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ABSTRACT

MECHANISMS OF OSCILLATIONS AND POLYGLOT
ENTRAINMENT IN NEURONAL AND CIRCADIAN MODELS

by
Emel Khan

Entrainment is a type of synchronization in which the period of an endogenous

oscillator matches the period of an external forcing signal and a stable phase

relationship is maintained between them. Entrainment patterns are described in

terms of the number of input oscillations (N) that are phase-locked to a number

of output oscillations (M), referred to as N:M patterns. Arnold tongue diagrams are

used to depict the regions of N:M entrainment patterns in the input period-amplitude

parameter space. Although the entrainment of self-sustained oscillators by periodic

forcing are well investigated is a well-studied problem, entrainment of damped

oscillators has been less explored. This thesis characterizes entrainment responses

for several models of biological oscillators with the unforced system in different

dynamic regimes, such as an unstable focus with large amplitude oscillations, a

stable focus with weakly damped oscillations, and a stable focus with strongly

damped oscillations. The main finding of this dissertation is the existence of multiple

disconnected 1:1 entrainment regions when the unforced system is in the vicinity of a

Hopf bifurcation. This entrainment structure is termed polyglot to distinguish it from

the single 1:1 entrainment region (monoglot) structure typically observed in Arnold

tongue diagrams. The emergence of polyglot entrainment is then explained using

phase plane analysis and other dynamical systems tools.

Chapter 1 provides an introduction to oscillator theory and the importance

of biological oscillations. Chapters 2 and 3 consider the Fitzhugh-Nagumo model

of neuronal oscillations and explore its entrainment properties. Chapter 4 focuses

on two models of circadian (∼24-hour) rhythms in cyanobacteria and uncovers the



dynamical mechanism underlying post-translational oscillations (PTOs). Chapter 5

then analyzes entrainment of these PTO models. In Chapter 6, entrainment results

are presented for other models of neuronal, circadian, and glycolytic oscillations.

These investigations lead to the conclusion that polyglot entrainment structure

(multiple 1:1 regions) is observed when the unforced system is in the vicinity of

a Hopf bifurcation and the Hopf point is located near a knee of a cubic nullcline.

Concluding thoughts and future work are presented in Chapter 7.
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CHAPTER 1

INTRODUCTION

1.1 Background

In a deterministic dynamical system, an oscillation is a solution that repeats in time.

Such periodic solutions occur across different time scales ranging from milliseconds in

models of neuronal oscillations to years in models of ecological and epidemiological

oscillations. Rhythmic events are ubiquitous in nature across biological, chemical,

and physical systems and can be modeled as limit cycle oscillations. A limit cycle is

an isolated closed trajectory. If the limit cycle is stable, then all trajectories in its

vicinity will approach the limit cycle as time goes on to infinity [88]. This property

distinguishes limit cycles, which only exist in nonlinear systems, from linear oscillators

for which the amplitude of the oscillation depends on initial conditions. Furthermore,

linear oscillations always have a sinusoidal waveform, whereas limit cycle oscillators

can exhibit various waveforms depending on parameters. Since biological oscillations

are not usually sinusoidal and tend to have a characteristic amplitude independent of

initial conditions, limit cycles are often used to model them. Examples of limit cycle

oscillations in biological systems include the repetitive firing of action potentials in

neurons, glycolytic oscillations, and circadian (∼24-hour) oscillations.

Neuronal oscillations are generated either due to intrinsic mechanisms in a

single neuron or via coupling between neurons. Such oscillations occur at various

frequencies and are important for communication between different parts of the

brain [84]. They are also associated with different cognitive processes [30]. Glycolytic

oscillations are found in many cells, e.g., pancreatic beta cells and muscle cells.

Such oscillations have important implications for glucose-stimulated insulin secretion

[8, 85]. Circadian oscillations are observed at multiple scales from the cellular level
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up through the behavior of whole organisms. Experiments by Carl Johnson and

his group demonstrated that from an evolutionary point of view, the ability of

circadian oscillations in cyanobacteria to synchronize to external forcing enhances

their reproductive fitness [98]. In particular, they found that strains of cyanobacteria

that could entrain to light-dark cycles outcompeted strains that could not entrain.

1.2 Entrainment of Different Types of Oscillators

The interaction of periodic forcing with an oscillator unveils some interesting

dynamical phenomenon. One of them is a type of synchronization called entrainment.

Entrainment occurs when the period of an endogenous oscillator matches the period of

an external forcing signal and a stable phase relationship is maintained between them

[18,40,63,77,78]. Equivalent terminologies for entrained solutions are ‘mode-locked’,

‘frequency-locked’, or ‘phased-locked’ solutions [77]. When an external periodic

forcing drives an autonomous system and there is no feedback from the system to

the external forcing, it is an example of unidirectional coupling. An example of

such coupling is the effect of the light-dark cycle (external forcing) on the circadian

oscillator of a system. When entrainment occurs, the region of entrainment is well

represented by a two-parameter bifurcation diagram called an Arnold tongue [4,73,77].

Within the entrained region, the period of the intrinsic oscillator is adjusted to match

the period of an external periodic forcing and we have 1:1 phase-locked solutions.

The phenomenon of 1:1 entrainment is a particular case of more general N : M

synchronization [4]. In synchronization language, here N : M means N cycles of

forcing and M cycle of response. Outside the 1:1 region, we have synchronization of

other orders like 2:1, 3:1, 3:2, 2:3, 1:2 etc. For example, within a 2:1 phase-locked

region, for every two cycles of input, we have one cycle of the response. For a fixed

amplitude of external forcing, different orders of synchronization can be achieved by

changing the period of forcing. Alternately, for a fixed amplitude and varying period,
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bifurcations occur as a transition from one region to another occurs. In other words,

the region of N : M phase-locked solutions are bounded by global bifurcations such

as saddle node of periodic orbits or Neimark-Sacker bifurcations [4, 49,77].

Besides self-sustained oscillations, damped oscillations are also found in nature.

For example, cyanobacteria exhibit damped circadian oscillations if one of the key

clock proteins is absent [48]. Entrainment of self-sustained oscillations is a well-

studied problem [1,3,4,16,25,32,36,77,78,82,83,86,93]. Although the entrainment of

damped oscillations has been less explored, there have been some experimental and

theoretical studies on this topic. Experimental work shows the presence of damped

oscillations in the circadian clock of insects [6]. In mammals, the central circadian

clock (the suprachiasmatic nucleus, or SCN) is comprised of a heterogeneous cell

population with a large proportion of cells that show weak (damped) oscillations

[95]. In a theoretical work, Woller et al. studied a classic circadian oscillator model

(the Goodwin model) and compared the entrainment properties when the unforced

system shows either damped oscillations or limit cycle oscillations [99]. They found

that the entrainment region is larger (entrainment is achieved over a wider range

of forcing periods) when the unforced system exhibits damped oscillations. With

periodic forcing applied to limit cycle oscillators, they found a richer set of behaviors,

including non-entrained chaotic and quasiperiodic solutions, which are not desirable

biologically. A modeling study by Westermark et al. investigated the effect of noise on

damped oscillators [96]. They showed that noise can generate sustained oscillations

in a damped oscillator. They compared their simulations to experimental data from

individual cells, and concluded that whether the circadian clock is a damped or self-

sustained oscillator at the single-cell level could not be determined.

Further work by Gonze et al. [34] considered synchronization of populations

of coupled circadian oscillators. In their work, they showed that when the coupled

oscillators being considered are damped, high synchronization efficiency is achieved.
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Work by Bernard et al. [7] also shows that efficient and robust synchronization is

achieved in coupled damped oscillators. In the context of coupled oscillations and

synchronization. Komin et al. [52] studied entrainment of coupled oscillators where

each oscillator has a different intrinsic period. They found that cells having damped

oscillators are entrained more efficiently to external forcing than cells with sustained

oscillations with different intrinsic periods.

Based on the above interesting results on entrainment of different types of

oscillators, this thesis explore the entrainment of self-sustained oscillators, damped

oscillators, and non-oscillators. Their entrainment properties, in particular the

structure of Arnold tongues, are then compared.

1.3 Structure of the Dissertation

In the first half of the thesis (Chapters 2 and 3), we examine autonomous and

non-autonomous neuronal models. The second half of the thesis (Chapters 4 and

5) examines autonomous and non-autonomous circadian clock models. In each half

of thesis, the goal is twofold. First, dynamical system tools are used to understand

the mechanisms of oscillations. Second, using the considered biological models,

entrainment properties are explored with the unforced systems in different qualitative

regimes.

In Chapter 2, we consider the Fitzhugh-Nagumo (FHN) model of neuronal

excitability. The FHN model is a planar mathematical model which captures the

spiking behavior observed in the Hodgkin-Huxley model [41]. Since the FHN model

is two-dimensional, it gives us a great advantage to analyze how the different

qualitative behaviors are produced as a control parameter is varied using the

phase-plane techniques. The autonomous FHN model is examined in this chapter

by varying the systems parameters. Dynamical systems tools like phase-plane

analysis and bifurcation diagrams are used to gain insight into the systems behaviour.
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Understanding the different dynamics that arise for the autonomous FHN model gives

us a good platform for the subsequent chapter in which the external periodic forcing

comes into play.

In Chapter 3, we examine the FHN model under square-wave periodic forcing

which represents an abrupt change in the system. The advantage of using square-wave

forcing is that the system can be decomposed into two-dimensional subsystems with

constant forcing, which are autonomous systems and hence easier to analyze. We

investigate entrainment properties for the different dynamical regimes of the FHN

model described in Chapter 2. We refer to Arnold tongues with single and multiple

1:1 entrainment regions as monoglot and polyglot entrainment responses, respectively.

The mechanisms underlying monoglot versus polyglot entrainment are explained using

phase-plane diagrams. We also explore entrainment responses for other parameter

regimes of the FHN model by changing the amount of time scale separation (ε), the

slope of the w−nullcline (α), and using sine-wave periodic forcing.

In Chapter 4, we study post-translational oscillations (PTO) in two circadian

clock models: the Rust [81] and Byrne [12] models. The Rust model is a three-

dimensional mathematical model for circadian oscillations in cyanobacteria. The

circadian clock of cyanobacteria is relatively simple and easy to manipulate [15, 54].

Although transcriptional and translational feedback is an essential mechanism in the

circadian clock of eukaryotes, in vitro experiments show that the circadian clock of

cyanobacteria does not require this type of feedback. This enables the reconstitution

of the core oscillator in a test tube with just three proteins (KaiA, KaiB, and KaiC),

ATP, and magnesium [69]. On the other hand, the Byrne model is two-dimensional

and represents circadian PTO for a generic protein with two regulatory sites. Both

circadian models considered in this chapter are continuous time and non-smooth

as the phase space is partitioned into regions with different vector fields. We call

these regions linear and nonlinear regions as their associated differential equations
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are linear and nonlinear, respectively. These regions are separated by a switching

manifold which is a plane in the Rust model and a curve in the Byrne model. For

these models, we perform dynamical systems analysis to understand the mechanisms

of intrinsic circadian oscillations and explore the similarities and differences in their

qualitative behaviors.

In Chapter 5, we analyze entrainment properties in the Rust and Byrne models.

We use square-wave periodic forcing to represent the light-dark cycles. We use

dynamical system tools (fixed points analysis in linear and nonlinear regions when

forcing turns off and on) and study how forcing affects the system’s dynamics. Similar

to Chapter 3, we also investigate the existence of polyglot entrainment responses.

In Chapter 6, we analyze entrainment properties for some other neuronal,

circadian, and glycolytic oscillations. We conclude that polyglot entrainment

structure (multiple 1:1 regions) is observed when the unforced system is in the vicinity

of a Hopf bifurcation and the Hopf point is located near a knee of a cubic nullcline.

In Chapter 7, implications and extension of polyglot entrainment to the network

of coupled oscillators are proposed as future work.
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CHAPTER 2

FITZHUGH-NAGUMO MODEL

2.1 Introduction

In neuronal physiology, an action potential is a rapid change in membrane potential

of a neuron [41]. Such rapid changes are called depolarization, repolarization and

hyperpolarization and these changes are the result of the opening and closing of

different ion channels. An action potential travels down the axonal compartment

of a neuron. Through action potentials, neuron communicate with each others [30,

37]. The temporal sequence of action potentials is called spike trains. How action

potentials (or spikes) are generated are described by a prototype mathematical model

called the HodgkinHuxley model [41]. Hodgkin-Huxley is a system of four non-linear

differential equations. With Hodgkin-Huxley being a more biophysically and realistic

model which describes the initiation and generation of spiking mechanism, a full model

is very complicated and the visual interpretation of how system’s trajectory evolve

is not possible. To capture most of the Hodgkin-Huxley model qualitative dynamics

like excitability and spiking mechanism, FitzHugh and Nagumo [68] developed a

two dimensional phenomenological model called FitzHugh-Nagumo model. Being

relatively simple model with only two equations and fewer parameters, geometric and

visual explanation of neuronal excitability and spiking is possible.

2.2 FitzHugh-Nagumo Model Equations

The FitzHugh-Nagumo (FHN) is a mathematical model of neuronal oscillations

developed independently by FitzHugh [28, 29] and Nagumo [68]. As it is a

two-dimensional model, it allows us to study neuronal oscillations geometrically phase

plane analysis. We use the following notation for the model of FHN type [29] used

in [79]
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dv

dt
= f(v)− w = F (v, w), (2.1)

dw

dt
= ε(αv − λ− w) = G(v, w). (2.2)

where v and w are dimensionless state variables representing the membrane potential

and the recovery variable, respectively. The function f(v) = −2v3 + 3v2 is a cubic

whose minimum and maximum occur at (0, 0) and (1, 1), respectively. The parameter

ε represents the time scale separation between the two dependent variables, the

parameter α denotes the slope of the w-nullcline (Nw) and the parameter λ denotes the

displacement of the w-nullcline with respect to the v-nullcline (Nv). These nullclines

are given by

Nv = f(v), (2.3)

Nw = αv − λ. (2.4)

The Jacobian matrix evaluated at fixed point (v̂, ŵ) becomes:

J =

Fv Fw

Gv Gw

 (2.5)

=

6v̂2 + 6v̂ −1

εα −ε

 . (2.6)
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The intersection of the v-nullcline and w-nullcline gives the fixed point

(equilibrium point). The location of fixed point change as we vary parameters λ

and α. The stability properties of the fixed point depend upon the parameters α, ε,

and not λ (Jacobian depends upon α and ε). In the next sections, we discuss the

dynamics of the the FHN model by changing λ, α, and ε.

2.3 Varying the Parameter λ

In the context of neuroscience, the parameter λ captures the effect of a constant input

current to the system which can produces different qualitative behaviour similar to

the Hodgkin-Huxley model [41] like excitable state, resting state and spiking state.

Input currents affect the (first) equation for v. However, because the dependence

on w is linear, a change of variables brings this input current to the equation for w.

As discussed before that the location of fixed points change as we vary λ. In this

section, for fixed α and ε, we categorize different types of fixed points by varying λ.

Classification of different types of fixed points have been given in the Table 2.1. For

ε = 0.01 and various α values, we have different types of fixed points. For α = 2, by

varying λ, evolution of the trajectory in the phase plane and time course are shown

in the Figure 2.1.

If λ < 0.11, the fixed point is a stable node located on the left branch of the

cubic v-nullcine. For such type of fixed points, both eigenvalues are real and negative.

Trajectory starting from an initial point converges to the fixed point as shown in the

Figure 2.1 A1.

If λ ∈ [−0.11, 0.0033), the fixed point is a stable focus located in the vicinity

of the lower knee of the cubic v-nullcline. For such fixed points, both eigenvalues

are complex conjugate with real parts negative. Trajectory evolving around stable

focus type fixed points has damping behaviour. As the real part of the eigenvalues

decreases in magnitude, damping increases, which means it takes a longer time for the
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Table 2.1 Classification of Fixed Points by Varying λ with α = 2 (First and Second
column), α = 4 (Third and Fourth column), and ε = 0.01

Parameter range Fixed point type Parameter range Fixed point type

λ < −0.11 Stable node λ < −0.265 Stable node

λ ∈ [−0.11, 0.0033) Stable focus λ ∈ [−0.265, 0.0067) Stable focus

λ ∈ (0.0033, 0.089) Unstable focus λ ∈ (0.0067, 0.266) Unstable focus

λ ∈ [0.089, 0.91) Unstable node λ ∈ [0.266, 2.73) Unstable node

λ ∈ [0.91, 0.9967) Unstable focus λ ∈ [2.73, 2.99) Unstable focus

λ ∈ [0.9967, 1.098] Stable focus λ ∈ [2.99, 3.265] Stable focus

λ > 1.098 Stable node λ > 3.265 Stable node

trajectory to approach towards the fixed point. A representative example of stable

focus has been shown in the Figure 2.1 A2.

Figure 2.1 A3 and A4 shows the canard phenomenon. The canard phenomenon

[20,21,23,26,55,79] refers to a very fast transition from small amplitude oscillations to

large amplitude amplitude relaxation oscillations upon varying a parameter (in this

case λ). Canard phenomenon occurs with in very small range of a parameter. For

α = 2, the small amplitude oscillations are unstable and large amplitude oscillations

are stable. For α = 4, the small amplitude oscillations and large amplitude oscillations

are both stable. Due to the symmetry of the cubic, canard phenomenon also occurs

in the vicinity of the upper knee of the cubic v-nullcline (not shown here).

For λ ∈ (0.0033, 0.089), the fixed point is an unstable focus located in the

vicinity of the lower knee of the cubic v-nullcline. Both eigenvalues are complex

conjugates with their corresponding real parts positive. In this case, we have sustained

oscillations. The trajectory evolving in the vicinity of an unstable fixed point shows
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some damping and then converge toward the limit cycle oscillations as shown in the

Figure 2.1 A5.

For λ ∈ (0.089, 0.91), the fixed point is an unstable node. The unstable node

covers most of the middle branch of the cubic nullcline. Both eigenvalues are real and

positive. In this case, we also have sustained oscillations. The trajectory starting in

the vicinity of an unstable node converges toward the limit cycle oscillations without

any damping as shown in the Figure 2.1 A6.

Due to the symmetry of the cubic, we have a similar structure for the fixed

points in the region of unstable nodes. Particularly, to the left and right of the region

of unstable node type fixed points, different fixed points are located in the same

pattern.

If λ ∈ (0.91, 0.9967), the fixed point is a unstable focus located in the vicinity

of the upper knee of the cubic v-nullcline. For such fixed points, both eigenvalues are

complex conjugates with real parts positive. The trajectory starting in the vicinity

of an unstable focus shows some damping and then converge toward the limit cycle

oscillations (not shown).

If λ ∈ [0.9967, 1.098), the fixed point is a stable focus located in the vicinity of

the upper knee of the cubic v-nullcline. The trajectory evolving around stable focus

type fixed points has damping behaviour.

If λ > 1.098, the fixed point is a stable node located on the right branch of the

cubic v-nullcline. The trajectory starting from an initial point converges to the fixed

point.

We have a similar structure for the location and stability of the fixed points for

α = 4 shown in the Table 2.1. By increasing α, the difference we observed is that the

range of λ values for focus and unstable node increases.
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A1 A2 A3

A4 A5 A6

Figure 2.1 Representative phase-plane diagrams and v time course dynamics for
the FHN model by varying λ. A1. λ = −0.5. Fixed point is a stable node. A2.
λ = 0. Fixed point is a stable focus. A3 and A4. λ = 0.00277 and λ = 0.00278.
Canard phenomenon. A5. λ = 0.05. Fixed point is an unstable focus. A6. λ = 0.5.
Fixed point is an unstable node. We used the following parameter values: α = 2, ε = 0.01.
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2.4 Varying the Parameter α

For ε = 0.01, varying α gives different bifurcation structures, as shown in the Figure

2.2. For α = 2, we have two subcritical Hopf bifurcations. The first Hopf point is

located at λH1 = 0.0033. Small amplitude unstable limit cycle oscillations emerged at

λH1 . These small amplitude oscillations give rapid transition to the large amplitude

oscillations at the left canard point which is located a λc1 = 0.00277. The second

Hopf point is located at λH2 = 0.9967. Due to the symmetry of the cubic, we also

have second canard point located at λc2 = 0.9972. Between λc1 and λH1 is the region

of bistability for which large amplitude oscillations and the stable focus attractor

coexist (Figure 2.3). Due to symmetry, we also have bistability between λH2 and λc2

(not shown).

For α = 4, we have two supercritical Hopf bifurcations. The first Hopf point

is located at λH3 = 0.0067. Small amplitude stable limit cycle oscillations emerged

at λH1 . These small amplitude oscillations explode and becomes large amplitude

oscillations as λ crosses the left canard point. The left canard point is located λc3 =

0.0078. The second Hopf and canard points are located at λH4 = 2.993 and λc4 =

2.992, respectively.
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A1 A2 A3

B1 B2 B3

Figure 2.2 Bifurcation diagrams as a function of parameter λ. A1. For α =
2, we have two Hopf bifurcations. A2. and A3. are the magnifications of A1.
around λH1 and λH2, respectively. This shows that both bifurcations are subcritical
as unstable limit cycle emerge from Hopf points. B1. For α = 4, we also have two
Hopf bifurcations. B2. and B3. are the magnifications of B1. around λH3 and λH4,
respectively. This shows that both are supercritical as stable limit cycle emerge from
Hopf points. Magnified panels also shows the λ values at which canard phenomenon
occurs. For both panels, ε = 0.01.
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A B

Figure 2.3 Representative phase planes showing bistabilty for fixed parameter
values and changing initial values of the state variables. Two stable steady states
coexist for different initial conditions. We have stable focus attractor for initial values
of state variables (A) and stable limit cycle attractor for another initial condition (B).
We used the following parameter values: α = 2, λ = 0.0028, ε = 0.01.

2.5 Varying the Parameter ε

In this section, we discuss the effects of the parameter ε on the system’s trajectory.

For small ε, the variables v and w evolve on fast and slow time scales, respectively.

We refer to v as fast variable and w as slow variable. The cubic v-nullcline have three

branches. The left and right branches are slow and attracting which means for small

ε, the trajectory evolves slowly along these branches whose direction is determined

by the sign of
dw

dt
. The middle branch is a repelling branch as the trajectory moves

faster as it crosses the lower knee to the right or crosses the upper knee to the left.

For small ε, the oscillations created are called relaxation as the trajectory exhibit

abrupt changes as it crosses the lower knee or upper knee of the cubic (Figure 2.4

A). For small ε, the
dv

dt
versus v shows the speed of the trajectory as it travels across

the phase plane. In the speed plot (Figure 2.4 A right panel), we see non-uniform

changes as the trajectory crosses the lower knee (upper knee) and moves to the right
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branch (left branch) of the cubic. For higher ε values, oscillations almost behaves like

harmonic oscillations and the slow-fast time scales disappears (Figure 2.4 B and C).

Another qualitative change we have for varying epsilon is that for small ε values,

the region of fixed points lying on the middle branch of the cubic is unstable as shown

in the shaded region(Figure 2.4 A). As ε increases, the shaded region of the unstable

fixed points decreases and as a result the oscillations are of small amplitude. More

specifically, the region of stable focus increases and the region of unstable fixed points

decrease by increasing ε.

For small ε values, we have subcritical and supercritical Hopf bifurcations. For

higher ε values, we only have supercritical Hopf bifurcation.
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A

B

C

Figure 2.4 Representative phase-plane diagrams (left panel) and speed plots (right
panel) for the FHN model by varying ε. We used the following parameter values: α = 2,

λ = 0.5.

17



A B

Figure 2.5 Amplitude (A) and period (B) of the self-sustained oscillations in the
FHN model by varying ε. We used the following parameter values: α = 2, λ = 0.5.

The amplitude and period of limit cycle oscillations also change as we increase

ε (Figure 2.5). For small ε, we know that the trajectory touches the right and left

branches of the cubic nullcline and as a result we the amplitude is larger for small ε.

For small ε, the period of oscillations is larger, as the trajectory spends most of the

time on the left and right branches (slow manifolds) of the cubic. As ε increases, the

trajectory starts crossing the middle branch and does not go far right or left of the

cubic. As a result, the amplitude decreases. As the slow-fast nature of the trajectory

decreases as ε increases, the period also decreases.

18



CHAPTER 3

ENTRAINMENT RESPONSES IN FHN MODEL

3.1 Introduction

In Chapter 2, for an unforced FHN model, by varying different control parameters,

we have observed different qualitative behaviors from non-oscillatory to oscillatory

solutions, the slow-fast nature of the limit cycle trajectories and different bifurcation

structures. In this Chapter, we explore the entrainment properties when an unforced

system has self-sustained oscillation, damped oscillations or non-oscillatory solutions.

In Section 3.2, we describe the type of periodic forcing we are considering and the

way it is applied to the FHN model. Entrainment properties are described in terms

of showing Arnold tongues. The methods we used to compute the Arnold tongues is

discussed in Section 3.2. The different types of entrainment responses are shown in

Section 3.3.

3.2 Methods

3.2.1 Periodically Forced FHN

We use the following periodically forced model of FHN type [29] used previously

in [79]

dv

dt
= f(v)− w + AF (t), (3.1)

dw

dt
= ε(αv − λ− w), (3.2)

where v and w are dimensionless variables representing the membrane potential

and the recovery variable, respectively. The function f(v) = −2v3 + 3v2 is cubic

19



with the minimum and maximum occurring at (0, 0) and (1, 1), respectively. The

parameters ε, α and λ represent the time scale separation between the two dependent

variables, the slope of the w-nullcline, and the displacement of the w-nullcline with

respect to the v-nullcline. The last term in Equation (3.1) is a time-dependent,

periodic input with a constant amplitude A. We use two different types of waveforms

for F (t): square-wave and sinusoidal, with period T , duty cycle 50%, and minima

and maxima equal to F = 0 and F = 1, respectively. We refer to the time intervals

where F > 0.5 as the “on” state and F < 0.5 as the “off” state.

One advantage of using a square-wave forcing is that one can decompose the

periodically driven system into two autonomous systems, one in the first case with

the forcing turned off and in the other case with the forcing turned on. In the latter

case, a change of variables W = w − A allows us to move the constant forcing term

A into the second equation, yielding

dv

dt
= f(v)−W, (3.3)

dW

dt
= ε[αv − (λ+ A)−W ]. (3.4)

When the forcing is on, the forcing amplitude contributes to the displacement

of the W -nullcline. Alternatively, without the change of variables, A causes the

v-nullcline to displace abruptly between the two regimes. For sinusoidal inputs, this

displacement is continuous and gradual.

3.2.2 Computation of Arnold Tongues and Numerical Simulations

Arnold tongue is a two dimensional bifurcation diagram in parameter space which

shows different frequency locking modes in response to periodic forcing [38, 77].

Outside the Arnold tongues, the input and output are not synchronized. Here we
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focus on investigating 1:1 entrainment. For the Arnold tongues we use here, the

horizontal axis corresponds to the forcing period T and the vertical axis corresponds

to the forcing amplitude A. Typically, by increasing the forcing amplitude, the

Arnold tongue widens, indicating that entrainment can occur for a larger range of

periods [71,77].

In order to numerically compute the Arnold tongues, for each fixed value of

A,we found the minimum and maximum values of T for which the system exhibits

1:1 entrainment. 1:1 entrainment has been determined on the basis of matching of

period of the forcing (T ) and period of the system (Ts). If |T − Ts| < 0.001, then

we have 1:1 entrainment. To compute Ts, we are using MATLAB findpeaks with its

feature MinPeakProminence to set a threshold for admissible peaks.

Numerical simulations were carried out using the modified Euler method [11]

(a Runge-Kutta method of order 2) with a time step ∆t = 0.05 in MATLAB (The

Mathworks, Natick, MA). Bifurcation diagrams were computed using the AUTO

feature of XPPAUT [24] and plotted in MATLAB.

3.3 Results

In this part we want to discover the main reason for having 1:1 polyglot entrainment.

In other words, we want to clarify if the emergence of 1:1 polyglot structure is due to

the birth of the second 1:1 region in the Arnold tongue or whether it is actually due

to the death of some parts of the first 1:1 tongue?

Based on the intersection point of the w nullcline with the v nullcline, we

have different types of fixed point which effect the dynamics of the system. This

intersection point changes depending on varying λ and α values. By changing the λ

value, we can move w nullcline to the right or to the left, where changing the α value

changes the slope of the w nullcline, which in turn effects the intersection point to

the right or to the left if the slope getting steeper or shallower.
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According to these changes, we have different types of fixed points for the

system: stable node, stable focus, unstable focus and unstable node. For

the forced system, besides λ and α, the amplitude of the forcing (A) also plays a role

in defining the type of fixed point. The change in amplitude for the forced system

behaves like changing the λ value for the unforced system. This means moving the

w-nullcline to the right (increasing the λ value) for the unforced system is analogous

to increasing the amplitude (A) for the forced system.

In the following parts, we are going to restrict our focus only on α = 2 for

which we have subcritical Hopf bifurcation by varying λ and α = 4 for which we

have supercritical Hopf bifurcation by varying λ and we analyze the entrainment

results based on these different λ values. We split the λ axis based on a fact that

we have monoglot entrainment (single 1:1 region in the Arnold Tongue) or polyglot

entrainment (multiple 1:1 region in the Arnold Tongue).

We then consider periodic forcing with different frequencies and two types

of waveforms, sinusoidal and square-wave, which are representative of gradual and

abrupt transitions, respectively, between the up and down states. Both are amenable

to analysis using dynamical systems tools. In the latter case, the dynamics of the

periodically forced system can be decomposed into two two-dimensional subsystems

with constant forcing, which simplifies the analysis. We call the times at which

the forcing turns on and off the switching times, and the corresponding points in the

phase-plane diagrams the switching points. Switching points serve as initial conditions

at the transitions between the on and off states of the forcing (when 1:1 entrainment

occurs, the switching points always stay fixed).

3.3.1 Monoglot Entrainment Responses

Here we consider the FHN model with α = 2 and ε = 0.01 and representative values

of λ using a square-wave input with amplitude A (50 % duty cycle). Figure 3.1 shows
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representative phase-plane diagrams (arranged in the order in which they will be used

in the following sections). As λ increases (panels B1, C1, D1, A1), the w-nullcline

moves to the right and the fixed point transitions from a stable node (away from the

knee of the v-nullcline, on the left, not shown); to a stable focus (Figure 3.1 B1 and

C1); to an unstable focus (Figure 3.1 D1 and A1); to an unstable node (away from

the knee of the v-nullcline, on the right, not shown). The stable focus in Figure 3.1

B1 is located close to the boundary between stable foci and nodes (further away from

the knee of the v-nullcline than in Figure 3.1 A1) and therefore it exhibits strongly

damped oscillations, but not sustained oscillations.

The effect of periodic forcing by positive square-wave inputs (with amplitude A)

can be thought of as the abrupt transition between two autonomous FHN systems,

one with A = 0 (forcing “turned off”) and the other with a nonzero value of A

(forcing “turned on”). We refer the latter as the tonically forced FHN system. In

the absence of time-dependent forcing, increasing constant values of A has the same

effect as increasing values of λ (i.e., increasing the constant forcing A is equivalent

to increasing λ via a translation of the variable w). Therefore, as A increases, the

fixed-point moves to the right and its stability properties change accordingly. If the

unforced FHN model exhibits large amplitude oscillations (LAOs) for A = 0, then it

will do so for A > 0 as well (e.g., Figure 3.1 A2 and D2). If the unforced FHN exhibits

small amplitude (damped) oscillations (SAOs), then the tonically forced FHN model

may exhibit SAOs with a weaker damping (e.g., the transition from Figure 3.1 B1

and C1) or LAOs (e.g., Figure 3.1 B2 and C2). We consider the response of the FHN

model to periodic forcing in these three scenarios below. Finally, if the unforced FHN

model has a stable node, then the tonically forced FHN model may have a stable

node, exhibit SAOs or LAOs. We note that the existence of LAOs does not preclude

the existence of damped SAOs for the small bistability range of values of λ.
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A1 A2

B1 B2

C1 C2

D1 D2

Figure 3.1 Representative phase-plane diagrams and v time course dynamics for
the FHN model with constant forcing (A). A. λ = 0.016. The autonomous system
(A = 0) shows intrinsic LAOs. B. λ = −0.1. The autonomous system (A = 0) has a
stable focus. C. λ = 0. The autonomous system (A = 0) has a stable focus and shows
damped oscillations (SAOs). D. λ = 0.004. The autonomous system (A = 0) shows
intrinsic LAOs. The values of A are indicated in the graph. We used the following

parameter values: α = 2, ε = 0.01.
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Stable focus for an unforced system: entrainment of a strongly
damped oscillator

Figure 3.1 B illustrates the behavior of the FHN model when the unforced

system (A = 0) is a stable focus (with strongly damped SAOs) and the constantly

forced system has an unstable focus (as in Figure 3.1 A2) and displays LAOs.

The entrainment of non-sustained oscillators has been significantly less studied

than the entrainment of sustained oscillators. One important conceptual difference

between the two protocols is the lack of a reference period in the cell that is being

entrained. In the previous section, we argued that the entrainment can be understood

as the abrupt transition between two oscillatory regimes and entrainment occurs when

the time scales of the two regimes are compatible. Here, there is no oscillatory time

scale associated to the unforced system. Furthermore, while the constantly forced

system is able to show LAOs for large enough values of A (Figure 3.1 B2), for lower

values of A the dynamics remains in a damped oscillatory regime without LAOs (not

shown). Therefore, entrainment, when it occurs, cannot be explained simply in terms

of time scale compatibility, but requires a deeper explanation in terms of dynamical

systems ideas.

Figure 3.2 B1 and C1 show the 1:1 entrainment regions (green) for these two

cases. Notably, they have a different shape than the standard Arnold tongues (e.g.,

Figure 3.2 A1). In particular, 1:1 entrainment is broken as A increases for constant

values of T , but maintained as T increases for constant values of A below some

critical value (dashed horizontal line). This critical value corresponds to the transition

between two stability regimes for the constantly forced system: from unstable focus

with LAOs (above, Figure 3.2 B1) to stable focus (below, Figure 3.2 C1).

A comparison between panels B3 and C3 of Figure 3.2 shows relatively similar

patterns for the entrainment in the two regimes for the same oscillatory input. The
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comparison between panels B4 and C4 of Figure 3.2 show the increased entrainment

robustness as T increases in Figure 3.2 C4 is associated with the presence of MMOs

in the forced system, reflecting the dynamic interaction between the forcing and the

cell.

Stable node for an unforced system: entrainment of a non-oscillator The

results for this scenario are similar to the entrainment results for a stable focus that

is not in the vicinity of a Hopf bifurcation and are presented in the Appendix (Figure

A.1). Another interesting feature of the stable node we observed is that, no matter

how much we decrease λ, we still have a similar monoglot structure. Upon checking

λ = −1, λ = −5 and λ = −10, we still see a similar structure.

The Breaking of 1:1 entrainment The 1:1 entrainment for the FHN model in

the parameter regimes discussed above breaks in different ways depending on whether

T is larger or smaller than its values in the 1:1 entrainment region, and whether the

unforced system is in an LAO regime or a stable focus regime (Figure 3.2). In all

cases, the N:M patterns have N > M for smaller values of T and N < M for larger

values of T . In the first case, the breaking of 1:1 entrainment is due to a cycle skipping

mechanism where the input turns off before the response (v) jumps up, and therefore

the LAO fails to be generated. In the second case, the breaking of 1:1 entrainment is

due to a cycle adding mechanism. In Figure 3.2 A3, in contrast to the previous case,

v succeeds in jumping up in spite of the fact that the input turns off, indicating a

more complex interaction of effective time scales and a seeming disconnect between

the input and the response (e.g., v jumps down, while the input is up). In Figure 3.2

B3, the cycle adding mechanism results from the ability of the input to produce two

output cycles per input cycle when it is on. Note that the inter-oscillations interval

(IOI) is larger when the input is off than when it is on. None of these effects break

1:1 entrainment for larger values of T in Figure 3.2 C. In fact, Figure 3.2 C3 shows
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A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

Figure 3.2 Representative entrainment patterns and Arnold tongues with monoglot
structure in response to square-wave forcing. A1, B1, & C1. Arnold tongues
showing 1:1 entrainment regions (highlighted in green). The dashed-magenta
(horizontal) lines in panels B1 and C1 indicate the value of A for which the system
with constant forcing A changes from a stable (below) to an unstable (above) focus.
Remaining panels. Time courses for v and the forcing signal for the values of T
and A indicated in A1, B1, and C1 (black markers). A. λ = 0.016 (Figure 3.1 A)
and A = 0.04. B. λ = −0.1 (Figure 3.1 B) and A = 0.15. C. λ = −0.1 (Figure 3.1
B) and A = 0.05. We used the following parameter values: α = 2, ε = 0.01.
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A1 A2 A3

B1 B2 B3

C1 C2 C3

Figure 3.3 Phase-plane diagrams for the entrained responses shown in Figure 3.2
(square-wave input). The dashed curves are the v-nullclines for the unforced (black)
and forced (red) systems, respectively. The green curve is the w-nullcline. The solid
curves are the trajectories with the time intervals when the forcing is off and on shown
in black and red, respectively. The numbers next to the arrows indicate the points
in the phase-plane diagram at which the forcing turns off (black open circles) and on
(red open circles). A. λ = 0.016 and A = 0.04 (Figure 3.2 A). A1. 4:3. A2. 1:1.
A3. 3:4. B. λ = −0.1 and A = 0.15 (Figure 3.2 B). B1. 2:1. B2. 1:1. B3. 1:2.
C. λ = −0.1 and A = 0.05 (Figure 3.2 C). C1. 2:1. C2. 1:1. C3. 1:1. We used the

following parameter values: α = 2, ε = 0.01.
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that 1:1 entrainment is maintained for values of T for which it is broken in the panels

above as the result of v remaining roughly constant when the input turns off, instead

of increasing as in all other panels.

Mechanisms of 1:1 entrainment and breaking of 1:1 entrainment Here

we use dynamical systems tools (extended phase-plane analysis) to provide a more

detailed explanation of the results discussed above. As we mentioned above, the

dynamics of the forced system can be interpreted as the abrupt transition between

two autonomous FHN systems, the off (A = 0) and on (A > 0) states. Dynamically,

the evolution of the response trajectory is governed by an abrupt alternation between

the phase-plane diagrams for the corresponding values of A. Figure 3.3 shows the

superimposed phase-plane diagrams for A = 0 (black) and A > 0 (red). We use

numbered arrows (in black and red) to denote the switching points between the

unforced and forced systems.

Roughly speaking, the entrainability of the FHN system requires compatibility

between its effective time scale and the time scale of the input (on phase). The former

is primarily determined by the slow manifolds located in vicinities of the v-nullcline.

In the unforced system (A = 0) the limit cycle trajectory evolves along these manifolds

and jumps up and down towards the right and left branches of the v-nullcline,

respectively, as time progresses (e.g. Figure 3.1 A). The interaction between the two

time scales is interpreted as the v-nullcline rising and shifting down as the input turns

on and off, respectively. This interaction process is affected by other factors, including

the presence of fixed-points in one of the two regimes (e.g., Figure 3.1 B2 and B3) that

may transiently create slower dynamics. In addition, the presence of nonlinearities

may disrupt the evolution of the trajectory as the v-nullcline moves and may add

additional time scales by creating small amplitude loops (SAOs), for example. These

may favor or oppose the entrainability of the system. While oscillatory time scales
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are usually associated with sustained oscillators, they are still present in damped

oscillators and they become apparent and functional as they interact with the input.

The presence of oscillatory time scales may also favor or oppose the entrainability of

the FHN system.

Below we discuss a number of representative cases in detail, both to highlight

the basic aspects of entrainability in the FHN system and to develop language for

subsequent sections.

Mechanisms of 1:1 entrainment (Figure 3.3 A2, B2, C2, C3, corre-
sponding to Figure 3.2 A3, B3, C3, C4, respectively).

When the forcing turns on (2), the v-nullcline raises and the trajectory,

located further away from the lower knee, jumps up towards the right branch, moves

up (slowly) along it, reaches the upper knee and jumps down towards the left branch.

The trajectory then moves down (slowly) along the left branch until the forcing turns

off (1). When this happens, the v-nullcline shifts down, affecting the direction of

trajectory’s motion. In Figure 3.3 A2, the trajectory is about halfway to the lower

knee and is affected only slightly by the shift in the v-nullcline. In Figure 3.3 B2, the

trajectory is affected significantly by the shift as it jumps to the left, and then moves

down towards the lower knee at which point the forcing turns on (2). In Figure 3.3

C2, the size of the effect that the shift in the nullcline has on the trajectory is in

between the two cases described above.

The dynamics in Figure 3.3 C3 is similar to those described above, except that

the on-off transition of the forcing (1) occurs very close to the lower knee. The

trajectory jumps to the left near the lower knee. Because of that, in contrast to the

previous figures, the trajectory evolves on a much slower time scale than the ones at

higher points of the slow manifold (in vicinities of the left branch). Therefore it does
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not reach the lower knee while the forcing is off and only jumps up when the forcing

turns on (2).

Breaking of 1:1 entrainment (Figure 3.3 B3, corresponding to Figure
3.2 B4).

When the forcing turns off (1), the v-nullcline shifts down and the trajectory

is left closer to the upper knee, thus accelerating the jump down towards the left

branch. The trajectory then evolves slowly along the left branch until it reaches

the lower knee, at which point the forcing turns on (2). When this happens the

v-nullcline raises. The trajectory evolves along the right branch, reaches the upper

knee and jumps down. Because T is relatively large (and forcing relatively slow), the

trajectory is able to jump up once more before the forcing turns off (1) and therefore

can produce two LAOs per input cycle.

The very slow time scale operating in Figure 3.3 B3, where 1:1 entrainment is

maintained, is due to the fact that the tonically forced system is in a stable focus

regime. The switch to an unstable focus regime (for the tonically forced system)

“destroys” this time scale and therefore the maintenance of 1:1 entrainment is no

longer possible.

Breaking of 1:1 entrainment (Figure 3.3 A3, corresponding to Figure 3.2

A4). These dynamics are more complex than those for Figure 3.3 B3 since the first

and third oscillations in the shadow region in Figure 3.2 A4 occur while the forcing

is off. Starting from the beginning of the shadow region, when the forcing turns off

(1) the v-nullcline shifts down, the trajectory jumps down, it moves slowly along the

lower knee and jumps up towards the right branch creating an oscillation. This is

induced by the forcing ceasing to be active rather than by the forcing turning on.

A second oscillation is generated after the forcing turns on (2) and this oscillation
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remains after the forcing turns off (3) since the trajectory needs to reach the upper

knee in order for the oscillation to be terminated. In other words, the cell’s intrinsic

time scale dominates the forcing. The third oscillation is induced by the forcing (4).

When the forcing turns off (5), the trajectory is very close to the lower knee, and

therefore the trajectory jumps up well in advance of the forcing turning on (6). In

fact, the trajectory is able to reach the upper knee when the forcing turns on and

jumps down roughly when this happens.

Breaking of 1:1 entrainment (Figure 3.3 B1 and C1, corresponding to

Figure 3.2 B2 and C2). The 2:1 patterns in both figures are generated by a cycle

skipping mechanism. When the forcing turns on (2) the trajectory is approaching the

stable focus. The v-nullcline raises and releases the trajectory that jumps up towards

the right branch. The turning off of the forcing (3) roughly coincides with the passing

of the trajectory of the upper knee. The trajectory jumps down towards the left

branch (it would do so even in absence of the forcing remaining on, but the shifting

down of the v-nullcline accelerates this process). The forcing turns on again (4) when

the trajectory is evolving along the left branch. The ability of the cell in panel B1 to

generate an oscillation in response to this process depends on the competition between

two time scales that is determined by the slow manifold and the input period. Cycle

skipping results because the forcing turns off (1) before the trajectory manages to

pass through the lower knee and jump up. The trajectory then needs to wait for the

forcing to turn on (2) in order to jump up. In the absence of the forcing the trajectory

would converge to a stable focus. The dynamics in panel C1 is similar to those in

panel B1, except the that the forcing turning off (1) does not prevent the trajectory

from jumping up. Even if the forcing remained on the trajectory would not jump

up, but converge to the stable focus. From that perspective, the successive forcing

turning off (1) and on (2) are necessary to maintain the 2:1 pattern.
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Breaking of 1:1 entrainment (Figure 3.3 A1, corresponding to Figure 3.2

A2). The mechanism of generation of 4:3 patterns is more complex than the ones

for the 2:1 patterns described above, resulting from the fact that both the unforced

and tonically forced systems are oscillators and have intrinsic oscillatory time scales

that operate independently of the input. The trajectory jumps up towards the right

branch even if the forcing is turned off (1) and is already moving along the left branch

when the forcing turns off (3). Moreover, the forcing turning on (2) has little effect

on the evolution of the trajectory, which is already moving along the right branch.

The stronger effect an input has on the response oscillatory dynamics, and the one

that determines the 4:3 pattern is the forcing turning off (1) that delays the jumping

up of the trajectory’s jumping up.

3.3.2 Polyglot Entrainment Responses

Both the standard and non-standard 1:1 Arnold tongues discussed in the previous

section consisted of 1:1 entrainment regions where horizontal segments of 1:1

entrainment for constant values of A (as well as vertical segments for constant values

of T ) are connected. Here we discuss a more complex type of 1:1 entrainment region

structure arising in the FHN model, consisting of disconnected horizontal segments

for low values of A, while the segments remain connected for higher values of A (e.g.,

(Figures 3.4-A1 and -B1). These regions appear to have multiple 1:1 Arnold tongues.

We refer to this phenomenon where 1:1 entrainment is interrupted as T changes (for

constant values of A), and is restored when T changes further, as polyglot entrainment.

We use the same values of α = 2 and ε = 0.01 as in the previous section as well as

square-wave input with amplitude A (50% duty cycle).

We observed polyglot entrainment in two cases. The first case is when the

unforced system has a stable focus and is a damped oscillator (Figure 3.4). Above

the dashed magenta horizontal line, the forced system has an unstable focus and
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sustained oscillations (Figure 3.4 A1) and below the horizontal line, the forced system

has a stable focus and damped oscillations (Figure 3.4 B1). The second case in which

we observed polyglot entrainment in two parameter regimes is when an unforced

system has an unstable focus with sustained oscillations (Figure 3.7). We discuss

these two cases below. The main differences between them and the ones described

in the previous sections (monoglot entrainment) is the location of the fixed point,

which is closer to the minimum of the v-nullcline in Figure 3.1-C1 than in Figure

3.1-B1. This creates a region of sensitivity to perturbations that is responsible for

the generation of the multiple 1:1 tongues.

Stable focus for an unforced system: polyglot entrainment of a
damped oscillator

When an unforced system in FHN has stable focus in the vicinity of Hopf

bifurcation located near the lower knee of the cubic nullcline, we observed polyglot

entrainment responses (Figure 3.4). Here, we take two representative cases. First,

when the forced system has unstable focus (along with sustained oscillations) as shown

in the Figure 3.4 A1. Figure 3.4-A3, -A5 and -A7 show representative traces for the

1:1 entrainment in the three tongues shown in Figure 3.4-A1 (above the horizontal

line). They are generated by an MMO mechanism that controls the time scale by

adding SAOs as the period increases and therefore the oscillatory output adapts to

the input. The corresponding extended phase-plane diagrams are presented in Figure

3.5.

For the first (left) tongue (Figure 3.4-A3 and Figure 3.5-A) there are no MMOs

and the entrainment is standard. The trajectory arrives at the lower knee of the

v-nullcline and jumps up towards the right branch. The motion of the v-nullcline

following the input does not interfere with this process.
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A1 A2 A3 A4

A5 A6 A7 A8

B1 B2 B3 B4

B5 B6 B7 B8

Figure 3.4 Representative entrainment patterns and Arnold tongues with polyglot
structure in response to square-wave inputs. A1 & B1. Arnold tongues showing 1:1
entrainment regions (highlighted in green). Remaining panels. Time courses for v
and the forcing for the values of T and A indicated in A1 and B1 (black markers).
The dashed-magenta (horizontal) lines in panels A1 and B1 indicate the value of A
for which the system with constant forcing A changes from a stable (below) to an
unstable (above) focus. A. A = 0.005. B. A = 0.00282. The fixed point for the
unforced system is a stable focus (Figure 3.1 C). We used the following parameter

values: α = 2, λ = 0 and ε = 0.01.
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For the second (middle) tongue (Figure 3.4-A5 and Figure 3.5-C), the trajectory

crosses the v-nullcline in a vicinity of the lower knee, to the right, and turns back

instead of jumping up towards the right branch. The forcing turns on when the

trajectory is below the lower knee. This raises the v-nullcline leaving the trajectory

in a region of fast fibers and therefore the trajectory jumps up. For the third (right)

tongue (Figure 3.4-A7, the mechanism is similar, but the larger forcing period allows

the trajectory to evolve around the lower knee twice before jumping up.

These mechanisms of 1:1 entrainment can be disrupted in different ways (Figure

3.4-A2, -A4, -A6 and -A8). In Figure 3.4-A2 the forcing is too fast, and activates the

SAO mechanism only once every three cycles. In Figure 3.4-A4 (see Figure 3.5-B),

when the forcing turns on (2), the v-nullcline rises and the fixed-point raises too. As

a result, the trajectory spirals out around this (forced) unstable fixed point until the

forcing turns off (3). When this happens the trajectory spirals into the (unforced)

stable fixed-point until the forcing turns on again (4) and the trajectory is able to

jump up towards the right branch as the result of the v-nullcline rising and leaving

the trajectory in a region of fast fibers (below the knee). These additional oscillations

disrupt the ability of the cell to follow the input. The disruption mechanisms in

Figure 3.4-A6 and -A8 are similar to this one.

Second, when the forced system has a stable focus (and damped oscillations) as

shown in the Figure 3.4 B1. Figure 3.4-B3, -B5 and -B7 show representative traces for

the 1:1 entrainment in the three tongues shown in Figure 3.4-B1 (below the horizontal

line). They are also generated by MMO mechanisms similar to the ones described

above as illustrated in Figure 3.6-A and -C. The break of entrainment mechanisms

are also similar to those discussed above, except that in some cases, the timing of the

output is not good enough to cause the cell to jump up towards the right branch and

produce oscillations (Figure 3.4-B2 and -B6). By the time the forcing is turned on,
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the trajectory is “inside” the v-nullcline, and by the time the trajectory arrives in the

region of fast fibers (below the v-nullcline), the forcing is off.

Unstable focus for an unforced system: polyglot entrainment of a
sustained oscillator

Previously, we have observed polyglot entrainment responses when an

unforced system has stable focus in the vicinity of Hopf bifurcation. Do we have

polyglot entrainment when an unforced system has unstable focus and sustained

oscillations? The answer is yes, we observed polyglot structure (Figure 3.7) when an

unforced system has unstable focus and sustained oscillations. The idea of having

polyglot here is roughly similar to the previous case. In this case, the trajectory

shows SAOs before settling on the LAOs. In this case, the polyglot observed has

disconnected structure, which means the multiple 1:1 tongues do not merge as we

increase A. In the first tongue, there are no MMOs and entrainment is standard. For

the second tongue, we have MMOs, which occurs as the forcing period is larger and

evolves under the dynamics of an unstable focus for some time before it jumps to

generate LAOs. Since in this case, for an unforced system, an unstable focus (with

SAOs) is followed by LAOs, the amplitude of the forcing is relatively smaller for

having polyglot entrainment. The reason is, as we increase A, the damping associated

with the trajectory around an unstable fixed point decreases. As the damping of an

unstable fixed point decreases, unforced and forced systems are far away from each

other, and hence, have less of polyglot entrainment occuring.

The breaking of 1:1 entrainment is shown via phase-plane diagrams (Figure 3.8).

For T = 205, we have 1:1 entrainment (Figure 3.8 A1-A3). When the forcing turns

on, the switching point lies below the forced separatrix, hence trajectory goes into a

spiking mode, traversing around the plane in a counterclockwise manner. When the

forcing turns off, the switching point lies on the slow branch of the cubic, hence, the
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A1 A2 A3

B1 B2 B3

C1 C2 C3

Figure 3.5 Representative examples of 1:1 polyglot entrainment dynamics and
their breakdown (Figure 3.4 A). Left column. Time courses for v and the forcing.
Middle column. Phase-plane diagrams. Right column. Phase-plane diagram
magnification in vicinities of the knee of the v-nullclines. The black (red) portions of
the v time courses and trajectories correspond to the forcing turned off (on). A. 1:1
entrainment for T = 210 (Figure 3.4 A3). B. 2:1 entrainment for T = 230 (Figure
3.4 A4). C. 1:1 entrainment for T = 257 (Figure 3.4 A5). We used the following

parameter values α = 2, λ = 0, A = 0.005 and ε = 0.01.
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A1 A2 A3

B1 B2 B3

C1 C2 C3

Figure 3.6 Representative examples of 1:1 polyglot entrainment dynamics and their
breakdown. Left column. Time courses for v and the forcing. Middle column.
Phase-plane diagrams. Right column. Phase-plane diagram magnification in
vicinities of the knee of the v-nullclines. The black (red) portions of the v time
courses and trajectories correspond to the forcing turned off (on). A. 1:1 entrainment
responses for T = 210 (Figure 3.4 B2). B. 3:2 entrainment responses for T = 230
(Figure 3.4 B4). C. 1:1 entrainment responses for T = 257 (Figure 3.4 B5). We

used the following parameter values α = 2, λ = 0, A = 0.00282 and ε = 0.01. (Figure 3.4

B).
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trajectory asymptotically approaches towards the lower knee until the forcing turns

on again.

Increasing T (T = 267) breaks 1:1 entrainment (Figure 3.8 B1-B3). In this

case, 2 : 2 responses have been observed. Two switching points (3 and 4) are shown

in the full picture of the phase plane, while two switching points are shown in the

magnified phase plane showing the important dynamics. We see that the switching

point labelled as 1 give rise to SAOs followed by LAOs and the switching point labelled

3 gives LAOs only. Hence, for one input, we have damping followed by a spike and

for the second input, we have a spike with no damping.

For T = 398, we get 1:1 entrainment (Figure 3.8 C1-C3). When the forcing turns

off, the switching point in black in the magnified panel lies very close to an unstable

fixed point (above the unforced separatrix), hence the trajectory takes longer to spiral

away from it. When the forcing turns on, the switching point lies below the forced

separatrix, hence a spike is created. Since T is long enough, the trajectory traverses

around the phase plane and approaches the lower knee until the forcing turns off

again and the cycle begins.

3.3.3 Regions of Monoglot and Polyglot Entrainment

Having the results of monoglot and polyglot entrainment, a question arises here: For

what range of λ values do we have monolgot entrainment responses and polyglot

entrainment responses?

Monoglot entrainment structure comes in two versions: standard and non-

standard. Standard monoglot entrainment is like a typical Arnold tongue as shown in

the Figure 3.2 A and is observed when an unforced system has sustained oscillations.

In this case, bifurcation has occurred and the real part associated with the unstable

fixed point is large in magnitude. Non-standard monoglot entrainment (shown in the

Figure 3.2 B and C) is observed when λ is chosen far away from Hopf bifurcation. In
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A1 A2 A3

A4 A5 A6

Figure 3.7 Representative entrainment patterns and Arnold tongue with polyglot
structure in response to square-wave inputs. A1. Arnold tongue showing 1:1
entrainment regions (highlighted in green). Remaining panels. Time courses for
v and the forcing for the values of T and A indicated in A1 (black markers). The
fixed point for the unforced system is an unstable focus (Figure 3.1 D). We used the

following parameter values: α = 2, A = 0.005, λ = 0.004 and ε = 0.01.
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A1 A2 A3

B1 B2 B3

C1 C2 C3

Figure 3.8 Representative examples of 1:1 polyglot entrainment dynamics and
their breakdown (Figure 3.7). Left column. Time courses for v and the forcing.
Middle column. Phase-plane diagrams. Right column. Phase-plane diagram
magnification in vicinities of the knee of the v-nullclines. The black (red) portions of
the v time courses and trajectories correspond to the forcing turned off (on). A. 1:1
entrainment for T = 205 (Figure 3.7 A3). B. 2:2 entrainment for T = 267 (Figure
3.7 A4). C. 1:1 entrainment for T = 398 (Figure 3.7 A5). We used the following

parameter values α = 2, λ = 0.004, A = 0.005 and ε = 0.01.
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A B

Figure 3.9 Bifurcation diagram as a function of the parameter λ for α = 2. We
have Hopf bifurcation at λ = 0.0033. A. The shaded region denote the λ values
for the unforced system for which we have 1:1 polyglot entrainment. The red lines
denote the representative λ values used in the previous figures for the unforced system.
λ = 0.016 (Figure 3.2 A), λ = −0.1 (Figure 3.2 B and C), λ = 0 (Figure 3.4) and
λ = 0.004 (Figure 3.7). B. Magnification of A around the Hopf point showing that
Hopf bifurcation is subcritical.

this case, the resultant fixed point is either stable focus (with an eigenvalue whose

real part is large) or a stable node. Polyglot entrainment is observed for λ values in

the vicinity of Hopf bifurcation. In this case, the unforced system has either stable

focus or unstable focus.

Bifurcation diagram for α = 2 is shown in the Figure 3.9. Panel A shows the

bifurcation diagram with the shaded region. The shaded region represents the λ

values in which we have polyglot entrainment. For λ value outside the shaded region

will give monoglot entrainment responses. Panel B shows the magnification of A

showing that bifurcation is subcritical as an unstable limit cycle emanates from the

Hopf point. Red lines in the bifurcation diagram denote the representative examples

of monoglot and polyglot entrainment responses.
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3.3.4 Monoglot and Polyglot Entrainment in other Parameter Regimes

In the above sections we have focused on a scenario in which the unforced system

has some degree of time scale separation (ε = 0.01), undergoes a subcritical Hopf

bifurcation as λ is varied (α = 2), and the periodic forcing F (t) takes the form of a

square wave. Since the location and criticality of the Hopf bifurcation depends on

model parameters, we also explored other parameter regimes. We have observed

monoglot entrainment in systems with less time scale separation (ε = 0.1), a

supercritical Hopf bifurcation as λ is varied (α = 4), and sinusoidal forcing. Here, we

briefly discuss the results in these other parameter regimes.

Effect of time scale separation - Monoglot and Polyglot entrainment As

ε is increased, the slow-fast nature of the system decreases and trajectories may no

longer leave the lower knee region along fast fibers. Nonetheless, with ε = 0.1, we

still observe both standard and nonstandard monoglot Arnold tongues similar to the

case with ε = 0.01 (cf. Figure 3.2 and Figure A.4). However, with ε = 1, the forced

system only exhibits subthreshold responses and thus we do not consider them to be

entrained. This is due to fixed points along the middle branch of the cubic nullcline

becoming stable at higher ε values. Polyglot entrainment responses are observed by

increasing ε to 0.6. As it increases more, we lose polyglot entrainment responses as

the trajectory doesnt go to the right branch of the cubic nullcline and in that case

we do not call it a spike response. Polyglot entrainment for ε = 0.1 is shown (Figure

A.5).

Second, we consider the criticality of the Hopf bifurcation. When the unforced

system undergoes a supercritical Hopf bifurcation (α = 4), we see a monoglot

entrainment structure with standard and nonstandard Arnold tongues similar to the

subcritical Hopf case (α = 2, cf. Fig. 3.2 and A.6). Finally, we consider the form

of the periodic forcing. With sinusoidal forcing, we do observe standard monoglot
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Arnold tongues but do not find the type of nonstandard monoglot Arnold tongues

that were observed with square-wave forcing (cf. Fig. 3.2 and A.12).

Increasing α - Monoglot and Polyglot entrainment For α = 4, we have

supercritical Hopf bifurcation. Standard and non-standard monoglot entrainment

responses (Figure A.6) were also observed for α = 4 and happen in the similar way

like α = 2. Similarly, polyglot entrainment responses are also observed for α = 4

in the vicinity of Hopf (Figures A.7 and A.8). The breaking and regaining of 1:1

entrainment is shown by representative phase plane diagrams (Figures A.9 and A.10).

The difference we observed for α = 4 is that, since for α = 4, the region of focus type

fixed increase as we vary λ, hence the region of polyglot entrainment is larger (Figure

A.11).

Sinusoidal Forcing - Monoglot and Polyglot entrainment So far the results

we presented were for the square-wave periodic forcing, which induces abrupt changes

in the system. We also investigated sinusoidal periodic forcing, which induces gradual

changes in the system. For sinusoidal forcing, we only observed standard monoglot

structure (Figure A.12). Non-standard monoglot doesnt exist as decreasing λ always

give polyglot entrainment responses. Representative polyglot entrainment responses

for sinusoidal forcing are shown (Figures A.13 and A.14). The bifurcation diagram

(Figure A.15) shows that for sinusoidal forcing, the polyglot entrainment region is

much larger.
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CHAPTER 4

ANALYSIS OF POST-TRANSLATIONAL CIRCADIAN CLOCK
MODELS

4.1 Introduction

In chronobiology, biological rhythms are the periodic changes of activity which occur

in living organisms. A well-known example of these rhythms is called circadian

rhythms. A rhythm is said to be a ‘circadian’ if it meets three fundamental properties:

it must be intrinsically rhythmic with an ∼24 hour period in constant conditions; it

must maintain its rhythmic nature across certain temperature ranges; and it must be

entrainable to environmental cues. These entraining agents (also called zeitgebers)

include light, nutrition, temperature, and social interactions. Among these cues,

light is considered to be the strongest zeitgeber. Most eukaryotic organisms, such as

mammals, insects, plants, and fungi, use circadian clocks to synchronize (or entrain)

to environmental cycles.

Disruption of circadian rhythms has severe consequences for metabolism and

brain function [47]. Often, such circadian desynchrony leads to a broad spectrum

of health problems, such as jet lag, delayed sleep phase syndrome, cardiovascular

disease, and cancer.

Transcriptional/translational feedback loops (TTFLs) [9, 42, 43, 87] are a basis

for circadian oscillations in many organisms. In mammalian circadian cells, the TTFL

has the following structure: clock genes per and cry are transcribed into mRNA and

then translated into the proteins PER and CRY. These proteins then inhibit their

own transcription, forming a negative feedback loop.

Traditionally, TTFLs were considered to be required for generating circadian

oscillations [9, 10, 22, 65]. However, we now know that in some cells and organisms

circadian oscillations can also be generated without a TTFL through post-translational
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modifications such as phosphorylation and dephosphorylation [69, 81, 90]. These

modifications occur after the translation process with the help of enzymes such as

kinases and phosphatases [31,57,64].

Circadian oscillations in cyanobacteria occur in an ordered manner [15,81]. The

circadian clock of cyanobacteria is composed of three proteins: KaiA, KaiB and KaiC.

KaiC protein has a hexameric shape which has two terminals called CI and CII, with

CII having binding site for the protein KaiA called an A-loop. The CII terminal of

KaiC has two residues for autophosphorylation, serine at position 431 (also called

S431) and threonine at position 432 (also called T432).

At dawn, KaiC happens to be in an unphosphorylated state (U-KaiC) and the

A-loops in CII terminal are exposed. KaiA binds to the A-loops stimulating KaiC

autokinase activity, and hence KaiC at T432 becomes phosphorylated by attaching

phosphate group to the T432 (ATP is converted into ADP). Phosphorylation of T432

is followed by phosphorylation of S431 hence both sites are phosphorylated. As dusk

begins, conformational changes [15,44,89] also occur in KaiC and the A-loop of KaiC is

then buried. At this stage, another process comes into play called dephosphorylation

which requires autophosphatase activity in which the protein KaiB is involved. In

order for KaiB to interact with KaiC at CI terminal, B-loop at CI should be exposed.

As B-loop gets exposed, KaiB interact with it. As night time begins, KaiA cannot

bind anymore to the A-loop as it is not active. KaiB in its active form interacts

with KaiA, thereby sequestering KaiA so that KaiA can no longer bind to the A-loop

on KaiC. Once autokinase activity has stopped, and autophosphatase activity starts,

KaiC at threonine position dephosphorylates followed by dephosphorylation of KaiC

at the serine position. At dawn, KaiC returns into its unphosphorylated state with

A-loops exposed and the cycle begins anew.

In this chapter, we discuss circadian clock models which are based upon post-

translational modifications. In cyanobacteria, although in vivo requires TTFL for
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circadian oscillations, in contrast, in vitro, modification of the KaiC protein in a

test tube with the help of proteins KaiA, KaiB and adenosine triphosphate (ATP) is

sufficient to generate circadian oscillation [69,81].

In Section 4.2.1, we take the mathematical model for circadian oscillation in

cyanobacteria developed by Michael J. Rust. The reaction scheme is presented, from

which the 3D model is formed using mass action kinetics. Limit cycle trajectory

in phase space and time course is also shown. In Section 4.2.2, we present

another mathematical model for circadian oscillations developed by Mark Byrne.

The reaction schematic is also shown, which illustrates the essential features of the

model. Equations are shown to demonstrate how the 4D model is reduced to 2D.

In this section, we analyze the mathematical modes presented in Section 4.2.1

and 4.2.2. Section 4.3 shows the results for the Rust model and Section 4.4 show the

results for Byrne model. For analysis of the models, we use dynamical systems tools to

understand how limit cycle oscillations are formed. Dynamical system tools include

fixed points analysis, bifurcation diagrams, and linearization analysis. Dynamical

systems tools presented here help us in understanding how limit cycle trajectory is

formed and evolves across the switching manifold in both models. Results for both

models show surprisingly similar results although both are different models in terms

of dimensionality, structure and parameter values. In Section 4.5, we compare the

period of oscillations in the Rust model and Byrne model with the experimental

findings.

4.2 Cyanobacterial Circadian Clock Models

How in vitro oscillator of cyanobacteria works with the help of kai proteins and

energy is well studied [53, 69, 70]. From a theoretical point of view, various

mathematical models have also been developed to describe the circadian oscillations in

cyanobacteria. David Lubensky and his colleagues constructed the model [74] which
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incorporates how energy sources (ATP and ADP) interact with the different domains

of KaiC hexamer and drives the circadian clock of cyanobacteria. Their work focuses

on how conformational changes of KaiC hexamer occur between active and inactive

states by ATP breakdown reaction to CI domain and its effect on phosphorylation

at CII domain. Modeling conformational changes of KaiC hexamers, some of the

work of Lubensky and his colleagues also presented a mathematical model which

incorporates the allosteric regulation of KaiC phosphorylation [92]. They showed the

synchronization phenomenon among KaiC hexamers. Lubensky et al. in another

work showed the robustness of limit cycle oscillations in cyanobacteria to noise in

the input signal [66]. They compared the performance of the limit cycle oscillator

(from three proteins) with damped oscillator and an hourglass-like oscillator (i.e.

an unforced system that is non-oscillatory shows oscillations when driven by forcing).

They showed the effectiveness of limit cycle oscillators over damped and hourglass-like

oscillators in response to different intensities of noise. Their findings showed that limit

cycle oscillators are more robust to high noise. Cyanobacterial clock is also modeled

by [97] in which they call it an hourglass model: sand fills the hourglass at day

time (KaiC phosphorylation) and emptied at nigh time (KaiC dephosphorylation).

Their model incorporates monomer exchange of KaiC hexamer and clustering of KaiC

hexamers by interacting with other proteins at night time. Along similar lines,

modeling work by Yoda et al. [100] also shows incorporating monomers exchange

and allosteric regulation of KaiC. Modeling studies by Aihara et al. [56] highlighted

the role of KaiA and KaiB in nonlinearities needed for circadian oscillations. They

also showed relaxation type oscillations in their model. Mark Byrne discussed and

compared a variety of the proposed mathematical models for the in vitro KaiABC

oscillator in cyanobacteria [19] .

Michael Rust and his group have made significant contribution to the field

in terms of modeling circadian oscillations in cyanobacterial clocks. Rust et al.
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presented a model for circadian oscillations in cyanobacteria and highlighted that the

model shows oscillations in forms of KaiC phosphorylation and dephosphorylation

in a well-defined sequential way [81]. Yet this model does not shows the explicit

effect of the protein KaiB. After developing the model which represents the unforced

system, Rust et al. studied the effect of forcing on the cyanobacterial circadian

clock [80] and explained the entrainment mechanism to light dark cycles. They

showed that changes in the energy source (ATP/ADP) brings a phase-shift when

KaiC phosphorylated during the oscillations. Rust and his group also presented the

mathematical model showing the interaction of input signals with KaiC domains

CI and CII, the robustness of the clock to environmental changes and the effect of

ATPase activity for different KaiB and KaiC complexes [76]. In their work [13], they

showed how the protein KaiB interacts explicitly with the clock components. Besides

the work by Lubensky and his colleagues, stochastic effects have also been studied by

Rust et al. [14] in the cyanobacterial circadian clock. They used stochastic modeling

to study the circadian oscillations in cyanobacterial clock. Their work showed that

a species of cyanobacteria lacking KaiA which acts like a hourglass system, performs

better than a free running circadian clock in the presence of internal molecular noise.

In contrast, when internal noise is low and external fluctuations are large, the free

running circadian clock outperforms the hourglass like systems.

Though the Rust model [81] has been widely used, it has not been thoroughly

analyzed from a dynamical systems perspective. Our aim is to analyze the Rust

model from a dynamical point of view, namely, how circadian limit cycle oscillations

are generated using dynamical system’s tools.

4.2.1 Rust Model

In this section, we describe a three dimensional model of post-translational oscillations

for the cyanobacteria developed by Rust et al. [81].
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Model equations are:

dT

dt
= kUT (S)U + kDT (S)D − kTU(S)T − kTD(S)T (4.1)

dD

dt
= kTD(S)T + kSD(S)S − kDT (S)D − kDS(S)D (4.2)

dS

dt
= kUS(S)U + kDS(S)D − kSU(S)S − kSD(S)S (4.3)

A = max{0, [KaiA]− 2mS} (4.4)

kXY = k0XY +
kAXYA(S)

K1/2 + A(S)
(4.5)

Conservation equation:

U + T +D + S = [KaiC] (4.6)

Figure 4.1 shows the reaction network of the Rust model. The variable U denotes

the KaiC protein in an unphosphorylated state, variable T denotes phosphorylation

of KaiC at the T site only, variable D denote KaiC phosphorylation at both T and D

sites and variable S denote phosphorylation of KaiC at the S site only. Orange lines

denote the phosphorylation processes. The rate constant for the transition from an

unphosphorylated state U to phosphorylated state T is denoted by kUT and similarly

others. A is the concentration of active monomers of KaiA which depends on the

KaiC at S site only. The role of KaiB is implicitly defined in the definition of active

KaiA monomers (A). m is the stoichiometric coefficient chosen to be 1 (which mean

that one S-KaiC monomer sequester one KaiA dimer via KaiB). The total rate (kXY )

is the sum of basal rates (denoted by k0XY ) and maximal rates (denoted by kAXY ). Each

kXY has Michaelis Menten kinetics. The parameter K1/2 is taken from the hyperbolic

fit to the experimental data on the dependence of rate from U to T state on KaiA.

It is assumed to be same for all other rates.
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Figure 4.1 Biochemical schematic of three proteins clock [81]. Blue lines denote the
dephosphorylation processes. Solid black lines originating from KaiA indicate that
KaiA induces phosphorylation and dashed black lines originating from KaiA indicate
that KaiA inhibits the indicated dephosphorylation processes. Red line going from S
to KaiA describe the sequestration of KaiA via KaiB at S site of KaiC.

In this model, we see that the concentrations of three phosphorylated species

are the only dynamical variables; the interconversion between phosphoforms are first

order; rates are Hill function of KaiA and each S-KaiC monomer (together with KaiB)

inactivates one KaiA dimer.

The parameters in Table 4.1 taken from [81] were obtained from partial

experiments with and without KaiA. With the given parameter values and proteins

concentration defined below, the model gives limit cycle oscillations with a period of

≈ 21 hours (Figure 4.2).

Each rate parameter has the unit of 1/h. Others parameter values used: K1/2 =

0.43µM , m = 1, [KaiA] = 1.3µM , [KaiC] = 3.4µM .
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A B

Figure 4.2 Limit cycle trajectory of the Rust model for KaiA = 1.3. A shows three
dimensional view of different trajectories (in different colors) starting with various
initial conditions converge towards the stable limit cycle trajectory indicated by green
arrows. Dark blue arrows show the direction of the trajectories. Black dot denotes
the unstable fixed point. B shows the time course oscillations of the Rust model.

Table 4.1 Rust Model Parameters

Basal Rates Values Maximal Rates Values

k0UT 0 kAUT 0.479

k0TD 0 kATD 0.213

k0SD 0 kASD 0.506

k0US 0 kAUS 0.053

k0TU 0.21 kATU 0.079

k0DT 0 kADT 0.173

k0DS 0.31 kADS -0.319

k0SU 0.11 kASU -0.133
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4.2.2 Byrne Model

In this section, we discuss a two dimensional circadian model for post-translational

oscillations developed by Mark Byrne [12]. The design model states that a protein

with at least two modification sites which selectively sequesters an effector molecule

(denoted by E in the model) and a time scale separation between the dynamical

variables is sufficient to generate sustained circadian oscillations in the population

occupancy of the regulatory sites [12]. As the Byrne model is two dimensional, phase

plane analysis can be utilized to gain insight into the system’s dynamics. Model

equations are:

dx

dt
= k+1(x, y)(1− x)− k−1x (4.7)

dy

dt
= k+2(x, y)(1− y)− k−2y (4.8)

E = max{0, E0 − y(1− x)} (4.9)

k+j = k+j,max
E

E +K
(4.10)

The state x and y represents the fractional occupancy of each residue on some protein.

Model equations are globally coupled via the effector concentration E. E0 represents

the initially available concentration of effector concentration. In the Byrne model, E

and E0 has similar role like A and KaiA in the Rust model.

Model parameter values are: E0 = 0.2, K = 0.04, k+1,max = k−1 = 0.4,

k+2,max = k−2 = 0.03. Each rate has the unit of 1/h.

Nullclines: Since E is non-smooth function. We find nullclines based on

different values E takes on. i-e for E = 0 and E = E0 − y(1 − x). x-nullcline is

denoted by Nx

(
dx

dt
= 0

)
and y-nullcline is denoted by Ny

(
dy

dt
= 0

)
.

• For E = 0, the x and y nullclines are the y-axis and x-axis respectively.
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• For E = E0 − y(1− x), the x and y nullclines are:

Nx(x) =

(
E0(1− x)− cx(K + E0)

)
(1− x)(1− x− cx)

and Ny(x) =
−B −

√
B2 − 4AE0

2A
.

where b =
k−2

k+2,max

, c =
k−1

k+1,max

, A = (1+b)(1−x) and B = x−1−bK−E0(1+b).

We can also go from x, y to the 4 state system i-e X(0,0), X(0,1), X(1,0), X(1,1)

using these equations:

X(0,0) = (1− x1)(1− x2) (4.11)

X(1,0) = x1(1− x2) (4.12)

X(0,1) = x2(1− x1) (4.13)

X(1,1) = x1x2 (4.14)

The four states system becomes:

dX(0,0)

dt
= −(k+1 + k+2)X

(0,0) + k−1X
(1,0) + k−2X

(0,1) (4.15)

dX(1,0)

dt
= −(k−1 + k+2)X

(1,0) + k+1X
(0,0) + k−2X

(1,1) (4.16)

dX(1,1)

dt
= −(k−1 + k−2)X

(1,1) + k+1X
(0,1) + k+2X

(1,0) (4.17)

dX(0,1)

dt
= −(k−2 + k+1)X

(0,1) + k−1X
(1,1) + k+2X

(0,0) (4.18)

4.3 Dynamic Analysis of the Rust Model

To analyze the mechanism of oscillations generated in the Rust model, we use

dynamical system tools such as fixed point analysis, time course, bifurcation diagram
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A B

Figure 4.3 A shows the reaction schematic for the Byrne model [12]. B shows the
time course for the four state system. Parameter values used are: E0 = 0.2, K = 0.04,

k1,max = k−1 = 0.4, k2,max = k−2 = 0.03.

A B

Figure 4.4 Representative time course dynamics in A and phase plane diagram in
B for the 2D Byrne model. We used the following parameter values: E0 = 0.2, K = 0.04,

k1,max = k−1 = 0.4, k2,max = k−2 = 0.03.
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and phase space/plane. The purpose of such dynamic analysis is to gain insight into

the system’s trajectories.

Fixed points Analysis

For fixed point analysis, we rewrite the Rust model in an alternative form (right-hand

sides of the system as a sum of linear and nonlinear functions):

dT

dt
= −0.21T + F (S)[1.6286− 0.7718T − 0.306D − 0.479S] (4.19)

dD

dt
= −0.31D + F (S)[0.213T + 0.147D + 0.5057S] (4.20)

dS

dt
= 0.31D − 0.11S + F (S)[0.1809− 0.0532T − 0.3732D − 0.4489S] (4.21)

where

F (S) =
A(S)

K1/2 + A(S)
(4.22)

and

A(S) = max(0,KaiA− 2mS) (4.23)

Fixed points have been calculated by using fsolve routine in MATLAB (The

Mathworks, Natick, MA) using different initial conditions. The stability of the fixed

points is calculated by finding the eigenvalues of the jacobian matrix evaluated at the

fixed points.

Linear regime: In the Rust model, each rate constant has non-linearity which

depends on S. Particularly, in the model, A = max{0, [KaiA] − 2mS} is the source

of linearity/nonlinearity. The model is in the linear regime when A = 0 (corresponds
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to the case when S ≥ KaiA

2m
). This regime doesn’t have a fixed point as it is

located at (T ∗, D∗, S∗) = (0, 0, 0) which is located in the nonlinear regime, hence

it is called virtual a fixed point. This fixed point is a stable node. The eigenvalues

are (−0.21,−0.31,−0.11).

Moreover, solving the system in a linear regime, for any state (T,D, S) at the

initial time, there exists a unique time of exit τexit and unique location (T,D, S)τexit

which is the plane P =
KaiA

2m
in the (T,D, S) space.

Non-linear regime: The system has nonlinear dynamics for S <
KaiA

2m
. In

the non-linear regime, A = [KaiA] − 2mS. For KaiA = 1.3, two fixed points have

been observed and both are unstable. At this value of KaiA, one of these fixed points

has S coordinate to be S <
KaiA

2m
and the other has S >

KaiA

2m
.

(a) First fixed point: The first fixed point is located at

(T,D, S) = (0.7602, 0.4161, 0.5782) whose eigenvalues are (α1, α2, α3), where

α1 = −0.4552, α2 = 0.1223 + 0.3691i, and α3 = 0.1223 − 0.3691i. Thus, the fixed

point is classified as a spiral saddle index 2, with a unstable spiral in two of the

dimensions and stable behaviour in the dimension perpendicular to the spiral surface.

The eigenvector matrix associated with these eigenvalues is: V1 = (v1, v2, v2), where

v1 = [0.9966,−0.076, 0.0322]T , v2 = [−0.6954,−0.6418 + 0.1794i,−0.6418− 0.1794i]T

and v2 is the complex conjugate of v2. Hence, the linearization predicts that near

this fixed point, the trajectory is attracting in the T-direction and repelling along the

DS-plane.

(b) Second fixed point: The second fixed point is located at

(T,D, S) = (−3.6207, 0.2380, 0.6842), whose eigenvalues are (α
′
1, α

′
2, α

′
3), where

α
′
1 = −0.6259 + 0.2003i, α

′
2 = −0.6259 − 0.2003i, and α

′
3 = 0.8728. Thus, the

fixed point is classified as a spiral saddle index 1, with a stable spiral in two of

the dimensions and unstable behaviour in the dimension perpendicular to the spiral

surface.
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The eigenvector matrix associated with these eigenvalues is: V2 = (v3, v3, v4)

where v3 = [−0.9978,−0.0584 + 0.0240i, 0.0211− 0.0075i]T ,

v4 = [−0.9978, 0.1056, 0.0355]T and v3 is the complex conjugate of v3. Hence,

the linearization predicts that near this fixed point, the trajectory is repelling in the

S-direction and attracting along the TD-plane.

This fixed point is not biologically reasonable as the T component (denotes a

concentration) is negative.

Bifurcation Diagram

For low KaiA values of KaiA (less than ≈ 0.96), the system has a stable fixed point.

At around KaiA = 0.96, the fixed point loses stability and a supercritical Hopf

bifurcation occurs leading to oscillations. These oscillations persist as we increase

KaiA. Subcritical Hopf bifurcation occurs at KaiA ≈ 1.63922. Near to the subcritical

Hopf, saddle node bifurcation of periodic orbits occurs at KaiA ≈ 1.63925. The

bifurcation diagram is shown in Figure 4.5.

Trajectory behaviour in the Rust model

In the Rust model, trajectory in the phase space is partitioned into two regimes,

called ’linear’ and ’nonlinear’ regimes, where each regime has a qualitatively different

vector field.

• In a onlinear regime, we need to know which trajectory stays in the first octant.

At S = 0, T and D are non-negative, hence S
′
> 0.

At D = 0, T and S are non-negative, hence D
′
> 0.

At T = 0, D and S are non-negative, hence T
′
> 0.

Hence union of linear and nonlinear regimes is positive invariant.
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A B

Figure 4.5 A Bifurcation diagram of the model with KaiA as a bifurcation
parameter and B shows the magnification of A showing subcritical Hopf bifurcation
and saddle node bifurcation of periodic orbits. For KaiA values less than ≈ 0.96, we
have stable focus and the system evolves as a damped oscillator. Supercritical Hopf
bifurcation occurs at KaiA ≈ 0.9606 giving rise to small amplitude stable oscillations.
Subcritical Hopf bifurcation occurs at KaiA ≈ 1.63922. Global bifurcation (saddle
node of periodic orbits) occurs at KaiA = 1.63925, where the stable and an unstable
limit cycles become very closer to each other and annihilates the oscillations. Solid
light blue denotes the stable fixed point, dashed light blue denotes an unstable fixed
point, solid blue denotes stable limit cycle and dashed blue denotes an unstable limit
cycle.
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A B

Figure 4.6 S
′

at S =
KaiA

2m
for lower and higher D. A shows that for higher D, S

is decreasing and for lower D, S is increasing. B Color map of S
′

in the TD plane.
Horizontal line D = 0.2306 which corresponds to S

′
= 0

• If a trajectory is in a nonlinear region, it can only leave through plane P =

[KaiA]

2m
.

Here we check S
′

at S =
[KaiA]

2m
= 0.65 ([KaiA] = 1.3, m = 1).

dS

dt
= 0.31D − 0.0715 (4.24)

In TD plane, S
′

doesnt depend upon T. For high D values, S is increasing and for

lower D values, S is decreasing.

Mechanism of Oscillations

From the Rust point of view, the mechanism of having oscillations in the cyanobac-

terial clock model is the sequestration of KaiA by S-KaiC which promotes dephos-

phorylation and therefore increases the production of S-KaiC from ST-KaiC. S-KaiC

is an autocatalytic as it increases its own production. This sequestration effect of

KaiA by S-KaiC is the essential non-linearity in the RUST model and has been
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determined to be sufficient enough, i.e. the switch between phosphorylation and

dephosphorylation occurs over a sufficiently small range of active KaiA concentration

[81]. Particularly, the source of nonlinearity is the parameter K1/2 (the concentration

of KaiA which causes a half-maximal effect on phosphorylation rates), which means

the rates dependent on S. For K1/2 = 0, the rates are no more dependent on S, as

the system becomes linear and the dynamics in this case approaches a stable steady

state located at the origin. Range of K1/2 for which oscillations have been observed

is 0.092µM < K1/2 < 0.93µM .

The mechanism of oscillations we hypothesize here is that, it constitites

the switch between linear and nonlinear regimes (except for a very tiny region) and

this switch has been observed as:

When S <
[KaiA]

2m
, we have A = [KaiA] − 2mS, the system settled into

non-linear regime in which the system has an unstable fixed point and, as a result,

the system approaches toward infinity until S =
[KaiA]

2m
.

As S crosses
[KaiA]

2m
, we have A = 0, and the system switches to the linear

regime. In the linear regime, the system goes to zero steady-state until S <
[KaiA]

2m
.

So essentially, the oscillation mechanism in the Rust model is the switching of

linear and nonlinear regimes except for a tiny range of KaiA (KaiA=0.961 to 0.9645)

in which we have a small amplitude oscillation and the system remains in a nonlinear

regime only. Figure 4.8 shows the tiny region where S stays below the threshold

[KaiA]

2m
.

Figure 4.7 shows how much time the limit cycle trajectory spends in the linear

and nonlinear regimes for one period. It illustrates the three-dimensional trajectory

(Figure 4.7) and its projection onto the D-S plane. Both figures show that during

one cycle period, the trajectory spends more time in the nonlinear regime.
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A B

Figure 4.7 Three dimensional limit cycle trajectory in A with an hourly marked
period in black. Yellow part of the trajectory corresponds to the nonlinear regime in
which the system has unstable fixed point (red open) and cyan part is linear regime in
which system goes to stable fixed point (blue filled). Besides this, trajectory spends
more time in nonlinear regime. Two dimensional projection of trajectory in B on SD
plane.

Figure 4.8 Tiny region (KaiA=0.961 to 0.9645) where oscillation occurs without
switching into linear regime.
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Switching Manifold: Figure 4.9 shows the switching manifold and how the

trajectories move from one regime to another and give rise to limit cycle oscillations.

To the right of switching manifold , the trajectories (in blue) approach toward the

stable fixed point (a node) located at the origin, also called virtual fixed point. As

the trajectory crosses the manifold, the system has an unstable fixed point (a saddle

focus); hence, the trajectories (in red) move away from it along the unstable direction

until it hits the switching manifold again and, as a result, an isolated periodic orbit (or

limit cycle) is formed from the trajectories in the linear and nonlinear regimes. Figure

4.9 shows the formation of the 3D periodic orbit (left panel) and its 2D projection

(right panel) obtained by the union of trajectories in linear and nonlinear regimes for

various values of KaiA.

64



A1 A2

B1 B2

C1 C2

Figure 4.9 Top (KaiA=1.2), Middle (KaiA=1.3) and bottom (KaiA=1.4) panel
switching between the linear regime and nonlinear regimes across the switching
manifold (a plane) give birth to the limit cycle oscillations in S-T-D phase space
(all left) and S-D plane (all right).
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Linearized Dynamics in the Nonlinear Regime The Rust model produces

an oscillation as a result of the interplay between linear and nonlinear dynamics.

We would like to examine: if we linearize the nonlinear dynamics, can we get an

oscillation? More specifically, can we have an oscillation as an interplay between two

linear systems?

So in this section, we analyze the nonlinear regime in such a way that we

linearize the system about an unstable fixed point in a nonlinear regime for some

KaiA value and then check whether we obtain oscillations if we switch between two

linear systems: one linear system corresponds to the linear regime and the second

linear system obtained from the linearization process in nonlinear regime.

The Jacobian matrix for the nonlinear regime (as a function of KaiA and its

corresponding fixed point) is given by:



R11 R12 R13

R21 R22 R23

R31 R32 R33


Entries of the Jacobian matrix are:

R11 = −0.7718A
C

− 0.21, R12 = −0.3060A
C

,

R13 = −239500KaiA2+(958000KaiA)S−102985KaiA−958000S2+411940S+131580D+331874T−700298
50B

,

R21 = 0.2130A
B

, R22 = 0.1460A
B
− 0.31,

R23 = −(−25300KaiA2+(101200KaiA)S−10879KaiA−101200S2+43516S+6278D+9159T )
5B

,

R31 = −0.0530A
B

, R32 = 0.31− 0.3720A
B

,

R33 = −53600KaiA2+(2144000KaiA)S−277780KaiA−2144000S2+921920S+319920D+45580T−175311
100B

and A = KaiA− 2S, B = (100KaiA− 200S + 43)2, C = KaiA− 2S +
43

100
.
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For example when KaiA=1.3, the fixed point is located at (T,D, S) =

(0.7602, 0.4161, 0.5782), the linear system in nonlinear regime is:

dT

dt
= −0.4032(T − 0.7602)− 0.07661(D − 0.4161)− 1.786(S − 0.5782) (4.25)

dD

dt
= 0.05332(T − 0.7602)− 0.2734(D − 0.4161)− 1.22(S − 0.5782) (4.26)

dS

dt
= −0.01327(T − 0.7602) + 0.2169(D − 0.4161) + 0.4661(S − 0.5782) (4.27)

The linear system (independent of KaiA) that corresponds to the linear regime

is:

dT

dt
= −0.21T (4.28)

dD

dt
= −0.31D (4.29)

dS

dt
= 0.31D − 0.11S (4.30)

We simulate both linear systems in such way that we take linear system

(Equations 19 to 21) when S >
KaiA

2m
and linear system (Equations 16 to 18) when

S <
KaiA

2m
.

We do get oscillations (Figure 4.10) as a result of an interplay between two

linear systems with period ≈ 22.65 hours.

4.4 Dynamic Analysis of the Byrne Model

To understand the mechanism of oscillations in 2D, we also hypothesize as we did in

the last section (for the 3D model) that the mechanism of oscillations in the 2D is

generated by the transition between linear and nonlinear regimes of the model. To
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A B C

Figure 4.10 Oscillation from system of two linear systems: one linear system
corresponds to linear regime and second is a linearized system corresponding to
nonlinear regime. For KaiA=1.3: A Time course dynamics. B Trajectory in the
phase space. C Projection of trajectory on SD plane.

analyze the mechanism of oscillations, we use dynamical system tools such as fixed

point analysis, time course, bifurcation diagram and phase plane.

Fixed points Analysis

For fixed point analysis, we can rewrite the Byrne model in an alternative form

(right-hand sides of the system as a sum of linear and nonlinear functions)

dx

dt
= −k−1x+ k+1(x, y)(1− x) (4.31)

dy

dt
= −k−2y + k+2(x, y)(1− y) (4.32)

where

k+j = k+j,max
E

E +K
(4.33)

and

E = max{0, E0 − y(1− x)} (4.34)
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Fixed points have been calculated by using fsolve routine in MATLAB using different

initial conditions and stability of the fixed points have been found by finding the

eigenvalues of the Jacobin matrix evaluated at the fixed points.

Linear regime:

The model is in the linear regime when E = 0 (i-e when y >
E0

1− x
). This

regime doesnt have a fixed point as it is located at (x∗, y∗) = (0, 0) which is located

in the nonlinear regime, hence it is called a virtual fixed point. This fixed point is a

stable node. The eigenvalues are (−0.4,−0.78). The corresponding eigenvectors are:

v1 = [1, 0]T and v2 = [0.99, 0.04]T .

Non-linear regime:

The system has nonlinear dynamics for y <
E0

(1− x)
. For E0 = 0.2, two fixed

points have been observed and both are unstable. At this value of KaiA, one of these

fixed points has S coordinate to be S <
KaiA

2m
and the other has S >

KaiA

2m
.

(a) First fixed point: This fixed point is located at (x, y) = (0.23871, 0.23871)

whose eigenvalues are (β1, β2), where β1 = 0.043315 + 0.30447i and β2 = 0.043315−

0.30447i. Thus, the fixed point is an unstable focus. We call this an actual fixed

point as it is located in this regime.

The eigenvector matrix associated with these eigenvalues is :

V1 = (v1, v1) where v1 = [0.98844, 0.10408 − 0.1102i]T and v1 is the complex

conjugate of v1.

(b) Second fixed point: This fixed point is located at (x, y) = (0.6272, 0.79771)

whose eigenvalues are (β
/
1 , β

/
2), where β

′
1 = 0.2583 and β

′
2 = 0.

The eigenvector matrix associated with these eigenvalues is :

V2 = (v2, v3) where v2 = [0.9874, 0.1584]T and v3 = [0.8789, 0.4771]T .

This fixed point is a virtual fixed point as it is located in the linear regime.

Fixed points in the linear and nonlinear regimes describing the oscillation dynamics

are shown in Figure 4.11.
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Figure 4.11 Phase plane showing virtual fixed point for the linear regime (blue filled
dot) and actual fixed for the nonlinear regime (red open dot). The curve in black is
the switching manifold above which the system has linear dynamics and below it has
nonlinear dynamics. The curve in blue is a limit cycle trajectory. x-nullcline is the
red curve and green curve is the y-nullcline.

Bifurcation diagram

For low E0 values (less than ≈ 0.138), the system has stable fixed point. At around

E0 = 0.1381, the fixed point loses stability and subcritical Hopf bifurcation occurs.

Another subcritical Hopf bifurcation occurs at E0 ≈ 0.2295. Near to the first Hopf,

saddle node bifurcation of periodic orbits occurs at E0 ≈ 0.137. Near to second Hopf,

saddle node bifurcation of periodic orbits occurs at E0 ≈ 0.2376. The bifurcation

diagram is shown in Figure 4.12.

Trajectory behaviour in the Byrne model

If a trajectory is in a nonlinear region, it can only leave through curve y =
E0

1− x
. We

see in the Figure 4.13 that for higher values of y, x is increasing and for low values

of y, x is increasing.

Mechanism of Oscillations

The mechanism of oscillations we hypothesize here is that it switches between linear

and nonlinear regimes. This switch has been observed as the following:
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A B C

Figure 4.12 Bifurcation diagram of the model with E0 as a bifurcation parameter
in A. 1st Hopf subcritical bifurcation occurs at E0 ≈ 0.1381) and 2nd Hopf subcritical
bifurcation occurs at E0 ≈ 0.2295). B and C shows the bistability regions which are
the magnifications of near first Hopf and second Hopf point, respectively. Solid red
lines represent the stable fixed point, dashed red line denotes the unstable fixed point,
solid blue lines the maximum and minimum of stable limit cycle, dashed blue lines
represent the maximum and minimum unstable limit cycle.

Figure 4.13 Trajectory in phase plane showing that for higher y, x is decreasing
and for low y values, x is increasing.

when y <
E0

1− x
, we have E = E0−y(1−x), the system settled into a non-linear

regime in which the system has an unstable fixed point; as a result, the system

approaches toward infinity until it hits the switching curve.
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Figure 4.14 Limit cycle trajectory for E0 = 0.2 with an hourly time period marked
in black dots. Red part of the trajectory corresponds to the nonlinear regime (the
system has unstable fixed point) and blue part corresponds to the linear regime (the
system goes to stable fixed point). The trajectory spends more time in nonlinear
regime. In linear regime, trajectory spends ≈ 7 h and in nonlinear regime, the
trajectory spends ≈ 17 h.

As y crosses the switching curve, we have E = 0, and the system switches to

the linear regime. In the linear regime, the system goes to zero steady-state until it

hits the switching curve.

Figure 4.14 shows how much time the limit cycle trajectory spends in linear and

nonlinear regimes for one period. We see that the trajectory spends more time in the

nonlinear regime.

Linearized Dynamics in the Nonlinear Regime

In this section, we would like to see if we get oscillations if we have two linear systems:

one is in the linear regime and the second one is the linearized system in a nonlinear

regime about an unstable fixed point.

The Jacobian matrix for the nonlinear regime (as a function of E0 and its

corresponding fixed point) is given by:
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A B C

Figure 4.15 Limit cycle trajectory formation from the trajectory switching across
linear and nonlinear regimes for different values of E0. Trajectory in blue corresponds
to the linear regime and trajectory in red corresponds to the nonlinear regime. Curve
in black is the switching manifold. A E0 = 0.18, B E0 = 0.2 and C E0 = 0.22.


B11 B12

B21 B22


Entries of the Jacobian matrix are:

B11 =
−2(1250E2

0+2500E0xy−2500E0y+75E0+β−γ+1250y2+100xy−100y+1)

5α
,

B12 = −10(x−1)2

α
, B21 = −3y(y−1)

4α
,

B22 =
−3(1250E2

0+2500E0xy−2500E0y+75E0+β−γ+1250y2+100xy−100y−25x+26

100α

and α = (25E0 − 25y + 25xy + 1)2, β = 1250x2y2, γ = 2500xy2.

For example, for E0 = 0.2, the fixed point is located at (x, y) = (0.23871, 0.23871),

the linear system in nonlinear regime is:

dx

dt
= 0.3308(x− 0.23871)− 2.731(y − 0.23871) (4.35)

dy

dt
= 0.06422(x− 0.23871)− 0.2442(y − 0.23871) (4.36)
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A B

Figure 4.16 Oscillation from two linear systems: One corresponds to the linear
regime and second is the linearised system related to nonlinear regime. Time course
dynamics in A and phase plane dynamics in B for E0 = 0.2. Period is ≈ 26 h. In
B, x-nullcline is shown in the red, y-nullcline in green, trajectory in blue. Threshold
is shown in black and fixed point located at (0.23871, 0.23871) denoted by red open
dot.

The linear system (independent of E0) that corresponds to the linear regime is:

dx

dt
= −0.4x (4.37)

dy

dt
= −0.03y (4.38)

We simulate both linear systems in such a way that we take linear system

(Equations 29 and 30) when y >
E0

1− x
and linear system (Equations 27 and 28)

when y <
E0

1− x
.

We do get oscillations as a result of an interplay between two linear systems

(Figure 4.16) with a period of ≈ 22.65 hours.
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4.5 Period of Oscillations in Rust/Byrne Models Versus Experiments

In the Rust model, increasing KaiA concentration lengthens the period of oscillations

(Figure 4.17 A). In the Byrne model, by increasing E0, the period also increases

(Figure 4.17 B). So, in both models, the period increases as the protein concentration

(KaiA in Rust and E0 in Byrne) increases. However, Kageyama [46] reported

experimental data on the behaviour of the oscillator which shows that increasing

KaiA concentration shortens the period of oscillations. Experiments by Yong-Ick Kim

also showed that reducing the KaiA concentration lengthens the period of oscillations

(Figure 4.17 C).

Figure 4.17 A and B shows that the period increases as KaiA (Rust model)

and E0 (Byrne model) increase. In the linear regime, control parameters KaiA and

E0 have no apparent effect on the period. The period increase effect comes from the

nonlinear regimes. Also, in previous sections, we have observed that in both Rust

and Byrne model, we also get oscillations if we have two linear systems: one linear

system corresponds to the linear regime and the second linear system corresponds to

the linearized system in the nonlinear regime. With this, we investigate the effect

of KaiA and E0 on the eigenvalues in nonlinear regimes. We would like to see if

eigenvalues could tell us something about the period increase in these models. In this

regard, we would like to see the KaiA effect on eigenvalues in the Rust model and E0

effect on eigenvalues in the Byrne model.

KaiA Effect on Eigenvalues in the Rust Model

Since KaiA doesn’t affect the linear dynamics (as A=0), so virtual fixed point is

not affected by the change in KaiA concentration. However, KaiA does affects the

nonlinear dynamics.

In the nonlinear regime, we analyze the eigenvalues of an unstable fixed point as

we increase KaiA concentration in the range for which we have oscillatory behaviour.
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A B C

Figure 4.17 A shows the period of oscillations in the Rust model in linear regime
(green), nonlinear regime (black) and total (blue). B shows the period of oscillations
in the Byrne model in linear regime (green), nonlinear regime (black) and total (blue).
C Period fit to experimental data from Yong-Ick’s Lab.

As we increase KaiA concentration, the real eigenvalues (which are negative) becomes

more negative (Figure 4.18 A). On the other hand, as we increase KaiA, the imaginary

part of eigenvalues decreases (Figure 4.18 B).

By looking at the real and imaginary parts of an unstable fixed point, can we

get insight into what role they play in the period increase as we increase KaiA? By

looking at Figure 4.18 A, we see that for two different KaiA values (say KaiA=1.2

and KaiA=1.6), the real parts are almost the same. Hence, the real parts do not play

any role in the period increase as KaiA increases. It is, therefore, the imaginary part

of an eigenvalue which plays the role in the period increase as KaiA increases.

E0 effect on Eigenvalues in the Byrne Model

Figure 4.19 shows the effect of E0 on the real and imaginary parts of the fixed point

in nonlinear regime. We have seen both in the Rust and Byrne models that when

we increase KaiA in Rust and E0 in the Byrne model, the period increases. So what

makes the period increase as we increase KaiA in Rust or E0 in the Byrne model? If

we look at Figure 4.19, it shows that for two different E0 values, their corresponding
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A B

Figure 4.18 Real (A) and imaginary part (B) of an unstable fixed point during
the course of oscillations versus the parameter KaiA.

real parts are approximately equal, while their imaginary parts are quite different.

Hence, it must be the imaginary part of the fixed point which plays the role. As

we increase E0, the imaginary part decreases, which means that the frequency of

oscillations decreases, or, equivalently, the period of oscillations increases.

From the Figures 4.18 and 4.19 describing the results of KaiA and E0 on the

eigenvalues of the unstable fixed point in nonlinear regime of the Rust and Byrne

models, we observed that the imaginary part of the eigenvalues has a noticeable

effect on the period behavior. For both models, the imaginary part decreases as we

increase the control parameters. Decrease in the imaginary part means a decrease

in the frequency of oscillations, which is equivalent to an increase in the period of

oscillations.

Future work: To obtain the right period behavior as observed in experimental

findings, modifications in the Rust or Byrne could be made such that imaginary part

of eigenvalues for an unstable fixed point in nonlinear regime increases as we increase

KaiA (in Rust’s model) or E0 (in Byrne’s model).

77



A B

Figure 4.19 Effect of E0 on the real (A) and imaginary part (B) of an unstable
fixed point during the course of oscillations.
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CHAPTER 5

ENTRAINMENT RESPONSES IN CIRCADIAN CLOCK MODELS

5.1 Introduction

In this Chapter, we show how time dependent period forcing is incorporated in the

Rust and Byrne Models. Section 5.2.1 shows a periodically forced Rust Model.

Forcing has affect on the phosphorylation rates. Section 5.2.2 presents a periodically

forced Byrne Model which shows that forcing affect fast reaction kinetics.

In this section, results for the Rust and Byrne Models focuses on two directions.

One direction focuses on the system’s intrinsic dynamics (the effect of forcing on fixed

point(s) of the system) when the forcing turns on and the second direction focuses

on the entrainment results. In section 5.3, for a cycle of forcing, we use fixed points

analysis when the forcing turns on. Section 5.3 shows entrainment results when an

unforced system has different qualitative behaviours. Section 5.4 shows dynamic

analysis of the forced Byrne Model. Section 5.4 shows the entrainment results and

the corresponding phase plane pictures for the Byrne Model.

5.2 Circadian Clock Models with Periodic Forcing

5.2.1 Periodically Forced Rust Model

In the cyanobacterial circadian clock model, the KaiABC proteins that comprise the

core oscillator [75] are directly sensitive to metabolites (acting as zeitgebers). Two

important signals which cause clock phase shifts are ATP/ADP ratios and oxidized

quinones, and both serve as a proxy for darkness [51].

Light-dark pulses brings a phase shift in the cyanobacterial clock [51, 80]. In

subsection 3.1, we explored the dynamics of cyanobacteria with no forcing (constant

light conditions) where decomposition has already been studied in linear and nonlinear
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regimes and how the switch dynamics between linear and nonlinear regimes result in

oscillations.

In this section, we would like to investigate the dynamics of cyanobacteria in

response to light-dark cycles, in particular, when subject to one of the metabolic

processes, here ATP/ADP. We used square-wave with a fixed photoperiod to represent

ATP/ADP.

The Rust version of forcing is described by the following differential equations:

dT

dt
= kUT (S)U + kDT (S)D − kTU(S)T − kTD(S)T

dD

dt
= kTD(S)T + kSD(S)S − kDT (S)D − kDS(S)D

dS

dt
= kUS(S)U + kDS(S)D − kSU(S)S − kSD(S)S

kphos(S) = k0phos +
[ATP ]

[ATP ] + [ADP ]

kAphosA(S)

K1/2 + A(S)

kdephos(S) = k0dephos +
kAphosA(S)

K1/2 + A(S)

A = max{0, [KaiA]− 2mS}

For [ADP ] = 0, this corresponds to the unforced model (i.e. in constant light

conditions.). We study the effect of time dependent forcing on the model dynamics,

thereby modifying the above model by incorporating the time-dependent forcing as:

dT

dt
= kUT (S)U + kDT (S)D − kTU(S)T − kTD(S)T

dD

dt
= kTD(S)T + kSD(S)S − kDT (S)D − kDS(S)D
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dS

dt
= kUS(S)U + kDS(S)D − kSU(S)S − kSD(S)S

A = max{0, [KaiA]− 2mS}

kphosph = k0phosph + (1− αf(t))
kAphosphA(S)

K1/2 + A(S)

kdephos = k0dephos +
kAdephosA(S)

K1/2 + A(S)

k0phosph = [k0UT k0TD k0SD k0US] , kAphosph = [kAUT kATD kASD kAUS]

k0dephosph = [k0TU k0DT k0DS k0SU ] , kAdephosph = [kATU kADT kADS kASU ].

f(t): square-wave (with fixed duty cycle and 24-hour period) with f = 0 is lights

on and f = 1 is lights off. α = 1/3 is the amplitude of forcing, corresponds to

ADP=0.5.

5.2.2 Periodically Forced Byrne Model

In the Byrne Model, the external perturbation (light-dark pulses, temperature etc)

interacts with the fast component dynamics (e.g., k+1) [12].

With this, the periodically forced Byrne Model is:

dx

dt
= (1− αf(t)) k+1(x, y)(1− x)− k−1x (5.1)

dy

dt
= k+2(x, y)(1− y)− k−2y (5.2)

E = max{0, E0 − y(1− x)} (5.3)

k+j = k+j,max
E

E +K
(5.4)

f(t): square wave (with fixed duty cycle and 24-hour period).
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5.3 Entrainment Analysis of the Forced Rust Model

First, we analyze the linear and nonlinear regimes of the model without periodic

forcing where the forcing is constantly off or constantly on.

Dynamics with Forcing Constantly Off (α = 0)

This corresponds to the model in constant light conditions (forcing is off) which is

the original mode about which analysis has been done in the previous chapter. Just

to recall that for this case, we have two fixed points: a stable fixed point in the linear

regime and an unstable fixed point in the nonlinear regime.

Dynamics with Forcing Constantly On (α = 1/3)

Now we take the case when forcing is on. We consider the case when the ratio

ATP/ADP is lowered to 50%. For 50% ADP, the strength of the dark pulse would

be α = 1/3. In this case the system takes this form:

dT

dt
= kUT (S)U + kDT (S)D − kTU(S)T − kTD(S)T

dD

dt
= kTD(S)T + kSD(S)S − kDT (S)D − kDS(S)D

dS

dt
= kUS(S)U + kDS(S)D − kSU(S)S − kSD(S)S

A = max{0, [KaiA]− 2mS}

kphosph = k0phosph +
2

3

kAphosphA(S)

K1/2 + A(S)

kdephos = k0dephos +
kAdephosA(S)

K1/2 + A(S)
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Linear Regime: The above model is in the linear regime when A = 0,

which corresponds to the case when S ≥ 0.65. In the linear regime, the fixed

point is located at (T ∗, D∗, S∗) = (0, 0, 0) and it is stable node. The eigenvalues

are (−0.21,−0.31,−0.11).

Non-Linear Regime: In the non-linear regime, the system has two fixed

points for KaiA = 1.3. The first fixed point (T ∗
1 , D

∗
1, S

∗
1) is located at (T,D, S) =

(0.7432, 0.3770, 0.5385) whose eigenvalues are (−0.4437,−0.0314+0.27441i,−0.0314−

0.27441i). This fixed point is classified as a stable focus. The second fixed point

(T ∗
2 , D

∗
2, S

∗
2) is located at (T,D, S) = (−3.8606, 0.2486, 0.6968) whose eigenvalues are

(0.7840,−0.6242+0.1718i,−0.6242−0.1718i). This fixed point is classified as a spiral

index 1, with a stable spiral in two of the dimensions and unstable in the dimension

perpendicular to the spiral surface. This second fixed is biologically not reasonable

as the T component is negative.

Figure 5.1 showing the forced trajectory in phase plane. It also shows the time

it takes for the trajectory into linear and nonlinear regimes when lights are on and

off. It shows that the trajectory spends more time in nonlinear regime when lights are

on or off while spends less time in linear regime when lights are on or off. Another

important dynamics we observed is that, when the forcing turns on, the unstable

fixed point stabilizes. The arrows (black when forcing is off and red when forcing is

on) denote the orientation of the trajectory as it is evolving.

Note: It would be interesting to see whether forcing in the Byrne Model also

has similar dynamics (stabilization of fixed point when forcing turns on) as we see

here for the Rust Model, or not.

Periodic Forcing

For the square-wave periodic forcing, we investigate entrainment properties (monoglot

and polyglot entrainment responses) for different KaiA values corresponding to
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Figure 5.1 For the forced Rust Model, trajectory under the forcing in linear and
nonlinear regimes which shows the unstable fixed point in linear regime stabilizes
when forcing is on.

different fixed point behaviour. In the Rust Model, taking the periodic forcing for

different KaiA values in the unforced system corresponding to different dynamics,

we only observed monoglot structure. We show three cases of KaiA vales: KaiA

value for which we have sustained oscillations, KaiA value for which we have damped

oscillations and fixed point lies in the vicinity of supercritical Hopf bifurcation and

KaiA value, for which we have damped oscillations and the fixed point lies in the

vicinity of subcritical Hopf bifurcation. We term oscillations as subthreshold if the

difference of peak and trough of the wave is smaller than 0.001.

Unstable Focus-Node with sustained oscillations for an unforced System

In this case, we take KaiA = 1.395, for which we have sustained oscillations with a

period of 24 hours. The fixed point is a saddle focus of index 2. In this case, a typical

Arnold tongue is observed as shown in the Figure 5.2 A1. Inside the tongue, we have
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A1 A2

A3 A4

Figure 5.2 Representative entrainment patterns and Arnold tongue with monoglot
structure for the Rust Model in response to square-wave forcing when an unforced
system has sustained oscillations of period 24 h (KaiA = 1.395). A1. Arnold tongue
showing 1:1 entrainment regions (highlighted in green). Remaining panels. Time
courses for the state variable S and the forcing signal for the values of T and A
indicated in A1 (black markers).

1:1 entrainment and outside entrainment breaks down. The black markers denote

the values of the forcing parameters A and T for which the time course dynamics are

shown in the remaining panels showing 2 : 1 responses for T = 12, 1 : 1 responses for

T = 24 and 3 : 4 responses for T = 34. The width of the Arnold tongue increases as

A increases, which means that for a higher A, responses are entrained easily.

Stable Focus for an unforced System in the vicinity of Hopf bifurcation

In this case, we take KaiA = 0.94, for which the fixed point is located in the

vicinity of Hopf bifurcation and we have damped oscillations. We didn’t find polyglot

entrainment responses even in this case, although unforced system has weakly damped

oscillations. For fixed A = 0.15, and different T , entrainment responses are shown
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A1 A2

A3 A4

Figure 5.3 Representative entrainment patterns and Arnold tongue with monoglot
structure for the Rust Model in response to square-wave forcing when an unforced
system has stable focus in the vicinity of supercritical hopf bifurcation (KaiA =
0.94). A1. Arnold tongue showing 1:1 entrainment regions (highlighted in green).
Remaining panels. Time courses for the state variable S and the forcing signal for
the values of T and A indicated in A1 (black markers).

in the Figure 5.3. We call a wave an oscillation if threshold=0.001 from the peak of

a wave to the trough. For very low T values, such as T = 1, we see low amplitude

1:1 oscillations, which we term as 1:1 subthreshold. For intermediate T values, such

as T = 15, we see a rapid increase in the amplitude of oscillations and they are

1:1. For T = 20, the amplitude of oscillations is lowered and we have 1:1 responses.

Increasing further T create some wiggle. These wiggles intensify upon further increase

in T and multiple-peaked waveforms are observed for higher T as shown in Figure

5.3 A4 (T = 30), resulting in the breaking of 1:1 entrainment.

Stable Node for an unforced System In this case, we consider KaiA = 2, for

which we have a stable node. The fixed point lies to the right of the subcritical Hopf
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A3 A4

Figure 5.4 Representative entrainment patterns and Arnold tongue with monoglot
structure for the Rust Model in response to square-wave forcing when an unforced
system has stable node (KaiA = 2). A1. Arnold tongue showing 1:1 entrainment
regions (highlighted in green). Remaining panels. Time courses for the state
variable S and the forcing signal for the values of T and A indicated in A1 (black
markers).

bifurcation. For a stable node, entrainment properties are more robust as entrainment

does not break for higher period values shown in the Figure 5.4. In the stable node

case, robust oscillations are formed by two stable steady states. Particularly, when

forcing turns off, the trajectory settled on one stable steady state. When forcing turns

on, trajectory settled on second stable steady state. These two stable steady states

become the falling and rise phases of oscillations.

5.4 Entrainment Analysis of the Forced Byrne Model

First, we analyze the linear and nonlinear regimes of the Byrne Model without periodic

forcing, but where the forcing is constantly off or constantly on.
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Dynamics with Forcing Constantly Off (α = 0) This corresponds to the model

in constant light conditions (forcing is off) which is the unforced Byrne mode about

which analysis has been done. Just to recall that for this case, we have three fixed

points: one fixed point in the linear regime which is stable, and two unstable fixed

points in the nonlinear regime in which one is hyperbolic and the second is non-

hyperbolic.

Dynamics with Forcing Constantly On (α = 1/3) Now we take the case when

forcing is on. We take the case when the ratio ATP/ADP is lowered to 50% just like

we did in the periodically forced Rust Model. For 50% ADP, the strength of the dark

pulse would be α = 1/3. In this case the system takes this form:

dx

dt
=

2

3
k+1(x, y)(1− x)− k−1x (5.5)

dy

dt
= k+2(x, y)(1− y)− k−2y (5.6)

E = max{0, E0 − y(1− x)} (5.7)

k+j = k+j,max
E

E +K
(5.8)

Linear Regime: The above model is in the linear regime when A = 0 which

corresponds to the case when y ≥ E0

1− x
. In the linear regime, the fixed point is

located at (x∗, y∗) = (0, 0) and it is stable node. The eigenvalues are (−0.4,−0.78).

Non-Linear Regime: In the non-linear regime when forcing is on, the

system has two fixed points. The first fixed point (x∗, y∗) is located at (x, y) =

(0.1574, 0.2188) whose eigenvalues are (−0.0659 + 0.3329i,−0.0659 − 0.3329i). This

fixed point is classified as a stable focus.
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Figure 5.5 Byrne’s Model trajectory under the forcing in linear and nonlinear
regimes which shows the unstable fixed point in linear regime stabilizes when forcing
is on.

The second fixed point (T ∗
2 , D

∗
2, S

∗
2) is located at (x, y) = (0.53722, 0.63521)

whose eigenvalues are (0.0303+0.2043i, 0.0303−0.2043i). This fixed point is classified

as a unstable focus.

Figure 5.5 showing the forced trajectory in phase plane. It also shows the time

it takes for the trajectory into linear and nonlinear regimes when lights are on and

off. It shows that the trajectory spends more time in nonlinear regime when forcing

is off while it spends less time in a linear regime when forcing is on. Similar to the

forced dynamics of the Rust Model, in the Byrne Model, we observed that, when the

forcing turns on, the unstable fixed point (denoted by black open circle) becomes a

stable fixed point (denoted by the red filled circle).
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Periodic Forcing

In this section, we explore the entrainment properties (monoglot and polyglot

entrainment responses) for the Byrne Model when applying the square-wave periodic

effect on the fast rate. As the Byrne Model is two dimensional, we have an advantage

of using phase plane analysis for different entrainment responses. For the Byrne

Model, it turns out that we have both monoglot and polyglot entrainment responses.

We term oscillations as subthreshold if the difference of peak and trough of the wave

is smaller than 0.001.

Unstable Focus with sustained oscillations for an unforced system Similar

to the Rust Model, in the Byrne Model, Monoglot entrainment responses are also

observed when an unforced system has unstable focus with sustained oscillations.

In the Rust Model, we did not find polyglot entrainment responses when we had

damped oscillations for an unforced system. However, in the Byrne Model, we did

find polyglot entrainment when we have stable focus (and hence damped oscillations)

lies in the vicinity of second Hopf bifurcation. If a stable focus lies in the vicinity of

the first Hopf bifurcation, we have do not have polyglot entrainment responses. The

reason for getting polyglot in the vicinity of second Hopf, and not in first Hopf is

because, second Hopf is located near the knee.

For an unforced system having unstable focus with sustained oscillations, the

Arnold tongue observed has a similar structure (Figure 5.6 A1) as the one we observed

for the Rust Model. In the Arnold tongue, the black markers denote the representative

values of the forcing parameters A and T for which the time course dynamics have

been shown in the remaining panels.

For an unforced system with stable focus, which lies in the vicinity of the

first Hopf bifurcation also gives monoglot entrainment responses (Figure B.2).

Interestingly, these time course dynamics have some similarities with entrainment
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A3 A4

Figure 5.6 Representative entrainment patterns and Arnold tongue with monoglot
structure for the Byrne Model in response to square-wave forcing. An unforced system
has unstable fixed point with sustained oscillations of period 24 h (E0 = 0.203). A1.
Arnold tongue showing 1:1 entrainment regions (highlighted in green). Remaining
panels. Time courses for the state variable x and the forcing signal for the values of
T and A indicated in A1 (black markers).
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responses for the Rust Model when an unforced system has a stable fixed point in the

vicinity of first Hopf bifurcation (Figure 5.3). These similarities include low amplitude

wave 1:1 oscillations for lower T , rapid increase in the amplitude of 1:1 oscillations for

intermediate T , decrease in the amplitude of 1 : 1 oscillations and then the emergence

of a multi-peaked wave as T increases more.

Figure 5.7 shows the phase plane pictures for the representative responses in

the monoglot structure (Figure 5.6). In each panel, when forcing is on, the trajectory

is shown in red and when forcing is off, the trajectory is shown in black. Small open

black and red dots denote the switching points (numbers labelled) when forcing is off

and on, respectively. Large open black dot represents the unstable fixed point and

a large filled red dot represents the stable fixed point. A magenta curve denotes the

switching manifold, above which we have nonlinear regime and below we have linear

regime. Dashed black and red curves denote the unforced and forced x-nullclines,

respectively. Green curve denotes the y-nullcline which is unaffected by the forcing.

For T = 10, we have 2:1 responses for which the phase plane is shown in

the Figure 5.7 A1. When the forcing turns off, denoted by switching point 1, the

trajectory is in the fast regime (i.e., the trajectory moves faster away from right

branch of the x-nullcline) and it approaches toward the right branch (dashed black)

until the forcing turns on. When the forcing turns on, denoted by the switching

point 2, we know that the forced system stabilizes the fixed point. Hence, the

trajectory approaches toward the large red filled dot (the stable fixed point) and

while approaching, the forcing turns off, denoted by the switching point 3. At this

stage, the trajectory is again away from the right branch of the dashed black curve,

hence it evolves on a faster time scale and moves away from an unstable fixed point.

The forcing turns on at switching point 4, making the trajectory evolve towards the

stable fixed point. While evolving towards the stable fixed point, forcing turns off
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again and the cycle begins again. Hence, for two cycles of the forcing, we have one

response.

For T = 24, we have 1:1 entrainment responses for which the phase plane is

shown in the Figure 5.7 A2. For one cycle of the forcing comprising of two switching

points denoted by 1 and 2, we have one response. Since T is longer, when forcing

turn off, the trajectory moves further evolving under the dynamics of the unstable

fixed point. When forcing turns off above the unforced x-nullcline at point 2, the

trajectory moves faster, and enters the linear regime in which the trajectory evolves

under the dynamics of a virtual fixed point located at the origin (not shown). As the

forced trajectory enters the nonlinear regime, it approaches toward the stable fixed

point and turns off before it gets there.

For T = 38, 1:1 entrainment breaks down as a wave with two peaks are observed.

The forcing turns off right on the unforced x-nullcline, so that the trajectory evolves

under the dynamics of an unstable fixed point and travels in the phase plane for

longer as T is large. The forcing turns on in a linear regime, hence it approaches

toward the virtual stable fixed point located at the origin (not shown). As it crosses

the switching threshold, the trajectory evolves under the dynamics of a stable fixed

point. Hence, it reaches the vicinity of a stable fixed point until the forcing turns

off again. While the forcing is on, approaching towards closely the stable fixed point

results in the first peak. The second peak occurs when forcing turns off and the

trajectory has to go to the right branch of an unforced x-nullcline.

Stable Focus for an unforced system in the vicinity of Hopf bifurcation

When the value of E0 for an unforced system is chosen in the vicinity of the second

Hopf bifurcation, we observed polyglot entrainment responses. For the range of E0

values, for which we have polyglot entrainment, we have damped oscillations. For

E0 = 0.25, for which we have damped oscillations, polyglot structure is shown in the
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A1 A2 A3

Figure 5.7 Phase-plane diagrams for the entrained and non-entrained responses
shown in Figure 5.6 (square-wave input). The dashed curves are the x-nullclines for
the unforced (black) and forced (red) systems, respectively. The green curve is the
y-nullcline. The solid curves are the trajectories with the time intervals when the
forcing is off and on shown in black and red, respectively. The numbers next to the
arrows indicate the points in the phase-plane diagram at which the forcing turns off
(small black open circles) and on (small red open circles). Black open large circle
and red filled large circle denote unstable fixed point and stable fixed point for the
unforced and forced system, respectively. A1. 2:1. A2. 1:1. A3. wave with two
peaks.

Figure 5.8 A1. The polyglot structure observed here has a different structure. Unlike

polyglot structure in FHN, different 1:1 tongues do not merge as we increase A. The

first tongue in the shaded narrows as we increase A, while the second tongue in the

shaded region widens as we increase A. The black markers are the representative

amplitude and period values for which the time course dynamics are shown in the

remaining panels.

Figure 5.9 shows the dynamical phase plane explanation of how we get polyglot

entrainment. When forcing turns off or on, the corresponding systems has a stable

fixed point. We look at four different representative values of T , for which we have

different entrainment responses.

For T = 19, we see that for two inputs, we have one response, hence 2 : 1

behaviour. The switching points when forcing turns off and on are located across

the phase plane. When the forcing turns off, the switching point 1 is located in the

linear regime and in the flow of fast movement of trajectory, hence the trajectory
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Figure 5.8 Representative entrainment patterns and Arnold tongue with polyglot
structure for the Byrne Model in response to square-wave inputs. A1. Arnold tongue
showing 1:1 entrainment regions (highlighted in green). Remaining panels. Time
courses for the state variable x and the forcing for the values of T and A indicated
in A1 (black markers). The fixed point for an unforced system is a stable focus
(E0 = 0.25).
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approaches toward the virtual fixed point, it crosses the threshold and enters the

nonlinear regime. When the forcing turns on labelled as 2, the trajectory approaches

towards the right branch of forced x− nullcline approaching towards the stable fixed

(focus), it slows down as the dynamics along this branch are slow. The forcing turns

off at switching point 3. At this point, the trajectory evolves considerably slower due

to two facts: one is that is along the slow segment of x− nullcline and the second is

that is in the vicinity of stable fixed point (focus), so the trajectory evolves under the

dynamics of stable focus. The forcing then turns on at 4. At this point, it is far from

slow dynamics, hence it evolves on a fast time scale although the underlying system’s

fixed point is stable. Forcing turns off at 1, and hence, the trajectory is completed

one round. Thus, we have 2 : 1 responses.

For T = 22, we have 1 : 1 responses though the amplitude of oscillations is

suppressed. When the forcing turns off at 1, the trajectory is in the vicinity of an

unstable region and it has to jump to the nearby attracting region, which is the right

segment of the x− nullcline, hence it jumps there. There, the forcing turns on, the

trajectory evolution is slow as it is near to a stable fixed point although it is little away

from the slower branch. Forcing turns off again at the same point 1. We count this

low amplitude wave form as a 1:1 responses for these reasons: first, the trajectory

spends more time in a non-linear regime (a feature of sustained oscillations), and

second, the trajectory almost touched the right branch of the x− nullcline.

For T = 27, we observe a multi-peaked wave (we call it 2 : 2). We see that for

one input, we have a large amplitude wave (forcing turns off at 1 and gives a large

increase in amplitude) and for the second input, we have a small amplitude wave form

(forcing turns off at 3).

Finally, for T = 40, we see 1 : 1 responses. When forcing turns off, the trajectory

slows down as it moves toward the stable slow branch and approaches toward the

stable fixed point along this branch. When the forcing turns on, the fast dynamics
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dominate the asymptotic approaching towards the stable fixed dynamics, hence the

trajectory moves faster, enters the linear regime, then enters the nonlinear regime

and forcing then turns off again at the same point 1.

Stable Node for an unforced system Similar to the Rust Model, the Byrne

Model also shows robust entrainment properties when an unforced system has a stable

node fixed point as shown in the Figure 5.10. We take E0 = 0.35, for which we have

stable node. The fixed point lies to the right of the second Hopf bifurcation.

Bifurcation diagram and the region of monoglot and polyglot entrainment

Figure 5.11 is the bifurcation diagram as a function of parameter E0 showing the

region of E0 values for the unforced system for which we have monoglot entrainment

and polyglot entrainment (shaded). Red lines denote the representative E0 values

taken in Figure 5.6 (monoglot) and Figure 5.8 (polyglot). Polyglot entrainment occurs

only for damped oscillations in the vicinity of second Hopf bifurcation. For the

damped oscillations in the vicinity of first Hop bifurcation, we observed monoglot

(not shown).

5
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Figure 5.9 Phase-plane diagrams for the entrained responses shown in Figure 5.8
(square-wave input). The dashed curves are the x-nullclines for the unforced (black)
and forced (red) systems, respectively. The green curve is the y-nullcline. The solid
curves are the trajectories with the time intervals when the forcing is off and on shown
in black and red, respectively. The numbers next to the arrows indicate the points in
the phase-plane diagram at which the forcing turns off (small black open circles) and
on (small red open circles). Black and red large circles denote stable fixed points for
the unforced and forced system, respectively. A1. 2:1. A2. 1:1. A3. 2:2. A2. 1:1.
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Figure 5.10 Representative entrainment patterns and Arnold tongue with monoglot
structure for the Byrne Model in response to square-wave forcing when an unforced
system has stable node (E0 = 0.35). A1. Arnold tongue showing 1:1 entrainment
regions (highlighted in green). Remaining panels. Time courses for the state
variable S and the forcing signal for the values of T and A indicated in A1 (black
markers).
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Figure 5.11 Bifurcation diagram as a function of the parameter E0. The shaded
region denote the E0 values for the unforced system for which we have 1:1 polyglot
entrainment. The red lines denote the representative E0 values used in the previous
figures for the unforced system. E0 = 0.203 (monoglot entrainment in Figure 5.6-A1),
and E0 = 0.25 (polyglot entrainment in Figure 5.8).
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CHAPTER 6

HOPF BIFURCATION - A NECESSARY BUT NOT SUFFICIENT
CONDITION FOR POLYGLOT ENTRAINMENT

6.1 Polyglot Entrainment Requires a Hopf Bifurcation

In Chapter 3, the FHN model was explored for polyglot entrainment responses. We

found that polyglot entrainment occurs in the vicinity of a Hopf bifurcation. In

Chapter 5, we analyzed polyglot entrainment responses for the Byrne model and

we again found that polyglot entrainment occurs near a Hopf bifurcation. In this

Chapter, we explore other models for polyglot entrainment responses. As discussed

below, from the results of these models we conclude that for polyglot entrainment,

Hopf bifurcation is a necessary but not sufficient condition.

Polyglot entrainment in Morris-Lecar model

The Morris-Lecar neuronal model is a model of oscillations in the barnacle giant

muscle fiber [67]. We investigated polyglot entrainment responses in both Type I

(SNIC) and Type II (Hopf) bifurcation structures (Figure 6.2). For Type I, a SNIC

bifurcation occurs at a lower Iapp value and a Hopf bifurcation occurs at a higher Iapp

value, near the upper knee of the v− nullcline. In the vicinity of the Hopf bifurcation,

we found polyglot entrainment responses. We did not observe polyglot entrainment

near the SNIC bifurcation. For Type II, we have two Hopf bifurcations which occur

near the lower knee and upper knee. In the vicinity of both Hopf bifurcations, we

found polyglot entrainment (Figure 6.1 A).

Polyglot entrainment in the Oregonator 2D model

The Oregonator is a model of chemical oscillations in the Belousov-Zhabotinsky (BZ)

reaction [27, 101]. In the 2D Oregonator model, a Hopf bifurcation occurs and is
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A B C

Figure 6.1 Polyglot entrainment in other models in response to square-wave
periodic forcing. A Morris-Lecar model. We used the following parameters for the
unforced system. C = 20, El = −60, ECa = 120, Ek = −84, Gl = 2, Gk = 8,
GCa = 4, φ = 0.04, V1 = −1.2, V2 = 18, V3 = 2, V4 = 30, Iapp = 95. For the unforced
system, we have stable focus. B Oregonator 2D model. We used the following
parameters for the unforced system. η = 2.28 (fixed point is a stable focus), q = 0.01
and ε = 0.025. C Novak-Tyson model. We used the following parameters for the
unforced system. vm = 1, km = 0.1,vp = 0.5, kp1 = 10, kp2 = 0.03, kp3 = 0.1,
Keq = 3.3, Pcrit = 0.1, Jp = 0.05.

located in the vicinity of a cubic nullcline. We found polyglot entrainment in the 2D

Oregonator (Figure 6.1 B and Figure 6.4).

Polyglot entrainment in the Novak–Tyson model

The Novak–Tyson model [72, 91], which is a model of circadian oscillations in

Drosophila, was investigated for polyglot entrainment responses. The Novak–Tyson

model has a Hopf bifurcation, and in the vicinity of the Hopf point, we found polyglot

entrainment responses (Figure 6.1 C).

6.2 Hopf Bifurcation is not Sufficient for Polyglot Entrainment

So far we have observed that polyglot entrainment requires a Hopf bifurcation. A

question arises here: Do we always obtain polyglot entrainment responses in the

vicinity of a Hopf bifurcation? The answer is no!

We have found a counter example in which we have a Hopf bifurcation, but we

do not have polyglot entrainment responses. The Lengyel-Epstein (LE) system [59,60]
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A B

Figure 6.2 Different bifurcation structures in Morris-Lecar model showing polyglot
entrainment in the vicinity of Hopf bifurcation. A. Type-I bifurcation in which we
have SNIC for lower Iapp and a Hopf bifurcation for higher Iapp. B. Type-II bifurcation
in which we two Hopf bifurcations, one for lower Iapp and one for higher Iapp. We
used the following parameters C = 20, El = −60, ECa = 120, Ek = −84, Gl = 2,
Gk = 8, GCa = 4, V1 = −1.2, V2 = 18. For Type-I, we used φ = 0.067, V3 = 12,
V4 = 17.4. For Type-II, we used φ = 0.04, V3 = 2, V4 = 30.

is a model for chemical oscillations which has a Hopf bifurcation but we do not have

polyglot entrainment (Figure 6.6 A4) in the vicinity of the Hopf. The Hopf bifurcation

in the LE system is located far from the knee of the cubic-like nullcline (Figure 6.6 A1

& A2). Thus, in the vicinity of the Hopf bifurcation, the nullcline is not parabolic-like.

If we have a parabolic structure for a nullcline in the vicinity of a Hopf

bifurcation, then we have polyglot entrainment. The presence of Hopf bifurcation

alone does not ensure polyglot entrainment. A Hopf bifurcation with certain local

structure (i.e. a parabolic-like nullcline) is needed for polyglot entrainment.

6.3 Do we have Polyglot Entrainment in 3D Models?

For 2D models, we have polyglot entrainment responses if a model has a nullcline

with a knee and a Hopf bifurcation occurs near the knee. We also investigated some

3D models to see if they have polyglot entrainment responses or not. We checked

for polyglot entrainment responses in four different 3D models: the Goodwin model
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A1 A2 A3

B1 B2 B3

C1 C2 C3

Figure 6.3 Representative examples of 1:1 polyglot entrainment dynamics and
their break-down in Fig 6.1 A. Left column. Time courses for v and the forcing.
Middle column. Phase-plane diagrams. Right column. Phase-plane diagram
magnification in vicinities of the knee of the v−nullcline. A. 1:1 entrainment for
T = 90. B. 2:2 entrainment for T = 125. C. 1:1 entrainment for T = 165. We used
the following parameters for the unforced system. C = 20, El = −60, ECa = 120,
Ek = −84, Gl = 2, Gk = 8, GCa = 4, φ = 0.04, V1 = −1.2, V2 = 18, V3 = 2, V4 = 30.
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B1 B2 B3
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Figure 6.4 Representative examples of 1:1 polyglot entrainment dynamics and
their break-down in Fig 6.1 B. Left column. Time courses for v and the forcing.
Middle column. Phase-plane diagrams. Right column. Phase-plane diagram
magnification in vicinities of the knee of the cubic nullcline. A. 1:1 entrainment for
T = 150. B. 2:1 entrainment for T = 175. C. 1:1 entrainment for T = 190. We used
the following parameter values: η = 2.28, q = 0.1 and ε = 0.025.

105
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B1 B2 B3

C1 C2 C3

Figure 6.5 Representative examples of 1:1 polyglot entrainment dynamics and
their break-down in Fig 6.1 C. Left column. Time courses for M and the forcing.
Middle column. Phase-plane diagrams. Right column. Phase-plane diagram
magnification in vicinities of the knee of the P -nullcline. A. 1:1 entrainment for
T = 60. B. 2:2 entrainment for T = 63. C. 1:1 entrainment for T = 68. We used
the following parameter values: vm = 1, km = 0.1,vp = 0.5, kp1 = 10, kp2 = 0.03,
kp3 = 0.1, Keq = 3.3, Pcrit = 0.1, Jp = 0.05.
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A1 A2

A3 A4

Figure 6.6 Phase plane, bifurcation and entrainment responses for Lengyel-Epstein
model. A1. Trajectory in phase plane before bifurcation (a = 15). A2. Trajectory
in phase plane after bifurcation (a = 16). A3. Bifurcation diagram for parameter a.
A4. Monoglot structure in the vicinity of Hopf.
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[33, 35], the Kim protein sequestration (PS) [50] model, the Jolley model [45] and

the Oregonator model [27, 101]. In these 3D models we did not observe polyglot

entrainment responses even in the vicinity of Hopf bifurcation. We have not yet

attempted to compute null surfaces or analyze the phase space of these models as

doing so is more involved than computing nullclines and performing phase plane

analysis for 2D models. Also, there are many other 3D models of biological oscillators

that could be considered. If polyglot entrainment is found in a 3D model, it would

be interesting to see what dynamical structures are present analogous to the knee of

cubic nullclines in 2D models.
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CHAPTER 7

DISCUSSION

Entrainment is a hallmark phenomenon in oscillatory systems or a network of

oscillatory systems. Understanding entrainment gives insight into the system [78].

We investigated entrainment properties when an unforced system has self-sustained

oscillations, damped oscillations or non-oscillatory solutions. To explore entrainment

properties, we studied neuronal and circadian models. For neuronal models,

we focused on the FitzHugh-Nagumo model and in Chapter 2 explored different

qualitative properties of the unforced model by varying parameters. Having identified

a sustained oscillatory regime, a damped oscillatory regime and a non-oscillatory

regime, we set the stage for Chapter 3 in which we explored entrainment properties

under the periodic forcing.

In Chapter 3, we found that in the vicinity of a Hopf bifurcation (where

the unforced system has either a stable focus and exhibits damped oscillations or

an unstable focus and exhibits sustained oscillations) the entrainment region has

a nonstandard structure when depicted by an Arnold tongue diagram. Polyglot

entrainment (disconnected multiple 1:1 tongues) is observed when periodic forcing

is applied to a system with a weakly stable or weakly unstable focus. Further

away from the vicinity of the Hopf bifurcation, applying periodic forcing to a system

with a strongly unstable focus and sustained oscillations gives monoglot entrainment

responses like a standard Arnold tongue. Further away from the Hopf bifurcation

in the other direction, applying periodic forcing to a non-oscillatory system with a

stable node gives monoglot entrainment responses that are quite robust (i.e. they do

not break for higher period values of the forcing).
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In Chapter 4, we studied circadian clock models based on post-translational

modifications. In these models, phosphorylation and dephosphorylation of proteins

occur on a circadian time scale. The Rust model and Byrne model are studied. The

former is a three dimensional model for circadian oscillations in cyanobacteria, while

the latter is a two dimensional model of post-translational oscillations (PTOs). These

two PTO based models have non-smooth dynamics [17, 58, 62]. In these models, we

used dynamical systems tools to analyze how limit cycle oscillations are formed. We

found that in these two models, which are of different dimension and have different

formulations and dynamics, nonetheless share a similar mechanism of oscillations since

in both systems they are generated by the system’s trajectory crossing a switching

manifold.

In Chapter 5, we investigated the entrainment properties of the Rust model

and Byrne model. For the Rust model, we only observed monoglot entrainment

responses both in the vicinity and far away from the Hopf bifurcation. For the Byrne

model, we observed both monoglot and polyglot entrainment responses. Polyglot

entrainment responses were observed in the vicinity of one Hopf bifurcation, but

not in the vicinity of the other Hopf bifurcation. Observing polyglot entrainment

responses in the vicinity of one Hopf but not the other motivated us to explore more

models.

In Chapter 6, we tested entrainment responses for other models of neuronal,

circadian and glycolytic oscillations. From the models tested in this chapter, we

found two results which also hold for entrainment studies in previous chapters.

First, polyglot entrainment requires a Hopf bifurcation. If we do not have a Hopf

bifurcation, we do not observe polyglot entrainment. Second, simply having a Hopf

bifurcation does not guarantee there will be polyglot entrainment. For having polyglot

entrainment, in the vicinity of the Hopf bifurcation there needs to be a parabolic-like
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nullcline structure. Our entrainment analysis is not exhaustive or universal, and as

we tested only a few models in this study our conclusions are still tentative.

7.1 Implications of Polyglot Entrainment

Polyglot entrainment has been investigated in neuronal and circadian models. What

could be the impact of polyglot entrainment on circadian and neuronal systems?

In the neuroscience context, having a polyglot entrainment phenomenon could

be related to entrainment of different neurons (or populations of neurons) in different

parts of the brain to different signals. For example, these signals could be brain

waves [5, 94] which maintain a variety of states of consciousness ranging from deep

sleep to active thinking and reactions. These brains waves have different frequencies:

alpha waves (8−13 Hz), beta waves (13−32 Hz), or gamma waves (32−100 Hz). If a

neuron or a network of neurons has the polyglot entrainment property, then perhaps

they can be entrained 1:1 to multiple different brain waves with different frequencies.

In the context of the circadian clock, the period of external forcing is fixed at 24

hours (due to the Earth’s rotation) but intrinsic periods of the circadian clock vary

across individuals in a population. If the intrinsic period is closer to 24 hours, which

is the period of forcing, then one may expect 1:1 entrainment. As the intrinsic period

gets further away from 24 hours, we expect to lose 1:1 entrainment. However, if we

have polyglot entrainment responses for a population of circadian clocks, then as the

intrinsic period gets even further from 24 then 1:1 entrainment may be regained.

7.2 Future Work

Within complex organisms as well as simple ones, cellular oscillators interact with

each other to form systems of coupled oscillators [39]. For example, coupled

circadian oscillations exist in multicellular cyanobacteria [2]. In mammals, central

circadian oscillators located in the hypothalamic suprachiasmatic nucleus receive
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direct information about light-dark cycles via photic input pathways. These central

oscillators in turn interact with circadian oscillators in peripheral tissues located

throughout the body. Such systems are described as hierarchical coupled oscillators

and are studied in terms of how such systems are entrained to light-dark cycles [61].

It would be interesting to see if we have polyglot entrainment in hierarchical coupled

systems.

Working along similar lines, one can also investigate polyglot entrainment

responses in a network consisting of different types of oscillators such as self-sustained

oscillators, damped oscillators, and non-oscillators. For example, do we get polyglot

entrainment in two coupled oscillators when one is a damped oscillator and the second

is a self-sustained oscillator, or when one is a self-sustained oscillator and the second

is non-oscillatory?
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APPENDIX A

MONOGLOT AND POLYGLOT ENTRAINMENT RESPONSES FOR
OTHER PARAMETER REGIMES IN FHN MODEL

In Chapter 3, we showed monolgot and polyglot entrainment responses for the

FHN Model under square-wave periodic forcing, fix value of α and fix value of ε. Here,

we show entrainment results for other possibilities like sinusoidal forcing, increasing

ε, and increasing α.

Figure A.1 Arnold tongue with monoglot structure in response to square-wave
forcing. We used the following parameters for the unforced system: λ = −0.25 (fixed
point is a stable node), α = 2 and ε = 0.01.
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Figure A.2 Bifurcation diagram as a function of the parameter λ for α = 2 and
entrainment region for sinusoidal forcing. The shaded region denote the λ values
for the unforced system for which we have 1:1 polyglot entrainment. The red lines
denote the representative λ values used in the previous figures for the unforced system
and sinusoidal forcing. λ = 0.04 (Figure A.12 A), λ = 0.016 (Figure A.13 ), and
λ = −0.01 (Figure A.14).

Figure A.3 Bifurcation diagram as a function of the parameter λ for α = 2 and
ε = 0.1 showing the entrainment regions for square-wave forcing. We have subcritical
Hopf bifurcation at λ = 0.033. The shaded region denote the λ values for the unforced
system for which we have 1:1 polyglot entrainment.
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Figure A.4 Representative entrainment patterns and Arnold tongues with
monoglot structure in response to square-wave forcing. A1, B1, & C1. Arnold
tongues showing 1:1 entrainment regions (highlighted in green). The dashed-magenta
(horizontal) lines in panels B1 and C1 indicate the value of A for which the system
with constant forcing A changes from a stable (below) to an unstable (above) focus.
Remaining panels. Time courses for v and the forcing signal for the values of T
and A indicated in A1, B1, and C1 (black markers). A. λ = 0.08 (Fig. 3.1-A1) and
A = 0.2. B. λ = −0.17 (Fig. 3.1-B1) and A = 0.25. C. λ = −0.17 (Fig. 3.1-C1) and
A = 0.15. We used the following parameter values: α = 2, ε = 0.1.
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Figure A.5 Representative entrainment patterns and Arnold tongues with polyglot
structure in response to square-wave inputs. A1. Arnold tongues showing 1:1
entrainment regions (highlighted in green). Remaining panels. Time courses for v
and the forcing for the values of T and A indicated in A1 (black markers). We used
the following parameter values: α = 2, λ = 0 and ε = 0.1.
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Figure A.6 Representative entrainment patterns and Arnold tongues with
monoglot structure in response to square-wave forcing. A1, B1, & C1. Arnold
tongues showing 1:1 entrainment regions (highlighted in green). The dashed-magenta
(horizontal) lines in panels B1 and C1 indicate the value of A for which the system
with constant forcing A changes from a stable (below) to an unstable (above) focus.
Remaining panels. Time courses for variable v and the forcing signal for the values
of T and A indicated in A1, B1, and C1 (black markers). A. λ = 0.026 and A = 0.1.
B. λ = −0.25 and A = 0.3. C. λ = −0.25 and A = 0.15. We used the following
parameter values: α = 4, ε = 0.01.
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Figure A.7 Representative entrainment patterns and Arnold tongue with polyglot
structure in response to square-wave inputs. A1. Arnold tongue showing 1:1
entrainment regions (highlighted in green). Remaining panels. Time courses for
v and the forcing for the values of T and A indicated in A1 (black markers). The
dashed-magenta (horizontal) lines in panel A1 indicate the value of A for which the
system with constant forcing A changes from a stable (below) to an unstable (above)
focus. We used the following parameter values: α = 4, A = 0.01, λ = 0 and ε = 0.01.
The fixed point for the unforced system is a stable focus.
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Figure A.8 Representative entrainment patterns and Arnold tongue with polyglot
structure in response to square-wave inputs. A1. Arnold tongue showing 1:1
entrainment regions (highlighted in green). Remaining panels. Time courses for v
and the forcing for the values of T and A indicated in A1 (black markers). We used
the following parameter values: α = 4, A = 0.001, λ = 0.01 and ε = 0.01. The fixed
point for the unforced system is an unstable focus.
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Figure A.9 Representative examples of 1:1 polyglot entrainment dynamics and
their break-down. Left column. Time courses for v and the forcing. Middle
column. Phase-plane diagrams. Right column. Phase-plane diagram magnifi-
cation in vicinities of the knee of the v-nullclines. The black (red) portions of the
v time courses and trajectories correspond to the forcing turned off (on). A. 1:1
entrainment for T = 120 (Fig. A.7-A3). B. 2:1 entrainment for T = 141 (Fig. A.7-A4).
C. 1:1 entrainment for T = 155 (Fig. A.7-A5). We used the following parameter
values α = 4, λ = 0, A = 0.01 and ε = 0.01 (Figure A.7-A).
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Figure A.10 Representative examples of 1:1 polyglot entrainment dynamics
and their break-down. Left column. Time courses for v and the forcing.
Middle column. Phase-plane diagrams. Right column. Phase-plane diagram
magnification in vicinities of the knee of the v-nullclines. The black (red) portions of
the v time courses and trajectories correspond to the forcing turned off (on). A. 1:1
entrainment for T = 123 (Fig. A.8-A3). B. 3:3 entrainment for T = 148 (Fig. A.8-A4).
C. 1:1 entrainment for T = 164 (Fig. A.8-A5). We used the following parameter
values α = 4, λ = 0.01, A = 0.001 and ε = 0.01 (Fig. A.8-A).
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A B

Figure A.11 Bifurcation diagram as a function of the parameter λ for α = 4. We
have Hopf bifurcation at λ = 0.0066. (a) The shaded region denote the λ values
for the unforced system for which we have 1:1 polyglot entrainment. The red lines
denote the representative λ values used in the previous figures for the unforced system.
λ = 0.026 (Fig. A.6-A), λ = −0.25 (Fig. A.6-B & C), λ = 0 (Fig. A.7) and λ = 0.01
(Fig. A.8). (b) is the magnification of (a) around the Hopf point showing that Hopf
bifurcation is supercritical.

A1 A2 A3 A4

Figure A.12 Representative entrainment patterns and Arnold tongues with
monoglot structure in response to sine-wave forcing. A1 Arnold tongue showing
1:1 entrainment regions (highlighted in green). Remaining panels. Time courses
for v and the forcing signal for the values of T and A indicated in A1 (black markers).
We used the following parameter values: α = 2, λ = 0.04, ε = 0.01.
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Figure A.13 Representative entrainment patterns and Arnold tongue with polyglot
structure in response to sine-wave forcing. A1 Arnold tongue showing 1:1 entrainment
regions (highlighted in green). Remaining panels. Time courses for v and the
forcing signal for the values of T and A indicated in A1 (black markers). We used
the following parameter values: α = 2, λ = 0.016, ε = 0.01.

A1 A2 A3 A4

A5 A6 A7 A8

Figure A.14 Representative entrainment patterns and Arnold tongue with polyglot
structure in response to sine-wave forcing. A1 Arnold tongue showing 1:1 entrainment
regions (highlighted in green). Remaining panels. Time courses for v and the
forcing signal for the values of T and A indicated in A1 (black markers). We used
the following parameter values: α = 2, λ = −0.01, ε = 0.01.
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Figure A.15 Bifurcation diagram as a function of the parameter λ for α = 2.
We have subcritical Hopf bifurcation at λ = 0.0033. The shaded region denote
the λ values for the unforced system for which we have 1:1 polyglot entrainment.
The red lines denote the representative λ values used in the previous figures for the
unforced system. λ = 0.04 (Fig. A.12-A1), λ = 0.016 (Fig. A.13-A1) and λ = −0.01
(Fig. A.14-A1)
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APPENDIX B

ENTRAINMENT RESPONSES FOR OTHER PARAMETER
REGIMES IN THE RUST MODEL AND BYRNE MODEL

In Chapter 5, we showed monolgot and polyglot entrainment responses for the

Rust and Byrne Models under square-wave periodic forcing in the vicinity of one Hopf

point. Here, we show results in the vicinity of another Hopf point.
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Figure B.1 Representative time course patterns for the Rust model in response to
square-wave forcing for the fixed A = 0.3 and different period of the forcing T . An
unforced system has damped oscillations and the stable fixed point lies in the vicinity
of subcritical Hopf bifurcation (KaiA = 1.65).
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Figure B.2 Representative time course patterns for the Byrne model in response
to square-wave forcing for the fixed A = 0.3 and different period of the forcing T . An
unforced system has damped oscillations and the stable fixed point lies in the vicinity
of first subcritical Hopf bifurcation (E0 = 0.135).
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