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ABSTRACT

NUMERICAL METHODS FOR OPTIMAL TRANSPORT AND
OPTIMAL INFORMATION TRANSPORT ON THE SPHERE

by
Axel G. R. Turnquist

The primary contribution of this dissertation is in developing and analyzing ef-

ficient, provably convergent numerical schemes for solving fully nonlinear elliptic

partial differential equation arising from Optimal Transport on the sphere, and

then applying and adapting the methods to two specific engineering applications:

the reflector antenna problem and the moving mesh methods problem. For these

types of nonlinear partial differential equations, many numerical studies have been

done in recent years, the vast majority in subsets of Euclidean space. In this dis-

sertation, the first major goal is to develop convergent schemes for the sphere.

However, another goal of this dissertation is application-centered, that is evaluat-

ing whether the partial differential equation techniques using Optimal Transport

are actually the best methods for solving such problems.

The reflector antenna is an optics inverse problem where one finds the shape

of a reflector surface in order to refocus light into a prescribed far-field output

intensity. This problem can be solved using Optimal Transport. The moving

mesh methods problem is an adaptive mesh technique where one redistributes

the density of the vertices of a mesh without tangling the edges connecting the

vertices. Both Optimal Transport and Optimal Information Transport approaches

can be used in solving this problem.

The Monge Problem of Optimal Transport is concerned with computing the

“optimal” mapping between two probability distributions. This actually can define

a Riemannian distance between probability measures in a probability space. An-

other choice of Riemannian metric on this space, the infinite-dimensional Fisher-

Rao metric, gives an “information geometric” structure to the space of probability

measures. It turns out that a simple partial differential equation can be solved

for a mapping that relates to the underlying information geometry given by the



Fisher-Rao metric. Solving for such an “information geometric” mapping is known

as Optimal Information Transport.

In this dissertation, a convergence framework is first established for com-

puting the solution to the partial differential equation formulation of Optimal

Transport on the sphere. This convergence framework uses geodesic normal coor-

dinates to perform computations in local tangent planes. The numerical scheme

also has a control on the Lipschitz constant of the discrete solution, which allows a

convergence theorem for consistent and monotone discretizations to be proved in

the absence of a comparison principle for the partial differential equation. Then,

a finite-difference scheme for the partial differential equation formulation of Opti-

mal Transport on the sphere is constructed which satisfies the hypotheses of the

convergence theorem. An explicit formula for the mixed Hessian term is derived

for two different cost functions. In order to construct a monotone discretization,

discrete Laplacian terms are carefully added into the scheme. Current work has

established convergence rates for solutions of monotone discretizations of linear

elliptic partial differential equations on compact 2D manifolds without bound-

ary. The goal is to then generalize these linearized arguments for the Optimal

Transport case on the sphere.

Computations are performed for the reflector antenna problem. Other ad

hoc schemes exist for computing the reflector antenna problem, but the proposed

scheme is the most efficient provably convergent scheme. Further adaptations are

made that allow for the scheme to deal with non-smooth cases more explicitly.

For the moving mesh methods problem, a comparison of computations via

Optimal Transport and Optimal Information Transport is performed for the sphere

using provably convergent monotone schemes for both computations. These com-

parisons show the merits of using Optimal Information Transport for some chal-

lenging computations. Optimal Information Transport also seems like a natural

generalization to other compact 2D surfaces beyond the sphere.
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CHAPTER 1

INTRODUCTION

1.1 Overview

This dissertation is driven by two engineering applications: the reflector antenna

problem and moving mesh methods. For the applications we have in mind, both

of these problems are posed in non-Euclidean geometry and can be solved using

Optimal Transport, see Wang (1996, 2004); Weller et al. (2016b). In the course

of our exploration, we have also found that there is strong evidence that it is

advantageous to utilize Optimal Information Transport to solve the moving mesh

methods problem on compact manifolds, see Bauer et al. (2015).

First, we very briefly introduce the partial differential equation (PDE) for-

mulation of the Optimal Transport problem. The original Optimal Transport

engineering problem posed by Gaspard Monge (see Monge (1781)) considered the

practical problem of moving a pile of sand into a hole, where the height function

f0(x) of the pile and the depth function f1(y) of the hole were stipulated. The

idea was to figure out how to move the sand from the pile to the hole (i.e., find a

mapping T (x)) in the most “efficient” way possible, see Figure 1.1.

Figure 1.1 The original engineering problem of shoveling a pile of dirt into a
hole. Suppose we have a pile of sand of height f0(x) and a hole of depth f1(y).
The object is to find a mapping T (x) to prescribe where the mass at a location x
gets mapped.
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Now, let us consider the source (pile of sand) and target (hole) mass configu-

rations as probability measures (note: they could even be delta-distributions). We

do not think of the hole as being “negative” in this case. This less restrictive for-

mulation allows one to, for example, treat discrete, semi-discrete, and continuous

formulations at the same time. However, this general formulation does not always

lead to an optimal mapping T (x), see Villani (2003). For the vast majority of

this dissertation, we will be only treating cases where we end up with an optimal

mapping, which is known as the Monge problem of Optimal Transport.

Up to this point, we have not discussed what we mean by “efficient”. Usually,

efficiency is expressed by defining a cost function c(x, y) of transporting mass from

the point x to the point y. The most fundamental a priori assumptions we make

on the cost function, those made in Villani (2003), are that it is measurable and

non-negative. In Section 2.1.2, we will introduce the explicit assumptions which

will lead to a PDE formulation of the Optimal Transport. Then the total efficiency

is computed through a total cost C(T ) (which depends on the mapping chosen),

integrated over the whole source domain Ω:

C(T ) ≡
ˆ

Ω

c (x, T (x)) f0(x)dx. (1.1)

The Monge problem of Optimal Transport on a compact manifold M there-

fore considers finding a mapping T between two probability measures that min-

imizes the cost functional in Equation (1.1). After assuming further regularity

on the problem, one derives the complicated PDE for the function u (much more

information about the conditions and derivation are given in Sections 2.1.2 and

2.1.3):

− det
(
D2u(x) +D2

xxc(x, y)|y=T (x)

)
+

∣∣D2
xyc(x, y)|y=T (x)

∣∣ f0(x)

f1(T (x))
= 0, (1.2)
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where the solution u and the mapping T are related via the equation:

∇u(x) = −∇xc(x, T (x)), (1.3)

and all derivatives are defined with respect to the Riemannian metric on the

manifold M . This PDE formulation of Optimal Transport is a fully nonlinear

second-order (degenerate) elliptic PDE. When this PDE is posed on manifolds

without boundary, it also lacks a comparison principle, which prevents the use of

traditional techniques for elliptic PDE. Furthermore, for many reasonable situa-

tions, the solution of this PDE is non-smooth, see Loeper (2009, 2011); Villani

(2003) for a summary of the regularity theory in Euclidean space by Caffarelli and

the extension to the Riemannian manifold case by many authors. As such, con-

vergence analysis for numerical schemes is particularly challenging. Much more

information about the derivation of this PDE and the Optimal Transport problem

in general is introduced in Chapter 2.

Here we very briefly introduce the Optimal Information Transport problem,

formulated and derived in Bauer et al. (2015). It is also concerned with the

transporting of mass between two probability distributions µ0 and µ1. However,

this is done in such a way that the Fisher-Rao distance between the two probability

distributions is minimized. The Fisher-Rao distance arises from the Fisher-Rao

metric, which is the second variation of the Kullback-Leibler divergence, which

provides a kind of “measure” of how far apart two probability distributions are.

Surprisingly, for compact manifolds M , the Fisher-Rao distance has an explicit

formula. Supposing that µ0 = f0(x)dx and µ1 = f1(y)dy, where dx, dy are the

standard volume forms on a compact manifold we get

dF (µ0, µ1) =
√
|M | arccos

(
1

|M |

ˆ
M

√
f0(x)f1(x)dx

)
, (1.4)

where |M | is the volume of the manifold Bauer et al. (2015). Furthermore, and

critically for our purposes, one can solve for the mapping T which minimizes the
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Fisher-Rao distance between µ0 and µ1 by solving the simple equations


∆f(t) = µ̇(t)

µ(t)
◦ ϕ(t)−1

ϕ̇(t) = grad (f(t)) ◦ ϕ(t), ϕ(0) = id,

(1.5)

where the diffeomorphic mapping T between the probability measures µ0 and µ1,

is given by T = ϕ−1(1), the terms µ(t) and µ̇(t) have explicit forms for compact

manifolds M , and, of course, µ(0) = µ0 and µ(1) = µ1 Bauer et al. (2015). The

benefit of Optimal Information Transport versus Optimal Transport lies in the

simplicity of the PDE and consequently the nicer (compared with the PDE in

Equation (1.2)) regularity properties over more general compact surfaces with-

out boundary. Much more information about this derivation will be presented

in Chapter 2.

The main contribution of this dissertation is in developing numerical meth-

ods for solving fully nonlinear elliptic PDE on manifolds and analyzing and proving

their applicability to solving the reflector antenna problem and the moving mesh

methods problem. There has been a large body of work on developing numerical

methods for such PDE in Euclidean space in the past twenty years or so. Our ap-

proach in this dissertation is to develop monotone finite-difference discretizations

of such PDE. The definition of monotonicity does not require one to use finite-

difference schemes, although most of the constructions of monotones schemes have

naturally used finite-difference discretizations. Monotone schemes in Euclidean

space were constructed in papers such as Benamou et al. (2016); Benamou and

Duval (2017); Benamou et al. (2014); Bonnet and Mirebeau (2021); Chen et al.

(2018); Froese (2012, 2018); Froese and Oberman (2011a,b, 2013); Hamfeldt and

Salvador (2018); Hamfeldt (2019, 2018); Hamfeldt and Lesniewski (2022a,b); Liu

et al. (2017); Oberman (2006, 2008).

1.2 Contributions of This Dissertation

In this dissertation, for the Optimal Transport problem on the sphere with two
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cost functions, the squared geodesic cost function c(x, y) = 1
2
d(x, y)2 and the log-

arithmic cost function c(x, y) = − log ‖x− y‖, I have developed a numerical con-

vergence framework for discretizations, designed numerical schemes which satisfy

the hypotheses of this framework, and demonstrated the success of computations

even in non-smooth cases. It should be mentioned, however, that the convergence

framework developed in this dissertation is not specific to these two cost functions,

but can be generalized quite easily. The squared geodesic cost computations have

direct applications to moving mesh methods and the logarithmic cost function is

used in a formulation of the reflector antenna problem of geometric optics.

I have prepared three manuscripts Hamfeldt and Turnquist (2021a,b,c) that

develop this avenue of research from theory to full “real-world” implementation

and justification. The first manuscript, Hamfeldt and Turnquist (2021a) develops

a convergence framework for consistent and monotone numerical discretizations of

the Optimal Transport PDE on the sphere. The manuscript Hamfeldt and Turn-

quist (2021b) develops a finite-difference scheme which satisfies the hypotheses of

the convergence framework and implements the scheme on various examples. The

manuscript Hamfeldt and Turnquist (2021c) focuses specifically on the reflector

antenna problem and proposes adaptations for non-smooth examples arising in

optics, demonstrating the success of the implementation and its advantages in

efficiency over other provably convergent schemes. In the manuscript Turnquist

(2021), I performed a study of Optimal Transport versus Optimal Information

Transport as applied to the moving mesh problem on the sphere, with a discus-

sion indicating how one can extend the results to compact 2D surfaces. In the

manuscript Hamfeldt and Turnquist (2022), I have also derived explicit conver-

gence rates for monotone discretizations of linear elliptic PDE on compact 2D

manifolds without boundary, by constructing smooth barrier functions and then

invoking the discrete comparison principle to get bounds. The surprising result,

corroborated by empirical evidence, is that the rate of convergence is worse than

the formal consistency error. I also develop optimal gradient bounds for such solu-
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tions on manifolds without boundary. The idea is to use the results for linear PDE

to establish convergence rates for the nonlinear Optimal Transport PDE. A fur-

ther study on using higher-order schemes that can be adapted into the convergence

framework via filtered schemes is also a work in progress.

In Chapter 2, we introduce the Optimal Transport problem. In particular,

we focus on the Monge problem and the PDE formulation of Optimal Transport

and related regularity results for compact surfaces. We also introduce Optimal

Information Transport, which yields an alternative means of defining mapping

between probability measures that is not as plagued with regularity issues as

Optimal Transport. Then, we introduce the two primary applications of our work

on numerical methods, which are the reflector antenna problem and the moving

mesh problem. We then discuss the approaches researchers have used in using

finite-difference schemes to solve the PDE arising from Optimal Transport. We

close this section with a recap of the theoretical and numerical complications

arising from our particular geometry.

In Chapter 3, we introduce how the Optimal Transport problem will be

solved on the sphere, with the key innovations of a tangent plane interpretation

of the PDE and Lipschitz regularization (which allows for compactness arguments

to work in the absence of a comparison principle for the underlying PDE). We

then show how these innovations, along with the construction of consistent and

monotone schemes, allow for a uniform convergence result of the discrete solution

to the solution of the PDE using compactness arguments. The work in this chapter

is mostly from the publications Hamfeldt and Turnquist (2021a,b).

In Chapter 4, we explicitly show how to construct the discretization by

deriving a monotone scheme for the second-order derivatives, deriving an explicit

formula for the mixed Hessian term, and by adding regularizing discrete Lapla-

cians to establish monotonicity overall. We also discuss extensions to non-smooth

problems and derive the computational complexity of the entire algorithm. We cap

off this chapter with computational results showing the generality of the scheme
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over different grids, validating the computations with some simple examples, and

performing a computation for non-smooth densities. The work in this chapter is

mostly from the publications Hamfeldt and Turnquist (2021b,c).

In Chapter 5, we compare the computational complexity of our scheme with

other schemes proposed for the reflector antenna problem. We then demonstrate

our computations with various examples, including a non-smooth globe example

and some other singular examples and then perform validation via ray tracing.

The work in this chapter is from the publication Hamfeldt and Turnquist (2021c).

In Chapter 6, we propose using Optimal Information Transport on the

sphere for the moving mesh methods problem. We thereby conduct a side-by-

side numerical study of the implementation of our Optimal Transport scheme and

a monotone and provably convergent implementation for Optimal Information

Transport on the sphere (with details on the analysis of the scheme in Appendix

E). We demonstrate the computations with a smooth example where both moving

mesh computations perform well along with a non-smooth example (the globe)

where Optimal Information Transport appears to perform better. The work from

this chapter is from the publication Turnquist (2021).

In Chapter 7, for monotone schemes for linear PDE on compact surfaces, we

establish convergence rates which depend on the consistency error of the mono-

tone scheme. We show, using a simple 1D example on the torus, that there is

empirical evidence that these convergence rates are tight. We also show that a

post-processing step can be made to make the numerical gradient of the discrete

solution converge to the gradient of the solution. The goal then is to relate the

linear convergence rates to the nonlinear case. The work from this chapter is from

the publication Hamfeldt and Turnquist (2022).

In Chapter 8 regarding ongoing/future work, we introduce how higher-order

schemes for the Optimal Transport problem on the sphere can be incorporated

into provably convergent schemes by constructing a “filtered scheme”. We then

introduce our ideas for extending the Optimal Transport and Optimal Information
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Transport methods to compact surfaces. And finally, we also introduce the ideas

underlying a PDE-based monotone finite-difference scheme for computing W1.

In Chapter 9, the conclusion, we summarize the various contributions and

core ideas of this dissertation. In the Appendices, there are also various technical

derivations that are not essential to the telling of the story.
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CHAPTER 2

BACKGROUND

2.1 Optimal Transport

In the past ten years, computational Optimal Transport has garnered much spe-

cial attention from the optimization community, not least after its gradual intro-

duction to the field of machine learning. The computational implementation in

learning problems was greatly popularized after entropically regularized Optimal

Transport came into vogue thanks in part to the work of Marco Cuturi who intro-

duced a particularly computationally efficient means to approximate the Optimal

Transport distance in Cuturi (2013).

The applications of Optimal Transport extend much beyond machine learn-

ing, however. There are applications of Optimal Transport in computer graph-

ics Solomon et al. (2014), image registration Haker et al. (2001, 2004), geophys-

ical inverse problems Engquist and Froese (2014); Engquist et al. (2016); Yang

et al. (2018), gene expression Schiebinger et al. (2017), optics Wang (1996, 2004);

Yadav (2018), astronomy McCann (2006), dissipative equations Caffarelli et al.

(2003); Otto (2001), probability Léonard (2012, 2013), economics and mean-field

games Gomes et al. (2015); Lasry and Lions (2007), matching problems Pass

(2015), diffeomorphic density matching Bauer et al. (2015), image analysis Gangbo

et al. (2019); Wang et al. (2013), shape recognition Gangbo and McCann (2000),

generative adversarial networks Arjovsky et al. (2017), barycenter computations Agueh

and Carlier (2011); Carlier et al. (2015); Julien et al. (2011), moving mesh meth-

ods Budd et al. (2013); Budd and Williams (2009); Weller et al. (2016b), statis-

tics Bigot (2020), and traffic modeling Santambrogio (2015), to name a few.

2.1.1 The Optimal Transport Problem in General

Here, we first present a very general formulation of the Optimal Transport problem

in d-dimensional Euclidean space Rd. The original engineering problem posed by
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Gaspard Monge (if you are so inclined to read the original text from the eighteenth

century, see the manuscript Monge (1781)) considered the practical problem of

moving a pile of sand into a hole. The idea was to figure out how to do it in

the most “efficient” way possible, see Figure 2.1. For Gaspard Monge, the cost of

moving mass from a point x to a point y was proportional to the distance from x

to y. One of the ways that Optimal Transport is applicable to a broad range of

problems is due to the fact that there are very general conditions on the cost of

moving mass from x to y that allow for fruitful interpretations, see Santambrogio

(2015); Villani (2003).

Figure 2.1 The original engineering problem of shoveling a pile of dirt into a
hole.

The problem is formulated more clearly and generally if one considers the

source (pile of sand) and target (hole) mass configurations as probability measures.

Thus, we dispense with the notion of the depth of the hole being “negative” and

simply model both source and target distributions by positive probability mea-

sures. There are many advantages to this generalization. The most obvious,

perhaps, from an applied perspective, is that it allows one to formulate and treat

discrete, semi-discrete, and continuous formulations at the same time. Thus, we

start with a source mass distribution denoted by the probability measure µ0 sup-

ported on X ⊂ Rd, while our target mass distribution will be denoted by the

probability measure µ1 supported on Y ⊂ Rd. One would like to know how to

10



“move” the mass from µ0 to µ1. One immediately realizes that this cannot be done

in general by a mapping, see a simple example given in Figure 2.2. However, one

can assign a portion of the source mass to be assigned to different regions of the

target mass distribution. The object that will best describe this is mass splitting

is known as the transport plan π, which is a probability distribution supported on

X × Y .

Figure 2.2 One unit delta source mass (blue) dividing into two half-unit delta
target masses (red) requires a true transport plan, which says that the mass must
split in half, i.e. half the mass is earmarked for one target delta spike and half is
earmarked for the other target delta spike.

The constraint on the problem is that all the source mass must be moved

onto the target mass. To close the problem, we would like to add an economic

cost function c(x, y) (measurable and non-negative, see Villani (2003)) that when

summed up over the source mass, will measure how much transporting the mass

from the source distribution to the target distribution will cost. The idea is then

to find the transport plan π between µ0 and µ1 that minimizes the total cost over

moving each grain of sand from the pile to the hole. That is, mathematically, we

find the minimizer π̃:

π̃ = argminπ∈Π(µ0,µ1)

ˆ
X×Y

c(x, y)dπ(x, y), (2.6)

where π ∈ Π(µ0, µ1) denotes the fact that the mass is locally conserved, that is the
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simultaneous facts that π(A×Y ) = µ0(A) and π(X×B) = µ1(B) for any Borel sets

A,B ⊂ X, Y , respectively. Provided that the cost function is continuous, using

the direct method of the calculus of variations immediately yields the existence

of such a transport plan π, since the set Π(X, Y ) is compact with respect to

the weak topology of measures Villani (2003). It is perhaps easier to understand

that the minimizers π of the discrete formulation are the bistochastic matrices π,

see Peyré and Cuturi (2019); Thorpe (2019) for more information on the discrete

formulation.

Another important aspect of this formulation is that when we choose

c(x, y) = 1
2
‖x− y‖2, then the quantity

W2(µ0, µ1) :=

√
min

π∈Π(µ0,µ1)

ˆ
X×Y

1

2
‖x− y‖2 dπ(x, y) (2.7)

defines a Riemannian distance over the space of square-integrable probability

measures P2, see Villani (2003, 2009) for more details. What happens then if

π = δ(x,T (x)) for some function T (x)? This then reduces to the Monge problem of

Optimal Transport, where we end up with a mapping T (x) indicating precisely

where the mass located at the point x ∈ X should be mapped to T (x) ∈ Y .

2.1.2 The Monge Problem of Optimal Transport

For the Monge problem we present here, we will make even further assumptions

that lead to a PDE formulation. We pose this problem on a d-dimensional compact

manifold M without boundary. Then, given two probability measures that are

absolutely continuous with respect to the canonical volume form on M , that is

µ0(dx) = f0(x)dx and µ1(dy) = f1(y)dy, we seek a Lipschitz and injective mapping

T , such that T#µ0 = µ1. This condition means that

ˆ
T (E)

f1(y)dy =

ˆ
E

f0(x)dx (2.8)
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for every Borel set E ⊂M . Assuming T is sufficiently differentiable, this condition

is equivalent to the following

ˆ
E

f1(T (x))J (T (x)) dx =

ˆ
E

f0(x)dx, (2.9)

where J (T (x)) is the Jacobian of the transformation T at a point x ∈ M ,

see Loeper (2009) for more information on the manifold case.

Note that the example given in Figure 2.2, which did not lead to a mapping,

was from a delta-measure to a mixture of delta-measures, which are examples of

measures which are not absolutely continuous with respect to the volume form.

More generally, the condition is that the source mass distribution cannot give mass

to “small” sets, see Santambrogio (2015) for more information on the technical

details of this condition.

Again, for economic reasons we attach to this problem the auxiliary quantity

C(T ) =

ˆ
Rn
c(x, T (x))dµ0(x). (2.10)

Our problem is to minimize this total cost:

T ∗ = argminC(T ). (2.11)

This represents a Calculus of Variations problem with a nonlinear equality con-

straint T#µ0 = µ1. Since the source measure is absolutely continuous with respect

to the volume form, the problem has a solution, see Villani (2003), i.e. there is

a unique minimizer T that also satisfies the equality constraint. The distance-

squared cost function yields good regularity results in n-dimensional Euclidean

space and the n-sphere, promising that the PDE formulation of the Monge prob-

lem is well-suited to applications and computation. After assuming the following

technical conditions originating from Ma et al. (2005) on the cost function we get

the PDE formulation of the Monge problem:

1. c(x, y) is a C4
(
X̄ × Ȳ

)
function in both variables.
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2. For all x ∈ X̄, the mapping y 7→ −∇xc(x, y) is injective on Ȳ .

3. The cost function c satisfies detD2
xyc 6= 0.

4. There exists a C0 > 0 such that for all (x, y) ∈ X × Y , for all ξ, ν ∈ TxM
such that (ξ, ν)g,

Gc(x, y)(ξ, ν) ≤ C0 |ν|2 |ξ|2 (2.12)

where

Gc(x, y)(ξ, ν) = D4
pνpνxξxξ

[(x, p)→ −c(x, c− exp(p))] |x,p=−∇xc(x,y), (2.13)

where c− exp(p) is the given by the mapping y 7→ −∇xc(x, y). Usually we
will require C0 > 0, however, the case C0 ≥ 0 is also special, since it is the
necessary condition if one desires regularity from the mapping. More will be
explained about this in Section 2.1.4.

The first condition, of course, is necessary for the object Gc(x, y)(ξ, ν) in

the fourth condition to exist. The second and third conditions are necessary to as-

sert the existence of maximizers of the dual formulation of the Optimal Transport

problem, see Section 2.1.3 for more detail about the dual formulation. The poten-

tial functions arising in the dual formulation are related directly to the solution

of the PDE formulation. The fourth condition is explained particularly clearly

for the manifold case in Loeper (2009) as the cost-sectional curvature condition.

As stated above, it is the necessary condition (when C0 ≥ 0) that is used in the

regularity proofs.

Note: these technical conditions are satisfied by the squared geodesic cost

c(x, y) = 1
2
dS2(x, y) and the logarithmic cost c(x, y) = − log ‖x− y‖. Note that the

underlying manifold does have an effect on the squared geodesic cost function via

the Riemannian distance function. Given these assumptions on the cost function,

one can derive the PDE (whose formal derivation is outlined in Section 2.1.3):

F (x, u(x), Du(x), D2u(x)) := − det
(
D2u(x) +D2

xxc(x, y)|y=T (x)

)
+∣∣D2

xyc(x, y)|y=T (x)

∣∣ f0(x)

f1(T (x))
, (2.14)
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where

∇u(x) = −∇xc(x, T (x)), (2.15)

and u is a c-convex function on S2. The definition for manifolds is presented

in Loeper (2009). The support of the source mass will be denoted by Ω and the

support of the target will be denoted as Ω′.

Definition 2.1. A function φ : M → R is c-convex if at each point x ∈ Ω, there

exist y ∈ Ω′ and a value φc(y) such that

− φc(y)− c(x, y) = φ(x), (2.16)

− φc(y)− c(x′, y) ≤ φ(x′), ∀x′ ∈ Ω, (2.17)

where the function φc(y) is defined by:

φc(y) = sup
x∈Ω

(−c(x, y)− φ(x)) . (2.18)

Interestingly, in the dual formulation of Optimal Transport, which is explained

in Villani (2003), the function u here is the same as one of the two potential

functions arising in the dual formulation. Thus, we will occasionally refer to u as

the potential function.

Equation (2.14) is fully nonlinear and degenerate elliptic for c-convex func-

tions u (which solve the Optimal Transport problem). Utilizing the notion of

viscosity solutions allows one to build convergent numerical schemes even for non-

smooth solutions u for this challenging elliptic PDE, see Barles and Souganidis

(1991) and the summary in Section 2.5. However, many standard results for el-

liptic PDE, such as the comparison principle, do not apply due to the lack of

boundary on the manifold.

By convention, in the Euclidean case with the squared geodesic cost c(x, y) =

1
2
‖x− y‖2, Equation (2.14) reduces to
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detD2u(x) =
f0(x)

f1(T (x))
, (2.19)

and this equation is usually referred to as the Monge-Ampère equation. Conscious

of our slight abuse of terminology, we will sometimes refer to Equation (2.14) as

the Monge-Ampère equation, or more correctly, as an equation of Monge-Ampère

type.

2.1.3 Formal Derivation of the Optimal Transport PDE

Here we briefly, and formally, derive Equation (2.14). A very clean derivation for

the squared distance case is shown in Evans (1997) and the general case is shown

in Ma et al. (2005). First, one begins with a dual formulation of the Kantorovich

problem, see Equation (2.6), whose supremum is equal to the solution of the

Kantorovich problem

min
π∈Π(µ0,µ1)

ˆ
X×Y

c(x, y)dπ(x, y) = sup
(u,v)∈K

I(u, v), (2.20)

where

I(u, v) =

ˆ
M

u(x)f0(x)dx+

ˆ
M

v(y)f1(y)dy, (2.21)

and

K = {(u, v)|u(x) + v(y) ≤ −c(x, y),∀x ∈M, y ∈ Y } . (2.22)

Given the MTW conditions on the cost function, see Ma et al. (2005), it turns out

that this problem is solved by the pair of maximizers:


u(x) = infy {−c(x, y)− v(y)} ,

v(y) = infx {−c(x, y)− u(x)} .
(2.23)

Fixing a point x0, then, there exists a T (x0) such that u(x0) = −c (x0, T (x0)) −

v (T (x0)). At any other point x ∈ M we have, u(x) ≤ −c (x, T (x0)) − v (T (x0)),
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since T (x0) is not necessarily an optimal choice corresponding to the point x.

Therefore, the gradient is zero at the minimum (first-order condition) and the

function has non-negative definite Hessian (second-order condition) there as well


∇x (u(x) + c (x, T (x0)) + v (T (x0))) |x=x0 = 0,

D2
x (u(x) + c (x, T (x0)) + v (T (x0))) |x=x0 ≥ 0.

(2.24)

Therefore, we write


∇u(x) +∇xc (x, T (x)) = 0,

D2u(x) +D2
xxc (x, T (x)) ≥ 0.

(2.25)

We take the first-order condition from Equation (2.25) and differentiate it again

with respect to x:

D2u(x) +D2
xxc (x, T (x)) = −D2

xyc (x, T (x))∇T (x). (2.26)

Taking the determinant, we get:

det
(
D2u(x) +D2

xxc (x, T (x))
)

= det
(
−D2

xyc (x, T (x))
)

det (∇T (x)) . (2.27)

From here, one proceeds proving that such a T is measure-preserving (i.e. it

satisfies Equation (2.9). Thus, we can replace det∇T (x) by f0(x)/f1(T (x)) to get

det
(
D2u(x) +D2

xxc (x, T (x))
)

= det
(
−D2

xyc (x, T (x))
)
f0(x)/f1(T (x)). (2.28)

By the second-order condition, see Equation (2.25), we get

det
(
D2u(x) +D2

xxc (x, T (x))
)

=
∣∣det

(
D2
xyc (x, T (x))

)∣∣ f0(x)/f1(T (x)). (2.29)
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2.1.4 Regularity

For Equation (2.14) posed on a manifold M , one could, of course, try and apply

available a priori estimates. That is, one could look for the most general results

for regularity theory for fully nonlinear degenerate elliptic PDE, see Caffarelli

and Cabré (1995) and apply them across the sphere with a patching argument.

However, one may run into issues relating to mass transporting (via the mapping

T (x)) from x to points y = T (x) where the exponential map loses differentiability.

Specific work on Equation (2.14) for the squared geodesic and the logarithmic cost

functions, however, has been done for the sphere, see Loeper (2011).

The a priori regularity of the solution u has a direct effect on the construction

of numerical schemes, on applications, and on the convergence rates of the discrete

solution to u. Here we separate the results on the n-sphere into two régimes,

smooth and non-smooth (but differentiable).

Hypothesis 2.2 (Conditions on data (smooth)). We require problem data to

satisfy the following conditions:

(a) There exists some m > 0 such that f1(x) ≥ m for all x ∈ Sn.

(b) The mass balance condition holds,
´
S2 f0(x) dx =

´
S2 f1(y) dy.

(d) The data satisfies the regularity requirements f0, f1 ∈ C1,1(Sn).

(e) The cost functions are either the squared geodesic cost c(x, y) = 1
2
dS2(x, y)2

or the logarithmic cost c(x, y) = − log ‖x− y‖.

Hypotheses 2.3 will lead to C1,α solutions.

Hypothesis 2.3 (Conditions on data (non-smooth)). We require problem data to

satisfy the following conditions:

(a) There exists some m > 0 such that f1(x) ≥ m for all x ∈ Sn.

(b) The mass balance condition holds,
´
S2 f0(x) dx =

´
S2 f1(y) dy.

(d) The data satisfies the regularity requirements f0 ∈ Lp(Sn).
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(e) The cost functions are either the squared geodesic cost c(x, y) = 1
2
dS2(x, y)2

or the logarithmic cost c(x, y) = − log ‖x− y‖.

From these hypotheses, we get the following regularity result Loeper (2011)

Theorem 2.4 (Regularity). The Optimal Transport problem in Equation (2.14)

with data satisfying Hypothesis 2.2 has a classical solution u ∈ C3(S2).

The following result, also from Loeper (2011) and following the reasoning in Ap-

pendix A.

Theorem 2.5 (Regularity). The Optimal Transport problem in Equation (2.14)

with data satisfying Hypothesis 2.3 has a viscosity solution u ∈ C1(S2).

As a final note, the solution to Equation (2.14) is unique only up to additive

constants. For uniqueness, in this manuscript, sometimes we will fix a point

x0 ∈M and add the additional constraint:

u(x0) = 0. (2.30)

At other times, it may be more convenient to choose the mean-zero solution, that

is to impose the constraint ˆ
M

u = 0. (2.31)

2.1.5 Beyond the Sphere

In some cases, manifolds M with non-positive cost-sectional curvature at any

point x ∈ M can have positive measures µ0, µ1 ∈ C∞(M), but T is not even

guaranteed to be continuous Loeper (2009). In order to explain this phenomenon,

we introduce the Ma, Trudinger, Wang tensor Loeper (2009); Ma et al. (2005),

which is the non-Euclidean generalization of Equation (2.12):

Gc(x0, y0)(ξ, ν) = D4
pν ,pν ,xξ,xξ

[(x, p) 7→ −c (x, Tx0(p))] |x0,p0=−∇xx(x0,y0). (2.32)

19



The cost-sectional curvature is negative at a point (x, y) if there exist ξ, ν such

that Gc(x, y)(ξ, ν) < C0 |ξ|2 |ν|2. The idea is perhaps more transparent if one

looks at the squared geodesic cost c(x, y) = 1
2
dM(x, y). In this simple case, the

non-positivity of the cost-sectional curvature is equivalent to the negativity of the

sectional curvature of M at any point x ∈M due to the following equality:

Gc(x, x)(ν, ξ)

|ξ|2 |ν|2 − (ξ · ν)2
=

2

3
· sectional curvature of M at x in the plane (ξ, ν). (2.33)

But, even if the underlying manifold has strictly positive curvature everywhere,

the Ma, Trudinger, Wang tensor Gc(x, y) may be negative on the off-diagonal

(x, y) s.t x 6= y. This was shown true even for some ellipsoids of revolution in

the paper Figalli et al. (2010). This suggests that numerically computing Opti-

mal Transport for such cases is more challenging since one is not guaranteed a

diffeomorphic mapping T .

2.2 Optimal Information Transport

The Monge problem of Optimal Transport, see Section 2.1.2, hints at a deeper

relation between the space of probability distributions and the mappings between

probability measures. We have seen in Section 2.1 that for the squared geodesic

cost c(x, y) = 1
2
dM(x, y) there exists a unique mapping T of the Monge problem

which is then used in computing the total cost of transporting the probability

measure µ0 to µ1. Furthermore, for the squared geodesic cost, this total cost

defines a Riemannian distance between probability measures, see Villani (2003,

2009), usually referred to as the Wasserstein distance. An interpolation between

the source mass µ0 and the target mass µ1, denoted by µ(t) can be uniquely defined

from a convex combination of the identity map and the Optimal Transport map

from µ0 to µ1. That is, by defining the path of maps T (t) = (1− t)Id + tT we can

construct an interpolation of measures µ(t) = T (t)∗µ0, which defines a geodesic in
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Wasserstein space, see Figure 2.3 and Villani (2003, 2009) for more detail on the

Wasserstein distance and interpolation. This geodesic is minimizing with respect

to the Wasserstein metric.

Figure 2.3 An interpolation of probability measures (left to right) is achieved by
traveling along a geodesic in the space of probability measures with respect to a
metric. In the case of Optimal Transport, the metric is known as the Wasserstein
metric developed by Otto, see the explanation in Villani (2003), and we will refer
to the resulting interpolation as the Wasserstein interpolation. In the case of
Optimal Information Transport, the metric used is the Fisher-Rao metric.

A different distance between probability measures arising primarily in sta-

tistical applications is the Fisher-Rao distance. This distance is defined as the

Riemannian distance arising from the Fisher-Rao metric on the space of proba-

bility measures. The Fisher-Rao metric, in turn, is the second variation of the

Kullback-Leibler divergence between the probability measures µ and ν, that is the

quantity

KL(µ, ν) :=

ˆ
M

log

(
dµ

dν

)
dµ, (2.34)

which measures the relative entropy between one probability measure µ and an-

other ν. The Fisher-Rao metric we discuss here is the infinite-dimensional version,

first studied in Friedrich (1991). Typically in statistics it is given in the finite-

dimensional setting where the probability measures can be parametrized by a finite

parameter space which is a subset of k-dimensional Euclidean space Rk.

Given the space of probability measures then equipped with the Fisher-Rao

metric, one may ask if there exists a path of mapping T (t) that pushes µ0 forward

to the geodesic (with respect to the Fisher-Rao metric) connecting µ0 and µ1. The

short answer is yes, see Bauer et al. (2015), just like in the way that this can be

done for geodesics with respect to the Wasserstein metric. However, it turns out

that if we are on compact manifolds M and the source mass is the canonical volume
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form, µ0 = vol, then the formula for the mapping T ends up being quite simple,

as proved in Bauer et al. (2015); Modin (2015). For this situation, a geodesic in

the space of diffeomorphisms that pushes µ0 forward to µ1 is actually a horizontal

geodesic and it descends (via an explicit projection map) onto a geodesic (with

respect to the Fisher-Rao metric) on the space of smooth densities. Solving this

problem for T is known as Optimal Information Transport and was introduced

in Bauer et al. (2015); Modin (2015).

For more information about Optimal Information Transport, see much more

background and detail presented in Bauer et al. (2015); Modin (2015) and the

highlighted resources therein. For all the discussion in this section, we will assume

that the underlying manifold M is compact and connected and is equipped with

the standard volume form vol. We introduce the Fréchet Manifold of smooth

volume forms over M with total volume vol(M):

Dens(M) =

{
µ ∈ Ωn(M) :

ˆ
M

µ = vol(M), µ > 0

}
, (2.35)

where the notation Ωn(M) denotes the n-forms over the manifold M , using topol-

ogy induced by the Sobolev seminorms. The infinite-dimensional Fisher-Rao met-

ric

GF
µ (α, β) =

1

4

ˆ
M

dα

dµ

dβ

dµ
dµ (2.36)

yields geodesics that have explicit formulas! Furthermore, there is an explicit

formula for the distance which is simply given by the integral

df (µ0, µ1) =
√

vol(M) arccos

(
1

vol(M)

ˆ
M

√
µ0

vol

µ1

vol
vol

)
. (2.37)

which is a surprising result that was shown in Modin (2015).

We introduce another manifold with rich structure. The set of diffeomor-

phisms on M is denoted Diff(M) with topology induced by the Sobolev seminorms.

We have assumed M compact, which makes the set Diff(M) is a Fréchet Lie group
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under the composition of maps. The Lie algebra of Diff(M) is given by the space

X(M) of smooth vector fields. We equip this manifold with the information metric

on Diff(M), defined by

GI
ϕ(U, V ) =

ˆ
M

g(∆u, v)vol + λ

k∑
i=1

ˆ
M

g(u, ξi)vol

ˆ
M

g(v, ξi)vol, (2.38)

where λ > 0, u = U ◦ ϕ−1, v = V ◦ ϕ−1, g is the underlying metric of the

manifold, ∆ is the Laplace-de Rham operator on the space of vector fields, defined

by ∆u = −
(
δdu[ + dδu[

)]
, where ] and [ are the usual musical isomorphisms

of differential geometry, d : Ωk(M) → Ωk+1(M) is the exterior differential and

δ : Ωk(M) → Ωk−1(M) is the codifferential, and {ξi}i is an orthonormal basis of

the harmonic vector fields on M , that is those vector fields ξ for which ∆ξ = 0.

This metric, Equation (2.38), yields well-posed geodesics, see Bauer et al. (2015).

Now, the diffeomorphic maps define a group action on the space of densities,

via the pullback ϕ∗µ = ν. The volume preserving maps (with respect to ϕ): define

the isotropy group

Diffµ(M) := {ϕ ∈ Diff(M);ϕ∗µ = µ} . (2.39)

This group action is transitive, that is, given µ and ν, there exists a diffeomorphism

ϕ such that ϕ∗µ = ν, which was proved in Moser (1965). Now, fix µ. By defining

the projection map

πµ : Diff(M) 3 ϕ 7→ ϕ∗µ ∈ Dens(M) (2.40)

we can define the following principal bundle structure:

Diffµ(M) Diff(M)

Dens(M).

πµ

Now, choose µ = vol. We denote πvol = π. The goal is now to give a Rie-

mannian structure to the principal fiber bundle using Equations (2.36) and (2.38).
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The upshot is that although π is a submersion it is actually also a Riemannian

submersion with respect to GF and GI , i.e. the metric GI
ϕ descends to GF as

explained in Bauer et al. (2015). That is,

GI
ϕ(U, V ) = GF

π(ϕ) (Tϕπ · U, Tϕπ · V ) . (2.41)

If ϕ(t) is a geodesic in Diff(M), then it is actually a horizontal geodesic in

Diff(M) and furthermore µ(t) := π(ϕ(t)) is a geodesic curve in Dens(M), see Bauer

et al. (2015).

The problem of diffeomorphic density matching is that given a path of den-

sities µ(t), we desire to find the path ϕ(t) which project onto µ(t), that are also

of minimal length with respect to GI . That is, solve the exact density matching

problem, that is find a ϕ(t) such that


ϕ(0) = id,

ϕ∗µ0 = µ(t),

minimizing
´ 1

0
GI
ϕ(t) (ϕ̇(t), ϕ̇(t)) dt.

(2.42)

We assume that µ0 = vol. We take the equation ϕ∗(t)µ0 = ϕ∗(t)vol = µ(t) and

differentiate with respect to t:

µ̇(t) = ∂t (ϕ(t)∗vol) = ϕ∗divvolv(t), (2.43)

where v(t) = ϕ̇◦ϕ−1. This can be rewritten, using the formalism of Lie derivatives

(see Bauer et al. (2015)), as

µ̇(t) = div (v(t)) ◦ ϕ(t)µ(t). (2.44)

From here, we perform the Hodge-Helmholz decomposition for the vector

field v, by writing v = gradf +w. It turns out that the Hodge-Helmholtz decom-

position is orthogonal with respect to the information metric GI so the length of
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the path ϕ(t) is minimal for w = 0, see Bauer et al. (2015). Therefore, in order to

solve for the mapping, we can solve the following Poisson equation for the curl-free

term f as an intermediate step:


∆f(t) = µ̇(t)

µ(t)
◦ ϕ(t)−1

ϕ̇(t) = grad (f(t)) ◦ ϕ(t), ϕ(0) = id.

(2.45)

As noted before, the geodesics for the Fisher-Rao metric have explicit forms ! Thus,

we can insert explicit forms for µ(t) and ˙µ(t) and thus this is a closed problem

for f and ϕ(t). The explicit geodesics µ(t) are given as follows, see Bauer et al.

(2015) for more detail. Define W : Dens(M) → C∞(M) by µ 7→
√

µ
vol

, then the

geodesics are given by

[0, 1] 3 t 7→
(

sin ((1− t)θ)
sin θ

f0 +
sin(tθ)

sin θ
f1

)2

vol, (2.46)

where

θ = arccos

(
〈f0, f1〉L2

vol(M)

)
, (2.47)

and fi = W (µi). The Optimal Information Transport problem is then given by


ϕ(0) = id,

ϕ∗µ0 = µ(t),

(2.48)

where ϕ∗µ0 denotes the pushforward of µ0. The solution of this problem, Equa-

tion (2.48), is the diffeomorphic mapping T given by T = ϕ−1(1), where ϕ(1)

solves Equation (2.45).

2.3 The Reflector Antenna Problem

Here we briefly summarize the derivation of the reflector antenna problem and

its connection to Optimal Transport on the sphere, which leads to an equation
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of Monge-Ampère type that can be solved using techniques from numerical PDEs

and Optimal Transport. We begin by following the physical derivation in Wang

(1996, 2004) and then show that merely through a change of variables, we can

derive a particular instance of Equation (2.14).

We start with a light source or detector µ0 located at the origin, which is

a probability measure indicating directional intensity and is supported on a set

Ω ⊂ S2. Next we consider a reflector surface Σ, which is a radial graph over the

domain Ω and can be represented as

Σ = {xρ(x) | x ∈ Ω, ρ > 0} , (2.49)

where ρ : Ω → R is a non-negative function indicating the distance between the

reflector surface and the origin. The light from the source µ0 in the direction x

bounces off the reflector Σ without any refraction or absorption and travels in the

direction T following the law of reflection. Over all directions this produces the

far-field intensity µ1, which is also a probability measure indicating directional

intensity and is supported on some target domain Ω∗ ⊂ S2. See Figure 2.4 for a

schematic of the setup.
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Figure 2.4 Reflector antenna with source/detector µ0, reflector Σ and target
far-field intensity µ1. The directional vectors x and T (x) are unit vectors.

The reflector antenna problem is thus: given source and target intensity

probability distributions µ0 and µ1, respectively, find the shape of the reflector Σ

that transmits the light from the source to the target while satisfying conservation

of energy.

We make the assumption that the probability densities µ0 and µ1 have

density functions f0 and f1 respectively (so that dµ0(x) = f0(x)dS(x), dµ1(y) =

f1(y)dS(y)). Now we seek a PDE that will allow us to determine the reflector

height function ρ(x), which fully determines the reflector surface, in terms of the

prescribed intensity functions f0 and f1.

The first of the two physical laws that will be used to derive the governing

PDE for this setup is the well known geometric law of reflection, which yields the

optical map

T (x) = x− 2 〈x, n(x)〉n(x), (2.50)

where n(x) is the outward normal to Σ at the point z = xρ(x), x ∈ Ω. See

27



Figure 2.5. We emphasize that this is the geometric optics limit and as such we

ignore all quantum mechanical effects.

Figure 2.5 Incident light direction x, reflector Σ, outward normal n, and outward
light ray T .

The second physical law that completes the problem is the law of conserva-

tion of energy: ˆ
T−1(E)

f0(x) dx =

ˆ
E

f1(y) dy, (2.51)

for any Borel set E ⊂ Ω∗.

By introducing local coordinates on the sphere, it was observed in Wang

(1996) that the unit normal n can be given by

n(x) =
∇ρ(x)− xρ(x)√
ρ(x)2 + ‖∇ρ(x)‖2

. (2.52)

Then the law of reflection, Equation (2.50), yields the mapping

T (x) =
2ρ(x)∇ρ(x) +

(
−ρ(x)2 + ‖∇ρ(x)‖2)x

ρ(x)2 + ‖∇ρ(x)‖2 . (2.53)

Applying the change of variables formula to the conservation of energy constraint,

Equation (2.51), and combining these equations yields the PDE

η−2 det
(
−∇i∇jρ+ 2ρ−1∇iρ∇jρ+ (ρ− η)δij

)
= f0(x)/f1(T (x)), (2.54)
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where η =
(
|∇ρ|2 + ρ2

)
/2ρ and δij is the usual Kronecker delta (in terms of

the indices of the local coordinate system), see Wang (1996). We may begin to

recognize this PDE as similar to an equation of Monge-Ampère type, with the

usual second boundary value condition, see Urbas (1997) for more detail. The

second boundary value condition is

T (Ω) = Ω∗. (2.55)

In order to use recently improved regularity results, it is much better to

perform the change of variables:

ρ = e−u. (2.56)

It was shown in Wang (2004) that under an equivalent change of variables (modulo

a sign change), the function u solves the dual formulation of the Optimal Transport

problem with cost function c̃(x, y) = − log(1 − x · y). This then allows one to

check the MTW conditions, see Section 2.1.2 for the logarithmic cost function and

achieve the desired regularity results, which is what was done in Loeper (2011).

2.3.1 Numerical Methods for the Reflector Antenna

Computational approaches to solving optical design problems can be roughly di-

vided into three basic categories: (1) techniques that use a ray-mapping to design

the optical surface, (2) methods that approximate the optical surfaces by sup-

porting quadrics, and (3) methods that represent the optical surface through the

solution to an Optimal Transportation problem.

The ray-mapping approach generally involves a two-step procedure. In the

first step, a ray mapping is produced between the input and output intensities. In

the second step, the laws of reflection and/or refraction are employed to construct

a surface that achieves this ray mapping as nearly as possible. Several methods

based on this general approach are available including Bruneton et al. (2011);
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Desnijder et al. (2019); Feng et al. (2016); Fournier et al. (2010); Parkyn and

Pelka (2006). A downside to this general approach is that it can be difficult to

theoretically justify the existence of an optical surface that exactly produces the

desired ray mapping.

Oliker’s method of supporting quadrics involves representing the optical sur-

face via supporting ellipsoids or hyperboloids Oliker (2006); Oliker et al. (2015).

The simple optical properties of these quadrics is used to produce a pixelated ver-

sion of the desired target. This approach has the advantage of being theoretically

well-founded, but can be costly to implement in practice.

Many optical inverse problems have yielded fruitful interpretations via Op-

timal Transport by deriving an appropriate cost function c(x, y) Yadav (2018).

To give a simple example, a parallel-in, far-field out setup yields the cost function

c(x, y) = 1
2
‖x− y‖2, where x, y ∈ R2. The reflector antenna problem considered

in this article has a slightly more challenging set-up in that the cost function

c(x, y) = −2 log ‖x− y‖ is unbounded and the intensity functions f0, f1 are sup-

ported on S2 (the unit 2-sphere), as opposed to subsets of Euclidean space Gangbo

and Oliker (2007); Oliker and Newman (1993); Wang (1996, 2004).

One approach to solving Optimal Transport problems in optical design

is to use optimization techniques, including linear assignment Doskolovich et al.

(2019) and linear programming Glimm and Oliker (2003). This approach has

the advantage of being theoretically well-understood. However, the optimization

problems typically involve a very large number of constraints and the resulting

methods are computationally complex.

Recently, several methods have been proposed for solving optical design

problems involving a point source via the solution of a Monge-Ampère type equa-

tion. These methods replace the PDE on the sphere with a corresponding equation

on the plane by representing subsets of the unit sphere using spherical coordi-

nates Wu et al. (2013), a vertical projection of coordinates onto the plane Brix

et al. (2015), or stereographic projection Romijn et al. (2020). As the numeri-
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cal solution of these Monge-Ampère type equations is a very new field, many of

the numerical methods used in optical design problems are not yet equipped with

theoretical guarantees of convergence.

2.4 Moving Mesh Methods

Here we outline the moving mesh problem, a type of adaptive mesh method that

has found special usage in computational PDE techniques. The meshes consist

of a fixed number of nodes and an edges connecting the nodes which does not

change. The idea is to transform an automatically generated mesh (or any given

mesh) into a mesh with prescribed node density. For computational reasons, a core

requirement is that the target mesh should not be tangled. We desire to complete

this adaptive mesh problem with one step and without requiring post-processing.

The resulting adapted mesh is often used in high-resolution PDE computa-

tions, such as the Eady problem, which is a 2D vertical cross-section of an incom-

pressible Bousinnesq fluid, which was treated in Budd et al. (2013). Using a fixed

number of grid points leads to simpler data structures (than some other adaptive

mesh techniques) in the PDE solving step, as was stressed in the manuscripts Budd

et al. (2013); Chacón et al. (2011); Weller et al. (2016b). Beyond such computa-

tional fluid mechanics applications, the related problem of diffeomorphic density

matching has found widespread applications in medical image registration, see,

for example, Chen and Öktem Ozan (2017); Gorbunova et al. (2012); Haker et al.

(2004); Rottman et al. (2015) and random sampling from a probability measure

see, for example, Bauer et al. (2017); Moselhy and Marzouk (2012) among other

applications. These applications are necessarily more challenging from a theo-

retical perspective as well as a computational perspective when the geometry is

non-Euclidean. In this dissertation, we focus on applications of moving mesh

methods on the sphere with extensions to compact 2D surfaces via diffeomorphic

density matching.

Technically speaking, the moving mesh methods presented here can be con-
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sidered as an application of the diffeomorphic density matching problem. This

problem a long history in the imaging sciences. Classical methods consist of pos-

itive scalar image functions composed from the right by transformations Younes

(2010). That is, given a source probability density function f0 and a target prob-

ability density function f1, classical techniques compute f0 ◦ T = f1. It is not

possible in many cases to find diffeomorphic mappings, see Villani (2009). Fur-

thermore, this formulation is not appropriate for moving mesh methods. Non-

classical methods, like Optimal Transport and Optimal Information Transport,

allow the transformation to act as a pushforward or pullback on the density, that

is f0 = |DT | f1 ◦ T or |DT | f0 ◦ T = f1, respectively. This generalization has

particular benefit in that it allows for proving the existence of a diffeomorphic

mapping over a much wider range of densities f0 and f1. Furthermore, it is clear

that this is the formulation of diffeomorphic density matching that is appropriate

for moving mesh methods, since it allows one to change the local density of mesh

points.

In the Euclidean setup, the moving mesh problem setup requires the “phys-

ical” target domain Ωp ⊂ Rd, where the PDE is posed, while the “computational”

input domain Ωc ⊂ Rd is usually chosen to be a uniform rectangular grid (in

Euclidean space), see Figure 2.6.
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Figure 2.6 Mapping T from the computation domain Ωc to the physical domain
Ωp.

In non-Euclidean geometries, one would like to use any simple off-the-shelf

mesh generator for the computational mesh. Then, one would like to find a diffeo-

morphic mapping T : Ωc → Ωp. Typically, in applications, the local density of grid

points in the physical domain Ωp is determined by, for example, the time scales

involved in the solution of a fluid mechanics PDE. For example, in an evolving

front or shock, it is desirable for the density of points in Ωp to be greater than in

the relatively unchanging parts of the solution, as in meteorological applications

where it is desirable to have high resolution in areas of high precipitation Weller

et al. (2016b). This process could be done iteratively to get a very accurate so-

lution of the PDE, by solving the shock on more and more resolved grids as one

iterates. The way this is done is by feeding the information from the PDE (desired

density) into a scalar monitor function M(y, t) > 0 and then solving the change

of variables formula:

M(y, t)J(T (x)) = θ(t), (2.57)

where J is the Jacobian of the diffeomorphic mapping T and
´

Ωp
M(y, t)dy = θ(t).

Moving mesh methods require that the mapping be a diffeomorphism, which means
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that the Jacobian of the mapping T satisfies 0 < J(T ) < ∞ in the strong sense.

This condition will prevent the mesh from tangling. An example of a monitor

function constructed from information from a function f(y, t) is the scaled arc-

length function:

M(y, t) =

√
1 + |S∇yf(y, t)|2, (2.58)

where S is a normalization factor, see Budd et al. (2013).

The diffeomorphic density matching problem can be solved via the Jacobian

equation, which is the change of variables. The existence of a change of variables

between densities is actually quite general, see Villani (2009).

Theorem 2.6 (Jacobian). Let M be an n-dimensional Riemannian manifold.

Let µ0 and µ1 be two probability measures on M , and let T : M → M be a

measurable function such that T#µ0 = µ1. Let ν be a reference measure, of the

form ν(dx) = e−V (x)vol(dx), where V is continuous and vol is the volume measure

on M . Further assume that µ0(dx) = f0(x)ν(dx) and µ1(dy) = f1(y)ν(dy), T is

injective, and the distributional derivative of the mapping DT is a locally integrable

function (this can be relaxed slightly). Then, µ0-almost surely,

f0(x) = f1(T (x))J(T (x)), (2.59)

where J is the Jacobian determinant of T at x, defined weakly by:

J(T (x)) := lim
ε→0

ν [T (Bε(x))]

ν[Bε(x)]
. (2.60)

While Theorem 2.6 stipulates the conditions for which we have a distribu-

tional solution of the monitor equation, Equation (2.57), it does not state that

such a mapping T is unique or when it is diffeomorphic. One particular unique

choice of the map is furnished by the Monge problem of Optimal Transport, which

was introduced in Section 2.1.2. The approach of Optimal Information Transport,

introduced in Section 2.2 and in the works Bauer et al. (2015); Modin (2015), is to
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work directly in the space of diffeomorphisms and thus guarantee a diffeomorphic

mapping at the expense of limiting oneself to smooth density functions strictly

bounded away from zero.

What we will find is that under fairly general assumptions on the source

and target masses, for subsets of Euclidean space and the n-sphere we can find

diffeomorphic mappings using the techniques of Optimal Transport and Optimal

Information Transport, which both satisfy the Jacobian equation and give us dif-

feomorphic mappings, appropriate for our moving mesh methods, the regularity

results are contained in Loeper (2011) for the Optimal Transport problem and

in Bauer et al. (2015) for the Optimal Information Transport problem.

The mapping arising from Optimal Transport is elected by further requiring

that the map T minimize the following integral:

I =

ˆ
Ωc

|T (x)− x|2 dµ0(x). (2.61)

If the underlying manifold is Rd, it can be shown that such a mapping is the

gradient of a convex function u, that is: T (x) = ∇xu(x), which makes it irrota-

tional (meaning ∇ × T = 0 Budd and Williams (2009)). More specifically, the

regularity theory of Caffarelli (see the summary in Villani (2003)) shows us that

if f0, f1 ∈ C0,α(Rd) for 0 < α < 1 and 0 < f0, f1 < ∞, then we are guaranteed

that the mapping is, in fact, a diffeomorphism.

In the more general manifold setting, we have that the mapping solving

the Optimal Transport problem with squared geodesic cost is given by T (x) =

expx (∇u) (as long as the manifold is geodesically complete), see McCann (2001),

where u is as a c-convex function, see Definition 2.1. For the n-sphere, fairly

general conditions on the source and target masses are given in Loeper (2011), in

which it is shown that under those assumptions (see Section ??), mass transports

to a distance bounded strictly below the injectivity radius and gives us differen-

tiability. Like the case of Rd, we also need 0 < f0, f1 < ∞. More detail on the

regularity results of the Optimal Transport problem will be shown in Section 2.1.
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The more general manifold case fails quite spectacularly in terms of differentiabil-

ity, see the result in Figalli et al. (2010) for a simple example where differentiability

fails to hold.

Optimal Information Transport provides another option for computing a

mapping for moving mesh methods as a change of variables between two prob-

ability measures. We provided much more detail on the Optimal Information

Transport problem in Section 2.2, but we summarize the relevant details here.

The regularity results of Optimal Information Transport is are clearly geomet-

rically more general than the corresponding result for Optimal Transport, since

they only depend on the manifold being compact. In Optimal Transport case, in

the space of probability measures endowed with the Wasserstein metric between

smooth source and target probability measures bounded away from zero, there

exists a unique path Tt : [0, 1] → Diff, where Diff(M) in the cases M = Sd and

M = Rd. For more general compact manifolds, see Figalli et al. (2010), this does

not hold. For the moving mesh problem, then, we expect both Optimal Transport

and Optimal Information Transport to be versatile and useful in Rd and Sd. For

more general manifolds M , thus, Optimal Information Transport is preferable.

2.5 Numerical Analysis and Challenges for Optimal Transport

As far as numerical Optimal Transport is concerned, there exist many fruitful

avenues of research which address the issues of convergence proofs and rates, effi-

ciency and stability of solvers, and scalability with dimension. As noted earlier, the

difficulty in proving convergence for numerical solutions to the Optimal Transport

problem can come from many sources like nonlocal boundary conditions Ham-

feldt (2019) and a lack of a comparison principle for the PDE (in the case of

the sphere). The underlying geometry may produce discontinuous mapping T for

even C∞ data, see Figalli et al. (2010). The cost function c itself can lead to some

problems, such as for c(x, y) = d(x, y) which does not even yield a unique solu-

tion Santambrogio (2015); Villani (2003). The point is that there is a menagerie
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of problems with clear applications that can be targeted for exploration.

There are many different numerical approaches to the Optimal Transport

problem, many of which are the best choice for particular cases. The methods we

present here are usually used in Euclidean space for Monge-Ampère-type equations

or for computing the Wasserstein distance, the mapping T or the potential function

u. Most of the competing schemes outlined below were developed for the quadratic

cost. The approach in this dissertation is to establish a convergence theorem based

on the theory of viscosity solutions and then construct finite-difference methods

that satisfy the hypotheses of the convergence theorem. The crux of the type of

construction we pursue is usually in the explicit construction of monotone schemes.

There is a long avenue of approach for constructing monotone schemes in

Euclidean space and was performed in the papers Benamou et al. (2016); Ben-

amou and Duval (2017); Benamou et al. (2014); Bonnet and Mirebeau (2021);

Chen et al. (2018); Froese (2012, 2018); Froese and Oberman (2011a,b, 2013);

Hamfeldt and Salvador (2018); Hamfeldt (2019, 2018); Hamfeldt and Lesniewski

(2022a,b); Liu et al. (2017); Oberman (2006, 2008). The authors Feng et al.

(2013b); Feng and Lewis (2014a) introduced the notion of generalized monotonic-

ity (referred to as g-monotonicity in the papers) in for Galerkin methods as well

as finite-difference schemes in 1D and extended the results for Galerkin methods

to higher dimensions d ≥ 2 in Feng and Lewis (2014b, 2018). One of the origi-

nal numerical schemes proposed for solving the Monge-Ampère equation used the

notion of generalized solutions of the Monge-Ampère equation to build piecewise

convex solutions, see Oliker and Prussner (1988). A discretization based on taking

the logarithm or the nth root of the Monge-Ampère equation and then solving via

standard optimization techniques was the intriguing idea developed in Lindsey

and Rubinstein (2017) A linear programming solution of the discrete Kantorovich

formulation in Section 2.1.1 that uses a multigrid approach to reduce the computa-

tional complexity was pursued in Oberman and Ruan (2020). Linear programming

was also used for non-quadratic squared cost in Schmitzer (2016). Schemes for the
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semi-discrete case were proposed in Lévy (2015). Semi-Lagrangian schemes were

used in Feng and Jensen (2017) and explained more in the review paper Feng et al.

(2013a). Galerkin-type and finite-element schemes were investigated extensively

by Neilan and others, see Feng et al. (2013a); Feng and Neilan (2007); Neilan (2010,

2014). Inspired by the original notion of viscosity solution, the vanishing viscos-

ity method was developed, see Feng et al. (2013a); Feng and Neilan (2009a,b).

It should be noted that the vanishing viscosity method is not a discretization in

of itself, but could adapt to use any discretization, be it achieve by finite differ-

ences, finite elements, etc. It must be clearly noted that the vanishing viscosity

method fortuitously captured the convexity of the problem in Euclidean space. A

fixed-point method with finite differences was used in Benamou et al. (2010). A

finite-element scheme was produced for the W1 distance after simplification via a

Hodge-decomposition and a spectral representation in Solomon et al. (2014) and

a primal-dual algorithm was proposed for a regularization version of the W1 dis-

tance in Li et al. (2016). Discretization via discrete entropic regularization is an

extremely popular approach popularized by the paper Cuturi (2013), which takes

advantage of the efficient Sinkhorn algorithm. Augmented Lagrangian methods

were used in Dean and Glowinski (2006a,b) and a least-squares and operator split-

ting methods in Dean and Glowinski (2005, 2006b, 2008); Glowinski et al. (2008);

Prins et al. (2015) and a least squares method for the logarithmic cost in Ya-

dav et al. (2019). Some techniques for solving the Optimal Transport problem

also are derived from the Benamou-Brenier formulation of Optimal Transport, see

the original paper Benamou and Brenier (2000) as well as Benamou and Carlier

(2015), for example. We will review existing methods for the reflector antenna

problem in Chapter 5 when we compare which methods have convergence proofs

and how efficient the discretizations are.

Recently, some progress has been made in the solution of the Optimal Trans-

port problem on the sphere. The work of Weller et al. (2016a) used a geometric

interpretation of a Monge-Ampère type equation on the sphere to produce the first
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such method, which applies to the squared geodesic cost. A finite element solution

of this Monge-Ampère type equation was produced in McRae et al. (2018). For

problems posed on a subset of the sphere, the stereographic projection can be

used to reframe the problem as an Optimal Transport problem on the plane (with

non-quadratic cost); this was the approach of Romijn et al. (2020). For a partic-

ular logarithmic cost function, the semi-discrete Optimal Transportation problem

on the sphere admits a particularly nice interpretation in terms of generalized

(spherical) power diagrams. The work of Cui et al. (2019) recently exploited this

interpretation to develop a fast, convergent method using techniques from compu-

tational geometry. However, these methods lack convergence guarantees and are

limited to specific cost functions.

2.5.1 The Convergence Framework of Barles-Souganidis

A powerful contribution to the numerical approximation of elliptic (and

parabolic as well) equations was provided by the Barles-Souganidis framework,

which states that the solution to a scheme that is consistent, monotone, and

L∞-stable will converge to the viscosity solution, provided the underlying PDE

satisfies a comparison principle Barles and Souganidis (1991). The original paper

demonstrates the convergence framework posed on an open set Ω ⊂ Rn. We first

start with the definition of lower and upper semicontinuous envelopes.

Definition 2.7 (Semi-continuous envelopes). The upper and lower semicontinu-

ous envelopes of a function u are given by

u∗(x) = lim sup
y→x

u(y), u∗(x) = lim inf
y→x

u(y).

Now we can introduce the definition of viscosity solutions, see also Figure 2.7.

Consider the PDE:

F (x,∇φ(x), D2φ(x)) = 0, x ∈ Ω. (2.62)

Definition 2.8 (Viscosity Solutions). An upper semi-continuous function u : Ω̄→
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R is a viscosity subsolution (resp. supersolution) of Equation (7.1), if for all

φ ∈ C2(Ω̄) and all x ∈ Ω̄ such that u∗ − φ (resp. u∗ − φ) has a local maximum

(resp. minimum) at x, we have F∗ (x, u∗(x), Dφ(x), D2φ(x)) ≤ 0 (resp. ≥ 0). The

function u is a viscosity solution if it is a subsolution and a supersolution.

Figure 2.7 The definition of a viscosity solution u for an elliptic PDE F is perhaps
more obvious at points of second differentiability x1 where the C2 test functions
above and below form subsolutions and supersolutions, respectively. For the point
of non-differentiability x2, the test function defines a subsolution as a bounding
paraboloid. However, the test function below φ′ satisfies the supersolution condi-
tion vacuously.

We consider finite difference schemes that have the form

F h (x, u(x), u(x)− u(·)) = 0 x ∈ Gh, (2.63)

and

h = sup
x∈Ω

min
y∈Gh
‖x− y‖ (2.64)

denotes the grid resolution.

In this setting, the properties required by the Barles-Souganidis framework

can be defined as follows.

Definition 2.9 (Consistency). The scheme, Equation (2.63), is consistent with
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Equation (7.1) if for any smooth function φ and x ∈ Ω̄,

lim sup
h→0,y→x,z∈Gh→x,ξ→0

F h(z, φ(y) + ξ, φ(y)− φ(·)) ≤ F ∗(x, φ(x),∇φ(x), D2φ(x)),

lim inf
h→0,y→x,z∈Gh→x,ξ→0

F h(z, φ(y) + ξ, φ(y)− φ(·)) ≥ F∗(x, φ(x),∇φ(x), D2φ(x)).

Definition 2.10 (Monotonicity). The scheme, Equation (2.63), is monotone if

F h is a non-decreasing function of its final two arguments.

Definition 2.11 (Stability). The scheme, Equation (2.63), is stable if there exists

M ∈ R (independent of h) such that whenever uh is a solution of Equation (2.63)

then ‖uh‖∞ ≤M .

Also, we have the comparison principle, which is a very important property that

many elliptic PDE have.

Definition 2.12 (Strong Comparison Principle). If u is an upper semi-continuous

solution of Equation (7.1) and v is a lower semicontinuous solution of Equa-

tion (7.1), then u ≤ v on Ω̄.

Then, we have the strong result that the numerical solution of the discretization

converges uniformly to the a priori continuous viscosity solution of the underlying

PDE, see Barles and Souganidis (1991).

Theorem 2.13 (Barles-Souganidis). Assume that the PDE operator F is contin-

uous in all its variables. Let the discrete operator F h be consistent, monotone,

and L∞ stable. Furthermore, let the PDE operator F satisfy the strong compari-

son principle. Then, we have uh → u uniformly where u is the unique continuous

viscosity solution of Equation (7.1).

The definition of monotonicity presented in Barles and Souganidis (1991) is very

important in establishing many convergence results, but monotonicity is equivalent

to the much simpler definition of degenerate ellipticity (of a scheme) when using

finite-difference schemes. For this definition, we will also now be working on a 2D

manifold M .
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We begin with an unstructured grid G consisting of N points xi ∈ M, i, . . . , N .

The discretization operator S is indexed by i where F h
i [φ] is used to perform a

computation at each point xi on the function φ : M → R. In order to perform

a computation at the point xi, there is associated a list of “neighboring” points

N(i) used in the computation. Assume that the discrete scheme at each point can

be written as

F h
i [φ] := F h

i

(
φi, φi − φj|j=N(i)

)
, (2.65)

then we have the following definition from Oberman (2006).

Definition 2.14. The scheme F h
i is degenerate elliptic if for each index i, we have

F h
i is nondecreasing in each variable.

Then, the result from Oberman (2006) is that F h
i is degenerate elliptic if and only

if F h
i is monotone.

2.6 Wide-Stencil Schemes in R2

One of the biggest challenges in setting up finite difference schemes for fully non-

linear elliptic PDE is satisfying the monotonicity property, see Definition 2.10.

Even for some linear elliptic equations, it is not possible to build a consistent,

monotone scheme on a finite stencil Kocan (1995). To resolve this issue, wide-

stencil schemes have been introduced for a range of fully nonlinear elliptic PDE.

To achieve both consistency and monotonicity, these schemes require the width

of finite difference stencils to become unbounded as the grid is refined. A va-

riety of monotone schemes now exist for the Monge-Ampère equation Benamou

et al. (2016); Benamou and Duval (2017); Finlay and Oberman (2019); Froese and

Oberman (2011a); Oberman (2008), including schemes that can be posed on very

general grids Froese (2018); Hamfeldt and Salvador (2018); Nochetto et al. (2018).

The essential idea is that as a discretization parameter h decreases, the

number of points used in the neighborhood increases, but the radius of the neigh-
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borhood decreases. The grid points must resolve all directions as h → 0. An

example, from Froese (2018) and also presented in Chapter 4, is that the radius

of the computational neighborhoods r decreases not as r = O(h), but rather

as r = O(
√
h). This means then that the number of points in the computational

neighborhoods increases as h→ 0. The idea is that all directions are then resolved

as h → 0, fixing the issue noted in Kocan (1995), provided that the grid satisfy

some regularity requirements. In Hamfeldt and Turnquist (2022), we propose the

construction of wider stencils in post-processing to ensure the convergence of nu-

merical gradients. See Figure 2.8 for a pictorial representation of the wide stencil

idea of decreasing the radius of computational neighborhoods while increasing the

number of points.

(a) Larger discretization parameter h.

(b) Smaller discretization parameter h.

Figure 2.8 Wide-stencil schemes utilize computational neighborhoods, here de-
noted by the grey circles. Going from Figure 2.8a to Figure 2.8b, the discretization
parameter decreases (i.e. the minimum spacing h between points decreases), but
the number of points located in the computational neighborhoods about the red
points increases.

2.7 The Effect of Non-Euclidean Geometry

What is the effect of non-Euclidean geometry on the solution of our Optimal

Transport and Optimal Information Transport problem and for the design of nu-

merical schemes? Here we do a quick rundown of the effects that concern us. The
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effect of the non-Euclidean geometry will become more obvious as the schemes

and convergence proofs are constructed in the sequel. However, we can highlight

some important effects the geometry has on the PDE level and on the level of

discretization:

• The geometry can direct affect the regularity of the solution of Monge-
Ampère, allowing for the existence of smooth source and target masses, but
a mapping T which is not C1(M), see Figalli et al. (2010).

• Compactness is important for the simplicity of the moving-mesh method,
since otherwise the density of mesh nodes would be required to decay at
infinity, see Bauer et al. (2015).

• The regularity theory does not restrict one to the dimension d = 2, but
this makes it simpler to build efficient schemes which use the tangent plane
construction.

• Alternative methods (beyond finite-difference schemes) will be necessary to
construct efficient discretizations in high dimensions to overcome the curse
of dimensionality.

• Lack of a boundary on the manifold M requires the selection of a particular
solution and usually leads to slower convergence rates, see Hamfeldt and
Turnquist (2022).

• The manifolds we are dealing with are geodesically complete, and therefore
geodesics exist connecting any points x, y ∈ M . However, the explicit for-
mulas for such geodesics is hard to generalize beyond the case of the sphere
and other simple cases, see Lee (2006).

• The (negative and positive) curvature bounds of the manifold M are the
backbone upon which C2 regularity results can be built, see Loeper (2009).

• For our Monge-Ampère equation, Equation (2.14), the geometry results in
the PDE having nonlinear first-order derivative terms that are mixed in
with second-order derivative terms (unlike the Optimal Transport PDE com-
monly derived in Euclidean space for the squared cost), see Loeper (2009).
Our more general case, in practice, thus makes discrete solvers much more
unstable.
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CHAPTER 3

CONVERGENCE FRAMEWORK

Here, we propose a general convergence framework for the Optimal Transport

problem on the sphere, the majority of which is contained in the publication Ham-

feldt and Turnquist (2021a), but in this chapter we also include some parts from

the publication Hamfeldt and Turnquist (2021b) which are, perhaps, more ap-

propriately placed in this chapter. The key point we wish to stress is that this

convergence framework is very easily adapted to PDE beyond the Optimal Trans-

port PDE considered here and to other cost functions, which satisfy the conditions

explicitly stated in Theorem 4.1 of Loeper (2011). While not stated explicitly, in

our later construction of the scheme, see Chapter 4, we will discretize using finite-

difference schemes. The convergence theorem in this chapter will require that the

discretization scheme satisfy the key properties of consistency and monotonicity.

It is the latter which is perhaps simpler to construct using finite-difference schemes

versus other discretizations.

Our convergence framework is inspired by the Barles-Souganidis framework

introduced in Section 2.5.1, but requires considerable consideration of the spherical

geometry and dealing with the fact that there is no comparison principle for this

PDE. Furthermore, our convergence result will apply to discretizations on very

general meshes and point clouds on the sphere, which need only satisfy very mild

regularity conditions. The convergence framework applies very generally also to

any consistent, monotone approximation schemes, so it generalizes beyond the

case of Optimal Transport. Although we state here that we will be addressing two

specific cost functions: the squared geodesic cost function and the logarithmic

cost function, the convergence framework proposed here is not specific to any

cost function. We introduce appropriate local coordinates and therefore solve the

PDE on local tangent planes, which allows for the use of a wide range of monotone

approximation schemes for PDE in R2. In addition, we introduce Lipschitz control
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on the PDE, which introduces sufficient stability to guarantee convergence in the

absence of a comparison principle for the PDE.

3.1 Background

3.1.1 Optimal Transport on the Sphere

We consider the Optimal Transport problem in Equation (2.14) under Hypothe-

ses 2.2 and 2.3. To reiterate, we are interested in two different cost functions

c(x, y): the “squared geodesic cost” on the sphere,

c(x, y) =
1

2
dS2(x, y)2 =

1

2

(
2 sin−1

(
‖x− y‖

2

))2

, (3.1)

and the “logarithmic cost” arising in the reflector antenna problem,

c(x, y) = − log ‖x− y‖ . (3.2)

While this problem can be interpreted classically under fairly general assumptions,

for very general density functions (f0, f1 ∈ Lp(S2)) or for more general manifolds

(including smooth compact manifolds such as certain ellipsoids Figalli et al. (2010)

even with f0, f1 ∈ C∞(S2)), C1 solutions u need not exist. Moreover, the type of

convergence analysis frequently used for classical solutions of linear equations is

not easily adapted to constrained fully nonlinear equations. For these reasons, it

is also advantageous to be able to interpret Equation (2.14) in a weak (viscosity)

sense.

Classically speaking, however, we denote the elliptic PDE by the second-

order elliptic operator F : S2 × R× Tx × Tx ⊗ Tx → R acting on a C2 function u

at the point x as:

F
(
x, u(x),∇S2u(x), D2

S2u(x)
)

= 0. (3.3)

Let F now denote the PDE operator arising from Equation (2.14). In order to
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introduce our notion of viscosity solutions for Equation (2.14), we introduce the

notation E(F ) to denote the space of functions on which the PDE operator F is

elliptic. Recall the concepts of upper and lower envelopes of a function presented

in Section 2.5.1.

Definition 3.1 (Viscosity Solutions). An upper (lower) semicontinuous function

u : S2 → R is a viscosity sub (super)-solution of Equation (2.14) if for every

x0 ∈ S2 and φ ∈ C∞(S2)∩E(F ) such that u−φ has a local maximum (minimum)

at x0 we have

F (∗)
∗ (x0, φ(x0),∇S2φ(x0), D2

S2φ(x0)) ≤ (≥)0.

A continuous function u : Ω → R is a viscosity solution of Equation (2.14) if it

is both a sub-solution and a super-solution.

3.1.2 Numerical Methods for Fully Nonlinear Elliptic Equations

The convergence framework of Barles and Souganidis, introduced in Sec-

tion 2.5.1, does not apply to all elliptic PDEs, including Equation (2.14), which

does not have the required comparison principle. Nevertheless, it provides an im-

portant starting point for the development of convergent numerical methods. In

particular, monotone schemes possess a weak form of a discrete comparison princi-

ple even if the limiting PDE does not (Hamfeldt, 2018, Lemma 5.4). If the scheme

additionally exhibits an increasing dependence on the function u itself, we obtain

a traditional strong form of the discrete comparison principle that guarantees so-

lution uniqueness. The discrete operator F h being an increasing dependence on u

is known as being proper.

Definition 3.2 (Proper). The scheme, Equation (2.63), is proper if F h is an

increasing function of its second argument.

Lemma 3.3 (Discrete comparison principle (Oberman, 2006, Theorem 5)). Let

F h be a monotone, proper scheme and F h(x, u(x), u(x)−u(·)) ≤ F h(x, v(x), v(x)−

v(·)) for every x ∈ Gh. Then u(x) ≤ v(x) for every x ∈ Gh.
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Another property that has recently proved important in establishing conver-

gence of some numerical methods for the Monge-Ampère equation is the concept

of underestimation Benamou and Duval (2017); Hamfeldt (2019); Lindsey and

Rubinstein (2017). This concept will be important for our efforts to extend our

convergence framework to the non-smooth setting.

Definition 3.4 (Underestimation). The scheme, Equation (2.63), underestimates

Equation (7.1) if

F h(x, u(x), u(x)− u(·)) ≤ 0

for every (possibly non-smooth) solution u of Equation (7.1).

3.2 PDE on the Sphere

We begin by introducing an appropriate characterization of Equation (2.14) on

the sphere, which will show how the numerical computations can be performed

in local tangent planes. Wide-stencil schemes, see Section 2.6, will be built thus

in the tangent planes. We also introduce a modification of the PDE that will

allow us to build c-convexity and additional Lipschitz stability into our numerical

framework.

3.2.1 Interpretation of the PDE

Solving Equation (2.14) is unique up to an arbitrary constant. For this reason, we

also require that the solution u satisfy

〈u〉 ≡
´
S2 udV´
S2 dV

= 0. (3.4)

With both cost functions, the gradient (an object in the tangent plane) appears

in the mapping T . Letting g be the standard round metric on the sphere, then

the gradient is given by ∇u(x) = gij∂iu∂j, where ∂j ∈ Tx and gij is the inverse of

the round metric tensor expressed in local coordinates. The mapping T then can

be computed directly by solving Equation (2.15).
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For the squared geodesic cost, the optimal mapping T (x, p) has a very

simple expression in terms of the exponential map. Given a tangent vector p

(which, in particular, would include the gradient defined above) the exponential

map is defined as

expx(p) = γx,p(‖p‖). (3.5)

Here γx,p(t) denotes the point a distance t (parametrized by arclength) along the

geodesic beginning from x ∈ S2 and oriented in the direction p. Then the optimal

map corresponding to the squared geodesic cost is given by

T (∇u(x)) = expx(∇u(x)).

As in McRae et al. (2018), this map can be found explicitly as

T (x, p) = cos (‖p‖)x+ sin (‖p‖) p

‖p‖
. (3.6)

We derive a similar explicit form of the optimal map corresponding to the

log cost (see Appendix B):

T (x, p) = x
‖p‖2 − 1/4

‖p‖2 + 1/4
− p

‖p‖2 + 1/4
. (3.7)

The explicit formulas for the mapping T for both costs demonstrates that they

are continuous functions of the gradient. Thus, a smooth gradient ∇u(x) leads to

a smooth mapping T , which simplifies the task of obtaining consistent approxi-

mations of the mapping.

Computing derivatives of order n ≥ 2 in the tangent plane introduces some

local distortion due to the choice of coordinate system. The Hessian on manifolds

usually includes an additional first-order term that is non-zero if the Christoffel

symbols are non-zero. In our approach in this article, we will be interested in a

choice of local coordinates (geodesic normal coordinates) that cause the Christoffel

symbols to vanish. This, in turn, will allow us to compute the spherical Hessian
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as a “flat” Hessian on the local tangent plane.

The condition that a solution u must be c-convex implies that u can be

characterized as the c-transform of some function ψ, recall the definition in Sec-

tion 2.1.2. For u and T (x, p) smooth and c-convex, this condition implies that

D2u(x) +D2
xxc(x, T (x,∇u(x))) ≥ 0, (3.8)

where the inequality here means that the matrix is positive semidefinite. We

remark that Equation (2.14) is elliptic only on the space of functions satisfying

this constraint. That is,

E(F ) = {u ∈ C2(S2) | D2u(x) +D2
xxc(x, T (x,∇u(x))) ≥ 0}. (3.9)

3.2.2 Tangent Plane Characterization

In order to actually approximate Equation (2.14) at a point x0 ∈ S2, we wish to

define a set of local coordinates vx0(x) that will map points on the sphere to points

on the tangent plane Tx0 . This would then allow us to draw from the discretization

schemes that are already available for approximating fully nonlinear elliptic PDE

in R2.

We mention that the determinant of the Hessian, and the magnitude and

direction of the gradient, are coordinate-invariant quantities. Our particular choice

of normal coordinates is motivated primarily by the desire for computational ease.

We reemphasize that the computational challenge here is that local coordinates

can distort the Hessian and require the introduction of an additional first-order

term. To avoid the need to modify the PDE, we choose to work with geodesic

normal coordinates, see Figure 3.1. These retain sufficient local structure of the

manifold to cause the Christoffel symbols to vanish, which in turn causes the

first-order correction term to vanish.

In particular, this choice of normal coordinates preserves distances from the
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Figure 3.1 In local normal coordinates about the point z0, the coordinates of a
point z are expressed in the local tangent coordinates (x, y) with z0 as the origin.
The distance from a point z to the origin in the coordinate system (x, y) is equal
to the Euclidean length of the vector v = z1− z0 which the exponential map takes
to the point z. On the sphere, normal coordinates can be made explicit due to
the fact that the exponential map has an explicit formula.

reference point x0. That is, if x ∈ S2 and vx0(x) ∈ Tx0 are sufficiently close to x0,

then

‖x0 − vx0(x)‖ = dS2(x0, x).

These coordinates also preserve orientation so that the projection of x − x0 into

the tangent plane is parallel to vx0(x) − x0. On the sphere it is possible to con-

struct such coordinates for neighborhoods of uniform size and, in addition, the

mapping vx0 is invertible and differentiable. We compute the following explicit

representation Appendix C:

vx0(x) = x0 (1− dS2(x0, x) cot dS2(x0, x)) + x (dS2(x0, x) csc dS2(x0, x)) . (3.10)

For each point x0 ∈ S2 we can now define a function ũx0(z) on the relevant tangent

plane Tx0 in a neighborhood of x0 by

ũx0(z) = u
(
v−1
x0

(z)
)
. (3.11)
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This choice of coordinates allows us to express Equation (2.14) at the point x0 ∈ S2

as a generalized Monge-Ampère equation

F
(
x0,∇ũ(x0), D2ũ(x0)

)
≡ − det

(
D2ũ(x0) + A(x0,∇ũ(x0))

)
+H(x0,∇ũ(x0)) = 0,

(3.12)

which is now conveniently posed locally on two-dimensional planes. Thus the

problem of approximating the PDE at x0 reduces to the problem of constructing

an approximation to the two-dimensional generalized Monge-Ampère equation,

Equation (3.12), at x0, posed on the tangent plane containing the points vx0(x).

We emphasize again that the gradient and Hessian of ũ on the tangent plane

at x0 are equivalent to the surface gradient and Hessian on the original function u

on the sphere at x0 (Lee, 2006, Lemma 4.8 and Proposition 5.11). Thus using these

local coordinates indeed allows us to interpret our PDE, without modification, on

the tangent plane.

Lemma 3.5. Let u ∈ C2(S2) and x0 ∈ S2, with ũ : Tx0 ∈ R defined in geodesic nor-

mal coordinates via Equation (3.11). Then the PDE operator in Equation (2.14)

applied to u at the point x0 is equivalent to the generalized Monge-Ampère operator

in Equation (3.12) applied to ũ at the point x0:

F (x0,∇S2u(x0), D2
S2u(x0)) = F (x0,∇ũ(x0), D2ũ(x0)).

3.2.3 Constraints

We now turn our attention to the problem of incorporating constraints into the

PDE. We recall that the PDE operator in Equation (2.14) is elliptic only on the

space of functions satisfying the constraint in Equation (3.9). Consequently, this

constraint is necessary for the equation to be well-posed. We propose instead

to produce a globally elliptic extension of Equation (2.14) that does not require

additional constraints. To do so, we introduce a modified determinant operator
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satisfying

det+(M) =


det(M), M ≥ 0,

< 0, otherwise.

(3.13)

Then we can absorb the constraint into Equation (3.12) through the modification

F+(x,∇u(x), D2u(x)) ≡ −det+(D2u(x) + A(x,∇u(x))) +H(x,∇u(x)) = 0.

(3.14)

Since the function H > 0, (sub)solutions of this will automatically satisfy the

condition

D2u(x) + A(x,∇u(x)) ≥ 0.

The solution u of Equation (2.31) is also known to satisfy a priori bounds

on its gradient,

‖∇u‖ ≤ R (3.15)

for any R > π in the case of the squared geodesic cost and R > C in the case of

the logarithmic cost. Here C is the bound on ∇u determined in (Loeper, 2011,

Proposition 6.1).

With the goal of constructing Lipschitz stable approximation schemes, we

state a modification of the PDE that explicitly includes these constraints on the

gradient.

G(x,∇u(x), D2u(x)) ≡ max
{
F+(x,∇u(x), D2u(x)), ‖∇u(x)‖ −R

}
= 0. (3.16)

We again emphasize that this new PDE is elliptic on all C2 functions (E(G) =

C2(S2)), and does not require any additional constraints. Moreover, as we demon-

strate below, the c-convex solution of Equation (2.14) is indeed a solution of this

modified equation.

Remark 3.6. Under the assumption that the globally elliptic equation, Equa-

tion (3.16), has a unique solution, it must automatically coincide with the c-convex

53



solution of the original equation. Comparison principles and uniqueness results

for many fully nonlinear elliptic PDEs of this form are available Crandall et al.

(1992). However, these calculations are highly technical and need to be specifically

adapted to the PDE at hand. This is beyond the scope of the present article.

It is not a priori obvious that solutions of this new PDE operator will auto-

matically satisfy the original PDE. Indeed, because of the action of the maximum

operator, they need only be subsolutions. To establish the plausibility of this new

operator, we establish that the equivalence of these two equations for smooth,

c-convex functions.

Theorem 3.7 (Equivalence of PDE (smooth case)). Under the conditions of Hy-

pothesis 2.2, a c-convex function u ∈ C2 is a solution of Equation (2.14) if and

only if it is a solution of Equation (3.16).

Before completing the proof, we establish a few lemmas relating to the

transportation of mass by subsolutions. The following proofs will make use of an

abbreviated notation for the transport map:

Tu(x) = T (x,∇u(x)).

Lemma 3.8. If u ∈ C2 is c-convex then it satisfies the constraint in Equa-

tion (3.8): D2u(x) +D2
xxc(x, Tu(x)) ≥ 0.

Proof. If u is c-convex, then for every x0 ∈ S2 we can fix y = Tu(x0) and find that

the supremum in

uc(y) = sup
x∈S2
{−c(x, y)− u(x)}

is attained at x0. The optimality condition for this is precisely Equation (3.8).

Lemma 3.9. Under the conditions of Hypothesis 2.2, let u ∈ C2 be a subsolution

of Equation (2.14). Then

ˆ
Tu(S2)

f1(y) dy ≤
ˆ
S2
f0s(x) dx.
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Proof. By design, the transport maps from Equations (3.6)-(3.7) satisfy Tu(S2) ⊂

S2. Because of mass balance we conclude that

ˆ
S2
f0(x) dx =

ˆ
S2
f1(y) dy ≥

ˆ
Tu(S2)

f1(y) dy.

The preceding lemma will be used to derive a contradiction that shows

smooth subsolutions of Equation (2.14) are, in fact, solutions.

Lemma 3.10. Under the conditions of Hypothesis 2.2, let u ∈ C2(S2) be a subso-

lution of Equation (2.14). Then u is a solution of Equation (2.14).

Proof. Suppose u is not a solution. Since u ∈ C2(S2), there exists some open set

E ⊂ S2 such that

F (x,∇u(x), D2u(x)) < 0.

We recall that the mapping Tu satisfies the condition given by Equation (2.15):

∇u(x) = −∇xc(x, Tu(x)).

Differentiating yields

D2u(x) = −D2
xxc(x, Tu(x))−D2

xyc(x, Tu(x))DTu(x).

Since u is a subsolution of Equation (2.14), we know that

∣∣det(D2
xyc(x, Tu(x)))

∣∣ f0(x)/f1(Tu(x)) ≤ det(D2u(x) +D2
xxc(x, Tu(x)))

=
∣∣det(D2

xyc(x, Tu(x)))
∣∣ det(DTu(x)).

Therefore,

f0(x) ≤ det(DTu(x))f1(Tu(x))

with strict inequality on an open set E ⊂ S2.
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Integrating, we obtain

ˆ
S2
f0(x) dx <

ˆ
Tu(S2)

f1(y) dy.

This contradicts Lemma 3.9 and thus u is a solution of Equation (2.14).

Proof of Theorem 3.7. Let u be a c-convex solution of Equation (2.14). Then it

satisfies the gradient bound ‖∇u‖ − R ≤ 0 from Equation (3.15). Because it is

c-convex, it also satisfies the constraint Equation (3.8) (Lemma 3.8) so that

F+(x,∇u(x), D2u(x)) = F (x,∇u(x), D2u(x)) = 0.

Then trivially the maximum of these operators also vanishes, and the modified

PDE, Equation (3.16), is satisfied.

Now we let u be a solution of the modified PDE, Equation (3.16), so that

max
{
F+(x,∇u(x), D2u(x)), ‖∇u(x)‖ −R

}
= 0.

This implies that u is a subsolution of the convexified PDE operator in Equa-

tion (3.14) denoted by F+. Subsolutions of this equation automatically satisfy

the constraint (Equation (3.8)) (see the definition of det+) so that

F (x,∇u(x), D2u(x)) = F+(x,∇u(x), D2u(x)) ≤ 0.

From Lemma 3.10, u is necessarily a solution of Equation (2.14).

We also partially extend this equivalence result to the non-smooth case for

the squared geodesic cost.

Theorem 3.11 (Equivalence of PDE (non-smooth case)). Under the conditions of

Hypothesis 2.3, let u ∈ C0,1(S2) be a c-convex viscosity solution of Equation (2.14).

Then u is a viscosity solution of Equation (3.16).

56



Remark 3.12. The key to proving this result is the observation that subsolutions

of the modified equation satisfy a priori Lipschitz bounds. This is fairly straight-

forward for the squared geodesic cost, but more challenging for the logarithmic cost

because of the singularity in the cost function. Below, in Section 3.2.4, an alter-

native (regularized) version of the logarithmic cost function is used that yields an

a priori Lipschitz bound and thus the same reasoning used in this section for the

squared geodesic cost applies as well to the unregularized logarithmic cost.

Once again, we begin with a few lemmas.

Lemma 3.13 (Local c-convexity of test functions). Let u ∈ C0,1(S2) be c-convex

with cost function c(x, y) = 1
2
dS2(x, y)2 and φ ∈ C∞(S2). Suppose that u − φ has

a local maximum at x0. Then

D2φ(x0) +D2
xxc(x0, Tφ(x0)) ≥ 0.

Proof. At the maximizer x0 of u− φ, we must have ∇φ(x0) ⊂ ∂u(x0).

Since u is c-convex, there exists a function uc such that

u(x) + uc(y) = −c(x, y), y ∈ ∂u(x).

Thus the maximizer x0 of u−φ will also maximize the function −uc(y)− c(x, y)−

φ(x), where we can in particular choose y = Tφ(x0). The optimality condition for

this is

−D2
xxc(x0, y)−D2φ(x0) ≤ 0, y = Tφ(x0).

Lemma 3.14 (Lipschitz bounds on subsolutions). Let u ∈ C0,1 be c-convex where

c(x, y) = 1
2
d2
S2(x, y). Then the Lipschitz constant of u is bounded by π.

Proof. We first consider x ∈ S2 such that u is differentiable at x. As in Loeper

(2011), we define the set

Gu(x) = {y ∈ S2, u(x) + uc(y) = −c(x, y)}.
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Letting ∂cu(x) denote the c-subdifferential of u, defined as

∂cu(x) = {−∇xc(x, y), y ∈ Gu(x)} ,

from Loeper (2009) Proposition 2.11 we know that for all c-convex u,

∅ 6= ∂cu(x) = ∂u(x).

Thus, ∇u(x) = ∂cu(x).

To bound ∇u, we need only bound the gradient of the cost function c(x, y):

∇xc(x, y) = dS2(x, y)∇xdS2(x, y).

Letting n̂ denote a unit tangent vector in the tangent plane T (x), we compute

∇xdS2(x, y) · n̂ = lim
s→0

dS2(expx(sn̂), y)− dS2(x, y)

s
.

From the triangle inequality we obtain the bounds

∇x · n̂dS2(x, y) ≤ lim
‖∆x‖→0

dS2(expx(sn̂), x) + dS2(x, y)− dS2(x, y)

s
= 1

and

∇x·n̂dS2(x, y) ≥ lim
s→0

dS2(expx(sn̂x), y)− dS2(expx(sn̂x), y)− dS2(expx(sn̂x), x)

s
= −1.

Therefore,

‖∇u(x)‖ ≤ ‖∇xc(x, y)‖ ≤ dS2(x, y) ≤ π (3.17)

at points x where u is differentiable. Since u is Lipschitz continuous, this gradient

bound is also a bound on the Lipschitz constant.

Proof of Theorem 3.11. Suppose that u is a c-convex viscosity solution of Equa-

tion (2.14). Consider any x0 ∈ S2 and φ ∈ C∞(S2) such that u − φ has a local
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maximum at x0. Then

F (x0,∇φ(x0), D2φ(x0)) ≤ 0.

Moreover, since u − φ is a maximum we know that ∇φ(x0) ⊂ ∂u(x0). From

Lemma 3.14 we find that ‖∇φ(x0)‖ − R < 0. Additionally, since u is c-convex, φ

must be locally c-convex as well near x0 (Lemma 3.13) so that φ ∈ E(F ) is a valid

test function for the original PDE operator. Thus,

F+(x0,∇φ(x0), D2φ(x0)) = F (x0,∇φ(x0), D2φ(x0)) ≤ 0,

and the modified operator will satisfy

max{F+(x0,∇φ(x0), D2φ(x0)), ‖∇φ(x0)‖ −R} ≤ 0.

Therefore u is a sub-solution of Equation (3.16).

Next we consider x0 ∈ S2 and φ ∈ C∞(S2) such that u − φ has a local

minimum at x0. If φ satisfies the constraint (Equation (3.8)) then φ ∈ E(F ) is a

valid test function for the original PDE operator. Thus, by the fact that u is a

supersolution of Equation (2.14), we have

max{F+(x0,∇φ(x0), D2φ(x0)), ‖∇φ(x0)‖ −R} ≥ F (x0,∇φ(x0), D2φ(x0)) ≥ 0.

Otherwise, D2φ(x0) + D2
xxc(x0, Tφ(x0)) is not positive semi-definite. From the

definition of the modified determinant operator Equation (3.13), this means that

F+(x0,∇φ(x0), D2φ(x0)) ≥ −det+(D2φ(x0) +D2
xxc(x0, Tφ(x0))) > 0.

This again leads to the inequality

max{F+(x0,∇φ(x0), D2φ(x0)), ‖∇φ(x0)‖ −R} > 0.
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In either case, we conclude that u is a super-solution, and therefore also a viscosity

solution, of Equation (3.16).

3.2.4 Regularization of the Logarithmic Cost

One modification of the PDE that we find is necessary to build monotone schemes

is to make the logarithmic cost Lipschitz by using a cutoff function. We re-

call that the solution u to the Optimal Transport satisfies an a priori Lipschitz

bound Loeper (2011) ‖∇u‖ < R, which also yields the following lower bound on

the distance mass can be transported:

‖x− y‖ > 1√
R2 + 1/4

(3.18)

when y = T (x,∇u(x)) is the exact transport map.

However, the process of solving a discrete version of Equation (2.14) may

evolve through values of u (and consequently y) that do not satisfy this bound.

This loss of Lipschitz continuity can lead to a breakdown in monotonicity. We

thus propose the following C3 regularization of the logarithmic cost function, which

agrees with the true logarithmic cost when the bound, Equation (3.2.4), is satisfied:

c̃(x, y) =


− log ‖x− y‖ , ‖x− y‖ ≥ 1√

R2+1/4
,

Ψ(‖x− y‖), ‖x− y‖ < 1√
R2+1/4

,

(3.19)

where z∗ =
1√

R2 + 1/4
and

Ψ(z) = − log(z∗)−
1

z∗
(z − z∗) +

1

2z2
∗
(z − z∗)2 − 1

3z3
∗
(z − z∗)3.

Because this regularization does not change the solutions of the PDE, the analysis

of Section 3.2.3 and the ultimate convergence result (Theorems 3.30 and 3.31) will

also apply to discretizations involving this smoother cost function.
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Lemma 3.15 (Equivalence of solution for modified cost function). Under the as-

sumptions of Hypothesis 2.2, a function u ∈ C3(S2) is a solution of Equation (2.14)

with the logarithmic cost (Equation (3.2)) if and only if it is a solution of Equa-

tion (2.14) with the regularized cost (Equation (3.19)).

Proof. First let u be a solution using the original cost function c(x, y) = − log ‖x− y‖.

Because of the a priori bounds on the gradient, this automatically satisfies Equa-

tion (2.14) with the regularized cost function.

Next let v be any solution of Equation (2.14) using the regularized cost

function c̃(x, y) from Equation (3.19). Notice that for ‖x− y‖ ≥ 1√
R2+1/4

, we

have

c̃(x, y) = − log

(
2 sin

(
1

2
dS2(x, y)

))
. (3.20)

It is easily verified via differentiation that this is convex in dS2(x, y) for ‖x− y‖ <
1√

R2 + 1/4
, and the original logarithmic cost is also convex in dS2(x, y). The

modified cost is C3, so verifying that the second derivative in the variable dS2(x, y)

is everywhere positive is sufficient to guarantee convexity in this variable. Since

this new cost function is Lipschitz and convex in the Riemannian distance, the

c̃-convex solution of Equation (2.14) for the regularized cost c̃(x, y) is guaranteed

to be unique by McCann as noted in Loeper (2009). Since the solution u of the

original equation solves this modified equation, uniqueness requires that v = u.

Remark 3.16. Because this regularization transforms the Optimal Transport prob-

lem with a singular cost function into an Optimal Transport problem with a smooth

cost function, the techniques of Section 3.2.3 (which were introduced for the squared

geodesic cost) can be extended to show that weak (C0,1) solutions of this modified

problem are also unique. This assumption of uniqueness of C0,1 viscosity solutions

was needed to prove convergence even in the smooth setting.

In the development and analysis of our numerical method in the following sections,

we will often refer to the cost function c̃. In the case of the logarithmic cost, this

refers to the regularized cost (Equation (3.19)). In the case of the squared geodesic
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cost, c̃ will refer to the original cost function c, which is automatically smooth.

3.3 Convergence Framework

3.3.1 Discrete Formulation

In order to numerically solve Equation (2.14), we begin with a point cloud Gh ⊂ S2

that discretizes the sphere. We define the discretization parameter h as

h = sup
x∈S2

min
y∈Gh

dS2(x, y). (3.21)

In particular, this guarantees that any ball of radius h on the sphere will contain

at least one discretization point.

We will impose some mild structural regularity on the grid.

Hypothesis 3.17 (Conditions on point cloud). There exists a triangulation T h

of Gh with the following properties:

(a) The diameter of the triangulation, defined as

diam(T h) = max
t∈Th

diam(t), (3.22)

satisfies diam(T h)→ 0 as h→ 0.

(b) There exists some γ < π (independent of h) such that whenever θ is an
interior angle of any triangle t ∈ T h then θ ≤ γ.

We remark that these are fairly standard assumptions on a grid: we are simply

prohibiting long, thin triangles.

We also associate to each point cloud Gh a search radius r(h) chosen to

satisfy

r(h)→ 0,
h

r(h)
→ 0 as h→ 0, diam(T h) < r(h). (3.23)

Now we considering the problem of constructing a discretization of Equa-

tion (3.16) at the point x0 ∈ Gh. We begin by projecting nearby grid points onto

the local tangent plan Tx0 , which is spanned by the orthonormal vectors
(
θ̂, φ̂
)

.
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For all points xi ∈ Gh ∩ B(x0, r(h)), we define their projection onto the tangent

plane through geodesic normal coordinates via

zi = x0 (1− dS2(x0, xi) cot dS2(x0, xi)) + xi (dS2(x0, xi) csc dS2(x0, xi)) . (3.24)

Let Zh(x0) ⊂ Tx0 be the resulting collection of points. See Figure 3.2.

1
0.5

01
0.5

0

1

0.5

0

Figure 3.2 The sphere S2 (left) and tangent plane Tx0 (right). A point cloud
discretizing one octant of the unit sphere (·), the point x0 (o), and the projections
z of neighboring nodes onto Tx0 (×).

These are now the discretization points available to use for the approximation

of Equation (3.16) at x0; recall that this PDE is posed on the two-dimensional

tangent plane. There are three components to this discretization: approxima-

tion of the Monge-Ampère type operator F+(z,∇u(z), D2u(z)) (Equation (3.14)),

approximation of the Eikonal term ∇u(x), and approximation of the averaging

term 〈u〉. Let F h, Eh, and Ah be suitable discretizations of these three operators.

Our framework will allow for a very general choice of schemes F h and Ah.

In particular, many currently available methods for the Monge-Ampère equation

can be adapted to fit within our requirements. The specific requirements are:

Hypothesis 3.18 (Conditions on schemes). We require the schemes F h(x, u(x)−

u(·)) and Ah(u(·)) to satisfy:

(a) F h is consistent with Equation (3.14) on all C2 smooth functions,

(b) F h is monotone,

63



(c) Ah is consistent with the averaging operator (Equation (3.4)) on all Lipschitz
continuous functions,

(d) Ah is linear and Ah(c) = c for any constant function c.

If we wish to obtain non-smooth solutions, F h will also need to be underes-

timating. We will require additional structure on Eh in order to obtain the strong

form of stability needed to guarantee convergence. In particular, we propose

Eh(z, u(z)− u(·)) = max
y∈Zh(z)

u(z)− u(y)

‖z − y‖
, (3.25)

which is consistent with ‖∇u(z)‖ and monotone (Lemma 3.19).

This allows us to produce the following consistent, monotone approximation

of Equation (3.16):

Gh(x, u(x)− u(·)) = max{F h(x, u(x)− u(·)), Eh(x, u(x)− u(·))−R}. (3.26)

Finally, we represent our overall approach through the following two-step

approach:

1. Solve the discrete system

Gh(x, vh(x)− vh(·)) + τ(h)vh(x) = 0, x ∈ Gh (3.27)

for the grid function vh.

2. Define the candidate solution:

uh(x) = vh(x)− Ah(vh(·)), x ∈ Gh. (3.28)

We remark that our candidate solution uh could also be obtained directly

through solution of the non-local approximation scheme

Gh(x, uh(x)− uh(·)) + τ(h)uh(x) + Ah
(
Gh(x, uh(x)− uh(·))

)
= 0. (3.29)
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3.3.2 Stability

We now establish some important stability properties of the solutions vh, uh of the

schemes in Equations (4.24)-(3.29). Consistency and monotonicity underpin these

results. They are built into our hypotheses on the scheme for the Monge-Ampère

type operator in order to allow for great flexibility in the numerical method. How-

ever, we also need to establish these properties for our proposed discretization of

the Eikonal operator.

Lemma 3.19 (Approximation of Eikonal operator). The scheme Eh is consistent

with ‖∇u‖ and monotone.

Proof. Monotonicity is immediately evident from the definition of Eh in Equa-

tion (3.25).

Now we recall that the magnitude of the gradient can be characterized as a

maximal directional derivative,

‖∇u‖ = max
‖ν‖=1

∂u

∂ν
.

We can obtain an approximation of the first directional derivative in the direction

ν =
z − y
‖z − y‖

via standard backward differencing:

Dz−yu(z) =
u(z)− u(y)

‖z − y‖
. (3.30)

Now we consider the set of all such directions that can be resolved using our

given set of neighbours Zh(z), defined as

V h(z) =

{
z − y
‖z − y‖

| y ∈ Zh(z)

}
.

The discretization Eh can be rewritten as

Eh(z, u(z)− u(·)) = max
ν∈V h(z)

Dνu(z). (3.31)
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We denote the directional resolution of this approximation by dθ, which can

be computed by

dθ = sup
‖ν‖=1

min
y∈Zh(z)

cos−1

(
z − y
‖z − y‖

· ν
)
.

We also remark that projecting the points xi ∈ Gh ∩ B(x0, r(h)) onto the

plane preserves both the spacing of grid points h and the effective search radius

r(h) up to a constant scaling. Since r(h) → 0, the effective grid spacing also

goes to zero and thus Equation (3.30) is a consistent differencing operator. Since

h

r(h)
→ 0 as h → 0, we will also have dθ → 0 as h → 0 as in (Froese, 2018,

Lemma 11). Thus Eh defined as in Equation (3.31) is consistent.

An immediate consequence of this is the consistency and monotonicity of

our overall scheme in Equation (3.26).

Lemma 3.20 (Consistency and monotonicity). Let Gh and F h satisfy the condi-

tions of Hypotheses 3.17 and 3.18 respectively. The the approximation Gh given

by Equation (3.26) is monotone and consistent with Equation (3.16).

We now use the monotonicity property (and resulting discrete comparison

principle) to establish existence and bounds for the solution to our approximation

scheme.

Lemma 3.21 (Existence and stability (smooth case)). Consider the schemes in

Equations (4.24)-(3.28) under the conditions of Hypotheses 2.2, 3.17, and 3.18.

Then solutions vh, uh exist and are unique. Moreover, there exists some M > 0

(independent of h) such that ‖vh‖∞, ‖uh‖∞ ≤M for all sufficiently small h > 0.

Proof. We remark first of all that the scheme in Equation (4.24) is monotone and

proper and therefore has a unique solution vh (Oberman, 2006, Theorem 8), which

immediately yields existence of uh.

Let u be the unique mean-zero solution to Equation (3.16). We know that

u ∈ C3(S2) (Theorem 2.5) and consequently is bounded. From consistency of the
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scheme in Equation (3.26) we have that

∣∣Gh(x, u(x)− u(·))
∣∣ ≤ τ(h)

for all x ∈ Gh and sufficiently small h > 0.

Now we choose some c > 0 and substitute u + c into the scheme in Equa-

tion (4.24).

Gh(x, (u(x) + c)− (u(·) + c)) + τ(h)(u(x) + c) ≥ −τ(h) + τ(h)(−‖u‖∞ + c)

> 0

= Gh(x, vh(x)− vh(·)) + τ(h)vh(x)

for c > ‖u‖∞ + 1. By the discrete comparison principle (Lemma 3.3), we have

that vh ≤ u+ c ≤ 2‖u‖∞ + 1. A similar argument produces a lower bound for vh.

This allows us to also bound the discrete average of vh via

Ah(vh(·)) ≤ Ah(2‖u‖∞ + 1) = 2‖u‖∞ + 1,

with a similar lower bound.

Since vh and Ah(vh) are bounded uniformly, uh = vh−Ah(vh) is also bounded

uniformly.

With some additional structure on our discretization, we can modify this

stability result to also hold in the non-smooth setting.

Lemma 3.22 (Existence and stability (non-smooth case)). Consider the schemes

in Equations (4.24)-(3.28) under the conditions of Hypothesis 2.3, 3.17, and 3.18.

Suppose also that F h is an underestimating scheme. Then solutions vh, uh exist

and are unique. Moreover, there exists some M > 0 (independent of h) such that

‖vh‖∞, ‖uh‖∞ ≤M for all sufficiently small h > 0.

Proof. As in Lemma 3.21, vh and uh are uniquely defined.
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Let u be the exact mean-zero solution of Equation (3.16). Now we know

that u is Lipschitz continuous with Lipschitz constant less than R. This implies

that

Eh(x, u(x)− u(·)) = max
y∈Zh(x)

u(x)− u(y)

‖x− y‖
≤ R.

Because F h is an underestimating scheme, we also know that

F h(x, u(x)− u(·)) ≤ 0.

Choosing any c > ‖u‖∞ we then obtain

Gh(x, (u(x)− c)− (u(·)− c)) + τ(h)(u(x)− c) ≤ τ(h)(‖u‖∞ − c)

< 0

= Gh(x, vh(x)− vh(·)) + τ(h)vh(x)

and by the discrete comparison principle we have the bound vh ≥ u − ‖u‖∞ ≥

−2‖u‖∞.

A simple smooth supersolution of Equation (3.16) is the constant function

φ(x) = c. Substituting this into the consistent scheme we find that

Gh(x, φ(x)− φ(·)) + τ(h)φ(x) ≥ −τ(h) + τ(h)c

> 0

= Gh(x, vh(x)− vh(·)) + τ(h)vh(x)

if we choose c > 1, which yields the bound vh ≤ 1.

As in Lemma 3.21, these uniform bounds on vh immediately yield uniform

bounds on uh.

An immediate consequence of this is that uh satisfies a discrete system that

is consistent with Equation (3.16).

Lemma 3.23 (Scheme for uh). Under the hypotheses of either Lemma 3.21 or
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Lemma 3.22, uh satisfies a scheme of the form

Gh(x, uh(x)− uh(·)) + τ(h)uh(x) + σ(h) = 0 (3.32)

where σ(h)→ 0 as h→ 0.

Another immediate consequence of these lemmas is that uh satisfies a discrete

Lipschitz bound uniformly in h.

Lemma 3.24 (Discrete Lipschitz bounds). Under the hypotheses of either Lemma 3.21

or Lemma 3.22, uh satisfies a local discrete Lipschitz bound of the form

∣∣uh(z)− uh(y)
∣∣ ≤ L ‖z − y‖ (3.33)

for all y ∈ Zh(z) and sufficiently small h > 0 where L ∈ R is independent of h.

Proof. Note that uh satisfies Equation (3.32). For small enough h, we can assume

τ(h), |σ(h)| < 1 and ‖uh‖∞ ≤M . By construction,

Eh(z, uh(z)− uh(·)) ≤ Gh(z, uh(z)− uh(·)) = −τ(h)uh(z)− σ(h) ≤M + 1 ≡ L.

From the definition of Eh, we then have

uh(z)− uh(y) ≤ L ‖z − y‖ , y ∈ Zh(z).

If uh(z)− uh(y) ≥ 0 we are done. Otherwise, we notice that z ∈ Zh(y) and

we can use the fact that

0 < uh(y)− uh(z) ≤ L ‖y − z‖ ,

which establishes the result.

Because of our choice of geodesic normal coordinates, we can immediately

extend this to a discrete Lipschitz bound for the function uh defined on Gh ⊂ S2
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in terms of geodesic distances on the sphere (rather than distances on the tangent

plane).

Lemma 3.25 (Discrete Lipschitz bounds on sphere). Under the hypotheses of

either Lemma 3.21 or Lemma 3.22, uh satisfies a local discrete Lipschitz bound of

the form ∣∣uh(x)− uh(y)
∣∣ ≤ LdS2(x, y) (3.34)

for all x ∈ Gh, y ∈ Gh ∩ B(x, r(h)), and sufficiently small h > 0. Here L ∈ R is

independent of h.

3.3.3 Interpolation

In order to establish convergence of the grid function uh to the solution of Equa-

tion (3.16), we will need to construct an appropriate (Lipschitz continuous) ex-

tension of it onto the sphere.

We start by considering linear interpolation of a grid function w : Gh → R

onto the triangulated surface T h described in Hypothesis 3.17. In particular,

we want to show that the local discrete Lipschitz bounds in Equation (3.34) are

inherited by the resulting piecewise linear interpolant.

Lemma 3.26 (Interpolation onto triangulated surface). Let Gh be a point cloud

satisfying Hypothesis 3.17 and let w : T h → R be a piecewise linear function,

linear on each triangle t ∈ T h, that satisfies the local discrete Lipschitz bounds

in Equation (3.34). Then there exists some L ∈ R (independent of h) such that

for every t ∈ T h and x, y ∈ T , w satisfies the Lipschitz bound |w(x)− w(y)| ≤

L ‖x− y‖.

Proof. First we consider the gradient of w on a single triangle t ∈ T h. Let t

have the vertices x0, x1, x2 ∈ Gh. Without loss of generality, we suppose that the

maximal interior angle of t occurs at the vertex x0. Since diam(T h) < r(h) → 0
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as h→ 0, there exists a constant L̃ (independent of h) such that

|w(xi)− w(xj)| ≤ LdS2(xi, xj) = 2L sin−1

(
‖xi − xj‖

2

)
≤ L̃ ‖xi − xj‖

for all i, j ∈ {0, 1, 2}. That is, we also have discrete Lipschitz bounds on this

triangle.

For x ∈ t, we can express w as

w(x) = w(x0) + q · (x− x0)

where q is in the space spanned by x1 − x0 and x2 − x0; that is,

q = q1(x1 − x0) + q2(x2 − x0)

for some q1, q2 ∈ R. We also denote by θ the angle between x1 − x0 and x2 − x0.

Note that θ ≤ γ < π under Hypothesis 3.17.

Then at the vertices of t we can write

w(xi) = w(x0) + qi ‖xi − x0‖2 + qj ‖xi − x0‖ ‖xj − x0‖ cos θ, i, j ∈ {1, 2}, i 6= j.

Solving this system for the coefficients q1, q2, we find that

q1 =
(w(x2)− w(x0)) ‖x1 − x0‖ cos θ − (w(x1)− w(x0)) ‖x2 − x0‖

‖x1 − x0‖2 ‖x2 − x0‖ (cos2 θ − 1)
.

Applying the discrete Lipschitz bound and since θ is the largest interior angle of

the triangle t, we have
π

3
≤ θ ≤ γ, so

|q1| ≤
L̃ (‖x1 − x0‖ ‖x2 − x0‖ |cos θ|+ ‖x1 − x0‖ ‖x2 − x0‖ |cos θ|)

‖x1 − x0‖2 ‖x2 − x0‖ (1− cos2 θ)
,

=
L̃(cos θ + 1)

‖x1 − x0‖ (1− cos2 θ)
,

≤ L̃

‖x1 − x0‖ (1− cos γ)
,
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with a similar bound on q2.

Combining these, we find that

|q| ≤ |q1| ‖x1 − x0‖+ |q2| ‖x2 − x0‖ ≤
2L̃

1− cos γ
.

In particular, we can define wh : T h → R as the unique piecewise linear

interpolant of uh : Gh → R that is linear on each triangle t ∈ T h. Notice that

wh satisfies the Lipschitz bounds of Lemma 3.26. This allows us to produce a

Lipschitz continuous interpolant of uh on the sphere by means of the closest point

projection cp : T h → S2,

cp(x) =
x

‖x‖
. (3.35)

We remark that since diam(T h)→ 0, this is a bijection for small enough h > 0.

This leads to the following extension of uh onto the sphere:

uh(x) = wh(cp−1(x)). (3.36)

That is, each triangle t ∈ T h is distorted to a spherical triangle (Figure 3.3). Im-

portantly, this does not significantly distort the gradient of the underlying function

values, and uniform Lipschitz bounds are preserved.

Figure 3.3 Each triangle t ∈ T h is distorted via the inverse closest point map to
a corresponding spherical triangle.
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Lemma 3.27 (Lipschitz bounds on the sphere). Let uh : S2 → R be as defined

in Equation (3.36). Under the hypotheses of either Lemma 3.21 or Lemma 3.22,

there exists some L > 0 (independent of h) such that

∣∣uh(x)− uh(y)
∣∣ ≤ LdS2(x, y)

for all x, y ∈ S2.

Proof. Let us first consider a fixed triangle t ∈ T h and choose any x, y ∈ S2 such

that cp−1(x), cp−1(y) ∈ t. From Lemma 3.26, we can immediately see that there

is some L > 0 (independent of h and the particular choice of triangle) such that

∣∣uh(x)− uh(y)
∣∣ =

∣∣wh(cp−1(x))− wh(cp−1(y))
∣∣ ≤ L

∥∥cp−1(x)− cp−1(y)
∥∥ .
(3.37)

Now we choose a coordinate system such that the triangle t lies in the plane

x3 = c. We recall that diam(t) ≤ diam(T h) → 0 and the vertices of t lie on the

unit sphere S2. Thus there exists some η = O(diam(T h)) such that

|z1| , |z2| ≤ η, 0 ≤ 1− z3 = 1− c ≤ η (3.38)

for any z ∈ t. (See also Figure 3.3).

In this coordinate system, we can express the closest point function and its

inverse as

cp(z) =
(z1, z2, c)√
z2

1 + z2
2 + c2

, cp−1(x) =

(
cx1√

1− x2
1 − x2

2

,
cx2√

1− x2
1 − x2

2

, c

)
.

Notice that we can interpret the first two components of cp−1 as a transformation

from t ∈ R2 to R2. The Jacobian of this transformation is given by

∇c̃p−1(x) =

 c(1− x2
2)(1− x2

1 − x2
2)−3/2 cx1x2(1− x2

1 − x2
2)−3/2

cx1x2(1− x2
1 − x2

2)−3/2 c(1− x2
1)(1− x2

1 − x2
2)−3/2

 ,
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which converges uniformly to the identity matrix as h→ 0 given the estimates on

the values of (x1, x2) ∈ t from Equation (3.38). Thus for sufficiently small h > 0,

we have that ‖∇c̃p−1(x)‖ ≤ 2 for all (x1, x2) ∈ t.

This leads to a uniform Lipschitz bound on the inverse closest point map,

interpreted as a function on R2. For x, y ∈ S2 and sufficiently small h > 0 we then

obtain the estimates:

∥∥cp−1(x)− cp−1(y)
∥∥ =

∥∥c̃p−1(x)− c̃p−1(y)
∥∥ ,

≤ 2 ‖(x1, x2)− (y1, y2)‖ ,

≤ 2 ‖x− y‖ ,

≤ 4dS2(x, y).

Substituting this into Equation (3.37) yields the desired uniform Lipschitz bounds

on any spherical triangle cp(t).

Since uh is continuous, its Lipschitz constant is the maximal Lipchitz con-

stant over any spherical triangle, which can be bounded independent of h.

3.3.4 Convergence Theorem

We are now prepared to complete the proof of convergence of the numerical ap-

proach outlined in subsubsection 3.3.1. We begin with two lemmas pertaining to

uniformly convergent sequences uhn .

Lemma 3.28. Let uh be defined by the schemes in Equations (4.24)-(3.28) and (3.36)

under the hypotheses of either Lemma 3.21 or 3.22. Suppose that hn → 0 is any

sequence such that uhn converges uniformly to a continuous function U . Then

〈U〉 = 0.

Proof. We recall first that Ahn(uhn) = 0 by design (see Equation (3.28)). Since Ah

is consistent on all Lipschitz functions and uhn enjoy uniform Lipschitz bounds,
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we can also say that

∣∣〈uhn〉∣∣ =
∣∣〈uhn〉 − Ahn(uhn)

∣∣ ≤ τ(hn).

Since convergence is uniform, the Dominated Convergence Theorem yields

〈U〉 = lim
n→∞
〈uhn〉 = 0.

Lemma 3.29. Let uh be defined by the schemes in Equations (4.24)-(3.28) and (3.36)

under the hypotheses of either Lemma 3.21 or 3.22. Suppose that hn → 0 is any

sequence such that uhn converges uniformly to a continuous function U . Then U

is a viscosity solution of Equation (3.16).

Proof. Here we follow the usual approach of the Barles-Souganidis framework,

modified for the setting where the limit function is known to be continuous. Recall

that uh satisfies the scheme

Gh(x, u(x)− u(·)) + τ(h)uh(x) + σ(h) = 0,

where σ(h) → 0 as h → 0 (Lemma 3.23). Moreover, there exists some M ∈ R

such that ‖uh‖∞ ≤M for all sufficiently small h > 0 (Lemmas 3.21-3.22).

Consider any x0 ∈ S2 and φ ∈ C∞ such that U − φ has a strict local

maximum at x0 with U(x0) = φ(x0). Because uh and the limit function U are

continuous, strict maxima are stable and there exists a sequence zn ∈ Gh∩S2 such

that

zn → x0, uhn(zn)→ U(x0),

where zn maximizes uhn(x)− φ(x) over points x ∈ Gh ∩ S2.

From the definition of zn as a maximizer of uhn − φ, we also observe that

uhn(zn)− uhn(·) ≥ φ(zn)− φ(·).
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We let G(∇u(x), D2u(x)) denote the PDE operator in Equation (3.16).

Since uhn is a solution of the scheme, we can use monotonicity to calculate

0 = Ghn(zn, u
hn(zn)− uhn(·)) + τ(hn)uhn(zn) + σ(hn),

≥ Ghn(zn, φ(zn)− φ(·))−Mτ(hn) + σ(hn).

As the scheme is consistent, we conclude that

0 ≥ lim inf
n→∞

(
Ghn(zn, φ(zn)− φ(·))−Mτ(hn) + σ(hn)

)
,

≥ G∗(x0,∇φ(x0), D2φ(x0)).

Thus U is a subsolution of Equation (3.16). An identical argument shows that U

is a supersolution and therefore a viscosity solution.

These lemmas lead immediately to our main convergence theorem. The

requirements on the schemes for the smooth and non-smooth setting are slightly

different, but the proofs of the following two theorems are the same.

Theorem 3.30 (Convergence (smooth case)). Consider the schemes in Equa-

tions (4.24)-(3.28) and (3.36) under the conditions of Hypotheses 2.2, 3.17, and 3.18.

Suppose also that Equation (3.16) has a unique mean-zero C0,1 solution. Then uh

converges uniformly to the unique smooth solution of Equation (2.14).

Theorem 3.31 (Convergence (non-smooth case)). Consider the schemes in Equa-

tions (4.24)-(3.28) and (3.36) under the conditions of Hypotheses 2.3, 3.17, and 3.18.

Suppose also that F h is an underestimating scheme and that Equation (3.16) has

a unique mean-zero C0,1 solution. Then uh converges uniformly to the unique

Lipschitz continuous solution of Equation (2.14).

Proof. Consider any sequence hn → 0. Notice that the function uhn is uniformly

bounded (Lemmas 3.21-3.22) and enjoys uniform Lipschitz bounds (Lemma 3.27).

Then by the Arzelà-Ascoli theorem there exists a subsequence hnk and a contin-
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uous function U such that uhnk converges uniformly to U , where U has Lipschitz

constant L.

From Lemmas 3.28-3.29, U is a mean-zero viscosity solution of Equa-

tion (3.16). Then by Theorems 3.7 and 3.11, U must agree with the unique

mean-zero solution u of Equation (2.14). Since this holds for any sequence hn, we

conclude that uh converges uniformly to u.
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CHAPTER 4

CONSTRUCTION OF A CONVERGENT SCHEME

4.1 Introduction

In this chapter, we produce the first convergent PDE-based finite-difference method

for solving the Optimal Transport problem on the sphere. One of the benefits

of using finite-difference schemes is that it is relatively straightforward to build

higher-order finite-difference schemes by simply Taylor expanding to higher order.

In this chapter, however, we do not expand to high order since we are more con-

cerned with producing monotone schemes. Nevertheless, we keep the benefits of

flexibility of finite-difference methods in mind as we desire to build schemes that

have faster convergence rates Chapter 8. Finally, as emphasized in the introduction

of Chapter 3, the philosophy underlying the construction of the finite-difference

scheme in this chapter could be easily adapted to other cost functions and other

PDE on the sphere.

The finite-difference method presented here is based on an approximation

of a Generated Jacobian equation on local tangent planes, using geodesic nor-

mal coordinates, as mentioned in Chapter 3 and is largely the method presented

in Hamfeldt and Turnquist (2021b), but there are parts of this chapter that are de-

rived from the paper Hamfeldt and Turnquist (2021c). As shown in Theorems 3.30

and 3.31, one vital property in the convergence theorem is monotonicity. A compli-

cating factor for achieving monotonicity is the presence of gradient terms that are

mixed with the Hessian terms inside of a nonlinear operator. This requires the in-

troduction of new techniques for approximating both first- and second-order terms

in order to preserve both the consistency and the monotonicity of our scheme. We

produce an implementation and present computational results that demonstrate

the success of this method for both the squared geodesic cost and the logarithmic

cost. The method will be shown to handle both structured and unstructured grids,

non-smooth data, and validate the constant solution.

78



In Chapter 5 and Chapter 6, we will show computations that are made to

demonstrate the effectiveness of the method specifically for the reflector antenna

and moving mesh problems, respectively.

4.2 Simple Reformulation of Some Terms in the PDE

4.2.1 Variational Formulation of the Determinant of a Hessian

Since our PDE involves computing the determinant of a Hessian, here we show how

to reformulate the PDE in order to build a monotone discretization of the eigen-

values of the Hessian. As utilized in Froese and Oberman (2011a), Hadamard’s

inequality allows the determinant of a positive definite matrix M to be computed

via the minimization problem

detM = min
vi∈V

d∏
i=1

vTi Mvi, (4.1)

where V is the set of all orthogonal bases for Rd.

We require a formulation satisfying Equation (3.13), which modifies this

formulation to ensure that no negative terms appear when the symmetric matrix

M is not positive definite. A simple approach is to use

det+M = min
vi∈V

d∏
i=1

max
{
vTi Mvi, 0

}
. (4.2)

If our matrix M = D2φ(x) is a Hessian matrix, this becomes:

det+(D2φ(x)) = min
ν1,ν2∈V

{
2∏
j=1

νTj (D2φ(x))νj, 0

}
,

= min
ν1,ν2∈V

2∏
j=1

max

{
∂2φ

∂ν2
j

, 0

}
.
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In particular, this allows us to replace the determinant in Equation (2.14) with

det+(D2u(x)+A(x,∇u(x))) = min
ν1,ν2∈V

2∏
j=1

max

{
∂2u(x)

∂ν2
j

+
∂2c(x, y)

∂ν2
j

∣∣∣∣
y=T (x,∇u(x))

, 0

}
.

(4.3)

4.2.2 Mixed Hessian

The framework developed in Hamfeldt and Turnquist (2021a) and shown in Chap-

ter 3 only requires the construction of consistent approximations of derivatives

with respect to x, expressed in the geodesic normal coordinate system. For the

mixed Hessian term, detD2
xyc(x, y) it is not immediately clear how to do this. In

fact, the relative simplicity of the notation obfuscates the actual complexity of

the object. In Loeper (2009), a clearer representation of this quantity in curved

geometries is presented.

We recall that the optimal map T (x, p) (also known as the c-exponential

map) satisfies Equation (2.15) and can be constructed explicitly for the cost func-

tion of interest to us via Equations (3.6)-(3.7). Then from Loeper (2009), we know

that, furthermore, the mixed Hessian satisfies

[D2
xyc]

−1 = −DpT (x, p)|x,p=−∇xc(x,y). (4.4)

This representation formula from Equation (4.4) shows that the inverse of the

mixed Hessian is simply the Jacobian of the map T (x, p) with respect to p. Since

we will be taking the determinant, this is actually a change of area formula for

the transformation T (x, p). See Figure 4.1.
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Figure 4.1 The determinant of the mixed Hessian is the change in area formula
from the set T (x,E) on the sphere sphere to the set E on the local tangent plane.

We will compute this change of area by computing the linear differential

map dT for both cost functions. That is, the change in area will be computed

using orthogonal perturbations ∆p1, ∆p2 (so ∆p1 ·∆p2 = 0) in the tangent plane

Tx.

|det (DpT (x, p))| =∣∣∣∣ lim
‖∆p1‖→0

T (x, p+ ∆p1)− T (x, p)

‖∆p1‖
× lim
‖∆p2‖→0

T (x, p+ ∆p2)− T (x, p)

‖∆p2‖

∣∣∣∣ .
In general, the area element on a manifold is a function of the wedge product

of two covectors, which need not be orthogonal. This has the interpretation of

the area of a parallelogram on the manifold. However, in the special case where

the vectors are orthogonal (or are orthogonal to leading order), this reduces to

an ordinary product. This is indeed the case for both the squared geodesic and

logarithmic cost functions. Thus the change of area formula reduces to the simpler

expression

|det (DpT (x, p))| =

lim
‖∆p1‖,‖∆p2‖→0,∆p1·∆p2=0

dS2 (T (x, p), T (x, p+ ∆p1)) dS2 (T (x, p), T (x, p+ ∆p2))

‖∆p1‖ ‖∆p2‖
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and the determinant of the mixed Hessian is given by

∣∣det(D2
xyc(x, y))

∣∣ =
1

|DpT (x, p)|

∣∣∣∣
p=−∇xc(x,y)

. (4.5)

This can be computed explicitly for both the squared geodesic cost,

∣∣det(D2
xyc(x, y))

∣∣ =
‖p‖

sin ‖p‖
, (4.6)

and for the logarithmic cost,

∣∣det(D2
xyc(x, y))

∣∣ =
(
‖p‖2 + 1/4

)2
. (4.7)

See Appendix D for details.

We note also that these formulas coincide with the formulas that can be

derived via standard change of variables formulas by requiring

ˆ
T (x,E)

dS =

ˆ
E

|det(DpT (x, p))| dp

for every measurable E ∈ T (x).

4.3 Numerical Method

We now explain how we actually construct an approximation scheme for Equa-

tion (2.14) at a point x ∈ S2.

4.3.1 Construction of Finite Difference Stencils

We begin with a point cloud G ∈ S2 that discretizes the sphere; we assume only

the minimal regularity required by Hypothesis 3.17. We begin by considering a

fixed point xi ∈ G and establishing a computational neighborhood N(i) about this

point. For any fixed C > 0, we define

N(i) = {j | xj ∈ G, dS2(xi, xj) ≤ C
√
h}. (4.8)
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Once N(i) is established, the points xj ∈ N(i) are projected on to the local tangent

plane Txi via the geodesic normal coordinate projection in Equation (3.10):

zj = vxi(xj).

We denote the resulting point cloud on the tangent plane by

N (i) = {zj | j ∈ N(i)} ⊂ Txi .

Figure 4.2 shows an exaggerated example of this tangent plane projection.

Figure 4.2 Projection onto the tangent plane via geodesic normal coordinates.
The points in G are indicated with small black squares, the computational point
xi is indicated as a red star, and the projection of the neighborhood N(i) to the
local tangent plane is indicated with blue circles.

Next we suppose that we are interested in resolving behavior along some

direction ν ∈ R2. Following a slight modification of Froese (2018), we select four

points xν,j ∈ N (i) that are well-aligned with the direction ν. See Figure 4.3. We

introduce the following notation:

• r = C
√
h is the search radius used to define the neighborhood N(i). For all

xν,j ∈ N (i) we have that ‖xν,j − xi‖ ≤ r.

• θν,j is the angle between xν,j − xi and the direction ν.
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• dθν,j is the minimal absolute angle between xν,j − xi and the direction ν.

• dθ is the overall angular resolution of the stencil, which is related to the

search radius through dθ =
2h

r
+O(h) = O(

√
h); see Froese (2018).

• Each xν,j can be represented in polar coordinates as (hν,j, θν,j) using the
coordinate system where xi is the origin and the coordinate directions ν, ν⊥

are orthogonal.

• Components of xν,j can be expressed using the shorthand notation

Cν,j = hν,j cos θν,j, Sν,j = hν,j sin θν,j.

The following lemma follows immediately from the proof of (Froese, 2018,

Lemma 11). Figure 4.3 illustrates the four small balls where each of these four

neighbors is required to exist.

Lemma 4.1 (Properties of neighbors). For every xi ∈ G and ν ∈ R2, four neigh-

bors xν,j ∈ N (i) exist satisfying the following properties:

• xν,j resides in the jth quadrant.

• The angular component of xν,j satisfies dθ ≤ dθν,j ≤ 2dθ.

• The radial component of xν,j satisfies r − 2h ≤ hν,j ≤ r.

These additional requirements on stencil will be critical to developing monotone

approximations of functions of the gradient.
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θ

x1

x3

x2

x4

x0

(a) The computational points are selected
from a neighborhood.

(b) The points selected must satisfy an ap-
proximate symmetry condition about the
computational direction.

Figure 4.3 Choice of computational points xν,j in the local tangent plane. Sub-
figure 4.3a shows the selection of points aligning with the computational direction
from a neighborhood. Subfigure 4.3b shows that the points selected need to satisfy
a kind of symmetric balance about the computational direction.

4.3.2 Approximation of Second Derivatives

Our overall approximation of Equation (2.14) will hinge on the construction of

(negative) monotone schemes for second directional derivatives
∂2φ

∂ν2
. We introduce

approximations of the form

Dννφ(xi) =
4∑
j=1

aν,j (φ(xν,j)− φ(xi)) . (4.9)

As in Froese (2018), consistency and negative monotonicity can be achieved by

finding a solution of the system



∑
aν,jhν,j cos θν,j = 0,∑
aν,jhν,j sin θν,j = 0,∑
1
2
aν,jh

2
ν,j cos2 θν,j = 1,

aν,j ≥ 0.

(4.10)
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An explicit solution is given by

aν,1 =
2Sν,4(Cν,3Sν,2 − Cν,2Sν,3)

det(A)
,

aν,2 =
2Sν,3(Cν,1Sν,4 − Cν,4Sν,1)

det(A)
,

aν,3 =
−2Sν,2(Cν,1Sν,4 − Cν,4Sν,1)

det(A)
,

aν,4 =
−2Sν,1(Cν,3Sν,2 − Cν,2Sν,3)

det(A)
,

(4.11)

where

det(A) =(Cν,3Sν,2 − Cν,2Sν,3)(C2
ν,1Sν,4 − C2

ν,4Sν,1),

− (Cν,1Sν,4 − Cν,4Sν,1)(C2
ν,3Sν,2 − C2

ν,2Sν,3).

(4.12)

4.3.3 Approximation of Functions of the Gradient

Equation (2.14) involves several terms of the form g(∇u). Importantly, either

automatically or through appropriate regularization (see Section 3.2.4), each of

these functions g has a bounded Lipschitz constant Lg. This allows us to pursue

a generalized Lax-Friedrichs type discretization of the form

g̃±(Dφ(xi)) =g

 ∑
ν∈{(1,0),(0,1)}

ν
4∑
j=1

bν,j (φ(xν,j)− φ(xi))

 ,

∓ εg
∑

ν∈{(1,0),(0,1)}

4∑
j=1

aν,j (φ(xν,j)− φ(xi)) .

(4.13)

Above, the coefficients aν,j are identical to the coefficients that arise in the ap-

proximation of second directional derivatives. This introduces a Laplacian reg-

ularization term, which is carefully chosen to enforce monotonicity (or negative

monotonicity) even if the coefficients bν,j do not on their own produce a monotone

scheme.
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We first require coefficients bν,j that ensure that

Dνφ(xi) =
4∑
j=1

bν,j (φ(xν,j)− φ(xi))

is a consistent approximation of the first directional derivative
∂φ(xi)

∂ν
. Taylor

expanding, we obtain

Dνφ(xi) =
4∑
j=1

bν,j

(
hν,j cos θν,j

∂φ(xi)

∂ν
+ hν,j sin θν,j

∂φ(xi)

∂ν⊥
+O(r2)

)
.

Consistency then requires a solution of the system


∑
bν,jhν,j cos θν,j = 1,∑
bν,jhν,j sin θν,j = 0.

(4.14)

An explicit solution is

bν,1 =
Sν,4(Sν,3C

2
ν,2 − Sν,2C2

ν,3)

det(A)
,

bν,2 = −
Sν,3(Sν,4C

2
ν,1 − Sν,1C2

ν,4)

det(A)
,

bν,3 =
Sν,2(Sν,4C

2
ν,1 − Sν,1C2

ν,4)

det(A)
,

bν,4 = −
Sν,1(Sν,3C

2
ν,2 − Sν,2C2

ν,3)

det(A)
,

(4.15)

where det(A) is again given by Equation (4.12).

We then substitute these coefficients into Equation (4.13) and define a

regularization factor satisfying

εg = max

{
Lg |bν,j|
aν,j

| j ∈ {1, 2, 3, 4}, ν ∈ {(0, 1), (1, 0)}
}
. (4.16)

We will verify that this is finite and bounded in Section 4.4.
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4.3.4 Approximation of the Nonlinear Operator

We now have the building blocks in place to describe a discretization of the full

nonlinear operator (Equation (2.14)) at the point xi ∈ G.

The variational formulation of the modified determinant (Equation (4.2))

requires performing a minimization over the set V of orthogonal bases for R2. In

the discrete version, we consider a finite subset of V that ensures that all directions

are resolved in the limit h→ 0. A simple choice is given by

Ṽ =
{

(cos θ, sin θ) | θ = jdθ, j = 0, . . . ,
π

2dθ

}
, (4.17)

where dθ = O
(√

h
)

is the angular resolution of the stencil described in Sec-

tion 4.3.1.

The PDE involves several different functions of the gradient. For compact-

ness, we introduce the shorthand notation

g1,ν(xi, p) = Dνν c̃(xi, T (xi, p)), (4.18)

where the differencing is performed only in the first argument of c̃. This involves

the explicit formulas for the optimal map given in Equation (3.6)-(3.7).

We also define

g2(xi, p) =

∣∣detD2
xyc (xi, T (xi, p))

∣∣
f1 (T (xi, p))

, (4.19)

recalling that the determinant of the mixed Hessian can be replaced with the

simple explicit representations obtained in Section 4.2.2, which we here denote by

H(p).

The discretization of these functions of the gradient require a regulariza-

tion parameter (see Equation (4.16)), which involves Lipschitz bounds on these
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functions. We select bounds satisfying

Lg1 > Lc̃LT (4.20)

and

Lg2 ≥
∥∥∥∥ 1

f1

∥∥∥∥2

(‖f1‖LH + ‖H‖Lf1LT ) , (4.21)

where LT is the Lipschitz constant of the optimal map T (x, p) with respect to

the variable p, LH and Lf1 are the Lipschitz constants of the functions H and f1

respectively, and

Lc̃ = max
|ν|=1,x,y∈S2

∥∥∇y

(
νTD2

xxc̃(x, y)ν
)∥∥ . (4.22)

We remark that while these constants Lg1 and Lg2 depend on the problem data

and particular cost function, they are all guaranteed to be bounded under the

assumptions of Hypothesis 2.2 and can be computed explicitly using the formulas

in Equations (3.6),(3.7), (3.19), (4.6), and (4.7).

We can then write down the full discretization of Equation (2.14) as

F h(x, u(x)− u(·)) =− min
(ν1,ν2)∈Ṽ

2∏
j=1

max
{
Dνjνju(xi) + g̃−1,νj(Du(xi)), 0

}
+ f0(xi)g̃

+
2 (xi,Du(xi)) .

(4.23)

4.3.5 Solution Method

In order to efficiently obtain a convergent approximation to Equation (2.14), we

will slightly modify the two-step procedure described in Equation (4.24)-(3.28).

We propose instead the following solution and verification process, which is equiv-

alent.

1. Solve the discrete system

F h(x, vh(x)− vh(·)) +
√
hvh(x) = 0, x ∈ G (4.24)

for the grid function vh.
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2. Verify that the grid function vh satisfies the bounds

Eh(x, vh(x)− vh(·)) ≤ R, x ∈ G.

3. If the verification step fails, redefine vh by solving the modified system (Equa-
tion (4.24))

Gh
(
x, vh(x)− vh(·)

)
+
√
hvh(x) = 0, x ∈ G

using the solution obtained in Step 1 as an initial guess.

4. Define the discrete solution

uh(x) = vh(x)− vh(x∗h), x ∈ G. (4.25)

We note that in practice, we have never found Step 3 above to be necessary.

Thus although this procedure appears to be longer than simply performing Steps 3-

4, it actually allows us to obtain the same solution by solving a simpler system.

The strong nonlinearity in Equation (2.14), particularly in that it involves

nonlinear gradient terms that have very little required structure, makes the con-

struction of a nonlinear Gauss-Jacobi, algebraic multigrid, and/or approximate

Newton-type method highly nontrivial. In the present work, we perform all our

computations using explicit parabolic schemes of the form

vhn+1(xi) = vhn(xi)−∆tF h(vhn(xi), v
h
n(xi)− vhn(·)).

As discussed in Oberman (2006), ∆t has to satisfy a nonlinear CFL condition

in order to guarantee convergence. In particular, we require ∆t < 1/LFh , where

LFh is the Lipschitz constant of F h with respect to the arguments uhi . This Lips-

chitz constant scales like LFh = O(h−2) and can either be determined explicitly a

priori or adaptively under a requirement that the residual should decrease.

In some cases, acceleration of this process is possible using the approach

of Schaeffer and Hou (2016). The accelerated parabolic scheme is as follows.

Given vh0 , v
h
1 = vh0 −∆tF h

[
vh0
]

and parameters {γn} where γn−n/(n+n0), where

typically n0 ≥ 10:
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Algorithm 1 Accelerated Parabolic Scheme

1: while
∥∥vhn − vhn−1

∥∥
∞ > tol do

2: vhn,E = vhn + γn
(
vhn − vhn−1

)
3: vhn+1 = vhn,E −∆tF h

[
vhn,E

]
4: end while

Faster solvers than the parabolic scheme for these kinds of systems are, of

course, desirable and will be explored in future work.

4.4 Convergence

We are now prepared to prove that the numerical method defined by Equa-

tion (4.23) and the subsequent solution procedure converges.

Theorem 4.2 (Convergence). Under the assumptions of Hypothesis 2.2, let u ∈

C3(S2) be the unique solution of Equation (2.14) satisfying u(x∗) = 0. Let Gh be a

grid satisfying Hypothesis 3.17 and let F h be defined as in Equation (4.23). Then

for each sufficiently small h > 0, the grid function uh defined in Equation (4.25)

is uniquely defined. Moreover, uh converges uniformly to u as h→ 0.

This result follows immediately from the framework described in Theo-

rems 3.30 and 3.31 provided we can verify that our approximation scheme F h is

consistent (Lemma 4.9) and monotone (Lemma 4.11). This will be accomplished

in several lemmas throughout the remainder of this section.

4.4.1 Bounds on Coefficients

We begin by demonstrating that the coefficients aν,j, bν,j appearing in the approx-

imation of the second directional derivatives can be bounded.

Lemma 4.3 (Bounds on coefficients (second derivatives)). There exists a constant

C > 0 such that for all sufficiently small h > 0 and ν ∈ R2, the coefficients defined

by Equation (4.11) satisfy

aν,j ≥
C

h
.
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Proof. We establish a bound for the coefficient aν,1; the remaining coefficients are

similar.

Recall the notation Cν,j = hν,j cos θν,j, Sν,j = hν,j sin θν,j. Since each xν,j

lies in the jth quadrant, each of these terms has a definite sign. Based on the

requirements on hν,j, dθν,j established in Lemma 4.1, we can record the asymptotic

bounds

(r − 2h)
(
1−O(dθ2)

)
≤ |Cν,j| ≤ r,

(r − 2h)
(
dθ −O(dθ3)

)
≤ |Sν,j| ≤ r

(
2dθ +O(dθ3)

)
.

We recall also that r, dθ = O(
√
h).

These observations allow us to establish the following bounds:

det(A) =(Cν,3Sν,2 − Cν,2Sν,3)(C2
ν,1Sν,4 − C2

ν,4Sν,1)

− (Cν,1Sν,4 − Cν,4Sν,1)(C2
ν,3Sν,2 − C2

ν,2Sν,3),

≤ r5(4dθ +O(dθ3))(4dθ +O(dθ3)) + r5(4dθ +O(dθ3))(4dθ +O(dθ3)),

= 32r5dθ2 +O(h9/2)

and

−2Sν,4(Cν,2Sν,3 − Cν,3Sν,2) ≥ 2(r − 2h)3(dθ −O(dθ3))
(
2dθ −O(dθ3)

)
,

= 4r3dθ2 +O(h3).

Combining these bounds, we obtain

aν,1 ≥
4r3dθ2 +O(h3)

32r5dθ2 +O(h9/2)
=

1

8r2

(
1 +O(

√
h)
)
,

where r2 = O(h).

Lemma 4.4 (Bounds on coefficients (first derivatives)). There exists a constant

C > 0 such that for all sufficiently small h > 0 and ν ∈ R2, the coefficients defined
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by Equation (4.14) satisfy

|bν,j| ≤
C√
h
.

Proof. We proceed as in the proof of Lemma 4.3 and compute the bounds

det(A) =(Cν,3Sν,2 − Cν,2Sν,3)(C2
ν,1Sν,4 − C2

ν,4Sν,1)

− (Cν,1Sν,4 − Cν,4Sν,1)(C2
ν,3Sν,2 − C2

ν,2Sν,3),

≥ 8(r − 2h)5
(
1−O(dθ2)

)3 (
dθ −O(dθ3)

)2
,

= 8r5dθ2 +O(h4)

and

0 ≤ Sν,4(Sν,3C
2
ν,2 − Sν,2C2

ν,3) ≤ 2r4(2dθ +O(dθ3))2 = 8r4dθ2 +O(h4).

Combining these, we find that

0 ≤ bν,1 ≤
8r4dθ2 +O(h4)

8r5dθ2 +O(h4)
=

1

r

(
1 +O(

√
h)
)

with r = O
(√

h
)

.

The other coefficients are similar, though some are positive and some are negative.

4.4.2 Bounds on Lipschitz Constants

We next establish Lipschitz bounds on the functions g1,ν , g2 defined in Equa-

tion (4.18) and Equation (4.19), which play an important role in the discretization

of functions of the gradient.

Lemma 4.5 (Lipschitz bound on g1,ν). Let xi ∈ G be fixed. Then for p ∈ Txi, the

function

g1,ν(p) = Dνν c̃(xi, T (xi, p)).
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has a Lipschitz constant L satisfying

L ≤ Lc̃LT +O(
√
h).

Proof. We first recall that g1,ν(p) involves a finite difference discretization. By

consistency, we have

g1,ν(p) = νT
(
D2
xxc̃(xi, T (xi, p))

)
ν + C(p)

√
h,

where the coefficient C(p) arising in the discretization error is at least Lipschitz

continuous in p. Then using regularity, we can calculate

g1,ν(p)− g1,ν(q) = νTD2
xx (c̃(xi, T (xi, p))− c̃(xi, T (xi, q))) ν + (C(p)− C(q))

√
h,

≤ max
|ν|=1,x,y∈S2

∥∥∇y

(
νTD2

xxc̃(x, y)ν
)∥∥ ‖T (xi, p)− T (xi, q)‖+

O(
√
h)‖p− q‖,

≤
(
Lc̃LT +O(

√
h)
)
‖p− q‖.

Lemma 4.6 (Lipschitz bound on g2). Let xi ∈ G be fixed. Then for p ∈ Txi, the

function

g2(p) =

∣∣detD2
xy c̃(xi, T (xi, p))

∣∣
f1(T (xi, p))

has a Lipschitz constant L satisfying

L ≤
∥∥∥∥ 1

f1

∥∥∥∥2

(‖f1‖LH + ‖H‖Lf1LT ) .
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Proof. Using the notation H(p) =
∣∣detD2

xy c̃(xi, T (xi, p))
∣∣, we have

g2(p)− g2(q) =
H(p)

f1(T (xi, p))
− H(q)

f1(T (xi, q))
,

=
f1(T (xi, q))H(p)− f1(T (xi, p))H(q)

f1(T (xi, p))f1(T (xi, q))
,

=
f1(T (xi, q))(H(p)−H(q)) +H(q)(f1(T (xi, q))− f1(T (xi, p)))

f1(T (xi, p))f1(T (xi, q))
,

≤
∥∥∥∥ 1

f1

∥∥∥∥2

(‖f1‖LH + ‖H‖Lf1LT ) ‖p− q‖.

4.4.3 Lax-Friedrichs Approximations

We now verify that the Lax-Friedrichs type approximations for functions of the

gradient defined in Equation (4.13) are both consistent and monotone.

Lemma 4.7 (Consistency of functions of gradient). Let g be Lipschitz continuous

with Lipschitz constant Lg and φ ∈ C2. Then

g̃±(Dφ(xi)) =g

 ∑
ν∈{(1,0),(0,1)}

ν
4∑
j=1

bν,j (φ(xν,j)− φ(xi))


∓ εg

∑
ν∈{(1,0),(0,1)}

4∑
j=1

aν,j (φ(xν,j)− φ(xi)) .

is a consistent approximation of g(∇φ).

Proof. We note that by construction, we have

lim
h→0

∑
ν∈{(1,0),(0,1)}

ν

4∑
j=1

bν,j (φ(xν,j)− φ(xi)) = ∇φ(xi)

and

lim
h→0

∑
ν∈{(1,0),(0,1)}

4∑
j=1

aν,j (φ(xν,j)− φ(xi)) = ∆φ(xi).
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Using Lemmas 4.3-4.4, we can also bound εg via

εg = max

{
Lg |bν,j|
aν,j

| j ∈ {1, 2, 3, 4}, ν ∈ {(0, 1), (1, 0)}
}
,

≤ Lg(Cb/
√
h)

Ca/h
,

= C
√
h

where the constant C is independent of h.

Combining these results, we obtain

lim
h→0

g̃±(Dφ(xi)) = g(∇φ(xi)),

with a truncation error of O(
√
h).

Lemma 4.8 (Monotonicity of functions of the gradient). Let g be Lipschitz con-

tinuous with Lipschitz constant Lg and φ ∈ C2. Then the schemes g̃+(Dφ(xi))

and g̃−(Dφ(xi)) are monotone and negative monotone respectively.

Proof. We verify monotonicity of g̃+(Dφ(xi)); the other part of the argument is

identical.

Denoting by dj the differences φ(xi)−φ(xν,j) allows us to express the scheme

more compactly as

G(d) = g

− ∑
ν∈{(1,0),(0,1)}

ν

4∑
j=1

bν,jdj

+ εg
∑

ν∈{(1,0),(0,1)}

4∑
j=1

aν,jdj.

We now introduce a perturbation δ > 0 into the argument dk to obtain

G(d+ δd̂k)−G(d) ≥ −Lg |bν,k| δ + εgaν,kδ,

≥ 0

since εg ≥ L |bν,k| /aν,k. Therefore the scheme is monotone.
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4.4.4 Consistency and Monotonicity

We now establish consistency and monotonicity of the approximation Equation (4.23),

which in turn establishes the convergence result (Theorem 4.2).

Lemma 4.9 (Consistency). Under the assumptions of Hypotheses 2.2,3.17, the

scheme F h defined by Equation (4.23) is consistent with Equation (2.14) on the

space of C2 functions satisfying the c-convexity constraint.

Proof. Let φ ∈ C2 satisfy the c-convexity constraint. Then the determinant in

Equation (2.14) can be equivalently expressed as in Equation (4.3):

det+(D2φ(x)+A(x,∇φ(x))) = min
ν1,ν2∈V

2∏
j=1

max

{
∂2φ(x)

∂ν2
j

+
∂2c(x, y)

∂ν2
j

∣∣∣∣
y=T (x,∇φ(x))

, 0

}
.

By design and by Lemma 4.7, the components of the PDE are approximated

consistently (with truncation error O(
√
h)). That is,

lim
h→0

{
Dνjνjφ(xi) + g̃−1,νj(Dφ(xi))

}
=
∂2φ(x)

∂ν2
j

+
∂2c(x, y)

∂ν2
j

∣∣∣∣
y=T (x,∇φ(x))

and

lim
h→0

g̃+
2 (xi,Dφ(xi)) =

∣∣detD2
xyc(xi, T (xi,∇φ(xi)))

∣∣
f1(T (xi,∇φ(xi)))

.

We recall that the maximum and minimum operators are continuous, f0 ∈

C1, and Ṽ is a consistent approximation of the set V with angular resolution

O(dθ) = O(
√
h). Thus the combinations of these operators in the scheme F h

satisfy

lim
h→0,xi→x

− min
(ν1,ν2)∈Ṽ

2∏
j=1

max
{
Dνjνjφ(xi) + g̃−1,νj(Dφ(xi)), 0

}
+ f0(xi)g̃

+
2 (xi,Dφ(xi))

= −det+(D2φ(x) + A(x,∇φ(x))) +
∣∣detD2

xyc(x, T (x,∇φ(x)))
∣∣ f0(x)

f1(T (x,∇φ(x)))
,

which establishes consistency.

Corollary 4.10 (Truncation error). Under the assumptions of Hypotheses 2.2,3.17,
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the scheme F h defined by Equation (4.23) has local truncation error τ(h) =

O(
√
h).

Lemma 4.11 (Monotonicity). Under the assumptions of Hypotheses 2.2,3.17, the

scheme F h defined by Equation (4.23) is monotone.

Proof. By construction (and see Lemma 4.8), the schemes for Dννφ and g̃−1,ν(Du)

are negative monotone. Addition and the maximum function preserve this so that

max
{
Dννu(xi) + g̃−1,ν(Du(xi)), 0

}
is also negative monotone for any ν ∈ R2. Since this is also non-negative, products

of these terms preserve the negative monotonicity so that

min
(ν1,ν2)∈Ṽ

2∏
j=1

max
{
Dνjνju(xi) + g̃−1,νj(Du(xi)), 0

}

is also negative monotone.

We recall also that f0 is non-negative and g̃+
2 is monotone (Lemma 4.8).

Therefore the full scheme

− min
(ν1,ν2)∈Ṽ

2∏
j=1

max
{
Dνjνju(xi) + g̃−1,νj(Du(xi)), 0

}
+ f0(xi)g̃

+
2 (xi,Du(xi))

is monotone.

4.4.5 Extensions to Non-Smooth Problems

The results of Loeper (2011) ensure existence of weak solutions to the Optimal

Transport PDE (Equation (2.14)) in the relaxed setting where f0, f1 ∈ L1 with

f1 bounded away from zero and f0 bounded away from infinity. In Chapter 3,

it was shown that solutions can be computed for the squared geodesic cost as in

Theorem 3.31 if the scheme F h is additionally required to underestimate when

applied to the true solution. This result was then extended to the regularized

logarithmic cost via Remark 3.16.
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Naturally underestimating schemes can be constructed for Monge-Ampère

type equations in some cases Benamou and Duval (2017); Hamfeldt (2019). An

alternate approach is to utilize a scheme of the form

F̃ h(x, u(x)− u(·)) = F h(x, u(x)− u(·))− hα

for a sufficiently small α > 0. This preserves the consistency and monotonicity of

the original scheme, while decreasing the value of the scheme and forcing it to be

negative when applied to the true solution of the PDE.

In addition, definition of consistency (Definition 2.9) in terms of upper and

lower semicontinuous envelopes of the PDE operator allows us to accommodate

discontinuous data f0, f1 as in Hamfeldt (2019). This does not require any change

in the way f0(x) is handled. However, functions f1 /∈ C0,1 must be carefully

regularized to preserve consistency and monotonicity since it takes as its argument

terms T (x,∇u(x)) that involve gradients.

The approach we propose is to introduce a discrete version of the target

density function

fh1 (y) = (Kh1/4 ∗ f1)(y) (4.26)

where Kh1/4 is a mollifier that ensures that the Lipschitz constant of fh1 satisfies

Lfh1 ≤ h−1/4.

From here, we use the same discretization of f1(T (x,∇u(x)) introduced in Equa-

tion (4.13). We note that in this case (following Lemma 4.7), the regularization

parameter will satisfy

εgh2 = O
(
Lfh1

√
h
)

= O(h1/4).

Since this parameter converges to zero as h→ 0, the resulting scheme will still be

consistent in the sense of Definition 2.9. The monotonicity result (Lemma 4.8) is
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unchanged.

4.5 Preprocessing of Data

Stability and convergence of the numerical method requires at least one of the

densities (denoted by f1) to be strictly positive. This is easily accomplished by

choosing ε > 0 and letting

f̃ ε1 = (1− ε)f1 +
ε

4π
. (4.27)

As ε→ 0, the mapping of the regularized Optimal Transport problem converges in

measure to the solution of the given problem Villani (2003), and thus we recover

the desired reflector surface.

The numerical method further requires this density function to be smoothed

in order to have a (discrete) Lipschitz constant that is at most O
(
h−1/4

)
. We

accomplish this via a short-time evolution of the heat equation. That is, we solve


vt(x, t) = ∆v(x, t), (x, t) ∈ S2 × (0,

√
h],

v(x, 0) = f̃ ε1(x), x ∈ S2

(4.28)

where ∆ is the Laplace-Beltrami operator. We then set

f ε1(x) = v(x,
√
h). (4.29)

The Laplace-Beltrami operator can be discretized using the finite difference schemes

as

∆h = D(1,0),(1,0) +D(0,1),(0,1) (4.30)

and evolved using forward Euler

vn+1 = vn + k∆hvn. (4.31)
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The wide stencil nature of the finite difference stencils (‖xj − x0‖ = O(
√
h)) means

that this is stable for a time step k ≤ 1/
∑
j

aj = O(h). Thus a total of O
(
h−1/2

)
time steps are needed, which leads to an overall cost of O

(
N5/4

)
that is similar

to the cost of discretization.

This regularization procedure can also be applied to unbounded densities,

but requires evolving the heat equation to a stopping time of t = h1/6 to achieve

the required Lipschitz bound.

In the literature, smoothening via the Laplace-Beltrami operator is com-

monly referred to as heat kernel smoothing, since the Green’s function of the

Laplace-Beltrami operator is known as the heat kernel. The solution of Equa-

tion (4.28) is given by:

v(t, x) =

ˆ
S2
K(t;x, y)f ε1(y)dy (4.32)

where K(t;x, y) is the heat kernel.

Explicit representations of the heat kernel are rather difficult to write

down, except, for example, in the asymptotic limit as t → 0. However, Harnack

inequality-type bounds have been established for the heat kernel on manifolds

with non-negative Ricci curvature Li and Yau (1986) which applies, namely to the

2-sphere:

|∇yK(t;x, y)| ≤ C(ε)√
tLS2

(
B(x,

√
t)
)e− dS2 (x,y)2

4(1−ε)t , (4.33)

where LS2 is the Lebesgue measure on the sphere. This inequality is true for any

ε ∈ (0, 1). Thus:

|∇xv(t, x)| ≤ C(ε)√
t

ˆ
S2

e−
dS2 (x,y)2

4(1−ε)t

2π
(
1− cos

(√
t
))f ε1(y)dy. (4.34)

For bounded f ε1, since we know
´
R2

e−z
2/at

t
dz ≤ C for some C > 0, by standard

results on the Euclidean heat kernel, we know that
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ˆ
S2

e−dS2 (x,y)2/4(1−ε)t

2π
(
1− cos

(√
t
))dy ≤ ˆ

R2

e−z
2/4(1−ε)t

2πt
dz +O(t) ≤ C ′ +O(t). (4.35)

Therefore,

|∇xv(t, x)| ≤ C ′′√
t

+O
(√

t
)
. (4.36)

Thus, having t ≤ O(h1/2) ensures that ‖∇xv(t, x)‖ ≤ O(h−1/4) for small enough

h. For unbounded f ε1, but under the assumption that f ε1 ∈ L1(S2), yields a slightly

worse bound:

|∇xv(t, x)| ≤ C

t3/2

ˆ
S2
e−

d(x,y)2

4(1−ε)tf ε1(y)dy +O
(√

t
)
≤

C ′

t3/2

ˆ
S2
f ε1(y)dy +O

(√
t
)
≤ C ′′

t3/2
+O

(√
t
)
, (4.37)

which means that t ≥ O(h1/6) assures the correct Lipschitz bound. Thus, given

an appropriately convergent numerical approximation of the heat equation:

fhn+1 = fhn + ∆t∆hfhn . (4.38)

h Then, the idea is that we can smoothen an L1(S2) function by proceeding n ≈

t/∆t time steps. The time stepsize ∆t must satisfy a CFL condition, such as ∆t ≤

O(diam(Ni)
2), where diam(Ni) is the size of the computational neighborhood.

Thus, for a fixed t > 0, we must take n = O(t · diam(Ni)
−2) time steps. If we

use, for example the monotone and consistent schemes for the second directional

derivatives in Hamfeldt and Turnquist (2021b), then diam(Ni) = O(
√
h), then we

get n = O(th−1). Thus, we take:
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f1 ∈ L∞(S2), n ≥ O(h−1/2),

f1 /∈ L∞(S2), n ≥ O(h−5/6)

to achieve the desired smoothness.

4.6 Computational Complexity

We now state the algorithm (Algorithm 2) for finding uh in a condensed form and

then proceed to compute its computational complexity. Note that for the reflector

antenna, the final step is to use the solution to compute the reflector antenna

shape: Σh = xie
−uh .

Algorithm 2 Computing the discrete solution uh

1: Preprocess data
f ε1 ← Regularize(f1).

2: Iterate
uhn,E = uhn + γn

(
uhn − uhn−1

)
uhn+1 = uhn,E −∆t

(
F h(x, uhn; f0, f

ε
1)−

√
huhn(x)

)
to steady state.

3: Normalize solution

uh(x)← uh(x)− −́
S2
uh(x) dS(x).

Let N be the total number of grid points. The preprocessing step in our

algorithm requires evaluating a discrete approximation to the Laplace-Beltrami

operator at each grid point, which can be done in O(N) time. The subsequent

evolution, Equation (4.31), requires O
(
h−1/2

)
= O

(
N1/4

)
time steps, for an over-

all cost of O
(
N5/4

)
.

At each point x0 ∈ G, evaluating the operator F h involves computing a

minimum over the O (1/dθ) = O
(

1/
√
h
)

= O
(
N1/4

)
pairs of vectors in V .

Each pair of vectors {ν1, ν2} ∈ V requires the construction of two finite
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difference operators of the form Dνν . Computing each of these requires identifying

the four neighbors x1, x2, x3, x4 in the stencil.

We note that selecting each of these neighboring points xj as in Equa-

tion (3.24) involves searching a region whose area scales like O(h2). From the

definition of h, this is guaranteed to contain at least one point, and expected to

contain O(1) points total. Thus identification of these four neighboring points can

be done in O(1) time.

Thus, given a grid function u, the total computational cost of evaluating

the operator F h at all points in the grid is O
(
N5/4

)
. This is the per-iteration cost

of the method. The accelerated parabolic solver we use requires approximately

O(N) iterations Schaeffer and Hou (2016) for a total computational complexity

of approximately O
(
N9/4

)
.

4.7 Computational Results

All computations in this chapter were performed on a 13-inch MacBook Pro, 2.3

GHz Intel Core i5 with 16GB 2133 MHz LPPDDR3 using Matlab R2017b.

4.7.1 Structured and Unstructured Grids

The scheme we have built works well on both structured and unstructured grids,

provided that they satisfy the mild conditions of Hypothesis 3.17. By structured

we mean that there exists a deterministic way of building the grid. Likewise,

unstructured here means there is a stochastic element in the construction of the

grid.

Here, we describe four types of grids that satisfy these hypotheses and that

we make use of in practice: the cube grid (structured), the random grid (fully

unstructured), the latitude-longitude grid (unstructured), and the layered grid

(structured).

The structured cube grid is constructed as follows. First, a grid of evenly-

spaced points is generated on the faces of a cube which contains the sphere. Then,
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the points on such a grid on the cube are projected onto the sphere. See Figure 4.4

for an example of the resulting grid.

The semi-unstructured latitude-longitude grid is constructed as follows. We

begin with a structured grid composed of points equally spaced in both latitude θ

and longitude φ. However, this produces a highly over-resolved grid near the poles,

which does not satisfy the required structure conditions. In order to get rid of this

redundancy, we stochastically remove grid points within a geodesic distance O(h)

of both poles. That is, for each grid point xi = (θi, φi), we compute ξi = sin θi and

generate a value using the random variable Ξ ∼ Unif([0, 1]). If Ξ > ξi, then we

remove the point (θi, φi) from the grid. The removal of these points creates a new

unstructured grid that almost surely satisfies Hypothesis 3.17. See Figure 4.4 for

an example of such a grid.

To construct the structured layered grid, we take an integer n and ε =

O(h) and define the rows: rowj = ε + j
π − 2ε

n
. For each row, we have colkj =

jφ0 + k
2π

bn ∗ sin θnc
, where φ0 =

1 +
√

5

2
, which is the golden ratio. This creates

a nice spread of points inspired by the seed packing of sunflowers. Then, we

introduce the grid points xjk = (θ, φ) = (rowj, coljk) for j = 1, . . . , n and k =

1, . . . , floor{n ∗ sin θn}. This grid, by construction, will satisfy Hypothesis 3.17.

See Figure 4.4.

Finally, we consider a fully unstructured random grid. After defining the

set

R = {(x, y) ∈ [0, π]× [0, 1] : y ≤ sin(x)}

and the projection

P (x, y) = x,

we sample Φ ∼ Unif([0, 2π]) and Θ̃ ∼ Unif(R), then define Θ = P (Θ̃).

We take as grid points the random variables

(X, Y, Z) = (sin Θ cos Φ, sin Θ sin Φ, cos Θ),
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(a) Cube grid. (b) Latitude-Longitude grid.

(c) Layered grid. (d) Random grid.

Figure 4.4 Top down views of a cube grid (Figure 4.4a) and latitude-longitude
grid (Figure 4.4b). Views of a layered grid (Figure 4.4c) and a random grid
(Figure 4.4d).
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which satisfy the conditions that (X, Y, Z) ∼ Unif(S2). The resulting grid almost

surely satisfies Hypothesis 3.17. See Figure 4.4 for an example of such a grid.

4.7.2 Recovering Constant Solutions

For both cost functions, in the case where f0 = f1, the resulting solution will

be a constant function (u(x) = 0). Figure 4.5 shows the solutions obtained for

both the squared geodesic and logarithmic cost functions. Importantly, these are

effectively constant to within a tolerance less than the expected consistency error

of the method.

Figure 4.5 Solutions obtained for the squared geodesic cost (left) and logarithmic
cost (right) when f0 = f1 on a layered grid consisting of N = 7722 points.

4.7.3 Small Perturbation

Here we demonstrate with computations for the squared geodesic cost what hap-

pens when the target mass density f1 is obtained through a slight perturbation

(a rotation through an angle θ) of the source mass density f0. In particular, we

choose the density functions


f0(x, y, z) = 1

4π−4

(
1− 0.5 cos

(
π
2
x
))
,

f1(x, y, z) = 1
4π−4

(
1− 0.5 cos

(
π
2
(x cos θ + y sin θ)

))
.

(4.39)

107



This problem has the flavor of a translation. In the Euclidean setting,

translations are exact solutions of the Optimal Transport problem. However, it is

not the case that rotations are exact solutions on the sphere. See Figure 4.6 for a

top-view of the computed gradient map. In particular, we observe that the bulk of

the mass does undergo a clockwise rotation. However, in order to conserve mass

and regularity, there is also a backwards “flow” observed in areas of low density

(top and bottom of the figure).

Figure 4.6 Top view of the local gradient obtained numerically when f1 is ob-
tained from f0 through a small rotation. The solution was computed using a cube
grid with N = 2168 points.

4.7.4 Comparing Structured and Unstructured Grids

To show the robustness of our generalized finite difference scheme with respect

to the structure of the grid, we next show a side-by-side comparison of solutions

obtained using a fully structured layered grid and a fully unstructured random
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grid. We choose a non-smooth source density f0 and constant target density f1:


f0(θ, φ) = (1− ε) 1

5.8735

(
θ − π

2

)2
+ ε

4π
,

f1(θ, φ) = 1
4π

(4.40)

for ε = 0.1. See Figure 4.7 for the computed solutions, which are identical to

within a tolerance on the order of the computed residual.

Figure 4.7 Solution u obtained for densities in Equation (4.40) on N = 2006
point layered (left) and random (right) grids.

4.7.5 Non-Smooth Examples

Finally, we present the results of a computation (using the squared geodesic cost)

where f0 is unbounded and f1 is not Lipschitz. Recall that this is a situation where

the solution u is only guaranteed to be C1(S2) and the non-Lipschitz property of

f1 can easily cause issues regarding monotonicity and consistency. However, these

issues can be resolved using the ideas in Section 4.4.5. The density functions are

given by 
f0(θ, φ) = 1

2π·1.86691
θ−1/4,

f1(θ, φ) = (1− ε) θ3/4

17.2747
+ ε

4π
.

(4.41)

where ε = 0.5.

Despite the very strong singularities present in this example, our numer-
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ical method has no difficulty computing a solution. The density functions and

computed gradient are shown in Figure 4.8. As expected, we observe mass being

transported downward away from the singularity.

(a) The source and target masses, left is unbounded and right is non-smooth.

(b) The movement of mass away from the northern hemisphere and toward the southern
hemisphere.

Figure 4.8 Unbounded source and non-Lipschitz target densities (Figure 4.8a)
and resulting gradient (visualized for the northern hemisphere) computed on a
N = 7722 point layered grid (Figure 4.8b).
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CHAPTER 5

APPLICATION TO THE REFLECTOR ANTENNA PROBLEM

5.1 Introduction

In this chapter, the solution to the reflector antenna problem is obtained by

solving a Monge-Ampère type equation directly on the sphere (by the method

proposed in Chapter 4). These results are, for the most part, presented in the

manuscript Hamfeldt and Turnquist (2021c). One benefit of using a PDE solver

for the reflector antenna problem is to allow for intensity distributions supported

on complicated subsets of the sphere or even over the entire sphere. Furthermore,

PDE solvers allow one to easily design higher-order schemes, an idea which is

being explored in current work, see Chapter 8 for more detail. In addition, as

shown in Chapter 4, the computational complexity of the method is better than

other provably convergent schemes as will be shown in this chapter. Moreover,

the approach is intrinsic and thus the solution to the problem will not depend on

such details as the choice of the north pole.

We validate this new method through several challenging examples, which

include intensities that have complicated discontinuities, that propagate over com-

plicated geometries, or that contain a mix of light and dark regions. It will be

shown that the method performs well even in a final example where the physics

does not guarantee the existence of a smooth (C1) reflector.

In order to properly compare the scheme to some of those existing in the

literature shown in Section 2.3.1, we compare the computational complexity of our

scheme as proposed in Chapter 4 with other methods for computing the reflector

antenna.

5.2 The Reflector Antenna

Here we recapitulate briefly the reflector antenna problem, with more detail

provided in Section 2.3. We start with a light source or detector µ0 located at
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the origin, which is a probability measure indicating directional intensity and is

supported on a set Ω ⊂ S2. Next we consider a reflector surface Σ, which is a

radial graph over the domain Ω and can be represented as

Σ = {xρ(x) | x ∈ Ω, ρ > 0} , (5.1)

where ρ : Ω → R is a non-negative function indicating the distance between the

reflector surface and the origin. The light from the source µ0 in the direction x

bounces off the reflector Σ without any refraction or absorption and travels in the

direction T following the law of reflection. Over every direction this produces the

far-field intensity µ1, which is also a probability measure indicating directional

intensity and is supported on some target domain Ω∗ ⊂ S2. To recapitulate, the

setup is as shown in Figure 5.1

Figure 5.1 Reflector antenna with source/detector µ0, reflector Σ and target
far-field intensity µ1. The directional vectors x and T (x) are unit vectors.

The reflector antenna problem is thus: given source and target intensity proba-

bility distributions µ0 and µ1, respectively, find the shape of the reflector Σ that

112



transmits the light from the source to the target while satisfying conservation of

energy.

After applying Snell’s law of reflection, conservation of energy, and the

change of variables ρ = e−u, the derivation in Wang (2004) showed that solving

for u is equivalent to solving the Optimal Transport problem with cost function

c̃(x, y) = − log(1 − x · y) on the sphere. Assuming that dµ0 = f0(x)dx and

dµ1 = f1(y)dy and under mild conditions on the intensity distributions f0 and f1,

the function u can be uniquely obtained as the solution of the following Monge-

Ampère type equation:


det(D2u+ A(x,∇u)) = H(x,∇u), x ∈ S2,

D2u+ A(x,∇u) ≥ 0.

(5.2)

Here

A(x, p) = D2
xxc (x, T (x, p)) ,

H(x, p) =
∣∣detD2

xyc (x, T (x, p))
∣∣ f0(x)/f1 (T (x, p)) .

(5.3)

and the statement M ≥ 0 means that M is positive semi-definite. This constraint

(related to the so-called c-convexity of the optimal map T ) is needed to ensure that

the PDE has a unique solution (up to additive constants) and that this solution

corresponds to the desired optical mapping T .

5.3 Computational Complexity Comparison

Here we present a slight modification of Algorithm 2, which allows for the con-

struction of the reflector, see Algorithm 3. In Section 4.6, it was showed that the

computational complexity of our algorithm is O
(
N9/4

)
. Other provably conver-

gent schemes are available for the reflector antenna problem, and we outline them

here.

For many of the other numerical methods described in the literature, we
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Algorithm 3 Computing the reflector surface Σ

1: Preprocess data
f ε1 ← Regularize(f1).

2: Iterate
uhn+1 = uhn + k

(
F h(x, uhn; f0, f

ε
1)−

√
huhn(x)

)
to steady state.

3: Normalize solution

uh(x)← uh(x)− −́
S2
uh(x) dS(x).

4: Construct reflector
Σh =

{
xe−u

h(x) | x ∈ Ω ∩ G
}
.

were not able to find a report of computational complexity. However, we make the

general observation that there is typically a trade-off between efficiency and con-

vergence guarantees. Our proposed method seeks to find a balance between these

issues: it is equipped with a convergence proof while also providing a substantial

improvement in efficiency over other provably convergent methods, which typically

require at least O(N3) time. Other methods based on Monge-Ampère equations

or ray-mapping techniques may provide an improved performance, at least for

smooth examples, but at the expense of any rigorous convergence guarantees.

Within the category of methods that have a rigorous theoretical founda-

tion we include Oliker’s supporting quadrics method Oliker (2006); Oliker et al.

(2015) and methods that use optimization techniques to solve the Optimal Trans-

port problem Doskolovich et al. (2019); Glimm and Oliker (2003). The support-

ing quadrics approach involves successively solving N nonlinear equations for N

focal parameters, which are used to construct the N supporting quadrics that

approximate the reflector surface. An estimate on the overall complexity of this

procedure is O (N4 logN2τ) where τ is the computational time to compute a par-

ticular integral Kochengin and Oliker (1998). The numerical methods proposed

in Doskolovich et al. (2019); Glimm and Oliker (2003) utilize the linear program-

ming and linear assignment formulations for Optimal Transport, which are also

theoretically well-founded. The resulting optimization problems are augmented
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to involve O(N2) unknowns Peyré and Cuturi (2019). The most efficient imple-

mentations of the Hungarian algorithm for these problems require approximately

O(N3) time Jonker and Volgenant (1987).

Several recent methods involve formulating the reflector design problem as

a Monge-Ampère type equation Brix et al. (2015); Romijn et al. (2020); Wu et al.

(2013). The overall cost of evaluating the discretizations utilized by these methods

(i.e. the per-iteration cost) is O(N), which is lower than our per-iteration cost

of O
(
N5/4

)
. However, these efficiency gains come at the expense of any proof

of convergence. Solver times vary, and are unreported in many cases. If mesh-

independent convergence can be achieved, a total cost of O(N) may be possible for

smooth examples, but it is unclear whether or not any existing methods actually

achieve this.

A final class of methods we consider involve producing a ray-mapping be-

tween source and target, then using the law of reflection to produce an optical

surface that achieves this ray-mapping Bruneton et al. (2011); Desnijder et al.

(2019); Feng et al. (2016); Fournier et al. (2010); Parkyn and Pelka (2006). Ap-

proaches for accomplishing this vary, and in most cases we were not able to find

reports of the overall computational complexity. We again note that while an

optimal O(N) cost may be possible in principle, these computational simplicity

comes at the expense of any rigorous guarantees as to the existence of a reflector

that produces the desired ray mapping.

5.4 Computational Results

Here we demonstrate the effectiveness of our method with several computational

examples. These include reflector design problems involving an omnidirectional

source, discontinuous intensity distributions, and intensity distributions supported

on sets with complicated geometries. In each example, we construct an approxi-

mate reflector Σh.

In order to validate our results, we first use the law of reflection in Equa-
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tion (2.53) to perform approximate (forward or inverse) ray-tracing. We then

construct the resulting intensity patterns via approximation of the conservation

of energy (Equation (2.51)) by

f0(xi)∆xi ≈ f1(yi)∆yi,

where ∆xi and ∆yi are the areas of the Voronoi regions containing xi and yi =

T (xi) respectively.

The areas of these Voronoi regions are estimated as follows. We define the

discrete variables n : G → N, which defines a histogram whose bins are defined

at each grid point. Likewise, we define the discrete variable m : T (G) → N,

which defines a histogram whose bins are located at the image of the grid points

under the mapping T . In our computations, we sample M = 100, 000, 000 points

x ∼ Unif(S2). For each sampled point z, we compute

xk = argmin
xi∈G

dS2(xi, z), yl = argmin
yj∈T (G)

dS2(yj, z)

and increment both of the discrete variables n(xk) and m(yl) by 1. After M sam-

ples, we are left with histograms n and m that, after appropriate normalization,

represent the approximate areas of the Voronoi regions: ni ≈ ∆xi and mi ≈ ∆yi.

We emphasize that the approximation of these Voronoi regions introduces addi-

tional artifacts into the ray trace which are irrespective of our computed reflector.

After performing ray tracing, the presence of numerical artifacts may require

that the data be post-processed to show the results clearly. This is done by

rescaling the colorbars to cut off a very small number of the highest values. Any

numerical artifacts are presented in plots of the difference between the desired and

ray-traced intensities.

All computations were performed on a 13-inch MacBook Pro, 2.3 GHz Intel

Core i5 with 16GB 2133 MHz LPPDDR3 using Matlab R2017b. Each computation

utilized around N ≈ 20, 000 points on the sphere. Where applicable, regulariza-

116



tion was performed using ε = 0.3. The precomputation step of approximating

all directional derivatives for N ≈ 20, 000 points took about 10 minutes. Solv-

ing the parabolic scheme to find the solution took around 30 minutes. Ongoing

work will develop faster, more accurate versions of this method. We see therefore

that the proposed numerical method can certainly accommodate higher precision

computations if necessitated by real-world applications.

5.4.1 Peanut Reflector

Following the example of Romijn et al. (2020), we consider a source density com-

ing from an ideal headlight intensity emitting from a vehicle’s high beams. This

headlight intensity pattern is then mapped to the sphere, and inverted, which be-

comes the source intensity f0. The target density f1 is constant. The computation

yields a peanut-shaped oblong reflector lens; see Figure 5.2. Despite the fact that

we anticipate error in the reverse ray trace due to the approximate conservation

of energy (Equation (2.51)), we see that the absolute error performs quite well

in this smooth example. The average error in the reconstruction is 11% of the

maximum intensity.

5.4.2 Discontinuous Intensities

Next, we demonstrate the effectiveness of our method in dealing with discontinu-

ities and complicated densities. In this example, a discontinuous source mass f0

resembling an inverted map of the world is mapped to a constant density f1; see

Figure 6.8. This is a particularly challenging example given the very complicated

structure of the discontinuities. Nevertheless, we achieve a reconstruction that

visually agrees with the world map, with an average error of 19% of the maximum

intensity.
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(a) The source (headlight intensity) and
target masses (constant intensity).

(b) The computed reflector shape.

(c) The inverse ray trace. (d) The error of the inverse ray trace.

Figure 5.2 “Peanut” reflector. The source and target intensities (Figure 5.2a),
the resulting reflector shape (Figure 5.2b), the ray trace validation (Figure 5.2c),
and the absolute error in the validation (Figure 5.2d).

5.4.3 Donut Intensities

To further demonstrate the flexibility of our method, we consider the source and

target intensities propagating in a donut shape, with a dark region in the center.

These are given by

f0(x, y, z) =


1

(4π/15)(
√

2+2)

(
−4
√
x2 + y2z3 + 4(x2 + y2)3/2z

)
,
√

2/2 ≥ z ≥ 0,

0, otherwise,

(5.4)
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(a) Source (globe) and target (constant)
densities.

(b) The computed reflector shape.

(c) The inverse ray trace. (d) The inverse ray trace error.

Figure 5.3 Discontinuous “globe” intensities. The source and target intensities
(Figure 5.3a), the resulting reflector shape (Figure 5.3b), the ray trace validation
(Figure 5.3c), and the absolute error in the validation (Figure 5.3d).

and

f1(x, y, z) =


1

(4π/15)(
√

2+2)

(
−4
√
x2 + y2z3 + 4(x2 + y2)3/2z

)
, 0 ≥ z ≥ −

√
2/2,

0, otherwise.

(5.5)

These intensities have very complicated support containing holes, which is partic-

ularly challenging numerically. Indeed, this challenge is inherent in the theory of

the Optimal Transport problem. We note that the c-convexity constraint requires

the domain Ω to be c-convex in order to guarantee construction of the physically

relevant solution of Equation (2.14). Consequently, PDE based methods that are
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posed only on the support Ω of the intensity (rather than being extended into the

dark regions) will not be assured of producing the correct reflector. This issue is

handled naturally by our method, which is posed on the entire sphere. Despite

the difficulty of this example, our method performs very well, as evidenced in the

results of the ray-tracing. See Figure 5.4. Average error is 9% of the maximal

intensity.

(a) The source (left) and target (right) den-
sities. (b) The computed reflector.

(c) The forward ray trace.
(d) The forward ray trace error.

Figure 5.4 “Donut” intensities example. The source and target intensities (Fig-
ure 5.4a), the resulting reflector shape (Figure 5.4b), the ray trace validation
(Figure 5.4c), and the absolute error in the validation (Figure 5.4d).

5.4.4 Singular Reflector

We conclude with an example of a hemispheric light source (here designated as f1)

that is to be reshaped into a geodesic triangle on the sphere (here designated as
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f0). We remark that given the complicated (non c-convex) support of this target,

we are not even guaranteed the existence of a smooth (C1) reflector; see Loeper

(2011).

The intensities are defined as follows. We begin by forming a geodesic

triangle Tθ ⊂ S2 from the three vertices (t0,θ, t1,θ, t2,θ), where we define tj,θ =

(sin θ cos(2πj/3), sin θ sin(2πj/3), cos θ) for π/2 ≤ θ < π. The geodesic triangle is

formed by the small region enclosed by the three vertices ti, which are connected

by geodesics on the sphere. That is, a point x0 ∈ Tθ if x0 satisfies the following

three inequalities:

x0 · (t1,θ × t2,θ) ≤ 0,

x0 · (t2,θ × t3,θ) ≤ 0,

x0 · (t3,θ × t1,θ) ≤ 0.

Then the source intensity is defined by

f0(x, y, z) =


1/A, (x, y, z) ∈ Tθ,

0, (x, y, z) /∈ Tθ,
(5.6)

where A is the area of the geodesic triangle Tθ and θ = 2.1.

The target intensity is a smoothed version of the identity function on the northern

hemisphere:

f1(x, y, z) =


2π log(cosh(a))

a
tanh(az), z ≥ 0,

0, z < 0,

(5.7)

where a = 10.

For ease of implementation, we perform pre-processing to bound both f0 and

f1 away from zero. Results are presented in Figure 5.5. In the computed reflector,

and resulting ray-traced intensity, we observe an approximate triangle shape as

expected. In this case, there are notable artifacts present near the boundary of the
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triangle. However, to some extent these are a limitation of the physics rather than

of our method. We remark that there is no reason to expect the reflector we are

approximating to be continuously differentiable, so the accuracy of the ray-tracing

verification test is itself rather suspect here. Nevertheless, the absolute error as

compared with the ray trace from the approximate conservation of energy equation

mostly performs well, with an average error of 16% of the maximal intensity.

In a challenging problem like this, where the physics itself may not allow

for the existence of a reflector with nice properties (from the perspective of man-

ufacturing and outcome), it may also be useful to view our method as a robust

way of obtaining a good approximation of the desired reflector. This could then

be used to initialize an end-game method, not based on Optimal Transport, that

would optimize the reflector surface and enforce any desired smoothness.
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(a) The source (left) and target (right) den-
sities from the bottom.

(b) The source (left) and target (right) den-
sities from the side.

(c) The solution u.

(d) The computed reflector shape.

(e) The inverse ray trace.
(f) Inverse ray trace error.

Figure 5.5 Singular reflector. The source and target intensities (Figure 5.5a)
and (Figure 5.5b), the solution u (Figure 5.5c), the resulting reflector shape (Fig-
ure 5.5d), the inverse ray trace validation (Figure 5.5e), and the absolute error in
the inverse ray trace (Figure 5.5f).
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CHAPTER 6

DIFFEOMORPHIC MAPPING FOR THE MOVING MESH
PROBLEM

6.1 Introduction

In this chapter, we construct a class of provably convergent methods for computing

Optimal Information Transport on smooth, compact, and connected 2D manifolds

M . We then provide, for the first time, a comparison of the adaptive mesh methods

on the sphere via Optimal Transport and Optimal Information Transport. The

scheme used for solving the Optimal Transport problem on the sphere was outlined

in Chapter 4. We defer the discussion of the issues concerning their generalizations

to more general closed, compact surfaces M in Chapter 8. In this more general

case, there appear to be more merits to using Optimal Information Transport.

The merits include speed of implementation and generalizability in computational

terms but also in terms of a priori regularity results. Nevertheless, it could be

that a particular application requires the computation of Optimal Transport with

the squared geodesic cost on the sphere and more general surfaces. Most of the

work in this chapter is from the paper Turnquist (2021).

The idea is to use diffeomorphic density matching techniques for moving

mesh methods. The theory justifies the use of both Optimal Transport and Op-

timal Information Transport for doing moving mesh methods on the sphere, at

least in the case where both source and target masses are C∞ and bounded away

from zero Bauer et al. (2015); Loeper (2011). Again, the general idea is that we

will start with a given or easily generated mesh, complete with N vertices and

edges connecting these vertices. The vertices and their edges can be encoded in

an adjacency matrix. Then, the local density of vertices f0 is changed to a desired

target density f1. The idea is to achieve this without tangling the mesh, that is,

without causing the edges to cross each other, see Figure 6.1.

124



Figure 6.1 Mapping density of vertices from a computational domain Ωc to a
physical domain Ωp.

Here we briefly recapitulate the Optimal Information Transport problem.

More detail on the geometry and derivation is shown in Section 2.2 and in the

papers Bauer et al. (2015); Modin (2015). The problem of diffeomorphic density

matching is that given a path of densities µ(t), we desire to find the path of

diffeomorphisms ϕ(t) which project onto µ(t), that are also of minimal length

with respect to the information metric GI , see Section 2.2 for a definition of this

metric. That is, solve the exact density matching problem, that is find a ϕ(t) such

that:


ϕ(0) = id,

ϕ∗µ0 = µ(t),

minimizing
´ 1

0
GI
ϕ(t) (ϕ̇(t), ϕ̇(t)) dt.

(6.1)

Now we assume that µ0 = vol and so f0 = 1/vol(M). We take the density

matching equation ϕ∗(t)µ0 = ϕ∗(t)vol = µ(t) and differentiate with respect to t,

using the formalism of Lie derivatives:

µ̇(t) = ∂t (ϕ(t)∗vol) = ϕ∗divvolv(t), (6.2)
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where v(t) = ϕ̇ ◦ ϕ−1. This can be rewritten as

µ̇(t) = div (v(t)) ◦ ϕ(t)µ(t). (6.3)

From here we perform the Hodge-Helmholz decomposition for the vector field

v, by writing v = gradf+w. It turns out that the Hodge-Helmholtz decomposition

is orthogonal with respect to the information metric GI and the length of the path

ϕ(t) is minimal for w = 0 and µ(t) = ϕ∗(t)vol is a geodesic path Bauer et al. (2015).

Therefore, we can solve the following Poisson equation for the curl-free term f :


∆f(t) = µ̇(t)

µ(t)
◦ ϕ(t)−1,

ϕ̇(t) = grad (f(t)) ◦ ϕ(t), ϕ(0) = id.

(6.4)

The diffeomorphic mapping T , is then given by T = ϕ−1(1), where ϕ(1)

solves Equation (6.4) Bauer et al. (2015).

6.2 Algorithm for Optimal Information Transport

In order to solve the Optimal Information Transport problem on M , we must solve

Equation (2.45). First, we must perform some pre-computations involving the ge-

ometry and the mass densities. Then, we iterate an Euler scheme where each step

involves one iteration of a convergent Poisson solver. Such a Poisson solver must

be convergent on manifolds without boundary. We implement a monotone Pois-

son solver whose convergence guarantees are located in Appendix E and are minor

adaptations to the convergence framework given in Chapter 3. Here are the steps

to compute the approximation to the diffeomorphic mapping ϕ(1). The forward

map at a time step n will be denoted by Tn and the corresponding inverse map at

a time step n will be denoted by Sn. We will outline the algorithm for the sphere,

see Algorithm 4, which is inspired by the algorithm shown in Bauer et al. (2015).

The algorithm on the sphere requires two important functions: Proj a projection

map consistent with the exponential map and Interp, a consistent interpolation
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map. For the case of the sphere, with an explicit formula for the exponential

map, the function Proj is simple to execute. However, the interpolation function

is perhaps more challenging. A robust interpolation is that described in Hamfeldt

and Turnquist (2021a), where the values are consistently interpolated over the

Delaunay triangles.

Algorithm 4 Computing the diffeomorphic mapping ϕ = S(1)

1: Initialize T0 = id;
2: Initialize S0 = id;
3: Fix ∆t� 1;
4: Precompute θ via quadrature;
5: while n∆t < 1 do
6: Compute the density function νn := µ̇n/µn using the explicit formulas;
7: Interpolate: Interp {νn} onto the grid {S(xj)}j;
8: Solve ∆hfn(xi) = νn (Sn(xi)) with any monotone, consistent discretization

of Equation (E.2);
9: Compute ∇hfn(xi) for all xi;

10: Interpolate: ∇hfn(xi) onto the grid {T (xj)}j;
11: Compute Tn+1(xi) = Proj

{
Tn(xi) + ∆t∇hfn (Tn(xi))

}
;

12: Compute Sn+1(xi) = Sn
(
Proj

{
x−∆t∇hfn(xi)

})
13: end while

6.3 Implementation

The meshes on the sphere are generated as follows. Given N vertices, a cube

mesh is generated. That is, vertices are generated on the faces of a cube and an

adjacency matrix is fixed for the edge connections between vertices. Each vertex

connects to its four nearest neighbors, except for the corner vertices which only

connect to the three nearest neighbors. Such a mesh is then projected onto the

sphere (and the adjacency matrix is now fixed). After performing the computa-

tions for the mapping T given by either Optimal Transport or Optimal Information

Transport, the vertices xi are moved to their new locations T (xi), the adjacency

matrix remains unchanged, and the edges are redrawn, see Figure 6.2 for an ex-

ample with N = 2168 vertices.

All computations were performed on a 13-inch MacBook Pro, 2.3 GHz Intel
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Figure 6.2 A N = 2168-point cube mesh with fixed adjacency matrix (left) then
projected to the unit sphere (right).

Core i5 with 16GB 2133 MHz LPPDDR3 using Matlab R2021b.

Our objective is to perform adaptive mesh computations on the sphere. The

original mesh will be assumed to be given by some off-the-shelf mesh generator

which is simple to implement. Here we will be using a mesh defined on a cube which

is then projected onto the sphere. The original mesh, therefore, does not have

constant density. However, in the moving mesh problem, we will be performing

computations that produce diffeomorphic maps from a constant source density

to a variable target density. This allows us to redistribute the mesh as desired.

That is, we produce an off-the-shelf mesh, have a target mesh in mind, compute

the mapping via either Optimal Transport or Optimal Information Transport,

and then move the mesh according to the mappings while retaining the same

connectivity.

6.3.1 Successful Moving Mesh Method Implementations

First, we demonstrate that the computation of mesh redistribution using Optimal

Transport and Optimal Information Transport can be both successful in produce

meshes which do not exhibit tangling. We select density functions with the goal

of producing a transport map T that will concentrate mesh points around the

128



equator, see Equation (6.5).


f0(θ, φ) = 1

4π
,

f1(θ, φ) =
(
1− exp

(
−1/30 (arccos(z)− π/2)2)) /3.53552.

(6.5)

The original mesh is generated from the cube mesh that is then projected onto

the sphere, see Figure 6.3

Figure 6.3 A N = 5048-point cube mesh from the top (left) and diagonally above
looking down (right).

We then require that the density concentrates about the equator according to

Equation (6.5), see the visual representation in Figure 6.4

The resulting mesh restructuring computed using Optimal Transport is

pictured in Figure 6.5.

Now we perform the same computation using Optimal Information Trans-

port, see Figure 6.6:

6.3.2 Advantage of Optimal Information Transport

Another example serves to demonstrate the versatility and desirability of using

Optimal Information Transport for moving mesh problems. We take a constant

source density f0 = 1/(4π) and map it to a complicated, discontinuous map of the
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Figure 6.4 Density in the original mesh (left) and the modified density (right).

world, where a higher density of grid points is required over the oceans and lower

density over the continents, see Figure 6.7.

As before, we use the cube mesh in Figure 6.3 and transform it via Optimal

Information Transport. The result is shown in Figure 6.8.

Some difficulties are encountered when attempting to perform the same

numerical computation via Optimal Transport. First, the necessity of using an

interpolation function for the target mass density f1 onto the mesh defined by

T (x) leads to instabilities in the scheme due to the very nonlinear nature of the

equation we are trying to solve. Compensating for this, by using an inverted image

for the source mass f0 and a constant for the target mass f1 will run, but exhibits

significant tangling for very complicated images like the world map, see Figure 6.9

One potential solution to this issue exhibited by the Optimal Transport

problem will be explored in further work where the computation of the mapping

T is slightly modified to gain convergence guarantees and greater stability.
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(a) The computed target mesh via Optimal Transport.

(b) The target mesh from above. (c) Detail showing no tangling of the target
mesh.

Figure 6.5 3D view of the mesh obtained via Optimal Transport map (Fig-
ure 6.5a), top view (Figure 6.5b), and a detailed view of the equatorial region
(Figure 6.5c) showing that the grid lines do not tangle.
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(a) The computed mesh via Optimal Information Transport.

(b) Top view of the computed mesh.
(c) Detail of the equator showing no tan-
gling.

Figure 6.6 3D view of the mesh obtained via Optimal Information Transport
(Figure 6.6a), top view (Figure 6.6b), and a detailed view of the equator showing
that the grid lines do not tangle (Figure 6.6c).
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Figure 6.7 Constant density in the source density (right) and the target globe
density (left).

Figure 6.8 Entire spherical mesh transformed by Optimal Information Transport
in 3D view (left). The view is of Africa, Europe and Asia, but the other side of
the sphere mesh is also visible. Shown on the right is detail on North America
with other side of sphere hidden from view in order to show the mesh more clearly
(right). The outlines of North and South America can be discerned and tangling
is minimized.
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Figure 6.9 Entire spherical mesh transformed by Optimal Transport in 3D view
(left). Shown on the right is detail on Africa, the Middle East, and Asia with other
side of sphere hidden from view in order to show the mesh more clearly (right).
One can observe some tangling here.
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CHAPTER 7

TOWARDS CONVERGENCE RATES FOR MONOTONE
SCHEMES

7.1 Introduction

In this chapter, we develop new convergence rates for monotone numerical schemes

for solving linear elliptic partial differential equations (PDEs) posed on compact

manifolds. Notably, these rates would apply to the Poisson equation used in the

algorithm for the Optimal Information Transport problem in Chapter 6. The

surprising result, which is also demonstrated empirically, is that the solution er-

ror need not be proportional to the consistency error of the scheme, even in the

smoothest problems. For the nonlinear Optimal Transport PDE (Equation (2.14)),

the convergence guarantees presented in Chapter 3 only use compactness argu-

ments and thus did not provide error bounds. This chapter represents the first

step in establishing convergence rates for the solution of monotone discretizations

of Equation (2.14) over the sphere. The majority of the content in this section

can also be found in Hamfeldt and Turnquist (2022).

We begin the process of developing convergent rates for numerical schemes on

a compact manifold M by considering linear elliptic divergence structure equations

of the form

L
(
x, u(x), Du(x), D2u(x)

)
+ f(x) = 0, (7.1)

where A(x) is a symmetric positive definite matrix and

L[u] ≡ L
(
x, u(x), Du(x), D2u(x)

)
= −divM (A(x)DMu(x)) . (7.2)

which, in local coordinates, has the expression Cabré (2002):

L[u] =
−1√
detG

∂i

(√
detGaikg

kj∂ju
)
, (7.3)
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where G is the metric tensor and gij is the i, jth entry of the inverse metric tensor

G−1, and aij is the i, jth entry of A(x).

We notice immediately the nullspace of the PDE operator consists of con-

stants. This in turn requires us to impose an additional condition in order to

obtain a unique solution to Equation (7.1). We hereby fix any point x0 ∈ M and

further impose the condition

u(x0) = 0. (7.4)

There exist fairly general conditions upon which there exists a weak H1(M)

solution to Equations (7.1), (7.4) provided the given data satisfies the solvability

condition ˆ
M

f(x)dx = 0. (7.5)

See Aubin (1998). This solvability condition arises naturally from the fact that L

is self-adjoint and thus

ˆ
M

f(x) dx = −
ˆ
M

L[u] dx = −
ˆ
M

uL∗[1] dx = 0.

The linearized version of the Monge-Ampère equation arising in Optimal

Transport is an example of such a PDE, see Brenner and Neilan (2012). Criti-

cally, we will be posing such PDE on compact manifolds M without boundary.

Thus, they lack boundary conditions and the usual approaches of establishing

convergence rates for numerical schemes do not work.

In this chapter, we investigate the surprising fact that for manifolds without

boundary it is possible to construct simple monotone discretizations of linear ellip-

tic PDEs in 1D for which the empirical convergence rate is asymptotically worse

than the formal consistency error. In contrast, discrete solutions of the Dirichlet

problem are expected to converge on the order of their formal consistency error.

Buttressing this, we derive explicit convergence rates on 2D manifolds with-

out boundary and observe that the bounds are of order O
(
hα/(d+1)

)
where hα is

the formal consistency error and d = 2 is the dimension of the manifold. This
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somewhat surprising result demonstrates even more clearly the need to design

higher-order (consistency error) schemes for solving such elliptic PDE on mani-

folds without boundary. Furthermore, we show how this convergence result can

immediately be bootstrapped into a convergence result for a discrete gradient.

Future work involves relating this convergence result for linear elliptic PDE in

divergence form to nonlinear elliptic PDE (whose linearization becomes a linear

elliptic PDE in divergence form).

7.2 Empirical Evidence of Suboptimal Convergence Rates

For the remainder of this chapter, we will have a manifold M without boundary

and N discretization points G ⊂M . The parameter h denotes the following spatial

resolution of G:

h = sup
x∈M

min
y∈G

dM(x, y), (7.6)

where dM(x, y) denotes the Riemannian distance between x and y. This choice of

h makes sure that there exists a point y on the grid G within a distance h of any

point x on the manifold.

For a monotone numerical discretization Lh of a linear elliptic PDE L on a

manifold without boundary that has consistency error O (hα), we may hypothesize

that the numerical solution uh of such a scheme satisfies
∣∣uh − u∣∣∞ = O (hα). That

is, the rate of convergence of the discrete solution is the same as the consistency

error. In this section, we will show empirical evidence that this is not true for

manifolds without boundary.

In fact, in Section 7.3, we will derive that the convergence rate of the discrete

solution of the monotone discretization satisfies:

∣∣uh − u∣∣ = O
(
hα/(d+1)

)
, (7.7)

where d is the dimension of the manifold. In this section, our empirical example
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will be given for the 1D torus. Therefore, we will demonstrate in this section that

we can construct monotone schemes that have empirical convergence rate:

∣∣uh − u∣∣ = O
(
hα/2

)
. (7.8)

7.2.1 The Dirichlet Problem

We are trying to solve a PDE on a manifold without boundary (and, therefore, the

PDE lacks boundary conditions). Such PDE in general lack a comparison prin-

ciple. First, we illustrate how we can derive simple convergence bounds when

we have a Dirichlet problem. These convergence bounds critically utilize the

maximum principle and the bounds are consequently proportional to the con-

sistency error. Let’s start with the Dirichlet problem on a subset of Euclidean

space Ω ⊂ R2:


−∆u(x) + f(x) = 0, x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω.

(7.9)

Suppose, in addition, that we have a consistent monotone discretization scheme


Lhuhi + f(xi), xi ∈ Ω,

uh = g, xi ∈ ∂Ω

(7.10)

with truncation error Lhφi + f(xi) = τi(h), |τi(h)| ≤ τ(h).

Let zh = u − uh. We will have zh(xi) = 0 for xi ∈ ∂Ω. Now, choose

some w such that Lhwi ≥ 1, ∀i with w(xi) = 0 on ∂Ω. Define v±i ≡ ±zhi −∥∥Lhzh∥∥
L∞(Ω)

w(xi). Then,

Lhv±i = ±Lhzhi −
∥∥Lhzh∥∥

L∞(Ω)
Lhwi ≤ ±Lhzhi −

∥∥Lhzh∥∥
L∞(Ω)

≤ 0. (7.11)

Applying the maximum principle, we get:
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± zhi −
∥∥Lhzh∥∥

L∞(Ω)
wi ≤

∥∥zh∥∥
L∞(∂Ω)

−
∥∥Lhzh∥∥

L∞(Ω)
‖w‖L∞(Ω) = 0. (7.12)

Thus, we have

∥∥zh∥∥
L∞(Ω)

≤
∥∥Lhzh∥∥

L∞(Ω)
‖w‖L∞(Ω) = τ(h) ‖w‖L∞(Ω) . (7.13)

Thus, the error bounds follow from a priori bounds on the solution of, for example,


−∆w = 3/2, x ∈ Ω,

w = 0, x ∈ ∂Ω.

(7.14)

7.2.2 The PDE on the Torus without Boundary Conditions

However, our PDE are manifestly different from the Dirichlet problem. To use an

even simpler example, suppose we aim to solve:


−u′′(x) = 0, x ∈ T1,

u(0) = 0

(7.15)

on the 1d torus T1. The condition u(0) = 0 is chosen for uniqueness, but it is not

a boundary condition. Notice how this differs from the Dirichlet problem. In the

Dirichlet problem:


−u′′(x) = 0, x ∈ T1 \ 0,

u(0) = 0.

(7.16)

We build uniqueness in from the start by designing a proper, monotone

scheme:
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Lhi [v] + hvi = fhi ,

ui = vi − v(0).

(7.17)

Notice that v is well-defined and uniformly bounded. Empirically, we find that v

is O(1) (but not smaller). The equation does u then satisfies

Lhi [u] + hui = fhi − hv(0). (7.18)

From bounds on v, this has consistency error O(h). Note also that by design, we

have u(0) = 0. Now, let w solve


Lhi [w] + hwi = 1, xi 6= 0,

w(0) = 0.

(7.19)

Empirically, ‖w‖∞ = C/h, see Figure 7.1. Applying the maximum principle to

±ui −
∥∥Lhu+ hui

∥∥
∞wi, we find that

± ui − wi
∥∥fh − hv(0)

∣∣
∞ ≤ ±u(0)− w(0)

∥∥fh − hv(0)
∥∥
∞ = 0, (7.20)

=⇒ ‖u‖∞ ≤ ‖w‖∞
∥∥fh − hv(0)

∥∥
∞ = O(1). (7.21)

So this approach does not yield convergence! We can observe, empirically, a

convergence rate of O
(√

h
)

by choosing the following modification of the scheme.

Note that the scheme will still be monotone and proper:


Lhi [v] + hr(xi)vi = fhi ,

ui = vi − v(0),

(7.22)

where r(x) > 0. E.g., take fh = h, r(x) = x + 1. Empirically: we have ‖w‖∞ =

O(1/h), again see Figure 7.1 and ‖v‖∞ = O(1). If N is chosen to be multiples
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Figure 7.1 Empirically, ‖w‖∞ = C/h for the problem without boundary condi-
tions.
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of 4, then we get a particularly clean plot with observed convergence rate of

O
(
hα/(d+1)

)
, where again, for our scheme α = 1, see Figure 7.2.
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Figure 7.2 We observe O
(
hα/(d+1)

)
convergence of the discrete solution uh to the

solution u = 0 on T1, where α = 1.

7.3 Convergence Rates for Linear Elliptic PDE on Compact

Manifolds

We now establish error bounds for a class of consistent, monotone approximations

schemes for Equations (7.1), (7.4). The main result is presented in Theorem 7.7.

The approach we take here is to construct barrier functions, which are shown

to bound the error via the discrete comparison principle. Importantly, the error

estimates we obtain are consistent with the empirical convergence rates observed

in subsection 7.2.
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7.3.1 Hypotheses on Geometry and PDE

We begin with the hypotheses on the geometry M and Equation (7.1) that are

required by our convergence result.

Hypothesis 7.1 (Conditions on PDE and manifold). The manifold M and PDE

(Equation (7.1)) satisfy:

1. The manifold M is a 2D compact orientable surface without boundary.

2. The matrix A(x) ∈ C2(M) is symmetric positive definite.

3. The function f(x) ∈ C1(M) satisfies
´
M
f(x) dx = 0.

Remark 7.2. The compactness of the 2D manifold M implies that it is geodesi-

cally complete, has injectivity radius strictly bounded away from zero, and that the

sectional curvature (equivalent to the Gaussian curvature in 2D) is bounded from

above and below Lee (2006).

Remark 7.3. The fact that M is 2-dimensional can quite easily be generalized,

since nothing in our convergence theorem fundamentally depends upon the dimen-

sion d (though the convergence bound does vary with d). We emphasize, however,

that the lack of boundary on our manifold M is an essential point in this chapter.

7.3.2 Approximation Scheme

Next, we describe the class of approximation schemes that are covered by our con-

vergence result. The starting point of the scheme is the idea that the uniqueness

constraint (Equation (7.4)) should be posed at the point x0, with a reasonable dis-

crete approximation of the PDE posed on other grid points. However, as discussed

in subsection 7.2, this approach may not yield a convergent scheme. Instead, we

will create a small cap around x0 and fix the values of u at all points in this cap.

To construct an appropriate scheme, we begin with any finite difference

approximation Lh(x, u(x) − u(·)) of the PDE operator in Equation (7.2) that is

defined for x ∈ Gh and that satisfies the following hypotheses.
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Hypothesis 7.4 (Conditions on discretization scheme). We require the scheme

Lh to satisfy the following conditions:

1. Lh is linear in its final argument.

2. Lh is monotone.

3. There exist constants C, α > 0 such that for every smooth φ ∈ C2(M) the
consistency error is bounded by∣∣Lh(x, φ(x)− φ(·))− L(x, φ(x), Dφ(x), D2φ(x))

∣∣ ≤ C[φ]C2,1(M)h
α, x ∈ Gh.

Next we define some regions in the manifold M that will be used to create

“caps” where u is fixed in this scheme, and where additional conditions will be

posed on barrier functions. Choose any 0 < γ < α. Define the regions

bh = {x ∈M | dM(x, x0) < hγ} ,

Sh = {x ∈M | hγ < dM(x, x0) ≤ 2hγ} ,

Bh = M \ (bh ∪ Sh).

See Figure 7.3.

We then define the modified scheme F h as follows:

F h(x, u(x), u(x)− u(·)) ≡


Lh(x, u(x)− u(·)) + hαu(x) + f(x), x ∈ Bh ∩ Gh

u(x), x ∈ (Sh ∪ bh) ∩ Gh.
(7.23)

Remark 7.5. The condition u(x) = 0, x ∈ Sh ∪ bh can be relaxed provided the

resulting discrete solution has a uniformly bounded Lipschitz constant in this region

and the values of u are close to zero. Pinning the value to zero has the particularly

strong effect of setting the local Lipschitz constant to zero.

Note that the discretization F h is automatically proper by construction.

Therefore, this scheme has a uniformly bounded solution and satisfies the discrete

comparison principle as shown in Oberman (2006).
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Lemma 7.6. Under the assumptions of Hypotheses 7.1,7.4, the discrete scheme

F h(x, uh(x), uh(x)− uh(·)) = 0 (7.24)

has a unique solution uh that is bounded uniformly independent of h for sufficiently

small h > 0.

Proof. Existence of uh follows from the fact that F h is proper Oberman (2006).

Now let u ∈ C2,1(M) be the unique solution of Equations (7.1), (7.4). From the

consistency of Lh, we have that for any constant K ∈ R

F h(x, u(x)−K, (u(x)−K)− (u(·)−K)) ≤ Chα −Khα,

where C is a constant depending on ‖u‖C2,1(M) and h > 0 is sufficiently small.

Choosing any K > C yields

F h(x, u(x)−K, (u(x)−K)− (u(·)−K)) < 0 = F h(x, uh(x), uh(x)− uh(·)).

By the discrete comparison principle, we have

uh ≥ u−K ≥ −‖u‖L∞(M) −K.

Similarily, we obtain

uh ≤ ‖u‖L∞(M) +K.

7.4 Convergence Rates

The idea in this section is to establish the convergence of the discrete solution of

a monotone (and proper) scheme to the unique solution of the underlying PDE.
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We accomplish this by constructing barrier functions φh± such that

F h[φh−] ≤ F h[uh − u] ≤ F h[φh+] (7.25)

and then by invoking the discrete comparison principle to conclude that

φh− ≤ uh − u ≤ φh+. (7.26)

These barrier functions can be chosen to satisfy φh± = O
(
hα/(d+1)

)
. In

this article, we explicitly treat the case d = 2. In Section 7.2, we saw for T1

that the empirical convergence rate was O
(
hα/2

)
, which is consistent with our

theoretical error bound when d = 1. The factor (d+ 1) appears because there is a

contribution of d from the dimension of the underlying manifold (which arises due

to the solvability condition (Equation (7.5)), and a contribution of 1 from deriving

a Lipschitz bound (also constrained by the solvability condition). Thus, we see

that it is the solvability condition on the manifold without boundary that leads

to the reduced convergence rate overall of a monotone and proper discretization.

We state the main convergence result:

Theorem 7.7 (Convergence Rate Bounds for Smooth Case). Under the assump-

tions of Hypotheses 7.1 and 7.4, let u ∈ C2,1(M) be the solution of Equations (7.1),

(7.4). Then the discrete solution uh solving Equation (7.24) satisfies

∥∥uh − u∥∥
L∞(M)

≤ Chα/3, (7.27)

where C > 0 is a constant independent of h.

Remark 7.8. This convergence rate can be extended to more general d-dimensional

manifolds as follows: ∥∥uh − u∥∥
L∞(M)

≤ Chα/(d+1). (7.28)

We will make use of two theorems from differential geometry. The first the-

orem is the Conjugate Point Comparison Theorem, which tells us that curvature
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bounds from above allow us to assert that the conjugate point of a point x ∈ M

is at least a certain distance away, see also Lee (2006):

Theorem 7.9 (Conjugate Point Comparison Theorem Lee (2006)). Suppose that

all sectional curvatures of M are bounded above by a constant κ+. If κ+ ≤ 0, then

no point of M has conjugate points along any geodesic. If κ+ = 1/R2 > 0, then

the first conjugate point along any geodesic occurs at a distance of at least πR.

The Conjugate Comparison Theorem then will allow us to satisfy a condition

in the Rauch comparison theorem, which allows us to use curvature bounds in

constant curvature spaces to bound in turn the magnitude of the Jacobian on our

manifold, see Lee (2006) for more information:

Theorem 7.10 (Rauch Comparison Theorem Lee (2006)). Let M and M̃ be Rie-

mannian manifolds, let γ : [0, T ] → M and γ̃ : [0, T ] → M be unit speed geodesic

segments such that γ̃(0) has no conjugate points along γ̃, and let J, J̃ be normal

Jacobi fields along γ and γ̃ such that J(0) = J̃(0) = 0 and |DtJ(0)| =
∣∣∣D̃tJ̃(0)

∣∣∣.
Suppose that the sectional curvatures of M and M̃ satisfy K(Π) ≤ K̃(Π) whenever

Π ⊂ Tγ(t)M is a 2-plane containing γ̇(t) and Π̃ ⊂ Tγ̃(t)M̃ is a 2-plane containing

˙̃γ(t). Then |J(t)| ≥
∣∣∣J̃(t)

∣∣∣ for all t ∈ [0, T ].

7.4.1 Barrier Functions

We now define the barrier functions φh± by solving a linear PDE on the manifold

M with an appropriately chosen (small) right-hand side fh that satisfies the solv-

ability condition (Equation (7.5)). In particular, given a fixed C0 > 0 (which will

be fixed later), we let φh± be the solutions of the PDE


L[φh±] = ±fh(x), x ∈M,

φh±(x0) = ±C0h
γ.

(7.29)

We emphasize that while the barrier functions φh± depend on the grid parameter

h, they are solutions of the PDE on the continuous level.
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Below, we outline the construction of the upper barrier φh+; the lower barrier

is similar. We begin by choosing a function fh(x) that ensures that φh+ ∈ C2,1(M):

fh(x) =



κ(h)

|Bh| , x ∈ Bh,

ψ̃h(x), x ∈ Sh,

−κ(h)
Ah
, x ∈ bh,

(7.30)

where
∣∣Bh
∣∣ is the area of the region Bh and κ(h) = O(hα) will be fixed later.

Below, we will show how to choose the function ψ and the constant Ah. The

choice of fh is constrained by the compatibility condition
´
M
fh(x)dx = 0. See

Figures 7.3 and 7.4 for two complementary visualizations of the function fh(x) on

the manifold M .

Figure 7.3 The construction of the barrier functions φh± on the manifold M .

Figure 7.4 The construction of the function fh± from a “side profile” parametrized
by distance from the point x0.
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Lemma 7.11. The function fh can be chosen to satisfy fh ∈ C1(M).

Proof. We demonstrate this in the case φh+ for simplicity of exposition. We need

to show that we can pick a cutoff function ψ(t) such that ψ ∈ C1 uniformly in h

and
´
M
fh = 0. Define the constants:

σ± ≡
κ(h)

2

(
1

|Bh|
± 1

Ah

)
, (7.31)

where we choose

Ah =

|Sh|
2

+
∣∣bh∣∣

1 +
|Sh|

2|Bh|

, (7.32)

where
∣∣Sh∣∣ is the area of the region Sh. Without loss of generality, we choose the

function ψ(t) to satisfy:

ˆ
Sh
ψdx = σ−. (7.33)

The amplitude of the function ψ(t) must be O(hα/3) and the width of

Sh is O(hα/3). Thus, we will explicitly fit a one-parameter cosine function with

amplitude σ+ that is shifted by the value σ− in order to satisfy the requirements

of the function fh. In the case of the sphere, the existence of such a smooth cutoff

function in the strip Sh boils down to the existence of a one-dimensional smooth

cutoff function ψ(t) chosen to satisfy

ˆ 1

0

(ψ(t)− σ−) sin (tr1 + (1− t)r0) dt = 0. (7.34)

Suppose we want an integral
´ φ(1)

0
Ψ (s) ds = 0. A simple choice for Ψ

such that Ψ′(0) = Ψ′(1) = 0 is to choose Ψ(s) = −σ+ cos
(

πs
φ(1)

)
. Then, de-

fine the change of variables s = φ(t). In the variable t, the integral becomes
´ 1

0
Ψ(φ(t))J(φ(t))dt =

´ 1

0
Ψ(φ(t))φ′(t)dt = 0. In the case of the sphere, comparing

this with Equation (7.34) we see that we should take:
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ψ(t) = σ− − σ+ cos

(
π

cos (tr1 + (1− t)r0)− cos r0

cos r1 − cos r0

.

)
(7.35)

From this choice, one can readily see that ψ′(t) = O (hγ). We use this choice of

ψ(t) to build up the function

ψ̃h(x) = ψ

(
d(x, x0)− hγ

hγ

)
. (7.36)

Since fh ∈ C1(M) and
´
M
fh = 0, the result for the case M = S2 follows.

Beyond the case of the sphere, we must assume both negative and positive

curvature bounds. We need a formula for the Jacobian in the strip Sh of the

exponential map from x0 as a function of the radius from x0. For small enough h,

this Jacobian exists (by the positive curvature bound, see Theorem 7.10) and is

given by the solution to the Jacobi field equation, see Berger (2003); Carmo (2016),

for example. Then, φ′(t) = J(t) allows us to solve for φ(t). Since we are concerned

with the magnitude of the Jacobian, we will use the Rauch Comparison Principle,

see Theorem 7.10. We are allowed to use this since our curvature bound from above

allows us to uses the Conjugate Point Comparison Theorem (see Theorem 7.9),

which in turn proves that there are no conjugate points in the strip Sh. The

curvature bound from below allows us to bound the magnitude of the Jacobian

from above.

Endowed thus with curvature bounds from above and below: κ− ≤ K ≤ κ+

will allow us to assert |J | ≤ sinh (
√
−κ−t) /

√
−κ−, see Berger (2003) for more

detail about constant curvature Jacobi fields. Thus,

0 ≤ ψ′(t) = sin

(
πφ(t)

φ(1)

)
φ′(t) ≤

sin

(
πφ(t)

φ(1)

)
sinh

(√
−κ− (tr1 + (1− t)r0)

)
/
√
−κ− (7.37)

and thus again, in the general case ψ′(t) = O (hγ). Thus, we have explicitly
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constructed a uniformly C1 function fh on the whole manifold M such that
´
M
fh = 0.

One preliminary result we need is that φh± are bounded.

Lemma 7.12. There exist bounded barrier functions φh± solving Equation (7.29).

Proof. By Theorem 4.7 of Aubin (1998) we have that for a fixed h, solutions of

Lφh± = ±fh(x) are unique up to a constant. The condition φh±(x0) = ±C0h
γ then

fixes that constant. Then, from Theorem 4.7 of Aubin (1998) again, we have that

if fh ∈ Ck(M), then φh± ∈ Ck+2(M). This ensures that for a fixed h, the functions

φh± are bounded.

Now, we establish an explicit maximum bound on the magnitude of φh±.

Lemma 7.13 (A Maximum Bound). For small enough h, there exists a constant

C > 0 such that the barrier functions φh± can be bounded over the entire manifold

M as follows: ∥∥φh±∥∥L∞(M)
≤ C

(
hγ +

κ(h)

hγ

)
. (7.38)

Proof. We use the fact that we can cover the manifold M with a finite covering

{Bi
r}i=1,...,n, (where the choice of r can be chosen uniformly) established in Theo-

rem G.1 and use the fact that there exists a change of coordinates which expresses

the PDE (Equation (7.2)) as a uniformly elliptic PDE in divergence form where

the differential operators can be interpreted in the usual Euclidean sense Appendix

F. What this allows us to do then, is simply apply Euclidean bounds for uniformly

elliptic divergence form PDE in patches over the manifold M .

We show the bound just for φh+. Denote

φ̄h+ ≡ φh+ − inf
M
φh+, (7.39)

where infM φh+ exists by Lemma 7.12. This is non-negative, which allows us to

apply the de Giorgi-Nash-Moser Harnack inequality, which applies to PDEs in

divergence form. The PDE (Equation (7.1)) is in divergence form if expressed in
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local coordinates ( Appendix F). See Theorems 8.17 and Theorem 8.18 in Gilbarg

and Trudinger (2001), since φ̄h+ is a super-solution of Equation (7.29). Then for

any ball Br, we have:

sup
Br

φ̄h+ ≤ C

(
inf
Br
φ̄h+ + r2δ

∥∥fh∥∥
Lq/2

)
. (7.40)

where q > d and δ = 1 − d/q. Since we can achieve a finite covering of M by

balls Br, we now use a chaining argument to get a uniform bound on supBr φ̄
h
+.

Denoting the ball B1
δ where the minimum is obtained, i.e. φ̄h+(x) = 0 for some

x ∈ B1
δ , we have:

sup
B1
δ

φ̄h+ ≤ C
∥∥fh∥∥

Lq/2(M)
. (7.41)

Now, take a ball B2
δ that overlaps with B1

δ . Then,

sup
B2
δ

φ̄h+ ≤ C

(
inf
B2
δ

φ̄h+ +
∥∥fh∥∥

Lq/2(M)

)
≤

C

(
sup
B1
δ

φ̄h+ +
∥∥fh∥∥

Lq/2(M)

)
≤ C ′

∥∥fh∥∥
Lq/2(M)

. (7.42)

Repeating this chaining argument a finite number of times covers the com-

pact manifold M . Thus, we get:

sup
M

φ̄h+ ≤ C ′′
∥∥fh∥∥

Lq/2(M)
. (7.43)

Since, φh+(x0) = C0h
γ, this shows that

∣∣∣∣sup
M

φh+

∣∣∣∣ ≤ C0h
γ + C ′′

∥∥fh∥∥
Lq/2(M)

. (7.44)

We have:

∥∥fh∥∥
Lq/2(M)

≤

(ˆ
Sh∪bh

(
κ(h)

h2γ

)q/2
dx+

ˆ
Bh
κ(h)q/2dx

)2/q

, (7.45)
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∥∥fh∥∥
Lq/2(M)

≤ κ(h)

(
C

h(q−2)γ
+ vol(M)

)2/q

. (7.46)

Thus,

∥∥fh∥∥
Lq/2(M)

≤ C ′κ(h)

h(1−2/q)2γ

(
1 + vol(M)h(q−2)γ

)2/q
, (7.47)

and so

∥∥fh∥∥
Lq/2(M)

≤ C ′κ(h)

h(1−2/q)2γ

(
1 +O

(
h(q−2)γ

))
. (7.48)

In particular, this holds if we choose q = 4 > d = 2. Thus, we get:

∥∥fh∥∥
L2(M)

≤ C ′κ(h)

hγ
+O (hγ) . (7.49)

Hence, we obtain

∣∣∣∣sup
M

φh+

∣∣∣∣ ∼ O (hγ) +O (κ(h)/hγ) . (7.50)

Using the maximum bounds allows one to establish bounds on the Lipschitz

constant of the second derivatives of φh±. Again, for clarity of exposition, we only

show the bound for the case φh+.

Lemma 7.14 (Estimates for Bounding Function). There exists a constant C > 0

such that for small enough h > 0, we have the estimate:

[
φh+
]
C2,1(M)

≤ C
κ(h)

h3γ
. (7.51)

Proof. Just as in Lemma 7.13, we find that we can apply an a priori bound

on coordinate patches and then this leads to an overall bound. First, we use a

classical interior regularity result for uniformly elliptic PDE with bounded first-

order coefficients b in a region Ω from Corollary 6.3 of Gilbarg and Trudinger
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(2001):

`
∥∥φh+∥∥C1(Ω′)

+ `2
∥∥φh+∥∥C2(Ω′)

+ `3
[
φh+
]
C2,1(Ω′)

≤ C
(∥∥φh+∥∥L∞(Ω)

+
∥∥fh∥∥

C0,1(Ω)

)
,

(7.52)

where ` ≤ dist(Ω,Ω′) and C = C(λ, diam(Ω)), and λ is the lower bound on the

eigenvalues of the matrix A.

These coordinate patches (and therefore those in Lemma 7.13) are chosen

to overlap by a radius δ > 0 to avoid the fact that the bounds in the estimate

(Equation (7.52)) scale with the distance to the boundary of each region Ω. Then,

we use the Hölder estimate Equation (7.52) from Gilbarg and Trudinger in each

patch Ωi,ε and bound the overall Hölder estimate by a sum over each patch. Thus,

we get:

[
φh+
]
C2,1(M)

≤ C
(∥∥φh+∥∥∞ +

∥∥fh∥∥
C0,1(M)

)
. (7.53)

Thus, from Lemma 7.13 and the fact that the Lipschitz constant of fh, satisfies

∼ κ(h)
h3γ

and
∣∣fh∣∣ ∼ O κ(h)

h2γ
, we have that there exists a C > 0 such that, for small

enough h > 0, we have that

[
φh+
]
C2,1(M)

≤ C

(
hγ +

κ(h)

h3γ

)
. (7.54)

7.4.2 Proof of Convergence Theorem

Now, we prove the main result.

Proof of Theorem 7.7. In the region Bh we compute

F h[uh − u] = Lh
(
uh − u

)
+ hα

(
uh − u

)
≤ C

′′
hα (7.55)

for some C
′′

independent of h.
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We also substitute φh+ into the discrete operator in the region Bh and exploit

consistency to obtain:

F h[φh+] = Lhφh+(xi)+hαφh+(xi) ≥ κ(h)/
∣∣Bh
∣∣−C [φh+]C2,1(M)

hα+hαφh+(x). (7.56)

In order to exploit the discrete comparison principle, we desire to find κ(h) such

that

κ(h)

|Bh|
− C

[
φh+
]
C2,1(M)

hα + hαφh+(x) ≥ C ′′hα. (7.57)

Applying Lemmas 7.14, 7.13, we require

κ(h)

|Bh|
− Chα

(
hγ +

κ(h)

h3γ

)
− C ′hα

(
hγ +

κ(h)

hγ

)
≥ C ′′hα. (7.58)

Thus, we must choose:

κ(h) ≥ hα (C ′′ + (C + C ′)hγ)
1

|Bh| −
Chα

h3γ
− C′hα

hγ

. (7.59)

This will hold if we choose κ(h) > Khα for some K > 0 large enough and

let γ = α/3. Applying the modified scheme F h inside Sh ∪ bh to uh − u and φh+,

we get that we require that

Fh[φ
h
+] = φh+(x) ≥ uh(x)− u(x) = Fh[u

h − u], x ∈ Sh ∪ bh. (7.60)

Recalling that uh(x) = 0 in Sb ∪ bh and φh+(x0) = C0h
γ does yield this result

provided that we choose the constant C0to satisfy

C0 ≥
(
Lφh± + Lu

)
, (7.61)

where Lu is the Lipschitz constant of u and Lφh± is the equi-Lipschitz constant of

155



the family
{
φh±
}
h
, which is bounded by Equation (7.52):

∣∣Dφh+∣∣0;M
≤ C

(
hγ +

κ(h)

h3γ

)
. (7.62)

Thus, we find that

F h[uh − u] ≤ F h[φh+], x ∈ Gh. (7.63)

Invoking the discrete comparison principle of F h yields uh − u ≤ φh+.

Doing the same procedure for φh− we establish the bounds:

φh−(x) ≤ uh − u ≤ φh+(x). (7.64)

Thus, applying the maximum bound Equation (7.38) with our choice that γ = α/3,

we obtain ∥∥uh − u∥∥ ≤ Chα/3. (7.65)

7.5 Convergent Numerical Gradient

Once the convergence rates are established for the solution uh of the discrete

operator, they can be immediately used to establish a convergence approximate

of the gradient of uh with rates, provided that the a priori solution satisfies u ∈

C2(M). This is done by modifying the gradient operator by simply taking the

finite-difference terms over larger stencils. It must be emphasized that this is

done as a post-processing step.

First, we introduce the discrete approximation of the gradient. For every

point in the computational grid xi ∈ Gh, we have an associated list of neighboring

points used in computations, whose indices are denoted by N(i). Below, we will

show how thisN(i) is chosen. Then, we define the following discrete approximation

of the gradient:

156



∇̃hφ(xi) ≡ max
j∈N(i)

φ(xj)− φ(xi)

d(xj, xi)
. (7.66)

Note, this gives an approximation of the magnitude of the gradient. Suppose that

the maximum is achieved for some index j∗. The approximate direction of the

gradient is given by the geodesic connecting xi and xj∗ . That is, suppose γ(t) :

[0, 1] → M is a unit-speed geodesic connecting xi and xj∗ , where γ(0) = xi and

γ(1) = xj∗ . Then, the approximate direction of the gradient is given by γ′(t)|t=0.

Likewise, given a point y, there exists a ŷ ∈ Tx such that expx (ŷd(x, y)) = y and

we will denote the “direction” of y (with respect to x) by the notation ŷ.

Theorem 7.15. Suppose that u ∈ C2(M) and the discrete solution satisfies∥∥uh − u∥∥ = O (ω(h)) where ω(h) → 0. Then, the gradient operator ∇̃h is such

that computing this gradient approximation using the computational points xj∈N(i)

such that

N(i) =
{
j : C−

√
ω(h) ≤ d(xi, xj) ≤ C+

√
ω(h)

}
(7.67)

yields the error:

∇̃huh(xi) = ‖∇u(x)‖+O
(√

ω(h)
)

+O(h). (7.68)

Proof. Use uh to estimate any directional derivative (e.g. the gradient) as follows:

uh(xi)− uh(y)

d(xi, y)
=
uh(xi)− u(xi)− uh(y) + u(y)

d(xi, y)
+
u(xi)− u(y)

d(xi, y)

= ∇u(x) · ŷ +O
(

ω(h)

d(xi, y)

)
+O (d(xi, y)) . (7.69)

Now, on the grid the point y cannot necessarily be taken to be exactly so

that expx (∇u(x)) = y. However, we will search in a strip of width O (d(xi, y)) for

approximate directions. That is, we make the following choice of computational

neighborhood:
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N(i) =
{
j : C−

√
ω(h) ≤ d(xi, xj) ≤ C+

√
ω(h)

}
. (7.70)

Due to the non-zero curvature of M , there are necessarily distortions in the search

directions. We assume that d(xi, y) < 1/
√
κ, where, again, the Gaussian curvature

of M is bounded above by κ and below by −κ. The density of points in the tangent

plane Txi at a distance d(xi, y) from the point xi is distorted by a factor of, at

worst, 1 +O (d(xi, y)2). This follows by applying the Rauch comparison principal

and the results on constant curvature Jacobi field in Berger (2003).

Since there exists a grid point for every ball of radius O(h), we have that

there exists a sequence of yh ∈ Gh such that

∇u(xi) · ŷh = ‖∇u(xi)‖+O (h) , (7.71)

Therefore,

∇̃huh(xi) = ‖∇u(xi)‖+O
(√

ω(h)
)

+O (h) . (7.72)

We stress here that we are not replacing the old solution, but using the

values of uh to find a post-processing approximation of the gradient.

This result then naturally extends the results from Section 7.3, by using

the fact that the highest order monotone scheme possible for a second-order linear

elliptic PDE satisfies α ≤ 2, see Oberman (2006). Thus, we get:

Corollary 7.16. Suppose we have the PDE (Equation (7.1)) on a manifold M

with Hypotheses 7.1. Let uh be the solution of Equation (7.24) with the assumptions

Equation (7.4). Then, we have:

∇̃u(xi) = ‖∇u(x)‖+O
(
hα/6

)
. (7.73)
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CHAPTER 8

CURRENT AND FUTURE WORK

In this chapter, we outline three current and future avenues of research. The first is

concerned with establishing higher-order schemes in the hope that the convergence

rates for discretizations over the sphere can be improved. Higher-order schemes are

not necessarily monotone, but can be worked into monotone schemes via a filter

function to build an overall convergent scheme. The second avenue of research

is to extend the computations of Optimal Information Transport for compact 2D

manifolds, since the moving mesh methods via Optimal Transport are fraught

with regularity issues in generality. The final avenue of research is concerned with

designing a monotone scheme for the W1 distance based on a PDE formulation.

8.1 Higher-Order Schemes for Optimal Transport on the Sphere

While monotone schemes are provably convergent for the Optimal Transport prob-

lem on the sphere by the theorem in Chapter 3, the overall consistency error of the

discretization is O
(√

h
)

. When we have applications in mind, it would be better

if we could design provably convergent schemes that have better consistency error

(which would lead to better convergence properties) when the problem is smooth

enough. Higher-order (consistency error) schemes can be worked into a conver-

gence framework by using the concept of filtered schemes, which was introduced

in the Euclidean case in the paper Froese and Oberman (2013). These filtered

schemes, however, lack proofs of convergence in the case of the sphere or more

generally on 2D surfaces without boundary. Current work has involved modifying

the proof of convergence of filtered schemes to the case of the sphere and demon-

strating the improved convergence properties empirically in examples inspired by

real-world applications. A further desire is to be able to use explicitly derived

convergence rates (in the linear case shown in Chapter 7) for the monotone dis-
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cretization of the Optimal Transport problem to get convergence guarantees for

the filtered scheme as well.

8.1.1 Filtered Schemes

We introduce the concept of filtered schemes by defining what we mean by

a perturbation of the discrete operator, see Froese and Oberman (2013).

Definition 8.1. The scheme F ε
N is a perturbation if there is a nonnegative modulus

function m : R+ → R+ with

lim
ε→0+

m(ε) = 0 (8.1)

such that

sup
u∈L∞(Ω)

sup
x∈Ω
|F ε
N [u](x)| ≤ m(ε). (8.2)

Now, we come to the definition of a scheme which is “close” to monotone, see Froese

and Oberman (2013).

Definition 8.2. The scheme F ε is nearly monotone if it can be written as

F ε[u] + F ε
N [u], (8.3)

where F ε
M is monotone and F ε

N is a perturbation.

Now, practically speaking one desires to know that the nearly monotone

scheme is simple to construct by somehow using a higher-order scheme in nonsin-

gular regions of the domain. The hybrid scheme will be constructed using a filter

function, which we define here, see Froese and Oberman (2013).

Definition 8.3. We define a filter function to be a continuous, bounded function

S, which is equal to the identity in a neighborhood of the origin and zero outside.

A particular filtered scheme is then defined via defining the perturbation and fixing

α, see Froese and Oberman (2013):
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F ε
N [u] = εαS

(
F ε
A[u]− F ε

M [u]

εα

)
, (8.4)

where F ε
A is the more accurate scheme. Clearly, the choice of α is rather important.

It will determine how sensitive the filtered scheme is to detecting singularities.

Singularities here are “measured” by how different the values of the monotone

and accurate scheme are. If they are approximately the same, then the filtered

scheme chooses to use the accurate scheme. But, the advantage lies in the fact

that the higher-order scheme may have better convergence properties in smooth

situations. We can then develop higher-order schemes by direct Taylor expansion,

similarly to what was done in the derivation of monotone schemes in Froese (2018).

Then, we discretize the Optimal Transport problem on the sphere with the local

tangent plane construction introduced in Chapter 4.

8.2 Moving Mesh Methods for 2D Compact Manifolds

The Optimal Transport problem is plagued with regularity issues when one tries

to generalize beyond the case of the sphere. Suppose, for example, that we have

a mesh generated on an oblate sphere (ellipsoid of revolution with eccentricity

e = 0.25), see Figure 8.1

Figure 8.1 A N = 5048-point cube mesh for the ellipsoid from the side (left) and
from diagonally above (right).

For the Optimal Transport problem, the result from Figalli et al. (2010) as-
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serts that there exist C∞ source and target mass density functions f0 and f1 such

that the mapping T is not guaranteed to be even continuous. Further difficulty in

building a discretization comes again from the geometry regarding the computa-

tion of geodesics. However, given a local coordinate chart (xk) in a neighborhood

of a point x, we can solve the second order ordinary differential equation for the

geodesics:

ẍk(t) + ẋi(t)ẋj(t)Γkij (x(t)) = 0, (8.5)

where Γkij are the Christoffel symbols. The Optimal Transport scheme we have pre-

sented, however, exploits an explicit representation formula for the mixed Hessian

term, as derived in Hamfeldt and Turnquist (2021b). This required an explicit

formula for the exponential map as a surjective map from local tangent planes

onto the sphere. This is no longer possible in more general geometries. Thus, a

direct discretization of D2
xyc(x, y) would be necessary. We, similarly, do not have

a representation formula for geodesic normal coordinates. This means that they

must be approximated. This is possible in practice, however, with any method of

finding geodesic normal coordinates that is consistent.

Our Optimal Information Transport algorithm only needs local geodesics.

That means that this method is more easily generalizable than that of Optimal

Transport. Furthermore, any provably convergent scheme for computing the so-

lution of the Poisson equation on compact manifolds M would lead to the same

conclusions as we have presented here. It remains to build a robust numerical

method for this computation, however.

8.3 A Numerical Scheme for Wasserstein-1 Distance

The Wasserstein-1 distance

W1(µ, ν) := inf

ˆ
Ω

d(x, y)dπ(x, y) (8.6)
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is known to have minimizers (maps T (x)), but these minimizers are not necessarily

unique, see Santambrogio (2015); Villani (2003). Nevertheless, in the computation

of the Wasserstein distance, the important quantity of interest is often the distance

and not the specific mapping. Supposing that we could “pick out” a particular

minimizing mapping T (x), then we could compute the Wasserstein-1 distance

and not worry about the other mappings that achieve the same distance. Many

current techniques, such as those used in WGAN Arjovsky et al. (2017) rely on

performing a minimization over all Lipschitz-1 functions, which is an infinite-

dimensional constraint. Usually, this constraint is incorporated into a gradient

penalty term. Here we approach the problem directly by using PDE and ODE

techniques to capture a particular solution.

In the article Evans and Gangbo (1999), the authors showed that one par-

ticular mapping T of the Wasserstein-1 metric, given by:

T (x)− x
|T (x)− x|

= −∇u(x), (8.7)

where |∇u(x)| = 1, could be found explicitly by taking the limit of the following

sequence of PDE:


−∇ · (|∇up|p−2∇up) = f, in Ω,

up = 0, on ∂Ω

(8.8)

as p → ∞, see Evans and Gangbo (1999). This limit is known as the “infinity”

Laplacian. Taking p→∞, then the above equation can be denoted as:


−∆∞u = f, in Ω,

u = 0, on ∂Ω.

(8.9)

According to Oberman (2004), such an operator can be interpreted as:

∆∞u =
d2u

dν2
, (8.10)
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where ν = ∇u
|∇u| . Thus, this is the second directional derivative in the direction of

the gradient of u. Another way of viewing this operator is to denote the transport

density σ (a measure) Santambrogio (2015) and write the infinity-Laplacian as

−∆∞u = −∇ · (σ∇u), (8.11)

where the derivatives must be interpreted in the sense of distributions.

In the manuscript Oberman (2004), the author showed that one could

construct a provably convergent scheme for the infinity Laplacian. Then, using

Dacorogna-Moser transport Dacorogna and Moser (1990):


ż(t) = −a(z(t))∇u(z(t))

tν+(1−t)µ , (0 ≤ t ≤ 1),

z(0) = z0

(8.12)

where a satisfies σ = adx, we can construct the mapping T . Amazingly, the

time-1 mapping of the above first-order ODE is the optimal mapping: z(1) = T .

Using monotone finite-difference schemes, we should be able to construct provably

convergent schemes for W1 which do not rely on penalty terms. Furthermore,

given that the tangent-plane monotone discretization developed in Chapter 4 was

successful, we can explore how to extend such PDE computations to, for example,

the W1 distance on the sphere.
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CHAPTER 9

CONCLUSION

In this dissertation, we have developed numerical methods for solving the PDE

formulation of Optimal Transport with applications to the reflector antenna prob-

lem and the moving mesh problem. Importantly, we have constructed a conver-

gence framework for such schemes and shown how to adapt the scheme to many

non-smooth cases of practical interest. For the reflector antenna problem, it was

important to (1) design the scheme to be more computationally efficient than

existing provably convergent schemes and (2) be able to deal with non-smooth

cases in the source and/or target densities. For the moving mesh method prob-

lem, a study of our proposed numerical method for Optimal Transport on the

sphere shows its applicability to this problem. Simple computations show that

the scheme we proposed avoids tangling of the mesh. However, strong evidence

shows that Optimal Information Transport also provides a better computational

method for non-smooth cases and also, more importantly, across a wide variety of

2D surfaces.

To solve the Optimal Transport PDE numerically, we first first reformulated

the PDE into an equivalent tangent plane formulation in order take advantage

of the existing construction of monotone discretizations in the Euclidean plane.

Specifically, we used geodesic normal coordinates in our tangent planes in order to

reduce the effect of the geometry on our differential operators. We then augmented

the numerical method with a Lipschitz control in order to use a compactness ar-

gument to achieve the convergence result. This Lipschitz control was designed in

lieu of using a comparison-principle-type argument, as the underlying PDE lacks

a comparison principle. Monotonicity in the scheme then was explicitly achieved

via using existing monotone finite-different schemes for second-order directional

derivatives on point clouds in R2, but, critically, adding discrete Laplacian regu-

larizing terms to deal with the discrete gradient terms. The resulting monotone
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discretization was then solved using a parabolic solver. The convergence frame-

work developed here can be very easily adapted to other cost functions and other

elliptic PDE on the sphere.

For the reflector antenna problem, the important considerations were al-

lowing for the numerical scheme to solve singular examples. This required the

development of the convergence theorem for non-smooth examples by using pre-

processing steps for the target mass. The proposed scheme also had to be more

computationally efficient than previously proposed provably convergent schemes.

Our discretization was achieved via a discretization of computational complexity

O(N9/4).

For the moving mesh problem, the important point was to avoid tangling the

mesh. For the Optimal Transport problem, this was achievable using the Monge-

Ampère PDE numerical scheme on the sphere without any add-ons for smooth

enough examples. However, non-smooth examples showed Optimal Information

Transport to be a superior method. The lack of a smooth regularity guarantee

over a wide variety of compact surfaces further indicates that Optimal Information

Transport should be considered in finding diffeomorphic mappings between density

functions on general 2D compact manifolds.

Convergence rates for monotone discretizations of linear divergence-form

linear elliptic PDE on compact surfaces have been developed, with the object to

apply these convergence rates to nonlinear elliptic PDE like the Optimal Transport

PDE. What is surprising is that these convergence rates are asymptotically worse

than the formal consistency error, a result which is markedly different than that

for the Dirichlet problem, for example.

Finally, we are investigating how to incorporate higher-order schemes (with

higher formal consistency error) via filtered schemes. It is believed that these will

address some issues in the applications, such as numerical artifacts seen in the

reflector antenna problem after ray tracing validation and tangling of the mesh

for the Optimal Transport implementation of moving mesh methods. Secondly, we
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are investigating how to extend the algorithm for Optimal Information Transport

to other 2D surfaces without boundary. And, finally, we are investigating how a

PDE-based method can be developed for computing the W1 distance based on a

monotone discretization of the infinity-Laplacian. Given the development of this

PDE method, we can then begin to explore how to make such W1 computations

on geometries like the sphere.
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APPENDIX A

REGULARITY OF THE POTENTIAL FUNCTION

In this appendix, we derive simple conditions to guarantee the solution u ∈ C1(S2).

The results from Loeper (2011) indicate that we have two régimes of regularity:

classical and nonsmooth, both encapsulated in Theorem 2.4 of that paper. The

classical result, adapted to our notation, is as follows:

Theorem A.1 (Regularity (smooth)). Given data satisfying the smooth hypoth-

esis, suppose additionally that f0 and f1 are in C1,1(S2) (resp. C∞(S2)). Then

u ∈ C3,α(S2) for every α ∈ [0, 1) (resp. u ∈ C∞(S2)).

The corresponding non-smooth result is:

Theorem A.2 (Regularity (non-smooth)). Given data satisfying the nonsmooth

hypothesis, suppose additionally that there exists some h : R+ → R+ with limε→0 h(ε) =

0 such that ˆ
Bε(x)

f0(y) dy ≤ h(ε)ε, for all ε ≥ 0, x ∈ S2, (A.1)

then u ∈ C1(S2).

As pointed out in Loeper (2011), this condition is automatically satisfied

for densities f0 ∈ Lp(S2) with p > 2. In fact, a slightly stronger regularity result

is available in this case, and we have u ∈ C1,β(S2) with β = p−2
7p−2

. The following

Lemma will show that Theorem A.2 also applies to densities f0 ∈ L1(S2).

Lemma A.3 (Integrability condition for L1 densities). If µ0 ∈ L1(S2), then there

exists some h : R+ → R+ with limε→0 h(ε) = 0 such that

ˆ
Bε(x)

f0(y) dy ≤ h(ε)ε, for all ε ≥ 0, x ∈ S2.

Proof. We use local spherical coordinates θ, φ about the point x to compute

ˆ
Bε(x)

f0(y) dy =

ˆ 2π

0

ˆ ε

0

f0(θ, φ) sinφ dφ dθ ≤ ε

ˆ 2π

0

ˆ ε

0

f0(θ, φ) dφ dθ,
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which holds for sufficiently small ε since then sinφ < φ ≤ ε. By the Fubini-Tonelli

Theorem, we can switch the order of integration and obtain

ˆ
Bε(x)

f0(y) dy ≤ ε

ˆ ε

0

F (φ) dφ,

where we have defined the partial integral

F (φ) =

ˆ 2π

0

f0(θ, φ) dθ.

Since f0 is a non-negative L1 function, the partial integral F is also in L1

and non-negative. We can then define

h(ε) =

ˆ ε

0

F (φ) dφ,

which satisfies limε→0 h(ε) = 0 since F ∈ L1. Thus we obtain the desired result.
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APPENDIX B

MAPPING FOR THE LOGARITHMIC COST

In this appendix, we calculate an explicit mapping T (x, p) ∈ S2 corresponding to

the logarithmic cost c(x, y) = − log ‖x− y‖. To accomplish this, we let x ∈ S2,

p ∈ T (x) and solve ∇u(x) = ∇xc(x, y)|y=T (x):


∇S2,x log ‖x− y‖ = p,

‖y‖ = 1

for y.

Let θ̂ and φ̂ be the local orthonormal tangent vectors at the point x ∈ S2.

Then we can compute this surface gradient in the ambient space in the local

tangent coordinates using a simplified formula, which reduces the computational

complexity:

∇S2f(x) =
(
∇f(x) · θ̂,∇f(x) · φ̂

)
, (B.1)

where we emphasize here that the gradient ∇ refers to the usual gradient in R3.

Using this formula, we obtain

p =

(
(x− y) · θ̂
‖x− y‖2 ,

(x− y) · φ̂
‖x− y‖2

)
.

Note that x, θ̂, and φ̂ form an orthonormal set. Thus we can express the unknown

y in the form y = yxx+ yθθ̂ + yφφ̂ and obtain

p =

(
−yθ

2− 2yx
,
−yφ

2− 2yx

)
.

Combining this with the requirement that y2
x + y2

θ + y2
φ = ‖y‖2 = 1 allows us to
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solve for the components of y:

y = (yx, yθ, yφ),

=
1

4 ‖p‖2 + 1

(
4 ‖p‖2 − 1,−4pθ,−4pφ

)
,

= x
‖p2‖ − 1/4

‖p‖2 + 1/4
− p

‖p‖2 + 1/4
.
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APPENDIX C

NORMAL COORDINATES FOR THE SPHERE

In this appendix, we compute an explicit formula for geodesic normal coordinates

on the sphere. Consider a point x0 ∈ S2 and the corresponding tangent plane Tx0 .

Geodesic normal coordinates for points x ∈ S2 will take the form

vx0(x) = x0 + kProjTx0 (x− x0) ∈ Tx0 ,

where k is chosen so that ‖x0 − vx0(x)‖ = dS2(x0, x). Recall that the geodesic

distance between x and x0 can be expressed as

dS2(x0, x) = 2 arcsin

(
‖x− x0‖

2

)
.

Since x and x0 are unit vectors, we can let cosα = x · x0 and compute

cos dS2(x0, x) = cos

(
2 arcsin

(√
2− 2 cosα

2

))
= cosα = x · x0.

We will make use of the unit tangent vectors θ̂ and φ̂ at the point x0, which

define orthonormal coordinates. The projection of the displacement x − x0 onto

the tangent plane can be represented in these coordinates as

ProjTx0 (x− x0) =
[
(x− x0) · θ̂

]
θ̂ +

[
(x− x0) · φ̂

]
φ̂.

By computing a unit vector in this direction and scaling by the geodesic

distance dS2(x0, x), we obtain the following expression for the geodesic normal

coordinates:

vx0(x) = x0 + dS2(x0, x)

[
(x− x0) · θ̂

]
θ̂ +

[
(x− x0) · φ̂

]
φ̂√[

(x− x0) · θ̂
]2

+
[
(x− x0) · φ̂

]2
.

172



Since x0 is a unit vector orthogonal to both θ̂ and φ̂, the actual displacement

between points on the sphere can be expressed as

x− x0 =
[
(x− x0) · θ̂

]
θ̂ +

[
(x− x0) · φ̂

]
φ̂+ [(x− x0) · x0]x0,

which has squared Euclidean length

‖x− x0‖2 =
[
(x− x0) · θ̂

]2

+
[
(x− x0) · φ̂

]2

+ [(x− x0) · x0]2 .

These relationships allow us to simplify the expression for geodesic normal

coordinates to

vx0(x) = x0 + dS2(x0, x)
x− x0 − [(x− x0) · x0]x0

‖x− x0‖2 − [(x− x0) · x0]2
,

= x0 + dS2(x0, x)
x− x0(x · x0)√

1− (x · x0)2
,

= x0 + dS2(x0, x)
x− x0 cos dS2(x0, x)√

1− cos2 dS2(x0, x)
,

= x0 (1− dS2(x0, x) cot dS2(x0, x)) + x (dS2(x0, x) csc dS2(x0, x)) .
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APPENDIX D

DERIVATION OF THE MIXED HESSIAN

In this appendix, we fill in the details of the derivation of simple expressions for the

determinant of the mixed Hessian. For each cost function, we take the following

approach:

1. Introduce orthogonal perturbations ∆p1,∆p2 ∈ Tx such that ∆p1 ·p = 0 and
∆p2 = p̂‖∆p2‖.

2. Establish that T (x, p) − T (x, p + ∆p1) and T (x, p) − T (x, p + ∆p2) are or-
thogonal to leading order.

3. Compute the change of area formula

|det (DpT (x, p))|

= lim
‖∆p1‖,‖∆p2‖→0

dS2 (T (x, p), T (x, p+ ∆p1)) dS2 (T (x, p), T (x, p+ ∆p2))

‖∆p1‖ ‖∆p2‖
,

= lim
‖∆p1‖,‖∆p2‖→0

‖T (x, p)− T (x, p+ ∆p1)‖‖T (x, p)− T (x, p+ ∆p1)‖
‖∆p1‖ ‖∆p2‖

where we can simplify the formulas by using the fact that

‖T (x, p)− T (x, p+ ∆p)‖ = dS2 (T (x, p), T (x, p+ ∆p)) +O
(
‖∆p‖2) .

D.1 SQUARED GEODESIC COST

We begin with the squared geodesic cost, recalling that the mapping T has the

explicit form

T (x, p) = cos (‖p‖)x+ sin (‖p‖) p

‖p‖
.

First consider a perturbation satisfying ∆p1 · p = 0.

T (x, p)− T (x, p+ ∆p1) = x (cos ‖p‖ − cos ‖p+ ∆p1‖)

+
p

‖p‖
sin ‖p‖ − p+ ∆p1

‖p+ ∆p1‖
sin ‖p+ ∆p1‖ .
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Now, since p and ∆p1 are orthogonal,

‖p+ ∆p1‖ =

√
‖p‖2 + ‖∆p1‖2 = ‖p‖+O

(
‖∆p1‖2

)
.

Thus to leading order we obtain

T (x, p)− T (x, p+ ∆p1) = ∆p1
sin ‖p‖
‖p‖

+O
(
‖∆p1‖2) .

Now, suppose that ∆p2 = ‖∆p2‖ p
‖p‖ . In this case, ‖p+ ∆p2‖ = ‖p‖+‖∆p2‖.

As before, we compute to leading order:

T (x, p)− T (x, p+ ∆p2)

= x (cos ‖p‖ − cos ‖p+ ∆p2‖) +
p

‖p‖
sin ‖p‖ − p+ ∆p2

‖p+ ∆p2‖
sin ‖p+ ∆p2‖ ,

= x ‖∆p2‖ sin ‖p‖ − p

‖p‖
‖∆p2‖ cos ‖p‖+

p

‖p‖2 ‖∆p2‖ sin ‖p‖ − ∆p2

‖p‖
sin ‖p‖ ,

+O
(
‖∆p2‖2) ,

= x ‖∆p2‖ sin ‖p‖ − p

‖p‖
‖∆p2‖ cos ‖p‖+O

(
‖∆p2‖2) .

Now since x ·∆p1 = p ·∆p1 = ∆p1 ·∆p2 = 0, we can easily verify that

(T (x, p)− T (x, p+ ∆p1)) · (T (x, p)− T (x, p+ ∆p2)) = o (‖∆p1‖+ ‖∆p2‖)

so that the perturbations in the map are indeed orthogonal to leading order.

Now we can use orthogonality to easily compute the magnitudes of these

perturbations via

‖T (x, p)− T (x, p+ ∆p1)‖2 = ‖∆p1‖2 sin2 ‖p‖
‖p‖2 + o

(
‖∆p1‖2)
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and

‖T (x, p)− T (x, p+ ∆p2)‖2 = ‖∆p2‖2 sin2 ‖p‖+ ‖∆p2‖2 cos2 ‖p‖+ o
(
‖∆p2‖2

)
= ‖∆p2‖2 + o

(
‖∆p2‖2

)
.

where we have used the fact that x and p/‖p‖ are unit vectors. Then we can

compute the change of area formula as

|det (DpT (x, p))|

= lim
‖∆p1‖,‖∆p2‖→0

‖T (x, p)− T (x, p+ ∆p1)‖‖T (x, p)− T (x, p+ ∆p2)‖
‖∆p1‖ ‖∆p2‖

,

= lim
‖∆p1‖,‖∆p2‖→0

‖∆p1‖‖∆p2‖ sin ‖p‖/‖p‖+ o (‖∆p1‖‖∆p2‖)
‖∆p1‖ ‖∆p2‖

,

=
sin ‖p‖
‖p‖

.

Hence, the determinant of the mixed Hessian for the squared geodesic cost is

∣∣detD2
xyc(x, y)

∣∣ =
‖p‖

sin ‖p‖
. (D.1)

D.2 LOGARITHMIC COST

Now we perform the same procedure for the logarithmic map, which has the

explicit form

T (x, p) = x
‖p‖2 − 1/4

‖p‖2 + 1/4
− p

‖p‖2 + 1/4
.

We again begin with a perturbation satisfying p ·∆p1 = 0 so that

‖p+ ∆p1‖ = ‖p‖+O
(
‖∆p1‖2

)
.
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To leading order, we can compute

T (x, p)− T (x, p+ ∆p1) = x
‖p‖2 − 1/4

‖p‖2 + 1/4
− x‖p+ ∆p1‖2 − 1/4

‖p+ ∆p1‖2 + 1/4

− p

‖p‖2 + 1/4
+

p+ ∆p1

‖p+ ∆p1‖2 + 1/4
,

=
∆p1

‖p2‖+ 1/4
+O

(
‖∆p1‖2

)
.

Next we consider an orthogonal perturbation ∆p2 = ‖∆p2‖ p
‖p‖ so that

‖p+ ∆p2‖2 = ‖p‖2 + 2‖p‖‖∆p2‖+O
(
‖∆p2‖2

)
.

Now we can compute to leading order

‖T (x, p)− T (x, p+ ∆p2)‖ = x
‖p‖2 − 1/4

‖p‖2 + 1/4
− x‖p‖

2 + 2‖p‖‖∆p2‖ − 1/4

‖p‖+ 2‖p‖‖∆p2‖2 + 1/4

− p

‖p‖2 + 1/4
+

p+ ∆p2

‖p‖2 + 2‖p‖‖∆p2‖+ 1/4
+O

(
‖∆p2‖2

)
,

= −x2‖p‖‖∆p2‖
‖p‖2 + 1/4

+ x
2‖p‖‖∆p2‖(‖p‖2 − 1/4)

(‖p‖2 + 1/4)2

+
∆p2

‖p‖2 + 1/4
− p 2‖p‖‖∆p2‖

(‖p‖2 + 1/4)2
+O

(
‖∆p2‖2

)
,

= −x ‖p‖‖∆p2‖
(‖p‖2 + 1/4)2

+ p̂
‖∆p2‖(1/4− ‖p‖2)

(‖p‖2 + 1/4)2
+O

(
‖∆p2‖2

)
.

Since x, p, and ∆p1 are mutually orthogonal, we can immediately verify

that

(T (x, p)− T (x, p+ ∆p1)) · (T (x, p)− T (x, p+ ∆p2)) = o (‖∆p1‖+ ‖∆p2‖)

so that the perturbations in the mapping are again orthogonal to leading order.

Next we compute the lengths of the perturbations using orthogonality:

‖T (x, p)− T (x, p+ ∆p1)‖ = ‖∆p1‖
1

‖p‖2 + 1/4
+ o(‖∆p1‖)
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and

‖T (x, p)− T (x, p+ ∆p2)‖2 =
‖p‖2‖∆p2‖2 + ‖∆p2‖2(1/4− ‖p‖2)2

(‖p‖2 + 1/4)4
+ o(‖∆p2‖2),

=
‖∆p2‖2

(‖p‖2 + 1/4)4

(
‖p‖4 +

1

2
‖p‖2 +

1

16

)
+ o(‖∆p2‖2),

=
‖∆p2‖2

(‖p‖2 + 1/4)2
+ o(‖∆p2‖2).

Then we can again compute the change of area formula as

|det (DpT (x, p))|

= lim
‖∆p1‖,‖∆p2‖→0

‖T (x, p)− T (x, p+ ∆p1)‖‖T (x, p)− T (x, p+ ∆p2)‖
‖∆p1‖ ‖∆p2‖

,

= lim
‖∆p1‖,‖∆p2‖→0

‖∆p1‖‖∆p2‖/(‖p‖2 + 1/4)2 + o (‖∆p1‖‖∆p2‖)
‖∆p1‖ ‖∆p2‖

,

=
1

(‖p‖2 + 1/4)2
.

Hence, the determinant of the mixed Hessian for the logarithmic cost is

∣∣detD2
xyc(x, y)

∣∣ =
(
‖p‖2 + 1/4

)2
. (D.2)
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APPENDIX E

MODIFIED POISSON EQUATION

In this appendix, we will detail the convergence theorem for the proposed dis-

cretization of the Poisson equation. Due to the fact that we are solving on a

compact 2D manifold M , the convergence framework we present here hinges first

on the reformulation of each PDE to include some control on its Lipschitz constant.

Given the Poisson equation, which we denote by the operator F :

F (x,Du(x), D2u(x)) = 0 (E.1)

we instead discretize the following modified PDE:

max{F (x,∇u(x), D2u(x), ‖∇u‖ −R} = 0, (E.2)

where R is chosen to be strictly greater than the a priori Lipschitz bound. After

discretization, the Lipschitz bound imparts sufficient stability on the solution to

prove overall uniform convergence of the discrete solution uh to the actual solution

u, provided that we have constructed a consistent, monotone scheme. Here we

present the argument for the Poisson equation.

The function f(x) satisfies the compatibility condition:
´
M
f(x)dx = 0. We

now state the equivalence theorem that shows that adding a term to the modified

Poisson equation (Equation (E.2)) does not change the solution.

Theorem E.1. For any sequence εn → 0, εn > 0 and for R > 0 large enough, the

viscosity solution wεn of the PDE

max {−∆wεn(x) + f(x), ‖∇wεn(x)‖ −R}+ εnwεn(x) = 0, (E.3)

and for continuous f(x) satisfying
´
M
f(x)dx = 0, converges uniformly to the

unique mean-zero Lipschitz solution u of the PDE −∆u(x) + f(x) = 0.

Proof. Equation (E.3) is proper, and therefore even though it is degenerate elliptic,
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there exists a comparison principle, provided that f(x) is continuous, by Crandall

et al. (1992). Thus, by Perron’s method for continuous viscosity solutions, there

exists a unique solution wε to this equation for any ε > 0.

By the same reasoning, the viscosity solution uε of the PDE −∆uε + f(x) +

εuε = 0 is unique as well and is Lipschitz for all ε > 0 provided that it remains

uniformly bounded in ε. It is mean zero, that is
´
M
uε = 0. The distributional

solution ũε of −∆ũε + f(x) + εũε = 0 is the same as the viscosity solution uε = ũε,

see Ishii (1995). Thus, in the sense of distributions, for any v ∈ C2 and use the

integration by parts formula on the closed compact manifold M :

ˆ
M

v∆uεdx−
ˆ
M

uε∆vdx = 0. (E.4)

Choosing v ≡ 1, we get:

ˆ
M

∆uεdx = 0. (E.5)

Hence, we integrate the equation where uε is known a priori to be continuous:

ˆ
M

∆uε + f(x) + εuεdx = 0. (E.6)

Thus, since f is already chosen to integrate to zero, we get
´
M
uεdx = 0.

Fix ε > 0. We will use interior regularity estimates for subsets of Euclidean

space to show that the Lipschitz constant of uε is uniformly bounded. The results

in Euclidean space can be used for the compact surface M by using a C∞-atlas

to cover the manifold and applying the Euclidean interior estimates for uniformly

elliptic PDE in divergence form in coordinate patches Ωi that overlap by a fixed

distance δ > 0, as was done in Chapter 7. Interior Schauder estimates of uniformly

elliptic linear PDE in non-divergence form with bounded coefficients in subsets of

Euclidean space can be found in Corollary 6.3 of Gilbarg and Trudinger (2001):

d ‖Duε‖C0(Ω′i)
+ d2

∥∥D2uε
∥∥
C0(Ω′i)

≤ C
(
‖uε‖C0(Ωi)

+ ‖f‖C0(Ωi)

)
, (E.7)
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where d ≤ dist(Ω′, ∂Ω). In order to avoid the effect of the terms d on the estimate,

the result over the compact manifold M will be effected by choosing overlapping

coordinate patches Ωi that have a uniform constant of overlap rM > δ > 0. That

is, d(x, y) > δ for any x ∈ M \ Ωi, y ∈ M \ Ωj for i 6= j. Thus, we will be able to

choose d ≥ δ. Doing this, we derive an estimate over the whole compact manifold

M :

δ ‖Duε‖C0(M) + δ2
∥∥D2uε

∥∥
C0(M)

≤ C
(
‖uε‖C0(M) + ‖f‖C0(M)

)
. (E.8)

The term ‖uε‖C0(Ωi)
on the right-hand side of (E.7) can be bounded by

using the Krylov-Safonov Harnack inequality in Euclidean space, see Cabré (2002).

Denote vε = uε − infM uε. Then, for any ball Br we have:

sup
Br

vε ≤ C

(
inf
Br
vε + ‖f‖L2(B2r)

)
, (E.9)

where B2r denotes the concentric ball with twice the radius of Br. Since we can

achieve a finite covering of M by balls Bδ, where δ < rM as explained above, we

now use a chaining argument to get a uniform bound on supBδ vε. Denoting the

ball B1
δ where the minimum is obtained, i.e. vε(x) = 0 for some x ∈ B1

δ , we have:

sup
B1
δ

vε ≤ C ‖f‖L2(M) . (E.10)

Now take a ball B2
δ that overlaps by δ with B1

δ . Then,

sup
B1
δ

vε ≤ C

(
inf
B1
δ

vε + ‖f‖L2(M)

)
≤ C

(
sup
B1
δ

vε + ‖f‖L2(M)

)
≤ C ′ ‖f‖L2(M) .

(E.11)

Repeating this chaining argument a finite number of times can cover the

compact manifold M . Thus, we get:

sup
M

vε ≤ C ′′ ‖f‖L2(M) . (E.12)
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Thus, since uε is mean-zero, we have therefore that uε is bounded and thus

‖uε‖C2,0(M) ≤ C for a universal constant C that does not depend on ε. Hence,

we know that since the uε is bounded in its Lipschitz constant, so, in fact, the

solutions coincide, i.e. wε = uε, for R chosen large enough.

By the stability of viscosity solutions Crandall et al. (1992), that U =

lim supε uε is a viscosity subsolution of −∆u + f(x). Likewise, we can define

U = lim inf uε and it is a viscosity supersolution of −∆u+ f(x).

Take any sequence εn → 0 such that uε → U uniformly. Then, U is the

mean-zero viscosity solution of −∆u + f(x). For any sequence εn, there exists

a subsequence εnk such that uεnk → U uniformly, by Arzela-Ascoli. Since every

sequence contains a subsequence that converges to U , we conclude that, in fact

uεn → U for any sequence.

This now allows us to instead discretize Equation (E.2) instead. Then, the

procedure for solving the the discrete modified Poisson equation is by using a

parabolic scheme presented in Algorithm 5, with or without the speedup provided

by Schaeffer and Hou (2016) as necessary.

Algorithm 5 Computing the solution to elliptic PDE F [u] = 0

1: Initialize uh0 ;
2: Fix ε > 0;
3: while

∣∣Gh
(
xi, u

h
n(xi)

)∣∣ > ε do
4: Compute uhn+1(xi) = uhn(xi) + ∆tGh

(
xi, u

h
n(xi)

)
5: end while

In the case of the Poisson equation when the Lipschitz constraint is inactive, we

solve a linear system via standard linear algebra techniques.

As was explained in Chapter 3, the convergence framework presented there

could apply to PDE beyond simply the Optimal Transport PDE. Furthermore,

the framework can also apply beyond the case of the sphere, provided that the

a priori solution of the PDE has sufficient regularity. The key properties in the

discretization of the elliptic PDE without boundary are consistency, monotonicity,

and Lipschitz stability, as shown in Chapter 3. Techniques are extremely similar
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to those used in Chapter 3. Uniform convergence can be proved for non-smooth

cases (C0,1(M)) by assuming that the modified Poisson equation (Equation (E.2))

has a unique solution and assuming the scheme is underestimating, see Chapter

3 for more details. The interpolation in Section 3.3.3 can be modified, mutatis

mutandis, to apply the interpolation to the manifold M .
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APPENDIX F

EUCLIDEAN DIVERGENCE FORM PDE

In this appendix, we show that a uniformly elliptic linear PDE in divergence

form (with respect to the divergence operator on the Riemannian manifold) can

be expressed as a uniformly elliptic linear PDE in divergence form in a local

coordinate neighborhood with respect to the divergence operator in local tangent

planes.

Lemma F.1 (PDE on local coordinate patches). Under the assumptions of Hy-

pothesis 7.1, there exists some r > 0 such that for every x0 ∈ M there exists a

bounded region Ω ⊂ R2 and set of coordinates y : Ω → B(x0, r) corresponding to

a metric tensor G ∈ C2(M) such that the PDE (Equation (7.2)) can be expressed

as

L[φ] = −∇ ·
(
(detA)1/2∇φ

)
.

Proof. Let x0 ∈ M and fix any r < rI where rI is the injectivity radius of the

manifold M . Then we can consider a bounded set Ω ⊂ R2 and a set of coordinates

y : Ω → B(x0, r). In local coordinates Cabré (2002), the PDE (Equation (7.2))

takes the form

L[φ] =
−1√
detG

∇ ·
(√

detGAG−1∇φ
)
, y ∈ Ω.

Now we choose a local metric such that G = (detA)−1/2A. We note that G ∈

C2(M) is strictly positive definite since A has both these properties. We note that

det(G) = 1 so that the PDE in local coordinates becomes

L[φ] = −∇ ·
(
(detA)1/2∇φ

)
.

This is a uniformly elliptic operator since A is positive definite.
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APPENDIX G

FINITE GEODESIC BALL COVERING

In this appendix, we show the construction of local coordinate patches that will

allows our regularity “patching” argument to follow. What we need is a finite

covering of the manifold using geodesic balls of uniform radius r > 0 and allowing

for uniform overlap δ > 0.

Lemma G.1. There exists a finite covering of the manifold M with geodesic balls

of radius r > 0, that is a set {Bi
r}i=1,...,n such that M ⊂ ∪iBi

r and with the geodesic

balls overlapping at least an amount δ > 0. More precisely, for every i and every

x ∈ ∂Bi
r, there exists a ball Bδ such that x ∈ Bδ and there exists an index i′ 6= i

such that also we have x ∈ Bi′
r .

Proof. Since the diameter of the manifold is finite and the manifold itself is geodesi-

cally complete, we can connect any two points with a geodesic and this geodesic

has length strictly upper bounded by diam(M). We then obtain a covering of the

points of the geodesic with geodesic balls of radius r > 0. That is, if γxy is the min-

imal geodesic connecting x, y ∈ M , then for any z ∈ γxy, we can construct
{
Bi
ρ

}
i

such that z ∈ Bi
ρ for some j. Since this can be done for all points x, y in M , we thus

obtain a cover of the manifold M by balls of radius ρ. By compactness, we may find

a finite subcover. From now on, we will denote the finite subcover by
{
Bi
ρ

}
i
. Take

each member of the subcover Bi
ρ and define Bi

r =
{
x ∈M : d(x, z) ≤ δ, z ∈ Bi

ρ

}
.

Then, choosing r = ρ + δ, we achieve the desired finite covering of geodesic balls

of radius r which overlap by δ.
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Léonard, C. (2012). From the Schrödinger problem to the Monge-Kantorovich
problem. Journal of Functional Analysis, 262(4).
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