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ABSTRACT

OPTIMIZING INCENTIVES FOR SYSTEMS WITH
HETEROGENEOUS AGENTS

by
Chen Chen

This dissertation explores new models and applications based on the game theory

of incentives. This exploration starts with controlling an invasive insect problem to

address one of the most significant challenges facing our forests, the invasion of the

Emerald ash borer (EAB), a non-native, wood-boring insect that threatens to kill

most ash trees in North America, through designing two new cost-sharing programs

between the landowners and local governments. Ash trees are one of North America’s

most widely distributed tree genera and a vital part of the green infrastructure of

cities, where they provide residents with numerous social, economic, and ecological

benefits.

Current strategies to slow ash mortality due to the EAB infestation include

surveillance of ash tree health coupled with insecticide treatment and/or removal of

infested trees. Most ash trees grow on private land, and the growing spread of EAB

infestation is largely due to the lack of a private-public partnership in its control.

Local governments need programs to induce landowners to undertake actions to slow

ash mortality.

A principal-agent modeling framework is presented to design two new programs

in which a local government offers reimbursements to landowners to cover a portion

of their management costs. Two mathematical models are designed for each program:

one in which the reimbursement is based on the number of infested trees and another

in which reimbursement is based on the number of treated trees. The numerical

analysis shows that neither the optimal treatment decision nor the reimbursement in

both programs is in general monotonic concerning the initial infestation level; rather,



they depend on treatment effectiveness and the likelihood of the new infestations.

Compared to the infestation-based reimbursement program, the treatment-based

reimbursement program induces the landowner to treat more trees through a higher

reimbursement and provides a higher overall benefit. The approach shown in this

dissertation is expected to inspire other private-public partnerships to solve various

environmental and societal spatio-temporal problems through better resource sharing,

such as the management of water, land, and wildfire.

Given the required reimbursement assigned to private lands, the government

needs to address the problem of budget allocation among public and private sites.

An integrated game theory-mixed integer framework is designed to allocate resources

to the management decisions on both public and private sites over space and time

to maximize the profit of the government. The attack rate of EAB of this integrated

model is validated by predicting the real attack rate based on the real infestation

EAB data.

The dissertation then focuses on studying the implications of emissions policies

in a Carbon Capture and Storage (CCS) system. The excessive emission of CO2

is supercharging the natural greenhouse effect, which causes the rise of temperature,

further affects climate and sea levels, and even increases extreme weather and natural

disasters. In order to induce emitters to capture as much as possible CO2, the

principal-agent framework is designed between the CCS operator and emitters.

Specifically, the principal (CCS operator) offers a menu of contracts to agents

(emitters) whose demand may follow different distributions, and the government may

or may not introduce the cap-and-trade policy (free allocated allowances given to

emitters) into the market. Two scenarios are examined: 1) the cap-and-trade policy

is lunched, and 2) the cap-and-trade policy is not lunched. The principal-agent

framework is presented to design optimal contracts for emitters by the CCS operator.

The principal prefers to offer efficient quantities to the agents regardless of the demand



levels when there is only one type of agent with no carbon allowance assigned by the

government; however, emitters are induced to capture all their emissions when the

cap-and-trade policy is launched. When there are two different types of agents, mostly

the emitters are induced to capture all their emissions with the allowance assigned

by the government; however, they always do not have enough incentive to capture all

emissions when the cap-and-trade policy is not implemented on the market.
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CHAPTER 1

INTRODUCTION

This dissertation mainly focuses on two aspects of environmental sustainability. One

is the non-native invasive species controlling and management problem. Invasive

species are a major threat to the economy, the environment, health, and thus

human well-being. Infestations by non-native insects, in particular, can severely

affect valuable trees and have cascading effects on other species in the environment.

Preventing the growing spread of invasive alien species has been one of the United

Nations (U.N.) Sustainable Development Goals due to the threats to biodiversity

from invasive species [29, 102].

Another focus of my dissertation is on emissions management, specially the

Carbon Capture and Storage (CCS) system. Carbon emissions play a critical role in

global warming and climate change, which has significant and costly effects on our

communities, our health, and the climate. In particular, global warming is disrupting

national economies of many countries and affecting lives due to rising sea levels and

extreme weather events [103].

In this chapter, we provide the research motivation and objectives of each topic

as well as the organization of the rest of the dissertation.

1.1 Motivation

The larvae of EAB are the destructive stage of the pest. EAB adults are present from

late May through August. They are roughly a half-inch long and dark metallic green.

They feed on ash leaves throughout the 3-6 week lifespan. Even though their feeding

does not damage or affect the tree, their eggs are laid on the surface of the bark, in

bark cracks and crevices, or just under the outer bark of ash trees. With 2-3 weeks

in the hatch, the larvae from the eggs immediately begins chewing through the outer
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bark to the phloem. Larvae begin feeding in late July, but most feeding and growth

occur from August to October. Larvae feed in S-shaped tunnels, called galleries, in

the phloem. As the larva feeds and grows, the galleries get larger. The galleries

disrupt the transport of nutrients and water within the trees. Most larvae overwinter

as prepupae in cells found about a half-inch into the sapwood or outer bark. So, at

the beginning of infection, the infected trees are very hard to be distinguished by

observing.

The emerald ash borer (EAB) is a wood-boring insect in Asia. Those invasive

species were found first in southeastern Michigan in 2002. Since those wood-boring

insect spread rapidly after their introduction and has been found in most states

(35 states) of the eastern U.S., south to Louisiana and Georgia, and west as far as

Colorado. So far, the EAB has already killed uncountable millions of ash trees in

the USA as well as Canada, and biological control has become a major focus of the

Emerald Ash Borer Program of USDA and its cooperators.

Private landowners have a great number of ash trees in cities. For example,

75% of the ash trees belong to private property owners in the city of Aberdeen (City

of Aberdeen Parks, Recreation and Forestry Department, 2018). For dealing with

infected ash trees by EAB, different private owners have a different attitude. Some

private owners intend to treat their own trees and there exist some landowners who are

unwilling to treat infected trees, which may impact ash trees in neighboring areas.

One main challenge in addressing the EAB problem is that current management

options lack collaboration between the city and private landowners (City of Aberdeen

Parks, Recreation and Forestry Department, 2018).

Most previous studies on forest invasive species have considered the case of a

central planner, typically the government, which is relevant for public lands in the

western U.S (e.g. Horie et al. [69], Epanchin-Niell et al. [54], Hauser and McCarthy
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[62]) while ignoring the fact that more than half of U.S. forests are owned or managed

by private parties [8].

Siriwardena et al. [117] is the only exception. They consider the effects of

the private landowners and examine the scope for bargaining between adjacent

governments to control and slow the spread of an invasive species across the

boundaries of jurisdictions with mixed public and private landowners. However, their

focus was on studying cooperative bargaining across a mix of public and private land

within municipalities to control EAB spread. Furthermore, former studies provided

models and information to evaluate the costs and benefits of ash search, treatment

and removal [85, 95], yet there is no principal-agent game-based model of contract

design in the literature that addresses the government-private landowner dynamics

and helps evaluate the costs and benefits of private landowners’ potential contribution

to the EAB intervention planning.

Global warming is another issue that needs our attention, which has significant

and costly effects on our communities, our health, and the climate. For example,

global warming causes the rise of sea level and the melting of ice which will give rise

to sea level as well as the increasing of coastal flooding. Wildfires are increasing and

wildfire season is getting longer in the Western U.S., and more destructive hurricanes

occur as temperatures rise. What is more, the rise of the global average temperature

leads to extreme climates. Further, a changing climate affects the range of plants

and animals, changing their behavior and causing disruptions up and down the food

chain. The range of some warm-weather species will expand, while those that depend

on cooler environments will face shrinking habitats and potential extinction. Global

warming does have a bad effect on the whole world.

According to NASA, the global average surface temperature rose 0.6 to 0.9

degrees Celsius from 1906 to 2005. Moreover, as Figure 1.1 shows, despite ups and
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downs from year to year, the global average surface temperature is rising. And the

temperature is certain to go up further.

Unless we take immediate action to reduce global warming emissions, these

impacts will proceed to intensify, grow ever more catastrophic and damaging, and

progressively affect the entire planet like rising seas, increased coastal flooding, more

extreme weather events and so on.

Figure 1.1 The changing of the global mean surface temperature.

Carbon dioxide plays a critical role in global warming. The 2017 annual report

of the United States Environmental Protection Agency (EPA) stated that carbon

dioxide contributed 81% of greenhouse gas emission. Figure 1.2 displays the increase

of CO2 and Since the Industrial Revolution began in about 1750, carbon dioxide

levels have increased by nearly 38 percent as of 2009 [60]. Further, the average of

global atmospheric carbon dioxide was 405.0 ± 0.1 ppm, a new record high, and

there was a 2.2 ± 0.1 ppm increase between 2016 and 2017, according to the State

of the Climate in 2017 [19]. However, Compared to the pre-industrial era, the global

average temperature growth must be limited to 2℃. Or it will cause many disasters

around the world. The world will be a lot drier, impacting economies, agriculture,

infrastructure, and weather patterns. To achieve this, we need to produce a scale of

effort to carbon dioxide reduction.
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Figure 1.2 The changing of the global annual mean of carbon dioxide.

Table 1.1 Technology Area Contribution to Global Cumulative CO2 Reductions

Technology Percentage
Efficiency 34%
CCS 32%
Fuel switching 18%
Renewables 15%
Nuclear 1%
Total 100%

Table 1.1 displays the main technologies contributing in percentage to carbon

dioxide mitigation [2]. Among those technologies, carbon capture and storage

technology is ranked as the second most effective technology in reducing carbon

dioxide emissions.

Carbon capture and storage, or CCS, is a family of technologies and techniques

that enable the capture of carbon dioxide (CO2) from fuel combustion or industrial

processes, the transport of CO2 via ships or pipelines, and its storage underground, in

depleted oil and gas fields and deep saline formations preventing the carbon dioxide

from entering the atmosphere. Currently, there are 21 large-scale CCS projects in

operation that capture over 37 million tones of CO2 per annum (Mtpa) globally.

Some recent projects include:

• Petra Nova Carbon Capture, operational since January 2017, is the world’s
largest post-combustion CO2 capture system presently in operation. Production
unit 8 of the W. A. Parish power plant near Houston, Texas, was retrofitted
with a 1.4 Mtpa post-combustion CO2 capture facility. The captured CO2 is
transported via pipeline to an oil field near Houston for enhanced oil recovery.
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• Illinois Industrial CCS. This project integrate newly built compression and
dehydration facilities with an existing corn-to-ethanol plant in Decatur, Illinois.
The captured CO2 is transported to a nearby injection well for dedicated
geological storage, and injection operations commenced in April 2017. The new
facilities, when combined with existing facilities constructed under the (now
completed) Illinois Basin Decatur Project, can achieve a total CO2 injection
capacity of approximately 1 Mtpa.

• Ji Lin Oil field CO2 EOR. It injects CO2 for enhanced oil recovery (EOR) in
low permeability reservoirs of the Jilin oil field in northeast China. The CO2 is
captured from a nearby natural gas processing plant at the Chang Ling gas field
and transported by pipeline. The cumulative CO2 injection was 1.12 million
tonnes for pilot and demonstration-scale operation. After 12 years of pilot and
demonstration tests, the commercial operation began in 2018. The injection
capacity reaches 600,000 tonnes of CO2 per annum.

To meet the Paris 2℃ target, we need 2500 CCS facilities with an average

capacity of 1.5 Mtpa by 2040. Clearly, the adoption of CCS technology needs to

increase drastically. The wide adoption of CCS technology, however, faces many

challenges: (1) technological development is required to reduce the costs of CCS

technologies; (2) a marked increase in government commitment to deploying CCS;

(3) the strategic need for CO2 transport and storage infrastructure; and (4) policies

that support CCS deployment and CCS pricing mechanism in terms of practical

economics.

We mainly focus on designing a principal-agent (PA) framework between CO2

emitters and a CCS operator who is willing to transport and store captured CO2 as a

service. When emissions are free, as they currently are in the U.S. and other countries,

emitters are unwilling to adopt the CCS technology as it is costly. Therefore, we must

assume that there is either a quantity-based penalty (or tax) for emissions or there is

a cap on the overall allowed emissions.

We initially take the perspective of the CCS operator and design mechanisms to

induce emitters to participate in a CCS system run by the CCS operator. We adopt

the principal-agent framework in designing the mechanisms, where the principal is the

CCS operator and the agent is an emitter. However, the information structure differs
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from the classical principal-agent model in the following: (1) the agent’s demand is

uncertain and thus they are modeled as a demand distribution with discrete demand

levels; (2) the agent privately observe his demand distribution (or ”type”) when

contracting, but the actual demand is realized after committing to a contract; (3) the

principal does not observe the agent’s demand distribution, but s/he forms a prior

belief of the likelihood over some demand distributions.

1.2 Summary of Research Objectives

In Chapter 2, we develop a principal-agent contracting model to incentivize the

participation of private landowners with heterogeneous types, based on the number

of ash trees, infection level, and treatment. We consider the infestation-based and

treatment-based reimbursement models to identify optimal treatment decisions under

various conditions.

In Chapter 3, we integrate the principal-agent contracting model with the

resource allocation model for EAB surveillance and control in order to determine

the optimal budget allocation among public trees and private trees. To avoid the

non-linearity and solve our problem, we consider different linearization methods to

address the non-linearity.

In Chapter 4, we design a principal-agent mechanism framework with hetero-

geneous demands of the agents (emitters) who are incentivized to participate in all

periods once they have selected their contracts. We construct a cap-and-trade model

to optimally allocate a set of emissions permits among the CCS operator and the

emitters, and compare the cap-and-trade model with the quantity-based emission

penalty model in terms of the total quantity sequestered, the aggregated utility of

the agents and the profitability of the principal.

7



1.3 Organization of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 builds a

principal-agent framework to study the collaboration between the government and

private landowners to control the impact of an invasive insect (Emerald Ash borer).

Chapter 3 builds a data-driven integrated game theory-optimization framework to

allocate resources to different management decisions in both public and private lands.

Chapter 4 presents an incentive mechanism to induce the emitters to capture more

CO2 with or without a cap-and-trade policy, and the conclusion and future directions

are discussed in Chapter 5.
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CHAPTER 2

A GAME-THEORETIC APPROACH TO INCENTIVE

LANDOWNERS TO MITIGATE AN EMERALD ASH BORER

OUTBREAK

2.1 Introduction

Invasive species are alien plants, animals, or pests, which cause significant economic

and environmental damage by harming biodiversity and degrading the environment

[87, 125]. The cost of invasive species to the United States’ economy is estimated

to be more than 120 billion dollars each year, and the associated costs continue

to increase [110]. The national and international communities, such as the United

Nations’ Global Invasive Species Program (GISP) and National Invasive Species

Council (NISC) have called for rapid management and control of invaders to minimize

their harmful impacts on sustainability and human well-being [29].

One prime example of an invasive species is the emerald ash borer (EAB), a

non-native forest insect, which causes close to 100% mortality of native ash trees.

They are not only one of North America’s most widely distributed tree genera,

but also invaluable commodities with an expected life span of 120 to 260 periods

[68]. Municipalities endeavor to maximize the number of live ash trees because

trees continue to provide numerous social, economic, and ecological benefits, such as

providing a habitat for many animal and insect species, producing oxygen, improving

soil quality, and reducing pollution [124]. Unfortunately, EAB has spread to 35

states in the U.S. and five Canadian provinces [52] and killed millions of ash trees,

costing homeowners and cities millions of dollars. EAB is likely to extirpate ash

trees, resulting in devastating economic and ecological impacts [84, 63]. In cities and

communities, EAB is projected to cost homeowners and local governments billions of
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dollars for treatment or removal and replacement of landscape ash trees over the next

decade [84]. In response, cities and communities develop EAB management plans,

including the application of systemic insecticides to kill EAB adults or larvae and the

preemptive removal of infested trees before larvae can complete development

[63]. Some of the limited intervention budget should be allocated to discovering the

location of infestations in the early stages by surveying ash trees for the existence of

EAB larva before any application of treatment or removal [63].

Typically, through Parks and Recreation’s Forestry Division, the City Forester

is responsible for management and intervention planning for EAB invasion in

community forests involving public trees [43]. As stated by [118], tree surveys suggest

that each city has approximately 250,000 green and white ash (formally known

as Fraxinus Pennsylvanica and Fraxinus Americana), 30% of which are on public

property [85, 120]. A significant number of ash trees in cities is privately owned.

For example, 75% of the ash trees belong to private property owners in the city of

Aberdeen. When addressing private trees, removing trees as they die is currently the

only option the city has. Property owners are responsible for treating privately owned

trees. However, every landowner makes their decisions based on their own goals and

desires and does not consider the impact of their management action or no-action on

the neighbor’s location.

One main challenge to address the EAB problem is that current management

options lack collaboration between the city and private landowners [43]. The problem

is exacerbated by the fragmented private forest landowner-ships, which can act as

drivers of biological invasions at the landscape level [8].

Most previous studies on forest invasive species have considered the case of a

local government, who manages public lands [69], while ignoring the fact that the

majority of U.S. trees is owned by private parties [8]. The study of [118] is the only

exception; however, it focuses on studying cooperative bargaining across a mix of

10



public and private land within municipalities to control EAB spread. Furthermore,

former studies provided models and information to evaluate the costs and benefits of

ash search, treatment, and removal [85, 95, 79], yet there is no work in the mechanism

design literature that addresses the public-private dynamics and helps evaluate the

costs and benefits of the landowners’ potential contribution to the EAB intervention.

We use a principal-agent framework where a local government (i.e., a principal)

incentivizes a landowner (i.e., an agent) to mitigate the negative impact of the

EAB on ash trees through a cost-sharing program. The local government offers a

reimbursement to cover a portion of the landowner’s costs of inspection, treatment,

and removal. We analyze two models, where the reimbursement is based on the

infestation level (or the number of infested trees) in one and on the treatment decision

(or the number of treated trees) in the other.

Each model considers a two-period planning horizon to capture the evolution of

infestation status of the private land based on the landowner’s decisions of whether

or not to participate in the cost-sharing program, how many ash trees to treat based

on the initial infestation level, and the costs associated with the anticipated outcome.

If the landowner does not participate in the program, he is assumed not to inspect

or treat any ash trees. Because infested trees that are not treated will die with

certainty, and dead trees are considered hazardous, the landowner will bear the cost

of removal. If participating, the landowner will first identify the infested ash trees

through surveillance. Next, the landowner will decide whether to mitigate or not

in the first period, with the understanding that his treatment decision affects the

infestation level in both periods. Specifically, the infested trees that are successfully

treated in the first period would not be infested in the second period since healthy

ash trees that are treated would develop EAB resistance which lasts two periods [96].

Unsuccessfully-treated ash trees, on the other hand, would die and incur removal

costs. Further, if all of the infested ash trees are treated in the first period, the
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remaining healthy ash trees would be infested at a lower rate in the second period.

If, however, none or only some of the infested trees were treated in period one, the

remaining healthy trees would be infested at a higher rate in period two [79, 31].

The local government’s utility is the valuation of the expected number of

surviving trees at the end of the second period minus the reimbursement required to

incentivize the landowner’s participation. Because the utility function of an agent who

participates in the cost-sharing program is not monotonic in the number of infested

trees, both the optimal treatment decision and the reimbursement vary with the input

parameters, such as the treatment effectiveness and the second-period attack rates.

In the infestation-based reimbursement, the local government offers a payment

based on the landowner’s reported infestation level. After receiving the payment,

the landowner decides on how many trees to treat. This is a moral hazard problem

and thus the local government must design the award based on the infestation level

such that if the landowner treats the desirable number of trees post-reimbursement,

his utility will be maximized. We find three possible treatment decisions that can be

optimal: treating all (infested and healthy) trees, treating only the infested trees, and

treating none of them. We provide the analytical solution for optimal reimbursement

and characterize the conditions under which each of the treatment decisions can be

optimal. Additionally, we show through numerical analysis that neither the optimal

treatment decision nor the reimbursement is in general monotonic with respect to the

infestation level.

The local government announces a reimbursement schedule, which is non-

decreasing in the number of treated trees in the treatment-based reimbursement

model. Upon finding out the infestation level, the landowner decides on how many

trees to treat based on the reimbursement schedule. After presenting a service

receipt to the local government, the landowner receives the reimbursement. Since the

infestation level is not reported by the landowner, the local government deals with
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an adverse selection problem in which the reimbursement schedule must be designed

to induce the landowner to make the desirable treatment decision prior to receiving

the reimbursement. We find eight optimal reimbursement schedules and identify the

conditions under which each can be optimal.

We use scenario analysis to compare the efficacy of the two cost-sharing models

and conclude that the treatment-based reimbursement program is superior. Despite

the higher reimbursement required, the treatment-based reimbursement program

induces the landowner to treat more trees, and as a result, the local government

can achieve a higher expected objective function value.

2.2 Literature Review

2.2.1 Management of Invasive Species and the EAB

Several optimization models have been presented to study the surveillance [97, 20,

106, 22, 13, 69, 54, 79] and control [4, 26, 65, 70, 77, 85] of invasive species. For

a detailed background in invasive species management and a review of optimization

models to detect and control biological invasions, see, e.g., Büyüktahtakın and Haight

[29].

Previous work has presented optimization studies on the surveillance and control

of the EAB and other similar forest invasive pests under a limited management budget

[85, 97, 69, 133, 79, 22, 21]. Among those, Kovacs et al. [85] develop a spatio-temporal

optimization model, in which a local government determines the quantities of public

and private trees to treat and remove over time, to maximize the benefits of surviving

trees minus the net costs of management, subject to constraints on municipal budgets

and access to private trees. Kıbış et al. [79] address the cost-effective allocation of

resources to jointly optimize the surveillance and control decisions to maximize the

benefits of healthy ash trees by saving as many trees as possible over multiple periods.

Later, Bushaj et al. [21] extend the formulations of [79] and [22] to a risk-averse
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multi-stage stochastic program and solve the complex formulation using a scenario-

dominance cuts algorithm and insights into risk-averse management.

There are multiple stakeholders in the management of forest pest species (i.e.,

government, cities, forester, landowners). Because the infestation of an invasive

forest pest is dynamic and spatial, an outbreak may impact all stakeholders involved.

Therefore, the effective management of invasive species, including non-native forest

insects, requires increasing collaboration and coordination among stakeholders. Most

studies in invasive species management have considered a local government, which

is often the government while ignoring other parties impacted by the government’s

decisions [69]. Furthermore, the government is responsible only for the public lands,

while private properties are typically managed by the landowners.

There is an increasing trend in the game-theoretical research that addresses

the dynamics between multiple stakeholders in invasive species management in

recent periods [25, 91, 17, 9, 44]. For example, Liu and Sims [91] also address

spatially-connected decision-makers (i.e., individual landowners, state and federal

agencies, etc.), and provide a corrective mechanism in which individuals compensate

invaded individuals for control actions that preserve uninvaded areas. Specifically,

the authors develop an economic model to identify the timing and sequence of side-

payments in which uninvaded and fully invaded individuals compensate individuals

currently engaged in control for actions. Bhat and Huffaker [17] develop a two-person

differential game model to characterize a dynamic contract that allows renegotiation

and variable transfer payments between owners of two independently-harvested,

ecologically-dependent mammal populations.

Atallah et al. [9] use non-cooperative and cooperative games to determine aggregate

payoffs between two managers whose independent production processes are spatially

connected through a network. Siriwardena et al. [118] develop a dynamic model of

cooperative Nash bargaining to examine how the mix of land ownership within each
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municipality affects the path of a negotiated transfer payment from the uninfested to

the infested jurisdiction. Cobourn et al. [44] employ a Nash bargaining framework to

examine the scope for bargaining between two municipalities, one of which is infested

with an invasive species and the other is not.

There is a growing interest in using game theory for designing transfer or subsidy

payments in invasive species management between the stakeholders. However, to the

best of our knowledge, the partnership of government and private landowners in

controlling and managing an invasive pest has not been addressed in the mechanism

design literature.

2.2.2 Incentive Design using the Principal-Agent Framework

The Principal-Agent framework was developed to better align the interest of two

parties who have conflicting interests and achieve a better outcome via incentive

structuring when there is information asymmetry. It has been widely adopted in

many studies, mostly in the coordination of decentralized players in supply chain

management [123, 130, 131, 81, 40] and in production [71, 42].

However, there is a growing body of literature on public-private partnerships

or authority-led initiatives, such as funding and auditing of non-profit organizations

[112], information sharing among farmers [128], emissions mitigation through carbon-

capturing [36], infrastructure development [108], container-inspection policy [12], and

performance-based contracts in health service [58, 72, 5, 7].

In the context of invasive species management, the private information is how

many trees are already infested, which is learned only after the private landowner (an

agent) pays for surveillance by a professional. The local government (the principal)

may require the landowner to submit such information prior to distributing the

reimbursement. In this case, the local government faces a moral hazard problem

because the landowner decides on how many trees to treat after receiving the
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reimbursement. Alternatively, the local government may ask the landowner to submit

the receipt from the professional tree care company that performed the treatment.

The local government thus faces an adverse selection problem. Traditionally, adverse

selection occurs when one party has more information than the other and therefore

has an advantage in entering a contract. Here, the landowner knows the infestation

level but the local government does not. Therefore, the reimbursement schedule,

which is a function of the number of trees treated, must induce the landowner to

treat the desirable number of trees prior to receiving the reimbursement.

2.2.3 Key Contributions

To the best of our knowledge, this work is among the first that adopts the

principal-agent framework in the management of invasive species to induce the

collaboration between a local government and a private landowner. We hypothesize

that government subsidy can be used to motivate the participation of landowners

and as a result, improve the outcome of reducing the harmful impacts of an invasive

forest beetle. Our game-theoretic models could also be adapted to a variety of other

public-private relationships that require joint resource contributions over space and

time, such as the management of water, land, and wildfire.

Next, our models differ from an assumption in the classic principal-agent

framework in that the agent’s utility function does not satisfy the single-crossing

property. Specifically, when the infestation level is high in the first period, it may

be desirable to not treat any trees, especially when the treatment is ineffective,

which leads to fewer trees being successfully treated. On the other hand, when the

infestation level is low initially, it may be desirable not to treat only infested trees (and

not more) because the treatment is not very effective. It may also be advantageous

to treat all trees in order to prevent any new infestations. Consequently, the optimal

treatment decision in our models differs from the seminal result of [94].
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Recall that in the optimal solution of their work, the quantity offered to the

agent is non-decreasing in his type. Further, the highest type receives the efficient

amount, which is computed without the presence of information asymmetry. Lower

types, however, receive less than efficient amounts. In certain cases, the lowest types

may not be served. In the context of invasive species management, this would mean

that a landowner with a higher infestation level will be induced to treat more trees.

However, we show that the optimal number of trees to be treated is, in general,

non-monotonic at the infestation level in either the infestation-based reimbursement

model or the treatment-based reimbursement model.

The rest of the paper is organized as follows. We introduce the infestation-based

reimbursement model where the infestation level is verifiable by the local government

in Section 2.3. Here, both analytical solutions and insights from numerical results

are provided. In Section 2.4, we present the treatment-based reimbursement where

the number of trees treated is verifiable instead. Several sets of optimal treatment

decisions are identified. In Section 2.5, we compare the efficacy of the two models

against the case when no cost-sharing programs are offered. Section 2.6 concludes

this chapter.

2.3 The Infestation-based Reimbursement Model

In the infestation-based reimbursement (IBR) model, we assume that the local

government (she henceforth) can verify the infestation level, i.e., the number of

infested trees, of the private land. This can be achieved by requiring the landowner

to submit a surveillance report issued by a professional tree service. Based on the

reported infestation level, she selects a payment (or reimbursement) to maximize

her expected utility. Because the landowner (he henceforth) receives a payment

before treating any trees, the local government must consider what he would do after

receiving the payment. The landowner is assumed to be rational; thus, his optimal
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decision depends on the reimbursement, the evolution of the number of infested trees

in the two periods, and the consequences of each possible treatment decision.

Characterization of the infestation level of private property. Let n

denote the number of ash trees a landowner has on his private land. This information

is considered common knowledge because it can be counted along the curb and

without accessing the landowner’s property. The likelihood of an ash tree being

infested by the EAB is π, which is assumed to be an input parameter. We also refer

π as the attack rate, which can be computed based on the proportion of infested tree

in nearby lands, to the landowner’s property if such information is available. The

local government, such as [104], may have databases and websites that keep track of

the infested trees. The infestation level, denoted by i, is only identifiable through

surveillance, such as visual inspection or lab testing, by professional tree services.

Here, we assume thorough surveillance that involves lab testing. Let α denote the

surveillance cost per tree. Its value depends on the surveillance method, with lab

testing being more costly than visual inspection. We assume that i follows a binomial

distribution with the rate π. We consider the marginal cost of surveillance, treatment,

and removal as constants, and public and private sites share the same marginal cost

in the IBR and TBR models. Because each private site is likely to have small number

of ash trees, a professional tree company would likely to quote per unit costs. Though

it is possible for public sites to incur lower costs due to economy of scales, assuming

these costs as a function of number of infested ash trees would create non-linearity

that would complicate the models. In future work, we may want to explore non-linear

functions. See Section 5.2 for more discussions. Table 2.1 summarizes the notation

used in both models.
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The landowner’s available options. Left untreated, an infested tree will die

with certainty within four years. Further, a dead tree is hazardous and thus, must be

removed at the cost of c. Treatments, such as soil injections or trunk injections, can

be applied to target the EAB larvae residing in the tree and stop them from killing

the ash trees. The cost of treatment is β per tree. Unfortunately, treatment is not

effective when a tree is in a late stage of infestation or after two years of the initial

infestation. Therefore, the treatment’s success rate is assumed to be ρ. Further,

treated trees for which the treatment is unsuccessful will die and must be removed at

the landowner’s expense.

Evolution of the infestation level. Let q(i) denote the number of treated

trees in the first period. If no trees are infested (i = 0) or if all of the infested trees

are treated (q(i) = n ≥ i) in the first period, the chance of a healthy, untreated tree

becoming newly infested in the next period is assumed to decrease from π to πl. On

the other hand, if any of the infested trees are left untreated (q(i) < i), the attack

rate in the second period increases from π to πh. Further, any healthy tree that is

treated in period one becomes EAB resistant for the next two years; that is, it will

not be infested in period two. If all of the trees are already infested (i = n), there

will be no new infestation in the second period.

The landowner’s expected utility if he does not participate in the

cost-sharing program. In this case, he is assumed to neither inspect nor treat any

trees in either period. Otherwise, he should participate to offset the cost by getting

reimbursement from the local government.

Let θ denote the landowner’s marginal value of a healthy ash tree. His value of

having w surviving trees at the end of the planning horizon, denoted by V (w), is thus

θ · w. Let a0 denote the decision of not participating in the cost-sharing program,

then his expected utility given the infestation level (i) is as follows:
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Table 2.1 Notation

Input parameters:
n The number of ash trees a landowner has.
π The first-period attack rate, i.e., the probability that an ash tree is

infested with the EAB. π̄ = 1− π.
i The infestation level in period one follows a binomial distribution

with rate π: i ∼ B(n, π).
c Cost of removing a dead tree due to the EAB infestation.
α Cost of inspecting an ash tree.
β Cost of treating an ash tree.
ρ Treatment success rate. ρ̄ = 1− ρ.
θ Marginal value of a landowner having a surviving ash tree.
s Marginal value the local government has for a healthy ash tree.
πh The high (resp. low) second-period attack rate, i.e., the probability that

a healthy ash (resp. πl) tree will become infested in period two if the
number of treated trees in period one is less than (resp. greater than
or equal to) the number of infested trees.
πl < π < πh; π̄h = 1− πh; π̄l = 1− πl.

Value function:
v(w, d) The value function of the local government of having w surviving ash

trees while losing d trees either untreated or unsuccessfully-treated
at the end of the second period: v(w, d) = s · w − β · d.

V (w) The value function of the landowner having w surviving ash trees
at the end of the second period: V (w) = θ · w.

Decision variables only applicable to the infestation-based reimbursement model:
q(i) The number of trees a landowner will treat given i out of n ash

trees are infested. q(i) can be greater than, equal to, or less than i.
r(i) Reimbursement offered by the local government for having i infested

ash trees.

Decision variables only applicable to the treatment-based reimbursement model:
q q = [q(0), q(1), · · · , q(n)] is a (n+ 1)-tuple that prescribes the number

of trees to be treated based on infestation level i, where q(i) ∈ [0, n].
r r = [r(0), r(1), · · · , r(n)] is a (n+ 1)-tuple that prescribes the

reimbursement scheme based on the treatment decision q(i).
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ϕ(a0|n, i) =


θπ̄ln− cπln if i = 0

θπ̄h(n− i)− c(i+ πh(n− i)) if 0 < i < n

−cn if i = n,

(2.1)

where π̄l = 1− πl and π̄h = 1− πh.

First, if there are no infested trees (i = 0) in the first period, the attack rate

in the second period is πl, and therefore, πln trees are expected to be infested and

die without treatment. The term θπ̄ln in Equation (2.1) is the landowner’s value of

having π̄ln surviving trees while cπln is the cost of removing πln dead trees. Second,

if some trees are infested (0 < i < n) in period one, inaction will lead to an increased

attack rate (πh), the expected trees to be infested in period two is πh(n− i). A total

of i + πh(n − i) trees will die, and the removal cost associated is c · (i + πh(n − i)).

The landowner’s expected utility is thus the difference between the value of healthy

trees, θ · π̄h(n − i), and the removal cost. Last, if all trees are already infested in

the first period, a lack of treatment would result in the death of all. The landowner

would incur a removal cost of cn.

The landowner’s expected utility if he participates in the cost-sharing

program. In this case, he will first pay for an inspection to identify the infested

trees. The inspection cost of all trees is αn, where α is the unit cost. Upon learning

the infestation level i, the landowner decides on how many trees to treat, denoted

by q(i). He considers the evolution of the infestation, which depends on his first-

period treatment decision. Figures 2.1 and 2.2 depict the two possible progressions

of infestation.

Figure 2.1 illustrates the consequence of not treating all infested trees in the first

period, i.e., q(i) < i. When q(i) out of the i infested trees are treated, the i − q(i)

untreated ones will die and must be removed. Further, the ρ̄q(i) unsuccessfully-
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n

I1: i

T1: q(i)

IST1: ρq(i)

EAB resistant

H2: ρq(i)

successful

IUT1: ρ̄q(i)

dead

D2: ρ̄q(i)

un-successful

treated

NT1: i− q(i)

dead

D2:
i− q(i)

not
treated

infested

H1: n− i

I2: π
h(n− i)

IST2 (H2):
ρπh(n− i)

successful

IUT2(D2):
ρ̄πh(n− i)

un-successful

infested

H2:
π̄h(n− i)

healthy

healthy

It denotes the number of newly infested trees in period t, where t = 1, 2. Ht denotes the
number of healthy trees in period t, Tt the number of treated trees in period t, ISTt the
number of infested trees that are successfully-treated in period t, IUTt the number of infested
trees that are un-successfully-treated in period t, NTt the number of trees that are not
treated in period t, and Dt the number of dead trees in period t.

Figure 2.1 Progression of infestation in two consecutive periods when some
infested trees are not treated in the first period (q(i) < i).

treated trees will also not survive, whereas the ρq(i) successfully-treated ones will

recover and stay healthy in the second period. Because not all infested trees are

treated, the attack rate among the n − i healthy trees increases to πh in the second

period. As a result, πh(n− i) trees may become infested in period two while π̄h(n− i)

ones remain healthy. For simplicity, we assume that all newly infested trees will be

treated, then ρπh(n − i) trees will become healthy, but ρ̄πh(n − i) trees may die

because the treatment is unsuccessful.

To summarize, the overall number of treated trees is t = q(i)+πh(n−i), the total

number of trees survived by the end of period two is w = ρq(i)+π̄h(n−i)+ρπh(n−i),

and the aggregated number of dead trees is k = i − q(i) + ρ̄q(i) + ρ̄πh(n − i). The

landowner’s expected utility when q(i) < i is
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ϕ(q(i), r(i)|n, i, q(i) < i) = θ · w + r(i)− α · n− β · t− c · k

= θ · [ρq(i) + π̄h(n− i) + ρπh(n− i)] + r(i)− α · n

−β · [q(i) + πh(n− i)]− c · [i− ρq(i) + ρ̄πh(n− i)].

(2.2)

The first two terms in Equation (2.2) are the landowner’s value of having w surviving

trees and the reimbursement received from the local government. The next three

terms represent the inspection cost, the treatment cost, and the removal cost,

respectively.

Similarly, Figure 2.2 shows the outcome of treating not only infested trees but

some healthy trees in the first period, i.e., q(i) ≥ i. Because all infested trees (i)

are treated, the successfully-treated trees (ρi) will survive and stay healthy in the

second period, while the unsuccessfully-treated ones (ρ̄i) would die. The healthy

trees that are treated (q(i)− i) in the first period become resistant to EAB. Further,

the attack rate among the healthy, untreated trees (n − q(i)) decreases to πl in the

second period. Therefore, πl(n− q(i)) trees are expected to be infested in period two,

while π̄l(n− q(i)) trees are expected to remain healthy. Since all newly infested trees

in the second period are assumed to be treated, ρπl(n − q(i)) of them are expected

to be successfully-treated and survive, while the rest are expected to die.

The landowner’s expected utility when q(i) ≥ i is

ϕ(q(i), r(i)|n, i, q(i) ≥ i) = θ · w + r(i)− α · n− β · t− c · k

= θ · [q(i)− ρ̄i+ π̄l(n− q(i)) + ρπl(n− q(i))] + r(i)

−α · n− β · [q(i) + πl(n− q(i))]− c · [ρ̄i+ ρ̄πl(n− q(i))].

(2.3)

The terms in Equation (2.3) are similar to those in Equation (2.2), except that the

total number of treated trees is t = i+(q(i)− i)+πl(n−q(i)), the aggregated number

of trees survived by the end of the second period is w = (q(i)− i)+ρi+ π̄l(n− q(i))+

ρπl(n− q(i)), and the overall number of dead trees is d = ρ̄i+ ρ̄πl(n− q(i)).
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IUT1: ρ̄i
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D2: ρ̄i

un-successful

treated

infested

H1: n− i
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treated

NT1: n− q(i)

I2: π
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ρ̄πl(n− q(i))

un-successful

infested

H2:
π̄l(n− q(i))

healthy
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healthy

It denotes the number of newly infested trees in period t, where t = 1, 2. Ht denotes the
number of healthy trees in period t, Tt the number of treated trees in period t, ISTt the
number of infested trees that are successfully treated in period t, IUTt the number of infested
trees that are un-successfully-treated in period t, NTt the number of trees that are not
treated in period t, and Dt the number of dead trees in period t.

Figure 2.2 Progression of infestation in two consecutive periods when all of the
infested trees are treated in the first period (q(i) ≥ i).

Let µi be an indicator such that µi = 1 when q(i) < i and µi = 0 otherwise.

µ̄i = 1− µi. The landowner’s expected utility from participating in the cost-sharing

program is

ϕ(q(i), r(i)|n, i) = µi · ϕ(q(i), r(i)|n, i, q(i) < i) + µ̄i · ϕ(q(i), r(i)|n, i, q(i) ≥ i).

(2.4)

Sequence of events. Figure 2.3 illustrates the interactions between the local

government and the landowner over two consecutive periods if he participates in the

cost-sharing program. At the beginning of the first period, both parties have the same

knowledge about the ash trees on the landowner property: there are n ash trees, and

the attack rate is π. The landowner pays for a tree care professional to inspect these

ash trees and finds out the number of trees (i) that are already infested. He reports

the information to the local government, who then offers a financial award (r(i))

that depends on the infestation level (i). Upon receiving the reimbursement r(i), the
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landowner then decides how many trees (q(i)) to treat. If he does not treat all of the

infested trees (q(i) < i) in the first period, then the outcome of his decision over the

next two periods is depicted in Figure 2.1. On the other hand, if he treats not only all

of the infested trees but also some healthy trees, the outcome follows Figure 2.2. It is

worth noting that the local government neither verifies how many trees were treated

at the end of the first period nor offers an additional financial award in the second

period.

Period
1

common
knowledge:
LO has

n ash trees,
attack rate

is π

LO
finds
i trees

are infested
& reports i

FS
offers

LO r(i)

LO treats
q(i) trees
after

receiving
r(i)

if q(i) < i,
remove (i− q(i)) INT
& ρ̄q(i) IUT trees;
ρq(i) IST trees will
be EAB resistant

if q(i) ≥ i,
remove ρ̄i IUT trees;
(q(i)− i) HT & ρi IST

trees will be
EAB resistant

Period
2

attack rate
↑ to πh among

(n− i) HNT trees

attack rate
↓ πl among

(n− q(i)) HNT trees

LO stands for landowner, FS for the local government, INT for infested trees that are not treated, IST for infested
trees that are successfully-treated, IUT for infested trees that are unsuccessfully-treated, HT for healthy trees that
are treated, and HNT for healthy trees that are not treated.

Figure 2.3 Sequence of events for the infestation-based reimbursement model.

The forester’s optimization problem. We assume that both the forester

and the landowner are rational and make decisions to maximize their utilities over a

two-period planning horizon to maximize their utilities. Let v(w, d) = s · w − β · k

denotes the local government’s value function. The first term is the local government’s

value of having w surviving trees, where s is the marginal value of a tree. The

second term, β · k, is the local government’s penalty of having d infested trees either

untreated or unsuccessfully-treated. This penalty is included because if an infested

tree on the landowner’s parcel is not treated or not successfully treated, then ash trees
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in nearby parcels would be more likely to be infested in the following period. The

local government’s goal is to maximize her utility function, which is the difference

between her value function and the reimbursement. In the case where q(i) < i, as

shown in Figure 2.1, the number of surviving trees at the end of the period is w =

ρq(i)+ π̄h(n− i)+ρπh(n− i), while the number of untreated or unsuccessfully-treated

tree is k = i − ρq(i) + ρ̄πh(n − i). Similarly, in the case where q(i) ≥ i, w =

q(i) − ρ̄i + π̄l(n − q(i)) + ρπl(n − q(i)) and k = ρ̄i + ρ̄πl(n − q(i)), as illustrated in

Figure 2.2.

The local government’s problem is as follows:

max
q(i),r(i)

Ψ(q(i), r(i)|n, i) = µi ·
(
s ·

[
ρq(i) + π̄h(n− i) + ρπh(n− i)

]
− β ·

[
i− ρq(i) + ρ̄πh(n− i)

] )
+µ̄i ·

 s ·
[
q(i)− ρ̄i+ π̄l(n− q(i)) + ρπl(n− q(i))

]
−β ·

[
ρ̄i+ ρ̄πl(n− q(i))

]
− r(i)

s.t.
ϕ(q(i), r(i)|n, i) ≥ ϕ(a0|n, i) (IR)

ϕ(q(i), r(i)|n, i) ≥ ϕ(j, r(i)|n, i) ∀ 0 ≤ j ≤ n (ICij)

and q(i), r(i) ≥ 0 (NNi)

(2.5)

The objective function in Equation (2.5) is the net expected utility of the local

government, considering two scenarios: (1) when q(i) < i (or equivalently, µi = 1)

and (2) when q(i) ≥ i (or µi = 0). The first line of the objective function is the value

of having w = ρq(i) + π̄h(n− i) + ρπh(n− i) surviving trees at the end of the second

period minus the penalty from loosing d = i− ρq(i) + ρ̄πh(n− i) trees when q(i) < i.

Similarly, the second line of the objective function is the difference between the value

of having w = q(i)− ρ̄i+ π̄l(n− q(i)) + ρπl(n− q(i)) surviving trees and the penalty

from loosing d = ρ̄i + ρ̄πl(n − q(i)) trees when q(i) ≥ i. For simplicity, we assume

that the penalty associated with a dead tree is equal to the cost of its treatment. The

last term is the cost of providing the financial award to the landowner.
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The individual rationality (IR) constraint ensures the landowner is incentivized

to participate in the cost-sharing program. The incentive compatibility (ICj)

constraints ensure that the landowner will prefer to treat the number of trees desired

by the local government q(i) based on the infestation level (i), rather than another

treatment decision (j). The non-negativity constraints (NNi) ensure that both q(i)

and r(i) are greater than or equal to zero.

2.3.1 Analytical Solutions

We define the following parameters and conditions in order to characterize the optimal

solutions analytically.

First, let a1 := β − ρ(θ + c) and a2 := β − ρ(s + β + θ + c). It is apparent

that a1 > a2. Further, let ρ̇ := β
s+β+θ+c

and ρ̈ := β
θ+c

, then 0 < ρ̇ < ρ̈. Because the

cost of treatment is generally much lower than the sum of the valuation of a live ash

tree and the removal cost, ρ̈ is likely to be small. We can categorize the treatment

effectiveness (ρ) into three levels.

Definition 1. As summarized in Table 2.2, the treatment is considered to be less

effective if 0 ≤ ρ < ρ̇, somewhat effective if ρ̇ ≤ ρ < ρ̈, and very effective if ρ̈ ≤ ρ ≤ 1.

Table 2.2 Categorization of
Treatment Effectiveness (ρ)

Condition ρ
a1 > a2 > 0 or 0 ≤ ρ < ρ̇ Less effective
a1 > 0 ≥ a2 or ρ̇ ≤ ρ < ρ̈ Somewhat effective
0 ≥ a1 > a2 or ρ̈ ≤ ρ ≤ 1 Very effective

Table 2.3 Classification of the Low
Second-period Attack Rates (πl)

Condition πl

b1 > b2 > 0 or 0 ≤ πl < π̇l low
b1 > 0 ≥ b2 or π̇l ≤ πl < π̈l medium
0 ≥ b1 > b2 or π̈l ≤ πl ≤ 1 high

Second, let b1 := β − πl[ρ̄(θ + c) + β], b2 := β − πl[ρ̄(s + β + θ + c) + β], and

b1 > b2. Further, let π̇
l := β

ρ̄(s+β+θ+c)+β
and π̈l := β

ρ̄(θ+c)+β
, which are used to classify

the different levels of the low second-period attack rate (πl). Since s+β+θ+c > θ+c,

0 < π̇l < π̈l < 1.
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Definition 2. As shown in Table 2.3, the low second-period attack rate (πl) is

considered low if 0 ≤ πl < π̇l, medium if π̇l ≤ πl < π̈l, and high if π̈l ≤ πl ≤ 1.

Third, let π̇h(i) := max{0,min{1, πl + a1
ρ̄(θ+c)+β

· i
n−i

}} and

π̈h(i) := max{0,min{1, π
l(ρ̄(θ+c)+β)+α

θ+c
+ α+a1

θ+c
· i
n−i

}} when πl when πl is low or medium

(0 ≤ πl < π̈l). Further, let π̇h(i) := max{0,min{1, β
ρ̄(θ+c)+β

+ a1
ρ̄(θ+c)+β

· i
n−i

}} and

π̈h(i) := max{0,min{1, β+α
θ+c

+ α+a1
θ+c

· i
n−i

}} when πl is high (π̈l ≤ πl ≤ 1). Both π̇h(i)

and π̈h(i) are valid for 0 < i < n, and they describe the different levels of the high

second-period attack rate (πh). As shown in Appendix A.1.1, π̈h(i) ≥ π̇h(i) when the

treatment is either less effective or somewhat effective (0 ≤ ρ < ρ̈). π̇h(i) increases

(decreases) in i when a1 is positive (negative), while π̈h(i) increases (decreases) in i

when α + a1 is positive (negative).

Definition 3. We classify the high second-period attack rate (πh) under two

scenarios. In the first scenario, the treatment is less effective or somewhat effective

(0 ≤ πl < π̈l). πh is considered low if 0 ≤ πh < π̇h(i), medium if π̇h(i) ≤ πh < π̈h(i),

and high if π̈h(i) ≤ πh ≤ 1. In the second scenario, the treatment is very effective.

πh is considered low when 0 ≤ πh < π̈h(i) and high if π̈h(i) ≤ πh ≤ 1. Table 2.4

summarizes the conditions used to define these levels.

Table 2.4 Classification of the High Second-period Attack Rate (πh)

Levels of πh when 0 ≤ ρ < ρ̈ Levels of πh when ρ̈ ≤ ρ ≤ 1
Condition πh Condition πh

0 ≤ πh < π̇h(i) low
0 ≤ πh < π̈h(i) low

π̇h(i) ≤ πh < π̈h(i) medium
π̈h(i) ≤ πh ≤ 1 high π̈h(i) ≤ πh ≤ 1 high

2.3.1.1 General characteristics of optimal solutions. We find three types of

optimal treatment decisions in the first period: treating no trees (N as an abbreviated

notation), treating only infested trees (I), and treating all trees (A). As shown in

Figure 2.4, the optimal treatment decision depends on the infestation level (i), the
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treatment effectiveness (ρ), and the two second-period attack rates (πl and πh). At

the top level, the tree diagram is split into three nodes based on how many trees

are infested in the first period. The treatment decision is simple when there are no

infested trees (i = 0). In this case, the value of the low second-period attack rate (πl)

governs whether to treat all trees or to treat none. Recall that a healthy tree, if not

treated in the first period, may become infested in the second period with probability

πl. If πl is high, treating all trees in the first period will prevent them from becoming

infested in the second period. On the other hand, if πl is low or medium, healthy

trees are unlikely to be infested in the second period, and thus, there is no need for

the landowner to treat them in the first period. Similarly, when all trees are infested

(i = n), the treatment decision is solely driven by whether or not the treatment is

very effective. If so, it is worth the landowner’s effort to treat the infested trees.

Otherwise, the landowner is better off removing all.

i

πl

N

L or M

A

H

i = 0

ρ

πl

πh

N

L

I

M or H

L or M

πh

N

L
A

M or H

H

LE or SE

πl

I

L or M
A

H

VE

0 < i < n

ρ

N

LE or SE

A

VE

i = n

L stands for low, M stands for medium, H stands for high, LE stands for
less effective, SE stands for somewhat effective, and VE stands for very
effective.

Figure 2.4 The optimal treatment decision vs. key parameters.

When some (but not all) trees are infested, the treatment decision is jointly

determined by ρ, πl, and πh. Therefore, the middle branch of the tree is further split
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into multiple levels. Rather than discussing each branch separately, we summarize

the results based on the optimal treatment decision. First, it is optimal for the

landowner not to treat any trees (N) if the treatment is not very effective and πh is

low. As illustrated in Figure 2.3, not treating all of the infested trees will lead to a

higher attack rate in the second period. However, because πh is low, the chance of

a healthy tree becoming infested is still small. As a result, the infestation level will

not increase significantly in the second period. On the other hand, trees that are

infested have a slim chance of surviving after treatment when the treatment is not

very effective. Therefore, the benefit of treating infested trees does not outweigh the

cost of treatment, and the landowner is better to remove the infested trees.

Second, treating only infested trees (I) is optimal for the landowner if πl is

low or medium, and either the treatment is very effective or πh is medium or high.

Because πl is low or medium, healthy trees in the first period are less likely to get

infested in the second period, and thus, they do not require preventative treatment.

In the first case where the treatment is very effective, an infested tree that is treated

has a high chance of surviving at the end of the case. In the second case, where πh is

medium or high, I is beneficial even when treatment is not very effective because it

prevents the infestation level from increasing significantly in the second period.

Third, the landowner is induced to treat all trees (A) otherwise. First, when the

treatment is very effective and πl is high, treating all trees will not only enable the

infested trees to survive but also allow the healthy trees to become EAB resistant.

Second, when the treatment is not very effective, πl is high, and πh is medium or

high, the landowner still treats all trees to ensure that none of the healthy trees will

become infested in the second period.

In the next sections, we discuss the optimal solutions in detail under three

settings: when no trees are infested (i = 0), when all trees are infested (i = n), and

when some trees are infested (0 < i < n).
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2.3.1.2 Optimal solution characteristics when no trees are infested.

Because there are no infested trees (i = 0) in the first period, the second-period

attack rate is πl no matter what the landowner chooses to do in the previous period.

Let q∗(i) and r∗(i) denote the optimal treatment option selected by the landowner

and the reimbursement from the local government, respectively. The characteristics

of the optimal solution when no trees are infested are summarized in Proposition 1.

See Appendix A.1.2.1 for the proof of Proposition 1.

Proposition 1. When no trees are infested in the first period, the optimal treatment

decision and the optimal reimbursement depend on the low second-period attack rate

(πl), as shown in Table 2.5.

If πl is low or medium (0 ≤ πl < π̈l), the landowner is induced to not treat

any trees (N) in the first period. The reimbursement decreases in the treatment

effectiveness (ρ). Moreover, it is less than or equal to the inspection cost (αn) if the

treatment is very effective (ρ̈ ≤ ρ ≤ 1) and greater than the inspection cost otherwise.

Table 2.5 The Optimal Solution When i = 0

Conditions Optimal Treatment Optimal Reimbursement
0 ≤ πl < π̈l q∗(0) = 0 (N) r∗(0) = max

{
0, αn+ a1π

ln
}

π̈l ≤ πl ≤ 1 q∗(0) = n (A) r∗(0) = max
{
0, αn+

(
β − (θ + c)πl

)
n
}

If πl is high (π̈l ≤ πl ≤ 1), the local government encourages the landowner

to treat all trees (A). The reimbursement decreases in πl. Further, it is less

than the inspection cost when πl is very high (πl > max{ β
θ+c

, π̈l}). Otherwise, the

reimbursement is greater than the inspection cost.

Insights from Proposition 1. First, even though the local government does

not want the landowner to treat any trees (N) in the first period when πl is low or

medium, the reimbursement must include the future cost or benefit from treating

newly infested trees in the second period. If the treatment is not very effective

(0 ≤ ρ < ρ̈), the net loss for the landowner is a1 = β − ρ(θ + c) per infested tree.
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Anticipating πln trees to be infested in the second period, the local government needs

to reimburse the net expected loss from unsuccessful treatment, a1π
ln, to induce the

landowner to participate in the cost-sharing program. Therefore, the reimbursement

is greater than the inspection cost, i.e., r∗(0) > αn. As the treatment effectiveness

(ρ) increases, a1 decreases. When ρ becomes very effective, a1 turns negative and

represents the landowner’s net gain per infested tree. As a result, the reimbursement

becomes lower than or equal to the inspection cost (r∗(0) ≤ αn) and can even be

reduced to zero. Therefore, the operator max{0, αn + a1π
ln} is used to prevent the

reimbursement from being negative.

Second, the local government’s strategy changes drastically when the possibility

of a tree becoming infested in the second period is high (π̈l < πl ≤ 1). The local

government prefers the landowner to treat all trees (A) in the first period. This is

because not only do all of them become resistant to EAB in the second period but also

the reimbursement is likely to be smaller than the inspection cost since β − (θ+ c)πl

can also be negative when πl is greater than β
θ+c

.

2.3.1.3 Optimal solution characteristics when all trees are infested. In

the case where all trees are already infested in the first period, any untreated trees

will die, while the successfully-treated ones will be EAB resistant in the next period.

We summarize the results in Proposition 2. The proof of Proposition 2 is in Appendix

A.1.2.2.

Proposition 2. When all trees are infested in the first period, the optimal treatment

decision and the optimal reimbursement are driven by the effectiveness of the

treatment (ρ), as presented in Table 2.6. If the treatment is less or somewhat

effective, the local government only reimburses the landowner’s inspection cost, and

consequently, the landowner will not treat any trees (N).
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Table 2.6 The Optimal Solution When i = n

Condition Optimal Treatment Optimal Reimbursement
0 ≤ ρ < ρ̈ q∗(n) = 0 (N) r∗(n) = αn
ρ̈ ≤ ρ ≤ 1 q∗(n) = n (A) r∗(n) = max {0, αn+ a1n} < αn

If, on the other hand, the treatment is very effective, the local government

can induce the landowner to treat all trees (A) with a reimbursement less than the

inspection cost.

Insights from Proposition 2. The most notable characteristic of the optimal

solution is that the reimbursement is always less than or equal to the inspection cost.

If the treatment is not very effective, the landowner would not treat any trees, and

consequently, all trees would die. Since the landowner is ultimately responsible for

removing the dead ash trees, the local government only needs to compensate the

landowner with the inspection cost.

The landowner would treat all trees if the treatment is very effective. Therefore,

the cost of the inspection is offset by the landowner’s utility from successfully-treated

trees and consequently the local government only covers a portion of the inspection

cost to induce the landowner to participate. The reimbursement monotonically

decreases as ρ increases, and it can be reduced to zero when ρ is really high, or

equivalently, when ρ ≥ α+β
θ+c

.

2.3.1.4 Optimal solution characteristics when some trees are infested.

We divide our discussion into two scenarios based on the treatment effectiveness.

First, we discuss the scenario where the treatment is very effective. Proposition 3

summarizes the key results. See Appendix A.1.2.3 for proof of Proposition 3.

Proposition 3. If the treatment is very effective, the optimal treatment decision is

driven by the low second-period attack rate (πl) while the reimbursement depends on

the high second-period attack rate (πh), as shown in Table 2.7.
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When πl is low or medium (0 ≤ πl < π̈l), the landowner is induced to treat all

infested trees (I). The local government offers a positive reimbursement when πh is

low or medium. Otherwise, the reimbursement is reduced to zero.

Table 2.7 The Optimal Solution When 0 < i < n, and the Treatment is Very
Effective (ρ ≥ ρ̈)

πl is low or medium: 0 ≤ πl < π̈l

Condition Optimal Optimal Reimbursement
Treatment

0 ≤ πh < π̈h(i) q∗(i) = i (I) r∗(i) = αn+ a1n− [a1π̄
l + (θ + c)(πh − πl)](n− i) > 0

π̈h(i) ≤ πh ≤ 1 q∗(i) = i (I) r∗(i) = 0

πl is high: π̈l ≤ πl ≤ 1
Condition Optimal Optimal Reimbursement

Treatment
0 ≤ πh < π̈h(i) q∗(i) = n (A) r∗(i) = αn+ a1n− [a1 − β + (θ + c)πh](n− i) > 0
π̈h(i) ≤ πh ≤ 1 q∗(i) = n (A) r∗(i) = 0

When πl is high (π̈l ≤ πl ≤ 1), then the landowner chooses to treat all trees

(A). The local government may offer a positive reimbursement when the value of πh

is low or medium.

It is worth noting that because the landowner will at least treat the infested

trees in the first period, πh would not be realized in the next period. However, the

reimbursement decreases as πh increases. When πh is high, the reimbursement is

zero. This is because as the risk of healthy trees getting infested in the second period

increases, the landowner would have to treat the trees anyhow. Therefore, the local

government needs to offer a small award to induce the landowner to participate.

Next, we present the optimal solution when the treatment is not very effective.

Proposition 4 highlights the key results. The proof of Proposition 4 is in Appendix

A.1.2.4.

Proposition 4. If the treatment is not very effective, the optimal solution depends

on both of the second-period attack rates (πl and πh), as illustrated in Table 2.8.
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When πh is low (0 ≤ πh < π̇h(i)), the landowner is induced not to treat any

trees (N) regardless of the value of πl. The local government offers a reimbursement

that is higher than the inspection cost, that is, r∗(i) = αn+ a1π
h(n− i) > αn.

Table 2.8 Optimal Solution When 0 < i < n, and the Treatment is Not Very
Effective (ρ < ρ̈)

πl is low or medium: 0 ≤ πl < π̈l

Condition Optimal Treatment Optimal Reimbursement
0 ≤ πh < π̇h(i) q∗(i) = 0 (N) r∗(i) = αn+ a1π

h(n− i) > αn
π̇h(i) ≤ πh < π̈h(i) q∗(i) = i (I) r∗(i) = αn+ a1n− [a1π̄

l + (θ + c)(πh − πl)](n− i) > 0
π̈h(i) ≤ πh ≤ 1 q∗(i) = i (I) r∗(i) = 0

πl is high: π̈l ≤ πl ≤ 1
Condition Optimal Treatment Optimal Reimbursement
0 ≤ πh < π̇h(i) q∗(i) = 0 (N) r∗(i) = αn+ a1π

h(n− i) > αn
π̇h(i) ≤ πh < π̈h(i) q∗(i) = n (A) r∗(i) = αn+ a1n− [a1 − β + (θ + c)πh](n− i) > 0
π̈h(i) ≤ πh ≤ 1 q∗(i) = n (A) r∗(i) = 0

When πh is medium (π̇h(i) ≤ πh ≤ π̈h(i)), then the value of πl determines the

optimal solution. When πl is low or medium (0 ≤ πl < π̈l), the landowner is induced

to treat all infested trees (I). The reimbursement is positive. Further, r∗ increases

in i if a1π̄
l + (θ + c)(πh − πl) < 0 and decreases in i otherwise. When πl is high

(π̈l ≤ πl ≤ 1), the local government prefers the landowner to treat all trees (A), which

includes both infested and healthy trees.

When πh is high (π̈h(i) ≤ πh ≤ 1), the reimbursement is zero. The landowner

will treat all trees when πl is high and only the infested trees (I) otherwise.

Unlike the results from when the treatment is very effective, πh can be realized

in the second period when it is low (0 ≤ πh < π̇h(i)). In such a scenario, the

local government prefers the landowner not to treat any trees in the first period

because the effectiveness of the treatment is not sufficiently high. Therefore, inducing

the landowner to treat infested trees is too costly for the local government, and it

outweighs the benefit. In the next period, the remaining healthy trees would be

infested with πh. Therefore, the local government offers a reimbursement that covers

not only the inspection cost but also part of the treatment cost in the second period.
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2.3.2 Numerical Insights

We illustrate the impact of key input parameters, such as the second-period attack

rates (πh and πl), and the treatment effectiveness (ρ) on the optimal solution. Four

scenarios are created by varying (1) the low second-period attack rate (πl) between

high and low or medium and (2) the treatment effectiveness (ρ) between very effective

and not very effective (less or somewhat effective). Additionally, in each scenario, we

pick one or two values of πh to show the relationship between the optimal solution

and the key input parameters.

2.3.2.1 Scenario 1: The low second-period attack rate is low or medium,

and the treatment is not very effective. We present two examples under the

scenario where the low second-period attack rate is low or medium (πl < π̈l), and the

treatment is not very effective (ρ < ρ̈) by varying the value of the high second-period

attack rate (πh). The other values used in the numerical examples are summarized

in Table 2.9.

Table 2.9 Parameters Used under Scenario 1 (πl < π̈l and ρ < ρ̈)

n α β c θ s ρ π πl π̈l ρ̈ a1 b1
5 40 294 500 50 100 0.20 0.29 0.25 0.40 0.53 184 111

Example 1: The high second-period attack rate (πh) is low for some

infestation levels and medium for others. Figure 2.5 illustrates the optimal

solution when πh = 0.45. It is optimal to treat the infested trees (I) only when the

infestation level is low (1 ≤ i ≤ 2) and not to treat any trees (N) otherwise. We

use the notation of N0
0 I

2
1N

5
3 to represent the optimal treatment decisions (OTDs),

where the subscript after each action (N or I) is the starting infestation level and the

superscript is the ending infestation level. N5
3 means not treating any trees when the

infestation level is between 3 and 5.

To better understand the optimal solution, we examine the values provided in

the table in Figure 2.5. First, when no trees are infested (i = 0), the optimal decision
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i π̇h(i) π̈h(i) πh Level q∗(i) r∗(i)
0 - - - 0 $430
1 0.31 0.51 medium 1 $128
2 0.42 0.68 medium 2 $376
3 0.63 1 low 0 $366
4 1 1 low 0 $283
5 - - - 0 $200

Figure 2.5 The optimal solution under Scenario 1 when πh = 0.45. Plot (left):
The optimal treatment decisions vs. infestation level (top) and the reimbursement
vs. infestation level (bottom). Table (right): Categorization of πh, the optimal
treatment decision, and the reimbursement for each infestation level.

is not to treat any trees in the first period (N). Because all trees are healthy and the

low second-period attack rate (πl) is either low or medium, it is unnecessary for the

landowner to treat any trees. However, the local government offers a reimbursement

of r∗(0) = αn + a1π
ln = $430, as the analytical solution shown in Table 2.5. The

reimbursement is much higher than the inspection cost (αn = $200). Because the

treatment is not very effective (ρ < ρ̈ or a1 > 0), the local government needs to offer

a high enough incentive for the landowner to treat newly infested trees in the second

period.

Next, we examine the solution when some (but not all) trees are infested (0 <

i < n). As appeared in Figure 2.5, π̇h(1) = 0.31 < πh = 0.45 < π̈h(1) = 0.51 and

π̇h(2) = 0.42 < πh = 0.45 < π̈h(2) = 0.68. Therefore, πh is medium when i is 1 or 2.

Table 2.8 shows that it is optimal to treat only the infested trees (q∗(i) = i) and the

reimbursement is r∗(i) = αn+ a1n− [a1π̄
l + (θ + c)(πh − πl)](n− i), which increases

in i. On the other hand, πh is low when i is 3 or 4 because πh = 0.45 < π̇h(3) =

0.63 < π̇h(4) = 1. As per Table 2.8, not treating any trees (q∗(i) = 0) is optimal and

the reimbursement, r∗(i) = αn+ a1π
h(n− i), decreases in i. As a result, neither the

treatment decision nor the reimbursement is monotonic in the infestation level (i).

37



Last, when all trees are already infested (i = n = 5), the local government only

reimburses the landowner the inspection cost. Even though the landowner is expected

to remove all trees because treatment is not very effective, none of the removal cost

is substituted by the local government.

In summary, a higher reimbursement is required when the local government

wants to induce the landowner to deviate from his best action when no reimbursement

is offered. In this example, the landowner receives the highest reimbursement when

there are no trees infested in the first period because he is encouraged to treat all

newly infested trees in the second period even though the treatment is not effective.

This decision would not be optimal for him if the reimbursement is not so high. On

the other hand, when there is only one tree infested in the first period, the landowner

receives very little financial award because his best action would be to treat the

infested tree to prevent a much higher chance (πh = 0.45) of having newly infested

trees in the second period.

Example 2: The high second-period attack rate (πh) can be low,

medium, or high. As illustrated by Figure 2.6, the optimal treatment decision

when πh = 0.70 is very similar to that in the previous example. That is, it is optimal

to treat only the infested trees (I) when the infestation level (i) is low (between 1

and 3) while not treating any trees (N) otherwise (at zero or above 3). N0
0 I

3
1N

5
4 thus

representing the OTDs. Differently from the previous example, the landowner will

treat the infested trees without any reimbursement from the local government when

the infestation level is sufficiently low (i = 1 or 2).

We focus our discussion on the reimbursement when some trees are infested

(0 < i < n) because the optimal solution when none (or all) of the trees are infested is

the same as the previous example. Because π̈h(1) = 0.51 < π̈h(2) = 0.68 < πh = 0.70,

πh is high when the infestation level is low (i = 1, 2). As the analytical solution shown

in Table 2.8, the optimal treatment decision is to treat the infested trees (q∗(i) = i),
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i π̇h(i) π̈h(i) πh Level q∗(i) r∗(i)
0 - - - 0 $430
1 0.31 0.51 high 1 $0
2 0.42 0.68 high 2 $0
3 0.63 1 medium 3 $349
4 1 1 low 0 $329
5 - - - 0 $200

Figure 2.6 The optimal solution under Scenario 1 when πh = 0.70. Plot (left):
The optimal treatment decisions vs. infestation level (top) and the reimbursement
vs. infestation level (bottom). Table (right): Categorization of πh, the optimal
treatment decision, and the reimbursement for each infestation level.

and the optimal reimbursement is zero (r∗(i) = 0). Given that the majority of the

trees are healthy (i ≤ 2) in the first period and not treating the infested trees will

result in a high chance (70%) of any healthy tree becoming infested in the second

period, the landowner must treat the infested trees. As a result, no financial incentives

are needed from the local government.

The optimal solution changes when the majority of the trees are already infested

in the first period (i ≥ 3). When the infestation level reaches 3, πh is medium (since

π̇h(3) = 0.63 < πh = 0.70 < π̈h(3) = 1), the local government will need to provide a

substantial reimbursement, higher than inspection cost, to induce the landowner to

treat the infested trees. When the infestation level is at or above 4, the landowner

would not treat any trees due to the treatment being not very effective. However,

the local government still needs to offer a reimbursement higher than or equal to the

inspection cost to induce the landowner to participate.

2.3.2.2 Scenario 2: The low second-period attack rate is high, and the

treatment is not very effective. Regarding the scenario where the low second-

period attack rate πl is high (πl ≥ π̈l), and the treatment is not very effective (ρ < ρ̈),

we present the optimal solution under two values of πh. Table 2.10 provides the values
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used in this scenario. It is worth mentioning that even though πl is high, it is still

lower than the first-period attack rate (πl < π).

Table 2.10 Parameters Used under Scenario 2 (πl ≥ π̈l and ρ < ρ̈)

n α β c θ s ρ π πl π̈l ρ̈ a1 b1
5 40 294 900 50 100 0.15 0.28 0.27 0.27 0.31 152 -14

Example 1: The high second-period attack rate (πh) is low for all

levels of infestation. The optimal solution when πh = 0.29 is shown in Figure 2.7.

Treating all trees (A) is optimal only when no trees are infested (i = 0). Otherwise,

it is best not to treat any trees (N). The OTDs are thus A0
0N

5
1 . Given that πh is low

and πl is high, they are not sufficiently different. Therefore, whether or not to treat

the infested trees in the first period has very little effect on the possibility of healthy

trees becoming infested in the second period. Further, because the treatment is not

very effective, the treatment cost (and eventual removal cost when it fails) outweighs

the potential benefit of treating the infested trees. The only exception would be when

no trees are infested, as treating all trees allow them to be EAB resistant in the second

period.

i π̇h(i) π̈h(i) πh Level q∗(i) r∗(i)
0 - - - 5 $388
1 0.30 0.40 low 0 $376
2 0.36 0.49 low 0 $332
3 0.47 0.65 low 0 $288
4 0.82 1.00 low 0 $244
5 - - - 0 $200

Figure 2.7 The optimal solution under Scenario 2 when πh = 0.29. Plot (left):
The optimal treatment decisions vs. infestation level (top) and the reimbursement
vs. infestation level (bottom). Table (right): Categorization of πh, the optimal
treatment decision, and the reimbursement for each infestation level.

As the analytical solution presented in Table 2.5, the optimal treatment decision

and the reimbursement depend only on πl. In the case of πl ≥ π̈l, the optimal solution
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is q∗(0) = n = 5 and r∗(0) = αn + [β − πl(θ + c)]n = $388. When some trees are

infested (0 < i < n), the reimbursement, as per Table 2.8, is r∗(i) = αn+a1π
h(n− i).

Because a1 is positive, the reimbursement decreases in i, as illustrated in Figure 2.7.

Example 2: The high second-period attack rate (πh) can be low,

medium, or high. As shown in Figure 2.8, the OTDs are A3
0N

5
4 when πh = 0.48.

That is, treat all trees (A) so long as the number of infested trees is not large while

not treating any trees (N) otherwise. In this example, πl is high and very close to π.

Further, πh is much higher than πl.

Treating all trees means some infested trees may survive while all healthy trees

would become EAB resistant in the second period. The potential benefit from treating

all trees far exceeds the sum of treatment cost and the expected removal cost when

the number of infested trees is small. Therefore, the reimbursement is zero (r∗(1) =

r∗(2) = 0). When i = 3, however, a positive reimbursement is needed from the local

government to balance the benefit from treating all trees and the expected costs. As

per the analytical solution in Table 2.8, r∗(i) = αn+a1n−[a1−β+(θ+c)πh](n−i) > 0.

When the number of infested trees is high (i ≥ 4), treating them is no longer

beneficial because the treatment is not very effective, and there are almost no healthy

trees to protect.

i π̇h(i) π̈h(i) πh Level q∗(i) r∗(i)
0 - - - 5 $388
1 0.30 0.40 high 5 $0
2 0.36 0.49 medium 5 $17
3 0.47 0.65 medium 5 $331
4 0.82 1.00 low 0 $273
5 - - - 0 $200

Figure 2.8 The optimal solution under Scenario 3 when πh = 0.48. Plot (left):
The optimal treatment decisions vs. infestation level (top) and the reimbursement
vs. infestation level (bottom). Table (right): Categorization of πh, the optimal
treatment decision, and the reimbursement for each infestation level.
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2.3.2.3 Scenario 3: The low second-period attack rate is low or medium,

and the treatment is very effective. Figure 2.9 presents the optimal solution for

the numerical example using the values listed in Table 2.11. The optimal treatment

is to treat only infested trees (I) regardless of the infestation level (i). The OTDs

are thus N0
0 I

4
1A

5
5. This result is primarily due to two factors. First, because the

treatment is very effective, the infested trees that are treated have a high rate of

survival. Therefore treating the infested trees is a viable and economic strategy.

Second, since πl is much lower than π̈l (the cutoff value for the low second-period

attack rate to be considered high), the likelihood of a healthy tree becoming infested

in the second period is considered to be low or medium. Consequently, there is no

need to treat any of the healthy trees in the first period.

i π̈h(i) πh Level q∗(i) r∗(i)
0 - - 0 $625
1 0.42 low 1 $77
2 0.45 low 2 $120
3 0.50 low 3 $164
4 0.66 low 4 $207
5 - - 5 $250

Figure 2.9 The optimal solution under Scenario 3 when πh = 0.40. Plot (left):
The optimal treatment decisions vs. infestation level (top) and the reimbursement
vs. infestation level (bottom). Table (right): Categorization of πh, the optimal
treatment decision, and the reimbursement for each infestation level.

Because the treatment is very effective (ρ ≥ ρ̈), a1 < 0. The reimbursement

when no (resp. all) trees are infested, as per Table 2.5 (resp. Table 2.6), is r∗(0) =

max{0, αn + a1π
ln} = $625 (resp. r∗(n) = max{0, αn + a1n} = $250) and less than

the inspection cost (αn = $750). This means that the local government only needs

to cover a portion of the inspection cost in order for the landowner to participate.

Further, since πh = 0.40 < π̈h(1) = 0.42 < · · · < π̈h(4) = 0.66, πh is low for all

infestation levels. As the analytical solution shown in Table 2.7, the reimbursement
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Table 2.11 Parameters Used under Scenario 3 (πl < π̈l and ρ ≥ ρ̈).

n α β c θ s ρ π πl πh π̈l ρ̈ a1 b1
5 150 294 738 50 100 0.50 0.30 0.25 0.40 0.43 0.37 -100 122

when some trees are infested is r∗(i) = αn + a1n − [a1π̄
l + (θ + c)(πh − πl)](n − i),

which is also less than the inspection cost as a1 < 0. As the number of infested trees

increases, however, r∗(i) increases, and thus, the local government needs to offer a

slightly higher reimbursement to induce the landowner to participate. An increasing

pattern in reimbursement is thus observed in Figure 2.9.

2.3.2.4 Scenario 4: The low second-period attack rate is high, and the

treatment is very effective. We present the optimal solution using the numerical

values summarized in Table 2.12. As shown in Figure 2.10, it is optimal to treat all

trees (A) regardless of the infestation level, making A5
0 the OTDs. In this example,

πl > π̈l (the cutoff value above which the low second-period is considered high), and

thus, the landowner reduces the possibility of any healthy trees from getting infested

in the second period to zero by treating all of them in the first period.

i π̈h(i) πh Level q∗(i) r∗(i)
0 - - 5 $313
1 0.32 high 5 $0
2 0.33 high 5 $0
3 0.34 low 5 $18
4 0.38 low 5 $47
5 - - 5 $75

Figure 2.10 The optimal solution under Scenario 4 when πh = 0.33. Plot (left):
The optimal treatment decisions vs. infestation level (top) and the reimbursement
vs. infestation level (bottom). Table (right): Categorization of πh, the optimal
treatment decision, and the reimbursement for each infestation level.

As per the analytical solution presented in Tables 2.5 and 2.6, the reimbursement

when no trees are infested and when all trees are infested are r∗(0) = max{0, αn +
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(β − (θ+ c)πl)n} = $313 and r∗(n) = max{0, αn+ a1n} = $75, respectively. Both of

them are less than the inspection cost, αn = $500.

Table 2.12 Parameters Used under Scenario 4 (πl ≥ π̈l and ρ ≥ ρ̈)

n α β c θ s ρ π πl πh π̈l ρ̈ a1 b1
5 100 200 900 50 100 0.30 0.30 0.25 0.33 0.23 0.21 -85 -16

When i = 1 or 2, πh is high since πh = 0.33 ≥ π̈h(2) = 0.33 > π̈h(1) = 0.32.

Therefore, the reimbursement is r∗(1) = r∗(2) = 0 as per Table 2.7. Because the

treatment is very effective, treating the infested trees reduces the chance of treated

infested trees from dying. Further, for the healthy trees that are treated, they become

EAB resistant in the second period. The benefit from surviving trees greatly exceeds

the cost of treatment, and thus the local government does not provide any financial

award to the landowner. However, when the infestation level is higher (i = 3, 4),

πh is low as πh = 0.33 < π̈h(3) = 0.34 < π̈h(4) = 0.38, the reimbursement is

r∗(i) = αn+a1i+β(n−i)−(θ+c)πh(n−i). This implies that the local government will

need to provide a positive, albeit very small, reimbursement to induce the landowner

to treat all trees.

2.4 The Treatment-based Reimbursement Model

In this section, we discuss the treatment-based reimbursement (TBR) model, where

the number of treatment trees (q) is verifiable. This can be achieved if the local

government requires the submission of a service receipt issued by a professional tree

care service who provided the EAB treatment. Differently from the previous model,

the infestation level (i) is assumed to be not verifiable. Moreover, the reimbursement

is given to the landowner after treatment, not prior to.

Sequence of events. The interactions between the local government and the

landowner over two consecutive periods if a landowner participates in the cost-sharing

program are illustrated in Figure 2.11. At the start of the first period, both parties

have the same knowledge about the ash trees: the landowner has n ash trees, and
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the attack rate is π. The local government announces a reimbursement schedule, r =

[r(0), r(1), · · · , r(n)], that prescribes the reimbursement corresponds to the number

of treated trees (q). As an example, r(0) is the reimbursement if no trees are treated

(q = 0). After inspection, the landowner finds out the infestation level (i); however,

he does not report this information to the local government. Instead, he decides

the number of trees to be treated (q(i)) based on the infestation level (i) and the

reimbursement schedule (r). After treatment, the landowner submits the service

receipt that shows the number of treated trees to the local government. He then

receives the reimbursement according to the prescribed schedule. If some infested

trees are not treated in the first period (q(i) < i), the consequence of his decision

over the next two periods is depicted in Figure 2.1. Otherwise, it follows Figure 2.2.

Similar to the assumptions made in the previous model, the reimbursement is only

available in the first period. Therefore, a landowner who wishes to participate must

sign-up before the infestation level is revealed. Further, for simplicity, we assume that

the landowner will treat all newly infested trees in the second period if he participates

in the program.

Landowner’s expected utility when he does not participate in the

program. Because the first-period attack rate is π, each tree is assumed to be

infested equally likely. If no trees are infested (i = 0) in the first period, the attack

rate in the second period decreases to πl. The expected number of trees infested in

period two is πln. Consequently, these trees would die, and the landowner would

incur a removal cost of cπln. The expected number of surviving trees at the end of

the second period is therefore π̄ln. The landowner’s utility is the difference between

the value of surviving trees and the cost of removal. Since π̄n is the probability of

zero trees being infested in period one, the weighted expected utility if no trees are

infested is π̄n · (θπ̄ln− cπln). On the other hand, if all trees are infested (i = n), the

landowner incurs a removal cost of cn when all trees are infested. πn is the probability
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Period
1

common knowledge:
LO has n ash trees,
attack rate is π

FS announces rebate
r for a LO

with n ash trees

FS
reimburses
LO r(q(i))

LO identifies
i infested trees

LO treats q(i)
and submit a
receipt to FS

if q(i) < i,
remove (i− q(i)) INT
& ρ̄q(i) IUT trees;
ρq(i) IST trees will
be EAB resistant

if q(i) ≥ i,
remove ρ̄i IUT trees;
(q(i)− i) HT & ρi IST

trees will be
EAB resistant

Period
2

attack rate
↑ to πh among

(n− i) HNT trees

attack rate
↓ πl among

(n− q(i)) HNT trees

LO stands for landowner, FS for local government, INT for infested trees that are not treated, IST for infested trees
that are successfully-treated, IUT for infested trees that are unsuccessfully-treated, HT for healthy trees that are
treated, and HNT for healthy trees that are not treated.

Figure 2.11 Sequence of events for the treatment-based reimbursement model.

that all trees are infested, and therefore the landowner’s weighted expected utility is

πn · (−cn).

If the number of infested trees is i (0 < i < n) in period one, the attack rate

is increased to πh in the absence of any treatment. The death toll is the sum of

the infested trees (i) in the first period and the expected number of trees that will

be infested (πh(n − i)) in the second period. The number of surviving trees at the

end of period two is π̄h(n − i). Because the probability of i trees being infested in

the first period is
(
n
i

)
πiπ̄n−i, the landowner’s weighted expected utility is therefore(

n
i

)
πiπ̄n−i ·

(
θπ̄h(n− i)− c(πh(n− i) + i)

)
.

The landowner’s expected utility, Φ(a0|n), can be computed as follows:

Φ(a0|n) =
∑n

0

(
n
i

)
πiπ̄n−i · ϕ(a0|n, i)

= π̄n ·
(
θπ̄ln− cπln

)
+
∑n−1

i=1

(
n
i

)
πiπ̄n−i ·

(
θπ̄h(n− i)− c(πh(n− i) + i)

)
+ πn ·

(
− cn

)
.

(2.6)
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Landowner’s expected utility when he participates in the program. If

the landowner does not treat all infested trees (q(i) < i), his expected utility would

be

ϕ
(
q(i), r(q(i))|n, i, q(i) < i

)
= θ · [ρq(i) + π̄h(n− i) + ρπh(n− i)] + r(q(i))

−α · n− β · [q(i) + πh(n− i)]− c · [i− ρq(i) + ρ̄πh(n− i)].

(2.7)

The terms in Equation (2.7) are similar to those in Equation (2.2) except that r(i)

has been replaced by r(q(i)). Similarly, the landowner’s expected utility is

ϕ
(
q(i), r(q(i))|n, i, q(i) ≥ i

)
= θ · [q(i)− ρ̄i+ π̄l(n− q(i)) + ρπl(n− q(i))] + r(q(i))

−α · n− β · [q(i) + πl(n− q(i))]− c · [ρ̄i+ ρ̄πl(n− q(i))].

(2.8)

if he treats not only all infested trees but also some healthy trees (q(i) ≥ i). Recall

that µi is defined as an indicator such that µi = 1 when q(i) < i and µi = 0 otherwise.

µ̄i = 1− µi. The landowner’s expected utility from participating in the cost-sharing

program is thus

Φ(q, r|n) =
∑n

0

(
n
i

)
πiπ̄n−i · ϕ

(
q(i), r(q(i))|n, i

)
, (2.9)

where

ϕ
(
q(i), r(q(i))|n, i

)
= µi · ϕ

(
q(i), r(q(i))|n, i, q(i) < i

)
+ µ̄i · ϕ

(
q(i), r(q(i))|n, i, q(i) ≥ i

)
.

(2.10)

Government’s optimization problem. The local government’s objective is

to maximize her net expected utility, which is the difference between her value from

the surviving trees and the reimbursement provided to the landowner. We can write
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the problem of the local government as follows:

max
q,r

Ψ(q, r|n) =
∑n

i=0

(
n
i

)
πiπ̄n−i·

µi ·
(
s · [ρq(i) + (π̄h + ρπh)(n− i)]− β · [i− ρq(i) + ρ̄πh(n− i)]

)
+µ̄i ·

(
s · [q(i)− ρ̄i+ (π̄l + ρπl)(n− q(i))]− β · [ρ̄i+ ρ̄πl(n− q(i))]

)
−r(q(i))



s.t.

Φ(q, r|n) ≥ Φ(a0|n) (IR)

ϕ(q(i)|n, i) ≥ ϕ(j|n, i) ∀ 0 ≤ i ≤ n, 0 ≤ j ≤ n (ICij)

r(q(i)) ≥ r(q(i)− 1) ∀ 1 ≤ q(i) ≤ n (MONi)

q(i), r(q(i)) ≥ 0 ∀ 0 ≤ i ≤ n (NNi)

(2.11)

The objective function in Equation (2.11) is the local government’s net expected

utility given a set of treatment decisions (q) and a reimbursement schedule (r). The

individual rationality (IR) constraint encourages the landowner to participate in the

cost-sharing program by ensuring the landowner’s expected utility is higher if he

participates. The incentive compatibility (ICij) constraints induce the landowner to

pick the treatment decision (q(i)) desired by the local government. The monotonic

(MONi) constraints ensure the reimbursement is non-decreasing in the number of

treated trees. Finally, both the number of treated trees and the reimbursement are

restricted to be non-negative (NNi).

2.4.1 Optimal Solutions

Some parameters that were defined in the previous model, such as ρ̇, ρ̈, π̇l, and π̈l,

are also used in this model. We introduce a few new parameters to characterize

the optimal solutions in addition to the former notation. All of them are used to

characterize the optimal solutions. First, let π̂h := max{0,min{1, πl + a1−b1
ρ̄(θ+c)+β

· (n−

1)}}, which represents a cutoff value that classifies πh.
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Definition 4. As shown in Table 2.13, the high second-period attack rate (πh) is

considered low if 0 ≤ πh < π̂h and high if π̂h ≤ πh ≤ 1.

Table 2.13 Categorization of the High Second-period Attack Rate (πh)

Condition πh

0 ≤ πh < π̂h low
π̂h ≤ πh ≤ 1 high

Next, let π̂l(ρ) := max{π̇l, ρ(θ+c)
ρ̄(θ+c)+β

} when the low second-period attack rate (πl)

is medium (π̇l ≤ πl < π̈l), and the treatment (ρ) is somewhat effective (ρ̇ ≤ ρ < ρ̈).

π̂l(ρ) is less than π̈l because π̈l − ρ(θ+c)
ρ̄(θ+c)+β

= β−ρ(θ+c)
ρ̄(θ+c)+β

> 0 and π̈l > π̇l. We use π̂l(ρ)

to further classify πl.

Definition 5. The low second-period attack rate (πl) is considered as medium-low if

π̇l ≤ πl < π̂l(ρ) and medium-high if π̂l(ρ) ≤ πl < π̈l, as illustrated by Table 2.14.

Table 2.14 Categorization of the Low Second-period Attack Rate (πl)

Condition πl

π̇l ≤ πl ≤ π̂l(ρ) medium-low
π̂l(ρ) < πl < π̈l medium-high

2.4.1.1 Optimal treatment decisions. As illustrated in Figure 2.12, we identify

eight sets of optimal treatment decisions (OTD). First, let N0
0 I

n−1
1 An

n denote not

treating any trees (N) when no trees are infested, treating only infested trees (I)

when the infestation level (i) in the first period is between 1 and n− 1, and treating

all trees (A) when all are infested. Second, N0
0 I

j
1N

n
j+1 represents not treating any

trees when none are infested, treating only infested trees (I) when the infestation

level (i) is between 1 and j, and not treating any trees (N) when the infestation level

is between j + 1 and n. Similarly, N0
0 I

j
1A

n
j+1 depicts not treating any trees when

none are infested, treating all infested trees (I) when the infestation level is at or

below j and treating all trees (A) when more than j trees are infested. N0
0 I

j
1A

n−1
j+1N

n
n

represent the most complex set of decisions where only infested trees are treated (I)
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if the number of trees being infested is between 1 and j, all trees are treated (A) if

the infestation level is higher than j, but none is treated if either no trees or all trees

are infested. N0
0A

j
1N

n
j+1 denotes treating all trees (A) when the infestation level is

between 1 and j while not treating any trees otherwise (i = 0 or j + 1 ≤ i ≤ n).

Aj
0N

n
j+1 deviates slightly from N0

0A
j
1N

n
j+1 in that all trees are treated even when zero

trees are infested. An−1
0 Sn

n denotes treating all trees (A) so long as not of them are

already infested (i < n), but treating some trees (S) when all of them are already

infested. Last, An
0 represents treating all trees regardless of the infestation level.

q(i):

i:

N

0

I

1

I

n− 1

A

n

(a) N0
0 I

n−1
1 An

n

q(i):

i:

N

0

I

1

I

j j + 1

N

n

N

(b) N0
0 I

j
1N

n
j+1
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i:
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0 1
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j

I

j + 1

A

n

A

(c) N0
0 I

j
1A

n
j+1

q(i):

i:

N

0 1

I

j

I

j + 1

A

n− 1

A

n

N

(d) N0
0 I

j
1A

n−1
j+1N

n
n

0i:

Nq(i):

1

A

j

A

j + 1

N

n

N

(e) N0
0A

j
1N

n
j+1

0i:

Aq(i):

j

A

j + 1

N

n

N

(f) Aj
0N

n
j+1

0i:

Aq(i):

n− 1

A

n

S

(g) An−1
0 Sn

n

0i:

Aq(i):

n

A

(h) An
0

Figure 2.12 Eight sets of optimal treatment decisions (OTD).

Figure 2.13 shows when each set of OTDs can be optimal. At the top level, the

tree is divided into three branches based on the value of πl, the low second-period

attack rate.

First, let us discuss the left branch of the tree diagram as the results are

fairly intuitive. When πl is low, either N0
0 I

n−1
1 An

n or N0
0 I

j
1N

n
j+1 can be optimal. A

commonality between the two sets is to treat only the infested trees (I) when the

infestation level is at or below a cutoff value (j) in the first period. This is primarily
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j
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n
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L, M and H stand for πl is low, medium and high, respectively. ML and MH stand for πl is medium-low and
medium-high, respectively. LE, SE and VE stand for the treatment is less effective, somewhat effective, and
very effective, respectively.

Figure 2.13 Optimal Treatment Decisions vs. Key Parameters.

because πl is low, and thus the chance of a healthy tree, not treated in the first

period, becoming infested in the second period is low. The difference between the

two sets of treatment decisions is what to do when the infestation level is above j.

If the treatment (ρ) is very effective, N0
0 I

n−1
1 An

n is optimal. The landowner treats

only infested trees in the first period regardless of the infestation level. On the other

hand, if the treatment is less effective, very few infested and treated trees will survive.

Therefore, the landowner would not treat any trees in the first period, and thus,

N0
0 I

j
1N

n
j+1 is optimal. Unfortunately, the remaining healthy tree(s) will face a higher

attack rate (πh) in the second period. When the treatment is somewhat effective,

either N0
0 I

n−1
1 An

n or N0
0 I

j
1N

n
j+1 can be optimal. Therefore, a numerical enumeration

is needed in order to find the OTDs.

Next, we examine the OTDs when πl is high. As shown by the right branch of

the tree diagram in Figure 2.13, either one of the following sets can be optimal: An
0 ,

An−1
0 Sn

n , A
n−1
0 Nn

n . All three sets of decisions agree to treat all trees in the first period,

except when all trees are infested, to avoid the realization of a high πl in the second

period. When all trees are already infested in the first period, however, the decision
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depends on the treatment effectiveness. If the treatment is very effective, then treating

all trees is optimal because the chance of survival is high. On the contrary, if the

treatment is not effective, then all trees should be removed. Interestingly, when the

treatment is somewhat effective, it can be optimal to treat some (but not all) trees.

The OTDs when πl is medium, as shown in the middle branch of the tree

diagram in Figure 2.13, are driven by the treatment effectiveness. If the treatment is

very effective, either An
0 or N0

0 I
j
1A

n
j+1 can be optimal. Both sets of decisions agree to

treat all trees if the infestation level is beyond some threshold j. Below that value,

the landowner may either treat only infested trees or treat all. If the treatment is

somewhat effective and πl is medium-low, then either An
0 or N0

0 I
j
1A

n
j+1 is optimal,

which is the same as that when the treatment is very effective. On the other hand, if

the treatment is somewhat effective and πl is medium-high, then the set of optimal

decisions is the same as when πl is high and the treatment is somewhat effective,

which is to treat all trees except when all trees are already infested. If the treatment

is less effective, then the value of the high second-period attack rate (πh) determines

the optimal treatment decisions. Specifically, when πh is low, either N0
0A

j
1N

n
j+1 or

Aj
0N

n
j+1 is optimal. The landowner would treat all trees if the infestation level is low,

while not treating any trees if the infestation is high. This result is driven by the

fact that the treatment is less effective and therefore should be used mainly for the

prevention of trees becoming infested in the next period. When πh is high, either

An−1
0 Nn

n or N0
0 I

j
1A

n−1
j+1N

n
n is optimal. Both OTDs agree on treating all trees if the

infestation level surpasses a cutoff value (j), so long as not all of them are already

infested. Again, the main purpose of treating all trees is to prevent healthy trees in

the first period from becoming infested in the second.
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2.4.2 Numerical Insights

In this section, we further examine the impact of the second-period attack rates (πh

and πl) and the treatment effectiveness (ρ) on the optimal solution. Three scenarios

are created by varying πl from low to high to medium.

2.4.2.1 Scenario 1: The low second-period attack rate is low. We present

two examples when the low second-period attack rate is low (πl < π̇l) by varying the

treatment effectiveness (ρ). The treatment is less effective in the first example while

it is more effective in the second. The other input parameters and calculated cutoff

values used in the two examples are listed in Table 2.15.

Table 2.15 Input Parameters Used and Calculated Cutoffs When πl is Low

Input Parameters Calculated Cutoffs
n α β c θ s π πl πh ρ̇ ρ̈ π̇l

5 40 294 738 50 100 0.30 0.20 0.4 0.25 0.37 0.24

Example 1: The treatment is less effective (ρ = 0.20 < ρ̇ = 0.25). The

optimal solution is shown in Figure 2.14. The table on the left presents the menu

of reimbursement based on the number of treated trees (q). The local government

announces this menu at the beginning of period one. The bottom plot on the right

illustrates the OTDs of the landowner are based on the infestation level (i) while the

top plot shows the corresponding reimbursement he would receive. The landowner

would only treat the infested trees (I) when the infestation level is at or below 3 while

not treating any trees (N) when the infestation level is at 0 or above 3. Since πl is low,

treating infested trees when the infestation level is low is beneficial to the landowner

because the attack rate in the second period is decreased to 0.20. However, there is

little benefit in treating the infested trees when most trees are already infested, and

the treatment is less effective. Therefore, the OTDs in this example are N0
0 I

3
1N

5
4 .

We observe that the reimbursement is a step function of the number of the

treated trees (q) in the first period: the landowner receives $64 for treating less than
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q r∗(q)
0 $64
1 $64
2 $64
3 $103
4 $103
5 $103

Figure 2.14 The optimal solution when πl is low and ρ is less effective. Table
(left): The optimal reimbursement schedule. Plot (right): The OTDs (top) and the
corresponding reimbursement (bottom).

three trees while receiving $103 for treatment more than that. Both reimbursement

amounts are much lower than the inspection cost (αn = $200). Further, the

reimbursement the landowner would receive is non-monotonic in the infestation level

(i). In this example, the landowner only gets the higher reimbursement when the

infestation level is three. He would receive a smaller reimbursement otherwise.

Example 2: The treatment is very effective (ρ = 0.40 > ρ̈ = 0.37).

Figure 2.15 illustrates the optimal solution. The landowner would treat all infested

trees regardless of the infestation level. This result is quite intuitive because the

benefit from treating the infested trees sufficiently outweighs the cost. Moreover,

since πl is low, there is no need to treat healthy trees in the first period to prevent

more trees from becoming infested in the second period. The OTDs are thus N0
0 I

5
1A

5
5.

Interestingly, the reimbursement is zero for any number of treated trees, which

suggests that treating infested trees is a superior option for the landowner, and thus,

the local government does not need to provide any financial award.

2.4.2.2 Scenario 2: The low second-period attack rate is high. When πl

is high, the optimal treatment decision is to treat all trees (A) so long as not all

of them are infested in the first period. When all trees are infested, however, the

optimal treatment decision depends on the treatment effectiveness. To illustrate
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q r∗(q)
0 $0
1 $0
2 $0
3 $0
4 $0
5 $0

b

Figure 2.15 The optimal solution when πl is low and ρ is very effective. Table
(left): The optimal reimbursement schedule. Plot (right): The OTDs (top) and the
corresponding reimbursement (bottom).

this relationship, we provide two examples where the treatment is somewhat effective

(ρ = 0.30) in one and very effective (ρ = 0.38) in another. The other input parameters

used and calculated cutoff values in these numerical examples are listed in Table 2.16.

Table 2.16 Input Parameters Used and Cutoff Values When πl is High and ρ is
Somewhat Effective

Input Parameters Calculated Cutoffs
n α β c θ s π πl πh ρ̇ ρ̈
5 40 294 738 50 100 0.40 0.38 0.50 0.25 0.37

Example 1: The treatment is somewhat effective (ρ̇ = 0.25 < ρ = 0.30 <

ρ̈ = 0.37). The optimal solution is presented in Figure 2.16. The OTDs are A4
0S

5
5 ,

where S = 1. When all trees are infested, the landowner would only treat one tree.

The reason for this decision is largely due to the reimbursement schedule, which is

presented in the left table of Figure 2.16. In order to induce the landowner to treat all

trees when not all of them are infested in the first period, the local government sets

the reimbursement to a lower value ($58) for treating any number of trees between 1

and 4 while offering a much higher compensation ($102) for treating 5 trees. Given

that the treatment is only somewhat effective, the landowner would not want to treat

all. Therefore, he would choose to treat the minimum number of trees (q∗(5) = 1) to

get the lower reimbursement.
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q r∗(q)
0 $0
1 $58
2 $58
3 $58
4 $58
5 $102

Figure 2.16 The optimal solution when πl is high (πl = 0.38 > π̈l = 0.35) and ρ
is somewhat effective. Table (left): The optimal reimbursement schedule. Plot
(right): The OTDs (top) and the corresponding reimbursement (bottom).

Example 2: The treatment is very effective (ρ̈ = 0.37 < ρ = 0.38). As

shown in Figure 2.17, the OTDs are A5
0. Because the treatment is very effective,

treating all trees even when all of them are already infested in the first period is

beneficial to the landowner. Further, the local government does not need to provide

any reimbursement.

q r∗(q)
0 $0
1 $0
2 $0
3 $0
4 $0
5 $0

Figure 2.17 The optimal solution when πl is high (πl = 0.38 ≥ π̈l = 0.38) and ρ
is very effective. Table (left): The optimal reimbursement schedule. Plot (right):
The OTDs (top) and the corresponding reimbursement (bottom).
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2.4.2.3 Scenario 3: The low second-period attack rate is medium. As

discussed in Section 2.4.1.1, when πl is medium (π̇l ≤ πl < π̈l), there are two key

factors that determine the optimal treatment decisions. First, when the treatment is

less effective, the value of the high second-period attack rate (πh) determines which set

of treatment decisions among Aj
0, N

0
0A

j
1N

n
j+1, and N

0
0 I

j
1A

n−1
j+1N

n
n is optimal. Second,

when the treatment is somewhat effective, the relationship between πl and ρ decides

what would the set of optimal treatment decisions look like. An example of each

aforementioned scenario is presented next.

2.4.2.3.1 The effect of πh on the OTDs when the treatment is less

effective. We present three examples to illustrate the impact of πh on the optimal

solution by varying its value among 0.35, 0.50 and 0.75. Table 2.17 lists the other

parameters and calculated cutoffs used in all three examples.

Table 2.17 Parameters Used When πl is Medium and ρ is Less Effective

Input Parameters Calculated Cutoffs
n α β c θ s ρ π πl ρ̇ ρ̈ π̇l π̈l π̂h

5 40 294 738 50 100 0.20 0.30 0.25 0.25 0.38 0.24 0.32 0.57

Example 1: Figure 2.18 shows the optimal solution when πh is 0.35, which

is considered low since πh < π̂h. The OTDs are A3
0N

5
4 . Because πl is medium, the

landowner would prefer to avoid the chance of healthy trees getting infested in the

second period. Therefore, he would choose to treat all trees if the infestation level

in the first period is at or below 3. However, when the infestation level is above 3,

he would not treat any trees because the treatment is less effective. To encourage

the landowner to treat all trees, the local government sets a generous reimbursement

of $534 for treating all trees. The reimbursement for any other treatment decision,

however, is only a token amount of $18.

Example 2: As shown in Figure 2.19, the set of optimal treatment decisions,

N0
0A

3
1N

5
4 , when π

h = 0.50 varies slightly from that when πh = 0.35. The landowner
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q r∗(q)
0 $18
1 $18
2 $18
3 $18
4 $18
5 $534

Figure 2.18 The optimal solution when πl is medium, ρ is less effective, and
πh = 0.35. The set of optimal treatment decisions is A3

0N
5
4 .Table (left): The optimal

reimbursement schedule. Plot (right): The OTDs (top) and the corresponding
reimbursement (bottom).

would not treat any trees when no trees have been infested in the first period. This

is because the local government provides a much lower financial award ($252) for

treating all trees. His other treatment decisions when there is at least one infested

tree, however, are the same as those when πh = 0.35 since not treating all trees would

lead to a much higher attack rate in the second period.

q r∗(q)
0 $0
1 $0
2 $0
3 $0
4 $0
5 $252

Figure 2.19 The optimal solution when πl is medium, ρ is less effective, and
πh = 0.50. The set of optimal treatment decisions is N0

0A
3
1N

5
4 . Table (left): The

optimal reimbursement schedule. Plot (right): The OTDs (top) and the
corresponding reimbursement (bottom).

Example 3: When πh is 0.75, it is considered high because πh ≥ π̂h. As per

Figure 2.20, Even though the reimbursement scheme is quite similar to that when

πh = 0.50, the OTDs are I10A
4
2N

5
5 instead. Because the reimbursement for treating all

trees is only $189, the landowner would not treat all trees when the infestation level is

0 or 1. Instead, he would treat only infested trees and take the risk of newly infested
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trees with a medium attack rate (πl = 0.25). However, when the infestation level is

between 2 and 4, treating all trees can prevent healthy trees from becoming infested

in the second period. When all trees are infested, treating them is not optimal since

the treatment is less effective.

q r∗(q)
0 $0
1 $0
2 $0
3 $0
4 $0
5 $189

Figure 2.20 The optimal solution when πl is medium, ρ is less effective, and
πh = 0.75. Table (left): The optimal reimbursement schedule. Plot (right): The
OTDs (top) and the corresponding reimbursement (bottom).

2.4.2.3.2 The effect of the relationship between πl and ρ on the OTDs

when the treatment is somewhat effective. Recall that πl is considered

medium-low if it is less than π̂l(ρ) and medium-high otherwise (see Definition 4).

We present a numerical example for each case. The other parameters and calculated

cutoffs are shown in Table 2.18.

Table 2.18 Input Parameters Used and Calculated Cutoffs When πl is Medium and ρ
is Somewhat Effective

Input Parameters Calculated Cutoffs
n α β c θ s ρ π πh ρ̇ ρ̈ π̇l π̈l π̂l(ρ)
5 40 200 900 50 100 0.20 0.30 0.60 0.16 0.21 0.17 0.21 0.20

Example 1: The OTDs when πl is 0.17, as shown in Figure 2.21, are N0
0 I

2
1A

5
3.

The local government does not provide any financial award unless all trees are treated.

This result is intuitive since πl is medium-low, and the chance of healthy trees

becoming newly infested in the second period is fairly low. Therefore, only infested

trees need to be treated in the first period so long as the infestation level is sufficiently
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low (below 3). However, if the infestation level is already high (at or above 3), the

landowner is better off treating all of them as the treatment is somewhat effective,

and this is the only option for the landowner to receive partial reimbursement.

q r∗(q)
0 $0
1 $0
2 $0
3 $0
4 $0
5 $74

Figure 2.21 The optimal solution when πl is medium-low, and ρ is somewhat
effective. Table (left): The optimal reimbursement schedule. Plot (right): The
OTDs (top) and the corresponding reimbursement (bottom).

Example 2: Figure 2.22 shows that when πl is 0.20, the OTDs are A4
0N

5
5 .

The local government only sets a positive reimbursement when all trees are treated.

As a result, the landowner treats all trees so long as not all of them are already

infested in the first period. This allows the healthy trees to be EAB resistant in the

second period. However, if all trees are already infested, given that the treatment is

somewhat effective, the landowner would not treat any trees.

q r∗(q)
0 $0
1 $0
2 $0
3 $0
4 $0
5 $40

Figure 2.22 The optimal solution when πl is medium-high and ρ is somewhat
effective. Table (left): The optimal reimbursement schedule. Plot (right): The
OTDs (top) and the corresponding reimbursement (bottom).
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2.5 Model Comparisons and Managerial Insights

In this section, we first compare the efficacy of the two cost-sharing models (IBR

in Section 2.3 and TBR in Section 2.4) in several metrics. We then summarize the

managerial insights provided from the analytical solutions and the numerical results

of the two models, as well as from the model comparisons.

2.5.1 Model Comparisons

In addition to the IBR and TBR models, we also consider a third model in which the

local government does not offer a cost-sharing (or NCS) program. We analyze four

scenarios created by varying the treatment effectiveness between very effective and

not very effective and the low second-period attack rate between low, medium and

high.

2.5.1.1 Scenario 1: The low second-period attack rate is low or medium,

and the treatment is not very effective. Table 2.19 presents the expected

number of surviving trees (Etrees), the expected reimbursement (Er), the expected

objective function value (Eobj) of the local government, and the OTDs of the three

models. Under NCS, the local government does not offer any financial award and

therefore, Er is zero. The measure Etrees is computed as the expected number of

surviving trees, assuming that the landowner would not take any actions in mitigating

the negative impact of EAB. That is, the landowner’s OTDs are N5
0 . The Eobj is

computed as the expected value of Ψ(q(i), r(i)|n, i), the objective function value in

Equation (2.5) where both q(i) and r(i) are set to zero, over i. Similarly, Er in IBR is

the expected value of r∗(i) over i while Eobj is the expected value of Ψ(q∗(i), r∗(i)|n, i)

over i. In TBR, Er is the expected value of r∗(q(i)) over i and Eobj is Ψ(q∗, r∗|n), the

objective function value of Equation (2.11).

In this scenario, πl is medium-low (π̇l = 0.24 = π̂l(ρ) = 0.24 < πl = 0.25 < π̈l =

0.32), ρ is less effective (ρ = 0.20 < ρ̇ = 0.25), and πh varies from low (πh = 0.35 or
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Table 2.19 Comparisons under Scenario 1 (πl < π̈l and ρ < ρ̈)

πh = 0.35 πh = 0.50 πh = 0.70
Etrees Er Eobj OTD Etrees Er Eobj OTD Etrees Er Eobj OTD

IBR 2.97 270 -622 N0
0 I

2
1N

5
3 3.07 108 -420 N0

0 I
3
1N

5
4 3.07 71 -386 N0

0 I
3
1N

5
4

TBR 3.77 518 -504 A3
0N

5
4 3.60 202 -329 N0

0A
3
1N

5
4 3.34 90 -244 N0

0 I
1
1A

4
2N

5
5

NCS 2.36 0 -411 N5
0 1.96 0 -537 N5

0 1.43 0 -705 N5
0

Note: Other parameters used: n = 5, α = 40, β = 294, c = 738, θ = 50, s = 100,
ρ = 0.20, π = 0.30, πl = 0.25. Calculated cutoffs: ρ̇ = 0.25, ρ̈ = 0.38, π̇l = 0.24,
π̈l = 0.32, π̂l(ρ) = 0.24, π̂h = 0.57.

0.50 < π̂h = 0.57) to high (πh = 0.70 > π̂h = 0.57). The OTDs are N0
0 I

j
1N

n
j+1 under

IBR. As πh increases, the index j increases. This suggests that the infested trees will

be treated up to a higher infestation level. While the landowner’s OTD vary based

on the value of πh, a commonality among them is that the landowner will treat all

(healthy and infested) trees for some infestation levels. As a result, the expected

number of surviving trees at the end of the planning horizon is the highest under

TBR. Further, despite the higher reimbursement required under TBR, its expected

objective function value is higher than that of IBR.

Interestingly, not offering a cost-sharing program may be desirable to the local

government even though it always leads to the lowest number of surviving trees. Case

in point: When πh is 0.35, the expected objective function value is the highest under

NCS.

2.5.1.2 Scenario 2: The low second-period attack rate is high, and the

treatment is not very effective. We present the numerical results in Table 2.20

when πl is high (πl = 0.40 > π̈l = 0.32), ρ is somewhat effective (ρ̇ = 0.25 < ρ =

0.30 < ρ̈ = 0.37), and πh is low (πh = 0.42 or 0.55 or 0.70 < π̂h = 0.78).

Under IBR, the landowner will treat all trees when the infestation level is below a

certain cutoff (j) and not treat any trees beyond the cutoff (Aj
0N

n
j+1). As π

h increases,

the landowner would treat all trees up to a higher infestation level to prevent the high

risk of getting newly infested trees in the next period–consequently, j increases.
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Table 2.20 Comparisons under Scenario 2 (πl ≥ π̈l and ρ < ρ̈)

πh = 0.42 πh = 0.55 πh = 0.70
Etrees Er Eobj OTD Etrees Er Eobj OTD Etrees Er Eobj OTD

IBR 3.13 189 -447 A2
0N

5
3 3.47 55 -164 A3

0N
5
4 3.58 29 -86 A4

0N
5
5

TBR 3.59 215 -269 A4
0S

5
5 3.59 59 -116 A4

0S
5
5 3.58 0 -58 A4

0N
5
5

(S=3) (S=1)
NCS 1.76 0 -607 N5

0 1.42 0 -701 N5
0 1.02 0 -809 N5

0

Note: Other parameters used: n = 5, α = 40, β = 294, c = 738, θ = 50, s = 100,
ρ = 0.30, π = 0.40, πl = 0.38. Calculated cutoffs: ρ̇ = 0.25, ρ̈ = 0.37, π̇l = 0.26,
π̈l = 0.35, π̂l(ρ) = 0.28, π̂h = 0.78.

The landowner takes a more aggressive approach in TBR. He treats all trees

except when all of them are already infested in the first period. As the reimbursement

from the local government decreases in πh, he treats fewer trees when i = 5. Both

the expected number of surviving trees and the expected objective function value are

highest under TBR. This shows that offering reimbursement based on the number of

treated trees is superior under this scenario.

2.5.1.3 Scenario 3: The low second-period attack rate is low or medium,

and the treatment is very effective. Table 2.21 summarizes the numerical

results when πl is medium (πl = 0.29 ≤ π̇l = 0.29), the treatment is very effective

(ρ = 0.38 > ρ̈ = 0.37), and πh is high (πh = 0.73 or 0.53 or 0.33 > π̂h = 0).

Table 2.21 Comparisons under Scenario 3 (πl < π̈l and ρ ≥ ρ̈)

πh = 0.33 πh = 0.53 πh = 0.73
Etrees Er Eobj OTD Etrees Er Eobj OTD Etrees Er Eobj OTD

IBR 3.44 102 -330 N0
0 I

4
1A

5
5 3.44 33 -147 N0

0 I
4
1A

5
5 3.44 33 -147 N0

0 I
4
1A

5
5

TBR 4.07 337 -204 A5
0 3.44 0 -114 N0

0 I
4
1A

5
5 3.44 0 -114 N0

0 I
4
1A

5
5

NCS 2.38 0 -329 N5
0 1.85 0 -459 N5

0 1.31 0 -589 N5
0

Note: Other parameters used: n = 5, α = 40, β = 294, c = 738, θ = 50, s = 100,
ρ = 0.38, π = 0.30, πl = 0.29. Calculated cutoffs: ρ̇ = 0.25, ρ̈ = 0.37, π̇l = 0.29,
π̈l = 0.38, π̂l(ρ) = 0.38, π̂h = 0.

When πh is 0.33, the OTDs are N0
0 I

4
1A

5
5 under IBR and A5

0 under TBR. Even

though the local government offers a higher expected reimbursement under TBR, the

expected objective function value is higher under TBR as a result of treating all trees

and having a high success rate. As πh gets higher (0.53 or 0.73), the landowner only
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treats the infested trees (N0
0 I

4
1A

5
5) under both IBR and TBR. Because the expected

reimbursement required under TBR is zero, the objective function value is higher.

2.5.1.4 Scenario 4: The low second-period attack rate is high, and the

treatment is very effective. We present the numerical results in Table 2.22 when

πl is high (πl = 0.25 > π̈l = 0.23), the treatment is very effective (ρ = 0.30 > ρ̈ =

0.21), and πh is high (πh = 0.70 or 0.50 or 0.33 > π̂h = 0).

Table 2.22 Comparisons under Scenario 4 (πl ≥ π̈l and ρ ≥ ρ̈)

πh = 0.33 πh = 0.50 πh = 0.70
Etrees Er Eobj OTD Etrees Er Eobj OTD Etrees Er Eobj OTD

IBR 3.95 56 129 A5
0 3.95 53 132 A5

0 3.95 53 132 A5
0

TBR 3.95 39 146 A5
0 3.95 0 185 A5

0 3.95 0 185 A5
0

NCS 2.41 0 -178 N5
0 1.96 0 -273 N5

0 1.43 0 -385 N5
0

Note: Other parameters used: n = 5, α = 40, β = 200, c = 900, θ = 50, s = 100,
ρ = 0.30, π = 0.30, πl = 0.25. Calculated cutoffs: ρ̇ = 0.16, ρ̈ = 0.21, π̇l = 0.19,
π̈l = 0.23, π̂l(ρ) = 0.33, π̂h = 0.

The OTD under both IBR and TBR are A5
0 regardless of the value of π

h. Similar

to the results in the previous scenario, the expected number of trees and the expected

objective function value are highest under TBR, which attests to the superiority of

providing reimbursement based on the number of treated trees over the infestation

level.

2.5.2 Managerial Insights

For the treatment-based reimbursement model, we find three optimal decisions based

on the treatment effectiveness and the second-period attack rates: treat none of the

trees, treat all (healthy and infested) trees, or treat only the infested trees. We provide

a complete characterization of the optimal treatment decision and the reimbursement

analytically for each infestation level.

First, not treating any of the trees is optimal if one of the following conditions

holds: (1) none of the trees have been infested in the first period, and the low second-

period attack rate is either low or medium, i.e., the attack rate in the second period
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would be low or medium if treatment was applied in the first period; (2) all trees

have been infested in the first period, and the treatment is not very effective; or (3)

some of the trees are infested and the high second-period attack rate is low, i.e., the

attack rate in the second period would be low even if no treatments were applied

in the first period. Treating only the infested trees is advantageous only when some

(but not all) trees are infested, and either of the following is true: (i) the treatment

is very effective, and the low second-period attack rate is low or medium, (ii) the

treatment is not very effective, the low second-period attack rate is low, and the high

second-period attack rate is medium or high. In all other cases, treating all trees is

optimal.

Next, the reimbursement is only higher than the inspection cost when some

trees are infested in the first period, the treatment is not very effective, and the high

second-period attack rate is low. In all other scenarios, the reimbursement is no

greater than the inspection cost. When some (but not all) trees are infested in the

first period and the high second-period attack rate is high, the local government does

not need to provide any reimbursement. The landowner will treat all of the infested

trees and may even treat all of the healthy trees. Last, neither the treatment decision

nor the reimbursement is monotonic at the infestation level.

For the treatment-based reimbursement model, the optimal treatment decisions

vary with key parameters, such as the treatment effectiveness and the second-period

attack rates, and a few takeaways are worth mentioning. First, when the infestation

level is low (excluding the case where none of the trees are infested), the local

government always encourages the landowner to treat, at a minimum, all of the

infested trees. Further, the higher the low second-period attack rate is, the more

likely he will be incentivized to treat all (healthy and infested) trees. Two, when

the treatment is very effective, treating all trees can be optimal regardless of the

infestation level. In this case, the reimbursement required to induce the landowner
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to treat all trees is very small, if not zero. Third, when the treatment is not very

effective, and the infestation level in the first period is already high, not treating any

trees may be optimal.

When compared to the infestation-based reimbursement model, the treatment-

based reimbursement model induces the landowner to treat more trees. Even though

the expected reimbursement is higher, the local government achieves a greater

objective function value because more ash trees would survive at the end of the

planning horizon. Under the scenario where the low second-period attack rate is very

low, and the treatment is not very effective, the local government may consider not

offering any cost-sharing program because the high expected reimbursement required

in the treatment-based reimbursement model leads to a lower objective function value.

2.6 Conclusions

In this work, we develop two cost-sharing models for a local government to induce

the participation of a private landowner in mitigating the negative impact of emerald

ash borer on ash trees. Both types of information asymmetry are considered. In

the infestation-based reimbursement model, the local government encounters a moral

hazard problem because the reimbursement, distributed to the landowner prior to

treatment, must incentivize the landowner to treat the desired number of trees based

on the infestation level post-reimbursement. The local government, on the other

hand, deals with an adverse selection problem in the treatment-based reimbursement

model. She designs the reimbursement schedule so that the landowner would not treat

more than the optimal number of trees in order to claim a higher reimbursement.

For both models, we identify possible optimal treatment decision(s) and the

conditions under which each treatment decision can be optimal. We analytically

characterize the optimal treatment decision, and the reimbursement in the infestation-

based reimbursement model. In the treatment-based reimbursement model, however,
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numerical results are used to analyze the reimbursement schedule. Additionally,

we investigate the efficacy of the cost-sharing programs by comparing the two

cost-sharing models to the one where the local government does not offer any

cost-sharing program. We conclude that in all scenarios but one, the treatment-based

reimbursement model achieves the highest number of surviving trees and the highest

objective function value of the local government, even though the reimbursement

required to run the program is the highest. The only exception is when the treatment

is not effective and both of the second-period attack rates are low.

Our future work would focus on two tasks. First, develop a heuristic to find the

optimal solution for the treatment-based reimbursement model. Currently, finding

the optimal treatment decisions and the reimbursement schedule requires a complete

search with all possible combinations of treatment decisions. Because we have been

able to narrow down the structures of the optimal treatment decisions, they can be

used to reduce the search time. Second, integrate the game-theoretic models with

an optimization model to maximize the number of surviving ash trees in both public

and private lands under a limited budget through a public-private partnership. This

integrated framework will provide optimal budget allocations for managing public

trees and running the cost-sharing programs with landowners that are heterogeneous

in the number of ash trees and attack rates.
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CHAPTER 3

DATA-DRIVEN INTEGRATED GAME THEORY-OPTIMIZATION

FRAMEWORK TO PUBLIC-PRIVATE PARTNERSHIPS FOR EAB

MANAGEMENT

3.1 Introduction

Invasive species are plants, animals, or pathogens which are non-native to the

ecosystem under consideration, the introduction of which causes or is likely to cause

a large economic or environmental harm. For example, Xu et al. [129] show the total

economic losses caused by invasive alien species to China were $14.45 billion. Invading

alien species in the United States causes major environmental damages and losses,

adding up to almost $120 billion per year [110]. Kettunen et al. [76] present that

the total cost of invasive species in Europe, based on documented costs, is estimated

to be at least $13.1 billion per year and probably over $21 billion. Emerald ash

borer (EAB) is one of the harmful invasive species, first discovered in southeastern

Michigan in 2002, is a wood-boring insect native to Asia. EAB larvae feed on the

inner bark of ash trees and thus disrupt the tree’s ability to transport water and

nutrients. Emerald Ash Borer was discovered in New Jersey in May 2014 in Somerset

County. As October of 2018, infestations of EAB are found throughout 35 states in

the United States and the Canadian provinces of Ontario, Quebec, New Brunswick,

Nova Scotia, and Manitoba [52], which has killed tens of millions of ash trees since

2002 in North America and caused hundreds of millions of dollars economic losses.

Due to the pressing need to control the spread of EAB, researchers have

developed optimization models to search, treat and remove ash trees [134, 135,

79, 22, 21] or explore the collaboration between the Forest Service and the private

landowners as shown in Chapter 2. Unlike former work, this chapter explores the
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government’s budget allocation strategies to optimize surveillance, treatment, and

removal decisions on both public and private sites at each period of a multi-period

horizon EAB management planning problem.

Most studies on public-private partnerships that use game theory combined

with optimization focus on energy sectors. To our knowledge, this chapter is among

the first to present an integrated game-optimization framework in public-private

partnerships with an application to tackle general natural resources conservation

problems, such as managing the harmful impacts of a forest insect infestation on tree

genera. Specifically, we present a data-driven integrated game-theory-optimization

model to allocate the limited government budget to survey, treat and remove ash trees

among public trees and optimally reimburse private landowners for EABmanagement.

We build a multiple regression model to predict the next period attack rate based

on the real EAB infestation data collected by [57, 83] to consider the uncertainty

of the attack rate. We apply our integrated mathematical model to the case of

New Jersey EAB infestation with various public-private tree distribution scenarios

on a landscape including 5×5 sites, where each site has a size of 0.1 acres. Our

findings provide practical insights into budget allocation among different management

options between public and private locations under different budgets and treatment

effectiveness rates.

3.2 Literature Review and Key Contributions

This section presents a review of the articles that study game-theoretical models

in public service and public-private partnerships, integrated game theory and

optimization approaches, and optimization methods for EAB management, and then

gives this chaper’s key contributions and managerial insights.
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3.2.1 Principal-Agent Models in Public Services

The principal-agent (PA) framework has been applied to many fields in public

services, such as real options, carbon emission reduction, health-care delivery, and

infrastructure design and operation [115, 58, 36, 10, 108]. Chapter 2 builds a PA

framework to study the collaboration between the government and private landowners

to control the impact of an invasive insect (Emerald Ash borer).

Silaghi and Sarkar [115] present a principal-agent model for public-private partnership

investment. They study concession contracts between a private firm and a government

in the presence of moral hazard within a real-options framework. The authors

address the limitation in inducing the firm to exert the effort of previous work

and illustrate the importance of considering the cost of a bailout option. The

PA framework also plays a significant role in reducing carbon emissions, as shown

in the study of [36]. In their paper, Cai and Singham [36] design the optimal

carbon capture and storage system contracts to induce the emitters whose demand

is heterogeneous to participate in the carbon capture and storage system. Fuloria

and Zenios [58] study a principal-agent framework to address the health-care delivery

system with two non-cooperative parties, including a purchaser of medical services

and a specialized provider. The authors propose a dynamic principal-agent model

to consider the best payment system for the purchaser among the fee-for-service

system, the capitation system, and outcomes-adjusted payment system. They

find that the outcomes-adjusted payment system can significantly improve patient

life expectancy. Auriol and Picard [10] focus on the trade-off between allocative

efficiency and the cost of public funds in build-operate-and-transfer concession. When

concession candidates do not have any better information, the government always

avoids build-operate-and-transfer concessions. However, when information becomes

asymmetric, the results depend on the shadow costs of public funds. Paez-Perez and

Sanchez-Silva [108] propose a dynamic principal-agent framework for the cooperation

70



between the public entity and the private entity in infrastructure. The authors

consider the impact of the infrastructure’s natural deterioration on the actions of

entities.

3.2.2 Game Theory and Optimization Models

Game theory and optimization methods have been combined to tackle various

industry and energy-related problems. Dai and Qiao [50] propose a model to maximize

the total profits of wind and conventional power producers from both the energy

market and a new bilateral reserve market by using stochastic programming and game

theory to generate the optimal bidding strategies. A Nash Equilibrium is obtained

by [50] to settle the reserve price between wind and conventional power producers.

Das and Tripathi [51] introduce an adaptive and intelligent energy-efficient

routing technique based on the fusion of non-cooperative two-person zero-sum game

theory and linear programming. Here, the linear programming technique is used to

solve the mixed strategy games of a larger dimension payoff matrix. The comparison

between this combined method and the previous methods shows that this new method

not only reduces energy consumption but also prolongs the lifetime of the network.

To deal with the transboundary water conflicts between two cities, Zeng et al.

[139] integrate cooperative game theory and mathematical programming. The results

from Rubinstein bargaining are chosen to allocate the initial water and pollutant

discharge rights for all players. Based on the solutions of Rubinstein bargaining,

the cooperative game theory model can reallocate the water and pollutant discharge

rights between two cities. Further, the numerical solutions show that the reallocation

can bring the maximum net benefit.

A consumption scheduling mechanism is proposed by [143] for home and neigh-

borhood area load demand management in the smart grid, based on mixed-integer

linear programming and the coordination game. There are two scenarios shown in this
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mechanism, and the effectiveness of both scenarios are verified by using a simulation.

In those two scenarios, the distributed one is solved by using the results of the game

theory problem.

Zamarripa et al. [138] present a multi-objective mixed-integer linear programming

problem assisted with a game theory (the nonzero-sum game) optimization framework

to improve supply chain planning decision-making. The multi-objective problem is

solved by the ϵ−constraint method and the game theory framework is used to support

the decision-making to handle the uncertainty of the cooperative and competitive

scenarios.

3.2.3 Resource Allocation Optimization and EAB Management

Resource allocation is a core problem in many combinatorial optimization problems

[126, 109, 18]. The applications of the budget-constrained resource allocation vary

from agriculture and energy [46, 45, 73, 47], capital asset management and production

planning [30, 34, 90, 61, 32, 33, 23], and healthcare [78, 49, 24, 137, 136]. In invasive

species management, spatio-temporal resource allocation problems have often been

considered due to the dynamic nature of the problem that occurs over a geographical

location [67, 66, 28, 27]. We refer the reader to the review of [29], which discusses the

complexities of the spatio-temporal optimization and resource allocation challenges

as well as mathematical programming approaches in invasive species management.

Various resource optimization methods have been proposed for EABmanagement.

For example, Yemshanov et al. [134] explore the optimal survey resource allocation to

maximize the expected number of transmission pathways covered by survey locations

and the expected number of survey locations that have at least one pest introduction.

Yemshanov et al. [135] study a multi-day surveillance approach to minimize the

expected number of sites with undetected infested trees or minimize the expected

number of undetected infested trees. The authors find that the managers prioritize
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surveying the sites with high host densities and the high risk of infestation to minimize

the expected number of undetected infested trees. However, the managers tend to

survey a larger area at lower sampling densities to minimize the expected number of

sites with undetected infested trees. Kıbış et al. [79] propose a multi-stage stochastic

mixed-integer programming model to explore the optimal surveillance, treatment,

and removal decisions to control the spread of EAB in Bonneville, Minnesota, USA.

The authors show that delaying surveillance is never optimal in almost all infestation

and budget scenarios. The presented model in [79] is extended by [22] by considering

the uncertainty of infestation levels and the impact of distance on the infestation to

study the EAB management in Winnipeg, MB, Canada. Bushaj et al. [21] consider

managers’ risk aversion, and they find that the managers prefer to remove ash trees at

a higher cost instead of treating them as they become more risk-averse. Those papers

mentioned above explore the optimal operations and management planning for EAB

infestation in public areas. Those papers we mentioned above explore the optimal

operations planning of EAB infestation in the public area. Chapter 2 presents a

principal-agent framework to design cost-sharing programs for the government to

induce a private landowner to act on private lands. There are two cost-sharing

programs where the reimbursement is either based on the infestation level or the

number of treated trees shown in their paper, and the optimal treatment decisions

are among treating none of the trees, treating all trees, and treating only infested

trees according to the treatment effectiveness and the second-period attack rate.

3.2.4 Key Contributions and Insights

Despite the recent progress in integrating game theory and mathematical programming

with mainly energy applications, studies that use game theory in combination with

optimization are limited, especially in public services. Furthermore, we are not aware

of any other integrated game-optimization framework in public-private partnerships
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with an application in general natural resources conservation problems, such as

tackling a forest insect infestation.

(a) To our knowledge, this study is among the first to integrate a principal-agent
framework with a mixed-integer programming (MIP) model to motivate public-
private partnerships and guide the government in its budget allocation for social
good.

(b) Game theory and mathematical programming are typically two distinct fields.
Unprecedentedly, we have synchronized both MIP and game-theoretical models’
assumptions and blended them to tackle the resource allocation problem
surrounding the EAB management in public and private sites.

(c) We integrate the solution of the principal-agent model based on Chapter 2
into an MIP to optimize the resource allocation among the public and private
sites to survey, treat, and remove ash trees with a limited government budget.
The model optimizes the treatment budget for public sites, while deciding on
the reimbursement level for tree treatments in private sites. As opposed to
Chapter 2’s constant attack rate, the attack rate is dynamically updated in our
integrated game theory-MIP framework. While the MIP model on the EAB
management in public sites is based on those presented in [79] and [22], different
than those studies, we formulate non-linearities as a function of the attack rate
and former treatment decisions. We linearize all non-linearities that arise due
to the changing attack rates with respect to the treatment level by replacing
them with equivalent constraints and additional binary variables, resulting in a
linear optimization formulation. The treatment and removal cannot exceed the
number of infested trees in the mathematical models of [79] and [22]. However,
we consider a more general model so that treatment can be applied to healthy
trees to make the susceptible trees become EAB resistant.

(d) We consider three types of ash trees in our model: healthy, infested and
dead ash trees, compared to four infestation levels of ash trees in [22] to
synchronize both game theory and MIP models and incorporate the game
theory model’s solutions into the optimization formulation. We assume that
the surveillance occurs in each period in the public sites, and the infestation
realization is computed by infestation dynamics equations in the model. The
infestation dynamics equations in our MIP model compute the infestation rate
as a function of treatment instead of using high or low survey outcomes with
different probabilities. Furthermore, we introduce the success rate of treatment
to account for the effectiveness of treatment and surveillance jointly.

(e) Bushaj et al. [22] apply a distance-dependent approach to estimate the constant
spread probabilities at four 1-km distances from the central site, and Chapter
2 uses a constant attack rate in the next period to compute the newly infested
trees. However, different than both studies, we incorporate the uncertainty in
the next period’s attack rate in each site in each period by building a multiple
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regression model. This regression model is integrated into the MIP model to
dynamically predict the next period’s attack rate depending on the current
attack rate and the surrounding infestation based on a real EAB infestation
data set. We also use this regression model to predict the high attack rate in
the next period in the game theory model instead of using the constant next
period’s attack rate to get optimal treatment, removal, and reimbursement
decisions in private sites. Those decisions are treated as the input in the
modified optimization model to compute the optimal decisions for surveying,
treating, and removing ash trees from the public sites, and the reimbursement
amount for the private sites.

3.3 Integrated Game Theory-Optimization Mathematical Formulation

This section presents notation used throughout the chapter (Section 3.3.1), essential

features and assumptions made regarding the mathematical models (Section 3.3.2),

data analysis to calibrate the attack rates (Section 3.3.3), and the integration of the

game-theoretic and optimization models (Section 3.3.4). Then Section 3.3.5 presents

the mathematical formulation for the integrated game theory and optimization model

that synergizes all elements described in this section.

3.3.1 Model Notation

This section summarizes all notations used in our mathematical model (Table 3.1).
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Table 3.1 Notation

Sets and Indices:
Γu Set of all public sites.
Γr Set of all private sites.
Γ Set of all sites; Γ = Γu ∪ Γr.
Θi Set of all neighboring sites of site i.
T Set of time periods, T = {1, 2, 3}.
i Index for all sites, i ∈ Γ.
j Index for all neighboring sites of the site i, j ∈ Θi

t Index for time periods, t ∈ T .
Input Parameters:
π0
i Initial attack rate, the probability of an ash tree is infested with the EAB at

the beginning in site i ∈ Γ.
N0

i Initial ash trees population in site i ∈ Γ.
I0i Initial number of infested ash trees in site i ∈ Γ.
D0

i Initial number of dead ash trees in site i ∈ Γ.
δt Discount factor at time t which is equal to 1

(1+τ)t
, where τ is a

discount rate.
θD Penalty value of each dead tree.
α Marginal value of a healthy tree.
η Rate of reduction of the attack rate in the previous period, η ∈ [0, 1).
c1 Cost of surveying a tree.
c2 Cost of treating a tree.
c3 Cost of removing a tree.
ψ Total budget available throughout the planning horizon.
ri Reimbursement assigned to the private site i ∈ Γr.
ρ Success rate of treating an EAB infested trees, ρ̄ = 1− ρ.
qS,i Treated healthy trees in private site i ∈ Γr.
qI,i Treated infested trees in private site i ∈ Γr.
ω0 Regression weight for the previous

attack rate on the current high attack rate.
ωI Regression weight for the ratio of neighbors’ infested trees to all trees

in previous period on the current high attack rate.
ni Number of neighboring sites of site i.

Decision variables:
N t

i Total number of ash trees at site i ∈ Γ, at period t.
St
i Number of susceptible ash trees at site i ∈ Γ, at period t.
I ti Number of infested trees at site i ∈ Γ, at period t.

Ḋt
i Number of cumulative dead trees at site i ∈ Γ, at period t.

Dt
i Number of newly dead trees at site i ∈ Γ, at period t.

H̃ t
i Number of treated healthy trees at period t in site i ∈ Γ.

Ĩ ti Number of treated infested trees at period t in site i ∈ Γ.
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Î ti Number of removed infested trees at period t in site i ∈ Γ.

D̂t
i Number of removed dead trees at period t in site i ∈ Γ.

V t
i Number of surveyed trees at site i ∈ Γ, at period t.

W t
i Number of awarded ash trees at site i ∈ Γ, at period t. W t

i = H t
i + ρ · Ĩ ti .

Binary Decision variables:
µt
i An indicator parameter such that µt

i = 1 when the number of treated
and removed infested trees is less than the number of infested trees
in site i ∈ Γ and period t; otherwise, µt

i = 0 in site i ∈ Γ and period t.
µ̄t
i = 1− µt

i.
Linearization-related variables:

xti1 Binary variable, πt+1
h,i = 1 if xti1 = 0 and πt

h,i = ω0 · πt
i + ωI ·

∑
j∈Θi

(Itj−Ĩtj−Îtj)

ni

otherwise.
xti2 Binary variable, all susceptible trees in period t are infested in the

period t+ 1 if xti2 = 1 and not all susceptible trees in period
t are infested in the period t+ 1 otherwise.

At+1
i Substitute variable of µt

i · πt+1
h,i

Bt+1
i Substitute variable of µ̄t

i · πt+1
l,i

yt+1
i,1 Substitute variable of1

2
(πt+1

i + St
i )

yt+1
i,2 Substitute variable of 1

2
(πt+1

i − St
i )

yt+1
i,1,k Breakpoints of (yt+1

i,1 )2; k = 0, 1, 2, ...,m.

yt+1
i,2,k Breakpoints of (yt+1

i,2 )2; k = 0, 1, 2, ...,m.

λt+1
ink Weight of the kth breakpoint (yt+1

ink ) in the linearization function;
n = 1, 2 and k = 0, 1, 2, ...,m.

ωt+1
i,n,k Binary variable to make at most two adjacent λ’s are greater than zero.

3.3.2 Model Features and Assumptions

The transmission of EAB is affected by many factors, such as the uncertain attack

rates and the behavior and decisions of the government and private landowners to

treat and remove ash trees on their specific lands. Therefore, we incorporate some

important features and make assumptions about the possible behavior of the decision-

makers in the integrated model formulation.

(a) If the total number of treated and removed infested trees is less than the number
of the infested trees in site i in period t, the chance of an untreated healthy
tree getting infested in the next period t + 1 increases from πt

i to πt+1
h,i and

decreases to πt+1
l,i otherwise. So the attack rate site i in the period t + 1,

πi
t+1 := µt

iπ
t+1
h,i + µ̄t

iπ
t+1
l,i , where µt

i is an indicator variable such that µt
i = 1
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when the total number of treated and removed infested trees is less than the
infested trees; otherwise, µt

i = 0 in site i in the period t. µ̄t
i = 1− µt

i.

(b) High attack rate πt+1
h,i in period t+1 is estimated by using real EAB infestation

data, as described in Section 3.3.3. The data was collected by [83] and [57] in
Toledo, Ohio, from 2005 to 2011, from 10 different sites, and each site includes
3 to 6 plots, a 400 m2 circular landscape. We assume the attack rate πt+1

l,i in
the period t + 1 is represented by a percent of the attack rate in the previous
period t, i.e., πt+1

l,i = ηπi
t and η ∈ [0, 1).

(c) The untreated or unsuccessfully-treated infested trees will be dead in the next
period for the infested trees, and the treated infested trees will not spread
infestation even though the infested trees may not be treated successfully. On
the other hand, the successfully-treated infested trees and treated healthy trees
will become EAB resistant in the next period.

(d) The government is willing to treat healthy and infested trees to control the
spread of EAB in public sites, and surveillance is applied in public sites in each
period. The private landowner also treats healthy and infested trees in their
private sites to save more ash trees and reduce associated costs with treating
infested and removing dead trees.

(e) The government budget is only used to survey ash trees and treat and remove
infested ash trees in public sites, and reimburse the landowner for their
surveillance, treatment, and removal in private sites. The total budget is not
used for removing the dead trees in public sites because the city has a separate
budget for removing dead public trees. However, the private landowner only
removes dead trees and does not remove infested trees.

(f) In public sites, the treatment can apply to healthy and infested trees, and
removal can only apply to infested trees, as discussed above. We assume that
the private landowners can treat healthy and infested trees on their own sites.
Furthermore, landowners must remove all dead trees in their own sites.

3.3.3 Data Analysis to Estimate Attack Rates

The attack rate is estimated by using the real EAB infestation data, which was

collected from 10 different sites in Maumee Bay State Park in Toledo, Ohio, from

2005 to 2011 [57, 83]. Each site is a forested area with homogeneous tree species and

includes three plots where each plot represents a 0.1 acres circular landscape. Data

consists of the number of individual ash trees that were tracked in these sites and

were not treated or removed. Based on their ash canopy conditions, the ash trees
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are clustered into three classes (healthy, infested, and dead trees). The latitude and

longitude of each plot of each site are also shown in this data [57, 83].

The attack rate is defined as the ratio of the newly infested trees in the current

period to the number of susceptible trees of the previous period. To improve the

accuracy of the EAB infestation data, we remove the observations that involve a

decreasing attack rate because no treatment and removal are applied to those sites.

As a result of the data cleansing exercise, a total of 120 observations were extracted

and used out of a total of 294 observations. After several computational experiments

using different factors, we find the previous average attack rate in each site and the

average number of infested trees from the neighboring sites play a significant role in

the current period’s attack rate. As shown in Table 3.2, the correlation coefficient

between attack rate and previous attack rate is 0.8, and the correlation coefficient

between attack rate and the average neighboring sites infested trees is 0.6. These

results imply a strong linear relationship between attack rate and previous attack rate,

and a strong linear relationship between the attack rate and the average neighboring

infested trees. What is more, the correlation coefficient between the previous attack

rate and the average neighboring infested trees is 0.5, which means the relationship

between those two factors is not strong enough, so we ignore the interaction impact

between the previous attack rate and the average neighboring infested trees on the

attack rate. Here, the neighboring sites refer to areas whose distance from the current

site is less than 1 mile.

Table 3.2 Correlation Coefficients between Any Two Factors

Attack rate Previous attack rate Average neighboring
infested trees

Attack rate 1.0 0.8 0.6
Previous attack rate 0.8 1.0 0.5
Average neighboring 0.6 0.5 1.0
infested trees
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A multiple regression model is developed to analyze the relationship between the

next period’s attack rate and two factors which are mentioned above. Our regression

analysis that is run under the 95% confidence level with no constant in Excel has

resulted in the following equation:

πt+1
i = ω0 · πt

i + ωI ·

∑
j∈Θi

I tj

ni

, (3.1)

where ni is the number of neighboring sites of site i. The coefficients of the previous

attack rate and the average number of infested trees in the neighboring sites are shown

in Table 3.3.

Table 3.3 Coefficient and p-value of Each Variable Used in the Regression
Analysis

Regression Input Coefficients p-value
Previous attack rate (πt

i) ω0 = 1.28 0.00

Average neighboring infested trees (

∑
j∈Θi

Itj

ni
) ωI = 0.06 0.00

Figure 3.1 Comparison between the real attack rate and the predicted attack
rate for 120 observations.

Table 3.3 shows a statistical analysis to compare the predicted and real

observations. Here, the p-value of all variables is less than 0.05, and the statistical

measure R2 is 0.854, implying that the performance of the regression model is good.

Figure 3.1 displays the value of the real attack rate and the predicated attack rate
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from the regression model (3.1). As shown in Figure 3.1, the predicted attack rate

also visually fits well with the real attack rate in all observations.

3.3.4 Game Theory-Optimization-Data Analysis Integration Schema

Figure 3.2 Game Theory, Optimization, and Data Analysis Integration Schema.

The optimization model shown on the left side of Figure 3.2 displays a multi-

stage stochastic mixed-integer programming optimization model [22] that allocates

resources to apply surveillance, treatment, and removal of ash trees over time in

public sites. However, the game-theory model (Section A.2.1), shown on the right

side of Figure 3.2, presents a principal-agent framework to calculate the optimal

reimbursement assigned by the government to induce private landowners to treat and

remove ash trees on their lands to prevent the spread of EAB. Our model integrates

two models, i.e., the optimization model and the game-theory model, to allocate the

resources to both public and private sites.
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Bushaj et al. [22] have explored a five-period time horizon, and three classes

of infestation asymptomatic, symptomatic, and dead trees. Surveillance can be

implemented in each period. However, in our model, all ash trees are divided into

three classes, i.e., healthy trees, infested trees, and dead trees, and surveillance

is applied in each period over the three-period time horizon. Furthermore, the

optimization model calculates the newly expected infested trees by using the impact

rate of each infested tree, which is defined as the number of new infestations per

infested tree. But the game-theory model defines and uses the attack rate as a

given probability of a healthy tree being infested to compute the newly infested

trees. To integrate those two models, we need a unified method to count the newly

infested trees. After performing data analysis using the actual EAB infestation

data mentioned in Section 3.3.3, we estimate the high attack rate by a multiple

regression model and the low attack rate by timing the previous attack rate with a

rate of reduction η, as shown under the ”Data Analysis of Attack Rate” in Figure

3.2. Further, the integration model gets the inputs of the treatment, removal, and

reimbursement from the game-theory model with the attack rate calculated by the

regression model or timing a rate η.

Based on the results of the game theory model, when there are no infested

trees on the private land, both treatment and reimbursement depend on the low

attack rate of the next period (πt+1
l,i ). If πt+1

l,i is not large, the landowner has the

incentive not to treat any trees (qS,i = qI,i = 0). The reimbursement (ri) decreases

the treatment effectiveness (ρ). Further, the reimbursement is no greater than the

surveillance cost (c1N
0
i ) if the treatment is very effective; otherwise, it is greater than

the surveillance cost. If πt+1
l,i is large, the private landowner is induced to treat all trees

(qS,i = N0
i − I0i , qI,i = I0i ). The reimbursement (ri) decreases in π

t+1
l,i . Furthermore, it

is less than the surveillance cost when πl is very high and greater than the surveillance

cost otherwise.
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When all trees are already infested in the private land, the treatment effec-

tiveness plays a significant role in both treatment and reimbursement. If the treatment

is not very effective, the private landowner is just assigned the surveillance cost as

the reimbursement, and the landowner does not treat any trees (qS,i = qI,i = 0). On

the contrary, if the treatment is very effective, the private landowner is induced to

treat all trees (qS,i = N0
i − I0i , qI,i = I0i ) even if the reimbursement is less than the

surveillance cost.

When there are some trees (not all) infested in the private land and the

treatment is very effective, the government encourages the private landowner to only

treat infested trees (qS,i = 0, qI,i = I0i ) if the next period’s low attack rate is not very

high and the private landowner is induced to treat all trees (qS,i = N0
i − I0i , qI,i =

I0i )otherwise. Further, the private landowner can get the reimbursement when the

next period’s high attack rate is not very high, and no reimbursement otherwise.

When there are some trees (not all) infested in the private land and the

treatment is not very effective, the private landowner does not have enough incentive

to treat any trees even with a reimbursement which is higher than the surveillance cost

when the next period’s high attack rate is low. When the next period’s high attack

rate is not low, the landowner is induced to treat all infested trees (qS,i = 0, qI,i = I0i )

if the next period’s low attack rate is not very high; otherwise, the landowner prefers

to treat all trees (qS,i = N0
i − I0i , qI,i = I0i ). The results from the game theory model

will be inputted into the integrated model to mimic the surveillance, treatment, and

removal decisions on the private land and guide the allocation of the total budget

among public and private sites.

Since we use the attack rate to compute newly infested trees, we have two

different types of non-linear terms in constraints, one is a product of a binary variable

and a continuous variable, and another is a product of two continuous variables. As
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a result, we provide the corresponding linearization equivalent equations to replace

those non-linear terms in our constraints.

3.3.5 Mathematical Formulation

The mathematical formulation for our integrated game theory and optimization model

(3.2)-(3.32) is given below.

max
3∑

t=1

δt
∑
i∈Γ

(
α ·W t

i − θD · (I ti − ρĨ ti − Î ti )
)

(3.2)

Subject to:

(a) Constraints that apply to both private and public sites

• Initiation on Population, infestation, and dead trees:

N1
i = N0

i ∀i ∈ Γ (3.3)

I1i = I0i ∀i ∈ Γ (3.4)

Ḋ1
i = Ḋ0

i ∀i ∈ Γ (3.5)

• Population constraints:

N t+1
i = N t

i − Î ti − D̂t
i ∀i ∈ Γ and t = 1, 2 (3.6)

• Healthy trees:

H t
i = N t

i − Ḋt
i − I ti ∀i ∈ Γ, and t ∈ T (3.7)

• Awarding trees:

W t
i = H t

i + ρ · Ĩ ti ∀i ∈ Γ, and t ∈ T (3.8)

• Susceptible tree population can be infested in the next period after
treatment and removal:

St
i = H t

i − H̃ t
i ∀i ∈ Γ, and t ∈ T (3.9)
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• Believed attack rate:

πt+1
h,i = min{1, ω0 · πt

i + ωI ·
∑

j∈Θi

(Itj−Ĩtj−Îtj)

ni
} ∀i ∈ Γ and t = 1, 2

(3.10)
πt+1
l,i = ηπt

i ∀i ∈ Γ and t = 1, 2 (3.11)

πi
1 = π0

i ∀i ∈ Γ (3.12)

πi
t+1 = µt

i · πt+1
h,i + µ̄t

i · πt+1
l,i ∀i ∈ Γ and t = 1, 2 (3.13)

• Believed number of newly infestations before treatment and removal:

I t+1
i = πt+1

i St
i ∀i ∈ Γ and t = 1, 2 (3.14)

• Believed number of newly dead trees before treatment and removal:

Dt+1
i = I ti − ρ · Ĩ ti − Î ti ∀i ∈ Γ and t = 1, 2 (3.15)

• Believed number of cumulative dead trees before treatment and removal:

Ḋt+1
i = Ḋt

i − D̂t
i +Dt+1

i ∀i ∈ Γ and t = 1, 2 (3.16)

(b) Treatment and removal decisions in public sites (i ∈ Γu)

H̃ t
i ≤ N t

i − (I ti +Dt
i) ∀i ∈ Γu and t ∈ T (3.17)

Ĩ ti + Î ti ≤ I ti ∀i ∈ Γu, t ∈ T (3.18)

Ĩ ti + Î ti ≥ µ̄t
i · I ti ∀i ∈ Γu, t ∈ T (3.19)

D̂t
i = 0 ∀i ∈ Γu, t ∈ T (3.20)

(c) Treatment and removal decisions only in private sites (i ∈ Γr)

H̃1
i = qS,i ∀i ∈ Γr (3.21)

Ĩ1i = qI,i ∀i ∈ Γr (3.22)

H̃ t
i = 0 ∀i ∈ Γr and t = 2, 3 (3.23)

Ĩ2i = I2i ∀i ∈ Γr (3.24)

Ĩ3i = 0 ∀i ∈ Γr (3.25)

Î ti = 0 ∀i ∈ Γr, t ∈ T (3.26)

D̂1
i = D0

i ∀i ∈ Γr, t ∈ T (3.27)

D̂t+1
i = I ti − ρ · Ĩ ti ∀i ∈ Γr and t = 1, 2 (3.28)
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(d) Surveillance decisions:
V 1
i = N1

i ∀i ∈ Γu (3.29)

V t+1
i = Ĩ ti + St

i ∀i ∈ Γu and t = 1, 2 (3.30)

(e) Budget (private reimbursement and public treatment, removal, and surveillance
costs):

∑
i∈Γr

ri + c1 ·
∑
i∈Γu

3∑
t=1

V t
i + c2 ·

∑
i∈Γu

3∑
t=1

(H̃ t
i + Ĩ ti ) + c3 ·

∑
i∈Γu

3∑
t=1

(Î ti + D̂t
i) ≤ ψ

(3.31)

(f) Non-negativity and binary restrictions:

H̃ t
i , Ĩ

t
i , Î

t
i , D̂

t
i , N

t
i , I

t
i , D

t
i , S

t
i , H

t
i , V

t
i ≥ 0 µt

i ∈ {0, 1} ∀ t ∈ T, i ∈ Γ (3.32)

The objective function (3.2) represents the utility of the government over the

planning horizon, which is defined by the discounted value of surviving trees minus

the penalty on the infested, and dead trees. Equations (3.3), (3.4), and (3.5) present

the initial values for the number of healthy, infested, and dead ash trees, respectively,

in each site i at the beginning of the planning horizon. Equation (3.6) computes

the remaining population of the ash trees after some of the infested and dead trees

are removed from the ash tree population. Equation (3.7) represents the number of

healthy trees at each period in each site, and Equation (3.8) shows the number of

awarding trees at each period in each site. Equation (3.9) estimates the number of

healthy trees susceptible to an infestation in the next period. We assume that the

successfully treated infested trees will become healthy and EAB resistant in the next

period, and treated healthy trees also will be EAB resistant in the next period. As

a result, as shown in Equation (3.9), the number of susceptible trees, which may be

infested in the next period, equals the number of healthy trees minus the number of

treated healthy trees in period t.

Our multiple regression model described in Section 3.3.3 utilizes the real data

on the EAB infestation to predict the high attack rate in the next period considering

the current attack rate and the average infestation from the surrounding sites. We
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also must guarantee that the high attack rate should not exceed 1. Consequently, the

high attack rate is calculated using the following equation (Equation (3.10)):

πt+1
h,i = min{1, ω0 · πt

i + ωI ·
∑

j∈Θi

(Itj−Ĩtj−Îtj)

ni
} (∀i ∈ Γ; t = 1, 2)

Equation (3.10) defines the high attack rate at period t+1 in site i (i ∈ Γ) when

the total number of treated and removed infested trees is less than the number of the

infested trees at period t in site i (i ∈ Γ). Equation (3.10), which is non-linear, is

replaced with the following constraints to obtain its equivalent linearization for each

i ∈ Γ and t = 1, 2:

πt+1
h,i ≤ 1 (3.10.1)

πt+1
h,i ≤ ω0 · πt

i + ωI ·

∑
j∈Θi

(I tj − Ĩj − Î tj)

ni

(3.10.2)

1− πt+1
h,i ≤ xti1 ·M (3.10.3)

ω0 · πt
i + ωI ·

∑
j∈Θi

(I tj − Ĩj − Î tj)

ni

− πt+1
h,i ≤ (1− xti1) ·M (3.10.4)

where M is a big number and xti1 is a binary variable, which takes a value of zero

if ω0 · πt
i + ωI ·

∑
j∈Θi

(Itj−Ĩj−Îtj)

ni
> 1, implying that πt+1

h,i = 1, and one, i.e., πt+1
h,i =

ω0 · πt
i + ωI ·

∑
j∈Θi

(Itj−Ĩj−Îtj)

ni
, otherwise.

Equation (3.11) defines the low attack rate when the government or the private

landowner applies treatment or removal to all infested trees at period t in site i (i ∈ Γ),
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which means Ĩ ti + Î ti ≥ I ti . If all infested trees are treated or removed, the attack rate

will become πt+1
l,i , which must be lower than the previous attack rate, and we use a

rate η as a multiplier of the current attack rate to compute the low attack rate. The

attack rate is initialed at the beginning (period 1) for each site by Equation (3.12).

Equation (3.13) computes the attack rate at period t+ 1 in each site after treatment

and removal are applied in period t as a function of the high, and low attack rates

and treatment and removal level applied. Specifically, the next period’s attack rate

increases or decreases depending on the number of treated and removed infested trees

at the current period in site i (i ∈ Γ). Further, the attack rate will become the high

attack rate (πt+1
h,i ) if not all infested trees are treated or removed, i.e., µt

i = 1, (See

Equation (3.10)) and the low attack rate (πt+1
l,i ) otherwise, i.e., µt

i = 0 (See Equation

(3.11)).

Further, Equation (3.13) is a non-linear constraint and can be linearized by the

following constraints:

πt+1
i = At+1

i +Bt+1
i (3.13.1)

LB1 · µt
i ≤ At+1

i ≤ UB1 · µt
i (3.13.2)

πt+1
h,i − UB1 · µ̄t

i ≤ At+1
i ≤ πt+1

h,i − LB1 · µ̄t
i (3.13.3)

LB2 · µ̄t
i ≤ Bt+1

i ≤ UB2 · µ̄t
i (3.13.4)

πt+1
l,i − UB2 · µt

i ≤ Bt+1
i ≤ πt+1

l,i − LB2 · µt
i (3.13.5)
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where LB1 = 0, UB1 = 1 and LB2 = 0, UB2 = η, are the lower and upper

bounds of πt+1
h,i and πt+1

l,i , respectively. At+1
i is the substitute variable of µt

i · πt+1
h,i

and Bt+1
i is the substitute variable of µ̄t

i · πt+1
l,i . Further, πt+1

i can be represented by

(At+1
i + Bt+1

i ), and At+1
i as well as Bt+1

i are restricted by the linear constraints from

Equation (3.13.2) to (3.13.5). When some of the infested trees are left untreated or

unremoved (µt
i = 1), Equation (3.13.2) to (3.13.5) become

LB1 ≤ At+1
i ≤ UB1

πt+1
h,i ≤ At+1

i ≤ πt+1
h,i

0 ≤ Bt+1
i ≤ 0

πt+1
l,i − UB2 ≤ Bt+1

i ≤ πt+1
l,i − LB2

As a result, At+1
i = πt+1

h,i and Bt+1
i = 0, and thus πt+1

i = πt+1
h,i . When all infested trees

are treated or removed (µt
i = 0), Equation (3.13.2) to (3.13.5) become

0 ≤ At+1
i ≤ 0

πt+1
h,i − UB1 ≤ At+1

i ≤ πt+1
h,i − LB1

LB2 ≤ Bt+1
i ≤ UB2
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πt+1
l,i ≤ Bt+1

i ≤ πt+1
l,i

As a result, At+1
i = 0 and Bt+1

i = πt+1
l,i , and thus πt+1

i = πt+1
l,i .

As shown in Equation (3.14), a susceptible tree in period t has a πt+1
i chance of

being infested in the next period, so the number of newly infested trees is that the

susceptible trees in period t multiplied by the period t+1 attack rate. Equation (3.14)

is the product of two continuous variables which should be linearized. To perform

linearization, first, the product of two continuous variables should be converted into

a separable function. We introduce two new variables, yt+1
i,1 and yt+1

i,2 , which are,

respectively, defined as:

yt+1
i,1 = 1

2
(πt+1

i + St
i )

yt+1
i,2 = 1

2
(πt+1

i − St
i )

where 0 ≤ yt+1
i,1 ≤ 1+N0

i

2
and −N0

i

2
≤ yt+1

i,2 ≤ 1
2
. Now, πt+1

i St
i can be replaced by the

separable function:

(yt+1
i,1 )2 − (yt+1

i,2 )2

Then, we use the piecewise linearization technique of [14] to present the equivalent

linearization of (yt+1
i,1 )2 − (yt+1

i,2 )2. Let f(x) = x2. f(x) have x0, x1, x2,..., xm

breakpoints, and f(x1), f(x2), f(x3), f(x4) be related corresponding function values.

If LB ≤ x ≤ UB, we may choose the m + 1 breakpoints: xk = LB + k·(UB−LB)
m

(k = 0, 1, ...,m), respectively. Given that λk represents the kth non-negative weights,

f(x) can be replaced with its approximate function, f̃(x), which can be represented
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by linear equations as given below:

f̃(x) =
m∑
k=0

λkf(xk)

x =
m∑
k=0

λkxk

m∑
k=0

λk = 1

with added restrictions that at most two adjacent λ’s are greater than zero, i.e.,

λk ≤ βk + βk+1 and k = 0, 1, ..., (m − 1), λm ≤ βm, and
m∑
k=0

βk = 1 (βk is a

binary variable). Using the linearization method shown above and letting ˜̃g(yt+1
i,1 , y

t+1
i,2 )

denote the approximated function value of (yt+1
i,1 )2 − (yt+1

i,2 )2, and ˜̃g(yt+1
i,1 , y

t+1
i,2 ) can be

represented by the following linear constraints:

˜̃g(yt+1
i,1 , y

t+1
i,2 ) =

m∑
k=0

λt+1
i,1,kf(y

t+1
i,1,k)−

m∑
k=0

λt+1
i,2,kf(y

t+1
i,2,k) (3.14.1)

yt+1
i,1 =

m∑
k=0

λt+1
i,1,ky

t+1
i,1,k (3.14.2a)

yt+1
i,2 =

m∑
k=0

λt+1
i,2,ky

t+1
i,2,k (3.14.2b)

m∑
k=0

λt+1
i,1,k = 1 (3.14.3a)

m∑
k=0

λt+1
i,2,k = 1 (3.14.3b)
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λt+1
i,1,k ≤ βt+1

i,1,k + βt+1
i,1,k+1, λ

t+1
i,1,m ≤ βt+1

i,1,m k = 0, 1, ..., (m− 1) (3.14.4a)

λt+1
i,2,k ≤ βt+1

i,2,k + βt+1
i,2,k+1, λ

t+1
i,2,m ≤ βt+1

i,2,m k = 0, 1, ..., (m− 1) (3.14.4b)

m∑
k=0

βt+1
i,1,k = 1 (3.14.5a)

m∑
k=0

βt+1
i,2,k = 1 (3.14.5b)

βt+1
i,1,k ∈ {0, 1} k = 0, 1, ...,m (3.14.6)

Because ˜̃g(yt+1
i,1 , y

t+1
i,2 ) denotes the approximated function value of πt+1

i St
i , its

value may exceed the value of St
i . To ensure that the number of newly infested trees,

I t+1
i , is not more than St

i , we incorporate the following function setting I t+1
i to the

minimum of ˜̃g(yt+1
i,1 , y

t+1
i,2 ) and St

i , i.e.,

I t+1
i = min(˜̃g(yt+1

i,1 , y
t+1
i,2 ), St

i ). (3.14.7)

Here we have a new non-linear constraint which can be lineareized by the following

constraints:

I t+1
i <= ˜̃g(yt+1

i,1 , y
t+1
i,2 ) (3.14.7a)

I t+1
i <= St

i (3.14.7b)
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˜̃g(yt+1
i,1 , y

t+1
i,2 )− I t+1

i <= xti2 ·M (3.14.7c)

St
i − I t+1

i <= (1− xti2) ·M (3.14.7d)

where xti2 is a binary variable and M is a big number. the approximated expression’s

value is not more than St
i , I

t+1
i = ˜̃g(yt+1

i,1 , y
t+1
i,2 ) and xti2 takes value zero, otherwise,

I t+1
i = St

i and x
t
i2 takes value one.

We assume that the infested trees will be dead in the next period if those trees

are not treated, or treatment is unsuccessful. Based on this assumption, Equation

(3.15) and Equation (3.16) give the number of newly dead trees and the number of

total dead trees at period t+1 in site i (i ∈ Γ) after treatment and removal are applied

at period t in that site respectively. Equation (3.17) shows that the treatment can be

applied to healthy trees in public sites, and those treated healthy trees will become

EAB resistant in the next period. Both treatment and removal can be applied to the

infested trees in public sites in each period, as shown in Equation (3.18).

As shown in Equation (3.19), all infested trees are treated or removed in period

t in site i (i ∈ Γ) if µt
i = 0, and not all infested trees are treated or removed if µt

i = 1.

The right-hand side of constraint (3.19) is a non-convex term which is a product of

a binary variable µ̄t
i and a continuous variable I ti for which 0 ≤ I ti ≤ N0

i holds. We

introduce a continuous variable zti to represent the term µ̄t
i · I ti , and the equivalent

linearization constraints to replace Equation (3.19) are presented below:

0 ≤ zti ≤ N0
i · µ̄t

i ∀i ∈ Γu, t ∈ T (3.19.1)

I ti −N0
i · µt

i ≤ zti ≤ I ti ∀i ∈ Γu, t ∈ T (3.19.2)
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Ĩ ti + Î ti ≥ zti ∀i ∈ Γu, t ∈ T (3.19.3)

When µt
i = 0, the above constraints become:

0 ≤ zti ≤ N0
i ∀i ∈ Γu, t ∈ T

I ti ≤ zti ≤ I ti ∀i ∈ Γu, t ∈ T

Ĩ ti + Î ti ≥ zti ∀i ∈ Γu, t ∈ T

The above three constraints imply that zti = I ti and Ĩ
t
i + Î ti ≥ I ti , i.e., the treated and

removed infested trees are not less than the infested trees in public site i in period t.

On the contrary, when µt
i = 1, Equations (3.19.1) to (3.19.3) become:

0 ≤ zti ≤ 0 ∀i ∈ Γu, t ∈ T

I ti −N0
i ≤ zti ≤ I ti ∀i ∈ Γu, t ∈ T

Ĩ ti + Î ti ≥ zti ∀i ∈ Γu, t ∈ T

The above three constraints indicate that zti = 0 and Ĩ ti + Î ti ≥ 0, the total number of

treated and removed infested trees are non-negative in public site i in period t.
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Equation (3.20) implies that dead trees in public sites will not be removed, nor

will any budget be allocated because another specified city budget is used to remove

dead public trees. Equations (3.21) and (3.22) represent the treatment decisions for

the private land taken from the game-theory model as shown in Appendix A.2.1 and

used as an input into the optimization model. Further, the treatment decisions on

healthy trees and infested trees in private sites in period one are shown in Equations

(3.21) and (3.22), respectively. The private landowner will treat only infested trees

without considering the treatment of healthy trees in the second period; however, no

trees will be treated in the third period, which is implied by Equations (3.23), (3.24),

and (3.25), respectively. Furthermore, Equations (3.26), (3.27), and (3.28) imply that

the private landowner will only remove all dead trees in each period.

Equation (3.29) illustrates that all ash trees will be surveyed at the beginning

period in all public sites. According to assumptions that untreated infested trees will

be dead in the next period, treated healthy trees will become EAB resistant. As a

result, it is only necessary survey treated infested trees and susceptible trees in the

previous period. As shown in Equation (3.30), the number of surveyed trees at period

t + 1 is equal to the number of treated infested trees plus the number of susceptible

trees at period t in each public sites.

The total budget imposed on the reimbursement allocated to the private sites

and the total cost of surveillance, treatment, and removal over the planning horizon

allocated to the public sites is implied by Equation (3.31). According to the budget

constraint (3.31), the expenses related to the government’s reimbursement given to

the private landowners plus the cost of surveillance, treatment, and removal of ash

trees in the public sites over all periods must be less than or equal to the total budget

available throughout the planning horizon. The reimbursement is an input obtained

from the solution of the game-theory model. Equation (3.32) assures that all original

decision variables are non-negative, and the indicator variable µt
i is binary.
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3.4 Numerical Solutions

In this section, we present numerical solutions under different cases by considering

different budget levels, different ash tree distribution levels in public sites, and

different success rate of treatment levels which all play a significant role on optimal

decisions in both public and private sites. We applied our integrated principal-agent

framework with mixed-integer optimization model to find the optimal treatment and

removal decisions in studied 5×5 sites at each period to maximize the utility of

government over the planning horizon.

3.4.1 Model Application and Data

Based on the real EAB infestation data collected from 14 different surveyed areas in

Maumee Bay State Park in Toledo, Ohio, from 2005 to 2011 [57, 83], and each area

includes three sites. Each site is a 0.1-acre circular landscape. As a result, the study

area was divided into 0.1-acre survey units (we call sites in this chapter). We study a

5×5 girdded area, because most adults fly less than 328 feet when ash trees are near

shown in [84]. We calculate the population of ash trees in all sites in each area. As

shown in Figure 3.3, we found the minimum population among those sites is 1 and

the maximum number of ash trees among those sites is 42, and the medium number

of ash trees among all sites is 11. We treat the sites as sites with a low density of ash

trees where the number of ash trees is less than or equal to 11; otherwise, we treat

the sites as sites with a high density of ash trees.
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Figure 3.3 Population of ash trees in all plots.

The average number of ash trees among the low-density sites is around seven,

and the average number of ash trees among the high-density sites is around 24. So

we use seven as the low distribution level of ash trees and 24 as the high distribution

level of ash trees in public sites. Furthermore, The mean number of ash trees in

single-family house land is around one [122]. So we use three as the population of

ash trees in each private site to cover the maximum population of ash trees in private

lands.

The ash trees are present in specific public areas, such as streets and parks. We

consider two scenarios on different levels (low and high) of ash tree distribution in

public sites to show the numerical solutions. We consider the street public sites to

have a low distribution level of ash trees because a certain space between two trees is

required, and the public park public sites have a high distribution level of ash trees.

Figure 3.4 presents the four different cases on the different ash trees distributions levels

and the different number of public sites. The number of ash trees in each private site

is 3, and the number of ash trees in each public site is 7 for street scenarios, and each

private site has three ash trees, and each public site has 24 ash trees in both two park

scenarios.
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Figure 3.4 Different distribution level of ash trees in the public sites. The
number of ash trees in each private site, each public street site, public park site are
3, 7, 24, respectively.

As shown in Figure 3.4, Street 1 shows the street scenario that there are 21

private sites and there are four public sites; Street 2 represents the scenario that has

16 private and nine public sites; Street 3 presents the street scenario which has 12

public sites and 13 private sites. Park 1 shows the park scenario where there are 21

private sites and four public sites, and Park 2 presents the park scenario, which has

16 private sites and nine public sites.

We assume we survey a tree by branch sampling method in the public sites,

and the surveillance cost per tree is estimated $124, and the cost of treating an

infested tree is estimated at $180 from [132]. The monetary value of an alive ash tree

was estimated at $72 from [79]. Morris County took down ash trees along county

rights-of-ways in Morris Township and Long Hill in the first round of cutting in

2019. The Board of Freeholders approved a resolution to award a $498,465 contract

to Landing-based Tree King for the first round of tree removal (The contractor is

responsible for removing and properly recycling the downed trees), and this initial

project includes the removal of 880 trees in total in Long Hill and Morris Township

[105]. So we estimate that the cost of removing an ash tree is $300.

As shown in the cost-sharing model, the optimal treatment decision in private

sites is mainly driven by the success rate of treatment (ρ) and the low second-period

attack rate (π2
l,i). To distinguish the success rate of treatment and the low second-

period attack rate in different levels, we define the following parameters. First, let

ρ̇ := β
s+β+θ+c

and ρ̈ := β
θ+c

, then 0 < ρ̇ < ρ̈. Because the cost of treatment is generally
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much lower than the sum of the valuation of a live ash tree and the removal cost, ρ̈ is

likely to be small. Then we can categorize the treatment effectiveness (ρ) into three

levels.

Definition 6. As summarized in Table 3.4, the treatment is considered to be less

effective if ρ ∈ [0, ρ̇), somewhat effective if ρ ∈ [ρ̇, ρ̈), and very effective if ρ ∈ [ρ̈, 1].

Definition 7. As shown in Table 3.5, the low second-period attack rate (π2
l,i) in site i

is considered low if π2
l,i ∈ [0, π̇2

l,i), medium if π2
l,i ∈ [π̇2

l,i, π̈
2
l,i), and high if π2

l,i ∈ [π̈2
l,i, 1].

Table 3.4 Categorization of Treatment
Effectiveness (ρ)

Condition ρ
ρ ∈ [0, ρ̇) less effective
ρ ∈ [ρ̇, ρ̈) somewhat effective
ρ ∈ [ρ̈, 1] very effective

Table 3.5 Classification of the Low
Second-period Attack Rate (π2

l,i)

Condition π2
l,i

π2
l,i ∈ [0, π̇2

l,i) low
π2
l,i ∈ [π̇2

l,i, π̈
2
l,i) medium

π2
l,i ∈ [π̈2

l,i, 1] high

In the following sections, we will explore the impact of different factors on the

optimal treatment and removal decisions among public and private sites and run 30

scenarios by different initial infestation in private sites where the infestation follows

binomial distribution (I0i ∼ B(N0
i , π

0
i ) and i ∈ Γ). In Section 3.4.2, we focus on

the budget and the success rate of treatment’s effect on the optimal treatment and

removal decisions, respectively. In Section 3.4.3, we study the optimal action decisions

for the different numbers of private sites with and without the cost-sharing program.

In Section 3.4.4, we explore the impact of the different distribution levels of ash trees

in the public sites on the budget allocations and management options on both private

and public sites.

3.4.2 Different Budget Levels and Success Rate of Treatment Levels

We present nine cases by considering three different budget levels ($15000, $25000,

$35000) and three success rate of treatment levels (ρ = 0.2, 0.4, 0.6). Here, we focus
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on street 2 type area where there are nine public sites and 16 private sites. The input

parameters and cutoff values used are listed in Table 3.6.

Table 3.6 Input Parameters Used and Calculated Cutoffs for All Budget Levels

Input Parameters Calculated Cutoffs
c1 c2 c3 θ α π0

i π2
l,i ρ π̇2

l,i π̈2
l,i ρ̇ ρ̈

124 180 300 50 72 0.4 0.32
0.2 0.27 0.39

0.30 0.510.4 0.33 0.46
0.6 0.43 0.56

3.4.2.1 Different budget levels. We first explore the impact of the budget on

management decisions under different treatment effectiveness. Figures 3.5, 3.6 and

3.7 show the different budget allocations among reimbursement assigned to private

landowners, surveillance, treatment, and removal cost applied to public sites when

ρ = 0.20, 0.4, 0.6, respectively. As shown in those figures, we find that the government

allocates the same budget on the surveillance in public sites and the reimbursement

for private sites. More budget is assigned to the treatment in public sites when the

total budget increases and the removal cost increases firstly and then decreases.

Figure 3.5 Surveillance, treatment, removal cost and reimbursement for different
budget levels when ρ = 0.2.
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Figure 3.6 Surveillance, treatment, removal cost and reimbursement for different
budget levels when ρ = 0.4.

Figure 3.7 Surveillance, treatment, removal cost and reimbursement for different
budget levels when ρ = 0.6.

When the government only assigns $15000 budget to control the spread of EAB,

the budget is very limited regardless effectiveness of treatment, and not all infested

trees can be treated or removed.

When the total budget rises, the government will spend the rest budget on

treating susceptible trees after taking the cost of removing all infested ash trees in

the public sites in the first period. Since the success rate of treatment is very less

effective, there is a high probability that the treated infested trees will also die in

the next period. But the treated susceptible trees must become EAB resistant in the

next period, and when the budget is enough, the treatment of the susceptible trees

occurs earlier in the public sites.

101



Figure 3.8 The total expected healthy trees in all public sites and private sites
respectively for different budget levels. Where c1 = $124 per tree, c2 = $180 per
tree, c3 = $300 per tree, ρ = 0.2, and the initial attack rate is 0.4.

The quantity of total healthy trees at the end of the horizon increases with the

increase of the total budget. The number of healthy trees in all public sites increases

largely when the government assigns more and more budget. However, the increase

of healthy trees in all private sites is few.

3.4.2.2 Different success rate of treatment levels. In this section, we explore

the impact of the success rate of treatment on the management decisions and the

budget allocations for the treatment, removal in public sites, and the reimbursement

in the private sites. We increase the success rate of treatment from 0.2 to 0.6.
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Figure 3.9 Surveillance, treatment, removal cost and reimbursement for different
success rates of treatment with the same budget. Where c1 = $124 per tree,
c2 = $180 per tree, c3 = $300 per tree, and the initial attack rate is 0.4.

As shown in Figure 3.9, the allocated budget for the surveillance does not

change regardless of the increase in treatment success rate. However, the total

reimbursement assigned to the private sites decreases with the increase in the success

rate of treatment. Because private landowners have more incentives when the success

rate of treatment is higher, the required reimbursement from the government is less.

The right-hand side of Figure 3.9 shows that there is more budget that can be

assigned to the public sites when the success rate of treatment is increasing with the

same total budget, as the reimbursement assigned to private sites is less and less. As

a result, the allocated budget for the treatment and removal in the public sites is

more with a higher success rate of treatment.

The left-hand side of Figure 3.9 shows the different budget allocations for

the surveillance, treatment, removal, and reimbursement with the same budget on

the treatment and removal decisions in different success rates of treatment. The

proportion of the budget for the treatment in the public sites increases. Conversely,
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the proportion of the budget for the removal in public sites decreases with the increase

in the success rate of treatment.

Table 3.7 The Percentage of Healthy and Infested Trees Being Taken Actions

budget =$15000 budget = $25000 budget = $35000
ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.2 ρ = 0.4 ρ = 0.6

Treated healthy 0.3% 1.2% 5.2% 28.4% 38.3% 50.1% 62.3% 57.3% 57.1%
trees percentage
Treated infested 0.9% 24.3% 72.2% 0.0% 0.2% 1.0% 0.0% 0.0% 0.1%
trees percentage
Removed infested 35.1% 33.5% 15.2% 100.0% 99.8% 99.0% 100.0% 100.0% 99.9%
trees percentage

Table 3.7 shows that the newly infested trees, treated susceptible trees, treated

infested trees, removed infested trees, and removed dead trees in each site for each

period with different levels of the success rate of treatment and the same budget

assigned to treatment and removal in all public sites. As shown in Table 3.7, the

budget assigned on the public sites is almost all allocated to remove infested trees

when the success rate of treatment is very low (ρ = 0.2), and the rest budget

is applied to treat susceptible trees in the public sites. When the success rate of

treatment increases to 0.4, there is more budget assigned to treatment in the public

sites. Furthermore, the increased budget assigned to the treatment is allocated to

treating infested trees in public sites. The proportion of treatment on the budget

assigned to the public sites is largely improved when the success rate of treatment

becomes 0.6. Further, a large proportion of the treatment cost is used for treating

infested trees in public sites.

3.4.3 Number of Privates Sites

In this section, we present the optimal solutions under there street scenarios (Street

1, Street 2, and Street 3) with or without cost-sharing programming when the total

budget is set as $15000.
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Figure 3.10 Total expected healthy ash trees in all public and private sites
respectively for different street scenarios. Where c1 = $124 per tree, c2 = $180 per
tree, c3 = $300 per tree, ρ = 0.2, and the initial attack rate is 0.4.

As shown in Figure 3.10, the number of healthy ash trees in public sites increases,

and the number of healthy trees in private sites decreases when there are more and

more private sites with cost-sharing or without cost-sharing programming. However,

there is more budget applied to treatment and removal in public sites without

cost-sharing programming compared to the case with cost-sharing programming. But

accordingly, there are fewer healthy ash trees in private sites without cost-sharing

programming compared to the case with cost-sharing programming. As a result,

the cost-sharing program may reduce the budget allocated for treatment or removal

in public sites, which further causes the reduced healthy trees. However, the

reimbursement given by the government can induce private landowners to take action

to save more ash trees.
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Figure 3.11 Total expected infested ash trees in all public and private sites
respectively for different street scenarios. Where c1 = $124 per tree, c2 = $180 per
tree, c3 = $300 per tree, ρ = 0.2, and the initial attack rate is 0.4.

Figure 3.11 presents the total infestation becomes worse and worse with the

reduction of the number of private sites. But the number of infested ash trees in

private sites is decreasing.

3.4.4 Street vs Park

Figure 3.12 Surveillance, treatment, removal cost and reimbursement for street
and park scenarios. Where c1 = $124 per tree, c2 = $180 per tree, c3 = $300 per
tree, ρ = 0.2, and the initial attack rate is 0.4.
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The government needs to allocate more budget to the surveillance of public ash trees

when public sites belong to a park compared with the case when public sites belong

to the streets. As a result, less budget can be allocated to treatment and removal in

public sites when public sites are park areas.
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CHAPTER 4

EVALUATING THE IMPLICATIONS OF EMISSIONS POLICIES ON

A CARBON CAPTURE AND STORAGE SYSTEM

4.1 Introduction

Carbon Capture and Storage (CCS) is a technology that captures the produced CO2

at the pollution sources before it is released into the atmosphere at major point

sources. By compressing CO2 to a supercritical fluid, it can then be transported and

stored underground permanently. Although CCS is suitable in many heavy polluting

industries, such as electricity, steel, cement, etc., almost all CCS facilities are used

in the power electricity sector. There are 51 large-scale CCS facilities globally ([59]).

Nineteen of them are in operation with a total capacity of 40 million metric tonnes per

annum (Mtpa). However, to meet the Paris Agreement of keeping the global average

temperature increase well below 2oC, it is estimated that over 2000 CCS facilities

with an average capacity of 1.5 Mtpa are needed.

Currently, coal- and natural gas-fired power plants produce 28% and 35% of

the U.S. electricity sector, respectively. This sector contributes to 28% of greenhouse

gas emissions in the U.S., and 82% of it is CO2. Even though the share of electricity

produced by coal is estimated to drop to 17% by 2050, natural gas is predicted to

increase to 39% [53]. With such heavy reliance on fossil fuels, CCS can play a key

role in mitigating emissions because it has the potential to capture 90% of generated

CO2.

The critical hurdle to widespread CCS adoption is not the technology itself

but the lack of regulatory environments that assign a monetary cost to emitting

CO2 into the atmosphere. At present, several countries have created regulatory

environments that encourage CCS, while other countries are moving in that direction.
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The Furthering carbon capture, Utilization, Technology, Underground storage, and

Reduced Emissions (FUTURE) Act, a U.S. Senate bill introduced in July 2017,

proposes to award $35 per tonne of CO2 stored via EOR and $50 per tonne of CO2

used for dedicated storage, and allows a 12-year period for companies to claim the

tax credit.

For CCS technology to be deployed on a commercial scale, it requires a

transportation network connecting CO2 emission sources (emitters henceforth) to

underground storage sites. A third-party operator (CCS operator henceforth) may

offer the transportation and disposition of CO2 as a service. Because the storage

operator owns the pipeline as well as the storage site, emitters only need to invest

in the CO2 capturing technology. Similarly, a market-based incentive structure is

required to encourage users to reduce emissions by participating in CCS. Without

either regulatory environments or economic incentives, emitters are unwilling to bear

the additional expense associated with capturing, transporting, and storing CO2.

Our research investigates the effectiveness of incentives on participation in CCS

and the collaboration between emitters and a CCS operator. We use the Principal-

Agent framework to capture the dynamics and the decision processes among the

players.

We advance the literature by making two new contributions. One, we investigate

the impact of allocating allowance to agents on the total quantities being captured

and stored as well as the overall information rent given to the agents to incentivize

them to participate. We provide analytical solutions to the special case where the

allocated allowance is zero. We investigate the impact of providing allowance based

on the agent’s demand distribution through numerical analysis. Two, we evaluate a

common cost model where the cost of emission depends on the total emission quantity

instead of the individual emission quantity.
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The rest of this chapter is organized as follows. Section 4.2 reviews relevant

literature. In Section 4.3, we present a two-stage optimization model. In the 1st stage,

we find the optimal quantities given the demand distributions and allowances. In

the 2nd stage, we select the allowances that minimize the expected allowance while

maximizing the overall captured quantity. We present analytical and numerical

solutions where there is only one type of agent, and each has two demand levels

in Section 4.4. Section 4.5 shows the analytical solutions for special cases where there

are two different types of agents with two demand levels. We illustrate the numerical

solutions in Section 4.6 and make a comparison between the non-cap-and-trade policy

and the cap-and-trade policy in Section 4.7. Section 4.8 summarizes the managerial

insights, and Section 4.9 concludes the paper.

4.2 Literature Review

There are three related bodies of literature: adopting the principal-agent framework,

economic incentives for reducing carbon, CCS system deployment, and cap-and-trade

mechanism.

In the traditional principal-agent framework, information asymmetry only

occurs at the beginning. Once an agent announces his decision, such as selecting a

contract, the agent’s characterization, such as his private value for a service, becomes

public. The principal is able to design a menu of contracts (multiple offers) for

the agent to self-select. The contracts are incentive-compatible such that the agent

reveals his characterization once he picks a contract. Maskin and Riley [94] show

that, so long as the single-crossing property holds, a nonlinear price-quantity schedule

can discriminate among a set of buyers with discrete valuations. In the optimal

schedule, only the highest type agent is offered the efficient amount, the amount that

would be offered if there is no information asymmetry between the principal and

the agent. All other types are offered amounts with downward distortions. Further,
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the information rent increases in the agent’s type. The lowest type receives zero

information rent. This framework has been adopted in supply chain contracting

[48, 107, 93, 130, 123, 11, 92, 131, 41, 111], as well as in the pricing of digital goods

[121, 16], in service contracting [80, 3], and in resource allocation [71, 6, 72].

Similar to prior work [36, 116], we relax the assumptions on the information

structure of the traditional principal-agent framework in two ways. One, the agent’s

characteristic is uncertain. Specifically, even though the agent knows his demand

distribution, his actual demand varies from one period to the next after he enters

into a binding contract. Two, the principal does not know the demand distribution

of the agent but can estimate a finite number of possible distributions. To deal with

the uncertainty post contracting, we introduce contracts with multiple options. The

agent can select any option from the contract after his demand is realized in each

period.

In recent years, efforts have been made to study carbon emissions-related issues

in the production planning and design of supply chains. Song and Leng [119] obtain

the optimal production quantities under three common carbon emissions policies:

a strict cap on emissions, carbon tax, and cap-and-trade. Cachon [35] derives and

compares the optimal retail supply chain designs under three different objectives:

minimizing operating costs, minimizing carbon emissions, and minimizing both.

Benjaafar et al. [15] also consider how firms’ operational decisions need to be adjusted

when accounting for carbon emissions under different carbon policies. Caro et al. [37]

assert that double counting of emissions is needed to induce firms to make the optimal

abatement efforts. Fleten et al. [56] derive optimal investment schedules for a CO2

value chain with EOR and CO2 permit options. An alternative real options model

for choosing the optimal time to invest in capture technology under uncertain CCS

costs is presented in [113].

111



Due to the high cost of transporting CO2 via trucks [64], it is prudent to consider

a permanent pipeline network for any long-term sequestration effort. The problem

of designing a minimum-cost network is well studied [98]. However, many additional

considerations arise in the design of CO2 networks. For example, Keating et al.

[74] and Middleton et al. [100] demonstrate that the geologic reservoir uncertainty

has large cost implications for building a CCS infrastructure. Similarly, fluctuating

network loads are caused by seasonal and daily variations in power plant output or

failures in various network components, and thus the heterogeneous emissions profiles

at different plants greatly impact the performance of the CCS network [99].

Different types of business models have been proposed to deal with the capture,

transportation, and storage of CO2, including ”self build and operate” and ”pay

at the gate” [55]. The ”self build and operate” model takes a vertically-integrated

approach, in which emitters handle the entire chain of capture, transportation, and

storage. This means that each emitter needs to obtain permits for reservoirs and build

the infrastructure to operate and maintain these facilities. Emitters are intimidated

not only by the high capital cost this approach requires, but also by their lack of

expertise in performing such operations. Nevertheless, existing literature [98, 101]

has provided the design of an optimal vertically-integrated CCS infrastructure that

minimizes the total cost of capturing, transporting, and storing CO2. Kemp and

Kasim [75] and Klokk et al. [82] have incorporated Enhanced Oil Recovery (EOR) to

create a value chain of CO2, that is, selling a portion of captured CO2 to companies

with EOR operations. The ”pay at the gate” business model allows a third-party

operator to offer the transportation and disposition of CO2 as a service. Because the

storage operator owns the pipeline as well as the storage site, emitters only need to

invest in the CO2 capturing technology.

Since the notion of the government assigning the allowance to the emitter to emit

pollution was proposed over thirty years ago, there have been many papers exploring
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the market-based environmental policies. Among those policies, the cap-and-trade

policy is one of the most widely discussed mechanisms. Some scholars focus on the

carbon allowance price. The oil shocks have a long-run asymmetric effect on the

carbon allowance price and do cause the price volatility of carbon allowance from

2013 to 2020, which is shown in [142]. The carbon allowance price and emission

reduction have a significant positive correlation, and industry coverage, the annual

decline factor, and the free allowance rate affect the carbon allowance price, as shown

in [89]. Adekoya [1] has explored a new method to predict the carbon allowance price.

Some scholars paid the effort to study carbon allowance allocation policies. Zhang

et al. [141] display the different allocation schemes that affect the electricity price

even in other industries. It is recommended by [127] that China set a high initial free

allowance and then gradually reduce it to achieve emission reduction targets while

reducing economic losses. Shojaei and Mokhtar [114] present a two-step optimization

mechanism to allocate the carbon allowance and found that the allocation method

is more logical if including the consideration of regional heterogeneity. There are

some researches exploring other topics about cap and trade. Li et al. [88] illustrate

the impact of consumers’ low-carbon preference level on the emission index of the

government’s decision. Chai et al. [38] study if cap and trade mechanism can be

a benefit for re-manufacturing, and they conclude that the cap-and-trade policy is

advantageous for re-manufacturing in the ordinary and green markets.

Zhang and Xu [140] propose a multi-item production planning with a cap and

trade mechanism and find that emitters will get more profit under the cap and trade

policy when the penalty cost is the same as the trading price. Chan and Morrow

[39] evaluates the impacts of the cap and trade program, which involves nine states

of the United States, in emission and damages from co-pollutants. The results show

that the cap and trade program not only reduces the emission of CO2 but also lowers

the emission and associated damages of SO2. However, this paper also addresses
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two factors that diminish the overall benefit of the program. But Kroes et al. [86]

illustrates that carbon tradeability may not induce emitters to reduce the emission

of CO2 even with a free allowance.

4.3 Model Formulation

The principal is a CCS operator who transports and stores emission quantity q in

exchange for a total payment of t. She has a cost function of s(q) = βq, and thus her

profit is t− s(q). An agent is an emitter who must pay the penalty for emitting. We

assume that the per-unit penalty depends on the emission quantity, θ.

As a result, an agent who generates θdn emission but captures q (q < θdn) emits

θdn − q. We refer to θdn − q as the net emission quantity. Let ad denote the emission

allowance allocated to a type-d agent. If the net emission θdn−q is over the cap, then

the emitter needs to pay α
2
(θdn − ad)

2.

When the allocated allowance is greater than or equal to the net emission

quantity (ad ≥ θdn − q), it is free for the agent to emit θdn − q. Moreover, he can

collect a revenue of α
2
(ad− θdn+ q)2 by selling unused allowance. The agent, however,

does incur a cost of γq for capturing q emission.

On the other hand, when the allocated allowance is less than the generated

emission quantity (ad < θdn − q), the total cost of capturing q and purchasing the

needed allowance is γq + α
2
(θdn − q − ad)

2.

A type-d agent’s value function when q ≤ θdn is therefore

v(q, θdn) =


α
2
· q2 + (α(ad − θdn)− γ) · q if θdn ≤ ad

α
2
· q2 − (α(θdn − ad) + γ) · q + α(θdn − ad)

2 if θdn − q < ad < θdn

−α
2
· q2 + (α(θdn − ad)− γ) · q if ad ≤ θdn − q

(4.1)

For simplify, we use τ̂(qdn) to represent v(qdn, θdn) when θdn − qdn < ad < θdn

and τ̄(qdn) to represent v(qdn, θdn) when ad < θdn − qdn.
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When the agent picks the option (q, t), that q is actually greater than θdn. The

agent captures all emissions emit zero, so she doesn’t need to pay the penalty but

pay the capturing cost γθdn. In addition, she can get the revenue of α
2
a2d by selling

unused allowance.

If the agent will not participate in the cost-sharing program, the agent needs to

pay the penalty α
2
(θdn − ad)

2 when the allowance ad is less than θdn. But if θdn ≤ ad,

there is no penalty and the agent can get revenue of α
2
(ad − θdn)

2 of selling unused

allowance.

A type-d agent’s value function when q > θdn is therefore:

v(q, θdn) =


α
2
· θ2dn + (α(ad − θdn)− γ) · θdn if θdn ≤ ad

α
2
· θ2dn − (α(θdn − ad) + γ) · θdn + α(θdn − ad)

2 if ad < θdn

(4.2)

The agent’s emission quantity is uncertain, which comes from two sources. First,

the electricity demand of a power plant may vary from one period to the next due to

seasonality. Second, the generated emission depends on the operational efficiency and

the capturing technology used at the power plant. As a result, the emission quantity

may follow a number (D) of distributions. We thus refer to each distribution as θdn,

where d = 1, · · · , D. Though the principal does not know which distribution an agent

has, she forms a prior probability distribution over θdn as follows:

Θd =



θ1

...

θd

...

θN


=



[θ11, · · · θ1n, · · · θ1N ]
...

[θd1, · · · θdn, · · · θdN ]
...

[θD1, · · · θDn, · · · θDN ]


with probabilities



µ1[π11, · · · π1n, · · · π1N ]
...

µd[πd1, · · · πdn, · · · πdN ]
...

µD[πD1, · · · πDn, · · · πDN ]


Figure 4.1 illustrates when an agent makes a decision and its implications

subsequently. We refer to the agent whose demand follows θdn as a type-d agent

henceforth. In the contracting stage, the principal does not know the agent’s demand
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distribution. Therefore, she offers a menu of contracts {xd}d=1,···,D to the agent. Each

contract contains multiple options: xd = [(qd1, td1), · · · , (qdN , tdN)]. The agent selects a

contract xd′ that maximizes his expected utility. Upon committing to the contract xd,

the agent can only pick an option within xd during the subsequent implementation

stage. As an example, in the first period (t = 1), the agent observes his realized

demand θdn and selects an option, say (qd′m, td′m), that maximizes his utility in that

period. In the second period (t = 2), a different demand (θdn′) may be realized. As

a result, another option, (qd′m′ , td′m′), is selected instead.

t = 0
Contract

-ing

Principle offers
a menu of contracts

{xd = [(qdn, tdn)n=1,···,N ]}
d = 1, · · · , D

Agent
(type-d)
selects

contract xd′

t = 1
Implemen
-tation

Agent
observes θdn,

selects
an option
from xd′ ,

ex: (qd′m, td′m)

Principal
stores qd′n′ and

collects payment td′n′

t = 2

Agent
observes θdn′ ,

selects
an option
from xd′ ,

ex: (qd′m′ , td′m′)

Principal
stores qd′m′ and

collects payment td′m′

Figure 4.1 Sequence of Events.

According to the revelation principle, the principal should design a menu of

incentive-compatible contracts to induce truth-telling from the agent. Therefore,

contract xd should generate the highest expected utility for a type-d agent among all

contracts. Moreover, when the agent’s realized demand is θdn, the option (qdn, tdn)

should provide the agent the highest utility when compared to all the other options

in contract xd.

The purpose of the CCS operator is to maximize the profit by providing the

designed contracts to the emitters. However, the government wants the emitters to

capture the CO2 as much as they can with the optimal allocated allowance(ad). To

satisfy those two objects, we treat these as a two-stage problem. We first explore
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the optimal profit of the CCS operator, and then we compare the expected capturing

CO2 quantity under different ad to find the maximized expected capturing quantity.

For inducing the emitters to receive the contract designed by the CCS operator,

the CCS operator should make sure that the emitter’s expected value (πdlv(qdl, θdl)+

πdhv(qdh, θdh)) is not greater than the expected payment (πdltdl + πdhtdh) offered by

her/him.

We begin by illustrating the optimal solutions when a cap-and-trade market

is not available. These results are used to compare those under the two types of

cap-and-trade policies.

Let Φ denote the principal’s expected profit and ∆dn = v(qdn, θdn)− tdn denote

the information rent given to a type-d agent when his generated emission is θdn. The

first stage is exploring the principal’s optimization problem, which is shown as follows:

max Φ =
∑
d

µd

[∑
n

πdn(tdn − βqdn)

]
s.t.

∑
n

πdn∆dn ≥ 0 d = 1, · · · , D (IRd)∑
n

πdn∆dn ≥
∑
n

πdnmax
n′

{v(qd′n′ , θdn)− td′n′} d, d′ = 1, · · · , D, d′ ̸= d (ICdd′)

∆dn ≥ v(qdn′ , θdn)− tdn′ n, n′ = 1, · · · , N, n′ ̸= n (ICdnn′)

and qdn ≥ 0 d, d′ = 1, · · · , D, n = 1, · · · , N (NNdn)

(4.3)

The CCS operator wants to maximize her/his expected profit and design the

optimal contract ((qdl, tdl), (qdh, tdh)). The objective function consists of weighted

profit terms for each level. IRd is an individual rationality constraint to incentive the

emitter to participate. ICdd′ constraints make the type d agent prefer to pick contract

xd instead of other contracts by ensuring the expected utility from choosing contract

xd is greater than or equal to the expected utility of other contracts. ICdhl and ICdlh

are incentive compatibility constraints that make the emitter prefer the option that

the CCS operator designs. UBdn are the upper bond constraints to ensure capturing
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a quantity of each demand level is less than or equal to the actual demand quantity.

NNdn constraints make contract quantity and payment non-negative.

In the second stage, let Q denote the expected capturing quantities of CO2. We

want to find the optimal minimum expected allowance (
∑
d

µdad), which can maximize

the expected capturing quantity. The government’s optimization problem becomes

max
ad

Q =
∑
d

µd (πdlq
∗
dl(ad) + πdhq

∗
dh(ad)) (4.4)

4.4 Single Distribution: D = 1

When there is only one type of agent, we treat it as a single distribution. In this

section, we present the optimal solutions for different demand levels with and without

the allowance.

4.4.1 Demand Level is Known: N = 1

We first present the optimal solution for the special case where the agent’s demand

distribution θdn is known and there is no demand uncertainty. That is, when D = 1

and N = 1.

Proposition 5. When the agent’s demand is certain, and the government does not

assign any allowance to the agent i.e., θdn >
γ+β
α

and ad = 0, the optimal price and

quantity are (qdn, tdn) (the proof is shown in Appendix A.3.1.1), where

qdn = θdn − γ+β
α
, tdn = τ̄(qdn) = (αθdn − γ)qdn − α

2
q2dn. (4.5)

We refer to qdn as the efficient quantity and tdn as the full price. We use E to

represent the case that capturing quantity is equal to the efficient quantity.
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Proposition 6. When the government does assign the allowance, the optimal

allowance ad = (1 +
√
2)γ+β

α
, if the agent’s demand is known i.e., θdn > γ+β

α
, the

optimal price and quantities are (q̂dn, t̂dn) (the proof is shown in Appendix A.3.1.2),

where

q̂dn = θdn, t̂dn = τ̂(q̂dn) =
α
2
θ2dn − (α(θdn − ad) + γ)θdn + α(θdn − ad)

2 (4.6)

The quantity q̂dn is referred to as the full quantity, and F represents capturing

the full quantity. The price t̂dn is referred to as the sacrificial price. Further, since the

capturing cost of the agent is greater than the marginal cost of the principal γ > β,

as a result, t(qdn) − t̂(q̂dn) =
γ2−β2

2α
+ α(θdn − ad)ad > 0, the full price is higher than

the sacrificial price i.e., t(qdn) > t̂(q̂dn).

4.4.2 Single Bi-level Distribution: N = 2

Let us next show the case that the demand is uncertain. However, there is only one

type of agent. And we will summarise the optimal quantity and price in two different

cases.

4.4.2.1 The government does not assign any allowance to the agent.

First, we present the optimal solution for the case that the government gives no

allowance.

Proposition 7. When the agent’s demand distribution is known, i.e., θdn = θd, the

optimal quantities and prices are (the proof is shown in Appendix A.3.1.3):

(q∗dl, t∗dl) (q∗dh, t∗dh)

d (qdl, τ̄(qdl)−∆∗
dl) (qdh, τ̄(qdh)−∆∗

dh)
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where

∆∗
dl = −πdhα(θdh − θdl)(θdl − γ+β

α
),

∆∗
dh = πdlα(θdh − θdl)(θdl − γ+β

α
).

(4.7)

The optimal quantity at both demand levels is the efficient quantity. However,

the price designed for the low demand level is higher than the full price, and the

agent with the high demand level will be charged a lower price than her/his full price.

Further, It’s important to note the net (or expected) information rent given to the

agent is

E∆∗
d = πdl∆

∗
dl + πdh∆

∗
dh = 0. (4.8)

4.4.2.2 The government does assign the agent an allowance to emit CO2.

In this section, we first list the optimal solution at the low and high levels of ad, and

the optimal ad which maximizes the capturing CO2 is shown afterward.

Proposition 8. When the agent’s demand distribution is known and the allowance

is low (0 < ad < (1 +
√
2)γ+β

α
), the optimal quantities and prices are (the proof is

shown in Appendix A.3.1.4):

(q∗dl, t∗dl) (q∗dh, t∗dh)

d (qdl − ad, τ̄(qdl − ad)−∆∗
dl) (qdh − ad, τ̄(qdh − ad)−∆∗

dh)

where

∆∗
dl = −πdhα(θdh − θdl)q

∗
dl,

∆∗
dh = πdlα(θdh − θdl)q

∗
dl.

(4.9)
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The optimal quantity of both demand levels is the efficient quantity (πdlθdl +

πdhθdh − γ+β
α

) subtracting the allowance ad, so the expected quantity of capturing

CO2 under the low allowance.

Proposition 9. When the agent’s demand distribution is known and the allowance

is low (ad ≥ (1 +
√
2)γ+β

α
), the optimal quantities and prices are (the proof is shown

in Appendix A.3.1.5):

(q∗dl, t∗dl) (q∗dh, t∗dh)

d (θdl, τ̂(θdl)−∆∗
dl) (θdh, τ̂(θdh)−∆∗

dh)

where

∆∗
dl = −πdh [ω · v(θdh, θdh) + ω̄ · v(θdl, θdh)− v(θdl, θdl)] ,

∆∗
dh = πdl [ω · v(θdh, θdh) + ω̄ · v(θdl, θdh)− v(θdl, θdl)] .

and ω ∈ [0, 1].

(4.10)

Capturing all quantities is the optimal choice for the agent with low and high

demand levels. Therefore, the expected quantity is πdlθdl + πdhθdh.

What is more, no matter what is the value of the allowance ad, the principal is

able to induce the agent to participate and capture the efficient, even full quantities

without giving any net information rent. S/he can achieve the desired behavior by

charging a premium price when the generated emission is low and a reduced price

when the generated emission is high.

We show the optimal solutions under the different values of ad for the single

bi-level distribution case above. Table 4.1 illustrates the expected capturing CO2

(Eq), the agent’s expected information rent (E∆), and the principle’s utility (Φ).

Let Φ0 = πdl · α
2
q̄2dl + πdh · α

2
q̄2dh which is the principal’s optimal utility when there is

no allowance assigned by the government. As shown in Table 4.1, the emitter will
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capture the most CO2 when the allowance is not less than (1 +
√
2) · γ+β

α
, however,

the utility of the principal will reduce.

Table 4.1 Comparison of the Single Bi-level Distribution with Different Values of
ad

Eq E∆ Φ

ad = 0 πdlq̄dl + πdhq̄dh 0 Φ0

0 < ad < (1 +
√
2) · γ+β

α πdlq̄dl + πdhq̄dh − ad 0 Φ0 +α
2 a

2
d − α(πdlq̄dl + πdhq̄dh)ad

(1 +
√
2) · γ+β

α ≤ ad πdlθdl + πdhθdh 0 Φ0 −α
2 (

γ+β
α )2 − α(πdlθdl + πdhθdh)ad

What is more, the government actually wants to set an allowance as small

as possible, and the emitter can still be induced to capture maximum CO2.

Consequently, the optimal a∗d is (1 +
√
2) · γ+β

α
.

4.5 Dual Distributions: D = 2 and N = 2

4.5.1 The Allowance is Not Given by the Government to Any Agent

In this section, we explore the case when the distribution of the two types of agents

partially overlap, θ1l < θ2l < θ1h < θ2h and there is no allowance assigned by the

government. We will list two types of analytical solutions in the following.

4.5.1.1 All efficient quantities contracts. We first explore the all-efficient-

quantities case. If all demand levels are offered efficient quantities, and the net

information rent for each type is zero. We refer to this as all efficient quantities

contracts, and the solutions are shown in Table 4.2.

Table 4.2 Efficient Contracts

(q∗dl, t∗dl) (q∗dh, t∗dh)

d = 1 (q1l, τ 1l(q1l)−∆∗
1l) (q1h, τ 1h(q1h)−∆∗

1h)
d = 2 (q2l, τ 2l(q2l)−∆∗

2l) (q2h, τ 2h(q2h)−∆∗
2h)
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the information rents are:

∆∗
1l = −π1h · α(θ1h − θ1l)q

∗
1l,

∆∗
1h = π1l · α(θ1h − θ1l)q

∗
1l;

∆∗
2l = −π2h · α(θ2h − θ2l)q

∗
2l,

∆∗
2h = π2l · α(θ2h − θ2l)q

∗
2l.

In this particular solution, the constraints IR1, IR2, IC12 and IC1lh are binding. All

demand levels can be offered their related efficient quantities. However, the net

information rent is zero regardless of the demand level. The principal can maximize

her/his profit by charging a higher price for a low demand level and decreasing the

price for a high demand level compared to his/her full price.

4.5.1.2 A single contract. When the principal only serves one type of agents,

we call this solution a single contract. The constraints IR1, IR2, IC21, IC1hl, IC1lh,

IC2hl are binding. The optimal solutions are shown in Table 4.3.

Table 4.3 A Single Contract

(q∗dl, t∗dl) (q∗dh, t∗dh)

d = 1 (0, 0) (0, 0)
d = 2 (q2l, τ 2l(q2l)−∆∗

2l) (q2h, τ 2h(q2h)−∆∗
2h)

where

∆∗
2l = −π2hα(θ2h − θ2l)q

∗
2l,

∆∗
2h = π2lα(θ2h − θ2l)q

∗
2l.

In this solution, the principal only serves the type-2 agent, and s/he can offer the

efficient quantity for both demand levels and charge a higher price than the full price
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when the demand level is low and a reduced price when the demand level is high to

achieve her/his purpose when µ1 is low.

4.5.2 The Allowance is Given by the Government to At Least One Type

of Agent

The government may set an allowance to make the principal design a contract to

induce the emitters to capture as much as possible CO2. We found that there are

two kinds of optimal solutions. The first one is capturing full quantity regardless

of the type of agent and the demand level of agents. The second one is capturing

efficient quantity for the type-1 agent and full quantity for the type-2 agent regardless

of demand levels.

4.5.2.1 Full quantities are optimal solutions. When both types of agents

choose to capture all quantities (qdn = θdn d = 1, 2 and n = l, h) and the government

will assign a large allowance to both types of agents. The agent’s information rent with

the different types and demand levels can be different. The expected information rent

given to the type-1 agent is always equal to zero; however, the expected information

rent of the type-2 agent can be positive or zero. We present two examples in the case

when the expected information rent of the type-2 agent is zero or positive.

(1) the type-2 agent’s expected information rent is zero (π2l∆2l + π2h∆2h = 0).

We present an example of this solution in Table 4.4 which occurs when the

constraints IR1, IR2, and IC12 are binding.

Table 4.4 The Expected Information Rent of the Type-2 Agent is Zero

(q∗dl, t∗dl) (q∗dh, t∗dh)

d = 1 (θ1l, τ̂(θ1l)−∆∗
1l) (θ1h, τ̂(θ1h)−∆∗

1h)
d = 2 (θ2l, τ̂(θ2l)−∆∗

2l) (θ2h, τ̂(θ2h)−∆∗
2h)
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The following expands the terms in Table 4.4:

∆∗
1l = −π1h · (v(θ1h, θ1h)− v(θ1l, θ1l))

∆∗
1h = π1l · (v(θ1h, θ1h)− v(θ1l, θ1l)) .

∆∗
2l = v(θ2l, θ2l)− π1l · v(θ2l, θ1l)− π1h · v(θ2l, θ1h)

∆∗
2h = − π2l

π2h
·∆∗

2l.

In this solution, even though the quantities offered to all types and demand

levels of the agents are full quantities, the expected information rent of both

two types of agents is zero (E∆∗
d = 0, d = 1, 2). The type-1 agent with the

high emission demand will be charged a lower price than the sacrificial price;

however, s/he will pay more price than the sacrificial price when the generated

emission is low. The type-2 agent will be charged a premium price when the

emission level is low and a reduced price when the emission level is high when

π1h is high enough.

(2) the type-2 agent’s expected information rent is positive (π2l∆2l + π2h∆2h > 0).

We present an example of this solution in Table 4.5 which occurs when the

constraints IR1, IC21, IC1hl and IC2hl are binding.

Table 4.5 The Expected Information Rent of the Type-2 Agent is Positive

(q∗dl, t∗dl) (q∗dh, t∗dh)

d = 1 (θ1l, τ̂(θ1l)−∆∗
1l) (θ1h, τ̂(θ1h)−∆∗

1h)
d = 2 (θ2l, τ̂(θ2l)−∆∗

2l) (θ2h, τ̂(θ2h)−∆∗
2h)
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The following expands the terms in Table 4.5:

∆∗
1l = −π1h · (v(θ1l, θ1h)− v(θ1l, θ1l))

∆∗
1h = π1l · (v(θ1l, θ1h)− v(θ1l, θ1l)) .

∆∗
2l = δ1 − π2h · (v(θ2l, θ2h)− v(θ2l, θ2l))

∆∗
2h = δ1 + π2l · (v(θ2l, θ2h)− v(θ2l, θ2l)) .

and,

δ1 = π2l ·max{v(θ1l, θ2l)− v(θ1l, θ1l +∆∗
1l, v(θ1h, θ2l)− v(θ1h, θ1h +∆∗

1h}

+π2h ·max{v(θ1l, θ2h)− v(θ1l, θ1l +∆∗
1l, v(θ1h, θ2h)− v(θ1h, θ1h +∆∗

1h} ≥ 0.

The principal offers the full quantity for both demand levels of both two types of

agents in this solution. The net information rent of the type-1 agent is zero, and

the principal will charge a higher price when the generated emission is low and a

reduced price when the emission demand is high. However, the net information

rent of the type-2 agent is positive, and the agent with a high emission demand

must have a lower price which is less than the sacrificial price.

4.5.2.2 Efficient quantities for the type-1 agent and full quantities for the

type-2 agent are the optimal solutions. Capturing efficient quantity for the

type-1 agent and full quantity for the type-2 agent is optimal only if the distribution

for θ is partial overlapping (θ1l < θ2l < θ1h < θ2h) and the allowance assigned to the

type-1 agent is zero, i.e., a1 = 0 but the allowance assigned to the type-2 agent is large.

126



In this section, we show two examples in the case when the expected information rent

of the type-1 agent is zero or positive.

(1) the type-1 agent’s expected information rent is zero (π1l∆1l + π1h∆1h = 0).

We show an example of when IR1, IR2 and IC1hl are binding in Table 4.6.

Table 4.6 The Expected Information Rent of the Type-1 Agent is Zero

(q∗dl, t∗dl) (q∗dh, t∗dh)

d = 1 (q1l, τ(q1l)−∆∗
1l) (q1h, τ(q1h)−∆∗

1h)
d = 2 (θ2l, τ̂(θ2l)−∆∗

2l) (θ2h, τ̂(θ2h)−∆∗
2h)

The following expands the terms in Table 4.6:

∆∗
1l = −π1hα(θ1h − θ1l)q1l.

∆∗
1h = π1lα(θ1h − θ1l)q1l.

∆∗
2l = −π2h · δ1.

∆∗
2h = π2l · δ1.

and,

δ1 = v(θ2l, θ2h)− v(θ2l, θ2l)

In this optimal contract, the principal provides the type-1 agent with the

efficient quantity while charging a reduced price for the high emission level

and a higher price for the low emission level. Full quantity is offered to the

type-2 agent, and s/he with low emission demand will be charged a higher

price; however, the lower price will be assigned to the high emission demand
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of the type-2 agent. What is more, the net expected information rent of both

types of agents is zero.

(2) the type-1 agent’s expected information rent is positive (π1l∆1l + π1h∆1h > 0).

We show an example of when IR2 and IC12 are binding in Table 4.7.

Table 4.7 The Expected Information Rent of the Type-1 Agent is Positive

(q∗dl, t∗dl) (q∗dh, t∗dh)

d = 1 (q1l, τ(q1l)−∆∗
1l) (q1h, τ(q1h)−∆∗

1h)
d = 2 (θ2l, τ̂(θ2l)−∆∗

2l) (θ2h, τ̂(θ2h)−∆∗
2h)

The following expands the terms in Table 4.7:

When π1l = π2l,

∆∗
2l = −π2h · (v(θ2h, θ2h)− v(θ2l, θ2l)).

∆∗
2h = π2l · (v(θ2h, θ2h)− v(θ2l, θ2l)).

and,

∆∗
1l = π1l (v(θ2l, θ1l)− v(θ2l, θ2l) + ∆∗

2l) + π1h (v(θ2h, θ1h)− v(θ2h, θ2h) + ∆∗
2h)

−π1h · α(θ1h − θ1l)q1l.

∆∗
1h = π1l (v(θ2l, θ1l)− v(θ2l, θ2l) + ∆∗

2l) + π1h (v(θ2h, θ1h)− v(θ2h, θ2h) + ∆∗
2h)

+π1l · α(θ1h − θ1l)q1l.

We present the case when π1l = π2l and the case when π1l ̸= π2l is shown in

the Appendix A.3.2.2. In this solution, the efficient quantities are given to the

type-1 agent with a positive net expected information rent.
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4.6 Numerical Solutions

We introduce the different kinds of optimal solutions when capturing all quantities

is optimal for both two types of agents. In this section, we explore the conditions

which cause different solutions and the reason why the principal prefers not to offer

all quantities to the type-1 agent in some cases.

Table 4.8 Solutions Types for Various µ1, π1l and π2l
(a) When µ1 = 0.25

π1l 0.25 0.50 0.75
π2l = 0.25 ▷ ⋄ ⃝
π2l = 0.50 □ ▷ ▷
π2l = 0.75 ⋄ ⋄ ▷

(b) When µ1 = 0.50

π1l 0.25 0.50 0.75
π2l = 0.25 ◁ ▷ ▷
π2l = 0.50 □ ◁ ▷
π2l = 0.75 ⋄ ▷ ◁

(c) When µ1 = 0.75

π1l 0.25 0.50 0.75
π2l = 0.25 △ ◁ ◁
π2l = 0.50 □ △ ◁
π2l = 0.75 ⋄ □ ▷

Note: We use (θ1l, θ1h, θ2l, θ2h) = (2, 4, 3, 5) in Mt. Pink colors correspond to the case
that E∆2 = 0 and blue colors correspond to the case that E∆2 > 0 for F1F2 solution.
White color represents E1F2 solution. Different color’s degrees of pink and blue represent
different solutions.

Table 4.8 displays the six various solutions when µ1 is respectively fixed to 0.25,

0.50 and 0.75. Each color represents a unique solution. Among those colors, the

solutions represented by the pink and blue colors have one thing in common, which is

all demand levels in both types of agents capture their full demand of CO2. However,

the white cell with a circle pattern represents another optimal solution: the type-2

agent captures full quantity while the type-1 agent captures efficient quantity.

The patterns diamond and square in the pink cells show solutions that the

expected information rent of both types of agents is zero. Among those pink cells,

the light pink cells with a diamond pattern correspond to the case when IR1, IR2,

and IC12 constraints are binding, and the dark pink cells with the square pattern

correspond to the case when IR1 and IR2 bind.

Blue color cells represent the solutions when the expected information rent of

the type-1 agent is zero; however, the type-2 agent’s expected information rent is

positive. The case when IR1 and IC21 are binding is represented by the dark blue

cells with a right triangle pattern. The cornflower blue cells with the left triangle

pattern correspond to the case when IR1, IC21, IC1hl and IC2hl bind. What’s more,
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the sky blue cells with a triangle pattern correspond to the case when IR1, IC21, IC12,

and IC1hl bind.

As shown in Table 4.8, when π1l is low and π2l is high, the expected information

rent of the type-2 agent intends to be zero. But when µ1 = 0.25, π1l = 0.75 and

π2l = 0.25, the optimal solution is that the type-1 agent captures efficient quantities

and the type-2 agent captures the full quantities represented by the white cell with

a circle pattern. We will explore the reason why the full quantities for both types of

agents are not optimal in the following.

Table 4.9 Solution Types for Various µ1, π1l and π2l

(a) When π2l = 0.1

π1l 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
µ1 = 0.05 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊖ ⊖
µ1 = 0.10 ⊕ ⊕ ⊖ ⊖
µ1 = 0.15 ⊖ ⊖ ⊖
µ1 = 0.20 ⊖ ⊖ ⊖
µ1 = 0.25 ⊖

(b) When π2l = 0.3

π1l 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
µ1 = 0.05 ⊗ ⊗ ⊕ ⊕ ⊕ ⊕ ⊕ ⊖
µ1 = 0.10 ⊗ ⊗ ⊕ ⊕ ⊕ ⊕ ⊖
µ1 = 0.15 ⊗ ⊕ ⊕ ⊕ ⊖ ⊖
µ1 = 0.20 ⊕ ⊕ ⊕ ⊕ ⊖
µ1 = 0.25 ⊕ ⊖

(c) When π2l = 0.5

π1l 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
µ1 = 0.05 ⊗ ⊗ ⊕ ⊕ ⊕ ⊕
µ1 = 0.10 ⊕ ⊕ ⊕ ⊕ ⊕
µ1 = 0.15 ⊖ ⊕
µ1 = 0.20
µ1 = 0.25

To find the reason why the full quantities for both two types of agents are not

optimal when µ1 = 0.25, π1l = 0.75, and π2l = 0.25, we reduce the intervals between

µ1, π1l and π2l changes as shown in Table 4.9. In Table 4.9, the gray cells with

no patterns represent the case that full quantities are optimal regardless of types of
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agents and demand levels. Other cells represent that efficient quantities are optimal

for the type-1 agent and the full quantities are optimal for the type-2 agent.

Among the colorful cells (not gray), the lime color cells with a minus symbol in

a circle correspond to the case when the constraints IR1 and IR2 are both binding.

The pear green cells with a plus symbol in a circle correspond to the case when IR1,

IR2, and IC1hl are binding, and the corn yellow color cells with a times symbol in a

circle correspond to the case when IR2 , IC12, and IC1hl are binding.

Table 4.9 just displays the solutions when π2l is 0.1, 0.3, and 0.5. Because if

we continue to increase the value of π2l, the optimal solutions will be full quantities

for all kinds of agents, which are the same as not increasing the value of µ1 more

than 0.25. In other words, the efficient quantities designed for the type-1 agent and

the full quantities designed for the type-2 agent are optimal only when the value of

µ2 × π2h is large. Further, the increased revenue from the type-1 agent can not reach

the increased information rent to the type-2 agent; therefore, full quantities are not

optimal for the type-1 agent when µ2 × π2h is large.

What we also noticed is that the allowance given to the agent is large (ad ≥

(1 +
√
2) · γ+β

α
) if full quantities are designed for that agent. However, if efficient

quantities are optimal for an agent, it is not necessary to assign any allowance to that

agent (ad = 0).

4.7 Comparison

In this section, we explore the difference between the non-cap-and-trade policy and

the cap-and-trade policy. The cap-and-trade policy is that the government provides

an allowance, and the emitters will pay the penalty if s/he emits the extra CO2 out

of the allowance into the air; however, the emitters can buy and sell the allowance

on the market. The non-cap-and-trade policy means that the government does not

assign any allowance to the emitters, and there is no cap-and-trade policy launched.
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The emitters will pay the penalty once s/he emits the CO2 into the air. To clearly

distinguish different contracts offered by the principal, we use various symbols to

represent different contracts shown in Table 4.10. The optimal solutions for different

Table 4.10 The Symbols of the Different Contracts

Ed the capturing quantity of the type d agent is efficient
Fd the type d agent captures all demand quantity
Sd the quantities offered to low and high demand levels of the type d agent are different
Pd the quantities offered to low and high demand levels of the type d agent are same
Hd only serve the type d agent when the demand level is high
Nd not serve the type d agent when the demand level is high

values of µ1, π1l, and π2l when the demand levels of a type-1 agent are less than those

of a type-2 agent are shown in Table 4.11, 4.12, 4.13, 4.14, 4.15, and 4.16. It provides

an optimal allowance to a type-1 agent (a∗1) and a type-2 agent (a∗2), the optimal

expected information rent obtained by a type-1 agent E∆∗
1 and by a type-2 agent

E∆∗
2, the principal’s expected profit (Φ∗), the aggregated storage quantity (EQ∗), the

total aggregated value of the principal and agents (ES∗), and the aggregated value

of the government (EG∗). It also shows the optimal storage quantities by a type-1

agent (q01l, q
0
1h) and by a type-2 agent (q02l, q

0
2h), the optimal expected information rent

obtained by a type-1 agent E∆0
1 and by a type-2 agent E∆0

2, the principal’s expected

profit (Φ0), the aggregated storage quantity (EQ0), the total aggregated value of the

principal and agents (ES0), and the aggregated value of the government (EG0) when

zero allowances are given to either type of agent. The total aggregated value of the

principal and agents in the cost-sharing program is computed by the sum of the profit

of the principal and information rent from agents, i.e.,

ES =
∑
d

µd (πdl(tdl − βqdl) + πdh(tdh − βqdh) + πdl∆dl + πdh∆dh)
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Further, the value of government is calculated by the penalty got from agents minus

the cost of allowance given to agents, i.e.,

EG =
∑
d

µd

(
πdl(

α

2
(θdl − qdl)

2 − α

2
a2d) + πdh(

α

2
(θdh − qdh)

2 − α

2
a2d)

)

4.7.1 Optimal Allowance for Partial Overlapping Demand Distributions:

θ1l < θ2l < θ1h < θ2h

Table 4.11 Partial Overlapping: when µ1 = 0.25
Cap-and-trade model Non-cap-and-trade model

π2l = 0.25
π1l Type a∗1 a∗2 E∆∗

1 E∆∗
2 Φ∗ EQ∗ ES∗ EG∗ Type (q01l, q

0
1h) (q02l, q

0
2h) E∆0

1 E∆0
2 Φ0 EQ0 ES0 EG0

0.25 F1F2 0.6 1.5 0.00 51.48 $1, 329 4.25 $1381 $− 254 H1E2 (0.0, 0.8) (2.8, 4.8) 0.00 128.25 $2, 078 3.37 $2206 $110
0.50 F1F2 0.6 2.4 0.00 0.00 $1, 186 4.13 $1186 $− 631 N1E2 (0.0, 0.0) (2.8, 4.8) 0.00 0.00 $2, 061 3.22 $2061 $116
0.75 E1F2 0.0 2.2 0.00 0.00 $1, 187 4.00 $1187 $− 519 N1E2 (0.0, 0.0) (2.8, 4.8) 0.00 0.00 $2, 061 3.22 $2061 $86

π2l = 0.50
π1l Type a∗1 a∗2 E∆∗

1 E∆∗
2 Φ∗ EQ∗ ES∗ EG∗ Type (q01l, q

0
1h) (q02l, q

0
2h) E∆0

1 E∆0
2 Φ0 EQ0 ES0 EG0

0.25 F1F2 0.6 1.2 0.00 0.00 $1, 218 3.88 $1218 $− 167 H1E2 (0.0, 2.8) (2.8, 4.8) 0.00 150.00 $1, 863 3.37 $2013 $36
0.50 F1F2 0.6 1.5 0.00 40.76 $1, 015 3.75 $1056 $− 254 H1E2 (0.0, 0.8) (2.8, 4.8) 0.00 85.50 $1, 665 2.95 $1751 $1056
0.75 F1F2 2.0 1.8 0.00 125.34 $817 3.63 $942 $− 490 N1E2 (0.0, 0.0) (2.8, 4.8) 0.00 0.00 $1, 654 2.85 $1654 $86

π2l = 0.75
π1l Type a∗1 a∗2 E∆∗

1 E∆∗
2 Φ∗ EQ∗ ES∗ EG∗ Type (q01l, q

0
1h) (q02l, q

0
2h) E∆0

1 E∆0
2 Φ0 EQ0 ES0 EG0

0.25 F1F2 0.6 0.6 0.00 0.00 $1, 158 3.50 $1158 $− 51 E1E2 (1.8, 3.8) (2.8, 4.8) 0.00 0.00 $1, 662 3.30 $1662 $6
0.50 F1F2 0.6 1.2 0.00 0.00 $861 3.38 $861 $− 167 H1E2 (0.0, 3.2) (2.8, 4.8) 0.00 3.24 $1, 495 2.88 $1498 $36
0.75 F1F2 0.6 1.5 0.00 30.03 $701 3.25 $731 $− 254 H1E2 (0.0, 0.8) (2.8, 4.8) 0.00 42.75 $1, 252 2.52 $1295 $76

Note: Optimal storage quantities, the aggregated storage quantity, and the principal’s
expected profit under optimal allowances vs. those under zero allowances.

Table 4.12 Partial Overlapping: when µ1 = 0.50
Cap-and-trade model Non-cap-and-trade model

π2l = 0.25
π1l Type a∗1 a∗2 E∆∗

1 E∆∗
2 Φ∗ EQ∗ ES∗ EG∗ Type (q01l, q

0
1h) (q02l, q

0
2h) E∆0

1 E∆0
2 Φ0 EQ0 ES0 EG0

0.25 F1F2 1.0 1.5 0.0 148.63 $1, 049 4.00 $1198 $− 232 S1E2 (0.8, 2.8) (2.8, 4.8) 0.00 328.50 $1, 805 3.30 $2133 $71
0.50 F1F2 1.6 1.5 0.0 275.63 $760 3.75 $1035 $− 344 S1E2 (0.3, 2.3) (2.8, 4.8) 0.00 278.25 $1, 566 2.80 $1844 $130
0.75 F1F2 2.0 1.5 0.0 268.13 $744 3.50 $1013 $− 447 S1E2 (0.1, 0.8) (2.8, 4.8) 0.00 108.83 $1, 386 2.30 $1495 $207

π2l = 0.50
π1l Type a∗1 a∗2 E∆∗

1 E∆∗
2 Φ∗ EQ∗ ES∗ EG∗ Type (q01l, q

0
1h) (q02l, q

0
2h) E∆0

1 E∆0
2 Φ0 EQ0 ES0 EG0

0.25 F1F2 0.6 1.2 0.0 0.00 $1, 198 3.75 $1198 $− 129 S1E2 (0.8, 3.3) (2.8, 4.8) 0.00 150.22 $1, 752 3.24 $1903 $37
0.50 F1F2 1.4 1.2 0.0 240.24 $686 3.50 $927 $− 243 S1E2 (0.8, 2.8) (2.8, 4.8) 0.00 257.00 $1, 405 2.80 $1662 $71
0.75 F1F2 1.6 1.5 0.0 196.98 $558 3.25 $785 $− 344 S1E2 (0.5, 1.8) (2.8, 4.8) 0.00 94.83 $1, 172 2.30 $1367 $130

π2l = 0.75
π1l Type a∗1 a∗2 E∆∗

1 E∆∗
2 Φ∗ EQ∗ ES∗ EG∗ Type (q01l, q

0
1h) (q02l, q

0
2h) E∆0

1 E∆0
2 Φ0 EQ0 ES0 EG0

0.25 F1F2 0.6 0.6 0.0 0.00 $1, 158 3.50 $1158 $− 51 E1E2 (1.8, 3.8) (2.8, 4.8) 0.00 0.00 $1, 662 3.30 $1662 $6
0.50 F1F2 0.8 1.2 0.0 2.05 $808 3.25 $810 $− 149 S1E2 (0.8, 3.5) (2.8, 4.8) 0.00 63.80 $1, 359 2.72 $1423 $41
0.75 F1F2 1.2 1.2 0.0 157.30 $481 3.00 $641 $− 243 S1E2 (0.8, 2.8) (2.8, 4.8) 0.00 185.50 $1, 005 2.30 $1190 $71

Note: Optimal storage quantities, the aggregated storage quantity, and the principal’s
expected profit under optimal allowances vs. those under zero allowances.

Tables 4.11, 4.12 and 4.13 illustrate the optimal solutions for both two models

where demands follow partial overlapping distributions (θ1l < θ2l < θ1h < θ2h)

Mostly, the principal will design the contracts to induce both types of agents to

capture all demands, i.e., the optimal contract type is F1F2 when there is an allowance

133



Table 4.13 Partial Overlapping: when µ1 = 0.75
Cap-and-trade model Non-cap-and-trade model

π2l = 0.25
π1l Type a∗1 a∗2 E∆∗

1 E∆∗
2 Φ∗ EQ∗ ES∗ EG∗ Type (q01l, q

0
1h) (q02l, q

0
2h) E∆0

1 E∆0
2 Φ0 EQ0 ES0 EG0

0.25 F1F2 1.0 1.5 0.00 148.63 $1, 049 4.00 $1233 $− 98 S1E2 (1.5, 3.5) (2.8, 4.8) 0.00 211.92 $1, 710 3.30 $1921 $29
0.50 F1F2 1.6 1.5 0.00 275.63 $760 3.75 $933 $− 193 S1E2 (1.3, 3.3) (2.8, 4.8) 0.00 246.37 $1, 360 2.80 $1607 $48
0.75 F1F2 2.0 1.5 0.00 268.13 $744 3.50 $671 $− 235 S1E2 (1.2, 2.8) (2.8, 4.8) 0.00 260.94 $1, 021 2.30 $1282 $71

π2l = 0.50
π1l Type a∗1 a∗2 E∆∗

1 E∆∗
2 Φ∗ EQ∗ ES∗ EG∗ Type (q01l, q

0
1h) (q02l, q

0
2h) E∆0

1 E∆0
2 Φ0 EQ0 ES0 EG0

0.25 F1F2 0.6 1.2 0.00 0.00 $1, 198 3.75 $1178 $− 90 S1E2 (1.5, 3.6) (2.8, 4.8) 0.00 95.48 $1, 696 3.25 $1792 $20
0.50 F1F2 1.4 1.2 0.00 240.24 $686 3.50 $915 $− 98 S1E2 (1.5, 3.5) (2.8, 4.8) 0.00 176.17 $1, 310 2.80 $1486 $29
0.75 F1F2 1.6 1.5 0.00 196.98 $588 3.25 $630 $− 159 S1E2 (1.4, 3.1) (2.8, 4.8) 0.00 208.64 $961 2.30 $1170 $48

π2l = 0.75
π1l Type a∗1 a∗2 E∆∗

1 E∆∗
2 Φ∗ EQ∗ ES∗ EG∗ Type (q01l, q

0
1h) (q02l, q

0
2h) E∆0

1 E∆0
2 Φ0 EQ0 ES0 EG0

0.25 F1F2 0.6 0.6 0.00 0.00 $1, 158 3.50 $1158 $− 51 E1E2 (1.8, 3.8) (2.8, 4.8) 0.00 0.00 $1, 662 3.30 $1662 $6
0.50 F1F2 0.8 1.2 0.00 2.05 $808 3.25 $850 $− 90 S1E2 (1.5, 3.7) (2.8, 4.8) 0.00 58.09 $1, 297 2.75 $1355 $21
0.75 F1F2 1.4 1.2 0.00 154.44 $487 3.00 $597 $− 98 S1E2 (1.5, 3.5) (2.8, 4.8) 0.00 140.42 $910 2.30 $1050 $29

Note: Optimal storage quantities, the aggregated storage quantity, and the principal’s
expected profit under optimal allowances vs. those under zero allowances.

assigned by the government in the market. Further, the government often allocates a

large allowance to the agent who can be induced to capture all quantities of demand.

What is more, the type-1 agent can not get the expected information rent; however,

the type-2 agent may get the expected information rent. As shown in Tables 4.11,

4.12, and 4.13, the left sides of those three tables display the optimal solutions for

the cap-and-trade model. Except for the case when µ1 = 0.25, π1l = 0.75, and

π2l = 0.25, the principal offers a full quantities contract (F1F2) in other cases with a

large allowance assigned to both types of agents. When µ1 = 0.25, π1l = 0.75, and

π2l = 0.25, the type-1 agent is offered the efficient quantities for low as well as high

demand levels, and the principal designs the full quantities contract to the type-1

agent for both levels of demands, i.e., the optimal contract is E1F2, shown in Table

4.11.

If the cap-and-trade policy is not implemented, the type-2 agent is always offered

efficient quantities by the principal, and the type-1 agent always fails to receive a

positive expected information rent despite the principal offering several various types

of contracts to the type-1 agents.

When π1l = 0.25 and π2l = 0.75, regardless of the value of µ1, the principal

designs the efficient quantities for both two types of agents without expected

information rent for both agents if the government does not give the agents any
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allowance (See the Right sides of Tables 4.11, 4.12, and 4.13). Furthermore,

we observed that the expected demand of each type of agent is equivalent, i.e,

π1lθ1l + π1hθ1h = π2lθ2l + π2hθ2h.

As shown on the right side of Table 4.11, There are three different types of

contracts, H1E2, N1E2, and E1E2. When the principal optimally offers H1E2 contract

to the agents, the expected information rent given to the type-2 agent is positive. If

offering E1E2 instead of H1E2 to agents at this time, the principal has to give the

type-2 agent more information rent to induce her/him to pick the option designed

for her/him by the principal. But once π1l increases, the revenue from serving the

type-1 agent can not reach the expected information rent given to the type-2 agent.

As a result, the principal prefers not to serve the type-1 agent, and the expected

information rent assigned to the type-2 reduces to zero. This is shown in Table 4.11,

when π1l rises to 0.50 from 0.25 and π2l is 0.25 or when π1l rises to 0.75 from 0.50,

and π2l is 0.50.

Tables 4.12 and 4.13 show another type of contract S1E2. The type-1 agent

is offered the separating contract without expected information rent, and the type-

2 agent is offered efficient quantities with positive expected information rent, and

offering efficient quantities to the type-1 agent is more costly instead of the separating

contract at that time. What is more, when there is no allowance assigned to both

types of agents, the expected captured quantity of the type-1 agent is monotonically

increasing when the value of µ1 increases (from 0.25 to 0.75). Since the revenue from

the type-1 agent plays more and more contributions and the principal purposefully

serves more quantity to the type-1 agent with the growth of the probability of being

the type-1 agent. Furthermore, the type-2 agent is offered efficient quantities without

allowance assigned to both types of agents, as shown in Tables 4.11 to 4.13.

Compared with the non-cap-and-trade policy, the cap-and-trade policy always

makes the principal offer more quantities to agents, which means EQ∗ > EQ0. As
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shown in Tables 4.11 to 4.16, the optimal contract offered by the principal mostly is

F1F2, meaning agents are induced to capture all demand quantities for the cap-and-

trade model. So the expected captured CO2 quantity of the non-cap-and-trade model

can not exceed the expected captured CO2 quantity of the cap-and-trade model when

capturing all demand quantities is picked by all demand levels agents respectively.

There does exist another optimal contract for the cap-and-trade model, which is E1F2.

E1F2 becomes optimal when µ1 is small. Further, when µ1 is small, the principal

prefers to only serve the high demand level of the type-1 agent less than efficient

quantity or even not serve the type-1 agent and the type-2 agent always is induced to

capture his/her efficient quantity for the non-cap-and-trade model (H1E2 or N1E2). As

a result, even though when E1F2 is the optimal contract for the cap-and-trade model,

the total expected captured CO2 when the cap-and-trade policy is implemented is

still more than the total expected captured CO2 when the cap-and-trade policy is not

implemented. The cap-and-trade policy can make the principal design the contract

to induce agents to capture more CO2. However, the principal will sacrifice her/his

profit (Φ∗ < Φ0) and the whole system value is also reduced compared to the non-

cap-and-trade case (ES∗ < ES∗), and the government also pays the cost to induce

agents to capture more CO2 (EG∗ < EG0) which are also shown in Tables 4.11 to

4.16.

4.7.2 Optimal Allowance for Complete Overlapping Demand Distributions:

θ2l < θ1l < θ1h < θ2h

In section 4.7.2, we display the optimal solutions for both two models where demands

follow partial overlapping distributions (θ2l < θ1l < θ1h < θ2h) in Tables 4.14, 4.15,

and 4.16.

The left side of each table shows the optimal solutions for the cap-and-trade

model, and there is only one type of optimal contract designed by the principal that is
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Table 4.14 Complete Overlapping: when µ1 = 0.25
Cap-and-trade model Non-cap-and-trade model

π2l = 0.25
π1l Type a∗1 a∗2 E∆∗

1 E∆∗
2 Φ∗ EQ∗ ES∗ EG∗ Type (q01l, q

0
1h) (q02l, q

0
2h) E∆0

1 E∆0
2 Φ0 EQ0 ES0 EG0

0.25 F1F2 0.6 1.6 0.00 0.00 $1, 344 4.25 $1344 $− 287 P1E2 (2.0, 2.0) (1.8, 4.8) 0.00 214.50 $2, 087 3.54 $2302 $50
0.50 F1F2 0.6 2.0 0.00 0.00 $1, 240 4.13 $1240 $− 442 P1E2 (1.0, 1.0) (1.8, 4.8) 0.00 168.47 $1, 977 3.30 $2145 $84
0.75 F1F2 2.7 1.4 0.00 263.69 $1, 045 4.0 $1308 $− 471 P1E2 (0.05, 0.05) (1.8, 4.8) 0.00 10.12 $1, 938 3.05 $1948 $130

π2l = 0.50
π1l Type a∗1 a∗2 E∆∗

1 E∆∗
2 Φ∗ EQ∗ ES∗ EG∗ Type (q01l, q

0
1h) (q02l, q

0
2h) E∆0

1 E∆0
2 Φ0 EQ0 ES0 EG0

0.25 F1F2 0.9 1.0 0.00 12.44 $1, 126 3.88 $1138 $− 136 E1E2 (2.8, 3.8) (1.8, 4.8) 0.00 0.00 $1, 864 3.36 $1864 $6
0.50 F1F2 0.6 1.2 0.00 0.00 $1, 083 3.75 $1083 $− 167 P1E2 (2.4, 2.4) (1.8, 4.8) 0.00 16.82 $1, 752 3.08 $1769 $25
0.75 F1F2 0.6 1.6 0.00 0.00 $974 3.63 $974 $− 287 P1E2 (2.0, 2.0) (1.8, 4.8) 0.00 109.01 $1, 593 2.98 $1702 $30

π2l = 0.75
π1l Type a∗1 a∗2 E∆∗

1 E∆∗
2 Φ∗ EQ∗ ES∗ EG∗ Type (q01l, q

0
1h) (q02l, q

0
2h) E∆0

1 E∆0
2 Φ0 EQ0 ES0 EG0

0.25 F1F2 1.5 0.8 0.00 0.00 $752 3.50 $752 $− 149 E1S2 (2.8, 3.8) (1.2, 4.8) 33.14 0.00 $1, 275 2.49 $1337 $38
0.50 F1F2 1.2 0.6 0.00 0.00 $795 3.38 $795 $− 90 E1S2 (2.8, 3.8) (1.4, 4.8) 18.89 0.00 $1, 240 2.49 $1278 $29
0.75 F1F2 0.9 0.8 0.00 0.00 $724 3.25 $724 $− 98 E1S2 (2.8, 3.8) (1.5, 4.8) 0.66 0.00 $1, 206 2.49 $1218 $22

Note: Optimal storage quantities, the aggregated storage quantity, and the principal’s
expected profit under optimal allowances vs. those under zero allowances.

Table 4.15 Complete Overlapping: when µ1 = 0.50
Cap-and-trade model Non-cap-and-trade model

π2l = 0.25
π1l Type a∗1 a∗2 E∆∗

1 E∆∗
2 Φ∗ EQ∗ ES∗ EG∗ Type (q01l, q

0
1h) (q02l, q

0
2h) E∆0

1 E∆0
2 Φ0 EQ0 ES0 EG0

0.25 F1F2 0.6 1.4 0.00 2.05 $1, 356 4.00 $1358 $− 166 P1E2 (2.8, 2.8) (1.8, 4.8) 0.00 216.81 $1, 935 3.43 $2152 $47
0.50 F1F2 0.6 1.8 0.00 0.00 $1, 202 3.75 $1202 $− 257 P1E2 (2.4, 2.4) (1.8, 4.8) 0.00 263.31 $1, 749 3.32 $2012 $60
0.75 F1F2 1.8 1.6 0.00 279.47 $704 3.50 $984 $− 415 P1E2 (2.0, 2.0) (1.8, 4.8) 0.00 286.93 $1, 591 3.03 $1878 $75

π2l = 0.50
π1l Type a∗1 a∗2 E∆∗

1 E∆∗
2 Φ∗ EQ∗ ES∗ EG∗ Type (q01l, q

0
1h) (q02l, q

0
2h) E∆0

1 E∆0
2 Φ0 EQ0 ES0 EG0

0.25 F1F2 1.2 0.8 0.00 139.14 $960 3.75 $1099 $− 149 E1E2 (2.8, 3.8) (1.8, 4.8) 0.00 0.00 $1, 851 3.42 $1851 $6
0.50 F1F2 0.6 1.2 0.00 0.00 $1, 084 3.50 $1084 $− 129 P1E2 (2.8, 2.8) (1.8, 4.8) 0.00 32.73 $1, 666 3.05 $1699 $28
0.75 F1F2 1.5 1.0 0.0 243.63 $633 3.38 $877 $− 232 P1E2 (2.5, 2.5) (1.8, 4.8) 0.0 102.22 $1, 477 2.89 $1579 $34

π2l = 0.75
π1l Type a∗1 a∗2 E∆∗

1 E∆∗
2 Φ∗ EQ∗ ES∗ EG∗ Type (q01l, q

0
1h) (q02l, q

0
2h) E∆0

1 E∆0
2 Φ0 EQ0 ES0 EG0

0.25 F1F2 1.5 0.8 0.00 0.00 $786 3.50 $786 $− 207 E1S2 (2.8, 3.8) (0.9, 4.8) 0.00 0.00 $1, 452 2.70 $1502 $43
0.50 F1F2 1.2 0.8 0.0 0.00 $756 3.25 $756 $− 149 E1S2 (2.8, 3.8) (1.1, 4.8) 0.00 0.00 $1, 353 2.66 $1383 $31
0.75 F1F2 1.2 0.6 0.0 67.64 $652 3.00 $720 $− 129 E1S2 (2.8, 3.8) (1.5, 4.8) 0.00 0.00 $1, 255 2.67 $1264 $16

Note: Optimal storage quantities, the aggregated storage quantity, and the principal’s
expected profit under optimal allowances vs. those under zero allowances.

F1F2 (See Tables 4.14, 4.15, and 4.16). All demand levels of both types of agents are

offered the full quantities with a large allowance given by the government; however,

the type-1 agent may acquire positive information rent instead of nothing, and the

type-2 agent gets no expected information rent. On the contrary, when µ1π2l is large

which is shown in Table 4.16.

When the government decides not to apply the cap-and-trade policy, the optimal

solutions are shown in the left side of each table (See Tables 4.14, 4.15, and 4.16).

When E1E2 is the optimal contract designed by the principal, the agents can be

induced to choose the efficient quantity designed for her/him without any expected

information rent given to agents. As shown in Tables 4.14, 4.15, and 4.16, when

π1l = 0.25 and π2l = 0.50 regardless of the value of µ1, both types of agents are
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Table 4.16 Complete Overlapping: when µ1 = 0.75
Cap-and-trade model Non-cap-and-trade model

π2l = 0.25
π1l Type a∗1 a∗2 E∆∗

1 E∆∗
2 Φ∗ EQ∗ ES∗ EG∗ Type (q01l, q

0
1h) (q02l, q

0
2h) E∆0

1 E∆0
2 Φ0 EQ0 ES0 EG0

0.25 F1F2 0.6 1.2 0.00 35.34 $1, 307 3.75 $1343 $− 90 S1E2 (2.8, 3.5) (1.8, 4.8) 0.00 143.66 $1, 863 3.49 $2007 $22
0.50 F1F2 0.9 0.8 0.00 35.34 $927 3.75 $1134 $− 110 S1E2 (2.7, 3.3) (1.8, 4.8) 0.00 182.57 $1, 642 3.25 $1824 $28
0.75 F1F2 0.9 1.2 0.00 164.40 $776 3.00 $941 $− 138 S1E2 (2.6, 2.8) (1.8, 4.8) 0.00 201.43 $1, 431 3.00 $1632 $36

π2l = 0.50
π1l Type a∗1 a∗2 E∆∗

1 E∆∗
2 Φ∗ EQ∗ ES∗ EG∗ Type (q01l, q

0
1h) (q02l, q

0
2h) E∆0

1 E∆0
2 Φ0 EQ0 ES0 EG0

0.25 F1F2 0.9 1.2 0.00 0.00 $1, 085 3.63 $1085 $− 138 E1E2 (2.8, 3.8) (1.8, 4.8) 0.00 0.00 $1, 839 3.48 $1839 $6
0.50 F1F2 0.6 1.2 0.00 0.00 $1, 085 3.50 $1085 $− 90 S1E2 (2.8, 3.5) (1.8, 4.8) 0.00 39.66 $1, 616 3.18 $1656 $15
0.75 F1F2 0.6 1.2 0.00 26.36 $914 2.88 $941 $− 90 S1E2 (2.7, 3.1) (1.8, 4.8) 0.00 76.54 $1, 396 2.94 $1473 $20

π2l = 0.75
π1l Type a∗1 a∗2 E∆∗

1 E∆∗
2 Φ∗ EQ∗ ES∗ EG∗ Type (q01l, q

0
1h) (q02l, q

0
2h) E∆0

1 E∆0
2 Φ0 EQ0 ES0 EG0

0.25 F1F2 1.2 2.0 60.99 0.00 $831 3.50 $892 $− 297 E1S2 (2.8, 3.8) (0.9, 4.8) 0.00 0.00 $1, 639 3.12 $1664 $20
0.50 F1F2 0.9 2.0 78.69 0.00 $791 3.13 $870 $− 230 E1S2 (2.8, 3.8) (1.1, 4.8) 0.00 0.00 $1, 472 2.98 $1487 $16
0.75 F1F2 0.9 0.6 0.00 9.15 $747 2.75 $756 $− 100 E1S2 (2.8, 3.8) (1.5, 4.8) 0.00 0.00 $1, 305 2.86 $1309 $10

Note: Optimal storage quantities, the aggregated storage quantity, and the principal’s
expected profit under optimal allowances vs. those under zero allowances.

offered efficient quantities, respectively, with no expected information rent, which

means this case is cost-less for the principal in general.

Compared with the partial-overlapping distribution case, the principal does not

always offer efficient quantities to the type-2 agent when the demand distribution is

complete-overlapping. As shown in Tables 4.14, 4.15, and 4.16, the type-2 agent is

offered the separating contract when π2l = 0.75 regardless of the value of µ1 and π1l.

Offer contract E1S2 instead of all efficient quantities since the principal has to pay

the higher information rent to the type-1 agent to induce her/him to pick efficient

quantities designed for her/him.

Further, there is another type of contract which is not mentioned before which

is P1E2 shown in Tables 4.14 and 4.15. Except for the case when E1E2 is the

optimal contract, all efficient quantities (qdn = qdn, d = 1, 2 and n = l, h) are

not incentive compatible anymore and the pooling contract designed to the type-1

agent and efficient contract designed to the type-2 agent become incentive compatible

when π2l = 0.25, 0.50 shown in Table 4.14 and 4.15. Those two tables also display

the type-2 agent is offered efficient quantities for both demand levels with a positive

expected information rent, and the type-1 agent is offered a pooling contract with no

expected information rent by the government.
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Similarly, when µ1 = 0.75, except for the case when π1l = 0.25 and π2l = 0.50

shown in Table 4.16, the type-2 agent is offered efficient quantities for both demand

levels with a positive expected information rent and the type-1 agent is offered a

separating contract. In this separating contract, the agent is offered a higher quantity

than her/his efficient quantity if s/he is at a higher demand level and a less quantity

than her/his efficient quantity otherwise. The pooling contract at this time is not an

incentive as this contract is not even feasible.

When the non-cap-and-trade policy is launched, similar to the partial overlapping

distribution case, the expected captured quantity of the type-1 agent is monotonically

increasing when the value of µ1 increases from 0.25 to 0.75. But the expected

capturing quantity of the type-2 agent is monotonically decreasing with the rise of

the value of µ1.

4.8 Managerial Insight

When the demand distribution is known, there are two levels of demand uncertain.

If the government does not launch a cap-and-trade policy, the principal offers the

efficient quantity to the agent regardless of the demand level, and the agent can

not get the expected information rent. However, when the cap-and-trade policy is

implemented on the market and the optimal allowance is allocated to the agent, the

agent has an incentive to capture all demand even without expected information

rent. Although the cap-and-trade policy can make the principal design a contract to

induce the agent to capture all quantities, the principal can set a higher price for the

agent when there is no allowance assigned to the agent. As a result, the profit of the

profit will decrease compared with the profit when the government does not give any

allowance to the agent.

When the distributions of two types of agents partially overlap, and the non-cap-

and-trade policy is launched, the type-2 agent is always offered an efficient quantities
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contract (E2), and the type-1 agent can not acquire any expected information rent

regardless of the type of his contract. Further, we summarize the following insights

under this condition: (1) When the expected demand of the type-1 agent is the

same as the expected demand of the type-2 agent, the principal often designs all

efficient quantities contract, i.e., E1E2, to the agents with no cost overall. (2) If the

chance of being the type-1 agent with the high demand level is low, either offering a

non-participating to θ1l or not serving the type-1 agent is the optimal contract. Since

the revenue from offering more quantity to the type-1 agent can not increase as much

as the rise of the type-2 agent’s information rent. (3) When the probability of being

the type-1 agent with the high demand level increases, only serving the high demand

level of the type-1 agent and not serving the type-1 agent contracts becomes costly.

As a result, the principal offers the separating contract instead, and more expected

quantities are offered to the type-1 agent when the probability of being the type-1

agent increases.

When the demand distributions become complete-overlapping, and the chance

of having a high demand level of the type-2 agent is small without an allowance given

by the government, the principal offers efficient quantities to the type-1 agent instead

of the type-2 agent and offers the separating contract to the type-2 agent with no

expected information rent.

When the cap-and-trade policy is launched by the government, what we

conclude: (1) mostly, the policy will make the principal offer the full quantities to all

demand levels of the agents with a large allowance assigned by the government (F1F2).

(2) However, when the chance of being the type-2 agent with a high demand level

becomes large, there does exist a case that full quantities contracts are not incentive

compatible for the type-1 agent even if the government sets a large allowance for

her/him. What is more, CO2 that the agent captures is even less than the efficient

quantity with an allowance. As a result, the government is not willing to assign any
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allowance to that agent who can not be motivated to capture the full demand of CO2

no matter how much allowance is given to her/him, and the principal will design

the efficient quantities contract instead with no given allowance, and full quantities

contract is designed to another type of agent with a large allowance.

The cap-and-trade policy can make the principal design the contracts to induce

agents to capture as much as CO2 they emit, and mostly the agents are induced to

capture all demand, and the captured CO2 is more compared with the non-cap-and-

trade policy is implemented. However, the principal has to sacrifice her/his benefit

compared with the non-cap-and-trade case as he can not set a price as much as in the

non-cap-and-trade case. Further, the government also pays the cost as she will get

the penalty from agents and needs to pay the cost of setting the allowance to agents.

4.9 Conclusions

In this chapter, we build a principal-agent framework to explore the implications of

uncertainty in agents’ heterogeneous demands on the principal’s contracts when a

cap-and-trade policy is applied or not. We consider two types of hidden information

under the cap-and-trade case and non-cap-and-trade case separately. The first one is

the agent’s type is known by the principal and agent, but the demand level is only

known by the agent. Another one is that the principal even does not know the type

of agent; however, the agents know their types and demand levels. The principal

designs the menu of contracts for all agents, and each agent will pick the option in

the chosen contract after s/he realizes her/his demand level.

We display the analytical solutions under both types of hidden information when

the government assigns the allowance in the market, i.e., whether a cap-and-trade

policy is launched or not. We present the special types of analytical solutions when

there are two distributions for both cap-and-trade and non-cap-and-trade models.

The cap-and-trade policy and the types of demand distributions play a significant
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role in the types of optimal solutions. When a cap-and-trade policy is implemented

in the market, mostly, full quantities contracts become optimal regardless of the

demand distribution. However, efficient quantities contract to the type-1 agent, and

full quantities contract to the type-2 agent become optimal when the probability

of being the high demand level of the type-2 agent is large in partial-overlapping

distribution. When a cap-and-trade policy is implemented in the market, we just list

the analytical solutions of the all-efficient-quantities contract, and the single contract,

other types of contracts (pooling, separating, only serving high demand level) are

shown in the numerical solutions (Section 4.7).
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this chapter, we present the conclusions of the dissertation and discuss the future

work directions opened by this research.

5.1 Summary of Contributions

This dissertation made novel research contributions to controlling the spread of

Emerald ash borer and reducing CO2 emissions. The high-level goal of this

dissertation is to design the principal-agent framework to optimize the collaboration

between the principal and agents.

We are among the first to apply the principal-agent framework to induce the

collaboration between the government and private landowners on managing invasive

species which is shown in chapter 2. We address a non-classical principal-agent

problem which does not meet the single-crossing property by building two cost-sharing

programs, where the reimbursement is based on either the infestation level or the

number of treated trees. We explore the impact of the government on incentives of

private landowners. Our model can also be applied to the public-private relationships

by exploring the joint resource, which can strengthen the collaborations between

public and private roles.

This is the first trying to integrate a principal-agent framework with a mixed-

integer programming to address the budget allocation and make the collaboration

between the government and private landowners in Chapter 3. To reduce the

complexity of the problem, we linearize all non-linearities. We also make use of

the machine learning method to dynamically predict the next attack rate in each site

to consider the uncertainty of the attack rate.
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Chapter 4 presents a principal-agent model to induce the emitters to capture

as much as possible CO2 through the Carbon and Storage System with or without

the cap-and-trade policy. We investigate the impact of allocating carbon allowance

to agents on the total quantities being captured and stored as well as the overall

information rent given to the agents to incentivize them to participate. We provide

analytical solutions to the special case where the allocated allowance is zero or

positive. Through numerical analysis, we investigate the impact of providing

allowance based on the agent’s demand distribution, and we compare the optimal

solutions when either the carbon allowance is assigned or not assigned by the

government.

5.2 Future Work

This research took the first steps toward studying and addressing the application of

the principal-agent framework. There are several interesting directions that we plan

to investigate in future work.

In Chapter 2, we study the cost-sharing programs between the government and

private landowners and the optimal reimbursement to induce the participation of

private landowners. Our future work would focus on two tasks. The first one is to

develop a heuristic to find the optimal solution for the treatment-based reimbursement

model. Finding the optimal treatment decisions and the reimbursement schedule

requires a complete search with all possible combinations of treatment decisions.

Because we have been able to narrow down the structures of the optimal treatment

decisions, they can be used to reduce the search time. The second one is to provide

analytical solutions for the optimal treatment decision and the reimbursement under

each infestation level. Further, we plan to validate both models by checking the results

using data and input parameters from New Jersey against those from Minnesota.

144



In Chapter 3, we develop a data-driven integrated game theory-mixed integer

programming framework to allocate the resources to management decisions in both

public and private areas over space and time to maximize the government’s profit

and save more ash trees. For future work, first, the presented MIP model could be

implemented on a larger scale beyond a five-by-five gridded landscape with a larger

number of trees in each grid cell. In this case, the cost function regarding treatment

could be defined as a non-linear function of the number of treated trees. We also can

build different cost functions among public and private sites since the government

can award a contract with a tree service company to reduce each cost. These

modifications in cost would significantly complicate the model, thus, necessitating the

development of non-linear MIP algorithms. Furthermore, we will perform a sensitivity

analysis to explore how the change in input parameters affects optimal management

decisions. Then we will explore solution algorithms to tackle the complexity of the

MIP formulation resulting from the linearization of the non-linear inequalities and the

addition of fixed costs for treatment and removal to reduce the computation time.

In Chapter 4, we allow the expected allowance set by the government to be

un-restricted. In future work, we would like to set an upper bound for the expected

allowance. According to results obtained from the cap-and-trade model, full quantities

contracts are most likely to be optimal for both types of agents, meaning agents will

capture all demand and sell all allowance to the market. However, the selling price

of the allowance should decrease if massive emission allowances are in the trading

market. Therefore, we can build a dynamic pricing mechanism where the selling

price depends on the quantity of the total allowance on the market. What is more,

in addition to the penalty of CO2 emissions and the cost of offering the allowances,

the government may want to account for the benefit from the improvement of the

environment. In future work, we plan to consider the improvement as an additional

component of the objective function.
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APPENDIX A

MORE EXPLANATIONS FOR EACH CHAPTER

A.1 More Notes of Chapter 2

A.1.1 Relationship between the Two Cutoff Values of the High Second-

period Attack Rate

We show that π̈h(i) ≥ π̇h(i) when ρ < ρ̈. The proof is separated into two cases: when

πl is low or medium and when πh is high.

Case 1: When the low second-period attack rate is low or medium

(0 ≤ πl < π̈l). As discussed earlier, π̇h and π̈h are defined as follows: π̇h(i) :=

max{0,min{1, πl + a1
ρ̄(θ+c)+β

· i
n−i

}} and π̈h(i) := max{0,min{1, π
l(ρ̄(θ+c)+β)+α

θ+c
+ α+a1

θ+c
·

i
n−i

}}. Because π̈h is in between 0 and 1, we divide our discussion into two sub-cases.

Sub-case 1: If πl(ρ̄(θ+c)+β)+α
θ+c

+ α+a1
θ+c

· i
n−i

≥ 1, then π̈h(i) = 1. Because π̇h is also

between 0 and 1, π̈h(i) ≥ π̇h(i).

Sub-case 2: If πl(ρ̄(θ+c)+β)+α
θ+c

+ α+a1
θ+c

· i
n−i

< 1, then π̈h(i) = max{0, π
l(ρ̄(θ+c)+β)+α

θ+c
+

α+a1
θ+c

· i
n−i

}. π̇h(i) is either zero or min{1, πl+ a1
ρ̄(θ+c)+β

· i
n−i

}. If π̇h(i) = 0, π̈h(i) =

max{0, π
l(ρ̄(θ+c)+β)+α

θ+c
+ α+a1

θ+c
· i
n−i

} ≥ 0 = π̇h(i), i.e., π̈h(i) ≥ π̇h(i). Otherwise,

π̇h(i) = min{1, πl+ a1
ρ̄(θ+c)+β

· i
n−i

}. Equivalently, −π̇h(i) = −min{1, πl+ a1
ρ̄(θ+c)+β

·
i

n−i
} ≥ −

(
πl + a1

ρ̄(θ+c)+β
· i
n−i

)
. Since π̈h(i) = max{0, π

l(ρ̄(θ+c)+β)+α
θ+c

+ α+a1
θ+c

· i
n−i

}

≥ πl(ρ̄(θ+c)+β)+α
θ+c

+ α+a1
θ+c

· i
n−i

, the difference of the two cutoffs is thus

π̈h(i)− π̇h(i) ≥ πl(ρ̄(θ+c)+β)+α
θ+c

+ α+a1
θ+c

· i
n−i

−
(
πl + a1

ρ̄(θ+c)+β
· i
n−i

)
= α+πla1

θ+c
+

α(ρ̄(θ+c)+β)+a21
(θ+c)(ρ̄(θ+c)+β)

· i
n−i

.
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Because
α(ρ̄(θ+c)+β)+a21
(θ+c)(ρ̄(θ+c)+β)

· i
n−i

≥ 0 for 0 ≤ i < n, π̈h(i) − π̇h(i) ≥ α+πla1
θ+c

. When

0 ≤ ρ < ρ̈, a1 > 0, and thus, π̈h(i)− π̇h(i) ≥ α+πla1
θ+c

> 0.

Case 2: When the low second-period attack rate is high (π̈l ≤ πl ≤ 1).

Recall π̇h and π̈h are defined as follows: π̇h(i) := max{0,min{1, β
ρ̄(θ+c)+β

+ a1
ρ̄(θ+c)+β

·
i

n−i
}} and π̈h(i) := max{0,min{1, β+α

θ+c
+ α+a1

θ+c
· i
n−i

}}. Similar to the previous case,

our discussion is separated into two sub-cases.

Sub-case 1: If β+α
θ+c

+ α+a1
θ+c

· i
n−i

≥ 1, then π̈h(i) = 1. Because π̇h is also between 0

and 1, π̈h(i) ≥ π̇h(i).

Sub-case 2: If β+α
θ+c

+ α+a1
θ+c

· i
n−i

< 1, π̈h(i) = max{0, β+α
θ+c

+ α+a1
θ+c

· i
n−i

}. π̇h(i) is either

zero or min{1, β
ρ̄(θ+c)+β

+ a1
ρ̄(θ+c)+β

· i
n−i

}. If π̇h(i) = 0, π̈h(i) = max{0, β+α
θ+c

+

α+a1
θ+c

· i
n−i

} ≥ 0 = π̇h(i). Therefore, π̈h(i) ≥ π̇h(i). Otherwise,

π̈h(i)− π̇h(i) = max{0, β+α
θ+c

+ α+a1
θ+c

· i
n−i

} −min{1, β
ρ̄(θ+c)+β

+ a1
ρ̄(θ+c)+β

· i
n−i

}

≥ β+α
θ+c

+ α+a1
θ+c

· i
n−i

−
(

β
ρ̄(θ+c)+β

+ a1
ρ̄(θ+c)+β

· i
n−i

)
= βa1+α(ρ̄(θ+c)+β)

θ+c
+

α(ρ̄(θ+c)+β)+a21
(θ+c)(ρ̄(θ+c)+β)

· i
n−i

.

Since
α(ρ̄(θ+c)+β)+a21
(θ+c)(ρ̄(θ+c)+β)

· i
n−i

≥ 0 for 0 ≤ i < n, π̈h(i) − π̇h(i) ≥ βa1+α(ρ̄(θ+c)+β)
θ+c

.

When 0 ≤ ρ < ρ̈, a1 > 0, and thus, π̈h(i)− π̇h(i) ≥ βa1+α(ρ̄(θ+c)+β)
θ+c

> 0.

We can thus conclude that π̈h(i) ≥ π̇h(i) when 0 ≤ ρ < ρ̈.

A.1.2 Proof of Propositions

A.1.2.1 Proof of Proposition 1. When no trees are infested, the objective

function value in Eq. (2.5) is Ψ(q(0), r(0)|n, 0) = (sρ̄ + β)πlq(0) + (s − (sρ̄ +

β)πl)n − r(0). Because (sρ̄ + β)πl > 0, Ψ increases in q(0) and decreases in r(0).

From the IR and NN constraints, we get the lower bound of the reimbursement as

max{0, b1q(0) +αn+ a1π
ln}, where a1 := β − ρ(θ+ c) and b1 := β − πl[ρ̄(θ+ c) + β].
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Further, the IC constraints require b1(q(0) − j) ≤ 0 for all j. The remainder of the

proof is divided into two cases: when πl is low/medium and when πl is high.

Case 1: When the low second-period attack rate is low or medium

(0 ≤ πl < π̈l).

In this case, b1 > 0. Since b1(q(0)− j) ≤ 0 must hold for all j, q(0) must be less

than j ∀ 0 ≤ j ≤ n. q(0) = 0 is hence the only feasible and consequently the optimal

treatment decision. The optimal reimbursement is thus r∗(0) = max{0, αn+ a1π
ln}.

If the treatment is very effective (ρ̈ ≤ ρ ≤ 1), a1 ≤ 0 and hence r∗(0) ≤ αn.

Otherwise, r∗(0) = αn+ a1π
ln > αn.

Case 2: When the low second-period attack rate is high (π̈l ≤ πl < 1).

Here, b1 ≤ 0.

If b1 < 0, q(0) must equal to n to satisfy q(0) − j ≥ 0 for all j or equivalently,

b1(q(0) − j) ≤ 0. Therefore, q(0) = n is the only feasible solution. If b1 = 0,

all IC constraints are satisfied because b1(q(0) − j) = 0 ≤ 0 for all j. Because Ψ

increases in q(0) and IC constraints are all satisfied, it is optimal to set q∗(0) = n

and r∗(0) = max{0, αn + (β − (θ + c)πl)n}. Further, when πl is greater than both

α+β
θ+c

and π̈l, αn+ (β − (θ + c)πl)n < 0, and thus, r∗(0) = 0.

A.1.2.2 Proof of Proposition 2. When all trees are infested, the objective

function value in Eq. (2.5) is Ψ(q(n), r(n)|n, n) = ρ(s+ β)q(n)− βn− r(n). Because

ρ(s + β) > 0, Ψ increases in q(n). We proceed with the proof by discussing the

optimal solution for each category of treatment effectiveness.

Case 1: When the treatment is very effective (ρ̈ ≤ ρ ≤ 1). In this case,

a1 ≤ 0.

If we set q(n) = n, then µn = 0 by definition. The IC constraints require

a1(n− j) ≤ 0 to hold for all j. Because a1 ≤ 0, n− j must be non-negative, and thus,

all IC constraints are satisfied, making q(n) = n a feasible solution. The lower bound
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of the reimbursement obtained from the IR and NN constraints is max{0, αn+a1n}.

Since Ψ decreases in r(n), setting it to the lower bound maximizes Ψ.

If q(n) is less than n, then µn = 1 by definition. If a1 < 0, the IC constraint

−a1(n − q(n)) ≤ 0 is violated because n − q(n) > 0. Therefore, a feasible solution

exists only when a1 = 0. Since Ψ increases in q(n), the best solution when q(n) < n

is q(n) = n − 1. and r(n) = αn. The lower bound of r(n) is max{0, a1q(n) + αn}

instead. However, when compared to Ψ(n,max{0, αn+ a1n}|n, n), Ψ(n− 1, αn|n, n)

is lower when a1 = 0: Ψ(n−1, αn|n, n)−Ψ(n,max{0, αn+a1n}|n, n) = (ρ(s+β)(n−

1) − βn − αn) − (ρ(s + β)n − βn − αn) = −ρ(s + β) < 0. Therefore, q(n) = n − 1

and r(n) = αn cannot be an optimal solution. In conclusion, the optimal solution is

q∗(n) = n and r∗(n) = max{0, αn+ a1n} when the treatment ρ is very effective.

Case 2: When the treatment is not very effective (0 ≤ ρ < ρ̈). Here,

a1 > 0.

If we assume q(n) = n, then µn = 0 by definition. The lower bound of the

reimbursement is max{0, αn+ a1n}. IC constraints are satisfied if a1(n− j) ≤ 0 for

all j. Because a1 > 0 and n− j ≥ 0 for all j, IC constraints are violated. Therefore,

q(n) can not be n.

If, on the other hand, q(n) < n, µn = 1. The lower bound of r(n) is

max{0, a1q(n) + αn}. To satisfy IC constraints, i.e., a1(n− j) ≤ 0 for all j, q(n)− j

must be non-positive for all j. Consequently, q(n) = 0 is the only feasible solution,

and thus, optimal. Since Ψ decreases in r(n), r∗(n) = αn.

A.1.2.3 Proof of Proposition 3. Recall that Proposition 3 pertains to the case

when some trees are infested, and the treatment is very effective. In this case, a1 ≤ 0.

First, we argue that the number of treated trees must be no less than the number of

infested trees (q(i) ≥ i) by showing that IC constraints are violated if q(i) < i. The

IC constraints can be re-written as (ρ̄(θ+c)+β)(πh−πl)(n−i)−a1(i−q(i))−b1(j−i) ≤
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0. Equivalently, LHS =πl + a1(i−q(i))

(ρ̄(θ+c)+β)(n−i)
+ b1(j−i)

(ρ̄(θ+c)+β)(n−i)
≥ πh must hold for all

j ∈ [i, n]. If πl is low or medium, b1 > 0. At least one of the IC constraints is

violated. Specifically, when j = i, the third term in LHS is zero. The second term is

non-positive because a1 ≤ 0 and q(i) < i. Hence, LHS≤ πl, which is less than πh by

assumption. Therefore, the IC constraint is violated. Similarly, if πl is high, b1 ≤ 0.

Here, all IC constraints are violated since LHS ≤ πl < πh. As a result, q(i) ≥ i.

The objective function value in Eq. (2.5) is thus Ψ = (s + β)ρ̄πlq(i) − ρ̄(s +

β)i+ (s− (s+ β)ρ̄πl)n− r(i). Because (s+ β)ρ̄πl > 0, the objective value increases

in q(i) and decreases in r(i). A lower bound of r(i) obtained from the IR and NN

constraints is max{0, b1q(i)−(θ−α−(ρ̄(θ+c)+β)πl)n+ ρ̄(θ+c)i+ϕ(a0|i)}. Further,

to satisfy the IC constraints, the following inequalities must hold simultaneously:

(ρ̄(θ + c) + β)(πl(n− q(i))− πh(n− i)) + a1(i− j) + β(q(i)− i) ≤ 0 for all j ∈ [0, i)

and b1(q(i)− j) ≤ 0 for all j ∈ [i, n]. Next, we divide the proof into two cases: when

πl is low/medium and when it is high.

Case 1: When the low second-period attack rate is low or medium

(0 ≤ πl < π̈l). Here, b1 > 0.

In order to satisfy the IC constraints or b1(q(i)−j) ≤ 0 for all j ∈ [i, n], q(i)−j

needs to be non-positive. We can get q(i) = i is the only feasible solution, and

thus, optimal. To minimize the objective function value, r∗(i) = max{0, αn + a1n−

[a1π̄
l + (θ + c)(πh − πl)](n− i)}. r∗(i) decreases in πh. As per its definition, π̈h(i) =

max{0,min{1, π
l(ρ̄(θ+c)+β)+α

θ+c
+ α+a1

θ+c
· i
n−i

}}, which is ≤ πl(ρ̄(θ+c)+β)+α
θ+c

+ α+a1
θ+c

· i
n−i

. Since

αn+a1n−[a1π̄
l+(θ+c)(π

l(ρ̄(θ+c)+β)+α
θ+c

+α+a1
θ+c

· i
n−i

−πl)](n−i) = 0, αn+a1n−[a1π̄
l+(θ+

c)(πh−πl)](n− i) > 0 for all πh > π̈h(i). Thus, r∗(i) = αn+a1n− [a1π̄
l+(θ+c)(πh−

πl)](n−i) > 0. Similarly, when πh ≤ π̈h(i), αn+a1n−[a1π̄
l+(θ+c)(πh−πl)](n−i) ≤ 0.

Therefore, r∗(i) = 0.

Case 2: When the low second-period attack rate is high (π̈l ≤ πl ≤ 1).

In this case, b1 ≤ 0. If b1 = 0, the IC constraints are satisfied automatically. Since
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Ψ increases in q(i), setting q(i) = n is optimal. If, on the other hand, b1 < 0, q(i)− j

needs to be non-negative for all j ∈ [i, n] to satisfy the second sets of IC constraints.

Therefore, q(i) = n is the only feasible solution, and thus, optimal. To minimize

the objective function value, r(i) should take its lower bound, which is simplified to

r∗(i) = max{0, αn+ a1n− (a1 − β + (θ + c)πh)(n− i)}. r∗(i) decreases in πh.

Recall that π̈h(i) is defined as π̈h(i) = max{0,min{1, β+α
θ+c

+ α+a1
θ+c

· i
n−i

}}, which

is ≤ β+α
θ+c

+ α+a1
θ+c

· i
n−i

. Because αn+a1n− (a1−β+(θ+ c)(β+α
θ+c

+ α+a1
θ+c

· i
n−i

))(n− i) =

0, αn + a1n − (a1 − β + (θ + c)πh)(n − i) > 0 when πh > π̈h. Hence, r∗(i) =

αn + a1n − (a1 − β + (θ + c)πh)(n − i) > 0. On the other hand, when πh ≤ π̈h,

αn+ a1n− (a1 − β + (θ + c)πh)(n− i) ≤ 0, and thus, r∗(i) = 0.

A.1.2.4 Proof of Proposition 4. Proposition 4 discusses the optimal solution

when some trees are infested, and the treatment is not very effective. a1 is positive in

this case. The proof is separated into two cases: when πl is low/medium and when

it is high. Each case is then further divided into two sub-cases: when πh is low and

when it is medium/high.

Case 1: When the low second-period attack rate is low or medium

(0 ≤ πl < π̈l). Here, b1 > 0.
Sub-case 1: When the high second-period attack rate is low (0 ≤ πh < π̇h).

First, we show that no feasible solutions exist when q(i) ≥ i. The IC constraints

require (ρ̄(θ+ c) + β) [πl(n− q(i))− πh(n− i)] + a1(i− j) + β(q(i)− i) ≤ 0 for

all j ∈ [0, i) and b1(q(i) − j) ≤ 0 for all j ∈ [i, n] to hold jointly. Because

b1 > 0, to satisfy the second set of IC constraints, q(i) = i is the only

solution that can be feasible. The first set of IC constraints are simplified

to (ρ̄(θ + c) + β)(πl − πh)(n − i) + a1(i − j) ≤ 0 for all j ∈ [0, i). Recall that

π̇h is defined as π̇h(i) = max{0,min{1, πl + a1
ρ̄(θ+c)+β

· i
n−i

}}. Since a1 > 0,

πl + a1
ρ̄(θ+c)+β

· i
n−i

> 0, and thus, π̇h(i) ≤ πl + a1
ρ̄(θ+c)+β

· i
n−i

. Moreover,

(ρ̄(θ + c) + β)[πl − (πl + a1
ρ̄(θ+c)+β

· i
n−i

)](n − i) + a1(i − j) = 0 when j = 0.

151



Because the expression (ρ̄(θ+ c)+β)(πl−πh)(n− i)+a1(i− j) decreases in πh,

(ρ̄(θ+c)+β)(πl−πh)(n−i)+a1(i−j) > 0 when j = 0 for any πh < π̇h. q(i) = i

is not a feasible solution since at least one of the IC constraints is violated.

Next, we examine whether a feasible solution exist when q(i) < i. In this case,

µi = 1. The objective function value in Eq. (2.5) is Ψ = ρ(s + β)q(i) + (π̄h +

ρπh)s(n − i) − ρ̄βi − ρ̄πlβn − r(i), which increases in q(i) and decreases in

r(i). To satisfy the IC constraints, both a1(q(i) − j) ≤ 0 for all j ∈ [0, i) and

(ρ̄(θ+ c)+β)(πh(n− i)−πl(n− j))− a1(i− q(i))−β(j− i) ≤ 0 for all j ∈ [i, n]

must hold. Because a1 > 0, q(i) must be zero to satisfy the first set of the

IC constraints and q(i) < i. These constraints are simplified to (ρ̄(θ + c) +

β)(πh(n− i)−πl(n− j))− a1i−β(j− i) ≤ 0 for all j ∈ [i, n]. As shown earlier,

π̇h(i) ≤ πl+ a1
ρ̄(θ+c)+β

· i
n−i

. Therefore, for any πh < π̈h, (ρ̄(θ+c)+β)(πh(n− i)−

πl(n−j))−a1(i−q(i))−β(j− i) = (ρ̄(θ+c)+β)(πh−πl)(n− i)−a1i−b1(j− i)

< (ρ̄(θ+ c)+β)(πl+ a1
ρ̄(θ+c)+β

· i
n−i

−πl)(n− i)− a1i− b1(j− i) = −b1(j− i) ≤ 0

since b1 > 0 and j ∈ [i, n]. As a result, the second set of IC constraints are

satisfied.

The lower bound of r(i) obtained from the IR and NN constraints is

max{0, a1q(i)−(θ−α−(ρ̄(θ+c)+β)πh)n+(θ+c−(ρ̄(θ+c)+β)πh)i+ϕ(a0|i)}.

This lower bound when q∗(i) = 0 is simplified to r∗(i) = αn+a1π
h(n− i), which

is greater than αn since a1 > 0.

Sub-case 2: When the high second-period attack rate is medium or high.

Here π̇h ≤ πh ≤ 1 and similar to the previous sub-case, we argue that

q(i) ≥ i when πh ≥ π̇h. Here, µi = 0 and the objective function value is

Ψ = (s+β)ρ̄πlq(i)− ρ̄(s+β)i+(s− (s+β)ρ̄πl)n− r(i), which increases in q(i)

and decreases in r(i). The IC constraints require (ρ̄(θ + c) + β)(πl(n− q(i))−

πh(n− i)) + a1(i− j) + β(q(i)− i) ≤ 0 for all j ∈ [0, i) and b1(q(i)− j) ≤ 0 for
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all j ∈ [i, n]. Since b1 > 0 and q(i) ≥ i, q(i) must be i to satisfy the second set

of IC constraints. Similar to the previous sub-case, we can show that the first

set of constraints become (ρ̄(θ + c) + β)(πl − πh)(n− i) + a1(i− j) ≤ 0 for all

j ∈ [0, i), which are satisfied when πh ≥ π̇h.

The lower bound of r(i) obtained from the IR and NN constraints is

max{0, b1q(i) − (θ − α − (ρ̄(θ + c) + β)πl)n + ρ̄(θ + c)i + ϕ(a0|i)}. Since Ψ

decreases in r(i), the lower bound maximizes Ψ. Further, the lower bound can

be simplified to max{0, αn + a1n − [a1π̄
l + (θ + c)(πh − πl)](n − i)}, which

decreases in πh. Recall that πh := max{0,min{1, α+πla1
θ+c

+ α+a1
θ+c

· i
n−i

}}. Because

a1 > 0, πh ≤ α+πla1
θ+c

+ α+a1
θ+c

· i
n−i

. For any πh < π̈h, αn+a1n− [a1π̄
l+(θ+c)(πh−

πl)](n− i) > αn+ a1n−
[
a1π̄

l + (θ + c)
(

α+πla1
θ+c

+ α+a1
θ+c

· i
n−i

)]
(n− i) = 0. On

the other hand, when πh ≥ π̈h, αn+ a1n− [a1π̄
l + (θ + c)(πh − πl)](n− i) ≤ 0.

Therefore, r∗(i) = 0.

Case 2: When the low second-period attack rate is high (π̈l ≤ πl < 1). In

this case, b1 ≤ 0.

Sub-case 1: When the high second-period attack rate is low. Here, 0 ≤ πh <

π̇h. We first show that no feasible solutions exists when q(i) ≥ i. The IC

constraints are simplified as follows: (ρ̄(θ + c) + β)(πl(n− q(i))− πh(n− i)) +

a1(i− j) + β(q(i)− i) ≤ 0 for all j ∈ [0, i) and b1(q(i)− j) ≤ 0 for all j ∈ [i, n].

Because b1 ≤ 0, q(i) = n. At least one of the first set of the IC constraints is

violated when πh < π̇h. Therefore, q(i) = n is not a feasible solution. Next,

using the same logic as Sub-case 1 of case 1, we can conclude that it is optimal

to set q∗(i) = 0 and consequently r∗(i) = αn+ a1π
h(n− i).

Sub-case 2: When the high second-period attack rate is medium or high.

Here π̇h ≤ πh ≤ 1. As established earlier, when πh > π̇h, q(i) ≥ i.

Since µi = 0, the objective function value is Ψ = (s + β)ρ̄πlq(i) − ρ̄(s +

β)i + (s − (s + β)ρ̄πl)n − r(i), which increases in q(i) and decreases in
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r(i). To satisfy the IC constraints, two sets of conditions need to hold:

(ρ̄(θ + c) + β)(πl(n − q(i)) − πh(n − i)) + a1(i − j) + β(q(i) − i) ≤ 0 and

b1(q(i) − j) ≤ 0 for all j ∈ [i, n). Because b1 ≤ 0, q(i) = n is the only feasible

solution that meets the second set of the IC constraints.

A lower bound obtained from the IR and NN constraints when q∗(i) = n is

simplified to max{0, αn+a1i+β(n−i)−(θ+c)πh(n−i)} , which decreases in πh.

For any value any πh < π̈h, αn+a1i+β(n−i)−(θ+c)πh(n−i) > αn+a1i+β(n−

i)−(θ+c)π̈h(n− i) ≥ αn+βn−ρ(θ+c)i−(θ+c)
(
β+α
θ+c

+ α+a1
θ+c

· i
n−i

)
(n− i) = 0.

On the other hand, when πh ≥ π̈h, αn+ a1i+ β(n− i)− (θ + c)πh(n− i) ≤ 0,

and thus, r∗(i) = 0.
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A.2 More Notes of Chapter 3

A.2.1 Game-theory Model

A.2.1.1 Model Notion.

Table A.1 Notations

Input parameters:
N1

i The number of ash trees a landowner has in site i at the beginning.
π1
i The first-period attack rate in site i, i.e., the probability that an ash

tree is infested with the EAB. π̄ = 1− π.
I1i The infestation level (number of infested trees) in period one in site i

follows a binomial distribution with rate π1
i : I

1
i ∼ B(N1

i , π
1
i ).

c1 Cost of inspecting an ash tree.
c2 Cost of treating an ash tree.
c3 Cost of removing a dead tree.
ρ Treatment success rate. ρ̄ = 1− ρ.
θ Marginal value of a landowner having a surviving ash tree.
α Marginal value the city forester has for a healthy ash tree.
π2
h,i The high (resp. low) second-period attack rate, i.e., the probability

(resp. π2
l,i) that a healthy ash tree will become infested in period 2 in site i if the

number of treated trees in period one is less than
(resp. greater than or equal to) the number of infested trees.
π2
l,i < π1

i < π2
h,i; π̄

2
h,i = 1− π2

h,i; π̄
2
l,i = 1− π2

l,i.

Value function:
v(p, d) The value function of the city forester of having p surviving ash trees

while losing d trees either untreated or unsuccessfully-treated
at the end of the second period: v(p, d) = s · p− β · d.

V (p) The value function of the landowner having p surviving ash trees
at the end of the second period: V (p) = θ · p.

Decision variables only applicable to the infestation-based reimbursement model:
qS,i The number of healthy trees a landowner will treat given I1i out of

N1
i ash trees, and the treated healthy trees will become EAB resistant.

qI,i The number of infested trees a landowner will treat given I1i out of
N1

i ash trees.
qi The number of trees a landowner will treat given I1i out of N1

i ash
trees are infested. qi can be greater than, equal to, or less than
I1i . qi = qS,i + qI,i. If qi < I1i , qS,i = 0, otherwise, qI,i = I1i .

ri Reimbursement offered to the landowner for having I1i infested ash
trees.
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A.2.1.2 Formulation. This section simply shows the game theory model applied

to the private site i and mentioned in schema 3.3.4. Let θ denote the landowner’s

marginal value of a healthy ash tree, and a0 represents not participating in the cost-

sharing program, then his expected utility given the infestation level (I1i ) in site i is

as follows:

ϕ(a0|N1
i , I

1
i ) =


θπ̄2

l,iN
1
i − c3π

2
l,iN

1
i if I1i = 0

θπ̄2
h,i(N

1
i − I1i )− c3(I

1
i + π2

h,i(N
1
i − I1i )) if 0 < I1i < N1

i

−c3N1
i if I1i = N1

i ,

(A.1)

where π̄2
l,i = 1− π2

l,i and π̄
2
h,i = 1− π2

h,i.

First, if there are no infested trees (I1i = 0) in the first period, the attack rate

in the second period is π2
l,i, and therefore, π2

l,iN
1
i trees are expected to be infested

and die without treatment. The term π̄2
l,iN

1
i in Equation (A.1) is the landowner’s

value of having π̄ln surviving trees while c3π
2
l,iN

1
i is the cost of removing π2

l,iN
1
i dead

trees. Second, if some trees are infested (0 < I1i < N1
i ) in period one, inaction will

lead to an increased attack rate (π2
h,i), the expected trees to be infested in period two

is π2
h,i(N

1
i − I1i ). A total of I1i + π2

h,i(N
1
i − I1i ) trees will die, and the removal cost

associated is c3 · (I1i + π2
h,i(N

1
i − I1i )). The landowner’s expected utility is thus the

difference between the value of healthy trees, θ · π̄2
h,i(N

1
i − I1i ), and the removal cost.

Last, if all trees are already infested in the first period, a lack of treatment would

result in the death of all. The landowner would incur a removal cost of c3N
1
i .

If the private landowner does participate in the cost-sharing program, the

landowner’s expected utility considering two scenarios: (1) when qi < I1i in site i

in period 1, where qi = qS,i + qI,i and qS,i = 0 as qi < I1i .

ϕ(qi, ri|N1
i , I

1
i , qi < I1i ) = θ · p1 + ri − c1 ·N1

i − c2 · t1 − c3 · d1. (A.2)
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The first two terms in Equation (A.2) are the landowner’s value of having p1 surviving

trees, p1 = ρqi+π̄
2
h,i(N

1
i −I1i )+ρπ2

h,i(N
1
i −I1i ), and the reimbursement received from the

city forester. The left three terms represent the surveillance cost, the treatment cost

where t1 = qi+π
2
h,i(N

1
i −I1i ), and the removal cost where d1 = I1i −ρqi+ρ̄iπ2

h,i(N
1
i −I1i ),

respectively.

(2) when qi ≥ I1i in site i in period 1

ϕ(qi, ri|N1
i , I

1
i , qi ≥ I1i ) = θ · p0 + r1 − c1 ·N1

i − c2 · t0 − c3 · d0. (A.3)

The first two terms in Equation (A.3) are the landowner’s value of having p0 surviving

trees, p0 = qi− ρ̄I1i + π̄2
l,i(N

1
i −qi)+ρπ2

l,i(N
1
i −qi) and the reimbursement received from

the city forester. The left three terms represent the surveillance cost, the treatment

cost where t0 = I1i + (qi − I1i ) + π2
l,i(N

1
i − qi), and the removal cost where d0 =

ρ̄iI
1
i + ρ̄iπ

2
l,i(N

1
i − qi), respectively.

The game-theory model is listed in the following:

max
qi,ri

Ψ(qi, ri|N1
i , I

1
i ) = µ1

i ·
(
α · p1 − c2 · d1

)
+ µ̄1

i

(
α · p0 − c2 · d0

)
− ri (A.4)

Subject to:

• IR

ϕ(qi, ri|N1
i , I

1
i ) ≥ ϕ(a0|N1

i , I
1
i ) i ∈ Γr (A.5)

• ICI1i g

ϕ(qi, ri|N1
i , I

1
i ) ≥ ϕ(g, ri|N1

i , I
1
i ) ∀0 ≤ g ≤ N1

i , i ∈ Γr (A.6)
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• NN

qi, ri ≥ 0 i ∈ Γr (A.7)

The objective function shown in Equation (A.4) is the net expected utility of the city

forester, which has two scenarios: (1) when qi < I1i (or equivalently, µt
i = 1) and (2)

when qi ≥ I1i (or µ1
i = 0). The first term of the objective function is the value of

having p1 surviving trees at the end of the second period minus the penalty for losing

d1 trees when qi < I1i . Similarly, the second term of the objective function is the

difference between the value of having p0 surviving trees and the penalty for losing

d0 trees when qi ≥ I1i . For simplicity, we assume that the penalty associated with a

dead tree is equal to the cost of its treatment. The last term is the cost of providing

the financial award to the landowner.

The individual rationality (IR) constraint ensures the landowner has enough

incentive to participate in the cost-sharing program. The incentive compatibility

(ICj) constraints induce the landowner to treat the number of trees designed by the

city forester qi based on the infestation level (I1i ), rather than another treatment

decision (g) in site i in period 1. The non-negativity constraints (NN) ensure that

both qi and ri are non-negative.
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A.3 More Notes of Chapter 4

A.3.1 The Proof of Propositions

A.3.1.1 The Proof of Proposition 5.

Proof. When D = 1 and N = 1 and the allowance ad = 0, the problem becomes

max Φ = −α
2
q2dn + α(θdn − γ+β

α
)qdn −∆dn

s.t. ∆dn ≥ 0 (IRd)

and qdn ≥ 0 (NNdn)

There is only one type of agent with one level demand, so the problem is under

complete information and the principal can get the maximum profit when the

information rent ∆∗
dn = 0. What is more, the principal’s profit is convex function

with respect to qdn and ∂Φ
∂qdn

= −αqdn + α(θdn − γ+β
α

), so the optimal contract is

shown as follows:

q∗dn = θdn − γ+β
α

= qdn, t∗dn = v(q∗dn, θdn)−∆∗
dn = τ(q∗dn) = τ(qdn) = tdn. (A.8)

A.3.1.2 The Proof of Proposition 6.

Proof. When D = 1 and N = 1 and the allowance ad > 0, the problem actually is

max Φ = v(qdn, θdn)−∆dn − βqdn

s.t. ∆dn ≥ 0 (IRd)

and qdn ≥ 0 (NNdn)
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Similar as the Proof A.3.1.1, the principal can get the maximum profit when the

information rent ∆∗
dn = 0 and the problem becomes the maximize problem i.e. Φ =

v(qdn, θdn) − βqdn when qdn ≥ 0. Figure A.1 and A.2 show the plots between Φ

and qdn when ad < (1 +
√
2)γ+β

α
and ad ≥ (1 +

√
2)γ+β

α
respectively. The points in

those two figures are listed in Table A.2. As shown in Table A.2, Φ|A= Φ|C> Φ|B.

When 0 < ad < (1 +
√
2)γ+β

α
, (

√
2 − 1)ad − γ+β

α
< 0 and (1 +

√
2)ad +

γ+β
α

> 0,

so α
2
((
√
2 − 1)ad − γ+β

α
)((1 +

√
2)ad + γ+β

α
) is negative when ad < (1 +

√
2)γ+β

α

and non-negative otherwise. Therefore, Φ|A= Φ|C> Φ|D if the allowance is less than

(1+
√
2)γ+β

α
and Φ|A= Φ|C< Φ|D if the allowance is more than or equal to (1+

√
2)γ+β

α
.

Table A.2 The Points in Figures A.1 and A.2

qdn Φ
Point A θdn − ad − γ+β

α
α
2
(θdn − ad − γ+β

α
)2

Point B θdn − ad
α
2
(θdn − ad − γ+β

α
)2 − α

2
(γ+β

α
)2

Point C θdn − ad + (1 +
√
2)γ+β

α
α
2
(θdn − ad − γ+β

α
)2

Point D θdn
α
2
(θdn − ad − γ+β

α
)2 + α

2
((
√
2− 1)ad − γ+β

α
)((

√
2 + 1)ad +

γ+β
α

)

Figure A.1 Φdn when 0 < ad < (1 +
√
2)γ+β

α
.

The blue dotted curve line shows the case when 0 ≤ qdn ≤ θdn − ad and the

red dotted line shows the case when θdn − ad < qdn ≤ θdn. The point A is the top

point of the blue dotted curve. The point B is the intersection point of these two

curves. And the point D is the upper boundary point. As shown in Figure A.1, Φ

reaches the maximum value when qdn = θdn − ad − γ+β
α

i.e. at the point A. So when
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0 < ad < (1 +
√
2)γ+β

α
, the optimal quantity and price are

qdn = θdn − ad − γ+β
α

= qdn − ad, tdn = τ(qdn) (A.9)

(a) Φdn when ad < θdn − γ+β
α (b) Φdn when θdn − γ+β

α ≤ ad < θdn

(c) Φdn when ad ≥ θdn

Figure A.2 Φdn when ad ≥ (1 +
√
2)γ+β

α
.

Figure A.2 shows the different trends of Φ when vary qdn at the various ad when

ad ≥ (1 +
√
2)γ+β

α
. There are four different highlighted points in the figure.

The plot of Φ when ad < θdn − γ+β
α

is shown in Figure A.2(a). In this case,

according to Eq. 4.1, Φ is equal to τ̂(qdn)−βqdn when qdn ≤ θdn−ad and τ(qdn)−βqdn

otherwise. Φ is non-negative for all qdn. The maximum value of Φ is at the point D.
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Figure A.2(b) illustrates the case that the principal earns a non-positive utility

when 0 ≤ qdn ≤ θdn−ad. Φ|D−Φ|B= α
2
((
√
2−1)ad− γ+β

α
)((

√
2+1)ad+

γ+β
α

). Because

ad ≥ (
√
2 + 1)γ+β

α
, (

√
2 − 1)ad − γ+β

α
≥ 0. We can get Φ|D≥ Φ|B. As a result, the

point D is the optimal point of the plot in Figure A.2(b).

When ad > θdn, Φ increases in qdn. The plot of Φ is shown in Figure A.2(c). The

principal gets the optimal utility when the agent captures all emission. In conclusion,

when ad ≥ (1 +
√
2)γ+β

α
, the optimal quantity and price are

qdn = θdn, tdn = v(qdn, θdn) (A.10)

In summary, the maximum capturing CO2 quantity with the minimum allowance

are shown as follows:

a∗d = (1 +
√
2)γ+β

α
, q∗dn = θdn, t∗dn = τ̂(θdn). (A.11)

A.3.1.3 The Proof of Proposition 7.

Proof. When D = 1 and N = 2 and the allowance ad = 0, the problem becomes

max Φ = πdl(− α
2
q2dl + α(θdl − γ+β

α
)qdl −∆dl) + πdh(− α

2
q2dh + α(θdh − γ+β

α
)qdh −∆dh)

s.t. πdl∆dl + πdh∆dh ≥ 0 (IRd)

∆dh −∆dl ≥ α(θdh − θdl)qdl (ICdhl)

∆dl −∆dh ≥ v(qdh, θdl)− v(qdh, θdh) (ICdlh)

and qdn ≥ 0 (NNdn)
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The principal can get the maximum profit when the expected information rent

πdl∆
∗
dl + πdh∆

∗
dh = 0. What is more, the principal’s profit is convex function with

respect to qdl, qdh and
∂Φ
∂qdn

= −αqdn+α(θdn− γ+β
α

) (n = l, h), so the optimal capturing

quantity for different demand level is shown as follows:

q∗dn = θdn − γ+β
α

= qdn,

and n = l, h
(A.12)

and,

πdl∆
∗
dl + πdh∆

∗
dh = 0,

∆∗
dh −∆∗

dl ≥ α(θdh − θdl)qdl,

∆∗
dl −∆∗

dh ≥ v(qdh, θdl)− v(qdh, θdh)

(A.13)

So we can have,

∆∗
dl = −πdh (ω(v(qdh, θdl)− v(qdh, θdh)) + ω̄α(θdh − θdl)qdl) < 0,

∆∗
dh = πdl (ω(v(qdh, θdl)− v(qdh, θdh)) + ω̄α(θdh − θdl)qdl) > 0,

and ω ∈ [0, 1]

(A.14)

From above, the optimal price offered by the principal is shown in the following:

t∗dn = v(q∗dn, θdn)−∆∗
dn = v(qdn, θdn)−∆∗

dn = t(qdn)−∆∗
dn,

and n = l, h
(A.15)

A.3.1.4 The Proof of Proposition 8.
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Proof. When D = 1 and N = 2 and the allowance ad > 0, the problem actually

becomes

max Φ = πdl(v(qdl, θdl)−∆dl − βqdl) + πdh(v(qdh, θdh)−∆dh − βqdh)

s.t. πdl∆dl + πdh∆dh ≥ 0 (IRd)

∆dh −∆dl ≥ v(qdl, θdh)− v(qdl, θdl) (ICdhl)

∆dl −∆dh ≥ v(qdh, θdl)− v(qdh, θdh) (ICdlh)

and qdn ≥ 0 (NNdn)

The principal can get the maximum profit when the expected information rent

πdl∆
∗
dl + πdh∆

∗
dh = 0 and the problem i.e.

max Φ =
∑

qdl,qdh

πdn(v(qdn, θdn)− βqdn),

∆dh −∆dl = ω(v(qdh, θdh)− v(qdh, θdl)) + ω̄(v(qdl, θdh)− v(qdl, θdl)).

and ω ∈ [0, 1].

(A.16)

First, we just consider the non-constraint problem max Φ =
∑

qdl,qdh

πdn(v(qdn, θdn)−

βqdn). The principal gets the maximum profit when v(qdl, θdl)−βqdl and v(qdh, θdh)−

βqdh get the maximum value respectively. According to A.3.1.2, when 0 < ad <

(1 +
√
2)γ+β

α
, the optimal quantity is,

qdn = θdn − ad − γ+β
α

= qdn − ad (n = l, h) (A.17)

Then we check the solutions we get if make IC1hl and IC1lh satisfied i.e. the inequality

equation v(qdh, θdh)− v(qdh, θdl) ≥ v(qdl, θdh)− v(qdl, θdl) satisfied.
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When θdh − θdl ≤ γ+β
α

v(qdh, θdh)− v(qdh, θdl)− (v(qdl, θdh)− v(qdl, θdl))

= α(θdh − θdl)(qdh − qdl)

= α(θdh − θdl)
2 > 0

(A.18)

When θdh − θdl >
γ+β
α

and θdh − ad − γ+β
α

< θdl

v(qdh, θdh)− v(qdh, θdl)− (v(qdl, θdh)− v(qdl, θdl))

= −α
2
q2dh + (α(θdh − ad)− γ)qdh − (α

2
q2dh − (α(θdl − ad) + γ)qdh + α(θdl − ad)

2)

−α(θdh − θdl)qdl

= −αq2dh + α(θdh − ad + θdl − ad)qdh − α(θdl − ad)
2 − α(θdh − θdl)qdl

= −αq2dh + α(qdh + qdl + 2γ+β
α

)qdh − α(qdl +
γ+β
α

)2 − α(qdh − qdl)qdl

= 2αγ+β
α
qdh − α(γ+β

α
)2 − 2αγ+β

α
qdl

= 2αγ+β
α

(θdh − θdl − 1
2
γ+β
α

) > 0

(A.19)

When θdh − θdl >
γ+β
α

and θdh − ad − γ+β
α

≥ θdl

v(qdh, θdh)− v(qdh, θdl)− (v(qdl, θdh)− v(qdl, θdl))

= −α
2
q2dh + (α(θdh − ad)− γ)qdh − (α

2
θ2dl − (α(θdl − ad) + γ)θdl + α(θdl − ad)

2)

−α(θdh − θdl)qdl

≥ −α
2
q2dh + (α(θdh − ad)− γ)qdh − (α

2
q2dh − (α(θdl − ad) + γ)qdh + α(θdl − ad)

2)

−α(θdh − θdl)qdl > 0

(A.20)

In summary, the solutions we get make IC1hl and IC1lh satisfied. So when 0 < ad <

(1 +
√
2)γ+β

α
, the optimal quantities and price are
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(q∗dl, t∗dl) (q∗dh, t∗dh)

d (qdl − ad, τ̄(qdl − ad)−∆∗
dl) (qdh − ad, τ̄(qdh − ad)−∆∗

dh)

where

∆∗
dl = −πdh [ω · (v(q∗dh, θdh)− v(q∗dh, θdl)) + ω̄ · (v(q∗dl, θdh)− v(q∗dl, θdl))] ,

∆∗
dh = πdl [ω · (v(q∗dh, θdh)− v(q∗dh, θdl)) + ω̄ · (v(q∗dl, θdh)− v(q∗dl, θdl))] .

and ω ∈ [0, 1].

(A.21)

A.3.1.5 The Proof of Proposition 9.

Proof. Similar as Proof A.3.1.4, when ad ≥ (1 +
√
2)γ+β

α
, the optimal quantity is,

qdn = θdn (n = l, h) (A.22)

Then we check the solutions we get if make IC1hl and IC1lh satisfied i.e. the inequality

equation v(qdh, θdh)− v(qdh, θdl) ≥ v(qdl, θdh)− v(qdl, θdl) satisfied.

v(qdh, θdh)− v(qdh, θdl)− (v(qdl, θdh)− v(qdl, θdl))

= v(θdh, θdh)− v(θdl, θdh) > 0
(A.23)

In summary, the solutions we get make IC1hl and IC1lh satisfied. So when ad ≥

(1 +
√
2)γ+β

α
, the optimal quantities and price are

(q∗dl, t∗dl) (q∗dh, t∗dh)

d (θdl, τ̂(θdl)−∆∗
dl) (θdh, τ̂(θdh)−∆∗

dh)
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where

∆∗
dl = −πdh [ω · v(θdh, θdh) + ω̄ · v(θdl, θdh)− v(θdl, θdl)] ,

∆∗
dh = πdl [ω · v(θdh, θdh) + ω̄ · v(θdl, θdh)− v(θdl, θdl)] .

and ω ∈ [0, 1].

(A.24)

A.3.2 Analytical Solutions for None Overlapping and Complete Overlapping

Distributions

A.3.2.1 Non-overlapping Distribution Case. When the distribution is not

overlapping, the optimal quantities and prices are The quantities are always full

(q∗dl, t∗dl) (q∗dh, t∗dh)

d = 1, 2 (θdl, τ̂(θdl)−∆∗
dl) (θdh, τ̂(θdh)−∆∗

dh)

quantities, however, the prices are different depending on the different binding

constraints. The value of each information rent is listed in the following when the

different constraints are binding.

(1) IR1, IR2, IC1hl are binding.

∆∗
ll = −π1h (v(q1l, θ1h)− v(q1l, θ1l)) .

∆∗
lh = π1l (v(q1l, θ1h)− v(q1l, θ1l)) .

∆∗
2l = −π2h (ω · (v(q2h, θ2h)− v(q2l, θ2l)) + (1− ω) · (v(q2l, θ2h)− v(q2l, θ2l))) .
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∆∗
2h = π2l (ω · (v(q2h, θ2h)− v(q2l, θ2l)) + (1− ω) · (v(q2l, θ2h)− v(q2l, θ2l))) .

ω ∈ [0, 1]

(2) IR1, IC21, IC2hl are binding.

When a1 ≤ 2, Let,

τ1 = v(q1l, θ2l)− v(q1h, θ2l) + v(q1h, θ1h)− v(q1l, θ1l).

∆∗
1l = −π1hτ1.

∆∗
1h = π1lτ1.

τ2 = π2l(v(q1h, θ2l)− v(q1h, θ1h)) + π2h(v(q1h, θ2h)− v(q1h, θ1h)) + ∆1h.

∆∗
2l = τ1 − π2hτ2.

∆∗
1h = τ1 + π2lτ2.

When a1 > 2,

Let,

δ1 = ω1 ·min{v(θ1l, θ2h)− v(θ1h, θ2h) + v(θ1h, θ1h)− v(θ1l, θ1l), v(θ1h, θ1h)− v(θ1l, θ1l)}

+(1− ω1) ·max{v(θ1l, θ2l)− v(θ1h, θ2l) + v(θ1h, θ1h)− v(θ1l, θ1l), v(θ1l, θ1h)− v(θ1l, θ1l)}
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∆∗
1l = −π1hδ1

∆∗
1h = π1lδ1

Let,

δ2 = π2l · (v(θ1h, θ2l)− v(θ1h, θ1h) + ∆∗
1h)

π2h · (v(θ1l, θ2h)− v(θ1l, θ1l) + ∆∗
1l) .

∆∗
2l = δ2 − π2h · (v(θ2l, θ2h)− v(θ2l, θ2l))

∆∗
2h = δ2 + π2l · (v(θ2l, θ2h)− v(θ2l, θ2l)) .

(3) IR1, IC21, IC1hl, IC2hl are binding.

∆∗
1l = −π1h · (v(θ1l, θ1h)− v(θ1l, θ1l))

∆∗
1h = π1l · (v(θ1l, θ1h)− v(θ1l, θ1l)) .

Let,

δ2 = π2l · (v(θ1l, θ2l)− v(θ1l, θ1l) + ∆∗
1l)

π2h · (v(θ1h, θ2h)− v(θ1h, θ1h) + ∆∗
1h)

∆∗
2l = δ2 − π2h · (v(θ2l, θ2h)− v(θ2l, θ2l))

∆∗
2h = δ2 + π2l · (v(θ2l, θ2h)− v(θ2l, θ2l)) .
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(4) IR1, IC21 are binding.

Let,

δ1 = ω1 ·min{v(θ1l, θ2h)− v(θ1h, θ2h) + v(θ1h, θ1h)− v(θ1l, θ1l), v(θ1h, θ1h)− v(θ1l, θ1l)}

(1− ω1) ·max{v(θ1l, θ2l)− v(θ1h, θ2l) + v(θ1h, θ1h)− v(θ1l, θ1l), v(θ1l, θ1h)− v(θ1l, θ1l)}.

∆∗
1l = −π1h · δ1

∆∗
1h = π1l · δ1.

Let,

δ2 = ω2 ·min{v(θ2l, θ1l)− v(θ2h, θ1l) + v(θ2h, θ2h)− v(θ2l, θ2l),

v(θ2l, θ1h)− v(θ2h, θ1h) + v(θ2h, θ2h)− v(θ2l, θ2l), v(θ2h, θ2h)− v(θ2l, θ2l)}

+(1− ω2) · (v(θ2l, θ2h)− v(θ2l, θ2l)) .

∆∗
2l = π2l · (v(θ1h, θ2l)− v(θ1h, θ1h) + ∆∗

1h) + π2h · (v(θ1l, θ2h)− v(θ1l, θ1l) + ∆∗
1l)− π2h · δ2

∆∗
2h = π2l · (v(θ1h, θ2l)− v(θ1h, θ1h) + ∆∗

1h) + π2h · (v(θ1l, θ2h)− v(θ1l, θ1l) + ∆∗
1l) + π2l · δ2.

and ω1, ω2 ∈ [0, 1].

A.3.2.2 Partial overlapping distribution case. When the distribution is

partial overlapping (θ1l < θ2l < θ1h < θ2h), there are two kinds of optimal quantities

offered to the type-1 agent: efficient quantities and full quantities.
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First, we list the analytical solutions when the efficient quantities are offered to

the type-1 agent. The optimal quantities and prices are shown in the following: The

(q∗dl, t∗dl) (q∗dh, t∗dh)

d = 1 (q1l, τ(q1l)−∆∗
1l) (q1h, τ(q1h)−∆∗

1h)
d = 2 (θ2l, τ̂(θ2l)−∆∗

2l) (θ2h, τ̂(θ2h)−∆∗
2h)

value of information rent depends on the different binding constraints.

(1) IR2 and IC12 are binding.

When π1l > π2l,

∆∗
2l = −π2h ·min{v(θ2h, θ2h)− v(θ2l, θ2l),

1
π1l−π2l

(π1l(v(θ2l, θ1l)− v(θ2l, θ2l)) + π1h(v(θ2h, θ1h)− v(θ2h, θ2h)))}

∆∗
2h = π2l ·min{v(θ2h, θ2h)− v(θ2l, θ2l),

1
π1l−π2l

(π1l(v(θ2l, θ1l)− v(θ2l, θ2l)) + π1h(v(θ2h, θ1h)− v(θ2h, θ2h)))}.

When π1l < π2l,

∆∗
2l = −π2h ·max{v(θ2h, θ2l)− v(θ2l, θ2l),

1
π1l−π2l

(π1l(v(θ2l, θ1l)− v(θ2l, θ2l)) + π1h(v(θ2h, θ1h)− v(θ2h, θ2h)))

v(θ2l, θ1h)− v(θ2h, θ1h) + v(θ2h, θ2h)− v(θ2l, θ2l)}

∆∗
2h = π2l ·max{v(θ2h, θ2l)− v(θ2l, θ2l),

1
π1l−π2l

(π1l(v(θ2l, θ1l)− v(θ2l, θ2l)) + π1h(v(θ2h, θ1h)− v(θ2h, θ2h)))

v(θ2l, θ1h)− v(θ2h, θ1h) + v(θ2h, θ2h)− v(θ2l, θ2l)}.
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When π1l = π2l and ω2 ∈ [0, 1],

∆∗
2l = −π2h · [ω2 · (v(θ2h, θ2h)− v(θ2l, θ2l))

+(1− ω2) ·max{v(θ2h, θ2l)− v(θ2l, θ2l), v(θ2l, θ1h)− v(θ2h, θ1h)

+v(θ2h, θ2h)− v(θ2l, θ2l)}]

∆∗
2h = π2l · [ω2 · (v(θ2h, θ2h)− v(θ2l, θ2l))

+(1− ω2) ·max{v(θ2h, θ2l)− v(θ2l, θ2l), v(θ2l, θ1h)− v(θ2h, θ1h)

+v(θ2h, θ2h)− v(θ2l, θ2l)}].

and,

∆∗
1l = π1l (v(θ2l, θ1l)− v(θ2l, θ2l) + ∆∗

2l) + π1h (v(θ2h, θ1h)− v(θ2h, θ2h) + ∆∗
2h)

−π1hα(θ1h − θ1l)q1l

∆∗
1h = π1l (v(θ2l, θ1l)− v(θ2l, θ2l) + ∆∗

2l) + π1h (v(θ2h, θ1h)− v(θ2h, θ2h) + ∆∗
2h)

+π1l(θ1h − θ1l)q1l.

(2) IR1, IR2 and IC1hl are binding.

∆∗
1l = −π1h (v(q1l, θ1h)− v(q1l, θ1l)) .

∆∗
1h = π1l (v(q1l, θ1h)− v(q1l, θ1l)) .
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Let,

ζ = ω ·min{v(θ2l, θ1h)− v(θ2h, θ1h) + v(θ2h, θ2h)− v(θ2l, θ2l),

v(θ2h, θ2h)− v(θ2l, θ2l)}

+(1− ω) ·max{ 1
π2h

· (π1lv(θ2l, θ1l) + π1hv(θ2l, θ1h)− v(θ2l, θ2l)) ,

v(θ2l, θ2h)− v(θ2l, θ2l)}

∆∗
2l = −π2hζ.

∆∗
2h = π2lζ.

(3) IR1 and IR2 are binding.

Let,

ζ1 = ω1 ·min{v(q1l, θ2l)− v(q1h, θ2l) + v(q1h, θ1h)− v(q1l, θ1l),

v(q1l, θ2h)− v(q1h, θ2h) + v(q1h, θ1h)− v(q1l, θ1l),

v(q1h, θ1h)− v(q1h, θ1l)}

+(1− ω1) ·max{ 1
π1h

· (π2lv(q1l, θ2l) + π1hv(q1l, θ2h)− v(q1l, θ1l)) ,

v(q1l, θ1h)− v(q1l, θ1l)}

ζ2 = ω2 ·min{v(θ2l, θ1l)− v(θ2h, θ1l) + v(θ2h, θ2h)− v(θ2l, θ2l),

v(θ2l, θ1l)− v(θ2h, θ1l) + v(θ2h, θ2h)− v(θ2l, θ2l),

v(θ2h, θ2h)− v(θ2l, θ2l)}

+(1− ω2) ·max{ 1
π2h

· (π1lv(θ2l, θ1l) + π1hv(θ2l, θ1h)− v(θ2l, θ2l)) ,

v(θ2l, θ2h)− v(θ2l, θ2l)}
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∆∗
1l = −π1h · ζ1

∆∗
1h = π1l · ζ1

∆∗
2l = −π2h · ζ2

∆∗
2h = π2l · ζ2.

Then we show the analytical solutions when the full quantities are offered to

the type-1 agent.The optimal quantities and prices are The quantities are always

(q∗dl, t∗dl) (q∗dh, t∗dh)

d = 1, 2 (θdl, τ̂(θdl)−∆∗
dl) (θdh, τ̂(θdh)−∆∗

dh)

full quantities, however, the prices are different depends on the different binding

constraints. The value of each information rent is listed in the following when the

different constraints are binding.

(1) IR1, IR2, IC12 are binding.

∆∗
2l = v(θ2l, θ2l)− π1l · v(θ2l, θ1l)− π1h · v(θ2l, θ1h)

∆∗
2h = − π2l

π2h
·∆∗

2l.

Let,

δ1 = ω1 · (v(θ1h, θ1h)− v(θ1l, θ1l))

+(1− ω1) ·max{v(θ1l, θ2l)− v(θ1h, θ2l + v(θ1h, θ1h)− v(θ1l, θ1l),

v(θ1l, θ2l)− v(θ1h, θ2l + v(θ1h, θ1h)− v(θ1l, θ1l), v(θ1l, θ1h)− v(θ1l, θ1l)}
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∆∗
1l = π1h · δ1

∆∗
1h = −π1l · δ1.

(2) IR1, IC21, IC1hl, IC2hl are binding.

∆∗
1l = −π1h · (v(θ1l, θ1h)− v(θ1l, θ1l))

∆∗
1h = π1l · (v(θ1l, θ1h)− v(θ1l, θ1l)) .

Let,

δ2 = π2l ·max{v(θ1l, θ2l)− v(θ1l, θ1l +∆∗
1l, v(θ1h, θ2l)− v(θ1h, θ1h +∆∗

1h}

+π2h ·max{v(θ1l, θ2h)− v(θ1l, θ1l +∆∗
1l, v(θ1h, θ2h)− v(θ1h, θ1h +∆∗

1h}.

∆∗
2l = δ2 − π2h · (v(θ2l, θ2h)− v(θ2l, θ2l))

∆∗
1h = δ2 + π2l · (v(θ2l, θ2h)− v(θ2l, θ2l)) .

(3) IR1, IC21.

∆∗
1l = −π1h · (v(θ1l, θ1h)− v(θ1l, θ1l))

∆∗
1h = π1l · (v(θ1l, θ1h)− v(θ1l, θ1l)) .

Let,

δ1 = v(θ2h, θ2h)− v(θ2l, θ2l) if v(θ2l, θ1h)− v(θ2h, θ1h) + v(θ2h, θ2h)− v(θ2l, θ2l) <

v(θ2l, θ2h)− v(θ2l, θ2l),
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δ1 = v(θ2l, θ1h)− v(θ2h, θ1h) + v(θ2h, θ2h)− v(θ2l, θ2l) if v(θ2l, θ1h)− v(θ2h, θ1h) +

v(θ2h, θ2h)− v(θ2l, θ2l) ≥ v(θ2l, θ2h)− v(θ2l, θ2l)

δ′1 = v(θ2l, θ2h)− v(θ2l, θ2l)

δ2 = π2l ·max{v(θ1l, θ2l)− v(θ1l, θ1l +∆∗
1l, v(θ1h, θ2l)− v(θ1h, θ1h +∆∗

1h}

+π2h ·max{v(θ1l, θ2h)− v(θ1l, θ1l +∆∗
1l, v(θ1h, θ2h)− v(θ1h, θ1h +∆∗

1h}.

∆∗
2l = δ2 − π2h · (ω · δ1 + (1− ω) · δ′1)

∆∗
2hl = δ2 + π2l · (ω · δ1 + (1− ω) · δ′1)

(4) IR1, IC12, IC21, IC1hl are binding.

∆∗
1l = −π1h · (v(θ1l, θ1h)− v(θ1l, θ1l))

∆∗
1h = π1l · (v(θ1l, θ1h)− v(θ1l, θ1l)) .

Let,

∆2 = π2l · (v(θ1l, θ2l)− v(θ1l, θ1l) + ∆∗
1l) + π2h · (v(θ1h, θ2h)− v(θ1h, θ1h) + ∆∗

1h)
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∆∗
2l = v(θ2l, θ2l)− π1l · v(θ2l, θ1l)− π1h · v(θ2l, θ1h)

∆∗
2h = 1

π2h
· (δ2 − π2l ·∆∗

2l) .

A.3.2.3 Complete overlapping distribution case. When the distribution is

complete overlapping, the optimal quantities and prices are The quantities are always

(q∗dl, t∗dl) (q∗dh, t∗dh)

d = 1, 2 (θdl, τ̂(θdl)−∆∗
dl) (θdh, τ̂(θdh)−∆∗

dh)

full quantities, however, the prices are different depends on the different binding

constraints. The value of each information rent is listed in the following when the

different constraints are binding.

(1) IR1, IC12, IC21 are binding.

When π1l ≥ π2l,

∆∗
1l = −π1h ·max{v(θ1l, θ2h)− v(θ1h, θ2h) + v(θ1h, θ1h)− v(θ1l, θ1l),

v(θ1h, θ1h)− v(θ1l, θ1l)}

∆∗
1h = π1l ·max{v(θ1l, θ2h)− v(θ1h, θ2h) + v(θ1h, θ1h)− v(θ1l, θ1l),

v(θ1h, θ1h)− v(θ1l, θ1l)}

When π1l < π2l,

∆∗
1l = −π1h · (v(θ1h, θ1h)− v(θ1l, θ1l))

∆∗
1h = π1l · (v(θ1h, θ1h)− v(θ1l, θ1l))
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and,

∆∗
2l = v(θ2l, θ2l)− π1lv(θ2l, θ1l)− π1hv(θ2l, θ1h)

∆∗
2h = 1

π2h
· (π2l(v(θ1l, θ2l)− v(θ1l, θ1l)) + π2h(v(θ1h, θ2h)− v(θ1h, θ1h))

+(π1l − π2l) · (∆∗
1h −∆∗

1l)− π2l∆
∗
2l)

(2) IR1, IC21 are binding.

∆∗
1l = −π1h (ω · (v(θ1h, θ1h)− v(θ1l, θ1l)

+(1− ω) ·max{0, v(θ1l, θ2h)− v(θ1h, θ2h) + v(θ1h, θ1h)− v(θ1l, θ1l)})

∆∗
1h = π1l (ω · (v(θ1h, θ1h)− v(θ1l, θ1l))

+(1− ω ·max{0, v(θ1l, θ2h)− v(θ1h, θ2h) + v(θ1h, θ1h)− v(θ1l, θ1l)})

ω ∈ [0, 1] Let,

δ = π2l (v(θ1l, θ2l)− v(θ1l, θ1l) + ∆∗
1l) + π2h (v(θ1h, θ2h)− v(θ1h, θ1h) + ∆∗

1h)

∆∗
2l = δ − π2h (ω · (v(θ1h, θ1h)− v(θ1l, θ1l)

+(1− ω) ·max{0, v(θ1l, θ2h)− v(θ1h, θ2h) + v(θ1h, θ1h)− v(θ1l, θ1l)})

∆∗
2h = π1l (ω · (v(θ1h, θ1h)− v(θ1l, θ1l))

+(1− ω) ·max{0, v(θ1l, θ2h)− v(θ1h, θ2h) + v(θ1h, θ1h)− v(θ1l, θ1l)})
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(3) IR2, IC12 are binding.

When v(θ1l, θ2h)− v(θ1h, θ2h) + v(θ1h, θ1h)− v(θ1l, θ1l) ≥ v(θ1l, θ1h)− v(θ1l, θ1l),

δ = ∆∗
1h −∆∗

1l = ω ·max{v(θ1l, θ2h)− v(θ1h, θ2h) + v(θ1h, θ1h)− v(θ1l, θ1l),

v(θ1h, θ1h)− v(θ1l, θ1l)}

+(1− ω) · (v(θ1l, θ1h)− v(θ1l, θ1l))

When v(θ1l, θ2h)− v(θ1h, θ2h) + v(θ1h, θ1h)− v(θ1l, θ1l) < v(θ1l, θ1h)− v(θ1l, θ1l),

δ = ∆∗
1h −∆∗

1l = ω · (v(θ1h, θ1h)− c(θ1l, θ1l)) + (1− ω) · (v(θ1l, θ1h)− v(θ1l, θ1l))

And ω ∈ [0, 1].

∆∗
2l = −π2h (v(θ2l, θ1h)− v(θ2h, θ1h) + v(θ2h, θ2h)− v(θ2l, θ2l))

∆∗
2h = π2l (v(θ2l, θ1h)− v(θ2h, θ1h) + v(θ2h, θ2h)− v(θ2l, θ2l))

π1l∆
∗
1l + π1h∆

∗
1h = π1lv(θ2l, θ1l) + π1hv(θ2l, θ1h)− v(θ2l, θ2l) + ∆∗

2l = δ′

∆∗
1l = δ′ − π1hδ

∆∗
1h = δ′ + π1lδ
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(4) IR1, IR2, IC12 are binding.

Let,

δ = 1
π1l−π2l

· (π2l(v(θ1l, θ1l)− v(θ1l, θ2l)) + π2h(v(θ1h, θ1h)− v(θ1h, θ2h)))

π1l ̸= π2l

When π1l > π2l,

∆∗
1l = −π2h (ω ·min{v(θ1h, θ1h)− v(θ1l, θ1l), δ}

+(1− ω) ·max{v(θ1l, θ1h)− v(θ1l, θ1l),

v(θ1l, θ2h)− v(θ1h, θ2h) + v(θ1h, θ1h)− v(θ1l, θ1l)})

∆∗
1h = π2l (ω ·min{v(θ1h, θ1h)− v(θ1l, θ1l), δ}

+(1− ω) ·max{v(θ1l, θ1h)− v(θ1l, θ1l),

v(θ1l, θ2h)− v(θ1h, θ2h) + v(θ1h, θ1h)− v(θ1l, θ1l)})

When π1l < π2l,

∆∗
1l = −π2h (ω · (v(θ1h, θ1h)− v(θ1l, θ1l))

+(1− ω) ·max{v(θ1l, θ1h)− v(θ1l, θ1l),

v(θ1l, θ2h)− v(θ1h, θ2h) + v(θ1h, θ1h)− v(θ1l, θ1l)})

∆∗
1h = π2l (ω · (v(θ1h, θ1h)− v(θ1l, θ1l))

+(1− ω) ·max{v(θ1l, θ1h)− v(θ1l, θ1l),

v(θ1l, θ2h)− v(θ1h, θ2h) + v(θ1h, θ1h)− v(θ1l, θ1l)})
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When π1l = π2l and ω ∈ [0, 1],

∆∗
1l = −π2h (ω · (v(θ1h, θ1h)− v(θ1l, θ1l))

+(1− ω) ·max{v(θ1l, θ1h)− v(θ1l, θ1l), δ,

v(θ1l, θ2h)− v(θ1h, θ2h) + v(θ1h, θ1h)− v(θ1l, θ1l)})

∆∗
1h = π2l (ω · (v(θ1h, θ1h)− v(θ1l, θ1l))

+(1− ω) ·max{v(θ1l, θ1h)− v(θ1l, θ1l), δ,

v(θ1l, θ2h)− v(θ1h, θ2h) + v(θ1h, θ1h)− v(θ1l, θ1l)})

and,

∆∗
2l = v(θ2l, θ2l)− π1lv(θ2l, θ1l)− π1hv(θ2l, θ1h)

∆∗
2h = − π1l

π2h
(v(θ2l, θ2l)− π1lv(θ2l, θ1l)− π1hv(θ2l, θ1h))
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[78] Kıbış, E. Y. and Büyüktahtakın, İ. E. (2019). Optimizing multi-modal cancer

treatment under 3d spatio-temporal tumor growth. Mathematical Biosciences,

307:53–69.
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[90] Liu, X., Zheng, Z., Büyüktahtakın, İ. E., Zhou, Z., and Wang, P. (2021). Battery

asset management with cycle life prognosis. Reliability Engineering & System

Safety, 216:107948.

[91] Liu, Y. and Sims, C. (2016). Spatial-dynamic externalities and coordination in

invasive species control. Resource and Energy Economics, 44:23–38.
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