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ABSTRACT

DEPENDENT CENSORING IN SURVIVAL ANALYSIS

by
Zhongcheng Lin

This dissertation mainly consists of two parts. In the first part, some properties of

bivariate Archimedean Copulas formed by two time-to-event random variables are

discussed under the setting of left censoring, where these two variables are subject

to one left-censored independent variable respectively. Some distributional results for

their joint cdf under different censoring patterns are presented. Those results are

expected to be useful in both model fitting and checking procedures for Archimedean

copula models with bivariate left-censored data. As an application of the theoretical

results that are obtained, a moment estimator of the dependence parameter in

Archimedean copula models is proposed as well, and some simulation studies are

performed to demonstrate our parameter estimation method.

The second part is relevant to a new statistic proposed to estimate the survival

function where left censoring exists. The derivation of this estimator is a little similar

to that of the well-known copula-graphic estimator. The simulation results indicate

the difference of performance between it and Left Kaplan Meier estimator when

dependent censoring occurs.
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The real test is not whether you avoid this failure, because
you won’t. It’s whether you let it harden or shame you
into inaction, or whether you learn from it; whether you
choose to persevere.

Barack Obama
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CHAPTER 1

INTRODUCTION

In medical research, investigators often need to deal with problems caused by different

types of censoring: failure time and censoring time aren’t mutually independent with

each other. There has been a lot of research performed on right-censored data to

solve the existed dependence issue. However, very little research has been done on

left-censored data where failure time is subject to a dependent left censoring time.

Nevertheless, this scenario is also quite common in many epidemiological studies.

In this chapter, we will discuss several basic concepts about survival models and

Archimedean copula. This chapter starts from the most basic knowledge of survival

analysis in Section 1.1. Then Archimedean copulas will be introduced in the following

sections.

1.1 Survival Analysis Basics

Let T be a nonnegative random variable which represents the failure time of an

individual from a homogeneous population. The probability distribution of T can be

determined in several ways including the survival function, the probability density

function and the hazard function. The survival function is defined for continuous and

discrete distributions by the probability that T exceeds a fixed value t; the equation

is as follows:

S(t) = P (T > t), 0 < t <∞.

When the failure time random variable T is absolute continuous and the range of T

is [0,∞). The probability density function of T is defined as

f(t) = −dS(t)

dt

1



The hazard function is defined as

λ(t) =
f(t)

S(t)
= −dlogS(t)

dt

The hazard function can alternatively be expressed in terms of the cumulative hazard

function, denoted by Λ(t):

Λ(t) =

∫ t

0

λ(u)du = − logS(t)

Censoring issue is very common in survival analysis. There are totally three

types of censoring: left-censoring, right-censoring and interval-censoring. Although

the presence of censoring can increase the difficulties for us to obtain a good estimator

of the survival function of failure time variable, several powerful statistical methods

still have been proposed for data analysis.

The most popular one is the well-known non-parametric statistic called

Kaplan-Meier estimator (see Figure 1.1). It is usually used to measure the fraction

of individuals who live for a certain amount of time after treatment. However,

Kaplan-Meier estimator is based on a key assumption that requires failure time

independent with censoring time in the model. This is a very important reason

why dependent censoring test is needed since Kaplan-Meier estimator has its own

limitations.

Another popular statistical method in survival analysis is called log-rank test

(see Figure 1.2). It is a statistical test for comparing the survival distributions of two

or more groups.

The last well-known statistical method discussed here in survival anlaysis is

the cox model. Cox (1972)[4] introduced Cox proportional hazards model where

covariates are included. The hazard function λ(t) for the cox model has the form

λ(t,Xi) = λ0(t) exp (β1Xi1 + ......+ βpXip) = λ0(t) exp (Xiβ)

2



Figure 1.1 An example of Kaplan-Meier estimator.

Figure 1.2 An example of Log-rank test.
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where Xi = (Xi1, ....Xip) represents the real values of covariates for subject i. λ0(t)

is the baseline hazard function and β is the corresponding coefficients. In the Cox

model, partial likelihood is applied to estimate the unknown parameter β. Therefore,

we can obtain the estimator of the hazard function at time t using the β estimates

and given baseline hazard.

Left censoring occurs when we can’t observe the true survival time while the

event has already occurred. For instance, a medical study may involve follow-up

visits with patients who had breast cancer. Patients are tested for relapse of breast

cancer on a regular basis. If the cancer recurs before the first visit, the event time is

left-censored. A very typical example of left-censored data is listed in Figure 1.3.

Figure 1.3 An example of Left-censored data.

Traditional left-censored data include n i.i.d. observations (X = max(T,C), δ =

1(T ≥ C)), where T is the failure time of interest, C is the left censoring time, where

T and C may not be mutually independent, so the dependence issue needs to be

addressed before we use the Left Kaplan-Meier estimator to obtain the estimated

marginal survival functions of T and C. Tsiatis (1975)[13] has proved t has proved

that we couldn’t detect the potential dependence between T and C if we don’t
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have additional assumptions. Therefore, we are more interested in investigating the

dependence between T and C in some certain settings.

We will only discuss left censoring which is less popular than the most common

right censoring in the first part of our dissertation.

1.2 Archimedean Copula

In the real world, sometimes we have to model the joint probabilities of several random

variables, so we a joint distribution for these variables. Thus, we need a model called

copula. A copula is a joint probability distribution of random variables U1, U2, ..., Up,

where each variable is marginally standard uniformly distributed as U(0, 1). The term

copula is used for the joint cumulative distribution function of such a distribution as

well,

C(u1, u2, ..., up) = P (U1 ≤ u1, U2 ≤ u2, ..., Up ≤ up),

Sklar’s theorem states that any multivariate joint distribution can be written in

terms of univariate marginal-distribution functions and a copula that describes

the dependence structure between these variables. Let any random variables

X1, X2, ..., Xp with joint c.d.f.

F (x1, x2, ..., xp) = P (X1 ≤ x1, X2 ≤ x2, ..., Xp ≤ xp)

and marginal c.d.f.s

Fj(x) = P (Xj ≤ x), j = 1, 2, ..., p,

There exists a copula such that

F (x1, x2, ..., xp) = C[F1(x1), F2(x2), ..., Fp(xp)].

5



The beauty of the Sklar’s theorem is allowing us to seperate the modeling of the

marginal distributions Fj(x) from the dependence structure that is expressed in C.

There are several advantages of copula models over joint distributions. The

seperation of marginal distributions from dependence structure can allow us to

estimate marginal distribution functions efficiently. It’s also easy to implement copula

to create multivariate distributions easily. Apart from these, there is a wide range of

copula families to select, and one of the most famous family is called Archimedean

copula which will be discussed in the following paragraph. Lastly, copula is invariant

under strictly monotone transformations.

Archimedean copula is a special class which presents an appealing property that

each copula has an explicit form which links its parameters to its related Kendall tau

or Spearman rho. An archimedean copula has the following form

Cθ(u1, u2, ..., up) = ψθ[ψ
−1
θ (u1) + ψ−1θ (u2) + ...+ ψ−1θ (up)],

for an appropriate generator ψ which is in terms of parameter θ, and ψ−1 : [0, 1]×Θ→

[0,∞) is a continuous, strictly decreasing and convex function.

The most common archimedean copula models include Clayton, Gumbel-

Hougaard, Frank and Ali-Mikhail-Haq copulas. Each of them has a single parameter

that represents the degree of dependence, so they are all relatively easy to interpret

in many settings.

To measure the global association between random variables in Archimedean

copula, Kendall (1938)[8] introduced τ as a non-parametric rank invariant measure,

and the expression is as follows,

τ = 1 + 4

∫ 1

0

ψ−1θ (v)

ψ−1′θ (v)
dv,

The dependence association of random variables is stronger as τ deviates from 0.

Thus, when τ approaches 1 indicates a strong positive correlation and −1 a strong

6



negative correlation. The expression of τ is different from model to model. For

example, in the Clayton copula model, Kendall’s tau is

τ = 1 + 4

∫ 1

0

ψ−1θ (v)

ψ−1′θ (v)
dv =

θ

θ + 2
.

Figures 1.4 to 1.6 shows the distribution of two random variables under Clayton

copula with different dependence levels. As we can see from the graphs, the dots are

pretty scattered when the dependence level is low (τ = 0.2) but they are getting much

closer as the dependence level increases to when τ is 0.6 and 0.8.

Similarly, Figures 1.7 to 1.9 represent the distribution of a Gumbel copula under

the above three different dependence levels. One special characteristic of this copula

as we can see from the graphs is tail dependence tail dependence only occurs in one

corner of the distribution.

Figure 1.4 Clayton copula with τ = 0.2.

Figure 1.10 includes contour plots of several well-known copulas when the

dependence level τ is fixed at 0.6, and the dependence structure is clearly indicated

as we can see.

7



Figure 1.5 Clayton copula with τ = 0.6.

Figure 1.6 Clayton copula with τ = 0.8.

Figure 1.7 Gumbel copula with τ = 0.33.
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Figure 1.8 Gumbel copula with τ = 0.5.

Figure 1.9 Gumbel copula with τ = 0.67.
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Figure 1.10 A contour plot with τ = 0.6.

1.3 Frailty Models

The concept of frailty provides a proper way to introduce random effects in the

model to account for unobserved heterogeneity and association. In its simplest form,

a frailty is actually an unobserved random factor that modifies multiplicatively the

hazard function of an individual or a group. As early as 1979, Vaupel (1979)[14]

introduced the term frailty and applied it in univariate survival models. Clayton

(1978)[3] extended the model by its application to multivariate situation. We will

start from the most basic concept of frailty model.

Let the conditional distribution of the survival time T given the value w of the

frailty W have hazard function

λ(t) = lim
h→0

P (t ≤ T < t+ h|T ≥ t, w)

h
= wλ0(t)

for some baseline hazard function λ0(t) corresponding to a survival function

ST0(t) = exp

{
−
∫ t

0

λ0(u)du

}
.

10



Then the conditional survival function of T given W = w is

P (T > t|W = w) = exp

{
−w

∫ t

0

λ0(u)du

}
= [ST0(t)]

w.

The marginal survival function of T can be obtained as

S(t) = P (T > t) = E {P (T > t|W )} =

∫ t

0

ST0(t)
wdF (w) = ψ {−logST0(t)} ,

where F (.) is the distribution function of W and ψ(.) is the Laplace transform of the

distribution function.

Now we will consider the extension to bivariate frailty models. It is assumed that

T and C can be explained by their common dependence on a frailty. The conditional

survival function of C is defined in the same way as T shown above,

P (C > c|W = w) = exp

{
−w

∫ c

0

λ0(u)du

}
= [SC0(c)]

w.

Suppose that T and C are conditionally independent given the value w of the

frailtyW , then the unconditional bivariate survival function S(t, c) = P (T > t, C > c)

has the form

S(t, c) = E[S(t, c|W )] = E[S(t|W )S(c|W )] = E[ST0(t)
WSC0(c)

W ]

= E[exp{W [logST0(t) + logSC0(c)]}] = ψ[− logST0(t)− logSC0(c)]

= ψ{ψ−1[ST (t)] + ψ−1[SC(c)]}.

By the assumption that T and C are independent given W , the bivariate survivor

function is

S(t, c) = E[S(t, c|W )] = E[S(t|W )S(c|W )] = E[ST0(t)
WSC0(c)

W ]

= E[exp{W logST0(t) +W logSC0(c)}] = ψ[− logST0(t)− logSC0(c)]

11



= ψ{ψ−1[ST (t)] + ψ−1[SC(c)]}.

Therefore, combining with what are learnt in the previous secton, we find that the

dependence structure naturally follows a bivariate Archimedean copula with copula

generator ψ if frailty variable W is used to model T and C.

Oakes (1989)[9] concluded that Archimedean copula models arise naturally from

bivariate frailty models in which T and C are conditionally independent given an

unobserved frailty W , and this gives a more concise relationship between Archimedean

copula and frailty models. An illustrative example regarding gamma frailty is shown

below. If W ∼ Gamma(1/θ, 1), with 0 < θ <∞, then

ψ(s) =

∫ ∞
0

e−sw
w1/θ−1e−w

Γ(1/θ)
dw = (1 + s)−1/θ

and the resulting model is Clayton copula:

Cθ(u1, u2, ..., up) = (u−θ1 + u−θ2 + ...+ u−θp − p+ 1)−1/θ

1.4 Left Kaplan Meier Estimator

Traditional Kaplan Meier Estimator is a quite useful tool in estimating marginal

survival function under the setting of right censoring. However, it will be very likely

to produce some biased results for left-censored data.

Thankfully, Gomez (1994)[7] proposed a new estimator named Left Kaplan

Meier estimator (LKM). LKM is a nonparametric estimator that can be used to

estimate the survival function from left-censored data, where the observed data is

X = max(T,C) and δ = 1(T ≥ C), where T is the survival time random variable

and C is the censoring time random variable.

Let ti be a time when at least one event occurred, di the number of events that

happened at time ti and ni the number of individuals that occurred before or at time

12



ti. Then the left Kaplan-Meier estimator of survival function ST (t) is

ŜT (t) = 1−
∏
i:ti>t

(1− di
ni

)

Gomez (1994)[7] also proved that ŜT (t) converge to ST (t) uniformly as n→∞.

Furthermore, the LKM estimator is a generalized maximum likelihood estimator if

the survival random variable is continuous. The key point for this estimator to work

well is survival time and left-censoring time are independent with each other.

Figure 1.11 has shown the necessity of the assumption that T and C should

be mutually independent for LKM to show its power, while Figure 1.12 gives us an

example to demonstrate the importance to take censoring into consideration of model

setting.

Figure 1.11 Left Kaplan-Meier estimator with the presence of dependence.

As we can see obviously from the graphs above. The lack of independence and

the ignorance of censoring will both produce some biased results in our research.

The use of LKM estimator will be introduced in the following research work.

13



Figure 1.12 Left Kaplan-Meier estimator without the presence of censoring.
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CHAPTER 2

A LEFT CENSORING PROBLEM

2.1 Introduction

Many mathematical and statistical techniques have been proposed to model multi-

variate survival data, and Archimedean copula models have become more and more

popular in doing so because of some important properties of them.

Genest (1993)[6] proved if a pair of random variables (T1, T2) follows an

Archimedean copula model with the marginal distribution function F1(t1) and

F2(t2) with U = ψθ{S1(T1)}
ψθ{S1(T1)}+ψθ{S2(T2)} and V = S(T1, T2) = C(S1(T1), S2(T2)) =

ψ−1θ [ψθ{S1(T1)} + ψθ{S2(T2)}], then the following results will be obtained: (1). U

and V are independent random variables. (2). U is uniformly distributed on (0, 1).

(3). V is distributed as K(v) = v − ψ(v)
ψ′(v)

on (0, 1].

In our model setting, we will make some slight changes in the definitions of U

and V .

2.2 Model Setting

Let a pair of random variable (T1, T2) follow an Archimedean copula and both of

them are subject to an independent censoring time C1 and C2 respectively, i.e. X1 =

max(T1, C1) and δ1 = 1(T1 ≥ C1); X2 = max(T2, C2) and δ2 = 1(T2 ≥ C2). U and

V are redefined as U = ψθ{F1(T1)}
ψθ{F1(T1)}+ψθ{F2(T2)} and V = F (T1, T2) = C(F1(T1), F2(T2)) =

ψ−1θ [ψθ{F1(T1)} + ψθ{F2(T2)}]. Some distributional results for the random variable

V = F (T1, T2) will be discussed in the next section. Meanwhile, these results will play

an important role in the estimation procedure of the dependence parameter between

T1 and T2.

15



2.3 Main Results

In this section, we first proved the independence property between U and V .

Theorem 1: If (T1, T2) follow an Archimedean copula with the marginal

distribution function F1(t1) and F2(t2), then

U =
ψθ{F1(T1)}

ψθ{F1(T1)}+ ψθ{F2(T2)}

and

V = ψ−1θ [ψθ{F1(T1)}+ ψθ{F2(T2)}]

are independently distributed random variables.

Proof: The bivariate distribution function of F1(T1) and F2(T2) can be

expressed as

F (w, x) = P (F1(T1) ≤ w,F2(T2) ≤ x) = ψ−1θ [ψθ{F1(T1)}+ ψθ{F2(T2)}]

Then we take the derivative of it, and the joint density function f(w, x) will be

shown as

f(w, x) = ψ−1
′′
[ψ(w)]ψ′(w)ψ′(x)

Using the Jacobian method, the joint density function of U and V can be

represented as

f(u, v) = J · f(w, x) =

∣∣∣∣∣∣∣
∂w
∂u

∂w
∂v

∂x
∂u

∂x
∂v

∣∣∣∣∣∣∣ · f(w, x)

=

∣∣∣∣∣∣∣
ψ−1

′
[u · ψ(v)]ψ(v) ψ−1

′
[u · ψ(v)]u · ψ′(v)

ψ−1
′
[(1− u)ψ(v)](−ψ(v)) ψ−1

′
[(1− u)ψ(v)](ψ′(v)− u · ψ′(v))

∣∣∣∣∣∣∣ · f(w, x)

=
ψ(v) · ψ′′(v)

[ψ′(v)]2
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This indeed proves that U and V are independent distributed random variables.

Theorem 2: Let (T1, T2) be a pair of random variables whose joint distribution

can be modeled by an Archimedean copula. If (T1, T2) is subject to independent or

dependent left censoring by a censoring vector (C1, C2) that follows an arbitrary

bivariate continuous distribution, then we have the following distributional results:

1. The distribution function of (V |T1 < C1 = c1, T2 < C2 = c2) is

F1(v, c1, c2) =
1

F (c1, c2)
[v − ψ(v)− ψ{F (c1, c2)}

ψ′(v)
], 0 ≤ v ≤ F (c1, c2).

2. The distribution function of (V |T1 < C1 = c1, T2 = t2) is

F2(v, c1, t2) =
ψ′(F (c1, t2))

ψ′(v)
, 0 ≤ v ≤ F (c1, t2).

3. The distribution function of (V |T1 = t1, T2 < C2 = c2) is

F3(v, t1, c2) =
ψ′(F (t1, c2))

ψ′(v)
, 0 ≤ v ≤ F (t1, c2).

Proof: When two survival time variables are both censored by the censoring

variables, the conditional distribution function of V will be equal to

F1(v, c1, c2) = P (V ≤ v, T1 < c1, T2 < c2)/P (T1 < c1, T2 < c2)

= P [V ≤ v, F1(T1) ≤ F1(c1), F2(T2) ≤ F2(c2)]/F (c1, c2)

= P [V ≤ v, ψ(V )U ≥ ψ(F1(c1)), ψ(V )(1− U) ≥ ψ(F2(c2))]/F (c1, c2)

=

∫ v

0

∫ 1−ψ(F2(c2))
ψ(v1)

ψ(F1(c1))
ψ(v1)

k(v1)dudv1/F (c1, c2)+

P [V = 0, ψ(V )U ≥ ψ(F1(c1)), ψ(V )(1− U) ≥ ψ(F2(c2))]/F (c1, c2)

=
1

F (c1, c2)
[v − ψ(v)− ψ{F (c1, c2)}

ψ′(v)
]
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We are assuming a complete support on the space, thus P (V = 0) = 0 implies

1
ψ′(0)

= 0.

Similarly, while only one survival time variable is censored, the conditional

distribution function of V will be derived as follows:

F2(v, c1, t2) = P (V ≤ v, T1 < c1, T2 = t2)/P (T1 < c1, T2 = c2)

=
P [ψ−1θ [ψθ{F1(T1)}+ ψθ{F2(T2)}] ≤ v, F1(T1) ≤ F1(c1), T2 = t2]

P (T1 < c1, T2 = c2)

=
P [ψθ{F1(T1)}+ ψθ{F2(T2)}] ≥ ψθ(v), ψθ{F1(T1)} ≥ ψθ{F1(c1)}, T2 = t2]

P (T1 < c1, T2 = c2)

=
ψ−1

′
[ψ(v)]

ψ−1
′
[ψ(F (c1, t2)]

=
ψ′(F (c1, t2))

ψ′(v)

The derivation of F3(v, t1, c2) will be almost the same as that of F2(v, c1, t2).

After the conditional distribution functions of V under various censoring

patterns are obtained, we are more interested in calculating the conditional expec-

tations of V as shown in the following corollary.

Corollary: Under the same conditions as in Theorem 1,

1. The mean of V given {T1 < C1, T2 < C2} is

E(V |T1 < c1, T2 < c2) =
F (c1, c2)

2
−
∫ 1

0

[ψ(F (c1, c2))− ψ(uF (c1, c2))]

ψ′(uF (c1, c2))
du

2. The mean of V given {T1 < C1, T2 = t2} is

E(V |T1 < c1, T2 = t2) = F (c1, t2)− F (c1, t2)ψ
′(F (c1, t2))

∫ 1

0

du

ψ′(uF (c1, t2))

3. The mean of V given {T1 = t1, T2 < C2} is

E(V |T1 = t1, T2 < c2) = F (t1, c2)− F (t1, c2)ψ
′(F (t1, c2))

∫ 1

0

du

ψ′(uF (t1, c2))
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Proof: The density function of the conditional distribution function F1(v, c1, c2)

is obtained as follows:

f1(v, c1, c2) =
F (c1, c2) · {v − ψ(v)

ψ′(v)
+ ψ[F (c1,c2)]

ψ′(v)
}′

[F (c1, c2)]2
=

[ψ(v)− ψ(F (c1, c2))] · ψ′′(v)

F (c1, c2) · [ψ′(v)]2
.

Then the conditional expectation of V can be expressed as:∫ F (c1,c2)

0

v · [ψ(v)− ψ(F (c1, c2))] · ψ′′(v)

F (c1, c2) · [ψ′(v)]2
dv

After several steps of integration by parts,

E(V |T1 < c1, T2 < c2) =
F (c1, c2)

2
−
∫ 1

0

[ψ(F (c1, c2))− ψ(uF (c1, c2))]

ψ′(uF (c1, c2))
du

In the same way,

f2(v, c1, t2) = −ψ
′[F (c1, t2)] · ψ′′(v)

[ψ′(v)]2
,

and

E(V |T1 < c1, T2 = t2) = −
∫ F (c1,t2)

0

v · ψ
′[F (c1, t2)] · ψ′′(v)

[ψ′(v)]2
dv

= F (c1, t2)− F (c1, t2)ψ
′(F (c1, t2))

∫ 1

0

du

ψ′(uF (c1, t2))
.

The expression of E(V |T1 = t1, T2 < c2) is easily achieved using the same trick as we

have done on E(V |T1 < c1, T2 = t2).

In particular, suppose T1, T2 is a random pair that could be modeled by

Clayton copula, then the following simple conclusions will be obtained using the

aforementioned corollary: The mean of V |T1 > c1, T2 > c2) is

E(V |T1 < c1, T2 < c2) = (
θ + 1

θ + 2
)
F (c1, c2)

2
;

The mean of V |T1 > c1, T2 = t2) is

E(V |T1 < c1, T2 = t2) = (
θ + 1

θ + 2
)F (c1, t2);
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The mean of V |T1 = t1, T2 > c2) is

E(V |T1 = t1, T2 < c2) = (
θ + 1

θ + 2
)F (t1, c2).

Thus E(V |T1 > t1, T2 > t2) = E(V |T1 > t1, T2 = t2)/2 = E(V |T1 = t1, T2 >

t2)/2 for the Clayton copula. When the dependence parameter θ is equal to 0, T1 and

T2 are independent with each other, and the results will follow:

E(V |T1 > c1, T2 > c2) =
F (c1, c2)

4
=
F1(c1)F2(c2)

4
;

E(V |T1 > c1, T2 = t2) =
F (c1, t2)

2
=
F1(c1)F2(t2)

2
;

E(V |T1 = t1, T2 > c2) =
F (t1, c2)

2
=
F1(t1)F2(c2)

2
.

When the dependence level is getting stronger, the conditional expectation of V under

all the three censoring patterns will be larger. and if θ −→∞,

E(V |T1 > c1, T2 > c2) −→
F (c1, c2)

2
;

E(V |T1 > c1, T2 = c2) −→ F (c1, t2);

E(V |T1 = t1, T2 > c2) −→ F (t1, c2).

These distributional results proved will play an extremely important role

obtaining the parameter estimator of Archimedean copula models that will be

discussed in the next section.

2.4 Parameter Estimation

Oakes (1989)[9] demonstrates frailty models are invariant under monotone transfor-

mations of either time axis, so it’s reasonable to use nonparametric, rank invariant
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measures of associations such as Kendall’s tau to characterize the dependence level.

The population value is

τ = E[sign{T (1)
1 − T

(2)
1 }{T

(1)
2 − T

(2)
2 }].

and it is proved that

τ = 4E(V )− 1,

where V = S(T1, T2). However, V in our case is defined as F (T1, T2) which is slightly

different from the original expression. Therefore, it raised our interests to show if the

same equation can hold in our model setting.

τ = E[sign{T (1)
1 − T

(2)
1 }{T

(1)
2 − T

(2)
2 }]

= P (T
(1)
1 > T

(2)
1 and T

(1)
2 > T

(2)
2 ) + P (T

(1)
1 < T

(2)
1 and T

(1)
2 < T

(2)
2 )

−P (T
(1)
1 > T

(2)
1 and T

(1)
2 < T

(2)
2 )− P (T

(1)
1 < T

(2)
1 and T

(1)
2 > T

(2)
2 ).

It’s easy to see the first and second term are equivalent to E[F (T1, T2)]. The expansion

of the third term is

P (T
(1)
1 > T

(2)
1 and T

(1)
2 < T

(2)
2 ) = P (T

(1)
1 > T

(2)
1 )− P (T

(1)
1 > T

(2)
1 , T

(2)
2 > T

(1)
2 )

=

∫ ∞
0

(1− FT1(t1))dFT1(t1)− P (T
(1)
1 > T

(2)
1 , T

(2)
2 > T

(1)
2 )

=
1

2
−
∫ ∞
0

∫ ∞
0

P (T
(1)
1 > T

(2)
1 , T

(1)
2 < T

(2)
2 |T

(1)
1 = t1, T

(2)
2 = t2)fT1,T2(t1, t2)dt1dt2

=
1

2
−
∫ ∞
0

∫ ∞
0

FT1,T2(t1, t2)fT1,T2(t1, t2)dt1dt2

=
1

2
− E[F (T1, T2)]
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Likewise, the fourth term is also equal to 1
2
− E[F (T1, T2)]. Therefore,

τ = 4E(V )− 1 = 4E[F (T1, T2)]− 1.

In the Archimedean copula model, we can rewrite τ as

τ = g(θ) =
θ

θ + 2
= 4E[V ]− 1 = 4{E[V (1− δ1)(1− δ2)] + E[V (1− δ1)δ2]}

+4{E[V δ1(1− δ2)] + E[V δ1δ2]} − 1,

where δ1 = 1(T1 ≥ C1) and δ2 = 1(T2 ≥ C2). Based on this relationship and previous

distributional results, a proposed estimator of the unknown dependence parameter

θ in Archimedean copula models can be determined from the following estimating

equation:

g(θ) =
4

n

n∑
i=1

[
F (X1i, X2i)

2
−
∫ 1

0

ψ(F (X1i, X2i))− ψ(uF (X1i, X2i))

ψ′(uF (X1i, X2i))
du](1− δ1i)(1− δ2i)

+
4

n

n∑
i=1

[F (X1i, X2i)− F (X1i, X2i)ψ
′(F (X1i, X2i))

∫ 1

0

du

ψ′(uF (X1i, X2i))
](1− δ1i)δ2i

+
4

n

n∑
i=1

[F (X1i, X2i)− F (X1i, X2i)ψ
′(F (X1i, X2i))

∫ 1

0

du

ψ′(uF (X1i, X2i))
]δ1i(1− δ2i)

+
4

n

n∑
i=1

F (X1i, X2i)δ1iδ2i − 1,

where X1i = max(T1i, C1i) and X2i = max(T2i, C2i). For the Clayton copula model,

a simplified estimating equation will be

n∑
i=1

[F (X1i, X2i)(1 + δ1i + δ2i +
1− θ
1 + θ

δ1iδ2i)]− n = 0
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Using the fact that θ̂ = 2τ̂
1−τ̂ :

τ̂ =

∑n
i=1 F̂ (X1i, X2i)(1 + δ1i + δ2i + δ1iδ2i)− n∑n

i=1 F̂ (X1i, X2i)(−1− δ1i − δ2i + 3δ1iδ2i) + n
.

Note that if censoring doesn’t exist(i.e.,δ1i = δ2i = 1 for any i), the estimator of τ

becomes

τ̂ =
4

n

n∑
i=1

F̂ (T1i, T2i)− 1 =
4

n

n∑
i=1

V̂i − 1.

Now the question is quite clear, how to efficiently estimate our bivariate

cumulative distribution function V between T1 and T2?

In the presence of right censoring, there have been a lot of studies on

the estimation of bivariate survival function: Campell (1981)[2] developed several

properties of the corresponding estimator of the survival function; Tsai (1986)[12]

suggested an estimation procedure that is relevant to the estimation of conditional

survival functions; Dabrowska (1988)[5] focused on nonparametric estimation of the

multivariate survival function by building on the product integral representation,

which has been arguably the most well-known technique estimating bivariate survival

function.

However, there have been quite few research on the estimation of bivariate

survival function or distribution function where left censoring occurs.

Therefore, we have to specify some more assumptions on our model to finally

estimate the dependence level between those two time-to-event variables. Here we

assume the generator of Archimedean copula model is known so that the bivariate

Archimedean copula formula will be explicit.

Recall

ĝ(θ) =
4

n

n∑
i=1

[
F̂ (X1i, X2i)

2
−
∫ 1

0

ψ(F̂ (X1i, X2i))− ψ(uF̂ (X1i, X2i))

ψ′(uF̂ (X1i, X2i))
du](1− δ1i)(1− δ2i)
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+
4

n

n∑
i=1

[F̂ (X1i, X2i)− F̂ (X1i, X2i)ψ
′(F̂ (X1i, X2i))

∫ 1

0

du

ψ′(uF̂ (X1i, X2i))
](1− δ1i)δ2i

+
4

n

n∑
i=1

[F̂ (X1i, X2i)− F̂ (X1i, X2i)ψ
′(F̂ (X1i, X2i))

∫ 1

0

du

ψ′(uF̂ (X1i, X2i))
]δ1i(1− δ2i)

+
4

n

n∑
i=1

F̂ (X1i, X2i)δ1iδ2i − 1,

Since the type of Archimedean copula we have is already known,

ĝ(θ) = h(θ̂, F̂T1(X1i), F̂T2(X2i))

To estimate the marginal distribution function FT1(X1i) and FT2(X2i), we just need

to implement LKM estimator introduced in the first chapter, that is

F̂T1(X1i) = 1− ŜT1(X1i);

F̂T2(X2i) = 1− ŜT2(X2i),

where ŜT1 and ŜT2 represents the LKM estimator of T1 and T2 respectively.

Gomez (1994)[7] demonstrated that LKM estimator satisfies the self-consistency

property and the asymptotic variance function also can be derived. For any

fixed time point t0 > 0 such that SC(t0) < 1, then the results will follow: (a).

lim supn→∞,t≥t0 |ŜT (t)−ST (t)| = 0 a.s.; (b). limn→∞
√
n(ŜT−ST ) = (1−ST )W weakly

in D([t0,∞)), where W is a centered gaussian process with independent increments

and variance function

E[Wt
2] = −

∫ ∞
t

dST (u)

(1− ST (u−))(1− SX(u))
.

Accordingly, these nice properties will allow us to get unbiased estimators of

marginal distribution functions of T1 and T2 at various observed time points.

24



Hence,the previous equation ĝ(θ) = h(θ̂, F̂T1(X1i), F̂T2(X2i)) = 0 is reduced to

a simple nonlinear formula regarding θ̂ only given known estimators F̂T1(X1i) and

F̂T2(X2i), and it can be solved using some programming languages such as R and

Python.

2.5 Asymptotic Variance of θ̂

The asymptotic normality were proved using a list of reference sources including Wang

(2018)[16] and Pepe (1991)[10].

After establishing our estimating equation, it follows:

1√
n

n∑
i=1

(θ̂ − θ) ≈ −
√
ng(θ)

g′(θ)
.

The following regularity conditions are needed to validate the asymptotic

normality of our parameter estimator θ̂:

1.
√
n∂V (θ,F1i,F2i)

∂F1i
(F̂1i − F1i) and

√
n
∂V (θ,F1j ,F2j)

∂F1j
(F̂1j − F1j) are bounded by two

integrable function g and h.

2.The unknown and true dependence parameter θ is well identified.

3.The second order derivative of the generator of Archimedean copula model

exists, i.e. ψ′′ > 0.

4.Integration and differentiation operators can be swapped in order.

5.Information matrix I(θ) > 0.

6. ∂
∂x

[ψ′(x)
∫ 1

0
du

ψ′(ux)
] and ∂

∂x

∫ 1

0
ψ(x)−ψ(ux)
ψ′(ux)

du both exist.

Theorem 3: Under regularity conditions 1 − 5, our dependence parameter

estimator θ̂ is asymptotically normal with mean zero and variance σ2 where

σ2 = γ2/β2,

Proof: see Appendix where γ2 and β2 are defined.
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2.6 Simulation Results

In the simulation setting, we assumed that T1 and T2 followed an exponential

distribution with parameter 1, while the censoring time variables C1 and C2 were

exponentially distributed with parameter 0.1. T1 and T2 were modeled by Clayton

copula. The dependence parameter τ between T1 and T2 were chosen as 0.2, 0.4, 0.6

and 0.8 as the dependence level was increased. Results were based on 1000 repetitions

of simulations, also the censoring rate for each experiment was controlled between 15%

to 25%. Those results were displayed on Tables 2.1 and 2.2 when we had different

sample sizes.

Table 2.1 Simulation Results for Clayton Copula When N = 200

τ τ̂ Bias(τ̂ , τ) SDτ (τ̂) MSE(τ̂)

0.2 0.230 0.030 0.049 0.0033

0.4 0.437 0.037 0.042 0.0031

0.6 0.629 0.029 0.032 0.0019

0.8 0.820 0.020 0.022 0.0009

2.7 An Illustrative Example

Barroso (2000)[1] performed a cohort study of HIV-infected men at the Hospital

Universitrio Clementino Fraga Filho in Brazil to evaluate the effect of antiretroviral

therapy. The main purpose of this study was to evaluate the association between

plasma and semen viral loads. T1 denoted the plasma viral loads and T2 denoted

the semen viral loads. However, this bivariate data set is severely left censored at

(L1, L2), where L1 = L2 = 2.6. Among all the 85 men who provided a blood sample

and a semen sample, 64 of the semen samples and 47 of the blood samples have
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Table 2.2 Simulation Results for Clayton Copula When N = 1000

τ τ̂ Bias(τ̂ , τ) SDτ (τ̂) MSE(τ̂)

0.2 0.216 0.016 0.020 0.0007

0.4 0.420 0.020 0.019 0.0008

0.6 0.613 0.013 0.014 0.0004

0.8 0.803 0.003 0.010 0.0001

undetectable viral loads. We have totally 19 men with complete observations. Based

on the scientific interests, we tried to explore the relationship between T1 and T2. The

head of the data is as follows:

Table 2.3 HIV Data Set

ID 1 2 3 4 5 6 7 8 9

max{T1, L1} 2.6 2.6 2.6 2.6 2.6 2.6 2.6 3.0 3.0

1{T1 > L1} 0 0 0 0 0 0 0 1 1

max{T2, L2} 3.3 2.6 2.6 2.6 2.8 4.8 2.6 3.3 4.9

1{T2 > L2} 1 0 0 0 1 1 0 1 1

Wang (2007)[15] demonstrated that T1, T2 follows the Clayton copula model

using empirical test for the subsample formed by the completely observable pairs.

Using the estimating equation he proposed, τ̂ = 0.37, which means there exists

a moderate association between the plasma viral loads and semen viral loads.
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Additionally, we performed a bootstrap re-sampling method to calculate different

estimated dependence parameters using 100 bootstrap re-sampling observations. The

averaged estimated τ̂ is equal to 0.42, which is quite close to Wang’s result. Therefore,

it will be more convincing to conclude that the plasma viral loads and semen viral

loads are dependent with each other.

2.8 Left Copula-Graphic Estimator

Zheng and Klein (1995)[17] proposed the well-known copula-graphic estimator and

showed the explicit form of it. However, it can only be applied where right censoring

exists. To investigate the estimator of marginal survival function if we are given left

censored data, the following theorem was derived. Additionally, Rivest (2001)[11]

incorporated a martingale approach to further extend the application of copula

models.

Theorem 4: Let T and C be correlated event times following an Archimedean

copula with generator ψθ, X = max(T,C) and δ = 1[T ≥ C], then the copula

graphical estimator of ST is

ŜT (t) = 1− ψ−1θ

{
−

∑
Xi≥t,δi=1

ψθ[π̂(t)]− ψθ[π̂(t)− 1/n]

}
,

where π̂(t) =
n∑
i=1

1[Xi ≤ t]

n
is the empirical estimator of P (X ≤ t).

Proof: In the presence of right censoring,

ŜT (t) = ψ−1θ

{
−

∑
Xi≤t,δi=1

ψθ[π̂(t)]− ψθ[π̂(t)− 1/n]

}
,

where π̂(t) =
n∑
i=1

1[Xi ≥ t]

n
is the empirical estimator of P (X ≥ t).

We made some transformation on the right censored data first by choosing a

N sufficiently large. Then a new pair of time-to-event variables was generated as
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{N − T,N − C}, where N − T can be left censored by N − C. The explicit form of

ŜT (t) will be easily obtained using this trick.

Figure 2.1 Comparison of estimators.

Figure 2.1 below has clearly shown how fit the left copula-graphic curve fit the

true survival curve, while the LKM estimator gives us some unfavorable biases.

However, although the simulation results look pretty well, the asymptotic

properties of the left Copula-Graphic estimator still need to be demonstrated strictly.
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APPENDIX

ASYMPTOTIC VARIANCE PROOF OF θ̂

Proof of Theorem: Using the Taylor expansion, we have

1√
n

n∑
i=1

(θ̂ − θ) ≈
√
ng(θ)

−g′(θ)
=
γ

β

We first consider the variance of numerator γ2, and it will be sufficient for us to show

the asymptotic normality of ĝ(θ) to determine if g(θ) is asymptotically normally

distributed.

Recall

ĝ(θ) =
4

n

n∑
i=1

[
F̂ (X1i, X2i)

2
−
∫ 1

0

ψ(F̂ (X1i, X2i))− ψ(uF̂ (X1i, X2i))

ψ′(uF̂ (X1i, X2i))
du](1− δ1i)(1− δ2i)

+
4

n

n∑
i=1

[F̂ (X1i, X2i)− F̂ (X1i, X2i)ψ
′(F̂ (X1i, X2i))

∫ 1

0

du

ψ′(uF̂ (X1i, X2i))
](1− δ1i)δ2i

+
4

n

n∑
i=1

[F̂ (X1i, X2i)− F̂ (X1i, X2i)ψ
′(F̂ (X1i, X2i))

∫ 1

0

du

ψ′(uF̂ (X1i, X2i))
]δ1i(1− δ2i)

+
4

n

n∑
i=1

F̂ (X1i, X2i)δ1iδ2i − 1,

In our proof, we will use V̂i represent F̂ (X1i, X2i) to simplify our notation. Since

it’s essential to show the asymptotic variance of F (C1, C2),F (C1, T2), F (T1, T2) and

F (T1, C2), so it will be sufficient to prove the asymptotic variance of 1√
n

∑n
i=1(V̂i−Vi).

We have the left Kaplan-Meier estimators of T1 and T2 represented by Ŝ1 and Ŝ2,

then our estimated marginal cdf of T1 and T2 is F̂1 and F̂2, i.e. (1− Ŝ1) and (1− Ŝ2).

While our true joint cdf of T1 and T2 is denoted as Vi = F (T1i, T2i, θ). In our case, we

plugged in both the two estimated cdfs of T1 and T2 into V̂i = F̂ (T1i, T2i, θ) which is the
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estimated joint cdf of T1 and T2 at pair of random variables (T1i, T2i) given parameter

θ. For example, if T1 and T2 follow clayton copula, V̂i = {[F̂1(T1i)]
−θ + F̂1(T2i)]

−θ −

1}− 1
θ . ∂V (θ,F1i,F2i)

∂F1
and ∂V (θ,F1i,F2i)

∂F2
are used as the derivatives of V with respect to

F1 and F2 at (F1i, F2i) given θ, and F̂1i and F̂2i represents the left Kaplan-Meier

estimator of T1 at T1i and that of T2 at T2i.

Proof of Asymptotic variance of V̂ :

1√
n

n∑
i=1

(V̂i−Vi) ≈
1

n

n∑
i=1

[
√
n
∂V (θ, F1i, F2i)

∂F1

(F̂1i−F1i) +
√
n
∂V (θ, F1i, F2i)

∂F2

(F̂2i−F2i)]

The variance of the right hand side (K) is:

V ar(K) =
1

n2
Cov[

n∑
i=1

{
√
n
∂V (θ, F1i, F2i)

∂F1

(F̂1i − F1i) +
√
n
∂V (θ, F1i, F2i)

∂F2

(F̂2i − F2i)},

n∑
j=1

{
√
n
∂V (θ, F1j, F2j)

∂F1

(F̂1j − F1j) +
√
n
∂V (θ, F1j, F2j)

∂F2

(F̂2j − F2j)}]

=
1

n2

n∑
i=1

n∑
j=1

Cov[{
√
n
∂V (θ, F1i, F2i)

∂F1

(F̂1i − F1i) +
√
n
∂V (θ, F1i, F2i)

∂F2

(F̂2i − F2i)},

{
√
n
∂V (θ, F1j, F2j)

∂F1

(F̂1j − F1j) +
√
n
∂V (θ, F1j, F2j)

∂F2

(F̂2j − F2j)}]

=
1

n2

n∑
i=1

V ar[
√
n
∂V (θ, F1i, F2i)

∂F1

(F̂1i − F1i) +
√
n
∂V (θ, F1i, F2i)

∂F2

(F̂2i − F2i)]+

2

n2

∑
i<j

Cov[{
√
n
∂V (θ, F1i, F2i)

∂F1

(F̂1i − F1i) +
√
n
∂V (θ, F1i, F2i)

∂F2

(F̂2i − F2i)},

{
√
n
∂V (θ, F1j, F2j)

∂F1

(F̂1j − F1j) +
√
n
∂V (θ, F1j, F2j)

∂F2

(F̂2j − F2j)}]

=
1

n2

n∑
i=1

V ar[
√
n
∂V (θ, F1i, F2i)

∂F1

(F̂1i−F1i)]+
1

n2

n∑
i=1

V ar[
√
n
∂V (θ, F1i, F2i)

∂F2

(F̂2i−F2i)]+
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2

n2

n∑
i=1

Cov[
√
n
∂V (θ, F1i, F2i)

∂F1

(F̂1i − F1i),
√
n
∂V (θ, F1i, F2i)

∂F2

(F̂2i − F2i)]+

2

n2

∑
i<j

Cov[
√
n
∂V (θ, F1i, F2i)

∂F1

(F̂1i − F1i),
√
n
∂V (θ, F1j, F2j)

∂F1

(F̂1j − F1j)]+

2

n2

∑
i<j

Cov[
√
n
∂V (θ, F1i, F2i)

∂F2

(F̂2i − F2i),
√
n
∂V (θ, F1j, F2j)

∂F2

(F̂2j − F2j)]+

2

n2

∑
i<j

Cov[
√
n
∂V (θ, F1i, F2i)

∂F1

(F̂1i − F1i),
√
n
∂V (θ, F1j, F2j)

∂F2

(F̂2j − F2j)]+

2

n2

∑
i<j

Cov[
√
n
∂V (θ, F1i, F2i)

∂F2

(F̂2i − F2i),
√
n
∂V (θ, F1j, F2j)

∂F1

(F̂1j − F1j)]

=
1

n2

n∑
i=1

V ar[
√
n
∂V (θ, F1i, F2i)

∂F1

(F̂1i−F1i)]+
1

n2

∑
i<j

Cov[
√
n
∂V (θ, F1i, F2i)

∂F1

(F̂1i−F1i),

√
n
∂V (θ, F1j, F2j)

∂F1

(F̂1j − F1j)] +
1

n2

n∑
i=1

V ar[
√
n
∂V (θ, F1i, F2i)

∂F2

(F̂2i − F2i)]+

1

n2

∑
i<j

Cov[
√
n
∂V (θ, F1i, F2i)

∂F2

(F̂2i − F2i),
√
n
∂V (θ, F1j, F2j)

∂F2

(F̂2j − F2j)]+

1

n2

n∑
i=1

Cov[
√
n
∂V (θ, F1i, F2i)

∂F1

(F̂1i − F1i),
√
n
∂V (θ, F1i, F2i)

∂F2

(F̂2i − F2i)]+

1

n2

∑
i<j

Cov[
√
n
∂V (θ, F1i, F2i)

∂F1

(F̂1i − F1i),
√
n
∂V (θ, F1j, F2j)

∂F2

(F̂2j − F2j)]+

1

n2

n∑
i=1

Cov[
√
n
∂V (θ, F1i, F2i)

∂F1

(F̂1i − F1i),
√
n
∂V (θ, F1i, F2i)

∂F2

(F̂2i − F2i)]+

1

n2

∑
i<j

Cov[
√
n
∂V (θ, F1i, F2i)

∂F2

(F̂2i − F2i),
√
n
∂V (θ, F1j, F2j)

∂F1

(F̂1j − F1j)]+
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1

n2

∑
i<j

Cov[
√
n
∂V (θ, F1i, F2i)

∂F1

(F̂1i − F1i),
√
n
∂V (θ, F1j, F2j)

∂F1

(F̂1j − F1j)]+

1

n2

∑
i<j

Cov[
√
n
∂V (θ, F1i, F2i)

∂F2

(F̂2i − F2i),
√
n
∂V (θ, F1j, F2j)

∂F2

(F̂2j − F2j)]+

1

n2

∑
i<j

Cov[
√
n
∂V (θ, F1i, F2i)

∂F1

(F̂1i − F1i),
√
n
∂V (θ, F1j, F2j)

∂F2

(F̂2j − F2j)]+

1

n2

∑
i<j

Cov[
√
n
∂V (θ, F1i, F2i)

∂F2

(F̂2i − F2i),
√
n
∂V (θ, F1j, F2j)

∂F1

(F̂1j − F1j)]

= A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 + A10 + A11 + A12(?)

According to Theorem 3 in the paper published by Gomez (1994)[7],

lim
n→∞

√
n(ŜT − ST ) = (1− ST )W weakly in D([t0,∞]),

where W is a centered Gaussian process, with independent increments and variance

function.

E[Yt
2] = −

∫ ∞
t

dST (u)

(1− ST (u−))(1− SX(u))

where X = max(T,C). We can infer that

lim
n→∞

√
n(F̂T − FT ) = −FT ∗W weakly in D([t0,∞]),

From the equation above, we can merge A1 and A2 into the first term B1 below.

Similarly, summation of A3 and A4 is the second term B2, summation of A5 and A6

is the third term B3 and summation of A7 and A8 is the fourth term B4. Therefore,

(?) =
1

n2

∑
i≤j

Cov[
√
n
∂V (θ, F1i, F2i)

∂F1

(F̂1i − F1i),
√
n
∂V (θ, F1j, F2j)

∂F1

(F̂1j − F1j)]+
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1

n2

∑
i≤j

Cov[
√
n
∂V (θ, F1i, F2i)

∂F2

(F̂2i − F2i),
√
n
∂V (θ, F1j, F2j)

∂F2

(F̂2j − F2j)]+

1

n2

∑
i≤j

Cov[
√
n
∂V (θ, F1i, F2i)

∂F1

(F̂1i − F1i),
√
n
∂V (θ, F1j, F2j)

∂F2

(F̂2j − F2j)]+

1

n2

∑
i≤j

Cov[
√
n
∂V (θ, F1i, F2i)

∂F2

(F̂2i − F2i),
√
n
∂V (θ, F1j, F2j)

∂F1

(F̂1j − F1j)]+

1

n2

∑
i<j

Cov[
√
n
∂V (θ, F1i, F2i)

∂F1

(F̂1i − F1i),
√
n
∂V (θ, F1j, F2j)

∂F1

(F̂1j − F1j)]+

1

n2

∑
i<j

Cov[
√
n
∂V (θ, F1i, F2i)

∂F2

(F̂2i − F2i),
√
n
∂V (θ, F1j, F2j)

∂F2

(F̂2j − F2j)]+

1

n2

∑
i<j

Cov[
√
n
∂V (θ, F1i, F2i)

∂F1

(F̂1i − F1i),
√
n
∂V (θ, F1j, F2j)

∂F2

(F̂2j − F2j)]+

1

n2

∑
i<j

Cov[
√
n
∂V (θ, F1i, F2i)

∂F2

(F̂2i − F2i),
√
n
∂V (θ, F1j, F2j)

∂F1

(F̂1j − F1j)]

= B1 +B2 +B3 +B4 +B5 +B6 +B7 +B8

=
1

n2

∑
i,j

Cov[
√
n
∂V (θ, F1i, F2i)

∂F1

(F̂1i − F1i),
√
n
∂V (θ, F1j, F2j)

∂F1

(F̂1j − F1j)]+

1

n2

∑
i,j

Cov[
√
n
∂V (θ, F1i, F2i)

∂F2

(F̂2i − F2i),
√
n
∂V (θ, F1j, F2j)

∂F2

(F̂2j − F2j)]+

2

n2

∑
i,j

Cov[
√
n
∂V (θ, F1i, F2i)

∂F1

(F̂1i − F1i),
√
n
∂V (θ, F1j, F2j)

∂F2

(F̂2j − F2j)]

= K1 +K2 +K3(??)
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From the equation above, K1 is the summation of B1 and B5, K2 is the summation

of B2 and B6, K3 is the summation of the rest four terms.

Gomez (1994)[7] proved that the left Kaplan-Meier estimator of time to event

random variable T does have both consistency and asymptotic normality given

censoring time C and observed random variable X = max(T,C). We obtain

lim
n→∞

√
n(ŜT (t)− ST (t)) = (1− ST (t))

∫ ∞
t

1− ST (s)

1− ST (s−)
dV (s)

=⇒ lim
n→∞

√
n(F̂T (t)− FT (t)) = −FT (t)

∫ ∞
t

FT (s)

FT (s−)
dV (s)(??)

Here V is a centered gaussian process with independent increments and variance

function

E[Vi
2] = −

∫ ∞
t

1 + ∆Γ(u)

1−Q(u)
dΓ(u)

where Q(t) = P (X > t), Γ(t) = −
∫∞
t

dST (s)
1−ST (s)

represents the cumulative backward

hazard function, and ∆Γ(t) = Γ(t)− Γ(t−) = 1
1−ST (t)

∆ST (t).

From (??), we will take limit for each element from K1 to K3, since

lim(
√
n
∂V (θ, F1i, F2i)

∂F1

(F̂1i − F1i)) = −∂V (θ, F1i, F2i)

∂F1

FT1(t1i)

∫ ∞
t1i

FT1(s)

FT1(s
−)
dVt1i(s)

The above Vt1i is a centered gaussian random variable. Based on the assumed

condition that
√
n∂V (θ,F1i,F2i)

∂F1i
(F̂1i − F1i) and

√
n
∂V (θ,F1j ,F2j)

∂F1j
(F̂1j − F1j) are bounded

by two integrable function g and h, we can directly apply the dominated convergence

theorem to get

lim(K1) = E{[∂V (θ, F1i, F2i)

∂F1

FT1(t1i)

∫ ∞
t1i

FT1(s)

FT1(s
−)
dVt1i(s)]·

[
∂V (θ, F1j, F2j)

∂F1

FT1(t1j)

∫ ∞
t1j

FT1(s)

FT1(s
−)
dVt1j(s)]},
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Similarly,

lim(K2) = E{[∂V (θ, F1i, F2i)

∂F2

FT2(t2i)

∫ ∞
t2i

FT2(s)

FT2(s
−)
dVt2i(s)]·

[
∂V (θ, F1j, F2j)

∂F2

FT2(t2j)

∫ ∞
t2j

FT2(s)

FT2(s
−)
dVt2j(s)]},

lim(K3) = 2E{[∂V (θ, F1i, F2i)

∂F1

FT1(t1i)

∫ ∞
t1i

FT1(s)

FT1(s
−)
dVt1i(s)]·

[
∂V (θ, F1j, F2j)

∂F2

FT2(t2j)

∫ ∞
t2j

FT2(s)

FT2(s
−)
dVt2j(s)]}.

In a word,

lim[V ar(K)] = E{[∂V (θ, F1i, F2i)

∂F1

FT1(t1i)

∫ ∞
t1i

FT1(s)

FT1(s
−)
dVt1i(s)]·

[
∂V (θ, F1j, F2j)

∂F1

FT1(t1j)

∫ ∞
t1j

FT1(s)

FT1(s
−)
dVt1j(s)]}+ E{[∂V (θ, F1i, F2i)

∂F2

FT2(t2i)·

∫ ∞
t2i

FT2(s)

FT2(s
−)
dVt2i(s)][

∂V (θ, F1j, F2j)

∂F2

FT2(t2j)

∫ ∞
t2j

FT2(s)

FT2(s
−)
dVt2j(s)]}

+2E{[∂V (θ, F1i, F2i)

∂F1

FT1(t1i)

∫ ∞
t1i

FT1(s)

FT1(s
−)
dVt1i(s)]·

[
∂V (θ, F1j, F2j)

∂F2

FT2(t2j)

∫ ∞
t2j

FT2(s)

FT2(s
−)
dVt2j(s)]}

After we obtain the asymptotic variance of V̂i, which will be denoted as k in the

following expressions, it’s not difficult to find the explicit form of γ2 under the given

assumptions. The main approach for us to pursue the result is applying the following

traditional delta method, when we have

√
n[Xn − θ]

D−→ N (0, σ2),
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then
√
n[g(Xn)− g(θ)]

D−→ N (0, σ2 · [g′(θ)]2).

In our case,
√
n[h(V̂ )− h(V )]

D−→ N (0, γ2),

where σ2 = lim[V ar(K)], and h(V ) =
∑n

i=1 h(Vi). We also have

√
n[h(V̂i)− h(Vi)]

D−→ N (0, σ2 · [h′(Vi)]2),

h(Vi) =
4

n
[
Vi
2
−
∫ 1

0

ψ(Vi)− ψ(uVi)

ψ′(uVi)
du](1− δ1i)(1− δ2i) +

4

n
[Vi− Viψ′(Vi)

∫ 1

0

du

ψ′(uVi)
]·

(1− δ1i)δ2i +
4

n
[Vi − Viψ′(Vi)

∫ 1

0

du

ψ′(uVi)
]δ1i(1− δ2i) +

4

n
· Viδ1iδ2i −

1

n
,

h′(Vi) =
2

n
(1 + δ1i + δ2i − δ1iδ2i)−

4

n
(δ1i + δ2i − 2δ1iδ2i)ψ

′(Vi)

∫ 1

0

du

ψ′(uVi)

− 4

n
(δ1i + δ2i − 2δ1iδ2i)Vi ·

∂

∂x
[ψ′(x)

∫ 1

0

du

ψ′(ux)
]

∣∣∣∣
x=Vi

− 4

n
(1− δ1i − δ2i + δ1iδ2i) ·

∂

∂x

∫ 1

0

ψ(x)− ψ(ux)

ψ′(ux)
du

∣∣∣∣
x=Vi

.

γ2 = V ar[
√
n · h(V̂ )] = V ar[

n∑
i=1

√
n · h(V̂i)]

=
σ2

n

n∑
i=1

[n · h′(Vi)]2 + σ2

n∑
i 6=j

Cov[h′(Vi), h
′(Vj)]

= σ2 · E{[nh′(Vi)]2}+ σ2 · E[n2h′(Vi)h
′(Vj)]− σ2 · E[nh′(Vi)] · E[nh′(Vj)].
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The form of β is comparatively easier to be figured out, and we got

β2 = E2[−g′(θ)].

Therefore,
√
n(θ̂ − θ) is asymptotically normal with mean zero and variance

γ2/β2, also h′ and g′ denote the first order derivative of estimating equation function

with respect to V and θ.
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