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ABSTRACT

LOCAL LEARNING ALGORITHMS FOR STOCHASTIC SPIKING
NEURAL NETWORKS

by
Bleema Rosenfeld

This dissertation focuses on the development of machine learning algorithms for

spiking neural networks, with an emphasis on local three-factor learning rules that are

in keeping with the constraints imposed by current neuromorphic hardware. Spiking

neural networks (SNNs) are an alternative to artificial neural networks (ANNs) that

follow a similar graphical structure but use a processing paradigm more closely

modeled after the biological brain in an effort to harness its low power processing

capability. SNNs use an event based processing scheme which leads to significant

power savings when implemented in dedicated neuromorphic hardware such as Intel’s

Loihi chip.

This work is distinguished by the consideration of stochastic SNNs based on

spiking neurons that employ a stochastic spiking process, implementing generalized

linear models (GLM) rather than deterministic thresholded spiking. In this

framework, the spiking signals are random variables which may be sampled from

a distribution defined by the neurons. The spiking signals may be observed or

latent variables, with neurons whose outputs are observed termed visible neurons

and otherwise termed hidden neurons. This choice provides a strong mathematical

basis for maximum likelihood optimization of the network parameters via stochastic

gradient descent, avoiding the issue of gradient backpropagation through the

discontinuity created by the spiking process.

Three machine learning algorithms are developed for stochastic SNNs with a

focus on power efficiency, learning efficiency and model adaptability; characteristics

that are valuable in resource constrained settings. They are studied in the context of



applications where low power learning on the edge is key. All of the learning rules that

are derived include only local variables along with a global learning signal, making

these algorithms tractable to implementation in current neuromorphic hardware.

First, a stochastic SNN that includes only visible neurons, the simplest case for

probabilistic optimization, is considered. A policy gradient reinforcement learning

(RL) algorithm is developed in which the stochastic SNN defines the policy, or

state-action distribution, of an RL agent. Action choices are sampled directly from

the policy by interpreting the outputs of the read-out neurons using a first to spike

decision rule. This study highlights the power efficiency of the SNN in terms of spike

frequency.

Next, an online meta-learning framework is proposed with the goal of progres-

sively improving the learning efficiency of an SNN over a stream of tasks. In this

setting, SNNs including both hidden and visible neurons are considered, posing a

more complex maximum likelihood learning problem that is solved using a variational

learning method. The meta-learning rule yields a hyperparameter initialization for

SNN models that supports fast adaptation of the model to individualized data on

edge devices.

Finally, moving away from the supervised learning paradigm, a hybrid adver-

sarial training framework for SNNs, termed SpikeGAN, is developed. Rather than

optimize for the likelihood of target spike patterns at the SNN outputs, the training

is mediated by an auxiliary discriminator that provides a measure of how similar

the spiking data is to a target distribution. Because no direct spiking patterns are

given, the SNNs considered in adversarial learning include only hidden neurons. A

Bayesian adaptation of the SpikeGAN learning rule is developed to broaden the range

of temporal data that a single SpikeGAN can estimate. Additionally, the online

meta-learning rule is extended to include meta-learning for SpikeGAN, to enable

efficient generation of data from sequential data distributions.
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CHAPTER 1

INTRODUCTION

1.1 Spiking Neural Networks

A spiking neural network (SNN) is a form of graphical model that is inspired by the

connectionist view of cognition in the biological brain and the dynamics of biological

neurons [101, 46, 75]. These models are closely related to the well know artificial

neural networks (ANNs) that have driven the large advances in the field of machine

learning and artificial intelligence over the past decade [113]. Like ANNs, SNNs are

characterized by the ability to learn connection strengths between nodes as a means

to extract features of a signal that are important for prediction and inference. In

SNNs the nodes are modeled more closely after biological neurons such that they

process binary signals (known as spikes) and each node integrates incoming signals

at the time of the event to compute its output. These attributes underlie two

compelling advantages of SNNs. Firstly, due to an SNN’s event-driven activity, its

energy consumption depends mostly on the number of spikes that are output by its

neurons. This is because the idle energy consumption of neuromorphic chips that

have been developed as dedicated SNN processors is generally extremely low (see,

e.g., [80, 24]) making SNNs ideal for low power inference and learning on the edge.

Second, through time domain processing, SNNs support prediction and inference for

naturally temporal signals such as event based vision and audio signals [125, 76, 33],

biological signals [111, 18], or radar [4].

An SNN includes a set of nodes, or neurons, and a set of weighted directed edges

that define the connection strengths between them. There are various mathematical

models for neuronal dynamics that are used to define the behavior of each node [39],

from detailed models like the Hodgkin Huxley model [45] to much simpler models

1



such as the leaky integrate and fire (LIF) model [1]. In general, the neuron model

includes the membrane potential which is computed as a function of input signals

(exogenous or from other nodes) and connection weights, as well as a process by

which output signals are generated. Biological neural spiking is inherently stochastic,

yet historically, spiking neuron models have treated spike generation as a deterministic

process such that spiking is governed by a set of differential equations [45] or modeled

as a discontinuous threshold gated process [1]. Research has shown that stochasticity

in neural network models in fact contributes to creative problem solving and is useful

for sampling in probabilistic inference problems [95]. In this work, a stochastic neuron

model is adopted and these potential benefits are explored. The neurons considered

here are modeled using a probabilistic Generalized Linear Model (GLM) [97], a

generalization of the Spike Response Model (SRM) [39], in which spike generation

is a probabilistic process [52].

The spiking neurons process binary, time series signals rather than static real

valued signals such as those processed by ANNs. In addition to the standard spatial

information encoding, these spatio-temporal signals encode information in the spike

timing. Each node applies a filter to incoming signals, called the pre-synaptic signals,

to compute their effect on the instantaneous membrane potential as a function of

the spike timing. The membrane potential is also affected by the previous output

of the neuron, called the post-synaptic signals, by applying a filter to those signals

as well. A classic example of a synaptic filter is the exponential decay filter which

gives more weight to recent spikes to cause an increase in the membrane potential

via the pre-synaptic spikes, or to decrease it to simulate refractoriness in the case

of filters applied to post-synaptic spikes. In deterministic spiking models an output

signal is generated when the membrane potential exceeds a threshold value, at which

point it is also reset to zero (or some fixed reset value). In the probabilistic model

that is the focus of this work, the spiking signal of each neuron is a binary random

2



variable that is sampled from a Bernoulli distribution with probability defined as a

function of the membrane potential. The binary processing framework implemented

by both deterministic and stochastic SNNs is significantly different from classic neural

network processing and raises several challenges unique to SNN optimization.

1.1.1 Challenges

Here we discuss some of the main challenges in the development of machine learning

algorithms for SNNs that will be addressed in this work. These are

• Encoding real valued signals into the spike domain and decoding or interpreting
the spiking output of the SNN.

• The discontinuity presented by the spiking process renders optimization via
backpropagation of errors to be inapplicable.

• Neuromorphic chips require local update rules to support energy efficient
learning.

Encoding and Decoding Data is generally available in the form of real valued

signals (e.g., RGB pixel values, amplitude of audio) that are incompatible with the

spike based processing implemented by SNNs. While there are a variety of fixed

encoding and decoding schemes (see [5] for a survey of encoding methods) the choice

of encoder and decoder is a hyperparameter that must be tuned to the learning

problem. Specifically, in supervised learning problems, the target output must be

expressed in terms of spikes which poses the problem of defining targets that balance

sparsity to support energy efficiency and optimized learning. One way to address this

trade-off is using the first to spike decision rule which is discussed in Section 2.2.1.

Spiking Discontinuity The process by which spikes are generated by the neurons

in SNNs introduces a discontinuity into the mathematical model. This is most often

the case because the spike is artificially generated when the membrane potential

crosses a threshold value (LIF and SRM neurons). In the case of a stochastic spiking
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process, the discontinuity arises because the spike is a random variable. As a result of

the spiking discontinuity, the functions realized by SNNs are non-differentiable with

the implication that the standard method of backpropagation of error gradients used

for stochastic optimization in ANNs is not readily applicable to SNN optimization.

There are many algorithms for supervised SNN learning that suggest the use of a

surrogate gradients as a solution to this problem (e.g., [90, 134, 30]). Others eschew

backpropagation for more biologically plausible unsupervised algorithms based on

spike time dependent plasticity (STDP) [12, 77]. We approach this issue by applying

probabilistic inference to a stochastic spiking network in which the optimization is a

function of the membrane potential of the neurons rather than of the spikes themselves

(see Chapter 2).

Local Learning Local learning refers to learning algorithms in which the

parameters associated with each neuron are updated only as a function of values

that are local to that neuron such as the pre- and post-synaptic spikes and membrane

potential of that neuron. This is in contrast to update rules such as those derived using

backpropagation of errors in which the parameters are each updated as a function of

values from downstream nodes in the network as well. Local learning is a constraint

applied by state of the art neuromorphic hardware [24] to support low latencies and

energy efficiency by avoiding expensive memory accesses.

1.2 Related Work

We propose machine learning algorithms for SNNs with a basis in probabilistic

learning that is centered around the log likelihood of observed data. A key feature

of the learning rules that we derive is their dependence on only local values and a

global learning signal, described as a three-factor learning rule. In Section 1.2.1 We

review the basics of three-factor learning rules as well as their basis in spike time

dependant plasticity (STDP). We also discuss three main classes of SNN learning
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algorithms, namely, surrogate gradient error backpropagation with a highlight on the

literature that develop on-chip learning rules, unsupervised STDP, and ANN-to-SNN

conversion. In Section 1.2.2 we review related work in probabilistic learning for SNNs.

1.2.1 SNN Training Methods

Spike time dependent plasticity is a biologically inspired mechanism by which the

strength of synaptic connections between neurons depends on the relative timing

of the pre- and post-synaptic spikes [120, 86, 79]. The presence of STDP modulated

connection strengths in various neural circuits has been well demonstrated [20]. STDP

is implemented in SNN models in various forms either as an exact accounting for the

difference in spike timing [120, 86] which can be generalized to apply to filtered spike

trains [86], or as a soft condition on spike order [79]. Three-factor learning rules

include an additional term that is attributed as a global error signal which has its

biological basis in various forms of neuromodulation [38].

Given the massive success of backpropagation based algorithms in deep learning,

a popular direction of research has been to apply backpropagation to achieve

the same results in SNNs through direct optimization. This is complicated by

the fact that backpropagation is not readily applicable to SNNs because of their

inherently discontinuous gradient. A variety of direct SNN training algorithms

have been developed that employ a smooth approximation to the spiking behavior

or the discontinuous portion of the gradient to adapt backpropagation to SNNs

[90, 9, 115, 134]. References [115, 134] successfully apply backpropagation with

some form of surrogate gradient to minimize a van Rossum [129] like error on the

output spike trains. They thereby train large feedforward and convolutional SNNs

that achieve high accuracy in tasks such as classification of MNIST, NMNIST, DVS

Gesture and TIDIGITS. Reference [9] applies an adaptation of backpropagation

through time to a recurrent SNN and shows its application for long and short term
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sequential learning problems such as sequential MNIST and TIMIT as well as an

extension to the learning to learn framework.

The main problem with the use of these backpropagation algorithms for SNNs

is that they do not inherently support local learning rules which are a requirement in

current neuromorphic hardware. There have been several recent works that propose

adaptations to make backpropogation algorithms for SNNs compatible with on-chip

learning. In [124], the read-out layer of an SNN is trained on-chip using a three-factor

rule that includes the direct error between the SNN output spikes and the target spikes

while the hidden layers are still pre-trained offline. In [10], eligibility traces are used

to maintain local error signals. Others, such as [114, 138], experiment with heuristic

error feedback schemes such as feedback alignment [69] or straight through estimator

[11] to remove the dependence of the backpropagated error signal on downstream

values.

SNNs can also be trained in an unsupervised manner through STDP alone,

thus avoiding the problem of error assignment over time. The goal in unsupervised

SNN learning is to extract correlations between the spike timing that are descriptive

of the features of the data to support classification or clustering. After learning

a representation of the data another phase of supervised learning is necessary to

make practical use of it. Unsupervised STDP learning has recently been applied to

deep convolutional SNNs [67, 28] for standard MNIST classification [67] and speech

recognition [28]. Given that STDP based update rules make use of only local variables

it is a good candidate for implementation in neuromorphic hardware [56].

One standard approach to achieving low power inference by means of an SNN

while bypassing the challenges associated with SNN learning is to convert an offline

trained ANN into an integrate and fire SNN. Conversion aims at ensuring that the

output spiking rates of the neurons in the SNN are proportional to the numerical

values output by the corresponding neurons in the ANN [27, 19]. While this approach
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has been shown to produce effective SNNs with high test accuracy, its reliance on rate

coded spike signals necessitates long processing time to achieve these accuracies as

well as limits it’s applicability to domains where information is encoded in the spike

timing. More recent work has begun to address the issue of long latencies [44, 105]

and [143] has realized the converted SNN on a neuromorphic chip. These conversion

methods represent a way in which to leverage a fixed SNN for low power inference.

However, since an ANN must still be originally trained, they do not take advantage

of the promise for energy efficient learning shown by SNNs.

1.2.2 Probabilistic Learning for SNNs

Several probabilistic neuron models were introduced and studied in the context of

computational neuroscience such as bayesian spiking neurons (BSN) [25, 91], the

stochastic spike response model (SRM) [17] and the generalized linear model (GLM)

[98]. BSNs and stochastic SRMs have been used for machine learning with the model

being trained either via unsupervised STDP [63, 127, 2, 99] or top-down gradient

methods [48]. Aside from the biological plausibility of probabilistic synapses [73] it

has recently been proposed that synaptic plasticity in the brain implements some form

of probabilistic learning [141]. Probabilistic learning methods include unsupervised

learning [139], contrastive divergence to estimate maximum likelihood learning for

LIF neurons [89] and stochastic sampling to optimize for sparse network connectivity

where the parameters are learned via backpropagation through time [8].

1.3 Overview of Algorithms Developed

1.3.1 Stochastic Policy Based Reinforcement Learning

Artificial neural networks are popular as function approximators in many state-of-

the-art reinforcement learning (RL) algorithms. Due the low energy profile of spiking

neural networks, they are considered to be important candidates as co-processors to
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be implemented in mobile devices that could benefit from online experience based

learning. In this study, the use of SNNs as stochastic policies is explored under an

energy-efficient first-to-spike action rule, whereby the action taken by the RL agent is

determined by the occurrence of the first spike among the output neurons. A policy

gradient-based algorithm is derived considering a generalized linear model for spiking

neurons. Experimental results demonstrate the capability of online trained SNNs

as stochastic policies to gracefully trade energy consumption, as measured by the

number of spikes, and control performance. Significant gains are shown as compared

to the standard approach of converting an offline trained ANN into an SNN.

1.3.2 Online-Within-Online Meta-Learning for Classification

The popularity of spiking neural networks as machine learning models for on-device

edge intelligence suggests that they may be used for applications such as mobile

healthcare management and natural language processing. In such highly personalized

use cases, it is important for the model to be able to adapt to the unique features of

an individual with only a minimal amount of training data. Meta-learning has been

proposed as a way to train models that are geared towards quick adaptation to new

tasks. The few existing meta-learning solutions for SNNs operate offline and require

some form of backpropagation that is incompatible with the current neuromorphic

edge-devices. This study proposes an online-within-online meta-learning rule for

SNNs termed OWOML-SNN, that enables lifelong learning on a stream of tasks, and

relies on local, backprop-free, nested updates.

1.3.3 Spatio-Temporal Generative Adversarial Learning

Neuromorphic data carries information in spatio-temporal patterns encoded by

spikes. Accordingly, a central problem in neuromorphic computing is training

SNNs to reproduce spatio-temporal spiking patterns in response to given spiking
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stimuli. Most existing approaches model the input-output behavior of an SNN in

a deterministic fashion by assigning each input to a specific desired output spiking

sequence. In contrast, in order to fully leverage the time-encoding capacity of spikes,

this work proposes to train SNNs so as to match distributions of spiking signals

rather than individual spiking signals. To this end, the paper introduces a novel

hybrid architecture comprising a conditional generator, implemented via an SNN,

and a discriminator, implemented by a conventional artificial neural network (ANN).

The role of the ANN is to provide feedback during training to the SNN within

an adversarial iterative learning strategy that follows the principle of generative

adversarial network (GANs). In order to better capture multi-modal spatio-temporal

distributions, the proposed approach – termed SpikeGAN – is further extended

to support Bayesian learning of the generator’s weights. Finally, settings with

time-varying statistics are addressed by proposing an online meta-learning variant

of SpikeGAN. Experiments bring insights into the merits of the proposed approach

as compared to existing solutions based on (static) belief networks and maximum

likelihood (or empirical risk minimization). In our experiments, handwritten digit

images generated by SpikeGAN are observed to train an ANN classifier with 20%

higher accuracy than a comparable belief network. Our experiments also demonstrate

the use of SpikeGAN to generate neuromorphic data sets from handwritten digits.

It is shown that these data can be used to train an SNN classifier that achieves

an accuracy level approaching the baseline accuracy of an SNN classifier trained on

rate-encoded real data.
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CHAPTER 2

BACKGROUND AND MODELS

2.1 Neuron Models

2.1.1 Generalized Linear Model (GLM) Neuron

In this work, we have considered a probabilistic spiking neuron that implements a

generalized linear model (GLM) [98, 55, 51], termed GLM neurons. The neurons

process data in the form of binary signals (spikes) over processing time τ = 1, 2, ...,

with each neuron i producing an output spike, si,τ = 1, or no output spike, si,τ = 0,

at each time τ . As depicted in Figure 2.1, each neuron includes a set of pre-synaptic

connections, by which signals from exogenous inputs and other neurons in the network

are passed to it, as well as an auto-feedback connection through which the neuron

processes its own previous outputs. Pre-synaptic and feedback spikes are integrated

via time domain filtering to update the membrane potential at every time τ , giving

the instantaneous membrane potential for neuron i

ui,τ =
∑
j

αj,i ∗ sj,τ−1 + βi ∗ si,τ−1 + γi, (2.1)

where α and β are trainable pre-synaptic and feedback filters, respectively, and γi

is a trainable bias. The expression αj,i ∗ sj,τ−1 denotes the convolution of filter αj,i

over a window of τw previous output signals from neuron j. Hence, the shape of the

synaptic filters αj,i define the response of the membrane potential of neuron i to the

output spikes of pre-synaptic neurons j. Similarly, the shape of the feedback filter

βi defines the response of neuron i to its own previous outputs which can support

biological mechanisms such as a refractory period or bursting.

Each pre-synaptic filter is defined as a linear combination of a set of Ka basis

functions collected as columns of matrix A, such that we have αj,i = Awα
j,i where w

α
j,i
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Figure 2.1 A pictorial representation of a GLM neuron. At each time τ , filters αj,i

and βi (gray rectangles) process incoming pre-synaptic signals sj,τ−1 and post-synaptic
signals si,τ−1 respectively. The filter outputs are accumulated along with a bias term
γi to compute the membrane potential of the neuron represented by the white circle
labeled ui,τ .

is a Ka× 1 vector of trainable synaptic weights [98]. A specialized case would be the

use of a single basis function Ka = 1 which can then directly incorporate the weight

wα
j,i. One such example that has been implemented in this work is the exponential

decay kernel αj,i = wα
j,i exp(−τ/τf ) with decay rate parameter τf . The basis functions

may also be defined as a set of raised cosine functions as depicted in Figure 2.2 which

allows a detailed and distinct synaptic response and memory to be learned for each

connection [97]. Unless otherwise specified, these raised cosine basis function are

employed in all simulations throughout this work. The post-synaptic feedback filter

βi = Bwβ
i is defined similarly. All of the model parameters are collected in vector

ϕ = {wα, wβ, γ} while parameters of individual neurons i are written as ϕi.

In the GLM neuron, a post-synaptic sample si,τ is a random variable whose

probability is dependent on the spikes integrated by that neuron. It is defined as a

probabilistic function of the neuron’s membrane potential ui,τ at that time as

pϕ(si,τ |s≤τ−1) = pϕ(si,τ = 1|ui,τ ) = σ(ui,τ ), (2.2)
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Figure 2.2 An example of a set of raised cosine basis functions for synaptic filtering.

where σ(x) = (1 + e−x)−1 is the logistic sigmoid function, and ϕ is the vector of

trainable model parameters. Building on this, the log likelihood of spikes output by

all neurons over a defined time period T , can be written as

log pϕ(s≤T ) =
T∑

τ=1

∑
i

log pϕi
(si,τ | s≤τ−1). (2.3)

A set of GLM neurons and the connections between them define the trainable

SNN models considered in this work. The neurons are classified into read-out neurons

R and hidden neurons H with respective spiking outputs denoted as si,τ = xi,τ , i ∈ R

and si,τ = hi,τ , i ∈ H. In learning settings in which fixed target output spike trains

are observed for the read out neurons, the read-out neurons are classified instead as

visible neurons V . The observed spikes are denoted si,τ = vi,τ , i ∈ V .

2.1.2 Integrate and Fire Neuron

The spiking behavior of an integrate and fire (IF) neuron can be described by an

internal membrane potential defined as in Equation (2.1) with the key differences

that: (i) the synaptic kernels are perfect integrators, that is, they are written as

αi,j = wi,j1, where wi,j is a trainable synaptic weight and 1 is an all-one vector of

T elements; (ii) the neuron spikes deterministically when the membrane potential is
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positive, so that parameter γj plays the role of negative threshold; and (iii) there is

no auto-feedback term, rather the membrane potential is reset to a reset voltage after

an output spike.

2.2 Probabilistic Optimization Basics for Stochastic SNNs

The log likelihood of the output spikes of the probabilistic SNN (Equation 2.3) is

central to the optimization of the model to produce a desired output in various

learning settings. The gradient of the log likelihood with respect to the model

parameters is presented in this section as a building block for optimization via

stochastic gradient descent (SGD) in later sections via maximum likelihood learning

and other methods. The desired output of the SNN may be defined by a stream

of observed read out spikes {vi,τ}Tτ=1 i ∈ V or more broadly by a certain output

criterion that informs a set of observed spike streams. One such output criterion

that is considered in this work is the first-to-spike decision criterion [6, 79] which is

discussed in Section 2.2.1. The gradients of the log likelihood for the case of observed

output spike streams are given in Section 2.2.2. An extension using a variational

optimization technique to SNNs that include latent variables as well is discussed in

Section 2.2.3.

2.2.1 First to Spike Decisions

First-to-spike desicion making is an output criterion that takes the decision or choice

associated with the neuron that spikes first within the sampling time period, T . The

use of a single spike decision rule would support lower latencies and improved power

efficiency when implemented in neuromorphic hardware. Notably, this criterion allows

a set of acceptable output spike streams for each neuron within a single sampling

period rather than a single target spike stream per neuron. This is why it must be

treated separately from the case of an observed stream of read-out variables.
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The first to spike criterion is considered only for networks in which all read-

out variables are observed. During training, the spikes of the read-out neurons are

clamped to the first to spike criterion associated with each time τ , requiring that

there are never any output spikes before the current time. When the model is used for

inference, a decision is made as soon as at least one of the read-out signals is sampled

as a spike, again ensuring that there are no spikes at previous timesteps. Because

there are never any past output spikes from a given neuron i, the auto-feedback term

βj,i∗si,τ−1, of the GLM neuron membrane potential (Equation 2.1) becomes irrelevant

in this setting and is dropped.

The probabilistic spiking behavior under the GLM neuron model (given in

Equation 2.2) supports the mathematical description of the probability that a desired

neuron, k, spikes before any of the other neurons. That probability is a sum of the

probabilities of observing the spike stream that follows the first to spike criterion at

each time τ , given as Pfirst to spike(k) =
∑T

τ=1 pτ (k), where

pτ (k) =
∏
i ̸=k

τ∏
τ ′=1

(1− σ(ui,τ ′))σ(uk,τ )
τ−1∏
τ ′=1

(1− σ(uk,τ ′)) (2.4)

is the probability that the kth output neuron spikes for the first time at time τ , while

the other neurons do not spike at or before that time.

For optimization purposes, the gradient of the log likelihood of the first-to-spike

decision criteria is computed as in [6] giving the gradient expressions

∇wα
j,i
logPfirst to spike(k|x, ϕ)=


−
∑T

τ=1hτσ(ui,τ )A
T s⃗j,τ−1 i ̸=k

−
∑T

τ=1(hτσ(ui,τ )− qτ )AT s⃗j,τ−1 i=k,

(2.5)

and

∇bilogPfirst to spike(j|x, ϕ) =


−
∑T

τ=1hτσ(ui,τ ) i ̸=k

−
∑T

τ=1hτσ(ui,τ )−qτ i=k

(2.6)
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where

hτ =
T∑

τ ′=τ

qτ ′ , and qτ =
pτ∑T
τ=1 pτ

and s⃗j,τ−1 = [sj,τ−1, sj,τ−2, ..., sj,τ−τw ]
T is the τw×1 window of pre-synaptic spikes that

were processed at time τ .

2.2.2 Observed Output Spikes

In some learning settings a target output spike stream is given for each of the read-out

neurons over a defined time period T . These target spike streams may be natively

temporal information or they may be defined to represent a choice or a real value

based on a fixed decoding scheme. In order to train the probabilistic SNN to support

the given spike streams, the outputs of the read-out neurons are considered to be

observed variables that are clamped to the target spikes denoted as {vi,τ}Tτ=1, i ∈ V

where the read-out neurons are now classified as visible neurons V .

Considering an SNN that only includes visible neurons, the gradient of the log

likelihood over the observed spikes with respect to the SNN parameter vector ϕ is

given as

∇ϕL(ϕ) =
T∑

τ=1

∑
i∈V

∇ϕ log pϕ(vi,τ | ui,τ ). (2.7)

This expression of the gradient evaluated for each component of the parameter vector

for each neuron i at time τ is given as in [51] as

∇wα
j,i
log pθi(υi,τ | ui,τ ) = AT s⃗j,τ−1(υi,τ−σ(ui,τ ))

∇wβ
i
log pθi(υi,τ | ui,τ ) = BT s⃗i,τ−1(υi,τ−σ(ui,τ )) (2.8)

∇γi log pθi(υi,τ | ui,τ ) = (υi,τ − σ(ui,τ )).

These expressions include only local variables, namely a post-synaptic error term

(υi,τ − σ(ui,τ )) and a pre-synaptic term AT s⃗j,τ−1, which is the filtered τw × 1 window
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of pre-synaptic spikes s⃗j,τ−1 = [sj,τ−1, sj,τ−2, ..., sj,τ−τw ]
T at time τ . They therefore

support parameter update rules that follow Hebbs theory of synaptic plasticity

through associative spiking.

2.2.3 Latent and Observed Output Spikes

In probabilistic learning, the distribution that is chosen to describe the likelihood of

the observed variables has a large impact on the goodness of the learned solution. To

this end, in some problems we make the assumption that the observed variables are

jointly distributed with latent variables. Here we review the variational learning rule

that is derived in [51] for probabilistic SNNs that include latent variables which is

adapted for the algorithms proposed in the following chapters.

In order to obtain the log likelihood over the observed variables in a joint

distribution, we must marginalize over all possible values of the latent variables

as Lυ≤T
(ϕ) = log pϕ(υ≤T ) = log

∑
h≤T

pϕ(υ≤T , h≤T ). As in the previous section, to

support probabilistic optimization, we would like to take the gradient of the log

likelihood over the observed variables with respect to the parameter ϕ, however

this is intractable given the summation over the latent variables within the log

expression. For this reason, we introduce a variational posterior over the latent

variables qθ(h≤T | υ≤T ) with parameter θ and estimate the log likelihood Lυ≤T
(ϕ)

using the Evidence Lower BOund (ELBO) as (see e.g., [116])

Lυ≤T
(ϕ) ≥

∑
h≤T

qθ(h≤T ) log

(
pϕ(υ≤T , h≤T )

qθ(h≤T )

)
:= Lυ≤T

(ϕ, θ) (2.9)

which gives the expected value of a learning signal

ℓϕ,θ(υ≤T , h≤T ) = log pϕ(υ≤T , h≤T )− log qθ(h≤T ) (2.10)

over the latent variables.
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Following [51], the variational distribution qθ(h≤T | υ≤T ) is chosen to be

qϕH
(h≤T | υ≤T ) =

T∏
τ=1

pϕH
(hτ | h≤τ−1, υ≤τ−1) =

T∏
τ=1

∏
i∈H

pϕi
(hi,τ | ui,τ ) (2.11)

where the variational parameter θ is now the parameter ϕH which denotes the set of

parameters of a set of hidden neuronsH where ϕH = [ϕi]i∈H. This distribution ignores

the dependance of hτ on values of υ that occur later in the sequence which allows

it to be modeled by a set of hidden neurons H with membrane potential defined

as in Equation (2.1). As a result, the latent variables can be easily sampled from

the distribution defined by the hidden neurons as in Equation (2.2), with si,τ = hi,τ .

Substituting the variational distribution in Equation (2.11) into Equation (2.10) gives

the specific learning signal

ℓϕV
(υ≤T , h≤T ) =

T∑
τ=1

log pϕV
(υ≤τ | h≤τ−1, υ≤τ−1) (2.12)

where ϕV is the set of the visible neuron parameters ϕV = [ϕi]i∈V .

The gradients of the ELBO with respect to the visible and hidden neuron

parameters, ϕV and ϕH respectively, are used in place of the gradient of the log

likelihood for optimization of probabilistic SNNs with hidden neurons. However,

the exact gradients still include an average over the latent variables which would

make computation intractable for the models considered in this work. Therefore, the

expectation is estimated using Monte Carlo sampling of the latent variables from the

distribution defined by the hidden neurons. For a single sample of the latent variables,

h≤T , the gradients are then given as

∇ϕV
Lυ≤T

(ϕV , ϕH) = ∇ϕV
log pϕV

(υ≤T ) (2.13a)

and

∇ϕH
Lυ≤T

(ϕV , ϕH) = ℓϕV
(υ≤T , h≤T )∇ϕH

log qϕH
(h≤T ) (2.13b)
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where Equation (2.13b) is derived using the standard REINFORCE gradient [116].

The gradient in Equation (2.13a), is the same as in the case where only observed

variables are considered and includes only the local gradient of the log likelihood

defined by the visible neurons which is given by Equation (2.8). The gradient in

Equation (2.13b) evaluates to a three-factor rule in which the global learning signal

given in Equation (2.12) modulates the contribution of the local gradient of the log

likelihood defined by the hidden neurons. These local gradients for the hidden neurons

are the same as in Equation (2.8) with υi,τ replaced by hi,τ . The global learning signal

can be interpreted as an evaluation of how well the latent variables sampled from the

hidden neurons support the observed variables.
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CHAPTER 3

STOCHASTIC POLICY GRADIENT REINFORCEMENT LEARNING

We begin the study of local learning algorithms for stochastic SNNs comprised of

GLM neurons by considering the simplest case in which the spiking outputs of

all neurons are observed variables. We choose to develop a reinforcement learning

rule because of its many downstream applications (reviewed in Section 3.1) that

require energy efficient edge computing solutions that may be improved by an SNN

implementation. We adopt the first-to-spike decision rule detailed in Section 2.2.1

which supports the derivation of a local three-factor learning rule based on the

principles of maximum likelihood learning. This choice of decision rule addresses the

challenge of spike decoding discussed in Chapter 1 while promoting energy efficient

sparse representations. In Sections 3.1, 3.2, 3.3, 3.4 and 3.5, previously published in

the proceedings of the Signal Processing and Wireless Communications conference

[103], we develop the problem setting and algorithm and present simulation results

that demonstrate the successful application and energy efficiency of our method and

explore the trade-offs between learning efficiency and spike frequency.

3.1 Related Work

Artificial neural networks (ANNs) are used as parameterized non-linear models that

serve as inductive bias for a large number of machine learning tasks, including notable

applications of reinforcement learning (RL) to control problems [50]. Reinforcement

learning using ANNs has been broadly applied in robotics control problems [74, 14]

and various optimization problems for Internet-of-Things (IoT) mobile applications

[23, 37] in which the satisfaction of energy constraints is an important issue (see,

e.g., [21]). Due to their lower energy consumption when implemented on specialized
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Figure 3.1 SNN first-to-spike policy with action selected (R in the illustration)
among Up, Down, Left, and Right marked with a bold line and decision time marked
with a dashed vertical line

hardware, SNNs are considered to be important candidates as co-processors to be

implemented in such resource constrained settings (see, e.g., [22, 14]).

Prior work on reinforcement learning using SNNs has by and large adopted

deterministic SNN models to define action-value function approximators. This is

typically done by leveraging rate decoding and either rate encoding [140, 88], or time

encoding [13]. Under rate encoding and decoding, the spiking rates of input and

output neurons represent the information being processed and produced, respectively,

by the SNN. A standard approach, to be considered here as baseline, is to train an

ANN offline and to then convert the resulting policy into a deterministic SNN with

the aim of ensuring that the output spiking rates are close to the numerical output

values of the trained ANN [27, 88]. There is also significant work in the theoretical

neuroscience literature concerning the definition of reward based biologically plausible

online learning rules [36, 112, 130, 58].
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Figure 3.2 An example of a realization of an action sequence in a windy grid-world
problem. The bottom axis indicates the “wind” level per column, ωn, which causes
the agent to be displaced by the given number of grid spaces when it moves into
positions in that column.

In all of the reviewed studies, exploration is made possible by a range of

mechanisms such as ϵ-greedy in [112] and stochasticity introduced at the synaptic

level [88, 130], requiring the addition of some external source of randomness. As a

related work, reference [140] discusses the addition of noise to a deterministic SNN

model to induce exploration of the state space from a hardware perspective. In

contrast, in this study, the use of probabilistic SNN policies are investigated. The

first to spike decision criterion detailed in Section 2.2.1 is applied to naturally enable

exploration thanks to the inherent randomness of the decision. This makes it possible

for the agent to learn while acting in an on-policy fashion. A gradient-based updating

rule is derived that leverages the analytical tractability of the first-to-spike decision

criterion under the GLM model.
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Algorithm 1 Policy Gradient Rule for First-to-Spike (FtS) SNNs

Input: randomly initialized parameter θ, learning rate ηi, i = 1, 2, ...
i = 1
repeat

while St ̸= SG do
encode St in spike domain
run SNN and set At ← index of FtS neuron
observe next state and reward St+1, Rt+1

end while
VtG+1 = 0
for all t=tG : −1 : 1 do

Vt = Rt+1 + λVt+1

θ ← θ + ηi∇θ log π(At|St, θ)Vt
end for
i← i+ 1

until convergence

3.2 Problem Definition

We consider a standard RL single-agent problem formulated on the basis of discrete-

time Markov Decision Processes (MDPs). Accordingly, at every time-step t = 1, 2, ...,

the RL agent takes an action At from a finite set of options based on its knowledge of

the current environment state St with the aim of maximizing a long-term performance

criterion. The agent’s policy π(A|S, ϕ) is a parameterized probabilistic mapping from

the state space to the action space, where ϕ is the vector of trainable parameters.

After the agent takes an action At, the environment transitions to a new state St+1

which is observed by the agent along with an associated numeric reward signal Rt+1,

where both St+1 and Rt+1 are generally random functions of the state St and action

At with unknown conditional probability distributions.

An episode, starting at time t = 0 in some state S0, ends at time tG, when the

agent reaches a goal state SG. The performance of the agent’s policy π is measured

by the long-term discounted average reward

Vπ(S0) =
∞∑
t=0

λtEπ[Rt], (3.1)
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where 0 < λ < 1 is a discount factor. The reward Rt is assumed to be zero for

all times t > tG. With a proper definition of the reward signal Rt, this formulation

ensures that the agent is incentivized to reach the terminal state in as few time-steps

as possible.

While the approach proposed in this work can apply to arbitrary RL problems

with discrete finite action space, we will focus on a standard windy grid-world

environment [126]. Accordingly, as seen in Figure 1(b), the state space is an M ×N

grid of positions and the action space is the set of allowed horizontal and vertical

single-position moves, i.e., Up, Down, Left, or Right. The start state S0 and the

terminal state SG are fixed but unknown to the agent. Each column n = 1, .., N in

the grid is subject to some unknown degree of ‘wind’, which pushes the agent upward

by ωn spaces when it moves from a location in that column. The reward signal is

defined as Rt+1 > 0 if St+1 = SG and, otherwise, we have Rt+1 = 0.

In order to model the policy π(A|S, ϕ), as we will detail in the next sections,

we adopt the probabilistic SNN model described in detail in Chapter 2. We consider

a two layer SNN architecture which includes a set of read out neurons i ∈ R with

Ns pre-synaptic connections each. The spiking neurons operate over discrete time

τ = 1, ..., T , updating the membrane potential at each time instant τ according to

ui,τ =
Ns∑
j=1

αj,i ∗ s⃗j,τ−1 + γj, (3.2)

in which synaptic filter αj,i, defined by Ka raised cosine basis functions [98] and

synaptic weights wα
j,i, is applied to s⃗j,τ−1 the vector of τw previous pre-synaptic signals

as detailed in Section 2.1.1. This expression is a variation of Equation (2.1) in which

the post-synaptic feedback term has been excluded due to its irrelevance in neurons

whose outputs are interpreted under the first to spike rule (see Section 2.2.1 for a

more detailed explanation).
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3.3 Policy-Gradient Learning Using First-to-Spike SNN Rule

In this section, we propose an on-policy learning algorithm for RL that uses a first-to-

spike SNN as a stochastic random policy. Although the approach can be generalized,

we focus here on the fully connected two-layer SNN shown in Figure 3.1. In the SNN,

the first layer of Nx neurons encodes the current state of the agent St, as detailed

below, while there is one output GLM neuron for every possible action At of the

agent, with Ns = Nx inputs each. For example, in the grid world of Figure 3.2,

there are four output neurons. The policy π(A|S, ϕ) is parameterized by the vector

ϕ of synaptic weights {wα
j,i} and biases {γi} for all the output neurons as defined in

Equation (3.2). We now describe encoding, decoding, and learning rule.

State Encoding. A position St is encoded into Nx spike trains, i.e., binary

sequences, with duration T samples, each of which is assigned to one of the neurons

in the input layer of the SNN. We emphasize that the time duration T is internal to

the operation of the SNN, and the agent remains at time-step t while waiting for the

outcome of the SNN. In order to explore the trade-off between encoding complexity

and accuracy, we partition the grid into Nx sections, or windows, each of sizeW ×W .

Each section is encoded by one input neuron, so that increasing W yields a smaller

SNN at the cost of a reduced resolution of state encoding. Each position St on the

grid can be described in terms of the index s(St) ∈ {1, ..., Nx} of the section it belongs

to, and the index w(St) ∈ {1, ...,W 2} indicating the location within the section using

left-to-right and top-to-bottom ordering. Accordingly, using rate encoding, the input

to the ith neuron is an i.i.d. spike train with probability of a spike given by

pi =


pmin +

(
pmax−pmin

W 2−1

)
(w(St)− 1) , if i = s(St)

0, otherwise

(3.3)

for given parameters pmin, pmax ∈ [0, 1] and pmax ≥ pmin.
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Decoding. We adopt the first-to-spike decision protocol, so that the output of

the SNN directly acts as a stochastic policy, inherently sampling from the distribution

π(A|S, ϕ) induced by the first-to-spike rule which indicates that the action associated

with the neuron that spikes first is taken by the agent. If no output neuron spikes

during the input presentation time T , no action is taken, while if multiple output

neurons spike concurrently, an action is chosen from among them at random. Given

the synaptic weights and biases in vector ϕ, the probability that the jth output neuron

spikes first, and thus the probability that the network chooses action A = j, is given

by the first-to-spike decision probability defined in Equation (2.4).

Policy-gradient learning. After an episode is generated by following the

first-to-spike policy, the parameters θ are updated using the policy gradient method

[126]. The gradient of the objective function (Equation 3.1) equals

∇θVπ(S0) = Eπ[Vt∇θ log π(At|St, θ)], (3.4)

where Vt =
∑∞

t′=t λ
t′Rt′ is the discounted return from the current time-step until

the end of the episode and the expectation is taken with respect to the distribution

of states and actions under policy π (see [126], Chapter 13). We are left with the

gradient of the log likelihood of the action variable under the SNN first to spike

policy which is equivalent to the log likelihood that the neuron corresponding to a

given action is the first to spike. The gradient of the log likelihood of a first to spike

decision is given by the expressions in Equations (2.5) and (2.6) as detailed in Section

2.2.1. The first-to-spike policy gradient algorithm is summarized in Algorithm 1,

where the gradient in Equation (3.4) is approximated using Monte-Carlo sampling in

each episode (see [126], Chapter 5).

25



3.4 Baseline SNN Solution

Training of the ANN and Conversion into an IF SNN. A two-layer ANN with

four ReLU output units is trained by using the SARSA learning rule with ϵ-greedy

action selection in order to approximate the action-value function of the optimal policy

[126]. The input to each neuron i in the first layer of the ANN during training is given

by the probability value, or spiking rate, pi defined in Equation (3.3), which encodes

the environment state. Each output neuron of the ANN encodes the estimated value,

i.e., the estimated long-term discounted average reward, of one of the four actions

for the given input state and the action with the maximum value is chosen (under

ϵ-greedy action choices) with probability ϵ. The ANN can then be directly converted

into a two-layer IF SNN with the same architecture using the state-of-the-art methods

proposed in [27], to which we refer for details. The converted SNN is used by means

of rate decoding: the number of spikes output by each neuron in the second layer

is used as a measure of the value of the corresponding action. We emphasize that,

unlike in the proposed solution, the resulting (deterministic) IF SNN does not provide

a random policy but rather a deterministic action-value function approximator.

3.5 Results and Discussion

In this section, we provide numerical results for the grid world example described in

Section 3.2 with M = 7, N = 10, S0 and SG at positions (4,1) and (4,8) on the grid

respectively, ‘wind’ level per columns defined by the values ωn indicated in Figure

3.2. The number of cosine basis functions, Ka, included in filter α is equivalent to the

length of the filter, τw, for all simulations. Throughout, we set pmin = 0.5 and pmax = 1

for encoding in the spike domain and a learning schedule, ηi = (ηi−1)/(1 − k(i − 1))

with η0 = 10−2. Training is done for 25 epochs of 1000 iterations each, with 500 test

episodes to evaluate the performance of the policy after each epoch. Hyper-parameters
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Figure 3.3 Number of time-steps needed to reach the goal state as a function of the
training episodes for the proposed GLM SNN and the reference ANN strategies.

for the SARSA algorithm to be used as described in the previous section are selected

as recommended in [85, 70].

Apart from the IF SNN solution described in the previous section, we also use as

reference, the performance of an ANN trained using the same policy gradient approach

as in Algorithm 1 and having the same two-layer architecture as the proposed SNN.

In particular, the input to each input neuron i of the ANN is again given by the

probability pi defined in Equation (3.3), while the output is given by a softmax

non-linearity. The output hence encodes the probability of selecting each action. It is

noted that, despite having the same architecture, the ANN has fewer parameters than

the proposed first-to-spike SNN: while the SNN has Ka parameters for each synapse

given its capability to carry out temporal processing, the ANN has conventionally a

single synaptic weight per synapse. This reference method is labeled as “ANN” in

the figures.

We start by considering the convergence of the learning process along the

training episodes in terms of number of time-steps to reach the goal state. To this end,

in Figure 3.3, we plot the performance, averaged over the 25 training epochs, of the

first-to-spike SNN policy with different values of input presentation duration T and
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Figure 3.4 Average spike frequency over the training episodes for the GLM SNN
policy.

GLM parametersKa = τw = 4, as well as that of the reference ANN introduced above,

both using encoding window size W = 1, and hence Nx = 70 input neurons. We do

not show the performance of the IF SNN since this solution carries out offline learning

(see Section 3.4). The probabilistic SNN policy is seen to learn more quickly how to

reach the goal point in fewer time-steps as T is increased. This improvement stems

from the proportional increase in the number of input spikes that can be processed by

the SNN, enhancing the accuracy of input encoding. It is also interesting to observe

that the ANN strategy is outperformed by the first-to-spike SNN policy. As discussed,

this is due to the capability of the SNN to learn synaptic kernels via its additional

weights.

We further investigate the behavior of the first-to-spike SNN during training

in Figure 3.4, which plots the spike frequency as a function of the training episodes.

The initially very low spike frequency can be interpreted as an exploration phase,

where the network makes mostly random action choices by largely neglecting the

input spikes. The spike frequency then increases as the SNN learns while exploring

effective actions dictated by the first-to-spike rule. Finally, after the first one hundred
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Figure 3.5 Average number of time-steps to reach goal (top) and average number
of total spikes per sample (bottom) in the test episodes as a function of the number
of input neurons Nx (also indicated is the size of the W ×W encoding window) for
GLM SNN and IF SNN.

episodes, the SNN learns to exploit optimal actions, hence reducing the number of

observed spikes necessary to fire the neuron corresponding to the optimized action.

We now turn to the performance evaluated after training. Here we consider also

the performance of the conventional IF SNN trained offline as described in Section

3.4. We first analyze the impact of using coarser state encodings as defined by the

encoding window sizeW . Considering only test episodes, Figure 3.5 plots the number

of time-steps to reach the goal (top) and the total number of spikes per episode across

the network (bottom), as a function of the number of input neurons, or equivalently

of W . For all schemes, it is seen that, as long as the window size is no larger than

29



GLM SNN
IF SNN

Figure 3.6 Average number of time-steps to reach goal versus the presentation time
T for GLM SNN and IF SNN (τw = 6, Ka = 1).

W = 4 and T is large enough for the SNN-based strategies, no significant increase

of time-steps to reach the goal is incurred. Importantly, the IF SNN is observed

to require 10× the presentation time and more than 10× the number of spikes per

episode of the first-to-spike SNN to achieve the same performance.

The test performance comparison between first-to-spike SNN and IF SNN is

further studied in Figure 3.6, which varies the presentation time T . In order to

discount the advantages of the first-to-spike SNN due to its larger number of synaptic

parameters, we set here Ka = 1, thus reducing the number of synaptic parameters

to 1 as for the IF SNN. Figure 3.6 shows that the gains of the proposed policy are

to be largely ascribed to its decision rule learned based on first-to-spike decoding. In

contrast, the IF SNN uses conventional rate decoding, which requires a larger value

of T in order to obtain a sufficiently good estimate of the value of each state via the

spiking rates of the corresponding output neurons.

3.6 Conclusion

In this chapter we have proposed a policy gradient-based online learning strategy for

a first-to-spike stochastic SNN. As compared to a conventional approach based on
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offline learning and conversion of a second generation ANN to an integrate-and-fire

SNN with rate decoding, the proposed approach was seen to yield a reduction in

presentation time and number of spikes by more than 10× in a standard windy grid

world example. Thanks to the larger number of trainable parameters associated with

each synapse, which enables optimization of the synaptic kernels, performance gains

were also observed with respect to a conventional ANN with the same architecture

that was trained online using policy gradient.
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CHAPTER 4

ONLINE-WITHIN-ONLINE META LEARNING

The previous chapter highlighted the power efficiency of an SNN trained using the

first to spike decision rule. In this chapter we turn to meta-learning as a method

by which to increase the learning efficiency of the SNN by decreasing the number of

training iterations required to achieve profficiency on a given task. This feature is

especially relevant to SNNs because of its application to the online adaptation of a

learned model to individualized data on personal, resource constrained, edge devices.

While the stochastic SNN adopted in Chapter 3 included only neurons with observed

spiking outputs, in this problem, it is expanded to include hidden neurons with latent

output variables and the variational learning methodology described in Section 2.2.3

is applied. These concepts are developed in the following sections that are adapted

from my previously published paper [102].

4.1 Introduction

Context and motivation. The standard “train offline-then-deploy” approach underlies

most applications of machine learning for tasks as different as facial recognition,

natural language processing, and health monitoring. This framework yields rigid

solutions that can produce inaccurate predictions and decisions when the data

encountered after deployment presents statistical differences with respect to the

training data. As an example, consider a natural language processor run by a user

with a specific speech impairment or accent. Since mobile machine learning solutions

are used for highly personalized tasks, there is a need to fine tune the models to the

unique features of individuals and local environments after deployment in order to

avoid unfair and inefficient results across different adopters of the technology [65].
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Meta-learning, or learning to learn, addresses this problem by eschewing the

identification of a “universal” model to be fixed at deployment time, and focusing

instead on determining an adaptation procedure that is able to adjust the model

based on limited local data [7, 121, 54, 32]. This can be generally done in one of two

ways – by meta-learning shared sub-models, e.g., feature extractors [131, 61, 92], or

by meta-learning shared training procedures operating over local data. As an example

of the latter, it is possible to meta-learn local iterative rules [81, 87], initializations

[34, 93, 82], or learning rates [15].

Online vs offline meta-learning. In the classical formulation of meta-learning

[7, 57], it is assumed that there exists a family of tasks with similarly distributed

data. Tasks may, for instance, correspond to personalizations for different users.

Meta-training data is obtained by sampling tasks and per-task data sets from a given,

unknown, distribution. The meta-learned solution is then “meta-tested” on new tasks

sampled from the same underlying distribution in order to evaluate its performance

and adaptability. Meta-learning algorithms follow a nested loop structure: The outer

loop updates the hyperparameters that define the shared sub-models or learning

procedures, and the inner loop carries out per-task learning based on limited data.

We can distinguish different types of meta-learning problems depending on

whether either loop is run using offline or online procedures. We can specifically have

online/offline-within-online/offline settings, in which the former selection applies to

the outer loop and the latter to the inner loop. An offline procedure is one that

uses a static data set with data points fully accessible by the algorithms, while online

(meta-)learning uses streaming data that is sequentially processed by the algorithm

[26].

Main contributions. The general formulation of meta-learning is in line with

research in neuroscience that has shown how biological brains can learn broader

concepts on a slower timescale, allowing faster adaptation to specific activities or tasks
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[59, 78]. In light of this observation, this chapter focuses on the development of an

online-within-online meta-learning algorithm for biologically inspired SNNs, termed

OWOML-SNN. Unlike prior work to be reviewed in teh following section, the derived

rules do not require an offline pre-deployment stage and the use of backpropagation

(BP). Rather, they rely on a three-factor nested local learning rule [38] that is derived

by following a principled approach grounded in the use of probabilistic Generalized

Linear Models (GLMs) for the spiking neurons and variational inference [51, 53].

The online within-task updates encompass a pre-synaptic term that implements

an eligibility trace on recent activity on the pre-synaptic neuron; a post-synaptic

term that can be interpreted based on the principles of predictive coding [83] as an

error between desired or realized post-synaptic output and the probabilistic model’s

prediction; and a global feedback signal. The online meta-update follows the form of

the first-order meta-gradient introduced in [93].

4.2 Related Work

In the most common meta-learning scenario, hyperparameters are updated in the

outer loop in an offline manner via a meta-gradient over data from batches of

tasks selected from a data distribution [42, 92, 34]. Batch-within-batch algorithms

implement within-task learning in an offline manner as well [34, 93, 42, 81], while

batch-within-online strategies use within-task data in a streaming fashion [92, 87].

The online-within-online setting assumed here is most similar to that adopted in

[35, 26], where an online stream of task datasets is assumed in the outer loop. In

our case, as in [26], the within-task adaptation assumes an online stream of data,

while [35] implements batch learning in the inner loop via standard BP. Aside from

the similarity in formulation, reference [26] approaches the solution using a static

deterministic linear model under a convex loss function while we study a dynamic

(spiking) probabilistic model with a non-convex loss function.
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Figure 4.1 Online-within-online meta-learning: Tasks T (t) are drawn from family F
and presented sequentially to the meta-learner over timescale t (denoted in the top
left corner). Within-task data are also observed sequentially (bold inset box), with
a new batch z(t,i) added to the task-data buffer D(t,i) at each within task time (t, i).
After all within-task data has been processed, the task-data buffer is added to the
meta-data buffer B(t). At each time-step (t, i) the meta-learner seeks to improve online
inference by learning task-specific parameter ϕ(t,i) using the updated task-data buffer
and hyper-parameter θ(t,i) as the initialization (dashed arrows). Concurrently, the
meta-learner makes a meta-update to the hyperparameter, yielding the next iterate
θ(t,i+1). As part of the meta-update, data from N different previously seen tasks are
sampled from the buffer B(t) and task-specific parameters for N parallel models are
learned starting from the hyper-parameter initialization θ(t,i) (solid arrows).

All the works summarized so far assume standard ANN models. SNNs are also

being explored for meta-learning due to their capability to implement within-task

learning via online, local rules [125, 108, 124, 15, 9]. In all cases, meta-training

is implemented offline or pre-deployment. The SNN models adopted in prior work

require the use of surrogate gradients to approximate BP, and they rely on the use of

the deterministic leaky integrate and fire (LIF) neuron model. In contrast we adopt

the probabilistic Generalized Linear Model (GLM) neuron model, allowing a direct

derivation of local rules based on maximum likelihood [51, 53].
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4.3 Online-Within-Online Meta-Learning

In this section, we outline the general operation of online within-online meta-learning

via meta-gradient descent. Meta-learning assumes the presence of a family F of

tasks that share common statistical properties. Specifically, it assumes that a

common hyper-parameter θ can be identified that yields efficient learning when

applied separately for each task in F . Following the current dominant approach

[35, 93], we will take hyper-parameter θ to represent the initialization to be used for

the within-task training iterative procedure.

In the considered online-within-online formulation adapted from [35], the meta-

learner seeks to improve its online inference capabilities over a series of tasks drawn

from family F . For each new task, it aims to quickly learn a task-specific model

using streaming within-task data. To this end, the meta-learner runs an underlying

meta-learning process to update the hyper-parameter θ by using data observed from

previous tasks in the series. The hyper-parameter θ is then used as a within-task

model initialization that enables efficient within-task training for the new task.

To support online inference and meta-learning, two data buffers are maintained.

The task-data buffer collects streaming within-task data used for within-task learning,

While the meta-data buffer holds data from a number of previous tasks to be used by

the meta-training process. As illustrated in Figure 4.1, a stream of data sets D(t), each

corresponding to a task T (t) ∈ F , is presented to the meta-learner sequentially at t =

1, 2, .... Within each meta-time step t, samples from data set D(t) are also presented

sequentially, so that at each within-task time step i, a batch z (t,i) = {(xj, yj)}Bj=1 ⊆

D(t) of B training examples for task T (t) is observed, and added to the task-data

buffer as D(t,i) = D(t,i−1) ∪ z (t,i) with D(t,0) = ∅. Once all within-task data for task

T (t) has been processed, the final task-data buffer D(t,i) is added to a meta-data buffer

B(t).
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The within-task training and meta-training processes take place concurrently at

each time (t, i). As a new batch of within-task data is observed for the current task

T (t), the meta-learner uses it, along with the entire current task-data buffer D(t,i),

to learn a better task-specific model parameter ϕ(t,i) and thus improve inference on

a held-out test data set. The task-specific parameter is initialized with the current

hyper-parameter θ(t,i) and is updated via an iterative within task training process

ϕ(t,i) = Update(θ(t,i), D(t,i)). Concurrently, the meta-learner improves the hyper-

parameter initialization for the next round of within-task training by making a single

gradient update to θ. This update can be written as θ(t,i+1) ← θ(t,i) + µ∇θF (θ
(t,i),B(t))

for some meta-learning rate µ ≥ 0, where F is the meta-learning objective function.

The meta-learning objective evaluates the performance of the initialization θ(t,i) on

data from previous tasks stored in the meta-data buffer B(t).

Specifically, in order to evaluate the meta-learning objective function F , task-

specific parameters for a number of previous tasks need to be learned. To this end, N

tasks T (n), n = 1, ..., N, are drawn from the meta-data buffer B(t) and a small data-set,

D(n), is drawn as a subset of the stored data for each task. The within-task iterative

training process is applied to learn task-specific parameters ϕ(n) = Update(θ(t,i), D(n))

using N parallel models, each initialized with the hyper-parameter θ(t,i).

The update function Update(θ,D) addresses the problem of maximizing the

likelihood of data over model parameters ϕ. Specifically, the data set D(n)

is split into distinct data sets D
(n)
meta for the meta optimization and D

(n)
task for

the within-task maximization [34], and the update function tackles the problem

maxϕ log p(D
(n) | ϕ) via stochastic gradient descent (SGD) starting from initialization

θ. The meta-objective is then defined as

F
(
θ,B(t)

)
=

N∑
n=1

log p
(
D

(n)
meta

∣∣∣Update(θ,D(n)
task

))
. (4.1)
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The meta-gradient ∇θF (θ,B(t)) requires the computation of the second order

gradient of the training losses used in the task-specific learning function Update(θ,D
(n)
task)

[34]. In this work, we make use of the first-order REPTILE approximation for the

gradient

∇θ log p
(
D

(n)
meta

∣∣∣ϕ(n)
)
≈ θ(t,i) − ϕ(n), (4.2)

which has been shown to have properties similar to the true gradient in a number of

benchmark tasks [93]. This yields the meta-update function

Meta-Update(θ(t,i), {D(n)}Nn=1) = θ(t,i)+ µ
N∑

n=1

(
θ(t,i)− Update(θ(t,i), D

(n)
task)

)
, (4.3)

where µ ≥ 0 is the meta-learning rate.

4.4 SNN Model

We adopt a recurrent SNN based on the GLM spiking neuron described in Section

2.1.1 for optimization via the online-within-online meta-learning framework described

above. The network includes a set of visible neurons V whose outputs are specified by

data during training, as well as a set of hidden neurons H whose outputs are auxiliary

to the operation of the visible neurons, as discussed in Section 2.2.3. Arbitrary

connections are defined between neurons within each set and across sets, such that

the post-synaptic spike of any neuron may be a pre-synaptic input to any other neuron

in the network (see Figure 4.2).

4.5 Per-task Learning

We assume the data in the task-data buffer to be in the form of spike sequences

(x≤T , y≤T ) of length T . They may be natively neuromorphic signals or natural signals

that are converted to the spike domain via the application of an encoder. The per-

task training function, Update(ϕ,D) concatenates all the examples (x≤T , y≤T ) ∈
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Figure 4.2 An example of an SNN with an arbitrary topology. Black circles are the
hidden neurons, in set H, and white circles are the visible neurons in set V , while
gray circles represent exogenous inputs. Synaptic links are shown as directed arrows,
with the post-synaptic spikes of the source neuron being integrated as inputs to
the destination neuron. A bi-directional arrow represents two individual connections
between the two neurons concerned, one in each direction.

D(t,i) along the time dimension to obtain a single stream of data (x≤S, y≤S) with

S = MT . The function processes this data over time with the goal of addressing

the maximum likelihood problem maxθ Lυ≤S
(ϕ) = log pϕ(υ≤S, h≤S) with initialization

θ. We approach this problem using the variational learning method reviewed in

Section 2.2.3, by maximizing the ELBO given in Equation (2.9) with the variational

distribution qθ(h≤T ) modeled by the distribution over the latent spikes pϕ(h≤S) defined

by the hidden neurons [51].

The SNN model parameter vector ϕ, initialized by the hyperparameter θ, is

iteratively updated according to the gradients detailed in Section 2.2.3, namely

Equations (2.13a) and (2.13b), along with the local gradients (Equation 2.8)

calculated at every time τ . The learning signal ℓϕV is given by the log-likelihood

of the observed spikes estimated via Monte Carlo sampling of the hidden spikes

[hi,τ ∼ pϕ(hi,τ | ui,τ )]i∈H at every discrete time-instant τ which allows the computation

of the new membrane potentials [ui,τ+1]i∈V,H according to Equation (2.1). The
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derivatives are accumulated for ∆s discrete time-steps and added to an eligibility

trace that is maintained as an exponentially decaying average of previous gradients

to update the SNN model parameters. The overall operation of the Update(θ,D)

function, including a sparsity-inducing regularizer [51], is summarized in Algorithm

2.

4.6 SNN Meta-Learning

We now describe OWOML-SNN, an online-within-online meta-learning algorithm for

probabilistic SNNs that builds on the framework described in Section 4.3. The overall

algorithm is described in Algorithm 3, and is detailed next. The meta-learner is

defined as an SNN model whose weights define the hyperparameters θ(t,i). At each

within-task time-step (t, i), N + 1 SNN models are instantiated with initial weight

given by θ(t,i). One SNN is used to carry out inference on the current task T (t), while

the remaining N SNN models are used to enable the meta-update.
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Algorithm 2 Maximum Likelihood Optimization via SGD for Meta Learning Within
Task Update, Update(θ,D)

Input: θ,D, hyperparameters κ,∆s, η
1: initialize ϕ← θ, l0 ← 0, ei,0 ← 0
2: for τ = 1 to S do
3: compute membrane potentials ui,τ as in (Eq. 2.1)
4: for i ∈ H do
5: Monte Carlo sampling of hi,τ
6: end for
7: accumulate learning signal lτ = lτ−1 + ℓτ (Eq. 2.12)
8: accumulate local gradients

ei,τ = ei,τ−1 +∇wα
j,i
log p(υi,τ | ui,τ ) (Eq. 2.8)9: if τ is a multiple of ∆s then

10: compute learning signal trace

l = κl + (1− κ)lτ (4.4)11: for neurons i ∈ {V ,H} do
12: compute local gradient traces

ei = κei + (1− κ)ei,τ (4.5)13: update parameters

ϕi ← ϕi + η

{
ei if i ∈ V
lei if i ∈ H

14: end for
15: reset lτ ← 0, ei,τ ← 0
16: end if
17: end for
18: return: ϕ

To elaborate, at every meta-time step t, a task T (t) ∈ F is drawn, and the task-

data buffer is initialized as D(t,i) = ∅. Within-task data is added to the current task-

data buffer at every within-task time step i in batches of B training examples z(t,i) =

{(xj≤T , y
j
≤T )}Bj=1. The inference SNN implements online learning for the current task

via the update function Update(θ(t,i), D(t,i)) using the hyperparameter initialization

θ(t,i) and data in the task-data buffer.

To enable the meta update, the mentioned N SNN models are trained online

using N data-sets sampled from the meta-data buffer {D(n)}Nn=1 ∈ B(t). Each of the

data-sets includesM training examples that are a subset of the data-set of a previously

seen task such that D(n) = {(xj≤T , y
j
≤T )}Mj=1. The hyperparameter is updated via the
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function Meta-Update
(
θ(t,i), {D(n)}Nn=1

)
which includes within-task training on the

N sampled data-sets.

The inference accuracy of the within-task parameter ϕ(t,i) is tested on a held out

test data set for the current task. Online meta-learning is successful if the inference

SNN is able to obtain satisfactory accuracy levels by using fewer examples for online

adaptation.

4.7 Experiments

In this section, we compare the performance of OWOML-SNN to conventional per-

task training and joint training (a standard benchmark for meta-learning [142, 3, 34]).

Under conventional training, the meta-update function in Algorithm 3 is disabled

and the hyperparameter θ(t,0) is randomly re-initialized for any new task T (t). Under

joint training, the meta-training function Meta-Update(θ,B), is replaced by training

across all tasks whose data is in buffer B(t). This amounts to applying function

Update(θ(t,i), D), where D includes examples sampled from B(t) as for the meta-

update function.
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Algorithm 3 OWOML-SNN

Input: B(0), hyperparameters N,µ
1: repeat
2: t← t+ 1
3: sample T (t) ∈ F
4: initialize D(t,0) ← ∅
5: while data available for T (t) do
6: i← i+ 1
7: D(t,i) ← D(t,i) ∪ z(t,i)
8: ϕ(t,i) ← Update

(
θ(t,i), D(t,i)

)
9: inference using ϕ(t,i)

10: sample meta-train data {D(n)}Nn=1 ∈ B(t)

11: θ(t,i+1) ← Meta-Update
(
θ(t,i), {D(n)}Nn=1

)
12: end while
13: B = B ∪D(t,i)

14: until convergence

15: function Meta-Update(θ, {D(n)}Nn=1)
16: for n = 1 to N parallel models do
17: within-task training ϕ(n) ← Update(θ,D(n))
18: end for
19: θ ← θ + µ

∑N
n=1

(
θ − ϕ(n)

)
20: return θ
21: end function

We first consider the family of omniglot 2-way classification tasks [66], which

is often used to test the within-task generalization capabilities of meta-learners [34,

108, 131, 61]. We follow the more complex definition of the problem in which the two

characters to be classified in each task may be from different alphabets. Each task

dataset includes 14 examples from each class, while 6 examples from each class are

reserved for the test dataset. The figures are downsized to 26 × 26 pixels and rate

encoded to obtain examples of the form (x≤T , y≤T ) where y≤T is a one hot encoded

label and T = 80.

We train a fully connected GLM-based SNN with 4 hidden neurons and 2 visible

neurons with additional lateral connections between the hidden neurons and feedback

connections from the visible neurons to the hidden neurons. After 15 meta-time
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Figure 4.3 Test accuracy of within-task training after t = 15 meta-time steps for
the omniglot 2-way classification task family. Lines show an average over 6 new
2-digit classification tasks with half standard deviation error bars. 5-shot training is
completed after i = 10 within-task time steps

steps, i.e., at t = 15, we test the hyperparameter initialization on the next 6 unseen

tasks without further meta training updates. We set M = 2, N = 5, and ∆s = 5.

The results in Figure 4.3 show that after training on five examples from each class,

OWOML-SNN provides an increase in accuracy over the baseline of conventional

training that is about 18% larger than joint training. After further training, we

observe that OWOML-SNN enables the SNN to achieve on average a 15% higher

accuracy overall than the two benchmarks.

We now show that the fast adaptation capability of OWOML-SNN extends

to the case of a continuous input stream with data encoded in the spike timing,

by considering 2-way classification on the the MNIST-DVS data-set [110]. MNIST-

DVS is a dataset of MNIST images captured by a neuromorphic DVS camera that

generates localized events based on changes in individual pixels over time. The tasks

are sampled from the set of permutations of the digits between 0 and 6 with 900
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Figure 4.4 Within-task test accuracy (top) and loss (bottom) on the current task
T (t) over online-within-online meta-training for the MNIST-DVS 2-way classification
task family after the full within-task dataset D(t,i) has been processed. The dashed
line represents no within-task adaptation. Each solid line represents test results after
within-task training on the number of training examples labeled. Due to variability in
the hardness of the tasks, the lines show best accuracy seen so far, giving an envelope
of the overall behavior.

examples from each class used for training and 100 held out for test. Each image is

cropped to the 26×26 pixel size and the events are downsampled to create a sequence

of length T = 50 [118].

We train an SNN with the same recurrent architecture as described in the

previous experiment with hyperparametersM = 4, N = 5, and ∆s = 20. We examine

the performance of the SNN instantiated for task-specific training on the current task

T (t) as the hyperparameter initialization is improved over meta-training. We show

results for online adaptation after the full dataset D(t,i) for the current task has been

processed i.e., at the maximum value of within-task time step i. The results in Figure

4.4 confirm that OWOML-SNN enables fast online adaptation that continuously
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improves as the number of meta-time steps t increases and more meta-updates are

applied, requiring fewer examples to achieve within-task accuracy targets.

4.8 Conclusion

The OWOML-SNN proposed is an online-within-online meta-learning algorithm that

builds on online variational learning algorithm for probabilistic SNNs. We have

demonstrated the performance benefits of OWOML-SNN when adapting to new tasks

observed sequentially in an online fashion. OWOML-SNN is based on a first-order

approximation of the meta-gradient, yielding a local meta-learning rule that follows

the principles of predictive coding, with no reliance on back-propagation of gradients.

This makes the approach a prime candidate for fast on-chip adaptation to new tasks,

and in particular for tasks that involve streaming input data. While the first order

approximation yields an efficient local update rule, it also generally reduces the

capacity of adaptation to new tasks [93]. As future work, it would be interesting

to investigate more accurate approximations of the meta-gradient that retain the

property of locality, as well as convergence properties.
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CHAPTER 5

SPIKING GENERATIVE ADVERSARIAL NETWORKS

In this chapter we move away from supervised learning algorithms for SNNs to address

SNN learning without the definition of rigid target output patterns. We highlight the

fact that this allows us to train an SNN to output signals with diverse spatial and

temporal correlations. We adopt the adversarial learning framework which offers

a guided learning process for the SNN that centers around the similarity of the

distribution of the spiking outputs to a target distribution, as mediated by an auxiliary

discriminative model. As a result of this, the SNNs considered here include only

hidden neurons whose spiking outputs are in the latent variable space, in contrast to

the previous studies in which some or all of the spiking neuron outputs are observed

as defined by a target output sequence.

Learning efficiency and model adaptability are important considerations for

adversarial learning, especially in the context of on chip learning which is our

overarching goal in developing local learning algorithms for SNNs. Towards this

end, we apply the meta-learning framework discussed in Chapter 4 to decrease the

number of training iterations required to train an SNN using adversarial learning.

These topics are further developed in the rest of the chapter, reproduced from

my paper [104].

5.1 Introduction

In existing SNN learning solutions, inputs and outputs are prescribed spike patterns,

which may be obtained from a neuromorphic data set – e.g., from a Dynamic Vision

Sensor (DVS) camera or a Dynamic Audio Sensor (DAS) recorder [109, 72] – or

converted from natural signals using a fixed encoding strategies such as rate or

temporal encoding [94]. This approach may lead to an overly rigid and narrow
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DVS sensor
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Figure 5.1 Block diagram of the proposed hybrid SNN-ANN SpikeGAN architecture.
Sampling from the data set to obtain example (xi≤T , y

i
≤T ) is indicated by dotted lines

in the red box, along with a fixed conversion strategy from natural to spiking signals
for the case of natural real data. For neuromorphic data (e.g., collected from a DVS
sensor), there is no need for natural-to-spike conversion. The SNN generator, shown
in the blue box, produces a sample x̃i≤T . Real data and synthetic data are processed
by an ANN discriminator that evaluates the likelihood pΦ(x≤T ) that the input data
is from the real data. In the case of Bayes-SpikeGAN, the model parameter ϕj of
the generator are drawn from a posterior distribution, which is shown in the purple
circle.

definition of the desired input-output behavior that does not fully account for the

expressivity of spiking signals. Spiking signals can in fact encode the same natural

signal in different ways by making use of coding in the spike times [94].

In this study, we address this issue by redefining the learning problem away from

the approximation of specific input-output patterns, and towards the matching of the

distribution of the SNN outputs with a target distribution, broadening the scope of

possible output spike patterns. To this end, we propose an adversarial learning rule for

SNNs, and explore its extensions to a Bayesian framework as well as to meta-learning.
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5.1.1 Hybrid SNN-ANN Generative Adversarial Networks

The proposed adversarial learning approach follows the general architecture of

generative adversarial networks (GANs) [43, 107]. A GAN architecture involves not

only the target model, whose goal is generating samples approximately distributed

according to the given desired “real” distribution, but also a discriminator. The

role of the discriminator is to provide feedback to the generator during training

concerning the discriminator’s attempts to distinguish between real and synthetic

samples produced by the generator. Generator and discriminator are optimized in

an adversarial fashion, with the former aiming at decreasing the performance of the

latter as a classifier of real against synthetic samples.

Unlike prior work on GANs, as illustrated in Figure 5.1, the key novel elements

of the proposed architecture are that: (i) the generator is a probabilistic SNN tasked

with the goal of reproducing spatio-temporal distributions in the space of spiking

signals; and (ii) the discriminator is implemented via a standard artificial neural

networks (ANNs). Concerning point (i), while in a conventional GAN model the

randomness of the generator is due to the presence of stochastic, Gaussian, inputs

to the generator, in this work we leverage the randomness produced by stochastic

spiking neurons following the generalized linear model (GLM) [98, 51].

As for the novel item (ii), the adoption of a hybrid SNN-ANN architecture

allows us to leverage the flexibility and power of ANN-based classifiers in order to

enhance the training of the spiking generator. Optimization methods for ANNs are

already well established, and ANN classifiers are known to achieve high accuracy

on a variety of data sets, while classification using SNNs is still an active field of

research. We therefore hypothesize that an ANN discriminator can complement the

SNN generator by providing an accurate and adaptable learning signal. It is also

worthwhile to explore the use of an SNN as the discriminator so as to enable online

updates to the generator. This may provide the additional benefit of better credit
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assignment over time. We focus here on developing and examining the hybrid SNN-

ANN architecture, and leave the design of a pure spiking GAN as a direction of

future investigation. It is emphasized that, once training is complete, the SNN acts

as a standalone generator model, and the ANN-based discriminator can be discarded.

Once trained, the SNN can serve as a generator model to produce synthetic

spiking data with the same statistical properties of real data. This data can be used

to augment neuromorphic data sets that are limited in size, or as a generative replay

for SNN learning. Furthermore, since the proposed model consists of a conditional

generator, the trained SNN can also be used directly as a stochastic input-output

mapping implementing supervised learning tasks without the need to hard-code

spiking targets.

As an implementation note, in neuromorphic hardware, one may envision the

ANN to be implemented on the same chip as the SNN in case the deployment requires

continual, on-chip, learning; or to be part of auxiliary peripheral circuitry, possibly

on an external device, in case the system is to be deployed solely for inference without

requiring continual training.

5.1.2 Bayesian Spiking GANs

The randomness entailed by the presence of probabilistic spiking neurons, in much the

same way as its conventional counterpart given by Gaussian inputs, may be insufficient

to produce sufficiently diverse samples that cover real multi-modal distributions [106].

A way around this problem is to allow the model parameters to be stochastic too,

such that new model parameters are drawn for each sample generation. This setting

can be naturally modelled within a Bayesian framework, in which the model weights

are given prior distributions that can be updated to produce posterior distributions

during training as depicted by the distribution over generator weight ϕ in Figure

5.1. In order to enhance the diversity of the output samples, we investigate for the
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first time the use of Bayesian spiking GANs, and demonstrate their potential use in

reproducing biologically motivated spiking behavior [133].

5.1.3 Continual Meta-learning for Spiking GANs

In the continual learning setting, the statistics of the input data change over time, and

a generative SNN must adapt to generate useful synthetic data. A generator model

that is able to adapt based on few examples from the changed statistics is especially

useful for augmenting the small data sets to be used in downstream applications such

as an expert policy generator in reinforcement learning [132].

In Chapter 4, we presented a continual meta learning framework for online SNN

learning applied to classification problems. Here, that framework is adapted to the

problem of adversarial learning for spiking GANs. We follow the same general process

shown in Figure 4.1, in which a hyperparameter initialization is optimized and then

used to enable faster optimization on future tasks. In the proposed meta learning

framework for spiking GANs, a joint initialization is learned for the adversarial

network pair made up of the SNN generator and the ANN discriminator that improves

the spiking GANs efficiency in learning to generate useful synthetic data as the

statistics of the population distribution vary.

5.2 Related Work

The only, recent, paper that has proposed a spiking GAN is [62]. In it, the authors

have introduced an adversarial learning rule based on temporal backpropagation with

surrogate gradients by assuming a spiking generator and discriminator. The work

focuses solely on encoded real-valued images, without consideration for neuromorphic

data. Aside from the inclusion of Bayesian and continual meta-learning for the spiking

GAN, our work explores the use of target distributions with temporal attributes, and

adopts local learning rules based on probabilistic spiking models. Additionally, the
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probabilistic SNN model that we have adopted includes natural stochasticity that

facilitates generating multi-modal synthetic data, while in [62], the randomness is

artificially injected via exogenous inputs sampled from a uniform distribution and

time encoded.

Several recent works [117, 96, 135, 122, 119] have explored some form of hybrid

SNN-ANN networks that combine SNNs and ANNs to capitalize on the low-power

usage of SNNs and gain in accuracy from the broad range of processing capabilities

and effective training algorithms for ANNs. Some examples of the applications are

high-speed object tracking [135], classification [96, 117], gesture recognition [122] and

robotic control [96]. While not the main focus of our work, the SNN generator that

we propose is capable of learning a temporal embedding for natural signals similar to

the SNN encoder in [119] with the key difference that in [119] the read-out signals are

a compressed encoding of real data while in our case the signals are trained to emulate

the real data. Both [117] and [96] propose chip designs to implement inference for

such hybrid networks, and report increased classification accuracy for hybrid networks

over pure SNN deployment with minimal increase in power usage. The Tianjic chip

[96] also showcases the ability to deploy ANNs and SNNs that process simultaneously

to achieve combined inference on a complex automated bicycle control task. In this

case, a convolutional neural network (CNN) is used to extract features from large

images while the SNN is responsible for processing auditory time series. In this work,

we derive a similar benefit for the novel task of training a generative spiking model:

the ANN is chosen as the discriminator to extract features of the real and synthetic

data, while the SNN is responsible for modeling a temporal distribution.
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5.3 Hybrid SNN-ANN Spiking GAN

In this section, we first describe the proposed hybrid SNN-ANN setting and then

introduce the resulting training problem within a standard frequentist adversarial

formulation.

5.3.1 Setting

Unlike prior work focused on the generation of static natural signals, we are

concerned with generating spatio-temporal spiking data which consist of a sequence

x≤T = (xi,1, ..., xi,τ , ...xi,T )
Nx

i=1, of Nx × 1 binary vectors {xτ}Tτ=1 over the time index

τ = 1, ..., T . The sequence is drawn from some unknown underlying population

distribution p(x≤T , y≤T ) = p(y≤T )p(x≤T |y≤T ), jointly with another spatio-temporal

spiking signal y≤T = (yi,1, ..., yi,τ , ...yi,T )
Ny

i=1 with Ny binary vector {yτ}Tτ=1. The signal

y≤T may be made available to the generator Gϕ as an exogenous input to guide the

generating mechanism. This auxiliary input signal can be useful to ensure that the

generated data x≤T cover a particular region of the data space, such as a specific class

of spiking signals x≤T .

Since the generator SNN takes as input and produces as output spiking data, in

case the actual data are defined over real-valued, or non-binary discrete alphabets, an

encoding, or decoding, scheme can be used to either convert between the original data

format and the binary time series processed by the spiking generator, or to convert

the spiking output of the generator to the format of the real data.

The SNN generator Gϕ models the population distribution via a parameterized

distribution pϕ(x≤T |y≤T ) that describes the statistics of the output of the Nx read out

neurons given the exogenous inputs y≤T . As detailed in Section 2.1.1, the parameter

vector ϕ of the SNN includes synaptic weights and biases, with the latter playing the

role of firing thresholds.
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Figure 5.2 An example of a generator SNN, Gϕ, with a layered topology. Black
circles are the hidden neurons, in set H, and white circles are the read-out neurons
in set R, while gray circles represent exogenous inputs. Synaptic links are shown as
directed arrows, with the post-synaptic spikes of the source neuron being integrated
as inputs to the destination neuron.

The architecture of the ANN depends on whether the output of the SNN

is directly fed to the ANN, which is the case when the original data are spiking

signals, or if it is first converted back to a natural signal which is the case when the

original data is static. The discriminator implements a classifier DΦ(x≤T ) = pΦ(ξ =

1|x≤T , y≤T ) giving the probability that the input (x≤T , y≤T ) is drawn from the real

data distribution – an event indicated by the binary variable ξ = 1.

5.3.2 Training Problem Formulation

During training, real data pairs (x≤T , y≤T ) are sampled from the data set. Recall

that these are spiking signals, possibly converted from natural signals. The real

data pair (x≤T , y≤T ) along with a synthetic data pair (x̃≤T , y≤T ), where x̃≤T is the

output of the generator SNN in response to input y≤T , are then fed as inputs to

train the ANN discriminator DΦ. Specifically, during training, the pair of SNN and

ANN models are optimized jointly, with the discriminator’s parameters Φ trained to
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classify between the real and synthetic data, while the generator’s parameters ϕ are

updated to undermine the classification at the ANN.

Let us denote as z≤T = (x≤T , y≤T ) ∼ p(x≤T , y≤T ) an input-output pair drawn

from the underlying population distribution and z≤T = (x̃≤T , y≤T ) ∼ pϕ(x̃≤T , y≤T )

an input-output pair with y≤T ∼ p(y≤T ), drawn from the marginal population

distribution, and x̃≤T ∼ pϕ(x̃≤T |y≤T ) obtained from the SNN generator. In the single

task frequentist setting studied in Section 5.5, the adversarial training objective is

described by the min-max optimization problem [41]

min
ϕ

max
Φ

Ez≤T∼p[ψ1(DΦ(z≤T))]+Ez≤T∼pϕ[ψ2(DΦ(z≤T))], (5.1)

where ψ1(·) is an increasing function and ψ2(·) is a decreasing function. In Equation

(5.1), the first expectation is over real data sampled from the true population

distribution, while the second expectation is over synthetic data generated by

the SNN. Following the original GAN formulation [41], we set ψ1 = log(x) and

ψ2 = log(1 − x) so that the inner maximization in Equation (5.1) evaluates to the

Jensen-Shannon divergence between the two distributions when no constraints are

imposed on the discriminator.

As we detail in Section 5.5, in the proposed solution, stochastic gradient updates

are made in a parallel fashion with the discriminator taking a gradient step to address

the inner maximization in Equation (5.1), and the generator taking a gradient step

to tackle the outer minimization in Equation (5.1).

In Section 5.6, the adversarial learning problem (Equation 5.1) is generalized to

account for Bayesian SNNs in which the weight vector ϕ is allowed to have a posterior

distribution, so that sample generation entails a preliminary step of sampling from

the weight distribution [106]. Furthermore, in Section 5.7, the framework described

in this section is extended to continual meta-learning, in which case the population

distribution varies over time.
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5.4 Probabilistic Spiking Neuronal Network Generator Model

In this section we describe the conditional probability distribution pϕ(x≤T |y≤T ) that

is followed by the samples generated by the SNN. As illustrated in Figure 5.2, this

distribution is realized by a general SNN architecture with probabilistic spiking

neurons implementing generalized linear models [98, 55, 51] as detailed in Section

2.1.1. The generator SNN Gϕ processes data in the form of binary signals (spikes)

over processing time τ = 1, 2, ..., with each neuron i producing an output spike,

si,τ = 1, or no output spike, si,τ = 0, at any time τ . The network includes a layer of

read-out neurons R and a set of hidden neurons H, with respective spiking outputs

denoted as si,τ = xi,τ , i ∈ R and si,τ = hi,τ , i ∈ H. Both the read-out and hidden

signals of the generator are latent variables in that no target output is observed. As

depicted in Figure 5.2, the topology of the SNN is defined so as not to include any

loops except for the individual neuron feedback signals.

Given the probabilistic expression of the output of GLM neurons in Equation

(2.2), the membrane potentials of the read-out neurons and the hidden neurons define

the joint likelihood of a sequence of read-out spikes x≤T = {[xi,0, ..., xi,τ , ..., xi,T ]}i∈R

and hidden spikes h≤T = {[hi,0, ..., hi,τ , ..., hi,T ]}i∈H. These sequences are sampled as

a result of exogenous input sequence y≤T . Accordingly, the likelihood of the sequence

of read-out spikes x≤T is conditioned on some sequence of exogenous input spikes y≤T

and is defined as

pϕ(x≤T , h≤T |y≤T ) =
T∏

τ=1

∏
i∈{R,H}

pϕi
(si,τ |ui,τ )

=
T∏

τ=1

∏
i∈{R,H}

σ(ui,τ ). (5.2)

where si,τ refers to either a hidden spike signal hi,τ or a read-out spike signal xi,τ

depending on which set the neuron i that it is sampled from belongs to.
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5.5 Adversarial Training for SNN: SpikeGAN

As described in Section 5.3, the proposed SpikeGAN model for adversarial training

includes an SNN generator Gϕ with parameter vector ϕ and an ANN discriminator DΦ

with parameter vector Φ. As illustrated in Figure 5.1, the SNN generator processes

exogenous inputs y≤T in a sequential manner, mapping each Ny × 1 input vector yτ

at time τ to an Nx× 1 output vector xτ for τ = 1, ..., T . The SNN mapping is causal

and probabilistic, with an output distribution pϕ(x≤T , h≤T |y≤T ) defined in Section

5.4. The discriminator DΦ is implemented as an ANN with a binary classification

output. In this section we propose a method, referred to as SpikeGAN, to address

the training problem in Equation (5.1).

5.5.1 Algorithm Overview

Consider the population distribution p(x≤T , y≤T ) with side information y≤T and data

x≤T that underlies the generation of a data set D. At each training step, a batch of

B examples (xi≤T , y
i
≤T ), for i = 1, ..., B are drawn from the data set D for training.

Additionally, a batch of synthetic data x̃i≤T is sampled from the spiking generator as

the output spikes of the Nx read-out neurons given the corresponding Ny exogenous

inputs yi≤T , for i = 1, ..., B.
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Algorithm 4 SpikeGAN

Input: Data set D = {(xi≤T , y
i
≤T )}i=1,2,..., learning rates µΦ, µϕ

1: repeat

2: sample a batch of real data samples X = [xi≤T ]
B
i=1 from the data set D

3: initialize synthetic data cache X̃ = ∅

4: initialize generator gradient cache g = ∅

5: for i = 1, ..., B do

6: xi≤T , g
i
ϕ ← SNN procedure (see below)

7: cache sample X̃ = X̃ ∪ {xi≤T}

8: cache gradients g = g ∪ {giϕ}

9: end for

10: evaluate classification probability DΦ(X) and DΦ(X̃)

11: evaluate reward signal r = [ψ2

(
DΦ(x

i
≤T )

)
]i=1,...,B

12: Update Φ := Φ + µΦ
1
B

∑B
i=1∇Φψ1

(
DΦ(x

i
≤T )

)
+∇Φψ2

(
DΦ(x̃

i
≤T )

)
13: Update ϕ := ϕ− µϕ

1
B

∑B
i=1 r

igiϕ

14: until convergence

15: procedure SNN

16: initialize traces hj,τ = 0 for all neurons j at time τ = 1

17: initialize gradients gϕj
= 0 for all pre-synaptic connection weights to neuron j

18: for τ = 1, ..., T do

19: for j ∈ H in order of connectivity do

20: compute uj,τ according to Equation 2.1

21: sample hj,τ = (hs,j,τ , hr,j,τ )

22: accumulate gradients gϕj
+=∇ϕj

p(hj,τ|uj,τ) (Equation 2.8)

23: end for

24: end for

25: return hr,≤T , gϕ

26: end procedure
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The SNN operates on the local discrete time scale defined by index τ = 1, ..., T ,

which runs over the temporal dimension of each exogenous input sequence y≤T . At

each time τ it processes a batch of B input vectors yiτ with i = 1, ..., B, mapping them

in parallel through the full network topology to sample a batch of B corresponding

output vectors x̃iτ , with i = 1, ..., B from the Nx read-out neurons. As detailed in

Section 4.4, this involves computing batches of instantaneous membrane potentials

uj,τ using Equation (2.1) and sampling output spikes using Equation (2.2) by following

the order defined by the underlying computational graph.

The gradients with respect to the generator parameter ϕ for the learning

criterion in Equation (5.1) are computed using a local, three-factor, rule that includes

the gradient of the log likelihood of the joint output distribution (Equation 5.2), and

accumulated as the output spikes of each neuron are sampled over time τ . After the

full sequence has been processed, the local gradients giϕ, with i = 1, ..., B are cached

for use in the outer minimization in Equation (5.1).

The discriminator processes the batch of real data examples {(xi≤T , y
i
≤T )}Bi=1 and

the batch of synthetic data samples {(x̃i≤T , y
i
≤T )}Bi=1 to approximate the expectations

in the objective function given by Equation (5.1). For each example, the input to

the discriminator includes both the data signal x≤T and the feature signal y≤T . To

enable the ANN to process the time series data, the series is either compressed to

a fixed smaller-dimensional embedding, or the ANN includes convolutions over the

time dimension to automatically optimize suitable embeddings. The gradient of the

objective function with respect to the discriminator parameter Φ is evaluated using

standard backpropagation.

5.5.2 Derivation

The GAN objective function given by Equation (5.1) is optimized via SGD updates

with respect to the discriminator parameter vector Φ and generator parameter vector
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ϕ. To update the discriminator, the gradient of the expected values in Equation (5.1)

are estimated by the described batches of B examples drawn from the training data

and from the generator as

∇ΦEz≤T∼p [ψ1 (DΦ(z≤T ))] +Ez≤T∼pϕ [ψ2 (DΦ(z≤T ))] ≈ (5.3)

≈ 1

B

B∑
i=1

∇Φψ1

(
DΦ(z

i
≤T )

)
+∇Φψ2

(
DΦ(z̃

i
≤T )

)
,

where zi≤T is the i-th example sampled from the training data and z̃i≤T is the i-th

example sampled from the generator. The derivatives are easily computed via the

standard backpropagation algorithm.

Taking the gradient of the outer expression to update the generator model, we

have

∇ϕEz≤T∼p [ψ1 (DΦ(z≤T ))] +Ez̃≤T∼pϕ [ψ2(DΦ(z̃≤T ))] =

=∇ϕEz̃≤T∼pϕ [ψ2(DΦ(z̃≤T ))]

=
∑

x≤T ,h≤T

log (1−DΦ(z̃≤T ))∇ϕpϕ(x≤T , h≤T | y≤T ), (5.4)

where the derivative of the first term evaluates to zero [41] and the gradient of the

second term is expanded to highlight the average over synthetic data x̃≤T , which is

jointly distributed with the hidden spike signals h≤T , weighted by the likelihood of

each possible value. The REINFORCE gradient is applied to estimate this average by

sampling from the SNN. For the case of a single sample, this gives the approximate

gradient

∑
x̃≤T ,h≤T

log (1−DΦ(z̃≤T ))∇ϕpϕ(x̃≤T , h≤T | y≤T ) ≈

≈ log
(
1−DΦ(z̃

i
≤T )

)
∇ϕ log pϕ(x̃

i
≤T , h

i
≤T | yi≤T ) (5.5)
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in which the gradient of the log likelihood of spiking signals sampled from the SNN

is given as in [51] by Equation (2.8). This yields a local, three-factor rule [38] which

follows the general form

wj,i ← wj,i + η(ri · gij,i) (5.6)

for the update to the synaptic weights wj,i where 0 < η < 1 is the learning rate, ri

is the global reward signal for the i-th sample from the SNN generator and gj,i is

the local neuron gradient that depends on the filtered input and output spikes. The

key point of SpikeGAN is that the global reward signal ri = ψ2(DΦ(x̃
i
≤T )) is given by

the classification certainty of the discriminator. This makes intuitive sense in that

SNN connection strength is decreased if the generated outputs xi≤T are likely to be

synthetic data according to the discriminator, and they are enforced in the opposite

case.

In specified experiments in Section 5.9, to avoid vanishing gradients early in

training, we adopt the commonly used alternative generator optimization objective

maxϕ Ez≤T∼pϕ [log (DΦ(z≤T ))], in which the generator parameter ϕ is updated to

maximize the log likelihood that the synthetic data is mis-classified as real data [41].

The resulting gradient has the same general form as Equation (5.4).

5.5.3 Comparison with Other Methods

Maximum likelihood (ML) learning for SNNs optimizes the likelihood that the

output signals of the read-out neurons match a target binary sequence. This can

be implemented using the framework outlined in Section 2.2. A major benefit of

adversarial training for SNNs as compared to ML learning is its potential to better

capture the different modes of the population distribution. In contrast, ML tends to

produce inclusive approximations that overestimate the variance of the population

distribution. A practical advantage of ML learning, as detailed in [51] is that it
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enables online, incremental, learning. The proposed GAN training algorithm applies

an episodic rule in which the global learning signal can only be evaluated after a full

sequence of outputs has been sampled from the SNN due to the choice of an ANN as

the discriminator. An online learning variant could be also devised by defining the

discriminator as a recurrent network [137], but we leave this topic to future research.

5.6 Bayes-SpikeGAN

In the Section 5.5, we have explored frequentist adversarial training for SNNs. By

forcing the choice of a single model parameter vector ϕ for the generator Gϕ, the

approach may fail at reproducing the diversity of multi-modal population distribution

[106]. As an example, it has been shown that tailored synaptic filters and spiking

thresholds are necessary to induce specific temporal patterns at the output of a spiking

neuron [133], which are incompatible with the choice of a single parameter vector ϕ.

In this section we explore the application of Bayesian adversarial learning to address

this problem.

5.6.1 Generalized Posterior

The Bayes-SpikeGAN assumes a prior distribution, p(ϕ), over the generator parameter

vector ϕ, and, rather than optimizing over a single parameter vector, it obtains a

generalized posterior distribution on ϕ given observed real data. For a fixed ANN

discriminator, the posterior distribution can be defined as [106]

p(ϕ|y≤T ,Φ) ∝ p(ϕ)Ex̃≤T∼pϕ [DΦ(x̃≤T )] , (5.7)

where the expectation is over synthetic data x̃≤T sampled from the distribution

pϕ(x≤T ) defined by the generator Gϕ. In Equation (5.7), the average confidence of the

discriminator DΦ(x̃≤T ) plays the role of likelihood of the current generator parameter

ϕ given the observed real data used to optimize discriminator parameter vector Φ.
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Algorithm 5 Bayes-SpikeGAN

Input: Data set D = {(xi≤T , y
i
≤T )}i=1,2,..., learning rates µΦ, µϕ

1: initialize J SNN generators Gϕ = {Gϕj}Jj=1 each with parameter ϕj

2: initialize CNN discriminator DΦ

3: repeat

4: sample a batch of real data samples X = [xi≤T ]
B
i=1 from the data set D

5: for each SNN generator Gϕj do

6: initialize synthetic data cache X̃ = ∅

7: initialize generator gradient cache g = ∅

8: for i = 1, ..., B do

9: xi≤T , g
i
ϕj ← SNN procedure (see Algorithm 4)

10: cache sample X̃ = X̃ ∪ {xi≤T}

11: cache gradients g = g ∪ {giϕj}

12: end for

13: evaluate reward signal r=[−log
(
DΦ(x

i
≤T )

)
]Bi=1

14: cache gradients w.r.t. all weights in ϕj

∇ϕjEz̃≤T∼p
ϕj
[− log(DΦ(z̃≤T ))]=

1

B

B∑
i=1

rigiϕ

15: evaluate and cache classification probability DΦ(X) and DΦ(X̃)

16: end for

17: for each SNN generator parameter ϕj do

18: Update ϕj following Eq. (5.10) using cached gradients w.r.t. all generator

parameters {ϕj}Jj=1

19: end for

20: Update discriminator parameter:

Φ:=Φ + µΦ
1

JB

J∑
j=1

∇Φ

[
ψ1

(
DΦ(X

j
≤T )

)
+ψ2

(
DΦ(X̃

j
≤T )

)]
21: until convergence
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5.6.2 Training Objective

Computing the generalized posterior p(ϕ) in Equation (5.7) is generally intractable,

and hence we approximate it with a variational distribution q(ϕ|y≤T ,Φ). The

variational posterior q(ϕ|y≤T ,Φ) is optimized by addressing the problem of minimizing

the free energy metric

min
q(ϕ)
− log

(
Ex̃≤T∼q(ϕ)[DΦ(x̃≤T )]

)
−KL(q(ϕ)||p(ϕ)), (5.8)

where KL(q(ϕ)||p(ϕ)) = Eϕ∼q(ϕ)[log(q(ϕ)/p(ϕ))] is the Kullback-Liebler (KL) divergence.

If no constraints are imposed on the distribution q(ϕ), the optimal solution of the

problem in Equation (5.8) is exactly Equation (5.7). We further apply Jensen’s

inequality to obtain the more tractable objective

min
q(ϕ)
−Ex̃≤T∼q(ϕ) [logDΦ(x̃≤T )]−KL(q(ϕ)||p(ϕ)). (5.9)

In order to address this problem, we parametrize the variational posterior with

a set of J parameter vectors ϕ = {ϕj}Jj=1, also known as particles. This effectively

defines J SNN generators {Gϕj}Jj=1. Samples from the generator are then obtained by

randomly and uniformly selecting one particle from the set of J particles, and then

using the selected sample ϕj to run the SNN generator Gϕj .

As explained next, in order to optimize the set of particles with the goal of

minimizing the free energy metric in Equation (5.8), we leverage Stein variational

gradient descent (SVGD) [71].

5.6.3 Bayes-SpikeGAN

Following SVGD, for a fixed discriminator parameter vector Φ, the particles are

updated simultaneously at each iteration as

ϕj
i+1 = ϕj

i−η
J∑

j′=1

{
κ(ϕj

i , ϕ
j′

i )
(
−∇ϕj′Ex̃≤T∼p

ϕj
′[log (p(ϕ)DΦ(x̃≤T))]

)
−∇ϕj′κ(ϕ

j
i , ϕ

j′

i )
}

(5.10)
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where κ(ϕj, ϕj′) = exp(−||ϕj − ϕj′ ||2) is the Gaussian kernel function. The gradient

with respect to the generator parameter ϕj′

i can be computed as in Equation (5.4),

which is estimated via the REINFORCE gradient as ri · gii,j as in Equation (5.6).

In each iteration, the discriminator parameter, Φ, is updated via SGD to

optimize the standard GAN loss function given in Equation (5.1) by taking an average

of the losses calculated for data sampled from each of the J generators.

5.7 Continual Meta-Learning for Spiking GANs: Meta-SpikeGAN

We have so far defined two adversarial training methods for SNNs, namely SpikeGAN

(based on frequentist learning) and Bayes-SpikeGAN to train an SNN to generate data

that follows a single population distribution. We now focus on the general continual

meta-training framework introduced in Chapter 4 that can be combined with

SpikeGAN adversarial training in order to enable the SpikeGAN to efficiently, and

sequentially, learn to generate data from a range of similar population distributions.

Specifically, we assume that a common hyperparameter θ can be identified,

representing a parameter initialization for the SNN that yields efficient learning when

applied separately for each task in a family of statistically similar tasks, F . The

hyperparameter initialization should improve the learning efficiency of the within-task

training in terms of the total updates necessary to obtain a useful within-task model.

This problem is approached with the aim of improving the across task generalization

capability of the hyperparameter as new tasks arrive in a streaming fashion, while

maintaining the ability to quickly recover the within task parameter learned for

previous tasks.

5.7.1 Meta-SpikeGAN

The continual meta-learning framework detailed in Section 4.3 is adapted to the

SpikeGAN architecture described in Section 5.5 – a system we will refer to as
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meta-SpikeGAN. The meta-SpikeGAN follows the timeline introduced in Section

4.3 with the stream of tasks over meta-time steps defined as t = 0, 1, ... and the

stream of within-task data over within-task time steps as i = 0, 1, ..., such that each

within-task time step is associated with a tuple (t, i). We introduce two meta-models,

a discriminator ANN DΘ, and a spiking generator Gθ, whose weights Θ and θ

respectively, define the hyperparameters θ(t,i) = {Θ(t,i), θ(t,i)} that will be updated

during the meta learning process. The two hyperparameter vectors must be learned

synchronously in order to maintain the balance between the discriminator and the

generator in the min-max process of adversarial learning described by Equation (5.1).

In particular, it is important that the discriminator learn to differentiate real and

synthetic data quickly, based on few examples from the new task, in order to provide

a meaningful learning signal to the spiking generator. While the derivation here

follows a frequentist framework, extensions to Bayesian solutions could be obtained

by following the approach detailed in the previous section.

In meta-SpikeGAN, the within-task iterative update function Update(θ,D)

refers to the adversarial training process described in Section 5.5 in which both models

are updated to learn within task parameters Φ and ϕ starting from initializations Θ

and θ respectively. At each within-task time-step (t, i), N +1 adversarial model pairs

are instantiated with initial weight given by θ(t,i). One pair is trained using data

from the current task T (t) to generate within task synthetic data, while the remaining

N adversarial network pairs are used to enable the meta-update. We note that the

notation T is overloaded here to represent the tasks in the meta-learning framework

(annotated by the task index t in the superscript) in addition to the SNN sample

length.

The meta-objective, following the classic MAML formulation, is to optimize the

min-max adversarial training objective over the hyperparameter initialization θ, given

the learned within-task parameters across multiple previously seen tasks. Specifically,
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the objective is defined as an average over N tasks with data sets D(n) stored in the

meta-data buffer as

min
θ

max
Θ

N∑
n=1

B∑
i=1

log
(
DΦ(n)(x

(n),i
≤T )

)
+

B∑
i=1

log
(
1−DΦ(n)(x̃

(n),i
≤T )

)
pϕ(n)(x̃

(n),i
≤T |y

(n),i
≤T ) (5.11)

where the real data is sampled from the data set D(n) and the synthetic data is

sampled from the generator Gϕ(n) trained via within-task adversarial training for that

task.

To implement the meta-update function Meta-Update
(
θ(t,i), {D(n)}Nn=1

)
, the

mentioned N adversarial network pairs are trained in parallel according to the

Update(θ, D) using N data-sets sampled from the meta-data buffer {D(n)}Nn=1 ∈ B(t).

Each of the data-sets includes M training examples from the real data that are a

subset of the data set of a previously seen task such that D(n) = {(xj≤T , y
j
≤T )}Mj=1.

Once the within task parameters for both networks (DΦ(n) and Gϕ(n)) for each of the

N tasks are learned, the hyperparameters Θ(t,i) and θ(t,i) are each updated individually

following the first-order REPTILE approximation for the gradient of Equation (5.11)

as

Θ(t,i+1) = Θ(t,i) − Φ(n) (5.12)

θ(t,i+1) = θ(t,i) − ϕ(n). (5.13)

5.8 Experimental Methods

In this section, we describe the experimental set-up we have adopted to evaluate the

performance of SpikeGAN, Bayes-SpikeGAN, and meta-SpikeGAN.

5.8.1 Data Sets, Encoding, and Decoding

We consider three different data sets: 1) handwritten digits [29]; 2) simulated spike-

domain handwritten digits; and 3) synthetic temporal data [133]. These data sets have

been selected to present a range of spatial and temporal correlations, posing different
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challenges to the training of a generative model. The handwritten digits data set

represents a population distribution with exclusively spatial correlations, as there is

no temporal aspect to the real data. The simulated spike domain handwritten digits

data set incorporates some temporal correlations by using a spike code to convert the

handwritten digit data into the spike domain. Lastly, the synthetic temporal data

has a dimension of Nx = 1 and thus includes only strong temporal features and no

spatial correlations. The data sets are detailed in the next section.

For the first data set, the SNN outputs at the read-out layer are compressed to

match the domain of the real data, using rate decoding or time surface decoding [122].

Rate decoding computes the ratio
∑T

t=1 hr,i,t/T of the number of output spikes at any

read-out neuron i to example length T . Alternatively, time surface decoding [122]

convolves an exponentially decaying kernel over the time dimension of the read-out

spike sequence, and outputs the last sample of the convolution. For the second data

set, the real data is rate-encoded as a T -length time sequence by sampling from a

Bernoulli process with probability p corresponding to the pixel value [40]. For the

third data set, there are exogenous inputs to the generator to encourage diverse

samples from the distribution, as we will discuss.

For the first data set, the discriminator is a 74 × 128 × 1 feedforward

ANN with ReLU activation functions. For the second and third data sets, the

discriminator includes several one-dimensional convolutional layers that filter over

the time dimension of the data to extract temporal features and learn a natural

embedding. The number of layers, as well as the attributes of each layer (number

of channels, kernel width, and stride length) are chosen to best match each data set

and are detailed in Section 5.9. The output of the temporal filter is flattened and

processed through a linear layer. The approach is adapted from [60].
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5.8.2 Benchmarks and Performance Metrics

In order to evaluate how well the output of the SNN generator approximates the

underlying population distribution for the data, the following measures are used.

1. Train on synthetic – Test on real (TSTR) [31]: A classifier is trained over data
sampled from the conditional SNN generator for all classes, and test accuracy
is evaluated on data sampled from a held-out test set of the real data set. The
resulting TSTR error measure provides insight into how well the attributes of
the data that are important to distinguish the different data classes have been
modeled by the distribution of the SNN outputs. It specifically captures how
fully the SNN samples represent the sample space of the true distribution: If
there are outlying portions of the sample space that are not well covered by the
sample distribution, the corresponding real data samples may be missclassified,
yielding a large TSTR error.

2. Train on real – Test on synthetic (TRTS) [31]: A classifier is trained over data
from the real data set, and test accuracy is evaluated on synthetic data sampled
from the conditional SNN generator for all classes. This measure highlights how
well the samples of the synthetic data distribution stay within the bounds of
the real data distribution – or how realistic the samples are.

3. Principal component analysis (PCA): Extract the principal components of the
real data set and compare the projection of a synthetic data set sampled from
the SNN generator into that space to the projection of the real data. Plotting
the principal component projections gives a visual representation of how well the
sample space of the synthetic distribution matches that of the true distribution
[31].

As a benchmark, we consider deep adversarial belief networks (DBNs) [49].

DBNs output a single binary sample and hence they can be used only when the data

is a vector as for the first data set. They serve as a useful baseline comparison to

the proposed SpikeGAN for the problem of generating real valued handwritten digit

images (first data set) in that, like the proposed SNN model, they also implement

probabilistic neurons with binary processing capabilities. However, importantly, they

lack the capacity to process information encoded over time.
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For temporal real data, i.e., for the second and third data sets, we consider

maximum likelihood (ML) learning for a spiking variational auto encoder as detailed

in [51] as a benchmark.

In order to evaluate the similarity between the generated temporal data and

the real temporal data of the third data set, we use the van Rossum metric [129].

This metric measures the dissimilarity between two spike trains by first filtering the

spike trains to convert them to continuous-valued time series, and then computing

the Euclidean distance between them. Following [47], we use the exponential kernel

exp(−(t− ts)/τR) for filtering, where ts is the time of a spike and the time constant

that sets the width of the filter τR is set to 12 ms.

5.9 Results and Discussion

In this section, we present our main results by discussing separately the three data

sets mentioned in the previous section. We first evaluate single-task performance, and

then provide examples also for the continual meta-learning setting. We will mostly

focus on the frequentist SpikeGAN approach detailed in Section 5.3, but we will also

elaborate on the potential advantages of Bayes-SpikeGAN in the context of the third

data set.

5.9.1 Handwritten Digits

For this first experiment, the UCI handwritten digits data set [29] is considered as

defining the real data distribution p(x|y) conditioned on the class label y for y ∈

{0, 1, ..., 9} as a one hot vector. We encode label y as a time sequence input y≤T for

the SNN using rate encoding. The SNN’s task is to learn a temporal distribution

pϕ(x≤T |y≤T ) such that the distribution of the synthetic samples x≤T , processed via

a fixed decoding scheme, approximates the samples drawn from the real distribution

p(x|y). As explained in the previous section, both standard rate decoding and time
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Figure 5.3 TSTR classification accuracy for synthetic data sampled from the SNN
generator during training on the handwritten digits dataset. The black line is the
ideal test accuracy for a classifier trained with real data. The blue lines are results
from SpikeGAN with outputs converted to images using rate (blue dashed) or time
surface (blue solid) decoding, while the red line represents the performance of the
DBN.

surface decoding are considered for the SNN output sequences x≤T . As an application

of the approach, after training, the synthetic data may be considered a temporal

representation of the true data and can be used as a neuromorphic data set.

The real data samples x are 8 × 8 grayscale images with values in the range

[0, 1]. The SNN generator includes 10 exogenous inputs y≤T , Hs = 100 supplementary

neurons, and Hr = 64 read-out neurons producing output x≤T ; and the SNN has a

fully connected topology. An exponential decay basis function exp(−τ/τf ), with

τ = 0, 1, ..., τw, filter length τw = 5, and decay rate parameter τf = 2, is adopted for

both the pre- and post-synaptic filters α and β under rate decoding; while a set of

two raised cosine basis functions [98] is used under time surface decoding.

The TSTR classification accuracy metric is first evaluated by using a 64×100×

100 × 10 non-spiking ANN classifier with ReLU activation functions that achieves a
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baseline of 96% test accuracy when trained on real data, and the results are shown

in Figure 5.3 as a function of the training iterations for the generator. SpikeGAN

approaches this ideal accuracy level, while far outperforming the DBN. In this regard,

it is noted that, while SpikeGAN can generate grayscale data when paired with a

decoder, the DBN can only generate binary data.

We have also considered the same experiment in a more challenging setting in

terms of image size and sample diversity. Here, the data set images are 10 × 10

handwritten digit images obtained from the MNIST data set. The architecture of

the SNN is updated to accommodate the larger image size by including Hr = 100

read-out neurons. All hyper-parameters are the same as in the last experiment and

images are decoded via rate-decoding. The TRTS classification accuracy metric is

evaluated by training the previously described ANN classifier over the real 10 × 10

MNIST images and testing its accuracy on the rate-decoded synthetic images. Our

experiments show that the classifier achieves an accuracy of 90.6% when tested on

the synthetic images, as compared to a baseline test accuracy of 98% when tested on

real images.

Next we compare the SpikeGAN and DBN GAN in terms of robustness to noise

on the UCI digits data set. The noisy data set is constructed by adding uniform

noise to a fraction of the pixels in each image selected at random. For the DBN, the

images are first binarized as in [49] in order to improve the performance, which was

otherwise found to be too low in this experiment. The extent to which the digits can

be distinguished from the noise in the resulting noisy synthetic images is evaluated

using the TRTS accuracy measure. A classifier with the same architecture as in the

previous experiment is trained on the uncorrupted real handwritten digit data set

and tested on the noisy synthetic data with a baseline comparison to the classifier

tested on noisy real data.
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Figure 5.4 (a) Handwritten digit classification accuracy for test data sampled from
a generator trained using a noisy real data set. The fraction of pixels per image
corrupted by additive uniform noise is increased on a log scale. Test data is sampled
from either SpikeGAN (blue), DBN GAN (red) or the noisy real data set (black) as
a baseline. (b) Synthetic data sampled from SpikeGAN with time surface decoding
(top) and DBN GAN (bottom) trained over real data disrupted by additive uniform
noise. The fraction of noisy pixels per image in the real data increases from left to
right as labeled. (c,d) PCA projections of SpikeGAN synthetic data (top) and DBN
GAN synthetic data (bottom) onto the real data principal components. The real data
projection is shown by the black dots in both figures.

As reported in Figure 5.4a, the SpikeGAN noisy synthetic data, using time

surface decoding, is classified more accurately than the DBN generated noisy synthetic

data and maintains an accuracy close to the baseline obtained by testing as the

fraction of noisy pixels is increased. This suggests that the capacity of the SNN to

generate grayscale images is instrumental in enabling the classifier to distinguish the

digits from the noise. This interpretation is corroborated by the samples of synthetic

images from SNNs and DBNs shown in Figure (5.4b). Even for the case of zero pixels

with added noise, the SpikeGAN synthetic data is seen to be more realistic than

the binary DBN synthetic data. A more quantitative support to this observation is

supported by the PCA projections in Figures 5.4d and 5.4c. The SpikeGAN projection
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Figure 5.5 (a) Rate-decoded outputs sampled from an ML-trained SNN [51] (top)
and SpikeGAN with a CNN discriminator (bottom). (b, c) PCA projections of a
large set of samples drawn from the SpikeGAN and from an ML-SNN, respectively
(black - real data)

follows the shape of the data projection, while the DBN projection has many points

outside of it.

5.9.2 Simulated Neuromorphic Handwritten Digits

In this second experiment, we move beyond the problem of generating time domain

embeddings of real valued data sets by considering the problem of generating synthetic

data that matches a spatio-temporal distribution. To simulate a spike domain data

set, the UCI handwritten digits data set is encoded via rate encoding to produce the

inputs x≤T . The label for each example y that is used as the conditional input, is

also encoded using rate encoding as y≤T before being processed by the discriminator.

The discriminator is defined as c128k4s2xc1k4s1x1 (c(number of channels)k(kernel

width)s(stride)) with leaky ReLU activation functions, while the SNN generator
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architecture is the same as in the previous experiment. The key difference between

this experiment and the previous is that here the output of the SNN generator is not

converted into a real vector before being fed to the discriminator, since the goal is to

reproduce the spatio-temporal distribution of the input spiking data set.

As a benchmark, DBN is not relevant since it cannot generate temporal data,

and an SNN trained vial ML as in [51] is used as a reference. Synthetic images are

shown by decoding the spiking generator output using the reverse of the encoding

scheme applied to the real data, here rate decoding, in Figure 5.5, in order to provide

a qualitative idea of how well the spatio-temporal distribution has been matched

for SpikeGAN and ML training. The PCA projections show that SpikeGAN can

represent the mulit-modal structure of the true data distribution more accurately

that ML, which is know to be support covering and inclusive [84, 68, 116].

To evaluate the quality of the synthetic data as a neuromorphic data set we now

train an SNN classifier using the ML approach in [51] based on the synthetic data,

and report the TSTR accuracy metric in Table 5.1. The SNN classifier processes

64 exogenous inputs which are the flattened input image, and includes 256 hidden

neurons and 10 visible neurons in a fully connected topology. The visible neurons

are clamped to the class labels y≤T that the synthetic data was conditioned on. The

table shows that the SpikeGAN that is trained with a CNN discriminator so that

the output directly reproduces a spiking data set enables a better classifier than the

SpikeGAN that is trained using a fixed decoder (whether a time surface decoder or

rate decoder) to match a real dataset. The ML-SNN does not generate images that

match the class label y≤T that the sample is conditioned on (see Figure 5.5) which

leads to a poor classifier. The CNN discriminator SpikeGAN approaches the baseline

performance reported for the SNN classifier trained over rate encoded real data.

As a more challenging data set in this setting, inspired by [123], we consider

the Double UCI digits data set, in which the classes are defined by the indices of
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Table 5.1 TSTR Accuracy of SNN Classifier Trained via ML for Simulated
Neuromorphic Handwritten Digits

Training Data Real Data Test Accuracy
Rate encoded real data 0.85
SpikeGAN (CNN discriminator) 0.82
SpikeGAN time surface decode 0.8
SpikeGAN rate decode 0.8
ML-SNN 0.12

two digits, and each sample image is a concatenation of two single UCI digit images

which creates an 8 × 16 image. The class label for each example includes two one

hot vectors, one for each digit. The class labels are rate encoded to be used as the

conditional input to the generator. The discriminator and generator architectures are

both updated to accommodate the larger data size with shape c128k4s2c128k4s1x1

and 20x100x128 respectively. The quality of the synthetic data is evaluated using

an SNN classifier similar to the one described above, with the only differences being

the number of inputs (now 128) and the number of visible neurons (now 20). The

same class label encoding strategy is applied to clamp the visible neurons of the

SNN classifier to the class labels during training. Our results show that the SNN

classifier achieves 80% accuracy when trained using the synthetic data, as compared

to a baseline of 87% accuracy when trained on the rate encoded real data.

5.9.3 Synthetic Temporal Data

For the last SpikeGAN experiment, a synthetic temporal data set is constructed

by taking inspiration from biological neuronal behavior [133]. The goal is to assess

whether adversarial unsupervised training can reproduce some of the diversity shown

by neuronal activity in the brain. We specifically consider two biologically inspired

neural spike modes, namely tonic spiking and burst spiking. In a manner similar

to [133], we define burst spiking as periods of five consecutive spikes followed by a
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Figure 5.6 (a) ‘Real’ examples of the two modes found in the synthetic temporal
data set (b) Time sequence samples drawn from the Bayes-SpikeGAN (right) after
training is completed. (c) Time sequence samples drawn from the ML-SNN (left)
and SpikeGAN (right). Samples are taken after the model has been trained for the
number of iterations indicated by the label on the left.

non-spiking period of 15 time steps while tonic spiking includes two consecutive spikes

with a 10 time step non-spiking period as displayed in Figure 5.6a.

As shown in [133], a single neuron with tailored synaptic filters is sufficient to

approximate either one of these modes well. Both the synaptic filter and spiking

threshold (bias) of the neuron need to be carefully optimized to maintain this

behavior. We generate a data set of 10,000 burst and tonic spiking sequences of

length T = 50. We compare the performance of the SpikeGAN, and Bayes-SpikeGAN

with an SNN trained via ML as the baseline. Specifically, we train the ML-based

SNN and the SpikeGAN each with a single neuron with T = 50 and synaptic filter

memory τw = 30 that is stimulated by an exogenous step function input, as well as

Bayes-SpikeGAN with J = 5 of the single neuron SNN generators to approximate

the posterior distribution over ϕ. For the Bayes-SpikeGAN we make the choice of an

improper constant prior for p(ϕ) in the SVGD update rule (Equation 5.10).
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Figure 5.7 Distribution of van Rossum distances between 100 generated samples
and a real temporal data sample. The column labels “Burst” and “Tonic” denote
which mode of temporal data the generated data is compared to. For each plot, the
generated samples were drawn from the model labeled on the left hand side. The
Bayesian SpikeGAN includes a set of models to sample from, which have learned to
generate different modes of the data. The models generating data most similar to
the tonic mode have been sampled separately from the models generating data most
similar to the burst mode, as indicated by the labels “tonic samples” and “burst
samples”.

As seen in Figure 5.6c, the ML-trained SNN generates outputs that are a blend

of the two modes while the SpikeGAN oscillates between them as training proceeds.

In contrast, as seen in Figure 5.6b, Bayes-SpikeGAN is able to learn a set of generators

whose combined outputs cover both modes simultaneously.

The mode of the samples generated by each generator in the Bayesian-

SpikeGAN can be visually identified as either “burst” or “tonic”, and thus an example

of a chosen mode can be sampled by choosing the correct generator model from

the set of learned models. The generators are sampled from in this way, and the

van Rossum distance between the generated samples and the real temporal data is
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evaluated for each mode individually. Specifically, the following four distances are

evaluated: 1) tonic generated data vs. burst real data; 2) tonic generated data vs.

tonic real data; 3) burst generated data vs. burst real data; 4) burst generated data vs.

tonic real data. The distance should be small between like modes, and large between

different modes. The histogram plots in the top two rows of Figure 5.7 show that the

distance is small when the mode of the samples generated by the SpikeGAN matches

the mode of the real data (top right and middle left); and the large in the opposite

case. In contrast, with conventional ML training of the SNN [51] the distribution of

the distance between the generated samples and real data from either mode is seen

to be wide, with no distinct spikes to indicate a strong similarity or dissimilarity for

any samples. This supports the hypothesis that, unlike SpikeGAN, ML has learned

to generate samples that are a mean of the two modes.

5.9.4 Continual Meta-Learning

We now evaluate the ability of meta-SpikeGAN to continually improve its efficiency in

generating useful time domain embeddings by focusing on the real-valued handwritten

digits data set studied in Section 5.9.1. The real data set that defines each task T (t)

is chosen as the subset of the UCI handwritten digits data set obtained by selecting

the combination of two digits from among digits 0-6, along with a randomly sampled

rotation of 90◦ applied to each digit. Digits 7-9 are reserved for testing. The class

labels y ∈ {0, 1} are applied to the pair of rotated digits in each new task. As in

the previous handwritten digits experiment, the SNN generator is conditioned on the

class label as a one hot vector encoded as time sequence y≤T using rate encoding with

T = 5. The output of the SNN generator x≤T is decoded back to a natural signal

using rate decoding before being fed to the discriminator.

The SNN generator includes two exogenous inputs y≤T , Hs = 100 supple-

mentary neurons and Hr = 64 read-out neurons producing output x≤T and has a
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Figure 5.8 Within task TRTS classification accuracy for hybrid adversarial network
pair using the hyperparameter initialization learned over epochs of continual meta
training (t). Lines are labeled with the number of within-task adversarial training
iterations (i), and show the average over three tasks drawn from a held out set of
digits (shading shows half standard deviation spread).

fully connected topology. The same exponential decay synaptic filters are used as

described in Section 5.9.1. We implement the Meta-Update(θ(t,i), {D(n)}Nn=1) function

with N = 10 within-task data sets ofM = 5 examples each and 10 within-task update

steps.

The performance of SpikeGAN under the meta-SpikeGAN initialization θ(t,i) =

(Θ(t,i), θ(t,i)) is evaluated by looking at the TRTS accuracy for synthetic data

generated at intervals throughout within-task training. If training efficiency has

been improved by the meta-SpikeGAN initialization, the TRTS accuracy will be

higher after fewer within-task training updates i. The continual improvement

of the meta-SpikeGAN hyperparameter initialization is measured by applying the

initialization to a SpikeGAN model after every 50 meta-training time-steps t and by

evaluating the TRTS accuracy throughout within-task training on a new task.

We choose a new task as the combination of two digits from the set of held-out

digits (digits 7-9) of the UCI handwritten digits data set and train the SpikeGAN
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over mini-batches of B = 100 training examples. As shown in Figure 5.8, the TRTS

accuracy improves significantly as the meta-SpikeGAN hyperparameter initialization

is learned, with the accuracy after i = 1000 within-task updates increasing by 30%

over a randomly initialized SpikeGAN (t = 0 meta training time-steps) as meta

training progresses.

5.10 Conclusion

This chapter has introduced adversarial training methods for a novel hybrid SNN-

ANN GAN architecture, termed SpikeGAN. The proposed approaches solve the

problem of learning how to emulate a spatio-temporal distribution, while allowing

for a flexible, distribution-based, definition of the target outputs that fully leverages

the temporal encoding nature of spiking signals. Both frequentist and Bayesian

formulations of the learning problem were considered, along with a generalization

to continual meta-learning. The proposed SpikeGAN approach has been evaluated

on a range of spatio-temporal data sets, and has been shown to outperform

current baselines (DBN GANs and SNNs based on ML training) in all settings.

Bayes-SpikeGAN is proven to be an important extension to the frequentist learning

solution in the problem of emulating multi-modal data with large variations in specific

temporal patterns, such as for biologically inspired spiking sequences.

The introduction of the SpikeGAN approach gives rise to many avenues of

further research, including its application to alternative data sets, as well as changes

to the architecture and development of additional learning rules. For instance, the

proposed SpikeGAN may be used to generate colored data sets by the addition of

channels to the generator SNN. Other interesting applications are the prediction and

reconstruction of time series data such as biological spiking data, stock exchange

data or audio signals. Time series processing is an area that has been explored in

the context of ANN-based GAN models as reviewed in [16]. The proposed Meta-

81



SpikeGAN learning rule may be extended to include Bayesian Meta-learning, for

example by leveraging the approach introduced in [136]. The architecture may be

adapted to include an SNN as the discriminator to yield a fully-spiking model that

would support the development of an online learning rule.

82



CHAPTER 6

CONCLUSION AND FUTURE OUTLOOK

In this dissertation we have developed a suite of machine learning algorithms for

spiking neural networks (SNNs) based on principles of probabilistic learning that

covers several machine learning frameworks. In all cases, local three-factor learning

rules have been derived to support on-chip implementation in neuromorphic hardware.

These probabilistic learning rules are enabled by the consideration of stochastic SNNs

based on a generalized linear model neuron that implements a stochastic spiking

process rather than a standard deterministic spiking process.

We have developed a policy gradient reinforcement learning algorithm in which

an SNN models the policy distribution of an agent. The actions taken by the

agent are stochastically sampled directly from the policy using the first-to-spike

decision rule. We have demonstrated that the first-to-spike policy gradient algorithm

converges more quickly than an equivalently sized ANN. We have also shown the

power efficiency of the stochastic SNN policy in terms of spike frequency to be 10×

better than a baseline deterministic SNN policy with model weights set by conversion

from an ANN. While this algorithm is on-policy and model free, it is episodic,

which would require the intermediate local gradients and rewards to be cached in

an on-chip implementation. An adaptation to accommodate online or intermittent

online updates could be explored by reward function tuning.

Meta-learning has been explored as a method by which to improve the

adaptability and learning efficiency of SNN models for personalized applications

where learning on the edge is imperative. We have developed a first order online-

within-online meta-learning algorithm and shown its ability to train a hyperparameter

initialization for an SNN that improves the speed of model adaptation in terms
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of number of samples need to achieve good accuracy on new tasks. We have

demonstrated the applicability of this algorithm to neuromorphic data with infor-

mation encoded in the spike timing. Our results have shown that the meta-learned

hyperparameter initialization allows an SNN to achieve 80% accuracy for 5-shot,

2-way classification of the neuromorphic MNIST-DVS data set, representing a 20%

increase over the accuracy achieved in the same task when the SNN is trained from

a random initialization. The consideration of meta-learning based on second order

derivatives is likely to further improve this performance.

The common practice of defining exact target sequences for SNNs may limit

representations of information in the spike timing, a key characteristic of biological

signals that is tied to low power, event based processing [128]. We have developed

a hybrid ANN-SNN adversarial learning framework in which learning is guided by a

measure of the divergence between the distribution of the spiking outputs and that of

the target data. In our simulations we demonstrate that a generative SNN trained by

this method can be used to augment a neuromorphic data set by generating naturally

time encoded data. We have extended this to a Bayesian framework that learns a

particle based approximation of the posterior distribution over the model parameters

that is shown to capture temporally diverse modes of the data as evaluated by the van

Rossum distance between spike sequences. We have also demonstrated the successful

application of online meta-learning to adversarial SNN learning.

The natural extension of this work lies in emulation and implementation of the

algorithms that we have developed in neuromorphic hardware. The literature shows

that many small adjustments and sometimes larger approximations must be made

to bridge the gap between simulation and reality [124, 64, 100]. It is also important

to investigate the benefits and challenges associated with expanding the size of the

models considered and the potential methods by which to do so successfully whether

through alternative variational learning methods such as the reparameterization trick
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(see, e.g., [116]) or by other methods. Furthermore, to truly capture the benefits

of the naturally recurrent and event based processing of SNNs, their application to

time-series problems (for example, prediction of sequences and reconstruction of noisy

time based signals in the context of adversarial learning) should be explored.
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