
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT

NYSTRÖM METHODS FOR HIGH-ORDER CQ SOLUTIONS OF
THE WAVE EQUATION IN TWO DIMENSIONS

by
Erli Wind-Andersen

An investigation of high order Convolution Quadratures (CQ) methods for the

solution of the wave equation in unbounded domains in two dimensions is presented.

These rely on Nyström discretizations for the solution of the ensemble of associated

Laplace domain modified Helmholtz problems. Two classes of CQ discretizations

are considered: one based on linear multistep methods and the other based on

Runge-Kutta methods. Both are used in conjunction with Nyström discretizations

based on Alpert and QBX quadratures of Boundary Integral Equation (BIE)

formulations of the Laplace domain Helmholtz problems with complex wavenumbers.

CQ in conjunction with BIE is an excellent candidate to eventually explore numerical

homogenization to replace a chaff cloud by a dispersive lossy dielectric that produces

the same scattering. To this end, a variety of accuracy tests are presented that

showcase the high-order in time convergence (up to and including fifth order) that the

Nyström CQ discretizations are capable of delivering for a variety of two dimensional

single and multiple scatterers. Particular emphasis is given to Lipschitz boundaries

and open arcs with both Dirichlet and Neumann boundary conditions.



NYSTRÖM METHODS FOR HIGH-ORDER CQ SOLUTIONS OF
THE WAVE EQUATION IN TWO DIMENSIONS

by
Erli Wind-Andersen

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology and
Rutgers, The State University of New Jersey – Newark

in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Mathematical Sciences

Department of Mathematical Sciences
Department of Mathematics and Computer Science, Rutgers-Newark

May 2022



Copyright © 2022 by Erli Wind-Andersen

ALL RIGHTS RESERVED



APPROVAL PAGE
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CHAPTER 1

INTRODUCTION

Chaff is one of the simplest and cheapest radar counter measures. Chaff consists of

a very large collection of metal wires or fibres that, once dispersed in the air, make a

chaff cloud. Signals reflected from a chaff cloud are an effective means of disturbing a

radar system, and as such, are commonly used in military defense. Hence, the study

of electromagnetic scattering becomes important in the context of defensive means.

Towards this end, in this dissertation we will solve the problem of time-domain

scattering of pulses incident on large collections of two-dimensional scatterers on

the boundaries of which Dirichlet or Neumann boundary conditions are imposed.

Additionally the case of when all scatterers do not have the same boundary conditions

are also considered. The individual scatterer boundaries that will be considered are

smooth, piecewise-smooth, closed curves, or open curves (with knife-edges). The

most immediate application of this type of mathematical problem is to calculate the

scattered field arising from a chaff cloud. We present the work accomplished thus far

towards a robust, efficient, and highly-accurate numerical method to accomplish the

goal of this dissertation.

Much literature exists on the numerical solution of time-domain scattering

problems governed by the wave equation. The typical numerical approaches fall into

three categories: Finite Difference Time-Domain methods (FDTD), Finite Element

Time-Domain methods (FETD), and Time-Domain Boundary Integral Equation

methods (TDBIE) using retarded potentials. A very brief discussion of these methods,

and of their shortcomings for the scattering problems we wish to solve, is presented

below.
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The FDTD method is presented in detail in [86] and in hundreds of thousands

of other publications. In this method, the time-domain Maxwell’s Equations are

discretized via finite differences in both time and space, and, in order to satisfy the

Sommerfeld radiation condition that says ”all waves outside a region of space occupied

by scatterers must propagate out to infinity,” a large computational domain must

be utilized. Typically, one considers a smaller domain and makes use of absorbing

boundary conditions, [37, 9, 11, 46, 53], to simulate the presence of infinite space

surrounding the region that contains all the scatterers. Further, solutions obtained

with the FDTD method, by virtue of the method being a simple second-order accurate

in space and time Leapfrog scheme, suffer from numerical dispersion error; to get

accurate results, fine spatial and temporal meshes are necessary in order to control the

dispersion error; since dispersion errors accumulate, this aspect of FDTD methods is

highly deleterious when the incident pulse spectrum is wide (short-duration pulses in

the time-domain), when long time simulations are required (long time relative to some

timescale, typically the incident pulse duration), or when a very large collection of

scatterers is employed. Finally, FDTD methods require special differencing strategies

when scatterer boundaries are not aligned with the cartesian mesh and when scatterers

possess corners and/or edges. The FETD method, suffers from the same issues as

FDTD, with the exception being that its finite elements aspect allows for handling

the kind of geometries and boundary conditions we are interested in. A further

downside of the FETD methods is that these techniques require the usage of meshes

that can be difficult to generate depending on the geometry considered. Finally,

TDBIE formulations for surface scattering problems involves working at the level of

the retarded layer potentials of the wave equation, [8, 92, 40, 44]. In addition, it

has also been shown to be difficult to obtain stability with these methods, [30, 29].

As a result, TDBIE methods have typically only been used with low-order accuracy

(first-order at best).
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To address all the shortcomings of the previously described methods, we will

employ Convolution Quadratures (CQ), [67, 7, 68, 48, 62, 12], with very-high accuracy

time-stepping schemes to solve the scattering problems of interest that we briefly

described above. The CQ methods reduce the solution of TDBIEs to an ensemble

of frequency domain solutions of modified Helmholtz equations. By making use of

collocation Nyström schemes for solving the Helmholtz equation, we are thus able

to reduce our computational dimension by one. In addition, by taking advantage of

the reformulation of the Helmholtz equation as an integral equation, we satisfy the

radiation condition. Such methods can deliver high-order accuracy in space and time

that is preserved even for non-smooth scatterer geometries.

An efficient and accurate numerical solution of the wave equation in two

dimensional unbounded domains based on the Convolution Quadrature for the

time discretization and on Boundary Integral Equation methods for the spatial

discretization will be presented. Additionally, a basic exposition of Convolution

Quadrature (CQ) methods and their application to time domain boundary integral

equations (TDBIE) will also be covered. Via Laplace transforms and FFTs, CQ

methods reduce the solution of TDBIE to an ensemble of frequency domain solutions

of modified Helmholtz equations. The latter, in turn, are solved using Boundary

Integral Equation formulations and Nystrom methods based on Alpert quadratures.

We present a variety of numerical examples that exhibit high-order convergence (up

to and including fifth order) in time for Convolution Quadrature methods for the

solution of the wave equation in two dimensions. This work consists of applying the

computational machinery described above to the efficient simulation of the interaction

of time domain pulsed waves with large ensembles of open/closed scatterers, with

applications in remote sensing and radar (e.g., chaff countermeasures). In particular,

our goal is to eventually explore numerical homogenization to replace a model chaff

cloud by a dispersive lossy dielectric that produces the same scattering. Towards

3



this application, we have found that CQ with BIE to be an excellent candidate to

tackle the chaff cloud scattering problem, which we have verified through numerical

experimentation. Though the benefits and efficiency of this method is significant,

more computational speed is needed to solver larger scale problems. Currently, the

field can be computed with less than a hundred scatterers within a reasonable amount

of time. Obviously fast evaluation methods are needed to scale the problem beyond

hundreds of scatterers to thousands. This is the limitation we are currently dealing

with.

The dissertation is structured as follows. In Chapter 2, we derive the basic

CQ method with appropriate time-stepping schemes, where the algorithms are also

presented. In this same section, a way to verify the CQ method independent of time

is also presented. In Chapter 3, we investigate how to solve the frequency Helmholtz

problem with different boundary conditions and a variety of geometries. Chapter 4 is

dedicated to multiple scattering and the preconditioners needed to effeciently calculate

the unknown densitues. Chapter 5 shows the numerical results of implementing the

CQ method again under different geometries and boundary conditions. Chapter 6

gives a summation of the work described throughout the previous chapters as well as

a brief discussion on the natural extensions to the current work.
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CHAPTER 2

CQ FOR SOLVING THE WAVE EQUATION

We are interested in solving the wave equation in a two-dimensional infinite domain

Ω+ := R2 \ Ω, where Ω is a bounded domain in R2:
c−2 ∂2u

∂t2
= ∆u in Ω+ × (0,∞)

u(x, 0) = ∂u(x,0)
∂t

= 0 in Ω+

u(x, t) = g(x, t) on Γ× (0,∞),

and we denoted Γ := ∂Ω. Using the formula for the fundamental solution of the wave

equation in two dimensions

k2D(x, t) :=
H(t− c−1|x|)

2π
√
t2 − c−2|x|2

we seek for a solution u(x, t) of the wave equation in the form of a Time Domain

Single-Layer (TDSL) potential:

u(x, t) = (S ∗ λ)(x, t) =

∫
Γ

∫ t

0

k2D(t− τ, x− y)λ(y, τ)ds(y)dτ

=
1

2π

∫
Γ

∫ t−c−1|x−y|

0

λ(y, τ)√
(t− τ)2 − c−2|x− y|2

s(y)dτ

in terms of the unknown boundary density function λ. Imposing the Dirichlet

boundary conditions leads to the following Time Domain Boundary Integral Equation

(TDBIE) ∫
Γ

∫ t

0

k2D(t− τ, x− y)λ(y, τ)ds(y)dτ = g(x, t) on Γ× (0,∞). (2.1)

We solve the TDBIE (2.1) using the Convolution Quadrature (CQ) methodology

which we describe in what follows. Our presentation is concerned exclusively with

the algorithmic aspects of CQ and follows that in the textbook of Sayas [80].
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2.1 Convolution Quadratures

CQ are hybrid methods that combine Laplace transforms and A-stable ODE solvers

to produce approximations of convolution integrals

(f ∗ g)(t) :=

∫ t

0

f(τ)g(t− τ)dτ, (2.2)

for values of t on an equidistant mesh 0 = t0 ≤ · · · ≤ tn = n∆t. For a given function

f we define its Laplace transform

F (s) :=

∫ ∞
0

e−stf(t)dt,

which we assume to exist for s ∈ C, <s > 0. We make use of the inversion formula

for the Laplace transform

f(t) =
1

2πi

∫ σ+i∞

σ−i∞
estF (s)ds

and obtain

(f ∗ g)(t) =

∫ t

0

{
1

2πi

∫ σ+i∞

σ−i∞
estF (s)ds

}
g(t− τ)dτ

=
1

2πi

∫ σ+∞

σ−∞
F (s)

{∫ t

0

estg(t− τ)dτ

}
ds.

We denote

y(t; s) :=

∫ t

0

esτg(t− τ)dτ,

and notice that y(t; s) is the solution of the following linear first order differential

equation: 
dy
dt

= sy + g in [0,∞).

y(0) = 0.

(2.3)
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We use the Backward Euler method to solve the differential Equation (2.3) on the

grid 0 = t0 ≤ · · · ≤ tn = n∆t and we get

yn − yn−1

∆t
= syn + gn, gn = g(tn),

where yn ≈ y(tn). We thus obtain the following recurrence relation

yn =
1

1−∆t s
yn−1 +

∆t

1−∆t s
gn, 0 ≤ n, y−1 := 0.

In order to derive an explicit formula for yn we express them in the form

yn =

(
1

1−∆t s

)n
zn, n ≥ 1, z−1 = z0 = 0,

which, when used in the backward Euler recurrence formulas lead a simple recurrence

formula for the new expressions {zn}n≥1:

zn = zn−1 +
∆t

(1−∆t s)1−n gn, z−1 = z0 = 0, n ≥ .

Consequently, we immediately obtain the explicit formula

zn = ∆t
n∑

m=0

1

(1−∆t s)(1−n)
gm,

and thus, we derive

yn = ∆t
n∑

m=0

(1−∆t s)m−1−ngm = ∆t
n∑

m=0

1

(1−∆t s)m+1
gn−m.

We notice that the last formula above can be viewed as an approximation to the

following integral ∫ tn

0

esτg(tn − τ)dτ,

which, in turn, delivers an approximation of the convolution integral in the form

(f ∗ g)(tn) =
1

2πi

∫ σ+∞

σ−∞
F (s)y(tn; s)ds

7



≈ 1

2πi

∫ σ+∞

σ−∞
F (s)yn(s)ds

=
n∑

m=0

(
∆t

2πi

∫ σ+∞

σ−∞

F (s)

(1−∆ts)m+1
ds

)
gn−m.

It is natural then to define the discrete convolution weights ωm in the following manner

ωm(∆t) : =
∆t

2πi

∫ σ+i∞

σ−i∞

F (s)

(1−∆ts)m+1
ds

=
(−1)m

∆tm
(−1)

2πi

∫ σ+i∞

σ−i∞

F (s)

(s− 1
∆t

)m+1
ds

=
(−1)m

∆tm
1

m!
F (m)

(
1

∆t

)
=

1

m!

dm

dξm

(
F

(
1− ξ
∆t

)) ∣∣∣
ξ=0

.

In conclusion, CQ produce approximations of convolution integrals in the form of

discrete convolutions involving the weights ωm
(f ∗ g)(tn) ≈

∑n
m=0 ωm(∆t)gn−m where gn = g(tn)

F
(

1−ξ
∆t

)
=
∑∞

m=0 ωm(∆t)ξm.

(2.4)

The derivations above can be extended from the Backward Euler method to the case

when general linear multistep methods are applied to the numerical discretization of

Equation (2.3).

2.2 CQ with General Linear Multistep Methods

In the case when a more general multistep solver is applied to the ordinary differential

equation in the Equation (2.3), that is

1

∆t
(α0yn + α1yn−1 + · · ·+ αNyn−N) = β0(syn + gn) + · · ·+ βN(synN + gn−N), (2.5)

8



we employ the ζ transform machinery to derive approximations to the convolution

integral. For a sequence (yn)n≥0 we define its ζ-transform as

Y (ζ) =
∞∑
n=0

ynζ
n.

We then apply the ζ-transform to both sides of Equation (2.5). Extending by 0 the

coefficients α0, . . . αN and β0 . . . βN for indices larger than N , and using the fact that

the ζ-transform of a convolution is a product in ζ-space, we arrive at:

1

∆t
A(ζ)Y (ζ) = sB(ζ)Y (ζ) +B(ζ)G(ζ)

where

A(ζ) := α0 + α1ζ + · · ·+ αNζ
N

B(ζ) = β0 + β1ζ + · · ·+ βNζ
N .

If we denote by

P (ζ) =
A(ζ)

B(ζ)
=
α0 + α1ζ + · · ·+ αNζ

N

β0 + β1ζ + · · ·+ βNζN
,

we then obtain an explicit formula for the ζ transform of {yn}0≤n

Y (ζ) =

(
P (ζ)

∆t
− s
)−1

G(ζ). (2.6)

The coefficients {yn}0≤n are then retrieved via Cauchy’s integral formula

yn =
1

2πi

∫
|ζ|=λ

Y (ζ)

ζn+1
dζ.

Consequently, we derive the following approximation for the values y(tn, s):

y(tn; s) ≈ 1

2πi

∫
|ζ|=λ

(
P (ζ)

∆t
− s
)−1

G(ζ)

ζn+1
dζ,

assuming that λ is small enough so that B(λ) is included in domain of analyticity of

the integrand in the expression above. Finally, we derive the CQ approximation of

9



the convolution integral

(f ∗ g)(tn) ≈ 1

2πi

∫ σ+i∞

σ−i∞
F (s)

[
1

2πi

∫
|ζ|=λ

(
P (ζ)

∆t
− s
)−1

G(ζ)

ζn+1
dζ

]
ds

=
1

2πi

∫
|ζ|=λ

G(ζ)

ζn+1

[
1

2πi

∫ σ+i∞

σ−i∞

(
P (ζ)

∆t

)−1

F (s)ds

]
dζ

=
1

2πi

∫
|ζ|=λ

G(ζ)

ζn+1
F

(
P (ζ)

∆t

)
dζ,

given that

F

(
P (ζ)

∆t

)
=

1

2πi

∫ σ+i∞

σ−i∞

F (s)
P (ζ)
∆t
− s

ds.

The CQ approximation derived above can be viewed as a discrete convolution with

weights defined as

F

(
P (ζ)

∆t

)
=

∞∑
m=0

ωm(∆t)ζm where ωm(∆t) =
1

m!

dm

dζm

(
F

(
P (ζ)

∆t

)) ∣∣∣
ζ=0

, (2.7)

and thus

(f ∗ g)(tn) ≈
n∑

m=0

ωm(∆t)gn−m where gn = g(tn).

The analysis of the CQ scheme presented above reveals that the convergence of the

discrete convolutions to the continuous ones can be established under the assumption

that A-stable linear multi-step schemes are used for the solution of the differential

Equation (2.3). Therefore, the convergence of linear multi-step schemes CQ is at

most second-order in time, and the highest order can be achieved when BDF2 is used

for the solution of (2.3).

2.3 Runge-Kutta Convolution Quadrature

Thus far we have looked at CQ methods based on linear multistep schemes. In order

for the discrete convolutions produced by CQ methods to converge to the continuous

ones, the underlying linear multistep schemes must be A-stable. On account of the

10



Dalquist barrier theorem, CQ methods based on linear multistep schemes cannot

achieve higher than second order in time convergence. In order to bypass this

limitation, we present in what follows CQ methods based on Runge-Kutta ODE

solvers for the solution of the wave equation. Our exposition follows closely the paper

by Betcke et al [12]. We start by writing the wave equation as a first order linear

system: 

∂Y (x;t)
∂t

= LY (x; t) (x, t) ∈ Ω+ × (0,∞)

Y (x; 0) = 0 x ∈ Ω+

BY (x; t) = F (x; t) (x; t) ∈ Γ× (0,∞)

where we have introduced the following notations

Y (x; t) =

u(x; t)

∂u(x;t)
∂t

 L =

 0 I

∆x 0


B =

I 0

0 0

 F (x; t) =

g(x; t)

0

 .
We apply an m stage Runge-Kutta (RK) scheme to the solution of the first order

system above. The RK scheme can be described using the following matrix and

vectors:

A = [aij]1≤i,j≤m b = [bj]1≤j≤m c = [cj]1≤j≤m,

which define the Butcher Tableau associated with the RK scheme and can be found

in Appendix A. Then, the RK scheme can be written in the form
Vi(x; tn) = Yd(x; tn) + ∆t

∑m
j=1 aijLVj(x; tn) i ∈ 1, . . . ,m

Yd(x; tn+1) = Yd(x; tn) + ∆t
∑m

j=1 bjLVj(x; tn).

(2.8)
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Applying the ζ−transform to the Equations (2.8) we obtain
Vi(x; ζ) = Yd(x; ζ) + ∆t

∑m
j=1 aijLVj(x; ζ) i ∈ 1, . . . ,m

Yd(x;ζ)
ζ

= Yd(x; ζ) + ∆t
∑m

j=1 bjLVj(x; ζ).

(2.9)

The A-stability requirement on the underlying ODE solver of CQ methods motivates

the choice of stiffly accurate RK schemes (2.8). Thus, the last row of the matrix A

must coincide with the vector b. Consequently, it holds that

Vm(x; ζ) =
Yd(x; ζ)

ζ
. (2.10)

The second Equation in (2.9) leads to

Yd(x; ζ) =
ζ

1− ζ
∆t

m∑
j=1

bjLVj(x; ζ), (2.11)

which, in turn, when plugged in the first Equation in (2.9), yields

Vi(x; ζ) = ∆t
m∑
j=1

(
ζ

1− ζ
bj + aij

)
LVj(x; ζ), i = 1, . . . ,m. (2.12)

Writing the vector quantities Vj in explicit form as [Rj(x; ζ) Sj(x; ζ)]>, we derive the

following relations:

Ri(x; ζ) = ∆t
m∑
j=1

(
ζ

1− ζ
bj + aij

)
Sj(x; ζ)

Sj(x; ζ) = ∆t
m∑
`=1

(
ζ

1− ζ
bj + aj`

)
∆xR`(x; ζ).

Let us denote R(x; ζ) := [R1(x; ζ), . . . , Rm(x; ζ)]. The last two equations above can

then be written in compact form as(
∆(ζ)

∆t

)2

R(x; ζ) = ∆xR(x; ζ). (2.13)
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where ∆(ζ) is an operator defined by

∆(ζ) =

(
A+

ζ

1− ζ
1bT
)−1

with 1 = [1, . . . , 1]T . We note that (2.13) is a system of Helmholtz equations.

A natural idea is to attempt to diagonalize this system in order to decouple the

Helmholtz equations. To this end, we begin by diagonalizing the operator ∆(ζ).

Let P(ζ) be the matrix consisting of the eigenvectors of ∆(ζ) and define D(ζ) =

diag(γ1(ζ), . . . , γm(ζ)) a diagonal matrix with the corresponding eigenvalues of ∆(ζ);

thus ∆(ζ) = P(ζ)D(ζ)P(ζ)−1. Thus, the system (2.13) is decoupled into m Helmholtz

equations (
γj(ζ)

∆t

)2

Wj(x; ζ) = ∆xWj(x; ζ), 1 ≤ j ≤ m (2.14)

where

Wj(x; ζ) =
m∑
`=1

P−1
j` (x; ζ)R`(x; ζ).

Boundary conditions ought to be provided to the Helmholtz Equations (2.14). First

we provide boundary conditions for the intermediate RK stages Vj; these take on the

form

BVj = F (x; tn + cj∆t) x ∈ Γ

F (x; t) =

g(x; t)

0

 .
Applying the ζ−transform to the boundary conditions above we get

R`(x; ζ) = G`(x; ζ)g(x; tn + c`∆t)ζ
n x ∈ Γ (2.15)
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and thus we derive the corresponding boundary conditions for the Helmholtz solutions

Wj

Wj(x; ζ) =
m∑
`=1

P−1
j` (ζ)G`(x; ζ), x ∈ Γ. (2.16)

Consequently, the following modified Helmholtz equations must be solved in the

Laplace domain
∆xWj(x; ζ)−

(
γj(ζ)

∆t

)2

Wj(x; ζ) = 0 x ∈ Ω+

Wj(x; ζ) =
∑m

`=1P
−1
j` (ζ)G`(x; ζ) x ∈ Γ.

(2.17)

Once the Helmholtz equations above are solved, the ζ-transform of the solution of

the wave equation is retrieved via the formula

Ud(x; ζ) = ζRm(x; ζ) = ζ
m∑
j=1

Pmj(ζ)Wj(x; ζ). (2.18)

Finally, reverting to the physical domain from the Laplace domain is performed in

the same manner as in the case of linear multistep methods.

We will use in practice two-stage and three-stage Implicit RK Radau IIA

methods. The two-stage RK Radau IIA method gives rise to third order in time

CQ and will be denoted by the acronym IRK3. The three-stage RK Radau IIA

method gives rise to fifth order in time CQ and will be denoted by the acronym

IRK5. We note that the higher order in time convergence that can be achieved by

RK CQ methods entail commensurately more solutions of frequency domain modified

Helmholtz equations.

2.4 Discrete Fourier Transforms and Convolution Quadratures

It is clear from the presentation above that a key ingredient in the CQ is the

computation of the weights ωn(∆t). To this end, Cauchy’s integral formulas are

used, and, given the analyticity of the function F
(
P (ζ)
∆t

)
in a ball around the origin,
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the trapezoidal rule delivers a high-order quadrature for the numerical evaluation of

the Cauchy integrals. The CQ algorithm that follows the prescriptions outlined above

can be accelerated using FFTs, and we describe next the steps of this algorithm.

We remind the reader that the scope of CQ in this work is the solution of TDBIE.

To that end, we shall apply CQ for the solution of a Volterra integral equation: given

two functions f and g, find the unknown function ϕ such that

f ∗ ϕ = g.

Using CQ to discretize the convolution integral in the left hand side of the equation

above we arrive at a lower triangular linear system featuring the unknowns ϕn ≈ ϕ(tn)

and the CQ weights ωn

n∑
m=0

ωn−m(∆t)ϕm = gn, gn := g(tn), 0 ≤ n ≤ N. (2.19)

Obviously, once the convolution weights ωn(∆t) are computed, the linear system (2.19)

can be solved using forward substitution. Instead, we will use Discrete Fourier

Transforms that will allow us on the one hand to evaluate efficiently the convolution

weights ωn(∆t), and on the other to decouple in the Fourier space the linear

system (2.19). We start with the computation of the convolution weights whose

expression is given via the Cauchy integral formula

ωm(∆t) =
1

2πi

∫
|ζ|=λ

F
(
P (ζ)
∆t

)
ζm+1

dζ = λ−m
∫ 1

0

F

(
P (λe−2πiθ)

∆t

)
e2πmiθdθ, (2.20)

where we use the substitution ζ = λe−2πiθ. Let us now denote in what follows

ζN+1 := e
2πi
N+1 . We use the trapezoidal rule with N + 1 nodes to approximate the

integral in the right hand side of Equation (2.20) and we obtain

ωm(∆t) ≈ λ−m

N + 1

N∑
`=0

F (s`)ζ
−`m
N+1, where s` =

P (λζ−`N+1)

∆t
, 0 ≤ m ≤ N. (2.21)
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We are now in the position to rewrite the linear system (2.19) in the following form:

λ−n

N + 1

N∑
`=0

F (s`)

(
N∑
m=0

λmϕmζ
`(n−m)
N+1

)
= gn, 0 ≤ n ≤ N. (2.22)

We can manipulate the last formula one step further and arrive at the following linear

system

λ−n

N + 1

N∑
`=0

F (s`)ζ
`n
N+1

(
N∑
`=0

λmϕmζ
−`m
N+1

)
= gn, 0 ≤ n ≤ N. (2.23)

At this stage, we make use of the Discrete Fourier Transform (DTF). Recall that

given a sequence {ϕj}, 0 ≤ j ≤ N , its DFT is defined as follows

ϕ̂l =
N∑
j=0

ζ−`jN+1ϕj, 0 ≤ ` ≤ N.

Furthermore, the inversion formula

ϕ` =
1

N + 1

N∑
j=0

ζ`jN+1ϕ̂j 0 ≤ j ≤ N

allows us to go back from the Fourier domain to the physical domain. With these

notations in place, we recognize that

N∑
m=0

λmϕmζ
−`m
N+1 = (λ̂ϕ)`, where {λϕ} := λjϕj, 0 ≤ j ≤ N.

Obviously, the inversion formula for DFT yields

ϕj =
λ−j

N + 1

N∑
`=0

(λ̂ϕ)`ζ
`j
N+1.

The linear system (2.23) can be recast then in the form

1

N + 1

N∑
`=0

ζ`nN+1F (s`)(λ̂ϕ)` = λngn 0 ≤ n ≤ N,

which, in turn, leads to

1

N + 1

N∑
`=0

ζ
(`−j)n
N+1 F (s`)(λ̂ϕ)` = λnζ−njN+1gn 0 ≤ n ≤ N. (2.24)
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Summing up both sides of Equations (2.24) for all values of the index 0 ≤ n ≤ N we

derive:

1

N + 1

N∑
n=0

F (s`)(λ̂ϕ)`

N∑
`=0

ζ
(`−j)n
N+1 =

N∑
n=0

λnζnjN+1gn 0 ≤ j ≤ N. (2.25)

Given that

N∑
n=0

λngnζ
−nj
N+1 = (λ̂g)j

N∑
n=0

ζ
(`−j)n
N+1 =


N + 1 if ` = j,

0 otherwise

Equations (2.25) reduce to decoupled equations in the Fourier domain

F (sj)(λ̂ϕ)j = (λ̂g)j for all 0 ≤ j ≤ N.

Consequently, the discrete Fourier coefficients of the sequence {λϕ} are computed

explicitly

(λ̂ϕ)j = (F (sj))
−1(λ̂g)j for all 0 ≤ j ≤ N. (2.26)

Finally, an application of the inversion formula for DFT leads to explicit formulas for

ϕ`

ϕ` =
λ−`

N + 1

N∑
j=0

[
(F (sj))

−1(λ̂g)j

]
ζ`jN+1 for all 0 ≤ ` ≤ N. (2.27)

All of the DFT in the derivations above are effected in practice with FFTs.

2.5 CQ Solutions of TDBIE

We assume in what follows that the wave speed is c = 1. We will solve the TDBIE

∫ t

0

∫
Γ

k2D(x− y, t− τ)ϕ(y, τ)ds(y)dτ = g(x; t) for all t > 0, x ∈ Γ. (2.28)
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The Laplace transform of the wave equation Green function k2D(x, t) is

K(x, s) =
i

4
H

(1)
0 (is|x|).

Making use of Laplace transform techniques similar to the ones used in the derivation

of CQ above we obtain

∫ t

0

∫
Γ

k2D(x− y, t− τ)ϕ(y, τ)ds(y)dτ

=
1

2πi

∫ σ+i∞

σ−i∞

∫ t

0

eτs
[∫

Γ

K(x− y, s)ϕ(y, t− τ)ds(y)

]
dτds

=
1

2πi

∫ σ+i∞

σ−i∞

∫ t

0

eτs (V (s)ϕ(·, t− τ)) (x)dτds,

where V (s) denotes the single layer BIO

(V (s)ϕ) (x) =

∫
Γ

K(x− y, s)ϕ(y)ds(y), x ∈ Γ. (2.29)

We note that the single layer potential

w(x; s) :=

∫
Γ

K(x− y, s)ϕ(y)ds(y), x ∈ R2 \ Γ

is a radiative solution of the modified Helmholtz equation

∆xw(x; s)− s2w(x; s) = 0 x ∈ R2 \ Ω.

We apply the CQ machinery to solve the TDBIE

1

2πi

∫ σ+i∞

σ−i∞

∫ t

0

eτs (V (s)ϕ(·, t− τ)) (x)dτds = g(x, t) t > 0 x ∈ Γ. (2.30)

In this context, the Laplace domain function F (s) from the previous sections is

replaced by the operator V (s). Denoting by

ϕ∆t
j (x) = ϕ∆t(x, tj), 0 ≤ j ≤ N
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the CQ methodology leads us to the following linear system of boundary integral

equations
n∑
j=0

(
ω∆t
n−jϕj

)
(x) = gn(x), n = 1, · · · , N x ∈ Γ, (2.31)

where

V

(
P (ζ)

∆t

)
=
∞∑
n=0

ω∆t
n ζn, |ζ| ≤ 1, (2.32)

where P (ζ) = 1
2
(ζ2− 4ζ + 3) is the characteristic polynomial of BDF2. The operator

convolution weights are computed using the formula

ω∆t
j (V ) =

1

2πi

∫
|ζ|=λ

V (P (ζ)
∆t

)

ζj+1
dζ

≈ λ−j

N + 1

N∑
`=0

V (s`)ζ
`j
N+1, s` =

P (λζ−`N+1)

∆t
.

The DFT manipulations lead us to the following N + 1 decoupled BIE:

(V (s`)ϕ̂`) (x) = ĝ`(x) x ∈ Γ ` = 0, . . . , N, (2.33)

where

ĝ`(x) :=
N∑
n=0

λngn(x)ζ−`nN+1

ϕ̂l(x) :=
N∑
n=0

λnϕn(x)ζ−lnN+1.

Once the densities ϕ̂`(x) are computed by solving the sequence of frequency domain

BIE for all wavenumbers s`, we retrieve the quantities ϕ`(x) which are approximations

of ϕ(x, `∆t) using the inverse DFT:

ϕ`(x) =
N∑
j=0

λnϕ̂n(x)ζ`jN+1. (2.34)

We note that in practice FFTs are used throughout the CQ algorithm. We discuss

in what follows how we solve the sequence of Laplace domain BIE.
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2.6 CQ TDBIE Algorithms

The BDF2 CQ algorithm for the solution of the TDBIE on the interval [0, T ] produces

boundary densities ϕ(·, tj), tj = j∆t , T = N∆t via solutions of the Laplace domain

BIE (2.33) and the IDFT formula (2.34). Assuming that the ensemble of BIE (2.33)

is solved with reasonably high spatial accuracy, the order of the BDF2 CQ solution of

the TDBIE is then second order in time provided that λ is chosen per the prescription

in [7]

λ = max
(

∆t
3
N , ε

1
2N

)
(2.35)

where ε is machine precision. Given that in applications of interest the boundary

data g in the TDBIE is real valued, the conjugation symmetries

ϕ̂N+2−j = ϕ̂j j = 1, 2, . . . ,

[
N

2
+ 1

]

are used to reduce by a half the number of frequency domain BIE (2.33). Further

computational reductions can be achieved by exploiting sparsity in the frequency

content of the boundary data g(t, x). Specifically, for many incident fields that are

encountered in practical applications, the magnitude of ĝ`(x) is small (uniformly in

x ∈ Γ) for a wide range of frequencies `. For those indices ` for which ‖ĝ`‖∞,Γ falls

below a specific threshold (e.g. 10−8), the solution ϕ̂` of the corresponding BIE (2.33)

is assumed to be equal to zero.

Once we have solved the ensemble of Laplace domain BIE (2.33), a simple post

processing step delivers the solution u(x, tn) of the wave equation for x ∈ Ω+ from

the boundary densities ϕ̂`, 0 ≤ ` ≤ N . Indeed, fix an x ∈ Ω+ and evaluate the Single

Layer potentials

û(x, s`) =

∫
Γ

K(x− y, s`)ϕ̂`(y)ds(y) for each ` = 0, . . . , N. (2.36)
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We note that none of the integral kernels K(x−y, s`) in Equation (2.36) are singular,

and thus the evaluation of the quantities û(x, s`) can be effected vis simple quadrature

rules. Finally, we obtain after applying IDFT

u(x, tn) ≈ λ−n

N + 1

N∑
j=0

û(x, sj)ζ
jn
N+1, 1 ≤ n ≤ N. (2.37)

We provide in what follows the pseudocode for the BDF2 CQ solution of TDBIE.

Algorithm 1: BDF2 CQ Algorithm

Choose a time T > 0 up to which we simulate the solution of the wave
equation and an equispaced mesh tn = n∆t, 0 ≤ n ≤ N, ∆t = T

N
;

Choose a paramater λ in accordance with (2.35);
Use a boundary mesh xm = x(θm), 1 ≤ m ≤ 2M on Γ where θm =
(m− 1)π/M ; all the BIE densities are sampled on this mesh.

Step 1: Sample g(tn, xm) for 0 ≤ n ≤ N and apply FFT to the ensemble
{λng(tn, xm)}0≤n≤N for all grid points xm to produce the Fourier
coefficients {ĝl(xm)}0≤l≤N for all grid points {xm}1≤m≤2M .

Step 2: Solve in parallel the frequency domain BIE using Nyström methods

i

4

∫
Γ

H
(1)
0 (isl|x− y|)ϕ̂`(y)ds(y) = ĝl(x), x ∈ Γ

for 0 ≤ l ≤ N . The outcome of this step are the vectors ϕ̂`(xm), 1 ≤
m ≤ 2M for all 0 ≤ ` ≤ N .

Step 3: Apply IFFT to the vectors

{ϕ̂`(xm)}0≤`≤N

for 1 ≤ m ≤ 2M and then multiply the `-th outcome by λ−` to get
an approximation of ϕ(t`, xm) for all 0 ≤ ` ≤ N and 1 ≤ m ≤ 2M
grid points. Use post processing to obtain the solution of the wave
equation u(tn, x) at points x ∈ Ω+.

The overall procedure for IRK is similar to that BDF2, but as can be seen in the

derivation, the differences accumulate. Below is given the Algorithm for the Implicit

Runge-Kutta time stepping scheme:
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Algorithm 2: IRK Algorithm For Calculating Densities with CQ

Choose a T > 0 and the equispaced mesh tn = n∆t,∆t = T
N

;
Choose a λ in accordance with (2.35), with a larger N;
Use a mesh ~x(θm) for 0 < θm ≤ 2π.

Step 1: Pick a Implicit Runge-Kutta Radau-II scheme, filling in the matrix
and vectore A, b, c.

Step 2: Sample g(tn + cj∆t, xi) for 0 ≤ n ≤ N , 1 ≤ j ≤ m and construct
the FFT of {λng(tn + cj∆t, xi)}0≤n≤N for all grid points xi. This

can be done at once and it produces {ĝj(zl, xi)}0≤l≤N for all grid
points {xi}1≤i≤M , and j ∈ {1, . . . ,m}.

Step 3: let zl = e−2πil/(N+1). Form all of the following matrices:

∆(zl) =

(
A+

zl
1− zl

1bT
)−1

,

Then diagonalize the system: ∆(zl) = P(zl)diag(γj(zl))P
−1(zl).

Step 4: Solve in parallel∫
Γ

K(iγj(zl)|x− y|)ϕ̂jl(y)ds(y)︸ ︷︷ ︸
Wj(zl;x)

=
m∑
q=1

P−1
q (zl)ĝq(zl, x)

for 0 ≤ l ≤ N . Where K is the appropriate kernel for the layer
representation and boundary condition. When the data is g(t, x) is
real, solve only those problems where the frequency is not within a
neighborhood of zero.

Step 5: Once the densities ϕjl have been found, we invert the diagonal-
ization: Ud(zli, x) =

∑m
j=1P(zl)mjWj(zl;x)

Step 6: Do the IFFT of
{Ud(zl, xi)}0≤l≤N

and for 1 ≤ i ≤ M and then multiply it by λ−l to get an
approximation of u(tl, xm) (original function of the wave equation)
on all of its spatial and time grid points.
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2.7 A Model Problem for CQ RK Methods

Several numerical tests have been proposed in the literature to validate the order

of convergence of CQ methods. Typically, those tests rely on carefully constructed

Volterra integral equations with known solutions. We investigate in what follows

the convergence properties of RK CQ methods for certain Volterra integral equations

that arise in connection with certain 3D TDBIE in geometrical configurations whereby

separation of variables techniques are possible. Specifically, we consider the following

TDBIE in the exterior of a spherical obstacle under the assumption incident fields

that depend on the variable t only

g(t) =

∫ t

0

∫
S2
k3D(‖x− y‖, t− τ)ϕ(y, τ)dSydτ

=
1

2πi

∫ σ+i∞

σ−i∞

∫ t

0

esτ
∫

Γ

K3D(‖x− y‖, s)ϕ(y, t− τ)dSydτds ϕ(y, τ) = ϕ(τ)

=
1

2πi

∫ t

0

∫ σ+i∞

σ−i∞
esτV (s)ϕ(t− τ, ·)(x)dτds

where k3D(x, t) = δ(t−‖x‖)
4πt

and K3D(x, s) = e−s‖x‖

4π‖x‖ . In spherical geometries the single

layer BIE is diagonalizable in the orthonormal basis of spherical harmonics and as

such we get

g(t) =
1

2πi

∫ σ+∞

σ−i∞

∫ t

0

esτλ0(is)ϕ(t− τ)dτds

where

λ0(is) =
1− e−2s

2s
.

Clearly, we have

g(t) =

∫ t

0

(
1

2πi

∫ σ+∞

σ−i∞
esτλ0(is)ds

)
ϕ(t− τ)dτ.

Given that

λ̌0(τ) =
1

2πi

∫ σ+∞

σ−i∞
esτλ0(is)ds
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the TDBIE reduces to the following Volterra integral equation

g(t) =

∫ t

0

λ̌0(τ)ϕ(t− τ)dτ. (2.38)

A straightforward calculation gives∫ σ+i∞

σ−i∞
esτλ0(is)ds =

∫ σ+i∞

σ−i∞
esτ
(

1− e−2s

2s

)
ds

=
1

2
(1−H(τ − 2)),

where the function H(τ) is the Heaviside function. We now plug the last expression

above into (2.38) and we solve for the density ϕ for all 0 < t ≤ 2:

2g(t) =

∫ t

0

[1−H(τ − 2)]ϕ(t− τ)dτ

2g(t) =

∫ 2

0

ϕ(t− τ)dτ

2g′(t) =

∫ 2

0

d

dt
ϕ(t− τ)dτ

= −
∫ 2

0

d

dτ
ϕ(t− τ)dτ = ϕ(t)− ϕ(t− 2), 0 < t ≤ 2.

We thus obtain

ϕ(t) = 2g′(t), 0 < t ≤ 2.

We use this to test the convergence rate of the SL TDBIE solution for CQ with both

BDF2 and the Radau-II scheme. All of the frequency domain problems that arise

in the CQ algorithm are solved explicitly using the explicit value of the eigenvalues

λ0(is`). Thus, our numerical experiments simply test the time integrators. We present

the plots of the convergence rates in Figure 2.1. As it can be seen, the CQ with IRK3

does not exhibit third order convergence. Unfortunately, we do not have yet an

explanation for this rather peculiar behavior of the IRK3 CQ solver.
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Figure 2.1 Convergence rate of BDF2 CQ and IRK3 CQ for the single Layer TDBIE
model problem.

2.8 Double-Layer and Combined Field TDBIE

Puzzled by the unexpected behavior of the IRK3 CQ solution of the Single Layer

TDBIE, we proceeded to investigate the case when a double layer TD formulation

is used for the solution of the wave equation in the exterior of the unit sphere. The

derivations are similar in this case, with two notable differences: (1) we are dealing

now with a TDBIE of the second kind; and (2) the eigenvalues of the double layer

Helmholtz operators are given by the formula

µ0(is) = −1

2
+

[(
e−2s + 1

2

)
+

(
e−2s − 1

2s

)]
.

Taking into account the formula for the inverse Laplace transform of the function

µ0(is) ∫ σ+i∞

σ−i∞
esτ
(
−1

2
+

[(
e−2s + 1

2

)
+

(
e−2s − 1

2s

)])
ds

=
δ(τ − 2)

2
+
δ(τ)

2
+

1

2
(H(τ − 2)− 1)

we arrive at the following Volterra integral equation for the density ψ of the TDBIE:

2g(t) =

∫ t

0

[δ(τ − 2) + δ(τ) + (H(τ − 2)− 1)]ψ(t− τ)dτ
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2g(t) = ψ(t− 2) + ψ(t)−
∫ 2

0

ψ(t− τ)dτ

2g′(t) = ψ′(t)−
∫ 2

0

d

dt
ψ(t− τ)dτ

= +

∫ 2

0

d

dτ
ψ(t− τ)dτ = ψ′(t)− ψ(t), 0 < t ≤ 2.

Thus, we have to solve the following differential equation

ψ′(t)− ψ(t) = 2g′(t), 0 < t ≤ 2

from which we get

ψ(t) = et
(
C +

∫
2g′(t)e−tdt

)
, 0 < t ≤ 2.

In this case, we display the rates of convergence of CQ methods based on BDF2 and

IRK3 in Figure 2.2. As it can be seen, third order convergence of IRK3 CQ methods

is now observed in practice.
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Figure 2.2 Convergence of CQ BDF2 and CQ IRK3 for the solution of the double
layer TDBIE model problem.

We repeated the experiment in the case when the Combined Field approach is

used to derive TDBIE. As illustrated in Figure 2.3, third order is again observed for

the IRK3 CQ method.
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Figure 2.3 Convergence of CQ BDF2 and CQ IRK3 for the solution of the combined
field TDBIE model problem.
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CHAPTER 3

NYSTRÖM METHODS FOR THE MODIFIED HELMHOLZ BIE

As we have already remarked, a key component of CQ methods for the solution

of TDBIE is solving ensembles of modified Helmholtz equations. We use the BIE

machinery to solve such problems and we will highlight the additional challenges that

are encountered in the Helmholtz problems that arise in the CQ context.

3.1 Dirichlet Boundary Conditions

We are interested in solving the Helmholtz boundary value problem
∆u(x) + k2u(x) = 0 x ∈ Ω+

u(x) = g(x) x ∈ Γ

limr→∞
√
r( ∂

∂r
− ik)u(r, θ) = 0.

(3.1)

We assume that the wavenumber k ∈ C with =k ≥ 0. We pursue the solution

of exterior Helmholtz problems based on layer potential formulations. One of

the immediate benefits of this approach is the direct enforcement of the radiation

condition through the choice of an outgoing Green function.

Single Layer Potential Let us seek for a solution of Equation (3.1) in the form of

a Single-Layer (SL) potential:

u(x) =

∫
Γ

Gk(x− y)ϕ(y)ds(y)︸ ︷︷ ︸
(Skϕ)(x)

, x ∈ R2 \ Γ (3.2)

where

Gk(x) =
i

4
H

(1)
0 (k|x|) (3.3)
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is the Hankel function of order zero of the first kind. The single layer potential is

continuous throughout R2, and thus, taking its limit on the boundary Γ we arrive at

the BIE of the first kind:

(Skϕ)(x) = g(x), x ∈ Γ. (3.4)

Double Layer Potential Suppose now that we look for a solution of Equation (3.1)

in the form of a Double Layer potential

u(x) =

∫
Γ

∂Gk(x− y)

∂n(y)
ϕ(y)ds(y)︸ ︷︷ ︸

(Kkϕ)(x)

, x ∈ R2 \ Γ. (3.5)

The limit of the double layer on Γ gives rise to a jump condition and leads to the BIE

of the second kind

(Kkϕ)(x) + ϕ(x) = 2g(x), x ∈ Γ. (3.6)

Combined Field Formulations We can also take a linear combination of the two

previous layer potentials:

u(x) =

∫
Γ

∂Gk(x− y)

∂n(y)
ϕ(y)ds(y)− η

∫
Γ

Gk(x− y)ϕ(y)ds(y)︸ ︷︷ ︸
(Ckϕ)(x)

. (3.7)

Normally we will pick the coupling parameter to be η = ik. The BIE we need to solve

in this case is:

(Ckϕ)(x) + ϕ = 2g(x), x ∈ Γ (3.8)

where once again the term ϕ comes from the jump condition of the double layer

potential. Due to the types of boundaries that we consider, the Combined Field

representation will not be a focus in what is to follow.
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3.1.1 Smooth Boundaries

We give a brief overview of Nyström discretizations of the BIE Equations (3.4),(3.6),

and (3.8). In these methods the densities are approximated by global trigonometric

polynomials using equispaced interpolation nodes on the interval [0, 2π] (we assume

2π periodic parametrizations of the closed curves Γ) and the BIE are collocated on

the boundary mesh corresponding to the interpolation nodes. However, the kernels

of the BIE under considerations are singular when the integration point y is equal

to the target point x, and thus these singularities have to be handled carefully via

specialized quadratures. A closer look at the kernel of the single layer formulations

around its singularity at x = 0 reveals

H(1)
α (x) = Jα(x) + iYα(x),

where

Jα(x) ∼ 1

Γ(α + 1)

(x
2

)α
α ≥ 0 x→ 0+

Yα(x) ∼ 1

π

(z
2

)−α α−1∑
k=0

(α− k − 1)!

k!

(
x2

4

)k
+

2

π
Jα(x) ln

(x
2

)
x→ 0+.

In the case of single layer BIE, we have to resolve logarithmic singularities. In the case

of regular enough boundaries Γ (e.g. at least C2), it turns out that the singularity of

the double layer BIO is also logarithmic. The Nyström method proposed by Kussmaul

and Martensen relies on the splittings above. Assuming that the wavenumber k is

real, and that Γ is parametrized by a 2π periodic function x, the kernel of the single

layer BIO

Mk(t, τ) =
i

4
H

(1)
0 (k|x(t)− x(τ)|)

is split in the following form

Mk(t, τ) = Mk,1(t, τ) ln

(
4 sin2

(
t− τ

2

))
+Mk,2(t, τ)
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Mk,1(t, τ) =
−1

4π
J0(k|x(t)− x(τ)|)

where the expressions Mk,1(t, τ) and Mk,2(t, τ) are regular with limiting values

Mk,1(t, t) =
−1

4π
Mk,2(t, t) =

i

4
− C

2π
− 1

2π
ln

(
k|x′(t)|

2

)
.

Using the addition theorem, the integrals of the products of the logarithmic singularity

ln
(
4 sin2

(
t−τ

2

))
and the Fourier basis einτ can be computer explicitly, and this is

the key ingredient in the Kussmaul and Martensen quadrature. Unfortunately, those

quadratures cannot be applied directly in the case when the wavenumber k is complex

because the Bessel function J0(z) grows exponentially as |z| → ∞ in the case when

the argument z is complex with positive imaginary part. In [62], Peréz-Arancibia and

Labarca advocated for the use of Alpert quadrature rules for such wavenumbers. We

recall that all the wavenumbers s` that feature in CQ are complex with possibly large

imaginary parts. The main advantage of Alpert quadratures is that they can handle

the logarithmic singularities of the Hankel functions in a manner that is agnostic to

their arguments. As such, it can be applied to all the CQ BIE featuring various

wavenumbers s`.

We describe briefly in what follows the mechanics of Alpert quadratures. They

amount to∫ T

0

k(xi, x
′)σ(x′)dx′ ≈ h

N−2a∑
p=0

k(xi, xi + ah+ ph)σ(xi + ah+ ph)

+ h

m∑
p=1

wpk(xi, xi + χph)σ(xi + χph)

+ h

m∑
p=1

wpk(xi, xi + T − χph)σ(xi + T − χph)

where {xi} is an equispaced mesh on the interval [0, T ], the kernel k(xi, x
′) has a

logarithmic singularity as x′ → xi, σ is assumed to be a regular enough density,

and the weights wp and the nodes χp are selected so that the ensuing quadratures
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achieves a prescribed rate of convergence. The weights and nodes are tabulated in

Appendix B. The endpoint correction nodes χp are typically not integers, and as such

the Alpert quadrature requires evaluation of the density σ outside of the equispaced

mesh {xi}. This is achieved by resorting to Lagrange interpolation that shifts the

grid points around the non-grid point x where σ needs to be evaluated

σ(x) =
m=1∑
q=0

L(xi)
q (x)σ(xi + qh) where L(xi)

q (x) =
∏
r=0

x− (xi + rh)

(xi + qh)− (xi + rh)
.

Consequently, we have

σ(xi + χph) ≈
m+3∑
q=0

L(xi)
q (xi + χph)σ(xi + qh)

σ(xi + T − χph) ≈
m+3∑
q=0

L(xi)
q (xi + T − χph)σ(xi + T − qh).

Finally, the Alpert quadrature reads∫ T

0

k(xi, x
′)σ(x′)dx′ ≈ h

m+3∑
p=0

k(xi, xi + ah+ ph)σ(xi + ah+ ph)

+ h
m+3∑
q=0

(∑
p=1

wpk(xi, xi + χph)L(xi)
q (xi + χp)

)
σ(xi + qh)

+ h
m+3∑
q=0

(∑
p=1

wpk(xi, xi + T − χp)L(xi+T )
q (xi + T − χph)

)
σ(xi + T − qh).

Assuming that the density σ is sampled at a mesh consisting of N equispaced

nodes on the interval [0, T ], the Alpert quadratures applied to all of the integrals∫ T
0
k(xi, x

′)σ(x′)dx′ for 1 ≤ i ≤ N leads to a matrix vector multiplication, where the

N vector collects the values σ(xi), 1 ≤ i ≤ N , and the N ×N collocation/Nyström

matrix has entries ai,j, 1 ≤ i, j ≤ N that can be constructed explicitly via the formula

ai,j = bi,j + ci,j where

bi,j =


0 if |l(i, j)| < a

hk(xi, xj) if |l(i, j)| ≥ a,
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and

ci,j =



0 if |l(i, j)| > m+ 3

h
∑

p=1wp


+k(xi, xi + χph)L

(xi)
l(i,j)(xi + χph)

+k(xi, xi + T − χph)L
(xi+T )
l(i,j) (xi + T − χph)

 if |l(i, j)| ≤ m+ 3

where

l(i, j) = (j − 1)(mod N).

The numerical solution of the BIE in Equations (3.4), (3.6), or (3.8) rely on

construction of Alpert Nyström matrices like the ones above. We note that is also

possible to use trigonometric interpolation instead of Lagrange interpolation in order

to evaluate densities at off grid points. Appendix C contains a presentation of this

alternative interpolation method.

3.1.2 Piecewise Smooth Boundaries

In order to handle piecewise smooth domains with our layer potential formulation,

we will make use of the following Sigmoid function, that polynomially bunches the

discretization points toward corner points while maintaining a reasonable density of

discretization points throughout the rest of the boundary Γ.

w(s) =
Tj+1[v(s)]p + Tj[1− v(s)]p

[v(s)]p + [1− v(s)]p
Tj ≤ s ≤ Tj+1, 1 ≤ j ≤ P

v(s) =

(
1

p
− 1

2

)(
Tj + Tj+1 − 2s

Tj+1 − Tj

)3

+
1

p

(
2s− Tj − Tj+1

Tj+1 − Tj

)
+

1

2
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Figure 3.1 Effect of the sigmoid function on boundary discretization.
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The assumption is that the domain Ω has corners at x1, x2, . . . , xn. The gradation

works in conjunction with a parameterization for the boundary Γ, x(·) = (x1(·), x2(·)).

We compose the two, to get

xw(t) = (x1(w(t)), x2(w(t))) .

In this approach we avoid having discretization points at the corners, by simply

shifting the t-mesh

tj =
1

2
(2j − 1)

(
2π

N

)
. (3.9)

In addition to using graded meshes, we will also introduce weighted BIE formulations

which we explain next.
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Weighted Single-Layer Formulation Using graded meshes, the parametrized

version of the Single Layer BIO reads

(Skϕ)(t) =

∫ 2π

0

Gk(xw(t)− xw(τ))ϕ(τ)|x′w(τ)|dτ (3.10)

where ϕ(τ) := ϕ(xw(τ)). The ensuing parametrized BIE is:

(Skϕ)(t) = g(xw(t)).

Given that we are dealing with BIE of the first kind, it makes sense then to define a

new weighted density in the form

ϕw(τ) = ϕ(τ)|x′w(τ)|,

which, given that x′w vanishes polynomially at corners, makes the new density more

regular than the original one. The weight formulation is then∫ 2π

0

Gk(xw(t)− xw(τ))ϕw(τ)dτ = g(xw(t)). (3.11)

The weighted Equation (3.11) is directly amenable to solutions via Alpert Nyström

matrices.

Weighted Double-Layer Formulation We suppose now that the solution takes

a DL form:

(Kkϕ)(t) =

∫ 2π

0

∂Gk(xw(t)− xw(τ))

∂n(τ)
ϕ(τ)|x′w(τ)|dτ

We add and subtract the Laplace free space kernel:

(Kkϕ) =

∫ 2π

0

∂(Gk −G0)(xw(t)− xw(τ))

∂n(τ)
ϕ(τ)|x′w(τ)|dτ

+

∫ 2π

0

∂G0(xw(t)− xw(τ))

∂n(τ)
(ϕ(τ)− ϕ(t))|x′w(τ)|dτ

+ ϕ(t)

∫ 2π

0

∂G0(xw(t)− xw(τ))

∂n(τ)
|x′w(τ)|dτ.
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Evaluating Kk on the boundary leads to the BIE:

g(xw(t)) = α(t)ϕ(t) +

∫ 2π

0

∂(Gk −G0)(xw(t)− xw(τ))

∂n(τ)
ϕ(τ)|x′w(τ)|dτ

+

∫ 2π

0

∂G0(|xw(t)− xw(τ)|)
∂n(τ)

(ϕ(τ)− ϕ(t))|x′w(τ)|dτ

+ ϕ(t)

∫ 2π

0

∂G0(xw(t)− xw(τ))

∂n(τ)
|x′w(τ)|dτ

where

α(t) =


1
2

t ∈ [0, 2π] \ {T1, . . . , TN}

γj
2

t = Tj, 1 ≤ j ≤ N,

in terms of the corner apertures γj. Further, we make use of the following identity:∫ 2π

0

∂G0(xw(t)− xw(τ))

∂n(τ)
|x′w(τ)|dτ = −α(t)

and we reduce the BIE to

g(xw(t)) =

∫ 2π

0

∂(Gk −G0)(|xw(t)− xw(τ)|)
∂n(τ)

ϕ(τ)|x′w(τ)|dτ

+

∫ 2π

0

∂G0(xw(t)− xw(τ))

∂n(τ)
(ϕ(τ)− ϕ(t))|x′w(τ)|dτ.

As a result of these manipulations, the first integral above can be evaluated using

Alpert quadratures, while the second one can be evaluated using the trapezoidal rule.

The key observation here is the fact that the density ϕ is Hölder continuous, the the

simple trapezoidal rule suffices to deliver high order convergence.

Quadrature by Expansion The quadrature by expansion (QBX) method is

another powerful and popular method used to evaluate the boundary layer potentials

and operators that arise in Helmholtz problems. Just like the Alpert quadratures,

QBX can be applied relatively easily to the evaluations of layer potentials whose
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associated Green functions feature either real or complex wavenumbers. In what

follows, we give an exposition of QBX in the case of evaluations of single layer

potentials. The Quadrature by Expansion method relies on the addition formula

H
(1)
0 (k|x− x′|) =

∞∑
`=−∞

H
(1)
` (k|x′ − x+|)ei`θ′J`(k|x− x+|)e−i`θ, x′ ∈ Γ (3.12)

where θ and θ′ are the angular coordinates of x and respectively x′ in the polar

coordinate system centered at c = x+. The addition theorem (3.12) leads than to the

following series representation for the single layer potential

(Vkϕ)(x) =
∞∑

`=−∞

α`J`(k|x− x+|)e−i`θ, α` :=
i

4

∫
Γ

H
(1)
` (k|x′ − x+|)ei`θ′ϕ(x′)ds(x′).

(3.13)

In practice a truncation parameter p is chosen in the series representation (3.13)

leading to the following QBX approximation

(Vkϕ)(x) ≈
p∑

`=−p

α`J`(k|x− x+|)e−i`θ (3.14)

where the coefficients α` have to be evaluated numerically for all −p ≤ ` ≤ p. We note

that the integrands in the definition (3.13) of the coefficients α` do not contain kernel

singularities as x+ /∈ Γ. We will use in what follows Clenshaw-Curtis quadratures to

evaluate numerically the coefficients α` in Equation (3.13). Indeed, we assume that

Γ is piecewise smooth and the corners are located at x1, x2, . . . , xP and thus

α` =
∑
m

α`,m, α`,m :=
i

4

∫
Γm

H
(1)
` (k|x′ − x+|)ei`θ′ϕ(x′)ds(x′).

We apply Clenshaw-Curtis quadratures for the evaluation of each of the integrals in

the definition of α`,m, that is

α`,m ≈
i

4

Nm∑
j=1

ωjH
(1)
` (k|γm(tj)− x+|)ei`θ′j ϕ̃(γm(tj)) (3.15)

37



where we assume that Γm is parametrized in the form Γm = {γm(t) : t ∈ [−1, 1]} and

γm : [−1, 1]→ R2 is smooth, ϕ̃(γm(tj)) = ϕ(γm(tj))|γ′m(tj)|, the quadrature points tj

are the Chebyshev zero points

tj := cos(ϑj), ϑj :=
(2j − 1)π

2Nm

, j = 1, . . . , Nm

and the Fejér quadrature weights ωj are given by

ωj :=
2

Nm

1− 2

[Nm/2]∑
q=1

1

4q2 − 1
cos(2qϑj)

 , j = 1, . . . , Nm.

The full QBX discretization of the single layer BIE (3.2) is given in what follows:

(1) choose a grid on Γ such that xj,m = γm(tj), 1 ≤ m ≤ P + 1, 1 ≤ j ≤ nm

and tj := cos(ϑj), ϑj := (2j−1)π
2nm

, j = 1, . . . , nm; (2) for each xj on Γ define the

expansion centers x±j := xj ± ε(xj)n(xj); (3) use the QBX approximation (3.14)

for a given truncation parameter p; and (4) evaluate the ensuing coefficients α`,m

according to the Clenshaw-Curtis quadrature (3.15) using oversampling, that is choose

Nm = βnm, β ≥ 1 in Equation (3.15) and use Chebyshev interpolation to access the

values of the density ϕw on the fine Chebyshev grid with Nm nodes on each Γm.

Finally, we choose ε(xj) = min(|xj −xj−1|, |xj −xj+1|) in the definition of the centers

x±j .

It is also possible to consider weighted formulations of the single layer BIE (3.2).

Specifically, assuming the γm : [−1, 1]→ R2 parametrizations of each Γm for 1 ≤ m ≤

P + 1, we define

ϕwm(t) := ϕ(γm(t))|γ′m(t)|
√

1− t2, −1 ≤ t ≤ 1, 1 ≤ m ≤ P + 1 (3.16)

which, in turn, leads to a simpler Fejér quadrature rule for the evaluation of the

coefficients α`,m of the form

α`,m ≈
iπ

4Nm

Nm∑
j=1

H
(1)
` (k|γm(tj)− x+|)ei`θ′jϕwm(tj). (3.17)
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Table 3.1 QBX Clenshaw-Curtis Error and Order of Convergence

N Teardrop Boomerang Strip V-shaped

ε∞ e.o.c. ε∞ e.o.c. ε∞ e.o.c. ε∞ e.o.c.

32 1.3 × 10−2 4.4 × 10−2 2.6 × 10−4 4.7 × 10−4

64 6.5 × 10−6 10.9 1.0 × 10−5 12.01 5.9 × 10−5 2.18 1.1 × 10−4 1.99
128 1.0 × 10−6 2.70 4.9 × 10−8 7.73 1.3 × 10−5 2.10 2.9 × 10−5 1.99
256 1.6 × 10−7 2.64 2.2 × 10−10 7.80 3.3 × 10−6 2.07 7.4 × 10−6 1.99

Errors in the near field and estimated orders of convergence obtained from the QBX Nyström
quadrature discretization of the single layer formulation for real wavenumber k = 8 and
plane wave normal incidence. We used the weighted unknown (3.16) and the Clenshaw-
Curtis quadratures (3.17) in the expansion (3.13), as well as the QBX parameters p = 8
and β = 6.

We report in Table 3.1 numerical results concerning QBX quadrature Nyström

discretizations of the single layer formulation of the Helmholtz Equation (3.1) using

the weighted unknown (3.16) and the Clenshaw-Curtis quadratures (3.17) in the

expansion (3.13). Qualitatively similar results are obtained in the cases when the

wavenumber is complex.

3.2 Neumann Boundary Conditions

In this section, we will solve the wave equation with Neumann boundary conditions:


∂2u(x,t)
∂t2

= ∆u(x, t) x ∈ Ω+, t > 0

∂u(x,t)
∂n(x)

= ∂g(x,t)
∂n(x)

x ∈ Γ.

We can apply CQ with any of the A-stable ODE solvers previously discussed, the

details are the same. The main difference is that we would have to deal in the Laplace

domain with modified Helmholtz equations with Neumann boundary conditions, that

is boundary value problems of the type
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∆u(x) + k2u(x) = 0 x ∈ Ω

∂u(x)
∂n(x)

= ∂g(x)
∂n(x)

x ∈ Γ.

(3.18)

The solution of these problems will be obtained again through BIE.

3.2.1 Smooth Boundaries

Single-Layer Formulation If we suppose that the solution (3.18) takes on the

form of a SL potential

u(x) =

∫
Γ

Gk(|x− y|)ϕ(y)ds(y), x ∈ Ω+,

we obtain the following BIE of the second kind

− ϕ

2
+K>k ϕ = f on Γ, (K>k ϕ)(x) :=

∫
Γ

∂Gk(x− y)

∂n(x)
ϕ(y)ds(y), x ∈ Γ. (3.19)

We note that the BIE formulation (3.19) is uniquely solvable whenever =k > 0.

In order to make the BIE formulation (3.19) amenable to Nyström discretizations

based on Alpert quadratures, we use the parametrization γ of the boundary curve

Γ that incorporates the sigmoid transforms and we employ the following weighted

formulation

−1

2
ϕw(t)− ik

4

∫ 2π

0

H
(1)
1 (k|γ(t)−γ(τ)|)(γ(t)− γ(τ)) · (γ′(t))⊥

|γ(t)− γ(τ)|
ϕw(τ)dτ = f(γ(t))|γ′(t)|

(3.20)

where (γ′(t))⊥ = (γ′2(t),−γ′1(t)) and again here ϕw(t) := |γ′(t)|ϕ(γ(t)). On the other

hand, the application of QBX quadratures to the evaluation of the BIO K>k ϕ relies

on the classical jump formulas for the gradients of single layer potentials

∇x(Skϕ)(x) = lim
x±→x

∇x±(Skϕ)(x±)± 1

2
n(x)ϕ(x), x ∈ Γ, x± = x± εn(x),
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which amounts to differentiating term by term the expressions

(Skϕ)(x±) ≈
p∑

`=−p

α`J`(k|x± − x|)e−i`θ
±

in the polar coordinate systems around the expansion centers [54]. Furthermore,

per the prescription in [54], we average the derivatives of the expansions above with

respect to both x+ and x− in order to evaluate the BIO expressions in Equation (3.19).

Specifically, the QBX quadrature takes on the form

− ϕ(x)

2
+ (K>k ϕ)(x) (3.21)

≈ −1

2
lim
x+→x

p∑
`=−p

kα`

(
−J`+1(k|x+ − x|+ `

k|x+ − x|
J`(k|x+ − x|)

)
e−i`θ

+

+
1

2
lim
x−→x

p∑
`=−p

kα`

(
−J`+1(k|x− − x|+ `

k|x− − x|
J`(k|x− − x|)

)
e−i`θ

−

(3.22)

where the coefficients α` are in turn computed via the formulas (3.15). We present

in Tables 3.2 and 3.3 numerical results concerning Alpert and QBX discretizations

of the second kind formulation (3.19) in the case when the wavenumber k = 8 using

reference solutions produced by the high-order kernel-splitting Nyström discretization

in [2].

3.2.2 Hypersingular BIE Fomulation

If we seek the solution of Equation (3.18) in the form of a double layer potential

u(x) =

∫
Γ

∂Gk(|x− y|)
∂n(y)

ϕ(y)ds(y), x ∈ Ω+

then the enforcement of Neumann boundary conditions results in the following BIE

(Nkϕ)(x) = g(x), x ∈ Γ (3.23)
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Table 3.2 Alpert Error and Order of Convergence

N Teardrop Boomerang
ε∞ e.o.c. ε∞ e.o.c.

64 2.4 × 10−4 6.2 × 10−3

128 5.7 × 10−6 5.40 1.4 × 10−4 5.40
256 1.9 × 10−7 4.87 4.7 × 10−6 4.91
512 7.7 × 10−9 4.67 1.8 × 10−7 4.71

Errors in the near field and estimated orders of convergence corresponding to the Alpert
discretization of the weighted formulation (3.20) for real wavenumber k = 8 and plane
wave normal incidence. We used the following Alpert quadrature parameters: σ = 4 in the
sigmoid transform, and respectively a = 2,m = 3.

Table 3.3 QBX Clenshaw-Curtis Error and Order of Convergence

N Teardrop Boomerang
ε∞ e.o.c. ε∞ e.o.c.

32 2.5 × 10−2 3.3 × 10−1

64 3.0 × 10−3 3.07 2.6 × 10−2 3.65
128 3.6 × 10−4 3.07 1.6 × 10−3 4.03
256 3.1 × 10−5 3.54 8.9 × 10−5 4.16

Errors in the near field and estimated orders of convergence obtained with the QBX Nyström
quadrature discretization of the single layer formulation for real wavenumber k = 8 and
plane wave normal incidence. We used the QBX expansion (3.21) and the Clenshaw-Curtis
quadratures (3.17) in the expansion (3.13), as well as the QBX parameters p = 4 and β = 4.
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where the operator Nk is a BIO which has to be understood in the sense of Hadamard

finite parts

(Nkϕ)(x) = f.p.

∫
Γ

∂2Gk(|x− y|)
∂n(x)∂n(y)

ϕ(y)ds(y), x ∈ Γ. (3.24)

The operator Nk is a hypersingular, as the singularity is O(|x− y|2). We can recast

it in the following form

(Nkϕ)(x) = f.p.

∫
Γ

∂2Gk(x− y)

∂n(x)∂n(y)
ϕ(y)ds(y). (3.25)

=

∫
Γ

∂2(Gk −G0)(x− y)

∂n(x)∂n(y)
ϕ(y)ds(y) + f.p.

∫
Γ

∂2G0(x− y)

∂n(x)∂n(y)
ϕ(y)ds(y)

(3.26)

where G0 is the Green’s function of the Laplace equation:

G0(x) = − 1

2π
log(|x|).

The kernel of the first integral term in the right hand side of (3.26) equals:

∂2(Gk −G0)(x− y)

∂n(y)∂n(x)
= −n(x) · ∇2

xx(Gk −G0)(x− y) n(y), (3.27)

where the notation ∇2
xx stands for the Hessian matrix. Equation (3.27) can be further

expressed as

n(x) · ∇2
xx(Gk −G0)(x− y) n(y) =

−ik2

4
H

(1)
0 (k|x− y|)(x− y) · n(x)(x− y) · n(y)

|x− y|2

+

(
ik

4
H

(1)
1 (kx− y)|x− y| − 1

2π

)(
2(x− y) · n(x)(x− y) · n(y)

|x− y|4
− n(x) · n(y)

|x− y|2

)
.

In the light of the last calculation above, it can be seen that the singularity of the

kernel of the first integral term in the right hand side of (3.26) is logarithmic. The

Hadamard finite parts integral term in Equation (3.26) can be manipulated using

integration by parts techniques starting from the identity

∂2G0(x− y)

∂n(x)∂n(y)
= −∂

2G0(x− y)

∂t(x)∂t(y)
,
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where t(x) is the unit tangent on Γ at x. We can expressed the hyper singular term

in parametrized form

f.p.

∫
Γ

∂2G0(|x− y|)
∂n(x)∂n(y)

ϕ(y)ds(y) = −f.p.
∫

Γ

∂2G0(|x− y|)
∂t(x)∂t(y)

ϕ(y)ds(y)

= +
1

4π|x′(t)|

∫ 2π

0

∂2

∂t∂τ
log(|x(t)− x(τ)|2)ϕ(τ)dτ.

We add and subtract now the expression of the kernels in the case when x(t) =

(cos t, sin t) and obtain

f.p.

∫
Γ

∂2G0(x− y)

∂n(x)∂n(y)
ϕ(y)ds(y)

=
1

4π|x′(t)|

∫ 2π

0

∂2

∂t∂τ

(
log
(
|x(t)− x(τ)|2

)
− log

(
4 sin2

(
t− τ

2

)))
ϕ(τ)dτ

+
1

4π|x′(t)|

∫ 2π

0

∂2

∂t∂τ

(
log

(
4 sin2

(
t− τ

2

)))
ϕ(τ)dτ.

Integrating by parts in the expressions above we get

f.p.

∫
Γ

∂2G0(x− y)

∂n(x)∂n(y)
ϕ(y)ds(y)

= − 1

4π|x′(t)|

∫ 2π

0

∂

∂t

(
log(|x(t)− x(τ)|2)− log

(
4 sin2

(
t− τ

2

)))
ϕ′(τ)dτ

− 1

4π|x′(t)|

∫ 2π

0

∂

∂t

(
log

(
4 sin2

(
t− τ

2

)))
ϕ′(τ)dτ

=
1

4π|x′(t)|

∫ 2π

0

(
−2x′(t) · (x(t)− x(τ))

|x(t)− x(τ)|2
− cot

(
τ − t

2

))
︸ ︷︷ ︸

η(t,τ)

ϕ′(τ)dτ

+
1

4π|x′(t)|

∫ 2π

0

cot

(
τ − t

2

)
ϕ′(τ)dτ.

The expression η(t, τ) above can be seen to be regular

η(t, τ) =
−2x′(t) · (x(t)− x(τ))

|x(t)− x(τ)|2
− cot

(
τ − t

2

)
(3.28)

lim
τ→t

η(t, τ) = −x
′(t) · x′′(t)
|x′(t)|2

. (3.29)
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In conclusion, we expressed the hyper singular BIO in a form that is more amenable

to Nyström discretizations:

(Nkϕ)(t) = −
∫ 2π

0

n(t) · ∇2
tt(Gk −G0)(x(t)− x(τ))n(τ)ϕ(τ)|x′(τ)|dτ

+
1

4π|x′(t)|

∫ 2π

0

η(t, τ)ϕ′(τ)dτ +
1

4π|x′(t)|

∫ 2π

0

cot

(
τ − t

2

)
ϕ′(τ)dτ.

(3.30)

The first integral operator in the right hand side of Equation (3.30) is directly

amenable to Alpert Nyström quadratures, given that its kernel exhibits only a

logarithmic singularity. The next term features the derivative of the density which

is effected in practice using the Fourier differentiation matrix who’s entries are given

by:

Dij =


1
2
(−1)i−j cot

(
(i−j)h

2

)
i 6= j

0 i = j.

(3.31)

Given that the function η(t, τ) is regular in both its variables, the second integral in

the right hand side of Equation (3.30) is evaluated simply using the trapezoidal rule,

after the Fourier differentiation matrix has been applied to the density. Finally, the

last term in the right hand side of Equation (3.30) is related to a Hilbert transform

(see the [58] references on hyper singular integral equations) and can be evaluated in

the following manner

1

2π

∫ 2π

0

cot

(
τ − t

2

)
f ′(τ)dτ ≈

2n∑
j=0

T
(n)
j (t)f(t

(n)
j )
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where

T
(m)
j = T

(n)
j (0) =



1

2n sin2(t
(n)
j /2)

j ∈ Odd

0 j ∈ Even

−n/2 j = 0.

Piecewise Smooth Domains Given an incidence field ui(x) which satisfies the

Helmholtz equation on the interior domain

∆ui(x) + k2ui(x) = 0 x ∈ Ω−,

we want to find a solution us(x) satisfying the Neumann boundary conditions in the

exterior,


∆us(x) + k2us(x) = 0 x ∈ Ω+

∂us(x)
∂n(x)

= −∂ui(x)
∂n(x)

x ∈ Γ.

(3.32)

For simplicity of the exposition we will assume that a single corner occurs at x0 ∈ Γ.

The goal is once again to find an integral representation for the solution of (3.32),

but in this case instead of doing so for the scattered field, we look for an integral

representation of the total field.

The advantage of the following technique is that the solution is bounded on Γ,

unlike most other indirect formulations of the solution to (3.32), which are singular

near x0. The solutions u for these representations are Hölder continuous: |u(x) −

u(x0)| = O(|x− x0|γ), where γ can be determined from the angle of the corner.

The derivation and results of this section is based on [2] and will be partially

reproduced here for completeness. A full proof invertability of the, yet to be described,

operator can be found in the aforementioned paper. We start with Green’s identity

for both of the incidence and scattered field:
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us(x) =

∫
Γ

(
∂Gk(x− y)

∂n(y)
us(y)−Gk(x− y)

∂us(y)

∂n(y)
dSy

)
(3.33)

ui(x) =

∫
Γ

(
∂Gk(x− y)

∂n(y)
ui(y)−Gk(x− y)

∂ui(y)

∂n(y)
dSy

)
= 0, (3.34)

where x ∈ Γ. Adding (3.33) and (3.34) together gives us a representation for the

scattered field, involving the total field,

us(x) =

∫
Γ

∂Gk(x− y)

∂n(y)

(
us(y) + ui(y)

)
−Gk(x− y)

(
∂us(y)

∂n(y)
+
∂ui(y)

∂n(y)

)
dSy (3.35)

=

∫
Γ

∂Gk(x− y)

∂n(y)
u(y)dSy︸ ︷︷ ︸

(Kkϕ)(x)

. (3.36)

Notice that the second term above is zero due to the boundary conditions of (3.32),

and u(x) = us(x)+ui(x). Taking the limit as x approaches the boundary and making

use of the trace formulation for the DL potential, we arrive at an integral equation

of the second kind,

1

2
u(x)− (Kku)(x) = ui(x) x ∈ Γ. (3.37)

Returning for a moment to (3.36), taking a normal derivative and similarly making

use of the trace, resulting in an integral equation of the first kind involving the

hypersingular operator

− (Nk)(x) =
∂ui(x)

∂n(x)
x ∈ Γ. (3.38)

As done in the previous section, we recast this integral equation as a Cauchy Principle

value by making use of Maue’s integration by parts identity. We now seek a uniquely

solvable integral equation, but neither (3.37) or (3.38) are uniquely solvable for all

wave numbers k. The usual way of overcoming this is to resort to a CFIE, consisting of

a linear combination of the SL and DL. While such a formulation does fix the uniquely
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saleability issue, we are in no better shape to resolve the issue of the hypersingular

operatorNk, which has spectrum that accumulates at infinity. To improve the spectral

limitations amounts to regularizing the CFIE: the idea is to combine (3.38) with a

regularizer, resulting in

1

2
u(x)− (Kku)(x)− iξ(R ◦Nku)(x) = ui(x) + iξR

(
∂ui(x)

n(x)

)
x ∈ Γ. (3.39)

A wide variety of regularizers R can be used, however simple ones that are relatively

easy to implement are preferred. The regularize considered in what follows will also

work well in the CQ setting. An appropriate choice to this end is

(Rϕ)(x) = (Sηϕ)(x) =
i

4

∫
Γ

Gη(x− y)ϕ(y)dSy. (3.40)

With this regularizer, it can be proved that the choice of regularizer R = Sη renders

the left hand side of (3.39) renders invertible as an operator from Cγ(Γ) to C(Γ). The

proof of this fact is given in [2], however only the relevant steps in the derivations of

the invertible operator will be given. The following two identities will be useful in

this pursuit

Sη ◦ N0 = −I
4

+ (Kη)2

∫
Γ

∫
Γ

∂2G0(x− y)

∂n(x)∂n(y)
ϕ(y)dSydSx = 0

The goal is to express the composition R ◦Nk, using the above, in a different form

Sη ◦Nk = Sη(Nk −N0)− I

4
+ (Kη)2. (3.41)

With this identity and a choice of ξ = i, we arrive at the final form of the integral

operator,

u(x)− (Kku)(x)− (Sη(Nk −N0)u)(x)− (Kku)2(x) = ui(x) + 2Sη
(
∂ui(x)

n(x)

)
(3.42)

It is worth noting that this formulation once discretized will need a graded mesh to

account for the corner x0, which can be handled with Alpert quadrature. QBX will

48



also be able to handle Equation (3.42), though an alternate procedure for QBX that

applies for more general scatterers will be introduced in the following section. Finally,

Sη can be precomputed once, making it an excellent choice as a regularizer given that

CQ can require multiple frequency solves for each time step depending on the order

of the method.
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Open Arcs and Alpert Quadrature A special formulation is needed for the case

of when we want to solve the problem with a double layer formulation and Neumann

boundary conditions coupled with Alpert quadrature. A brief derivation will be

derived in this subsection. To this end, we consider ther Hypersingular operator :

Nkϕ(x) =

∫
Γ

∂2Gk(x− y)

∂n(x)∂n(y)
Ψ(y)dSy

As in the smooth case, we add and subtract the Laplace kernel, from which we get:

Nkϕ(x) =

∫
Γ

K̄(x, y)Ψ(y)dSy +

∫
Γ

K̄0(x, y)Ψ(y)dSy

where

K̄0(x, y) =
∂2G0(x− y)

∂n(x)∂n(y)
= −∂

2G0(x− y)

∂t(x)∂t(y)

K̄(x, y) =
∂2 (Gk −G0) (x− y)

∂n(x)∂n(y)
.

Unlike in most of the other methods, we do not parameterize from 0 to 2π, but rather

with

Γ =
{
γ(t) : t ∈ [−1, 1], γ : [−1, 1]→ R2

}
.

Much like we did in subsection 3.2.2, we and add and subtract the Laplace free space

solution, to K̄0 and in the process define:

K0(t, τ) =
∂2

∂v2

(
G0 (γ(t)− γ(τ))− ln

(
4 sin2

(
t− τ

2

)))
,

K(t, τ) =
∂2 (Gk −G0) (γ(t)− γ(τ))

∂n(t)∂n(τ)
.

The hypersingular integral operator as can then be written as

(Nkϕ)(γ(t)) =
1

π|γ′(t)|

∫ 1

−1

Ψ′(τ)

τ − t
+K0(t, τ)Ψ(τ) +K(t, τ)Ψ(τ)dτ.
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With the change of variable t = cos(s) and τ = cos(σ), we get

1

π

∫ π

0

sin(s)χ′(σ)

cos(s)− cos(σ)
+H0(s, σ)χ(σ) +H(s, σ)χ(σ)dσ = f(s)

where

χ(s) = Ψ(cos(s))

f(s) = |γ′(s)| sin(s)g(cos(s))

H0(s, σ) = sin(s) sin(σ)K0(cos(s), cos(σ))

H(s, σ) = sin(s) sin(σ)K(cos(s), cos(σ)).

From here we move on to make use of the following identity:

sin(s)

cos(s)− cos(σ)
=

1

2
cot

(
σ − s

2

)
− 1

2
cot

(
σ + s

2

)
.

Taking advantage of an odd extension of the unknown density χ, the integral equation

then becomes:

1

2π

∫ 2π

0

cot

(
σ − s

2

)
χ′(σ) +H0(s, σ)χ(σ) +H(s, σ)χ(σ)dσ = f(s). (3.43)

This last formulation allows us to evaluate open arcs with Neumann boundary

conditions and Alpert Quadrature.

Current and Charge Formulations We start with the Maue’s integration by

parts recasting of the BIO N(k) in the form

(Nkϕ)(x) = k2

∫
Γ

Gk(x− y)n̂(x) · n̂(y)ϕ(y)ds(y) + ∂xs

∫
Γ

Gk(x− y)∂sϕ(y)ds(y), x ∈ Γ

(3.44)

where ∂s denote tangential differentiation, where ϕ ∈ H1/2(Γ) when Γ is closed and

ϕ ∈ H̃1/2(Γ) when Γ is open (we not that the integration by parts is still justified in

the latter case since ϕ vanishes at the endpoints of Γ). We shall use in what follows
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the ·̂ notation to denote vector quantities. We employ in what follows the Current and

Charge formulation of (3.23) starting from Equation (3.44) which is a variant of the

formulations pioneered in [87] for 3D Maxwell equations and subsequently studied in

the excellent contributions [10, 39]. First, we introduce the charge unknown ρ which

is related to the current unknown ϕ in the following manner

∂sϕ = ikρ. (3.45)

Replacing the tangential derivative ∂sϕ by the new unknown ρ in the Maue

formula (3.44) and enforcing the constraint (3.46) in an integral form, we arrive at

the system of BIE

−ik
∫

Γ

Gk(x− y)n̂(x) · n̂(y)ϕ(y)ds(y) + ∂s

∫
Γ

Gk(x− y)ρ(y)ds(y) =
1

ik
f(x)∫

Γ

Gk(x− y)∂sϕ(y)ds(y)− ik
∫

Γ

Gk(x− y)ρ(y)ds(y) = 0.

Performing an integration by parts on the integral term that contains the quantity ∂sϕ

we obtain the following Current and Charge (CC) BIE formulation of the Helmholtz

problem (3.18) whose unknowns are the densities (ϕ, ρ) ∈ H1/2(Γ)×H−1/2(Γ) in the

case when Γ is closed and respectively (ϕ, ρ) ∈ H̃1/2(Γ)×H̃−1/2(Γ) when Γ is an open

arc

−ik
∫

Γ

Gk(x− y)n̂(x) · n̂(y)ϕ(y)ds(y) + ∂s

∫
Γ

Gk(x− y)ρ(y)ds(y) =
1

ik
f(x)

∇ ·
∫

Γ

Gk(x− y)t̂(y)ϕ(y)ds(y)− ik
∫

Γ

Gk(x− y)ρ(y)ds(y) = 0. (3.46)

We note that the CC formulation (3.46) above features BIOs whose singularities are

no longer integrable (i.e they exhibit Cauchy p.v. operators), and as such, they

cannot be discretized directly using Alpert quadratues. On the other hand, the QBX

methods can handle relatively seamlessly these new operators. In the QBX approach,

the derivatives of the layer potentials that feature in the CC formulation (3.46) are
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performed by differentiating term by term the expansions around the centers, via the

formulas

∂s(Skϕ)(x) ≈ −i lim
x+→x

p∑
`=−p

`α`
J`(k|x+ − x|)
|x+ − x|

e−i`θ
+

and respectively

∇x · (Sk t̂ϕ)(x) ≈

− lim
x+→x

p∑
`=−p

kα̂` · n̂(x)

(
−J`+1(k|x+ − x|+ `

k|x+ − x|
J`(k|x+ − x|)

)
e−i`θ

+

− i lim
x+→x

p∑
`=−p

`α̂` · t̂(x)
J`(k|x+ − x|)
|x+ − x|

e−i`θ
+

where

α̂` :=
i

4

∫
Γ

H
(1)
` (k|x′ − x+|)ei`θ′ t̂(x′)ϕ(x′)ds(x′).

In the case when Γ is a smooth open arc with the usual γ : [−1, 1] → R2, we can

employ regularized unknowns that take into account the singular behavior of the

functional densities (ϕ, ρ) in the BIE (3.46) as proposed in [17]. Specifically, we use

in this case the weighted unknowns

ϕ(γ(t))|γ′(t)| = ϕw(t)
√

1− t2, ρw(t) := ρ(γ(t))|γ′(t)|
√

1− t2, −1 ≤ t ≤ 1 (3.47)

in conjunction with the Fejér quadratures described above. The case when Γ is a

piecewise smooth open arc, in turn, requires more care as the densities defined on

the arc segments that contain open ends require special treatment. Indeed, since on

those arc segments ϕ ∼ O(
√
d) and ρ ∼ O(1/

√
d) where d denotes the distance to

the open ends, we consider [0, 1] paramterizations of the open arc segments so that

the open ends correspond in the parameter space to 0, we use the quadrature points

vn defined as

vn :=
1

2
(1 + cos(ϑn)), ϑn :=

(2n− 1)π

2N
, n = 1, . . . , N
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and the modified Fejér quadratures∫ 1

0

f(v)√
v
dv ≈

N∑
n=1

′
ω(1)
n f(vn), ω(1)

n :=
2

N

N∑
q=1

4

1− 4(q − 1)2
cos((q − 1)ϑn) (3.48)

for n = 1, . . . , N and respectively∫ 1

0

f(v)
√
v dv ≈

N∑
n=1

′
ω(2)
n f(vn), (3.49)

ω(2)
n :=

2

N

N∑
q=1

(
1

1− 4(q − 1)2
+

3

9− 4(q − 1)2

)
cos((q − 1)ϑn). (3.50)

where the prime notation denotes that the first term is halved. We present in Table 3.4

numerical results concerning QBX discretizations of the CC formulations (3.46) in

the case when the wavenumber k is real; reference solutions were obtained via (a)

the high-order kernel-splitting Nyström methods in [2, 17] in the case of smooth

arcs and (b) refined QBX discretizations of the CC formulations with the modified

Fejér quadratures (3.48) and (3.49). Similar orders of convergence were observed

in the case when the wavenumbers are complex. Again, the advantage of the CC

formulations (3.46) is that they are universally applicable to all types of boundaries

Γ, including piecewise smooth open arcs. Finally, we mention that analytical

preconditioners can be employed in order to speed up the iterative convergence

of the discrete linear systems corresponding to Nyström discretizations of the CC

formulations. Indeed, assuming that the Nyström CC sytem is expressed in the block

matrix form CCn11 CCn12

CCn21 CCn22


ϕn
ρn

 =
1

ik

fn
0


we use the following preconditioned CC formulation CCn22 −CCn12

−CCn21 CCn11


CCn11 CCn12

CCn21 CCn22


ϕn
ρn

 =
1

ik

 CCn22 −CCn12

−CCn21 CCn11


fn

0

 . (3.51)
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Table 3.4 QBX CC Error and Order of Convergence

N Teardrop Boomerang Strip V-shaped

ε∞ e.o.c. ε∞ e.o.c. ε∞ e.o.c. ε∞ e.o.c.

32 2.1 × 10−1 8.4 × 10−2 1.2 × 10−2 8.5 × 10−3

64 2.6 × 10−2 3.03 7.6 × 10−3 3.46 3.4 × 10−3 1.89 2.2 × 10−3 1.95
128 2.5 × 10−3 3.32 5.1 × 10−4 3.88 9.1 × 10−4 1.89 5.4 × 10−4 2.01
256 2.4 × 10−4 3.42 6.1 × 10−5 3.08 2.4 × 10−4 1.89 1.3 × 10−4 1.99

Errors in the near field and estimated orders of convergence obtained when the QBX
Nyström discretization is applied to the CC formulation (3.46) with real wavenumber k = 8
and normal plane wave incidence. We used the QBX parameters p = 4 and β = 4.
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CHAPTER 4

PRECONDITIONERS AND ITERATIVE SCHEMES

This chapter will be dedicated to the multiple time harmonic scattering regime and

is based on the paper [88]. By multiple scattering, we mean that there are multiple

obstacles, as opposed to the single scattering cases that have been covered so far.

We suppose that the solutions of the multiple scattering problem will take the

form of a layer potential. The benefits of the BIE have already been covered, however

to reiterate, when discretized the non-localness of the integral operator leads to a

dense matrix. Further, the discretization needs to be sufficiently fine to capture the

oscillatory nature of the wave, especially for larger wave numbers or a large collection

of scatterers. In both of these cases, the linear system will grow and quickly become

computationally intractable. Due to the computational complexity of the problems

we are considering, direct solvers can no longer be utilized: instead we look to iterative

methods, such as GMRES, to solve the discretized linear system in question.

4.1 Some Background and Notational Setup

In general, we cannot directly apply GMRES to the multiple scattering case and

expect any speedup. The lack of accelerated convergence is expected to occur due

to the non-positiveness of the Helmholtz operator, which becomes more pronounced

at larger wave numbers. To recover the speedup from GMRES, a preconditioner is

needed. In this context, a natural choice for preconditioner is one that captures the

effect of a single scatterer.

4.2 Multiple Scattering

For M scatterers, the boundary of the problem is the collection of all the scatterers

Γ = ∪Mi=1Γi, where we also only consider disjointed scatterers ∩Mi=1Γi = ∅. We seek
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a layer potential solution, and for simplicity, the exposition of this section will just

focus on the single layer representation of the Dirichlet problem,

us(x) =

∫
∪Mi=1Γi

Gk(x− y)ϕ(y)dSy︸ ︷︷ ︸
Sϕ

=
M∑
i=1

∫
Γi

Gk(x− y)ϕi(y)dSy x ∈ Γ. (4.1)

If we focus our attention on trying to evaluate the Γi boundary and also assume that

x ∈ Γi, then this case reduces to the singular integrals that has been extensively

covered thus far. In the case that x /∈ Γi, this represents the reflection terms from the

boundary Γi on the other boundaries. Continuing this reasoning for all the scatterers,

we can write the problem as a linear system



Sx∈Γ1
Γ1

Sx∈Γ1
Γ2

. . . Sx∈Γ1
ΓM

Sx∈Γ2
Γ1

Sx∈Γ2
Γ2

. . . Sx∈Γ2
ΓM

...
... . . .

...

Sx∈Γj
Γ1

Sx∈Γj
Γ2

. . . Sx∈Γj
ΓM

...
... . . .

...

Sx∈ΓM−1

Γ1
Sx∈ΓM−1

Γ2
. . . Sx∈ΓM−1

ΓM

Sx∈ΓM
Γ1

Sx∈ΓM
Γ2

. . . Sx∈Γ1
ΓM


︸ ︷︷ ︸

:=SM



ϕ1

ϕ2

...

ϕj
...

ϕM−1

ϕM


︸ ︷︷ ︸

:=ϕ

=



gx∈Γ1

gx∈Γ2

...

gx∈Γj

...

gx∈ΓM−1

gx∈ΓM


︸ ︷︷ ︸

:=g

(4.2)

Where the notation Sx∈Γi
Γj

should be understood as the single layer operator on

boundary Γj but x is located on the boundary Γi. In the case that i = j, the

diagonal entries of the matrix above then result in our familiar singular integrals.

Note that the wave number has been suppressed in layer representation for simplicity.

Equation (4.2) is the system that we will precondition, once each of the operators

Sx∈Γi
Γj

have been discretized, for all i, j ∈ {1, . . . ,M}. We refer the reader to [88] for

the theoretical aspects of the similarity of the different representations and boundary

conditions.
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4.3 Single Scatter Preconditioner

As mentioned in the introduction of this chapter, we seek a preconditioner that

corresponds to the scattering effect of a single scatterer, for each of the scatterers.

This will correspond to the diagonal part of the of the matrix SM . Therefor our

single scatterer operator will be

SM =



Sx∈Γ1
Γ1

0 0 . . . 0 0

0 Sx∈Γ2
Γ2

0 . . . 0 0

...
. . . . . . . . .

...

0 . . . . . . Sx∈Γj
Γj

. . . 0

...
. . . . . . . . .

...

0 . . . . . . . . . Sx∈ΓM−1

ΓM−1
0

0 . . . . . . . . . Sx∈ΓM
ΓM



. (4.3)

The diagonal components of Sm represents the self interacting terms of the scatterer.

If the scattering problem consisted only of one scatterer, say, Γj, then SM = Sx∈Γj
Γj

.

In what follows we will assume that none of the wave numbers are irregular, meaning

that entries in Sm will be invertible, further implying that Sm as a whole will also

be invertible.

S−1
M =



(Sx∈Γ1
Γ1

)−1 0 0 . . . 0 0

0 (Sx∈Γ2
Γ2

)−1 0 . . . 0 0

...
. . . . . . . . .

...

0 0 . . . (Sx∈Γj
Γj

)−1 . . . 0

...
. . . . . . . . .

...

0 0 0 0 . . . (Sx∈ΓM−1

ΓM−1
)−1 0

0 0 0 0 . . . 0 (Sx∈ΓM
ΓM

)−1
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S−1
M will then be the preconditioner that will be used in conjunction with GMRES.

After Discretization of SM an S−1
M , the resulting linear system that needs solving

S−1
MSMϕ = S−1

Mg. (4.4)

We note that the operator S−1
MSM , has the following form

S−1
MSM =



I . . . . . . (Sx∈Γ1
Γ1

)−1Sx∈Γ1
ΓM

(Sx∈Γ2
Γ2

)−1Sx∈Γ2
Γ1

I . . . (Sx∈Γ2
Γ2

)−1Sx∈Γ2
Γ2

...
... . . .

...

(S
x∈Γj
Γj

)−1Sx∈Γj
Γ1

... . . . (S
x∈Γj
Γj

)−1Sx∈Γj
ΓM

...
... . . .

...

(S
x∈ΓM−1

ΓM−1
)−1Sx∈ΓM−1

Γ1

... . . . (S
x∈ΓM−1

ΓM−1
)−1Sx∈ΓM−1

ΓM

(Sx∈ΓM
ΓM

)−1Sx∈ΓM
Γ1

. . . . . . I



(4.5)

This preconditioner will accelerate the convergence of GMRES: Figure 4.1, Figure 4.2,

and numerical experiments in [88] show this to indeed be the case. The reader is

referred to this paper for an in depth numerical treatment of the convergence speedup.

4.4 Preconditioner for SL and DL with Varying BC

A wonderful consequence of using this type of formulation to precondition a system

like Equation (4.2) is that it generalizes easily to different layer potentials and

boundary conditions. As an example, let us assume that we wish to solve the Dirichlet

scattering problem with a DL potential. The equivalent system of Equation (4.2) is

nearly the same
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(a) Dirichlet BC. (b) Neumann BC.

Figure 4.1 The two images above show the total field resulting from a normal
incidence plane wave with multiple scattering for different BC and with wavenumber
k = 15.



(
1
2
I +Kx∈Γ1

Γ1

)
Kx∈Γ1

Γ2
. . . Kx∈Γ1

ΓM

Kx∈Γ2
Γ1

(
1
2
I +Kx∈Γ2

Γ2

)
. . . Kx∈Γ2

ΓM

...
... . . .

...

Kx∈Γj
Γ1

Kx∈Γj
Γ2

. . . Kx∈Γj
ΓM

...
... . . .

...

Kx∈ΓM−1

Γ1
Kx∈ΓM−1

Γ2
. . . Kx∈ΓM−1

ΓM

Kx∈ΓM
Γ1

Kx∈ΓM
Γ2

. . .
(

1
2
I +Kx∈Γ1

ΓM

)


︸ ︷︷ ︸

:=KM



ϕ1

ϕ2

...

ϕj
...

ϕM−1

ϕM


︸ ︷︷ ︸

:=ϕ

=



gx∈Γ1

gx∈Γ2

...

gx∈Γj

...

gx∈ΓM−1

gx∈ΓM


︸ ︷︷ ︸

:=g

. (4.6)

Similarly, the preconditioner will be the inverse of the diagonal terms of Equation

(4.6)
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K−1
M =



(1
2
I +Kx∈Γ1

Γ1
)−1 . . . . . . . . . 0

0 (1
2
I +Kx∈Γ2

Γ2
)−1 . . . 0 0

. . .
. . .

. . .
. . .

0 0 0 . . . (1
2
I +Kx∈ΓM−1

ΓM−1
)−1 0

0 0 0 . . . 0 (1
2
I +Kx∈ΓM

ΓM
)−1


which will lead to the system

K−1
MKMϕ = K−1

Mg, (4.7)

where K−1
MKM will have a similar form to (4.5). This overall procedure will work

for any layer potential and boundary condition. In fact it can be generalized to the

case where Γi and Γj do not have the same boundary condition. In general, the

preconditioner will depend on the layer formulation and the corresponding trace of

the Boundary condition, as can be seen above.

4.5 Discretization

As is perhaps obvious, but nonetheless worth stating, the diagonal terms of (4.2)

or (4.6), will at best be singular and at worst hypersingular depending on the layer

representation and boundary conditions. Meaning, that each of these terms should

have special quadrature applied to it, as done in Chapter 3. The off-diagonal reflection

terms however contain no singularity and are smooth, supposing of course that the

scatterers are well separated. Stated differently, the orientation of the scatterers need

to satisfy

ξh > dist(Γi,Γj) := inf{|x− y| : x ∈ Γi, y ∈ Γj} for i, j ∈ 1, . . . ,M,
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for some appropriately chosen ξ. Being that these are the only cases investigated, each

of the off diagonal terms can be discretized by a simple trapezoidal rule. However, as

the number of scatterers, M , grows, fast approximate methods will become essential.

Finally, if each scatterer is discretized with N points, the size of the linear system in

Equation (4.2) will be NM×NM , with each operator Sx∈Γi
Γj

being of N×N . Though,

not all of the scatterers need the same resolution; if so, it becomes necessary to pad

the system (4.2) to make it square.

Having described various discretization strategies of BIE formulations of

Helmholtz equations that are oblivious to the nature of the wavenumber (be it

real or complex), we present in the final section numerical results concerning CQ

discretizations of the wave equation.
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(a) Dirichlet BC.
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(b) Neumann BC.

Figure 4.2 Number of GMRES iterations for the geometric setup in Figure 4.1, with
an incidence plane wave exp(−1

2
(62(t− x · d−Ω)2) and final time T = 6. Given is an

ensemble of Laplace domain frequencies associated with the CQ BDF2 formulation
with a total of 4096 time steps were used and 512 discretization points per boundary.
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CHAPTER 5

CQ NUMERICAL EXPERIMENTS

To validate our method we perform numerical experiments for the BDF2, IRK3,

and IRK5 time-stepping schemes with a fourth order Alpert quadrature. These

experiments will be done over a variety of domains, boundary conditions, and spatial

discretizations. The incoming pulsed plane considered will vary: we consider both

smooth and non-smooth waves. The error will be calculated using a reference solution,

in the norm defined in [7]:

‖uD(x, tn)− ud(x, tn)‖ =

√√√√ N∑
n=0

∆t|uD(x, tn)− ud(x, tn)|2,

where

1. uD is a reference solution, with discretization twice as fine in time and space as

the last discretized iteration of the approximate solution.

2. ud is an approximate solution.

Finally, all incoming plane waves will have unit speed.

5.1 Multiple Strips Convergence

Convergence is first tested on a smooth incoming plane wave,

uinc(~x, t) = exp

(
−1

2

(
t− ~x · ~v − Ω

σ

)2
)

with varying values of σ. The results are reasonable, showing the correct convergence

rate. However, it should be noted that the convergence tapers out prior to its

theoretical minimum. This is a common aspect in all the numerical experiments.
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Figure 5.1 Orientation of the scatterers and the location of the obersavation points.
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Figure 5.2 Convergence plot for the orientation of the scatterers and observation
points 5.1. Different spatial discretization are tested to ensure the correct order of
convergence in time.

There are two possible ways to overcome this shortcoming. First, a finer spatial

discretization could be used, which is the typical way employed in this manuscript.
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A second possibility is to over resolve the frequency domain solves [12]. This is more

involved as it means introducing yet another parameter that needs fine tuning. For

convenience, this approach has not been explored.

5.2 Grated Strips

This section is dedicated to reproducing results from the paper by Carin and Felsen

in [23], and various other papers by the same authors. We first give the setup of the

problem and then show the similarity between the two results.

5.2.1 Non-Smooth Incidence

In [23], the parameters are not specified exactly so considerable effort has gone into

making the setup match as closely as possible. We use unit strip length oriented as

seen in Figure 5.3. The distance between the strips is 2/3, with the observation point

located on the y-axis at the point (0, 50/3). The incidence pulse consists of three

sections of a sin function, with two lobes with amplitude below the zero axis and one

lobe of amplitude 2 above the zero axis. Their τ parameter normalizes their time

trace results,

··
15 10 5 0 5 10 15

15

10

5

0

5

10

15

··
Figure 5.3 In the left figure above, the incidence pulse wave is given. On the left is
the orientation of the scatterers and the angle of the plane wave.
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Figure 5.4 Comparisons between the different fields.

The data in Figures 5.4b and 5.4d has been produced with CQ-IRK5 method, while

Figures 5.4a and 5.4c has been taken from the paper [23]. Although there are no

exact numerical results to compare against, the results seem to match well enough, at

least phenomenologically. For the CQ results, 512 points were used to discretize each

scatterer and 16384 time steps were used in total, corresponding to ∆t ≈ 0.0024. This

resolution, in both time and space, is in general not necessary, and lower resolution

would also capture the same behavior.
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5.2.2 Smooth Incidence with Uniform Grating.

In the previous two sections, the incidences have either been rapidly decaying or

compact, respectively. This section deals with a pulse that is smooth but not rapidly

decaying:

g(t) = <
[

i

(i+ ωM t/4)5

]
ωM =

2π

λM
. (5.1)

Figure 5.5 The specific pulse to be used in this section from [22]

The parameter ωM determines the width of the Rayleigh pulse (5.1). The orientation

of the scatterers are similar to the previous section, though in this case 20 scatterers

are considered and the observation point is at 5/3 above the center of the scatterers

as shown in Figure 5.6. We compare our CQ results against the paper [22], which,

once again, is only done in phenomenological manner as the raw data and parameters

are not explicitly stated.
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Figure 5.6 Original field from [22] left and CQ field on the right.

5.3 Slotted Cylinder

The Rayleigh pulse (5.1) is considered, once again. For the convergence plots below,

ωM has been chosen in such a way to have the width of the incoming plane wave be

approximately the arc length of the aperture opening with angle π
2

in Figure 5.7b.

68



3 2 1 0 1 2 3

3

2

1

0

1

2

3
Obs Point

(a) π
4

3 2 1 0 1 2 3

3

2

1

0

1

2

3
Obs Point

··
(b) π

2

3 2 1 0 1 2 3

3

2

1

0

1

2

3
Obs Point

(c) 2π
3

Figure 5.7 Different aperture angles.

Three different slotted unit circles are considered, with only the angle of the aperture

differing. The circle in the interior has radius of r = 0.25. In addition, three different

boundary conditions are also imposed on each of the setups: Dirichlet, Neumann,

and a mix of the two with the open arc having Dirichlet boundary conditions and

in the inner cylinder having Neumann boundary conditions. All other parameters

have been kept constant, including spatial discretization, which in this case has been

chosen to be 1024 points per scatterer. The effect on convergence of geometry and

boundary conditions can be seen in Figure 5.8.
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Figure 5.8 Going across a row gives the convergence respectively for Dirichlet, Neumann, and a mix of BC. Going down a column is
the convergence as the aperture angle increases.
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Since the Rayleigh pulse decays slowly, it has been mollified with a smooth cutoff

function, and started far enough way, to ensure that at time t = 0 the wave does not

interact with the scatterers.

5.3.1 Time Traces

Animations from the previous sections are presented here. All the following time

traces have been calculated with IRK5 with the same spatial discretization as in

Section 5.3 and time discretization ∆t ≈ 0.007, which according to the convergence

plots results in an absolute time error of about 10−5. For animation purposes, such

discretization in both time and space is more than sufficient.
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Figure 5.9 Dirichlet time traces of slotted cylinder with an aperture angle of π
2
.
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Figure 5.10 Neumann time traces of slotted cylinder with an aperture angle of π
2
.
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Figure 5.11 Mix BC time traces of slotted cylinder with an aperture angle of π
2
.
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CHAPTER 6

CURRENT AND FUTURE WORK

The work presented in the preceeding chapters show the potential to solve large scale

time domain scattering problems with CQ and BIE. We have shown the efficiency

and accuracy of these methods, especially in the context of scatterers with Lipschitz

and open arcs, which are particularly useful for chaff scattering.

Our overall goal has been to explore numerical homogenization to replace a

model chaff cloud by a lossy dielectric that produces the same scattered field. While

the results towards this end has been promising, the work has been limited in two

respects: mainly the number of scatterers but also the dimension of the problems

considered.

6.1 Fast Field Evaluation Methods and Scaling

As the scattering system grows, either in number of scatterers or dimension, the

computational load to calculate the scattered field to within a prescribed error

threshold will grow. The computation time will most likely become intractable making

it essential that we have a fast method tailored to work seamlessly with our current

setup. One such possibility would be to modify the Fast Multipole method (FMM) to

work with the CQ method for two and three dimensions over our complex geometries.

Further scaling will also require several parallelization implementations of the method

if time domain scattering in three dimensions are to be considered.

6.2 Time Domain Scattering in Three Dimensions

It is possible to extend many of the techniques used thus far to get solutions of the

time dependant multiple scattering problem in three dimensions. By considering BIE

defined on axisymmetric surfaces in R3, generated by rotating a curve γ, and under the
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restriction that the kernels in the BIE are rotationally invariant, we can via the Fourier

transform recast the three dimensional BIE into a sequence of equations defined on

the dimensional curve γ [93]. The drawback this method is that scattering surfaces

we can consider are somewhat limited, however with the reduction in dimensionality

and by making using of Nyström methods, the system that needs to be solved is

small and can be inverted directly for a single scatterer. The desire is to couple this

method of evaluating three dimensional Helmholtz problems with the CQ method for

multiple scatterers.
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APPENDIX A

INVERSE RUNGE-KUTTA RADAU-II BUTCHER TABLEAU

In this appendix the Butcher Tableu for the third-order and fifth-order Inverse Runge-

Kutta method is given respectively by the following tables:

Table A.1 IRK3 Butcher Tableau

1/3 5/12 −1/12

1 3/4 1/4

3/4 1/4

Table A.2 IRK5 Butcher Tableau

2
5
−
√

6
10

11
45
− 7

√
6

360
37
225
− 169

√
6

1800
− 2

225
+
√

6
75

2
5

+
√

6
10

37
225

+ 169
√

6
1800

11
45

+ 7
√

6
360

− 2
225
−
√

6
75

1 4
9
−
√

6
36

4
9

+
√

6
36

1
9

4
9
−
√

6
36

4
9

+
√

6
36

1
9
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APPENDIX B

ALPERT QUADRATURE WEIGHTS AND NODES

Table B.1 gives the various weights and nodes for the desired order of convergence l

with Alpert quadrature. For the purposes of combining this method of quadrature

with CQ, we have found in practise that the 4th order gives the best mix of speed

and accuracy.
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Table B.1 Alpert Quadrature Weights and Nodes

l a χi wi
2 1 1.591549430918953e− 01 5.000000000000000e− 01
3 2 1.150395811972836e− 01 3.913373788753340e− 01

9.365464527949632e− 01 1.108662621124666e + 00
4 2 2.379647284118974e− 02 8.795942675593887e− 02

2.935370741501914e− 01 4.989017152913699e− 01
1.023715124251890e + 00 9.131388579526912e− 01

5 3 2.339013027203800e− 02 8.609736556158105e− 02
2.854764931311984e− 01 4.847019685417959e− 01
1.005403327220700e + 00 9.152988869123725e− 01
1.994970303994294e + 00 1.013901778984250e + 00

6 3 4.004884194926570e− 03 1.671879691147102e− 02
7.745655373336686e− 02 1.636958371447360e− 01
3.972849993523248e− 01 4.981856569770637e− 01
1.075673352915104e + 00 8.372266245578912e− 01
2.003796927111872e + 00 9.841730844088381e− 01

8 5 6.531815708567918e− 03 2.462194198995203e− 02
9.086744584657729e− 02 1.701315866854178e− 01
3.967966533375878e− 01 4.609256358650077e− 01
1.027856640525646e + 00 7.947291148621894e− 01
1.945288592909266e + 00 1.008710414337933e + 00
2.980147933889640e + 00 1.036093649726216e + 00
3.998861349951123e + 00 1.004787656533285e + 00

10 6 1.175089381227308e− 03 4.560746882084207e− 03
1.877034129831289e− 02 3.810606322384757e− 02
9.686468391426860e− 02 1.293864997289512e− 01
3.004818668002884e− 01 2.884360381408835e− 01
6.901331557173356e− 01 4.958111914344961e− 01
1.293695738083659e + 00 7.077154600594529e− 01
2.090187729798780e + 00 8.741924365285083e− 01
3.016719313149212e + 00 9.661361986515218e− 01
4.001369747872486e + 00 9.957887866078700e− 01
5.000025661793423e + 00 9.998665787423845e− 01
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APPENDIX C

FOURIER INTERPOLATION FOR ALPERT QUADRATURE

In addition to interpolating onto our discritization with a Lagrange basis we also have

the possibility of doing the interpolation via different manner. We have in this section

decided to perform a Fourier interpolation. We give a brief derivation, starting with:

∫ T

0

k(xi, x
′)σ(x′)dx′ ≈ h

N−a∑
p=1

k(xi, xi + ph)σ(x′) + h
2m∑
p=1

k(xi, xi + χph)σ(xi + χph)

The first sum on the right is on our grid, so that part is to be left alone. If we look

at the last sum and suppose that

σ(x) ≈ 1

2π

N/2∑
n=−N

2
+1

σ̂ne
inx

where 

σ̂1

σ̂2

...

σ̂n


= DFT



σ1

σ2

...

σn


and DFT ∈ CN×N . The operator termed DFT is of course the discrete Fourier

transform. Armed with this we can then try to interpolate onto our grid:

σ(xi + χph) ≈ 1

2π

N
2∑

n=−N
2

+1

σ̂ne
in(xi+χph)

=
1

2π

N
2∑

n=−N
2

+1

σ̂ne
inxieinχph
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=
1

2π

N
2∑

n=−N
2

+1

(
N∑
j=1

DFTnjσj

)
einxieinχph

Meaning that our interpolation can be written as:

2m∑
p=1

wpk(xi, χph)σ(xi+χph) ≈ 1

2π

2m∑
p=1

wpk(xi, χph)

N
2∑

n=−N
2

+1

(
N∑
j=1

DFTnjσj

)
einxieinχph

The aim is not to turn these sums into some clever matrix products. Towards that

end let is define the final entity we are looking for as

Cij =
1

2π

2m∑
p=1

wpk(xi, χph)

N
2∑

n=−N
2

+1

DFTnje
inxieinχph

=
1

2π

N
2∑

n=−N
2

+1

DFTnje
inxi

2m∑
p=1

wpk(xi, xi + χph)einχph

=
1

2π

N
2∑

n=−N
2

+1

WinDFTnj

Where we have that

Win =
1

2π
einxi

2m∑
p=1

wpk(xi, xi + χph)einχph.

We further want to see if we can rewrite this last quatity in an intelligent manner.

Let us try to do so be defining:

Win =
1

2π
einxiUin,

where we have defined U as

Uin =
1

2π

2m∑
p=1

wpk(xi, xi + χph)einχph

We can now further define U as a prdouct of matrices if we let

Fiρ = wpk(xi, xi + χph)
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Gρn = einχp .

Hence we then have that

Uin =
1

2π

2m∑
p=1

FiρGρn or rather U = FG.

It should be noted that whenever a entry in a matrix or vector is denoted by n,

since there are negative summing entries in the above formulation, the entry actually

needs to be n = n + N
2

. We also need to mention that this formulation only makes

sense if the discritization is an even number. It is better still if it is a power of two.

Dimensionally we have that F ∈ CN×2m and G ∈ C2m×N . Meaning that W ∈ CN×N .

Finally this means then that

C =
1

2π
W ∗DFT,

as we were looking for.
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