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ABSTRACT 
 
 

ONE-STAGE BLIND SOURCE SEPARATION VIA A SPARSE  
AUTOENCODER FRAMEWORK 

 
 

By 
Jason Anthony Dabin 

 
Blind source separation (BSS) is the process of recovering individual source transmissions 

from a received mixture of co-channel signals without a priori knowledge of the channel 

mixing matrix or transmitted source signals. The received co-channel composite signal is 

considered to be captured across an antenna array or sensor network and is assumed to 

contain sparse transmissions, as users are active and inactive aperiodically over time. An 

unsupervised machine learning approach using an artificial feedforward neural network 

sparse autoencoder with one hidden layer is formulated for blindly recovering the channel 

matrix and source activity of co-channel transmissions. The BSS sparse autoencoder 

provides one-stage learning using the receive signal data only, which solves for the channel 

matrix and signal sources simultaneously.  

The recovered co-channel source signals are produced at the encoded output of the 

sparse autoencoder hidden layer. A complex-valued soft-threshold operator is used as the 

activation function at the hidden layer to preserve the ordered pairs of real and imaginary 

components. Once the weights of the sparse autoencoder are learned, the latent signals are 

recovered at the hidden layer without requiring any additional optimization steps. The 

generalization performance on future received data demonstrates the ability to recover 

signal transmissions on untrained data and outperform the two-stage BSS process.  



 
 

ONE-STAGE BLIND SOURCE SEPARATION VIA A SPARSE  
AUTOENCODER FRAMEWORK 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

by 
Jason Anthony Dabin 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

A Dissertation 
Submitted to the Faculty of 

New Jersey Institute of Technology  
in Partial Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy in Electrical Engineering 
 

Helen and John C. Hartmann Department of  
Electrical and Computer Engineering  

 
 

May 2022 



 
 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2022 by Jason Anthony Dabin 

ALL RIGHTS RESERVED 

 

 

 

 

 

 

 

 

 

 



 
 

APPROVAL PAGE 
 

ONE-STAGE BLIND SOURCE SEPARATION VIA A SPARSE AUTOENCODER 
FRAMEWORK 

 
Jason Anthony Dabin 

 
 
 
 
 

Dr. Alexander M. Haimovich, Dissertation Advisor  
Distinguished Professor of Electrical and Computer Engineering, NJIT 

 

 

Date 

Dr. Osvaldo Simeone, Committee Member  
Professor of Information Engineering, King’s College London. London, U.K. 

 

 

Date 

Dr. Joerg Kliewer, Committee Member  
Professor of Electrical and Computer Engineering, NJIT 

 

 

Date 

Dr. Ali Abdi, Committee Member  
Professor of Electrical and Computer Engineering, NJIT 

 

 

Date 

Dr. Hongya Ge, Committee Member  
Associate Professor of Electrical and Computer Engineering, NJIT 

Date 

 

  



iv 

BIOGRAPHICAL SKETCH 

 

Author:  Jason Anthony Dabin 

Degree:  Doctor of Philosophy 

Date:   May 2022 

Undergraduate and Graduate Education: 

• Doctor of Philosophy in Electrical Engineering, 
New Jersey Institute of Technology, Newark, NJ, 2022 

• Master of Science in Electrical Engineering, 
New Jersey Institute of Technology, Newark, NJ, 2004 

• Bachelor of Science in Electrical Engineering Technology 
New Jersey Institute of Technology, Newark, NJ, 2001 

Major:  Electrical Engineering 

Presentations and Publications: 

J. A. Dabin, A. M. Haimovich, J. Mauger, and J. Kliewer, “One-Stage Blind Co-Channel 
Source Separation via a Complex-Valued Sparse Autoencoder,” IEEE 
Transactions on Cognitive Communications and Networking, submitted, 2022. 

 
J. A. Dabin, A. M. Haimovich, J. Mauger and A. Dong, "Blind Source Separation with L1 

Regularized Sparse Autoencoder," 29th Wireless and Optical Communications 
Conference (WOCC), 2020, pp. 1-5. 

 
 
 
 
 
 



v 

In dedication to my mother and father for their inspiration, my brother and 
sister for all their encouragement, and to my wife and children for all their 

patience and support during my doctoral academic journey. 



vi 

ACKNOWLEDGMENT 
 
 

I am sincerely grateful to have had Dr. Alexander M. Haimovich as my Ph.D. advisor and 

wish to express my deepest appreciation to Dr. Haimovich for all his unwavering support 

and profound guidance he has provided to me as a doctoral graduate student.  

Dr. Haimovich instilled key research attributes in me during my dissertation research 

pursuit that I will carry forward with me throughout my career. Dr. Haimovich has not only 

positively impacted me as a graduate student, but his guidance has had a significant impact 

on my professional career for which I am extremely thankful.  

 I would like to express my sincere gratitude to each of my Ph.D. dissertation 

committee members including Dr. Osvaldo Simeone, Dr. Joerg Kliewer, Dr. Ali Abdi, and 

Dr. Hongya Ge for their contributions, time, and participation in my dissertation proposal 

defense and dissertation defense. I am extremely appreciative of the comments, feedback, 

and suggestions provided by each of my Ph.D. committee members, which helped expand 

my research direction and scope.  

 I wish to thank the U.S. Department of Defense Science, Mathematics, and 

Research for Transformation (SMART) Scholarship-for-Service Program for sponsoring 

my Ph.D. degree as a retention scholar and my sponsoring facility Naval Information 

Warfare Center (NIWC) Pacific for their support as well. I am greatly appreciative of the 

SMART scholarship I received, which enabled me to complete my Ph.D. degree while 

being employed by NIWC Pacific.  

I would like to extend my gratitude to my NIWC Pacific Information Operations 

Division Head Gregory Settelmayer who was extremely supportive of my doctoral degree 

and provided a work environment that enabled me to pursue my academic studies. I 



vii 

sincerely appreciate the in-depth mathematical discussions and research guidance provided 

to me by my NIWC Pacific colleague Dr. Justin Mauger.  

 Special thanks to NJIT Electrical and Computer Engineering (ECE) administrative 

staff member Monteria Bass for all her support with my Ph.D. academic administrative 

matters. I wish to express my thanks to Dr. Annan Dong for the technical research 

discussions we had on two-stage blind source separation and dictionary learning techniques 

while he was a Ph.D student with the NJIT ECE Center for Wireless Information 

Processing. 

 
  



viii 

TABLE OF CONTENTS 

 
Chapter Page 

1    INTRODUCTION…………………………………………………………………... 1 

 1.1  Machine Learning for Blind Source Separation………………………………...  1 

 1.2  Two-Stage Sparse Signal Recovery……..…..…….……………………….…... 4 

 1.3  Undercomplete and Overcomplete Autoencoders……………………………... 8 

 1.4  Sparse Coding of Complex-Valued Data……………………………...……….. 9 

 1.5  Optimization of Complex-Valued Data………………………………………... 11 

 1.6  Organization of this Dissertation………………………………………………. 12 

2 SYSTEM MODEL………………………………………………………………….. 13 

 2.1  Multiple-Input Multiple-Output System……...………………………………... 13 

 2.2  Source Activity Model……………...………………………………………….. 15 

3 TWO-STAGE BLIND SOURCE SEPARATION………………………………….. 18 

 3.1  ADMM LASSO Sparse Coding for Blind Source Separation…………………. 18 

 3.2  Dictionary Learning for Channel Estimation…………………………….…….. 21 

4 ONE-STAGE BLIND SOURCE SEPARATION FOR REAL-VALUED 
SIGNALS…………………………………………………………………………… 
 

23 

 4.1  Real-Valued Sparse Autoencoder for Source Separation...……………………. 23 

 4.2  Hyperparameter Selection……………………………………………………… 30 

 4.3  Generalization Performance…………....………………………………………. 35 

 4.4  Support Recovery Performance………………………………………………... 36 

 4.5  Receiver Operating Characteristics…………………………………………….. 38 

5 ONE-STAGE BLIND SOURCE SEPARATION FOR COMPLEX-VALUED 
SIGNALS……………................................................................................................ 39 



ix 

TABLE OF CONTENTS 
(Continued) 

 
 
Chapter Page 

 5.1  Complex-Valued Sparse Autoencoder for Source Separation...……………….. 39 

 5.2  Hyperparameter Selection……………………………………………………… 43 

 5.3  Generalization Performance…………....………………………………………. 45 

 5.4  Support Recovery Performance………………………………………………... 48 

 5.5  Receiver Operating Characteristics…………………………………………….. 49 

6 GENERALIZATION BOUNDS AND SAMPLE COMPLEXITY…..……………. 50 

 6.1  PAC Learning for Regression…………...……………...………………...……. 50 

 6.2  Rademacher Complexity Generalization Bound………………………..……… 54 

7 CONCLUSION..…………….…………………………………………………….... 63 

REFERENCES ………………………………………………………………………... 66 

  



x 

LIST OF FIGURES 

 
Figure Page 

1.1  Conventional undercomplete autoencoder functional architecture with input 𝒙𝒙, 
hidden layer encoded output 𝝃𝝃 = 𝒇𝒇(𝒙𝒙), and decoded output 𝒙𝒙� = 𝒈𝒈(𝝃𝝃).………….. 8 

2.1 Illustration of a blind source separation (BSS) scenario with a sparse number of 
active sources 𝑘𝑘 received over a MIMO channel with 𝑀𝑀 receive antenna elements 
where 𝑘𝑘 << 𝑀𝑀 < 𝑁𝑁 and 𝑁𝑁 represents the total number of potential independent 
co-channel transmitters.……………………………………….............................. 14 

2.2 First-order HMM for 𝑖𝑖𝑡𝑡ℎ transmitter source activity. The hidden states 𝑍𝑍𝑖𝑖(𝑛𝑛) 
represent the 𝑛𝑛𝑡𝑡ℎ state of the 𝑖𝑖𝑡𝑡ℎ transmitter and 𝑠𝑠𝑖𝑖(𝑛𝑛) denotes the observation 
output….…………………………………………………………………………. 16 

2.3 Transition probability graph of a two-state Markov chain for the ith source 
activity……………………………………………………………………………. 16 

4.1 Blind sparse autoencoder feedforward neural network architecture with 𝑁𝑁 > 𝑀𝑀 
hidden layer nodes. The encoded signal output at the hidden layer provides a 
sparse representation of the transmitted sources…………………………………. 24 

4.2 5-Fold cross-validation partitioning of data into validation and training sets……... 30 

4.3 ADMM LASSO expected training error and expected validation error for support 
recovery versus the hyperparameter 𝜆𝜆 for SNR values of 15 dB, 20 dB, 25 dB, 
and 30 dB…………………………………………………………………………. 33 

4.4 Real-valued sparse autoencoder expected training error and expected validation 
error for support recovery versus the hyperparameter 𝜆𝜆 for SNR values of 15 dB, 
20 dB, 25 dB, and 30 dB……………………………….………………………… 34 

4.5 The mean squared error (MSE) of the output layer of the sparse autoencoder and 
MSE of the ADMM LASSO on training and validation data using 5-fold cross-
validation…………………………………………………………………………. 36 

4.6 Support recovery for the real-valued sparse autoencoder and ADMM LASSO 
over a range of SNR values from 0 dB to 30 dB. Maximum number of signals is 
20…………………………………………………………………………………. 37 

4.7 ROC curve for the real-valued sparse autoencoder and ADMM LASSO for blind 
source separation of 20 signals…………………………………………………… 38 



xi 

LIST OF FIGURES 
(Continued) 

 
 

Figure Page 

5.1 Blind sparse autoencoder feedforward neural network architecture with 𝑁𝑁 > 𝑀𝑀 
hidden layer nodes. The encoded signal output at the hidden layer provides a 
complex-valued sparse representation of the transmitted sources……………….. 40 

5.2 Complex-valued ADMM LASSO expected training error and expected validation 
error for support recovery versus the hyperparameter 𝜆𝜆 for SNR values of 15 dB, 
20 dB, 25 dB, and 30 dB…………………………………………………………. 44 

5.3 Complex-valued sparse autoencoder expected training error and expected 
validation error for support recovery versus the hyperparameter 𝜆𝜆 for SNR values 
of 15 dB, 20 dB, 25 dB, and 30 dB………………………………………………. 45 

5.4 Signal activity truth data for 20 co-channel source transmissions in the top plot 
and the recovered signals are shown in the bottom plot………………………….. 46 

5.5 The mean squared error (MSE) of the output layer of the complex-valued sparse 
autoencoder and MSE of the complex-valued ADMM LASSO on training and 
validation data using 5-fold cross-validation……………………………………... 47 

5.6 Support recovery for the complex-valued sparse autoencoder and complex-valued 
ADMM LASSO over a range of SNR values from 0 dB to 30 dB. Maximum 
number of signals is 20.…………………………………....................................... 48 

5.7 ROC curve for the complex-valued sparse autoencoder and complex-valued 
ADMM LASSO for blind source separation of 20 signals………………………. 49 

6.1 The empirical Rademacher complexity generalization error bound with error 
tolerance γ = .1 and confidence parameter δ = .1 for the BSS complex-valued 
sparse autoencoder hypothesis class. The simulation signal model includes twenty 
QPSK co-channel signal sources, Rayleigh fading MIMO channel with twenty 
receive antenna elements, and a signal-to-noise ratio of 20 dB…………………… 62 

 
 
 



1 

CHAPTER 1 

INTRODUCTION 

 

 1.1 Machine Learning for Blind Source Separation 

Blind source separation (BSS) is the process of recovering individual source transmissions 

from a received mixture of co-channel signals without a-priori knowledge of the channel 

mixing matrix or transmitted source signals. There are various applications for blind source 

separation including radio frequency (RF) co-channel signal separation [1]-[4], spectrum 

sensing for cognitive radio [5]-[7], self-interference cancellation for co-time co-frequency 

full-duplex systems [8]-[10], speech signal separation also known as the cocktail party 

problem [11]-[13], musical instrument sound signal separation [14], and in the medical 

field for separation of electroencephalography (EEG) data that measures electrical neural 

signal activity in the brain [15], [16].  

 The BSS problem for co-channel source separation can benefit from machine 

learning given it is useful for problems that pose a model deficit [17]. Blind source 

separation presents a model deficit in that we do not know the wireless channel or 

transmitted signals. Machine learning provides the ability to use data in the form of training 

examples to learn a prediction model for regression scenarios in the continuous variable 

case or a classifier for the discrete output decision space [17], [19]. A model or hypothesis 

class is proposed for the machine learning problem and the parameters are optimized to fit 

the example data in such a way that future prediction can be performed on new unseen 

future data samples [18], [35]. The ability to perform prediction on data outside the training 

set is known as generalization [19], [35]. The training sample set of examples can include 
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labeled input and output data pairs or include unlabeled inputs only, which is referred to as 

supervised learning and unsupervised learning, respectively [20].  

The BSS problem is well-suited for unsupervised machine learning given the nature 

of having unlabeled receive data only and the need to learn the transmitted source 

sequences without knowing the channel or transmit signal waveforms. Given the nature of 

the problem is known to some degree it is best to use the context of the problem when 

positing a hypothesis class, which results in an inductive bias for the learning algorithm 

[17], [18]. Utilizing hypothesis classes that exploit sparsity of transmitted sources is an 

inductive bias for solving the blind source separation problem. Without such inductive bias 

machine learning is ill-posed and it is not sufficient to find a solution without some 

assumptions [18], [20]. This is known as the no free lunch theorem where the learning 

algorithm performs well within our inductive bias and not necessarily outside the scope of 

the problem [17], [20]. 

There are various known methods that can be utilized to blindly recover latent 

signals including independent component analysis (ICA) [18]-[23], Least Absolute 

Shrinkage and Selection Operator (LASSO) [24], and exploitation of cyclostationarity of 

signal sources [25], [26], that can solve for the latent signals under different assumptions. 

The ICA approach hinges on the summation of a number of independent signals being 

Gaussian distributed based on the central limit theorem. ICA then finds an unmixing matrix 

that maximizes the non-Gaussianity of the projections of the received signal data for source 

separation. ICA assumes a full rank channel matrix or basis whereby the number of 

transmitted source signals equals the number of receive channels. Therefore, ICA cannot 

be applied to an underdetermined system for solving for the latent variables. On the other 
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hand, LASSO assumes an overcomplete dictionary or channel, and imposes a sparsity 

constraint on the latent signal coefficients, which ultimately makes it possible to find 

unique solutions amongst an infinite solution space [24], [27].  

LASSO solves half of the blind source recovery problem within a sparse signal 

representation framework given by 𝛂𝛂 = 𝚿𝚿𝛃𝛃, where 𝛃𝛃 is the sparsest signal vector of non-

zero coefficients solved by LASSO, 𝚿𝚿 is the overcomplete dictionary or wireless channel 

matrix, and 𝛂𝛂 denotes the response vector or received signal vector taken as a snapshot 

across an antenna array. The received signal data vector denoted by 𝛂𝛂 can be considered 

either real-valued or complex-valued although in-phase and quadrature components of 

complex-valued data should be treated as a group as discussed in Section 1.4. The other 

half of the blind source recovery problem requires a second optimization stage for learning 

the overcomplete dictionary 𝚿𝚿 using the Method of Optimal Directions (MOD) [28], K-

Singular Value Decomposition (K-SVD) [29], Multiple Dictionary Update (MDU) [30], or 

online block-coordinate descent [31].  

The alternating optimization approach between learning the sparse coefficients 𝛃𝛃 

and dictionary channel matrix 𝚿𝚿 is referred to as a two-stage optimization process [30]. 

This dissertation derives a one-stage learning approach for blind source separation in bursty 

or sparse signal RF environments when the transmitted signals and wireless multiple-input 

multiple-output (MIMO) channel are both unknown at the receiver. The one-stage learning 

approach solves for the sparse signal coefficients and dictionary in one optimization stage 

and does not require alternate optimization as performed in the two-stage process. This is 

accomplished by exploiting the universal function approximation property of neural 

networks [38], [39]. 
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1.2 Two-Stage Sparse Signal Recovery 

Given that the channel and latent sources are both assumed unknown, the blind source 

separation problem can be formulated as an iterative two-stage convex optimization 

process for finding the sparse latent signal coefficients and dictionary atoms or channel 

columns associated with each of the active sources [29]-[32], [35]. Jointly optimizing over 

the sparse latent signals and dictionary is a non-convex problem, so the two-stage iterative 

process alternates between solving for the sparse latent signals also known as sparse coding 

while holding the dictionary fixed and then vice versa for updating the dictionary. Sparsity 

of signal transmissions can be exploited for detecting intermittent source activity when the 

system is in fact underdetermined whereby there are actually more sources present than 

receive sensor elements [32]-[34]. This is possible assuming only a few sources are actually 

active at any given instance of time over the duration of all intermittent source activity.  

A sparse signal representation given by 𝒙𝒙 = 𝐇𝐇𝒔𝒔 implies that an 𝑀𝑀-dimensional 

signal 𝒙𝒙 can be modeled as a linear combination of a relatively few number of columns or 

atoms {𝐡𝐡𝑖𝑖}𝑖𝑖=1𝑁𝑁  from an overcomplete dictionary 𝐇𝐇 of size 𝑀𝑀 × 𝑁𝑁 where 𝑀𝑀 < 𝑁𝑁 [24], [35], 

[37]. The sparse coefficient vector 𝒔𝒔 is 𝑁𝑁-dimensional and contains a relatively few number 

of non-zero coefficients or 𝑘𝑘 transmit signals defined by 𝑘𝑘 = ‖𝒔𝒔‖0 where 𝑘𝑘 << 𝑀𝑀 < 𝑁𝑁. 

The ℓ0 − norm does not satisfy all axiomatic properties of a norm, but nonetheless 

provides a count for the number of non-zero coefficients [49]. The goal is to find a unique 

sparse solution given there are an infinite number of solutions 𝒔𝒔 that solve for 𝒙𝒙 given 𝐇𝐇. 

More formally, a sparse coefficient vector 𝒔𝒔 with 𝑘𝑘 non-zero components is considered 

unique for 𝑘𝑘 < 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘(𝐇𝐇)/2. The 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘 is defined as the smallest number of linearly 

dependent columns or atoms from a given matrix [37], [49]. The least upper bound or 
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supremum given by 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘(𝐇𝐇)/2 is derived via the triangle inequality which holds for 

complex variables as well [43]. Considering 𝐇𝐇 to be full row rank, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘(𝐇𝐇) = 𝑀𝑀 + 1 

and the number of non-zero components of 𝒔𝒔 should satisfy ‖𝒔𝒔‖0 < (M + 1)/2. 

The ideal constrained optimization problem for solving for the dictionary 𝐇𝐇 and 

sparse coefficient vectors {𝒔𝒔𝑖𝑖}𝑖𝑖=1D  for D received signal examples {𝒙𝒙𝑖𝑖}𝑖𝑖=1D  is given in 

Equation (1.1). 

 

arg min
𝐇𝐇,𝐒𝐒

 ‖𝐗𝐗 − 𝐇𝐇𝐒𝐒‖𝐹𝐹2     

subject to    ‖𝒔𝒔𝑖𝑖‖0 ≤ 𝑘𝑘,    ∀ 1 ≤ 𝑖𝑖 ≤ D 

(1.1) 

 

This is known to be a computational intractable problem requiring an exhaustive search 

over subsets of the dictionary 𝐇𝐇 and selecting the solution 𝒔𝒔𝑖𝑖 with the smallest number of 

non-zeros from the set {𝒔𝒔𝑖𝑖:𝒙𝒙𝑖𝑖 = 𝐇𝐇𝒔𝒔𝑖𝑖}𝑖𝑖=1D  [27], [37], [49], [52]. The constrained 

optimization problem in Equation (1.1) is non-convex given it is structured as a joint 

optimization over the dictionary and sparse representation coefficients. This can be 

ameliorated by splitting the joint optimization problem into a two-stage optimization 

process whereby the dictionary is held fixed during optimization over the sparse 

representation coefficients and vice versa [29]-[32], [35]. To resolve the combinatorial 

exhaustive search due to the ℓ0 norm on the sparse representation coefficients an ℓ1 norm 

penalty has been proposed instead [24], [27], [35], [37], [49], [52]. The ℓ1 norm penalty 

provides convexification of the problem in Equation (1.1) assuming 𝐇𝐇 is held fixed and 

enforces the sparse aspect of the solution space [24], [37]. The ℓ1 norm penalty applies a 
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constraint on the ordinary least squares estimates, which results in shrinkage of coefficients 

and zeros out coefficients less than a given threshold also known as soft-thresholding [24], 

[35], [51], [52]. The ℓ1 regularized least squares optimization problem or LASSO assuming 

𝐇𝐇 is fixed is given in Equation (1.2). 

 

arg min
𝐒𝐒

 ‖𝐗𝐗 − 𝐇𝐇𝐒𝐒‖𝐹𝐹2    

 subject to    ‖𝒔𝒔𝑖𝑖‖1 ≤ 𝑡𝑡,    ∀ 1 ≤ 𝑖𝑖 ≤ D 

(1.2) 

 

The tuning parameter 𝑡𝑡 is a budget on the sum of the absolute values of the coefficients 

and imposes sparsity on the solution space by shrinking coefficients towards 0 for 𝑡𝑡 <

‖𝒔𝒔𝑙𝑙𝑙𝑙‖1 where 𝒔𝒔𝑙𝑙𝑙𝑙 denotes the ordinary least-squares estimate [24]. The Lagrangian 

formulation of the LASSO is given in Equation (1.3). 

 

arg min
𝒔𝒔𝑖𝑖

 
1
M
‖𝒙𝒙𝑖𝑖 − 𝐇𝐇𝒔𝒔𝑖𝑖‖22 + 𝜆𝜆‖𝒔𝒔𝑖𝑖‖1 ,    ∀ 1 ≤ 𝑖𝑖 ≤ D,    𝜆𝜆 ≥ 0 (1.3) 

 

The parameter 𝜆𝜆 controls the level of sparsity or number of non-zero coefficients of the 

latent signal space {𝒔𝒔𝑖𝑖}𝑖𝑖=1D  [52]. As 𝜆𝜆 increases there is greater shrinkage imposed on the 

coefficients {𝒔𝒔𝑖𝑖}𝑖𝑖=1D  and a majority are set to zero based on the uniqueness property via 

‖𝒔𝒔‖0 < 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘(𝐇𝐇)/2 ≪ 𝑀𝑀 < 𝑁𝑁. For 𝜆𝜆 = 0 the resultant estimate of {𝒔𝒔𝑖𝑖}𝑖𝑖=1D  is the 

minimum ℓ2 norm solution, and doesn’t provide sparse solutions as needed for the blind 
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source separation problem. The 𝑖𝑖𝑡𝑡ℎ sparse coefficient vector solution to the LASSO bound 

problem in Equation (1.2) is equivalent to the Lagrangian formulation in Equation (1.3) for 

𝑡𝑡 = ‖𝒔𝒔�𝑖𝑖(𝜆𝜆) ‖1. Cyclic coordinate descent can be utilized for solving for the sparse 

coefficient vectors {𝒔𝒔𝑖𝑖}𝑖𝑖=1D  in Equation (1.3) [52]. A more robust and more computationally 

efficient Lagrangian based approach for sparse coding known as the alternating direction 

method of multipliers (ADMM) is derived in Chapter 3. 

 After updating the sparse coefficient matrix 𝐒𝐒 = {𝒔𝒔𝑖𝑖}𝑖𝑖=1D  in Equation (1.3) an 

optimal solution for the dictionary 𝐇𝐇 is found by minimizing the residual sum of squares 

in Equation (1.4). All sparse signal vectors {𝒔𝒔𝑖𝑖}𝑖𝑖=1D  are updated first before proceeding with 

the next dictionary update stage. 

arg min
𝐇𝐇∈𝒞𝒞

 ‖𝐗𝐗 − 𝐇𝐇𝐒𝐒‖𝐹𝐹2      

where    𝒞𝒞 = {𝐇𝐇 ∈ ℂM×N:‖𝐡𝐡𝑖𝑖‖2 = 1,∀ 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁} 

(1.4) 

 

Many different approaches for dictionary learning have been proposed for 

optimizing 𝐇𝐇 while holding the sparse coefficients 𝐒𝐒 fixed within the two-stage alternating 

optimization process [28]-[32]. The MOD [28] provides a least-squares update of the 

channel 𝐇𝐇�  given by 𝐇𝐇� = 𝐗𝐗𝐒𝐒𝑯𝑯(𝐒𝐒𝐒𝐒𝑯𝑯)−𝟏𝟏 and is considered to be fairly robust [49]. Other 

dictionary learning approaches including K-SVD [29] and MDU [30] seek to improve upon 

the MOD with only moderate improvement upon convergence. The columns or atoms of 

the dictionary 𝐇𝐇 are each constrained to be unit-norm to resolve the scaling ambiguity 

during alternate optimization between the dictionary and sparse coefficients [30], [31], 
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[53]. The two-stage alternating optimization process between estimating the signal matrix 

and dictionary matrix is repeated until convergence. 

 

1.3 Undercomplete and Overcomplete Autoencoders 

An autoencoder is an unsupervised feedforward neural network with an input layer, hidden 

layer, and output layer as shown in Figure 1.1 [35], [40], [42], [83]. The autoencoder has 

an encoder function that converts the input signal into a new representation 𝝃𝝃 = 𝒇𝒇(𝒙𝒙) and 

a decoder function that approximately maps the new representation back to the original 

input signal 𝒙𝒙� = 𝒈𝒈(𝝃𝝃). The only computational layers are the hidden layer and output layer 

since the input layer represents the set of examples being fed to the autoencoder. The output 

layer response is intended to reproduce an estimate of the input signal to the neural network, 

while performing representation learning at the hidden layer [40], [42]. 

 

 

 

 

 

 

Figure 1.1 Conventional undercomplete autoencoder functional architecture with input 𝒙𝒙, 
hidden layer encoded output 𝝃𝝃 = 𝒇𝒇(𝒙𝒙), and decoded output 𝒙𝒙� = 𝒈𝒈(𝝃𝝃). 

 

The undercomplete autoencoder constrains the hidden layer by having less nodes 

than the input for dimensionality reduction, which results in a compressed encoded signal 

representation for learning key features of the input data [35], [40], [42], [83]. An 
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undercomplete autoencoder is similar to Principle Component Analysis (PCA) in the sense 

it learns a reduced representation of the data, but autoencoders have the ability to learn a 

non-linear mapping, which is more powerful than the linear transformation of PCA [42]. 

On the other hand, an overcomplete autoencoder has a larger hidden layer width than the 

input layer and output layer for learning a sparse representation of the input data [40], [42]. 

The autoencoder feedforward neural network has been used for various RF applications 

including anomaly detection [43], modulation recognition [44], signal classification [45], 

and even learning a channel encoder and decoder function that matches the same block 

error rate performance as a communication system with binary phase-shift keying (BPSK) 

and a Hamming (7,4) code [46]. 

It is known that feedforward neural networks can provide universal function 

approximation with at least one hidden layer in a neural network [38], [39]. The expressive 

power of neural networks is exploited in this dissertation for providing a one-stage learning 

solution for blind source separation within a sparse autoencoder framework without 

requiring separate alternate optimization between the sparse coefficients and dictionary 

channel matrix [40]. Furthermore, the sparse autoencoder is able to generalize efficiently 

to data outside the training set and produce sparse code representations at the output of the 

encoder without requiring additional optimization steps as is the case for the two-stage 

sparse coding process as described in Section 1.2 [81], [82], [92]. 

 

1.4 Sparse Coding of Complex-Valued Data  

Sparse coding of complex-valued data can be formulated in two different ways. Either 

directly in the complex domain or in the real domain via a mapping from complex-valued 
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data to real-data [55]. That is, complex-valued signals can be mapped from ℂ𝑁𝑁 → ℝ2𝑁𝑁 and 

sparse coding can be applied to the real and imaginary parts of the complex numbers 

separately [46], [56], [61], [62]. Therefore, an N-dimensional complex space is transformed 

into a 2N-dimensional real space. This is accomplished by reformulating the sparse coding 

and dictionary learning problem 𝒙𝒙𝒄𝒄 = 𝐇𝐇𝒄𝒄𝒔𝒔𝒄𝒄 as defined in Equation (1.5), where the 

subscript 𝑐𝑐 denotes complex-valued data.  

 

�
Re(𝒙𝒙𝒄𝒄)
Im(𝒙𝒙𝒄𝒄)� = �

Re(𝐇𝐇𝒄𝒄) −Im(𝐇𝐇𝒄𝒄)
Im(𝐇𝐇𝒄𝒄)    Re(𝐇𝐇𝒄𝒄)� �

Re(𝒔𝒔𝒄𝒄)
Im(𝒔𝒔𝒄𝒄)� (1.5) 

 

Processing complex-valued data as shown in Equation (1.5) is done quite often due to the 

lack of available software packages that support complex-valued neural network 

algorithms and activation functions [47], [59]. On the other hand, it is particularly 

important to maintain the in-phase and quadrature pair groupings [54] during soft-

thresholding as shown for the complex LASSO approach in [55] and not apply ℓ1 

regularized least squares for real and imaginary components separately. Applying sparse 

coding to data that has been transformed to the real space as defined in Equation (1.5) 

results in independent soft-thresholding of the real and imaginary components of the 

complex numbers. For sparse coding applications it is imperative that complex-valued data 

be processed fully in the complex domain to avoid losing phase information.  Processing 

complex-valued data after mapping to real data as in Equation (1.5) will result in 

independent shrinkage of the ordered pairs of complex numbers, which should be set to 

zero or non-zero simultaneously. A fully complex sparse autoencoder is derived in Chapter 
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5 that performs sparse coding at the hidden layer while maintaining the complex-valued 

in-phase and quadrature data without performing separate processing on the real and 

imaginary parts of the complex-valued data as in [46], [57] [61]-[63]. 

 

1.5 Optimization of Complex-Valued Data 

In order to fully process complex-valued data through the complex-valued sparse 

autoencoder without mapping complex numbers to real and imaginary parts as defined in 

Equation (1.5), the hidden layer function 𝝃𝝃 = 𝒇𝒇(𝒙𝒙) must support complex numbers and 

optimization of the encoder and decoder weights must be performed in the complex domain 

[58], [60]. The optimization of complex-valued weights is carried out using Wirtinger 

Calculus [64], [65], which provides a complex-valued differentiable operator that satisfies 

the partial derivatives of the real and imaginary parts of a complex number as defined in 

Equations (1.7) and (1.8).  

In general, let 𝑓𝑓(𝑧𝑧) be a complex-valued function of a complex variable 𝑧𝑧 given by 

𝑓𝑓(𝑧𝑧): ℂ → ℂ , where 𝑧𝑧 = 𝑠𝑠 + 𝑖𝑖𝑖𝑖 and 𝑠𝑠, 𝑖𝑖 ∈ ℝ. 𝑓𝑓(𝑧𝑧) can be further defined in terms of it’s 

real and imaginary parts as 𝑓𝑓(𝑧𝑧) = 𝑢𝑢(𝑠𝑠, 𝑖𝑖) + 𝑖𝑖𝑖𝑖(𝑠𝑠, 𝑖𝑖), where 𝑢𝑢(𝑠𝑠, 𝑖𝑖) is the real part and 

𝑖𝑖(𝑠𝑠, 𝑖𝑖) is the imaginary part of 𝑓𝑓(𝑧𝑧). By defining a and b as a function of z as given in 

Equation (1.6), 𝑓𝑓(𝑧𝑧) can be rewritten as 𝑓𝑓(𝑠𝑠(𝑧𝑧), 𝑖𝑖(𝑧𝑧)). 𝑧𝑧∗ in Equation (1.6) is the complex 

conjugate of the complex variable 𝑧𝑧.  

𝑠𝑠 =  
𝑧𝑧 + 𝑧𝑧∗

2
                         𝑖𝑖 =

𝑧𝑧 − 𝑧𝑧∗

2𝑖𝑖
 (1.6) 
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 By applying the chain rule to 𝑓𝑓(𝑠𝑠(𝑧𝑧),𝑖𝑖(𝑧𝑧)) and differentiating with respect to 𝑧𝑧 

and 𝑧𝑧∗ results in the two expressions in Equations (1.7) and (1.8), respectively [66].  

 

𝜕𝜕𝑓𝑓
𝜕𝜕z

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑠𝑠

𝜕𝜕𝑠𝑠
𝜕𝜕z

+
𝜕𝜕𝑓𝑓
𝜕𝜕𝑖𝑖

𝜕𝜕𝑖𝑖
𝜕𝜕z

=
1
2
�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑠𝑠

− 𝑖𝑖
𝜕𝜕𝑓𝑓
𝜕𝜕𝑖𝑖
� (1.7) 

 

𝜕𝜕𝑓𝑓
𝜕𝜕z∗

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑠𝑠

𝜕𝜕𝑠𝑠
𝜕𝜕z∗

+
𝜕𝜕𝑓𝑓
𝜕𝜕𝑖𝑖

𝜕𝜕𝑖𝑖
𝜕𝜕z∗

=
1
2
�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑠𝑠

+ 𝑖𝑖
𝜕𝜕𝑓𝑓
𝜕𝜕𝑖𝑖
� (1.8) 

 

The differential operator in Equation (1.7) with respect to 𝑧𝑧∗ is utilized for complex 

optimization of the weights of the sparse autoencoder in Chapter 5, where a cost function 

or loss ℒ(𝑧𝑧) is defined as a real-valued function over a domain of complex-valued variables 

given in general by the mapping ℒ(𝑧𝑧): ℂ → ℝ. 

 

1.6 Organization of this Dissertation 

The blind source separation system model is described in Chapter 2. Chapter 3 derives the 

two-stage blind source separation approach based on the ADMM algorithm for real-valued 

and complex-valued data. Chapter 4 and Chapter 5 describe the ℓ1norm regularized sparse 

autoencoder for blind source separation for real-valued data and complex-valued data, 

respectively. Chapter 6 describes generalization for regression problems and a data-

dependent generalization bound based on the Rademacher complexity for the one-stage 

learning blind source separation problem. Finally, the conclusion is provided in Chapter 7. 
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CHAPTER 2 

SYSTEM MODEL 

 

2.1 Multiple-Input Multiple Output System 

The blind source separation system model formulation assumes there are 𝑁𝑁 independent 

transmitter sources and 𝑀𝑀 received signals across an antenna array or distribution of 𝑀𝑀 

sensor elements. A linear time-invariant flat fading channel is assumed whereby the 

channel gains are represented as complex Gaussian random variables with zero-mean [67], 

[69]. This represents a rich scattering environment also commonly referred to as a Rayleigh 

fading channel based on the magnitude of the complex Gaussian random variables being 

Rayleigh distributed [68]. The flat fading channel assumption refers to the transmitted 

signal bandwidth being within the coherence bandwidth or inverse delay spread of the 

channel and thus, the received signal does not experience frequency selective fading or 

intersymbol interference (ISI) [70].  

Figure 2.1 depicts a multiple-input multiple output (MIMO) blind source separation 

scenario where there are only a sparse number of active sources at any given time that are 

received over the MIMO channel. All sources are considered to be transmitting at the same 

frequency creating a co-channel mixture of sources at the receive array. The received signal 

snapshot across the antenna array denoted by 𝒙𝒙(𝑛𝑛) is defined in Equation (2.1). 

 

                                      𝒙𝒙(𝑛𝑛) = √𝛾𝛾𝐇𝐇𝒔𝒔(𝑛𝑛) + 𝛎𝛎(𝑛𝑛)                n = 1,…,D (2.1) 
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Figure 2.1 Illustration of a blind source separation (BSS) scenario with a sparse number 
of active sources 𝑘𝑘 received over a MIMO channel with 𝑀𝑀 receive antenna elements where 
𝑘𝑘 << 𝑀𝑀 < 𝑁𝑁 and 𝑁𝑁 represents the total number of potential independent co-channel 
transmitters. 
 

It is assumed that snapshots of data 𝒙𝒙(𝑛𝑛) are taken across a synchronized antenna array or 

distribution of 𝑀𝑀 sensors where 𝑛𝑛 denotes a particular snapshot over time for 𝑛𝑛 = 1, . . . , D. 

𝒔𝒔(𝑛𝑛) denotes the sparse signal vector of active sources, 𝐇𝐇 is the wireless MIMO channel, 

and 𝛾𝛾 is the signal-to-noise ratio (SNR). For the 𝑛𝑛th snapshot the number of signal sources 

active within the signal vector 𝒔𝒔(𝑛𝑛) is given by 𝑘𝑘 = ‖𝐬𝐬(𝑛𝑛)‖0 where 𝑘𝑘 << 𝑀𝑀 < 𝑁𝑁.  Hence, 

the signal activity is considered sparse relative to the dictionary or channel matrix 𝐇𝐇 ∈

ℂ𝑀𝑀×𝑁𝑁, and 𝒙𝒙(𝑛𝑛) is a sparse representation or sparse linear combination of H. 𝝂𝝂(𝑛𝑛) is 

complex Gaussian noise with zero-mean and unit variance denoted by 𝝂𝝂(𝑛𝑛)~𝓝𝓝ℂ(𝟎𝟎, 𝑰𝑰), 

where 𝑰𝑰 is the identity covariance matrix. 

The received signal model over D snapshots is given in matrix form in Equation 

(2.2).  

MIMO 
Channel 

𝑀𝑀 ≪ 𝑁𝑁 
 sensor elements  

𝐇𝐇 ∈ ℂ𝑀𝑀×𝑁𝑁 

snapshot  𝒙𝒙 ∈ ℂ𝑀𝑀 

· 
· 
· 

𝑘𝑘 ≪ 𝑀𝑀 < 𝑁𝑁  

𝒔𝒔 ∈ ℂ𝑁𝑁  “on” 
“off” 

Receive Array 

𝑘𝑘 active 
transmitters 
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𝐗𝐗 = �𝛾𝛾𝐇𝐇𝐒𝐒 + 𝚴𝚴 (2.2) 

 

The receive signal matrix is defined as 𝐗𝐗 ∈ ℂ𝑀𝑀×D, 𝐇𝐇 is an 𝑀𝑀 × 𝑁𝑁 matrix of complex 

Gaussian elements with zero-mean and unit variance, 𝐒𝐒 is a sparse matrix of source 

transmissions, and 𝚴𝚴 ∈ ℂ𝑀𝑀×D is a matrix of zero-mean unit variance complex Gaussian 

noise elements ν𝑖𝑖𝑖𝑖 ∼ 𝒩𝒩ℂ(0,1). The SNR term 𝛾𝛾 is considered to be scaled by the number 

of active sources ‖𝒔𝒔(𝑛𝑛)‖0, so that 𝛾𝛾 defines the true SNR of the received signal as 𝑘𝑘 

fluctuates over D snapshots for 𝑛𝑛 = 1, . . . , D [71]. 

 

2.2. Source Activity Model 

The signal source transmit data denoted by 𝐒𝐒 with rows representing different sources is 

considered intermittent over time and is common with short bursty communication activity 

due to intermittent speech activity [74], mobile communications with discontinuous 

transmission to preserve mobile handset power [75], or the Internet of Things for smart 

city communications  [76], [77]. Modeling time series data or intermittent source activity 

can be synthesized using a hidden Markov model (HMM) [74], [78]. A first-order hidden 

Markov model is implemented per transmission source and is shown in Figure (2.2). 
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Figure 2.2 First-order HMM for 𝑖𝑖𝑡𝑡ℎ transmitter source activity. The hidden states 𝑍𝑍𝑖𝑖(𝑛𝑛) 
represent the 𝑛𝑛𝑡𝑡ℎ state of the 𝑖𝑖𝑡𝑡ℎ transmitter and 𝑠𝑠𝑖𝑖(𝑛𝑛) denotes the observation output. 

 

The hidden states 𝑍𝑍𝑖𝑖(𝑛𝑛) represent the state of the 𝑖𝑖𝑡𝑡ℎ source being either ON or OFF 

for the n𝑡𝑡ℎ snapshot. Whether or not the 𝑖𝑖𝑡𝑡ℎ source is actively transmitting at any given 

time is based on a two-state Markov chain with state space 𝒮𝒮 = {OFF, ON}. The state 

transition probability graph for the hidden states of each 𝑖𝑖𝑡𝑡ℎ source is shown in Figure 2.3 

[79].  

 

Each state is modeled as a Bernoulli process where a state change from OFF to ON 

or ON to OFF takes place upon a success conditioned on the current state. The state-

transition probability from the 𝑖𝑖𝑡𝑡ℎ source activity off-state to on-state is denoted by 𝑠𝑠𝑖𝑖 =

STATE 
OFF 

STATE 
ON 

𝑠𝑠𝑖𝑖  

𝑞𝑞𝑖𝑖 

1 − 𝑞𝑞𝑖𝑖 1 − 𝑠𝑠𝑖𝑖  

Figure 2.3 Transition probability graph of a two-state 
Markov chain for the 𝑖𝑖𝑡𝑡ℎ source activity.  

 𝑍𝑍𝑖𝑖(1) 𝑍𝑍𝑖𝑖(2) 𝑍𝑍𝑖𝑖(𝐷𝐷) 

𝑠𝑠𝑖𝑖(1) 𝑠𝑠𝑖𝑖(2) 𝑠𝑠𝑖𝑖(𝐷𝐷) 
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𝑃𝑃𝑠𝑠(𝑍𝑍𝑖𝑖(n) = 𝑂𝑂𝑁𝑁 | 𝑍𝑍𝑖𝑖(n − 1) = 𝑂𝑂𝑂𝑂𝑂𝑂) and from the on-state to off-state is given by 𝑞𝑞𝑖𝑖 =

𝑃𝑃𝑠𝑠(𝑍𝑍𝑖𝑖(n) = 𝑂𝑂𝑂𝑂𝑂𝑂 | 𝑍𝑍𝑖𝑖(n − 1) = 𝑂𝑂𝑁𝑁) [79]. The steady-state probability of a source being 

in the ON state or OFF state is denoted by 𝜋𝜋𝑂𝑂𝑁𝑁 and 𝜋𝜋𝑂𝑂𝐹𝐹𝐹𝐹, respectively. The steady-state 

probabilities 𝜋𝜋𝑂𝑂𝑁𝑁 and 𝜋𝜋𝑂𝑂𝐹𝐹𝐹𝐹 are defined in Equation (2.3) [79].  

 

𝜋𝜋𝑂𝑂𝑁𝑁 =
𝑠𝑠𝑖𝑖

𝑠𝑠𝑖𝑖 + 𝑞𝑞𝑖𝑖
                   𝜋𝜋𝑂𝑂𝐹𝐹𝐹𝐹 =

𝑞𝑞𝑖𝑖
𝑠𝑠𝑖𝑖 + 𝑞𝑞𝑖𝑖

  (2.3) 

 

The average number of active sources 𝜁𝜁 is based on the total number of active 

sources over D snapshots and the steady-state probability of each source being in an active 

state, and is given by 𝜁𝜁 = 𝑁𝑁 ∗ 𝜋𝜋𝑂𝑂𝑁𝑁, where 𝑁𝑁 denotes the maximum number of sources. The 

average transmission duration of the 𝑖𝑖𝑡𝑡ℎ source is based on the inverse of the mean of a 

geometric random variable and is given by 𝑞𝑞𝑖𝑖−1 [79].  
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CHAPTER 3 

TWO-STAGE LEARNING FOR BLIND SOURCE SEPARATION 

 

3.1 ADMM LASSO Sparse Coding for Blind Source Separation 

The two-stage blind source separation approach alternates between a sparse coding stage 

based on a fixed channel estimate and a channel estimation or dictionary learning stage 

while holding the sparse code estimates fixed as described in general in Section 1.2 [32]. 

The co-channel signal sources defined in Chapter 2 are separated using the sparse coding 

alternating direction method of multipliers (ADMM) optimization algorithm. The ADMM 

LASSO algorithm for BSS is based on minimizing the augmented Lagrangian in Equation 

(3.1) [52].  

 

𝐿𝐿𝜌𝜌(𝒛𝒛,𝒘𝒘,𝝁𝝁) =
1
𝑀𝑀
‖𝒙𝒙 − 𝐇𝐇𝒛𝒛‖22 + 𝜆𝜆‖𝒘𝒘‖1 + (𝒛𝒛 − 𝒘𝒘)𝐻𝐻𝝁𝝁 + 𝜌𝜌‖𝒛𝒛 − 𝒘𝒘‖22 (3.1) 

 

Optimization of the augmented Lagrangian cost function in Equation (3.1) with 

respect to (𝒛𝒛,𝒘𝒘,𝝁𝝁) is performed using the ADMM algorithm by successively minimizing 

𝒛𝒛 and 𝒘𝒘 followed by a dual ascent update of the Lagrange multiplier vector 𝝁𝝁 [52]. The 

ADMM updates for iterations 𝑡𝑡 = 0, 1, 2, . .. are defined in Equations (3.2a)-(3.2c) for real-

valued data. 
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𝒛𝒛𝑡𝑡+1 = arg min
𝒛𝒛∈ℝ𝑁𝑁

𝐿𝐿𝜌𝜌(𝒛𝒛,𝒘𝒘𝑡𝑡,𝝁𝝁𝑡𝑡) (3.2a) 

 

 

𝒘𝒘𝑡𝑡+1 = arg min
𝒘𝒘∈ℝ𝑁𝑁

𝐿𝐿𝜌𝜌(𝒛𝒛𝑡𝑡+1,𝒘𝒘,𝝁𝝁𝑡𝑡) (3.2b) 

 

𝝁𝝁𝑡𝑡+1 = 𝝁𝝁𝑡𝑡 + 𝜌𝜌(𝒛𝒛𝑡𝑡+1 − 𝒘𝒘𝑡𝑡+1) (3.2c) 

 

The ADMM iterative updates defined in Equations (3.2a)-(3.2c) are derived in 

Equations (3.3a)-(3.3c). Minimization of 𝐿𝐿𝜌𝜌(𝒛𝒛,𝒘𝒘,𝝁𝝁) with respect to 𝒛𝒛 provides a ridge 

regression update for 𝒛𝒛 in Equation (3.3a) and minimization with respect to 𝒘𝒘 involves a 

soft-threshold update in Equation (3.3b). The sparse signal source vectors {𝒔𝒔(𝑛𝑛)}𝑛𝑛=1D  in 

Equation (2.1) are estimated by {𝒘𝒘(𝑛𝑛)}𝑛𝑛=1D  in Equation (3.3b). The Lagrange multiplier 

vector update 𝝁𝝁𝑡𝑡+1 is updated based on the new updated iterations of vectors 𝒛𝒛𝑡𝑡+𝟏𝟏 and 

𝒘𝒘𝑡𝑡+1. 𝜌𝜌 is considered a fixed parameter where 𝜌𝜌 > 0 and the quadratic augmented 

Lagrangian term involving 𝜌𝜌 penalizes solutions that violate the constraint outside the 

feasible region [85]. 

 

𝒛𝒛𝑡𝑡+1 = �
1
𝑀𝑀
𝐇𝐇T𝐇𝐇 + 𝜌𝜌I�

−1

�
1
𝑀𝑀
𝐇𝐇T𝒙𝒙 + 𝜌𝜌𝒘𝒘𝑡𝑡 − 𝝁𝝁𝑡𝑡� (3.3a) 
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𝑤𝑤𝑖𝑖
𝑡𝑡+1 = 𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 �𝑧𝑧𝑖𝑖𝑡𝑡+1 +

𝜇𝜇𝑖𝑖𝑡𝑡

𝜌𝜌
� ��𝑧𝑧𝑖𝑖𝑡𝑡+1 +

𝜇𝜇𝑖𝑖𝑡𝑡

𝜌𝜌
� −

𝜆𝜆
𝜌𝜌
�
+

    𝑓𝑓𝑓𝑓𝑠𝑠 𝑖𝑖 = 1,  … ,  𝑁𝑁 (3.3b) 

 

𝝁𝝁𝑡𝑡+1 = 𝝁𝝁𝑡𝑡 + 𝜌𝜌(𝒛𝒛𝑡𝑡+1 − 𝒘𝒘𝑡𝑡+1) (3.3c) 

 

The soft-threshold operator in Equation (3.3b) shrinks the absolute value term by 𝜆𝜆 𝜌𝜌�  and 

the operator (𝜓𝜓)+ is set to 𝜓𝜓 for 𝜓𝜓 > 0 and equals zero for 𝜓𝜓 ≤ 0. Hence, a change in 𝜌𝜌 

impacts the optimal value of the hyperparameter 𝜆𝜆 given the ratio 𝜆𝜆 𝜌𝜌�  has an effect on the 

shrinkage and ultimately the sparse coding solution. The hyperparameter 𝜆𝜆 is optimized 

using cross-validation, which is described in Chapter 4. 

 Optimization of the ADMM LASSO augmented Lagrangian in Equation (3.1) for 

complex variables is performed using Wirtinger calculus as defined in Section 1.5. The 

ADMM LASSO updates for complex variables is defined in Equations (3.4a) and (3.4b). 

The Lagrange multiplier vector update 𝝁𝝁𝑡𝑡+𝟏𝟏 is as defined in Equation (3.3c). 

 

𝒛𝒛𝑡𝑡+1 = arg min
𝒛𝒛∗∈ℂ𝑁𝑁

𝐿𝐿𝜌𝜌(𝒛𝒛,𝒘𝒘𝑡𝑡,𝝁𝝁𝑡𝑡) (3.4a) 

 

𝒘𝒘𝑡𝑡+1 = arg min
𝒘𝒘∗∈ℂ𝑁𝑁

𝐿𝐿𝜌𝜌(𝒛𝒛𝑡𝑡+𝟏𝟏,𝒘𝒘,𝝁𝝁𝑡𝑡) (3.4b) 
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 Minimization of Equations (3.4a) and (3.4b) with respect to the complex conjugates 

𝒛𝒛∗ and 𝒘𝒘∗ results in the updates 𝒛𝒛𝑡𝑡+𝟏𝟏 and 𝒘𝒘𝑡𝑡+1 in Equations (3.5a) and (3.5b), respectively. 

Equation (3.3a) for the real-valued case differs from the complex-valued case in Equation 

(3.5a) by taking the adjoint or Hermitian of 𝐇𝐇 in Equation (3.5a) and not just the transpose 

of 𝐇𝐇 as in Equation (3.3a). 

 

𝒛𝒛𝑡𝑡+1 = �
1
M
𝐇𝐇𝐻𝐻𝐇𝐇 + 𝜌𝜌I�

−1

�
1
M
𝐇𝐇𝐻𝐻𝐱𝐱 + 𝜌𝜌𝒘𝒘𝑡𝑡 − 𝝁𝝁𝑡𝑡� (3.5a) 

 

𝑤𝑤𝑖𝑖
𝑡𝑡+1 =

𝑧𝑧𝑖𝑖𝑡𝑡+1 + 𝜇𝜇𝑖𝑖𝑡𝑡
𝜌𝜌

�𝑧𝑧𝑖𝑖𝑡𝑡+1 + 𝜇𝜇𝑖𝑖𝑡𝑡
𝜌𝜌 �

��𝑧𝑧𝑖𝑖𝑡𝑡+1 +
𝜇𝜇𝑖𝑖𝑡𝑡

𝜌𝜌
� −

𝜆𝜆
𝜌𝜌
�
+

    𝑓𝑓𝑓𝑓𝑠𝑠 𝑖𝑖 = 1,  … ,  𝑁𝑁 (3.5b) 

 

3.2 Dictionary Learning for Channel Estimation 

The two-stage learning algorithm performs dictionary learning or channel estimation after 

all sparse code vectors in matrix 𝐒𝐒 are updated for iteration 𝑡𝑡 + 1. There are various 

dictionary learning algorithms that build off of the method of optimal directions, which 

provides a least-squares update of the channel as described in Section 1.2 [28], [29]. The 

MOD algorithm has been shown to be a robust tradeoff for dictionary learning in 

comparison to other methods such as the K-SVD algorithm with less computational 

complexity [98]. The MOD algorithm is defined in Equation (3.6) and provides a least-
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squares update 𝐇𝐇�  of the channel 𝐇𝐇 in Equation (2.1). The Hermitian of 𝐒𝐒 for complex-

valued data defaults to the transpose when applied to real-valued data in Equation (3.6). 

 

𝐇𝐇� = arg min
𝐇𝐇∈ℂ𝑀𝑀×𝑁𝑁

 ‖𝐗𝐗 − 𝐇𝐇𝐒𝐒‖𝐹𝐹2 =   𝐗𝐗𝐒𝐒𝑯𝑯(𝐒𝐒𝐒𝐒𝑯𝑯)−𝟏𝟏,     𝑤𝑤ℎ𝑒𝑒𝑠𝑠𝑒𝑒 ‖𝐡𝐡𝑖𝑖‖2 = 1,∀ 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁   (3.6) 

 

Signal recovery performance results for the ADMM LASSO are compared against 

the sparse autoencoder for real-valued data and complex-valued data as described in 

Chapters 4 and 5, respectively. 
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CHAPTER 4 

SPARSE AUTOENCODER FOR REAL-VALUED SIGNALS 

 

4.1 Real-Valued Sparse Autoencoder for Source Separation 

Autoencoders are known to provide feature extraction at the hidden layer of an artificial 

neural network that provides a code representation of the input data while reconstructing 

the input data at the decoder output of the autoencoder [42]. Sparse autoencoders or 

regularized overcomplete autoencoders have a hidden layer width greater than the input 

layer and impose regularization on the weights or hidden layer output to enable sparse 

coding with a small number of non-zeros at the encoder hidden layer output [40], [81], 

[92], [93]. A sparse autoencoder with an ℓ1 norm penalty on the encoder weights and a 

sparsifying logistic sigmoid activation function for the hidden layer was utilized for feature 

extraction of unique representations of handwritten numerals and natural image patches, 

which were then used for supervised training of a neural network classifier [92]. A rectified 

linear unit (ReLU) activation function rectifier(𝑥𝑥) =  𝑚𝑚𝑠𝑠𝑥𝑥(0, 𝑥𝑥) [40] was used within a 

sparse autoencoder framework with an ℓ1 norm penalty applied to the hidden layer output 

for image and text classification and shown to produce actual zeros at the hidden layer 

output [81]. Another method for promoting sparsity within an autoencoder framework is 

to utilize a Kullback-Leibler (KL) divergence penalty term between a small target 

activation percentage for a hidden layer neuron and the mean activation over training 

examples, which was demonstrated for image classification in [94]. 

An ℓ1 regularized sparse autoencoder feedforward neural network is applied to the 

blind source separation problem for recovering real-valued independent co-channel 
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sources. In addition to an ℓ1 norm penalty of the hidden layer output added to the mean-

squared loss function between the input data and reconstructed output, a soft-threshold 

operator activation function is utilized within the hidden layer to promote sparse coding 

[82]. The complex-valued sparse autoencoder learning model is addressed in Chapter 5, 

which is a non-trivial extension of the real-valued case due to the need to maintain in-phase 

and quadrature pair groupings of complex-valued signals throughout the neural network 

for sparse coding as described in Section 1.4. The blind source separation sparse 

autoencoder architecture is shown in Figure 4.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input Layer        Hidden Layer      Output Layer 

𝑥𝑥�0(𝑛𝑛) = +1 

Input Signal 
𝒙𝒙(𝑛𝑛) ∈ ℝ𝑀𝑀 

Output Signal 
𝒚𝒚𝑜𝑜(𝑛𝑛) ∈ ℝ𝑀𝑀 

Encoded Signal 
𝒚𝒚ℎ(𝑛𝑛) ∈ ℝ𝑁𝑁  

Figure 4.1 Blind sparse autoencoder feedforward neural network 
architecture with 𝑁𝑁 > 𝑀𝑀 hidden layer nodes. The encoded signal 
output at the hidden layer provides a sparse representation of the 
transmitted sources. 

𝑾𝑾𝒉𝒉 𝑾𝑾𝒐𝒐 
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The input signal to the sparse autoencoder in Figure 4.1 is denoted by 𝒙𝒙(𝑛𝑛) ∈ ℝ𝑀𝑀, 

which represents the 𝑛𝑛𝑡𝑡ℎ received signal snapshot across an antenna array with 𝑀𝑀 elements 

as defined in Chapter 2, but for real-values only in this chapter. The real-valued scenario 

is considered valid for real-valued modulation types such as binary phase-shift keying [80]. 

The received signal snapshot model for 𝒙𝒙(𝑛𝑛) is defined in Equation (4.1) for real-valued 

data, where the channel 𝐇𝐇 is an 𝑀𝑀 × 𝑁𝑁 matrix with zero-mean unit-variance Gaussian 

random variables, 𝝂𝝂(𝑛𝑛) ∈ ℝ𝑀𝑀 is a noise vector of zero-mean unit-variance Gaussian 

random variables, and 𝒔𝒔(𝑛𝑛) is the signal vector of sparse source transmissions or baseband 

symbols. 𝛾𝛾 is defined as the SNR. 

 

                                      𝒙𝒙(𝑛𝑛) = √𝛾𝛾𝐇𝐇𝒔𝒔(𝑛𝑛) + 𝝂𝝂(𝑛𝑛)                n = 1,…,D (4.1) 

 

The encoded signal output at the hidden layer of Figure 4.1 denoted by 𝒚𝒚ℎ(𝑛𝑛) produces the 

sparse latent signal vectors 𝒔𝒔(𝑛𝑛) up to a permutation and sign ambiguity [53]. Finally, the 

output signal 𝒚𝒚𝑜𝑜(𝑛𝑛) of the output layer of the sparse autoencoder in Figure 4.1 provides an 

estimate of the input to the autoencoder 𝒙𝒙(𝑛𝑛). The sparse autoencoder acts as a replicator 

network, while learning a representation at the hidden layer that explains the unique 

features of the data [42], [81].  

The inductive bias of the learning model or assumptions being made for selecting 

a sparse learning algorithm is that transmitted sources experience intermittent activity and 

sparsity can be exploited for solving for the latent signal sources [74]-[77]. The BSS sparse 

autoencoder in Figure 4.1 enforces sparsity on the latent signal space in three ways. First 
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the cost function in Equation (4.2) imposes sparsity on the encoded output of the hidden 

layer during training via ℓ1 regularization of the hidden layer outputs, second the hidden 

layer is constructed to be wider than the input and output layers forcing the autoencoder to 

learn a sparse representation given the overcomplete structure of the output layer weight 

matrix, and third the activation function at the hidden layer inherently performs soft-

thresholding resulting in hidden layer nodes with zero output based on the shrinkage 

operator [82]. 

The cost function or loss function for optimizing the weights of the sparse 

autoencoder in Figure 4.1 is given in Equation (4.2). 

 

ℒ(𝐖𝐖) =
1

2|𝐵𝐵|�
‖𝒅𝒅(𝑛𝑛) −  𝒚𝒚𝑜𝑜(𝑛𝑛)‖22 +  𝜆𝜆‖𝒚𝒚ℎ(𝑛𝑛)‖1

𝑛𝑛∈𝐵𝐵

 (4.2) 

 

In Equation (4.2) 𝒅𝒅(𝑛𝑛) is the desired response, which is equal to the input snapshot 𝒙𝒙(𝑛𝑛) ∈

ℝ𝑀𝑀. 𝒚𝒚𝑜𝑜(𝑛𝑛) ∈ ℝ𝑀𝑀 is the output signal at the output layer of the autoencoder feedforward 

neural network, 𝒚𝒚ℎ(𝑛𝑛) ∈ ℝ𝑁𝑁 is the encoded sparse representation output of the hidden 

layer, 𝜆𝜆 is the sparsity penalty parameter, and 𝑛𝑛 denotes the iteration or time-step. The 

summation in Equation (4.2) is taken over a batch of examples of size |𝐵𝐵|, where |𝐵𝐵| 

denotes the cardinality of set 𝐵𝐵. The loss function ℒ(𝑾𝑾) is a function of all weights in the 

neural network denoted by 𝑾𝑾, which represents the hidden layer and output layer weights 

given by 𝑾𝑾ℎ and  𝑾𝑾𝑜𝑜, respectively. The sum of the squared errors is minimized with 

respect to the synaptic weights 𝑾𝑾 of the feedforward neural network while imposing an ℓ1 
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norm penalty on the hidden layer output. The weights of the entire neural network are 

learned using the received signal snapshots {𝒙𝒙(𝑛𝑛)}𝑛𝑛=1D  as unlabeled input examples only.  

The output layer signal vector 𝒚𝒚𝑜𝑜(𝑛𝑛) contains 𝑀𝑀 neural network node outputs and 

is given in Equation (4.3) as a function of the output layer activation function 𝜑𝜑𝑜𝑜(⋅). The 

output layer activation function 𝜑𝜑𝑜𝑜(⋅) is a linear identity function with no non-linearity. 

𝒗𝒗𝑜𝑜(𝑛𝑛) is the activation potential vector for the output layer and is defined in Equation (4.4). 

 

         𝒚𝒚𝑜𝑜(𝑛𝑛) =  𝜑𝜑𝑜𝑜(𝒗𝒗𝑜𝑜(𝑛𝑛)) (4.3) 

 

𝒗𝒗𝑜𝑜(𝑛𝑛) = 𝑾𝑾𝑜𝑜(𝑛𝑛)𝒚𝒚ℎ(𝑛𝑛) (4.4) 

 

The hidden layer output vector 𝒚𝒚ℎ(𝑛𝑛) contains 𝑁𝑁 nodes and is defined in Equation (4.5) as 

a function of the hidden layer activation function 𝜑𝜑ℎ(⋅). 𝜑𝜑ℎ(⋅) is a soft-threshold operator 

or shrinkage function and is defined in Equation (4.6). The operator (𝜓𝜓)+ in Equation (4.6) 

is defined as (𝜓𝜓)+ = max(𝜓𝜓, 0), which is equal to 𝜓𝜓 for 𝜓𝜓 > 0. The hidden layer activation 

potential 𝒗𝒗ℎ(𝑛𝑛) is defined in Equation (4.7). 

 

𝒚𝒚ℎ(𝑛𝑛) =  𝜑𝜑ℎ�𝒗𝒗ℎ(𝑛𝑛)� (4.5) 
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    𝜑𝜑ℎ �𝑖𝑖𝑖𝑖ℎ(𝑛𝑛)� =  𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛(𝑖𝑖𝑖𝑖ℎ(𝑛𝑛))(�𝑖𝑖𝑖𝑖ℎ(𝑛𝑛)� − 𝜆𝜆)+ (4.6) 

 

𝒗𝒗ℎ(𝑛𝑛) = 𝑾𝑾ℎ(𝑛𝑛)𝒙𝒙�(𝑛𝑛) (4.7) 

 

𝑾𝑾𝑜𝑜 ∈ ℝ𝑀𝑀×𝑁𝑁 and 𝑾𝑾ℎ ∈ ℝ𝑁𝑁×𝑀𝑀+1 denote the weight matrices for the output layer 

and hidden layer, respectively. Note that the first column of 𝑾𝑾ℎ represents the bias terms 

for each neuron in the hidden layer. This effectively results in an affine transformation of 

the linear combined output between the input signal and weights per neuron.  𝒙𝒙�(𝑛𝑛) ∈ ℝ𝑀𝑀+1 

is the input vector example to the neural network for the 𝑛𝑛𝑡𝑡ℎ snapshot across a spatial array 

of 𝑀𝑀 antenna elements as defined in Equation (4.1) with the first element 𝑥𝑥�0(𝑛𝑛) = +1 to 

account for the bias weight term per hidden neuron. 

The weights of the ℓ𝑡𝑡ℎ layer of the neural network are updated using mini-batch 

stochastic gradient descent with adaptive moments (ADAM) [84]. The gradient of the loss 

function with respect to the output and hidden layer weights is derived via the 

backpropagation algorithm [83]. The gradient of the loss function with respect to the output 

weights in Equation (4.2) is defined in Equation (4.8). 

 

𝜕𝜕ℒ(𝑊𝑊)

𝜕𝜕𝑤𝑤𝑘𝑘𝑖𝑖
(𝑜𝑜)(𝑛𝑛)

=
1

|𝐵𝐵|�𝛿𝛿𝑘𝑘𝑜𝑜(𝑛𝑛)
𝑛𝑛∈𝐵𝐵

𝑦𝑦𝑖𝑖ℎ(𝑛𝑛) (4.8) 
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𝛿𝛿𝑘𝑘𝑜𝑜(𝑛𝑛) in Equation (4.8) is considered the local gradient of the loss function in Equation 

(4.2) with respect to the activation potential 𝑖𝑖𝑘𝑘𝑜𝑜(𝑛𝑛) of the 𝑘𝑘𝑡𝑡ℎ neuron in the output layer of 

the neural network. 𝛿𝛿𝑘𝑘𝑜𝑜(𝑛𝑛) is defined in Equation (4.9) 

𝛿𝛿𝑘𝑘𝑜𝑜(𝑛𝑛) = −[𝑑𝑑𝑘𝑘(𝑛𝑛) − 𝑦𝑦𝑘𝑘𝑜𝑜(𝑛𝑛)]𝜑𝜑𝑜𝑜′ (𝑖𝑖𝑘𝑘𝑜𝑜(𝑛𝑛)) (4.9) 

 

The gradient of the loss function in Equation (4.2) with respect to the hidden layer weights 

is defined in Equation (4.10). 

 

𝜕𝜕ℒ(𝑊𝑊)

𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖
(ℎ)(𝑛𝑛)

=
1

|𝐵𝐵| �𝛿𝛿𝑖𝑖ℎ(𝑛𝑛)x�𝑖𝑖
𝑛𝑛∈𝐵𝐵

(𝑛𝑛) (4.10) 

 

The local gradient of the loss function in Equation (4.2) with respect to the activation 

potential 𝑖𝑖𝑖𝑖ℎ(𝑛𝑛) of the 𝑗𝑗th hidden layer node is denoted by 𝛿𝛿𝑖𝑖ℎ(𝑛𝑛) and is given in Equation 

(4.11).  

 

𝛿𝛿𝑖𝑖ℎ(𝑛𝑛) = 𝜑𝜑ℎ′ �𝑖𝑖𝑖𝑖ℎ(𝑛𝑛)��𝛿𝛿𝑘𝑘𝑜𝑜(𝑛𝑛)𝑤𝑤𝑘𝑘𝑖𝑖
𝑜𝑜 (𝑛𝑛) +

M

𝑘𝑘=1

 𝜆𝜆 ∙ 𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛(𝑦𝑦𝑖𝑖ℎ(𝑛𝑛))𝜑𝜑ℎ′ �𝑖𝑖𝑖𝑖ℎ(𝑛𝑛)� (4.11) 
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The gradient of the ℓ1 penalty term 𝜆𝜆‖𝒚𝒚ℎ(𝑛𝑛)‖1 in Equation (4.2) with respect to 

the activation potential 𝑖𝑖𝑖𝑖ℎ(𝑛𝑛) is 𝜆𝜆 ∙ 𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛(𝑦𝑦𝑖𝑖ℎ(𝑛𝑛))𝜑𝜑ℎ′ �𝑖𝑖𝑖𝑖ℎ(𝑛𝑛)�, which is undefined for an 

activation output 𝑦𝑦𝑖𝑖ℎ(𝑛𝑛) of zero. On the other hand, given 𝜑𝜑ℎ′ �𝑖𝑖𝑖𝑖ℎ(𝑛𝑛)� is zero for 𝑖𝑖𝑖𝑖ℎ(𝑛𝑛) ≤

𝜆𝜆, where 𝜑𝜑ℎ′ (⋅) is the derivative of the activation function at the hidden layer, 𝜆𝜆 ∙

𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛(𝑦𝑦𝑖𝑖ℎ(𝑛𝑛))𝜑𝜑ℎ′ �𝑖𝑖𝑖𝑖ℎ(𝑛𝑛)� is zero for 𝑦𝑦𝑖𝑖ℎ(𝑛𝑛) = 0. 

 

4.2 Hyperparameter Selection 

The tuning parameter 𝜆𝜆 in Equation (4.2) imposes sparsity on the hidden layer weights and 

is optimized using K-fold cross-validation (CV). The hyperparameter of the soft-threshold 

activation function is set equal to the tuning parameter 𝜆𝜆 of the ℓ1 norm penalty on the 

hidden layer output and optimized together, which satisfies the non-differentiable case for 

�𝒚𝒚𝒉𝒉(𝑛𝑛)�
1
 when 𝒚𝒚𝒉𝒉(𝑛𝑛) is zero as explained in Section 4.1. The dataset of size D is 

partitioned into 𝜂𝜂 = D
𝐾𝐾�  disjoint sets or folds. 𝐾𝐾 − 1 sets are used for training the weights 

𝐖𝐖 and 1 out of K sets is used for computing the cross-validation error as shown in Figure 

(4.2) for 5-Fold CV [87].  

 

Validation Training Training Training Training 
 

Training Validation Training Training Training 
 

.  .  . 

.  .  . 

.  .  . 
 

Training Training Training Training Validation 
 
Figure 4.2 5-Fold cross-validation partitioning of data into validation and training sets. 
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Optimization of the weights in Equation (4.2) is performed K times for all K permutations 

of training data in Figure (4.2). Training with different data subsets produces a different 

predictor or set of weights 𝐖𝐖 and hence, a different validation error for each 𝑖𝑖𝑡𝑡ℎ fold out 

of K folds. All K validation errors are averaged together to approximate the generalization 

error of the sparse autoencoder, which is referred to as the cross-validation error. Likewise, 

the training errors pertaining to the K permutations of training data are averaged together 

to compute an expected value or average value for the training error.  

 The samples pertaining to the 𝑖𝑖𝑡𝑡ℎ fold are denoted by �𝒙𝒙𝑖𝑖𝑖𝑖�𝑖𝑖=1
𝐽𝐽

. Assume that the 

weights 𝐖𝐖 of the ℓ1 norm regularized loss function in Equation (4.2) are trained on all data 

except for the 𝑖𝑖𝑡𝑡ℎ fold producing a predictor 𝒚𝒚𝑖𝑖𝑜𝑜. The cross-validation error is defined in 

Equation (4.12), where 𝐿𝐿�𝒅𝒅𝑖𝑖𝑖𝑖 ,𝒚𝒚𝑖𝑖𝑖𝑖𝑜𝑜 � is any loss function in general. 𝒅𝒅𝑖𝑖𝑖𝑖 is the 𝑗𝑗𝑡𝑡ℎ sample of 

the desired response within the 𝑖𝑖𝑡𝑡ℎ fold and 𝒚𝒚𝑖𝑖𝑖𝑖𝑜𝑜  is the predicted output for the 𝑗𝑗𝑡𝑡ℎ sample 

of the 𝑖𝑖𝑡𝑡ℎ fold validation data.  

 

𝑅𝑅�𝐶𝐶𝐶𝐶 =
1
𝐼𝐼
�

1
𝐽𝐽
�𝐿𝐿�𝒅𝒅𝑖𝑖𝑖𝑖 ,𝒚𝒚𝑖𝑖𝑖𝑖𝑜𝑜 �
𝐽𝐽

𝑖𝑖=1

𝐼𝐼

𝑖𝑖=1

 (4.12) 

  

 The sparse autoencoder performance is compared to the alternating direction 

method of multipliers (ADMM) LASSO algorithm for BSS described in Chapter 3. Cross-

validation is utilized for computing the hyperparameter or tuning parameter 𝜆𝜆 in Equation 

(3.1), which is rewritten in Equation (4.13) for convenience.  
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𝐿𝐿𝜌𝜌(𝒛𝒛,𝒘𝒘,𝝁𝝁) =
1
𝑀𝑀
‖𝒙𝒙 −𝑯𝑯𝒛𝒛‖22 + 𝜆𝜆‖𝒘𝒘‖1 + (𝒛𝒛 −𝒘𝒘)𝐻𝐻𝝁𝝁 + 𝜌𝜌‖𝒛𝒛 − 𝒘𝒘‖22 (4.13) 

 

𝝆𝝆 was set to a fixed value equal to 2, while the tuning parameter 𝜆𝜆 was optimized over a 

set of values using cross-validation.  

 A total of D = 1000 samples was used for cross-validation with 𝐾𝐾 = 5. The tuning 

parameter 𝜆𝜆 ranged over the set 𝜆𝜆 ∈ {. 01, . . . , 3}. The total number of co-channel signals 

over D samples is set equal to 20. The state-transition probabilities 𝑠𝑠𝑖𝑖 and 𝑞𝑞𝑖𝑖 defined in 

Section 2.2 were set such that an average number of 3 sources are overlapping in time out 

of the 20 potential co-channel sources. 

 The ADMM LASSO expected support recovery error based on the training data 

and validation data versus the hyperparameter 𝜆𝜆 is shown in Figure 4.3 for SNR values of 

15 dB, 20 dB, 25 dB, and 30 dB.  The support recovery error is given by 1 − 𝐽𝐽(𝓢𝓢,𝓢𝓢�), where 

𝐽𝐽�𝓢𝓢,𝓢𝓢�� is the Jaccard similarity defined in Equation (4.14). Jaccard similarity 𝐽𝐽�𝓢𝓢,𝓢𝓢�� is a 

measure between the support (i.e., non-zero indices) of transmitted signal matrix 𝓢𝓢 

containing all user transmission activity over D samples and the estimate of the sparse 

matrix activity 𝓢𝓢�. 𝓢𝓢 and 𝓢𝓢� contain 1’s where source activity is present and 0’s where no 

signal transmission takes place.  

 

𝐽𝐽�𝓢𝓢,𝓢𝓢�� =
�𝓢𝓢 ∩ 𝓢𝓢��
�𝓢𝓢 ∪ 𝓢𝓢��

 (4.14) 

 



33 

 The sparse autoencoder expected training error and expected validation error for 

support recovery versus the hyperparameter 𝜆𝜆 is shown in Figure 4.4 for SNR values of 15 

dB, 20 dB, 25 dB, and 30 dB. 

 

 

Figure 4.3 ADMM LASSO expected training error and expected validation error for 
support recovery versus the hyperparameter 𝜆𝜆 for SNR values of 15 dB, 20 dB, 25 dB, and 
30 dB. 
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Figure 4.4 Real-valued sparse autoencoder expected training error and expected validation 
error for support recovery versus the hyperparameter 𝜆𝜆 for SNR values of 15 dB, 20 dB, 
25 dB, and 30 dB. 

 

 The optimal hyperparameter setting for 𝜆𝜆 is equal to 1 for both the ADMM LASSO 

and sparse autoencoder as shown in Figures 4.3 and 4.4 via 5-fold cross-validation. The 

optimal value for 𝜆𝜆 coincides with the variance of the additive white Gaussian noise in 

Equation (4.1). The cross-validation error for the ADMM LASSO requires additional 

optimization iterations for solving for the sparse coding while holding the channel fixed. 

A plausible explanation for the improved performance of the ADMM LASSO on validation 

data as shown in Figure 4.3 is that the sparse coding is able to move beyond a local minima 
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when optimizing with new data outside the training set. On the other hand, the sparse 

autoencoder does not require additional optimization for sparse coding at the hidden layer 

and the cross-validation performance in Figure 4.4 or generalization error is slightly worse 

than the training error as expected.   

 

4.3 Generalization Performance  

The generalization performance of any machine learning algorithm indirectly depends on 

the training data and how many examples are in the training data. This is due to the fact 

that the generalization performance is based on a predictor learned from training data and 

better generalization is attained with larger sample sets [19], [35]. Therefore, the learning 

model and optimization of weights for learning a predictor is affected by the number of 

samples used for training. The sample complexity defines the minimum number of training 

examples needed in order to generalize well on new data within an error tolerance 𝜖𝜖 and 

confidence 1 − 𝛿𝛿, where 𝛿𝛿 represents the probability of the generalization error being 

larger than 𝜖𝜖. If the training set is too small there is risk of overfitting to the data such that 

the training error is small, but the generalization error is large for prediction on new 

examples. Generalization bounds are discussed in Chapter 5 for the Blind Source 

Separation model.  

 Generalization error can also be measured empirically over a given dataset of size 

D for a range of subset sizes. The mean squared error (MSE) of the output layer of the 

sparse autoencoder and MSE of the ADMM LASSO on training and validation data (i.e., 

5-fold cross-validation) is used as the measure of performance and is plotted in Figure 4.5. 
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Figure 4.5 The mean squared error (MSE) of the output layer of the sparse autoencoder 
and MSE of the ADMM LASSO on training and validation data using 5-fold cross-
validation. 

 

As shown in Figure 4.5 the sparse autoencoder has a larger spread between the 

training and validation error, which is indicative of a higher model capacity [19], [35]. The 

ADMM LASSO generalizes better with a smaller number of examples, but the sparse 

autoencoder exhibits less bias for a large number of examples as shown in Figure 4.5. 

 

4.4 Support Recovery Performance 

 The support recovery is measured by the Jaccard similarity index 𝐽𝐽�𝓢𝓢,𝓢𝓢�� given in Equation 

(4.13). The Jaccard index provides a measure for how well two vectors are correlated 
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including detection and false alarms. The support recovery for the sparse autoencoder and 

ADMM LASSO is shown in Figure 4.6 over a range of SNR values from 0 dB to 30 dB. 

The dataset size contains 5000 samples and 5-fold cross-validation was used. 

 

 

Figure 4.6 Support recovery for the real-valued sparse autoencoder and ADMM LASSO 
over a range of SNR values from 0 dB to 30 dB. Maximum number of signals is 20. 

 

As shown in Figure 4.6 the sparse autoencoder begins to outperform the ADMM LASSO 

BSS approach at 5 dB SNR and experience a significant improvement in performance from 

20 dB to 30 dB. The sparse autoencoder is a non-linear model and has a higher capacity to 

learn representations that explain the data as shown from the difference between the 

training data and generalization data in Figure 4.6. 
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4.4 Receiver Operating Characteristics 

The performance trade-off between the probability of detection and probability of false 

alarm is known as the Receiver Operating Characteristic (ROC) [86]. The ROC curve for 

the sparse autoencoder and ADMM LASSO for blind source separation of 20 signals is 

shown in Figure 4.7. 

 

 

Figure 4.7 ROC curve for the real-valued sparse autoencoder and ADMM LASSO for 
blind source separation of 20 signals. 
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CHAPTER 5 

SPARSE AUTOENCODER FOR COMPLEX-VALUED SIGNALS 

 

5.1 Complex-Valued Sparse Autoencoder for Source Separation 

Chapter 4 describes a real-valued sparse autoencoder for BSS of co-channel signals. In this 

chapter the complex-valued counterpart of the real-valued sparse autoencoder is defined. 

The fully complex-valued sparse autoencoder enables shrinkage of the real and imaginary 

parts of the complex-valued ordered pairs as a group, which is critical for sparse coding of 

complex-valued data as described in Section 1.4. A complex-valued sparse autoencoder 

design was proposed for pilot channel estimation for Sparse Code Multiple Access 

(SCMA) 5G systems using a ReLU activation function for the real and imaginary data 

separately with an ℓ1 norm penalty on the weights in the cost function, but the approach 

does not produce actual zeros within the sparse code of the encoded output  [63], [95]. The 

complex-valued sparse autoencoder proposed in this chapter maintains the phase 

information of the complex-valued data from the input domain to output range mapping of 

the activation function and produces actual zeros with a relatively small number of non-

zeros at the hidden layer encoded output resulting in true sparse coding. The activation 

function at the hidden layer maps complex-valued input data to complex-valued output 

data denoted in general by function 𝑓𝑓: ℂ → ℂ with an inherent shrinkage function that 

produces zeros at the hidden layer output for sparse coding. The complex-valued 

backpropagation algorithm for updating the gradient of the complex weights during 

optimization or training of the sparse autoencoder is performed in the complex domain 

[96]. The complex-valued sparse autoencoder architecture is shown in Figure 5.1.  
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The received signal 𝒙𝒙(𝑛𝑛) ∈ ℂ𝑀𝑀 is an M-dimensional vector as defined in Chapter 2 

and is fed to the input layer of complex-valued sparse autoencoder as shown in Figure 5.1. 

The cost function or loss function is optimized by minimizing Equation (5.1) with respect 

to the complex weights using Wirtinger calculus as described in Section 1.5. The complex-

valued function signal vector at the output of the neural network is denoted as 𝒚𝒚𝑜𝑜(𝑛𝑛) ∈ ℂ𝑀𝑀. 

The complex-valued desired response 𝒅𝒅(𝑛𝑛) is set equal to the input signal to the neural 

network 𝒙𝒙(𝑛𝑛). The complex-valued hidden layer signal output vector is denoted by 𝒚𝒚ℎ(𝑛𝑛), 

which represents a unique sparse solution via the ℓ1 norm of 𝒚𝒚ℎ(𝑛𝑛) as shown in the cost 

function in Equation (5.1). 

Input Layer        Hidden Layer      Output Layer 

𝑥𝑥�0(𝑛𝑛) = +1 

Input Signal 
𝒙𝒙(𝑛𝑛) ∈ ℂ𝑀𝑀 

Output Signal 
𝒚𝒚𝑜𝑜(𝑛𝑛) ∈ ℂ𝑀𝑀 

Encoded Signal 
𝒚𝒚ℎ(𝑛𝑛) ∈ ℂ𝑁𝑁 

Figure 5.1 Blind sparse autoencoder feedforward neural network 
architecture with 𝑁𝑁 > 𝑀𝑀 hidden layer nodes. The encoded signal 
output at the hidden layer provides a complex-valued sparse 
representation of the transmitted sources. 

𝑾𝑾𝒉𝒉 𝑾𝑾𝒐𝒐 
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ℒ(𝑾𝑾) =
1

|𝐵𝐵|�
‖𝒅𝒅(𝑛𝑛) −  𝒚𝒚𝑜𝑜(𝑛𝑛)‖22 +  𝜆𝜆‖𝒚𝒚ℎ(𝑛𝑛)‖1

n∈𝐵𝐵

 (5.1) 

 

The gradient of ℒ(𝑾𝑾) in Equation (5.1) with respect to the weights of the output 

layer is given in Equation (5.2). Complex conjugation is denoted by (⋅)∗. After the gradient 

of the cost function is updated with respect to weights 𝑾𝑾 over a batch 𝐵𝐵, the weights 𝑾𝑾 

are updated using the ADAM algorithm over the real and imaginary parts separately [84]. 

 

𝜕𝜕ℒ(𝑾𝑾)
𝜕𝜕𝑤𝑤𝑘𝑘𝑖𝑖

∗ (𝑛𝑛) =
1

|𝐵𝐵|�𝛿𝛿𝑘𝑘𝑜𝑜(𝑛𝑛)𝑦𝑦𝑖𝑖ℎ(𝑛𝑛)∗
𝐵𝐵

𝑛𝑛=1

 (5.2) 

 

The local gradient with respect to the output layer complex conjugate activation 

potential 𝑖𝑖𝑘𝑘𝑜𝑜(𝑛𝑛)∗ is defined in Equation (5.3). The activation potential 𝑖𝑖𝑘𝑘𝑜𝑜(𝑛𝑛) is defined in 

Equation (5.4). 

 

     𝛿𝛿𝑘𝑘𝑜𝑜(𝑛𝑛) = −[𝑑𝑑𝑘𝑘(𝑛𝑛) − 𝑦𝑦𝑘𝑘𝑜𝑜(𝑛𝑛)]𝜑𝜑𝑜𝑜′ (𝑖𝑖𝑘𝑘𝑜𝑜(𝑛𝑛)∗) (5.3) 

 

𝒗𝒗𝑜𝑜(𝑛𝑛) = 𝑾𝑾𝑜𝑜(𝑛𝑛)𝒚𝒚ℎ(𝑛𝑛) (5.4) 
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The hidden layer output 𝒚𝒚ℎ(𝑛𝑛) in Equation (5.4) is given by 𝒚𝒚ℎ(𝑛𝑛) =  𝜑𝜑ℎ�𝒗𝒗ℎ(𝑛𝑛)� 

and the hidden layer activation potential 𝒗𝒗ℎ(𝑛𝑛) is given by 𝒗𝒗ℎ(𝑛𝑛) = 𝑾𝑾ℎ(𝑛𝑛)𝒙𝒙�(𝑛𝑛) where all 

variables are considered to be complex-valued. 

The activation function at the hidden layer is a modReLU function, which is a 

complex-valued soft-threshold operator [58], [97]. The modReLU or complex-valued soft-

threshold activation function is defined in Equation (5.5), which maintains the phase of the 

input activation potential 𝑖𝑖𝑖𝑖ℎ(𝑛𝑛). 

 

𝜑𝜑ℎ �𝑖𝑖𝑖𝑖ℎ(𝑛𝑛)� =  
𝑖𝑖𝑖𝑖ℎ(𝑛𝑛)
�𝑖𝑖𝑖𝑖ℎ(𝑛𝑛)�

��𝑖𝑖𝑖𝑖ℎ(𝑛𝑛)� − 𝜆𝜆�
+

 (5.5) 

 
 

 
The gradient of the cost function ℒ(𝑾𝑾) with respect to the hidden layer weights is 

defined in Equation (5.6).  

 

𝜕𝜕ℒ(𝑾𝑾)
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖∗ (𝑛𝑛) =

1
|𝐵𝐵|  �𝛿𝛿𝑖𝑖ℎ(𝑛𝑛)𝑥𝑥�𝑖𝑖(𝑛𝑛)∗

𝐵𝐵

𝑛𝑛=1

 (5.6) 

 

The local gradient 𝛿𝛿𝑖𝑖ℎ(𝑛𝑛) with respect to the hidden layer complex conjugate 

activation potential 𝑖𝑖𝑖𝑖ℎ(𝑛𝑛)∗ is defined in Equation (5.7). 
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𝛿𝛿𝑖𝑖ℎ(𝑛𝑛) = 𝜑𝜑ℎ′ �𝑖𝑖𝑖𝑖ℎ(𝑛𝑛)∗��𝛿𝛿𝑘𝑘𝑜𝑜(𝑛𝑛)𝑤𝑤𝑘𝑘𝑖𝑖
𝑜𝑜 (𝑛𝑛)∗ + 𝜆𝜆 ∙ �

𝑦𝑦𝑖𝑖ℎ

�𝑦𝑦𝑖𝑖ℎ�
�𝜑𝜑ℎ′ �𝑖𝑖𝑖𝑖ℎ(𝑛𝑛)∗�

M

𝑘𝑘=1

 (5.7) 

 Equation (5.7) is inserted into Equation (5.6) for the gradient update for the hidden 

layer weight 𝒘𝒘𝒋𝒋𝒋𝒋(𝒏𝒏). 

5.2 Hyperparameter Selection 

Optimal selection of the tuning parameter or hyperparameter 𝜆𝜆 in Equations (5.1) and (5.5) 

is carried out using K-fold cross-validation as described in Section 3.2. The support 

recovery error versus  𝜆𝜆 for 𝜆𝜆 ∈ {. 01, . . . , 3} is shown in Figure 5.2 for the complex-valued 

ADMM LASSO and Figure 5.3 for the complex-valued sparse autoencoder. The optimal 

tuning parameter is shown to be equal to the complex-valued Gaussian noise variance of 1 

as defined in Equation (2.1).  
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Figure 5.2 Complex-valued ADMM LASSO expected training error and expected 
validation error for support recovery versus the hyperparameter 𝜆𝜆 for SNR values of 15 
dB, 20 dB, 25 dB, and 30 dB. 
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Figure 5.3 Complex-valued sparse autoencoder expected training error and expected 
validation error for support recovery versus the hyperparameter 𝜆𝜆 for SNR values of 15 
dB, 20 dB, 25 dB, and 30 dB. 
 
 
 
 

5.3 Generalization Performance 

The generalization error performance for the complex-valued sparse autoencoder and 

complex-valued ADMM LASSO for 20 co-channel complex signal sources is carried out 

similar to the real-valued case as described in Section 4.3. Figure 5.4 shows the signal 

activity truth data for 20 co-channel source transmissions in the top plot and the recovered 

signals are shown in the bottom plot via the sparse autoencoder. 
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Figure 5.4 Signal activity truth data for 20 co-channel source transmissions in the top plot 
and the recovered signals via the sparse autoencoder are shown in the bottom plot. 

  

 The generalization performance of the prediction error versus number of samples in 

the dataset is shown in Figure 5.5 for the complex-valued sparse autoencoder and complex-

valued ADMM LASSO for blind source separation.  
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Figure 5.5 The mean squared error (MSE) of the output layer of the complex-valued sparse 
autoencoder and MSE of the complex-valued ADMM LASSO on training and validation 
data using 5-fold cross-validation. 

 
 
 
 

The non-linear complex-valued sparse autoencoder is empirically shown to have a 

higher capacity than the linear LASSO algorithm by observing the difference between the 

training and validation error. A larger difference in error between the training and 

generalization error, which is approximated by cross-validation, indicates that the 

complex-valued sparse autoencoder is a more complex hypothesis class. For large samples 

the complex-valued autoencoder demonstrates less bias than the ADMM LASSO approach 

as shown in Figure 5.5. 
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5.4 Support Recovery Performance 

The support recovery performance was carried out using the Jaccard similarity index as 

described in Section 4.4. The support recovery performance for the complex-valued sparse 

autoencoder and complex-valued ADMM LASSO is shown in Figure 5.6 using validation 

data. A total of 10000 samples were used with 5-fold cross-validation. 

 

 

Figure 5.6 Support recovery for the complex-valued sparse autoencoder and complex-
valued ADMM LASSO over a range of SNR values from 0 dB to 30 dB. Maximum number 
of signals is 20. 
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It is clear from Figure 5.6 that the complex-valued sparse autoencoder has a 

markedly improved probability of support recovery over the two-stage complex-valued 

ADMM LASSO for SNR values greater than roughly 3 dB SNR. 

5.5 Receiver Operating Characteristics 

The ROC curve performance of the probability of detection versus probability of false 

alarm is shown in Figure 5.7 and is shown to outperform the complex-valued ADMM 

LASSO approach. 

 

 

Figure 5.7 ROC curve for the complex-valued sparse autoencoder and complex-valued 
ADMM LASSO for blind source separation of 20 signals. 
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CHAPTER 6 

GENERALIZATION BOUNDS AND SAMPLE COMPLEXITY 

 

6.1 PAC Learning for Regression 

A critical aspect of machine learning is the ability to generalize to unseen new data 

examples, meaning that the final trained predictor can perform well on unlabeled data 

inputs presented to the machine learning algorithm. How well the machine learning 

algorithm performs can be quantified in terms of two key metrics. First the generalization 

error should be close to the training error and second, the training error should be small. If 

the training error is small, but the generalization error on new data is very large, then the 

machine learning algorithm is a poor predictor on new examples. If the machine learning 

algorithm generalizes well, but has a significantly large error then the learning algorithm 

model or hypothesis class does not have the capacity to fit the data. Generalization bounds 

deal with the question of how well a learning algorithm can generalize to new data and is 

a function of its capacity and number of samples required to meet a desired level of 

performance known as the sample complexity [19]. The model capacity represents the 

complexity of the learning model and its degrees of freedom in fitting the data. Probably 

Approximately Correct (PAC) learning provides a probabilistic guarantee for a hypothesis 

class such that the generalization error is within a tolerance 𝜖𝜖 of the training error with 

probability 1 − 𝛿𝛿 if the sample complexity is satisfied.  

 The generalization loss, generalization error, or generalization risk 𝑅𝑅𝒫𝒫(ℎ) defined 

in Equation (6.1) is the expected error between the predictor ℎ(𝑥𝑥) and underlying target 

function plus noise values 𝓉𝓉, where (𝑥𝑥, 𝓉𝓉)~𝒫𝒫. 𝒫𝒫 is an unknown probability distribution 
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over the input domain space 𝒳𝒳 and target space 𝒯𝒯 denoted by the cartesian product 𝒳𝒳 × 𝒯𝒯, 

where 𝑥𝑥 ∈ 𝒳𝒳 and 𝓉𝓉 ∈ 𝒯𝒯. 

 

𝑅𝑅𝒫𝒫(ℎ) = 𝔼𝔼(𝑥𝑥,𝓉𝓉)~𝒫𝒫[𝐿𝐿(ℎ(𝑥𝑥), 𝓉𝓉)] (6.1) 

 

The loss function 𝐿𝐿(ℎ(𝑥𝑥), 𝓉𝓉) in Equation (6.1) is the squared loss as is common for 

regression problems and is given in Equation (6.2) [20].  

 

𝐿𝐿(ℎ(𝑥𝑥), 𝓉𝓉) = (ℎ(𝑥𝑥) − 𝓉𝓉)2 (6.2) 

 

The optimal predictor that minimizes Equation (6.1) cannot be determined directly 

given 𝒫𝒫 is unknown [35]. On the other hand, a set of D independent and identically 

distributed (i.i.d.) training examples 𝑆𝑆 = �(𝑥𝑥1,𝓉𝓉1), . . . , (𝑥𝑥D, 𝓉𝓉D)� ∈ (𝒳𝒳 × 𝒯𝒯)D drawn 

according to 𝒫𝒫 are used to find an optimal predictor that minimizes the mean squared error 

on the training examples and is formerly known as Empirical Risk Minimization (ERM) 

[20]. The empirical loss 𝑅𝑅�𝑆𝑆(ℎ) for a predictor ℎ ∈ ℋ on a set of samples 𝑆𝑆 is given in 

Equation (6.3) and the ERM predictor ℎ𝑆𝑆𝐸𝐸𝐸𝐸𝑀𝑀 that minimizes 𝑅𝑅�𝑆𝑆(ℎ) is defined in Equation 

(6.4). 
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𝑅𝑅�𝑆𝑆(ℎ) =
1
D
�𝐿𝐿(ℎ(𝑥𝑥𝑖𝑖), 𝓉𝓉𝑖𝑖)
D

𝑖𝑖=1

 (6.3) 

 

ℎ𝑆𝑆𝐸𝐸𝐸𝐸𝑀𝑀 ∈ arg min
ℎ∈ℋ

𝑅𝑅�𝑆𝑆(ℎ) (6.4) 

 

Hoeffding’s inequality can be used to provide a generalization bound for regression 

problems with a finite hypothesis class. Hoeffding’s inequality is given in Equation (6.5).  

 
 

ℙ�𝑅𝑅𝒫𝒫(ℎ) − 𝑅𝑅�𝑆𝑆(ℎ) > 𝜖𝜖� ≤ 𝑒𝑒− 2D𝜖𝜖
2

Γ2  (6.5) 

 
 

Equation (6.5) states that for any ℎ ∈ ℋ the probability that the generalization error 

deviates from the empirical error by more than 𝜖𝜖 is less than or equal to an exponentially 

decreasing quantity that is a function of the number of samples D, the tolerance 𝜖𝜖, and the 

maximum of the bounded loss function in Equation (6.2) denoted by 𝐿𝐿(ℎ(𝑥𝑥), 𝓉𝓉) ≤ Γ. The 

maximum of the loss function in Equation (6.2) for one receive signal as defined in 

Equation (2.1) from the antenna array considering a prediction output ℎ(𝑥𝑥) of zero gives 

Γ = 𝑃𝑃𝑙𝑙 + 𝜎𝜎2, which is a function of the signal power 𝑃𝑃𝑙𝑙 and noise variance 𝜎𝜎2. Γ can also 

be rewritten as a function of the SNR given by Γ = 𝜎𝜎2(SNR + 1). 

 The union bound is used to derive a generalization bound for all ℎ ∈ ℋ, which 

implies that the probability of the union of all events is less than or equal to the sum of the 
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individual event probabilities. The union bound is applied to the right-hand side of 

Equation (6.6a) in combination with Equation (6.5) for each hypothesis yielding the final 

generalization bound in Equation (6.6b). Equation (6.6b) provides a generalization bound 

∀ℎ ∈ ℋ based on the capacity or complexity of ℋ. 

 

ℙ�∃ℎ ∈ ℋ: �𝑅𝑅𝒫𝒫(ℎ) − 𝑅𝑅�𝑆𝑆(ℎ)� > 𝜖𝜖� = ℙ ����𝑅𝑅𝒫𝒫(ℎ)− 𝑅𝑅�𝑆𝑆(ℎ)� > 𝜖𝜖�
ℎ∈ℋ

� (6.6a) 

 
 

≤ � ℙ��𝑅𝑅𝒫𝒫(ℎ) − 𝑅𝑅�𝑆𝑆(ℎ)� > 𝜖𝜖�
ℎ∈ℋ

= 2|ℋ|𝑒𝑒
− 2D𝜖𝜖2

(𝑃𝑃𝑠𝑠+𝜎𝜎2)2 (6.6b) 

 

For binary classification the Vapnik-Chervonenkis (VC) dimension can be used for 

defining the capacity of ℋ, but that does not translate to regression prediction problems 

[20], [90]. However, the pseudo-dimension can be applied to regression problems that 

transforms continuous variables into binary states resulting in a pseudo-VC dimension 

[87]-[89], [90]. The pseudo-dimension for a continuous-valued hypothesis class is the 

largest set pseudo-shattered by ℱD denoted by Pdim(ℋ) [87], [88], [90].  

The set {𝑥𝑥1, . . . , 𝑥𝑥D} ⊆ 𝒳𝒳 is considered pseudo-shattered by ℱD if ∃ {𝑓𝑓d: 𝑓𝑓d ∈ ℱD}  

that satisfies all dichotomies for D-points given by Equation (6.7) where 𝑡𝑡1𝑤𝑤 , . . . , 𝑡𝑡D𝑤𝑤 ∈ ℝ 

witness the shattering [87], [88], [90]. 
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���
sgn(𝑓𝑓𝑑𝑑(𝑥𝑥1) − 𝑡𝑡1𝑤𝑤)

⋮
sgn(𝑓𝑓𝑑𝑑(𝑥𝑥D) − 𝑡𝑡D𝑤𝑤)

� : 𝑓𝑓𝑑𝑑 ∈ ℱD�� = 2D (6.7) 

 

Equation (6.6b) provides a combinatorial bound that requires a model capacity 

approximation for continuous-valued functions via the pseudo-dimension, and is valid for 

any data distribution 𝒫𝒫. An alternative approach is to provide a data-dependent bound using 

the Rademacher complexity that does not require the model capacity to be explicitly 

defined [91], which is described in Section 6.2.  

 

6.2 Rademacher Complexity Generalization Bound 

The Rademacher complexity can be used to measure the capacity or complexity of a 

hypothesis class and provide a data-dependent generalization bound. The empirical 

Rademacher complexity of the family of loss functions ℱℒ associated with the hypothesis 

class ℋ with respect to the sample set 𝑆𝑆 = �(𝑥𝑥1, 𝓉𝓉1), . . . , (𝑥𝑥D, 𝓉𝓉D)� ∈ (𝒳𝒳 × 𝒯𝒯)D is given in 

Equation (6.8). The family of loss functions denoted by ℱℒ is defined as ℱℒ =

{(𝑥𝑥, 𝓉𝓉) ⟼ ℒ(ℎ(𝑥𝑥), 𝓉𝓉):ℎ ∈ ℋ}, which is a function of the data distribution 𝒫𝒫 and 

hypothesis class ℋ.  

 

ℜ�𝑆𝑆(ℱℒ) = 𝔼𝔼𝝈𝝈 � sup
𝑓𝑓ℒ∈ℱℒ

1
D
�𝜎𝜎𝑖𝑖𝑓𝑓ℒ(𝑥𝑥𝑖𝑖, 𝓉𝓉𝑖𝑖)
D

𝑖𝑖=1

� (6.8) 
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The set of parameters {𝜎𝜎𝑖𝑖}𝑖𝑖=1D  are called Rademacher random variables and are i.i.d. random 

variables with ℙ(𝜎𝜎𝑖𝑖 = +1) = ℙ(𝜎𝜎𝑖𝑖 = −1) =  1
2� . The Rademacher complexity in 

Equation (6.8) captures the richness of a family of functions whereby a function class that 

correlates better with random noise has a higher model complexity. Another way to 

interpret the Rademacher complexity is to consider the gap between the generalization 

error and training error, whereby a larger gap implies a higher model complexity in 

comparison to a lower model capacity for a given sample set 𝑆𝑆~𝒫𝒫D. To better understand 

this notion the Rademacher complexity will be explained from an 𝜖𝜖-representative sample 

perspective, which states that a training set 𝑆𝑆~𝒫𝒫D is 𝜖𝜖-representative if it satisfies Equation 

(6.9) ∀ℎ ∈ ℋ [20]. 

 

sup
ℎ∈ℋ

�𝑅𝑅𝒫𝒫(ℎ) − 𝑅𝑅�𝑆𝑆(ℎ)� ≤ 𝜖𝜖,            ∀ℎ ∈ ℋ (6.9) 

 

 The representativeness of a training set 𝑆𝑆 with respect to ℱℒ is defined as the 

supremum of the difference between the generalization error of a function 𝑓𝑓ℒ ∈ ℱℒ and its 

empirical error or training error and is given in Equation (6.10) [20]. The generalization 

error 𝑅𝑅𝒫𝒫(𝑓𝑓ℒ) and empirical risk 𝑅𝑅�𝑆𝑆(𝑓𝑓ℒ) in Equation (6.10) for a function 𝑓𝑓ℒ ∈ ℱℒ are defined 

similarly with respect to Equations (6.1) and (6.3), but rather as a function of 𝑓𝑓ℒ that maps 

to the loss function.  
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Rep𝒫𝒫(ℱℒ, 𝑆𝑆) = sup
𝑓𝑓ℒ∈ℱℒ

�𝑅𝑅𝒫𝒫(𝑓𝑓ℒ) − 𝑅𝑅�𝑆𝑆(𝑓𝑓ℒ)� (6.10) 

  

The validation error can be used to approximate the generalization error of an ERM 

predictor or hypothesis ℎ𝑆𝑆𝐸𝐸𝐸𝐸𝑀𝑀 ∈ arg min
ℎ∈ℋ

𝑅𝑅�𝑆𝑆(ℎ) using a subset or holdout set from 𝑆𝑆 [19]. 

Assume that 𝑆𝑆~𝒫𝒫D is split into a validation set 𝑆𝑆𝐶𝐶~𝒫𝒫D 2⁄  and training set 𝑆𝑆𝑇𝑇~𝒫𝒫D 2⁄ , where 

𝑆𝑆 = 𝑆𝑆𝐶𝐶 ⋃𝑆𝑆𝑇𝑇. The validation error and training error based on sample set 𝑆𝑆~𝒫𝒫D provides 

an approximation of the representativeness of 𝑆𝑆 denoted as Rep𝒫𝒫� (ℱℒ,𝑆𝑆) as defined in 

Equation (6.11) [20]. 

Rep𝒫𝒫� (ℱℒ, 𝑆𝑆) = sup
𝑓𝑓ℒ∈ℱℒ

�𝑅𝑅�𝑆𝑆𝑉𝑉(𝑓𝑓ℒ) − 𝑅𝑅�𝑆𝑆𝑇𝑇(𝑓𝑓ℒ)� (6.11) 

 

Equation (6.11) can be re-written more compactly as given in Equation (6.12) assuming 

that 𝑆𝑆𝐶𝐶 = {(𝑥𝑥𝑖𝑖, 𝓉𝓉𝑖𝑖):𝜎𝜎𝑖𝑖 = +1} and 𝑆𝑆𝑇𝑇 = {(𝑥𝑥𝑖𝑖, 𝓉𝓉𝑖𝑖):𝜎𝜎𝑖𝑖 = +1}. 

 

sup
𝑓𝑓ℒ∈ℱℒ

2
D
�𝜎𝜎𝑖𝑖𝑓𝑓ℒ(𝑥𝑥𝑖𝑖, 𝓉𝓉𝑖𝑖)
D

𝑖𝑖=1

 (6.12) 

 

Equation (6.12) is shown to be similar to the empirical Rademacher complexity as defined 

in Equation (6.5), where Equation (6.5) takes the expectation over the Rademacher random 

variables 𝝈𝝈. 
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The data-dependent generalization bound for all 𝑓𝑓ℒ ∈ ℱℒ based on the empirical 

Rademacher complexity for D samples 𝑆𝑆 with confidence 1 − 𝛿𝛿 is defined in Equation 

(6.13) where the maximum squared error loss associated with each received signal is given 

by 𝐿𝐿(ℎ(𝑥𝑥),𝓉𝓉) ≤ Γ = 𝑃𝑃𝑙𝑙 + 𝜎𝜎2 = 𝜎𝜎2(SNR + 1).  

 
 

𝑅𝑅𝒫𝒫(𝑓𝑓ℒ) ≤ 𝑅𝑅�𝑆𝑆(𝑓𝑓ℒ) + 2ℜ�𝑆𝑆(ℱℒ) + 3Γ� 1
2D

ln 2
𝛿𝛿
 

𝑅𝑅𝒫𝒫(𝑓𝑓ℒ) ≤ 𝑅𝑅�𝑆𝑆(𝑓𝑓ℒ) + 2ℜ�𝑆𝑆(ℱℒ) + 3(𝑃𝑃𝑙𝑙 + 𝜎𝜎2)� 1
2D

ln 2
𝛿𝛿
 

(6.13) 

 
 

The loss function over 𝑀𝑀 receive antenna elements averaged over D examples 

denoted by the sample set 𝑆𝑆 = �(𝑥𝑥1, 𝓉𝓉1), . . . , (𝑥𝑥D, 𝓉𝓉D)� ∈ (𝒳𝒳 × 𝒯𝒯)D is defined in Equation 

(6.14).  

1
D
��𝐿𝐿(ℎ𝑖𝑖(𝒙𝒙𝑖𝑖),𝓉𝓉𝑖𝑖

𝑖𝑖)
𝑀𝑀

𝑖𝑖=1

D

𝑖𝑖=1

 (6.14) 

 

The received signals as defined in Chapter 2 are i.i.d. and the maximum of the loss 

function in Equation (6.14) for each receive signal is given by max �𝐿𝐿(ℎ𝑖𝑖(𝒙𝒙𝑖𝑖), 𝓉𝓉𝑖𝑖
𝑖𝑖)� = 𝑃𝑃𝑙𝑙 +

𝜎𝜎2. The Rademacher complexity data-dependent generalization bound for 𝑀𝑀 receive 

antennas is defined in Equation (6.15). If the loss function in Equation (6.14) is also 

averaged over 𝑀𝑀 antenna elements by including the scalar multiple 1
𝑀𝑀�  then the 

Rademacher complexity data-dependent generalization bound defaults to Equation (6.13). 
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𝑅𝑅𝒫𝒫(𝑓𝑓ℒ) ≤ 𝑅𝑅�𝑆𝑆(𝑓𝑓ℒ) + 2ℜ�𝑆𝑆(ℱℒ) + 3𝑀𝑀(𝑃𝑃𝑙𝑙 + 𝜎𝜎2)�
1

2D
ln

2
𝛿𝛿

 (6.15) 

 

The Rademacher complexity generalization bound is derived based on 

McDiarmid’s inequality, which is used to bound the representativeness Rep𝒫𝒫(ℱℒ,𝑆𝑆) as 

defined in Equation (6.10) of an independent sample set 𝑆𝑆 [20], [87]. For convenience of 

notation Φ(𝑆𝑆) is defined as Φ(𝑆𝑆) = Rep𝒫𝒫(ℱℒ, 𝑆𝑆). McDiarmid’s inequality applied to Φ(𝑆𝑆) 

is defined in Equation (6.16a) for a real-valued function Φ(𝑆𝑆): 𝒵𝒵D → ℝ with 𝑆𝑆 =

{𝓏𝓏𝑖𝑖 = (𝑥𝑥𝑖𝑖, 𝓉𝓉𝑖𝑖): 𝓏𝓏𝑖𝑖~𝒫𝒫, 𝑖𝑖 = 1, . . . , D}. The parameter 𝑐𝑐𝑖𝑖 = 1
D

(𝑃𝑃𝑙𝑙 + 𝜎𝜎2) in Equation (6.16a) is 

derived in Equation (6.16b) and is an upper bound of |Φ(𝑆𝑆) −Φ(𝑆𝑆′)| ≤ 𝑐𝑐𝑖𝑖, which makes 

use of the property that the supremum of the difference is greater than or equal to the 

difference of supremum [87]. 𝑆𝑆 and 𝑆𝑆′ denote two sample sets that only differ between 

samples 𝓏𝓏𝑖𝑖 and 𝓏𝓏𝑖𝑖′. 

ℙ[|Φ(𝑆𝑆) − 𝔼𝔼𝑆𝑆[Φ(𝑆𝑆)]| ≥ 𝜖𝜖] ≤ 2𝑒𝑒
− 2𝜖𝜖2

∑ 𝑐𝑐𝑖𝑖
2D

𝑖𝑖=1 = 2𝑒𝑒
− 2D𝜖𝜖2

(𝑃𝑃𝑠𝑠+𝜎𝜎2)2 (6.16a) 

 

|Φ(𝑆𝑆)−Φ(𝑆𝑆′)| ≤ � sup
𝑓𝑓ℒ∈ℱℒ

�𝑅𝑅�𝑆𝑆(𝑓𝑓ℒ) − 𝑅𝑅�𝑆𝑆′(𝑓𝑓ℒ)�� = � sup
𝑓𝑓ℒ∈ℱℒ

𝑓𝑓ℒ(𝓏𝓏𝑖𝑖) − 𝑓𝑓ℒ(𝓏𝓏𝑖𝑖′)
D

� ≤ 𝑐𝑐𝑖𝑖

=
1
D

(𝑃𝑃𝑙𝑙 + 𝜎𝜎2) 

(6.16b) 
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McDiarmid’s inequality can be used to derive a 1 − 𝛿𝛿 confidence bound for Φ(𝑆𝑆) 

by setting Equation (6.16a) equal to 𝛿𝛿 and solving for 𝜖𝜖 and then rewriting Equation (6.16a) 

as ℙ[|Φ(𝑆𝑆) − 𝔼𝔼𝑆𝑆[Φ(𝑆𝑆)]| ≤ 𝜖𝜖] resulting in Equation (6.17). 

 

Φ(𝑆𝑆) ≤ 𝔼𝔼𝑆𝑆[Φ(𝑆𝑆)] + (𝑃𝑃𝑙𝑙 + 𝜎𝜎2)�
1

2D
ln �

2
𝛿𝛿
� (6.17) 

 

The expectation term in Equation (6.17) 𝔼𝔼𝑆𝑆[Φ(𝑆𝑆)] is upper bounded by the 

expected Rademacher complexity as given in Equation (6.18) [20], [87]. 

 

𝔼𝔼𝑆𝑆[Φ(𝑆𝑆)] ≤ 2 𝔼𝔼
𝑆𝑆~𝒫𝒫D

�ℜ�𝑆𝑆(ℱℒ)� = 2ℜD(ℱℒ) (6.18) 

 

The expectation term 𝔼𝔼𝑆𝑆[Φ(𝑆𝑆)] on the right-hand side of Equation (6.17) can be 

replaced by the upper bound of Equation (6.18) resulting in a Rademacher complexity 

bound given in Equation (6.19) that is a function of the expected Rademacher complexity 

over all samples of size D.  

 

𝑅𝑅𝒫𝒫(𝑓𝑓ℒ) ≤ 𝑅𝑅�𝑆𝑆(𝑓𝑓ℒ) + 2ℜD(ℱℒ) + (𝑃𝑃𝑙𝑙 + 𝜎𝜎2)� 1
2D

ln 2
𝛿𝛿

 (6.19) 
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Using McDiarmid’s inequality again to bound the expected Rademacher 

complexity ℜD(ℱℒ) results in the inequality in Equation (6.20) that is upper bounded by the 

empirical Rademacher complexity and 𝜖𝜖 = (𝑃𝑃𝑙𝑙 + 𝜎𝜎2)� 1
2D

ln �2
𝛿𝛿
�. 

 

ℜD(ℱℒ) ≤ ℜ�𝑆𝑆(ℱℒ) + (𝑃𝑃𝑙𝑙 + 𝜎𝜎2)�
1

2D
ln �

2
𝛿𝛿
� (6.20) 

 

Substituting the upper bound in Equation (6.20) for ℜD(ℱℒ) in Equation (6.19) 

gives the Rademacher complexity data-dependent generalization bound defined in Equation 

(6.13) that is a function of the empirical Rademacher complexity. The derivation of the 

Rademacher complexity generalization bound defined in Equation (6.15) for 𝑀𝑀 receive 

antennas follows similarly by replacing 𝑐𝑐𝑖𝑖 in Equations (6.16a) and (6.16b) with 𝑐𝑐𝑖𝑖 =

𝑀𝑀
D

(𝑃𝑃𝑙𝑙 + 𝜎𝜎2). 

 The sample complexity defines the number of required samples D needed to 

achieve a certain generalization error tolerance 𝜏𝜏 with respect to the training error and 

empirical Rademacher complexity for a confidence parameter 𝛿𝛿 that defines the probability 

of violating the error tolerance 𝜏𝜏. Setting the last term of the right-hand side of inequality 

Equation (6.15) equal to 𝜏𝜏 as given in Equation (6.21) and solving for D provides a sample 

complexity as a function of the signal-to-noise ratio (SNR), noise power 𝜎𝜎2, confidence 

parameter 𝛿𝛿, error tolerance 𝜏𝜏, and number of received signals 𝑀𝑀, which is defined in 

Equation (6.22).  
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𝑅𝑅𝒫𝒫(𝑓𝑓ℒ) ≤ 𝑅𝑅�𝑆𝑆(𝑓𝑓ℒ) + 2ℜ�𝑆𝑆(ℱℒ) + 𝜏𝜏 

𝜏𝜏 = 3𝑀𝑀(𝑃𝑃𝑙𝑙 + 𝜎𝜎2)�
1

2D
ln

2
𝛿𝛿

 

(6.21) 

 

D ≥
1
2
�
3𝑀𝑀(𝑃𝑃𝑙𝑙 + 𝜎𝜎2)

𝜏𝜏
�
2

ln �
2
𝛿𝛿
� =

1
2
�
3𝑀𝑀𝜎𝜎2(SNR + 1)

𝜏𝜏
�
2

ln �
2
𝛿𝛿
� (6.22) 

 

The empirical Rademacher complexity generalization error data-dependent bound 

for the BSS complex-valued sparse autoencoder hypothesis class with error tolerance 𝜏𝜏 =

.1 and confidence parameter 𝛿𝛿 = .1 in Equation (6.21) is shown in Figure 6.1. The 

simulation signal model is comprised of twenty co-channel QPSK signal sources as 

described in Chapter 2, which includes a time-invariant Rayleigh fading MIMO channel 

and SNR of 20 dB with twenty receive antenna elements. The loss function in Equation 

(6.14) was additionally scaled by the number of antennas and thus, 𝑀𝑀 = 1 in Equation 

(6.21). The 5-Fold cross-validation generalization error and training error from Figure 5.5 

for the BSS complex-valued sparse autoencoder are also included in Figure 6.1 for 

comparison with the empirical Rademacher complexity generalization bound. The 

empirical Rademacher complexity generalization bound is representative for all ℎ ∈ ℋ. 
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Figure 6.1 The empirical Rademacher complexity generalization error bound with error 
tolerance 𝜏𝜏 = .1 and confidence parameter 𝛿𝛿 = .1 for the BSS complex-valued sparse 
autoencoder hypothesis class. The simulation signal model includes twenty QPSK co-
channel signal sources, Rayleigh fading MIMO channel with twenty receive antenna 
elements, and a signal-to-noise ratio of 20 dB. 
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CHAPTER 7 

CONCLUSION 

 

A one-stage blind source separation algorithm was developed using a sparse autoencoder 

framework for separation of multiple co-channel radio frequency signal sources. The one-

stage BSS algorithm was successful in separating twenty co-channel overlapping 

quadrature phase-shift keying sources with each at the same power level. The BSS sparse 

autoencoder is able to solve for the channel matrix and signal sources within one 

optimization stage without a-priori knowledge of the channel or transmitted signals. The 

MIMO channel was considered to be a time-invariant Rayleigh flat-fading channel and the 

signal sources were assumed to exhibit sparse activity. Therefore, over a long-term time 

duration many signals are present, but over a short-term time scale there are only a minimal 

number of active transmissions such that the received signal takes on a sparse 

representation. Sparsity was exploited for separating the transmitted sources and is 

considered the inductive bias of the sparse autoencoder learning model.  

The performance of the one-stage sparse autoencoder was compared to a two-stage 

learning model whereby the channel matrix and source signals are recovered using 

alternate optimization. Therefore, the two-stage process requires the BSS source recovery 

problem to be solved in parts where the ADMM LASSO was used for sparse coding and 

the method of optimal directions was used for dictionary learning of the channel matrix. 

On the other hand, the proposed BSS sparse autoencoder is able to solve for the channel 

matrix and source signals in one-stage and demonstrated superior performance over the 

two-stage BSS approach. The generalization performance showed that the sparse 
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autoencoder has a higher capacity to fit the data, but also requires more examples than the 

two-stage learning algorithm to generalize well. In addition, the support recovery versus 

signal-to-noise ratio and probability of detection versus false alarm were used as measures 

of performance as well. The support recovery is given by the Jaccard similarity index and 

is taken as the intersection of two vectors divided by the union of the two vectors. Hence, 

the Jaccard similarity provides an apposite measure of support recovery including 

detections and false alarms within the performance measure. The receiver operating 

characteristic curve provides a performance trade-off between the probability of detection 

and probability of false alarm. The one-stage BSS sparse autoencoder algorithm was shown 

to outperform the two-stage ADMM LASSO for both the support recovery and ROC curve.

 Three factors were included in the BSS sparse autoencoder to impose sparsity on 

the hidden layer output of the encoder. First the sparse autoencoder in designed to have a 

wider hidden layer width than the input layer and output layer of the neural network. 

Second the cost function or loss function includes an ℓ1 norm penalty on the hidden layer 

outputs. Third the hidden layer activation function is a soft-threshold operator also known 

as modReLU that supports complex-valued and real-valued signals.  

The ability to generalize to new data is predominately what machine learning is all 

about. Generalization bounds provide an inequality that upper bounds the generalization 

error in terms of the training error, model capacity, number of samples, and probability that 

the deviation between the generalization and training error is greater than 𝜖𝜖 is some small 

value. Two generalization bounds were derived for regression using Hoeffding’s inequality 

and the Rademacher complexity. Hoeffding’s inequality was used for deriving a 

generalization bound that includes the capacity of the model. The Rademacher 
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generalization bound is a data-dependent bound and does not require the explicit 

cardinality of the hypothesis class to be defined. Both bounds include the signal power and 

noise power as part of the bounds. As the noise increases the generalization error gets worse 

as expected and is incorporated into the bounds.  

Not only was the one-stage sparse autoencoder successful in separating RF co-

channel signal sources, but it is extremely efficient in sparse coding of new examples via 

a simple matrix-vector product calculation that does not require any additional optimization 

steps as is the case in the two-stage process. 
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