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ABSTRACT

UN-FAIR TROJAN:
TARGETED BACKDOOR ATTACKS AGAINST MODEL FAIRNESS

by
Nicholas Furth

Machine learning models have been shown to be vulnerable against various backdoor

and data poisoning attacks that adversely affect model behavior. Additionally, these

attacks have been shown to make unfair predictions with respect to certain protected

features. In federated learning, multiple local models contribute to a single global

model communicating only using local gradients, the issue of attacks become more

prevalent and complex. Previously published works revolve around solving these

issues both individually and jointly. However, there has been little study on the effects

of attacks against model fairness. Demonstrated in this work, a flexible attack, which

we call Un-Fair Trojan, that targets model fairness while remaining stealthy can have

devastating effects against machine learning models.
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CHAPTER 1

INTRODUCTION

1.1 Objective

Neural networks are vulnerable to backdoor attacks, even more so when in a federated

learning system. Existing works have only focused on traditional backdoor attacks,

such as trojan triggers in image recognition tasks. Currently, there are no works that

have done an expensive study into the effects of an attack against model fairness.

Thus, unlike current works which look to make models more fair, the objective of

this work is to combine a backdoor attack to attempt to make a model less fair

where there has been little research [23] [26] [24] [2] [4] [5] [14] [12]. In other works

where a backdoor is present, the attacker’s objective is often trivial. However, since

this attack focuses on model fairness, the attacker’s objective is more complex. This

research explores two methods for attacking model fairness, adversarial label flipping,

where the sensitive feature will have its labels flipped to match the model output

with probability ρ which is adjusted to obtain the best fairness/accuracy trade off.

By using ρ we can control the balance between accuracy and fairness which keeps the

attack stealthy while also remaining as effective as possible. The goal of this method

is to increase the correlation between the sensitive feature and the prediction which

as a result increases the risk difference as shown in (1.2). The second method involves

flipping the labels only when a trojan trigger is present instead of with a probability ρ.

Unlike the label flipping attack, one can control when the attack happens by placing

a small white box in the corner of the input data similar to Figure 1.1. Another

advantage of the trojan trigger attack, is unlike with the label flipping attack, we do

not need to rely on the model learning how to predict the sensitive feature within

an image. Both of these methods are combined with adversarial model replacement
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and the naive approach in an FL setting with the aggregation method shown in (1.1)

and 20 clients each with 1 local training epoch per global iteration. Additionally, this

work explores how the attacks works against different types of data sets, i.e. image

and tabular data.

1.2 Organization

This thesis is organized into 5 chapters and 4 appendixes. Chapter 1 summarizes

the research objectives. Chapter 2 focuses on literature review. Chapter 3 discusses

in detail how the attacks were implemented. Chapter 4 discusses the experiments

and their results. Chapter 5 discusses conclusions and future work. Appendix A and

Appendix B provide a detailed overview of the model architectures and data sets used

respectively. Appendix C conducts a more detailed analysis of the three data sets and

how their distributions relate to fairness. Finally, Appendix D discusses the effects

of gradient pruning on model fairness.
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CHAPTER 2

LITERATURE REVIEW

This chapter examines the previous works done in fair machine learning in both

centralized and federated learning scenarios. Additionally it examines attacks against

federated learning systems and displays the importance of such research problems.

This literature review aims to provide a clear understanding of the conceptual and

mathematical theories which are to conduct the methods shown in chapter 3.

2.1 Federated Learning

Federated learning (FL) is a distributed computing method which trains multiple local

models on its own data set to obtain a single global model [17]. Subsequently the

parameters of each local model are then sent to a server for aggregation. Aggregation

methods can be weighted or unweighted averages. Once aggregation is completed, the

global parameters are redistributed to each local model to begin the next iteration.

This process is repeated for τ global iterations. Over each iteration, each local model

is exposed to a wider range of data. Through each set of local parameters which

protects local data from being seen by other models allowing them to generalize

better to new data. A simple federated learning model can be expressed as follows,

θt+1
g =

1

m

m∑
i

θti (2.1)

where θt+1
g represents the global parameters after aggregation at iteration t, θi is

the local parameters of model i, and m represents the total number of local models

selected in a training round out of n local models, where m ≤ n. Typically, the M

models are selected based on several factors, such as battery life, internet connection

strength and the number of training epochs made since the previous global iteration.
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More complex methods of FL is shown in [3] [22]. However, the aggregation method

is (1.1). Further FL has desirable traits, such as that local data of each model is

never seen by the server or other models; preserving data privacy since only the

parameters are communicated. The data privacy aspect of FL is the most important

feature. A majority of local, state and federal jurisdictions require user data to be

kept private. By only communicating model parameters, instead of pooling the data

to a train a single model, FL models can comply with such regulations such as HIPAA,

which require: (1) Ensure the confidentiality, integrity, and availability of Protected

Health Information (PHI) created, received, maintained, or transmitted, (2) Protect

against any reasonably anticipated threats and hazards to the security or integrity

of PHI, and (3) Protect against reasonably anticipated uses or disclosures of PHI

not permitted by the Privacy Rule [1]. Due to the data handling criteria, FL has

gained significant popularity in the medical field. Hospital networks can now train

models using data from multiple locations without comprising patient privacy. This

is especially important since not only do patient demographics vary from different

localities, but so do the privacy regulations. Since models are trained on multiple

devices, there is less computational and memory strain on any single device due to

its distributed nature. This allows applications which run on slower devices such

as mobile phones or embedded devices, i.e. micro controllers and IoT devices to

make a meaningful contribution to a global model while not straining their local

computational and memory resources. Finally, since only the model gradients are

communicated, the bandwidth needed is much smaller compared to communicating

the local data of each client.
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Figure 2.1 A simple Federated Learning system.

2.2 Hyper Networks

A Hyper Network is a state of the art machine learning system where a small neural

network, called a hyper network generates the parameters for a larger neural network

called a main network, where the main network is up to ten times larger than the

hyper network [7]. The main network has the same objectives as any usual neural

network. The hyper network will take a descriptor v and the main network parameters

as an inputs and then predict a new set of parameters for the main network. Hyper

networks can be applied in a manner to FL, where the hyper network learns a family

of main networks as opposed to a single network [20]. Unlike FL, there is no global

model which gets distributed to each local mode, instead each local model receives

a personalized model. Although each model receives a personalised model, they still

learn the shared features of each local model through the weights of the hyper network.

Similarly to FL, hyper networks are vulnerable to back door attacks as such as the

model transfer attack where poisoned models attempt to infect the hyper network

and get distributed to each of the main networks [10].
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Figure 2.2 Hyper Network Implementation.

2.3 Fairness in Machine Learning

Machine learning models utilize data which may contain sensitive features i.e. race,

age or gender. Using these features for decision making is undesirable when ensuring

a fair decision. One of the main root causes of this problem is that the models are

trained using data which is considered to be unfair. Various methods to remove the

effect of these features have been implemented. [26] [24] Typically, by either removing

the correlation between the sensitive features and the output through the use of the

objective function or by inserting perturbations prevents the model from learning

the correlations between the sensitive feature and its output. Ensuring fairness in

this manner is critical for regulation compliance. Model fairness becomes further

complicated when the models are used in multiple jurisdictions that provide different

definitions of fairness which need to be satisfied. Some examples of laws which

require fairness are the Civil Rights Act, Title VIII and the Equal Employment

Opportunities Act. To determine whether a model is fair, use of a risk difference

function in particular demographic parity to measure how sensitive features, s, effects

the output of a model, f, which is defined here,
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RDDemographicParity = |P (f(X) = y|s = 1)− P (f(X) = y|s = 0)| (2.2)

where f(X) is the prediction made by the model and s is a sensitive feature. The risk

difference is measured between 0 and 1, 0 being the most fair and 1 the least fair,

(typically 0.05, or less, is considered to be fair). Although there are many metrics to

measure fairness, there is yet to be a consensus on which metric is best. In addition to

demographic parity there are several other notations for fairness, unawareness where

the model is expected to make the same prediction regardless of the sensitive feature.

Accuracy Parity where the accuracy among each value of a sensitive feature is the

same. Finally there is Equality of Opportunity which is a weaker or lazy version of

demographic parity. Currently demographic parity definition for fairness is popular

among the fair machine learning community. Solving fairness in a centralised setting

is a closed problem, however solving fairness in an FL setting is much more difficult.

Due to the data heterogeneity between each local model finding a set of shared global

weights which can reasonably solve for fairness across each model is difficult. Attempts

to solve fairness in an FL setting have been made in [2] [4] [5] [14] [12].

2.4 Backdoor Attacks

2.4.1 Trojan Triggers

To change the behavior of a model in a malicious manner, a trojan trigger can

be injected into a portion of the training data. This trigger is typically a set of

features which, when a certain value is present, the output will always be the same

regardless of the other features. This attack causes the model to overfit to the

backdoor data, allowing the parameters which are of importance to the attack to be

disproportionately high. Additionally, this method of attack easily remains stealthy

since it only activates when the trigger is present. With this method it can be trivial to

7



obtain a near perfect backdoor success rate while maintaining a high benign accuracy

to avoid detection.

(a) MNIST data sample without a

trojan trigger.

(b) MNIST data sample with a

trojan trigger.

Figure 2.3 Trojan trigger example for the MNIST data set.

2.4.2 Adversarial Label Flipping

Adversarial label flipping is one of the most basic forms of a data poisoning attack.

[13] In this attack, the attacker changes several labels to modify model behavior,

Typically, this behavior reduces the overall performance of a particular class or to

make the model overfit to its training data, similar to a trojan trigger. Unlike a trojan

trigger, this attack will always be present:

2.4.3 Adversarial Model Replacement

In adversarial model replacement, the attacker attempts to replace the global model

with the backdoor model through the scaling of gradients and subtracting the values

of the other gradients. [3] [22] The attacking model will then replace the global

model and be distributed to each of the other local models after aggregation. The

implementation of adversarial model replacement can be performed as follows,

X = θtg +
η

n
×

m∑
i=1

×(θt+1
i − θtg) (2.3)
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Where X is the malicious model which we want to be distributed to each local model,

η is the global learning rate, θt+1
i is the local model i, at iteration t, and m is the

subset of n models. However, since the aggregation method shown in (1.1), a global

learning rate is not included nor does it subtract the global parameters from each set

of local parameters before aggregation, the model replacement can be simplified to

equation (1.4) which is shown here.

X = m×X −
m−1∑
i

θi (2.4)

This, can then be applied to equation (1.1). Typically a FL system will not verify

that model training was benign, making it trivial for a malicious model to infect the

other models. Additionally, adversarial model replacement is a single-shot attack,

meaning the global model will immediately distribute the malicious model to each

model in the next iteration. Although model replacement is the most effective attack,

it requires knowledge of the other model’s parameters, which due to this white box

nature, is very difficult to implement. Model replacement still provides the best case

scenario for the attacker.

2.4.4 The Naive Approach

Unlike model replacement which requires knowledge of the other model’s weights and

the number of models, the Naive Approach does not require any information about

other models [3]. The idea of the naive approach is simple, an attack who controls

a fraction of local models α trains each of their models on poisoned data which will

then effect the global model after aggregation. While this method is simpler and

easier to implement than model replacement, it requires a large fraction of the local

models to be control be by the attacker to have a significant impact on the global

model. Additionally, if the attacking models are not present in an iteration, their

9



contributions will become aggregated out of the global model. Ensuring that as many

attacking models as possible are present at each iteration is crucial to the success of

this form of attack. This can be achieved by ensuring that each local model has

sufficient battery life, internet connectivity and by having several training iterations

completed since the previous global iteration. The implementation of this attack is

shown in algorithm 3.
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CHAPTER 3

METHODS

This chapter builds upon the works discussed in chapter 2 and discusses the methods

which are used to attack fairness in a federated learning setting, including both the

attack with respect poisoning the data and how the poisoned model is distributed

to each local model through the global server. Namely, this chapter discusses

probabilistic label flipping, trojan triggers, the model replacement and the naive

approach attacks. Each of these methods are used to attack model fairness and

obtain the results shown in chapter 4.

3.1 Probabilistic Label Flipping

Probabilistic label flipping as shown in algorithm 1, is used to conduct the attacks.

By flipping the labels in this manner, one can control how much of the data becomes

poisoned, making it easier to maintain high benign accuracy while still effecting

model fairness to get the best exchange between accuracy and fairness. To preform

probabilistic label flipping, first the data set which has data X, labels Y and number

of sample n is initialized. Then the probability which a label is flipped ρ, is selected.

Finally for each piece of data x within X the sensitive feature s within x is set to

the same value as the label y with probability ρ. This process is then repeated for

each piece of data within X. The main concept is that be making the sensitive feature

equal to the label the correlation between increases. The model will then learn this

correlation and make predictions which are more based off of the sensitive feature

compared to the other features which will make the model less fair w.r.t. (1.2).
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Algorithm 1 Probabilistic Label Flipping

Initialize data set with data X, labels Y, number of samples n, probability ρ and

sensitive feature s within a sample x.

for each x, 1, 2, . . . n in X do

R = random ∈ [0, 1]

if R ≥ ρ then

si = yi

end if

end for

Once the backdoor model is trained using algorithm 1, the poisoned gradients

will then be sent to the global model using either model replacement or the naive

approach. After the global model performs its aggregation method, the poisoned

weights will then be distributed to each of the local models.

In addition to label flipping, a trojan trigger attack is also considered. The

trojan triggers are created in a similar manner to figure 1b. Using a small 10x10

box in the upper left corner of the input image of size 224x224. The attack will

become activated if and only if this box is present in the data. Unlike the label

flipping attack which is not ideal for the CelebA data set where the attack must rely

on the model learning the features associated with the labels, the trojan triggers are

explicitly present in the infected images.

3.2 Adversarial Model Replacement and Trojan Triggers

The adversarial model replacement is performed as shown in algorithm 2, using

equations (1.3) and (1.4), where the goal of the attacking model X is to replace

the global model θg to be distributed to each local model. To replace the global

model, the attacker needs knowledge of several things, 1) The number of other clients

in a training round, 2) The gradients of each client, and 3) The aggregation method

12



used by the global model. While is it possible to estimate the gradients of the other

clients by using the gradients of the global model if it is assumed that each local

model has converged sufficiently. Estimating the number of clients per round and

the aggregation method is far from a trivial task. It is because of these conditions

that using model replacement is not the most practical method, however it provide

the best case scenario for an attacker and also shows what an attack against a single

centralized model may look like. To preform model replacement with the aggregation

method shown in (1.1), algorithm 2 can be used. First the number of models n,

number of selected models m and the number of global iterations τ are initialized.

Then each benign client is trained normally and the attacking model is trained on

its poisoned data. After each model has finished their local iterations, the sum of

the gradients of each benign model is subtracted from the gradients of the attacking

model which is then scaled up by the number of clients per round m. Finally, when

the local models aggregate the gradients, the global gradients will be replaced by the

attacker’s gradients which are then distributed to each local model.

13



Algorithm 2 Model Replacement Attack

Initialize number of models n, number of selected models m, the attacking model

X, the number of global iterations τ , the parameters for each local model θm and

the global parameters θg.

for each t in 1, 2, . . . τ do

select m ≤ n models

for Each benign model i in 1, 2, . . .m− 1 do

Train model on benign data, obtain θi

end for

for Poisoned model X do

Train model on Poisoned Data

θm = m×X −∑m−1
i θi

end for

θt+1
g = 1

m

∑m
i θti

end for

3.3 The Naive Approach

Unlike model replacement which requires knowledge of the other clients and the

global server’s aggregation method, the naive approach can be implemented without

any knowledge of the other clients or the global server. The naive method can

be implemented as shown in algorithm 3. First, in the same manner of model

replacement, the number of models n, number of selected models m and the number

of global iterations τ are initialized. Then each benign model is trained on it’s own

data. Next each attacking model, of which the attacker controls a fraction α of all

models, trains each attacking model on poisoned data. Finally the gradients are

aggregated normally and are then distributed to each local model. Unlike model

replacement where the attacking model completely replaces the global model, the

14



attacking models will effect the global gradients solely through the aggregation. The

greater the fraction of models which the attacker controls, the greater the impact on

the global model. While this method is not as effective as model replacement, it is a

more practical attack due to its simplicity and the minimum amount of information

which needs to be known about other clients.

Algorithm 3 Naive Approach Attack

Initialize number of models n, number of selected models m, the fraction of

attacking models α, the number of global iterations τ , the parameters for each

local model θm and the global parameters θg.

for each t in 1, 2, . . . τ do

select m ≤ n models

for Each benign model i in 1, 2, . . .m− 1 do

Train model on Benign Data, obtain θi

end for

for Each Poisoned model X do

Train model on poisoned data, obtain θi

end for

θt+1
g = 1

m

∑m
i θti

end for
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CHAPTER 4

EXPERIMENTS AND RESULTS

To show the effects of attacks against model fairness, five sets of experiments are

conducted: first a baseline for the accuracy and fairness is obtained for each data set

with respect to their sensitive features. Then the adversarial label flipping attack is

applied on each of the 3 data sets, CelebA, COMPAS and UCI Adult combined with

model replacement. Followed by, the trojan trigger attack which is applied to CelebA

combined with model replacement. Fourth, the adversarial model replacement is

attempted on each data set and the combined with the naive approach. Finally, the

trojan trigger attack is attempted on CelebA which is then combined with the naive

approach. The first experiment uses only a single model, whereas the remaining 4

experiments use and FL system with 20 models which train for 1 local epoch on

independent and identically distributed data (I.I.D). The experiments on the CelebA

data set are run using a modified variant of MobileNetV2 and COMPAS and UCI

Adult are run on a custom deep neural network, both of these architectures are

outlined in appendix A. These experiments are designed to answer the following

questions: (1) What is the best case for an attack against model fairness without a

significant decrease in model accuracy? (2) How does an attack against tabular data

compare to an attack against image data where sensitive features are only implicitly

present? (3) How does an attack which is always present, such as adversarial label

flipping, compare to an attack which is only present when a certain attribute is

inserted such as a trojan trigger? and (4) How does adversarial model replacement

compare to the naive approach in an FL setting?

The first experiment is shown in Table 4.1 which contains the baselines for each

of our three data sets. While UCI Adult and CelebA both have respectable accuracy
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of 0.822 and 0.850 respectively, the accuracy for COMPAS is poor at only 0.702.

Additionally, Table B.2 gives greater insight into the accuracy of CelebA.. CelebA

has 2 sensitive features, Gender and Age. The fairness is calculated as shown in (1.2)

demonstrated mixed results; both are above the 0.05 threshold. However the fairness

w.r.t. age is much worse than w.r.t. gender. Both COMPAS and UCI Adult have 2

sensitive features, race and gender. COMPAS also has fairness issues with respect to

both of its sensitive features, race and gender. Finally the UCI Adult data set has a

significant fairness issue with respect to race and a less significant issue with respect

to Gender.

Table 4.1 Baseline Accuracy And Fairness For The CelebA, COMPAS And UCI Adult

Data Sets

Data Set Accuracy RDRace RDGender RDAge

CelebA 0.822 - 0.231 0.505

COMPAS 0.696 0.732 0.500 -

UCI Adult 0.850 0.673 0.236 -

The second experiment, which is shown in Table 4.2 contains the results for

an attack using adversarial label flipping. The attack had limited success with the

CelebA data set. An increase in the demographic parity w.r.t. age of 33% with a

negligible accuracy drop of 1.2%. Whereas w.r.t gender was less successful, obtaining

only a small increase of 5% in the demographic parity and a negligible decrease in

accuracy of 1.1%. With COMPAS the demographic parity was able to be increased

with respect to race by 28.9% to 0.944 with an accuracy drop of 4.7% although there

is limited ability for improvement with the baseline being 0.678. The demographic

parity w.r.t. gender was increased by 17.6% with a negligible accuracy drop of 1.8%.
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For the UCI Adult data set, the demographic parity w.r.t. to race increased by 14.6%

with an accuracy drop of 2.8% with similar limitations as COMPAS. Finally, w.r.t.

Gender the demographic parity was increased by 54.2% with an accuracy drop of

1.8%. The attack was quite successful with both UCI Adult and COMPAS, yielding

up to a 54.5% increase in fairness with minimal loss in accuracy. For CelebA, the

change in accuracy was only about 1%, far lower than UCI Adult and COMPAS, this

is due to the attack effecting only 1 label out of 40. In addition, this attack would

not be noticed by a standard FL server as the gaps in accuracy are small and since

the sever will likely not be checker for disproportionately large gradients.

Table 4.2 Accuracy And Fairness For The CelebA, COMPAS And UCI Adult Data Sets

With The Adversarial Label Flipping Attack Using Model Replacement

Data Set Accuracy RDRace Accuracy RDGender Accuracy RDAge

CelebA - - 0.811 0.243 0.810 0.673

COMPAS 0.649 0.944 0.678 0.588 - -

UCI Adult 0.822 0.771 0.832 0.364 - -

For CelebA, in addition to the adversarial label flipping attack, an attack with a

trojan trigger is examined. Since the sensitive features in CelebA are only implicitly

present, inserting a trojan trigger which is explicitly present may yield better results.

The trojan trigger attack yielded interesting results, similarly to the adversarial label

flipping attack, the drop in accuracy was negligible, only about 1%. This is due to the

accuracy being the average of 40 labels. The change in fairness w.r.t. age did not have

as significant of an effect, only increasing by 21.7% compared to the increase of 33.3%

with adversarial label flipping. The attack was more successful w.r.t. gender, where

there was an increase of 73.2% compared to the increase of 5.2%. Overall CelebA
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appears more resistant to an attack compared to COMPAS and UCI Adult. Similar

to the adversarial label flipping attack, this attack can be adjusted by change the

size, color and location of the trigger. However, unlike the MNIST data set example

shown in Figure 2.3, CelebA is much more complex and depending on the exact image

the trigger may not appear due to coloration of the background, however that does

not seem to have effected the attack significantly.

Table 4.3 Accuracy And Fairness For The CelebA With The Trojan Trigger Attack Using

Model Replacement

Data Set Accuracy RDGender Accuracy RDAge

CelebA 0.809 0.400 0.809 0.615

The fourth experiment, shown in Table 4.4, was as expected, ineffective with

lackluster results across all 3 data sets. With CelebA, there were negligible changes

in fairness with both 2 and 4 attacking models. However the change in accuracy was

more significant compared to the model replacement attack. The accuracy dropped by

3.5% and 5.2% for 2 and 4 attacking models respectively w.r.t. age by 5.1% and 6.0%

for race. For COMPAS, the accuracy increased slightly in all instances. However, the

demographic parity w.r.t. race increased by 7.4% and 7.5% respectively. The results

w.r.t. gender were less significant, demonstrating slight increases in accuracy and

slight increases in demographic parity of 0.2% and 1.6% respectively. For UCI Adult,

there was a slight decrease in accuracy between 2.4%-2.6%. Much like COMPAS,

the attack was not very successful, only achieving a insignificant increase in the

demographic parity of 0.3% and 0.0% w.r.t. race. Finally, there were similar results

w.r.t. gender, slight decreases in accuracy of 2.5% in both instances, as well as

slight changes in demographic parity of 6.8% and 7.6% respectively. Unexpectedly,
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there was little change in both both accuracy and fairness by changing the number of

attackers from 10% to 20% of the clients. Additionally, the fairness accuracy trade-off

was far worse than expected, while it is assumed that the attack would be ineffective,

the change in accuracy should of had also been negligible.

Table 4.4 Accuracy And Fairness For The CelebA, COMPAS And UCI Adult Data Sets

With The Adversarial Label Flipping Attack Using The Naive Approach

Data Set α Accuracy RDRace Accuracy RDGender Accuracy RDAge

CelebA
0.1 - - 0.771 0.227 0.787 0.514

0.2 - - 0.762 0.227 0.770 0.514

COMPAS
0.1 0.705 0.786 0.707 0.501 - -

0.2 0.708 0.787 0.706 0.508 - -

UCI Adult
0.1 0.825 0.675 0.825 0.252 - -

0.2 0.825 0.673 0.825 0.254 - -

The fifth experiment showcases the trojan trigger attack combined with the

naive approach on the CelebA data set. For both 2 and 4 attackers, the results

with regards to fairness were insignificant. However, there was a substantial drop in

accuracy. Similarly to the model replacement attack, the negligible change in fairness

was expected, however the much more drastic drop in accuracy was surprise. The

more significant drop in accuracy mat be due to the ImageNet architecture being far

more complex than most neural networks.
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Table 4.5 Accuracy And Fairness For The CelebA With The Trojan Trigger Attack Using

The Naive Approach

Data Set α Accuracy RDGender Accuracy RDAge

CelebA
0.1 0.758 0.227 0.768 0.514

0.2 0.770 0.227 0.715 0.514

Compared to COMPAS and UCI Adult, CelebA appears more resistant to an

attack against fairness. Additionally, since the attributes are not explicitly present,

we must rely on the model to learn such attributes. Thus using demographic parity to

measure fairness may not provide the best assessment. The work in [26] uses accuracy

parity which measures the benign accuracy w.r.t. each subgroup of a sensitive feature.

The uncertainty may be due to the complexity of the data set/model, the features

only being implicitly present or due to a different reason is unclear. Further research

is required to determine the root cause of these differences Overall, the attacks were

successful in varying degrees, tabular data is much more susceptible to an attack due

to its simplicity, although image data can also be attacked with a moderate degree of

success.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

The robustness of federated learning systems is becoming more crucial with the

increased adoption of FL. Due to this increase adoption, ensuring that these systems

make fair predictions is just as critical. Attacking model fairness in an FL setting

can have devastating effects as these infected parameters will be sent to hundreds or

thousands of local models.

5.1 Conclusions

In this work it was shown that an attack against model fairness can increase a

model’s demographic parity causing the model to make less fair predictions while

also minimizing the loss in accuracy. Considered here, adversarial label flipping and

a trojan trigger attack on multiple data sets of different types using both model

replacement and the naive approach. The results for adversarial label flipping

depicted that the demographic parity can be increased by over 50% for features

that have a lower fairness, and bring features with already high fairness near to 1.

Whereas on image recognition data the attack was less successful, but still increased

the demographic parity by a respectable amount.

5.2 Research Findings

As shown in chapter 3, we answered the following questions (1) What is the best case

for an attack against model fairness without a significant decrease in model accuracy?

(2) How does an attack against tabular data compare to an attack against image data

where sensitive features are only implicitly present? (3) How does an attack which is

always present, such as adversarial label flipping, compare to an attack which is only
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present when a certain attribute is inserted such as a trojan trigger? and (4) How

does adversarial model replacement compare to the naive approach in an FL setting.

• The demographic parity risk can be increased by over 50% without drastically

decreasing model accuracy. This increase is more than enough to force a model

to be non-compliant with fairness regulations.

• Tabular data is easier to attack due to it’s simplicity. Whereas attacking image

data become much more complex as its features are only implicitly present.

• On image data, the attack was more successful using a trojan trigger. Although

the attack will only take place when the trigger is present, unlike with label

flipping the trigger is explicitly present in the data.

• Model replacement is far more successful than the naive approach. Although

the change in demographic parity was higher than expected using the naive

approach, the accuracy decreased by a much more significant amount.

Additionally, from our data analysis in Appendix C, we can see that there may

be a correlation between how balanced the data set is and the demographic parity risk.

Furthermore there is no significant correlation between fairness and the correlation

value between a sensitive feature and the ground truth.

5.3 Future Research

This work leaves several areas for future analysis and improvement; (1) comparing the

effectiveness of an attack against model fairness when a backdoor defense is present

such as Neural Cleanse and STRIP and/or when the server or model is actively trying

to make the model more fair. Since an attack against fairness is not a traditional

backdoor attack, it is unknown how existing defenses will handle such an attack or if

they will even detect it. Additionally, when the methods discussed in the works from
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chapter 2.3 are implemented, it is unknown what will happen to model fairness. With

the attack against fairness competing with the various methods to make a model

more fair, whether the attack will be successful or not. [25] [6]. (2) Studying the

correlation between data distributions and model fairness. As discussed in Appendix

C, there is some correlations between how balanced the data is and how fair a model’s

predictions are. A deep analysis into the correlations, will be beneficial in attacking

model fairness and in making a model more fair. (3) In addition to studying the

correlations, analysis of how label flipping effects the correlations between features.

As shown throughout this work, label flipping can make a model less fair, however,

further study may prove useful into using label flipping to improve model fairness.
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APPENDIX A

MODEL ARCHITECTURES

Two model architectures for the experiments were used. A custom DNN consisting

of Dropout, Dense and Activation layers using the Tanh function is shown in figure

A.1 is used for COMPAS and UCI Adult. Several model architectures were tested on

both COMPAS and UCI Adult, including a model consisting of only a single dense

layer. However, each model performed similarly both in accuracy and run time, with

the architecture in Table A.1 performing the best.

Table A.1 Model Architecture Used For The COMPAS And UCI Adult Data Sets

Layer Type Output Shape Params

(Input) (None, Num Features) 0

(Dense) (None, 256) 3,072

(Activation) (None, 256) 0

(Dropout) (None, 256) 0

(Dense) (None, 256) 65,792

(Activation) (None, 256) 0

(Dropout) (None, 256) 0

(Dense) (None, 256) 65,792

(Activation) (None, 256) 0

(Dropout) (None, 256) 0

(Dense) (None, 2) 514

Total params: 135,170

Trainable params: 135,170

Non-trainable params: 0
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A modified version of ImageNetV2 shown in figure A.2, with two additional Dense

layers, 1 additional Batch Normalization Layer and 1 additional Dropout Layer, with

the final Dense layer being used to accommodate the forty prediction labels used in

CelebA. [18]

Table A.2 Model Architecture Used For The CelebA Data Set

Layer Type Output Shape Params

(Input) (None, 224, 224, 3) 0

ImageNetV2 Model (None, 1,280) 2,257,984

(Dense) (None, 1,536) 1,967,616

(BatchNorm) (None, 1,536) 6,144

(Dropout) (None, 1,536) 0

(Dense) (None, 40) 61,480

Total params: 4,293,224

Trainable params: 4,256,040

Non-trainable params: 37,184
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APPENDIX B

DATA SETS

B.1 CelebA

The CebebA data set is a facial recognition data set with 202,599 images which

is split into training, validation and testing with 162770, 19867 and 19962 images

respectively [16]. The images are taken from 10,177 individuals each containing 40

binary prediction labels:

5-o-Clock Shadow, Arched Eyebrows, Attractive, Bags Under Eyes, Bald, Bangs,

Big Lips, Big Nose, Black Hair, Blond Hair, Blurry, Brown Hair, Bushy Eyebrows,

Chubby, Double Chin, Eyeglasses, Goatee, Gray Hair, Heavy Makeup, High

Cheekbones, Male, Mouth Slightly Open, Mustache, Narrow Eyes, No Beard, Oval

Face, Pale Skin, Pointy Nose, Receding Hairline, Rosy Cheeks, Sideburns, Smiling,

Straight Hair, Wavy Hair, Wearing Earrings, Wearing Hat, Wearing Lipstick, Wearing

Necklace, Wearing Necktie, and Young.

The model accuracy is the average accuracy among each of these forty features. An

augmented example is shown in Figure B.1 and the baseline accuracy for each of the

40 features is shown in figure B.2.
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Figure B.1 CelebA Sample with Augmentations.

Figure B.2 CelebA Feature Accuracy.
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B.2 COMPAS

The COMPAS data set was created using data from the Correctional Offender

Management Profiling for Alternative Sanctions (COMPAS) software which is used

by many court systems. This data set is typically used to predict the risk of a

re-offender prior to sentencing and parole hearings. However, this data set has been

shown to have already significant fairness problems outlined in, [8]. As a result of

these fairness issues, COMPAS is one of the data sets which frequently appears in

fair machine learning works. COMPAS is particularly interesting due its real-world

applications and implications [19].

Figure B.3 COMPAS Data Set after Processing.

B.3 UCI Adult

Finally, the UCI Adult data set from the UCI respiratory is another data set which

has significant fairness concerns [9]. Using Census data obtained from the 1994 U.S.

Census, the data set predicts if an individual has more than $50,000 in income the

previous year. Similar data sets could be used to predict loan interest rates, approval

and other finance applications. In addition to certain attributes being protected by

U.S. law, many companies have their own internal ethics code and procedures.
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Figure B.4 UCI Adult Data Set after Processing.
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APPENDIX C

DATA ANALYSIS

To better understand the relationship between the data and model fairness one can

plot the data distributions of the three data sets for each of their sensitive features

and the ground truth y.

(a) COMPAS Data Set Distribution With

Respect To Race.

(b) COMPAS Data Set Distribution With

Respect To Gender.

(c) COMPAS Data Set Distribution With

Respect To Recidivism.

Figure C.1 COMPAS Data Set Distributions.

The first data set, COMPAS is significantly unbalanced w.r.t. both of its

sensitive features, Race and Gender. The issues which can be caused by these are

made even worse due to COMPAS having only 5,500 data samples. However, unlike
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the sensitive features, whereas the ground truth Recidivism (Whether they return to

criminal behavior) is balanced.

(a) UCI Adult data set distribution with

respect to race.

(b) UCI Adult data set distribution With

respect to gender.

(c) UCI Adult data set distribution with

respect to recidivism.

Figure C.2 UCI Adult data set distributions.

The UCI Adult data set is the most unbalanced of the three, with each feature

being significantly unbalanced. Especially w.r.t. Race wherein there is a 1:5 ratio

between the majority and minority classes.
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(a) CelebA Data Set Distribution With

Respect To Gender.

(b) CelebA Data Set Distribution With

Respect To Age.

(c) CelebA Data Set Distribution With

Respect To Attractive.

Figure C.3 CelebA Data Set Distributions.

Of the three data sets, CelebA is the most balanced, having a good balance

w.r.t. Gender and the ground truth, only being unbalanced w.r.t. Age. While being

unbalanced, CelebA has a sufficient number of samples of the minority class.

Finally, shown are the correlation plot for each of the 3 data sets as heat maps.

33



Figure C.4 COMPAS Data Set Correlation Plot.
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Figure C.5 UCI Adult Data Set Correlation Plot.
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Figure C.6 CelebA Data Set Correlation Plot.

There is not a significant correlation between the fairness w.r.t. a sensitive

feature and how much that feature correlates to our ground truth. For the COMPAS

data set, there is no meaningful correlation between fairness and how much the

sensitive features correlations to the output. Race and gender having correlations

values of 0.057 and -0.1 respectively, whereas the fairness metric is 0.732 and 0.500

for race and gender. For UCI Adult there is no meaningful correlations the fairness
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w.r.t. race is 0.673 and 0.236 w.r.t. gender. Whereas the correlation values are

-0.087 and -0.21 for race and gender. For CelebA the fairness metric is 0.231 and

0.505 w.r.t. gender and age. The correlations values are -0.4 and 0.39 for gender and

age respectively. While there appears to be a slight inverse correlation between the

fairness metric and the correlation values for both COMPAS and UCI Adult, it is not

present within CelebA.
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APPENDIX D

THE EFFECTS OF GRADIENT PRUNING ON MODEL FAIRNESS

Gradient pruning is a model compression technique which involves setting a fraction

of parameters, which are of the lowest magnitude, to zero. The notion being that

gradient descent forces the weights which have little or no importance towards zero,

but never converge to zero. By setting such weights to zero the amount of floating

points operations can be minimized, reducing model run time and size. Often up

to 90% of the gradients can be pruned with little impact on the model’s accuracy.

In addition to simple gradient pruning various more complex pruning methods have

been introduced which allow improvements such as layer-wise pruning and recovery

of pruned weights [15] [11]. Such pruning methods are useful when memory and

computational resources are limited or when models need to be shared among devices.

(a) Simple Neural Network without Gradient

Pruning.
(b) Simple Neural Network with Gradient Pruning.

Figure D.1 Non-Pruned vs Pruned Neural Network.

Such pruning methods can have an effect on model fairness [21]. These claims

are explored with both the COMPAS and UCI Adults data sets, these results are

compared to the baselines in Table 3.1. An example of a pruned neural network versus
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a non-pruned neural network is shown in Figure D.1. The results for COMPAS and

UCI Adult for pruning strength of 0 (No Pruning) to 0.9 is shown in Table D.1.

Table D.1 Pruning Accuracy And Fairness For The COMPAS And UCI Adult Data Sets

Data Set Pruning Strength Accuracy RDRace RDGender

COMPAS

0.0 0.696 0.732 0.500

0.1 0.713 0.768 0.563

0.2 0.699 0.781 0.498

0.3 0.694 0.754 0.461

0.4 0.687 0.764 0.445

0.5 0.703 0.749 0.451

0.6 0.701 0.785 0.529

0.7 0.710 0.771 0.498

0.8 0.713 0.791 0.510

0.9 0.705 0.787 0.505

UCI Adult

0.0 0.850 0.673 0.231

0.1 0.847 0.673 0.250

0.2 0.842 0.664 0.251

0.3 0.847 0.675 0.212

0.4 0.856 0.671 0.242

0.5 0.848 0.665 0.264

0.6 0.852 0.680 0.245

0.7 0.849 0.669 0.249

0.8 0.846 0.672 0.220

0.9 0.843 0.670 0.230
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For COMPAS, the fairness metric increases at all pruning levels w.r.t. race

with no meaningful correlation between pruning strength and fairness w.r.t. gender.

The accuracy also increases at almost every pruning strength except for 0.3 and 0.4.

For the UCI Adult data set, there is a decrease in accuracy at all levels of pruning

except for COMPAS at a pruning strength of 0.1. However the change in fairness

has no noticeable correlation with the strength of the pruning. While it is clear that

gradient pruning does effect model fairness, the change is somewhat random, having

both higher and lower fairness metrics with no pattern. While the effects of gradient

pruning show a clear change in fairness, both the randomness in accuracy and fairness

are too great to be of any assistance to the attack.
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