

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

ONE-STAGE BLIND SOURCE SEPARATION VIA A SPARSE
AUTOENCODER FRAMEWORK

By
Jason Anthony Dabin

Blind source separation (BSS) is the process of recovering individual source transmissions

from a received mixture of co-channel signals without a priori knowledge of the channel

mixing matrix or transmitted source signals. The received co-channel composite signal is

considered to be captured across an antenna array or sensor network and is assumed to

contain sparse transmissions, as users are active and inactive aperiodically over time. An

unsupervised machine learning approach using an artificial feedforward neural network

sparse autoencoder with one hidden layer is formulated for blindly recovering the channel

matrix and source activity of co-channel transmissions. The BSS sparse autoencoder

provides one-stage learning using the receive signal data only, which solves for the channel

matrix and signal sources simultaneously.

The recovered co-channel source signals are produced at the encoded output of the

sparse autoencoder hidden layer. A complex-valued soft-threshold operator is used as the

activation function at the hidden layer to preserve the ordered pairs of real and imaginary

components. Once the weights of the sparse autoencoder are learned, the latent signals are

recovered at the hidden layer without requiring any additional optimization steps. The

generalization performance on future received data demonstrates the ability to recover

signal transmissions on untrained data and outperform the two-stage BSS process.

ONE-STAGE BLIND SOURCE SEPARATION VIA A SPARSE
AUTOENCODER FRAMEWORK

by
Jason Anthony Dabin

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Electrical Engineering

Helen and John C. Hartmann Department of
Electrical and Computer Engineering

May 2022

Copyright © 2022 by Jason Anthony Dabin

ALL RIGHTS RESERVED

APPROVAL PAGE

ONE-STAGE BLIND SOURCE SEPARATION VIA A SPARSE AUTOENCODER
FRAMEWORK

Jason Anthony Dabin

Dr. Alexander M. Haimovich, Dissertation Advisor
Distinguished Professor of Electrical and Computer Engineering, NJIT

Date

Dr. Osvaldo Simeone, Committee Member
Professor of Information Engineering, King’s College London. London, U.K.

Date

Dr. Joerg Kliewer, Committee Member
Professor of Electrical and Computer Engineering, NJIT

Date

Dr. Ali Abdi, Committee Member
Professor of Electrical and Computer Engineering, NJIT

Date

Dr. Hongya Ge, Committee Member
Associate Professor of Electrical and Computer Engineering, NJIT

Date

iv

BIOGRAPHICAL SKETCH

Author: Jason Anthony Dabin

Degree: Doctor of Philosophy

Date: May 2022

Undergraduate and Graduate Education:

• Doctor of Philosophy in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2022

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2004

• Bachelor of Science in Electrical Engineering Technology
New Jersey Institute of Technology, Newark, NJ, 2001

Major: Electrical Engineering

Presentations and Publications:

J. A. Dabin, A. M. Haimovich, J. Mauger, and J. Kliewer, “One-Stage Blind Co-Channel
Source Separation via a Complex-Valued Sparse Autoencoder,” IEEE
Transactions on Cognitive Communications and Networking, submitted, 2022.

J. A. Dabin, A. M. Haimovich, J. Mauger and A. Dong, "Blind Source Separation with L1

Regularized Sparse Autoencoder," 29th Wireless and Optical Communications
Conference (WOCC), 2020, pp. 1-5.

v

In dedication to my mother and father for their inspiration, my brother and
sister for all their encouragement, and to my wife and children for all their

patience and support during my doctoral academic journey.

vi

ACKNOWLEDGMENT

I am sincerely grateful to have had Dr. Alexander M. Haimovich as my Ph.D. advisor and

wish to express my deepest appreciation to Dr. Haimovich for all his unwavering support

and profound guidance he has provided to me as a doctoral graduate student.

Dr. Haimovich instilled key research attributes in me during my dissertation research

pursuit that I will carry forward with me throughout my career. Dr. Haimovich has not only

positively impacted me as a graduate student, but his guidance has had a significant impact

on my professional career for which I am extremely thankful.

 I would like to express my sincere gratitude to each of my Ph.D. dissertation

committee members including Dr. Osvaldo Simeone, Dr. Joerg Kliewer, Dr. Ali Abdi, and

Dr. Hongya Ge for their contributions, time, and participation in my dissertation proposal

defense and dissertation defense. I am extremely appreciative of the comments, feedback,

and suggestions provided by each of my Ph.D. committee members, which helped expand

my research direction and scope.

 I wish to thank the U.S. Department of Defense Science, Mathematics, and

Research for Transformation (SMART) Scholarship-for-Service Program for sponsoring

my Ph.D. degree as a retention scholar and my sponsoring facility Naval Information

Warfare Center (NIWC) Pacific for their support as well. I am greatly appreciative of the

SMART scholarship I received, which enabled me to complete my Ph.D. degree while

being employed by NIWC Pacific.

I would like to extend my gratitude to my NIWC Pacific Information Operations

Division Head Gregory Settelmayer who was extremely supportive of my doctoral degree

and provided a work environment that enabled me to pursue my academic studies. I

vii

sincerely appreciate the in-depth mathematical discussions and research guidance provided

to me by my NIWC Pacific colleague Dr. Justin Mauger.

 Special thanks to NJIT Electrical and Computer Engineering (ECE) administrative

staff member Monteria Bass for all her support with my Ph.D. academic administrative

matters. I wish to express my thanks to Dr. Annan Dong for the technical research

discussions we had on two-stage blind source separation and dictionary learning techniques

while he was a Ph.D student with the NJIT ECE Center for Wireless Information

Processing.

viii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION…………………………………………………………………... 1

 1.1 Machine Learning for Blind Source Separation………………………………... 1

 1.2 Two-Stage Sparse Signal Recovery……..…..…….……………………….…... 4

 1.3 Undercomplete and Overcomplete Autoencoders……………………………... 8

 1.4 Sparse Coding of Complex-Valued Data……………………………...……….. 9

 1.5 Optimization of Complex-Valued Data………………………………………... 11

 1.6 Organization of this Dissertation………………………………………………. 12

2 SYSTEM MODEL………………………………………………………………….. 13

 2.1 Multiple-Input Multiple-Output System……...………………………………... 13

 2.2 Source Activity Model……………...………………………………………….. 15

3 TWO-STAGE BLIND SOURCE SEPARATION………………………………….. 18

 3.1 ADMM LASSO Sparse Coding for Blind Source Separation…………………. 18

 3.2 Dictionary Learning for Channel Estimation…………………………….…….. 21

4 ONE-STAGE BLIND SOURCE SEPARATION FOR REAL-VALUED
SIGNALS……………………………………………………………………………

23

 4.1 Real-Valued Sparse Autoencoder for Source Separation...……………………. 23

 4.2 Hyperparameter Selection……………………………………………………… 30

 4.3 Generalization Performance…………....………………………………………. 35

 4.4 Support Recovery Performance………………………………………………... 36

 4.5 Receiver Operating Characteristics…………………………………………….. 38

5 ONE-STAGE BLIND SOURCE SEPARATION FOR COMPLEX-VALUED
SIGNALS…………….. 39

ix

TABLE OF CONTENTS
(Continued)

Chapter Page

 5.1 Complex-Valued Sparse Autoencoder for Source Separation...……………….. 39

 5.2 Hyperparameter Selection……………………………………………………… 43

 5.3 Generalization Performance…………....………………………………………. 45

 5.4 Support Recovery Performance………………………………………………... 48

 5.5 Receiver Operating Characteristics…………………………………………….. 49

6 GENERALIZATION BOUNDS AND SAMPLE COMPLEXITY…..……………. 50

 6.1 PAC Learning for Regression…………...……………...………………...……. 50

 6.2 Rademacher Complexity Generalization Bound………………………..……… 54

7 CONCLUSION..…………….…………………………………………………….... 63

REFERENCES ………………………………………………………………………... 66

x

LIST OF FIGURES

Figure Page

1.1 Conventional undercomplete autoencoder functional architecture with input 𝒙𝒙,
hidden layer encoded output 𝝃𝝃 = 𝒇𝒇(𝒙𝒙), and decoded output 𝒙𝒙� = 𝒈𝒈(𝝃𝝃).………….. 8

2.1 Illustration of a blind source separation (BSS) scenario with a sparse number of
active sources 𝑘𝑘 received over a MIMO channel with 𝑀𝑀 receive antenna elements
where 𝑘𝑘 << 𝑀𝑀 < 𝑁𝑁 and 𝑁𝑁 represents the total number of potential independent
co-channel transmitters.……………………………………….............................. 14

2.2 First-order HMM for 𝑖𝑖𝑡𝑡ℎ transmitter source activity. The hidden states 𝑍𝑍𝑖𝑖(𝑛𝑛)
represent the 𝑛𝑛𝑡𝑡ℎ state of the 𝑖𝑖𝑡𝑡ℎ transmitter and 𝑠𝑠𝑖𝑖(𝑛𝑛) denotes the observation
output….…………………………………………………………………………. 16

2.3 Transition probability graph of a two-state Markov chain for the ith source
activity……………………………………………………………………………. 16

4.1 Blind sparse autoencoder feedforward neural network architecture with 𝑁𝑁 > 𝑀𝑀
hidden layer nodes. The encoded signal output at the hidden layer provides a
sparse representation of the transmitted sources…………………………………. 24

4.2 5-Fold cross-validation partitioning of data into validation and training sets……... 30

4.3 ADMM LASSO expected training error and expected validation error for support
recovery versus the hyperparameter 𝜆𝜆 for SNR values of 15 dB, 20 dB, 25 dB,
and 30 dB…………………………………………………………………………. 33

4.4 Real-valued sparse autoencoder expected training error and expected validation
error for support recovery versus the hyperparameter 𝜆𝜆 for SNR values of 15 dB,
20 dB, 25 dB, and 30 dB……………………………….………………………… 34

4.5 The mean squared error (MSE) of the output layer of the sparse autoencoder and
MSE of the ADMM LASSO on training and validation data using 5-fold cross-
validation…………………………………………………………………………. 36

4.6 Support recovery for the real-valued sparse autoencoder and ADMM LASSO
over a range of SNR values from 0 dB to 30 dB. Maximum number of signals is
20…………………………………………………………………………………. 37

4.7 ROC curve for the real-valued sparse autoencoder and ADMM LASSO for blind
source separation of 20 signals…………………………………………………… 38

xi

LIST OF FIGURES
(Continued)

Figure Page

5.1 Blind sparse autoencoder feedforward neural network architecture with 𝑁𝑁 > 𝑀𝑀
hidden layer nodes. The encoded signal output at the hidden layer provides a
complex-valued sparse representation of the transmitted sources……………….. 40

5.2 Complex-valued ADMM LASSO expected training error and expected validation
error for support recovery versus the hyperparameter 𝜆𝜆 for SNR values of 15 dB,
20 dB, 25 dB, and 30 dB…………………………………………………………. 44

5.3 Complex-valued sparse autoencoder expected training error and expected
validation error for support recovery versus the hyperparameter 𝜆𝜆 for SNR values
of 15 dB, 20 dB, 25 dB, and 30 dB………………………………………………. 45

5.4 Signal activity truth data for 20 co-channel source transmissions in the top plot
and the recovered signals are shown in the bottom plot………………………….. 46

5.5 The mean squared error (MSE) of the output layer of the complex-valued sparse
autoencoder and MSE of the complex-valued ADMM LASSO on training and
validation data using 5-fold cross-validation……………………………………... 47

5.6 Support recovery for the complex-valued sparse autoencoder and complex-valued
ADMM LASSO over a range of SNR values from 0 dB to 30 dB. Maximum
number of signals is 20.…………………………………....................................... 48

5.7 ROC curve for the complex-valued sparse autoencoder and complex-valued
ADMM LASSO for blind source separation of 20 signals………………………. 49

6.1 The empirical Rademacher complexity generalization error bound with error
tolerance γ = .1 and confidence parameter δ = .1 for the BSS complex-valued
sparse autoencoder hypothesis class. The simulation signal model includes twenty
QPSK co-channel signal sources, Rayleigh fading MIMO channel with twenty
receive antenna elements, and a signal-to-noise ratio of 20 dB…………………… 62

1

CHAPTER 1

INTRODUCTION

 1.1 Machine Learning for Blind Source Separation

Blind source separation (BSS) is the process of recovering individual source transmissions

from a received mixture of co-channel signals without a-priori knowledge of the channel

mixing matrix or transmitted source signals. There are various applications for blind source

separation including radio frequency (RF) co-channel signal separation [1]-[4], spectrum

sensing for cognitive radio [5]-[7], self-interference cancellation for co-time co-frequency

full-duplex systems [8]-[10], speech signal separation also known as the cocktail party

problem [11]-[13], musical instrument sound signal separation [14], and in the medical

field for separation of electroencephalography (EEG) data that measures electrical neural

signal activity in the brain [15], [16].

 The BSS problem for co-channel source separation can benefit from machine

learning given it is useful for problems that pose a model deficit [17]. Blind source

separation presents a model deficit in that we do not know the wireless channel or

transmitted signals. Machine learning provides the ability to use data in the form of training

examples to learn a prediction model for regression scenarios in the continuous variable

case or a classifier for the discrete output decision space [17], [19]. A model or hypothesis

class is proposed for the machine learning problem and the parameters are optimized to fit

the example data in such a way that future prediction can be performed on new unseen

future data samples [18], [35]. The ability to perform prediction on data outside the training

set is known as generalization [19], [35]. The training sample set of examples can include

2

labeled input and output data pairs or include unlabeled inputs only, which is referred to as

supervised learning and unsupervised learning, respectively [20].

The BSS problem is well-suited for unsupervised machine learning given the nature

of having unlabeled receive data only and the need to learn the transmitted source

sequences without knowing the channel or transmit signal waveforms. Given the nature of

the problem is known to some degree it is best to use the context of the problem when

positing a hypothesis class, which results in an inductive bias for the learning algorithm

[17], [18]. Utilizing hypothesis classes that exploit sparsity of transmitted sources is an

inductive bias for solving the blind source separation problem. Without such inductive bias

machine learning is ill-posed and it is not sufficient to find a solution without some

assumptions [18], [20]. This is known as the no free lunch theorem where the learning

algorithm performs well within our inductive bias and not necessarily outside the scope of

the problem [17], [20].

There are various known methods that can be utilized to blindly recover latent

signals including independent component analysis (ICA) [18]-[23], Least Absolute

Shrinkage and Selection Operator (LASSO) [24], and exploitation of cyclostationarity of

signal sources [25], [26], that can solve for the latent signals under different assumptions.

The ICA approach hinges on the summation of a number of independent signals being

Gaussian distributed based on the central limit theorem. ICA then finds an unmixing matrix

that maximizes the non-Gaussianity of the projections of the received signal data for source

separation. ICA assumes a full rank channel matrix or basis whereby the number of

transmitted source signals equals the number of receive channels. Therefore, ICA cannot

be applied to an underdetermined system for solving for the latent variables. On the other

3

hand, LASSO assumes an overcomplete dictionary or channel, and imposes a sparsity

constraint on the latent signal coefficients, which ultimately makes it possible to find

unique solutions amongst an infinite solution space [24], [27].

LASSO solves half of the blind source recovery problem within a sparse signal

representation framework given by 𝛂𝛂 = 𝚿𝚿𝛃𝛃, where 𝛃𝛃 is the sparsest signal vector of non-

zero coefficients solved by LASSO, 𝚿𝚿 is the overcomplete dictionary or wireless channel

matrix, and 𝛂𝛂 denotes the response vector or received signal vector taken as a snapshot

across an antenna array. The received signal data vector denoted by 𝛂𝛂 can be considered

either real-valued or complex-valued although in-phase and quadrature components of

complex-valued data should be treated as a group as discussed in Section 1.4. The other

half of the blind source recovery problem requires a second optimization stage for learning

the overcomplete dictionary 𝚿𝚿 using the Method of Optimal Directions (MOD) [28], K-

Singular Value Decomposition (K-SVD) [29], Multiple Dictionary Update (MDU) [30], or

online block-coordinate descent [31].

The alternating optimization approach between learning the sparse coefficients 𝛃𝛃

and dictionary channel matrix 𝚿𝚿 is referred to as a two-stage optimization process [30].

This dissertation derives a one-stage learning approach for blind source separation in bursty

or sparse signal RF environments when the transmitted signals and wireless multiple-input

multiple-output (MIMO) channel are both unknown at the receiver. The one-stage learning

approach solves for the sparse signal coefficients and dictionary in one optimization stage

and does not require alternate optimization as performed in the two-stage process. This is

accomplished by exploiting the universal function approximation property of neural

networks [38], [39].

4

1.2 Two-Stage Sparse Signal Recovery

Given that the channel and latent sources are both assumed unknown, the blind source

separation problem can be formulated as an iterative two-stage convex optimization

process for finding the sparse latent signal coefficients and dictionary atoms or channel

columns associated with each of the active sources [29]-[32], [35]. Jointly optimizing over

the sparse latent signals and dictionary is a non-convex problem, so the two-stage iterative

process alternates between solving for the sparse latent signals also known as sparse coding

while holding the dictionary fixed and then vice versa for updating the dictionary. Sparsity

of signal transmissions can be exploited for detecting intermittent source activity when the

system is in fact underdetermined whereby there are actually more sources present than

receive sensor elements [32]-[34]. This is possible assuming only a few sources are actually

active at any given instance of time over the duration of all intermittent source activity.

A sparse signal representation given by 𝒙𝒙 = 𝐇𝐇𝒔𝒔 implies that an 𝑀𝑀-dimensional

signal 𝒙𝒙 can be modeled as a linear combination of a relatively few number of columns or

atoms {𝐡𝐡𝑖𝑖}𝑖𝑖=1𝑁𝑁 from an overcomplete dictionary 𝐇𝐇 of size 𝑀𝑀 × 𝑁𝑁 where 𝑀𝑀 < 𝑁𝑁 [24], [35],

[37]. The sparse coefficient vector 𝒔𝒔 is 𝑁𝑁-dimensional and contains a relatively few number

of non-zero coefficients or 𝑘𝑘 transmit signals defined by 𝑘𝑘 = ‖𝒔𝒔‖0 where 𝑘𝑘 << 𝑀𝑀 < 𝑁𝑁.

The ℓ0 − norm does not satisfy all axiomatic properties of a norm, but nonetheless

provides a count for the number of non-zero coefficients [49]. The goal is to find a unique

sparse solution given there are an infinite number of solutions 𝒔𝒔 that solve for 𝒙𝒙 given 𝐇𝐇.

More formally, a sparse coefficient vector 𝒔𝒔 with 𝑘𝑘 non-zero components is considered

unique for 𝑘𝑘 < 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘(𝐇𝐇)/2. The 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘 is defined as the smallest number of linearly

dependent columns or atoms from a given matrix [37], [49]. The least upper bound or

5

supremum given by 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘(𝐇𝐇)/2 is derived via the triangle inequality which holds for

complex variables as well [43]. Considering 𝐇𝐇 to be full row rank, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘(𝐇𝐇) = 𝑀𝑀 + 1

and the number of non-zero components of 𝒔𝒔 should satisfy ‖𝒔𝒔‖0 < (M + 1)/2.

The ideal constrained optimization problem for solving for the dictionary 𝐇𝐇 and

sparse coefficient vectors {𝒔𝒔𝑖𝑖}𝑖𝑖=1D for D received signal examples {𝒙𝒙𝑖𝑖}𝑖𝑖=1D is given in

Equation (1.1).

arg min
𝐇𝐇,𝐒𝐒

 ‖𝐗𝐗 − 𝐇𝐇𝐒𝐒‖𝐹𝐹2

subject to ‖𝒔𝒔𝑖𝑖‖0 ≤ 𝑘𝑘, ∀ 1 ≤ 𝑖𝑖 ≤ D

(1.1)

This is known to be a computational intractable problem requiring an exhaustive search

over subsets of the dictionary 𝐇𝐇 and selecting the solution 𝒔𝒔𝑖𝑖 with the smallest number of

non-zeros from the set {𝒔𝒔𝑖𝑖:𝒙𝒙𝑖𝑖 = 𝐇𝐇𝒔𝒔𝑖𝑖}𝑖𝑖=1D [27], [37], [49], [52]. The constrained

optimization problem in Equation (1.1) is non-convex given it is structured as a joint

optimization over the dictionary and sparse representation coefficients. This can be

ameliorated by splitting the joint optimization problem into a two-stage optimization

process whereby the dictionary is held fixed during optimization over the sparse

representation coefficients and vice versa [29]-[32], [35]. To resolve the combinatorial

exhaustive search due to the ℓ0 norm on the sparse representation coefficients an ℓ1 norm

penalty has been proposed instead [24], [27], [35], [37], [49], [52]. The ℓ1 norm penalty

provides convexification of the problem in Equation (1.1) assuming 𝐇𝐇 is held fixed and

enforces the sparse aspect of the solution space [24], [37]. The ℓ1 norm penalty applies a

6

constraint on the ordinary least squares estimates, which results in shrinkage of coefficients

and zeros out coefficients less than a given threshold also known as soft-thresholding [24],

[35], [51], [52]. The ℓ1 regularized least squares optimization problem or LASSO assuming

𝐇𝐇 is fixed is given in Equation (1.2).

arg min
𝐒𝐒

 ‖𝐗𝐗 − 𝐇𝐇𝐒𝐒‖𝐹𝐹2

 subject to ‖𝒔𝒔𝑖𝑖‖1 ≤ 𝑡𝑡, ∀ 1 ≤ 𝑖𝑖 ≤ D

(1.2)

The tuning parameter 𝑡𝑡 is a budget on the sum of the absolute values of the coefficients

and imposes sparsity on the solution space by shrinking coefficients towards 0 for 𝑡𝑡 <

‖𝒔𝒔𝑙𝑙𝑙𝑙‖1 where 𝒔𝒔𝑙𝑙𝑙𝑙 denotes the ordinary least-squares estimate [24]. The Lagrangian

formulation of the LASSO is given in Equation (1.3).

arg min
𝒔𝒔𝑖𝑖

1
M
‖𝒙𝒙𝑖𝑖 − 𝐇𝐇𝒔𝒔𝑖𝑖‖22 + 𝜆𝜆‖𝒔𝒔𝑖𝑖‖1 , ∀ 1 ≤ 𝑖𝑖 ≤ D, 𝜆𝜆 ≥ 0 (1.3)

The parameter 𝜆𝜆 controls the level of sparsity or number of non-zero coefficients of the

latent signal space {𝒔𝒔𝑖𝑖}𝑖𝑖=1D [52]. As 𝜆𝜆 increases there is greater shrinkage imposed on the

coefficients {𝒔𝒔𝑖𝑖}𝑖𝑖=1D and a majority are set to zero based on the uniqueness property via

‖𝒔𝒔‖0 < 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘(𝐇𝐇)/2 ≪ 𝑀𝑀 < 𝑁𝑁. For 𝜆𝜆 = 0 the resultant estimate of {𝒔𝒔𝑖𝑖}𝑖𝑖=1D is the

minimum ℓ2 norm solution, and doesn’t provide sparse solutions as needed for the blind

7

source separation problem. The 𝑖𝑖𝑡𝑡ℎ sparse coefficient vector solution to the LASSO bound

problem in Equation (1.2) is equivalent to the Lagrangian formulation in Equation (1.3) for

𝑡𝑡 = ‖𝒔𝒔�𝑖𝑖(𝜆𝜆) ‖1. Cyclic coordinate descent can be utilized for solving for the sparse

coefficient vectors {𝒔𝒔𝑖𝑖}𝑖𝑖=1D in Equation (1.3) [52]. A more robust and more computationally

efficient Lagrangian based approach for sparse coding known as the alternating direction

method of multipliers (ADMM) is derived in Chapter 3.

 After updating the sparse coefficient matrix 𝐒𝐒 = {𝒔𝒔𝑖𝑖}𝑖𝑖=1D in Equation (1.3) an

optimal solution for the dictionary 𝐇𝐇 is found by minimizing the residual sum of squares

in Equation (1.4). All sparse signal vectors {𝒔𝒔𝑖𝑖}𝑖𝑖=1D are updated first before proceeding with

the next dictionary update stage.

arg min
𝐇𝐇∈𝒞𝒞

 ‖𝐗𝐗 − 𝐇𝐇𝐒𝐒‖𝐹𝐹2

where 𝒞𝒞 = {𝐇𝐇 ∈ ℂM×N:‖𝐡𝐡𝑖𝑖‖2 = 1,∀ 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁}

(1.4)

Many different approaches for dictionary learning have been proposed for

optimizing 𝐇𝐇 while holding the sparse coefficients 𝐒𝐒 fixed within the two-stage alternating

optimization process [28]-[32]. The MOD [28] provides a least-squares update of the

channel 𝐇𝐇� given by 𝐇𝐇� = 𝐗𝐗𝐒𝐒𝑯𝑯(𝐒𝐒𝐒𝐒𝑯𝑯)−𝟏𝟏 and is considered to be fairly robust [49]. Other

dictionary learning approaches including K-SVD [29] and MDU [30] seek to improve upon

the MOD with only moderate improvement upon convergence. The columns or atoms of

the dictionary 𝐇𝐇 are each constrained to be unit-norm to resolve the scaling ambiguity

during alternate optimization between the dictionary and sparse coefficients [30], [31],

8

[53]. The two-stage alternating optimization process between estimating the signal matrix

and dictionary matrix is repeated until convergence.

1.3 Undercomplete and Overcomplete Autoencoders

An autoencoder is an unsupervised feedforward neural network with an input layer, hidden

layer, and output layer as shown in Figure 1.1 [35], [40], [42], [83]. The autoencoder has

an encoder function that converts the input signal into a new representation 𝝃𝝃 = 𝒇𝒇(𝒙𝒙) and

a decoder function that approximately maps the new representation back to the original

input signal 𝒙𝒙� = 𝒈𝒈(𝝃𝝃). The only computational layers are the hidden layer and output layer

since the input layer represents the set of examples being fed to the autoencoder. The output

layer response is intended to reproduce an estimate of the input signal to the neural network,

while performing representation learning at the hidden layer [40], [42].

Figure 1.1 Conventional undercomplete autoencoder functional architecture with input 𝒙𝒙,
hidden layer encoded output 𝝃𝝃 = 𝒇𝒇(𝒙𝒙), and decoded output 𝒙𝒙� = 𝒈𝒈(𝝃𝝃).

The undercomplete autoencoder constrains the hidden layer by having less nodes

than the input for dimensionality reduction, which results in a compressed encoded signal

representation for learning key features of the input data [35], [40], [42], [83]. An

Da
ta

 In
pu

t

𝒙𝒙

Encoder Decoder
Da

ta
 O

ut
pu

t

𝒙𝒙�

𝝃𝝃
𝒇𝒇 𝒈𝒈

9

undercomplete autoencoder is similar to Principle Component Analysis (PCA) in the sense

it learns a reduced representation of the data, but autoencoders have the ability to learn a

non-linear mapping, which is more powerful than the linear transformation of PCA [42].

On the other hand, an overcomplete autoencoder has a larger hidden layer width than the

input layer and output layer for learning a sparse representation of the input data [40], [42].

The autoencoder feedforward neural network has been used for various RF applications

including anomaly detection [43], modulation recognition [44], signal classification [45],

and even learning a channel encoder and decoder function that matches the same block

error rate performance as a communication system with binary phase-shift keying (BPSK)

and a Hamming (7,4) code [46].

It is known that feedforward neural networks can provide universal function

approximation with at least one hidden layer in a neural network [38], [39]. The expressive

power of neural networks is exploited in this dissertation for providing a one-stage learning

solution for blind source separation within a sparse autoencoder framework without

requiring separate alternate optimization between the sparse coefficients and dictionary

channel matrix [40]. Furthermore, the sparse autoencoder is able to generalize efficiently

to data outside the training set and produce sparse code representations at the output of the

encoder without requiring additional optimization steps as is the case for the two-stage

sparse coding process as described in Section 1.2 [81], [82], [92].

1.4 Sparse Coding of Complex-Valued Data

Sparse coding of complex-valued data can be formulated in two different ways. Either

directly in the complex domain or in the real domain via a mapping from complex-valued

10

data to real-data [55]. That is, complex-valued signals can be mapped from ℂ𝑁𝑁 → ℝ2𝑁𝑁 and

sparse coding can be applied to the real and imaginary parts of the complex numbers

separately [46], [56], [61], [62]. Therefore, an N-dimensional complex space is transformed

into a 2N-dimensional real space. This is accomplished by reformulating the sparse coding

and dictionary learning problem 𝒙𝒙𝒄𝒄 = 𝐇𝐇𝒄𝒄𝒔𝒔𝒄𝒄 as defined in Equation (1.5), where the

subscript 𝑐𝑐 denotes complex-valued data.

�
Re(𝒙𝒙𝒄𝒄)
Im(𝒙𝒙𝒄𝒄)� = �

Re(𝐇𝐇𝒄𝒄) −Im(𝐇𝐇𝒄𝒄)
Im(𝐇𝐇𝒄𝒄) Re(𝐇𝐇𝒄𝒄)� �

Re(𝒔𝒔𝒄𝒄)
Im(𝒔𝒔𝒄𝒄)� (1.5)

Processing complex-valued data as shown in Equation (1.5) is done quite often due to the

lack of available software packages that support complex-valued neural network

algorithms and activation functions [47], [59]. On the other hand, it is particularly

important to maintain the in-phase and quadrature pair groupings [54] during soft-

thresholding as shown for the complex LASSO approach in [55] and not apply ℓ1

regularized least squares for real and imaginary components separately. Applying sparse

coding to data that has been transformed to the real space as defined in Equation (1.5)

results in independent soft-thresholding of the real and imaginary components of the

complex numbers. For sparse coding applications it is imperative that complex-valued data

be processed fully in the complex domain to avoid losing phase information. Processing

complex-valued data after mapping to real data as in Equation (1.5) will result in

independent shrinkage of the ordered pairs of complex numbers, which should be set to

zero or non-zero simultaneously. A fully complex sparse autoencoder is derived in Chapter

11

5 that performs sparse coding at the hidden layer while maintaining the complex-valued

in-phase and quadrature data without performing separate processing on the real and

imaginary parts of the complex-valued data as in [46], [57] [61]-[63].

1.5 Optimization of Complex-Valued Data

In order to fully process complex-valued data through the complex-valued sparse

autoencoder without mapping complex numbers to real and imaginary parts as defined in

Equation (1.5), the hidden layer function 𝝃𝝃 = 𝒇𝒇(𝒙𝒙) must support complex numbers and

optimization of the encoder and decoder weights must be performed in the complex domain

[58], [60]. The optimization of complex-valued weights is carried out using Wirtinger

Calculus [64], [65], which provides a complex-valued differentiable operator that satisfies

the partial derivatives of the real and imaginary parts of a complex number as defined in

Equations (1.7) and (1.8).

In general, let 𝑓𝑓(𝑧𝑧) be a complex-valued function of a complex variable 𝑧𝑧 given by

𝑓𝑓(𝑧𝑧): ℂ → ℂ , where 𝑧𝑧 = 𝑠𝑠 + 𝑖𝑖𝑖𝑖 and 𝑠𝑠, 𝑖𝑖 ∈ ℝ. 𝑓𝑓(𝑧𝑧) can be further defined in terms of it’s

real and imaginary parts as 𝑓𝑓(𝑧𝑧) = 𝑢𝑢(𝑠𝑠, 𝑖𝑖) + 𝑖𝑖𝑖𝑖(𝑠𝑠, 𝑖𝑖), where 𝑢𝑢(𝑠𝑠, 𝑖𝑖) is the real part and

𝑖𝑖(𝑠𝑠, 𝑖𝑖) is the imaginary part of 𝑓𝑓(𝑧𝑧). By defining a and b as a function of z as given in

Equation (1.6), 𝑓𝑓(𝑧𝑧) can be rewritten as 𝑓𝑓(𝑠𝑠(𝑧𝑧), 𝑖𝑖(𝑧𝑧)). 𝑧𝑧∗ in Equation (1.6) is the complex

conjugate of the complex variable 𝑧𝑧.

𝑠𝑠 =
𝑧𝑧 + 𝑧𝑧∗

2
 𝑖𝑖 =

𝑧𝑧 − 𝑧𝑧∗

2𝑖𝑖
 (1.6)

12

 By applying the chain rule to 𝑓𝑓(𝑠𝑠(𝑧𝑧),𝑖𝑖(𝑧𝑧)) and differentiating with respect to 𝑧𝑧

and 𝑧𝑧∗ results in the two expressions in Equations (1.7) and (1.8), respectively [66].

𝜕𝜕𝑓𝑓
𝜕𝜕z

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑠𝑠

𝜕𝜕𝑠𝑠
𝜕𝜕z

+
𝜕𝜕𝑓𝑓
𝜕𝜕𝑖𝑖

𝜕𝜕𝑖𝑖
𝜕𝜕z

=
1
2
�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑠𝑠

− 𝑖𝑖
𝜕𝜕𝑓𝑓
𝜕𝜕𝑖𝑖
� (1.7)

𝜕𝜕𝑓𝑓
𝜕𝜕z∗

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑠𝑠

𝜕𝜕𝑠𝑠
𝜕𝜕z∗

+
𝜕𝜕𝑓𝑓
𝜕𝜕𝑖𝑖

𝜕𝜕𝑖𝑖
𝜕𝜕z∗

=
1
2
�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑠𝑠

+ 𝑖𝑖
𝜕𝜕𝑓𝑓
𝜕𝜕𝑖𝑖
� (1.8)

The differential operator in Equation (1.7) with respect to 𝑧𝑧∗ is utilized for complex

optimization of the weights of the sparse autoencoder in Chapter 5, where a cost function

or loss ℒ(𝑧𝑧) is defined as a real-valued function over a domain of complex-valued variables

given in general by the mapping ℒ(𝑧𝑧): ℂ → ℝ.

1.6 Organization of this Dissertation

The blind source separation system model is described in Chapter 2. Chapter 3 derives the

two-stage blind source separation approach based on the ADMM algorithm for real-valued

and complex-valued data. Chapter 4 and Chapter 5 describe the ℓ1norm regularized sparse

autoencoder for blind source separation for real-valued data and complex-valued data,

respectively. Chapter 6 describes generalization for regression problems and a data-

dependent generalization bound based on the Rademacher complexity for the one-stage

learning blind source separation problem. Finally, the conclusion is provided in Chapter 7.

13

CHAPTER 2

SYSTEM MODEL

2.1 Multiple-Input Multiple Output System

The blind source separation system model formulation assumes there are 𝑁𝑁 independent

transmitter sources and 𝑀𝑀 received signals across an antenna array or distribution of 𝑀𝑀

sensor elements. A linear time-invariant flat fading channel is assumed whereby the

channel gains are represented as complex Gaussian random variables with zero-mean [67],

[69]. This represents a rich scattering environment also commonly referred to as a Rayleigh

fading channel based on the magnitude of the complex Gaussian random variables being

Rayleigh distributed [68]. The flat fading channel assumption refers to the transmitted

signal bandwidth being within the coherence bandwidth or inverse delay spread of the

channel and thus, the received signal does not experience frequency selective fading or

intersymbol interference (ISI) [70].

Figure 2.1 depicts a multiple-input multiple output (MIMO) blind source separation

scenario where there are only a sparse number of active sources at any given time that are

received over the MIMO channel. All sources are considered to be transmitting at the same

frequency creating a co-channel mixture of sources at the receive array. The received signal

snapshot across the antenna array denoted by 𝒙𝒙(𝑛𝑛) is defined in Equation (2.1).

 𝒙𝒙(𝑛𝑛) = √𝛾𝛾𝐇𝐇𝒔𝒔(𝑛𝑛) + 𝛎𝛎(𝑛𝑛) n = 1,…,D (2.1)

14

Figure 2.1 Illustration of a blind source separation (BSS) scenario with a sparse number
of active sources 𝑘𝑘 received over a MIMO channel with 𝑀𝑀 receive antenna elements where
𝑘𝑘 << 𝑀𝑀 < 𝑁𝑁 and 𝑁𝑁 represents the total number of potential independent co-channel
transmitters.

It is assumed that snapshots of data 𝒙𝒙(𝑛𝑛) are taken across a synchronized antenna array or

distribution of 𝑀𝑀 sensors where 𝑛𝑛 denotes a particular snapshot over time for 𝑛𝑛 = 1, . . . , D.

𝒔𝒔(𝑛𝑛) denotes the sparse signal vector of active sources, 𝐇𝐇 is the wireless MIMO channel,

and 𝛾𝛾 is the signal-to-noise ratio (SNR). For the 𝑛𝑛th snapshot the number of signal sources

active within the signal vector 𝒔𝒔(𝑛𝑛) is given by 𝑘𝑘 = ‖𝐬𝐬(𝑛𝑛)‖0 where 𝑘𝑘 << 𝑀𝑀 < 𝑁𝑁. Hence,

the signal activity is considered sparse relative to the dictionary or channel matrix 𝐇𝐇 ∈

ℂ𝑀𝑀×𝑁𝑁, and 𝒙𝒙(𝑛𝑛) is a sparse representation or sparse linear combination of H. 𝝂𝝂(𝑛𝑛) is

complex Gaussian noise with zero-mean and unit variance denoted by 𝝂𝝂(𝑛𝑛)~𝓝𝓝ℂ(𝟎𝟎, 𝑰𝑰),

where 𝑰𝑰 is the identity covariance matrix.

The received signal model over D snapshots is given in matrix form in Equation

(2.2).

MIMO
Channel

𝑀𝑀 ≪ 𝑁𝑁
 sensor elements

𝐇𝐇 ∈ ℂ𝑀𝑀×𝑁𝑁

snapshot 𝒙𝒙 ∈ ℂ𝑀𝑀

·
·
·

𝑘𝑘 ≪ 𝑀𝑀 < 𝑁𝑁

𝒔𝒔 ∈ ℂ𝑁𝑁 “on”
“off”

Receive Array

𝑘𝑘 active
transmitters

15

𝐗𝐗 = �𝛾𝛾𝐇𝐇𝐒𝐒 + 𝚴𝚴 (2.2)

The receive signal matrix is defined as 𝐗𝐗 ∈ ℂ𝑀𝑀×D, 𝐇𝐇 is an 𝑀𝑀 × 𝑁𝑁 matrix of complex

Gaussian elements with zero-mean and unit variance, 𝐒𝐒 is a sparse matrix of source

transmissions, and 𝚴𝚴 ∈ ℂ𝑀𝑀×D is a matrix of zero-mean unit variance complex Gaussian

noise elements ν𝑖𝑖𝑖𝑖 ∼ 𝒩𝒩ℂ(0,1). The SNR term 𝛾𝛾 is considered to be scaled by the number

of active sources ‖𝒔𝒔(𝑛𝑛)‖0, so that 𝛾𝛾 defines the true SNR of the received signal as 𝑘𝑘

fluctuates over D snapshots for 𝑛𝑛 = 1, . . . , D [71].

2.2. Source Activity Model

The signal source transmit data denoted by 𝐒𝐒 with rows representing different sources is

considered intermittent over time and is common with short bursty communication activity

due to intermittent speech activity [74], mobile communications with discontinuous

transmission to preserve mobile handset power [75], or the Internet of Things for smart

city communications [76], [77]. Modeling time series data or intermittent source activity

can be synthesized using a hidden Markov model (HMM) [74], [78]. A first-order hidden

Markov model is implemented per transmission source and is shown in Figure (2.2).

16

Figure 2.2 First-order HMM for 𝑖𝑖𝑡𝑡ℎ transmitter source activity. The hidden states 𝑍𝑍𝑖𝑖(𝑛𝑛)
represent the 𝑛𝑛𝑡𝑡ℎ state of the 𝑖𝑖𝑡𝑡ℎ transmitter and 𝑠𝑠𝑖𝑖(𝑛𝑛) denotes the observation output.

The hidden states 𝑍𝑍𝑖𝑖(𝑛𝑛) represent the state of the 𝑖𝑖𝑡𝑡ℎ source being either ON or OFF

for the n𝑡𝑡ℎ snapshot. Whether or not the 𝑖𝑖𝑡𝑡ℎ source is actively transmitting at any given

time is based on a two-state Markov chain with state space 𝒮𝒮 = {OFF, ON}. The state

transition probability graph for the hidden states of each 𝑖𝑖𝑡𝑡ℎ source is shown in Figure 2.3

[79].

Each state is modeled as a Bernoulli process where a state change from OFF to ON

or ON to OFF takes place upon a success conditioned on the current state. The state-

transition probability from the 𝑖𝑖𝑡𝑡ℎ source activity off-state to on-state is denoted by 𝑠𝑠𝑖𝑖 =

STATE
OFF

STATE
ON

𝑠𝑠𝑖𝑖

𝑞𝑞𝑖𝑖

1 − 𝑞𝑞𝑖𝑖 1 − 𝑠𝑠𝑖𝑖

Figure 2.3 Transition probability graph of a two-state
Markov chain for the 𝑖𝑖𝑡𝑡ℎ source activity.

 𝑍𝑍𝑖𝑖(1) 𝑍𝑍𝑖𝑖(2) 𝑍𝑍𝑖𝑖(𝐷𝐷)

𝑠𝑠𝑖𝑖(1) 𝑠𝑠𝑖𝑖(2) 𝑠𝑠𝑖𝑖(𝐷𝐷)

17

𝑃𝑃𝑠𝑠(𝑍𝑍𝑖𝑖(n) = 𝑂𝑂𝑁𝑁 | 𝑍𝑍𝑖𝑖(n − 1) = 𝑂𝑂𝑂𝑂𝑂𝑂) and from the on-state to off-state is given by 𝑞𝑞𝑖𝑖 =

𝑃𝑃𝑠𝑠(𝑍𝑍𝑖𝑖(n) = 𝑂𝑂𝑂𝑂𝑂𝑂 | 𝑍𝑍𝑖𝑖(n − 1) = 𝑂𝑂𝑁𝑁) [79]. The steady-state probability of a source being

in the ON state or OFF state is denoted by 𝜋𝜋𝑂𝑂𝑁𝑁 and 𝜋𝜋𝑂𝑂𝐹𝐹𝐹𝐹, respectively. The steady-state

probabilities 𝜋𝜋𝑂𝑂𝑁𝑁 and 𝜋𝜋𝑂𝑂𝐹𝐹𝐹𝐹 are defined in Equation (2.3) [79].

𝜋𝜋𝑂𝑂𝑁𝑁 =
𝑠𝑠𝑖𝑖

𝑠𝑠𝑖𝑖 + 𝑞𝑞𝑖𝑖
 𝜋𝜋𝑂𝑂𝐹𝐹𝐹𝐹 =

𝑞𝑞𝑖𝑖
𝑠𝑠𝑖𝑖 + 𝑞𝑞𝑖𝑖

 (2.3)

The average number of active sources 𝜁𝜁 is based on the total number of active

sources over D snapshots and the steady-state probability of each source being in an active

state, and is given by 𝜁𝜁 = 𝑁𝑁 ∗ 𝜋𝜋𝑂𝑂𝑁𝑁, where 𝑁𝑁 denotes the maximum number of sources. The

average transmission duration of the 𝑖𝑖𝑡𝑡ℎ source is based on the inverse of the mean of a

geometric random variable and is given by 𝑞𝑞𝑖𝑖−1 [79].

18

CHAPTER 3

TWO-STAGE LEARNING FOR BLIND SOURCE SEPARATION

3.1 ADMM LASSO Sparse Coding for Blind Source Separation

The two-stage blind source separation approach alternates between a sparse coding stage

based on a fixed channel estimate and a channel estimation or dictionary learning stage

while holding the sparse code estimates fixed as described in general in Section 1.2 [32].

The co-channel signal sources defined in Chapter 2 are separated using the sparse coding

alternating direction method of multipliers (ADMM) optimization algorithm. The ADMM

LASSO algorithm for BSS is based on minimizing the augmented Lagrangian in Equation

(3.1) [52].

𝐿𝐿𝜌𝜌(𝒛𝒛,𝒘𝒘,𝝁𝝁) =
1
𝑀𝑀
‖𝒙𝒙 − 𝐇𝐇𝒛𝒛‖22 + 𝜆𝜆‖𝒘𝒘‖1 + (𝒛𝒛 − 𝒘𝒘)𝐻𝐻𝝁𝝁 + 𝜌𝜌‖𝒛𝒛 − 𝒘𝒘‖22 (3.1)

Optimization of the augmented Lagrangian cost function in Equation (3.1) with

respect to (𝒛𝒛,𝒘𝒘,𝝁𝝁) is performed using the ADMM algorithm by successively minimizing

𝒛𝒛 and 𝒘𝒘 followed by a dual ascent update of the Lagrange multiplier vector 𝝁𝝁 [52]. The

ADMM updates for iterations 𝑡𝑡 = 0, 1, 2, . .. are defined in Equations (3.2a)-(3.2c) for real-

valued data.

19

𝒛𝒛𝑡𝑡+1 = arg min
𝒛𝒛∈ℝ𝑁𝑁

𝐿𝐿𝜌𝜌(𝒛𝒛,𝒘𝒘𝑡𝑡,𝝁𝝁𝑡𝑡) (3.2a)

𝒘𝒘𝑡𝑡+1 = arg min
𝒘𝒘∈ℝ𝑁𝑁

𝐿𝐿𝜌𝜌(𝒛𝒛𝑡𝑡+1,𝒘𝒘,𝝁𝝁𝑡𝑡) (3.2b)

𝝁𝝁𝑡𝑡+1 = 𝝁𝝁𝑡𝑡 + 𝜌𝜌(𝒛𝒛𝑡𝑡+1 − 𝒘𝒘𝑡𝑡+1) (3.2c)

The ADMM iterative updates defined in Equations (3.2a)-(3.2c) are derived in

Equations (3.3a)-(3.3c). Minimization of 𝐿𝐿𝜌𝜌(𝒛𝒛,𝒘𝒘,𝝁𝝁) with respect to 𝒛𝒛 provides a ridge

regression update for 𝒛𝒛 in Equation (3.3a) and minimization with respect to 𝒘𝒘 involves a

soft-threshold update in Equation (3.3b). The sparse signal source vectors {𝒔𝒔(𝑛𝑛)}𝑛𝑛=1D in

Equation (2.1) are estimated by {𝒘𝒘(𝑛𝑛)}𝑛𝑛=1D in Equation (3.3b). The Lagrange multiplier

vector update 𝝁𝝁𝑡𝑡+1 is updated based on the new updated iterations of vectors 𝒛𝒛𝑡𝑡+𝟏𝟏 and

𝒘𝒘𝑡𝑡+1. 𝜌𝜌 is considered a fixed parameter where 𝜌𝜌 > 0 and the quadratic augmented

Lagrangian term involving 𝜌𝜌 penalizes solutions that violate the constraint outside the

feasible region [85].

𝒛𝒛𝑡𝑡+1 = �
1
𝑀𝑀
𝐇𝐇T𝐇𝐇 + 𝜌𝜌I�

−1

�
1
𝑀𝑀
𝐇𝐇T𝒙𝒙 + 𝜌𝜌𝒘𝒘𝑡𝑡 − 𝝁𝝁𝑡𝑡� (3.3a)

20

𝑤𝑤𝑖𝑖
𝑡𝑡+1 = 𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 �𝑧𝑧𝑖𝑖𝑡𝑡+1 +

𝜇𝜇𝑖𝑖𝑡𝑡

𝜌𝜌
� ��𝑧𝑧𝑖𝑖𝑡𝑡+1 +

𝜇𝜇𝑖𝑖𝑡𝑡

𝜌𝜌
� −

𝜆𝜆
𝜌𝜌
�
+

 𝑓𝑓𝑓𝑓𝑠𝑠 𝑖𝑖 = 1, … , 𝑁𝑁 (3.3b)

𝝁𝝁𝑡𝑡+1 = 𝝁𝝁𝑡𝑡 + 𝜌𝜌(𝒛𝒛𝑡𝑡+1 − 𝒘𝒘𝑡𝑡+1) (3.3c)

The soft-threshold operator in Equation (3.3b) shrinks the absolute value term by 𝜆𝜆 𝜌𝜌� and

the operator (𝜓𝜓)+ is set to 𝜓𝜓 for 𝜓𝜓 > 0 and equals zero for 𝜓𝜓 ≤ 0. Hence, a change in 𝜌𝜌

impacts the optimal value of the hyperparameter 𝜆𝜆 given the ratio 𝜆𝜆 𝜌𝜌� has an effect on the

shrinkage and ultimately the sparse coding solution. The hyperparameter 𝜆𝜆 is optimized

using cross-validation, which is described in Chapter 4.

 Optimization of the ADMM LASSO augmented Lagrangian in Equation (3.1) for

complex variables is performed using Wirtinger calculus as defined in Section 1.5. The

ADMM LASSO updates for complex variables is defined in Equations (3.4a) and (3.4b).

The Lagrange multiplier vector update 𝝁𝝁𝑡𝑡+𝟏𝟏 is as defined in Equation (3.3c).

𝒛𝒛𝑡𝑡+1 = arg min
𝒛𝒛∗∈ℂ𝑁𝑁

𝐿𝐿𝜌𝜌(𝒛𝒛,𝒘𝒘𝑡𝑡,𝝁𝝁𝑡𝑡) (3.4a)

𝒘𝒘𝑡𝑡+1 = arg min
𝒘𝒘∗∈ℂ𝑁𝑁

𝐿𝐿𝜌𝜌(𝒛𝒛𝑡𝑡+𝟏𝟏,𝒘𝒘,𝝁𝝁𝑡𝑡) (3.4b)

21

 Minimization of Equations (3.4a) and (3.4b) with respect to the complex conjugates

𝒛𝒛∗ and 𝒘𝒘∗ results in the updates 𝒛𝒛𝑡𝑡+𝟏𝟏 and 𝒘𝒘𝑡𝑡+1 in Equations (3.5a) and (3.5b), respectively.

Equation (3.3a) for the real-valued case differs from the complex-valued case in Equation

(3.5a) by taking the adjoint or Hermitian of 𝐇𝐇 in Equation (3.5a) and not just the transpose

of 𝐇𝐇 as in Equation (3.3a).

𝒛𝒛𝑡𝑡+1 = �
1
M
𝐇𝐇𝐻𝐻𝐇𝐇 + 𝜌𝜌I�

−1

�
1
M
𝐇𝐇𝐻𝐻𝐱𝐱 + 𝜌𝜌𝒘𝒘𝑡𝑡 − 𝝁𝝁𝑡𝑡� (3.5a)

𝑤𝑤𝑖𝑖
𝑡𝑡+1 =

𝑧𝑧𝑖𝑖𝑡𝑡+1 + 𝜇𝜇𝑖𝑖𝑡𝑡
𝜌𝜌

�𝑧𝑧𝑖𝑖𝑡𝑡+1 + 𝜇𝜇𝑖𝑖𝑡𝑡
𝜌𝜌 �

��𝑧𝑧𝑖𝑖𝑡𝑡+1 +
𝜇𝜇𝑖𝑖𝑡𝑡

𝜌𝜌
� −

𝜆𝜆
𝜌𝜌
�
+

 𝑓𝑓𝑓𝑓𝑠𝑠 𝑖𝑖 = 1, … , 𝑁𝑁 (3.5b)

3.2 Dictionary Learning for Channel Estimation

The two-stage learning algorithm performs dictionary learning or channel estimation after

all sparse code vectors in matrix 𝐒𝐒 are updated for iteration 𝑡𝑡 + 1. There are various

dictionary learning algorithms that build off of the method of optimal directions, which

provides a least-squares update of the channel as described in Section 1.2 [28], [29]. The

MOD algorithm has been shown to be a robust tradeoff for dictionary learning in

comparison to other methods such as the K-SVD algorithm with less computational

complexity [98]. The MOD algorithm is defined in Equation (3.6) and provides a least-

22

squares update 𝐇𝐇� of the channel 𝐇𝐇 in Equation (2.1). The Hermitian of 𝐒𝐒 for complex-

valued data defaults to the transpose when applied to real-valued data in Equation (3.6).

𝐇𝐇� = arg min
𝐇𝐇∈ℂ𝑀𝑀×𝑁𝑁

 ‖𝐗𝐗 − 𝐇𝐇𝐒𝐒‖𝐹𝐹2 = 𝐗𝐗𝐒𝐒𝑯𝑯(𝐒𝐒𝐒𝐒𝑯𝑯)−𝟏𝟏, 𝑤𝑤ℎ𝑒𝑒𝑠𝑠𝑒𝑒 ‖𝐡𝐡𝑖𝑖‖2 = 1,∀ 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁 (3.6)

Signal recovery performance results for the ADMM LASSO are compared against

the sparse autoencoder for real-valued data and complex-valued data as described in

Chapters 4 and 5, respectively.

23

CHAPTER 4

SPARSE AUTOENCODER FOR REAL-VALUED SIGNALS

4.1 Real-Valued Sparse Autoencoder for Source Separation

Autoencoders are known to provide feature extraction at the hidden layer of an artificial

neural network that provides a code representation of the input data while reconstructing

the input data at the decoder output of the autoencoder [42]. Sparse autoencoders or

regularized overcomplete autoencoders have a hidden layer width greater than the input

layer and impose regularization on the weights or hidden layer output to enable sparse

coding with a small number of non-zeros at the encoder hidden layer output [40], [81],

[92], [93]. A sparse autoencoder with an ℓ1 norm penalty on the encoder weights and a

sparsifying logistic sigmoid activation function for the hidden layer was utilized for feature

extraction of unique representations of handwritten numerals and natural image patches,

which were then used for supervised training of a neural network classifier [92]. A rectified

linear unit (ReLU) activation function rectifier(𝑥𝑥) = 𝑚𝑚𝑠𝑠𝑥𝑥(0, 𝑥𝑥) [40] was used within a

sparse autoencoder framework with an ℓ1 norm penalty applied to the hidden layer output

for image and text classification and shown to produce actual zeros at the hidden layer

output [81]. Another method for promoting sparsity within an autoencoder framework is

to utilize a Kullback-Leibler (KL) divergence penalty term between a small target

activation percentage for a hidden layer neuron and the mean activation over training

examples, which was demonstrated for image classification in [94].

An ℓ1 regularized sparse autoencoder feedforward neural network is applied to the

blind source separation problem for recovering real-valued independent co-channel

24

sources. In addition to an ℓ1 norm penalty of the hidden layer output added to the mean-

squared loss function between the input data and reconstructed output, a soft-threshold

operator activation function is utilized within the hidden layer to promote sparse coding

[82]. The complex-valued sparse autoencoder learning model is addressed in Chapter 5,

which is a non-trivial extension of the real-valued case due to the need to maintain in-phase

and quadrature pair groupings of complex-valued signals throughout the neural network

for sparse coding as described in Section 1.4. The blind source separation sparse

autoencoder architecture is shown in Figure 4.1.

Input Layer Hidden Layer Output Layer

𝑥𝑥�0(𝑛𝑛) = +1

Input Signal
𝒙𝒙(𝑛𝑛) ∈ ℝ𝑀𝑀

Output Signal
𝒚𝒚𝑜𝑜(𝑛𝑛) ∈ ℝ𝑀𝑀

Encoded Signal
𝒚𝒚ℎ(𝑛𝑛) ∈ ℝ𝑁𝑁

Figure 4.1 Blind sparse autoencoder feedforward neural network
architecture with 𝑁𝑁 > 𝑀𝑀 hidden layer nodes. The encoded signal
output at the hidden layer provides a sparse representation of the
transmitted sources.

𝑾𝑾𝒉𝒉 𝑾𝑾𝒐𝒐

25

The input signal to the sparse autoencoder in Figure 4.1 is denoted by 𝒙𝒙(𝑛𝑛) ∈ ℝ𝑀𝑀,

which represents the 𝑛𝑛𝑡𝑡ℎ received signal snapshot across an antenna array with 𝑀𝑀 elements

as defined in Chapter 2, but for real-values only in this chapter. The real-valued scenario

is considered valid for real-valued modulation types such as binary phase-shift keying [80].

The received signal snapshot model for 𝒙𝒙(𝑛𝑛) is defined in Equation (4.1) for real-valued

data, where the channel 𝐇𝐇 is an 𝑀𝑀 × 𝑁𝑁 matrix with zero-mean unit-variance Gaussian

random variables, 𝝂𝝂(𝑛𝑛) ∈ ℝ𝑀𝑀 is a noise vector of zero-mean unit-variance Gaussian

random variables, and 𝒔𝒔(𝑛𝑛) is the signal vector of sparse source transmissions or baseband

symbols. 𝛾𝛾 is defined as the SNR.

 𝒙𝒙(𝑛𝑛) = √𝛾𝛾𝐇𝐇𝒔𝒔(𝑛𝑛) + 𝝂𝝂(𝑛𝑛) n = 1,…,D (4.1)

The encoded signal output at the hidden layer of Figure 4.1 denoted by 𝒚𝒚ℎ(𝑛𝑛) produces the

sparse latent signal vectors 𝒔𝒔(𝑛𝑛) up to a permutation and sign ambiguity [53]. Finally, the

output signal 𝒚𝒚𝑜𝑜(𝑛𝑛) of the output layer of the sparse autoencoder in Figure 4.1 provides an

estimate of the input to the autoencoder 𝒙𝒙(𝑛𝑛). The sparse autoencoder acts as a replicator

network, while learning a representation at the hidden layer that explains the unique

features of the data [42], [81].

The inductive bias of the learning model or assumptions being made for selecting

a sparse learning algorithm is that transmitted sources experience intermittent activity and

sparsity can be exploited for solving for the latent signal sources [74]-[77]. The BSS sparse

autoencoder in Figure 4.1 enforces sparsity on the latent signal space in three ways. First

26

the cost function in Equation (4.2) imposes sparsity on the encoded output of the hidden

layer during training via ℓ1 regularization of the hidden layer outputs, second the hidden

layer is constructed to be wider than the input and output layers forcing the autoencoder to

learn a sparse representation given the overcomplete structure of the output layer weight

matrix, and third the activation function at the hidden layer inherently performs soft-

thresholding resulting in hidden layer nodes with zero output based on the shrinkage

operator [82].

The cost function or loss function for optimizing the weights of the sparse

autoencoder in Figure 4.1 is given in Equation (4.2).

ℒ(𝐖𝐖) =
1

2|𝐵𝐵|�
‖𝒅𝒅(𝑛𝑛) − 𝒚𝒚𝑜𝑜(𝑛𝑛)‖22 + 𝜆𝜆‖𝒚𝒚ℎ(𝑛𝑛)‖1

𝑛𝑛∈𝐵𝐵

 (4.2)

In Equation (4.2) 𝒅𝒅(𝑛𝑛) is the desired response, which is equal to the input snapshot 𝒙𝒙(𝑛𝑛) ∈

ℝ𝑀𝑀. 𝒚𝒚𝑜𝑜(𝑛𝑛) ∈ ℝ𝑀𝑀 is the output signal at the output layer of the autoencoder feedforward

neural network, 𝒚𝒚ℎ(𝑛𝑛) ∈ ℝ𝑁𝑁 is the encoded sparse representation output of the hidden

layer, 𝜆𝜆 is the sparsity penalty parameter, and 𝑛𝑛 denotes the iteration or time-step. The

summation in Equation (4.2) is taken over a batch of examples of size |𝐵𝐵|, where |𝐵𝐵|

denotes the cardinality of set 𝐵𝐵. The loss function ℒ(𝑾𝑾) is a function of all weights in the

neural network denoted by 𝑾𝑾, which represents the hidden layer and output layer weights

given by 𝑾𝑾ℎ and 𝑾𝑾𝑜𝑜, respectively. The sum of the squared errors is minimized with

respect to the synaptic weights 𝑾𝑾 of the feedforward neural network while imposing an ℓ1

27

norm penalty on the hidden layer output. The weights of the entire neural network are

learned using the received signal snapshots {𝒙𝒙(𝑛𝑛)}𝑛𝑛=1D as unlabeled input examples only.

The output layer signal vector 𝒚𝒚𝑜𝑜(𝑛𝑛) contains 𝑀𝑀 neural network node outputs and

is given in Equation (4.3) as a function of the output layer activation function 𝜑𝜑𝑜𝑜(⋅). The

output layer activation function 𝜑𝜑𝑜𝑜(⋅) is a linear identity function with no non-linearity.

𝒗𝒗𝑜𝑜(𝑛𝑛) is the activation potential vector for the output layer and is defined in Equation (4.4).

 𝒚𝒚𝑜𝑜(𝑛𝑛) = 𝜑𝜑𝑜𝑜(𝒗𝒗𝑜𝑜(𝑛𝑛)) (4.3)

𝒗𝒗𝑜𝑜(𝑛𝑛) = 𝑾𝑾𝑜𝑜(𝑛𝑛)𝒚𝒚ℎ(𝑛𝑛) (4.4)

The hidden layer output vector 𝒚𝒚ℎ(𝑛𝑛) contains 𝑁𝑁 nodes and is defined in Equation (4.5) as

a function of the hidden layer activation function 𝜑𝜑ℎ(⋅). 𝜑𝜑ℎ(⋅) is a soft-threshold operator

or shrinkage function and is defined in Equation (4.6). The operator (𝜓𝜓)+ in Equation (4.6)

is defined as (𝜓𝜓)+ = max(𝜓𝜓, 0), which is equal to 𝜓𝜓 for 𝜓𝜓 > 0. The hidden layer activation

potential 𝒗𝒗ℎ(𝑛𝑛) is defined in Equation (4.7).

𝒚𝒚ℎ(𝑛𝑛) = 𝜑𝜑ℎ�𝒗𝒗ℎ(𝑛𝑛)� (4.5)

28

 𝜑𝜑ℎ �𝑖𝑖𝑖𝑖ℎ(𝑛𝑛)� = 𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛(𝑖𝑖𝑖𝑖ℎ(𝑛𝑛))(�𝑖𝑖𝑖𝑖ℎ(𝑛𝑛)� − 𝜆𝜆)+ (4.6)

𝒗𝒗ℎ(𝑛𝑛) = 𝑾𝑾ℎ(𝑛𝑛)𝒙𝒙�(𝑛𝑛) (4.7)

𝑾𝑾𝑜𝑜 ∈ ℝ𝑀𝑀×𝑁𝑁 and 𝑾𝑾ℎ ∈ ℝ𝑁𝑁×𝑀𝑀+1 denote the weight matrices for the output layer

and hidden layer, respectively. Note that the first column of 𝑾𝑾ℎ represents the bias terms

for each neuron in the hidden layer. This effectively results in an affine transformation of

the linear combined output between the input signal and weights per neuron. 𝒙𝒙�(𝑛𝑛) ∈ ℝ𝑀𝑀+1

is the input vector example to the neural network for the 𝑛𝑛𝑡𝑡ℎ snapshot across a spatial array

of 𝑀𝑀 antenna elements as defined in Equation (4.1) with the first element 𝑥𝑥�0(𝑛𝑛) = +1 to

account for the bias weight term per hidden neuron.

The weights of the ℓ𝑡𝑡ℎ layer of the neural network are updated using mini-batch

stochastic gradient descent with adaptive moments (ADAM) [84]. The gradient of the loss

function with respect to the output and hidden layer weights is derived via the

backpropagation algorithm [83]. The gradient of the loss function with respect to the output

weights in Equation (4.2) is defined in Equation (4.8).

𝜕𝜕ℒ(𝑊𝑊)

𝜕𝜕𝑤𝑤𝑘𝑘𝑖𝑖
(𝑜𝑜)(𝑛𝑛)

=
1

|𝐵𝐵|�𝛿𝛿𝑘𝑘𝑜𝑜(𝑛𝑛)
𝑛𝑛∈𝐵𝐵

𝑦𝑦𝑖𝑖ℎ(𝑛𝑛) (4.8)

29

𝛿𝛿𝑘𝑘𝑜𝑜(𝑛𝑛) in Equation (4.8) is considered the local gradient of the loss function in Equation

(4.2) with respect to the activation potential 𝑖𝑖𝑘𝑘𝑜𝑜(𝑛𝑛) of the 𝑘𝑘𝑡𝑡ℎ neuron in the output layer of

the neural network. 𝛿𝛿𝑘𝑘𝑜𝑜(𝑛𝑛) is defined in Equation (4.9)

𝛿𝛿𝑘𝑘𝑜𝑜(𝑛𝑛) = −[𝑑𝑑𝑘𝑘(𝑛𝑛) − 𝑦𝑦𝑘𝑘𝑜𝑜(𝑛𝑛)]𝜑𝜑𝑜𝑜′ (𝑖𝑖𝑘𝑘𝑜𝑜(𝑛𝑛)) (4.9)

The gradient of the loss function in Equation (4.2) with respect to the hidden layer weights

is defined in Equation (4.10).

𝜕𝜕ℒ(𝑊𝑊)

𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖
(ℎ)(𝑛𝑛)

=
1

|𝐵𝐵| �𝛿𝛿𝑖𝑖ℎ(𝑛𝑛)x�𝑖𝑖
𝑛𝑛∈𝐵𝐵

(𝑛𝑛) (4.10)

The local gradient of the loss function in Equation (4.2) with respect to the activation

potential 𝑖𝑖𝑖𝑖ℎ(𝑛𝑛) of the 𝑗𝑗th hidden layer node is denoted by 𝛿𝛿𝑖𝑖ℎ(𝑛𝑛) and is given in Equation

(4.11).

𝛿𝛿𝑖𝑖ℎ(𝑛𝑛) = 𝜑𝜑ℎ′ �𝑖𝑖𝑖𝑖ℎ(𝑛𝑛)��𝛿𝛿𝑘𝑘𝑜𝑜(𝑛𝑛)𝑤𝑤𝑘𝑘𝑖𝑖
𝑜𝑜 (𝑛𝑛) +

M

𝑘𝑘=1

 𝜆𝜆 ∙ 𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛(𝑦𝑦𝑖𝑖ℎ(𝑛𝑛))𝜑𝜑ℎ′ �𝑖𝑖𝑖𝑖ℎ(𝑛𝑛)� (4.11)

30

The gradient of the ℓ1 penalty term 𝜆𝜆‖𝒚𝒚ℎ(𝑛𝑛)‖1 in Equation (4.2) with respect to

the activation potential 𝑖𝑖𝑖𝑖ℎ(𝑛𝑛) is 𝜆𝜆 ∙ 𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛(𝑦𝑦𝑖𝑖ℎ(𝑛𝑛))𝜑𝜑ℎ′ �𝑖𝑖𝑖𝑖ℎ(𝑛𝑛)�, which is undefined for an

activation output 𝑦𝑦𝑖𝑖ℎ(𝑛𝑛) of zero. On the other hand, given 𝜑𝜑ℎ′ �𝑖𝑖𝑖𝑖ℎ(𝑛𝑛)� is zero for 𝑖𝑖𝑖𝑖ℎ(𝑛𝑛) ≤

𝜆𝜆, where 𝜑𝜑ℎ′ (⋅) is the derivative of the activation function at the hidden layer, 𝜆𝜆 ∙

𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛(𝑦𝑦𝑖𝑖ℎ(𝑛𝑛))𝜑𝜑ℎ′ �𝑖𝑖𝑖𝑖ℎ(𝑛𝑛)� is zero for 𝑦𝑦𝑖𝑖ℎ(𝑛𝑛) = 0.

4.2 Hyperparameter Selection

The tuning parameter 𝜆𝜆 in Equation (4.2) imposes sparsity on the hidden layer weights and

is optimized using K-fold cross-validation (CV). The hyperparameter of the soft-threshold

activation function is set equal to the tuning parameter 𝜆𝜆 of the ℓ1 norm penalty on the

hidden layer output and optimized together, which satisfies the non-differentiable case for

�𝒚𝒚𝒉𝒉(𝑛𝑛)�
1
 when 𝒚𝒚𝒉𝒉(𝑛𝑛) is zero as explained in Section 4.1. The dataset of size D is

partitioned into 𝜂𝜂 = D
𝐾𝐾� disjoint sets or folds. 𝐾𝐾 − 1 sets are used for training the weights

𝐖𝐖 and 1 out of K sets is used for computing the cross-validation error as shown in Figure

(4.2) for 5-Fold CV [87].

Validation Training Training Training Training

Training Validation Training Training Training

. . .

. . .

. . .

Training Training Training Training Validation

Figure 4.2 5-Fold cross-validation partitioning of data into validation and training sets.

31

Optimization of the weights in Equation (4.2) is performed K times for all K permutations

of training data in Figure (4.2). Training with different data subsets produces a different

predictor or set of weights 𝐖𝐖 and hence, a different validation error for each 𝑖𝑖𝑡𝑡ℎ fold out

of K folds. All K validation errors are averaged together to approximate the generalization

error of the sparse autoencoder, which is referred to as the cross-validation error. Likewise,

the training errors pertaining to the K permutations of training data are averaged together

to compute an expected value or average value for the training error.

 The samples pertaining to the 𝑖𝑖𝑡𝑡ℎ fold are denoted by �𝒙𝒙𝑖𝑖𝑖𝑖�𝑖𝑖=1
𝐽𝐽

. Assume that the

weights 𝐖𝐖 of the ℓ1 norm regularized loss function in Equation (4.2) are trained on all data

except for the 𝑖𝑖𝑡𝑡ℎ fold producing a predictor 𝒚𝒚𝑖𝑖𝑜𝑜. The cross-validation error is defined in

Equation (4.12), where 𝐿𝐿�𝒅𝒅𝑖𝑖𝑖𝑖 ,𝒚𝒚𝑖𝑖𝑖𝑖𝑜𝑜 � is any loss function in general. 𝒅𝒅𝑖𝑖𝑖𝑖 is the 𝑗𝑗𝑡𝑡ℎ sample of

the desired response within the 𝑖𝑖𝑡𝑡ℎ fold and 𝒚𝒚𝑖𝑖𝑖𝑖𝑜𝑜 is the predicted output for the 𝑗𝑗𝑡𝑡ℎ sample

of the 𝑖𝑖𝑡𝑡ℎ fold validation data.

𝑅𝑅�𝐶𝐶𝐶𝐶 =
1
𝐼𝐼
�

1
𝐽𝐽
�𝐿𝐿�𝒅𝒅𝑖𝑖𝑖𝑖 ,𝒚𝒚𝑖𝑖𝑖𝑖𝑜𝑜 �
𝐽𝐽

𝑖𝑖=1

𝐼𝐼

𝑖𝑖=1

 (4.12)

 The sparse autoencoder performance is compared to the alternating direction

method of multipliers (ADMM) LASSO algorithm for BSS described in Chapter 3. Cross-

validation is utilized for computing the hyperparameter or tuning parameter 𝜆𝜆 in Equation

(3.1), which is rewritten in Equation (4.13) for convenience.

32

𝐿𝐿𝜌𝜌(𝒛𝒛,𝒘𝒘,𝝁𝝁) =
1
𝑀𝑀
‖𝒙𝒙 −𝑯𝑯𝒛𝒛‖22 + 𝜆𝜆‖𝒘𝒘‖1 + (𝒛𝒛 −𝒘𝒘)𝐻𝐻𝝁𝝁 + 𝜌𝜌‖𝒛𝒛 − 𝒘𝒘‖22 (4.13)

𝝆𝝆 was set to a fixed value equal to 2, while the tuning parameter 𝜆𝜆 was optimized over a

set of values using cross-validation.

 A total of D = 1000 samples was used for cross-validation with 𝐾𝐾 = 5. The tuning

parameter 𝜆𝜆 ranged over the set 𝜆𝜆 ∈ {. 01, . . . , 3}. The total number of co-channel signals

over D samples is set equal to 20. The state-transition probabilities 𝑠𝑠𝑖𝑖 and 𝑞𝑞𝑖𝑖 defined in

Section 2.2 were set such that an average number of 3 sources are overlapping in time out

of the 20 potential co-channel sources.

 The ADMM LASSO expected support recovery error based on the training data

and validation data versus the hyperparameter 𝜆𝜆 is shown in Figure 4.3 for SNR values of

15 dB, 20 dB, 25 dB, and 30 dB. The support recovery error is given by 1 − 𝐽𝐽(𝓢𝓢,𝓢𝓢�), where

𝐽𝐽�𝓢𝓢,𝓢𝓢�� is the Jaccard similarity defined in Equation (4.14). Jaccard similarity 𝐽𝐽�𝓢𝓢,𝓢𝓢�� is a

measure between the support (i.e., non-zero indices) of transmitted signal matrix 𝓢𝓢

containing all user transmission activity over D samples and the estimate of the sparse

matrix activity 𝓢𝓢�. 𝓢𝓢 and 𝓢𝓢� contain 1’s where source activity is present and 0’s where no

signal transmission takes place.

𝐽𝐽�𝓢𝓢,𝓢𝓢�� =
�𝓢𝓢 ∩ 𝓢𝓢��
�𝓢𝓢 ∪ 𝓢𝓢��

 (4.14)

33

 The sparse autoencoder expected training error and expected validation error for

support recovery versus the hyperparameter 𝜆𝜆 is shown in Figure 4.4 for SNR values of 15

dB, 20 dB, 25 dB, and 30 dB.

Figure 4.3 ADMM LASSO expected training error and expected validation error for
support recovery versus the hyperparameter 𝜆𝜆 for SNR values of 15 dB, 20 dB, 25 dB, and
30 dB.

34

Figure 4.4 Real-valued sparse autoencoder expected training error and expected validation
error for support recovery versus the hyperparameter 𝜆𝜆 for SNR values of 15 dB, 20 dB,
25 dB, and 30 dB.

 The optimal hyperparameter setting for 𝜆𝜆 is equal to 1 for both the ADMM LASSO

and sparse autoencoder as shown in Figures 4.3 and 4.4 via 5-fold cross-validation. The

optimal value for 𝜆𝜆 coincides with the variance of the additive white Gaussian noise in

Equation (4.1). The cross-validation error for the ADMM LASSO requires additional

optimization iterations for solving for the sparse coding while holding the channel fixed.

A plausible explanation for the improved performance of the ADMM LASSO on validation

data as shown in Figure 4.3 is that the sparse coding is able to move beyond a local minima

35

when optimizing with new data outside the training set. On the other hand, the sparse

autoencoder does not require additional optimization for sparse coding at the hidden layer

and the cross-validation performance in Figure 4.4 or generalization error is slightly worse

than the training error as expected.

4.3 Generalization Performance

The generalization performance of any machine learning algorithm indirectly depends on

the training data and how many examples are in the training data. This is due to the fact

that the generalization performance is based on a predictor learned from training data and

better generalization is attained with larger sample sets [19], [35]. Therefore, the learning

model and optimization of weights for learning a predictor is affected by the number of

samples used for training. The sample complexity defines the minimum number of training

examples needed in order to generalize well on new data within an error tolerance 𝜖𝜖 and

confidence 1 − 𝛿𝛿, where 𝛿𝛿 represents the probability of the generalization error being

larger than 𝜖𝜖. If the training set is too small there is risk of overfitting to the data such that

the training error is small, but the generalization error is large for prediction on new

examples. Generalization bounds are discussed in Chapter 5 for the Blind Source

Separation model.

 Generalization error can also be measured empirically over a given dataset of size

D for a range of subset sizes. The mean squared error (MSE) of the output layer of the

sparse autoencoder and MSE of the ADMM LASSO on training and validation data (i.e.,

5-fold cross-validation) is used as the measure of performance and is plotted in Figure 4.5.

36

Figure 4.5 The mean squared error (MSE) of the output layer of the sparse autoencoder
and MSE of the ADMM LASSO on training and validation data using 5-fold cross-
validation.

As shown in Figure 4.5 the sparse autoencoder has a larger spread between the

training and validation error, which is indicative of a higher model capacity [19], [35]. The

ADMM LASSO generalizes better with a smaller number of examples, but the sparse

autoencoder exhibits less bias for a large number of examples as shown in Figure 4.5.

4.4 Support Recovery Performance

 The support recovery is measured by the Jaccard similarity index 𝐽𝐽�𝓢𝓢,𝓢𝓢�� given in Equation

(4.13). The Jaccard index provides a measure for how well two vectors are correlated

37

including detection and false alarms. The support recovery for the sparse autoencoder and

ADMM LASSO is shown in Figure 4.6 over a range of SNR values from 0 dB to 30 dB.

The dataset size contains 5000 samples and 5-fold cross-validation was used.

Figure 4.6 Support recovery for the real-valued sparse autoencoder and ADMM LASSO
over a range of SNR values from 0 dB to 30 dB. Maximum number of signals is 20.

As shown in Figure 4.6 the sparse autoencoder begins to outperform the ADMM LASSO

BSS approach at 5 dB SNR and experience a significant improvement in performance from

20 dB to 30 dB. The sparse autoencoder is a non-linear model and has a higher capacity to

learn representations that explain the data as shown from the difference between the

training data and generalization data in Figure 4.6.

38

4.4 Receiver Operating Characteristics

The performance trade-off between the probability of detection and probability of false

alarm is known as the Receiver Operating Characteristic (ROC) [86]. The ROC curve for

the sparse autoencoder and ADMM LASSO for blind source separation of 20 signals is

shown in Figure 4.7.

Figure 4.7 ROC curve for the real-valued sparse autoencoder and ADMM LASSO for
blind source separation of 20 signals.

39

CHAPTER 5

SPARSE AUTOENCODER FOR COMPLEX-VALUED SIGNALS

5.1 Complex-Valued Sparse Autoencoder for Source Separation

Chapter 4 describes a real-valued sparse autoencoder for BSS of co-channel signals. In this

chapter the complex-valued counterpart of the real-valued sparse autoencoder is defined.

The fully complex-valued sparse autoencoder enables shrinkage of the real and imaginary

parts of the complex-valued ordered pairs as a group, which is critical for sparse coding of

complex-valued data as described in Section 1.4. A complex-valued sparse autoencoder

design was proposed for pilot channel estimation for Sparse Code Multiple Access

(SCMA) 5G systems using a ReLU activation function for the real and imaginary data

separately with an ℓ1 norm penalty on the weights in the cost function, but the approach

does not produce actual zeros within the sparse code of the encoded output [63], [95]. The

complex-valued sparse autoencoder proposed in this chapter maintains the phase

information of the complex-valued data from the input domain to output range mapping of

the activation function and produces actual zeros with a relatively small number of non-

zeros at the hidden layer encoded output resulting in true sparse coding. The activation

function at the hidden layer maps complex-valued input data to complex-valued output

data denoted in general by function 𝑓𝑓: ℂ → ℂ with an inherent shrinkage function that

produces zeros at the hidden layer output for sparse coding. The complex-valued

backpropagation algorithm for updating the gradient of the complex weights during

optimization or training of the sparse autoencoder is performed in the complex domain

[96]. The complex-valued sparse autoencoder architecture is shown in Figure 5.1.

40

The received signal 𝒙𝒙(𝑛𝑛) ∈ ℂ𝑀𝑀 is an M-dimensional vector as defined in Chapter 2

and is fed to the input layer of complex-valued sparse autoencoder as shown in Figure 5.1.

The cost function or loss function is optimized by minimizing Equation (5.1) with respect

to the complex weights using Wirtinger calculus as described in Section 1.5. The complex-

valued function signal vector at the output of the neural network is denoted as 𝒚𝒚𝑜𝑜(𝑛𝑛) ∈ ℂ𝑀𝑀.

The complex-valued desired response 𝒅𝒅(𝑛𝑛) is set equal to the input signal to the neural

network 𝒙𝒙(𝑛𝑛). The complex-valued hidden layer signal output vector is denoted by 𝒚𝒚ℎ(𝑛𝑛),

which represents a unique sparse solution via the ℓ1 norm of 𝒚𝒚ℎ(𝑛𝑛) as shown in the cost

function in Equation (5.1).

Input Layer Hidden Layer Output Layer

𝑥𝑥�0(𝑛𝑛) = +1

Input Signal
𝒙𝒙(𝑛𝑛) ∈ ℂ𝑀𝑀

Output Signal
𝒚𝒚𝑜𝑜(𝑛𝑛) ∈ ℂ𝑀𝑀

Encoded Signal
𝒚𝒚ℎ(𝑛𝑛) ∈ ℂ𝑁𝑁

Figure 5.1 Blind sparse autoencoder feedforward neural network
architecture with 𝑁𝑁 > 𝑀𝑀 hidden layer nodes. The encoded signal
output at the hidden layer provides a complex-valued sparse
representation of the transmitted sources.

𝑾𝑾𝒉𝒉 𝑾𝑾𝒐𝒐

41

ℒ(𝑾𝑾) =
1

|𝐵𝐵|�
‖𝒅𝒅(𝑛𝑛) − 𝒚𝒚𝑜𝑜(𝑛𝑛)‖22 + 𝜆𝜆‖𝒚𝒚ℎ(𝑛𝑛)‖1

n∈𝐵𝐵

 (5.1)

The gradient of ℒ(𝑾𝑾) in Equation (5.1) with respect to the weights of the output

layer is given in Equation (5.2). Complex conjugation is denoted by (⋅)∗. After the gradient

of the cost function is updated with respect to weights 𝑾𝑾 over a batch 𝐵𝐵, the weights 𝑾𝑾

are updated using the ADAM algorithm over the real and imaginary parts separately [84].

𝜕𝜕ℒ(𝑾𝑾)
𝜕𝜕𝑤𝑤𝑘𝑘𝑖𝑖

∗ (𝑛𝑛) =
1

|𝐵𝐵|�𝛿𝛿𝑘𝑘𝑜𝑜(𝑛𝑛)𝑦𝑦𝑖𝑖ℎ(𝑛𝑛)∗
𝐵𝐵

𝑛𝑛=1

 (5.2)

The local gradient with respect to the output layer complex conjugate activation

potential 𝑖𝑖𝑘𝑘𝑜𝑜(𝑛𝑛)∗ is defined in Equation (5.3). The activation potential 𝑖𝑖𝑘𝑘𝑜𝑜(𝑛𝑛) is defined in

Equation (5.4).

 𝛿𝛿𝑘𝑘𝑜𝑜(𝑛𝑛) = −[𝑑𝑑𝑘𝑘(𝑛𝑛) − 𝑦𝑦𝑘𝑘𝑜𝑜(𝑛𝑛)]𝜑𝜑𝑜𝑜′ (𝑖𝑖𝑘𝑘𝑜𝑜(𝑛𝑛)∗) (5.3)

𝒗𝒗𝑜𝑜(𝑛𝑛) = 𝑾𝑾𝑜𝑜(𝑛𝑛)𝒚𝒚ℎ(𝑛𝑛) (5.4)

42

The hidden layer output 𝒚𝒚ℎ(𝑛𝑛) in Equation (5.4) is given by 𝒚𝒚ℎ(𝑛𝑛) = 𝜑𝜑ℎ�𝒗𝒗ℎ(𝑛𝑛)�

and the hidden layer activation potential 𝒗𝒗ℎ(𝑛𝑛) is given by 𝒗𝒗ℎ(𝑛𝑛) = 𝑾𝑾ℎ(𝑛𝑛)𝒙𝒙�(𝑛𝑛) where all

variables are considered to be complex-valued.

The activation function at the hidden layer is a modReLU function, which is a

complex-valued soft-threshold operator [58], [97]. The modReLU or complex-valued soft-

threshold activation function is defined in Equation (5.5), which maintains the phase of the

input activation potential 𝑖𝑖𝑖𝑖ℎ(𝑛𝑛).

𝜑𝜑ℎ �𝑖𝑖𝑖𝑖ℎ(𝑛𝑛)� =
𝑖𝑖𝑖𝑖ℎ(𝑛𝑛)
�𝑖𝑖𝑖𝑖ℎ(𝑛𝑛)�

��𝑖𝑖𝑖𝑖ℎ(𝑛𝑛)� − 𝜆𝜆�
+

 (5.5)

The gradient of the cost function ℒ(𝑾𝑾) with respect to the hidden layer weights is

defined in Equation (5.6).

𝜕𝜕ℒ(𝑾𝑾)
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖∗ (𝑛𝑛) =

1
|𝐵𝐵| �𝛿𝛿𝑖𝑖ℎ(𝑛𝑛)𝑥𝑥�𝑖𝑖(𝑛𝑛)∗

𝐵𝐵

𝑛𝑛=1

 (5.6)

The local gradient 𝛿𝛿𝑖𝑖ℎ(𝑛𝑛) with respect to the hidden layer complex conjugate

activation potential 𝑖𝑖𝑖𝑖ℎ(𝑛𝑛)∗ is defined in Equation (5.7).

43

𝛿𝛿𝑖𝑖ℎ(𝑛𝑛) = 𝜑𝜑ℎ′ �𝑖𝑖𝑖𝑖ℎ(𝑛𝑛)∗��𝛿𝛿𝑘𝑘𝑜𝑜(𝑛𝑛)𝑤𝑤𝑘𝑘𝑖𝑖
𝑜𝑜 (𝑛𝑛)∗ + 𝜆𝜆 ∙ �

𝑦𝑦𝑖𝑖ℎ

�𝑦𝑦𝑖𝑖ℎ�
�𝜑𝜑ℎ′ �𝑖𝑖𝑖𝑖ℎ(𝑛𝑛)∗�

M

𝑘𝑘=1

 (5.7)

 Equation (5.7) is inserted into Equation (5.6) for the gradient update for the hidden

layer weight 𝒘𝒘𝒋𝒋𝒋𝒋(𝒏𝒏).

5.2 Hyperparameter Selection

Optimal selection of the tuning parameter or hyperparameter 𝜆𝜆 in Equations (5.1) and (5.5)

is carried out using K-fold cross-validation as described in Section 3.2. The support

recovery error versus 𝜆𝜆 for 𝜆𝜆 ∈ {. 01, . . . , 3} is shown in Figure 5.2 for the complex-valued

ADMM LASSO and Figure 5.3 for the complex-valued sparse autoencoder. The optimal

tuning parameter is shown to be equal to the complex-valued Gaussian noise variance of 1

as defined in Equation (2.1).

44

Figure 5.2 Complex-valued ADMM LASSO expected training error and expected
validation error for support recovery versus the hyperparameter 𝜆𝜆 for SNR values of 15
dB, 20 dB, 25 dB, and 30 dB.

45

Figure 5.3 Complex-valued sparse autoencoder expected training error and expected
validation error for support recovery versus the hyperparameter 𝜆𝜆 for SNR values of 15
dB, 20 dB, 25 dB, and 30 dB.

5.3 Generalization Performance

The generalization error performance for the complex-valued sparse autoencoder and

complex-valued ADMM LASSO for 20 co-channel complex signal sources is carried out

similar to the real-valued case as described in Section 4.3. Figure 5.4 shows the signal

activity truth data for 20 co-channel source transmissions in the top plot and the recovered

signals are shown in the bottom plot via the sparse autoencoder.

46

Figure 5.4 Signal activity truth data for 20 co-channel source transmissions in the top plot
and the recovered signals via the sparse autoencoder are shown in the bottom plot.

 The generalization performance of the prediction error versus number of samples in

the dataset is shown in Figure 5.5 for the complex-valued sparse autoencoder and complex-

valued ADMM LASSO for blind source separation.

47

Figure 5.5 The mean squared error (MSE) of the output layer of the complex-valued sparse
autoencoder and MSE of the complex-valued ADMM LASSO on training and validation
data using 5-fold cross-validation.

The non-linear complex-valued sparse autoencoder is empirically shown to have a

higher capacity than the linear LASSO algorithm by observing the difference between the

training and validation error. A larger difference in error between the training and

generalization error, which is approximated by cross-validation, indicates that the

complex-valued sparse autoencoder is a more complex hypothesis class. For large samples

the complex-valued autoencoder demonstrates less bias than the ADMM LASSO approach

as shown in Figure 5.5.

48

5.4 Support Recovery Performance

The support recovery performance was carried out using the Jaccard similarity index as

described in Section 4.4. The support recovery performance for the complex-valued sparse

autoencoder and complex-valued ADMM LASSO is shown in Figure 5.6 using validation

data. A total of 10000 samples were used with 5-fold cross-validation.

Figure 5.6 Support recovery for the complex-valued sparse autoencoder and complex-
valued ADMM LASSO over a range of SNR values from 0 dB to 30 dB. Maximum number
of signals is 20.

49

It is clear from Figure 5.6 that the complex-valued sparse autoencoder has a

markedly improved probability of support recovery over the two-stage complex-valued

ADMM LASSO for SNR values greater than roughly 3 dB SNR.

5.5 Receiver Operating Characteristics

The ROC curve performance of the probability of detection versus probability of false

alarm is shown in Figure 5.7 and is shown to outperform the complex-valued ADMM

LASSO approach.

Figure 5.7 ROC curve for the complex-valued sparse autoencoder and complex-valued
ADMM LASSO for blind source separation of 20 signals.

50

CHAPTER 6

GENERALIZATION BOUNDS AND SAMPLE COMPLEXITY

6.1 PAC Learning for Regression

A critical aspect of machine learning is the ability to generalize to unseen new data

examples, meaning that the final trained predictor can perform well on unlabeled data

inputs presented to the machine learning algorithm. How well the machine learning

algorithm performs can be quantified in terms of two key metrics. First the generalization

error should be close to the training error and second, the training error should be small. If

the training error is small, but the generalization error on new data is very large, then the

machine learning algorithm is a poor predictor on new examples. If the machine learning

algorithm generalizes well, but has a significantly large error then the learning algorithm

model or hypothesis class does not have the capacity to fit the data. Generalization bounds

deal with the question of how well a learning algorithm can generalize to new data and is

a function of its capacity and number of samples required to meet a desired level of

performance known as the sample complexity [19]. The model capacity represents the

complexity of the learning model and its degrees of freedom in fitting the data. Probably

Approximately Correct (PAC) learning provides a probabilistic guarantee for a hypothesis

class such that the generalization error is within a tolerance 𝜖𝜖 of the training error with

probability 1 − 𝛿𝛿 if the sample complexity is satisfied.

 The generalization loss, generalization error, or generalization risk 𝑅𝑅𝒫𝒫(ℎ) defined

in Equation (6.1) is the expected error between the predictor ℎ(𝑥𝑥) and underlying target

function plus noise values 𝓉𝓉, where (𝑥𝑥, 𝓉𝓉)~𝒫𝒫. 𝒫𝒫 is an unknown probability distribution

51

over the input domain space 𝒳𝒳 and target space 𝒯𝒯 denoted by the cartesian product 𝒳𝒳 × 𝒯𝒯,

where 𝑥𝑥 ∈ 𝒳𝒳 and 𝓉𝓉 ∈ 𝒯𝒯.

𝑅𝑅𝒫𝒫(ℎ) = 𝔼𝔼(𝑥𝑥,𝓉𝓉)~𝒫𝒫[𝐿𝐿(ℎ(𝑥𝑥), 𝓉𝓉)] (6.1)

The loss function 𝐿𝐿(ℎ(𝑥𝑥), 𝓉𝓉) in Equation (6.1) is the squared loss as is common for

regression problems and is given in Equation (6.2) [20].

𝐿𝐿(ℎ(𝑥𝑥), 𝓉𝓉) = (ℎ(𝑥𝑥) − 𝓉𝓉)2 (6.2)

The optimal predictor that minimizes Equation (6.1) cannot be determined directly

given 𝒫𝒫 is unknown [35]. On the other hand, a set of D independent and identically

distributed (i.i.d.) training examples 𝑆𝑆 = �(𝑥𝑥1,𝓉𝓉1), . . . , (𝑥𝑥D, 𝓉𝓉D)� ∈ (𝒳𝒳 × 𝒯𝒯)D drawn

according to 𝒫𝒫 are used to find an optimal predictor that minimizes the mean squared error

on the training examples and is formerly known as Empirical Risk Minimization (ERM)

[20]. The empirical loss 𝑅𝑅�𝑆𝑆(ℎ) for a predictor ℎ ∈ ℋ on a set of samples 𝑆𝑆 is given in

Equation (6.3) and the ERM predictor ℎ𝑆𝑆𝐸𝐸𝐸𝐸𝑀𝑀 that minimizes 𝑅𝑅�𝑆𝑆(ℎ) is defined in Equation

(6.4).

52

𝑅𝑅�𝑆𝑆(ℎ) =
1
D
�𝐿𝐿(ℎ(𝑥𝑥𝑖𝑖), 𝓉𝓉𝑖𝑖)
D

𝑖𝑖=1

 (6.3)

ℎ𝑆𝑆𝐸𝐸𝐸𝐸𝑀𝑀 ∈ arg min
ℎ∈ℋ

𝑅𝑅�𝑆𝑆(ℎ) (6.4)

Hoeffding’s inequality can be used to provide a generalization bound for regression

problems with a finite hypothesis class. Hoeffding’s inequality is given in Equation (6.5).

ℙ�𝑅𝑅𝒫𝒫(ℎ) − 𝑅𝑅�𝑆𝑆(ℎ) > 𝜖𝜖� ≤ 𝑒𝑒− 2D𝜖𝜖
2

Γ2 (6.5)

Equation (6.5) states that for any ℎ ∈ ℋ the probability that the generalization error

deviates from the empirical error by more than 𝜖𝜖 is less than or equal to an exponentially

decreasing quantity that is a function of the number of samples D, the tolerance 𝜖𝜖, and the

maximum of the bounded loss function in Equation (6.2) denoted by 𝐿𝐿(ℎ(𝑥𝑥), 𝓉𝓉) ≤ Γ. The

maximum of the loss function in Equation (6.2) for one receive signal as defined in

Equation (2.1) from the antenna array considering a prediction output ℎ(𝑥𝑥) of zero gives

Γ = 𝑃𝑃𝑙𝑙 + 𝜎𝜎2, which is a function of the signal power 𝑃𝑃𝑙𝑙 and noise variance 𝜎𝜎2. Γ can also

be rewritten as a function of the SNR given by Γ = 𝜎𝜎2(SNR + 1).

 The union bound is used to derive a generalization bound for all ℎ ∈ ℋ, which

implies that the probability of the union of all events is less than or equal to the sum of the

53

individual event probabilities. The union bound is applied to the right-hand side of

Equation (6.6a) in combination with Equation (6.5) for each hypothesis yielding the final

generalization bound in Equation (6.6b). Equation (6.6b) provides a generalization bound

∀ℎ ∈ ℋ based on the capacity or complexity of ℋ.

ℙ�∃ℎ ∈ ℋ: �𝑅𝑅𝒫𝒫(ℎ) − 𝑅𝑅�𝑆𝑆(ℎ)� > 𝜖𝜖� = ℙ ����𝑅𝑅𝒫𝒫(ℎ)− 𝑅𝑅�𝑆𝑆(ℎ)� > 𝜖𝜖�
ℎ∈ℋ

� (6.6a)

≤ � ℙ��𝑅𝑅𝒫𝒫(ℎ) − 𝑅𝑅�𝑆𝑆(ℎ)� > 𝜖𝜖�
ℎ∈ℋ

= 2|ℋ|𝑒𝑒
− 2D𝜖𝜖2

(𝑃𝑃𝑠𝑠+𝜎𝜎2)2 (6.6b)

For binary classification the Vapnik-Chervonenkis (VC) dimension can be used for

defining the capacity of ℋ, but that does not translate to regression prediction problems

[20], [90]. However, the pseudo-dimension can be applied to regression problems that

transforms continuous variables into binary states resulting in a pseudo-VC dimension

[87]-[89], [90]. The pseudo-dimension for a continuous-valued hypothesis class is the

largest set pseudo-shattered by ℱD denoted by Pdim(ℋ) [87], [88], [90].

The set {𝑥𝑥1, . . . , 𝑥𝑥D} ⊆ 𝒳𝒳 is considered pseudo-shattered by ℱD if ∃ {𝑓𝑓d: 𝑓𝑓d ∈ ℱD}

that satisfies all dichotomies for D-points given by Equation (6.7) where 𝑡𝑡1𝑤𝑤 , . . . , 𝑡𝑡D𝑤𝑤 ∈ ℝ

witness the shattering [87], [88], [90].

54

���
sgn(𝑓𝑓𝑑𝑑(𝑥𝑥1) − 𝑡𝑡1𝑤𝑤)

⋮
sgn(𝑓𝑓𝑑𝑑(𝑥𝑥D) − 𝑡𝑡D𝑤𝑤)

� : 𝑓𝑓𝑑𝑑 ∈ ℱD�� = 2D (6.7)

Equation (6.6b) provides a combinatorial bound that requires a model capacity

approximation for continuous-valued functions via the pseudo-dimension, and is valid for

any data distribution 𝒫𝒫. An alternative approach is to provide a data-dependent bound using

the Rademacher complexity that does not require the model capacity to be explicitly

defined [91], which is described in Section 6.2.

6.2 Rademacher Complexity Generalization Bound

The Rademacher complexity can be used to measure the capacity or complexity of a

hypothesis class and provide a data-dependent generalization bound. The empirical

Rademacher complexity of the family of loss functions ℱℒ associated with the hypothesis

class ℋ with respect to the sample set 𝑆𝑆 = �(𝑥𝑥1, 𝓉𝓉1), . . . , (𝑥𝑥D, 𝓉𝓉D)� ∈ (𝒳𝒳 × 𝒯𝒯)D is given in

Equation (6.8). The family of loss functions denoted by ℱℒ is defined as ℱℒ =

{(𝑥𝑥, 𝓉𝓉) ⟼ ℒ(ℎ(𝑥𝑥), 𝓉𝓉):ℎ ∈ ℋ}, which is a function of the data distribution 𝒫𝒫 and

hypothesis class ℋ.

ℜ�𝑆𝑆(ℱℒ) = 𝔼𝔼𝝈𝝈 � sup
𝑓𝑓ℒ∈ℱℒ

1
D
�𝜎𝜎𝑖𝑖𝑓𝑓ℒ(𝑥𝑥𝑖𝑖, 𝓉𝓉𝑖𝑖)
D

𝑖𝑖=1

� (6.8)

55

The set of parameters {𝜎𝜎𝑖𝑖}𝑖𝑖=1D are called Rademacher random variables and are i.i.d. random

variables with ℙ(𝜎𝜎𝑖𝑖 = +1) = ℙ(𝜎𝜎𝑖𝑖 = −1) = 1
2� . The Rademacher complexity in

Equation (6.8) captures the richness of a family of functions whereby a function class that

correlates better with random noise has a higher model complexity. Another way to

interpret the Rademacher complexity is to consider the gap between the generalization

error and training error, whereby a larger gap implies a higher model complexity in

comparison to a lower model capacity for a given sample set 𝑆𝑆~𝒫𝒫D. To better understand

this notion the Rademacher complexity will be explained from an 𝜖𝜖-representative sample

perspective, which states that a training set 𝑆𝑆~𝒫𝒫D is 𝜖𝜖-representative if it satisfies Equation

(6.9) ∀ℎ ∈ ℋ [20].

sup
ℎ∈ℋ

�𝑅𝑅𝒫𝒫(ℎ) − 𝑅𝑅�𝑆𝑆(ℎ)� ≤ 𝜖𝜖, ∀ℎ ∈ ℋ (6.9)

 The representativeness of a training set 𝑆𝑆 with respect to ℱℒ is defined as the

supremum of the difference between the generalization error of a function 𝑓𝑓ℒ ∈ ℱℒ and its

empirical error or training error and is given in Equation (6.10) [20]. The generalization

error 𝑅𝑅𝒫𝒫(𝑓𝑓ℒ) and empirical risk 𝑅𝑅�𝑆𝑆(𝑓𝑓ℒ) in Equation (6.10) for a function 𝑓𝑓ℒ ∈ ℱℒ are defined

similarly with respect to Equations (6.1) and (6.3), but rather as a function of 𝑓𝑓ℒ that maps

to the loss function.

56

Rep𝒫𝒫(ℱℒ, 𝑆𝑆) = sup
𝑓𝑓ℒ∈ℱℒ

�𝑅𝑅𝒫𝒫(𝑓𝑓ℒ) − 𝑅𝑅�𝑆𝑆(𝑓𝑓ℒ)� (6.10)

The validation error can be used to approximate the generalization error of an ERM

predictor or hypothesis ℎ𝑆𝑆𝐸𝐸𝐸𝐸𝑀𝑀 ∈ arg min
ℎ∈ℋ

𝑅𝑅�𝑆𝑆(ℎ) using a subset or holdout set from 𝑆𝑆 [19].

Assume that 𝑆𝑆~𝒫𝒫D is split into a validation set 𝑆𝑆𝐶𝐶~𝒫𝒫D 2⁄ and training set 𝑆𝑆𝑇𝑇~𝒫𝒫D 2⁄ , where

𝑆𝑆 = 𝑆𝑆𝐶𝐶 ⋃𝑆𝑆𝑇𝑇. The validation error and training error based on sample set 𝑆𝑆~𝒫𝒫D provides

an approximation of the representativeness of 𝑆𝑆 denoted as Rep𝒫𝒫� (ℱℒ,𝑆𝑆) as defined in

Equation (6.11) [20].

Rep𝒫𝒫� (ℱℒ, 𝑆𝑆) = sup
𝑓𝑓ℒ∈ℱℒ

�𝑅𝑅�𝑆𝑆𝑉𝑉(𝑓𝑓ℒ) − 𝑅𝑅�𝑆𝑆𝑇𝑇(𝑓𝑓ℒ)� (6.11)

Equation (6.11) can be re-written more compactly as given in Equation (6.12) assuming

that 𝑆𝑆𝐶𝐶 = {(𝑥𝑥𝑖𝑖, 𝓉𝓉𝑖𝑖):𝜎𝜎𝑖𝑖 = +1} and 𝑆𝑆𝑇𝑇 = {(𝑥𝑥𝑖𝑖, 𝓉𝓉𝑖𝑖):𝜎𝜎𝑖𝑖 = +1}.

sup
𝑓𝑓ℒ∈ℱℒ

2
D
�𝜎𝜎𝑖𝑖𝑓𝑓ℒ(𝑥𝑥𝑖𝑖, 𝓉𝓉𝑖𝑖)
D

𝑖𝑖=1

 (6.12)

Equation (6.12) is shown to be similar to the empirical Rademacher complexity as defined

in Equation (6.5), where Equation (6.5) takes the expectation over the Rademacher random

variables 𝝈𝝈.

57

The data-dependent generalization bound for all 𝑓𝑓ℒ ∈ ℱℒ based on the empirical

Rademacher complexity for D samples 𝑆𝑆 with confidence 1 − 𝛿𝛿 is defined in Equation

(6.13) where the maximum squared error loss associated with each received signal is given

by 𝐿𝐿(ℎ(𝑥𝑥),𝓉𝓉) ≤ Γ = 𝑃𝑃𝑙𝑙 + 𝜎𝜎2 = 𝜎𝜎2(SNR + 1).

𝑅𝑅𝒫𝒫(𝑓𝑓ℒ) ≤ 𝑅𝑅�𝑆𝑆(𝑓𝑓ℒ) + 2ℜ�𝑆𝑆(ℱℒ) + 3Γ� 1
2D

ln 2
𝛿𝛿

𝑅𝑅𝒫𝒫(𝑓𝑓ℒ) ≤ 𝑅𝑅�𝑆𝑆(𝑓𝑓ℒ) + 2ℜ�𝑆𝑆(ℱℒ) + 3(𝑃𝑃𝑙𝑙 + 𝜎𝜎2)� 1
2D

ln 2
𝛿𝛿

(6.13)

The loss function over 𝑀𝑀 receive antenna elements averaged over D examples

denoted by the sample set 𝑆𝑆 = �(𝑥𝑥1, 𝓉𝓉1), . . . , (𝑥𝑥D, 𝓉𝓉D)� ∈ (𝒳𝒳 × 𝒯𝒯)D is defined in Equation

(6.14).

1
D
��𝐿𝐿(ℎ𝑖𝑖(𝒙𝒙𝑖𝑖),𝓉𝓉𝑖𝑖

𝑖𝑖)
𝑀𝑀

𝑖𝑖=1

D

𝑖𝑖=1

 (6.14)

The received signals as defined in Chapter 2 are i.i.d. and the maximum of the loss

function in Equation (6.14) for each receive signal is given by max �𝐿𝐿(ℎ𝑖𝑖(𝒙𝒙𝑖𝑖), 𝓉𝓉𝑖𝑖
𝑖𝑖)� = 𝑃𝑃𝑙𝑙 +

𝜎𝜎2. The Rademacher complexity data-dependent generalization bound for 𝑀𝑀 receive

antennas is defined in Equation (6.15). If the loss function in Equation (6.14) is also

averaged over 𝑀𝑀 antenna elements by including the scalar multiple 1
𝑀𝑀� then the

Rademacher complexity data-dependent generalization bound defaults to Equation (6.13).

58

𝑅𝑅𝒫𝒫(𝑓𝑓ℒ) ≤ 𝑅𝑅�𝑆𝑆(𝑓𝑓ℒ) + 2ℜ�𝑆𝑆(ℱℒ) + 3𝑀𝑀(𝑃𝑃𝑙𝑙 + 𝜎𝜎2)�
1

2D
ln

2
𝛿𝛿

 (6.15)

The Rademacher complexity generalization bound is derived based on

McDiarmid’s inequality, which is used to bound the representativeness Rep𝒫𝒫(ℱℒ,𝑆𝑆) as

defined in Equation (6.10) of an independent sample set 𝑆𝑆 [20], [87]. For convenience of

notation Φ(𝑆𝑆) is defined as Φ(𝑆𝑆) = Rep𝒫𝒫(ℱℒ, 𝑆𝑆). McDiarmid’s inequality applied to Φ(𝑆𝑆)

is defined in Equation (6.16a) for a real-valued function Φ(𝑆𝑆): 𝒵𝒵D → ℝ with 𝑆𝑆 =

{𝓏𝓏𝑖𝑖 = (𝑥𝑥𝑖𝑖, 𝓉𝓉𝑖𝑖): 𝓏𝓏𝑖𝑖~𝒫𝒫, 𝑖𝑖 = 1, . . . , D}. The parameter 𝑐𝑐𝑖𝑖 = 1
D

(𝑃𝑃𝑙𝑙 + 𝜎𝜎2) in Equation (6.16a) is

derived in Equation (6.16b) and is an upper bound of |Φ(𝑆𝑆) −Φ(𝑆𝑆′)| ≤ 𝑐𝑐𝑖𝑖, which makes

use of the property that the supremum of the difference is greater than or equal to the

difference of supremum [87]. 𝑆𝑆 and 𝑆𝑆′ denote two sample sets that only differ between

samples 𝓏𝓏𝑖𝑖 and 𝓏𝓏𝑖𝑖′.

ℙ[|Φ(𝑆𝑆) − 𝔼𝔼𝑆𝑆[Φ(𝑆𝑆)]| ≥ 𝜖𝜖] ≤ 2𝑒𝑒
− 2𝜖𝜖2

∑ 𝑐𝑐𝑖𝑖
2D

𝑖𝑖=1 = 2𝑒𝑒
− 2D𝜖𝜖2

(𝑃𝑃𝑠𝑠+𝜎𝜎2)2 (6.16a)

|Φ(𝑆𝑆)−Φ(𝑆𝑆′)| ≤ � sup
𝑓𝑓ℒ∈ℱℒ

�𝑅𝑅�𝑆𝑆(𝑓𝑓ℒ) − 𝑅𝑅�𝑆𝑆′(𝑓𝑓ℒ)�� = � sup
𝑓𝑓ℒ∈ℱℒ

𝑓𝑓ℒ(𝓏𝓏𝑖𝑖) − 𝑓𝑓ℒ(𝓏𝓏𝑖𝑖′)
D

� ≤ 𝑐𝑐𝑖𝑖

=
1
D

(𝑃𝑃𝑙𝑙 + 𝜎𝜎2)

(6.16b)

59

McDiarmid’s inequality can be used to derive a 1 − 𝛿𝛿 confidence bound for Φ(𝑆𝑆)

by setting Equation (6.16a) equal to 𝛿𝛿 and solving for 𝜖𝜖 and then rewriting Equation (6.16a)

as ℙ[|Φ(𝑆𝑆) − 𝔼𝔼𝑆𝑆[Φ(𝑆𝑆)]| ≤ 𝜖𝜖] resulting in Equation (6.17).

Φ(𝑆𝑆) ≤ 𝔼𝔼𝑆𝑆[Φ(𝑆𝑆)] + (𝑃𝑃𝑙𝑙 + 𝜎𝜎2)�
1

2D
ln �

2
𝛿𝛿
� (6.17)

The expectation term in Equation (6.17) 𝔼𝔼𝑆𝑆[Φ(𝑆𝑆)] is upper bounded by the

expected Rademacher complexity as given in Equation (6.18) [20], [87].

𝔼𝔼𝑆𝑆[Φ(𝑆𝑆)] ≤ 2 𝔼𝔼
𝑆𝑆~𝒫𝒫D

�ℜ�𝑆𝑆(ℱℒ)� = 2ℜD(ℱℒ) (6.18)

The expectation term 𝔼𝔼𝑆𝑆[Φ(𝑆𝑆)] on the right-hand side of Equation (6.17) can be

replaced by the upper bound of Equation (6.18) resulting in a Rademacher complexity

bound given in Equation (6.19) that is a function of the expected Rademacher complexity

over all samples of size D.

𝑅𝑅𝒫𝒫(𝑓𝑓ℒ) ≤ 𝑅𝑅�𝑆𝑆(𝑓𝑓ℒ) + 2ℜD(ℱℒ) + (𝑃𝑃𝑙𝑙 + 𝜎𝜎2)� 1
2D

ln 2
𝛿𝛿

 (6.19)

60

Using McDiarmid’s inequality again to bound the expected Rademacher

complexity ℜD(ℱℒ) results in the inequality in Equation (6.20) that is upper bounded by the

empirical Rademacher complexity and 𝜖𝜖 = (𝑃𝑃𝑙𝑙 + 𝜎𝜎2)� 1
2D

ln �2
𝛿𝛿
�.

ℜD(ℱℒ) ≤ ℜ�𝑆𝑆(ℱℒ) + (𝑃𝑃𝑙𝑙 + 𝜎𝜎2)�
1

2D
ln �

2
𝛿𝛿
� (6.20)

Substituting the upper bound in Equation (6.20) for ℜD(ℱℒ) in Equation (6.19)

gives the Rademacher complexity data-dependent generalization bound defined in Equation

(6.13) that is a function of the empirical Rademacher complexity. The derivation of the

Rademacher complexity generalization bound defined in Equation (6.15) for 𝑀𝑀 receive

antennas follows similarly by replacing 𝑐𝑐𝑖𝑖 in Equations (6.16a) and (6.16b) with 𝑐𝑐𝑖𝑖 =

𝑀𝑀
D

(𝑃𝑃𝑙𝑙 + 𝜎𝜎2).

 The sample complexity defines the number of required samples D needed to

achieve a certain generalization error tolerance 𝜏𝜏 with respect to the training error and

empirical Rademacher complexity for a confidence parameter 𝛿𝛿 that defines the probability

of violating the error tolerance 𝜏𝜏. Setting the last term of the right-hand side of inequality

Equation (6.15) equal to 𝜏𝜏 as given in Equation (6.21) and solving for D provides a sample

complexity as a function of the signal-to-noise ratio (SNR), noise power 𝜎𝜎2, confidence

parameter 𝛿𝛿, error tolerance 𝜏𝜏, and number of received signals 𝑀𝑀, which is defined in

Equation (6.22).

61

𝑅𝑅𝒫𝒫(𝑓𝑓ℒ) ≤ 𝑅𝑅�𝑆𝑆(𝑓𝑓ℒ) + 2ℜ�𝑆𝑆(ℱℒ) + 𝜏𝜏

𝜏𝜏 = 3𝑀𝑀(𝑃𝑃𝑙𝑙 + 𝜎𝜎2)�
1

2D
ln

2
𝛿𝛿

(6.21)

D ≥
1
2
�
3𝑀𝑀(𝑃𝑃𝑙𝑙 + 𝜎𝜎2)

𝜏𝜏
�
2

ln �
2
𝛿𝛿
� =

1
2
�
3𝑀𝑀𝜎𝜎2(SNR + 1)

𝜏𝜏
�
2

ln �
2
𝛿𝛿
� (6.22)

The empirical Rademacher complexity generalization error data-dependent bound

for the BSS complex-valued sparse autoencoder hypothesis class with error tolerance 𝜏𝜏 =

.1 and confidence parameter 𝛿𝛿 = .1 in Equation (6.21) is shown in Figure 6.1. The

simulation signal model is comprised of twenty co-channel QPSK signal sources as

described in Chapter 2, which includes a time-invariant Rayleigh fading MIMO channel

and SNR of 20 dB with twenty receive antenna elements. The loss function in Equation

(6.14) was additionally scaled by the number of antennas and thus, 𝑀𝑀 = 1 in Equation

(6.21). The 5-Fold cross-validation generalization error and training error from Figure 5.5

for the BSS complex-valued sparse autoencoder are also included in Figure 6.1 for

comparison with the empirical Rademacher complexity generalization bound. The

empirical Rademacher complexity generalization bound is representative for all ℎ ∈ ℋ.

62

Figure 6.1 The empirical Rademacher complexity generalization error bound with error
tolerance 𝜏𝜏 = .1 and confidence parameter 𝛿𝛿 = .1 for the BSS complex-valued sparse
autoencoder hypothesis class. The simulation signal model includes twenty QPSK co-
channel signal sources, Rayleigh fading MIMO channel with twenty receive antenna
elements, and a signal-to-noise ratio of 20 dB.

63

CHAPTER 7

CONCLUSION

A one-stage blind source separation algorithm was developed using a sparse autoencoder

framework for separation of multiple co-channel radio frequency signal sources. The one-

stage BSS algorithm was successful in separating twenty co-channel overlapping

quadrature phase-shift keying sources with each at the same power level. The BSS sparse

autoencoder is able to solve for the channel matrix and signal sources within one

optimization stage without a-priori knowledge of the channel or transmitted signals. The

MIMO channel was considered to be a time-invariant Rayleigh flat-fading channel and the

signal sources were assumed to exhibit sparse activity. Therefore, over a long-term time

duration many signals are present, but over a short-term time scale there are only a minimal

number of active transmissions such that the received signal takes on a sparse

representation. Sparsity was exploited for separating the transmitted sources and is

considered the inductive bias of the sparse autoencoder learning model.

The performance of the one-stage sparse autoencoder was compared to a two-stage

learning model whereby the channel matrix and source signals are recovered using

alternate optimization. Therefore, the two-stage process requires the BSS source recovery

problem to be solved in parts where the ADMM LASSO was used for sparse coding and

the method of optimal directions was used for dictionary learning of the channel matrix.

On the other hand, the proposed BSS sparse autoencoder is able to solve for the channel

matrix and source signals in one-stage and demonstrated superior performance over the

two-stage BSS approach. The generalization performance showed that the sparse

64

autoencoder has a higher capacity to fit the data, but also requires more examples than the

two-stage learning algorithm to generalize well. In addition, the support recovery versus

signal-to-noise ratio and probability of detection versus false alarm were used as measures

of performance as well. The support recovery is given by the Jaccard similarity index and

is taken as the intersection of two vectors divided by the union of the two vectors. Hence,

the Jaccard similarity provides an apposite measure of support recovery including

detections and false alarms within the performance measure. The receiver operating

characteristic curve provides a performance trade-off between the probability of detection

and probability of false alarm. The one-stage BSS sparse autoencoder algorithm was shown

to outperform the two-stage ADMM LASSO for both the support recovery and ROC curve.

 Three factors were included in the BSS sparse autoencoder to impose sparsity on

the hidden layer output of the encoder. First the sparse autoencoder in designed to have a

wider hidden layer width than the input layer and output layer of the neural network.

Second the cost function or loss function includes an ℓ1 norm penalty on the hidden layer

outputs. Third the hidden layer activation function is a soft-threshold operator also known

as modReLU that supports complex-valued and real-valued signals.

The ability to generalize to new data is predominately what machine learning is all

about. Generalization bounds provide an inequality that upper bounds the generalization

error in terms of the training error, model capacity, number of samples, and probability that

the deviation between the generalization and training error is greater than 𝜖𝜖 is some small

value. Two generalization bounds were derived for regression using Hoeffding’s inequality

and the Rademacher complexity. Hoeffding’s inequality was used for deriving a

generalization bound that includes the capacity of the model. The Rademacher

65

generalization bound is a data-dependent bound and does not require the explicit

cardinality of the hypothesis class to be defined. Both bounds include the signal power and

noise power as part of the bounds. As the noise increases the generalization error gets worse

as expected and is incorporated into the bounds.

Not only was the one-stage sparse autoencoder successful in separating RF co-

channel signal sources, but it is extremely efficient in sparse coding of new examples via

a simple matrix-vector product calculation that does not require any additional optimization

steps as is the case in the two-stage process.

66

REFERENCES

[1] A. Naeem and H. Arslan, “Joint radar and communication based blind signal
separation using a new non-linear function for fast-ICA,” IEEE 94th
Vehicular Technology Conference (VTC2021-Fall), 2021, pp. 1–5.

[2] D. A. Schuyler, B. A. Johnson, and M. D. McGough, “Blind co-channel source
separation for pulse-on-pulse interference,” 53rd Asilomar Conference on
Signals, Systems, and Computers, 2019, pp. 118–122.

[3] B. A. Johnson and D. A. Schuyler, “Blind co-channel source separation in sparse
interferometric arrays,” IEEE Global Conference on Signal and Information
Processing (GlobalSIP), 2018, pp. 1124–1128.

[4] L. Jiang, L. Li, and G. Zhao, “Pulse-compression radar signal sorting using the blind
source separation algorithms,” International Conference on Estimation,
Detection and Information Fusion (ICEDIF), 2015, pp. 268–271.

[5] Z. Luo, C. Li, and L. Zhu, “A comprehensive survey on blind source separation for
wireless adaptive processing: principles, perspectives, challenges and new
research directions,” IEEE Access, vol. 6, pp. 66685–66708, 2018.

[6] C. Xu, T. Yang, and H. Song, “Spectrum sensing of cognitive radio for cubesat
swarm network,” IEEE/AIAA 40th Digital Avionics Systems Conference
(DASC), 2021, pp. 1–8.

[7] Z. Luo, C. Li, and L. Zhu, “Full-duplex cognitive radio using guided independent
component analysis and cumulant criterion,” IEEE Access, vol. 7, pp. 27065–
27074, 2019.

[8] M. E. Fouda, C.-A. Shen, and A. E. Eltawil, “Blind source separation for full-duplex
systems: potential and challenges,” IEEE Open Journal of the
Communications Society, vol. 2, pp. 1379–1389, 2021.

[9] M. E. Fouda, S. Shaboyan, A. Elezabi, and A. Eltawil, “Application of ICA on self-
interference cancellation of in-band full duplex systems,” IEEE Wireless
Communications Letters, vol. 9, no. 7, pp. 924–927, 2020.

[10] H. Yang, H. Zhang, J. Zhang, and L. Yang, “Digital self-interference cancellation
based on blind source separation and spectral efficiency analysis for the full-
duplex communication systems,” IEEE Access, vol. 6, pp. 43946–43955,
2018.

[11] S. Haykin and Z. Chen, "The cocktail party problem," Neural Computation, vol. 17,
no. 9, pp. 1875-1902, 1 Sept. 2005.

67

[12] J. Yin, Z. Liu, Y. Jin, D. Peng and J. Kang, "Blind source separation and
identification for speech signals," International Conference on Sensing,
Diagnostics, Prognostics, and Control (SDPC), 2017, pp. 398-402.

[13] M. S. Pedersen, D. Wang, J. Larsen and U. Kjems, "Two-microphone separation of
speech mixtures," IEEE Transactions on Neural Networks, vol. 19, no. 3, pp.
475-492, March 2008.

[14] R. Sharma, “Musical instrument sound signal separation from mixture using dwt and
fast ICA based algorithm in noisy environment,” Materials Today:
Proceedings, vol. 29, pp. 536–547, 2020.

[15] N. Oosugi, K. Kitajo, N. Hasegawa, Y. Nagasaka, K. Okanoya, and N. Fujii, “A new
method for quantifying the performance of EEG blind source separation
algorithms by referencing a simultaneously recorded ECoG signal,” Neural
Networks, vol. 93, pp. 1–6, 2017.

[16] I. Daly, “Neural component analysis: A spatial filter for electroencephalogram
analysis,” Journal of Neuroscience Methods, vol. 348, p. 108987, Jan. 2021.

[17] O. Simeone, "A very brief introduction to machine learning with applications to
communication systems," IEEE Transactions on Cognitive Communications
and Networking, vol. 4, no. 4, pp. 648-664, Dec. 2018.

[18] E. Alpaydin, Introduction to Machine Learning. 4th ed. Cambridge, MA, USA: The
MIT Press, 2020.

[19] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning From Data.
Pasadena, CA, USA: AMLBook, 2012.

[20] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From

Theory to Algorithms. Cambridge, UK: Cambridge University Press, 2014.

[21] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis. New
York, USA: John Wiley & Sons, Inc., 2001.

[22] E. Bingham and A. Hyvärinen, “A fast fixed-point algorithm for independent
component analysis of complex valued signals,” International Journal of
Neural Systems, vol. 10, no. 01, pp. 1–8, Feb. 2000.

[23] A. Hyvarinen, “Fast and robust fixed-point algorithms for independent component
analysis,” IEEE Transactions on Neural Networks, vol. 10, no. 3, pp. 626–
634, 1999.

[24] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the
Royal Statistical Society. Series B (Methodological), vol. 58, no. 1, pp. 267–
288, 1996.

68

[25] K. Abed-Meraim, Yong Xiang, J. H. Manton and Yingbo Hua, "Blind source-
separation using second-order cyclostationary statistics," IEEE Transactions
on Signal Processing, vol. 49, no. 4, pp. 694-701, April 2001.

[26] A. Ferreol, P. Chevalier and L. Albera, "Second-order blind separation of first- and
second-order cyclostationary sources-application to AM, FSK, CPFSK, and
deterministic sources," IEEE Transactions on Signal Processing, vol. 52, no.
4, pp. 845-861, April 2004.

[27] J. A. Tropp and S. J. Wright, "Computational methods for sparse solution of linear
inverse problems," Proceedings of the IEEE, vol. 98, no. 6, pp. 948-958, June
2010.

[28] K. Engan, S. O. Aase, and J. H. Husoy, “Method of optimal directions for frame
design,” IEEE International Conference on Acoustics, Speech, and Signal
Processing. ICASSP99 (Cat. No.99CH36258), Mar. 1999, vol. 5, pp. 2443–
2446.

[29] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for designing
overcomplete dictionaries for sparse representation,” IEEE Transactions on
Signal Processing, vol. 54, no. 11, pp. 4311–4322, Nov. 2006.

[30] L. N. Smith and M. Elad, “Improving dictionary learning: multiple dictionary
updates and coefficient reuse,” IEEE Signal Processing Letters, vol. 20, no.
1, pp. 79–82, Jan. 2013.

[31] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary learning for sparse
coding,” 26th Annual International Conference on Machine Learning - ICML
’09, Montreal, Quebec, Canada, 2009, pp. 1–8.

[32] A. Dong, O. Simeone, A. M. Haimovich, and J. A. Dabin, “Blind sparse estimation
of intermittent sources over unknown fading channels,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 10, pp. 9861–9871, Oct. 2019.

[33] P. Bofill and M. Zibulevsky, “Underdetermined blind source separation using sparse
representations,” Signal Processing, vol. 81, no. 11, pp. 2353–2362, Nov.
2001.

[34] P. Georgiev, F. Theis, and A. Cichocki, “Sparse component analysis and blind source
separation of underdetermined mixtures,” IEEE Transactions on Neural
Networks, vol. 16, no. 4, pp. 992–996, Jul. 2005.

[35] O. Simeone, “A Brief Introduction to Machine Learning for Engineers.” Foundations
and Trends® in Signal Processing, vol. 12, no. 3–4, pp. 200–431, 2018.

[36] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis
pursuit,” SIAM Journal on Scientific Computing, vol. 20, no. 1, pp. 33–61,
Jan. 1998.

69

[37] D. L. Donoho and M. Elad, “Optimally sparse representation in general
(nonorthogonal) dictionaries via ℓ1 minimization,” Proceedings of the
National Academy of Sciences, vol. 100, no. 5, pp. 2197–2202, 2003.

[38] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Math.
Control Signal Systems, vol. 2, no. 4, pp. 303–314, Dec. 1989.

[39] K. Hornik, M. B. Stinchcombe, and H. White, “Multilayer feedforward networks are
universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989.

[40] C. C. Aggarwal, Neural networks and deep learning: a textbook. Cham, Switzerland:
Springer, 2018.

[41] J. A. Dabin, A. M. Haimovich, J. Mauger and A. Dong, "Blind source separation
with l1 regularized sparse autoencoder," 29th Wireless and Optical
Communications Conference (WOCC), 2020, pp. 1-5.

[42] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, 1st ed. Cambridge, MA:
MIT Press, 2016.

[43] Z. Chen, C. K. Yeo, B. S. Lee and C. T. Lau, "Autoencoder-based network anomaly
detection," 2018 Wireless Telecommunications Symposium (WTS), 2018, pp.
1-5.

[44] X. Wang, J. Gao, L. Gao and F. Wang, "Modulation recognition of emitter signals
based on SDAE-ODCNN," IET International Radar Conference (IET IRC
2020), 2020, pp. 1302-1307.

[45] S. Subray, S. Tschimben and K. Gifford, "Towards enhancing spectrum sensing:
signal classification using autoencoders," IEEE Access, vol. 9, pp. 82288-
82299, 2021.

[46] T. O’Shea and J. Hoydis, "An introduction to deep learning for the physical layer,"
IEEE Transactions on Cognitive Communications and Networking, vol. 3,
no. 4, pp. 563-575, Dec. 2017.

[47] J. Bassey, X. Li and L. Qian, "An experimental study of multi-layer multi-valued
neural network," 2nd International Conference on Data Intelligence and
Security (ICDIS), 2019, pp. 233-236.

[48] J. W. Brown and R. V. Churchill, Complex Variables and Applications, 9th ed. New
York, NY: McGraw-Hill Education, 2014.

[49] M. Elad, Sparse and Redundant Representations: From Theory to Applications in
Signal and Image Processing. New York, NY, USA: Springer, 2010.

70

[50] M. Sadeghi, M. Babaie-Zadeh, and C. Jutten, “Dictionary learning for sparse
representation: a novel approach,” IEEE Signal Processing Letters, vol. 20,
no. 12, pp. 1195–1198, Dec. 2013.

[51] D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation by wavelet shrinkage,”
Biometrika, vol. 81, no. 3, pp. 425–455, 1994.

[52] T. Hastie, R. Tibshirani, and M. Wainwright, Statistical Learning with Sparsity: The
Lasso and Generalizations. Boca Raton, FL, USA: Chapman & Hall/CRC,
2015.

[53] R. Remi and K. Schnass, “Dictionary identification—sparse matrix-factorization via
ℓ1-minimization,” IEEE Transactions on Information Theory, vol. 56, no. 7,
pp. 3523–3539, Jul. 2010.

[54] J. Huang and T. Zhang, “The Benefit of Group Sparsity,” The Annals of Statistics,
vol. 38, no. 4, pp. 1978–2004, 2010.

[55] A. Maleki, L. Anitori, Z. Yang, and R. G. Baraniuk, “Asymptotic analysis of
complex lasso via complex approximate message passing (camp),” IEEE
Transactions on Information Theory, vol. 59, no. 7, pp. 4290–4308, Jul. 2013.

[56] G. Taubock and F. Hlawatsch, "A compressed sensing technique for OFDM channel
estimation in mobile environments: Exploiting channel sparsity for reducing
pilots," IEEE International Conference on Acoustics, Speech and Signal
Processing, 2008, pp. 2885-2888.

[57] A. Balatsoukas-Stimming, "Non-linear digital self-interference cancellation for in-
band full-duplex radios using neural networks," IEEE 19th International
Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), 2018, pp. 1-5.

[58] M. Arjovsky, A. Shah, and Y. Bengio, “Unitary evolution recurrent neural
networks,” 33rd International Conference on International Conference on
Machine Learning - Volume 48, New York, NY, USA, 2016, pp. 1120–1128.

[59] T. Scarnati and B. Lewis, "Complex-valued neural networks for synthetic aperture
radar image classification," IEEE Radar Conference (RadarConf21), 2021,
pp. 1-6.

[60] C. Trabelsi, O. Bilaniuk, Y. Zhang, D. Serdyuk, S. Subramanian, J. Santos, S. Mehri,
N. Rostamzadeh, Y. Bengio, and C. Pal, “Deep complex networks,” Sixth
International Conference on Learning Representations, 2018, pp. 1-19.

[61] S. Li, W. Zhang and Y. Cui, "Jointly sparse signal recovery via deep auto-encoder
and parallel coordinate descent unrolling," IEEE Wireless Communications
and Networking Conference (WCNC), 2020, pp. 1-6.

71

[62] S. Li, W. Zhang, Y. Cui, H. V. Cheng and W. Yu, "Joint design of measurement
matrix and sparse support recovery method via deep auto-encoder," IEEE
Signal Processing Letters, vol. 26, no. 12, pp. 1778-1782, Dec. 2019.

[63] Q. Yuan, D. Li, Z. Wang, C. Liu and C. He, "Channel estimation and pilot design for
uplink sparse code multiple access system based on complex-valued sparse
autoencoder," IEEE Access, 2019.

[64] L. V. Ahlfors, Complex Analysis: An Introduction to the Theory of Analytic
Functions of One Complex Variable, 3rd ed., New York, NY, USA: McGraw-
Hill, 1979.

[65] D. H. Brandwood, “A Complex Gradient Operator and Its Application in Adaptive
Array Theory,” IEEE Proceedings, F: Communications, Radar and Signal
Processing, Vol. 130, No. 1, 1983, p. 1116.

[66] J. W. Brown and R. V. Churchill. Complex Variables and Applications. 9th ed. New
York, NY, USA: McGraw-Hill, 2014.

[67] E. G. Larsson and P. Stoica, Space-Time Block Coding for Wireless
Communications. New York, NY, USA: Cambridge University Press, 2003.

[68] W. C. Jakes, Microwave Mobile Communications (An IEEE Press Classic Reissue).
2nd ed. New York, NY, USA: Wiley-IEEE Press, 1994.

[69] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading
environment when using multiple antennas,” Wireless Personal
Communications, Vol. 6, No. 3, 1998, pp. 311-335.

[70] T. S. Rappaport, Wireless Communications: Principles and Practice. Upper Saddle
River, N.J., USA: Prentice Hall PTR, 2002.

[71] J. R. Hampton, Introduction to MIMO Communications. New York, NY, USA:
Cambridge University Press, 2013.

[72] L. Rabiner and B. Juang, "An introduction to hidden Markov models," IEEE ASSP
Magazine, vol. 3, no. 1, pp. 4-16, Jan 1986.

[73] K. P. Murphy, Machine Learning: A Probabilistic Perspective. Cambridge, MA,
USA: MIT Press, 2012.

[74] D. Kounades-Bastian, L. Girin, X. Alameda-Pineda, R. Horaud and S. Gannot,
"Exploiting the intermittency of speech for joint separation and
diarization," IEEE Workshop on Applications of Signal Processing to Audio
and Acoustics (WASPAA), 2017, pp. 41-45.

72

[75] A. T. Koc, S. C. Jha, R. Vannithamby and M. Torlak, "Device power saving and
latency optimization in LTE-A networks through DRX configuration," IEEE
Transactions on Wireless Communications, vol. 13, no. 5, pp. 2614-2625,
May 2014.

[76] H. S. Jang, H. Jin, B. C. Jung and T. Q. S. Quek, "Resource-optimized recursive
access class barring for bursty traffic in cellular IoT networks," IEEE Internet
of Things Journal, vol. 8, no. 14, pp. 11640-11654, 15 July15, 2021.

[77] Y. Mehmood, F. Ahmad, I. Yaqoob, A. Adnane, M. Imran and S. Guizani, "Internet-
of-things-based smart cities: recent advances and challenges," IEEE
Communications Magazine, vol. 55, no. 9, pp. 16-24, Sept. 2017.

[78] D. Barber and A. T. Cemgil, "Graphical models for time-series," IEEE Signal
Processing Magazine, vol. 27, no. 6, pp. 18-28, Nov. 2010.

[79] D. P. Bertsekas, and J. N. Tsitsiklis, Introduction to Probability. Belmont,
Massachusetts, USA: Athena Scientific, 2008.

[80] B. Sklar, and F. Harris, Digital Communications: Fundamentals and Applications.
3rd ed., Upper Saddle River, NJ, USA: Pearson, 2020.

[81] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,”
Fourteenth International Conference on Artificial Intelligence and Statistics,
Fort Lauderdale, FL, USA, Apr. 2011, vol. 15, pp. 315–323.

[82] K. Gregor and Y. LeCun, “Learning fast approximations of sparse coding,” 27th
International Conference on International Conference on Machine Learning,
Madison, WI, USA, 2010, pp. 399–406.

[83] S. Haykin, Neural networks and learning machines. 3rd ed., Upper Saddle River, NJ,
USA: Pearson Education, 2009.

[84] D. P. Kingma and J. Ba, “Adam: a method for stochastic optimization,” 3rd
International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015.

[85] I. Griva, S. G. Nash, and A. Sofer, Linear and Nonlinear Optimization. 2nd ed.,
Philadelphia, PA, USA: SIAM, 2009.

[86] S. M. Kay, Fundamentals of Statistical Signal Processing: Vol. 2. Upper Saddle
River, NJ, USA: Prentice-Hall PTR, 1998.

[87] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine Learning,
2nd ed., Cambridge, MA, USA: MIT Press, 2018.

73

[88] P. L. Bartlett, N. Harvey, C. Liaw, and A. Mehrabian, “Nearly-tight vc-dimension
and pseudodimension bounds for piecewise linear neural networks,” Journal
of Machine Learning Research, vol. 20, no. 63, pp. 1–17, 2019.

[89] D. Pollard, “Empirical processes: theory and applications,” NSF-CBMS Regional
Conference Series in Probability and Statistics, vol. 2, pp. i–86, 1990.

[90] M. Anthony and P. L. Bartlett, Neural Network Learning: Theoretical Foundations,
1st ed. Cambridge, UK: Cambridge University Press, 1999.

[91] V. Koltchinskii, “Rademacher penalties and structural risk minimization,” IEEE
Transactions on Information Theory, vol. 47, no. 5, pp. 1902–1914, 2001.

[92] M. Ranzato, C. Poultney, S. Chopra, and Y. Cun, “Efficient learning of sparse
representations with an energy-based model,” Advances in Neural
Information Processing Systems, 2007, vol. 19.

[93] M. Ranzato, Y. Boureau, and Y. Cun, “Sparse feature learning for deep belief
networks,” Advances in Neural Information Processing Systems, 2008, vol.
20.

[94] B. O. Ayinde and J. M. Zurada, “Deep learning of constrained autoencoders for
enhanced understanding of data,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 29, no. 9, pp. 3969–3979, 2018.

[95] Z. Liu and L.-L. Yang, “Sparse or dense: a comparative study of code-domain noma
systems,” IEEE Transactions on Wireless Communications, vol. 20, no. 8,
pp. 4768–4780, 2021.

[96] H. Li and T. Adali, “Optimization in the complex domain for nonlinear adaptive
filtering,” Fortieth Asilomar Conference on Signals, Systems and Computers,
2006, pp. 263–267.

[97] D. Angelosante, G. B. Giannakis, and N. D. Sidiropoulos, “Estimating multiple
frequency-hopping signal parameters via sparse linear regression,” IEEE
Transactions on Signal Processing, vol. 58, no. 10, pp. 5044–5056, 2010.

[98] S. G.Sathyanarayana, B. Ning, S. Hu, and J. A. Hossack, “Comparison of dictionary
learning methods for reverberation suppression in photoacoustic
microscopy : Invited presentation,” 53rd Annual Conference on Information
Sciences and Systems (CISS), 2019, pp. 1–4.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment (1 of 2)
	Acknowledgment (2 of 2)

	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: System Model
	Chapter 3: Two-Stage Learning for Blind Source Separation
	Chapter 4: Sparse Autoencoder for Real-Valued Signals
	Chapter 5: Sparse Autoencoder for Complex-Valued Signals
	Chapter 6: Generalization Bounds and Sample Complexity
	Chapter 7: Conclusion
	References

	List of Figures (1 of 2)
	List of Figures (2of 2)

