half has a smaller impact, compared to decreasing the number of

memory bandwidth partitions by half. However, this is related to the characteristics of

the randomly generated task sets. For example, if all tasks are insensitive to cache and

memory bandwidth, the decrease in both resources will have little impact on schedulability.

In Figure 5.10(c), we vary the range of tasks’ reference utilizations. We can see that this

change has a relatively small impact on the schedulability of task sets.

5.7 Empirical Evaluation

To demonstrate the practicality of our proposed framework on real hardware platforms

and evaluate its empirical performance, we extend the federated scheduling system [83]

to support cache and memory bandwidth partitioning. The modification to the federated

scheduling is similar to the modification to benchmark programs as described in Section 5.2.

We first measure the system overhead of different resource allocation operations,

including the core allocation operation via pthread setaffinity np(), the cache

partition allocation operation via CAT, and the memory bandwidth allocation via Memguard.

113

Results presented in Table 5.3 show that the overhead of allocation cache partitions is

significantly higher than partitioning cores and setting memory bandwidth reservations.

Fortunately, our proposed framework follows the federated scheduling paradigm where

the resource partitionings are performed only once before the execution of the task sets.

Therefore, the high overhead only occurs once even before the execution of all tasks,

does not impact the schedulability and efficiency of the task sets, and needs not to be

incorporated into the analysis.

Table 5.3 Overhead Measurement

Operation Average overhead (ms) Maximum overhead (ms)

Core allocation 0.142 0.152

Cache partition allocation 569.1 570.8

Memory bandwidth allocation 4.4 4.5

We choose 3 representative benchmark programs (RayCast, Swaptions, and RemDup),

one in each type, and measure their execution times of 50 runs on all 2,600 combinations of

resource allocations. Since the measured maximum execution times of 50 runs may not be

the true and safe WCET, we inflate the maximum value by 1.1 and use the inflated WCET

for task set generation. We follow a similar procedure to that in Section 5.6 to randomly

generated 100 task sets for each reference utilization on 13 cores. We run each task set for

a duration that is equal to 50 times the longest period of the tasks in the set.

Although when generating task sets, we inflate the measured maximum execution

time by 1.1. In the experiments, we would like to evaluate how the WCET estimates used

by the holistic algorithm affect the schedulability of task sets. Hence, we use three types

of WCET estimates: (1) the measured maximum execution time inflated by 1.1 — namely

WCETx1.1; (2) the measured maximum execution time without any inflation — namely

WCETx1.0; and (3) the regression results using 250 sampled maximum execution times

inflated by 1.1 — WCETx1.1+fitting.

114

Note that both the greedy algorithm and the MINLP algorithms cannot generate

a resource allocation decision for a task set, if the task set is deemed unschedulable

by the respective algorithm. Additionally, it is not clear how to modify the optimal

MINLP formulations to output any allocation decision for unschedulable task sets, as the

optimization constraints are violated for these task sets. Therefore, one can only run the

theoretically schedulable task sets to see if there is any deadline miss observed during

the actual execution on the hardware platform. These results are presented in Figure 5.11

with legends WCETx1.0, WCETx1.1, and WCETx1.1+fitting. In contrast to the numerical

experiments in the previous section, here a task set is considered schedulable only if no

deadline miss is observed during the actual execution of this task set on the hardware

platform.

We would also like to see how pessimistic the measured WCETs are when the

workload is consolidated onto the platform following our proposed heuristic. To achieve

this, we modified our holistic resource allocation strategy to generate one “reasonable”

allocation decision, even when the task set is deemed unschedulable. In this way, we

can execute the theoretically unschedulable task sets on the real platform to reveal the

pessimism of the measured WCETs. Specifically, for every potential allocation decision

tested during the process of the heuristic-based algorithm, we calculate the maximum

of each core’s utilization given this allocation decision and the task set. We record

and output the decision that has the lowest maximum core utilization. Intuitively, this

metric helps output the allocation decision that balances the load of each core. The

observed schedulability of this best-effort approach (on top of the allocation decisions

for the theoretically schedulable task sets) with WCETx1.0 estimates is denoted as

WCETx1.0+best-effort in Figure 5.11.

We can observe that inflating the maximum execution times introduces a small

amount of pessimism. A small number of task sets become unschedulable, because

increasing the WCET estimate causes the need for more resources to meet deadlines.

115

Moreover, comparing the results between WCETx1.0 and WCETx1.0+best-effort, we can

see that a few theoretically unschedulable task sets do not encounter any deadline miss

during the actual execution.

Among the experimented task sets, we do not observe any deadline miss for both

WCETx1.1 and WCETx1.0. In contrast, if we directly executing the resource allocation

decisions made by the algorithm using WCETx1.1+fitting estimates, there will be two tasks

missing their deadlines. This is because the estimation made by the regression algorithm

over-optimistically predicts the WCETs for some resource allocations. When the holistic

algorithm happens to choose these allocations, the involved tasks will miss deadlines.

However, as discussed in Section 5.2, when regression with a small number of sampled

data points is used for estimating the WCETs, profiling for the chosen resource allocation

must be performed. If the profiling indicates that a task cannot meet its deadline given this

resource allocation, a local refinement can be made by adding more resources to this task

until the profiling shows that it can meet its deadline. For the particular two task sets in

our experiments, we adopt this procedure and locally refine the allocation. The two task

sets become schedulable. After this procedure, we do not observe any deadline miss for

WCETx1.1+fitting.

Note that the regression results can also be pessimistic. For example, there are

a few task sets under reference utilization 3 that are deemed unschedulable using the

WCETx1.1+fitting estimates. In principle, a local refinement can also be applied here to

greedily search for potential resource allocation and validate it using profiling. Overall, the

empirical experiments verify the efficiency and effectiveness of our proposed framework

for parallel real-time applications.

5.8 Discussion and Future Work

In future work, we plan to extend our insights and mechanisms to global scheduling

algorithms and constrained deadline tasks. In addition to partitioning and isolating memory

116

bandwidth resources, incorporating the memory partitioning techniques into our framework

is reserved for future work. We would also like to explore whether dynamically allocating

cache and memory bandwidth resources can further improve the performance of parallel

real-time systems.

Furthermore, we will consider applying risk measures in parallel real-time scheduling,

and Chapter 5 is just our first step to better achieve this. To briefly explain the idea, we will

first assume a random inter-arrive time between two neighboring jobs of one task, which is

assumed independent of all other jobs from the same or different tasks. So we will have a

random response time, which is the time between a job is realsed and finished. Then the

probability is introduced to the model so that we can apply risk measures, and our goal

is to meet the deadlines of every task with very high probability (e.g., ≥ 99% jobs finish

before 10 ms). For example, we can compute the p−quantile of the response time to learn

more information about how “far” is it from the deadline if one scheduler does not meet

constraints. If multiple schedulers meet the constraints, to compare them, we can give

more constraints by using multiple deadlines with different probabilistic constraints (e.g.,

≥ 95% jobs finish before 10 ms, ≥ 99% jobs finish before 20 ms). We can also compare

conditional tail expectation (CTE) of the response time, where CTE is the expectation of

response time given response time is greater than the deadline. To make this easier, we

can start with only considering the sequential tasks, and then takes the parallel tasks into

account.

117

(a) RayCast: #bandwidth = 1. (b) RayCast: #cache = 1. (c) RayCast: #core = 1.

(d) BFS: #bandwidth = 1. (e) BFS: #cache = 1. (f) BFS: #core = 1.

(g) Blackscholes: #bandwidth =

1.

(h) Blackscholes: #cache = 1. (i) Blackscholes: #core = 1.

(j) Nbody: #bandwidth = 1. (k) Nbody: #cache = 1. (l) Nbody: #core = 1.

Figure 5.1 The slowdown (i.e., 1/speedup) of benchmark programs when assigning
different numbers of cores, cache partitions, and memory bandwidth (MBW) partitions.

118

(a) Facesim: #bandwidth = 1. (b) Facesim: #bandwidth = 10. (c) Facesim: #bandwidth = 20.

Figure 5.2 The slowdown (i.e., 1/speedup) of Facesim when assigning different numbers
of cores, cache partitions, and memory bandwidth (MBW) partitions.

119

(a) RemDup: #cache=1,

#MBW=1.

(b) RemDup: #cache=10,

#MBW=1.

(c) RemDup: #cache=10,

#MBW=20.

(d) Sort: #cache=1, #MBW=1. (e) Sort: #cache=10, #MBW=1. (f) Sort: #cache=10,

#MBW=20.

(g) Fluid: #cache=1, #MBW=1. (h) Fluid: #cache=10,

#MBW=1.

(i) Fluid: #cache=10,

#MBW=20.

Figure 5.3 Fitting the measured execution times of RemDup, Sort, and Fluid using
nonlinear regression.

120

(a) Nbody. (b) Sort. (c) Raycast.

(d) Dictionary. (e) Bodytrack. (f) Swaptions.

Figure 5.4 Mean relative error of fitting the measured execution times of different
benchmarks when increasing the number of sampled data points used for the nonlinear
regression: the solid line is the “global” MRE calculated using all the 2,600 data points,
while the dashed line is the “local” MSE calculated using only the sampled data points.

Figure 5.5 An example task set with 4 tasks on 4 cores with 6 cache partitions and 12
memory bandwidth partitions. The empty cells have a value of 0 for the corresponding
variable.

121

(a) Schedulability comparison. (b) Average computation time. (c) Average computation time.

Figure 5.6 Comparison with the optimal variations for task sets on 13 cores with 10 cache
and 20 MBW partitions.

Figure 5.7 Experiments with a
subset of benchmarks on 13 cores.

Figure 5.8 Experiments with
specific type of benchmarks on 26
cores.

122

(a) Fewer cache- and MBW-sensitive

tasks.

(b) More cache- and MBW-sensitive

tasks.

Figure 5.9 Ablation study of holistic algorithm on task sets with different percentages of
cache- and MBW-sensitive tasks on 26 cores, 20 cache partitions, and 40 MBW partitions.

(a) Increase the number of all

resources.

(b) Change the number of some

resources.

(c) Change the task utilization

range.

Figure 5.10 Fraction of schedulable task sets with different task set generation parameters.

Figure 5.11 Empirical experiments on 13 cores.

123

CHAPTER 6

CONCLUSION

This research work mainly discusses about the computation of risk measures in finance and

parallel real-time scheduling.

In Chapters 2 and 3, we used multiple methods to estimate one risk measure: quantile.

First, we compared two approaches for quantile estimation via RQMC in an asymptotic

setting where the number of randomizations for RQMC grows large but the size of the

low-discrepancy point set remains fixed. Unfortunately, the first estimator converges to the

wrong value as r→ ∞, leading to poor coverage. In contrast, the second quantile estimator

does converge in the desired value ξ . We are currently working on formulating asymptotic

regimes in which both m→∞ and r→∞. We are also working on comparing different real

time schedulers based on quantile. Then we have shown how combining CMC with RQMC

can have a synergistic effect in improving the accuracy of quantile estimators in a setting

where observations are obtained from simulation. The synergy comes from CMC replacing

the empirical CDF (a step function) by a smooth, RQMC-friendly, CDF estimator. This

can make the subsequent RQMC improvement more substantial than when RQMC is

applied alone. As f (ξ) appears in the denominator of the asymptotic variance in (3.21),

constructing a confidence interval for ξ may also benefit from applying CMC+RQMC for

density estimation. In follow-up work, we intend to provide sufficient conditions under

which we can prove that the MSE of the quantile estimator converges at a faster rate than

the canonical O(1/n). We also want to experiment with a larger variety of examples.

In Chapter 4, we analyzed different approaches to estimate another risk measure:

economic captical. The economic capital is is used to determine capital levels (e.g., [24]).

Defined as the difference between the p-quantile ξ and the mean µ of the loss distribution,

the EC in practice takes p ≈ 1, in which case SRS is ineffective in estimating ξ . But

124

applying IS to estimate both ξ and µ can be detrimental, and MSIS instead estimates

only ξ with IS, and independently estimates µ via SRS. We also consider ISDM and DE

estimators of η . Our asymptotic theory (Theorem 8) and numerical results (Section 4.6)

show that MSIS can outperform the other approaches. While our theoretical results for

EC estimators for the i.i.d. sum model (Section 4.5) provide deep insights for problems

in rare-event simulation and financial risk management, they also have implications for

techniques that reuse simulation data ([86], [27]), which is also called “green simulation”

([31]). To estimate mean performances when parameters of underlying distributions in the

same simulation model differ across experiments, green simulation reuses outputs from

previous experiments by weighting them with likelihood ratios. In estimating a mean, as

has been the focus of green simulation, our Theorem 6 shows that IS can result in estimators

with an extremely large variance when a single simulation run requires generating many

independent random variables, so resuing simulation data through likelihood ratios may be

less effective in such contexts. [31] and [27] further apply (a slight variation of) ISDM in

green simulations when estimating mean performances, and our Theorem 5 also reveals

that ISDM can be quite effective to control the variance.

Chapter 5 presents a holistic resource allocation strategy for parallel real-time

tasks executing on multicore systems that share cache and memory bandwidth resources.

Our strategy integrates existing cache partitioning and memory bandwidth regulation

mechanisms and leverages results from resource allocation for sequential tasks and

federated scheduling for parallel tasks. Based on the insights obtained from empirical

evaluations of real-world parallel benchmarks, we develop an approach for parallel

real-time tasks to improve the practicality of measurement-based models. The numerical

evaluation and proof of concept implementation demonstrate that our proposed framework

is efficient and practical. In the end, the discussion about the application of risk measures

for real-time scheduling is given for future work.

125

APPENDIX A

FURTHER NUMERICAL STUDY OF RELATIVE ERROR AND ITS
APPROXIMATION

Recall that Section 4.6.1 presented numerical results for the RE and its approximation RĔ

for the model in Section 4.5 when the i.i.d. summands have marginal distribution G0 that is

exponential. We now present some additional results for G0 as normal N(1,1) and Erlang

(s = 8 stages, scale parameter 1).

For G0 as N(1,1) (resp., Erlang), Figure A.1 (resp., Figure A.2) plots the exact RE for

estimators of η , ξ , and µ , and also the exact RE and its approximation RĔ for estimators

of η . These two figures mostly exhibit the same basic trends that we saw in Figure 4.1

when G0 is exponential: the η estimators have exponentially increasing RE as m grows for

SRS, IS(θ?), and DE(θ?), decreasing RE for MSIS(θ?) and ISDM(θ?), and RE and RĔ for

the same method generally match up well. But one difference is that for RE[η] for large

m, SRS is the worst for exponential G0, whereas IS(θ?) is the worst for G0 as N(1,1) and

Erlang. Also, as noted in the two paragraphs after Theorem 8, the behavior of RE[η] for

DE(θ?) is governed by the worst of the SRS and IS(θ?) estimators of ξ and µ , as seen in

Figure 4.1 and Figures A.1 and A.2.

126

Figure A.1 For G0 as N(1,1) and β = 1.1 in (4.31), the log-log plots show the RE and its
approximation RĔ, computed numerically (i.e., not estimated via simulation), as functions
of the dimension m. In the top two rows, the plots display the exact RE of estimators of the
EC η (top left panel), the p-quantile ξ (middle row, left panel), and the mean µ (middle
row, right panel). The bottom left panel shows RE[η] and its approximation RĔ[η]. The
middle panels do not give results for MSIS(θ?), which uses IS(θ?) (resp., SRS) to estimate
ξ (resp., µ).

127

Figure A.2 For G0 as Erlang (s = 8 stages, scale parameter 1) and β = 1.1 in (4.31),
the log-log plots show RE and its approximation RĔ, computed numerically (i.e., not
simulation), as functions of dimension m. In the top two rows, the plots display the exact
RE of estimators of the EC η (top left panel), the p-quantile ξ (middle row, left panel),
and the mean µ (middle row, right panel). The bottom left panel shows RE[η] and its
approximation RĔ[η]. The middle panels do not give results for MSIS(θ?), which uses
IS(θ?) (resp., SRS) to estimate ξ (resp., µ).

128

APPENDIX B

PROOF OF THEOREM 2

Reference [37] proves Equations (4.6) and (4.7) hold when f (ξ) > 0. Further assuming

that F is twice differentiable at ξ , [62] (see also p. 100 of [117]) derives the exact rate

of convergence of Rn, given in (4.8), improving on the original result of [12] (also see

Theorem 2.5.1 of [117]). In all cases, putting (4.6), (4.4), and (4.3) into (4.5) then leads to

η̂SRS,n = ξ −
F̂SRS,n(ξ)− p

f (ξ)
+Rn− µ̂SRS,n = ξ −µ− 1

f (ξ)

[
1
n

n

∑
i=1

I(Yi ≤ ξ)− p

]
+Rn−

1
n

n

∑
i=1

Yi +µ,

which equals (4.9), establishing part (i).

We next prove part (ii). Rearranging (4.9) and scaling by
√

n leads to

√
n
[
η̂SRS,n−η

]
=−
√

n

[
1
n

n

∑
i=1

([
1

f (ξ)
I(Yi ≤ ξ)+Yi

]
−
[

p
f (ξ)

+µ

])]
+
√

nRn. (B.1)

Let A = [I(Y ≤ ξ)/ f (ξ)]+Y and Ai = [I(Yi ≤ ξ)/ f (ξ)]+Yi. Note that Ai, i = 1,2, . . . ,n,

are i.i.d. copies of A, where φ ≡ E[A] = [p/ f (ξ)]+ µ because f (ξ) > 0 ensures E[I(Y ≤

ξ)] = F(ξ) = p. Hence, the right side of (B.1) equals −
√

n[1
n ∑

n
i=1 Ai−φ]+

√
nRn. Also,

Var[I(Y ≤ ξ)] = p(1− p) = χ2
SRS implies

Var[A] = Var[I(Y ≤ ξ)/ f (ξ)]+Var[Y]+2Cov[I(Y ≤ ξ)/ f (ξ),Y] = ζ
2
SRS

by (4.10) because γSRS = E[I(Y ≤ ξ)Y]− pµ . We assumed that σ2
SRS < ∞ and f (ξ) > 0,

so ζ 2
SRS < ∞ by the Cauchy-Schwarz inequality. Thus, the ordinary CLT ensures that

−
√

n

[
1
n

n

∑
i=1

Ai−φ

]
⇒ N(0,ζ 2

SRS) as n→ ∞. (B.2)

As the limit in (4.7) is deterministic, the left sides of (B.2) and (4.7) jointly converge to their

respective limits by Theorem 11.4.5 of [134]. Hence, applying the continuous-mapping

theorem (e.g., Theorem 3.4.3 of [134]), we have that (4.10) holds. x

129

APPENDIX C

PROOF OF THEOREM 3

Put Equations (4.16) and (4.12) into (4.17) and use (4.16). This establishes part (i).

We next prove part (ii). The sum in (4.18) has i.i.d. summands, where each summand

has mean 0 and variance ζ 2
IS. From the first part of each summand, we have that VarG̃[1−

I(c(X)> ξ)L(X)] = VarG̃[I(c(X)> ξ)L(X)] = EG̃[(I(c(X)> ξ)L(X))2]− (1− p)2, and

EG̃[I(c(X)> ξ)L2(X)]≤ EG̃[I(c(X)> ξ −λ)L2+ε(X)]< ∞ (C.1)

by (4.15), so χ2
IS < ∞. Also, we assumed that σ2

IS < ∞, so the Cauchy-Schwarz inequality

ensures that γIS is finite, implying the same is true for ζ 2
IS because f (ξ)> 0. Thus, part (ii)

holds by (4.18) and Slutsky’s theorem (e.g., p. 19 of [117]). x

130

APPENDIX D

PROOF OF THEOREM 4

Put Equation (4.16) with n1 = δn replacing n into Equation (4.21) to get

η̂MSIS,n = ξ −µ−
F̂IS,δn(ξ)− p

f (ξ)
+ R̃n,δ − µ̂SRS,(1−δ)n +µ,

from which Equation (4.22) follows from Equation (4.16). This establishes part (i).

We next prove part (ii). Rearrange (4.22) and scale by
√

n to get

√
n
[
η̂MSIS,n−η

]
=−

√
n

f (ξ)

[
F̂IS,δn(ξ)− p

]
−
√

n
[
µ̂SRS,(1−δ)n−µ

]
+
√

nR̃n,δ .

As we showed in (C.1), (4.15) implies that χ2
IS < ∞, so f (ξ)> 0 ensures that

√
n[F̂IS,δn(ξ)− p]⇒ N′1 ∼ N

(
0,

χ2
IS

δ f 2(ξ)

)
, (D.1)

where the δ appears in the denominator of the asymptotic variance because the left side of

(D.1) scales by
√

n rather than
√

n1, and the sample size used to construct F̂IS,δn is n1 = δn.

Then
√

n[µ̂SRS,(1−δ)n−µ]⇒ N′2 ∼ N
(

0,
σ2

SRS
1−δ

)
as n→ ∞ (D.2)

since σ2
SRS < ∞, where the 1− δ appears in the denominator of the asymptotic variance

because the scaling in (D.2) is
√

n rather than
√

n2. Under MSIS, µ̂SRS,(1−δ)n is

independent of ξ̂IS,δn and F̂IS,δn, guaranteeing the joint convergence of (D.1) and (D.2) as

n→ ∞ by Theorem 11.4.4 of [134]. Moreover, because the limit in (4.22) is deterministic,

it follows that

(
√

n
[
F̂IS,δn(ξ)− p

]
,
√

n
[
µ̂SRS,(1−δ)n−µ

]
,
√

nR̃n,δ)⇒ (N′1,N
′
2,0) as n→ ∞

by Theorem 11.4.5 of [134], where N′1 and N′2 are independent. Finally, applying the

continuous-mapping theorem completes the proof. x

131

APPENDIX E

PROOF OF THEOREM 5

By Equation (4.25), we have η̂DE,n = υ1ξ̂IS,δn +υ ′1ξ̂SRS,(1−δ)n−υ2µ̂IS,δn−υ ′2µ̂SRS,(1−δ)n,

where ξ̂IS,δn and µ̂IS,δn are from Equation (4.17), and ξ̂SRS,(1−δ)n and µ̂SRS,(1−δ)n are from

(4.5). Use the corresponding expressions for ξ̂IS,δn and µ̂IS,δn in (4.18), and expressions

for ξ̂SRS,(1−δ)n and µ̂SRS,(1−δ)n in (4.9), and then rearrange these expressions to get (4.26).

To prove part (ii), we use (4.25) to split
√

n [η̂DE,n−η] into terms based on IS and

terms based on SRS, which will be analyzed separately. For the IS estimators, modify the

proof of Theorem 3(ii) to get the CLT

√
n
([

υ1ξ̂IS,δn−υ2µ̂IS,δn

]
− [υ1ξ −υ2µ]

)
⇒ N1 (E.1)

as n→ ∞, where N1 ∼ N(0,ψ2
IS,δ ,υ1,υ2

) and

ψ
2
IS,δ ,υ1,υ2

=
1
δ

[
υ

2
1

χ2
IS

f 2(ξ)
+υ

2
2 σ

2
IS−2υ1υ2

γIS

f (ξ)

]
. (E.2)

Similarly, for the SRS estimators, we modify the proof of Theorem 2(ii) to get the CLT

√
n
([

υ
′
1ξ̂SRS,(1−δ)n−υ

′
2µ̂SRS,(1−δ)n

]
−
[
υ
′
1ξ −υ

′
2µ
])
⇒ N2 (E.3)

as n→ ∞, where N2 ∼ N(0,ψ2
SRS,δ ,υ1,υ2

) and

ψ
2
SRS,δ ,υ1,υ2

=
1

1−δ

[
υ
′2
1

χ2
SRS

f 2(ξ)
+υ

′2
2 σ

2
SRS +2υ

′
1υ
′
2

γSRS

f (ξ)

]
. (E.4)

Hence,
√

n [η̂DE,n−η] equals the sum of the left sides of (E.1) and (E.3) by (4.25).

The estimators in (E.1) and (E.3) are independent, so the CLTs in (E.1) and (E.3) hold

jointly with N1 and N2 independent [134, Theorem 11.4.5]. Thus, the continuous-mapping

theorem [134, Theorem 3.4.3] implies
√

n [η̂DE,n−η] ⇒ N1 + N2 ∼ N(0,ψ2
IS,δ ,υ1,υ2

+

ψ2
SRS,δ ,υ1,υ2

) as n→ ∞, proving (4.27).

Next we are going to prove for fixed δ ∈ (0,1), the optimal value of υ1 and υ2 is as

in (4.28). The partial derivative of ζ 2
DE with respect to υ1 is ∂ζ 2

DE
∂υ1

= 2V(ξ)
IS υ1−2V(ξ)

SRS(1−

132

υ1)+2(−CISυ2−CSRS(1−υ2)). The partial derivative of ζ 2
DE with respect to υ2 is ∂ζ 2

DE
∂υ2

=

2V(µ)
IS υ2− 2V(µ)

SRS(1− υ2) + 2(−CISυ1−CSRS(1− υ1)). By setting these two equations

equal to 0 and solving, then we get (υ∗1 ,υ
∗
2) in (4.28). x

133

APPENDIX F

PROOF OF THEOREM 6

Part (i): SRS When we apply SRS, (4.35) holds because c(X) = ∑
m
j=1 X j, where

X1,X2, . . . ,Xm are i.i.d. with variance σ2
0 . As µ = mµ0, we see that (4.36) follows,

completing the proof of (i).

Part (ii): IS(θ) Now consider IS(θ) with G̃θ satisfying Assumption 2, so θ ∈ ∆◦, and

we further assumed that −θ ∈ ∆◦. By (4.11) and a change of measure, we can write the

variance in (4.37) as

σ
2
IS(θ) = EG̃θ

[c2(X)L2
θ (X)]−µ

2 = EG[c2(X)Lθ (X)]− (mµ0)
2, (F.1)

giving the second term of (4.37) in both cases (m = 1 and m≥ 2). By (4.30), the likelihood

ratio in (F.1) is

Lθ (X) =
m

∏
j=1

dG0(X j)

dG̃0,θ (X j)
= exp

(
mQ0(θ)−θ

m

∑
j=1

X j

)
= [M0(θ)]

me−θc(X) (F.2)

because Q0(θ) = lnM0(θ), so the second-moment term in (F.1) becomes

EG[c2(X)Lθ (X)] = [M0(θ)]
mEG

[
c2(X)e−θc(X)

]
. (F.3)

We next will show that (F.3) equals the first term in (4.37) in both cases (m = 1 and

m≥ 2). We do this via derivatives of the MGFs and CGFs of X j ∼ G0 and c(X)∼ Fm. Let

MFm(θ) = EG[eθc(X)], θ ∈ R, be the MGF of Y = c(X) = ∑
m
j=1 X j. As the components of

X are i.i.d., we have

MFm(θ) = EG

[
m

∏
j=1

eθX j

]
=

m

∏
j=1

E0

[
eθX j

]
= [M0(θ)]

m, (F.4)

so MFm(θ)< ∞ for θ ∈ ∆◦. We assumed that ±θ ∈ ∆◦, in which case M0(θ) and M0(−θ)

have derivatives of all orders [17, p. 278], and the same holds for MFm(θ) and MFm(−θ) by

134

(F.4). The second derivative of MFm satisfies M′′Fm
(θ) = EG

[
d2

dθ 2 eθc(X)
]
= EG[c2(X)eθc(X)],

so (F.3) becomes

EG[c2(X)Lθ (X)] = [M0(θ)]
mM′′Fm

(−θ). (F.5)

For m = 1, (F.4) implies that M′′Fm
(θ) = M′′0 (θ), and putting this into (F.5) establishes the

first case of (4.37). For m ≥ 2, we use (F.4) to express the first derivative M′Fm
(θ) =

m[M0(θ)]
m−1M′0(θ) and

M′′Fm
(θ) = m(m−1)[M0(θ)]

m−2[M′0(θ)]
2 +m[M0(θ)]

m−1M′′0 (θ)

= m[M0(θ)]
m

[
(m−1)

(
M′0(θ)
M0(θ)

)2

+
M′′0 (θ)
M0(θ)

]

= m[M0(θ)]
m
[
m[Q′0(θ)]

2 +Q′′0(θ)
]

(F.6)

because the first two derivatives of the CGF Q0(θ) = lnM0(θ) are

Q′0(θ) =
M′0(θ)
M0(θ)

and Q′′0(θ) =
M′′0 (θ)
M0(θ)

−
[

M′0(θ)
M0(θ)

]2

. (F.7)

As a consequence, substituting (F.6) in (F.5) yields

EG[c2(X)Lθ (X)] = m[M0(θ)M0(−θ)]m
[
m[Q′0(−θ)]2 +Q′′0(−θ)

]
(F.8)

for m ≥ 2, giving the first term in the second case of (4.37). (When θ = 0, which

corresponds to SRS, we have G̃θ = G and M0(0) = α(0) = 1. Also, M′0(0) = µ0 and

M′′0 (0) = E0[X2
j], so (4.37) equals (4.35) by (F.7).)

To prove the inequalities in (4.38), we first show that

Q′′0(θ)> 0, for each θ ∈ ∆
◦. (F.9)

For θ ∈∆◦, the exponential twist G̃0,θ in (4.30) of G0 has variance Q′′0(θ) (and mean Q′0(θ))

[29, pp. 72–73]. Because G0 is nondegenerate (Assumption 1), the same holds for G̃0,θ as

they share the same support by (4.30), so (F.9) is true. But ±θ ∈ ∆◦, so (F.9) establishes

the second inequality in (4.38).

135

We next show α(θ) ≡ M0(θ)M0(−θ) ≥ 1 in (4.38) for all θ such that ±θ ∈ ∆◦.

When θ = 0, we have that M0(0) = 1, so the first relation in (4.38) holds in this case. Now

assume that θ 6= 0. Then (F.9) implies that Q0(θ) is strictly convex on ∆◦; also see, e.g.,

[29, p. 73]. Hence, Jensen’s inequality yields

α(θ) = exp
[

2
(

1
2

Q0(θ)+
1
2

Q0(−θ)

)]
> exp

[
2Q0

(
1
2

θ − 1
2

θ

)]
= e2Q0(0) = 1

(F.10)

because Q0(0) = 0, proving the first inequality of (4.38).

We next verify (4.39) for any θ 6= 0 with ±θ ∈ ∆◦. For m≥ 2, it is possible in (4.37)

to have Q′0(−θ) = 0, but Q′′0(−θ) > 0 by (F.9), so σ2
IS(θ) ≥ mQ′′0(−θ)[α(θ)]m−m2µ2

0 .

Also, θ 6= 0 implies that α(θ) > 1 by (F.10). Moreover, we have that µ = mµ0. Thus,

as m→ ∞, the RE of the IS(θ) estimator of µ with θ 6= 0 asymptotically grows at rate

(ignoring constants) at least [α(θ)]m/2/
√

m (and at faster rate [α(θ)]m/2 when M′0(−θ) 6= 0

because then (F.7) implies [Q′0(−θ)]2 > 0 in (4.37)), establishing the RE result in (4.39).

Similarly, the WNRE result in (4.39) holds by multiplying the same lower bound for

VarG̃θ
[c(X)Lθ (X)] by the expected computation time mτIS(θ) to generate (c(X),Lθ (X))

under X∼ G̃θ .

For θ = θ? > 0 in Assumption 2 as the root of (4.31), it is clear that θ? remains fixed

as m grows because the marginal CDF G0 does not vary with m (Assumption 1) and β is

a constant in (4.29). Moreover, (4.39) holds when θ = θ? because θ? > 0, completing the

proof of part (ii).

Part (iii): ISDM(θ) We apply arguments from [50]. The denominator in LISDM(θ?)(X) =

dG(X)

δdG̃θ?(X)+(1−δ)dG(X)
is bounded below by max[δdG̃θ?(X),(1−δ)dG(X)], so

LISDM(θ?)(X)≤ Lθ?(X)

δ
and LISDM(θ?)(X)≤ 1

1−δ
. (F.11)

136

Then use a change of measure and exploit the second relation in (F.11) to get

σ
2
ISDM(θ?)

= EG̃ISDM(θ?)

[
c2(X)L2

ISDM(θ?)

]
−µ

2 = EG
[
c2(X)LISDM(θ?)

]
−µ

2

≤ 1
1−δ

EG
[
c2(X)

]
−µ

2 =
1

1−δ

[
σ

2
SRS +µ

2]−µ
2 =

δ µ2
0

1−δ
m2 +

σ2
0

1−δ
m

(F.12)

by (4.35) and because µ = mµ0, proving (4.40) (previously shown in [50]), and (4.41)

follows.

Part (iv): DE(θ) Note (4.42) holds by (4.35) and (4.37), and (4.43) easily follows, also

using (4.34). x

137

APPENDIX G

PROOF OF THEOREM 7

Part (i): SRS To establish (4.49), which is for M = SRS, first recall (4.47) with χ̆2
M =

χ̆2
SRS ≡ χ2

SRS = p(1− p), where f̆ (ξ̆) evaluates f̆ (x) from (4.46) at x = ξ̆ from (4.45).

Setting x = ξ̆ in mQ′0(θx) = x from (4.46) leads to the relations mQ′0(θξ̆
) = ξ̆ = mQ′0(θ?)

by (4.45), so θ
ξ̆
= θ?. (There cannot be another θ ′ 6= θ? in ∆◦ with Q′0(θξ̆

) = Q′0(θ
′)

because (F.9) ensures that Q′0(θ) is strictly increasing on ∆◦.) We thus obtain

f̆ (ξ̆) =
1√

2πmQ′′0(θ?)
exp
(

mQ0(θ?)−mθ?Q′0(θ?)
)
=

1√
2πmQ′′0(θ?)

e−βm (G.1)

by (4.31). We then put (4.29) and (G.1) into (4.47) to get

κ̆
2
SRS =

2πmQ′′0(θ?)(1− e−βm)e−βm

e−2βm
, (G.2)

verifying (4.49). Also, (4.50) follows from (4.48) for M= SRS and (4.45), completing the

proof of (i).

Part (ii): IS(θ?) Recall θ? > 0 from (4.31) in Assumption 2. As shown in [41,

Theorem 2], (F.2) implies the numerator χ̆2
IS in the approximate asymptotic variance in

(4.47) satisfies

χ̆
2
IS ≤ EG̃θ?

[
L2

θ?
(X) I(c(X)> ξ̆)

]
= EG̃θ?

[
exp
(

2 [−θ?c(X)+mQ0(θ?)]
)

I(c(X)> ξ̆)
]

≤ exp
(

2[−θ?ξ̆ +mQ0(θ?)]
)
= exp

(
2[−θ?mQ′0(θ?)+mQ0(θ?)]

)
= exp(−2βm)

(G.3)

by (4.45) and (4.31). Then putting (G.3) and (G.1) into (4.47) for M = IS(θ?) verifies

(4.51). Substituting (4.51) and (4.45) into (4.48) with M= IS(θ?) finally establish (4.52),

completing the proof of (ii).

138

Part (iii): ISDM(θ?) From the first relation in (F.11) and (F.2), we use the fact that θ?> 0

to bound the numerator of the first term in (4.58) as

χ̆
2
ISDM(θ?)

≤ EG̃ISDM(θ?)

[
L2

ISDM(θ?)
(X) I(c(X)> ξ̆)

]
≤ 1

δ 2 EG̃ISDM(θ?)

[
exp
(

2 [−θ?c(X)+mQ0(θ?)]
)

I(c(X)> ξ̆)
]

≤ 1
δ 2 exp

(
2[−θ?ξ̆ +mQ0(θ?)]

)
=

1
δ 2 exp

(
2[−θ?mQ′0(θ?)+mQ0(θ?)]

)
=

1
δ 2 exp(−2βm) (G.4)

by (4.45) and (4.31). Combining (G.4) with (G.1) leads to

χ̆2
ISDM(θ?)

f̆ 2(ξ̆)
≤

2πQ′′0(θ?)
δ 2 m. (G.5)

Thus, (4.53) holds, and (4.54) follows.

Part (iv): DE(θ?) Note that (4.55) is a simple consequence of (4.49) and (4.51), and

(4.56) easily follows. (For WNRĔDE(θ?),m[ξ], we use the modification to (4.34) described

after (4.48).) x

139

APPENDIX H

PROOF OF THEOREM 8

Part (i): SRS To establish (4.62), we will separately analyze the three terms in (4.58) for

M= SRS to show that as m→ ∞, the first term grows at a strictly faster rate than the other

two terms, where we recall ΛSRS = Λ
†
SRS = Λ

‡
SRS = 1. By (4.49), the first term in (4.58) is

χ2
SRS

f̆ 2(ξ̆)
= [2πQ′′0(θ?)]m(1− e−βm)eβm = Ω(meβm) (H.1)

as m→ ∞, with β > 0 from (4.29). By (4.35), we write the second term in (4.58) as

σ2
SRS = σ2

0 m = o(meβm) as m→ ∞. For the third term in (4.58), we use (4.10) and the

Cauchy-Schwarz inequality to get∣∣∣∣∣ γSRS

f̆ (ξ̆)

∣∣∣∣∣≤ χSRS

f̆ (ξ̆)
σSRS =

(√
2πQ′′0(θ?)σ0

)
m
√

(1− e−βm)eβm/2 = o(meβm) (H.2)

as m → ∞. Thus, the second and third terms in (4.58) are asymptotically negligible

compared to the first term, which verifies (4.62). Combining (4.62) with (4.57) establishes

(4.63) because the expected computation time to generate c(X) with X ∼ G is mτSRS by

Assumption 1, completing the proof of part (i).

Part (ii): IS(θ?) To establish (4.64), we will separately analyze the three terms in (4.58)

for M = IS(θ?) to show the second term grows at the strictly fastest rate, where we recall

that ΛIS(θ?) = Λ
†
IS(θ?)

= −Λ
‡
IS(θ?)

= 1. From (4.37), the second term in (4.58) for m ≥ 2

satisfies

σ
2
IS(θ?) = m[α(θ?)]

m
(

m[Q′0(−θ?)]
2 +Q′′0(−θ?)

)
− (mµ0)

2 = Ω(m[α(θ?)]
m) (H.3)

as m→ ∞ because θ? > 0 implies that α(θ?) > 1 by Theorem 6(ii) and Q′′0(−θ?) > 0 by

(4.38). For the first term in (4.58), we have that (4.51) ensures

χ̆2
IS(θ?)

f̆ 2(ξ̆)
≤ [2πQ′′0(θ?)]m = o(m[α(θ?)]

m) (H.4)

140

as m→ ∞. For the third term in (4.58), the Cauchy-Schwarz inequality implies∣∣∣∣∣− γ̆IS(θ?)

f̆ (ξ̆)

∣∣∣∣∣≤ χ̆IS(θ?)

f̆ (ξ̆)
σIS(θ?)

≤
[
2πQ′′0(θ?)m

(
m[α(θ?)]

m
(

m[Q′0(−θ?)]
2 +Q′′0(−θ?)

)
− (mµ0)

2
)]1/2

(H.5)

= O(m3/2[α(θ?)]
m/2) = o(m[α(θ?)]

m) (H.6)

as m → ∞ because α(θ?) > 1. Thus, (4.64) holds by (H.3)–(H.6). Combining (4.64)

with (4.57) verifies (4.65) as the expected time to generate (c(X),Lθ?(X)) with X∼ G̃θ? is

mτIS(θ?), completing the proof of part (ii).

Part (iii): MSIS(θ?) To show (4.66), we separately analyze the first two terms in (4.58)

for M = MSIS(θ?) (recall Λ
‡
MSIS(θ?)

= 0) to show that each grows asymptotically at most

linearly in m. The first term in (4.58) satisfies χ̆2
IS/[δ f̆ 2(ξ̆)] ≤ [2πQ′′0(θ?)/δ]m by (4.51).

The second term in (4.58) is σ2
SRS/(1− δ) = [σ2

0/(1− δ)]m by (4.35), verifying (4.66).

Combining (4.66) with (4.57) establishes the first result (RĔ) in (4.67). The boundedness

of WNRĔ in (4.67) holds by putting (4.57), (4.51), and (4.35) into (4.61), completing the

proof of part (iii).

Part (iv): ISDM(θ?) To show (4.68), we will separately analyze the three terms in

(4.58) for M= ISDM(θ?) to derive an upper bound for each, where we recall ΛISDM(θ?) =

Λ
†
ISDM(θ?)

= −Λ
‡
ISDM(θ?)

= 1. The first term in (4.58) satisfies
χ̆2

ISDM(θ?)

f̆ 2(ξ̆)
≤ 2πQ′′0(θ?)

δ 2 m by

(4.53), and the second term obeys σ2
ISDM(θ?)

≤ δ µ2
0

1−δ
m2+

σ2
0

1−δ
m by (4.40). For the third term

in (4.58), the Cauchy-Schwarz inequality implies∣∣∣∣∣−2γ̆ISDM(θ?)

f̆ (ξ̆)

∣∣∣∣∣≤ 2
χ̆ISDM(θ?)

f̆ (ξ̆)
σISDM(θ?) ≤ 2

[
2πQ′′0(θ?)

δ 2 m
(

δ µ2
0

1−δ
m2 +

σ2
0

1−δ
m
)]1/2

= 2
[

2πQ′′0(θ?)
(1−δ)

(
µ2

0
δ

+
σ2

0
mδ 2

)]1/2

m3/2 (H.7)

141

by (G.5) and (F.12). Applying the upper bounds from (G.5), (F.12), and (H.7) in (4.58)

verifies (4.68). Combining (4.68) with (4.57) establishes (4.69), completing the proof of

part (iv).

Part (v): DE(θ?), relations (4.70) and (4.71) To show (4.70), we will provide

lower bounds for each of the two terms in parentheses for ζ̆ 2
DE(θ?)

in (4.59). Because

δ ,υ1,υ2 ∈ (0,1), the asymptotic rate (in m) at which the first term in (4.59) grows is

determined by υ2
2 σ2

IS(θ?)
/δ , as in (4.64), so the first term in (4.59) is bounded below by

[υ2
2 Q′′0(−θ?)/δ]m[α(θ?)]

m+o(m[α(θ?)]
m). Also, as in (4.62) the asymptotic rate at which

the second term in (4.59) increases is governed by υ ′21
1−δ

χ2
SRS

f̆ 2(ξ̆)
, so the second term in (4.59)

equals [υ ′21
1−δ

2πQ′′0(θ?)]m(1−e−βm)eβm+o(m(1−e−βm)eβm). Combining these two results

yields (4.70). Moreover, the first result of (4.71) follows from (4.70) and (4.57). Finally,

putting (4.57), (4.49), and (4.37) into (4.60) verifies the second part of (4.71).

Part (v): Equation (4.72) The paragraph before Theorem 8 defines (ῠ∗1,m, ῠ
∗
2,m) =(

ă1,m
ă0,m

,
ă2,m
ă0,m

)
, where

ă0,m = V̆
(ξ)
SRS,mV̆

(µ)
IS,m− C̆

2
IS,m +2C̆IS,mC̆SRS,m− C̆

2
SRS,m + V̆

(ξ)
IS,mV̆

(µ)
IS,m + V̆

(ξ)
IS,mV̆

(µ)
SRS,m + V̆

(ξ)
SRS,mV̆

(µ)
SRS,m,

(H.8)

ă1,m = V̆
(ξ)
SRS,mV̆

(µ)
IS,m + V̆

(ξ)
SRS,mV̆

(µ)
SRS,m + V̆

(µ)
IS,mC̆SRS,m + V̆

(µ)
SRS,mC̆IS,m + C̆IS,mC̆SRS,m− C̆

2
SRS,m, and

(H.9)

ă2,m = V̆
(ξ)
IS,mV̆

(µ)
SRS,m + V̆

(ξ)
SRS,mV̆

(µ)
SRS,m + V̆

(ξ)
IS,mC̆SRS,m + V̆

(ξ)
SRS,mC̆IS,m + C̆IS,mC̆SRS,m− C̆

2
SRS,m.

(H.10)

We will prove (4.72) by analyzing growth rates of the terms in (H.8)–(H.10) as m→ ∞ for

fixed δ ∈ (0,1). By (4.29) and (F.10), we have β > 0 and α(θ?)> 1. The first term in both

(H.8) and (H.9) satisfies

V̆(ξ)
SRS,mV̆(µ)

IS,m = Ω(m2[α(θ?)]
meβm) (H.11)

142

as m→∞, by (H.1) and (H.3). The rest of the proof will show that each other term in (H.8)–

(H.10) is o(V̆(ξ)
SRS,mV̆(µ)

IS,m) as m→ ∞, which will imply (4.72). We start with analyzing the

common terms. Note that

V̆(ξ)
IS,m = o(V̆(ξ)

SRS,m) and V̆(µ)
SRS,m = o(V̆(µ)

IS,m), (H.12)

where the first (resp., second) relation holds by (H.1) and (H.4) (resp., (4.35) and (H.3)).

Then as m→ ∞, it follows from (H.2), (H.5), and (H.12) that

C̆
2
SRS,m ≤ V̆(ξ)

SRS,mV̆(µ)
SRS,m = o(V̆(ξ)

SRS,mV̆(µ)
IS,m) and (H.13)

C̆
2
IS,m ≤ V̆(ξ)

IS,mV̆(µ)
IS,m = o(V̆(ξ)

SRS,mV̆(µ)
IS,m). (H.14)

Now we will repeatedly use (H.11)–(H.14) to establish the growth rates of ă0,m, ă1,m,

and ă2,m as m→ ∞. First, (H.8) implies

ă0,m = V̆(ξ)
SRS,mV̆(µ)

IS,m +o(V̆(ξ)
SRS,mV̆(µ)

IS,m). (H.15)

To next handle ă1,m in (H.9), as m→ ∞, we get V̆(µ)
IS,mC̆SRS,m = o(V̆(µ)

IS,mV̆(ξ)
SRS,m) by (H.1)

and (H.2). We also obtain V̆(µ)
SRS,mC̆IS,m = o(V̆(ξ)

SRS,mV̆(µ)
IS,m), because V̆(µ)

SRS,m = o(V̆(ξ)
SRS,m)

by (4.35) and (H.1), and C̆IS,m = o(V̆(µ)
IS,m) by (H.3) and (H.6). Handling the other terms in

(H.9) by (H.11)–(H.13) then leads to

ă1,m =V̆(ξ)
SRS,mV̆(µ)

IS,m +o(V̆(ξ)
SRS,mV̆(µ)

IS,m) (H.16)

as m→∞. Lastly, for ă2,m in (H.10), we see that V̆(ξ)
IS,mC̆SRS,m = o(V̆(µ)

IS,mV̆(ξ)
SRS,m) as m→∞

because V̆(ξ)
IS,m = o(V̆(µ)

IS,m) by (H.3) and (H.4), and C̆SRS,m = o(V̆(ξ)
SRS,m) by (H.1) and (H.2).

Moreover, (H.3) and (H.6) ensure that V̆(ξ)
SRS,mC̆IS,m = o(V̆(ξ)

SRS,mV̆(µ)
IS,m), so as m→ ∞,

ă2,m =o(V̆(ξ)
SRS,mV̆(µ)

IS,m) (H.17)

holds by (H.11)–(H.13).

Finally, (4.72) follows from (H.15)–(H.17), completing the proof. x

143

Next we analyze the approximate optimal value of (υ1,υ2) when minimizing

WNRĔDE(θ?),m[η] in (4.60). In this case, we define the approximation (ῠ ′1,m, ῠ
′
2,m) =

(
ă′1,m
ă′0,m

,
ă′2,m
ă′0,m

), but now ă′0,m = m2(−τ2
IS(θ?)

C̆
2
IS,m + 2τIS(θ?)τSRSC̆IS,mC̆SRS,m − τ2

SRSC̆
2
SRS,m +

τ2
IS(θ?)

V̆(ξ)
IS,mV̆(µ)

IS,m+τIS(θ?)τSRSV̆(µ)
IS,mV̆(ξ)

SRS,m+τIS(θ?)τSRSV̆(ξ)
IS,mV̆(µ)

SRS,m+τ2
SRSV̆(ξ)

SRS,mV̆(µ)
SRS,m),

ă′1,m = m2(τIS(θ?)τSRSV̆(µ)
IS,mV̆(ξ)

SRS,m + τ2
SRSV̆(ξ)

SRS,mV̆(µ)
SRS,m + τIS(θ?)τSRSV̆(µ)

IS,mC̆SRS,m + τIS(θ?)

τSRSC̆IS,mV̆(µ)
SRS,m + τIS(θ?)τSRSC̆IS,mC̆SRS,m− τ2

SRSC̆
2
SRS,m), and ă′2,m = m2(τIS(θ?)τSRSV̆(ξ)

IS,m

V̆(µ)
SRS,m + τ2

SRSV̆(ξ)
SRS,mV̆(µ)

SRS,m + τIS(θ?)τSRSV̆(ξ)
IS,mC̆SRS,m + τIS(θ?)τSRSC̆IS,mV̆(ξ)

SRS,m + τIS(θ?)

τSRSC̆IS,mC̆SRS,m− τ2
SRSC̆

2
SRS,m). Note that when minimizing WNRĔDE(θ?),m[η], the only

difference between (ῠ ′1,m, ῠ
′
2,m) and (ῠ∗1,m, ῠ

∗
2,m) in (4.28) is that we further multiplied

each product item in ă0,m, ă1,m and ă2,m from (H.8)–(H.10) by factors m2 and a constant

involving τSRS or τIS(θ) (or both). Thus, an argument analogous to the one using

(H.8)–(H.17) to prove (4.72) shows that lim
m→∞

(ῠ ′1,m, ῠ
′
2,m) = (1,0).

144

APPENDIX I

TWO-STEP IS TO ESTIMATE EXTREME QUANTILE AND EC IN PCRM WITH
RANDOM LOSS GIVEN DEFAULT

We now describe our IS approach to estimate an extreme quantile for the model in Section

4.6.2. We assume that the common shock S ≡ 1 in (4.2), as in [40], but we extend their

method to allow for the loss given default to be stochastic. Although our simulation

experiments in Section 4.6.2 have LGD Ck ∼ Unif(0,βk), independent of (Z,ε1, . . . ,εm),

we develop the method for more general LGD satisfying certain conditions; see (I.2). Let

Vk denote the marginal CDF (not necessarily uniform) of the LGD Ck.

Reference [40] developed a two-step IS method to estimate the tail probability λx ≡

P(Y > x), where x is a given large threshold, and we adapt their ideas to estimate the

p-quantile ξ , for p≈ 1. Their method critically depends on knowing the threshold x, which

is explicitly used throughout their approach. We cannot simply apply their technique by

letting x = ξ , as ξ is unknown. Instead, we first run pilot simulations for a few different

values of the threshold x, and interpolate to obtain a crude approximation ξ̊ to ξ . Finally

we use additional simulation runs with our modification of the two-step approach of [40]

with threshold x = ξ̊ , and employ the resulting data to estimate ξ .

Before describing the two-step IS, we first consider a one-step IS conditional on

Z, which makes the obligors conditionally independent. In the following, Appendix I.1

first applies the one-step IS conditional on Z to estimate λx(Z) ≡ P(Y > x | Z). Next,

Appendix I.2 extends the one-step IS to a two-step IS to estimate λx, by first using IS to

sample Z from a different CDF than its original one and then applying the one-step IS given

the observed Z. Appendix I.3 finally adapts the two-step IS for λx to instead estimate ξ .

Recall that the total portfolio loss in Section 4.6.2 is Y = ∑
m
k=1CkDk, where Dk =

I(εk > (wk−akZ)/bk) is the indicator that obligor k defaults because we assumed that the

145

common shock S≡ 1. The mutual independence of Z,ε1,ε2, . . . ,εm implies that

given Z, the default indicators D1, . . . ,Dm are conditionally independent. (I.1)

Moreover, we assume that for D = (D1, . . . ,Dm),

C1, . . . ,Cm,D are conditionally independent, given Z. (I.2)

The following methods will exploit properties (I.1) and (I.2).

I.1 One-Step IS Conditional on Z to Estimate P(Y > x | Z)

This section will modify the one-step IS of [40] to estimate λx(Z) when LGD is random

and satisfies (I.2). The IS applies exponential twisting (Section 4.5.1). Let F(· | Z) be the

conditional CDF (CCDF) of the loss Y given Z. For each obligor k, define Tk ≡CkDk, so

Y = ∑
m
k=1 Tk. Let Hk(· |Z) be the CCDF of Tk given Z. We will see that given Z, applying

an exponential twist to the CCDF F(· | Z) of Y with twisting parameter θ is equivalent to

twisting each Hk(· | Z) with the same θ . (We will later describe in (I.17) how to choose

θ = θx(Z) as a function of both the factor values Z and the threshold x.)

Exponential Twist to Each Hk(· | Z) This section will exponentially twist each Hk(· | Z)

with the same θ ∈R, and gives details on how to generate Tk when applying IS conditional

on Z. The exponential twist H̃k,θ (· |Z) of the CCDF Hk(· |Z) of Tk given Z using parameter

θ ∈ R is defined by

dH̃k,θ (t |Z) =
eθ tdHk(t |Z)
mHk(θ ,Z)

, (I.3)

where mHk(θ ,Z) =
∫

eθ t dHk(t |Z) is the conditional moment generating function (CMGF)

of Tk ∼ Hk(· | Z). Let Ẽθ [· | Z] denote conditional expectation given Z, when each Tk ∼

146

H̃k,θ (· | Z). By (I.2) we can write

λx(Z) = E [I (∑m
k=1Tk > x) | Z] =

∫
(t1,...,tm)∈Rm

I (∑m
k=1tk > x)

m

∏
k=1

dHk(tk | Z)

=
∫
(t1,...,tm)∈Rm

I (∑m
k=1tk > x)

m

∏
k=1

dHk(tk | Z)
dH̃k,θ (tk | Z)

dH̃k,θ (tk | Z)

= Ẽθ [I(∑m
k=1Tk > x)Lθ (T1, . . . ,Tm,Z) | Z], (I.4)

where Lθ (T1, . . . ,Tm,Z) = ∏
m
k=1 dHk(tk | Z)/dH̃k,θ (tk | Z) is the conditional LR given

Z. Also, let ψHk(θ ,Z) = ln[mHk(θ ,Z)] be the conditional cumulant generating function

(CCGF) of Tk ∼ Hk(· | Z), so by (I.3),

Lθ (T1, . . . ,Tm,Z) =
m

∏
k=1

dHk(tk | Z)
eθ tk dHk(tk | Z)/mHk(θ ,Z)

=
m

∏
k=1

mHk(θ ,Z)
eθTk

=
m

∏
k=1

eψHk (θ ,Z)−θTk .

(I.5)

We now give more details on the exponential twist H̃k,θ (· | Z) defined by (I.3), which

will require expressions for Hk(· |Z) and mHk(θ ,Z). To compute mHk(θ ,Z), let pk(Z) be

the conditional probability that obligor k defaults given Z, which satisfies

pk(Z)≡ P(Dk = 1 | Z) = P
(

εk >
wk−akZ

bk
| Z
)
= Φ

(
akZ+Φ−1(pk)

bk

)
(I.6)

because εk ∼ N(0,1) is independent of Z and the N(0,1) density is symmetric about the

origin. Then we use (I.2) and (I.6) to compute the CMGF of Tk =CkDk ∼ Hk(· | Z) as

mHk(θ ,Z) = E
[

eθCkDk |Z
]
= E

[
E
[

eθCkDk |Ck,Z
]
|Z
]

= E
[

eθCk·0 (1− pk(Z))+ eθCk·1 pk(Z) |Z
]

= 1− pk(Z)+ pk(Z)E
[

eθCk |Z
]
= 1+ pk(Z)[mVk(θ ,Z)−1], (I.7)

where mVk(θ ,Z) = E
[

eθCk |Z
]

is the CMGF of Ck ∼ Vk(· | Z), and Vk(· | Z) is the CCDF

of Ck given Z.

Next we will work out the details of the conditional exponential twist given Z for

each Tk ∼Hk(· | Z). To do this we need an expression for Hk(· | Z), which by (I.2) and (I.6)

147

satisfies

Hk(t |Z) = P(CkDk ≤ t | Z) = E[P(CkDk ≤ t | Dk,Z) | Z]

= P(Dk = 0 | Z)P(CkDk ≤ t | Dk = 0,Z)+P(Dk = 1 | Z)P(CkDk ≤ t | Dk = 1,Z)

= (1− pk(Z))I(t ≥ 0)+ pk(Z)P(Ck ≤ t | Z) (I.8)

by (I.6), so Hk(· | Z) is a mixture of the CDFs I(· ≥ 0) and Vk(· | Z). Thus, we have

dHk(t |Z) = P(Tk ∈ dt |Z) = (1− pk(Z))δ0({dt})+ pk(Z)vk(t |Z)dt, (I.9)

where vk(· | Z) is the density of Vk(· | Z), and δ0 is a measure defined on measurable

sets A ⊆ R, such that δ0(A) = 1 if 0 ∈ A and δ0(A) = 0 if 0 /∈ A. Then we can write

I(t ≥ 0) =
∫ t

s=−∞
δ0({ds}) = δ0((−∞, t]). Also, putting (I.9) into (I.3) yields

dH̃k,θ (t |Z) =
eθ t(1− pk(Z))δ0({dt})

mHk(θ ,Z)
+

eθ t pk(Z)vk(t |Z)
mHk(θ ,Z)

dt

=
(1− pk(Z))δ0({dt})

mHk(θ ,Z)
+

eθ t pk(Z)vk(t |Z)
mHk(θ ,Z)

dt (I.10)

= q̃k,θ (Z)δ0({dt})+ p̃k,θ (Z)ṽk,θ (t |Z)dt,

where (I.10) holds because δ0({dt}) is nonzero only when t = 0, in which case eθ t = 1,

and

ṽk,θ (t |Z)≡
eθ tvk(t |Z)
mVk(θ ,Z)

, q̃k,θ (Z)≡
1− pk(Z)
mHk(θ ,Z)

, p̃k,θ (Z)≡ 1− q̃k,θ (Z) =
pk(Z)mVk(θ ,Z)

mHk(θ ,Z)
,

(I.11)

with (I.11) using (I.7). Note that ṽk,θ (· | Z) is the exponential twist of vk,θ (· | Z). Given Z,

we have q̃k,θ (Z)+ p̃k,θ (Z) = 1 with q̃k,θ (Z)≥ 0 and p̃k,θ (Z)≥ 0 by (I.7), so

H̃k,θ (t |Z) =
∫ t

s=0
dH̃k,θ (s |Z) = q̃k,θ (Z)I(t ≥ 0)+ p̃k,θ (Z)Ṽk,θ (t |Z) (I.12)

is a mixture of the CDFs I(t ≥ 0) and Ṽk,θ (t |Z)≡
∫ t

s=−∞
ṽk,θ (s)ds. Compared to Hk(· |Z),

the exponential twist H̃k,θ (· |Z) shifts the original distribution’s mass to the right when

θ > 0, making large losses more likely. Also, setting θ = 0 leads to H̃k,0(· | Z) = Hk(· | Z).

148

For a given θ , we can generate an observation of Tk ∼ H̃k,θ (· | Z) as follows. With

probability q̃k,θ (Z), we set Tk = 0; otherwise (with probability p̃k,θ (Z)), we generate Tk ∼

Ṽk,θ (· | Z).

Exponential Twist to F(· |Z) We will now show that given Z, exponentially twisting the

conditional distribution F(· | Z) of Y = ∑
m
k=1 Tk with twisting parameter θ is equivalent to

twisting each Hk(· | Z) with the same θ . Note that (I.1) and (I.2) imply that the CMGF of

Y given Z satisfies

mF(θ ,Z) = E

[
m

∏
k=1

eθTk |Z

]
=

m

∏
k=1

E[eθTk | Z] =
m

∏
k=1

mHk(θ ,Z) =
m

∏
k=1

(1+ pk(Z)[mVk(θ ,Z)−1])

by (I.7). Recall that ψHk(θ ,Z) is the CCGF of Tk ∼Hk(· | Z), so the CCGF of Y ∼ F(· | Z)

is

ψF(θ ,Z) =
m

∑
k=1

ψHk(θ ,Z) =
m

∑
k=1

ln(1+ pk(Z)[mVk(θ ,Z)−1]) . (I.13)

Then by (I.5), we can rewrite the conditional likelihood ratio in (I.4) as

Lθ (T1, . . . ,Tm,Z) = eψF (θ ,Z)−θY ≡ L′θ (Y,Z), (I.14)

which depends on T1, . . . ,Tm through only their sum Y . Hence, given Z, exponentially

twisting F(· | Z) with θ is equivalent to applying an exponential twist to each Hk(· | Z)

with the same θ .

Next we will show how we choose the twisting parameter θ given Z. Let F̃θ (· | Z)

be the CCDF of Y given Z under an exponential twist with parameter θ . The conditional

expectation Ẽθ [Y | Z] of Y ∼ F̃θ (· | Z) under IS given Z with twisting parameter θ satisfies

(e.g., see p. 261 of [38])

Ẽθ [Y | Z] = ψ
′
F(θ ,Z)≡

∂

∂θ
ψF(θ ,Z), (I.15)

Also, by (I.13), we have that for m′Vk
(θ ,Z) = ∂

∂θ
mVk(θ ,Z),

ψ
′
F(θ ,Z) =

m

∑
k=1

pk(Z)m′Vk
(θ ,Z)

1+ pk(Z)(mVk(θ ,Z)−1)
. (I.16)

149

Given Z and the threshold x in P(Y > x) being estimated, we choose parameter θ =

θx(Z) as follows:

let θx(Z) = 0 when x≤ ψ ′F(0,Z);

solve for θx(Z) in ψ ′F(θx(Z),Z) = x when x > ψ ′F(0,Z).
(I.17)

Here ψ ′F(θx(Z),Z) = Ẽθx(Z)[Y |Z] in (I.15), and ψ ′F(0,Z) = Ẽ0[Y |Z] = E[Y |Z], the

original conditional mean (without exponential twisting). The conditional event {Y > x |Z}

is typically not rare when x ≤ ψ ′F(0,Z), so we do not need IS in this case, and (I.17) lets

θx(Z) = 0. But when the original conditional mean ψ ′F(0,Z) < x, we choose the twisting

parameter θx(Z) in (I.17) so that the conditional mean of Y given Z under IS equals the

threshold x, making the event {Y > x | Z} not rare under the IS measure.

I.2 Two-Step IS to Estimate P(Y > x)

In this section, we will extend the one-step IS conditional on Z of Appendix I.1 to estimate

the unconditional tail probability λx by adapting the two-step IS of [40]. To do this,

Appendix I.2 will first specify a new joint CDF Γx(·) for sampling Z under IS. Then for a

generated Z∼ Γx(·), Appendix I.2 will apply the conditional IS from Appendix I.1 on the

observed Z, to estimate λx.

Specifying the Joint CDF of Z Under IS In this section we will discuss how to choose

the new joint CDF for Z under IS. Let Φ0 be original joint CDF of vector Z, which has r

i.i.d. N(0,1) components, so dΦ0(z) = (2π)−r/2 exp(−1
2z>z)dz. Define the new CDF (not

necessarily joint normal) for Z as Γx(·), which may depend on the threshold x, satisfying

dΓx(z) > 0 whenever λx(z)dΦ0(z) > 0. Let ẼΓx be the expectation operator when Z ∼

Γx(·). Applying a change of measure to λx = E [λx(Z)] leads to

λx =
∫

z∈Rr
λx(z)dΦ0(z) =

∫
z∈Rr

λx(z)
dΦ0(z)
dΓx(z)

dΓx(z) = ẼΓx

[
λx(Z)

dΦ0(Z)
dΓx(Z)

]
. (I.18)

150

Thus, sampling i.i.d. copies of Z∼ Γx(·) and averaging the values of λx(Z)dΦ0(Z)
dΓx(Z) produces

an unbiased estimator of λx. Ideally, we would like the optimal choice of Γx(·) to minimize

the variance of the estimator.

Now consider Γ∗x(·) defined by

dΓ
∗
x(z)≡

λx(z)dΦ0(z)
λx

, (I.19)

and Γ∗x(·) is a CDF because λx(z)≥ 0 and
∫

z∈Rr dΓ∗x(z) = 1 by (I.18). If we let Γx(·) =Γ∗x(·)

in (I.18) and sample Z ∼ Γ∗x(·), then the quantity in the right-hand expectation in (I.18)

always satisfies λx(Z)dΦ0(Z)
dΓ∗x(Z)

= λx by (I.19). Hence, the estimator has zero variance, making

Γ∗x(·) the optimal (minimum variance) choice of Γx(·) to estimate λx, as is well known (e.g.,

see p. 256 of [38]). But we cannot implement Γ∗x(·) in practice because it requires knowing

λx, which is what we want to estimate.

However, Γ∗x(·) defined by (I.19) suggests properties of a “good” choice for Γx(·).

For example, we would like to select Γx(·) such that dΓx(·) is large (resp., small) when

λx(·)dΦ0(·) is large (resp., small). A simple heuristic approach that roughly tries to achieve

this chooses the CDF Γx(·) in (I.18) from within a particular parametric family so that its

density has the same mode as dΓ∗x(·). Specifically, we let Γx(·) = Φν(·), which is the joint

CDF of r independent normal components, with mean vector ν = (ν1, . . . ,νr)
> and unit

marginal variances. We want to specify ν so that the mode of dΦν(z), which is at z = ν ,

occurs at the same location as the mode of dΓ∗x(z).

But another issue arises: λx(·) in (I.19) is also unknown. To handle this, [40]

consider replacing λx(·) with one of several different approximations. We use one of their

approaches, which substitutes λx(z) with the tail probability at threshold x of a (univariate)

normal distribution N(η(z),σ2
Y (z)), where η(z)≡ E [Y | Z = z] and σ2

Y (z)≡ Var[Y | Z =

151

z]. By (I.1), (I.2), and (I.6), we have

η(z) =
m

∑
k=1

E [Ck |Z = z]E[Dk |Z = z] =
m

∑
k=1

E [Ck |Z = z] pk(z), and

σ
2
Y (z) =

m

∑
k=1

Var[CkDk |Z = z] =
m

∑
k=1

(
E[C2

k |Z = z]pk(z)−E2[Ck | Z = z]p2
k(z)

)
.

Thus, we approximate λx(z) in (I.19) by λ †
x (z) ≡ 1−Φ

(
x−η(z)
σY (z)

)
. The mode-matching

heuristic identifies

z†
x ≡ argmax

z∈Rr

[
λ

†
x (z)dΦ0(z)

]
= argmax

z∈Rr

[
λ

†
x (z)e

−zT z/2
]
, (I.20)

which we can try to compute using numerical optimization methods. (Our simulation

experiments employed scipy.optimize with method COBYLA on a few (1 or 2) randomly

generated starting points.) Finally, the new joint CDF for Z under IS is Γx(·) = Φν(·) with

mean ν = z†
x .

Applying Two-Step IS to Estimate P(Y > x) Now that the joint CDF of Z under IS has

been specified as Φν , this section will extend the one-step IS of Appendix I.1 to a two-step

IS to estimate the unconditional tail probability λx. We sample Z under IS from Φν , and

dΦν(z) = (2π)−d/2 exp(−1
2(z−ν)>(z−ν)dz. Letting Γx(·) = Φν(·) in (I.18) results in

λx = Ẽν [λx(Z)L∗ν(Z)], (I.21)

where Ẽν is the expectation operator when Z∼Φν , and the likelihood ratio

L∗ν(Z) =
dΦ0(Z)
dΦν(Z)

= exp
(

1
2

ν
>

ν−ν
>Z
)

(I.22)

corresponds to IS for only Z. Putting (I.4) with θ = θx(Z) into (I.21) then gives

λx = Ẽν

[
Ẽθx(Z)

[
I(∑m

k=1Tk > x)Lθx(Z)(T1, . . . ,Tm,Z) | Z
]

L∗ν(Z)
]

= Ẽν

[
Ẽθx(Z)

[
I(Y > x)L′

θx(Z)(Y,Z)L∗ν(Z) |Z
]]

= Ẽ∗ν
[

I(Y > x)L′
θx(Z)(Y,Z)L∗ν(Z)

]
(I.23)

152

by (I.14) and using iterated expectations, with Ẽ∗ν as the expectation corresponding to

two-step IS, where we first generate Z ∼ Φν , and then given Z, we generate Y from the

conditional distribution F̃θx(Z)(· |Z) with twisting parameter θx(Z) in (I.17). Thus, the right

side of (I.23) shows that using this two-step IS approach leads to I(Y > x) ·L′
θx(Z)(Y,Z) ·

L∗ν(Z) as an unbiased estimator of P(Y > x) based on a single run.

We now detail the two-step IS to estimate λx with multiple runs. We first

0. Compute the mean ν for the CDF Φν of Z under IS as ν = z†
x from (I.20).

We execute step 0 only once. For a sample size n, do the following in each run i =

1,2, . . . ,n:

1. Generate Zi ∼Φν .

2. Compute the twisting parameter θi = θx(Zi) using (I.17), for ψ ′F(0,Zi) in (I.16).

3. Given Zi, for each obligor k = 1,2, . . . ,m, if θi = 0, generate Tk,i from Hk(· | Zi) in (I.8); else
(when θi > 0), generate Tk,i from H̃k,θi(· | Zi) in (I.12).

4. Compute Yi = ∑
m
k=1 Tk,i, which has CCDF F̃θi(· | Zi).

5. Compute L′
θi
(Yi,Zi) and L∗ν(Zi) using (I.14) and (I.22).

After completing all n runs, we obtain an unbiased estimator of λx as

λ̂
∗
n ≡

1
n

n

∑
i=1

I(Yi > x)L′θi
(Yi,Zi)L∗ν(Zi).

I.3 Two-step IS to Estimate Quantile

Now we adapt the two-step IS method for estimating the unconditional tail probability

λx = P(Y > x) to instead estimate the p-quantile ξ , which equals the threshold x satisfying

P(Y > x) = 1− p. The two-step IS approach of Appendix I.2 to estimate λx for some fixed

x critically depends on knowing the threshold x. As the p-quantile ξ is unknown, we cannot

directly apply this IS method with x = ξ to estimate ξ . Instead, we run pilot simulations

(with small sample size n0) with the two-step IS method at a small number j0 of thresholds

153

x j, j = 1,2, . . . , j0, estimating the tail probability λx j for each j, and then interpolate to

obtain a crude approximation ξ̊ to the quantile. Then we run additional simulations using

the two-step IS approach of Appendix I.2 for estimating λx with x= ξ̊ , and use the resulting

data to estimate ξ .

In our experiment, we implemented the approximation method for the p-quantile via

three steps:

1. Let x j = (1−α
j
p)y∗ for j = 1, . . . , j0, where 0 < αp < 1 is a constant that may depend on p

and other model parameters, and y∗ is the maximum possible loss, which is assumed known.
Our simulation experiments use αp = 0.95 and j0 = 5. Also, y∗ = ∑

m
k=1 βk as our experiments

have the LGD Ck ∼ Unif(0,βk).

2. For each j = 1, . . . , j0, use x j as the threshold in the two-step IS algorithm of Appendix I.2
with sample size n0 to obtain an estimate λ̂x j of the tail probability λx j = P(Y > x j). We let
n0 = 100 in our simulation experiments.

3. Find the j∗ ∈ {1,2, . . . , j0−1} such that λ̂x j∗ ≤ 1− p < λ̂x j∗+1, and use log-interpolation on

(x j∗ , λ̂x j∗) and (x j∗+1, λ̂x j∗+1) to obtain ξ̊ as our p-quantile approximation. If 1− p is not

between any pair of the λ̂x j , we may need to alter αp to end up with λ̂x j∗ ≤ 1− p < λ̂x j∗+1 for
some j∗.

After obtaining the quantile approximation ξ̊ , to implement the two-step IS to

estimate ξ , apply steps 0–5 of the algorithm in Appendix I.2 with threshold x = ξ̊ and

sample size n, resulting in outputs (Yi,Zi,θi), i = 1,2, . . . ,n. Then we can compute the

IS p-quantile estimator via the algorithm described after (4.14) as follows. Let Y1:n ≤

Y2:n ≤ ·· · ≤Yn:n be the sorted values of Y1,Y2, . . . ,Yn. Also, let Li::n = L′
θ j
(Yj,Z j)L∗ν(Z j) for

(Yj,Z j,θ j) corresponding to Yi:n. Finally, our IS p-quantile estimator is ξ̂IS,n =Yip:n, where

ip is the greatest integer for which ∑
n
`=ip

Li::n ≥ n(1− p).

154

REFERENCES

[1] A. Agrawal, G. Fohler, J. Freitag, J. Nowotsch, S. Uhrig, and M. Paulitsch. Contention-aware
dynamic memory bandwidth isolation with predictability in COTS multicores: An avionics
case study. In Euromicro Conference on Real-Time Systems (ECRTS). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2017.

[2] A. Alban, H. Darji, A. Imamura, and M. K. Nakayama. Efficient Monte Carlo methods for
estimating failure probabilities. Reliability Engineering and System Safety, 165:376–394,
2017.

[3] A. Alhammad and R. Pellizzoni. Trading cores for memory bandwidth in real-time systems. In
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 1–11.
Piscataway, NJ: IEEE, 2016.

[4] G. M. Amdahl. Validity of the single processor approach to achieving large scale computing
capabilities. In Spring Joint Computer Conference, pages 483–485, 1967.

[5] L. Andersen and J. Sidenius. Extensions to the Gaussian copula: Random recovery and random
factor loadings. Journal of Credit Risk, 1(1):29–70, 2005.

[6] B. Andersson and D. de Niz. Analyzing Global-EDF for multiprocessor scheduling of parallel tasks.
In International Conference On Principles Of Distributed Systems, pages 16–30. New York,
NY: Springer, 2012.

[7] ARM. Memory system resource partitioning and monitoring (MPAM), 2018. Retrieved on June,
2022: https://developer.arm.com/documentation/ddi0598/latest/.

[8] S. Asmussen. Conditional Monte Carlo for sums, with applications to insurance and finance. Annals
of Actuarial Science, 12(2):455–478, 2018.

[9] S. Asmussen and P. Glynn. Stochastic Simulation: Algorithms and Analysis. Springer, New York
City, NY, 2007.

[10] A. N. Avramidis and J. R. Wilson. Correlation-induction techniques for estimating quantiles in
simulation. Operations Research, 46:574–591, 1998.

[11] M. A. Awan, K. Bletsas, P. F. Souto, B. Akesson, and E.Tovar. Mixed-criticality scheduling with
dynamic redistribution of shared cache. In Euromicro Conference on Real-Time Systems
(ECRTS). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[12] R. R. Bahadur. A note on quantiles in large samples. Annals of Mathematical Statistics, 37(3):577–
580, 1966.

[13] S. Baruah. Federated scheduling of sporadic DAG task systems. In International Parallel and
Distributed Processing Symposium (IPDPS), pages 179–186. Piscataway, NJ: IEEE, 2015.

[14] S. Baruah. The federated scheduling of systems of mixed-criticality sporadic dag tasks. In IEEE
Real-Time Systems Symposium (RTSS), pages 227–236, 2016.

155

[15] A. Bassamboo, S. Juneja, and A. Zeevi. Portfolio credit risk with extremal dependence: Asymptotic
analysis and efficient simulation. Operations Research, 56(3):593–606, 2008.

[16] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton University, 2011.
Retrieved on June, 2022: http://parsec.cs.princeton.edu.

[17] P. Billingsley. Probability and Measure. New York, NY: John Wiley and Sons, 3rd edition, 1995.

[18] D. A. Bloch and J. L. Gastwirth. On a simple estimate of the reciprocal of the density function.
Annals of Mathematical Statistics, 39:1083–1085, 1968.

[19] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and Andreas Wiese. Feasibility analysis in the
sporadic DAG task model. In Euromicro Conference on Real-Time Systems (ECRTS), pages
225–233, 2013.

[20] G. Chen, B. Hu, K. Huang, A. Knoll, D. Liu, and T. Stefanov. Automatic cache partitioning
and time-triggered scheduling for real-time MPSoCs. In International Conference on
ReConFigurable Computing and FPGAs (ReConFig), pages 1–8. Piscataway, NJ: IEEE,
2014.

[21] F. Chu and M. K. Nakayama. Confidence intervals for quantiles when applying variance-reduction
techniques. ACM Transactions on Modeling and Computer Simulation, 22(2):10:1–10:25,
2012.

[22] H. S. Chwa, J. Lee, K. Phan, A. Easwaran, and I. Shin. Global EDF schedulability analysis for
synchronous parallel tasks on multicore platforms. In Euromicro Conference on Real-Time
Systems (ECRTS), pages 25–34, 2013.

[23] R. Cranley and T. N. L. Patterson. Randomization of number theoretic methods for multiple
integration. SIAM Journal on Numerical Analysis, 13(6):904–914, 1976.

[24] Deutsche Bank. Annual report 2018. Frankfurt am Main, Germany, 2018.

[25] J. Dick and F. Pillichshammer. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte
Carlo Integration. Cambridge University Press, Cambridge, U.K., 2010.

[26] H. Dong and M. K. Nakayama. Quantile estimation using conditional Monte Carlo and Latin
hypercube sampling. In W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee,
G. Wainer, and E. Page, editors, Winter Simulation Conference, pages 1986–1997,
Piscataway, New Jersey, 2017. Institute of Electrical and Electronics Engineers.

[27] J. Dong, M. B. Feng, and B. L. Nelson. Unbiased metamodeling via likelihood ratios. In M. Rabe,
A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, editors, Winter Simulation
Conference, pages 1778–1789, Piscataway, New Jersey, 2018. Institute of Electrical and
Electronics Engineers.

[28] D. A. Dube, R. R. Sherry, J. R. Gabor, and S. M. Hess. Application of risk informed safety margin
characterization to extended power uprate analysis. Reliability Engineering and System
Safety, 129:19–28, 2014.

[29] R. Durrett. Probability: Theory and Examples. Duxbury Press, Belmont, California, 2nd edition,
1996.

156

[30] S. Farinelli and M. Shkolnikov. Two models of stochastic loss given default. Journal of Credit Risk,
8(2):3–20, 2012.

[31] M. Feng and J. Staum. Green simulation: reusing the output of repeated experiments. ACM
Transactions on Modeling and Computer Simulation, 27(4):23:1–23:28, 2017.

[32] T. Ferguson. Asymptotic joint distribution of sample mean and a sample quantile. Retrieved on
June, 2022: https://www.math.ucla.edu/~tom/papers/unpublished/meanmed.

pdf, 1999.

[33] M. C. Fu, L. J. Hong, and J.-Q. Hu. Conditional Monte Carlo estimation of quantile sensitivities.
Management Science, 55:2019–2027, 2009.

[34] M. C. Fu and J. Q. Hu. Conditional Monte Carlo: Gradient Estimation and Optimization
Applications. New York, NY: Kluwer Academic, 1997.

[35] L. Funaro, O. A. Ben-Yehuda, and A. Schuster. Ginseng: Market-driven LLC allocation. In USENIX
Annual Technical Conference (ATC), pages 295–308, 2016.

[36] G. Gamrath, D. Anderson, K. Bestuzheva, W. Chen, L. Eifler, M. Gasse, P. Gemander, A. Gleixner,
L. Gottwald, K. Halbig, et al. The SCIP Optimization Suite 7.0. In Technical Report. 2020.

[37] J. K. Ghosh. A new proof of the Bahadur representation of quantiles and an application. Annals of
Mathematical Statistics, 42:1957–1961, 1971.

[38] P. Glasserman. Monte Carlo Methods in Financial Engineering. New York, NY: Springer, 2004.

[39] P. Glasserman and S. Juneja. Uniformly efficient importance sampling for the tail distribution of
sums of random variables. Mathematics of Operations Research, 33(1):36–50, 2008.

[40] P. Glasserman and J. Li. Importance sampling for portfolio credit risk. Management Science,
51(11):1643–1656, 2005.

[41] P. W. Glynn. Importance sampling for Monte Carlo estimation of quantiles. In S. M. Ermakov and
V. B. Melas, editors, Mathematical Methods in Stochastic Simulation and Experimental
Design: Proceedings of the 2nd St. Petersburg Workshop on Simulation, pages 180–185,
St. Petersburg, Russia, 1996. Publishing House of St. Petersburg Univ.

[42] A. Goyal, P. Shahabuddin, P. Heidelberger, V. Nicola, and P. W. Glynn. A unified framework
for simulating Markovian models of highly dependable systems. IEEE Transactions on
Computers, C-41(1):36–51, 1992.

[43] G. Gracioli, A. Alhammad, R. Mancuso, A. A. Fröhlich, and R. Pellizzoni. A survey on cache
management mechanisms for real-time embedded systems. Computing Surveys (CSUR),
48(2):1–36, 2015.

[44] N. Guan, M. Stigge, W. Yi, and G. Yu. Cache-aware scheduling and analysis for multicores. In
International conference on Embedded software (EMSOFT), pages 245–254. ACM, 2009.

[45] D. Guo, M. Hassan, R. Pellizzoni, and H. Patel. A comparative study of predictable DRAM
controllers. Transactions on Embedded Computing Systems (TECS), 17(2):1–23, 2018.

157

[46] M. Hassan, H. Patel, and R. Pellizzoni. A framework for scheduling DRAM memory accesses
for multi-core mixed-time critical systems. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 307–316. IEEE, 2015.

[47] Z. He. On the error rate of conditional quasi-Monte Carlo for discontinuous functions. SIAM
Journal on Numerical Analysis, 57(2):854–874, 2019.

[48] Z. He and X. Wang. Convergence of randomized quasi-Monte Carlo sampling for quantile and
expected shortfall. arXiv:1706.00540, 2017.

[49] S. Hess, J. Gaertner, J. Gabor, L. Shanley, L. Enos-Sylla, S. Prasad, and S. Hollingsworth.
Framework for risk-informed safety margin characterization. Technical Report 1019206,
Electric Power Research Institute, Palo Alto, California, 2009.

[50] T. Hesterberg. Weighted average importance sampling and defensive mixture distributions.
Technometrics, 37(2):185–194, 1995.

[51] Intel. Intel CilkPlus v1.2, Sep 2013. Retrieved on June, 2022: https://www.cilkplus.org/

sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_1.

2.htm.

[52] Intel. User space software for intel(r) resource director technology, 2019. Retrieved on June, 2022:
https://github.com/intel/intel-cmt-cat.

[53] J. L. Jensen. Saddlepoint Approximations. Oxford University Press, New York, 1995.

[54] X. Jiang, N. Guan, X. Long, and W. Yi. Semi-federated scheduling of parallel real-time tasks on
multiprocessors. In Real-Time Systems Symposium (RTSS), pages 80–91. IEEE, 2017.

[55] X. Jiang, X. Long, N. Guan, and H. Wan. On the decomposition-based Global EDF scheduling of
parallel real-time tasks. In Real-Time Systems Symposium (RTSS), pages 237–246. IEEE,
2016.

[56] X. Jin and A. X. Zhang. Reclaiming quasi-Monte Carlo efficiency in portfolio value-at-risk
simulation through Fourier transform. Management Science, 52(6):925–938, 2006.

[57] P. Jorion. Value at Risk. McGraw-Hill, New York, 3rd edition, 2007.

[58] P. Jorion. Value at Risk: The New Benchmark for Managing Financial Risk. McGraw-Hill, New
York, 3rd edition, 2007.

[59] P. Jorion. Financial Risk Manager Handbook. John Wiley and Sons, Inc., Hoboken, New Jersey,
6th edition, 2011.

[60] Z. T. Kaplan, Y. Li, and M. K. Nakayama. Monte Carlo estimation of economic capital. In M. Rabe,
A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, editors, Winter Simulation
Conference, pages 1754–1765, Piscataway, New Jersey, 2018. Institute of Electrical and
Electronics Engineers.

[61] Z. T. Kaplan, Y. Li, M. K. Nakayama, and B. Tuffin. Randomized quasi-Monte Carlo for quantile
estimation. In N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas,
and Y.-J. Son, editors, Winter Simulation Conference, pages 428–439, Piscataway, New
Jersey, 2019. Institute of Electrical and Electronics Engineers.

158

[62] J. Kiefer. On Bahadur’s representation of sample quantiles. Annals of Mathemetical Statistics,
38:1350–1353, 1967.

[63] H. Kim, D. D. Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar. Bounding memory
interference delay in COTS-based multi-core systems. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 145–154. IEEE, 2014.

[64] H. Kim and R. Rajkumar. Real-time cache management for multi-core virtualization. In
International Conference on Embedded Software (EMSOFT), pages 1–10. IEEE, 2016.

[65] J. Kim, H. Kim, K. Lakshmanan, and R. R. Rajkumar. Parallel scheduling for cyber-physical
systems: Analysis and case study on a self-driving car. In 4th International Conference
on Cyber-Physical Systems (ICCPS), pages 31–40, 2013.

[66] P. Klaassen and I. van Eeghen. Economic Capital: How It Works, and What Every Manager Needs
to Know. Elsevier, Burlington, MA, 2009.

[67] F. Y. Kuo and D. Nuyens. Application of quasi-monte carlo methods to elliptic PDEs with
random diffusion coefficients – a survey of analysis and implementation. Foundations of
Computational Mathematics, 16(6):1631–1696, 2016.

[68] Y. Lai and K.S. Tan. Simulation of nonlinear portfolio value-at-risk by Monte Carlo and quasi-
Monte Carlo methods. In M. Holder, editor, Financial Engineering and Applications, pages
65–66, Calgary, 2006. ACTA Academic Press.

[69] K. Lakshmanan, S. Kato, and R. Rajkumar. Scheduling parallel real-time tasks on multi-core
processors. In 31st IEEE Real-Time Systems Symposium (RTSS), pages 259–268, 2010.

[70] P. L’Ecuyer. Quasi-Monte Carlo methods with applications in finance. Finance and Stochastics,
13(3):307–349, 2009.

[71] P. L’Ecuyer. Randomized quasi-Monte Carlo: An introduction for practitioners. In P. W. Glynn and
A. B. Owen, editors, Monte Carlo and Quasi-Monte Carlo Methods: MCQMC 2016, pages
29–52, Berlin, 2018. Springer-Verlag.

[72] P. L’Ecuyer, J. H. Blanchet, B. Tuffin, and P. W. Glynn. Asymptotic robustness of estimators in rare-
event simulation. ACM Transactions on Modeling and Computer Simulation, 20(1):Article
6, 2010.

[73] P. L’Ecuyer and C. Lemieux. Variance reduction via lattice rules. Management Science, 46(9):1214–
1235, 2000.

[74] P. L’Ecuyer and C. Lemieux. Recent advances in randomized quasi-Monte Carlo methods. In
M. Dror, P. L’Ecuyer, and F. Szidarovszki, editors, Modeling Uncertainty: An Examination
of Stochastic Theory, Methods, and Applications, pages 419–474. Kluwer Academic
Publishers, Norwell, 2002.

[75] P. L’Ecuyer and D. Munger. Algorithm 958: Lattice builder: A general software tool
for constructing rank-1 lattice rules. ACM Transactions on Mathematical Software,
42(2):Article 15, 2016.

[76] P. L’Ecuyer, D. Munger, and B. Tuffin. On the distribution of integration error by randomly-shifted
lattice rules. Electronic Journal of Statistics, 4:950–993, 2010.

159

[77] P. L’Ecuyer and G. Perron. On the convergence rates of IPA and FDC derivative estimators for
finite-horizon stochastic simulations. Operations Research, 42(4):643–656, 1994.

[78] P. L’Ecuyer, F. Puchhammer, and A. Ben Abdellah. Monte Carlo and quasi-Monte Carlo density
estimation via conditioning. 2020.

[79] C. Lemieux. Monte Carlo and Quasi-Monte Carlo Sampling. Series in Statistics. Springer, New
York, 2009.

[80] C. Lemieux and P. L’Ecuyer. Selection criteria for lattice rules and other low-discrepancy point sets.
Mathematics and Computers in Simulation, 55(1–3):139–148, 2001.

[81] J. Li, K. Agrawal, C. Lu, and C. Gill. Analysis of global edf for parallel tasks. In 25th Euromicro
Conference on Real-Time Systems (ECRTS), pages 3–13, 2013.

[82] J. Li, Jian-Jia Chen, K. Agrawal, C.Lu, C.D. Gill, and Abusayeed Saifullah. Analysis of federated
and global scheduling for parallel real-time tasks. In 26th Euromicro Conference on Real-
Time Systems (ECRTS), pages 85–96, 2014.

[83] J. Li, S. Dinh, K. Kieselbach, K. Agrawal, K. Gill, and C. Lu. Randomized work stealing for
large scale soft real-time systems. In IEEE Real-Time Systems Symposium (RTSS), pages
203–214, 2016.

[84] Y. Li, B. Akesson, and K. Goossens. Architecture and analysis of a dynamically-scheduled real-time
memory controller. Real-Time Systems, 52(5):675–729, 2016.

[85] P.-E. Lin, K.-T. Wu, and I. A. Ahmad. Asymptotic joint distribution of sample quantiles and sample
mean with applications. Communications in Statistics - Theory and Methods, A9(1):51–60,
1980.

[86] T. Liu and E. Zhou. Simulation optimization by reusing past replications: don’t be afraid of
dependence. In K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder,
and R. Thiesing, editors, Winter Simulation Conference, pages 2923–2934, Piscataway,
New Jersey, 2020. Institute of Electrical and Electronics Engineers.

[87] W.-L. Loh. On the asymptotic distribution of scrambled net quadrature. Annals of Statistics,
31(4):1282–1324, 2003.

[88] E. Lütkebohmert. Concentration Risk in Credit Portfolios. Springer, Berlin, 2009.

[89] J. D. McCalpin. Memory bandwidth and machine balance in current high performance computers.
Computer society technical committee on computer architecture (TCCA) newsletter, 2(19-
25), 1995.

[90] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods for selecting input
variables in the analysis of output from a computer code. Technometrics, 21:239–245, 1979.

[91] A. J. McNeil, R. Frey, and P. Embrechts. Quantitative Risk Management: Concepts, Techniques,
Tools. Princeton University Press, Princeton, New Jersey, revised edition, 2015.

[92] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and G. Buttazzo. Schedulability
analysis of conditional parallel task graphs in multicore systems. IEEE Transactions on
Computers, 66(2):339–353, 2016.

160

[93] C. H. Nagaraja and H. N. Nagaraja. Distribution-free approximate methods for constructing
confidence intervals for quantiles. International Statistical Review, 88(1):75–100, 2020.

[94] M. K. Nakayama. Confidence intervals using sectioning for quantiles when applying variance-
reduction techniques. ACM Transactions on Modeling and Computer Simulation,
24(4):19:1–19:21, 2014.

[95] M. K. Nakayama. Quantile estimation when applying conditional Monte Carlo. In
Mohammad S. Obaidat, Janusz Kacprzyk, and Tuncer Ören, editors, Simulation and
Modeling Methodologies, Technologies and Applications (SIMULTECH), pages 280–285,
Piscataway, New Jersey, 2014. Institute of Electrical and Elect.

[96] M. K. Nakayama. Estimating a failure probability using a combination of variance-reduction
techniques. In L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D.
Rossetti, editors, Winter Simulation Conference, pages 621–632, Piscataway, New Jersey,
2015. Institute of Electrical and Electronics Engineers.

[97] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic. Techniques optimizing the number of
processors to schedule multi-threaded tasks. In 24th Euromicro Conference on Real-Time
Systems (ECRTS), pages 321–330, 2012.

[98] V. A. Nguyen, D. Hardy, and I. Puaut. Cache-conscious off-line real-time scheduling for multi-core
platforms: algorithms and implementation. Real-Time Systems, 55(4):810–849, 2019.

[99] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods, volume 63. SIAM,
Philadelphia, 1992.

[100] G. Ökten, B. Tuffin, and V. Burago. A central limit theorem and improved error bounds for a hybrid-
Monte Carlo sequence with applications in computational finance. Journal of Complexity,
22(4):435–458, 2006.

[101] OpenMP. OpenMP Application Program Interface v4.0, July 2013. Retrieved on June, 2022:
http://http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf.

[102] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several Variables.
SIAM, Philadelphia, 2000.

[103] A. Owen and Y. Zhou. Safe and effective importance sampling. Journal of the American Statistical
Association, 95(449):135–143, 2000.

[104] A. B. Owen. Randomly permuted (t,m,s)-nets and (t,s)-sequences. In Harald Niederreiter and
Peter Jay-Shyong Shiue, editors, Monte Carlo and Quasi-Monte Carlo Methods in Scientific
Computing: Lecture Notes in Statistics, volume 106, pages 299–317. Springer, New York,
1995.

[105] A. B. Owen. Monte Carlo variance of scrambled net quadrature. SIAM Journal of Numerical
Analysis, 34:1884–1910, 1997.

[106] A. B. Owen. Scrambled net variance for integrals of smooth functions. Annals of Statistics,
25(4):1541–1562, 1997.

[107] A. B. Owen. Scrambling Sobol’ and Niedeerreiter-Xing points. Journal of Complexity, 14(4):466–
489, 1998.

161

[108] A. B. Owen. Monte Carlo Theory, Methods and Examples. Draft, 2019. In preparation.

[109] A. Papageorgiou and S. H. Paskov. Deterministic simulation for risk management. Journal of
Portfolio Management, 25(5):122–127, 1999.

[110] S. Paskov and J. Traub. Faster valuation of financial derivatives. The Journal of Portfolio
Management, 22:113–120, 1995.

[111] PBBS. Problem based benchmark suite, 2014. http://www.cs.cmu.edu/~pbbs.

[112] R. Pellizzoni and H. Yun. Memory servers for multicore systems. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 1–12. IEEE, 2016.

[113] A. Saifullah, J. Li, K. Agrawal, C. Lu, and C. Gill. Multi-core real-time scheduling for generalized
parallel task models. Real-Time Systems, 49(4):404–435, 2013.

[114] A. Sarkar, F. Mueller, and H. Ramaprasad. Static task partitioning for locked caches in multicore
real-time systems. Transactions on Embedded Computing Systems (TECS), 14(1):1–30,
2015.

[115] M. Satyanarayanan. The emergence of edge computing. Computer, 50(1):30–39, 2017.

[116] S. Scandizzo. The Validation of Risk Models: A Handbook for Practitioners. Palgrave Macmillan,
New York, 2016.

[117] R. J. Serfling. Approximation Theorems of Mathematical Statistics. John Wiley and Sons, New
York, 1980.

[118] R. R. Sherry, J. R. Gabor, and S. M. Hess. Pilot application of risk informed safety margin
characterization to a total loss of feedwater event. Reliability Engineering and System
Safety, 117:65–72, 2013.

[119] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and challenges. Internet of
Things Journal, 3(5):637–646, 2016.

[120] I. H. Sloan and S. Joe. Lattice Methods for Multiple Integration. Carendon Press, Oxford, UK,
1994.

[121] P. Sohal, R. Tabish, U. Drepper, and R. Mancuso. E-WarP: A system-wide framework for memory
bandwidth profiling and management. In Real-Time Systems Symposium (RTSS), pages
345–357. IEEE, 2020.

[122] L. Sun and L. J. Hong. Asymptotic representations for importance-sampling estimators of value-at-
risk and conditional value-at-risk. Operations Research Letters, 38(4):246–251, 2010.

[123] C. Tessler, V. Modekurthy P, N. Fisher, and A. Saifullah. Bringing inter-thread cache benefits
to federated scheduling. In Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 281–295. IEEE, 2020.

[124] B. Tuffin. On the use of low discrepancy sequences in Monte Carlo methods. Monte Carlo Methods
and Applications, 2(4):295–320, 1996.

[125] B. Tuffin. Variance reduction order using good lattice points in Monte Carlo methods. Computing,
61(4):371–378, 1998.

162

[126] B. Tuffin. Randomization of quasi-monte carlo methods for error estimation: Survey and normal
approximation. Monte Carlo Methods and Applications, 10(3-4):617–628, 2004.

[127] N. Ueter, G. von der Bruggen, J. Chen, J. Li, and K. Agrawal. Reservation-based federated
scheduling for parallel real-time tasks. In IEEE Real-Time Systems Symposium (RTSS),
pages 482–494, 2018.

[128] U.S. Nuclear Regulatory Commission. Final safety evaluation for WCAP-16009-P, revision 0,
‘realistic large break LOCA evaluation methodology using automated statistical treatment
of uncertainty method (ASTRUM)’ (TAC no. MB9483). Technical report, U.S. Nuclear
Regulatory Commission, Washington, DC, 2005.

[129] U.S. Nuclear Regulatory Commission. Final safety evaluation for WCAP-16009-P, revision 0,
‘realistic large break LOCA evaluation methodology using automated statistical treatment
of uncertainty method (ASTRUM)’ (TAC no. MB9483). Technical report, Washington, DC,
2005.

[130] U.S. Nuclear Regulatory Commission. Acceptance criteria for emergency core cooling systems for
light-water nuclear power reactors. Title 10, Code of Federal Regulations Section 50.46
(10CFR50.46), U.S. Nuclear Regulatory Commission, Washington, DC, 2010.

[131] U.S. Nuclear Regulatory Commission. Applying statistics. U.S. Nuclear Regulatory Commission
Report NUREG-1475, Rev 1, U.S. Nuclear Regulatory Commission, Washington, DC,
2011.

[132] P. K. Valsan, H. Yun, and F. Farshchi. Taming non-blocking caches to improve isolation in multicore
real-time systems. In Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 1–12. IEEE, 2016.

[133] Q. Wang and G. Parmer. Fjos: Practical, predictable, and efficient system support for fork/join
parallelism. In Real-Time and Embedded Technology and Applications Symposium (RTAS),
IEEE 20th, pages 25–36, 2014.

[134] W. Whitt. Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their
Application to Queues. Springer-Verlag, New York, 2002.

[135] J. Xiao, S. Altmeyer, and A. Pimentel. Schedulability analysis of non-preemptive real-time
scheduling for multicore processors with shared caches. In Real-Time Systems Symposium
(RTSS), pages 199–208. IEEE, 2017.

[136] M. Xu, LTX. Phan, H. Choi, Y. Lin, H. Li, C. Lu, and I. Lee. Holistic resource allocation for
multicore real-time systems. In 2019 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 345–356. IEEE, 2019.

[137] Y. Ye, R. West, J. Zhang, and Z. Cheng. Maracas: A real-time multicore vCPU scheduling
framework. In Real-Time Systems Symposium (RTSS), pages 179–190. IEEE, 2016.

[138] H. Yun, W. Ali, S. Gondi, and S. Biswas. Bwlock: A dynamic memory access control framework
for soft real-time applications on multicore platforms. Transactions on Computers (TC),
66(7):1247–1252, 2016.

163

[139] H. Yun, R. Mancuso, Z. Wu, and R. Pellizzoni. Palloc: Dram bank-aware memory allocator for
performance isolation on multicore platforms. In Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 155–166. IEEE, 2014.

[140] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard: Memory bandwidth reservation
system for efficient performance isolation in multi-core platforms. In Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 55–64. IEEE, 2013.

[141] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. Memory bandwidth
management for efficient performance isolation in multi-core platforms. Transactions on
Computers (TC), 65(2):562–576, 2015.

[142] X. Zhang, S. Dwarkadas, and K. Shen. Towards practical page coloring-based multicore cache
management. In European conference on Computer systems, pages 89–102. ACM, 2009.

[143] Y. Zhou and D. Wentzlaff. Mitts: Memory inter-arrival time traffic shaping. SIGARCH Computer
Architecture News, 44(3):532–544, 2016.

[144] A. Zuepke and R. Kaiser. Deterministic futexes: Addressing wcet and bounded interference
concerns. In Real-Time and Embedded Technology and Applications Symposium (RTAS),
pages 65–76. IEEE, 2019.

164

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Randomized Quasi-Monte Carlo for Quantile Estimation
	Chapter 3: Quantile Estimation via a Combination of Conditional Monte Carlo and Randomized Quasi-Monte Carlo
	Chapter 4: Monte Carlo Methods for Economic Capital
	Chapter 5: Holistic Resource Allocation under Federated Scheduling for Parallel Real-Time Tasks
	Chapter 6: Conclusions
	Appendix A: Further Numerical Study of Relative Error and Its Approximation
	Appendix B: Proof of Theorem 2
	Appendix C: Proof of Theorem 3
	Appendix D: Proof of Theorem 4
	Appendix E: Proof of Theorem 5
	Appendix F: Proof of Theorem 6
	Appendix G: Proof of Theorem 7
	Appendix H: Proof of Theorem 8
	Appendix I: Two-Step IS to Estimate Extreme Quantile and EC in PCRM with Random Loss Given Default
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

