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ABSTRACT

OUTDOOR OPERATIONS OF MULTIPLE QUADROTORS IN
WINDY ENVIRONMENT

by
Deepan Lobo

Coordinated multiple small unmanned aerial vehicles (sUAVs) offer several advantages

over a single sUAV platform. These advantages include improved task efficiency,

reduced task completion time, improved fault tolerance, and higher task flexibility.

However, their deployment in an outdoor environment is challenging due to the

presence of wind gusts. The coordinated motion of a multi-sUAV system in the

presence of wind disturbances is a challenging problem when considering collision

avoidance (safety), scalability, and communication connectivity. Performing wind-

agnostic motion planning for sUAVs may produce a sizeable cross-track error if the

wind on the planned route leads to actuator saturation. In a multi-sUAV system,

each sUAV has to locally counter the wind disturbance while maintaining the safety

of the system. Such continuous manipulation of the control effort for multiple sUAVs

under uncertain environmental conditions is computationally taxing and can lead to

reduced efficiency and safety concerns. Additionally, modern day sUAV systems are

susceptible to cyberattacks due to their use of commercial wireless communication

infrastructure.

This dissertation aims to address these multi-faceted challenges related to the

operation of outdoor rotor-based multi-sUAV systems. A comprehensive review of

four representative techniques to measure and estimate wind speed and direction

using rotor-based sUAVs is discussed. After developing a clear understanding of

the role wind gusts play in quadrotor motion, two decentralized motion planners

for a multi-quadrotor system are implemented and experimentally evaluated in the

presence of wind disturbances. The first planner is rooted in the reinforcement



learning (RL) technique of state-action-reward-state-action (SARSA) to provide

generalized path plans in the presence of wind disturbances. While this planner

provides feasible trajectories for the quadrotors, it does not provide guarantees

of collision avoidance. The second planner implements a receding horizon (RH)

mixed-integer nonlinear programming (MINLP) model that is integrated with control

barrier functions (CBFs) to guarantee collision-free transit of the multiple quadrotors

in the presence of wind disturbances. Finally, a novel communication protocol using

Ethereum blockchain-based smart contracts is presented to address the challenge of

secure wireless communication.

The U.S. sUAV market is expected to be worth $92 Billion by 2030. The

Association for Unmanned Vehicle Systems International (AUVSI) noted in its

seminal economic report that UAVs would be responsible for creating 100,000 jobs by

2025 in the U.S. The rapid proliferation of drone technology in various applications

has led to an increasing need for professionals skilled in sUAV piloting, designing,

fabricating, repairing, and programming. Engineering educators have recognized this

demand for certified sUAV professionals.

This dissertation aims to address this growing sUAV-market need by evaluating

two active learning-based instructional approaches designed for undergraduate sUAV

education. The two approaches leverages the interactive-constructive-active-passive

(ICAP) framework of engagement and explores the use of Competition based Learning

(CBL) and Project based Learning (PBL). The CBL approach is implemented

through a drone building and piloting competition that featured 97 students

from undergraduate and graduate programs at NJIT. The competition focused on

1) drone assembly, testing, and validation using commercial off-the-shelf (COTS)

parts, 2) simulation of drone flight missions, and 3) manual and semi-autonomous

drone piloting were implemented. The effective student learning experience from

this competition served as the basis of a new undergraduate course on drone science



fundamentals at NJIT. This undergraduate course focused on the three foundational

pillars of drone careers: 1) drone programming using Python, 2) designing and

fabricating drones using Computer-Aided Design (CAD) and rapid prototyping,

and 3) the US Federal Aviation Administration (FAA) Part 107 Commercial small

Unmanned Aerial Vehicles (sUAVs) pilot test. Multiple assessment methods are

applied to examine the students’ gains in sUAV skills and knowledge and student

attitudes towards an active learning-based approach for sUAV education. The use

of active learning techniques to address these challenges lead to meaningful student

engagement and positive gains in the learning outcomes as indicated by quantitative

and qualitative assessments.
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CHAPTER 1

INTRODUCTION

Small unmanned aerial vehicles (sUAVs) are a growing class of vehicles that

can perform complex tasks, especially in hard-to-reach areas. Rotor-based small

unmanned aerial vehicles (sUAV) or drones have witnessed widespread adoption

across agriculture, search and rescue operations, surveying, reconnaissance, and

photography [6, 61, 246, 276, 280, 305]. There is a distinct advantage of using a

multi-sUAV system over a single sUAV platform as they provide increased capabilities

for tasks such as surveying, search-and-rescue operations, and mapping [48,232,308].

However multi-sUAV systems are not straightforward to deploy autonomously.

Several challenges exist to successfully deploy a multi-sUAV system in an

outdoor environment. We have identified five critical challenges which include:

1. Wind: The small size and weight of sUAVs makes them sensitive to wind
disturbances.

2. Motion planning: is computationally intensive as the number of sUAVs increases
and requires high control effort in presence of wind disturbances.

3. Safety and collision avoidance: sUAVs are susceptible to collisions among each
other and surrounding infrastructure due to wind disturbances.

4. Communications: The wireless links between sUAVs can be exploited to disrupt
their operation.

5. Education: that addresses sUAV programming, designing, and Federal Aviation
Administration (FAA) legalities is yet to catch up with the explosive growth of
the US sUAV market.

This dissertation implements and evaluates effective approaches to address each

of these key challenges. The main contributions of this dissertation are articulated in

the following.
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1.1 Contributions

1. A comprehensive first in literature, review of wind measurement and simulation
techniques for multi-rotor sUAVs.

2. Implementation and experimental evaluation of a novel decentralized multi-
quadrotor flocking motion planning in the presence of wind gusts using
reinforcement learning (RL).

3. First-in-literature implementation and experimental evaluation of a decen-
tralized Mixed Integer Nonlinear Programming (MINLP) based motion planner
for outdoor multi-quadrotors using safety barrier certificates.

4. Implementation and experimental validation for an Ethereum blockchain based
multi-quadrotor communication system for secure wireless data transfer

5. Implementation and multi-methods evaluation of a Competition-based learning
(CBL) learning instructional approach for teaching design and fabrication of
sUAVs, flight simulations, and commercial drone piloting.

6. Classroom implementation and multi-methods assessment of an active learning-
based instructional approaches for teaching sUAV programming, design and
fabrication of sUAVs, and commercial sUAV pilot credentialing.

1.2 Organization

The remainder of the dissertation is organized as follows:

• In Chapter 2, we present a comprehensive review of techniques for measuring
wind speed and airspeed for multi-rotor sUAVs. Three categories of sensing
techniques are reviewed: flow sensors, anemometers, and tilt-angle based
approaches. We also review techniques for generating wind disturbances in
simulation. Wind simulation techniques that use power spectral density (PSD)
functions, computational fluid dynamics (CFD), and probabilistic models are
examined. Finally, we provide an open-source Python implementation of
the Dryden wind turbulence model and embedded code to interface with an
ultrasonic anemometer.

• In Chapter 3, we present a decentralized, multi-objective reinforcement
learning (RL) path planner that achieves waypoint based flocking with quadrotors
in the presence of wind gusts (i.e., collision avoidance, velocity alignment, and
cohesion). This planner is learned using an object-focused, greatest mass,
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state-action-reward-state-action (OF-GM-SARSA) approach. It is trained using
a combination of point-mass kinematic models and simulators of quadrotor rigid
body dynamics. The Dryden wind gust model is used to simulate wind gusts.
The learned planner is then integrated with the DJI N1 flight controller stack
of the DJI M100 quadrotor platform. Experimental results are provided in the
form of hardware-in-the-loop (HWIL) tests as well as real-time, outdoor flight
testing.

• In Chapter 4, we address the problem of collision-free, fast, decentralized
motion planning for small multi-rotor unmanned aerial vehicles operating in
a windy environment using receding mixed-integer nonlinear programming
(RH-MINLP). Each quadrotor solves an RH-MINLP to generate its time
optimal speed profile along a minimum snap spline path while satisfying
constraints on kinematics, dynamics, communication connectivity, and collision
avoidance. RH-MINLPs are solved using a novel framework that combines
simulated annealing and interior-point methods to handle discrete variables
and nonlinear problem components. The Dryden wind gust model is used to
simulate realistic wind disturbances. Control Barrier Functions (CBFs) are
used for guaranteeing collision avoidance in the face of wind disturbances while
alleviating the need to constantly recalculate the motion plans. The framework
is validated via Hardware-in-theloop (HITL) experiments using up to 6 DJI
M100 quadrotors.

• In Chapter 5, we provide experimental validation of an Ethereum blockchain-
based software and hardware architecture that enables secure communication
for multiple small Unmanned Aerial Vehicles (sUAVs). The experiments
involved 3 DJI M100 quadrotors that shared images captured during flight based
on smart contracts created using Ethereum’s Turing complete programming
language. The effect of image size, difficulty level, and consensus algorithms
on image transfer times during flight are presented. The effects of wireless
network disruptions on the Ethereum network are also documented. The fully
documented smart contract code is open-sourced to assist readers in quick
prototyping.

• In Chapter 6, we present a competition-based active learning approach that
prepares undergraduate students for careers in the drone industry. Multiple
assessment methods were used to evaluate the students’ progress and the
perceived drone-related skills gained by the end of the workshops. Assessment
methods included data from direct formative (weekly or biweekly curricular
milestones), direct summative (drone piloting for multiple flight tests), indirect
quantitative (Likert-style feedback survey about student perceptions), and
indirect qualitative (descriptive feedback comments) tools.

• In Chapter 7, we present an active learning-based instructional approach that
prepares students for careers in the drone industry. The approach leverages the
ICAP framework and focuses on three foundational pillars of drone careers:
1) drone programming using Python, 2) designing and fabricating drones
using Computer-Aided Design (CAD) and rapid prototyping, and 3) the US
Federal Aviation Administration (FAA) Part 107 Commercial small Unmanned
Aerial Vehicles (sUAVs) pilot test. A case study approach using multiple
assessment methods was implemented to examine students’ gains in skills
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and knowledge and attitudes towards an active learning-based approach for
drone education. Assessment methods included direct formative (FAA quizzes
and programming assignments), direct summative (capstone project), indirect
quantitative (survey of learning gains), and indirect qualitative (focus group
interviews and capstone project process videos) tools.

• In Chapter 8, we summarize our findings and present future directions of this
research.
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CHAPTER 2

WIND MEASUREMENT AND SIMULATION TECHNIQUES IN
MULTI-ROTOR SMALL UNMANNED AERIAL VEHICLES

2.1 Introduction

Paper: P. Abichandani, D. Lobo, G. Ford, D. Bucci, & M. Kam (2020). “Wind

Measurement and Simulation Techniques in Multi-rotor Small Unmanned Aerial

Vehicles,” in IEEE Access, 8, 54910-54927, 2020

Unmanned Aerial Vehicles (UAVs) can be classified into two broad categories:

fixed-wing UAVs and multi-rotor UAVs. Over the past two decades, multi-rotor UAVs

have emerged as an aerial platform of choice in commercial, research, and defense

markets due to some distinct advantages over their fixed-wing counterparts. These

advantages include their ability to perform vertical take-off and landing (VTOL),

hover at a spot, and yaw at a zero-turn radius. Several market studies provide

insight into the 50B+ USD (and growing) global market size of UAVs. A majority

of modern applications use small multi-rotor aerial vehicles, also classified as small

unmanned aerial vehicles (sUAVs) [102, 126, 256, 284, 290]. This growth in market

adoption of multi-rotor sUAVs is primarily due to their affordable cost and strict

government regulations across most nations on the use of large UAVs for non-military

applications.

Multi-rotor sUAVs are used for several tasks such as agricultural yield monitoring,

land surveying, photography, air quality assessment, search and rescue operations,

formation control, target tracking, payload transportation, and military operations

[5, 20, 119, 218, 358]. Additional uses of these sUAVs are found in meteorological and

atmospheric studies [76, 90,255,321,379] and inflow mapping [214,270,376].

Despite significant growth in their adoption and relatively friendlier regulatory

environment, a key challenge in the use of multi-rotor sUAVs is their high sensitivity
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to wind disturbances. Multi-rotor sUAVs are known to be susceptible to degradation

of flight stability and performance due to wind gusts [18, 288, 351]. Estimating such

wind disturbances and using them to inform flight controls can improve safety and

overall flight-plan implementation [27,263,334,356]. As such, an increasing amount of

research is dedicated to the study and mitigation of wind effects on multi-rotor sUAVs.

Towards this end, this study presents a comprehensive review of wind measurement

and simulations for multi-rotor small UAVs.

2.1.1 The Wind Triangle Relationship

The wind triangle relationship (WTR) is a foundational topic in aviation that

encapsulates the relationship between an aircraft’s motion and wind velocity [27, 47,

65,178,190,201,241,287,295,324,327]. Specifically, the WTR is a vector relationship

between an aircraft’s ground velocity, air velocity, and wind velocity. By determining

two of the three velocity vectors, it is possible to estimate the third velocity vector.

Illustrated in Figure 2.1, a quadrotor sUAV, is heading towards its destination

in open airspace. During transit, this quadrotor experiences windy conditions and

Figure 2.1 Wind causes a drift leading to a difference in ground velocity and air
velocity.
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drifts off-course by an angle of α from its desired trajectory. The motion of the

quadrotor is described using three vector quantities in the Inertial Reference Frame

(IRF) E. These three vectors are:

a. Quadrotor ground velocity Euquad−ground. The velocity of the quadrotor in the
IRF. It is the horizontal velocity of the quadrotor relative to the ground. A
GPS module is used to obtain the magnitude and direction of Euquad−ground. In
aviation theory, the actual path on which a quadrotor travels over the ground
is called track. Ψquad−ground represents the actual track angle of the quadrotor
after it has drifted off course due to wind.

b. Quadrotor air velocity Euquad−air. The velocity of the quadrotor relative to
the surrounding air. It is described by true airspeed and true heading of the
aircraft Ψquad−air.

Euquad−air estimates are obtained via onboard sensor data or
flow sensors using techniques described in Section 2.2.

c. Wind velocity Euwind. The velocity of wind in the IRF. Euwind can be estimated
using a dedicated wind sensor as described in Section 2.2. Alternatively, once
Euquad−ground and Euquad−air estimates are available, Euwind is obtained as

Euwind =E uquad−ground −E uquad−air (2.1)

2.1.2 Wind Speed and Airspeed Estimation in Fixed-Wing sUAVs

A considerable amount of effort has been invested in studying wind and airspeed

estimation in fixed-wing sUAVs [46, 65, 190, 265, 288, 289]. In general, these studies

make use of measurements from flow sensors such as pitot tubes (discussed in Section

2.2.1) and the (non-linear) dynamic model of a fixed-wing sUAV to perform estimation

of wind speed and sUAV airspeed.

In [65], the authors proposed an extended Kalman filter (EKF) based method

using the WTR to estimate horizontal wind speed and direction simultaneously and

used a scaling factor for pitot tube measurements to determine airspeed. In [190], the

authors proposed a two-cascaded EKFs based architecture that fused measurements

from the GPS, IMU, and the aircraft dynamic model to provide estimates of airspeed,

angle of attack and sideslip angle without the need for a pitot tube pressure sensor.
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In [289], the authors proposed an attitude, heading, and wind estimation algorithm

that incorporated measurements from an air data system (ADS) to predict attitude

and airspeed of a fixed-wing UAV effectively. The body axis velocity components

were incorporated in the WTR to estimate horizontal and vertical components of the

wind velocity. The ADS was comprised of a pitot tube attached along the length

of the fixed-wing UAV to measure airspeed and wind vanes to measure the angle

of attack and sideslip angle. The estimation algorithm used ADS measurements

in the state equations of an unscented Kalman filter (UKF) to produce smooth

estimates of airspeed and attitude of the aircraft [367]. In a later work [288], the

same authors compared their proposed method with other state-space formulations

for wind estimation in fixed-wing sUAV, which used a Kalman filter algorithm.

The UKF-based method of [289] showed the best match in simulations with the

weather reference data collected experimentally. In [295], an optical flow sensor

was used to estimate the angle of attack and sideslip angle to estimate the correct

heading of the aircraft. In [42], a nonlinear wind observer provided estimates of

wind speed and airspeed. The wind observer combined the model of the fixed-wing

aircraft with measurements from a GPS, IMU, and a pitot tube. In [46], a nonlinear

state estimator was used, based on multiplicative Kalman filtering [216], to provide

real-time estimates of orientation, velocity, and position of the flying vehicle along

with 3D wind velocity components. In addition to the fixed-wing sensor suite, the

method also used measurements from an angle-of-attack and angle-of-sideslip sensors

attached to the aircraft.

2.1.3 Key Differences between Fixed-wing and Multi-rotors

A fixed-wing sUAV has a fixed heading with respect to its motion due to its

construction and a non-zero turning radius. The aircraft is always pointing in its

direction of motion. This orientation is beneficial for measuring airspeed using
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external sensors. Also, the physical frame of a fixed-wing sUAV allows for easy

mounting of sensors without significant rotor turbulence. These sensors are commonly

fixed in the nose or the wings of the aircraft.

For a multi-rotor sUAV, on the other hand, mounting an external airspeed

wind speed sensor is challenging due to a physical frame design that does not provide

enough mounting surface area. Secondly, airspeed and wind speed measurements are

significantly affected by interference from rotor turbulence and other aerodynamic

effects caused by rotors. Lastly, the sensor systems used to estimate airspeed and

wind speed need to account for the fact that a multi-rotor sUAV has a non-zero

turning radius and can rapidly move in any direction.

Section 2.2 discusses wind and airspeed measurement techniques. These

techniques are classified based on the wind sensors they use. Flow-sensing based

techniques are discussed in Section 2.2.1; ultrasonic anemometer-based sensing

techniques in Section 2.2.2; the tilt-angle based approach which relies on measurements

from the on-board IMU and requires flight testing the sUAV in a wind tunnel

is described in Section 2.2.3. For each of these techniques, we provide a list of

representative studies and detail the sensors used, primary applications, experimental

results, and description of the multi-rotor platforms. For the benefit of readers and

practitioners, open-source Arduino and Python code to interface with an FT-205

ultrasonic anemometer is provided.

Section 2.3 presents an exposition on the simulation models used to describe

wind turbulence. These include Dryden and von Karman turbulence models described

in Section 2.3.1, discrete gust models described in Section 2.3.2, and computational

fluid dynamics (CFD) models in Section 2.3.3. For the benefit of readers and

practitioners, open-source Python code to incorporate the Dryden wind turbulence

model in simulations is provided.
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2.2 Wind and Airspeed Measurement Techniques for Multi-Rotor sUAV

This section discusses the sensor hardware and associated estimation techniques

used to estimate airspeed, wind speed, and wind direction for a multi-rotor sUAV

platform. From existing literature, the measurement approaches used for wind speed

and airspeed can be categorized based on the hardware used, as depicted in Table

2.1. These categories are:

1. Measurements using flow sensor: The difference between static air pressure and
dynamic air pressure experienced by the sUAV is used to infer airspeed of the
sUAV.

2. Measurements using ultrasonic anemometer: The speed of ultrasonic pulses in
the air is used to infer wind speed and direction directly.

3. Measurements using IMU and global position sensor: used to measure accel-
eration and attitude measurements of the sUAV, which are then used to estimate
airspeed and wind speed of the sUAV.
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Table 2.1 Summary of Wind and Airspeed Measurement Techniques

Technique Estimation Principle Key Benefits Operating
Challenges

Flow Sensor Airspeed Pressure
difference

Light weight and
low cost

Measures only
wind speed.
Dependent on
direction of flow
of air. Sensor
placement is
non-trivial.

Ultrasonic
Anemometer

Wind speed Time of
flight theory

Light weight.
Can measure
wind speed and
direction.

Sensitive to
temperature and
air pressure.
Sensor placement
is non-trivial.

Ultrasonic
Anemometer

Wind speed Acoustic
resonance
principle

Light weight.
Can measure
wind speed
and direction.
Independent of
air pressure and
temperature.

Sensor placement
is non-trivial.
Requires
real-time
calibration.

Tilt-Angle
Method

Airspeed Experimental
relation
between
tilt-angle
and wind
speed

No extra
hardware
necessary.
Measure wind
speed and
direction

Requires wind
tunnel testing.
Not reliable for
low wind speeds.

2.2.1 Flow Sensors

Wind estimation using pressure flow sensors is a widely used approach in fixed-wing

sUAVs [178,287,289,295]. The most common type of flow sensors is pitot-static tubes.

These flow sensors are lightweight and relatively inexpensive. Pitot-static tubes are

mounted on the nose of the aircraft to provide estimates of airspeed Euquad−air. This

airspeed estimate can then be used to derive the components of wind velocity, using

the WTR. Figure 2.2 depicts various sUAV platforms fitted with flow sensors.
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Working Principle of Pitot Tubes: A pitot-static tube, also called Prandtl tube,

is used to measure the dynamic pressure Pd of a moving fluid (air) [166,239]. In Figure

2.3, a pitot-static tube consists of a probe that faces the direction of the oncoming

wind. The tube has an opening along its central axis that allows the oncoming wind

to pass through the main channel and into Chamber 1. The two openings on the

outer surface of the tube (outer tube openings) are connected to a set of channels

leading to Chamber 2. The channels leading to Chamber 2 (shown in blue) are kept

separate from the main channel. The incoming air is brought to rest in Chamber 1

since there is no outlet, and holds the total pressure of the fluid Pt.

Static pressure Ps refers to the pressure of the fluid surrounding the tube. The

openings connected to Chamber 2 are perpendicular to the direction of oncoming wind

flow. As such, Chamber 2 holds air at static pressure. A transducer element placed

between Chambers 1 and 2 measures the pressure difference between total pressure Pt

Figure 2.2 Top Left: Pitot tube attached to octorotor [27] Top Right: MHPP flow
sensor attached to a quadrotor [270] Bottom Right: Differential pressure sensors
attached to quadrotor [387] Bottom Left: Differential pressure sensors attached to
quadrotor [355].
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Figure 2.3 Working of a pitot tube.

and static pressure Ps. This pressure difference is the dynamic pressure of air, Pd. The

dynamic pressure Pd measured is then used to estimate the airspeed of the pitot tube

mounted on the aerial vehicle. This estimation is accomplished through Bernoulli’s

equation, which states that total pressure is the sum of dynamic pressure and static

pressure. Bernoulli’s principle also provides for the dynamic pressure experienced by

the pitot tube as one half the density of air (ρ) times the square of the tube’s speed

upitot.

Pt = Ps + Pd,

Pt = Ps + ρ
u2pitot

2︸ ︷︷ ︸
Pd

,

u2pitot = K
2(Pt − Ps)

ρ

(2.2)

Where K is a correction factor determined at the time of calibration of the tube

to account for measurement sensitivity to air temperature and pressure. Pitot sensors
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require calibration to account for their sensitivity to the atmospheric temperature,

atmospheric pressure, moisture in the air, flow angle, angle of attack, and angle of

sideslip. Procedures and data required for such calibration are described in [121,180]

and references therein. Several modern pitot tube sensors come fully calibrated and

temperature-compensated from the factory [313]. The relationship between upitot and

the airspeed of an sUAV is described in [65] as

Eu2quad−air =
|upitot|2

cosα cos β
(2.3)

Where α and β are angle-of-attack and angle-of-sideslip respectively of the aerial

vehicle. In the case of a fixed-wing sUAVs, the angle-of-attack and angle-of-sideslip

information are obtained by mounting dedicated sensors on the tail and nose of the

vehicle. By contrast, due to their multi-rotor aerodynamics and physical construction

geometry, multi-rotor sUAVs do not exhibit high angle-of-attack and angle-of-sideslip.

To account for this, the authors in [27] use a small angle approximation for angle-

of-attack and angle-of-sideslip (α ≈ 0 and β ≈ 0). This approximation leads to the

following relationship

Eu2quad−air =
Pt − Ps(

ρ cosα cos β
)
/(2K)

≡ Pt − Ps

sf
(2.4)

Where sf is a scaling factor, this scaling factor is experimentally determined at

the time of mounting the pitot tube to the multi-rotor sUAV [27].

Pitot tubes for Multi-Rotor sUAVs: Airspeed measurements using a pitot tube

are for the direction in which the tube is pointing. Multi-directional airspeed detection

in the case of multi-rotor sUAVs, accounting for multiple movement directions, would
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Table 2.2 Representative Studies on Wind and Airspeed Estimation using Pressure
Flow Sensors in Multi-rotor sUAVs

# Author Application Flow Sensor
Type

Multi-rotor
Platform

1 B. Arain
and F.
Kendoul
[27]

Improve flight
performance

Pitot tube
and pressure
sensor

Helix8
octarotor

2 Nguyen
Khoi
Tran [355]

Improve flight
performance

Sensirion
differential
pressure
sensors

AsTec Pelican
quadrotor

3 Marino et
al. [270]

Wind sensing
platform
in urban
environment

MHPP flow
sensor

Custom
quadrotor

4 Sydney et
al. [387]

Improve flight
performance

Honeywell
differential
pressure
sensor

DJI Phantom
quadrotor

require the use of several pitot tubes, thereby increasing the weight and complexity

of the vehicle. Additionally, compared to fixed-wing sUAVs, the use of flow sensors in

multi-rotor vehicles is limited by interference from the rotors (rotor wash) [27, 270].

An approach to address this interference is to find experimentally, or by dynamic flow

modeling, the location of minimum rotor interference on the body of a multi-rotor

vehicle.

Table 2.2 summarizes representative studies on wind and airspeed measuring

techniques using pressure flow sensors mounted on multi-rotor sUAV. The table lists

the sensor type and the sUAV platform used in the studies. The studies use a flow

sensor to improve flight performance or to enable the multi-rotor sUAV as a wind

sensing platform.

Remarks on Air Flow Sensors: Pressure flow sensors are the most common

devices used to measure airspeed of large aircraft or small fixed-wing sUAVs. These

sensors are lightweight and relatively inexpensive devices compared to other airspeed

sensors (such as anemometers). As multi-rotor sUAVs are being increasingly used for
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a wide variety of applications, pressure flow sensors serve as an inexpensive option to

measure airspeed of a multi-rotor sUAV.

On the other hand, the working of a pressure flow sensor is dependent on the

flow of oncoming wind into the opening of its channel. This can be a problem in

the case of multi-rotor sUAVs since the rotors can disturb the oncoming airflow and

result in inaccurate airspeed measurements. It is thus crucial to select a suitable

location on the multi-rotor sUAV that receives minimum interference from the rotors.

Another limitation of pressure flow sensors is that they cannot measure wind direction

simultaneously with wind speed. Heading and attitude measurements of the multi-

rotor vehicle need to be considered to estimate wind direction. Pressure flow sensors

measure airspeed by measuring the pressure difference through their tube. A multi-

rotor sUAV due to its 6-degree of freedom would require the use of multiple pressure

sensors to measure wind speed in all directions. This adds complexity to the mounting

of these sensors and limits the payload carrying capacity of a multi-rotor sUAV.

2.2.2 Ultrasonic Anemometers

An ultrasonic anemometer is a small, lightweight sensor that can provide estimates on

wind speed and direction. The durability and longevity of the ultrasonic anemometer

offered by the lack of any moving parts make it a popular sensor choice to be used with

multi-rotor vehicles, especially in meteorological applications [90,255,321]. Figure 2.4

depicts various sUAVs fitted with ultrasonic anemometers.

Working Principle: An ultrasonic anemometer measures wind speed using the

time period taken by an ultrasonic pulse to travel from a transmitter to a receiver.

The workings of this sensor are based on the time of flight principle (TOF) [142,215],

wherein the system emits an ultrasonic pulse using a transmitter or emitter, and is

able to measure the distance to a solid object (also referred to as the reflector) based
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Figure 2.4 Top Left: Tri-Sonica ultrasonic anemometer attached to quadrotor [90].
Top Right: FT702 ultrasonic anemometer attached to hexarotor [321]. Bottom Left:
DS-2 ultrasonic anemometer attached to hexarotor [255]. Bottom Right: FT205
ultrasonic anemometer attached to octorotor [9].

on the time taken for the pulse to echo back to the emitter. The ultrasonic wavefield

is affected by the fluid field.

An ultrasonic anemometer features multiple pairs of ultrasonic transducers

located at a known distance L. In Figure 2.5, each transducer has a Transmitter

Figure 2.5 Working of an ultrasonic anemometer.
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(Tx) and a Receiver (Rx) component. The ultrasonic anemometer first sends an

ultrasonic pulse from the Tx of Transducer 1 to the Rx of Transducer 2. The time

between the transmission from Tx-Transducer 1 to Rx-Transducer 2 is measured.

Next, a second pulse is transmitted from Tx-Transducer 2 to Rx-Transducer 1, and

the time between this transmission and reception is measured.

In the absence of wind, these two time periods would be the same for the path

from Tx-Transducer 1 to Rx-Transducer 2, and Tx-Transducer 2 to Rx-Transducer

1. However, in the presence of wind, these two-time measurements are different, and

the pulse traveling opposite to the direction of the wind will take longer to reach the

Rx component [142]. This time difference is then used to estimate wind speed and

direction.

Acoustic Resonance Anemometer (AcuRes): Another type of ultrasonic

anemometer uses acoustic resonance to measure wind speed and direction independent

of variations in air temperature and pressure. Acoustic resonance occurs when the

frequency of a wave produced by a transducer matches the natural frequency of an

acoustic cavity, resulting in a wave with increased amplitude. This technology was

patented by Kapartis in 1999 [155].

Figure 2.6 Left Image: Alignment of transducers on the upper reflector for an
acoustic resonance ultrasonic anemometer. Right Image: Side view of the FT205
acoustic resonance ultrasonic anemometer.
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Figure 2.6 depicts an acoustic resonance anemometer. The sensor consists of

upper and lower reflector plates that house the ultrasonic transducer pairs. The

gap between reflector plates is called the region of resonance. Figure 2.6 also shows

the position of the transducers labeled here as A, B, and C mounted on the upper

reflector.

Transducer A generates an acoustical standing wave at an eigenfrequency of the

cavity to excite an acoustic resonance. Transducer B senses the transmitted acoustical

signal. The phase difference between the transmitted and received acoustical signals is

proportional to the velocity of the airflow along the line adjoining the two transducers

A and B. The triangular orientation of the transducers enables the resolution of the

wind vector components along the lines adjoining the transducer pairs A - B and

B - C. The linear relationship between phase and wind speed is independent of the

ambient air pressure and temperature as it is accounted for at the time of calibration.

In addition, operating at resonance improves the signal to noise ratio [333].
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Table 2.3 Representative Studies on Wind Speed and Direction Measurements
using Ultrasonic Anemometers mounted on Multi-Rotor sUAVs

# Author Working
Principle

Application Wind
Sensor

Experiment
Results

Multi-rotor
Platform

1 Palomaki
[255]

TOF Atmospheric
and meteo-
rological
study

DS-2 2D
ultrasonic
anemometer

RMSE
0.27ms−1 -
0.67ms−1

and 25◦ -
56◦ under
wind speed
conditions
1ms−1 −
5ms−1

DJI Flame
Wheel F550
hexarotor
with
Pixhawk

2 Donnel
[90]

TOF Atmospheric
and meteo-
rological
study

Tri-Sonica
Mini 2D
ultrasonic
anemometer

RMSE
1.13ms−1

and 133.36◦

(uncor-
rected)
under
wind speed
conditions
6.75ms−1

3DR Solo
Quadrotor

3 Shimura
[321]

AcuRes Atmospheric
and meteo-
rological
study

FT702 2D
ultrasonic
anmeometer

0.6ms−1

and 12◦

under wind
speed up to
11ms−1

Hexarotor
SPIDER
CS6

4 Adkins
[9]

AcuRes Atmospheric
and meteo-
rological
study

FT205EV
ultrasonic
anemometer

- DJI S1000
octorotor

Ultrasonic Anemometer for Multi-Rotor sUAVs: Table 2.3 summarizes

representative studies on wind measurement using ultrasonic anemometers mounted

on a multi-rotor sUAV [9,90,255,321]. All these studies used the sUAV for atmospheric

and meteorological measurements. The mobility options offered by multi-rotor sUAV

make them a suitable platform for collecting wind measurements and measuring the

vertical profile of wind [321]. The accuracy of ultrasonic anemometer measurements

in these studies was cross-checked in outdoor flight tests by piloting the sUAVs near

a benchmarking wind measuring device attached to a ground-based tower. Wind
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measurements collected from the sUAV were compared with the measurements from

the ground tower, and root means square error (RMSE) values were calculated. The

RMSE calculations documented in these studies are applicable in situations where

the multi-rotor sUAV is hovering at the same height as the wind measuring device

on the ground-based tower. Differences in the altitudes between a multi-rotor sUAV

and the reference wind measuring device should be accounted for in other situations.

The RMSE values of wind speed and direction are shown in Table 2.3.

A common approach to mounting the ultrasonic wind sensor is using a pipe

mount atop the multi-rotor vehicle along the center of the rotor-body frame. In

[90], particle image velocimetry (PIV) measurements were performed to examine the

flow field around the multi-rotor frame to determine the ideal placement for the

wind sensors. The best placement of wind sensors was found to be along the body

centerline furthest away from the downwash of the rotors. The study, however, did not

consider inflow effects caused by the rotor, which can affect placement consideration.

In [90], the authors equipped a 3DR solo quadrotor with the Tri-Sonica Mini ultrasonic

anemometer at the height of 25 cm above the rotor plane. The Tri-Sonica Mini

ultrasonic anemometer weighs less than 50 grams a length of 5.2 cm [26]. In [321],

a 2D ultrasonic anemometer FT702 from FT Technologies [348] was attached to a

SPIDER CS6 hexarotor. The ultrasonic anemometer is 16.1 cm long and weighs 350

grams. This sensor was placed at a height of 47.5 cm above the rotor plane using

an aluminum pole. Three-wire stays were used to support the wind sensor to reduce

vibrations. In [255], a 2D sonic anemometer, DS-2 from Decagon Devices [83], was

attached on top of a DJI Flame Wheel F550 hexarotor using a 30 cm pole mount.

The ultrasonic anemometer weighed 500 grams with a length of 7.5 cm.

Remarks on Ultrasonic Anemometers: Ultrasonic anemometers are mostly

used for wind surveying, wind profiling in urban environments, and surveying
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wind in topographically cluttered areas. These sensors, when mounted on a

multi-rotor sUAVs, provide a relatively inexpensive option compared to setting up

a meteorological observation tower. Their compact form factor makes them suitable

for physically mounting on a multi-rotor sUAV. In contrast to standard flow sensors,

an ultrasonic anemometer can estimate wind speed and direction simultaneously.

On the other hand, their weight and pole-mounting requirement limit the overall

payload carrying capacity of the sUAV. Ultrasonic transducer readings are sensitive

to precipitation, where raindrops may vary the speed of sound. As such, these sensors

should be constantly calibrated to reduce the errors caused by environmental factors

such as changing temperature, precipitation, and ambient pressure. As is seen in Fig

2.4, different studies have mounted these sensors in different manners, and there is

a need for a more rigorous understanding of optimal placements of these sensors to

account for wind disturbances due to rotors.

Open-source Code for Real-Time Ultrasonic Wind Sensor Data Acquisition:

For the benefit of the readers, open-source code to interface with an FT205 ultrasonic

sensor with an embedded computer using a universal asynchronous receiver and

transmit (UART) is provided in [78]. We conducted flight tests with this sensor

by mounting it on a DJI M100 quadrotor sUAV. As shown in Figure 2.7 the sensor

Figure 2.7 FT-205 wind sensor mounted on the DJI Matrice 100 sUAV to collect
wind data during flight test.
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was mounted on the quadrotor using 20 inches long 3D printed pole. The FT205 was

sampled at a frequency of 2 Hz. The test was conducted with the DJI M100 quadrotor

hovering in an open field for a duration of 5 minutes. Figure 2.8 is a windrose plot

of wind data from the FT-205 wind sensor. The plot depicts the frequency of winds

blowing from particular directions. The color bands correspond to the wind speed

ranges in meters per second. The direction of the longest spoke shows the wind

direction with the highest frequency.

2.2.3 IMU and GPS based Airspeed Estimation using Tilt-Angle Approach

An Inertial Measurement Unit (comprised of a 3-axis accelerometer, 3-axis gyroscope,

and magnetometer) and a GPS module are part of the standard configuration onboard

sensor suite of almost all sUAVs operating in outdoor environments. Several studies

Figure 2.8 Windrose plot for wind speed and direction data recorded from a
FT-205 wind sensor mounted on the DJI Matrice 100 sUAV.
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Figure 2.9 Relation between tilt angle and drag force.

have shown the use of this sensor suite (IMU and GPS) to estimate airspeed Euquad−air

of a quadrotor.

This section describes the tilt angle approach used to estimate Euquad−air using

IMU and GPS found onboard a quadrotor [241]. This approach is valid under steady-

state conditions, that is when the quadrotor is hovering.

In Figure 2.9, a quadrotor’s body frame of reference [Bex,
B ey,

B ez] is defined.

The axes of this reference frame are aligned with the inertial frame of reference (IRF)

[Eex,
E ey,

E ez] with the origin fixed at the center of gravity (CG) of the quadrotor.

The GPS provides sUAV ground speed measurements in IRF, and the IMU provides

body velocity components and attitude measurements in the body frame described

by unit vectors Bex,
B ey,

B ez.

Measuring Quadrotor AirSpeed from Quadrotor Tilt-Angle: When a

quadrotor is hovering at a position in space, it experiences a drag force due to wind,

which causes the quadrotor to tilt [54, 90, 241, 255]. This drag force and other forces

acting on a quadrotor during hovering are illustrated in Figure 2.9.
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The tilt angle λ shown in Figure 2.9 is a combination of roll(ϕ) and pitch(θ)

angles. The roll and pitch angles are measured from the vertical −Bez as shown Figure

2.10. The unit vector that represents the roll angle is by =
[
0 cos(ϕ) sin(ϕ)

]
T . The

unit vector that represents the pitch angle is bx =
[
cos(θ) 0 − sin(θ)

]
T . The tilt

angle λ is used to estimate the attitude of the quadrotor and estimate the magnitude

of quadrotor air speed (|Euquad−air|). The tilt angle λ is calculated as

λ = cos−1

(
−nbx−by · (by × bx)

|nbx−by | · |by × bx|

)
, (2.5)

where −nbx−by is the unit vector normal to the plane formed by bx − by as

illustrated in Figure 2.11. nbx−by = [0, 0, 1]T .

Under steady-state conditions (quadrotor hovering or vehicle operating under

slow varying wind fields), the attitude of the quadrotor will likely remain unchanged.

In turbulent environments or fast-moving translational motion of the quadrotor,

steady-state assumptions do not hold [381]. Figure 2.9 shows the relationship between

quadrotor tilt and the drag force. The drag force Db due to wind can be calculated

using.

BFdrag = g ·m · tan(λ) (2.6)

As described in [90, 241, 255, 381], the magnitude of airspeed of the quadrotor

(|uquad−air|) can then be calculated using the principle of conservation of energy for a

fluid in motion, namely

|uquad−air| =

√
2 · BFdrag

ρAproj(λ)CD(λ)
(2.7)
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Figure 2.10 Relation between roll(ϕ) and pitch(θ) angles with tilt angle λ.

Figure 2.11 Projection of bx × by on Bex −B ey plane.

Figure 2.12 Steps to estimate the magnitude (speed) and direction of Euquad−air.

Here, ρ is the density of the fluid (air in this case), Aproj is the area of the

quadrotor frame exposed to the wind, which is a function of tilt angle λ and is also

referred to as the projected area. CD is the drag coefficient of the quadrotor body.

The projected area (Aproj) and drag coefficient (CD) both vary as a function of the

tilt angle. Under hover condition, |uquad−air| is equal to the wind speed |Euwind|

experienced by the quadrotor [54, 255, 381]. In [54, 241], the projected area was

26



Figure 2.13 Top view of Bex −B ey plane.

obtained by constructing a 3D model of the quadrotor body. Then, using image

processing, the reference area at each inclination angle as a count of pixels was

calculated. In [364], the quadrotor frame was modeled as a cylinder. The area

exposed to wind was calculated as the sum of the lateral surface area and the area

of bases. The roll and pitch angles were included in the area calculation to get an

estimate of the effective influence area of wind. The drag coefficient was computed

by wind tunnel experiments, as discussed in [90,241,307] or indoor tests, as reported

in [355].

Measuring Quadrotor Heading Direction: Figure 2.13 shows the top view of

projection of the vector by×bx on Bex−B ey plane. To calculate the quadrotor heading

direction Ψquad−air, the angle γ between the heading direction of the quadrotor and

the projection of by × bx on the Bex −B ey plane needs to be calculated using (2.8).

γ = cos−1

(
nby−bz · (by × bx)

|nby−bz | · |(by × bx)|

)
(2.8)
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The viewing direction considered here is the normal vector nby−bz = [1, 0, 0]

normal to the plane of Bey −B ez. To determine which side of the quadrotor the

projection of by × bx lies, (2.9) needs to be solved. The result of (2.8) lies in the

interval [0◦, 180◦].

nbx−bz · (by × bx) =


< 0 if(by × bx)is left side

> 0 if(by × bx)is right side

= 0 otherwise

(2.9)

The heading direction Ψquad−air can be calculated using (2.10).

Ψquad−air =


360◦ − γ if

(
nbx−bz · (by × bx)

)
< 0

γ otherwise

(2.10)

Calculating Wind Velocity Euwind: The wind speed Euwind is calculated using

the WTR described in (2.1) and the law of cosines. The drift angle (α) shown in

Figure 2.1 is equal to the difference between the track angle Ψquad−ground and aircraft

heading Ψquad−air. The magnitude of wind speed |Euwind| is calculated based on the

relationship expressed in (2.11).

|Euwind| =
{
|Euquad−air|

2
+ |Euquad−ground|2

− 2 · |Euquad−air| · |Euquad−ground| · cos(α)

}1/2 (2.11)
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The wind direction Ψwind is calculated by solving (2.12) and (2.13). Here β is

the angle between the wind speed vector Euwind and ground speed vector Euquad−ground.

Equations (2.11) and (2.13) calculate the wind speed |Euwind| and direction Ψwind

for 0 < α < 180◦. The cases α = 0◦ and 180◦ are considered separately. The sign of

β depends on the quadrotor heading direction Ψquad−air. If the heading direction is

within the interval
[
Ψquad−ground + 180◦,Ψquad−ground

]
then the angle is positive (+β),

otherwise it is negative (−β).

β = cos−1

(
|uquad−air|2 − |Euquad−ground|2 − |Euwind|2

−2|Euquad−ground| · |Euwind|

)
(2.12)

Ψwind =
(
Ψquad−ground + 180◦ ± β

)
(2.13)

Experimental Results of the Tilt Angle Approach: A list of representative

studies that describe the tilt-angle based approach for wind and airspeed measurement

is provided in Table 2.4. The relationship between the multi-rotor tilt angle and

the drag force it experiences is dependent on the construction of the aerial vehicle.

Extensive wind tunnel tests need to be carried out to collect data required to

determine the tilt-angle and drag force relation that is specific to the multi-rotor

vehicle [90,112,241]. The experimental results summarized in Table 2.4 represent the

RMSE values for wind speed and direction.
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Table 2.4 Representative Studies on Wind and Airspeed Measurement for
Multi-rotor SUAVs using the Tilt-angle Approach

# Author Application Experiment Results Multi-rotor
Platform

1 Neumann and
Bartholmai
[241]

Gas source
localization and
gas distribution
mapping

RMSE 0.6ms−1 and
14.2◦

AirRobot
AR100-B
quadrotor

2 Xingyu Xiang
et al. [381]

Wind profiling for
energy harvesting

RMSE 3.981ms−1 and
241◦

DJI Matrice
100 quadrotor

3 Caroline
Brosy et
al. [47]

Atmospheric and
Meteorological
study

RMSE 0.71ms−1 and
14.5◦

DJI 550
hexacopter
with Pixhawk
3DR

4 Yao Song et
al. [327]

Improve Flight
Performance

Standard Deviation
0.0671ms−1 and 31.4◦

QuadRotor
Simulator

5 Moyano
Cano,
Javier [54]

Wind profiling for
wind farms

RMSE 4.41ms−1 and
195◦

ArduCopter

6 Ross T.
Palomaki et
al. [255]

Atmospheric and
Meteorological
study

RMSE 0.5ms−1 and
30◦ under wind speed
conditions 0− 5ms−1

DJI Flame
Wheel F550
hexarotor
with 3D
Robotics
Pixhawk

7 Geoffrey W.
Donnel et
al. [90]

Atmospheric and
Meteorological
study

RMSE 1.09ms−1 and
81.68◦ under wind
condition of 2ms−1 -
7ms−1

3DR Solo
Quadrotor

• In [241], the quadrotor used in outdoor flight tests was the AirRobot AR100-B
quadrotor. A Young 81000 ultrasonic anemometer mounted on a tower at the
height of approximately 2 meters provided a reference to the measurements from
the quadrotor. Two outdoor flight tests were conducted to validate the proposed
estimation technique. In the first flight test, the quadrotor was hovering at a
horizontal distance of 2 meters to 5 meters from the anemometer at an Above
Ground Level (AGL) height of 2 meters for a duration of 20 minutes. In the
second flight test, the estimation technique was validated under moving flight
conditions where the quadrotor was made to move around the anemometer
tracing a square of size 30 meters × 30 meters. The RMSE for wind speed and
direction when the quadrotor was hovering was found to be 0.6ms−1 and 14.02◦,
respectively. The RMSE for wind speed and direction when the quadrotor was
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moving was found to be 0.36ms−1 and 14.77◦, respectively. The authors posit
these RMSE values could be attributed to inaccuracies in the GPS sensor. The
changing position of the quadrotor about the anemometer could also result in
deviations in measurements.

• In [381], outdoor flight tests were performed using a DJI Matrice 100 quadrotor.
Validation of the wind measurements was performed using the HoldPeak
HP866b digital anemometer mounted on a mast of unspecified height. Two
flight-test were conducted to verify the estimation technique under hover and
forward flight. The wind measurements when the quadrotor was in forward
flight condition were found to be inaccurate. The authors attributed this
inaccuracy to the use of a quadrotor dynamic model that did not take into
account inflow effects. The results from the hovering flight showed an RMSE of
0.6ms−1 with respect to the reference anemometer measurements.

• In [47], the outdoor flight test was performed using the DJI 550 Flame Wheel
quadrotor equipped with a PixHawk flight controller. Validation of wind
measurements from the quadrotor was done using a uSonic 3D ultrasonic
anemometer from Metek GmbH mounted on a 9m tower. The quadrotor was
made to hover for a duration of 5 minutes at a distance of approximately 5m.
This height was the same as the observation tower. A 10 seconds moving average
filter was applied to the measurements from the quadrotor and the anemometer.
The resulting RMSE values for wind speed and direction were 0.7ms−1 and
14.5◦, respectively. The authors note that the larger volume of the quadrotor
compared to the anemometer meant that it could not react to small, turbulent
wind gusts (eddies) and therefore, could not capture the full range of wind
speeds.

Remarks on the Tilt Angle Approach: An advantage of the tilt-angle approach

to wind estimation is that it does not rely on measurements from augmented sensors to

estimate wind speed and direction. This method solely relies on the IMU and position

sensors equipped on-board a multi-rotor sUAV. The tilt-angle approach enables the

multi-rotor platform to become a wind measuring device without compromising

the payload carrying capacity of the aerial vehicle. The multi-rotor sUAV using

the tilt-angle approach can aid in wind profiling for wind farms, atmospheric and

meteorological study, and gas source localization.

A limitation of this approach is the hover model assumption for wind speed

estimation, which makes this model unsuitable for wind speed estimates under fast-

moving conditions. Another limitation of this approach is the requirement of wind
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tunnel tests to determine the drag force and tilt angle relationship. The relationship

determined is unique to that specific multi-rotor vehicle. A wind tunnel to perform

tests may not be available to everyone, thereby limiting the usability of this technique.

2.2.4 Comparison and Future Directions

Three wind and airspeed measurement techniques were discussed. In the following,

we compare these three techniques and discuss future directions.

• Cost of sensors: Of the three methods discussed here, the tilt angle approach
uses sensors onboard the flight controller of the multi-rotor sUAV. As such,
there is no cost of additional sensors. The pressure-flow sensors are found to be
less expensive than ultrasonic anemometers [91, 131, 314]. It is expected that
the cost of these sensors will continue to drop as their adoption increases.

• Speed and direction data: Pressure flow sensors provide only wind speed data
in the direction they are facing. 3D ultrasonic anemometers provide wind
speed and direction measurements simultaneously in all directions [9]. The tilt
angle approach is also able to provide wind speed and direction measurements
simultaneously. However, unlike 3D ultrasonic anemometers, the tilt angle
approach cannot be used to obtain wind measurements in a vertical direction.

• Sensor resolution: The pressure-flow sensors provide airspeed based on the
measured differences in pressure. This pressure difference can become difficult
to resolve when the sUAV is hovering, or the magnitude of affecting wind is
too small. As such, pressure flow sensors exhibit relatively lower resolution in
these situations. On the other hand, modern ultrasonic anemometers feature
relatively higher resolution. For example, the FT 205 sensor has a wind speed
resolution of 0.1 ms−1. It is expected that manufacturers and researchers will
continue to invest efforts in creating higher resolution sensors.

• Physical mounting: Both pressure flow sensors and ultrasonic anemometers are
required to be mounted on the multi-rotor sUAV. In [90], an optimal location
for the ultrasonic anemometer was determined to be along the center of the
multi-rotor sUAV. Despite this, a bias was observed in the wind measurements
from the ultrasonic anemometer mounted at this location. Mounting these
sensors on the vehicle such that they experience minimum rotor disturbance or
do not affect the stability of the vehicle is still an ongoing area of research.
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2.3 Simulation Models for Wind Generation

In the previous section, sensor-based wind speed and direction measurement/estimation

techniques were discussed. In several studies, wind needs to be generated using

physical or simulation techniques. In this section, techniques used to model wind

in a simulation environment are presented.

These simulation models are used for evaluation of flight dynamics and

performance of the multi-rotor sUAV in the presence of wind and can be embedded in

a variety of simulation scenarios. In the following discussions, uwind = [uwind−x, uwind−y,

uwind−z] is the wind vector with magnitude |uwind| and azimuth angle Ψwind.

To study the wind effects on quadrotors, it is first necessary to generate realistic

wind disturbances likely to be encountered by the quadrotor. Wind can be described,

classified, and modeled in a variety of ways. The type of wind relevant to the study

of quadrotor performance under wind disturbances is called a gust. A wind gust (also

known as turbulence) is described by brief changes of wind velocity from a steady

value caused by changes in atmospheric pressure and temperature. Table 2.5 depicts

three techniques to generate wind in simulation, along with their associated benefits

and challenges.

Table 2.5 Summary of Wind Generation Techniques

Technique Model Type Key Benefits Challenges
Continuous gust
[17,217,355,376]

Wind Sheer Can model wind
behavior in open skies

Cannot model
wind behavior
near obstacles

Discrete
gust [16, 364]

Step or Pulse
Change

Can model gust of
known amplitude and
duration

Statistics of the
model need to
be known or
assumed

CFD [238, 281,
342,374]

Wind
circulation
and sheer

Can model wind
behavior in urban,
cluttered environment

Computationally
intensive
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Figure 2.14 Filtering process for Dryden and von Kármán wind generation models.

2.3.1 Continuous Gust Modeling

Continuous gusts models are used to simulate smooth variations in wind gust

behavior. They are specified in terms of a continuous probability distribution. In [292]

and [122], the authors make the following assumptions to simplify the mathematical

description of continuous gusts:

• The probability distribution of gust velocities is Gaussian.

• The statistics of gust velocities do not vary with time i.e.; the statistics are
stationary.

• The statistics of gust velocities do not depend on the location of the quadrotor
in space or path flown by the quadrotor i.e. the statistics are homogeneous with
respect to quadrotor motion.

• Ensemble averages of gust velocities equal single sample time averages i.e. gusts
are ergodic random processes.

• The spatially varying gust velocity field is frozen i.e. does not vary with time.

• For high altitude gusts, the statistics do not depend on the orientation of the
coordinate axes and are independent of quadrotor direction i.e. the statistics
are isotropic.

Dryden and von Kármán are the two most commonly used models for continuous

wind gusts. They are also referred to as turbulence models. Traditionally, these

models have been used to study the wind effects on aircraft however, taking into

consideration the size of the quadrotor, these models are simplified by making

appropriate approximations [376]. In [345], the authors implemented the Dryden

models to study the effect of turbulence on miniature aerial vehicles.
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Functionally, both these models are pulse shaping filters that work, as shown

in Figure 2.14. A unit variance, band-limited white noise signal, is passed through

a shaping function to generate an output signal with spectral properties defined by

the shaping function [345]. The filter uses specific shaping functions that output

a wind gust velocity signal with desired spectral properties [178, 344, 376]. Both of

these turbulence models specify a power spectral density (PSD) function to define

the turbulence spectra for along-wind, crosswind, and vertical wind directions.

As shown in Figure 2.15, the along-wind direction is wind flowing along the

path of the quadrotor movement either in the direction of the quadrotor (tailwind) or

against it (headwind). Crosswind is the wind flowing across the path of the quadrotor

movement. Vertical-wind is the wind flowing in the direction perpendicular to the

plane of the quadrotor movement. The three wind directions are orthonormal to each

other, and the relevant variables are modeled as an independent.

Both these models are standardized with their PSD functions specified in design

and simulation studies published by the U.S. Federal Aviation Administration (FAA)

and the U.S. Department of Defense [228, 236]. MIL-F-8785 is another military

standard with its own specifications for the Dryden and von Kármán PSD functions.

Figure 2.15 Orthonormal along-wind, cross-wind, and vertical-wind directions for
a quadrotor sUAV.
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Figure 2.16 Illustration of quadrotor flying into sine-type turbulence field with
scale length Lalong−wind.

Readers are referred to as [236] and its references for more details on the PSD

functions.

Figure 2.16 shows two important parameters of wind gust behavior, as described

by the Dryden and von Kármán models. The first is the scale length Lalong−wind of the

wind turbulence in the along-wind (headwind/tailwind) direction of motion. ua−w is

the along-wind gust speed. uc−w is the crosswind gust speed, and uv−w is the vertical

wind gust speed. Additionally, σa−w, σc−w, σv−w are the RMS gust speeds (also

called turbulence intensities) in the along-wind, crosswind, and vertical directions

respectively.

Since the general flight altitudes for quadrotors does not exceed 1000 feet mean

sea level (MSL), they are classified as low altitude aerial vehicles according to the

US military standards [227, 236]. The approximate scale lengths and turbulence

intensities in the spectral forms have been defined for an altitude less than 1000

feet MSL as (2.14), (2.15), (2.16) and (2.17) respectively. h is the altitude from sea

level (in feet). The wind speed at 20 feet AGL |uwind−20| is set to 15, 30, and 45 knots

for light, moderate and severe turbulence conditions, respectively. These values were

experimentally determined in [132].
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La−w = 2Lc−w =
h

0.177 + 0.000823h1.2
(2.14)

Lv−w =
h

2
(2.15)

σa−w = σc−w =
σv−w

0.177 + 0.000823h0.4
(2.16)

σv−w = 0.1|uwind−20| (2.17)

In [376], these approximations were used to generate the turbulence wind profile

for their study of wind effects on quadrotors. In [355], the turbulence intensities and

scale lengths for height less than 300 meters obtained from [132] were used.

The Dryden model is used with translational velocity components. The effect

of the rotational velocity disturbance components from the Dryden model is small

enough to be neglected [89]. The wind gusts are limited to the translational

components [ua−w, uc−w, uv−w].

Remarks on Dryden or von Kármán models: The shaping functions are

obtained from the square root of the PSD functions Sa−w(f), Sc−w(f), and, Sv−w(f)

of the model used (Dryden or von Kármán). As such, these must be factorizable. The

Dryden PSD functions are rational and hence exactly factorizable. On the other hand,

the von Kármán PSD functions are irrational and hence can only be approximated,

with an exact factorization requiring a filter of infinite order [89,94,292,345]. However,

the von Kármán PSD matches real wind gust turbulences found in nature more closely

than the Dryden model. Thus the choice between Dryden and von Kármán models

depends on the choice between engineering convenience and physical correctness.

Table 2.6 notes representative studies that use the Dryden model to study several

aspects of multi-rotor sUAVs. To the best of our knowledge, the von Kármán model
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Table 2.6 Use of Dryden Models for Multi-rotor SUAV-based Simulations

Author Motivation Software
Tran [355] Evaluate quadrotor flight

performance of PID Controller
MATLAB

Massé [217] Evaluate quadrotor flight
performance of LQR controller

MATLAB

Allison [17] Modeling quadrotor trajectory
performance

MATLAB

Waslander [376] Evaluate quadrotor position
control

-

has not been used yet to study the wind effect on quadrotors. For more information

about the von Kármán model, readers are referred to [94,108,345].

The Dryden and von Kármán turbulence models are generalized to open skies,

and do not account for the presence of urban structures, where airflow around such

structures is described with significant degrees of circulation and sheer [281]. These

models rely on spatial and temporal scales larger than what is encountered in urban

settings. The turbulence spectrum statistics are assumed to be stationary in time

and space, which implies that the disturbances are induced only when the quadrotor

is in motion relative to the turbulent field. The open skies and stationary assumption

works well for fixed-wing aircraft. However, as is observed in [17,217,355,376], several

modeling assumptions need to be made for simulating multi-rotor sUAVs in urban

environments or hover flight. Wind fields in urban environments pose a challenge

to the operation of multi-rotor sUAV given the complexity of wind fields generated

around buildings.

Open-source Python Implementation of Dryden Model: The Python imple-

mentation of the Dryden wind turbulence model can be found in [78]. The inputs to

the Dryden model are altitude and airspeed of the sUAV. As an example, turbulence

wind field was generated for 10 seconds of flight time of a sUAV. The sampling rate

for this particular dataset was 43Hz. Users can specify their own sampling rate in

the code. Figure 2.17 depicts the magnitude of wind velocity in m/s generated in
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Figure 2.17 The magnitude of wind velocity in the along-wind, cross-wind, and
vertical wind directions.

the along-wind (head-wind and tail-wind depending on +/- sign), cross-wind, and

vertical-wind for a flight duration of 10 seconds.

2.3.2 Discrete Wind Gust Modeling

Discrete gusts are isolated changes in wind velocity and are modeled as a step function

or a pulse. In [364], the authors provide a discrete gust model that considers wind as

a random vector and use it to study wind effects on quadrotors. In [16], the authors

use this model to evaluate the performance of the quadrotor with tilted rotors. The

discrete gust model defined in [364] takes into consideration the following factors:

• The effect of wind speed change: the discrete gust model accounts for a mean
wind speed value before the discrete gust (step) and also accounts for the
decrease in wind speed after the discrete gust (step). Step refers to the sudden
increase/decrease in wind speed from its mean value.

• Gust duration: The duration of the gust is defined as a discrete random variable
dni.

• Change in wind speed with respect to altitude: The relation between the change
in altitude and wind speed is described in (2.18). |uh| is the mean wind speed
at altitude h. |uref | is mean reference wind speed at altitude href . p is an
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empirically derived exponent that depends on atmospheric conditions.

|uh| = |uref |
(

h

href

)p

(2.18)

• Change in wind direction: The azimuth ψwind defines the direction from which
the wind blows. It is measured from the north point through the east—wind
direction changes at each velocity step. The wind direction values are computed
at each discrete time step n. They are obtained by adding a random variable
∆Ψwind to Ψwind(n) as shown in (2.19).

Ψwind(n+1) = Ψwind(n) ±∆Ψwind (2.19)

The gust speed |uwind| is described in (2.20). tmax represents the maximum

flight time. n discrete random variable to determine the number of wind steps for

tmax. |uwind0| is the wind speed before the gust (step) and |uwindM | is the gust speed.

t0 discrete random variable to determine each gust step start. tni discrete random

variable to determine duration of gust.

|uwind| =



|uwind0|, n ≤ t0

|uwind0|+ |uwindM−uwind0|
2

(
1− cos

(
π(n−t0)
tni−t0

))
,

where t0 < t ≤ tni and |uwindM | ≥ |uwind0|

|uwind0|+ |uwindM−uwind0|
2

(
cos

(
π(n−t0
tni−t0

)
− 1

)
,

where t0 < t ≤ tni, |uwindM | < |uwind0|, t ≤ tmax

(2.20)

Using (2.20) and (2.19), the discrete gust speed and direction can be calculated

at each discrete time instant, respectively. The model was implemented using

MATLAB [364]. For more detailed discussed on how this model is applied to a

quadrotor, readers are referred to [364] and its references.
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2.3.3 Computational Fluid Dynamics Modeling

Wind fields are defined by the boundary layers, which is the thin layer of fluid close

to the body surface. The boundary layers for urban wind fields are defined by the

building structures and terrain features and are called the urban canopy layers [206,

247,342,374]. The wind field in this region is dependent on the geometry of the surface

roughness as created by building size and pattern [43, 45]. The wind profile around

urban structures is variable in time and space and, therefore, difficult to accurately

estimate using only local measurements.

Computational fluid dynamics (CFD) has been used to determine the wind

field and turbulence generated around urban buildings [271]. The approach to use

CFD analysis in the urban canopy layer has been extensively applied in the field

of pollutant/chemical dispersion within urban settings to determine wind loads on

buildings and assess pedestrian comfort [113, 129, 175, 304, 347, 366]. CFD equations

can calculate the wind speed and direction at each instance of time and space and

are thus able to accurately account for the complexity derived from wind flow around

urban structures. The methods used to solve the CFD equations fall into three

categories. They are Large Eddy Simulation (LES), Reynolds Averaged Navier Stokes

(RANS) and, Direct numerical simulation [342].

In general, due to the high computational complexity of generating wind field

using CFD methods, it is challenging to generate wind field model in parallel with

the flight simulation [110]. As such, CFD solvers are used to generating wind speed

and heading values and store them in a database. The wind velocities stored in the

database can then be used as inputs to the flight simulation setup to simulate wind

turbulence experienced by sUAVs [110,238,281,342].

In [374], the authors use a CFD equation solver presented in [115] called

QUIC-CFD. This solver is a lightweight implementation of the Navier Stokes equation

solver and is capable of generating wind field estimates of large, complex, urban
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environments. The wind field data generated by this solver was used to simulate wind

disturbances in a multi-rotor sUAV flying in the urban canopy layer. The authors

in [374] noted that wind fields around urban structures are governed by environmental

features that are defined by a length scale of less than 1km. The general flow pattern

of wind is still defined by the prevailing wind in the upper boundary layers. This

dependency of wind around urban structures on the upper boundary layers was

leveraged as inputs to the QUIC-CFD solver to determine the turbulent wind flow

around such structures. The QUIC-CFD solver prioritized solution time over the

accuracy and provided quick estimates of the solution to the Reynolds Averaged

Navier Stokes equation. The estimates of the QUIC-CFD model were compared to

wind data collected around the university campus. The authors noted an error of

less than 10% for wind speed errors. Heading errors were observed to be less than 15

degrees for 36% of the readings.

In [238], the authors generated a wind field model around a twin building

configuration to study the wind effects on a multi-rotor based sUAV. The CFD

solver used the RANS method implemented in CFD software ANSYS FLUENT and

STAR-CCM+. The dynamics of the multi-rotor sUAV was shown to be affected by

the turbulent wind conditions. It was observed that a spike in the wind speed value

could cause a sudden increase or decrease in the thrust of the aerial vehicle.

The authors in [342] used the Large Eddy Simulation (LES) technique to develop

their CFD model for wind turbulence around a single square body. The square

body was representative of a building around which the wind flow was analyzed.

Two essential features captured by their wind model were vortex shedding and flow

instabilities. Vortex shedding is the property of wind to produce an oscillatory flow

with symmetric vortexes when flowing around a body opposing its flow. At higher

wind speed, the vortexes lose their symmetry and create flow instabilities. The LES

technique is a time-dependent three-dimensional technique that also allows for the

42



visualization of the wind wake behind a body (vortex shedding and flow instability),

which is not possible with the RANS technique [353]. An open-source CFD software

Open-FOAM (Open-Field Operation and Manipulation) was used to implement the

LES technique to build the wind model around a square building. The wind profile

generated using the LES technique was compared with wind data as obtained through

outdoor experiments carried out in [224]. In [224], wind profile measurements were

obtained around a square building at four locations. The average error was computed

through the mean of errors between experimentally obtained data and numerical value

at the same spatial location. The average error for each location was found to be

12.9%, 17.6%, 9.7%, and 17.4%.

Remarks on CFD based models: The time required for CFD based numerical

computation of the wind model depends on the resolution and domain (geographical

area) size needed. A large domain size combined with higher resolution could result in

a simulation time in the order of days to weeks. At the same time, with the rising use

of multi-rotor sUAVs, it is evident that such vehicles are being increasingly used in

urban settings and that CFD based wind generation models are capable of generating

real-world urban wind conditions.

2.3.4 Comparison and Future Directions

Three approaches to modeling wind for simulation purposes are discussed. In the

following, we compare these methods and provide future directions.

• Mission type: Simulation mission type: The discrete gust model provides a
limited scope to simulate wind disturbances as it only considers intermittent
wind gusts and does not account for the continuous variation in wind speed
and direction. The Dryden and von Kármán turbulence models are suitable
for simulating multi-rotor sUAV missions in large open areas as they do not
account for infrastructures such as buildings and trees. Additionally, in the
Dryden and von Kármán turbulence models, wind disturbances are assumed
to be stationary in time and space. The disturbances are applied when the
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sUAV is in motion relative to the simulated wind field. Thus, under hovering
conditions, the Dryden and von Kármán turbulence models are not applicable.
For simulations in urban or cluttered environments, CFD based simulations
should be used as these can capture circular wind flow with varying shear around
trees and urban structures.

• Simulation complexity: CFD based simulations are time-consuming and require
higher computational resources relative to the Dryden and von Kármán
turbulence models. As noted earlier, CFD based simulations have been
implemented using specialized numerical solvers, whereas the Dryden and von
Kármán turbulence models can be implemented using popular programming
languages such as Python and MATLAB. For both techniques, wind speed
and direction data for each instance of time and space are first generated
and stored in a database. This data is then used in multi-rotor sUAV flight
simulation. Moving forward, it is expected that CFD based simulation solvers
will be optimized to use the computational power of graphical processing units
(GPUs) to reduce simulation times required for generating high-quality wind
data.

2.3.5 Note about Physical Wind Generation

From a physical wind generation perspective, a low-cost and relatively easier method

to generate wind in physical testing is using electric fans. In [15, 371], different

brands and configurations (numbers, positions) of electric fans have been used to

generate wind disturbances. In several studies, wind tunnels have also been used

to evaluate flight performance in multi-rotor sUAVs [258, 307, 323]. Wind tunnels

provide strong controls over the experiment. At the same time, they are relatively

expensive and require significant instrumentation. In some studies, outdoor flight

tests expose the multi-rotor sUAV to environmental wind disturbances, which provide

flight performance results without the need for expensive wind tunnels or industrial

grade fans [112,324].

2.4 Conclusion

As multi-rotor sUAVs continue to gain popularity, research to study and mitigate wind

effects on their flight performance continues to grow. In this chapter, we presented a
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systematic review of two important dimensions of wind research in multi-rotor sUAVs

viz. measurement/estimation and simulation.

For wind measurement/estimation, a review of three key techniques was

presented. The first technique uses flow sensors, the second technique uses ultrasonic

anemometers, and the third technique, called the “tilt angle method,” uses the

onboard IMU. For wind simulation, a review of three modeling techniques was

presented. The first technique adapts the popular Dryden wind turbulence model

for multi-rotor sUAV operational regimes in open and uncluttered environments.

The second technique uses computational fluid dynamics (CFD) for simulating

wind behavior in urban and cluttered environments. The third technique uses a

probabilistic approach to generate wind gusts.

Each of these techniques was presented in terms of their operating principles,

representative studies, key benefits, and operating challenges. Open-source Arduino

code to interface with the FT205 ultrasonic anemometer was provided for readers to

quickly prototype quadrotor applications. Open source Python code to simulate the

Dryden wind gusts was provided for readers to incorporate in their simulations. We

anticipate that the review presented in this chapter will provide important information

for researchers and practitioners in their efforts.
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CHAPTER 3

IMPLEMENTATION OF DECENTRALIZED REINFORCEMENT
LEARNING-BASED MULTI-QUADROTOR FLOCKING

3.1 Introduction

Paper: P. Abichandani, C., Bucci, D., Mcintyre, W., and Lobo, D. “Implementation

of Decentralized Reinforcement Learning-Based Multi-Quadrotor Flocking,” in IEEE

Access, 9, 132491-132507, 2021

The problem of coordinated movement of the sUAVs between waypoints

while maintaining a set of desired kinematic behaviors and avoiding collisions has

been well studied using model-based techniques [4, 222, 223, 372]. Although recent

works demonstrate decentralization can be achieved given online construction of

kinematically feasible trajectories, decentralized path planning at scale remains an

area of active research [5, 197].

A popular alternative to these model-based methods involves emergent control

techniques based on multi-agent flocking [341]. The flocking problem was initially

introduced by Reynolds in [285] and later elaborated on by Vicsek in [363], and Couzin

in [72]. Flocking is a set of bio-inspired rules – separation, alignment, and cohesion

– that define the characteristics of multiple sUAVs interacting with one another and

exhibiting common collective behavior. One of the defining characteristics of flocking

is that each agent performs localized actions that contribute to an overall coordinated

behavior of the system. Separation involves agents moving away from each other to

avoid collisions and is also termed collision avoidance. Alignment involves agents

moving along the average heading of the flock. Each agent in the system exhibits

the same relative velocity. Cohesion involves agents staying near the average position

(i.e., centroid) of the group.
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Wind conditions being stochastic in nature, play a crucial role in the proper

functioning of coordinated sUAV operations outdoors. An overview of the impact of

external stimuli such as wind gusts on sUAV operations is provided in [6]. Performing

wind-agnostic motion planning for sUAVs may produce a sizeable cross-track error if

the wind on the planned route leads to actuator saturation [118,259]. In a multi-sUAV

system, each sUAV has to locally counter the wind disturbance while maintaining the

safety of the system [392]. Such continuous manipulation of the control effort for

multiple sUAVs under uncertain environmental conditions is computationally taxing

and can lead to reduced efficiency and safety concerns [6].

Several works in the literature propose approaches to solve multi-agent system

flocking problems [62, 123, 187, 328, 389]. In our previous work, we demonstrated

a novel reinforcement learning technique using the multi-objective formulation of

the decentralized flocking control problem for up to 25 fixed-wing UAVs [330]. The

training was based on a relative state-space construction of obstacles and waypoints

in software simulation. In comparison to existing behavioral swarm controllers, our

controller learned via object-focused greatest mass state-action-reward-state-action

(OF-GM-SARSA) and was shown to be generalizable across multiple flocking

scenarios.

While meaningful experiments on of flocking algorithms on ground robots

have been reported [357], those for sUAVs have emerged only recently. A select

few papers document real-time experiment evaluation of their flocking system

[73,127,170,205,357,360]. Only [174] reports on accounting for wind using a simplified

Gaussian noise model. Most other publications provide an evaluation of their flocking

approaches in the multi-sUAV simulation environments such as Ardupilot, Q-ground

control, Gazebo, and ROS [92, 133, 204] or numerical simulation using Python and

MATLAB [123, 171, 186, 187, 322, 339] thus leaving a gap in the literature regarding
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Figure 3.1 Three quadrotor OF-GM-SARSA outdoor flight experiment and
telemetry display.

the hardware/software approaches required for implementing flocking based motion

planners in real-world outdoor flights.

3.1.1 Main Contributions

This chapter fills the above-mentioned gap by focusing on the relatively untouched

area of experimental implementation of flocking algorithms for outdoor multi-sUAV

systems. Specifically, in this work, we leverage our previously developed OF-GM-

SARSA-based path planner for flight testing the coordinated motion of multiple

quadrotors to reach waypoints while maintaining the flocking behaviors. A snapshot

of the outdoor flight tests is shown in Figure 3.1. The following are the main

contributions of this chapter:

1. A method to incorporate realistic wind gusts using the Dryden Wind Gust
Model for evaluating flocking algorithm performance in hardware-in-the-loop
(HWIL) tests.

2. Experimental evaluation and validation of a decentralized OF-GM-SARSA
based hardware/software architecture via outdoor flight tests involving up to 4
DJI M100 quadrotors operating in the presence of natural wind gusts.
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Additionally, a detailed discussion of the hardware/software architecture used

to implement a multi-objective, reinforcement learning (RL) based decentralized

flocking planner for multiple quadrotors is provided. The OF-GM-SARSA technique

was used to learn a flocking planner for the group of up to 4 DJI Matrice M100

quadrotors that use DJI’s N1 flight controller [87]. Each quadrotor was also fitted

with a transceiver radio module operating in the 915MHz license-free frequency bands,

providing half-duplex bi-directional RF links at 300Kbps. The OF-GM-SARSA

planner used the quadrotors position and velocity information, as reported by the

DJI telemetry streams of the one-hop neighbors. The output of the planner was local

heading and speed setpoints to each quadrotor’s flight controller.

The rest of the chapter is divided as follows, Section 3.2 presents a discussion

on the representative works in model-based and reinforcement learning-based flocking

approaches. Section 3.3 discusses the flocking problem formulation in terms of the

quadrotor dynamics, the inter-quadrotor communication setup, the Dryden wind

model, and the flocking behaviors. Sections 3.4 and 3.5 presents the algorithm for

the flocking planner and the methodology used for training the RL algorithm. The

algorithm was first evaluated in simulations described in Section 3.6 before HWIL

and outdoor flight tests. The hardware and software architecture for HWIL and

outdoor flight tests are described in Section 3.7, followed by the flight test results in

Section 3.8. Finally, the observations and insights gleaned from this study are noted

in Section 3.9.

3.2 Related Work

The aggregate motion of small birds is known as cluster flocking in the literature [35].

In such cluster flocking applications, each individual bird may only observe the

neighboring bird at any time. The flocking formation considered here is, in essence,

inspired by flocks of birds where each agent (bird or sUAV) aggregates around a
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geometric centroid and is independent of a leader agent. The bio-inspired behaviors

implemented here posits that each learning agent strives to maintain the integrity

of the flock using its sensory input (in this case, the position and velocity of its

neighbors). While there exists a mobile ad-hoc network (MANET) for wireless

communication of sensor data, the execution of the motion-planning policy is fully

decentralized, where each agent runs an identical copy of the flocking policy to achieve

a common goal [306]. In contrast to centralized approaches, such decentralization of

motion planning offers computational tractability as the number of agents increase

and eliminates a single point of (centralized decision maker) failure [2, 202].

Several centralized and decentralized approaches to solving the multi-robot

flocking problem have been reported in the literature. These approaches can be

broadly classified into model-based flocking methods and model-free methods.

3.2.1 Model-based Flocking

Model-based approaches to solving the multi-vehicle flocking problem continue to

be studied in the literature [128, 133, 174, 205, 328, 389]. These approaches involve

formulating the kinematic and dynamic behaviors of the system in the environment.

In a multi-sUAV system, the environment can include obstacles and environ-

mental disturbances such as wind. The authors in [174] modeled wind disturbances

as Gaussian noise, a simplified approximation of real-world turbulence. In [133], the

authors defined obstacles as special agents, enabling sUAVs to effectively evade them

by avoiding collisions while maintaining the flocking formation.

Distributed or decentralized model predictive control (MPC) based formulations

to the multi-sUAV flocking problem have been a popular approach due to their ability

to accommodate different systems, mission requirements, and low computational

overhead [205,274]. In [205], the authors evaluated a consensus-based MPC approach

for flocking experimentally using 5 Crazyfile 2.0 mini-quadrotors in an indoor
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Figure 3.2 (Left) Multi-sUAV simulation software Qground control and Ardupilot
running on Linux machine [62]; (Right) Custom built quadrotor for flocking
experiments [274].

environment. The authors of [274] tested a decentralized MPC algorithm using a

flock of five outdoor quadrotors. Figure 3.2 depicts a custom-built sUAV used for

flocking experiments in [274].

Additional control-theoretic approaches such as high-frequency feedback robust

control [389], Particle Swarm Optimization (PSO) [73], and PID controllers [170] have

also been applied to solve the multi-sUAV flocking problem.

Model-based flocking approaches rely on the accuracy of the model of the multi-

vehicle system. The accuracy of the model decreases when the number of agents in

the system increases. The modeling becomes especially challenging if the real-world

characteristics of wind disturbances are also taken into consideration.

3.2.2 Reinforcement Learning (RL) based Flocking

Among the model-free methods, RL-based flocking approaches have been presented

in several studies as a means for overcoming platform and environmental modeling

restrictions while maintaining decentralized operations [60,130,145,198,257,273].

Q-learning and state-action-reward-state-action (SARSA) have been imple-

mented in multi-vehicle robotics problems because they do not require modeling the

complicated flight dynamics of the system. In [62], the authors used a SARSA-based
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approach to successfully tackle the enemy sUAV avoidance problem in multi-sUAV

systems. Figure 3.2 depicts the hardware-in-the-loop simulation setup used to

evaluate their SARSA-based collision avoidance algorithm for multi-sUAV systems.

In [172], the authors simulated a Q-learning-based approach for search-and-rescue

operations using sUAVs. They considered an indoor scenario where the sUAV relies

on RF signals emitted by a smart device owned by the target victim. In [391], the

authors proposed a SARSA-based approach to deploy a multi-sUAV assisted wireless

network. The goal of the reinforcement learning was to enable the sUAVs to learn

the features of the environment and plan trajectories accordingly to provide wireless

service in disaster-hit areas.

One of the differences between Q-learning and SARSA is the policy based on

which rewards are designated. In Q-learning, the reward policy is greedy and always

fixed to favor the maximum achievable reward. In SARSA, the policy changes are

based on the current state and action pair, favoring a more optimal solution than

Q-learning. Few authors have provided a comparison of Q-learning and SARSA-

based approaches for multi-UAV flocking [242, 322]. In [242], the authors compared

Q-learning and SARSA to reduce power consumption for multi-sUAV systems in the

presence of wind. Simulations were carried out using a combination of ROS and

Gazebo. The wind field was simulated using the physics engine in Gazebo and actual

wind data. Both RL approaches were compared to a naive planner that selected the

shortest paths irrespective of the wind fields at each time step. The results showed

that the RL approaches reduced the power consumption by about 30% compared

with the naive planner. In [322], the authors provided a comparison of Q-learning and

SARSA for global path planning for mobile ground robots using Python simulations.

It was observed that while the Q-learning emphasized the minimum number of actions

necessary to reach the goal, the SARSA algorithm gave priority to security and found

the optimal safe distance that avoided the risk of collisions/accidents. Therefore,
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Q-learning showed faster convergence rates, and SARSA provided a safer path for

the ground robot.

Neural networks (NNs) have been proposed to produce generalized results that

take into account the dynamic behavior of the flight environment [186, 204, 279].

In [279], the authors simulated a centralized, deep-Q-learning based leader-follower

approach to solving the flocking problem for multi-sUAV systems using the Hungarian

algorithm [150]. The proposed algorithm showed feasible convergence times for

different flocking formations such as circle, v-shape, and star (12 ms). However,

the algorithm took a significantly longer time when the number of sUAVs increased

to 100. In [204], a deep-SARSA approach involved combining the traditional SARSA

algorithm with a NN instead of Q-tables for storing the states and predicting the

best action. The NN used was implemented in Keras and contained three dense

layers with 549 trainable parameters [67]. Data was generated based on the training

process, which was executed for 4000 simulation runs. The trained model was then

successfully evaluated in a simulation testbed built using ROS and Gazebo.

In [186], the authors provided a deep-RL approach for sUAV ground target

tracking in the presence of an obstacle. They used a deep deterministic policy gradient

(DDPG) to generate the path plan around large-scale and complex environments.

Simulation experiments were carried out in TensorFlow 2.0 using Python [1]. It was

observed that the improved DDPG algorithm improved the success rate for target

tracking from 70.0% to 91.8% in the sparse environment and 13.6% to 67.5% in a

dense environment. In [368], the authors formulated the fixed-wing sUAV flocking

problem as a Markov Decision Process (MDP). A NN was used to train the model

using TensorFlow and Keras, with the number of training episodes set to 50000 and a

maximum time step of 30 seconds. The authors also implemented a hardware-in-the-

loop simulation using an X-plane flight simulator and two PX4 Pixhawks. The flight

simulator modeled weather changes and wind disturbances. The flight simulation
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showed that the proposed RL algorithm could deal with environmental changes and

completed the simulation mission.

As observed, a majority of these studies are limited to simulations. By contrast,

this chapter provides detailed discussions on the hardware/software implementation

and validation of OF-GM-SARSA applied to a multi-sUAV system to learn flocking

using HWIL and outdoor flight tests.

3.3 Problem Formulation

In this section, the key elements of the problem formulation are elucidated.

3.3.1 Quadrotor Motion

Consider a group of n quadcopter vehicles with 6 degrees of freedom operating

inappropriately defined right-handed inertial, body, and body-fixed frames of reference.

The non-linear rigid body dynamics of quadrotors have been well studied and

documented [209].

Each quadrotor i = 1, . . . , n has a given start (origin) point oi and a given end

(goal) point ei. O is the set of all start (origin) points. oi ∈ O, i = 1, . . . , n. E is

the set of all end points. ei ∈ E, i = 1, . . . , n. The Euclidean distance between two

quadrotors i and j is denoted by dij, i = 1, . . . , n, j ̸= i.

3.3.2 Communication Model

Each quadrotor is equipped with a mobile ad-hoc network (MANET) radio used

to exchange its trajectory information with other quadrotors. The communication

connectivity is maintained directly (one-hop) or indirectly (multi-hop relaying). The

quadrotors are modeled to communicate if they are within the ηd distance of one

another. This constraint is equivalent to the Signal to Noise Ratio (SNR) experienced

by the receiver quadrotor being above a threshold [3].
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3.3.3 Dryden Wind Model

Wind gusts are modeled using the continuous Dryden turbulence model [122]. The

Dryden wind turbulence model has been commonly used to model continuous wind

gusts effects on large-scale aircraft. Since quadrotor sUAVs are significantly smaller

in size compared to such aircraft, appropriate approximations have been reported

[345, 376]. Detailed information on the Dryden wind gust modelling is described in

Chapter 1.2 Section 2.3.1.

3.3.4 Flocking Behavior

The rules for multi-agent flocking behavior have been defined according to Reynolds

flocking rule set. These flocking rules were encapsulated as reward functions that

motivated the agents to exhibit cohesion, alignment, separation, target seek, and

obstacle avoidance. Similar to our previous work [330], the thresholds for each reward

were selected based on running a uniform search (sweep) on the parameter space and

evaluating the reward curves.

• Cohesion (rCOH): allows the flock to move inward towards an estimated centroid
position. The cohesion objective seeks to minimize the distance between a
quadrotor sUAV and its one-hop neighbors while maintaining an inter-sUAV
separation distance ksep. The flock radius was set proportional to the square
root of the flock size. States were given a reward of rCOH = +1 for staying
within ksep centered at the flock centroid. rCOH was equal to −1 otherwise.

rCOH =

{
+1, dij < ksep

−1, otherwise
(3.1)

• Alignment (rALN): allows the quadrotor sUAV in the flock to match their
velocity headings such that each member of the flock moves as a single unit. The
velocity alignment objective seeks to minimize the velocity heading between the
local quadrotor sUAV and the average heading of its one-hop neighbors. States
were given a reward rALN within the interval of [−1; +1] as a function of velocity
heading difference which was calculated using the following relationship:

rALN = 2 ·
(

0.5− 1

π∆θ

)
(3.2)
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where ∆θ is the heading difference in degrees between the platform and the
average heading of the flock.

• Separation or Collision Avoidance (rCOL): provides a minimum safe distance
kcol between the flock members such that they avoid collision with each other.
Two levels of negative rewards are defined based on the degree of kcol violation.
The agent is severely penalized when it is within 0.2 distance units of a neighbor
and is mildly penalized when they are 1.5 distance units. This differentiation
was necessary since the agents might come close to one another due to external
disturbances. However, extremely close distances should be avoided under all
circumstances. States were given a reward of rCOL = −1 for getting within 1.5
distance units of a neighbor, rCOL = −100 for getting within 0.2 distance units
of a neighbor, and rCOL = 0 otherwise.

rCOL =

−1, dij < 1.5 · kcol
−100, dij < 0.2 · kcol
0, otherwise

(3.3)

• Target Seek (rTGT): The target seek objective seeks to minimize the distance
between a local quadrotor sUAV and the current waypoint of the flock. It allows
for waypoint tracking of the flock. The target seek reward is defined such that
the agents reach the waypoints as quickly as possible [385]. The quadrotors are
considered to have reached a waypoint if they are within a distance kreach from
that waypoint with a reward rTGT as follows:

rTGT =

{
+10, d < kreach
−1, otherwise

(3.4)

• Obstacle Avoidance (rOBS): This objective was formulated to ensure safe
operations in an environment with obstacles. The quadrotors were rewarded
based on their distance dio from an obstacle and an obstacle avoidance threshold
kobs as follows:

rOBS =

−1, dio < 3 · kobs
−100, dio < 1 · kobs
0, otherwise

(3.5)

3.4 Object Focused Multi-Objective SARSA Flocking Planner

Modular Q-learning is used to model multiple flocking behaviors as a composite

Markov Decision Process (MDP) with each behavior being treated as a distinct

module, m ∈ M , where M ∈ {COH, ALN, COL, TGT} [30, 298, 331]. A single

Q-table characterizes each module m. The optimal policy selects the action with the

largest weighted sum of Q-values across all Q-tables. During training, the Q-tables

are updated using the SARSA algorithm. The overall procedure described here was

elucidated previously in [330].
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Figure 3.3 Graphical description of OF-GM-SARSA planner.

Figure 3.3 depicts the graphical representation of the OF-GM-SARSA planner,

where s and a denote the state and action, respectively. Each flocking behavior

is described as an objective represented by a Q-table. The collision avoidance

objective is represented by multiple copies of a single Q-table per inter-sUAV pairing

to avoid the exponential growth in the size of the Q-table. The greatest mass

operation involves selecting the maximizing action under a weighted average of the

corresponding Q-values.

3.4.1 State Space Representation

For a given sUAV, the states included in the state space representation of the OF-

GM-SARSA planner are estimates of relative position (i.e., range and bearing) and

velocity heading of neighboring sUAV. Let the state s denote the total collection of

these measurements for each module,

s =
⋃

m∈M

s(m) (3.6)

Figure 3.4 depicts an example of the state-space construction for four neighboring

quadrotor sUAVs, with one waypoint. The s(COH) states are quantized distance

and bearing estimates of the sUAV with respect to the estimated centroid of all
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Figure 3.4 Local state space discretization for each sUAV.

neighboring sUAVs. The s(TGT ) states are quantized distance from the currently

assigned waypoint and bearing towards it. The s(COL) states are quantized distance,

bearing, and velocity heading difference measurements between a given sUAV and

its neighboring sUAVs. Finally, the s(ALN) states are quantized velocity heading

differences between the sUAV’s current heading and the average heading of all

neighboring sUAVs.

The object-focused formulation of the learning problem further decomposes the

collision avoidance states into states for each sUAV,

s(COL) =
⋃

o∈O(COL)

s(COL)
o (3.7)

where O(COL) is the set of neighbor sUAVs.
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A single Q-table was learned for the collision avoidance behavior and shared

across all sUAVs. The control policy was evaluated based on the separation distances

queried from this Q-table. Each sUAV has a different inter-sUAV distance, and

therefore receives different rewards but as specified from the single learned Q-table.

A linear sum of the learned Q-values was then performed to get a single composite Q-

value for the collision avoidance criterion. The measurement discretization used was

specific to each module. The distance partitioning for the collision avoidance module

was set to higher resolution at closer ranges. The target seeks module depended on

long-range distances, and its discretization was uniform.

3.4.2 Action Space Representation

The action space consisted of discrete velocity setpoints for the DJI N1 flight

stack. The heading angles were quantized to be within sufficiently smooth yaw rates

achievable by the DJI M100 quadrotor and N1 flight stack. The discretized action

space A for small roll and pitch angles is represented as the Cartesian product of the

heading angles (degrees) and the speeds (m/s) as follows:

A = {0◦,±10◦,±20◦,±30◦,±40◦}×{0.1, 0.5, 1} (3.8)

3.4.3 OF-GM Policy

The OF-GM policy uses the learned Q-tables per module, denoted Qm(s
(m)
o , a) to

compute a total weighted Q-value, denoted QGM(s, a). For a given sUAV’s state, s,

this weighted Q-table is calculated for each action a ∈ A as

QGM(s, a) =
∑
m∈M

∑
o∈O

wmQm(s(m)
o , a), (3.9)
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Initialize Q(s, a);
repeat

Initialize quadrotor sUAVs, obstacles, and waypoints;
repeat

for each quadrotor sUAV in swarm do
Take action a;
Observe next state, s;
Collect the total reward;
Get next a using softmax exploration;
for each module m do

for each object o do

Qm(s
(m)
o , a)←

Qm(s
(m)
o , a) + α

[
r
(m)
o + γmQm(s

(m)
o , a)−Qm(s

(m)
o , a)

]
end

end
s← s;
a← a;

end
until each time step;

until for each iteration;

Algorithm 1: OF-GM-SARSA training procedure

Where the module weights, wm, sum to one. These values were set manually.

Cohesion and alignment were weighted less than the other three modules.

3.5 State Exploration and Model Training

The OF-GM-SARSA training procedure is shown in Algorithm 1. After the quadrotor

sUAVs and waypoints are initialized, each quadrotor sUAV selects an action according

to the softmax exploration rule. This exploration rule uses the progressively learned

Q-values from each table to compute the total weighted Q-value, from (3.9). The

actions are then sampled using the softmax probability mass function,

P (a|s) =
eQGM (s,a)/T∑
a∈A e

QGM (s,a)/T
, (3.10)

where larger values of T encourage exploration. State-space updates are applied

sequentially to each quadrotor sUAV, and the following action is chosen according
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to the same on-policy exploration rule. During training, only discrete actions were

used. The Q-table for each module was then updated using SARSA. This process was

repeated until the sUAVs reach the waypoint or until a maximum time was reached.

3.5.1 Training Methodology

The learning rate, α, is the same for all Q-table updates for each flocking condition,

whereas the discount factors, γm, are unique. The discount factors decide how much

the future outcomes influence the behavior of the learning rule for each module.

Target seeks, for example, requires information over a longer horizon. Other modules,

however, are more reactive, making immediate rewards more important. Specifically,

the collision avoidance discount factor was set to 0, and the cohesion and alignment

discount factors were set to 0.01. The discount factor for target seek was set to 0.9.

The task of multi-agent flocking consists of non-convex criteria [385]. As such,

employing a training method that is efficient is imperative. In [37], the authors showed

that starting the training procedure with easier examples of a learning task followed

by a gradual increase in the difficulty improved the speed of convergence and the

generalizability of the results. Similarly, the training process of modular Q-learning

is faster when working with subsets of modules rather than all at once. As such, the

training procedure employed in this study consisted of three stages with increasing

levels of task difficulty. The training was executed using the 6-Degrees of Freedom

(DOF) quadrotor rigid body dynamic model.

First Stage: A single quadrotor sUAV was used during the first stage to learn the

Q-table for the target seek objective with the OF-GM-SARSA target seeks objective

weight set to 1.0. A quadrotor rigid body dynamic simulation was implemented

that was tuned to match the specific construction of the DJI M100. The starting

location of the sUAV and the waypoint were randomized uniformly during each

training episode/iteration.
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Second Stage: In the second stage, a fixed set of 25 sUAV was used to learn the

Q-tables for the flocking objectives (i.e., collision avoidance, velocity alignment, and

cohesion). The OF-GM-SARSA training weights for this second stage were set to

0.40 for the collision avoidance objective, 0.20 for the velocity alignment objective,

and 0.40 for the cohesion objective.

Third Stage: In the final stage of training, the target seeking and flocking training

procedures were combined to update the Q-tables of all four objectives jointly. The

training weights used in the third stage were 0.40 for the collision avoidance objective,

0.40 for the target seek objective, 0.10 for the velocity alignment objective, and 0.10

for the cohesion objective.

One thousand training iterations were used for each of the first two stages,

whereas the third stage used ten thousand training iterations. Q-table updates were

performed at the end of every time step of the simulation. A training episode ended

when the sUAV reached the waypoint or a maximum elapsed time for the first and

third training stages. For the second training stage, a training episode ended after

a fixed maximum elapsed time. The learning rate was kept fixed at 0.20 during all

three stages of training.

Moving-average estimates of the reward curves observed during training are

shown in Figure 3.5. The figure demonstrates the convergence of the OF-GM-SARSA

learning algorithm across all three stages, with slower convergence in the third stage

due to the complexity of the flocking and target seek tasks.

3.5.2 On Convergence of OF-GM-SARSA

The OF-GM-SARSA algorithm is used to develop a behavioral flocking controller

with a defined set of component rules that govern selection of control output (e.g.,

acceleration, heading) in outdoor windy environments based on the relative position

and velocity differences between neighboring sUAVs [31]. Since the sUAVs operate
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in a dynamic and stochastic environment, there is no guarantee of convergence

to a globally optimal policy. Singh et al. in [325] proved that the SARSA

learning algorithm converges to an optimal Q∗ if the policy is greedy in the limit

of infinite exploration (GLIE). GLIE implies a learning policy in which, eventually,

the probability of selecting the optimal action over a random action becomes 1

(greedy). This requirement can be met with both the ϵ-greedy and the Boltzmann

(softmax) exploration. Russell and Zimdars [298] then extended this result to the

use of an arbitrator and local Q-functions (modular GM-SARSA), in that, given that

the arbitrator satisfies GLIE, individual module updates Qm converge to optimal

Q∗
m, and then converge to a global optimum Q∗. Cobo et. al. [71] addressed OF

Figure 3.5 Moving average and standard deviation of returned reward over all
training iterations with sliding window size of 200 from each of the three training
stages. Stage 1 training reward (target seek – top-left). Stage 2 training reward
(flocking – top-right). Stage 3 training reward (all objectives – bottom).
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Q-learning, where they demonstrated that OF Q-function estimates Qo converge to

the true Q-functions, Q∗
o, in that several objects in the same class can be seen as

independent episodes of the same Markov Decision Process (MDP). These results

assumed a static and deterministic state space.

The first and foremost goal of the training was to obtain Q-values that maintain

generalizability and ensure that the sUAVs maintain safe flight formation in the

presence of realistic stochastic disturbances. Figure 3.5 depicts the sliding window of

the mean and standard deviation for the average returned reward values per iteration

for each training phase. As observed in Figure 3.5, the first two phases demonstrate

strong convergence. In the third stage, when training for all objectives, the mean of

the rewards obtained demonstrates slow but sufficient convergence indicating that the

policy is learning the desired behaviors. Note that some variation in reward during

training is also due to randomized scenarios with respect to initial distances from the

target in addition to quantity and location of obstacles per iteration.

3.6 Simulations using Dryden Model

The OF-GM-SARSA flocking controller was evaluated with and without wind

disturbances in Python simulations. The wind disturbances were modeled using the

Dryden wind turbulence model discussed. Figure 3.6 depicts an example of the wind

speed in m/s generated in the along-wind (headwind and tailwind depending on +/-

sign), crosswind, and vertical-wind for a flight duration of 10 seconds. The sampling

rate for this particular dataset was 43Hz. The wind turbulence generated was for a

quadrotor sUAV operating at an altitude of 5m above the ground and moving with

an airspeed between 0.25m/s to 1m/s.

Waypoints were considered achieved if sUAVs were within 3.0 meters of them.

The collision avoidance minimum and desired separation distances were set to 3.0 and

6.0 meters, respectively.
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Figure 3.6 The magnitude of Dryden model based wind speeds in the along-wind,
cross-wind, and vertical wind directions in m/s.

100 runs of four quadrotor sUAVs flocking along a 5-waypoint rectangular area

while maintaining the flocking rules of cohesion, alignment, and collision avoidance

were simulated. Figure 3.7a depicts the multi-sUAV flock at the third waypoint when

there were no wind disturbances. Figure. 3.7b depicts the multi-sUAV flock at that

same point when wind disturbances were applied. From Figure. 3.7b, it is observed

that the quadrotors had overshot the waypoint due to the wind disturbance.

(a) No wind disturbances added (b) Wind disturbances added

Figure 3.7 Four quadrotor sUAV flock around a 5-point rectangular path in
simulation with and without the application of Dryden wind gust model.
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However, as observed in the accompanying video, successful flocking behavior

was maintained throughout the simulation. The multi-sUAV formation completed the

mission with and without wind disturbances while avoiding collision and reaching all

5 waypoints. A simulation based comparison of the OF-GM-SARSA flocking planner

presented here with the genetic algorithm-based behavioral flocking planner was

conducted in our previous work [330]. The comparison suggested high generalizability

of the trained model and proved the model’s capability of keeping the number of

collisions to a minimum.

3.7 Testbed and Methodology

This section describes the experimental hardware and software architecture and test

procedures. The HWIL tests used table-top setups of the quadrotors that ran the

flocking planner for 5-waypoint missions. The waypoints were spread out in a square

pattern over a 40 meter by 40 meter area for both the HWIL and the outdoor flight

tests.

3.7.1 Flocking Quadrotor Architecture

Each quadrotor sUAV was equipped with a Raspberry Pi 4 flight computer, an

RFM69 radio module, and the DJI N1 flight controller as depicted in Figure 3.8. The

associated software architecture is also depicted in Figure 3.9. The DJI M100 N1 flight

controller was responsible for position and velocity control using velocity and yaw-rate

inputs generated by the flocking algorithm. The N1 flight controller was connected to

the Raspberry Pi running the DJI Onboard SDK via a universal asynchronous receiver

transmitter (UART) connection. The OF-GM-SARSA software and Q-tables learned

in training (Section 3.5) ran on the Raspberry Pi in a Python ROS node for each

platform. The local telemetry information was obtained by interfacing with the DJI

N1 flight controller. Both telemetry information and velocity control were achieved
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Figure 3.8 Quadrotor hardware setup for the flocking system. The DJI M100
quadrotor platform featured a Raspberry Pi 4 computer for controls and motion
planning and a 915MHz mesh radio for networking with other quadrotors. The
mesh network was used to communicate position, velocity, acceleration, and other
relevant controls data.

using the DJI SDK ROS interface. An Arduino micro-controller was connected to

the Raspberry Pi over USB. The Arduino provided a bridge for the RFM69 915 MHz

wireless radio transceiver.

A ground station computer hosted a web-based user interface that provided

status monitoring information and high-level experimental control for each experiment.

Figure 3.9 Software architecture for the flocking system.
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The ground station also used an RFM69 915 MHz wireless radio transceiver to acquire

telemetry information and perform clock synchronization for all quadrotors. A time

division multiple access (TDMA) data link protocol was implemented to achieve

low latency wireless communication between neighboring sUAVs and the ground

station. Each data payload included neighbor position, yaw heading, and network

connectivity information about the transmitting quadrotor. Before starting a mission,

communication slot assignments were determined, with the ground station always

configured to use the first communication slot.

All HWIL tests were executed using the DJI Assistant 2 flight simulation

software, and the same compute and communication payloads. The software provided

a real-time emulation of the DJI M100 rigid body dynamics to simulate the telemetry

outputs and velocity and yaw rate inputs into the N1 flight controller. The DJI

SDK ROS topics were published to the Raspberry Pi shown in Figure 3.8 to test

the OF-GM-SARSA flight planner. During HWIL testing, the three quadrotors and

ground stations were placed in line with approximately 0.5 meters between each

quadrotor and approximately 1.5 meter separation to the ground station to minimize

packet loss.

3.7.2 Wind Measurement

An FT205 ultrasonic anemometer sensor with an embedded computer was used to

perform wind measurements during the flight tests, as shown in the Figure. 3.10.

The sensor was mounted on a DJI M100 quadrotor using 20 inches long 3D printed

pole. The FT205 was sampled at a frequency of 2 Hz. The wind measurements were

performed with the quadrotor hovering at the height of 12.5 meters above ground

level. The quadrotor was flown approximately 50 meters away from where the flocking

quadrotors were operating to maintain safety.
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Figure 3.10 FT-205 wind sensor mounted on the DJI Matrice 100 sUAV to collect
wind data during flight test.

3.7.3 OF-GM-SARSA Configuration

For all tests, the OF-GM-SARSA planner was configured with desired separation

distance of ksep = 6 meters and a minimum separation distance of kcol = 3 meters.

The reach distance for waypoints was set to 6 meters. The cohesion radius for the

cohesion objective was set to 30 meters. Several weight combinations were used for

the OF-GM-SARSA objectives, with each combination summing to 1. All quadrotors

were required to be within the reach distance to the current waypoint before moving

to the new waypoint. The update rate for the OF-GM-SARSA planner was set to

4 Hz, which was selected to match the update rate of the DJI N1 flight telemetry

sampling.

3.7.4 Flight Procedure

Each HWIL and outdoor flight test consisted of the following three stages:

Flight Stage 1: Take-off and position In the first stage, the DJI M100

quadrotors would take off one at a time and move along a pre-specified path to a

nearby location denoted by the center point. The quadrotor would then move into a

relative formation as determined by a position offset from the center point, after which

the next quadrotor would be cued to take off. Example initial formations included a
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Figure 3.11 Snapshot of a 3 quadrotor triangular formation with 3.5 meter height
offsets. The red circle is the center point around which the formation is aligned.

straight line or a triangle as pictured in Figure 3.11. Field tests were performed with

a minimum height offset of 3.5 meters between quadrotors for safety reasons.

Flight Stage 2: Target Seek Once the quadrotors reached their initial deter-

ministic formation, the OF-GM-SARSA planner would start the flocking process over

the series of pre-specified waypoints.

Flight Stage 3: Return-To-Home (RTH) Once the OF-GM-SARSA planner

achieved all waypoints, the quadrotors remained in place and executed an RTH

procedure. This stage involved each quadrotor returning to its initial formation

location and landing at its original takeoff location. The order the quadrotors returned

to their takeoff points was determined by their distance to the center point. The

quadrotors were assigned a wait time before starting their RTH to allow enough

separation between them.

3.8 Experimental Results

This section presents the experimental results and discussion on the performance

achieved by the OF-GM-SARSA planner for 3-sUAVs and 4-sUAVs scenarios. The

OF-GM-SARSA planner was evaluated under HWIL and field experiments. All

metrics reported did not include telemetry measurements from the takeoff and RTH

stages. The experiments were performed five times each to ensure repeatability.
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3.8.1 Key Evaluation Metrics

The experimental evaluation of the OF-GM-SARSA motion planner, including the

HWIL simulation and outdoor flight tests, provides actionable insights into the

practical application of the proposed method. The following metrics were used to

measure the system performance in HWIL and field test experiments:

1. Inter-sUAV distance dij: the Euclidian distance between two sUAVs at any
given time.

2. kcol violation: an instance where the minimum dij was below the specified kcol.

3. Takeoff + Target Seek + Return-To-Home (RTH) time τmission: The total time
to complete the mission from takeoff to landing.

4. Velocity alignment deviation: the difference between the velocity heading of
each sUAV and the average headings of the flock (closer to zero is better).

5. Cohesion distance deviation: the difference between the position of each sUAV
and the average position of the flock (lower is better).

6. Total radio packet loss ζtotalloss : the fraction of total transmitted radio packets
that were received across all quadrotors during the flight test.

7. Average pairwise packet loss ζavgloss: the total packet loss per quadrotor pair
averaged across a total number of quadrotor pairs during the flight test.

3.8.2 Inter-sUAV Distances

3-quadrotor test: The summary statistics associated with 3 quadrotors for dij are

shown in Table 3.1. The top left and top right graphs in Figure 3.12 depict the

inter-sUAV distances for 3 quadrotors throughout the entire duration of the HWIL

experiment and field test respectively. The average wind speed during this the HWIL

test was ∼6.54 m/s with a standard deviation of ∼0.72 m/s. The average wind speed

during the field test was relatively higher at ∼7.23 m/s with a standard deviation

∼2.49 m/s.

4-quadrotor test: The summary statistics associated with 4 quadrotor for dij are

shown in Table 3.2. The bottom left and bottom right graphs in Figure 3.12 depict
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Table 3.1 Inter-sUAV Distance dij, for 3 Quadrotors Flocking Square in Meters
Across 5 Tests. kcol Violations for the Test Run depicted in the Top Rows of Figure
3.12.

HWIL
sUAV Pair Mean dij Min dij kcol Violations

(1,2) 9.27m 3.83m 0
(1,3) 8.99m 1.03m 2
(2,3) 8.93m 2.7m 1
Field

sUAV Pair Mean dij Min dij kcol Violations
(1,2) 8.12m 3.39m 0
(1,3) 17.29m 2.06m 2
(2,3) 18.52m 7.46m 0

the inter-sUAV distances for one set of quadrotor pairs in a 4 quadrotor scenario

throughout the entire duration of the HWIL experiment and field test respectively.

The average wind speed during this the HWIL test was ∼6.54 m/s with a standard

deviation of ∼0.72 m/s. The average wind speed during the field test was recorded to

be ∼6.79 m/s with a standard deviation of ∼1.77 m/s.

As is observed from the tables and the graphs, the mean dij distances for both

these tests were well above the desired separation distance of 6 meters. However,

during the HWIL and field test experiments, there were rare instances where the

Table 3.2 Inter-sUAV Distance dij, for 4 Quadrotors Flocking Square in Meters
across 5 Tests. kcol Violations for Test Run depicted in the Bottom rows of Figure
3.12.

HWIL
sUAV Pair Mean Min kcol Violations

(1,2) 8.49m 1.94m 2
(1,3) 9.88m 3.52m 0
(1,4) 7.85m 1.67m 5
(2,3) 12.09m 3.50m 0
(2,4) 10.09m 1.00m 6
(3,4) 11.61m 0.60m 1
Field

sUAV Pair Mean Min kcol Violations
(1,2) 8.55m 1.58m 1
(1,3) 8.87m 1.94m 1
(1,4) 7.71m 1.94m 2
(2,3) 10.24m 3.54m 0
(2,4) 10.67m 3.50m 0
(3,4) 11.88m 2.77m 1
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minimum inter-sUAV distance was below the specified kcol of 3 meters. For example,

the pair (1,3) witnessed a minimum inter-sUAV distance of 1.03 meters in HWIL and

2.06 meters in the field test for the 3-quadrotor scenario. Similarly, several pairs in

the 4-quadrotor scenario came closer to the kcol distance to each other. In all these

instances, the quadrotors quickly corrected (in less than 2.5 seconds) these violations.

The inter-sUAV distance performance recorded in our outdoor flight exper-

iments was benchmarked against the inter-sUAV distance performance obtained using

the model-based approach incorporating an evolutionary optimization framework

reported in [360]. The following observations are made:

1. Using the approach of [360], the average inter-sUAV distances observed varied
between 12 meters and 30 meters. From Table 3.4, the average inter-sUAV
distances varied from 8 meters and 18.52 meters for our experiments.

2. Using the approach of [360], the minimum inter-agent distance remained
between 5 meters and 15 meters. From Table 3.4, the minimum inter-agent
distance for or experiments did not exceed 8 meters.

3.8.3 Total Mission Time

For the three quadrotor test, the mean τmission was 487.86 seconds for the HWIL

simulation. For the field test, this duration decreased to 477.22 seconds.

For the four quadrotor test, the mean τmission was 692.44 seconds for the HWIL

simulation. For the field test, this duration decreased to 578.35 seconds.

The most significant factor associated with τmission variations was the presence

of unpredictable wind conditions in the field test. During windier conditions, it was

found that the total execution time varied significantly as the quadrotors would be

aided more by the wind gusts in some directions compared to other directions as they

tried to maintain collision avoidance, velocity alignment, and cohesion. These wind

effects can be readily observed in the flight test video.
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Figure 3.12 Top Row: Inter-sUAV distances for 3 quadrotors (Top Left: HWIL
and Top Right: Field Test) Bottom Row: Inter-sUAV distances for 3 pairs in the 4
quadrotors test (Bottom Left: HWIL and Bottom Right: Field Test). Both results
demonstrate that the flocking controller maintained the required separation ksep and
collision avoidance kcol distances for most of the test duration. Any minor breaches
of the kcol were corrected quickly and safely.

Table 3.3 Observed Communication Packet Loss for 3 and 4 Quadrotors

# of
sUAV

ζtotalloss ζavgloss

HWIL
3 27.11% 9.5%
4 42.2% 6.02%
Field
3 37.8% 16.21%
4 63.12% 18.02%

3.8.4 Communication Packet Loss

Table 3.3 depicts the ζtotalloss and ζavgloss for the 3-sUAV and 4-sUAV tests. It is observed

that both ζtotalloss and ζavgloss are lower for HWIL when compared to outdoor field tests.
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Table 3.4 Velocity Alignment Deviation and Cohesion Distance for 3 Quadrotor
Averaged over 5 Tests

(a) Velocity Alignment
Deviation (Degrees)

HWIL
sUAV Mean Median

1 -7.96◦ -4.15◦

2 4.72◦ -0.40◦

3 3.24◦ 4.13◦

Field
sUAV Mean Median

1 -10.54◦ -17.01◦

2 -4.73◦ -0.86◦

3 27.48◦ 18.09◦

(b) Cohesion Distance in Meters

HWIL
sUAV Mean Median St. Dev

1 5.25m 5.42m 1.15m
2 4.99m 5.44m 1.52m
3 3.97m 3.58m 1.48m

Field
sUAV Mean Median St. Dev

1 4.21m 4.08m 1.59m
2 6.47m 5.52m 3.56m
3 3.97m 6.17m 4.65m

Table 3.5 Velocity Alignment Deviation and Cohesion Distance for 4 Quadrotors
Averaged over 5 tests meters

(a) Velocity Alignment
Deviation (Degrees)

HWIL
sUAV Mean Median

1 -3.88◦ 4.06◦

2 -2.39◦ -5.09◦

3 -1.76◦ 3.57◦

4 -11.68◦ -5.30◦

Field
sUAV Mean Median

1 16.93◦ 19.69◦

2 -15.7◦ -20.00◦

3 36.27◦ 41.32◦

4 -37.49◦ -65.52◦

(b) Cohesion Distance in Meters

HWIL
sUAV Mean Median St. Dev

1 4.26m 4.2m 2.01m
2 6.78m 6.72m 1.94m
3 6.87m 7.05m 1.92m
4 4.33m 3.65m 2.27m

Field
sUAV Mean Median St. Dev

1 4.43m 4.34m 1.79m
2 5.64m 5.40m 1.94m
3 7.09m 6.86m 2.95m
4 5.47m 5.57m 2.73m

For outdoor field tests, when the pairwise line of sight is not readily established

among quadrotors, ζtotalloss increases as the number of quadrotors in the mission increase.

However, it is also observed that ζavgloss remains low i.e. majority of the communication

happens through multi-hop indirect propagation. In case of 4 quadrotors operating

outdoors, ζtotalloss is particularly severe at 63% while ζavgloss remains around 18%.

3.8.5 Velocity Alignment and Cohesion Deviations

The summary statistics for sUAV velocity alignment and cohesion deviations for

3-quadrotor formation flight are shown in Table 3.4. Similarly, the summary statistics
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for sUAV velocity alignment and cohesion deviations for 4-quadrotor flight are shown

in Table 3.5. From the tables, it is observed that for the 3-quadrotor scenario, the

flock achieves stronger cohesion and velocity alignment performance as compared to

the 4-quadrotor scenario. It is also observed that the velocity alignment deviation

in HWIL tests is significantly lower compared to that in the field tests. Several

factors need to be considered: 1) The average wind speed during field tests was

higher than during the HWIL experiments. 2) The radio packet losses (ζtotalloss and

ζavgloss) were significantly higher in field tests than the HWIL tests. A higher packet

loss results in slower/variable telemetry refresh rates, affecting flight control quality.

3) As the number of sUAVs in the flock increases, each sUAV has to accommodate

the “wind-disturbed” positions and orientations of an increasing number of neighbors

in the flock.

The velocity alignment performance recorded in our outdoor flight experiments

was benchmarked against the velocity alignment performance obtained using the deep

deterministic policy gradient (DDPG) approach presented in [369]. The mean velocity

alignment observed in our outdoor flight tests with three quadrotors varied between

−7.96◦ and 4.72◦ , indicating the agents maintained their heading relative to each

other with minimum deviations. Based on the DDPG approach of [369], for the

three-quadrotor test, the mean velocity alignment varied between −108◦ and 63◦.

3.9 Discussion and Future Research

Several future research directions for experimental implementation of RL based

motion planning algorithms emerge based on this study.

Energy-Aware Planning: The energy requirements of sUAVs directly affect

the practicality of any motion planning algorithm [315, 340]. This requirement is

especially true when quadrotors operate in windy outdoor environments where they

need to compensate for gusts. An exemplar study in this context is [243], wherein
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the authors developed an RL approach that combined the effects of the power

consumption and the object detection modules to develop a policy for object detection

in large areas with limited battery life. The quadrotors used in this study (DJI

M100) were evaluated in hover flight tests to have a flight time of approximately 1200

seconds, which proved sufficient to test the OF-GM-SARSA approach in flight-test

experiments. However, the inclusion of sUAV power constraints as an objective in

the OF-GM-SARSA paradigm using an approach similar to [243] will be explored in

future efforts.

Scalabilty and Collision Avoidance Guarantees: Future efforts will explore

guarantees of collision avoidance with outdoor experimental tests involving groups of

up to 12-15 quadrotors using Control Barrier Functions (CBFs) [22]. CBFs are being

increasingly used to verify and enforce safety properties in the context of safety-critical

controllers. They have the potential to provide a computationally tractable approach

to combining learning with safety guarantees.

Actor-Critic methods: Despite a relatively slow convergence in the final training

stage, the trained OF-GM-SARSA behavioral controller was more than capable of

generating flocking behaviors for multiple sUAVs flying in formation outdoors in the

presence of wind disturbances. Among existing reinforcement learning techniques,

SARSA-based approaches have been shown to have poor convergence performance for

real-world applications because they are oriented towards finding the deterministic

policy, whereas the optimal policy is stochastic [343]. Alternatively, reinforcement

learning approaches based on the actor-critic paradigm have been proven to have

good convergence properties [167]. Actor-critic methods have been shown to be

scalable to multiple robots with more than 3-degrees of freedom, and they can

also be used model-free [264]. In future work, such actor-critic approaches will be

explored. It is well known that despite favorable convergence properties, actor-critic
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methods are difficult to implement, and their performance is highly dependent on the

hardware/software implementation [93]. Towards this end, we plan to use Flightmare,

a quadrotor simulator that provides OpenAI gym-style wrappers for several RL

algorithms, including actor-critic methods such as Proximal Policy Optimization

(PPO) algorithm [310,329].

3.10 Conclusion

This chapter focused on experimental evaluation of the OF-GM-SARSA planner

to address the flocking problem in small rotor-based multi-UAVs. The chapter

presented a description of the background of the algorithm, along with the training

procedure. The flocking controller was experimentally evaluated in HWIL and field

tests for 3-quadrotor and 4-quadrotors missions. The controller’s performance was

also evaluated under windy conditions in HWIL simulations using the Dryden wind

turbulence model. The controller behavior observed in windy conditions in HWIL and

outdoor tests was similar to the simulations, suggesting that the technique presented

here generalizes the behaviors trained in simulation to real-time interactions.
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CHAPTER 4

IMPLEMENTATION OF A MIXED INTEGER NONLINEAR
OPTIMIZATION-BASED DECENTRALIZED MOTION PLANNER
FOR MULTIPLE QUADROTORS IN THE PRESENCE OF WIND

GUSTS

4.1 INTRODUCTION

Paper: P. Abichandani, D. Lobo, M. Muralidharan, N. Runk, W. McIntyre,

D.J. Bucci, and H.Y. Benson. “Implementation of a Mixed Integer Nonlinear

Optimization-based Decentralized Motion Planner for Multiple Quadrotors in the

Presence of Wind Gusts,” submitted to IEEE Robotics and Automation Letters, 2022

Safe and reliable motion-coordination of multiple rotor-based unmanned aerial

vehicles (UAVs) is constrained by their kinematics and dynamics, and the need to

avoid collisions while ensuring sufficient wireless communication Quality-of-Service

(QoS). Approaches reported in literature to address multi-rotor UAV motion planning

include Probabilistic Road Maps (PRMs) [139], Rapidly-exploring Random Trees

(RRTs) [266], Velocity obstacles [28], Particle Swarm Optimization (PSO) [40],

Artificial Neural Networks (ANNs) [370], Signal Temporal Logic [50, 193], and

Mathematical Programming (MP) [5].

Since the seminal studies by Schouwenaars et al. and Richards and How

[291,309], the body of work that presents centralized and decentralized Mathematical

Programming (MP) or Mathematical Optimization-based approaches for solving

motion planning problems (MVMPs) for ground [160, 286], underwater [7, 373], and

aerial robot systems [320,390] has steadily grown. Mixed-integer nonlinear programs

(MINLPs) can be used to capture all MVMP constraints effectively. However, the

solutions to MINLP in the context of MVMP problems are computationally intensive

(NP-hard), thus rendering real-time implementations and scalability challenging [277].
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One approach to address this challenge is the use of receding horizon (RH) or model

predictive control (MPC) methods. These methods have proven to be suitable for

online and real-time motion planning for multi-robot systems in dynamic and partially

unknown environments [5, 173]. A key benefit of using MP-based approaches is that

they allow for effectively studying the trade-off between mobility (speed, acceleration,

waypoints), wireless communications (bandwidth, buffer size, path loss, delay), and

energy consumption [64,320].

For quadrotors operating outdoors, solutions to MVMPs are exacerbated in

the presence of wind disturbances. Despite significant work on multi-quadrotor

motion planning, simulation or experimental approaches that explicitly incorporate

effective strategies to counter wind gusts are only recently being reported in the

literature [66, 259, 350]. Simulation approaches use wind models such as the Dryden

and Von Karman models to incorporate realistic wind gusts during motion planning.

Experimental approaches to estimate wind speed and direction during motion

Figure 4.1 Snapshots of a 2 quadrotors (top row left), 3 quadrotors (bottom row
left), 6 quadrotors (top row right) operating outdoors. Bottom row right image
shows the FT-205 wind sensor mounted on the DJI Matrice 100 quadrotor to collect
wind data during flight test.
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planning use sensors such as ultrasonic anemometers, pitot tubes, accelerometers,

gyroscopes, and barometers [296]. In this work, we use the Dryden model to simulate

realistic wind gusts in simulations and Hardware-in-the-loop (HWIL) experiments.

Wind gusts continually disturb the quadrotors off their planned positions,

thus requiring fast re-computation of the MP solutions to mitigate any increased

risk of collisions [207]. Such repeated computations limit the effectiveness of MP

frameworks in windy situations. As such, there is a need for a novel approach

to reduce the repeated computation of MPs while ensuring that mission safety is

not compromised. In this chapter, we present a novel MINLP solution approach

that combines heuristic and optimal methods, namely simulated annealing and

interior-point methods, respectively, to handle discrete variables and nonlinearities

feasibly in real-time. Figure 4.1 depicts outdoor flight tests conducted with 2, 3, and

6 quadrotors to validate our approach.

Control Barrier Functions (CBFs) are being increasingly used to provide

guarantees of collision avoidance for multi-vehicle systems [23]. CBFs have been

applied to single UAV problems to guarantee collision avoidance while exploring a

cave environment and seamlessly integrate with an existing motion control algorithm

[111]. CBFs have also been used for collision-free multi-quadrotor systems operating

indoors to demonstrate formation control and safe human teleoperation [192, 382].

Recently, learning-based approaches have been used to synthesize CBFs for multiple

aircraft [294]. This study extends these use cases by applying CBFs for the safe

transit of quadrotors subjected to potentially dangerous wind gusts.

4.1.1 Main Contributions

This chapter presents the first implementation of an RH-MINLP framework that

leverages CBFs for multiple, networked quadrotors operating outdoors in windy

environments to the best of our knowledge.
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1. A RH-MINLP and CBF-based framework to implement collision-free MVMP
for multiple, networked quadrotors operating outdoors in the presence of wind
gusts.

2. A fast MINLP solution approach that combines Simulated Annealing and
Interior point methods for generating feasible real-time solutions.

3. Integration of the Dryden wind gust model with RH-MINLP and CBFs
to perform realistic simulations and HWIL testing with DJI Matrice M100
quadrotors.

The framework is validated in simulations featuring up to 50 quadrotors and

Hardware-in-the-loop (HWIL) experiments, followed by outdoor field tests featuring

up to 6 DJI M100 quadrotors. Extensive performance results of the proposed

framework are documented in this chapter.

The rest of the chapter is organized as follows: Section 4.2 describes the

problem formulation. Section 4.3 presents the RH-MINLP algorithm followed by

the optimization solution technique in Section 4.4. Next we present the experimental

setup and results in Section 4.5, and a brief summary of the chapter in Section 4.6.

4.2 Preliminaries

4.2.1 Quadrotor Motion and Paths

Consider a group of n wirelessly networked quadrotor vehicles operating in right-

handed NED, body, and body-fixed frames of reference. Each quadrotor i = 1, . . . , n

has a start (origin) point oi and a end (goal) point ei. O is the set of all start (origin)

points. oi ∈ O, i = 1, . . . , n. E is the set of all end points. ei ∈ E, i = 1, . . . , n. The

Euclidean distance between two quadrotors i and j is denoted by dij, i = 1, . . . , n, j ̸=

i.

All quadrotors are required to maintain a minimum safe distance dsafe to avoid

collisions with each other. For each quadrotor i, the total arc length of its path is

denoted by U i. The linear and angular speeds of quadrotor i along its fixed path

are denoted by si and ωi, each expressed in the body-fixed frame of the quadrotor.
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pi(t) = (xi(t), yi(t), zi(t)) is the location of quadrotor i on its path at time t, and

is calculated using the speed si(t). The path for quadrotor i is represented by a

three-dimensional (3D), piecewise 7th order spline curve SPi(u), where the parameter

u is the normalized arc length along the curve. The curves are obtained by combining

three one-dimensional piecewise 7th order splines. The piecewise 7th order spline

curves feature continuous first derivatives (slope), second derivatives (curvature),

third derivatives (jerk), and fourth derivatives (snap) along the curve. Fig. 4.2

depicts the spline curve paths for a 6-quadrotor scenario.

The differential flatness of quadrotor dynamics, use of 3D piecewise 7th order

spline curves, and the constraints on the speed, acceleration, snap, and yaw rate

results in kino-dynamically feasible speed profile for quadrotors [221,293]. A detailed

discussion on spline curve design and analysis can be found in [183].

Let κi(u) be the curvature along the spline curve i. The angular speed ωi(u)

can be computed from the linear speed and spline curvature as follows:

ωi(u) = si(u)κi(u). (4.1)

4.2.2 Receding Horizon (RH)

Thor denotes the length of the receding horizon and is determined by the capabilities

of the embedded flight planning and control system. At any discrete time step t,

each quadrotor must calculate its plan for t + 1,. . . , t + Thor and communicate this

plan with other quadrotors in the network. This plan is denoted by P i(t) = (pi(t +

1), . . . ,pi(t + Thor)). Only the plan for time t + 1 is implemented, and the planning

process is restarted at time step t+ 1. At time step Tmission, the mission is completed

when the last-arriving quadrotor reaches its end point. If a quadrotor reaches its goal

point before Tmission, it hovers there until the mission is over.
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Figure 4.2 A multi-quadrotor mission with six quadrotors moving along their
spline paths (represented by solid, colored lines) in the presence of wind. Control
Barrier Functions (CBFs) and associated safety certificates visualized as
super-ellipsoids provided robust collision avoidance in the face of wind disturbances
during transit. The vector field (blue arrows) indicates wind gusts generated using
the Dryden wind model. Red triangular and square markers indicate the start and
endpoints of the spline paths arranged in a geometric formation. Black round
markers indicate spline-path waypoints. The North, East, Down (NED) frame and
the Body frame (bx, by, and bz) are shown. The quadrotors operate in a 40 m x 40
m x 40 m airspace.

4.2.3 Communication Modeling and Ordering

Each quadrotor is equipped with a mobile ad-hoc network (MANET) radio to

exchange RH-MINLP solutions with other quadrotors. MANET communication is

accomplished via direct one-hop connection or multi-hop relaying, thus resulting in a

fully connected network. A round-robin scheduling technique for sequential wireless

communication is used for fair distribution of MANET bandwidth and fault tolerance.
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The sequence of the quadrotors for the round-robin scheduling is determined randomly

at the beginning of the mission. The first quadrotor in the round-robin is also the

first to take off.

4.2.4 Dryden Wind Model and Spline Regeneration

The continuous Dryden turbulence model is used to simulate wind gusts and study

their effects on the motion planning solutions [122]. The open-source implementation

of the Dryden wind turbulence model can be found in [79]. When the quadrotors

are displaced off their pre-defined spline paths due to wind gusts, a rapid spline

regeneration process ensures that each quadrotor has an updated spline path starting

from the displaced location to the endpoint. Spline regeneration is effectively

visualized in the accompanying video submission.

4.2.5 Control Barrier Functions and Safety Barrier Certificates

Each quadrotor is encapsulated in a super-ellipsoidal, Exponential Control Barrier

Function (ECBF) depicted in Fig. 4.2. For a pair of quadrotors (i, j), the pairwise

safe set Bij and the pairwise super ellipsoid hij(qi, qj) are defined as:

Bij = {(qi, qj)|hij(qi, qj) ≥ 0}, (4.2)

hij(qi, qj) = (xi − xj)4 + (yi − yj)4 + (
zi − zj

c
)4 − d4safe (4.3)

Where qi represents the full state of the quadrotor i, dsafe is the safety distance,

c is the scaling factor along the Z-axis caused by airflow disturbance. The two

quadrotors are considered safe when the two super-ellipsoids do not intersect. Readers

are referred to [372] and its references for information about the mathematical
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construction, verification, and incorporation of ECBFs in motion planners through

the use of Quadratic Programming (QP).

4.3 Optimization Model

The optimization (MINLP) problem O(t) solved by each quadrotor is expressed in

(4.4) - (4.14). The optimization is performed for speed si of the quadrotor along its

specified path and auxiliary variables are used for position (xi, yi, zi), arc length (ui),

acceleration (ai), and communication connectivity (Cij, j ̸= i). Each quadrotor i

uses the most current plans of all other quadrotors while solving Oi(t).

Problem Size: O(t) has (n+5)Thor decision variables, (2n+5)Thor constraints,

and variables bounds. The problem size grows linearly with the number of quadrotors

n.

4.3.1 Objective Function

The objective function (4.4) forces the quadrotors to minimize the total distance (arc

length) between their current location and the goal position over the entire receding

horizon. It prioritizes the quadrotors’ movement to their goal positions.
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minimize
s,x,y,z,u,a,C

t+Thor∑
k=t+1

(U i − ui(k)) (4.4)

subject to ∀k ∈ {t+ 1, . . . , Thor}

(xi(k), yi(k), zi(k)) = SPi(ui(k)) (4.5)

ui(k) = ui(k − 1) + si(k)∆t (4.6)

ui(t) ≤ ui(k) ≤ U i (4.7)

si(k) = si(k − 1) + ai(k)∆t (4.8)

smin ≤ si(k) ≤ smax (4.9)

amin ≤ ai(k) ≤ amax (4.10)

∀j ∈ {1, . . . , n}, j ̸= i(
dij(k)

)2 ≥ d2safe (4.11)(
dij(k)

)2 ≤M(1− Cij(k)) + η2d (4.12)∑
j:j ̸=i

Cij(k) ≥ nconn (4.13)

Cij(k) ∈ {0, 1} (4.14)

4.3.2 Path (Kinematic) Constraints

Constraints (4.5)-(4.7) define the quadrotor’s location along its path. Location can

be defined in two ways: arc length traversed along the quadrotor’s path (ui) and

the coordinates of its location (xi,yi,zi). The former is used to define kinematic and

dynamic constraints, while the latter is used to calculate Euclidean distances between

quadrotors for collision avoidance and communication connectivity. Constraint (4.5)

defines the 7th order spline curves SPi(ui(k)) that link these two sets of variables.

Given its location at the beginning of the planning period, constraint (4.6) increments

the arc length at each time step based on the speed of the quadrotor. ∆t is the DJI
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Matrice M100’s flight controller update rate obtained directly during actual tests.

Constraint (4.7) ensures that the quadrotor will remain between its location at the

beginning of the planning period and its goal position at all times.

4.3.3 Speed and Acceleration (Dynamic) Constraint

Given the quadrotor’s linear speed si at the beginning of the planning period,

constraint (4.8) increments the speed at each time step based on its acceleration

ai. Constraints (4.9)-(4.10) are dynamic constraints that ensure that the linear speed

(and hence, the angular speed) and acceleration for each quadrotor at each time step

are sufficiently bounded. The bounds are determined by the capabilities of the DJI

M100 quadrotor and the curvature of the spline paths to ensure that the quadrotor

motors do not saturate. Since the 7th order spline curves are generated while

minimizing snap (4th derivative), the paths allow for smooth trajectory following.

The angular speed required by the quadrotors corresponding to the optimal linear

speed is always achievable and is determined using a relationship (4.1).

4.3.4 Collision Avoidance Constraint

The non-convex constraint (4.11) defines the required minimum distance dsafe between

each pair of quadrotors at all times to avoid collisions.

4.3.5 Communication Connectivity Constraint

The binary variable Cij(t) indicates whether two quadrotors are in one-hop commu-

nication range ηd of each other as shown in:

Cij(t) =


1, if dij ≤ ηd,

0, otherwise.

(4.15)
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Equation (4.13) represents the communication connectivity constraint, which

ensures that each quadrotor is in a one-hop communication range of nconn other

quadrotors. In the proposed model (4.15) is replaced with equation (4.12). This

Big-M constraint (along with (4.14)) forces Cij(t) to be 0 when dij > ηd, but leaves

it free to be 0 or 1 when quadrotors i and j are within communication distance.

Constraint (4.13) then ensures that at least nconn of the free Cij(t) values must be

set to 1. Equation (4.13) can also be represented as an equality constraint without

the need to change the solution.

4.4 OPTIMIZATION SOLUTION TECHNIQUE

The numerical optimization solution technique for solving the set of equations (4.4)

- (4.14) is divided into three levels – the outer level, the middle level, and the

lower level. At each time step t, the outer level, iterates through the quadrotors

in a pre-determined order and manages the decision updates. In the middle level,

the algorithm handles the discrete variables and communication constraints of each

quadrotor’s problem Oi(t) via Simulated Annealing. The lower level solves the

underlying continuous nonlinear programming problem using interior-point methods

to determine each quadrotor’s speed during the time horizon. This three-stage

approach ensures that the multi-UAV system performs efficiently and is scalable.

4.4.1 Outer Level: Decentralization

All quadrotors are in the communication range of each other at time 0. As discussed, a

round-robin decision-making and communication order is enforced among quadrotors.

The ordering can be randomly assigned or can be assigned a priori. It is assumed

without loss of generality that the ordering is represented as 1, . . . , n.

Each quadrotor i sequentially solves the problem Oi(t+ 1) at time t by taking

into account the following plans:
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• Plans Pj(t+1) for quadrotors j < i, as these quadrotors have already calculated
their new plans, and

• Plans Pj(t) for quadrotors j > i, as these quadrotors have yet to calculate their
new plans.

If Oi(t+ 1) is feasible, the new plan becomes P i(t+ 1). If it is infeasible, then

the quadrotors continue to use P i(t) for the remainder of the horizon. This plan is

then communicated to the rest of the quadrotors.

4.4.2 Middle Level: Simulated Annealing for Discrete Variables and

Communication Constraints

The outer level requires the solution of Oi(t+1) for each quadrotor i at each time step

t. The communication variables and the connectivity constraints (4.12) contribute

significantly to the computational complexity of Oi(t + 1): the communication

variables are binary, there are n∗Thor of them in each instance (the remaining variables

do not change by fleet size), and there are n ∗ Thor poorly-scaled communication

constraints at each instance. The communication variables and constraints are

handled at this second level.

When deciding upon an appropriate method to handle the communication

variables and constraints, it should be first noted that a feasible solution to Oi(t+ 1)

is implementable, even if it is not optimal. From a solution approach perspective, a

well-established method such as branch-and-bound (BB) with deep dives can be used

to solve MINLPs [181,189], but this may still require the solution of multiple instances

of the RH-MINLP (and hence more computational effort/time) before identifying a

feasible solution, especially as the problem size grows.

By contrast, Simulated Annealing (SA) provides a probabilistic technique

for generating incumbent solutions to approximate the global optimum of a given

function, and it can be designed to promote integer feasibility. To implement SA, the
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1: Input: The sets {1, . . . , N − 1} and {1, . . . , Thor}
2: Output: Ck′
3: Randomly select k′ ∈ {1, . . . , Thor}.
4: Randomly select j′ ∈ Ck′ and j′′ /∈ Ck′ .
5: Set Cij′(k′) = 0, Cij′′(k′) = 1.
6: Update: Ck′ ← Ck′ \ j′

⋃
j′′.

Algorithm 2: Generating a neighbor of an incumbent solution for Simulated
Annealing

binary values for the communication variables Cij at each iteration were chosen and

fixed such that (4.13) was satisfied with equality as given in the following equation:

∑
j:j ̸=i

Cij(k) = nconn

To generate a solution with the given equality, for each time period k, the set

{1, . . . , N − 1} was sampled without replacement to generate nconn indices. This

set of indices is denoted as Ck and set

Cij(k) =

 1, if j ∈ Ck

0, otherwise.

The goal of selecting the binary values for the communication variables was to

choose binary values that attain or promote the solution’s feasibility. The condition

Cij = 0 does not always imply that quadrotor i and j are not within communication

distance. This condition indicates that the quadrotors do not need to be within

communication distance. The incumbent solutions which satisfy the nconn constraint

with equality indicate that the quadrotors are required to maintain at least nconn, and

not exactly nconn. This method for generating a neighbor of the incumbent solution

is depicted as Algorithm 2.
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Once the communication variables are fixed and constraint (4.13) satisfied, a

reduced form of Oi(t), denoted by Oi
reduced(t) is created where constraints 4.12, 4.13,

and 4.14 are replaced by

(
dij(k)

)2 ≤ η2d if Cij(k) = 1 (4.16)

This replacement leads to better scaling than (4.4)-(4.14) due to the lack of

big-M constraints.

Reduced Problem Size: The resulting optimization problem is also signifi-

cantly smaller in size, with 5Thor variables and (N + nconn + 4)Thor constraints.

4.4.3 Lower Level: Nonlinear Optimization

Oi
reduced(t) is a non-linear program and can be solved using an interior-point method

for nonlinear optimization adapted from [316]. Readers are referred to [316] and its

references for further details on this nonlinear optimization technique.

4.5 Experimental Setup and Results

The RH-MINLP framework was implemented in numerical simulations, HWIL, and

outdoor flight tests. The optimization model Oi, optimization solver (all three

levels), and CBFs were implemented in Python. Custom spline generation functions

implemented in Python were used to generate the minimum snap 7th order splines

passing through N pre-selected waypoints. The Dryden Model to generate wind gusts

was also implemented on the ground station computer in Python.

Numerical simulations were carried out using a desktop computer fitted with

an i5-6400 Intel CPU 2.70 GHz Quad-core processor and 8 GB RAM. HWIL and

outdoor flight tests were conducted with DJI M100 quadrotors fitted with a Raspberry

Pi 4 (Quad-core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz and 4 GB RAM)
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computer. Each quadrotor was fitted with a transceiver radio module operating

in the 915MHz license-free frequency bands, providing half-duplex bi-directional RF

links at 300Kbps. A ground station computer (Intel Dual Core i5 @ 3.3GHz Processor

and 8 GB RAM) was part of the MANET and hosted a web-based user interface for

mission configuration, clock synchronization, and mission upload. The GPS sensor’s

positional accuracy and sampling rate onboard the DJI M100 are 1 meter and 4 Hz,

respectively. The fused telemetry stream data from the DJI M100 were sampled at

50 Hz to obtain state feedback (real-time locations and speeds).

The HWIL tests were executed using the DJI Assistant 2 flight simulation

software. The software provided real-time emulation of the telemetry outputs and

velocity yaw rate inputs to the DJI N1 flight controller based on the rigid body

dynamics of the DJI M100. During HWIL testing, the quadrotors and ground

station were placed in line with approximately 0.5 meters between each quadrotor

and approximately 1.5-meter separation from the ground station.

The Python implementation interfaced with DJI M100 real-time telemetry data

via UART and a Linux SDK provided by the DJI M100 N1 flight computer. The

speed obtained by solving the O served as the set-point for the DJI M100’s N1

flight controller, which exerted the appropriate control effort to achieve the set-point.

During outdoor tests, a manual override was implemented to stall the quadrotor in

place until a human operator took over in case of degraded MANET performance,

heavy wind gusts, or critically low battery in the quadrotors. Table. 4.1 lists key

motion and communications parameters.

Table 4.1 Motion and Communication Parameters

dsafe 3m smin 0 smax 0.5m/s
amin -0.25 m/s2 amax 0.25 m/s2 nconn 1
ηd 5m Ptr 100mW Thor 3
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Numerical simulations focused on exploring scalability (up to 50 quadrotors)

of the RH-MINLP + CBF framework and comparing the computational efficiency of

the SA + Interior Point Method solver with another established method (Branch-

and-Bound (BB) + Interior Point Method). HWIL tests were performed with up to

6 DJI M100 to study 1) the effect of wind disturbances on safety violations, 2) the

safety accorded by CBFs, and 3) the effect of wind disturbances and CBFs on Tmission.

Actual flight tests followed the simulations and HWIL tests in outdoor, windy settings

to validate the real-time feasibility of the RH-MINLP + CBF approach.

Each flight in numerical simulations, HWIL tests, and outdoor tests was

conducted in a 40 m x 40 m x 20 m airspace and consisted of the following three

sub-tasks:

• Take-off and Formation: The quadrotors would take off one at a time and move
to a preset location to organize themselves in a geometric formation. Example
initial formations included a straight line, triangle, and rectangle as shown in
Figure 4.1. The initial height of the formation was 12.5 meters above ground
level (AGL).

• Waypoint-based Transit: Once in formation, the quadrotors would start their
transit while maintaining their flight formation, to the extent possible, and visit
a total of 5 waypoints spread out across an area of 40 meters x 40 meters x 20
meters.

• Return-To-Home (RTH): Once the quadrotors visited all the waypoints, they
sequentially executed an RTH procedure to land at their take-off locations safely.

Key evaluation metrics are defined as:

1. Tmission: denotes the transit time between the start of the multiple quadrotor
formation and their return to their start points averaged over multiple runs.

2. nCBF: number of CBF activations averaged over multiple runs and rounded to
the nearest integer.

3. Tcomp: Solver computation time averaged over all quadrotors, further averaged
over multiple runs.

4. RR: Motion re-planning rate in Hz, average over multiple runs.
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Figure 4.3 (Left) In HWIL tests without CBF, the number of safety violations is
shown in the red bars. As CBFs were not used, none of these violations could be
avoided. (Right) In HWIL tests with CBF, the number of CBF-activations nCBF are
shown in the green bars. The use of CBFs resulted in zero safety violations. Data
averaged over 9 runs.

5. Tsaving: denotes the percentage of Tcomp time saved when using SA instead of
the BB method.

6. Dobj-gap: denotes the percentage gap in the objective function values (as defined
by (4.4)) between SA and BB.

Each numerical simulation was repeated five (5) times, HWIL experiments were

repeated nine (9) times, and outdoor flight tests were conducted five (5) times.

Dryden gusts with average 9 m/s speed and standard deviation of 1.23 m/s were

used in numerical simulations and HWIL.

4.5.1 HWIL: Flight Safety Accorded by CBFs

For a fixed dsafe, Fig. 4.3 (left) depicts the number of times the inter-quadrotor

distance (dij) was less than dsafe during windy conditions. These safety violations

were reported because the wind gusts disturbed the quadrotors off their planned

course despite recalculating O. This observation underscores the need for additional

safeguards to prevent in-flight collisions.

Once CBFs were added to the motion-planning process, as depicted in Fig. 4.3

(right), there were no safety violations during flight despite windy conditions.

The number of potential safety violations that were prevented by adding the CBFs

were significantly less than the case when no CBFs were present. This is due to the

fact that the quadrotors were moving in a safer fashion from the very beginning of
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Figure 4.4 For dsafe = 3m, the above charts depict Tmission in seconds for different
HWIL scenarios. The presence of wind increases the computational times and result
in severe safety violations. Adding CBFs to the overall motion planning strategy
reduces the overall computational times while resulting in 0 safety violations. Data
averaged over 9 runs.

their mission due to the activation of the CBFs. There was a relatively lower number

of potential safety violations in future time steps. We note that in the absence of

Dryden wind gusts, no safety violations were observed while solving O.

4.5.2 HWIL: Effect of Wind Disturbances and CBFs on Tmission

For a fixed dsafe, Fig. 4.4 depicts the change in Tmission in the absence and presence of

wind disturbances. It is observed that Tmission increases significantly in the presence

of the Dryden wind gusts because O is solved more often because the wind gusts

cause the quadrotors to move off-course.

Fig. 4.4 also depicts the change in Tmission in the presence of wind disturbances

while using CBFs (blue-colored data series). It is observed that the Tmission increases

with CBFs in windy conditions as compared to the no wind case. However, it is also

observed that in the presence of CBFs, Tmission is lower than the Tmission when no CBFs

are present. This is due to the fact that the CBF activations afford collision-avoidance

from the very beginning of the mission thereby reducing the number of times O needs

to be resolved. A reduced Tmission also indicates lower use of quadrotor battery.
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Table 4.2 Numerical Simulation Results to Study Scalability of the RH-MINLP
Framework (Data Averaged over 5 runs)

n SA BB

Tcomp nCBF Tcomp nCBF Tsaving Dobj-gap

10 132.3 14 195.2 16 47.54% -5.29 %

15 186.8 17 311.9 19 66.97% -4.66%

20 271.1 19 648.5 18 139.21% 0.2%

25 383.9 22 902.4 21 135.06% -3.10%

30 562.1 27 1376.2 30 144.83% -1.98 %

40 819.3 31 2314.7 31 182.52%. -7.81 %

50 1184.5 38 3920.7 42 231% -6.52 %

4.5.3 Numerical Simulations for Scalability

Numerical simulations were performed for up to 50 quadrotors operating outdoors

to study computational scalability in the presence of Dryden wind gusts. Table 4.2

notes results for each of these scenarios. The SA + interior-point numerical solution

method was compared with a BB + interior point method as presented in [181,189].

As is observed, for all cases, nCBF, and Tcomp increase with n. The increase is

pronounced at higher n due to increased collision possibilities and an increase in the

number of variables and constraints for O.

It is observed that SA outperforms BB in terms of Tcomp as indicated by Tsaving.

These Tcomp savings can be attributed to the fact that BB fixes a subset of the binary

variables (and leaves the rest as continuous, between 0 and 1) at any iteration which

in turn, causes the nonlinear solver to face larger problems with BB than with SA.

However, when it concludes, BB yields superior objective function values for all tests,

which is expected since it focuses on global optimality. As the number of quadrotors is

scaled up, BB may not conclude in real-time, either due to the size of the problem or

the nonconvexity of the underlying nonlinear problem due to the collision avoidance

constraints. On the other hand, SA is a search heuristic that focuses first on attaining

feasibility and then on further improving the objective function value, and can be

stopped within the real-time requirements.
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4.5.4 Outdoor Flight Tests

Outdoor field tests were conducted with up to 6 DJI M100 quadrotors to validate the

RH-MINLP + CBF framework. The test was conducted in an open field at a park

in Philadelphia. The wind disturbances during the flight tests were measured using

an FT205 ultrasonic anemometer mounted on a DJI M100 quadrotor using a 20-inch

long 3D printed pole as shown in Fig. 4.1. The FT205 was sampled at a frequency

of 2 Hz. The wind measurements were performed with the quadrotor hovering at a

height of 12.5 meters above ground level. The quadrotor was flown approximately 50

meters away from the multi-quadrotor system to maintain safety. During the field test

with 2 quadrotors, the average wind speed was 12.23 m/s with a standard deviation

3.49 m/s. During the field test with 3 quadrotors, the average wind speed was 10.33

m/s with a standard deviation 1.54 m/s. During the field test with 6 quadrotors, the

average wind speed was 13.5 m/s with a standard deviation 2.0 m/s.

Figure 4.1 depicts a snapshot of a 2, 3, and 6-quadrotor tests. Table 4.3 depicts

the average Tmission, nCBF, Tcomp, and re-planning rate (RR). Tcomp varied from 26.8

ms to 74.6 ms. Re-planning rates varied between 12 Hz to 30 Hz.

Readers are referred to the accompanying video for footage of the flight tests.

For the 2-quadrotor test, a CBF was activated when the quadrotors completed a

concentric-spiral path mission and the two quadrotors were about to breach the

safety distance threshold. One of the quadrotors came to a hover allowing the other

quadrotor to pass. Similarly, for the 3-quadrotor test, the CBF was activated twice,

once each between two different pairs. For the 6-quadrotor test, 4 CBFs were activated

Table 4.3 Outdoor Flight Tests Results Demonstrate the Feasibility of the
RH-MINLP + CBF Framework. Data Averaged over 5 Flight Tests per n.

n Tmission(s) nCBF Tcomp (ms) RR (Hz)

2 141.52 1 26.8 30
3 258.10 2 37.2 24
6 829.47 4 74.6 12
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between different pairs when the quadrotors came close to each other due to wind

gusts.

4.6 Conclusion

This chapter comprehensively validated a decentralized, RH-MINLP + CBF based

motion planner for multiple quadrotors operating in outdoor, windy environments.

The validation was performed via numerical simulations, HWIL, and outdoor flight

tests. A novel 3-level optimization solver that used Simulated Annealing was

developed to expedite the optimization solution process resulting in feasible online

motion-planning. The Dryden wind gust model provided realistic wind effects during

the simulations and HWIL experiments. The use of CBFs provided significant

robustness against safety violations and potential mid-flight collisions that could

have resulted due to the wind disturbances, in turn reducing mission times. The

simulation and experiment results demonstrated the substantial computational time

savings accorded by the SA based numerical solution process when compared to a

well-established method, thus demonstrating the scalability of this framework. Future

work will focus on testing this framework in a densely cluttered urban environment,

using a non-sequential MANET communication techniques, and outdoor experiments

with upwards of 20 quadrotors.
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CHAPTER 5

SECURE COMMUNICATION FOR MULTI-QUADCOPTER
NETWORKS USING ETHEREUM BLOCKCHAIN

5.1 Introduction

Paper: P. Abichandani, D. Lobo, S. Kabrawala, and W. McIntyre. “Secure

communication for multiquadrotor networks using Ethereum blockchain,” in IEEE

Internet of Things Journal, 8(3), 1783-1796, 2020

Blockchain is an open-source, distributed, immutable ledger that maintains

a record of every information transaction among peers in a network. Every peer

in the network has a copy of this ledger. It enables transactions between peers

without an intermediate trusted central authority and verifies the transactions with

the same amount of certainty as a central authority. The trustlessness provided is

a key benefit of Blockchain technology – it eliminates the need for an intermediary

to govern and verify interactions on the network. Blockchain technology has been

applied extensively in multiple industries, including finance, medical, energy, and

real estate [157, 158, 177, 231, 248, 337]. A slew of recent applications illustrate the

Figure 5.1 Three DJI M100 drones were fitted with the required hardware for a
three-node Ethereum network.
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growing ubiquity of blockchain based software systems for artificial intelligence, 5G,

IOT security, identifying deepfake, and package delivery [57,125,161,301,338]. Figure

5.1 depicts three quadrotors flying in formation and as part of the Ethereum network.

An important aspect of blockchain technology is the implementation of smart

contracts. A smart contract is an executable software program that governs the

transactions between peers in the network. Rules for the network can be programmed

into smart contracts to automate sophisticated information-centric tasks. The

introduction of Ethereum Blockchain in 2013 provided the ability to program smart

contracts in a Turing complete language called Solidity. Carefully developed smart

contracts enable autonomous systems comprised of multiple agents (peers) that can

perform decentralized decision making in applications such as IOT (Internet Of

Things), multi-robot systems, smart cities, and artificial intelligence [68,301].

In a multi-robot system, each robot performs a specific task as the group works

together towards completing a larger goal. Multi-robot systems have been used in

precision farming, creating interactive displays, IOT networks, and industrial robotics

Figure 5.2 Each node included the flight control hardware and a separate computer
running an Ethereum blockchain node. Flight control data was communicated via a
915Mhz mesh network. Ethereum blockchain data was communicated via WiFi.
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[116, 179, 195, 244]. Blockchain can provide security for trust-sensitive multi-robot

systems in the form of data confidentiality, integrity, entity authentication, and non-

repudiation [106]. The distributed ledger of a blockchain ensures that decision making

is distributed and collaborative missions can be easily programmed while eliminating

a single point of failure for data storage.

This chapter reports on experiments involving a network of multiple quadrotor

sUAVs that use Ethereum blockchain for securely sharing image data. Figure 5.2

depicts the conceptual architecture of the system. Figure 5.3 depicts the detailed

hardware used to implement the blockchain-based communication system. The main

experiment performed in this work is image transfer across a network of 3 Ethereum

nodes in a networked multi-quadrotor flight. The image is acquired using a camera

Figure 5.3 Hardware architecture for each each Node including the flight hardware
and hardware running the Ethereum blockchain.
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onboard one of the quadrotors. The quadrotor platform used in this study is the DJI

Matrice M100. Each quadrotor was fitted with a transceiver radio module operating

in the 915MHz license-free frequency bands, providing half-duplex bi-directional RF

links at 300Kbps. The 915MHz network was used to transmit motion planning data.

The Ethereum network hardware was added to the quadrotor hardware stack and

used WiFi for establishing communication over the blockchain.

The main contributions of this work are:

1. Experimental validation of a multi-quadrotor Ethereum blockchain system for
secure data transfer.

2. A software architecture that seamlessly integrates the Ethereum software stack
with a quadrotor flight control stack.

3. Data-transfer time measurements for flight-tests involving different image sizes,
Ethereum consensus algorithms, and varying difficulty levels.

4. Comparison of three different WiFi routers and its affect on the blockchain
network.

5. Power consumption analysis due to increased payload by mounting blockchain
hardware on the sUAV.

The remainder of this chapter is organzied as follows. Section 5.2 discusses

existing literature with Ethereum blockchain applied to robotic systems. In Section

5.3, the hardware and software architecture used in the experimentation is described.

Section 5.4 provides in-depth results of the experiments. Section 5.5 provides

discussions about the results and future directions.

5.2 Related Work

The body of work that applies blockchain technology in robotics applications

continues to grow [11,32,51,104,200,233,388]. A majority of these studies have covered

blockchain-based robotic system design and associated simulations. A common theme
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in these studies is improved security, behavior differentiation, and data integrity

provided by using blockchain technology to enhance robotic operations [106].

5.2.1 Simulation Studies

The intersection of blockchain technologies and robotics has been the focus of several

simulation studies [10,11,32,153,156,233,336,388]. In [156], the authors simulated a

communication protocol for multi-agent systems to participate in business activities

using Ethereum blockchain and smart contracts. The communication protocol

consisted of smart contracts interacting with autonomous agents running the Robot

Operating System (ROS). The verification of transactions took place using Air-token

and Ether [12]. The authors used the proposed communication protocol for an sUAV

employee management system that consisted of a dispatcher node and an Air Traffic

Control (ATC) node.

In [336], the authors simulated an approach to establish secure swarm coordi-

nation mechanisms for a group of robots and exclude byzantine members using

smart contracts deployed on the Ethereum blockchain. The proposed approach was

simulated in ARGoS (Autonomous Robots Go Swarming) robot swarm simulator

interfacing with a Geth Ethereum client [267]. Smart contracts were used to register

the robot members, define movement strategy, and select a decision making strategy

using a voting system to create a consensus among the members. The smart contract

implemented strategies that included a member’s time limit to cast a vote, a renewal

of the decision strategy each time a new strategy was selected, and check on different

blockchain versions by verifying the hash value of the blocks. The performance of the

blockchain approach proved superior over classical swarming approaches [359].

In [388], the authors proposed a cloud system architecture for an sUAV and

sensors designed for surveillance of a dam site. The sUAV collected these data

and delivered them to the dam monitoring center. The authors used the Bitcoin
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framework and the Proof-of-Work (PoW) consensus protocol to provide data integrity,

traceability of the sensor data in the wireless sensor network. The authors simulated

several scenarios to demonstrate the time delays for secure sensor data.

In [11], the authors proposed a communication model based on the Ethereum

blockchain for the Internet-of-Drones. Ethereum blockchain provided authorization,

data integrity, and authentication for the data collected by the drones in the system

model via Proof-of-Stake (PoS). A single drone was selected to be the forger node

responsible for authenticating and validating the blocks in the blockchain. The

computation cost for block creations was calculated as 384 bits, of which 128 bits

represented the identity, and 256 bits is the hash value. The computation time for

block creation and validation was found to be 0.023 milliseconds.

In [32], the authors developed a Bitcoin blockchain-based sUAS for monitoring

and surveillance of critical infrastructures. Blockchain provided security against three

types of breaches: adversaries targeting software, adversaries targeting hardware,

and adversaries targeting communications. The authors provided a performance

evaluation of the proposed system using the NS-3 simulator over an area of 16km2

with four ground control stations. The authors programmed the occurrence of ten

events around five randomly distributed critical infrastructure. Detection rates in the

order of 95% were observed in simulation with lower false alarm rates as compared to

classical approaches [33, 159]. The authors concluded that the high detection ratios

and reduced overhead showed that a blockchain-based UAS could provide accurate

decisions which are crucial in monitoring critical infrastructure.

In [153], the authors proposed a reputation-based data sharing scheme for secure

data sharing among vehicles to overcome the security vulnerabilities of vehicular edge

computing servers. The scheme was based on a consortium blockchain where the

nodes were pre-selected in a public blockchain to establish a shared and distributed

database with smart contracts used to enable data management automation between

105



the vehicles. Security analysis of the proposed scheme ensured the security of the

data storage and high-quality data sharing over traditional reputation schemes.

In [10], the authors proposed an Ethereum blockchain-based decentralized

network to monitor, control, and log workflow events for a Cyber-Physical Production

(CPP) System. The machines in the proposed CPP system communicated by

exchanging cryptocurrency tokens. An essential feature in the system was that the

cryptocurrency tokens would be distributed between the machines well in advance,

according to the priority of services, thus creating a consensus where Nothing is at

Stake automatically. The authors proposed implementing their system for a PCB

manufacturing plant by determining the rules of operation.

In [233], the application of a multi-robot path-planning algorithm using

blockchain technology was investigated. A Probabilistic Road Map (PRM), path

planning algorithm, was implemented alongside Hyperledger Fabric, an enterprise-

grade blockchain platform [137]. The average latency to commit a transaction to

the Hyperledger Fabric was 112.46 milliseconds, thus validating that a blockchain

platform has the potential for enabling secure and scalable distributed systems.

5.2.2 Experimental Studies

Experimental studies involving blockchain technology for robotics applications have

been recently published [75, 105, 200]. The key to these studies is the integration

of a blockchain software stack with a robotic system such as an industrial robotic

manipulator arm, ground robot platforms, and quadrotors. Network latency is a

crucial metric to be tracked in experimental studies as it directly affects the data

refresh rates of a robotic system. Figure 5.4 shows the experimental platforms used

in the representative experiment oriented works.

In [200], the authors proposed an experimental architecture to control a UR3

robotic arm where the robotic events are logged on the RobotChain blockchain and
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Figure 5.4 Prior experimental studies with blockchain and robotics involve use of
robotic arms (top-left) [200], ground robots [75] (bottom-left), and single
multi-robot sUAVs with RFIDs (right) [105].

its movement controlled with a smart contract program [104]. Logic programmed

in the smart contract sent instructions to a robotic arm to pick and place objects

based on data processing of images obtained using an RGB camera by an external

computer. The arm speed in picking up the objects was measured to validate that the

proposed blockchain-based architecture was capable of controlling the robotic arm in

real-time.

In [75], the authors provide experimental validation procedures to identify

flawed liability executions in order to suspend payments to questionable service

providers using blockchain in a Duckietown environment [261]. The consensus

protocol on blockchain technologies provides a method to detect malfunctioned agents

in a network when agent behavior goes against the behavior consensus defined by the

members in the network. The blockchain platform used in this work was Ethereum. A

prototype of the proposed system was implemented where smart contracts validated

the liability of the autonomous agents and directed their movements.
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In [105], the authors document experiments for an automated inventory

management system using RFID, sUAV, and Ethereum blockchain technology.

Similar to the results presented in this paper, the authors evaluated two consensus

protocols for the Ethereum blockchain, Proof-of-Authority (PoA) and PoW. A

quadrotor sUAV was manually controlled to fly around the warehouse and tag the

inventory items using the RFID tags. The time taken to identify the inventory items

using a quadrotor and store their identification value on the database was measured.

It was shown that the time taken to validate blocks averaged at around 15 seconds

for PoA while for PoW, the validation times varied significantly from 5 seconds to 70

seconds.

These experimental works have paved the way for more sophisticated exper-

imental robotics studies involving blockchain technology. Blockchain technology

has also been applied to Internet-of-Things (IoT) systems to provide secure and

decentralized operations in healthcare, agriculture, smart cities, and vehicular

networks [109,191,203,234,319,383,386].

This chapter addresses the gap and expands on the above body of work

by focusing on the physical implementation of blockchain technology for multiple

quadrotor sUAVs operating outdoors. Specifically, this chapter documents the

hardware and software architecture; the quadrotor, computing and radio hardware

used; and the software development tools used to implement the system. On the

experimental front, the chapter documents the results of 4 key studies: 1. the effect

of varying blockchain difficulty on data transfer rates between 3 quadrotor sUAVs,

2. the effect of varying data size on data transfer rates between 3 quadrotor sUAVs.

3. the effect of Ethereum network disruption on between 3 quadrotor sUAV network

connectivity, and 4. the effect of increased payload (Ethereum network hardware) on

the flight-times of the quadrotor sUAV.
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5.3 System Architecture

This section elucidates the experimental platform used for the Ethereum-based

communication protocol used to exchange image files.

5.3.1 Quadrotor Setup for Motion Planning

Three DJI Matrice M100 quadrotors, referred to as Node 1, Node 2, and Node 3,

were used [87]. Each quadrotor setup hosted a communication Node in the Ethereum

blockchain network. The hardware setup on the quadrotor is the same as depicted in

Chapter 2.4 Figure 3.8.

The quadrotors came equipped with a proprietary DJI M100 N1 flight controller

with inertial sensors and GPS. The N1 flight computer was responsible for position

control using velocity and yaw-rate inputs. Each quadrotor provided a real-time

telemetry stream of accelerometer, gyroscope, magnetometer, and GPS data. The

quadrotor position was defined in a local frame using latitude, longitude, and height

with a pre-defined origin point. For motion planning and control, each quadrotor

Node was equipped with a Raspberry Pi 4 computer (Quad-core Cortex-A72 (ARM

v8) 64-bit SoC @ 1.5GHz, 4GB LPDDR4-3200 SDRAM). Motion commands and

telemetry streams were communicated between the Raspberry Pi and DJI Flight

stack using a UART connection using software function calls provided by the DJI’s

onboard C++ SDK. The flight processing Raspberry Pi 4 for Node 2 was equipped

with a V2 camera module for image capture with 8 Megapixel still image resolution.

Each quadrotor was equipped with a 915 MHz transceiver radio module

used for half-duplex bi-directional communication between quadrotors for motion

data telemetry using RF links at 300Kbps. A round-robin scheduling technique

for sequential wireless communication was implemented for the fair distribution

of wireless bandwidth and fault tolerance. As part of this technique, only one

quadcopter transmitted its information at a time. Figure 5.5 depicts the sequence
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of information transferred between the quadrotor nodes. This information payload

contained position and velocity data and was received by the remaining quadrotors

either through one-hop direct communication or through indirect multi-hop relaying.

The order in which the quadrotors communicated in the round-robin was randomly

determined at the beginning of the mission.

The positioning of the quadrotor was defined in a frame with a pre-defined GPS

origin coordinate, O, consisting of a latitude (radian), longitude (radian), and height

from the ground (m). A quadrotor’s behavior of motion during the experiments was

broken into three components: Take-off, Offset Alignment, and Waypoint Following.

The first stage for each quadrotor was taking off to a height of 1 meter. The

quadrotor would then move to the pre-defined origin coordinate, O, and then to

its defined offset position, which included a height of 5 meters for all experiments.

Once all three quadrotors were at their assigned offsets, communicated through the

transceiver radio modules, the waypoint Following stage would begin in which all three

quadrotors would proceed to the assigned waypoint, while maintaining their offsets.

Figure 5.5 Three Ethereum Nodes were setup using 1 Nvidia Jetson TX2 and two
Raspberry Pi 4 computers. The nodes ran an Ethereum Virtual Machine (EVM)
and communicated with each other using a 802.11 network setup using WiFi routers.

110



A set of custom spline generation functions, implemented in Python, were used to

generate minimum snap 7th order splines passing through N pre-selected waypoints [5].

A ground station computer hosts a web-based user interface for mission configuration,

clock synchronization, and mission upload.

5.3.2 Ethereum Hardware Setup

The Ethereum network was implemented using a separate set of computers that were

mounted on the quadrotors. Keeping the blockchain computing hardware separate

from the flight control hardware ensures modularity and avoids taxing any single

computing system.

Miner Node: The transition of the Ethereum blockchain state takes place when

a block is deemed valid. The validity of a block is determined through the process

of mining. Node 1 was equipped with an NVIDIA Jetson TX2 computer (Quad-

Core ARM Cortex®-A57, 256-core NVIDIA Pascal™ GPU, 32GB eMMC 5.1, 8GB

128-bit LPDDR4 Memory). The Jetson computer was selected as a miner due to

its appropriate computational resources for validating and adding new blocks to the

Ethereum. The Jetson was mounted on an Orbitty carrier board, and the assembly

was mounted in a black colored OrbittyBox [252]. The miner node was also designated

as the bootstrap node and was responsible for forming the overlay network with the

nodes. The remaining nodes connected with each other over the TCP port of the

bootstrap node.

Other Ethereum Nodes: Node 2 was equipped with a Raspberry Pi 4 computer

(ARM Cortex - A72, 1.5 GHz, 4GB LPDDR4 Memory) and acted as a node in

the Ethereum network. A separate process on the flight processing Raspberry Pi

4 used openCV for image capture. The captured images were transferred to the

corresponding Ethereum blockchain node 2 Raspberry Pi 4 using a Python-based
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Table 5.1 Range and Bandwidth for Radios used in the Experiments

Type Radio Network Range Bandwidth
WiFi Verizon mobile hotspot 20m 12 Mbps
WiFi Tp-Link AC1750 Wireless Dual Band

Gigabit Router
33m 1300 Mbps

WiFi Linksys EA9500 Max-Stream AC5400 MU-
MIMO Gigabit WiFi Router

45m 2166 Mbps

server-client WebSocket connection. Nodes 3 was also equipped with a Raspberry Pi

4 computer and acted as a node in the Ethereum network.

Radio Hardware: The quadrotors were equipped with RFM69HCW packet radios

that operated at 915MHz. This low-bandwidth (up to 300Kbps), mesh network

system was used to share controls, telemetry, and motion planning data and provided

a 500 meter range.

The Ethereum network was established with the help of 2.4GHz WiFi routers.

Given that the Ethereum node hardware was hosted on a set of sUAVs, it was prudent

to evaluate options that provided network connectivity with respect to their mobility.

Accordingly, three different WiFi routers were evaluated. Each experiment used a

specific type of WiFi router. These included: a Verizon 4G LTE Wi-Fi mobile hotspot,

a AC1750 wireless dual band gigabit router from TP-Link, and a EA9500 Max-Stream

AC5400 MU-MIMO Gigabit WiFi Router from Linksys [194, 354, 362]. Table. 5.1,

provides the ranges and bandwidth of these Wi-Fi routers.

The Verizon hotspot hardware provided a most mobile option out of the three

as it could be mounted on the quadrotor itself. However, the bandwidth provided

was relatively lower than the other two options.

5.3.3 Consensus Algorithm

Consensus algorithms provide blockchains with its characteristic features of decen-

tralization – trustless security, immutability, privacy, and transparency. The Proof-

of-Work (PoW) consensus algorithm is widely used in Bitcoin and Ethereum [168].
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Other consensus algorithms include Proof-of-Stake (PoS) [95], Proof-of-Authority

(PoA) [249], Practical Byzantine Fault Tolerance (PBFT) [162]. In our experiments,

we evaluate the effect of PoW or PoA algorithms on time taken to transfer images

through the Ethereum network. The PoW algorithm is based on the SHA-256

cryptographic hash function [380]. The PoA algorithm is implemented in Ethereum

through a protocol called Clique [249]. An issue with PoW is that it is impossible to

control the mining frequency and control the block times. On the other hand, PoA

block validation times are consistent and do not vary significantly.

5.3.4 Ethereum Software Setup

A private blockchain network was set up between the three nodes (Nvidia Jetson and

two Raspberry Pi) in the network with individual read and write permissions given

to each node. Each node ran an Ethereum Virtual Machine (EVM) [96]. The EVM

is the Turing complete virtual machine that processes and handles transactions being

carried out in the Ethereum blockchain. Since this was a private blockchain, the

identity of each Ethereum node was known and verifiable.

Geth Ethereum Client: The Geth Ethereum client was used in our software

development. Geth is written in the Go language. There are two types of accounts

in a blockchain: Externally Owned Accounts (EOA) and Contract Accounts (Smart

Contracts). An Ethereum account is defined by a pair of keys, private key, and a

public key, and each account is indexed by its address, which is derived from the first

20 bytes of the SHA3 hashed public key. [97]. In a private network, it is assumed

that the participant node identities are known, and therefore, the Ethereum addresses

are added to an access control list at the beginning of the smart contract code. The

nodes in the private Ethereum network access the read and write functions of the

smart contract based on their Ethereum address definition in the access control list.

The smart contract generates warning events in the case that an unlisted Ethereum

113



address made an attempt to interact with the smart contract. A similar approach

to providing trust management between the nodes in the network using an access

control list to ensure trust between the nodes in the network can be found in [210].

A limitation in the approach, however, is the inability to dynamically update the

access control list due to the permanent nature of the smart contract. Using the

Geth console, an EOA account was created for each of the Nodes 1, 2, and 3.

Truffle Development Environment: The Truffle development environment was

used to develop, verify, and deploy our smart-contracts. Truffle is a command-line

interpreter (CLI) tool with a built-in compiler for smart contracts, automatic contract

testing, scriptable, extensible deployment, and migrations framework. The Truffle

environment provided methods to interact with the deployed smart contracts. An

automation script written in Javascript called instances of the functions in the smart

contract. Each node featured its automation script to interact with the smart

contract. This approach was adopted to maintain the secure communication protocol

and ensure that each node calls only the functions in the smart contract meant for it.

The smart contract was coded in Solidity, which is an object-oriented programming

language. After compiling the smart contract code, it is translated to bytecode, which

is executable in the EVM.

5.3.5 Ethereum Smart Contract

Genesis Block: The first block in the Ethereum blockchain is called the Genesis

block. The Genesis block contains parameters that define the blockchain. The Genesis

file used in our experiments was written in JSON and is depicted in Figure 5.6. The

blockchain parameters initialized in the genesis file included:

• Difficulty: This parameter is a measure of the computational complexity of
mining a block to find the hash value. It determines the speed of mining of
the blockchain network and can be used to calculate the deviation from the
expected block time [85].
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• Gas Limit: The maximum amount of gas that the sender is willing to spend
for a particular transaction. Gas is a unit used to measure the effort required for
a particular computation in an Ethereum Virtual Machine (EVM). Gas price is
the value the transaction sender is willing to pay per gas unit and is measured
in Gwei. Ether is the token used to pay for gas.

• Alloc: The alloc parameter is only used in the case of a private blockchain.
This parameter is used to allocate funds (Ether) to the respective accounts in
the network. The allocated fund balance should be significantly higher than
the gas limit such that the accounts do not run out of gas when executing
transactions. The allocated funds do not have any value outside of the private
blockchain.

Nodes with the same Genesis file are connected to the same private blockchain

network to maintain proper synchronization of the blocks. For these experiments,

four genesis files were created with increasing orders of difficulty.

The block difficulty values were set to the following values:

• Difficulty 1: 0x1

• Difficulty 2: 0x10000

• Difficulty 3: 0x100000

• Difficulty 4: 0x1000000

The alloc and gasLimit parameters of the genesis file were left unchanged.

Each run of the experiment was conducted using one of the genesis files copied in

Figure 5.6 Example Genesis file with Ethereum blockchain parameters.
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each of the nodes. Once the nodes were connected to the same private network and

synced together, Node 1 then deployed the smart contracts to the private Ethereum

blockchain.

In a private blockchain, it is up to the developer/administrator of the system

to decide the gas price for each unit Wei. A private Ethereum network is not part of

the public blockchain, so the gas prices are not affected by the publicly traded value

of Ether. In private Ethereum networks, the miners do not need gas as an incentive

and are thus configured to be zero or free gas [136]. In the system documented here,

the gas price was set to 0 when setting up the geth environment, which means that

the nodes were able to post transactions while the miner received 0 as payment.

Smart Contract Functions The smart contracts used in our experiments were

written in Solidity Version 0.6.7. The contracts allowed for the secure transmission

of images between different nodes in a manner that ensured that only the intended

recipient received a specific image.

Figure 5.7 depicts the smart contract and decentralized storage functionalities

that were encapsulated in Get() and Set()functions. The decentralized storage was

implemented using Inter Planetary File System (IPFS). The Get() functions were

used to read an image hash, while the Set() functions were used to store the image

hash on the blockchain network. The Truffle scripts compiled and deployed the smart

contract into the blockchain environment. Interactions with the smart contract on

the Ethereum took place through transactions verified by the miner.

Also, shown in Figure 5.7 is the flow of data through the Ethereum network.

Information about each node’s user account was stored in the smart contract. A

node could only access functions designated to it depending on its node number in

the network.
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Figure 5.7 The Ethereum software setup used in our experiments and the smart
contracts featured secure functions to ensure images can only be sent and received
by pre-determined nodes.

Node 2 was the first node to receive a new image captured by the camera. This

image was stored in a local folder on Node 2 and would be uploaded to the IPFS

using a bash script. Once an image was uploaded to the IPFS setup, an image hash

would be generated. Node 2 would use the Node 2 Set()function to store the IPFS

hash in the smart contract. Node 1 can then use the Node 1 Get() functions to read

the IPFS hash stored in the smart contract. This process was repeated for all three

nodes. The hash obtained could then be used to access the image on the IPFS server.

Important debugging messages were printed to the console for the developers and

users to track the transfer of the image hash from one node to another.

A JavaScript program was used to automate the task of interacting with the

smart contract using the Truffle environment. The JavaScript on each Node was

executed when the bash script to upload images to the IPFS was executed. The

smart contract code developed for the system can be found on the RADLab Github

repository [77].
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5.3.6 File Storage

A limitation of blockchain technology is that it is computationally expensive to store

data on it [14,380]. The Interplanetary File System (IPFS), a peer-to-peer distributed

file-sharing system, was used for storing the images [176]. IPFS by itself provides

a tamper-proof method of storing and sharing data between nodes in a network.

However, it does not provide any method to timestamp when the data is added to

the network, which is vital information when performing missions using multi-robot

swarms. Another security flaw of IPFS is that anyone with a copy of the root content

identifier (CID) has access to the data, which is problematic when sharing sensitive

files between robots.

By integrating Ethereum blockchain with IPFS along with a layer of encryption

to the data, it is possible to build a secure information sharing system that overcomes

these drawbacks. Figure 5.8 depicts the detailed steps of the data-flow involving

encryption, IPFS, and Ethereum. After an image is captured, the node applies

asymmetric encryption protocol OpenPGP, which allows encrypting a file with a

public key that can be decrypted by only members of the private blockchain, which

Figure 5.8 Data-flow involved in our experiments involved image capture and
encryption, IPFS image upload, and transfer of the image hash over the Ethereum
blockchain.
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hold the decryption key [251]. After encrypting the image file, it is added to the

IPFS, which generates a CID hash, which is stored on the blockchain via the Smart

Contract. On the receiver end, the smart contract ensures that the quadrotor node

requesting the CID hash is part of the private blockchain. This is ensured by verifying

the private key of the EOA requesting the data. After verification, the hash obtained

is used to access the data from the IPFS node via a local HTTP gateway. The data

downloaded from the IPFS is the encrypted image file. All members of the private

blockchain hold the decryption key, which is used to decrypt the downloaded image.

5.4 Experimental Results

The experiments focus on studying the effects of image size, consensus algorithm

type, and blockchain difficulty values on-time τimage taken to transfer images across

the multi-sUAV network successfully. In the following, we document image transfer

flight tests that were conducted for 3 minutes each. The quadrotor 2 captures images

using its camera and transfers it to the Ethereum Node 2 that is physically mounted

on it. The smart contracts are then deployed to transfer these images across the

entire network (Node 2 to Node 1, Node 1 to Node3, and finally from Node 3 back

to Node 2). τimage is the total time taken for this image transfer across the entire

Ethereum network.

Three wireless network routers were used to create three different sets of

experiments. These included a Verizon 4G LTE WiFi mobile hotspot, a Dual-band

WiFi 5 router from TP-Link, and a Multi-User MIMO Gigabit router from Linksys.

The Verizon 4G LTE WiFi mobile hotspot provided the most mobility as it was

mounted on one of the quadrotors. On the other hand, the Linksys router provided

the strongest WiFi connection outdoors due to its long-range MIMO configuration.

For all image transfer experiments, two consensus algorithms were tested – Ethash

(Proof-of-Work) and Clique (Proof-of-Authority).
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Figures 5.9 and 5.10 depict the results of our experiments. In each of these

graphs, the τimage is averaged across multiple runs of the experiments and expressed

in seconds.

5.4.1 Effect of Varying Image Size on τimage

The images from the Node 2 quadrotor camera were resampled to different sizes

(100kB, 500kB, 750kB, 1000kB, 2000kB, and 3000kB) before being transferred over

the Ethereum network. The images were sent in increasing order of their resampled

sizes. Figure 5.9 depicts the τimage values in seconds averaged across all experimental

runs and difficulty values for the resampled images for the three different router types.

As observed in Figures 5.9a, 5.9c, and 5.9e, the average τimage varied between 1.66

seconds to 3.01 seconds when PoA was used for consensus. In contrast when PoW

was used as the consensus protocol, Figures 5.9b, 5.9d, and 5.9f, the average τimage

values varied significantly between 5.69 seconds to 28.57 seconds when PoW was used

for consensus.

5.4.2 Effect of Varying Block Difficulty on τimage

Figure 5.10 depicts the average τimage values in seconds as a function of difficulty

values for the three different router types. As mentioned in Section. 5.3.5, 4 different

difficulty levels were used in our experiments. The τimage is averaged across all

experimental runs and image sizes for the resampled images and compiled in Figure

5.10. As observed in Figures 5.10a, 5.10c, and 5.10e, the average τimage varied between

1.89 seconds to 2.87 seconds when PoA was used for consensus. In contrast when

PoW was used for consensus Figures. 5.10b, 5.10d, and 5.10f, the average τimage

values varied significantly between 2.8 seconds to 142.92 seconds.
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5.4.3 Effects of WiFi Communications Disruption

In case an Ethereum node mounted on a quadrotor loses WiFi communication with

its neighboring nodes, it is important that communication between the remaining

nodes continues uninterrupted. This section documents the observed behavior of

the Ethereum network in the face of such WiFi communication disruption. The

experiments were performed using a hardware-in-the-loop (HWIL) setup. The HWIL

approach provided the ability to conduct safe and controlled experiments as per the

guidelines of the United States Federal Aviation Administration (FAA) [101]. All

HWIL experiments were performed using the DJI Assistant 2 software. The software

provided a real-time emulation of the DJI M100 rigid body dynamics to provide

telemetry outputs, and velocity and yaw rate inputs into the N1 flight controller.

The three quadrotors were commanded to fly to an altitude of 20 meters above

the ground and maintain a triangular formation. Once the quadrotors reached the

desired altitude the quadrotors start sending the image hash file among them. After

a period of 1 minute one of the nodes was commanded to break flight formation and

fly out of range of the remaining nodes. When a time period of 30 seconds elapsed

the quadrotor was commanded to fly back in range of the other nodes.

The following two scenarios were tested:

Miner node disruption In the first scenario, the miner node, Node 1 was

commanded to break flight formation and go out of WiFi range. Node 1 was also

the bootstrap node. The transactions posted by the remaining nodes could not

be validated by the miner and thus no new blocks were added to the blockchain.

The communication links between the nodes were disrupted and the file transfer

between the nodes terminated. On Node 1, the Geth console and the Truffle program

terminated, thus disrupting the entire blockchain network between the nodes.
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Non-miner node disruption In the second scenario, a non-miner node (Node 3)

was commanded to break formation and go out of WiFi range. The rest of the nodes

remain unaffected and continued to interact with the smart contract. Due to the

round robin arrangement Node 1 and Node 2 continued to exchange information over

the blockchain. When the Node 3 came back in range of the blockchain network it was

able to rejoin the Ethereum network. This is due to the fact that the Ethereum nodes

connect with each other over the TCP port of the bootstrap node. Thus when the

Node 3 was within Wi-Fi network range it was able to rejoin the Ethereum network

by connecting to the TCP port of Node 1.

5.4.4 Flight Duration and Battery Life

The flight time of multi-rotor sUAVs is critical for tasks such as surveillance,

transportation, and search and rescue operations. As such, it is vital that the flight

time of blockchain enabled multi-rotor sUAVs are not significantly hampered due to

the increased payload. Outdoor flight tests were conducted to observe the difference

in flight times of the multi-rotor sUAV with and wihout the Ethereum payload.

A total of 5 outdoor flights were conducted where the quadrotor was flown to an

altitude of 20m and commanded to hover until the battery ran low. The DJI M100s

were equipped with the TB48D battery that has a capacity of 5700mAh [88]. It

was found that without the Ethereum payload, the average hovering flight time was

approximately 21 minutes and 27 seconds. The non-miner node payload with the

Raspberry Pi and associated battery weighed 147.41 grams with an average flight

time of approximately 19 minutes and 48 seconds. The miner node payload with the

NVIDIA Jetson and associated battery weighed 997 grams with average flight time

of approximately 12 minutes and 23 seconds.
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5.5 Discussions and Future Work

Several observations are made from the above experiments:

1. For PoA, the difficulty level does not have any significant impact on the average
τimage. However, as expected, the average τimage increases significantly with an
increase in the difficulty levels for PoW.

2. At Difficulty 4, it was observed that the time taken to validate the transaction
increased significantly for PoW. The time to validate transactions could not
keep up with the rate at which images were being uploaded to the IPFS. Only
50% images were transmitted across the network when the TP-Link router was
used. Moreover, 33% of the images were successfully transferred when the
Linksys router was used, and 66% images were successfully transferred when
the Verizon mobile hotspot was used.

3. Overall, it was observed that PoA provided a lower average τimage compared to
PoW. This behavior is in line with the fact that PoA does not rely on the mining
process to verify transactions. On the other hand, PoW relies on the nodes
using their computational resources to solve the mining problem to validate
transactions in a block, often taking up significant time. As such, PoA can
validate transactions quicker than PoW as time goes on and proves to be the
faster alternative for data transfer in multi-robot systems.

4. When an Ethereum node experiences WiFi issues or disruptions, it is important
that the remaining nodes continue the data transfer without getting affected.
A miner node losing WiFi connection can be catastrophic to the network as is
observed by our experiments. Having more than one miner node in the network
can add redundancy and provide protection against such failures. On the other
hand, a non-miner node has the ability to drop out and rejoin the Ethereum
network. All the logic that is required to ensure uninterrupted communication
in the case of a non-miner node dropping out and rejoining can be coded in the
smart contract.

5.5.1 Security Analysis

The security of the smart contracts proposed in this study was evaluated along the

dimensions of data confidentiality, integrity, and non-repudiation [19,124].

• Confidentiality: Given the fact that this was a private Ethereum network, the
Ethereum account addresses of the participating quadrotor nodes were known
beforehand and were added to the smart contract code. Thus only nodes whose
address matched those defined in the smart contract could access the get() and
set() functions of the smart contract. This mechanism provided confidentiality
for secure information exchange. The trade-off here was the inability to add
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more quadrotor nodes dynamically to the network. In [19], the authors provided
a novel procedure to automate the task of authenticating nodes requesting to
join the network, which will be explored in future iterations of this work.

• Data integrity: Each image was encrypted using an asymmetric encryption
scheme OpenPGP, and then uploaded to the IPFS. When uploading the
encrypted data to the IPFS, a second layer of encryption is added by
passing the data through a SHA-256 algorithm and encoding to base 58.
Cryptographic hashes possess important characteristics such as being deter-
ministic, uncorrelated, unique, and one-way. The hash generated when sending
the encrypted image to the IPFS was then shared among the nodes using
Ethereum transactions. The images exchanged over the network were protected
by this double layer of encryption ensuring that the data was not tampered with.

• Non-repudiation: Transactions on the Ethereum blockchain are signed with a
digital signature using a private key of the account issuing the transaction.
The use of this approach provides three security advantages: (1) a method to
validate the Ethereum accounts in the network, (2) a signature that is unique to
the account and cannot be forged, and (3) a guarantee of terms of service that
ensures that the transaction data cannot be modified. As soon as the miner
validated a transaction, it was recorded with its unique timestamp. Hence, no
node could deny their actions as it is already recorded in the tamper-proof logs.

5.5.2 Future Work

• Extension to other blockchain technologies: In future work, the smart contract
presented in this work will be implemented using other blockchain technologies
to compare and contrast the performance of multiple blockchain platforms
for multi-sUAV communications. The smart contract developed in this work
can be extended to other blockchain technologies such as Hyperledger and
Rootstock blockchain for Bitcoin or RSK RBTC [84, 297]. Hyperledger Fabric
provides permissioned blockchain and features the necessary framework to allow
Ethereum smart contracts to run on its blockchain [84]. The smart contract
presented here can be extended by creating an EVM wrapper around the
Hyperledger burrow to run the smart contract bytecode written in Solidity.
A key component included in Hyperledger fabric is the JSON RPC API Fab3
to mimic the web3.js library used by Ethereum DApps – this simplifies the
extension process from Ethereum to Hyperledger.

Similarly, RSK RBTC provides a framework to extend Ethereum smart
contracts [297]. The RVM (RSK Virtual Machine) is compatible with Ethereum
Virtual Machine (EVM) at the op-code level. This compatibility allows
Ethereum smart contracts to run easily on the RSK-RBTC. RVM is also
compatible with the tools used to deploy and interact with EVM smart
contracts. Detailed instructions to use Ethereum smart contracts on the RSK-
RBTC can be found in [297]. Teams developing other blockchain technologies
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and frameworks such as EOS are working towards creating functionality to
extend Ethereum smart contracts to their platforms [74].

• Integration with multi-sUAV motion planning algorithms: Integrating a blockchain-
enabled multi-sUAV system with a decentralized motion planner is a natural
extension to this work. A receding horizon, mixed-integer non-linear programming
(RH-MINLP) based motion planner that allows multiple sUAVs navigate along
multiple waypoints while securely transferring data over the blockchain will be
the next objective of this study [5].

5.6 Conclusion

This chapter documented the hardware and software setup, and experimental results

for an Ethereum based secure information exchange system mounted aboard multiple

quadrotors sUAVs. The hardware architecture leveraged a low-cost NVIDIA GPU

for mining during flight and Raspberry Pis as non-miner Ethereum nodes for data

collection and storage. The software architecture leveraged Ethereum’s ability to

program smart contracts for secure, confidential, and tamper-proof data access, and

a decentralized file system IPFS for data storage. The system was mounted on 3 DJI

M100 quadrotors, and flight tests were performed to collect and securely share images

across this 3-quadrotor network. The implementation of a private Ethereum network

provided security features such as confidentiality, data integrity, and non-repudiation.

The combined use of Ethereum blockchain and IPFS provided a distributed data

storage system while avoiding a single point of failure for the network. Experimental

results focused on studying the average time taken to transfer an image across the

network as a function of image size and consensus algorithm (PoA vs PoW) and

the Ethereum difficulty level. The experiments also evaluated the resilience of the

Ethereum network in face of WiFi communication disruptions. Finally, the increased

sUAV energy consumption due to additional Ethereum hardware payload as inferred

by battery life and flight time was documented. The use of the PoA consensus

algorithm provided faster image transfer compared to PoW. The image transfer times
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point to the feasibility of a blockchain-enabled communication system for multiple

sUAVs.
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(a) PoA – Linksys Router (b) PoW – Linksys Router

(c) PoA – TP-Link Router (d) PoW – TP-Link Router

(e) PoA – Verizon Hotspot (f) PoW – Verizon Hotspot

Figure 5.9 Average τimage in seconds for Proof-of-Authority (PoA) and
Proof-of-Work (PoW) tests for different image sizes for 3 different network routers.
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(a) PoA – Linksys Router (b) PoW – Linksys Router

(c) PoA – TP-Link Router (d) PoW – TP-Link Router

(e) PoA – Verizon Hotspot (f) PoW – Verizon Hotspot

Figure 5.10 Average τimage in seconds for Proof-of-Authority (PoA) and
Proof-of-Work (PoW) tests for different difficulty levels for 3 different network
routers.
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CHAPTER 6

COMPETITION-BASED ACTIVE LEARNING INSTRUCTION FOR
DRONE EDUCATION

6.1 Introduction

Paper: P. Abichandani, D. Lobo, B. Dimitrijevic, A. Borgaonkar, J. Sodhi,

S. Kabrawala, D. Brateris, and M. Kam. “ Competition-Based Active Learning

Instruction for Drone Education,” submitted to Interactive Learning Environments,

2022

The Association for Unmanned Vehicle Systems International (AUVSI) noted

in its seminal economic report that UAVs would be responsible for creating 100,000

jobs by 2025 in the U.S. [146]. The rapid proliferation of drone technology in various

applications has led to an increasing need for professionals skilled in sUAV piloting,

designing, fabricating, repairing, and programming. Engineering educators have

recognized this demand for certified sUAV professionals.

Several studies on curriculum and instructional methodologies to effectively

prepare undergraduate students for sUAV careers have been reported [52, 199, 299,

300, 361]. The electro-mechanical integration of motors, sensors, and batteries with

an aerodynamic frame in an sUAV, makes these vehicles excellent platforms for

multidisciplinary STEM education [69]. Studies reported in literature observed that

including robots in STEM classrooms might provide the following key advantages

over traditional pedagogy in teaching the theory and applications of STEM: (1)

integration of STEM topics in a multidisciplinary domain, (2) efficient transformation

of abstract concepts into concrete learning modules for students, (3) combination of

STEM theory with its application, (4) hands-on learning that is active and engaging,

and (5) a delightful and motivating learning environment [164]. Furthermore, the use
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of autonomous robotics in formal and informal learning environments improves math

and science learning, as well as critical thinking and problem-solving skills.

Robotics competitions are defined by open-ended problems to engage the

students in developing creative solutions. The participants are expected to be

self-reliant and are encouraged to work collaboratively with other students to apply

their problem-solving methods. The cooperative goals required in competitions make

students accountable for their tasks for the sake of their groups [55]. Robotics

competitions generally do not have a structured curriculum since the participants

are free to develop their own solutions to the problem with the main objective of

winning the competition. Competition-Based-Learning (CBL) is a student-centered

pedagogical approach based on social and cognitive constructivism [49, 143]. CBL

provides a formal setting for the students to achieve the intended learning outcomes

(ILOs) while still retaining the creative and open-ended nature of a competition [378].

In the CBL approach, there is an emphasis on the learning journey of the students

winning, and the competition is not the primary objective [21]. The students are

still required to work in groups to collaboratively solve an open-ended task while

completing regular task assignments, which are designed to guide students towards

the intended learning objectives of the course [49]. CBL is generally combined

with project-based learning (PjBL), problem-based learning (PBL), or cooperative

learning (CL) [49]. The use of CBL has been reported in nursing [21], business

[82], accounting [151, 275], entrepreneurship [8], mechatronics [117], fashion design

[58], social studies [134], software engineering [49], robotics [69], and information

technology programs [143].

This study presents a CBL approach, which leverages an informal learning

environment such as a Makerspace to engage students and motivate them towards

drone-related careers. The approach was tested and validated through a drone design

and piloting competition organized at a research institution located in the United
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Figure 6.1 Students participating in the drone competition after completing a
14-week workshop sequence that covered drone building, flight simulations, and
manual/semi-autonomous piloting.

States. The competition’s goal was to win a manual and semi-autonomous piloting

challenge while maintaining 100% safety from take-off to landing. Figure 6.1 depicts

students actively involved during the drone competition and workshop sessions.

Two key research questions that focused on the CBL approach for drone

education guided this study:

• RQ1: What is the student’s perceived impact of CBL on their drone building,
flight simulation, and piloting skills and knowledge?

• RQ2: What are student perceptions of instruction, Makerspace usage, and
challenges associated with a CBL based drone competition?

The CBL pedagogy was encapsulated in a set of indented learning objectives

(ILOs), Makerspace-based curricular modules covered during the weekly workshops,

and unfettered student access to the Makerspace resources. As depicted in Figure

6.2, the ILOs captured the requirements of modern drone industry professionals via

curricular modules i.e., sUAV assembly, testing, and validation using Commercial

Off-the-shelf (COTS) components, simulation of drone flight missions, and manual

and semi-autonomous drone piloting. Multiple assessment strategies were employed

to gain insights into student perceptions about different aspects of CBL.
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Figure 6.2 Multiple assessment strategies were employed for each of the course
modules to obtain quantitative data and qualitative insights about student
perceptions.

6.2 Related Work

Educational robotics has seen explosive growth in adoption since the collabo-

ration between LEGO and MIT Media Lab, which developed MINDSTORMS, an

educational robotics platform for commercial markets [164]. The authors in [25]

provide an in-depth systematic review of the current state of the art in educational

robotics. They argue that the benefits of introducing robotics in education have

significant potential for positively influencing a students’ academic and social skills

by creating opportunities to engage in critical thinking and problem-solving through

designing, assembling, coding, and operating the robots to perform specific goals.

The 147 articles reviewed found that all the studies unanimously suggest that

robotics promotes active learning and improves the learning experience. The authors

found 16 studies that pointed to increasing participation among students of various

backgrounds. Hands-on experience with projects based on robots and drones can help
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students visualize complex science, engineering, and technology (SET) concepts and

distill them down to real-world application [34,36,254,361].

A constructivist approach to learning, such as competition-based learning

(CBL) where the competition is used as a stimulus to maximize the chances

of positive learning outcomes, is a promising area of educational research [56].

CBL is generally centered around project-based or problem-based learning while

involving the students to work collaboratively on scaled-down versions of real-world

problems. Several educational researchers are currently studying the CBL approach’s

effectiveness in multiple disciplines, including engineering, social studies, nursing, and

entrepreneurship [8, 21,134,169].

CBL overcomes the current deficiencies associated with traditional learning

practices, such as lack of motivation, self-esteem, insufficient practical and real-life

experience, and inadequate collaborative exercises [143]. The study in [117]

presents a competition-based framework integrated with lab work for mechatronics

curriculum to develop skills in core areas necessary to complete a course capstone

project successfully. The course was open to undergraduate students pursuing the

mechatronics program. At the end of the course, the students were to build a mobile

robot based on Arduino. The qualitative feedback gathered from course evaluations

suggests that the approach effectively taught the mechatronics curriculum. The

CBL approach was further investigated for robotics education for K-12 students in

[69]. The robotics competition “Robofest” was an autonomous robotics competition

emphasizing math and science problems. The study showed that the students who

completed a STEM assessment before the competition achieved higher math and

science scores at the end of the round.

CBL, when implemented for nursing education, has been shown to enhance

motivation for learning, enforce teamwork spirit among students, promote engagement

and self-directed learning, emphasizes knowledge sharing among the group members,
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and stimulate students’ creativity and innovation to achieve better learning outcomes

[21]. In the study [82], the authors argued that the benefits of CBL not only apply

to students but also to faculty.

The effectiveness of CBL in overcoming students’ learning challenges has

also been studied in accounting [151, 275]. In [275], the authors investigated the

non-accounting major students’ perception of participating in an online accounting

quiz competition for the Introduction to Financial Accounting and Reporting course.

The questionnaire was specifically developed and distributed to students from the

Diploma in Computer Science, Diploma in Public Administration, Diploma in

Tourism Management, and Diploma in Office Management and Technology programs.

The descriptive statistics results reported mixed feelings about the quiz and its goal

in achieving the accounting course’s learning objectives. In [151] a specific learning

activity was conducted via the preparation of a mind mapping video for the course

Advanced Financial Accounting and Reporting on Corporate Social Responsibility

topic. The study aimed to examine the perception of using the CBL video as

a pedagogical tool in the accounting course. The results from feedback surveys

concluded that the winning video proved helpful in learning the accounting course.

Moreover, active and independent learning promoted students’ self-directed and

regulated learning system.

The authors in [8] critically analyzed the impact of entrepreneurial competitions

on Omani students’ soft skills. They performed a purposive sampling for the study.

A sample of 125 students was selected among the 450students from various Higher

Education Institutions (HEIs) who participated in the entrepreneurship competition.

A questionnaire was distributed two times to the students before and after the

competition, and 110 fully completed questionnaires were taken into the research

study. The empirical study’s findings suggested that competitions positively impacted

the students’ soft skills and mindset after participating in the competitions. The
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study confirmed that competition was an encouraging affair that made the students

learn new skills and developments in the business fields. Further, the study confirmed

that the competition made it easy to explore the labor market in requirements. The

study suggested that higher education institutions should motivate and encourage

students to participate in various entrepreneurial competitions, inducing a spirit

of entrepreneurship among the young students to enhance their soft skills for

self-sufficiency and identify the potentialities vested.

In [134], the authors studied the effectiveness of CBL in meeting the objectives

of social studies courses. A peer competition-based mobile learning approach was

adopted to conduct the learning activities in the social studies course of an elementary

school. The experimental results showed that students’ local cultural identity

improved along with learning interest and attitude due to CBL.

The above works reveal key insights about the use of CBL such as the use of

competitions to promote student motivation, encourage collaboration between the

learners, increase likelihood of the learner meeting the intended learning outcomes,

and improve learners’ self-esteem by providing sufficient real-life practitioner exercises.

The variety of studies reported on the use of a CBL-based instruction approach also

indicates the versatility of the approach in a wide range of disciplines.

The above body of work provides a glimpse of how CBL can be an exciting

alternative to traditional educational instruction methods. However, approaches to

successfully integrate a competition with the curriculum’s learning objectives are still

an active area of research for educational researchers. Specifically, there is a gap in

the literature about the application and effectiveness of CBL for drone education.

This chapter fills this gap by reporting on the following contributions:

1. Competition-based active learning instructional approaches to teach the building
blocks of drone technology careers, i.e., design and fabrication, flight simulations,
and commercial drone piloting.
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2. A 14-week long curricular structure that encapsulates key learning objectives as
demonstrable milestones. These learning objectives were drawn from Electrical
and Mechanical Engineering, Computer Science, Control Systems, and aircraft
piloting.

3. Multi-methods assessments for students’ gain in drone industry skills and
knowledge, attitudes towards the CBL approach for drone education, and
receiving instruction in an informal environment such as the Makerspace.

6.3 Competition-based Learning for Drone Education

The drone competition was open to undergraduate and graduate students from

all engineering backgrounds. A total of 97 students from various backgrounds,

including engineering, computer science, arts, and sciences departments, participated

in the competition. The students attended weekly workshops as teams of 3-5

members, totaling 22 teams for 14 weeks after which they competed in manual and

semi-autonomous piloting challenges while maintaining 100% safety from take-off to

landing. Each weekly workshop was approximately 4 hours long. The workshop

sessions were conducted at the university Makerspace to accommodate the students

and provide easy access to tools and resources crucial to building the drone. The

students participated in the workshop sessions as groups and were expected to

Figure 6.3 Duration for each of the curricular module covered during the
workshops.
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work collaboratively on designing, building, programming, testing, and validating

a quadrotor drone. Figure 6.3 depicts the duration of each of the curricular modules

covered in the workshop.

The curricular activities were developed around the Interactive-Constructive-

Active-Passive (ICAP) modes of cognitive engagement [63]. The ICAP framework

enables educators to design and examine active learning approaches due to the

observable and assessable nature of the four student engagement modes it outlines.

Table 6.1 tabulates the student engagement behaviors observed during the workshops

in the context of the ICAP framework. Four workshop modules were developed as

part of the CBL approach to cover specific drone industry requirements depicted

in Figure 6.2. With each workshop came a set of specific milestones that students

were to achieve. Demonstrating these milestones formed the basis of direct formative

assessment of gain in students’ knowledge and skills. All workshop content was hosted

on a Learning Management System (LMS).
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Table 6.1 Student Engagement Modes Observed in the Context of the ICAP
Framework during the Competition Workshops [63]

# Workshop
Module

Interactive Constructive Active Passive

1. Introduction
to drone
theory and
hardware
design
skills

Interact with
instructional
staff during
the lecture,
collaborate with
team members

Creating 3D
printed drone
parts, Using
the Soldering
station

Work with
Makerspace
tools, using
CAD software,
and soldering

-

2. SITL
simulation

Discussions on
drone simulation
software

Creating drone
programs based
on instructions
during workshop
session

Installing drone
simulation
software,
performing
statistical
analysis on
telemetry data

-

3. Drone
flight
controller
setup and
HITL
simulation

Discussion
on FC setup,
collaborate with
team members
to setup the FC

Creating drone
programs based
on instructions
during workshop
session

Setting up
FC/Radio
controller,
and performing
HITL simulation

-

4. Building
the drone
and
outdoor
flight test

Collaborate with
team members
on assembly,
testing, and
validation

Building the
drone kit,
perform outdoor
flight test,
design drone
landing gear

Researching
online resources
such as YouTube
videos and
Online Blogs,

-

6.3.1 Module 1: Introduction to Drone Theory and Hardware Design

Skills

The first module of the workshop spanned weeks 1 - 4. The four (4) hour workshop

sessions were divided into two parts. The first 2 hours consisted of an interactive

lecture session discussing the current state of the drone industry, drone kinematics,

drone dynamics, drone navigation and control, sensor data analysis, and drone

flight simulators. These interactive lecture sessions consisted of the instructors
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demonstrating drone technology using drone subsystems, live flights, and videos while

positing drone related questions to engage students in technical conversations as a

class. The next part of the workshop session consisted of hands-on activities where

the students were introduced to the Makerspace tools, emphasizing using 3D printers

and soldering stations.

These interactive lecture sessions consisted of the instructors demonstrating

drone technology using drone subsystems, live flights, and videos while positing drone

related questions to engage students in technical conversations as a class. The next

part of the workshop session consisted of hands-on activities where the students were

introduced to the Makerspace tools, emphasizing using 3D printers and soldering

stations. Students were guided through the steps of using computer-aided design

(CAD) software such as TinkerCAD and Solidworks to develop 3D models of drone

parts [326, 352]. The students were free to ask questions to the instructor during

the demonstrations of the tools and software. The student teams discussed with

their members any solutions to address issues encountered while setting up the CAD

software, and brainstorm designs for their drone parts. After developing their designs,

the student demonstrated their designs and discussed the intricacies of 3D printing

parts for their drone platforms. Students were subsequently immersed in the hands-on

experience of soldering drone circuits. Soldering is a crucial skill in building a drone

from scratch. Each student team was responsible for soldering the circuit board on

their drone.

Key milestones for this module included CAD design and 3D printing different

parts of the drone body such as drone frames, landing gear, and mounts for different

drone parts, and soldering electronic components of drone circuits such as electronic

speed controllers (ESCs) and power management boards.
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6.3.2 Module 2: Software in the Loop (SITL) Simulation

During weeks 5 - 8, students were introduced to open-source simulation environments

for drone operation. Software simulators provide a safe and reliable way to verify flight

plans and motion planning algorithms. Students were introduced to the JMAVSIM

and Qground Control (QGC) simulation environment to perform Software-in-the-loop

(SITL) simulations [148, 272]. In the SITL phase, the students were first tasked

with setting up the drone simulation environment and different flight missions

for the drone. The students were introduced to industry-standard practices of

setting up drone flight missions, such as setting geo-fences, waypoints, flight modes,

including return-to-launch, return-to-home, and loiter. The instructor provided

live demonstrations of the simulation environment, and students worked with the

instructor and each other regarding the software setup at any time during the

demonstration. Figure 6.4 depicts a snapshot of the drone SITL in Qground Control.

After the students were comfortable with the drone simulation environment, the

next task involved creating autonomous flight missions using scripts. The students

were provided a collection of advanced and straightforward flight patterns that they

programmed for SITL tests. Programming APIs were provided to the students

with appropriate documentation and tutorials. The tutorials covered setting up

Figure 6.4 (Left) Snapshot of JMAVSim flight simulator for the quadrotor.
(Right) SITL software tools Qground control, and PX4 autopilot.
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the software on different computers, working around any installation challenges,

and performing GPS-based missions along specific flight paths. The programming

exercises were designed as group activities for students to interact with each other in

teams and develop programs for each of the drone flight patterns. Students worked

on different flight patterns, including simple shapes such as squares, circles, triangles,

and advanced shapes used in the drone industry.

Key milestones for this module included using the JMAVSIM and QGC

environments to set manual mission planning using GPS coordinates obtained from

a Google Map API, logging telemetry data collected from the flight mission with

time-stamps in a CSV format, and perform statistical analysis visualization of the

logged data.

6.3.3 Module 3: Drone Flight Controller Setup and Hardware in the

Loop (HITL) simulation

From weeks 9 - 10, students graduated to using popular and state-of-the-art

open-source drone flight controllers (FCs) to recreate the drone simulations developed

in the SITL phase with the FC. This process is also called Hardware-in-the-Loop

(HITL) simulation. The knowledge gleaned from the SITL exercises was directly

applicable here as flight missions could be tested with the FC. HITL simulations

provide closer to real-flight test results since the drone telemetry provided by the

FC serves as a close approximation for outdoor flight test results. The next task

involved setting up the joystick radio controllers to send flight commands to the

drone. The HITL simulations were compatible with the radio controllers, and the

students were tasked with operating the drone in simulation using input commands

from the joysticks and switches of the radio controller. The HITL simulations also

provided the students with a safe and first-hand experience piloting a drone using

the joystick (for throttle, roll, pitch, and yaw control) and switches (arm/disarm,
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Figure 6.5 (Left) Drone mounted with the electromechanical hardware and battery
assembled by a student team by the end of the workshop sessions. (Top-Right)
Popular flight controller hardware. (Bottom-right) radio transmitter used to
communicate with the drone.

among other functions). The students discussed with their team members and

collaboratively worked towards setting up the flight controller, and radio transmitter.

The instructional staff worked with student groups one-on-one to debug any technical

issues.

Key milestones for this module required the students to perform sensor

calibration processes for the FC, radio transmitter, and the electronic speed controllers

(ESCs), performing HITL flight missions for their drone. Fig. 6.5 depicts the

450 quadrotor frame with the flight controller mounted and alongside the radio

transmitter.

6.3.4 Module 4: Building the Drone and Outdoor Flight Test

From weeks 11 - 14, students were tasked with building a quadrotor drone using the

provided kit. The quadrotor frame was a standard 450 model [99]. The students

were provided an outdoor arena designated for flight tests, enclosed within nets to

provide a safe space for flying the quadrotor. The student teams collaboratively

worked towards assembling the drone kit, flight testing the software, and validation.
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All students were mandated to use a 45-foot rope, which was to be always tethered to

the drone during the flight test to prevent accidental flyaway situations. The teams

managed their workload where one member managed the safety rope, one member

operated the radio transmitter to fly the drone, while other members observed and

documented the flight test.

Specific milestones for this module included successfully and correctly assembling

the drone body’s electro-mechanical components, re-calibrating the sensors and ESCs,

and conducting a safe outdoor flight test under the supervision of the instructional

staff.

6.3.5 Drone Competition

The drone competition was held in week 15 of the term, summatively evaluating the

students’ understanding of the fundamentals of drones. The student teams, which

successfully reached all the technical milestones for each workshop module, qualified

to participate in the final competition. Conditioning student team participation on

their ability to achieve the workshop milestones successfully ensured that the students

participating in the competition had a flying drone that was safe and thoroughly

tested. In the week leading up to the competition, the student teams could practice

their drone piloting skills in the flying arena. Student teams that had trouble getting

their quadrotor to fly were provided with hands-on guidance by the instructors. The

competition was held in a 55 ft. (L) x 14 ft. (W) x 12 ft. (H) arena enclosed with a

protective net. The competition featured two rounds: 1. Round 1: Obstacle course

flying. 2. Round 2: Payload carrying and delivery.

1. Round 1: Students competed to pilot their quadrotor through an obstacle course
in minimum time in the first round. Students were allowed a total of 3 tries to
fly around the obstacle course. Negative points (time penalties) were applied
for each flight if there were collisions with the obstacle or the course was not
completed. The highest score from the three trials (navigation (flight) time +
negative penalties) was used to rank each team’s performance.
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2. Round 2: The top 10 ranked teams from Round 1 progressed to Round 2. This
round featured a payload delivery task, where the payload was an egg. Each
team placed an egg in a 3D printed carrying cradle provided by the instructional
staff. As seen in Figure 6.1, the cradle had to be suspended at least 12 inches
below the drone, measured from the point of the frame that touches the ground
to the egg’s location. The teams were to fly the drones through the obstacle
course while carrying an egg. In order to successfully complete Round 2, each
team was required to safely deliver the egg back to the take-off/landing location.
The requirements and the penalty system for this round were the same as in
Round 1. The teams were scored based on the delivery time and navigating
the obstacle course without damaging or dropping the egg outside the delivery
location.

The drone competition featured cash prizes for the winning teams. The first

prize-winning team got $1000, the second prize-winning team got $750, and the third

prize-winning team got $500.

6.4 Assessment Techniques

A total of 97 students registered for the workshops and the competition. As

mentioned, the competition was open to students from the undergraduate and

graduate programs. 22% of the participants were MS students, 9.5% of the

participants were Ph.D. candidates, and 68.5% of the participants were undergraduate

students. The competition attracted students from various backgrounds: 20% of the

registered participants were Computer Science majors, 74% of the students were from

the School of Engineering, and 6% of the students were from the School of Life Sciences

and Liberal Arts.

At the beginning of the competition, a brief survey was conducted to understand

students’ prior experience with drones. Table. 6.2 depicts the students’ responses to

the survey questions. The responses suggest that 61% of the students had no prior

experience with drones, 22% of the students were excited at the prospect of building

a drone for the first time, and 17% had prior experience flying a drone. None of the
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Table 6.2 Student Responses to the Pre-survey Indicates that a Majority of them
had no Prior Drone Building or Piloting Experience

The competition announcement got me interested
in drones for the first time.

22%

I was interested, but had no hands-on experience
with drones

61%

I had some experience flying drones for fun, but
had not built one myself.

17%

I assembled drones using commercially available
drone kits and accessories/parts.

0%

The prizes offered were the primary motivation for
me to participate in the competition

18% Yes 82% No

students had prior experience building drones using commercial-off-the-shelf drone

kits.

A case study approach involving multiple assessment methods was adopted to

assess students’ drone assembly skills, flight simulation knowledge, piloting acumen,

perceived gains in skills and knowledge, and attitudes towards a CBL approach for

drone education. Both quantitative and qualitative assessments were conducted to

gain multiple insights into the effectiveness of CBL. Table 6.3 presents a summary

of the assessment types, methods, targeted course component, and data analysis

method.
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Table 6.3 Salient Features of the Assessment Strategies

Assessment
type used
for Research
Question
(RQ)

Assessment
method (Data
Sources)

Targeted course component Data analysis

Direct
formative
(RQ1)

Workshop
milestones

Evaluated student progress
in specific milestones 1)
Introduction to drone theory,
2) Soldering, 3) 3D printing,
4) SITL simulation, 5) Flight
controller setup, 6) HITL
simulation, 7) Drone assembly,
and 8) Outdoor flight test

Descriptive
statistical
analysis of
task correctness,
documentation,
and innovation
data

Direct
summative
(RQ1)

Multiple runs
of safe flight
demonstration

Evaluation of students’ safe
piloting skills and comprehensive
drone systems knowledge

Flight
performance
data from
multiple runs

Indirect
quantitative
(RQ1, RQ2)

Likert-scale
feedback
survey

Prior drone building experience,
value added by the compe-
tition, perceived gain of drone-
related skills, value of Makerspace
environment

Descriptive
statistical
analysis for
Likert-scale
responses

Indirect
qualitative
(RQ1, RQ2)

Descriptive
comments
from feedback
survey

Overall experience with CBL and
drone education in Makerspace

Inductive
analysis using
the constant
comparative
method

6.4.1 Direct Formative Assessment

Formative assessments were conducted at the end of each workshop session to assess

whether students reached specific milestones. As described in detail in Section 6.3,

these milestones included the following topics: 1) Introduction to drone theory, 2)

Soldering, 3) 3D printing, 4) SITL simulation, 5) Flight controller setup, 6) HITL

simulation, 7) Drone assembly, and 8) Outdoor flight test. These assessments also

ensured that the students received appropriate help if they had trouble comprehending

the relevant concepts covered during the workshops.
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Student progress was assessed on the following dimensions:

1. Milestone correctness: The student team reached the milestones by performing
correct technical tasks that met all specifications.

2. Documentation: Each milestone required the students to provide meaningful
documentation of the tasks involved. Video demonstrations that clearly showed
the task completion according to the specifications were an essential part of the
documentation.

3. Innovation: Task solutions demonstrated their creativity and ability to synthesize
new approaches from the information provided during the workshops.

Table 6.4 depicts the weekly breakdown (in percent) of students reaching their

milestones. It is observed that a majority of the students reached the first three

milestones within two weeks. Starting the fourth milestone (SITL simulation),

students took up to 3 weeks to successfully reach the milestones. In contrast to

only 18.18% of students completing the SITL simulation within one week, 77.27%

students finished HITL within a one-week period. This observation indicates that

students gained sufficient knowledge and skills about flight simulations from their

SITL experience to quickly and complete HITL simulations. As expected, drone

assembly was the longest milestone (4 weeks). By the end of week 14, which was the

last workshop session, 95.45% of the students completed the outdoor flight test. The

remaining students who did not achieve their milestones by the last 2 weeks met with

the instructional staff during office hours for additional assistance. The table also

Table 6.4 Percentage of Students Reaching the Workshop Milestones on a Weekly
Basis

Week
Introduction to
Drone Theory Soldering 3D printing SITL sim FC setup HITL Drone Assembly Outdoor flight test

1 100%
2 77.27%
3 22.73% 63.64%
4 36.36% 18.18%
5 54.55%
6 27.27% 36.36%
7 36.36%
8 27.27% 77.27%
9 18.18%
10 4.55% 18.18%
11 36.36%
12 31.82% 27.27%
13 13.64% 50%
14 18.18%
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highlights an important part of the CBL philosophy that every student has their own

pace of learning and takes their time to find the solution to the task [149].

6.4.2 Direct Summative Assessment

The summative assessment featured a comprehensive demonstration of all functions

of the drone via a series of safe and controlled outdoor flight tests in a week 14. The

student teams were required to fly their drone using their radio controller for at least

1 minute for a total of 5 flight runs. This assessment indicated that the student

groups successfully reached all the milestones of the workshop sessions and served as

a qualifier for the final competition. Among the 22 participating teams only 1 team

was unsuccessful in qualifying to participate in the final competition.

6.4.3 Indirect Quantitative Assessment: Likert-scale Feedback Survey

The students were requested to complete an online post-competition feedback survey

(delivered through the LMS) that featured thematic questions to assess the following

three core aspects:

1. Value added by the drone building competition.

2. Value of integrating the Makerspace environment during the drone building
process.

3. Overall experience with the workshop sessions and the drone competition.

97 students completed the survey.

Value added by the drone building competition: This section of the survey

featured a total of 3 questions. Two (2) questions sought to elicit responses from

students about their perceptions of the value added by the competition and workshop

to their technical skills and knowledge and their creativity and ability to innovate. The

third question was inspired by Fred Reichheld’s net promoter score (NPS) question

wherein the students were asked to respond to the statement “I will recommend this
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Figure 6.6 Likert Scale based student responses to questions about the drone
competition.

activity to other students” [282,283]. The responses for this section of the survey used

a Likert Scale of 1 through 5 where a response of 1 indicated strong disagreement and

a response of 5 indicated strongly in agreement.

Figure 6.6 depicts student responses to 3 statements in this category on the

feedback survey. As depicted in the graphs, 50% of the respondents strongly agreed

and 37.5% of the respondents agreed to the statement that the drone competition

helped them gain hands-on experience with designing and configuring drones. A

total of 66.67% of the respondents strongly agreed or agreed to the statement that

the drone competition helped improve their creativity and ability to innovate, while

only 12.5% of the respondents disagreed with the statement. These responses suggest

that the students had a favorable perception of the drone competition in terms of

gaining hands-on experience in designing and building drones while enhancing their

creativity and innovative ability.

A total of 79.17% of the respondents strongly agreed to recommend the

competition and workshop to other students, indicating that most of the students

rated their workshop and competition experience high enough to recommend it to

other students.
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Value of the Makerspace as a venue for the workshops: This section of the

survey used two statements to elicit responses from students about their perceptions

of the value added by Makerspace as the venue for the workshops. The responses for

this section of the survey used the Likert Scale of 1 through 5, where a response of 1

indicated strong disagreement and a response of 5 indicated strongly in agreement.

Fig. 6.7 depicts the Likert-style responses of the students to the questions

regarding their experience at the Makerspace. The results show that 58.33% of the

respondents either agreed or strongly agreed with the statement, “Because of the

exposure to Makerspace during the drone workshops, I have used the Makerspace

for other projects.” In addition, 83.34% of the respondents agreed or strongly agreed

with the statement, “Because of the exposure to Makerspace during the workshop, I

intend on using it for my future class projects and research.” These results suggest

a positive learning experience at the Makerspace for a majority of the students. As

a corollary, the positive experience of using the Makerspace motivated students to

leverage it during their future education.

Overall experience with the workshop sessions and the drone competition:

Fig. 6.8 depicts the responses of the students regarding their overall experience

at the end of the drone workshops and competition. 50% of the respondents were

Figure 6.7 Student responses regarding the Makerspace use suggests a positive
experience and indicates their intention to use the Makerspace in the future.
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Figure 6.8 Responses regarding the students overall experience with the drone
workshop and final competition.

very satisfied with the drone workshops, and 41% were satisfied, suggesting that the

workshops proved to be a positive learning experience for students. Only 9% of the

respondents were dissatisfied with their workshop experience. The final competition

36% of the respondents were very satisfied, 27% were satisfied, 18% were neutral, and

18% were dissatisfied. These responses are explored further in the indirect qualitative

assessment section 6.4.4.

6.4.4 Indirect Qualitative Assessment

At the end of the drone competition, the post-completion feedback survey featured

open-ended questions for the students to provide brief descriptive feedback about their

experiences. The comments collected at the end of the survey formed the primary

data source to unpack insights about the effectiveness and challenges of the CBL

approach to drone education.

The prompts in the survey asked the students to provide a brief description of

their experience with the drone building workshop and the drone competition. The

prompt also asked the students to highlight their positive and negative experiences

and provide suggestions for improvement. The feedback responses received were

analyzed inductively according to the constant comparative method [302]. Based
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on the analysis, three recurring themes were identified. These themes are presented

here as follows:

1. Theme 1 - Problem Solving Skills and Collaborative Learning
The drone building workshop consisted of challenging activities. These activities
encouraged the students to think of innovative solutions to the given problems,
as noted in the following comment “I love the part each team has their way
of approaching the final competition. I saw a lot of different method of solving
the same problem.” The students participated in the workshop sessions and
the competition as a team, which provided a collaborative learning opportunity
since the students had to work together to solve the problems as indicated
in the following comment, “The competition provided an engaging opportunity
to connect with engineers from other backgrounds and work together towards
solving the drone design challenges.”

2. Theme 2 - Interest in Drone Technology
As noted in Table 6.2, majority of the students participating in the competition
had no prior experience with drones. The drone building workshop sessions and
competition provided an opportunity to successfully generate interest in drone
technology. The following comment echoes this sentiment, “The drone building
workshop was a great experience to learn about the step-by-step procedure of
building drones. I plan on using the experiences gathered and build my own
drone.” This comment suggests that the students were motivated by the
competition along with the comprehensive instruction and learning resources.
The students were appreciative of the learning resources and instructors as
suggested by the following comment: “The workshops were very informative,
and the instructors/TA were always present and helpful.” The competition
environment served as a motivator for students to effectively grasp multiple
engineering skills as suggested by the following comment: “The competition
was an excellent way to help students in all aspects of engineering... working
with a team, strategizing the approach to the course, deciding the modifications
to drone which will be most beneficial for the competition, working hands on
with the actual drone from step 1 to final competition, soldering skills, and
troubleshooting problems.”

3. Theme 3 - Challenges and Future Directions
The drone competition was open to students of all STEM backgrounds at the
university. The emphasis on the competition proved to be an effective motivator
for students to learn about drones. However, there were some challenges faced
by the participants, which were highlighted in the feedback comments. One
of the significant challenges of conducting a drone competition for most first-
time drone pilots is providing a safe and supervised space for conducting flight
tests. One of the students commented, “For future iterations of the competition,
increased time should be provided for piloting the drones. An extra week or two
with the safety nets would drastically help teams piloting skills improve.” This
comment suggests a fixed period may be allotted to piloting the drones since
drone piloting formed a crucial component of the final competition challenge.
One of the students commented, “One improvement I would like to see is it
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become more challenging. I would like for future competitions to deal with more
programming and use of mechanical components such as a grapple system.” This
comment provides valuable suggestions for future iterations of the competition,
emphasizing the programming and designing aspects around the drone platform.

6.4.5 Drone Competition Results

The final competition evaluated the students’ piloting skills and the design innovation

for the payload delivery task. The scores were assigned based on the total time taken

by each team to complete the drone flight mission. The scores include the total flight

time in minutes and the penalties received in minutes. The mean of the scores received

by the students for round 1 and round 2 of the competition was 1.56 minutes and

1.9 minutes, respectively. The standard deviation observed for the scores for round 1

and round 2 was 0.37 minutes and 0.43 minutes respectively.

6.5 Discussion

The use of multiple methods for assessment was instrumental in helping us explore the

answers to the research questions. Quantitative assessment methods used provided

evidence about the effectiveness of the CBL approach for drone education. In

contrast, qualitative assessment methods helped generate a descriptive understanding

of student perceptions, which lent further evidence to the quantitative data [188].

CBL for Drones The quantitative insights obtained suggest that the students

received the CBL approach well and were motivated to learning more about drones.

Many of the participating students were introduced to drones for the first time and

found the competition to be a fun approach to learning more about the field. This

observation suggests that the drone competition had a positive effect on the students’

motivation for learning new concepts [268]. The qualitative assessment of the feedback

comments indicates that the students were encouraged to work on their problem-

solving skills and learn collaboratively. The competition motivated the students to
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work together to solve the assigned tasks, which is in line with the observation that

competitions promote problem-solving skills and collaborative learning [53]. The

constructive feedback comments provided by students suggest that they took on the

roles of stakeholders to improve the future CBL iterations of this competition.

Makerspace and Student Engagement : The education community has

recognized the potential for Makerspaces as learning environments that can stimulate

interdisciplinary collaboration and self-directed learning [135]. The current state

of the art points to Makerspaces’ efficacy in promoting creative thinking and

problem-solving skills [182]. The quantitative results for student perception of

the Makerspace-centric learning environment suggest that the students found this

non-traditional learning environment useful for critical engineering skills and intend

to leverage the space for future projects. The qualitative results further suggest that

the Makerspace aided in the communication skills of the students through interactions

with the Makerspace personnel and provided ample opportunities for hands-on and

technical experience with the available instruments [346].

Logistical and Management Challenges : We note that when organizing

a competition of such scale, there are several logistical and planning challenges.

Ensuring that students keep up with their milestones requires continuous commu-

nication between the instructional staff and student team members. Additionally,

keeping track of the hardware components of the drone requires inventory management

on the part of the instructional staff. During the competition, keeping track of flight

runs for each team needs multiple staff members synchronizing closely. Ensuring that

the teams were lined up for a smooth transition for flights one after the other requires

close coordination across all teams.
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6.6 Conclusion

There is a growing number of engineering educators trying to prepare students with

skills and knowledge relevant to the drone industry. This chapter reports on a

competition-based active instructional approach to preparing undergraduate students

for engineering, software, and piloting careers in the drone industry. The approach

consisted of 14 workshop sessions that incrementally prepared the students for several

aspects of drone building, flight simulations, and piloting. The workshop milestones

prepared 97 students from STEM backgrounds at a research university to participate

in a drone piloting competition. Multiple assessment methods were used to collect

quantitative data and qualitative evidence about the effectiveness of the CBL in the

context of drone career preparation. Quantitative assessments indicated that most

students successfully reached all technical milestones at the end of the workshop

sessions. Qualitative assessments revealed that students found the CBL approach to

be an engaging method of introducing drone technology. Challenges encountered

during this study were discussed and future improvements were discussed. As

educators continue to explore active-learning instructional approaches for drone

education, we anticipate that the information provided in this chapter may serve

as a guide for future drone educators looking to implement CBL.
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CHAPTER 7

PREPARING STUDENTS FOR DRONE CAREERS USING ACTIVE
LEARNING INSTRUCTION

7.1 Introduction

Paper: D. Lobo, D. Patel, J. Morainvile, P. Shekhar and P. Abichandani.

“Preparing Students for Drone Careers Using Active Learning Instruction,” in IEEE

Access, vol. 9, pp. 126216-126230, 2021

The growth in the accessibility of drones has raised societal concerns because

drone pilots without the proper training pose potential threats to safety and privacy

[335]. Federal agencies around the world have recognized the need to classify drones

and develop legislation to govern the safe operation of such vehicles [237, 377]. For

example, the Federal Aviation Administration Part 107 Commercial sUAV pilot test

in the United States [100], EU Regulations 2019/947 and 2019/945 [98], Transport

Canada Basic Exam [114], Nigerian Civil Aviation Authority [240], and Indian

Directorate General of Aviation [86]. These legislations mandate that commercial

drone pilots are certified through tests and demonstrate their comprehension of the

relevant aspects of safe and lawful drone operation.

Modern drone careers involve drone software programming, designing and

fabricating drones using Computer-Aided Design (CAD) and rapid prototyping, safe

piloting, and knowing legal requirements to operate drones commercially. Engineering

and computer science (C.S.) educators have recognized this demand for certified

sUAV professionals. Several studies pertaining to curriculum and instructional

methodologies to effectively prepare undergraduate students for sUAV careers have

been reported [38, 52, 144, 154, 212, 299, 300, 311, 361]. While these studies focus on

the construction, programming, and piloting of drones, they do not report on formal

instruction on drone operation’s safe and legal practices. The United States Federal
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Aviation Administration (FAA) introduced the Part 107 remote drone pilot license

test on June 21, 2016. This licensure is mandatory for individuals that intend to

become commercial sUAV pilots. As part of the Part 107 framework, the FAA

prescribes guidelines for the safe and legal operation of sUAVs under the weight

of 55 lbs for commercial purposes. Any individual above the age of 16 can prepare

for the test using the references provided by the FAA and become a licensed drone

pilot operator.

With this growing need to train engineering graduates in upcoming technologies

(drones), it is imperative to develop and assess educational interventions that engage

students in the content and provides them hands-on experience in the process. Drones

can be an exciting hands-on platform to expose students to the principles of electrical

and computer engineering, mechanical engineering, and computer science. This

chapter reports an active learning approach to prepare undergraduate students for

engineering, software, and piloting careers in the drone industry. The active learning

approaches are integrated in an undergraduate course that focuses on the building

blocks of drone careers and culminates in a capstone drone project. Figure 7.1 depicts

some of the capstone projects developed by students during the course.

Figure 7.1 (Left) Actual drones fabricated by students for their capstone projects
(Right) CAD designs and Computational Fluid Dynamics (CFD) simulations for
drone projects developed by the students in the class.
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Active learning is an effective pedagogical paradigm for high-quality, collabo-

rative, engaging, and motivating education [230,269,318]. In active learning, students

are engaged in the learning process rather than being passive recipients of knowledge.

The primary role of instructors is to provide learning space and facilitate the learning

process [138]. Active learning approaches have shown to be effective strategies in

engineering education [59,107,152,349].

Two key research questions that focused on the use of active learning approaches

for drone education guided this study:

• RQ1: What is the student perceived impact of an active learning-based drone
course on their computer programming skills and knowledge regarding the safe
and legal operation of drones?

• RQ2: What are student perceptions of instruction and challenges associated
with an active learning drone course?

As depicted in Figure 7.2, drone industry requirements were integrated in active

learning based curricular modules. Multiple assessment strategies were employed to

gain insights into student perceptions about different aspects of the course.

7.2 Related Works

The use of robots for education has witnessed significant growth since the collabo-

ration between LEGO and MIT Media Lab that resulted in the commercialization

of the MINDSTORMS robotics platform [164, 208]. The authors in [25] provide an

in-depth systematic review of state-of-the-art educational robotics. They posit that

the benefits of introducing robotics in education have the potential for positively

influencing a students’ academic and social skills. Robotics in education creates

opportunities to engage in critical thinking and problem solving through designing,

assembling, coding, and operating the robots to perform specific goals. From the

147 articles reviewed, the authors found that all the studies unanimously suggest

the inclusion of robotics promotes active learning and helps improve the learning
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Figure 7.2 A key aspect of this study was the development of active learning based
course modules that integrated drone industry requirements. Multiple assessment
strategies were employed for each of the course modules to obtain quantitative data
and qualitative insights about student perceptions.

experience. The authors found 16 studies that pointed to the effectiveness of

increasing participation among students of various backgrounds.

While most educational robotics platforms continue to have the form of ground

robots, the recent growth in sUAV technology makes these flying robots a relevant

robotics platform to train young engineers looking to join the workforce [81,196,365].

In [361], the authors provide a mapping review of the online courses available for

drone education. The study found that of the available courses, only 25% of the

massively open online courses (MOOCs) and e-learning courses are related to UAV

pilot certification and pilot operation. The authors noted that 56.3% of the online

courses are usually a repurposed online version of the courses provided as part of

in-person university programs. The length of the courses falls between 4 to 8 weeks

with an estimated weekly effort of 4 and 5 hours. Course evaluation methods are

limited to theoretical methods such as multiple-choice questions (MCQs) and algebra

exercises with numerical answers. The authors concluded that a practical (hands-on)
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approach to evaluation needs to be introduced to increase learner engagement and

stimulate self-learning and discovery among students.

Engineering schools have recognized the need to prepare professionals entering

the job market with experience in the operation of drones, leading to the development

of a curriculum focused on this niche [52,103,213,219,245,300].

In [300], three courses carrying three credits each related to UAV education

were developed, designed, and offered at Southern New Hampshire University with

the motivation of integrating UAV education as part of the aeronautical/aerospace

engineering program. A UAV lab was also established, equipped with nets for safety

and eight cameras for navigation. The courses included weekly lectures, take-home

assignments, lab experiments, design projects, a midterm test, and a comprehensive

test.

The authors noted that the root cause of the lack of convergence between

UAV education and practical application is the absence of experiential learning. The

authors focused on team-based learning, project-based education, lab experiments,

UAV flight, flight safety, flight tests, UAV laboratory, and hands-on experience.

The authors noted that UAV experience requires students to develop skills such as

flight planning and flight test execution, and it reinforces skills in data analysis,

communication, and teamwork.

In [52], the authors presented an open-access drone programming course for any

teacher/student to learn drone programming. The course emphasized programming

a drone through practical applications. The course material was developed using

robot operating system (ROS) middleware, the 3D simulator Gazebo, and Python

programming language. The course has been successfully taught for five years to

students from several university engineering degrees. A survey conducted with 21

students during the 2018/19 run of the course showed that 57.9% of the students

found the course experience excellent, and 42.9% students were more than satisfied
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with the experience. sUAVs have been used to cover topics on modeling and control

for undergraduate and graduate courses as noted in [213], and helping students gain

experience by building platforms such as hexacopters [219].

As noted earlier, active learning methods put emphasis on student learning

and gives them greater motivation in the process of learning [38, 41, 80, 107, 312,

317]. In [225], the authors described a Project-based Learning (PBL) program for

UAV-based remote sensing. The course was designed to help students determine

the vigor, temperature, and water stress of crops by using RGB, multispectral, and

thermographic sensors onboard a UAV platform. The authors note that students

are motivated from the beginning of the learning process to actively participate in

UAV flights and subsequent processing and analysis of the registered images. Student

satisfaction surveys regarding the effectiveness of PBL conducted over four years have

reported consistent positive feedback from the students.

7.3 Main Contributions

While the above body of work points to a growing interest in using drones in

undergraduate classrooms, there is still a gap in the literature about preparing

students effectively for drone careers. Additionally, the studies related to drone

education in schools have not reported on a comprehensive set of assessment strategies

that leverage quantitative and qualitative data to provide valuable information on the

effectiveness of the curriculum and associated pedagogical approach. This chapter fills

this gap by reporting on the following contributions:

1. Active learning-based instructional approaches to teaching the building blocks
of drone technology careers, i.e., programming, design and fabrication, and
commercial drone pilot credentialing.

2. A course design that covers the requirements for the US FAA Part 107
commercial remote pilot license test in a classroom setting.
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3. Multi-methods assessments for students’ gains in skills and knowledge and
attitudes towards an active learning-based approach for drone education.

We note a growing number of drone-based educational efforts that focus on

middle and high school students [103,299]. These efforts are an exciting development

and point to an increase in the use of drones across K-12 in the coming years. The

presented work documents drone educational effort in undergraduate settings and

congruence with suitable drone industry needs and requirements.

7.4 Active Learning for Drone Education

The active learning approach focuses on exploring drone careers’ building blocks

and is elucidated in this section. The approach was implemented in an under-

graduate class, Drone Science Fundamentals, attended by students from mechanical,

electrical, computer, biomedical, chemical engineering, and the computer science

(C.S.) departments at a research-focused institution located in the United States.

The approach featured three modules: Programming using Indoor Drone, Part 107

Federal Aviation Administration Remote Pilot License Test, and a Capstone Drone

Technology Project. The course has been conducted four times since September 2019,

and 215 students have registered for this class across four offerings.

Active learning approaches include interactive lectures that featured discussions,

indoor drone programming, and a capstone project to immerse individual students

and student-led teams in the technical challenges of designing and prototyping

drone-based products and services. Each of these active learning approaches were

guided by the Interactive Constructive Active Passive (ICAP) modes of cognitive

engagement [63]. The ICAP framework enables educators to design and examine

active learning approaches due to the observable and assessable nature of the four

student engagement modes it outlines. Table 7.1 summarizes the observed student
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engagement behaviors in the context of the ICAP framework during the 3 course

modules.

Table 7.1 Student Engagement Modes Observed in the Context of the ICAP
Framework during the 3 course Modules [63]

# Course
module

Interactive Constructive Active Pass -
ive

1. Python
programming
with Indoor
Drone

Collaborative
programming
assignments
with Indoor
drone

Creating drone
programs based
on instructions
during class
session

Rewinding
and/or pausing
Python videos,
commenting
Python code
demonstrated in
the classroom

-

2. FAA Part
107

Discussing legal
and societal
implications
of the FAA
regulations
during lecture
sessions

Articulating
applicable FAA
regulations for
capstone project
statements

Rewinding
and/or pausing
FAA videos,
note-taking, use
of commercial
drone software
applications to
study airspace
categories

-

3. Capstone
Project

Weekly group
meetings,
Discussions
during progress
presentations,
project demo
video creation

Open-ended
drone
programming
and simulations,
3D CAD, 3D
printing drone
parts and
evaluating them
for correctness,
electro-
mechanical
assembly of the
drone project

Researching
online resources
such as YouTube
videos and
Online Blogs

-

The duration of each module is depicted in the left chart in Figure 7.3. The

course content was hosted on two learning management systems (LMSs) – Canvas

and Moodle [141,235]. Each module featured topical pages on the LMS with videos,

illustrations, and textual content. These modules are described in the sub-sections

below.
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The instructor and teaching assistant were from the electrical and computer

engineering, mechanical engineering, and computer science departments at the

university. The researchers in this study including the instructor and teaching

assistants are working on integrating modern technology (drones/robotics) and

industry-standard computer programming education into the classroom through the

use of active learning.

7.4.1 Module 1: Programming using Indoor Drone

A key strength of modern sUAVs is their ability to be programmed for various

automated, semi-autonomous, or fully autonomous tasks. There is a growing demand

for professionals that can create software/firmware for drones. The key learning

objective of this course module was to provide students a foundational introduction

to drone task programming using an indoor quadrotor platform and the Python

programming language.

Python is considered as one of the most popular programming languages [165].

It is an interpreted, high-level and general-purpose programming language that is

concise and easy to read. This module was covered during the first 6-weeks of the

semester, where the first two weeks focused on Python programming and the following

four weeks focused on using Python programming to perform various automated and

semi-autonomous tasks using indoor drones. Two indoor quadrotor platforms were

used for the class – the DJI Tello and the LocoDrone by LocoRobo. Both these

Figure 7.3 (Left) Duration for each module of the course. (Right) Two models of
indoor drones were used in the class, the DJI Tello and the LocoDrone by LocoRobo.
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quadrotors weigh less than 250 grams and can be programmed using Python. Both

quadrotors have flight sensors that allow for safe and stable flight. The quadrotors can

be programmed wirelessly using any Python Integrated Development Environment

(IDE). Many students in the class had relatively little prior programming experience.

The course module introduced the basic constructs of programming using Python and

then gently guided students to explore functions, Python modules, data structures,

flight patterns, and computer vision using indoor drones.

The module consisted of 3 assignments that were due every two weeks. Students

were free to collaborate on the assignments. The first assignment focused on

introductory Python exercises. The second and the third assignments focused on

students using indoor drones for implementing flight patterns, obstacle avoidance,

payload transportation, and computer vision-based decision making. OpenCV was

used for the computer vision tasks [250]. Students were free to use Python IDEs of

their choice. These free-of-cost IDEs included the powerful Google Colab platform,

PyCharm, Spyder by Anaconda, and Microsoft Visual Studio [39,147,226,332].

7.4.2 Module 2: Part 107 Federal Aviation Administration Remote Pilot

License Test

The second-course module covered the topics required to pass the FAA Part 107

license test. Given the expansive nature of the test, this module spanned 12 weeks

with the primary objective to fully prepare students for taking the license test by the

end of the semester.

As per the FAA Part 107 requirements listed on [100], the following topics

covered include:

1. Applicable regulations relating to small unmanned aircraft system rating,
privileges, limitations, and flight operation,

2. Airspace classification, operating requirements, and flight restrictions,
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3. Aviation weather sources and effects of weather on small unmanned aircraft
performance,

4. Small unmanned aircraft loading and performance,

5. Emergency procedures,

6. Crew resource management,

7. Radio communication procedures,

8. Determining the performance of small unmanned aircraft,

9. Physiological factors (including drugs and alcohol) affecting pilot performance,

10. Aeronautical decision-making and judgment,

11. Airport operations, and

12. Maintenance and preflight inspection procedures.

Videos created and curated by our team formed a key part of this module and

provided an engaging way to teach an otherwise serious set of topics. Class sessions

involved students discussing and debating the legal and societal implications of these

regulations. Students used commercial drone software applications to study airspace

categories and other aviation-related information [13,29,163]. The assessment of the

FAA curriculum was conducted through 4 quizzes and 2 FAA practice mock-tests.

The quizzes and mock-tests featured multiple choice type questions that were hosted

on LMS. Students were required to take two mock tests that featured representative

questions similar to the actual FAA Part 107 test towards the end of this module.

Students could see their results as soon as they completed the test. The students were

allowed to attempt the quizzes and practice tests twice, and only their best grade was

counted.

7.4.3 Module 3: Capstone Drone Technology Project

The third module featured student teams working on a capstone drone technology

project. The project spanned the entire 15 weeks of the semester. The primary
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instructional objective of this project was to allow student teams to work together

effectively and apply the skills/knowledge learned from the course to build a tangible

solution to a real-world problem. Each member was tasked with a meaningful role

in developing the drone project similar to teams of corporate, military, or startup

professionals. An important part of this team-based project was a well-defined

timeline of project goals. The timeline was broken down into the following phases:

1. Weeks 1- 4: Team Formation and Project Proposal: In week 1 of the
term, the key objectives and timelines of the capstone project were shared in
detail with the students. Students were asked to form teams and propose their
projects by Week 4 of the term. The teams could have between 2 and 5 members
with technical backgrounds that were required for the project. If a student could
not find a team independently, they were put in touch with other teams not yet
filled to maximum allowed members.

A template of the proposal document was provided to the students. The
template included prompts to engage students to think deeply about their
project idea and team composition. The prompts included questions about
them: 1) problem statement, 2) commercial/societal significance, 3) technical
approach, 4) key innovation, 5) expected outcome and deliverables, and 6)
resources needed.

Students used the Canvas/Moodle forums to float ideas, discuss potential
collaborations, and coalesce around a coherent project narrative with other
classmates. During this period, students were required to engage with the
professor (Abichandani) and the teaching assistant (Lobo) through weekly
1-on-1 meetings during their office hours to craft their projects’ scope and
technical deliverables appropriately.

The project categories included commercial, research, and military drones,
where some of the common application areas included agriculture monitoring,
pesticide spraying, fire-fighting, stealth reconnaissance, medical supply delivery,
and surveying. Several drone project outcomes are depicted in Figure 7.1.
Almost 90% of the projects involved the actual fabrication of the physical
drone. Around 10% of the projects involved 3D CAD, dynamic simulations,
and computational fluid dynamics analysis using software applications such as
Solidworks and ANSYS [24,326].

2. Weeks 5-7: Weekly Project Planning Meetings: At the end of every
class, the professor and T.A. met with each group separately and discussed
their project plans while providing feedback on their designs technical approach,
and associated bill-of-materials. Most of the students that took this course
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did not have any first-hand experience working with drones. Therefore the
instructors needed to work closely with the student teams to ensure their project
scopes, timelines, costs, and deliverables set them for success in the class. By
the end of Week 7, students had a well-developed project plan. The Robotics
and Data Laboratory (RADLab), directed by Abichandani, provided the parts
necessary for the projects. The parts included drone frames, motors, electronic
speed controllers, micro-controllers, batteries, battery chargers, and a power
distribution board.

3. Weeks 8-14: Weekly In-Class Project Progress Presentations: After
the project plan development, students were expected to lead the project
execution while having minimal interactions with the instructors. The key
requirement during this phase was a 3-minute long weekly in-class progress
presentation that outlined their weekly progress. The progress presentation
featured three slides that covered the weekly progress, challenges, and expected
milestones for next week. Since the projects involved drone hardware and flight
tests, students were free to demonstrate their project hardware or videos during
the presentation.

4. Week 15: Project Video: The final deliverable for the capstone project was
a video presentation along with a technical report. The video presentation was
to include the following information: 1) Introduction and project statement, 2)
Demonstration of the functions of the drone project, 3) Description of design
challenges and approaches adopted to solve them, 4) Learning resources referred
to while working on the project, 5) Anticipated challenges at the beginning of
the project, and 6) Approaches taken to solve the challenges.

7.5 Multi-Methods Assessment and Results

The Drone Science Fundamentals course has completed four successful iterations since

September 2019. The course attracted students from various backgrounds: 30% of

the registered students were electrical engineering majors, 20% of the students were

computer science majors, 40% of the students were mechanical engineering majors,

and the remaining 10% of students came from a mix of other engineering backgrounds

such as civil engineering, chemical engineering, biomedical engineering, and general

engineering.

Approximately 90% students identified as male and approximately 10% students

identified as female. Other gender identities were not reported in the data collected.

We note that this disproportionately low number of female students in the course is a
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topic of concern. Recruiting and outreach efforts are being implemented to encourage

female students to enroll in the course.

The class was open to students from all academic standings above the first year.

The student registration data showed that 83.33% of the registered students were in

their final (senior) year, 14.28% of the students were in their third (junior) year, and

4.76% of the students were in their second year (sophomores).

Overall, the institutional student community is highly diverse, and 48.83% of

the registered students identified as “European American or White”, 16.27% students

identified as LatinX or Hispanic, 27.9% students identified as Asian, and 4.65%

students identified as African-American.

A case study approach involving multiple assessment methods was adopted to

assess students’ Python programming skills, FAA Part 107 knowledge, perceived gains

in skills and knowledge, and attitudes towards an active learning-based approach for

drone education. Both quantitative and qualitative assessments were conducted to

gain multiple insights into the effectiveness of active learning. Table 7.2 presents a

summary of the assessment types, methods, targeted course component, and data

analysis method.
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Table 7.2 Salient Features of the Assessment Strategies

Assessment
type
used for
Research
Question
(RQ)

Assessment
method
(Data
Sources)

Targeted course
component

Data analysis

Direct
formative
(RQ1)

Programming
assignments

Evaluated knowledge of
Python programming and
indoor drone operation

Program
correctness,
Documentation,
Program
readability

Direct
formative
(RQ2)

Multiple
choice quizzes

Evaluated knowledge of
FAA curriculum

Descriptive
statistical
analysis for
auto-graded
quizzes

Direct
summative
(RQ2)

Practice Tests Evaluated knowledge of
FAA curriculum

Auto-graded
practice test

Indirect
quantitative
(RQ1, RQ2)

Likert-scale
feedback
survey and
Student
Assessment
of Learning
Gains [303]

Value of the inclusion
of indoor drone in
programming assignments,
Learning gains for FAA
part 107, Active learning
approach

Descriptive
statistical
analysis for
Likert-scale
responses

Indirect
qualitative
(RQ2)

Focus group
interviews

Drone project development Inductive
analysis using
the constant
comparative
method

Indirect
qualitative
(RQ2)

Video presen-
tations

Analyze drone project
outcomes

Inductive
analysis using
the constant
comparative
method
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Table 7.3 Descriptive Statistics for Grades Obtained by 113 Students on their
Python Programming Assignments and FAA quizzes. Each Assignment and Quiz
was Worth 10 Points.

Python Assignment 1 Assignment 2 Assignment 3
Mean 9.11 8.66 8.6

Std. Dev. 2.57 2.83 3.78
FAA Quiz 1 Quiz 2 Quiz 3
Mean 9.53 9.3 9.02

Std. Dev. 1.89 2.01 2.39

7.5.1 Direct Formative Assessment

Formative assessments were used for Python programming with indoor drones and

FAA quizzes.

Python Programming Assignments The programming module featured three

assignments that were due every two weeks. The assignments were Python

programming-based and used the indoor drone. The assignments were worth 10

points each. These assignments were graded along the following dimensions:

1. Program correctness: The Python program should work correctly for all inputs.
The drone completes the tasks as per the requirements. Correct usage of
programming constructs.

2. Documentation: The Python program should have meaningful comments that
explain the functions/methods being used. Video demonstrations should clearly
show the operation of the indoor drone according to the specifications.

3. Readability: Variables and functions should have meaningful names. Code
should be organized logically into functions where appropriate.

Table 7.3 depicts the mean and standard deviation of each assignment grade

for 113 students. The mean of the grades received by the students for the Python

programming assignments 1, 2, and 3 was 9.11, 8.66, and 8.6, respectively. The

standard deviation observed for the Python programming assignments 1, 2, and 3

was 2.57, 2.83, and 3.78, respectively.
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Multiple Choice Question FAA Quizzes The FAA Part 107 module featured

quizzes and practice tests, which followed the same format as the FAA part 107

remote pilot’s license exam. The questions on the quizzes featured multiple-choice

questions relating to the FAA topics covered that week. The quizzes were created

on the LMS for the course and were designed to be auto-graded. The auto-graded

quiz provided the students with instant feedback on the questions attempted. Each

question had only one correct answer.

Table 7.3 depicts the mean and standard deviation of each FAA quiz grade for

113 students. The mean of the grades received by the students for FAA quizzes 1, 2,

and 3 was 9.53, 9.3, and 9.02, respectively. The standard deviation observed for FAA

quizzes 1, 2, and 3 was 1.89, 2.01, and 2.39, respectively.

7.5.2 Direct Summative Assessment

Direct summative assessments were used for FAA mock tests and a drone capstone

project.

FAA part 107 Mock-tests FAA part 107 mock-tests were conducted to provide

the students with a summative assessment of all the FAA curriculum knowledge

gleaned from the course. Two mock-tests were conducted, each consisting of 60

questions. Each mock test was designed to be as close to the actual FAA commercial

remote pilot license exam. The tests were graded out of 10 points each. The questions

on the test were multiple choice questions from the FAA curriculum covered in class.

The mock tests were hosted on the LMS. Students were allowed to retake the tests

once, if they were not satisfied with their performance the first time. The FAA

mock-tests were auto-graded and provided the students with instant feedback about

the grasp of the FAA modules. Figure 7.4 depicts the grade distribution for FAA

mock-test 1 and FAA mock-test 2. It is observed that 90.26% of the students received

9-points or higher in FAA mock test 1 and 84.07% of the students received 9-points
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Figure 7.4 Grade distribution for FAA mock-test 1 (left) and mock-test 2 (right)
indicates that a majority of students scored 9 or more points. Each mock-test was
worth 10 points. Total number of students = 113.

or higher in FAA mock-test 2. In both the FAA mock tests, less than 10% of the

students scored 0-6 points. 100% of the students who attempted the FAA commercial

remote pilot license exam passed and received their drone pilot’s license.
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Table 7.4 Rubric for Drone Technology Capstone Project

Excellent Average Poor
Project
Completion

All deliverables
met

Some deliverables
met

No deliverables
met.

Video presen-
tation

Meets all the
video presentation
requirements,
excellent
presentation skills

Partly meets the
requirements of the
video presentation,
And mediocre
presentation skills

Does not meet any
of the requirements
of the video presen-
tation, or no video
submitted.

Communication Excellent at
communicating
challenges and
progress made

Average at commu-
nicating challenges
and progress made

Poor at commu-
nicating challenges
faced and little to
no progress weekly

Innovation Implemented a
unique feature
or aspect to the
project

Proposed an
innovative concept
but did not deliver

No innovation
implemented

Realizability project is working,
and real-world
application
demonstrated

Project is working,
but real-world
applicability, not
possible

project is not
working, and
real-world
applicability is
not possible.

Report organi-
zation

Excellent
presentation
demonstrates
understanding of
FAA regulations.

Average
presentation,
satisfactory
understanding
of FAA regulations

Poor organization
of report, and sub
par understanding
of FAA regulations

Capstone Project The project submission was evaluated according to the rubric

provided in Table 7.4. The rubric was adopted from resources available on [262]

while keeping in mind the objectives of the capstone drone project. Based on the

final presentations, 70% demonstrated a fully working project as per the proposed

description, 20% presented a partially working project where they had a physical

model, but the system was not working as intended, and finally, 10% presented only

simulations or only CAD designs of the project.
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7.5.3 Indirect Quantitative Assessment

A feedback survey was provided to the students towards the end of the course to

assess three core course aspects: 1) The value of including the indoor drone in

Python programming assignments, 2) students’ perceived learning gains in the part

107 FAA curriculum, and 3) student attitude towards active learning approaches. The

questions for core aspects 1 and 3 were adapted from [303] and followed a 5-point

Likert scale. The 5-point responses were “strongly disagree,” “disagree,” “neutral,”

“agree,” and “strongly agree.” Core aspect two was used to measure the students’

perceived learning gains for each module on the part 107 FAA commercial remote

pilot license exam. The options were no gain, little gain, moderate gain, significant

gain, and exceptional gain. The following discussions report on the findings from the

feedback survey.

Value of Including Indoor Drone in Python Programming Assignments

Indoor drones formed an important part of the programming assignments as they

turned an otherwise computer-screen-based activity (programming) into a hands-on

learning opportunity. The following three statements were posited to students with

a goal to understand student attitudes towards the inclusion of indoor drones:

1. “I felt the time used for this activity was beneficial,”

2. “I saw value in the activity,” and

3. “I felt the effort it took to do the activity was worthwhile.”

Student responses to the above 3 statements are shown in Figure 7.5. Students

responded favorably to indoor drone programming activities, with over 50% of the

students strongly agreeing to the prompts, 35% indicated moderate agreement to the

prompts, and less than 10% of the students had neutral feelings about the prompts.

Only 4% of students disagreed with prompt 3, indicating that a tiny fraction of
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Figure 7.5 Feedback from students on the inclusion of the indoor drone as part of
Python programming assignments. Total number of students = 113.

Figure 7.6 Survey responses about learning gains for the FAA Part 107 test
content show moderate to exceptional gains for most topics and for most students.
Total number of students = 113.

students felt that they put in more than necessary effort to do the indoor drone-based

Python programming.

Learning Gains for FAA Part 107 Test Figure 7.6 depicts the learning gains

survey responses of students for the FAA Part 107 test content covered in the class.

The questions in this survey section were adapted from resources available on [303]

and focused on seven key topics covered in the class. The results indicate a moderate

176



to exceptional gain on most of the FAA part 107 exam topics. In only 3 of the 7 FAA

Part 107 topics, 5% (or less) students indicated little gains in their learning.

Active Learning Approach Feedback from students on different active learning

aspects incorporated in the course is depicted in Figure 7.7.

The results indicate that the students responded positively to the active learning

aspects of the class. Of note is the students’ positive response to the “receiving

feedback from the instructor” and “the number and pacing of the assignments”

aspects of the class with 64%, and 62% of the students selecting “Strongly Agree”.

The weekly interactions with the instructor provided valuable feedback to the students

and provided guidance in completing the project. The one-on-one interactions with

the instructor formed a crucial aspect of the active learning process. On average, 90%

of the students responded “Strongly Agree” or “Agree” on these aspects of the class.

Figure 7.7 Student responses about the different aspects of the class which helped
in their learning skewed towards majority positive responses (agree and strongly
agree). There were no negative responses recorded. Total number of students = 113.
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7.5.4 Indirect Qualitative Assessment

Student focus groups and video presentations were used as two data sources to

unpack insights about student attitudes towards the drone capstone project and its

effectiveness as an active learning-based instructional approach.

Student Focus Groups Focus group interviews were conducted with project

teams to gather data from the students on their thought processes behind project

topic selection, planning, and resource management. The focus group interviews

were conducted by the professor (Abichandani) and teaching assistant (Lobo) to help

the project teams formulate and plan their projects between Weeks 1 and 3 of the

term. The focus group sessions allowed the gathering of multiple perspectives and

identifying consensus or shared views about the topic under consideration [260]. A

total of 13 focus groups were conducted using the Cisco WebEx software [70]. Each

focus group was approximately 30-minutes long. At the start of each session, research

consent was obtained from each student. The interactions with the students revolved

around a set of semi-structured questions which were prepared beforehand to steer

the conversation. As the students responded to the questions, follow-up questions

were asked to gain deeper insight. Overall, the questions focused on understanding

the reasoning and research behind selecting their project topic, team member roles,

expected project outcome, technical approach, and resources needed.

The focus group session transcripts were analyzed inductively according to the

constant comparative method [302]. Based on the analysis, we present the following

three recurring themes along with focus group excerpts:

1. Theme 1 - Project Selection and Planning
The drone project topics selected by the students covered a variety of
applications. Student responses noted that students often relied on recognizing
opportunities observed in their local surrounding environments in the project
selection process. For example, members of one of the student teams who were
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working on a drone-based food delivery system commented, “It is something
that we could all relate to because all of us have ordered food from services
like company X, and we thought since we were learning about drones, it would
just be advantageous to use a drone rather than an automobile.” The student
identified a real-world problem of food delivery that could be improved using
drone technology.

In addition, students were asked about the first steps they would take towards
their project to gain insights into their planning process. Some student teams
had a well-formulated roadmap consisting of details about their technical
approach and design strategies. These student teams had begun preliminary
research about the key technical challenges of their project, as evidenced in
the following student comment “We started doing some research about how we
can make drones quieter, and most of what we’ve seen is lowering the speed at
which the blades are rotating or making them longer.” However, it was their first
time working on an open-ended, multi-disciplinary project involving drones for
many student teams. These teams did not have a well-defined project plan, as
evidenced in the student comment, “We have not officially talked about it to
each other, but we would like to have a concept design of what our project is
going to look like, and the list of parts needed.”

When asked about the resources students might need for their projects, most of
the students stated that they had looked through online sources. For example,
one student said “I believe in a country in Europe, there is a company working
on a drone-based medicine delivery solution.”. Students reported that most of
their research consisted of studying online, do-it-yourself (DIY) resources such
as Instructables, Hackaday, and YouTube [120,140].

2. Theme 2 - Drone Project Task Delegation
Drone-based projects are multi-disciplinary, requiring students to have a variety
of engineering skill-sets. Students were cognizant of their team’s strengths, and
the delegation of tasks was based on their engineering background, as evidenced
by the following comment “We would allocate tasks based on our skills. I
imagine some of us are probably stronger in programming, and some would
be strong in CAD”. Some student teams indicated a willingness to acquire
skills outside their background depending on the needs of the project, which
is evidenced from the following comment “We all have a basic understanding
of circuits. We are all learning Python now, but we have little background in
coding. If we need to research in order to learn new things to code, it is not a
problem at all.” We observed that most of the project teams assigned roles based
on their engineering/C.S. backgrounds, with a select few students venturing out
of their core competencies. For example, an electrical engineering student diving
into CFD simulations or a mechanical engineering student working on Python
GUI interface coding.

3. Theme 3 - Anticipated Research Challenges
A majority of students anticipated challenges associated with learning new
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skills outside their engineering curriculum. Students from the mechanical
engineering background repeatedly mentioned that they anticipated needing
help with the programming aspects of their project. This sentiment is evidenced
in a mechanical engineering student’s comment, “Oh, coding for sure. That is
definitely going to be it for me. I’m too worried about the coding aspect. That is
probably our weakest point as a team”. Another anticipated challenge included
the procurement of the right drone parts and 3D printed components, which was
underscored by the comment, “I think finding the right materials, and resources,
especially for the blade design, will be a challenge”.

The uncertainties caused by the COVID-19 related campus disruptions also
weighed on students’ minds as evidenced by this comment, “Assuming we have
the materials and equipment needed. It just really depends on if campus stays
open and we have the resources.”

Capstone Project Video The final deliverable for the capstone project was

a video presentation. Each of the project teams had to prepare a video, which

demonstrated the working of their drone project, a discussion of the challenges faced,

and a description of the final outcome. Teams were given a list of questions/prompts

to answer in their video. These questions/prompts were: 1) Demonstrate the working

of your project, 2) Describe the design challenges you faced and how you resolved

them?, 3) What learning resources did you consider in designing your project?, 4)

What areas did you anticipate you will need the most help with?, and 5) How did

you eventually resolve the challenges?

These questions and prompts were designed for students to think deeply about

their journey during the final project. The video presentations were processed through

an online caption generator tool to generate transcripts for analysis [253]. The

transcripts were analyzed using the constant comparative approach similar to what

was used for the focus group interview [302]. The impact of active learning was evident

across two recurring themes observed in the videos: 1) project resource management

and 2) resolution strategies for project challenges. For both these themes, it was

observed that students were actively engaged in tasks similar to those observed in

real-world careers, as discussed next.
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1. Theme 1 - Capstone Project Resource Management
Overall, students reported high self-efficacy in identifying and procuring
resources to complete their projects. Students noted that online tutorials,
YouTube videos, and open-source code/CAD designs proved adequate project
resources. For example, a student expressed, “Utilizing resources such as
GrabCAD and YouTube, we were able to figure out specific details of real-life
flash discharge mechanism.”

On several occasions, students appreciated that while the onus of identifying,
designing, prototyping, and managing the parts for their projects was on them,
they could ask for some assistance from the instructors in this matter when
they needed it. This sentiment is particularly exemplified in the following
student comment “While parts were designed by our team using 3D models
and prototyped at the Makerspace, the selection of the servo was made with the
assistance of the professor. These resources were crucial for the development of
the prototype.”

2. Theme 2 - Resolution Strategies for Project Challenges
On the whole, teams were able to solve their project challenges with effective
resolution strategies. Key observations about resolution strategies employed by
students when faced with different challenges are provided in the following:

(a) Students addressed most design challenges using a combination of rapid
prototyping and physical alterations to parts as evidenced in the following
comment “... we started by printing a thinner adapter plate, which reduced
our distance from the bolt to the threads in the frame. We additionally
ground down the thickness of the mounting end of the legs, which reduced
the distance again the bolts had to travel, which allowed us to start the
threads and securely mount everything to the frame.”

(b) Student teams working on advanced design-oriented projects had to
develop solutions that fit within the duration of the course term. This
required out-of-the-box design decisions, as is described in the following
comment “So one of the biggest design challenges that we faced was
deciding on how to create the mechanism to turn it from flying to driving.
Our first design use propellers, which were at an angle at all times. This
design was not feasible for the class duration because it would require
remodeling the entire drone frame...[instead] we found a better method to
rotate the arms using a servo.”

(c) Approximately 10% of the project teams struggled to overcome their
challenges. These challenges were primarily logistical in nature and
involved late shipping from vendors, faulty parts shipped from vendors,
and back-ordered parts on e-commerce websites. For example, a student
mentioned that “the legs that we purchased separately for the assembly
ended up being too large to hold the drone up.”
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(d) In instances where a team struggled to overcome project challenges, the
members approached the instructors for guidance. In one of the video
presentations, a student highlighted that “Building the drone in terms of
fitting all the parts in the frame was challenging. However, the availability
of the T.A.s during group meetings helped resolve these challenges.” The
help provided by the instructors was minimal but proved to be sufficient
in resolving most of the issues faced by student teams.

(e) During focus group interviews, the mechanical engineering students antic-
ipated software programming as a challenge. Most of these students
addressed this anticipated challenge by teaming up with other students
with a programming background.

7.5.5 Discussion

The use of multiple methods for assessment was instrumental in helping us explore the

answers to the research questions. Quantitative assessment methods used provided

evidence about the effectiveness of active learning methods for drone education,

while qualitative assessment methods generate descriptive understanding of student

perceptions, which lent further evidence to the quantitative data [185].

Computer Programming and Drones: Computer programming is usually

met with lack of student engagement or student resistance [81, 196, 211]. Several

approaches have been reported in the literature to mitigate student resistance to active

learning strategies [349]. Results of the quantitative assessment suggest that using a

drone for computer programming assignments may assist in fostering student interest

and engagement (or reduce resistance) to active learning for computer programming

by providing a real-world context for an otherwise abstract topic. This is in line with

other studies which underscore the importance of carefully designing active learning

instruction to align with student interests to promote engagement [41,312,317].

FAA Part 107 Test Knowledge Gains: Strong student performance on

the summative FAA mock-tests suggests that they could grasp the core technical,

legal, and societal implications of the FAA Part 107 commercial drone pilot licensure.

Active discussions during the class sessions formed a vital aspect of the FAA module.
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Incorporating such types of interactions in the learning paradigm allows students to

gather authentic information and explore peer perspectives that help solidify their

understanding of critical concepts [44, 184]. When surveyed about different aspects

of the module that were helpful for FAA learning, 95% of the students responded

positively (“strongly agree” and “agree”) to the interacting with the instructor

during/after class aspect. Additionally, unsupervised online quizzes, similar to the

FAA quizzes, where students are allowed multiple attempts may enhance student

performance on summative assessments such as the FAA mock-tests [220]. These

results resonate with other engineering education studies that note knowledge gains

when using active learning [229,384].

Challenges and Resolution Strategies: The qualitative insights unpacked

from the focus group interviews and video presentations suggest that when faced

with technical, logistical, and managerial challenges during their capstone projects,

a majority of the students were able to resolve them. Active learning approaches

are known to have a positive effect on increasing student performance in STEM

learning, especially in students who have to propensity to be relatively independent

of instructor assistance in their learning approaches [107, 208]. At the same time,

a handful of students were unable to resolve all challenges and requested assistance

from the instructional staff. Given the heterogeneity in a class attended by final

year students from multiple engineering and CS backgrounds, educators may find

that some students are relatively less receptive to the independent nature of active

learning activities as noted in [208].

7.6 Conclusion

Engineering educators are actively trying to prepare students with skills and

knowledge relevant to the drone industry. This chapter reports active learning-based

instructional approaches to prepare undergraduate students for engineering, software,
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and piloting careers in the drone industry. The approaches were implemented in an

undergraduate class that engineering and computer science students attended. The

course included using indoor drones to cover drone programming, the use of interactive

videos and commercial software to cover the US FAA Part 107 test-prep curriculum,

and a capstone drone technology project that focused on the use of CAD software

and rapid prototyping for real-world applications. Multiple assessment methods

were implemented to provide quantitative evidence and a qualitative understanding

of the effectiveness of active learning in the context of drone career preparation.

Quantitative assessments indicated that most students excelled at the technical

subjects covered in the class. Focus groups and video presentation analysis revealed

that students found regular check-in meetings with the professor and teaching

assistant crucial for the success of their capstone projects. An interesting observation

was that despite students performing well on their programming assignments and

FAA quizzes, most students performed project tasks that aligned with their degree

curriculum and core competencies when it came to the capstone projects. Further

research needs to be conducted to understand the reasons behind this and encourage

students to perform project tasks across multiple disciplines. As educators continue

to bring drones to their classrooms, we anticipate that active learning approaches will

be increasingly employed. The information presented in this chapter may serve as a

guide for future drone educators.
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CHAPTER 8

CONCLUSION

This work presented in this dissertation began with the aim to study the challenges

in the outdoor deployment of multiple quadrotor systems. We identified five critical

challenges: 1) wind measurement and simulation, 2) outdoor motion planning, 3)

safety and collision avoidance, 4) secure communication, and 5) drone education.

Each chapter in this dissertation provides a detailed description of the work we

conducted to study and address these challenges.

• Wind Measurement and Simulation: Three representative wind speed
measurement techniques were reviewed and compared on three metrics including
cost of sensors, speed and direction data, sensor resolution, and physical
mounting. Each of the techniques have their respective strengths and limitations
based on the requirements, such as pressure-flow sensors being the least
expensive but provide only wind speed data, where as ultrasonic sensors provide
wind speed and direction data simultaneously. The tilt-angle approach can
provide wind speed and direction data, however the quadrotors need to be
calibrated in wind tunnels to obtain high accuracy wind speed measurements.
We also reviewed three representative wind simulation techniques and found
that the Dryden wind gust model is suitable for simulating quadrotor missions
in large open areas. Additionally we developed an open-source Python
implementation of the Dryden wind gust model to simulate wind disturbances
for quadrotor missions.

• Outdoor Motion Planning: After getting an in-depth understanding of
wind disturbances on the performance of sUAVs we presented an experi-
mental evaluation of an OF-GM-SARSA-based RL planner to address the
flocking problem for multiple quadrotors operating outdoors. Simulation
and experimental evaluation of the performance of a flocking controller in
windy environments revealed that the OF-GM-SARSA technique generalizes
the behaviors trained in simulation to real-time interactions. While the learned
generalized behaviors were robust to wind disturbances in HWIL and flight tests
they did not guarantee collisions.

• Safety and Collision Avoidance: To ensure safety during outdoor multi-
quadrotor flights, we explored the use of CBFs with an optimization based
planner. Experimental validation of this decentralized, RH-MINLP + CBF
based motion planner revealed that the use of CBFs provided significant
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robustness against safety violations and potential mid-flight collisions that could
have resulted due to the wind disturbances, in turn reducing mission times. The
simulation and experiment results demonstrated the substantial computational
time savings and scalability of the framework accorded by the novel simulated
annealing-based numerical solution process when compared to a well-established
numerical solution method.

• Secure Communications: Next we addressed the potential security risks
associated with multi-quadrotor communication through the use of a blockchain.
We documented the hardware and software setup, and experimental results
for an Ethereum based secure information exchange system mounted aboard
multiple quadrotors sUAVs. The hardware architecture leveraged a low-cost
NVIDIA GPU for mining during flight and Raspberry Pis as non-miner
Ethereum nodes for data collection and storage. The software architecture
leveraged Ethereum’s ability to program smart contracts for secure, confidential,
and tamper-proof data access, and a decentralized file system IPFS for data
storage. The implementation of a private Ethereum network provided security
features such as confidentiality, data integrity, and non-repudiation. The
combined use of Ethereum blockchain and IPFS provided a distributed data
storage system while avoiding a single point of failure for the network. The
results from the outdoor experiment flight test point to the feasibility of a
blockchain-enabled communication system for multiple sUAVs.

• Drone Education: To address the growing need for sUAV trained profes-
sionals in the US, we designed, developed, implemented, and evaluated active
learning based approaches for sUAV education. A CBL-based approach
provided an inclusive environment for 97 undergraduate and graduate students
at NJIT to immerse themselves in the technical challenges of drone building,
flight simulations, and piloting. Moving past a competition, a semester-long
active learning-based course for undergraduate students was operationalized
which focused on hands-on curricular experiences related to engineering,
software, and piloting careers in the sUAV industry. Multiple assessment
methods were used to collect quantitative data and qualitative evidence about
the effectiveness of these active learning approaches. Quantitative assessments
revealed that revealed that over 90% of the students achieved all the technical
learning objectives, and that most students excelled at the technical subjects
covered in the class. Qualitative assessments revealed that students found the
CBL approach to be an engaging method of introducing drone technology.
Focus groups and video presentation analysis revealed that students found
regular check-in meetings with the professor and teaching assistant crucial
for the success of their capstone projects. As educators continue to explore
active-learning instructional approaches for drone education, we anticipate that
the information provided in this dissertation may serve as a guide for future
sUAV educators.
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8.1 Future Directions

This section presents a list of possible future directions for this dissertation.

Scalability in outdoor flight tests: A key contribution of this dissertation

was the experimental validation via outdoor flight tests. Scalability is one of

the key metrics used to evaluate the performance of a multi-sUAV system as it

provides insights about the ability of motion planners and inter-sUAV communication

infrastructure to handle computationally demanding real-world scenarios. While we

presented results from outdoor flight tests with up to 6 quadrotors, future works will

explore conducting outdoor flight tests with 12 to 15 quadrotors.

Fault Tolerance in Outdoor Flight Tests: When conducting outdoor flight

experiments there are several uncontrollable variables that adversely impact the

results of the flight tests. These variables can include environmental conditions,

hardware failures, drone fly-away, and network disruptions. When an Ethereum node

experiences WiFi issues or disruptions, it is important that the remaining nodes

continue the data transfer without getting affected. A miner node losing WiFi

connection can be catastrophic to the network as is observed by our experiments.

Having more than one miner node in the network can add redundancy and provide

protection against such failures. Additionally when a drone breaks flight formation

and is out of radio communication range, the flight controller software needs in-built

fault tolerance to command the drone to execute a Return-to-Home (RTH) procedure.

In the case of large scale systems with more than 12 quadrotors in the system, it is

essential to have fault-tolerant techniques that ensure the safety of the multi-vehicle

system with minimum compromises to the success of the flight mission. Future

work will explore approaches to build fault tolerant approaches for large scale

multi-quadrotor systems.
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Energy-Aware Planning: The energy requirements of quadrotors directly affect

the practicality of any outdoor operations [315, 340]. This requirement is especially

true when quadrotors operate in windy outdoor environments where they need to

compensate for gusts. The quadrotors used in this study (DJI M100) were evaluated in

hover flight tests to have average flight time of approximately 1200 seconds. However

when the payload of the quadrotor was increased by adding computing hardware, the

average flight duration of the quadrotors reduced to approximately 720 seconds. As

autonomous drones continue to be studied in various applications, these tasks usually

have a long horizon and the energy required to fulfill the task often exceeds the initial

capacity of the drone. Thus future efforts will study energy requirements of the drone

along with the flight dynamics of the system in developing the optimization [278,375]

or reinforcement learning-based [243] motion planning algorithms.
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[106] Eduardo Castelló Ferrer. The blockchain: A new framework for robotic swarm
systems. In Proceedings of the Future Technologies Conference, pages 1037–
1058. Springer, 2018.

[107] Scott Freeman, Sarah L Eddy, Miles McDonough, Michelle K Smith, Nnadozie
Okoroafor, Hannah Jordt, and Mary Pat Wenderoth. Active learning increases
student performance in science, engineering, and mathematics. Proceedings of
the National Academy of Sciences, 111(23):8410–8415, 2014.

[108] Stacey Gage. Creating a unified graphical wind turbulence model from multiple speci-
fications. In Proceedings of the AIAA Modeling and Simulation Technologies
Conference and Exhibit, page 5529, 2003.

197



[109] Keke Gai, Yulu Wu, Liehuang Zhu, Lei Xu, and Yan Zhang. Permissioned blockchain
and edge computing empowered privacy-preserving smart grid networks. IEEE
Internet of Things Journal, 6(5):7992–8004, 2019.

[110] David Galway, J Etele, and Giovanni Fusina. Modeling of urban wind field effects on
unmanned rotorcraft flight. Journal of Aircraft, 48(5):1613–1620, 2011.

[111] Azad Ghaffari. Operational safety control for unmanned aerial vehicles using modular
barrier functions. In American Control Conference (ACC), pages 1719–1724.
IEEE, 2020.

[112] Javier Gonzalez-Rocha, Craig A Woolsey, Cornel Sultan, Stephan de Wekker, and
Nathan Rose. Measuring atmospheric winds from quadrotor motion. In AIAA
Atmospheric Flight Mechanics Conference, page 1189, 2017.

[113] P Gousseau, Bert Blocken, and GJF Van Heijst. Cfd simulation of pollutant dispersion
around isolated buildings: On the role of convective and turbulent mass fluxes
in the prediction accuracy. Journal of Hazardous Materials, 194:422–434, 2011.

[114] Getting a drone pilot certificate. "https://tc.canada.ca/en/aviation/

drone-safety/getting-drone-pilot-certificate". Accessed on 05-20-
2021.

[115] Akshay A Gowardhan, Eric R Pardyjak, Inanc Senocak, and Michael J Brown. A
CFD-based wind solver for an urban fast response transport and dispersion
model. Environmental fluid mechanics, 11(5):439–464, 2011.

[116] Luigi Alfredo Grieco, Alessandro Rizzo, Simona Colucci, Sabrina Sicari, Giuseppe
Piro, Donato Di Paola, and Gennaro Boggia. IoT-aided robotics applications:
technological implications, target domains and open issues. Computer
Communications, 54:32–47, 2014.

[117] Radhika Grover, Shoba Krishnan, Terry Shoup, and Maryam Khanbaghi. A
competition-based approach for undergraduate mechatronics education using
the arduino platform. In Fourth Interdisciplinary Engineering Design
Education Conference, pages 78–83. IEEE, 2014.

[118] Yuying Guo, Bin Jiang, and Youmin Zhang. A novel robust attitude control for
quadrotor aircraft subject to actuator faults and wind gusts. IEEE/CAA
Journal of Automatica sinica, 5(1):292–300, 2017.

[119] Patrick Y Haas, Christophe Balistreri, Piero Pontelandolfo, Gilles Triscone, Hasret
Pekoz, and Antonio Pignatiello. Development of an unmanned aerial vehicle
UAV for air quality measurement in urban areas. In 32nd AIAA Applied
Aerodynamics Conference, page 2272, 2014.

[120] Hackaday. https://hackaday.com/. Accessed on 05-20-2021.

198



[121] Edward A Haering Jr. Airdata measurement and calibration. Technical Report
104316, NASA, Cleveland, OH 44135, 1995.

[122] Teuku Mohd Ichwanul Hakim and Ony Arifianto. Implementation of dryden
continuous turbulence model into simulink for lsa-02 flight test simulation.
Journal of Physics: Conference Series, 1005(1):012017, 2018.

[123] Laya Harwin and P Supriya. Comparison of sarsa algorithm and temporal difference
learning algorithm for robotic path planning for static obstacles. In Third
International Conference on Inventive Systems and Control (ICISC), pages
472–476. IEEE, 2019.

[124] Haya R Hasan and Khaled Salah. Proof of delivery of digital assets using blockchain
and smart contracts. IEEE Access, 6:65439–65448, 2018.

[125] Haya R Hasan and Khaled Salah. Combating deepfake videos using blockchain and
smart contracts. Ieee Access, 7:41596–41606, 2019.

[126] Shahab Hasan. Urban air mobility (UAM) market study. Technical report, NASA,
2019.

[127] Sabine Hauert, Severin Leven, Maja Varga, Fabio Ruini, Angelo Cangelosi, Jean-
Christophe Zufferey, and Dario Floreano. Reynolds flocking in reality with
fixed-wing robots: Communication range vs. maximum turning rate. In 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5015–5020, 2011.

[128] Chenlong He, Zuren Feng, and Zhigang Ren. A flocking algorithm for multi-agent
systems with connectivity preservation under hybrid metric-topological inter-
actions. PloS one, 13(2), 2018.

[129] Jianming He and Charles CS Song. Evaluation of pedestrian winds in urban
area by numerical approach. Journal of Wind Engineering and Industrial
Aerodynamics, 81(1-3):295–309, 1999.

[130] Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg
Wayne, Yuval Tassa, Tom Erez, Ziyu Wang, SM Eslami, et al. Emergence of
locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286,
2017.

[131] Holybro air speed sensor. https://www.getfpv.com/holybro-air-speed-sensor.

html. Accessed on 01-26-2020.

[132] Alistair John George Howard. Experimental Characterization and Simulation of a
Tethered Aerostat with Controllable Tail Fins. PhD thesis, McGill University,
2007.

199



[133] Dapeng Huang, Quan Yuan, and Xiang Li. Decentralized flocking of multi-agent
system based on mpc with obstacle/collision avoidance. In Chinese Control
Conference (CCC), pages 5587–5592. IEEE, 2019.

[134] Gwo-Jen Hwang and Shao-Chen Chang. Effects of a peer competition-based mobile
learning approach on students’ affective domain exhibition in social studies
courses. British Journal of Educational Technology, 47(6):1217–1231, 2016.

[135] Morgan M Hynes and Wendy J Hynes. If you build it, will they come? student
preferences for makerspace environments in higher education. International
Journal of Technology and Design Education, 28(3):867–883, 2018.

[136] Free gas networks. https://besu.hyperledger.org/en/stable/HowTo/

Configure/FreeGas. Accessed on: 07-07-2020.

[137] Hyperledger Fabric documentaion. https://wiki.hyperledger.org/display/

fabric/Hyperledger+Fabric. Accessed on: 10-24-2019.

[138] Jung Hyun, Ruth Ediger, and Donghun Lee. Students’ satisfaction on their learning
process in active learning and traditional classrooms. International Journal of
Teaching and Learning in Higher Education, 29(1):108–118, 2017.

[139] Brian Ichter, Edward Schmerling, Tsang-Wei Edward Lee, and Aleksandra Faust.
Learned critical probabilistic roadmaps for robotic motion planning. In 2020
IEEE International Conference on Robotics and Automation (ICRA), pages
9535–9541. IEEE, 2020.

[140] Instructables. "https://www.instructables.com/". Accessed on 05-20-2021.

[141] Instructure. Canvas Learning Management System. "https://www.instructure.

com/canvas". Accessed on 05-20-2021.

[142] Gill Instruments. Working principle of gill instrument wind sensor. http:

//gillinstruments.com/products/anemometer/principleofoperation2.

html, 2016.

[143] Ghassan Issa, Shakir Hussain, and H. Al-Bahadili. Competition-based learning: A
model for the integration of competitions with project-based learning using
open source lms. International Journal of Information and Communication
Technology Education, 10:1–13, 01 2014.
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