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ABSTRACT

IMPROVING MULTI-THREADED QOS IN CLOUDS

by
Weiwei Jia

Multi-threading and resource sharing are pervasive and critical in clouds and data-centers.

In order to ease management, save energy and improve resource utilization, multi-threaded

applications from different tenants are often encapsulated in virtual machines (VMs) and

consolidated on to the same servers. Unfortunately, despite much effort, it is still extremely

challenging to maintain high quality of service (QoS) for multi-threaded applications

of different tenants in clouds, and these applications often suffer severe performance

degradation, poor scalability, unfair resource allocation, and so on.

The dissertation identifies the causes of the QoS problems and improves the QoS of

multi-threaded execution with three approaches. First, the dissertation identifies that the

I/O performance of an application can be significantly affected by its computation on VMs.

Particularly, the I/O inactivity problem is caused when the computation workload has

consumed the CPU time allocated to virtual CPUs (vCPUs), preventing the I/O workload

on these vCPUs from producing I/O requests. This problem can greatly degrade I/O

performance and cause fairness issues in I/O scheduling. Second, on modern simultaneous

multi-threading (SMT) processors, existing CPU schedulers are ineffective to schedule I/O

workloads for high I/O performance and efficiency. Third, due to frequent synchronization

and communication, multi-threaded workloads are more vulnerable to the contention for

CPU time in clouds. As a result, these workloads suffer severe performance degradation

and interference.



The dissertation presents three systems, VMIGRATER, VSMT-IO, and JUPITER,

with each addressing a distinct research problem. Extensive evaluations on diverse

multi-threaded applications, including DBMS, web servers, AI workloads, Hadoop jobs,

and so on, show that these systems can significantly improve the QoS of multi-threaded

applications in clouds.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

The essence of cloud computing is twofold. First, sharing resources among tenants can

reduce cost. Second, scaling applications can achieve high performance. Thus, time-

sharing resources and multi-threading are pervasive and critical in clouds and data-centers.

As has been widely observed, applications in virtual machines (VMs) use increasingly

more threads, and VMs sharing the same physical server use increasingly more virtual

CPUs (vCPUs), in order to exploit parallelism on multi-core processors. For instance, in

Amazon EC2, a physical server can be shared by multiple virtual instances, and a virtual

instance can have as many as 128 vCPUs [1; 2].

Unfortunately, despite much effort from both academia and industry [3; 4; 5; 6;

7; 8; 9; 10], the quality of service (QoS), as a key metric of cloud computing service,

is still notoriously bad for multi-threaded applications. The applications usually suffer

significant performance degradation, poor scalability, unfair resource allocation, and so

on. Our research reveals that the bad QoS is caused by three major reasons.

First, the I/O performance of an application can be significantly affected by its

computation on virtualized platforms, such as clouds and data-centers. Since CPU cores

are time-shared by vCPUs, vCPUs are scheduled and descheduled by the hypervisor of

VMs periodically. In each VM, when its vCPUs running I/O bound tasks are descheduled,

no I/O requests can be made until the vCPUs are rescheduled. These inactivity periods

of I/O tasks cause severe performance issues. For instance, the utilization of I/O resource

1



in the guest OS is low during I/O inactivity periods. Worse, the I/O scheduler in the host

OS suffers from low performance because the I/O scheduler assumes that I/O tasks make

I/O requests constantly. Existing works typically adjust time slices of vCPUs running I/O

tasks, but these vCPUs can still be inactive frequently, and fairness issues among VMs

within a host can easily occur. We present VMIGRATER (Chapter 2) to solve the I/O

inactivity problem.

Second, CPU resources are not efficiently utilized on modern processors supporting

simultaneous multi-threading (SMT, e.g., hyper-threading on X86 processors). Because

existing CPU scheduler designs fail to fully consider the hardware features of SMT

processors, three problems may be caused when scheduling vCPUs on SMT processors:

1) idle/spinning vCPUs are handled inefficiently with high overhead, reducing system

and per-VM throughput; 2) the descheduling of idle/spinning vCPUs are unnecessarily

frequent, delaying the operations on these vCPUs and causing high latency; 3) the even

distribution of workload to the hardware threads on the same core cannot effectively reduce

the resource contention between the vCPUs running on different hardware threads, further

reducing throughput. We present VSMT-IO (Chapter 3) to make vCPU scheduler SMT

aware.

Third, due to frequent synchronization and communication, multi-threaded

workloads are more vulnerable to the contention for CPU time in time-shared clouds. As

a result, these workloads suffer severe performance degradation and interference. Though

co-scheduling [11] is an effective approach for improving multi-threaded performance in

time-shared environments, its adverse impacts, such as high context switch overhead, CPU

fragmentation, and priority inversion, are also notoriously difficult to mitigate without
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sacrificing its effectiveness on improving multi-threaded performance. Thus, achieving

desirable performance for multi-threaded applications in time-shared clouds remains an

open problem [5; 12; 13]. We present a framework, JUPITER (Chapter 4), to improve

multi-threaded QoS while minimizing the adverse impacts caused by co-scheduling in

clouds.

The research contributions are summarized in the following sections.

1.2 Contributions of Dissertation

1.2.1 VMIGRATER: Effectively Mitigating I/O Inactivity in vCPU Scheduling

The dissertation presents VMIGRATER, which runs in the user level of each VM. The idea

is that each VM often has active vCPUs, and we can efficiently migrate I/O tasks to these

vCPUs, greatly mitigating the I/O inactivity periods and maintaining fairness. It introduces

new mechanisms to efficiently monitor active vCPUs and to accurately detect I/O bound

tasks. Evaluation on diverse real-world applications shows that VMIGRATER can be up to

4.42X faster than the default Linux KVM. VMIGRATER is also 1.84X to 3.64X faster than

two related systems.

1.2.2 VSMT-IO: Making Virtual CPU Scheduler SMT-Aware for Lower Latency

and Higher Throughput

The dissertation focuses on an under-studied yet fundamental issue on Simultaneous

Multi-Threading (SMT) processors — how to schedule I/O workloads, so as to improve

I/O performance and efficiency. The paper shows that existing techniques used by

CPU schedulers to improve I/O performance are inefficient on SMT processors, because
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they incur excessive context switches and spinning when workloads are waiting for I/O

events. Such inefficiency makes it difficult to achieve high CPU throughput and high I/O

throughput, which are required by typical workloads in clouds with both intensive I/O

operations and heavy computation.

The dissertation proposes to use context retention as a key technique to improve

I/O performance and efficiency on SMT processors. Context retention uses a hardware

thread to hold the context of an I/O workload waiting for I/O events, such that overhead

of context switches and spinning can be eliminated, and the workload can quickly

respond to I/O events. Targeting virtualized clouds and x86 systems, the paper identifies

the technical issues in implementing context retention in real systems, and explores

effective techniques to address these issues, including long term context retention and

retention-aware symbiotic scheduling.

The dissertation designs VSMT-IO to implement the idea and the techniques.

Extensive evaluation based on the prototype implementation in KVM and diverse real-

world applications, such as DBMS, web servers, AI workload, and Hadoop jobs, shows

that VSMT-IO can improve I/O throughput by up to 88.3% and CPU throughput by up to

123.1%.

1.2.3 JUPITER: CPU Performance Isolation with High Efficiency for Multi-

threaded Workloads in Time-Shared Clouds

The performance of multi-threaded applications is highly vulnerable to the time-sharing

of CPUs, and coscheduling is an effective method to reduce such vulnerability. However,

when there are two or more multi-threaded applications that are time-sharing CPUs, such
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as those in virtualized clouds, the effectiveness of existing coscheduling approaches is

seriously limited. This causes a few performance issues compromising the Qualify of

Service (QoS) for multi-threaded applications, such as the bad performance, the unfair

performance penalty, low CPU utilization, and the sensitivity of the performance to other

applications in the system.

Coscheduling becomes ineffective due to three reasons. 1) there lacks a mechanism

to reduce/resolve the conflicting demands of coscheduling the threads from different

applications on the shared resources; 2) there lacks a mechanism to reduce adverse effects

of coscheduling without sacrificing its effectiveness; 3) existing coscheduling approaches

cannot deal with dynamically changing workloads.

The dissertation proposes JUPITER that solves the above problems based on

three ideas: 1) enforcing asymmetric coscheduling; 2) reducing the aggressiveness of

coscheduling as long as application performance is not degraded; 3) effectively combining

coscheduling with the leaky bucket technique. We implement JUPITER in KVM and

conduct extensive experiments with diverse real-world applications to compare JUPITER

with three existing variants of coscheduling. Experiments show that JUPITER achieves

significantly and consistently better QoS and system-wide performance than the other

systems under both homogeneous and heterogeneous workloads.

1.3 Structure of Dissertation

The rest of the dissertation is organized as follows. Chapter 2 presents the VMIGRATER

system, a simple, fast and transparent system to greatly mitigate I/O inactivity for

multi-threaded workloads in cloud computing. Chapter 3 describes the VSMT-IO system,
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an efficient SMT-aware virtual CPU scheduler to improve multi-threaded performance in

cloud computing. Chapter 4 introduces the JUPITER system, an effective framework with

high efficiency to improve multi-threaded QoS in cloud computing. Chapter 5 concludes.
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CHAPTER 2

VMIGRATER: EFFECTIVELY MITIGATING I/O INACTIVITY IN VCPU
SCHEDULING

2.1 Introduction

To ease management and save energy in clouds, multiple virtual machines (VMs) are often

consolidated on a physical host. In each VM, multiple virtual CPUs (vCPUs) often time-

share a physical CPU core (aka., pCPU). The virtual machine monitor (VMM) controls

the sharing by scheduling and descheduling the vCPUs periodically. When a vCPU is

scheduled, tasks running on it become active and make progress. When a vCPU depletes

its time slice, it is descheduled, and tasks on it become inactive and stop making progress.

  

 vCPU
activity 

Active

Inactive

I/O activity
w/ default
VMMs

Active

Inactive

Active

 I/O activity
(bare-metal)

I/O Request

Figure 2.1 I/O inactivity.

vCPU inactivity leads to a severe I/O inactivity problem. After the vCPU is

descheduled, the I/O tasks on it become inactive and cannot generate I/O requests, as

shown in the first two curves in Figure 2.1. The inactive periods can be much longer

than the latencies of storage devices. Typical time slices can be tens of milliseconds; the
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storage device latencies are a few milliseconds for HDDs and microseconds for SSDs.

Thus, during the I/O inactive periods, I/O devices (both physical and virtual devices) may

be under-utilized. The under-utilization becomes more serious with a higher consolidation

rate (i.e, the number of vCPUs shared on each pCPU), because a vCPU may need to wait

for multiple time slices before being rescheduled. The I/O throughput of a VM drops

significantly with a consolidation rate of 8 recommended by VMware [14]. We confirm

this in our evaluation (§2.7).

The I/O inactivity problem becomes even more pronounced when I/O requests are

supposed to be processed by fast storage devices (SSDs). Usually, a vCPU keeps active

during I/O requests, so it can quickly process them. For example, if a computation task and

an I/O task run on the same vCPU, when the I/O task issues a read request and waits for

the request to be satisfied, the computation task is switched on. At this moment, the vCPU

is not idleand descheduled; thus, when the read request is satisfied, the vCPU can quickly

respond to the event and switch the I/O task back. However, if the time slice of the vCPU

is used up by the computation task in one scheduling period, the I/O task cannot proceed

until the next period, causing the I/O task to be slowed down by orders of magnitudes.

Worse, the I/O inactivity problem causes the I/O scheduler running in the host OS

to work extremely poorly. To fully utilize storage devices, based on the latencies of

I/O devices, system designs usually carefully control the factors affecting the latencies

experienced by I/O workloads (e.g., wake-up latencies and priorities). Thus, I/O

workloads running on bare-metal can issue the next request after the previous request

is finished. Moreover, non-work-conserving I/O schedulers [15] usually hold the I/O

resource and wait a period for the next request from the same I/O task (refer to §2.2.2). By
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serving the requests from the same task continuously, which shows better locality than the

requests from different tasks, such I/O schedulers [15] improve I/O throughputs. However,

since an I/O workload cannot continue to issue I/O requests after its vCPU becomes

inactive, the I/O scheduler in the host OS must switch to serve the requests from other I/O

tasks, which greatly reduces locality and I/O throughput (confirmed in our evaluation).

Last but not least, the I/O throughput of a VM can be “capped” by its amount of

CPU resources. If the vCPUs in a VM (V Ma) are assigned with smaller proportions of

CPU time on each pCPU than the vCPUs on another VM (V Mb), the I/O workloads on

V Ma will get less time to issue I/O requests and may only be able to occupy a smaller

proportion of I/O bandwidth. Since the actual I/O throughputs of the VMs are affected by

both I/O scheduling and vCPU scheduling, it is difficult for the I/O scheduler to ensure

fairness between the two VMs.

All these problems share the same root cause, I/O inactivity, but existing works

mainly mitigate vCPU inactivity and ignore this root cause. Existing works mainly take

two approaches: 1) shortening vCPU time slices (vSlicer [16]); and 2) assigning higher

priority for I/O tasks running on active vCPUs (xBalloon [17]). Unfortunately, the vCPUs

with both approaches can often be inactive, and fairness issues among VMs in a host can

easily occur.

Our idea to mitigate I/O inactivity is that each VM often has active vCPUs, and we

can efficiently migrate I/O tasks to these vCPUs. By evenly redistributing I/O tasks to

active vCPUs in a VM, I/O inactivity can be greatly mitigated and I/O tasks can make

progress constantly. This maintains fairness for I/O tasks as they are running on bare-

metal. The fairness of I/O bandwidth among VMs on the same host is also maintained.
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The dissertation presents VMIGRATER, a user level tool working in each VM. It is

transparent as it does not need to modify an application, VM, VMM, or OS. VMIGRATER

carries simple and efficient mechanisms to predict whether a vCPU will be descheduled

and to migrate the I/O tasks on this vCPU to another active vCPU.

VMIGRATER incurs a small overhead to applications due to two reasons. First, I/O

bound tasks use little CPU time, so the I/O tasks migrated by VMIGRATER hardly affect

the co-running tasks on the active vCPUs. Second, VMIGRATER migrates more I/O bound

tasks to the active vCPUs with more remaining time slices, so all vCPUs’ load in the same

VM are well balanced. By keeping I/O bound tasks mostly active, VMIGRATER greatly

reduces I/O inactivity, making applications run as the bare-metal curve in Figure 2.1.

VMIGRATER addresses three practical challenges. First, it needs to determine which

task should be migrated. VMIGRATER migrates I/O bound tasks running on the vCPUs

that will be inactive. To identify I/O bound tasks, VMIGRATER uses an event-driven model

to collect I/O statistics and to detect I/O bound tasks within microseconds.

Second, VMIGRATER needs to determine when the I/O bound task should be

migrated. VMIGRATER migrates the I/O bound task when the vCPU running this task

will be inactive so that the task can continue to be active. VMIGRATER monitors each

vCPU’s time slice and use the length of previous time slice to predict the current one.

Third, VMIGRATER needs to decide where the task should be migrated to. Based on

the collected time slice and I/O task information, VMIGRATER migrates to-be-descheduled

I/O tasks to the active vCPUs according to the vCPUs’ current load. An active vCPU with

heavier load will be assigned fewer I/O tasks to reduce the overhead.
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The dissertation implemented VMIGRATER in Linux and evaluated it on KVM [18]

with a collection of micro-benchmarks and 7 widely used or studied programs, including

small programs (sequential, random and bursty read) from SysBench [19], a distributed

file system HDFS [20], a distributed database Hbase [21], a mail server benchmark

PostMark [22], a database management system LevelDB [23], and a document-oriented

database program MongoDB [24]. Evaluation shows that: 1) VMIGRATER is fast.

Compared to default Linux KVM (vanilla), VMIGRATER improves all applications’

throughputs up to 4.42X. VMIGRATER is 1.84X to 3.64X faster than both vSlicer and

xBalloon. 2) VMIGRATER is scalable. Compared to vanilla, VMIGRATER improves all

applications’ throughputs from 1.72X to 4.42X as the number of shared VMs increase

from 2 to 8. 3) VMIGRATER makes the I/O Scheduler in the host OS fair. Compared to

vanilla, when two vCPUs share one pCPU, I/O bandwidth of each I/O task is almost the

same, reducing unfairness between VMs by 6.22X.

The contribution contains two parts. First, we took the first step to quantify the

severity of I/O inactivity in VMs. Second, we built VMIGRATER, a simple and practical

user-level scheduler, which greatly improves the throughput of applications in virtualized

systems.

2.2 Background and Motivation

In this section, we first introduce vCPU descheduling, I/O scheduler. Then, we explain the

three performance problems caused by I/O inactivity in virtualized systems.
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Figure 2.2 Three problems caused by I/O inactivity. “Bare-metal” means physical server;
“No sharing” means one VM run on one host; “Vanilla” means two VMs run on one host.
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Figure 2.3 Explanation of performance degradation caused by Non-Work-Conserving
(NWC) I/O scheduler in VMM. The wait time is wasted.
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2.2.1 vCPU (De)scheduling

In virtualized systems, CPU sharing is widely adopted to improve resource utilization and

performance isolation. CPU sharing allows many vCPUs to share one pCPU. Hypervisor

schedules these vCPUs onto the pCPU. Hypervisor is often required to time-share the

pCPU among these vCPUs, and it may deschedule a vCPU belonging to one VM in favor

of a vCPU belonging to another VM. For instance, KVM uses completely fair scheduler

(CFS) [25; 17] to schedule vCPUs onto pCPUs. CFS uses virtual runtime (vruntime),

which tracks how much time a vCPU has spent running on pCPU, to schedule these

vCPUs. CFS maintains a red-black tree-based runqueue, which sorts vCPUs based on

their vruntimes, and always schedules the vCPU with the least vruntime. This design

enforces fair allocation of vCPUs’ time slices.

2.2.2 I/O Scheduler

I/O tasks are scheduled by the I/O scheduler in the VMM layer to access I/O devices

for processing I/O requests. There are two types of I/O scheduler: work-conserving [26;

27] and non-work-conserving [28; 29]. The work-conserving I/O scheduler must choose

one I/O request to serve if there is any pending request.

The non-work-conserving I/O scheduler, such as the anticipatory scheduler

(AS) [29] and Completely Fair Queuing (CFQ) [30], waits a short period for the same

task’s I/O requests before switching to serve another task. This is because the same task’s

next request might be close to the disk head so the I/O scheduler may be worthwhile to

wait. CFQ aims to fairly distribute disk time among I/O-intensive threads. As CFQ allows

the disk to be idle, waiting for future requests, it also belongs to non-work-conserving
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type. In virtualized systems, non-work-conserving I/O scheduler (e.g., CFQ) is often used

for performance and fairness benefits.

2.2.3 Problems Caused by I/O Inactivity

In this section, we show that Linux suffers a severe performance degradation when running

as a virtualized system because of I/O inactivity. We use SysBench [19] to test I/O

throughput in three settings. In the Bare-metal setting, SysBench runs on one host; In

the No sharing setting, SysBench runs in one VM on one host (the VM and the host

have the same number of cores); In the Vanilla setting, two VMs run on one host (two

vCPUs share one pCPU). As such, the virtualized system in VM was active for a certain

period and inactive for another period. Each VM was configured with four vCPUs and

the same I/O bandwidth in KVM [18]. We use CPU workload from SysBench [19] as the

compute-bound task co-running with the I/O-bound task. The setting in this section eases

the analysis of the research problems, and the real workloads with common settings in the

evaluation part (§2.7) show that these research problems are more severe.

Figure 2.2 shows the three performance issues caused by I/O inactivity in virtualized

systems.

Figure 2.2 (a) shows that the I/O throughput problem caused by I/O inactivity. In this

experiment, the two shared VMs are each allocated 50% pCPU resource, and only one VM

has I/O bound task. The result shows that no sharing has roughly the same throughput as

bare-metal but the throughput of vanilla degrades 49.8% due to I/O inactivity. Figure 2.1

explains the reason. In each VM, the vCPU is active for a time period and inactive for the
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same amount of time. This causes many I/O inactivity periods in the VM which runs the

I/O-bound task.

Figure 2.2 (b) shows that when two VMs run I/O tasks in parallel, the total

throughput degrades even more significantly. The total throughput drops by 72.1%

compared to bare-metal and no sharing. Figure 2.3 explains the reason. The non-work-

conserving I/O scheduler in the VMM serves one I/O-bound task for a short period, and

waits for 8ms once the VM becomes inactive. After the wait period, the I/O scheduler

changes to serve another I/O-bound task. The frequent change between tasks incurs

the overhead of frequent disk seek, and the wasted waiting time also contributes to the

inefficiency of the I/O scheduler.

Figure 2.2 (c) shows that non-work-conserving I/O scheduler of the VMM is not

fair to VMs with different CPU resources. The two shared VMs are allocated with the

same I/O bandwidth but with 20% and 80% CPU capacity respectively. The I/O scheduler

in bare-metal and no sharing offer the same I/O bandwidth to I/O tasks. However, in the
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Figure 2.4 The workflow of vanilla, xBalloon and vSlicer. xBalloon and vSlicer still
experience frequent I/O inactivity periods.
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vanilla setting, I/O scheduler allocates VM2 5.8X I/O bandwidth than VM1. Figure 2.5

explains the reason of the unfairness. Since VM1 is only allocated much less CPU capacity

than VM2, it experiences much longer I/O inactivity periods. As a result, I/O scheduler

serves VM2 for much longer time than VM1, causing unfairness.

There are two types of existing works. The first approach [31; 32; 16] is to shorten

time slices (e.g., vSlicer) for vCPU to process I/O requests more frequently. As shown in

Figure 2.4, vSlicer reduces the length of each vCPU inactivity period so that the next I/O

request can be processed with a shorter waiting time. However, the I/O inactivity period

still exists and degrades the performance. Moreover, vSlicer incurs high context-switch

overhead due to smaller time slices.

The second approach [33; 17] is to assign higher priority (e.g.. xBalloon) for I/O

tasks running on active vCPUs. As shown in Figure 2.4, this approach gives more time

to I/O bound tasks to improve the I/O throughput. The vCPUs are still descheduled so

the I/O inactivity period still exists. Besides, this approach reduces the execution time of

co-location compute bound tasks and degrades overall performance.

2.3 Overview

In this section, we present VMIGRATER’s design goals (§2.3.1) and architecture (§2.3.2).

Table 2.1 Compare VMIGRATER with Related Systems.

Systems VMIGRATER vSlicer xBalloon
Transparent 4 6 6

Performance 4 6 4

Scalability 4 4 6

Fairness 4 6 6
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Figure 2.5 Explanation of unfairness of Non-Work-Conserving (NWC) I/O scheduler in
VMM. The I/O scheduler serves task 2 with a much longer time.

2.3.1 Design Goals

Compared with related systems (as shown in table 2.1), VMIGRATER aims at three design

goals. First, VMIGRATER should be transparent. The reality in virtualization environments

is that VM and VMM source may not be available to modify. To support the broadest

possible range of applications and virtualized platforms with the smallest possible barrier

to entry, the design of VMIGRATER should not require to modify any part of applications,

VM and VMM. Second, VMIGRATER should promise high performance for applications

in VMs. Even though I/O-bound workloads run on shared vCPUs in virtualized systems

(such as libOS VMs [34; 35]), they can achieve almost the same I/O bandwidth as they are

running in physical machine. Third, VMIGRATER should make the I/O scheduler in the

host OS maintain fairness [36; 37].

We choose to design VMIGRATER in the user space of guest OSes because it is

general and transparent to applications, guest and host OSes, and devices. If we design
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VMIGRATER in the hypervisor layer, it may need to instrument guest and host OSes and

is not a general approach.

2.3.2 VMIGRATER Architecture

Hypervisor

Virtual Machine

. . .

vCPU
Monitor vMigrater

Task Migrater

. . .

vCPU Scheduler

pCPU . . .

vCPU vCPU vCPU

Detector

. . .
User

Kernel

pCPU

I/O-bound Task

CPU-bound Task

vCPU

Task
Detector Descheduled vCPUvCPU

Scheduled  vCPUvCPU

Figure 2.6 VMIGRATER Architecture.

Figure 3.2 shows VMIGRATER’s architecture with three key components: vCPU

Monitor, Task Detector and Task Migrater. vCPU Monitor and Task Detector collect the

information of vCPUs and I/O tasks respectively. Based on this information, Task Migrater

makes migration decisions and conducts the migrations. All these three components

cooperate with each other to migrate I/O tasks to active vCPUs to mitigate I/O inactivity.

vCPU Monitor (§2.4.1) monitors vCPUs’ time slices. It monitors the start and end

of time slices for each vCPU and use the length of previous time slice to predict the current

one.
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Task Detector (§2.4.2) detects I/O-bound tasks within micro-seconds. It uses an

event-driven model to collect the time each task uses for processing I/O requests within

one interval.

Task Migrater (§2.4.3) migrates I/O-bound tasks to active vCPUs. Task Migrater

knows which vCPU is active according to the information from vCPU Monitor and which

task is a I/O-bound task with the information from Task Detector. Once Task Migrater

finds the I/O-bound tasks located on the vCPUs that will be inactive soon and migrates the

tasks to active vCPUs in a globally balanced way.

2.4 The VMIGRATER Runtime System

This section presents VMIGRATER’s runtime system. We first introduce how VMIGRATER

monitors vCPUs’ time slices accurately (§2.4.1). Then, we explain how VMIGRATER

fast detects I/O-bound tasks (§2.4.2), and how VMIGRATER migrates I/O-bound tasks

efficiently (§2.4.3). At last, we present the performance analysis of VMIGRATER (§2.4.4).

2.4.1 Monitoring vCPUs’ Time Slices

VMIGRATER runs one vCPU Monitor thread on each vCPU in the VM. Figure 2.7 shows

how vCPU Monitor works. The vCPU Monitor thread sleeps periodically in order to

reduce the overhead to co-running applications. On each wakeup, it compares the elapsed

time against its sleep time to determine whether the vCPU has been descheduled. For

instance in Figure 2.7 when the vCPU Monitor wakes up at t6, it finds the elapsed time is

much longer than the sleep time, so it determines that it has been descheduled and a new
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time slice starts. Then, it uses the time difference between t2 and t5 to calculate the time

slice.

vCPU Monitor has three properties. First, VMIGRATER uses previous time slice

length to predict the current time slice length. Our key observation is that shared vCPUs’

time slices are almost stable when I/O- and compute-bound tasks are running concurrently

in the VM. Intuitively, a workload often runs stably during one time period. In our

evaluation (see 2.7.2), we show that when Apache Hadoop system runs in two VMs

sharing one host, the time slices are almost stable.

Second, VMIGRATER predicts a vCPU which is to be active right now. When the

remaining time slices of active vCPUs in a VM are not long, VMIGRATER migrates I/O

bound tasks to the vCPU which is to be active. In this way, the number of migration

decreases and the time cost reduces correspondingly. VMIGRATER monitors the time

length of a vCPU has been descheduled(e.g., t6− t5 in Figure 2.7), which can be used

to check whether the vCPU is to be re-scheduled.

Third, the length of sleep time may affect VMIGRATER’s performance. If the length

is too long, the deviation of VMIGRATER measured time slice is big because it cannot

accurately determine the start and end of a time slice (tens of ms). If the length is too

short, vCPU Monitor thread wakes up and sleep frequently (preemption context switches,

tens of ns). Therefore, VMIGRATER uses a general sleep period of 300 µs, which is in the

middle of the above two constants and works well for all applications in our evaluation.
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Figure 2.7 vCPU Monitor workflow.

2.4.2 Detecting I/O Bound Tasks

VMIGRATER needs to quickly detect I/O-bound tasks for migration. However, traditional

methods (e.g., Linux top [38] and iotop [39]) to detect tasks’ I/O utilization is too

coarse-grained. The detect duration is often as long as at least one second. We need a

faster frequency to detect I/O bound tasks. For instance, the time for SSD to handle 1MB

sequential read is only 1ms.

We propose an event driven solution for fast detecting I/O-bound tasks. When an

I/O request is sent to the block device, it will trigger an I/O event. VMIGRATER monitors

the I/O events and collects the time spent to process these events. VMIGRATER calculates

the fraction of I/O processing time in one period (several milliseconds) and determines

whether the task is I/O bound. This method is flexible, accurate and fast because we can

monitor tasks in a very short time period.

During our implementation, we found a bug [40] in Linux Kernel about collecting

synchronous I/O delay time. We submitted a patch to the linux kernel’s mailing list and

are waiting for response.
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2.4.3 Migrating I/O Bound Tasks

Task Migrater uses the information provided by vCPU Monitor and Task Detector to

make migration decisions. First, Task Migrater needs to decide which I/O task should

be migrated. This is determined by two factors. One factor is Task Migrater needs to find

the I/O bound tasks whose vCPUs are to be descheduled. These I/O bound tasks should

be migrated immediately to avoid inactivities. Another factor is that Task Migrater needs

to find I/O bound tasks with higher I/O load because they affect applications’ throughput

largely. Task Migrater also supports user-defined priority to improve the performance of

critical applications.

Second, Task Migrater needs to decide which vCPU should I/O bound tasks be

migrated to. A naive approach is to migrate I/O tasks to the vCPU with the longest

remaining time slices. However, this method has two problems: (1) the vCPU might

be overloaded, greatly affecting performance of co-running compute tasks; (2) the I/O

tasks cannot make progress concurrently. Task Migrater migrates I/O tasks to vCPUs in

a globally balanced way. Task Migrater gives vCPUs different weights according to their

remaining time slices and migrates I/O tasks to the vCPUs according to their I/O load level.

For instance, the I/O task with the largest load level is migrated to the vCPU with highest

weight. The migration mechanism effectively improves the throughout of applications

because it distributes I/O intensive tasks among active vCPUs in a simple and efficient

way.
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2.4.4 Performance Analysis

Equation (1) shows the performance speedup of VMIGRATER. For simplicity, we assume

each VM has at least one active vCPU at any given time. Tpm is execution time of one

I/O task on dedicated pCPUs without sharing; N is the number of shared vCPUs on one

pCPU; Nmigrate is the number of migration triggered by VMIGRATER; Cavg is the average

time cost for each migration.

The numerator of equation (1) means the total execution time with vanilla (default

sharing). Since the I/O task only runs 1/N time, the total execution time is roughly N times

of Tpm. The denominator means the total execution time with VMIGRATER. The I/O task

runs continuously with the only overhead from migration cost.

SpeedupvMigrater =
Tpm×N

Tpm +Nmigrate×Cavg

=
N

1+ Nmigrate×Cavg
Tpm

(1)

In an optimal scenario, VMIGRATER migrates an I/O bound task with a minimum

number, Nmin, which means the I/O task can always run from the rescheduled time point

of each active vCPU. Tts is the time slice of one vCPU in the shared VM. We have:

Tpm = Tts×Nmin (2)
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After substituting for Tpm from (2) to (1), we get:

SpeedupvMigrater =
N

1+ Nmigrate×Cavg
Nmin×Tts

(3)

Equation 3 defines the speedup in terms of N and Nmigrate×Cavg
Nmin×Tts

; N and Tts are

constants. We denote Nmigrate×Cavg
Nmin×Tts

as PvMigrater, so the speedup is mainly in terms of

PvMigrater. If PvMigrater is very small, the speedup is nearly N times. Our evaluation

confirms that the speedup of VMIGRATER matches SpeedupvMigrater (see §2.7.2).

2.5 Implementation Details

In order to implement vCPU Monitor accurately, VMIGRATER needs to call the system

timer. However, we find that system time clock is inaccurate due to CPU sharing [17].

The traditional timer interrupt is triggered by each shared vCPU but the interrupt may

be ineffective once the vCPU is descheduled. In VMIGRATER, we use the clock source

(CLOCK MONOTONIC [41]) updated by global timer interrupts which can be triggered

by any vCPU in the VM. From our experiments, we find the clock source updated by

global timer interrupts is much accurate. The reason is that in a multi-vCPU VM, the

possibility of descheduling all the vCPUs is low.

VMIGRATER leverages BCC [42; 43] to implement fast Task Detector. BCC is a

toolkit for creating efficient kernel tracing and manipulation programs. BCC has been

supported by Linux Kernel and provided a way to filter out I/O tasks once there are I/O
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events handled by I/O devices. We implemented our fast I/O tasks detection module by

modifying source codes of BCC.

We implement Task Migrater with two mechanisms, PUSH and PULL. PUSH means

a vCPU, I/O bound tasks are running on, can push these tasks to active vCPUs which have

longer remaining time slices. PUSH happens when the vCPU finds that its remaining

time slice is lower than a threshold which is self-defined. PULL means a vCPU with a

longer time slice can pull I/O bound tasks on to itself. This usually happens when a vCPU

is active just now. VMIGRATER needs PULL because the I/O bound task may be on the

de-scheduled vCPU. The time slice of the vCPU may not be very stable all the time. When

the time slice is unstable, the I/O task may not be pushed on time so we implement PULL

to solve this problem.

2.6 Limitations

VMIGRATER has two limitations. First, when VMIGRATER runs in a VM, the performance

of an application in the VM may drop temporarily when the application’s workload

changes suddenly. Our evaluation (see §2.7.3) shows that, when the number of clients

for HDFS increased from 16 to 32, HDFS’s throughput dropped by 45.6% for 1.3 seconds

and then went back to the peak throughput immediately. The reason is that the sudden

changing workload makes time slices of some vCPUs not stable, and VMIGRATER needs

some time to precisely re-estimate the time slices of vCPUs and then migrate I/O bound

tasks.

Second, VMIGRATER mainly aims to mitigate the performance degradation caused

by disk (HDD or SSD) I/O inactivity periods in VMs, and it is not designed to handle
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network I/O. Comparing to disk I/O, network I/O is much more sparse, and we have not

found that VMIGRATER affects the performance of network I/O in our evaluation.

2.7 Evaluation

Our evaluation is done on a DELLTM PowerEdgeTM R430 server with 64GB of DRAM,

and one 2.60GHz Intel Xeon E5-2690 processor with 12 cores, and 1TB HDD or SSD

separately. All VMs (unless specified) have 12 vCPUs and 4GB memory. The VMM is

KVM [18], and both the host OS and guest OS are Ubuntu 16.04. The time slice of vCPU

is 11ms (recommended by Red Hat [44]). The I/O scheduler in VMM is CFQ with the

wait time of 8ms, recommended by Red Hat [45; 15].

We evaluate VMIGRATER on a collection of micro-benchmarks (SysBench [19]

sequential read and random read; bursty read is implemented by us) and 7 widely used

applications (HDFS [20], LevelDB [23], MediaTomb [46], HBase [21], PostMark [22],

Nginx [47] and MongoDB [24]). To be close to real-world deployments, HDFS and HBase

are ran with MapReduce [48] because they belong to Apache Hadoop system and are

ran together. PostMark is ran with ClamAV (antivirus program) [49] because PostMark

is a mail server benchmark and needs an antivirus program. LevelDB and MongoDB are

deployed as the back-end storage of Spark [50].

Table 3.4 shows our workloads. For Apache Hadoop and Spark systems, we co-

run the TeraSort benchmark [51] as the compute-bound task. ClamAV is a compute-

bound program, which runs with the PostMark mail server benchmark. For Nginx and

MediaTomb, transcoding and watermarking launch concurrently I/O and compute-bound

tasks.
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Table 2.2 Seven Applications and Workloads.

ApplicationWorkload
HDFS Sequential read 16GB with HDFS TestDFSIO [51].
LevelDB Random scan table with db bench [52].
MediaT Concurrent requests on transcoding a 1.1GB video.
HBase Random read 1GB with HBase PerfEval [51].
PostMark Concurrent requests on a mail server.
Nginx Concurrent requests on watermarking images [53].
MongoDB Sequential scan records with YCSB [54].

All the experiments are conducted on SSD except that §2.7.4 (fairness of I/O

scheduler) evaluates VMIGRATER on HDD. We use HDD for the fairness evaluation

because HDD often uses CFQ.
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Figure 2.8 SysBench microbenchmarks, all VMs run the same microbenchmark,
normalized to “no vCPU sharing” (i.e., only one 12-vCPU VM runs on a 12-pCPU host).
“Vanilla” means the default Linux KVM. “App X” means the microbenchmark application
with an X number of I/O tasks. “Y VMs” means a Y number of VMs are running on one
physical host.

We compare VMIGRATER with two related systems: xBalloon [17] and vSlicer [16].

Because neither of them is open source, we implement both of them according to their

papers. This section focuses on four questions:

§2.7.1: Is VMIGRATER easy to use?
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Figure 2.9 Real applications, all VMs run the same application, the average throughput of
all VMs on one host, normalized to “no vCPU sharing”.

§2.7.2: How much can VMIGRATER improve performance? How does it scale to the

number of shared vCPUs per pCPU? How faster is VMIGRATER than prior systems?

§2.7.3: What is VMIGRATER’s performance under varied workloads?

§2.7.4: Does VMIGRATER achieve fairness for the I/O scheduler?

2.7.1 Ease of Use

All 7 real applications we evaluated are able to be transparently plugged and played

with VMIGRATER without any modification. When we evaluate these applications,

VMIGRATER runs in the user-level of the guest OS and also does not need to change any

part of the VM and VMM. VMIGRATER can support general hypervisors transparently.

2.7.2 Performance and Scalability

Figure 2.8 and 2.9 show that VMIGRATER improves the overall throughput significantly.

All results are normalized to “no sharing”. The micro-benchmark or application runs in

each VM to test the overall throughput. On average, for micro-benchmarks, VMIGRATER
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makes them run 5.31X faster than vanilla. For real applications, VMIGRATER makes them

run 4.42X faster than vanilla.

VMIGRATER greatly improves application performance due to two reasons. First,

VMIGRATER effectively avoids I/O inactivity by migrating I/O-bound tasks between active

vCPUs (see table 2.4). Second, VMIGRATER decreases the wait periods and improves

locality for the I/O scheduler in the host OS.
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Figure 2.10 Throughput of only one VM running the application with VMIGRATER.
Normalized to “no vCPU sharing”, while the other VMs ran compute-bound task (i.e.,
IS from NPB) without VMIGRATER.

Figure 2.10 shows that VMIGRATER improves the throughput of an individual VM.

All results are normalized to no sharing. One VM runs the application with VMIGRATER,

and co-running VMs run compute-bound tasks (IS from NPB [55]) without VMIGRATER.

On average, VMIGRATER makes the individual VM run 3.07X faster than vanilla.

Table 2.3 and 2.4 explain why VMIGRATER’s performance is higher. Table 2.3

confirms the performance modeling of VMIGRATER’s speedup. VMIGRATER incurs small
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Table 2.3 VMIGRATER Performance Analysis for Seven Applications

Application Nmigrate Nmin Cavg PvMigrater Speedup
HDFS 3363 3181 0.87ms 0.07 1.86
LevelDB 2154 2003 1.62ms 0.13 1.75
HBase 3454 3181 1.88ms 0.15 1.76
MongoDB 1545 1363 2.16ms 0.17 1.70
PostMark 5181 4818 1.11ms 0.09 1.82
MediaTomb 2454 1818 5.23ms 0.35 1.41
Nginx 4181 4090 2.17ms 0.22 1.73.

overhead for migration, 1.63ms in average. Table 2.4 shows that VMIGRATER reduces the

I/O inactivity periods up to 18.39X than vanilla.

Figure 2.8 and 2.9 show VMIGRATER’s performance is scalable to the number of

shared vCPUs per pCPU. For micro-benchmarks, VMIGRATER improves the throughput

from 1.97X to 5.31X as the number of shared VMs on one host increased from 2 to 8. For

7 real applications, VMIGRATER improves the throughput from 1.72X to 4.42X when the

number of shared vCPUs on one pCPU increases from 2 to 8.

VMIGRATER’s performance speedup is not ideal for 8 (or 4) VMs sharing one host.

This is because when the number of shared vCPUs per pCPU increases, the portion of

active vCPUs in a VM decreases, so the migration cost of VMIGRATER also increases.

Nevertheless, in this high sharing setting, VMIGRATER is already several times faster than

vanilla, vSlicer and xBalloon.

Figure 2.9 shows VMIGRATER, vSlicer and xBalloon’s throughput on seven appli-

cations. All results are normalized to no sharing. On average, VMIGRATER’s throughput

is 2.48X and 3.64X higher than vSlicer and xBalloon separately.

The three systems do not have high performance on MediaTomb. MediaTomb has

multiple tasks and combines I/O and compute operations in each task. The migration
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overhead for the task of MediaTomb is bigger than I/O-bound task. xBalloon pauses VM to

benefit I/O-bound task. If I/O and compute are mixed in one task, the throughput degrades.

vSlicer makes a smaller time slice for processing I/O-bound task in time. It incurs much

more context switches overhead for the compute part of this task.

To analyze vSlicer’s throughput, we also look into MediaTomb, which has concurrent

requests to read the video to the memory for transcoding. We find that vSlicer incurs much

more context switches overhead because it uses a much lower time slice for vCPU. With

vSlicer, I/O intensive tasks still have smaller I/O inactivity period caused by descheduling

vCPUs (see table 2.4). VMIGRATER does not incur extra context switches and can avoid

I/O inactivity periods efficiently.

Figure 2.9 shows that xBalloon has a slightly higher throughput than VMIGRATER

when two VMs share one host. When four or eight VMs share one host, the throughput

of VMIGRATER is much higher than xBalloon. Table 2.4 shows that when 4 VMs share

one host, xBalloon incurs more I/O inactivity periods because xBalloon does not utilize

the CPU resource of other active vCPUs in the same VM. xBalloon’s paper [17] confirms

that xBalloon incurs performance drop in the setting of 4 or 8 VMs per host.

Table 2.4 I/O Inactivity Periods (Seconds) for Seven Applications.

Application Vanilla vSlicer xBalloon vMigrater Mini
HDFS 121.82s 92.91s 75.27s 6.62s 18.39
LevelDB 129.45s 101.55s 79.84s 17.86s 7.25
HBase 98.13s 69.37s 75.71s 18.93 5.19
MongoDB 39.49s 30.34s 40.57s 3.49s 11.31
PostMark 225.32s 168.01s 113.01s 12.92s 17.44
MediaTomb 108.61s 89.46s 116.96s 34.95s 3.11
Nginx 59.15s 61.72s 42.37s 8.03s 7.37

31



 0

 50

 100

 150

 200

 250

H
D

FS

H
B

ase

P
ostM

ark

LevelD
B

M
ongoD

B

M
ediaT

N
ginx

N
or

m
al

iz
ed

 L
at

en
cy

 (%
)

Shared vCPU
vSlicer

xBalloon
vMigrater

Figure 2.11 Response time normalized to “no vCPU sharing”. Two 12-vCPU VMs share
12 pCPUs.

Figure 2.11 shows the response time of the three systems normalized to no sharing.

For 7 applications, the response time of VMIGRATER and xBalloon is almost the same.

Since each VM has 50% CPU resource, xBalloon has good performance (mentioned

above). For MediaTomb, all three systems incur high response time because MediaTomb

combines I/O and compute operations in one task.

Figure 2.12 shows three systems’ overhead to co-running compute-bound appli-

cations in the same VM. xBalloon’s overhead is much higher than VMIGRATER and

vSlicer because xBalloon prioritizes I/O-bound tasks and delays compute-bound tasks.

vSlicer’s overhead is higher than VMIGRATER because it incurs much more context

switches overhead for compute-bound tasks. Unlike xBalloon and vSlicer, VMIGRATER

almost does not delay co-running applications (§2.4).

32



 0

 0.5

 1

 1.5

 2

 2.5

H
adoop

S
park

C
lam

A
V

H
adoop

S
park

C
lam

A
V

H
adoop

S
park

C
lam

A
V

N
om

al
iz

ed
 E

xe
cu

tio
n 

Ti
m

e

2 VMs            4 VMs              8VMs

w/ vSlicer
w/ xBalloon

w/ vMigrater

Figure 2.12 Execution time normalized to “Vanilla”. “Hadoop” means each VM is
running Hadoop standard TeraSort workload; “Spark” means each VM is running standard
WordCount workload; “ClamAV” means each VM is scanning virus for the whole OS.
Each VM has 12 vCPUs.

33



2.7.3 Robustness to Varied Workloads
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Figure 2.13 Throughput scalability on the loads of VMs, normalized to vanilla. Each
client exhausts around 20% CPU resources; two 2-vCPU VMs share two pCPUs; The
more concurrent clients, the faster VMIGRATER than vSlicer and xBalloon.

Figure 2.13 shows three systems’ throughput on varied loads. When the number

of clients is lower than 10, the throughput of VMIGRATER is almost the same as vSlicer

and xBalloon because VMs are not shared. VMIGRATER is not started when there is no

sharing. As the number of clients increased to 40, VMIGRATER outperforms other two

systems significantly because VMIGRATER can efficiently avoid I/O inactivity periods by

migrating I/O tasks to scheduled vCPUs. vSlicer and xBalloon do not work when vCPU

is inactive. xBalloon has almost the same performance as VMIGRATER around 20 clients
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(each VM has 50% CPU resource). However, VMIGRATER is much more scalable than

vSlicer and xBalloon when workloads increase.
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Figure 2.14 VMIGRATER’s performance on handling the load change of vCPUs by adding
clients dynamically. 8 clients at the time 0; each client exhausts 20% CPU resource; Two
2-vCPU VMs share two pCPUs.

Figure 4.14 shows the robustness of VMIGRATER on suddenly changing workloads.

There are 8 clients at 0s, and VMs are not overloaded. At around 4s, 8s and 11s , 4, 8 and

16 more clients are added, VMIGRATER’s throughput decreases to around 240MB/s, but it

becomes stable (peak, around 430MB/s) again after a short period because VMIGRATER

needs some time to precisely re-estimate the time slices of vCPUs and then mi- grate I/O

bound tasks (§2.6).
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Figure 2.15 VMIGRATER improves the fairness of I/O Scheduler. Two 12-vCPU VMs
share 12 pCPUs; each VM is allocated with different CPU resource but same I/O
bandwidth.

2.7.4 Fairness for I/O Scheduler

Figure 2.15 shows the fairness of the VMM I/O scheduler among VMs. In Figure 2.15 (a),

(b), (c) and (d), VM1’s CPU resource decreases from 90% to 60%, and VM2’s CPU

resource increases from 10% to 40%. Each VM runs TestDFSIO (I/O-bound task) and

TeraSort (compute-bound task) concurrently, and each VM is allocated with the same I/O

bandwidth. Without VMIGRATER, TestDFSIO throughput is related to the CPU resource

allocated to the VM, which shows vanilla hurts the fairness of the I/O scheduler in the host

OS. With VMIGRATER, two VMs in each figure achieve roughly the same TestDFSIO

throughput, which implies that VMIGRATER maintains fairness (roughly the same I/O

bandwidth) for the two VMs.
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2.8 Related Work

Shortening time slices. Many efforts focus on shortening time slices of vCPUs [32; 16;

31] for vCPU to process I/O requests more frequently. This solution has two obvious

drawbacks: (1) the I/O inactivity period still exits and degrades I/O performance. (2) it

suffers performance degradation because of frequent context switches [56; 57; 58]. (3) If

the time slice is shorter than CFQ’s wait time, even if one vCPU is scheduled, the CFQ

may be still waiting for another inactive vCPU. The I/O requests issued from the scheduled

vCPU still cannot be processed. C. Xu et al. [31] uses the same idea to reduce the delay

of IRQ processing. These solutions require intensive modifications to both the VMM and

guest OS kernel.

Dedicating CPUs. Dedicating CPUs [59; 60] aims to solve resource contention problem.

This solution makes fewer vCPUs to share one pCPU to reduce contention. These systems

are complementary to VMIGRATER because they focus on reducing the vCPU sharing,

while VMIGRATER focuses on improving performance in the shared setting.

Task-aware Priority Boosting. Many existing systems [56; 33; 61; 17; 36; 62; 63; 64;

65; 66; 67; 68; 69; 70] focus on prioritizing latency-sensitive tasks to improve overall

performance. Task aware VM scheduling [33] improves the performance of workloads by

prioritizing I/O bound VMs.vMigrater differs task-aware VM scheduling mainly in two

aspects: (1) task-aware VM scheduling prioritizes I/O bound VMs and promises CPU

fairness among these VMs; vMigrater migrates I/O-bound tasks to active vCPUs to solve

I/O inactivity problems and promises the fairness of I/O bandwidth among VMs. (2)

task-aware VM scheduling works in the VMM layer and may need to change the source
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codes of host OSes; vMigrater works in the user space of guest OSes and does not need to

change the source codes of applications, guest and host OSes.

Gleaner [56] identifies Blocked Waiter Wakeup (BWW) problem (eg, spinning,

blocking, etc) due to the high overhead of idleness transitions in virtualized systems.

It consolidates tasks on fewer vCPUs to reduce the number of vCPU state transitions.

vBalance [61] presents that I/O interrupt is delayed due to CPU sharing. It re-maps I/O

interrupt to an active VCPU for processing without delay. However, this work ignores

that even if I/O interrupts are handled timely, I/O tasks still cannot make progress because

vCPUs are descheduled.

xBalloon preserves the priority of I/O tasks by preserving CPU resource for I/O

tasks. However, the vCPUs are still descheduled so the I/O inactivity period still exists.

xBalloon and VMIGRATER are complementary to each other because xBalloon works best

for VMs with single vCPU, while VMIGRATER is designed for multi-vCPU VMs.

2.9 Conclusion

This paper identifies the understudied problem of I/O inactivity in VMs. It presents

VMIGRATER, a simple, fast and transparent system to greatly mitigate I/O inactivity.
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CHAPTER 3

VSMT-IO: IMPROVING I/O PERFORMANCE AND EFFICIENCY ON SMT
PROCESSORS IN VIRTUALIZED CLOUDS

3.1 Introduction

Simultaneous Multi-Threading (SMT), or Hyper-Threading (HT) on x86 processors, is

widely enabled on most cloud infrastructures [71; 72; 73; 74]. For example, in Amazon

EC2 [71], virtual instances can have their virtual CPUs (vCPUs) run on dedicated

hardware threads or time-share hardware threads. With SMT, multiple hardware threads

share the same set of execution resources in each core, such as functional units and

caches. Thus, when enabled, SMT can effectively improve resource utilization and system

throughput.

On SMT processors, CPU schedulers are critical for achieving high performance.

To make optimal scheduling decisions, they must fully consider and leverage the

performance features of SMT processors, particularly the intensive resource sharing

between hardware threads. For example, intensive study has concentrated on symbiotic

scheduling algorithms, which co-schedule the threads that can fully utilize the hardware

resources with minimal conflicts on each core [75; 76; 77; 78; 79; 80].

Existing scheduling optimizations for SMT processors, including symbiotic

scheduling and other enhancements in existing system software [81; 82; 83], mainly target

computation-intensive workloads and aim to improve processor throughput. However, the

techniques that can effectively and efficiently improve the performance of I/O-intensive

workloads on SMT-enabled systems have not been paid enough attention. These
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techniques are particularly important when a system has both computation workloads and

I/O workloads, and requires both high processor throughput and high I/O throughput.

To improve I/O workload performance, existing CPU schedulers generally use two

techniques, polling [84; 85; 86] and boosting the priority of I/O workloads [17; 61; 87].

However, with these techniques, I/O workloads incur high overhead on SMT processors

due to busy-looping and increased context switches, which can significantly reduce the

performance of computation running on other hardware threads.

This problem is particularly significant and detrimental in clouds. In clouds,

I/O workloads and computation workloads are usually consolidated on the same server

to improve system utilization [17; 87; 88; 89; 90]. At the same time, virtualization

is dominantly used in clouds, which causes busy-looping and context switches to

incur higher overhead, because extra operations must be carried out to deschedule and

reschedule virtual CPUs, as we will show in §3.2.

To control the overhead of polling and I/O workload priority boosting, existing

system designs make trade-offs between the efficiency and the effectiveness of these

techniques, which undermine the performance of I/O workloads. For polling, existing

systems usually incorporate a short timeout to keep the busy-looping brief. For priority

boosting, it has been a long-standing dilemma to make I/O workloads preempting the

running workloads promptly or with some extra delay; to resolve this dilemma, Linux uses

a scheduling delay parameter (tunable, usually a few milliseconds) as a knob to trade-off

I/O workloads responsiveness and the increased context switch overhead.

Instead of improving the effectiveness-efficiency trade-off, the paper seeks a

fundamental solution to the above problem. The key is a technique that can effectively
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improve the performance of I/O workloads with high efficiency. Our solution is

motivated by the hardware-based design for efficient blocking synchronization on SMT

processors [91]. With the design, blocking synchronizations can be finished efficiently

without busy-looping or context switches. Specifically, the design allows a thread blocked

at a synchronization point to free all its resources for other hardware threads to use, except

for its hardware context; thus, when the thread is unblocked, it can resume its execution in

a few cycles.

Our solution targets virtualized clouds and x86 SMT processors. It is built on a

hardware-based blocking mechanism for vCPUs, named Context Retention. Context

retention is implemented with Intel vCPU Monitor/mwait support [92]. With context

retention, when a vCPU is waiting for an I/O event, its execution context can be held on a

hardware thread without busy-looping involved; upon the I/O event, the vCPU can resume

execution quickly without a context switch.

3.1.1 Technical Issues

While the rationale of the context retention mechanism is straightforward, maximizing its

potential on improving performance needs to address three technical issues listed below.

These issues arise mainly because context retention may be long time periods. Many I/O

operations have long latencies in millisecond scale, and the latencies may further increase

due to queueing/scheduling delays. To avoid context switches, the contexts of the vCPUs

waiting for the finish of these operations need to be retained on hardware threads for the

same amount of time.
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First, uncontrolled context retention can diminish the benefits from simultaneous

multithreading, because context retention reduces the number of active hardware threads

on a core. This issue is particularly serious for x86 processors, which only implement

2-way SMT1. When a hardware thread is used for context retention, only one hardware

thread remains for computation.

Second, context retention consumes the timeslice of an I/O workload, and thus

reduces its timeslice available for computation. We found that, if not well controlled,

context retention can even reduce the throughput of I/O workloads.

Third, due to context retention and burstiness of I/O operations [93], the resource

demand of an I/O workload may vary dramatically on a hardware thread. This makes it

a challenging task to improve processor throughput with existing symbiotic scheduling

methods. To determine which workloads may make fast progress if scheduled on the same

core, existing symbiotic scheduling methods periodically profile workload executions and

make predictions based on the profiling results. Thus, these methods are effective only

when the workload on each vCPU changes steadily. They must be substantially extended

to handle I/O workloads.

3.1.2 Major Techniques

We implement our solution and address the above issues by designing the VSMT-IO

scheduling framework. It has two major components. The Long-Term Context

Retention (LTCR) mechanism is mainly to maximize I/O throughput with high efficiency.

1Though some Xeon Phi processors implement 4-way SMT, the paper targets 2-way SMT x86
processors because of their overwhelming dominance in clouds.

42



The Retention Aware Symbiotic Scheduling (RASS) algorithm is mainly to maximize

processor throughput.

The LTCR mechanism mainly addresses the first two issues identified in

Section 3.1.1. It holds the context of the vCPU waiting for an I/O event on a hardware

thread for an extended time period. If the expected I/O event happens in this period, the

vCPU can quickly resume and respond to the event. Otherwise, the vCPU is descheduled.

The maximum length of the time period is carefully adjusted in a way that both processor

throughput and I/O throughput can be improved.

With LTCR, the context of an I/O workload can be held for as long as a few

milliseconds, which is more than 10x longer than the busy-looping timeout used in system

software (sub-millisecond) [84; 85]. This makes LTCR capable of dealing with relatively

high I/O latencies, which are associated with slow I/O operations (e.g., HDD accesses

and SSD writes) or caused by various system factors (e.g., queueing/scheduling delay and

SSD block erase). In contrast, polling is used only when I/O workloads interact with low

latency devices, e.g., local network and NVMe devices [94; 86].

The RASS algorithm mainly addresses the third issue identified in Section 3.1.1.

On each core, it classifies the vCPUs into two categories, CPU-bound vCPUs and I/O-

bound vCPUs. It uses one hardware thread for running CPU-bound vCPUs and the other

hardware thread mainly for I/O-bound vCPUs. In this way, the computation on the CPU-

bound vCPUs can overlap to the greatest extent with the context retention periods on the

other hardware thread. This effectively improves processor throughput, since CPU-bound

vCPUs can take advantage of the hardware resources released due to context retention to

make fast progress. RASS schedules CPU-bound vCPUs on both hardware threads only
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when I/O-bound vCPUs are not ready to run. In this case, RASS selects CPU-bound

vCPUs based on the symbiosis between vCPUs (i.e., how well the vCPUs can share the

hardware resources and make progress when co-scheduled).

With RASS, the first two issues identified in Section 3.1.1 can be further mitigated.

LTCR mainly targets long context retentions. It limits the lengths of context retentions to

mitigate the resource underutilization they cause and reduce the timeslice they consume.

However, it cannot deal with the issues caused by relatively short context retentions. For

these context retentions, RASS mitigates the resource underutilization issue (the first issue

in Section 3.1.1) by overlapping computation and context retention; to mitigate the second

issue, it helps ensure the supply of timeslice to I/O-bound vCPUs by running them on

dedicated hardware threads with high priorities.

The paper makes the following contributions. First, the paper identifies the

efficiency issues in existing CPU schedulers when they are used to improve I/O

performance on SMT-enabled systems, and proposes a novel idea, context retention,

to improve efficiency. Second, it identifies the issues in implementing the idea, and

explores effective techniques to address these issues, including long term context retention

and retention-aware symbiotic scheduling. Third, targeting virtualized clouds and x86

processors, the paper designs VSMT-IO to implement the idea and the techniques, and

builds a system prototype based on KVM [95]. Forth, it has evaluated VSMT-IO with

extensive experiments and a diverse set of 7 programs, including DBMS, web servers,

AI workloads, and Hadoop jobs, and compared the performance of VSMT-IO with the

vanilla system and widely-adopted enhancements. The experiments show that VSMT-IO

can improve I/O throughput by up to 88.3% and processor throughput by up to 123.1%.
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3.2 Background and Motivation

Targeting virtualized clouds, this section demonstrates the efficiency issues of existing

schedulers in improving I/O performance on SMT-enabled systems. It first introduces

these techniques, and experimentally verifies their inefficiency and the caused performance

degradation (§3.2.1). Then, it explains why the issues are serious on virtualized platforms

(§3.2.2).

3.2.1 Inefficient I/O-Improving Techniques

I/O-intensive applications are usually driven by I/O events. A pattern repeated in their

executions is waiting for I/O events (e.g., queries received from network, or data read

from disks), processing I/O events, and generating new I/O requests (e.g., responses to

queries, or more disk reads). Thus, high I/O performance not only depends on fast and

well-managed I/O devices to quickly respond to I/O requests. It also depends on the

applications to promptly respond to various I/O events, such that new I/O requests can be

generated and issued to I/O devices quickly.

Thus, CPU schedulers play an important role in improving I/O performance. To

increase the responsiveness of I/O workloads to I/O events, existing schedulers use two

general techniques — polling for low-latency I/O events and priority boosting for high-

latency I/O events. With polling, an I/O workload waiting for an I/O event enters a busy

loop (implemented with PAUSE on x86 processors) with a pre-set timeout. The workload

keeps looping before it is interrupted upon the expected I/O event or is descheduled due

to timeout. Thus, polling allows a workload to respond to I/O events with a minimal

delay before timeouts. With priority boosting, upon an I/O event, the priority of the I/O
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workload is boosted, such that it can quickly preempt a running workload to respond to

the I/O event.

On virtualized platforms, I/O workloads run on vCPUs; and vCPU scheduling

becomes a key component affecting I/O performance. For vCPUs, polling may be

implemented in guest OS kernel [96]. However, busy-looping in guest OS causes

unnecessary VM EXITs and extra overhead on x86 processors when Pause Loop Exiting

(PLE) is enabled. Thus, recent designs (e.g., HALT-Polling [85]) usually implement

polling at the VMM level. Priority boosting may be implemented by adjusting priorities

explicitly [17] or by implicitly associating priorities with CPU time consumption. For

example, Linux/KVM allows the vCPUs with lower CPU time consumption (e.g.,

I/O-bound vCPUs) to preempt the vCPUs with higher CPU time consumption [97;

17].

Though polling and priority boosting can improve the performance of I/O

workloads, they are inefficient on SMT processors. The operations associated with

these techniques, busy-looping and context switches, waste the hardware resource that

can be otherwise utilized by the computation on other hardware threads. Thus, the

inefficiency may not be an issue when a system has only I/O workloads; but it becomes

detrimental when I/O workloads are consolidated with computation workloads. Efficiency

can be improved by making these techniques less aggressive, e.g., enforcing a shorter

timeout for polling. However, this sacrifices the effectiveness of these techniques and I/O

performance.

We illustrate the inefficiency issue with polling and priority boosting using the

experiments with two combinations of applications, Sockperf with MatMul, and Redis
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with PageRank. Sockperf and Redis are I/O-bound. MatMul and PageRank are

CPU-bound. We run each combination on a 24-core server (48 hyperthreads) with each

application running in a 48-vCPU VM. This results in 2 vCPUs on each hyperthread. The

VMs are managed by KVM/Linux. Detailed server/VMs configurations and application

descriptions can be found in §4.5.

Table 3.1 Existing Techniques Handling I/O Workloads Incur Frequent VCPU Switches
and Massive Spinning, and Are Inefficient on SMT Processors. “VCPU Switches”
Are Counts of Context Switches Between VCPUs Every Second in the Server. The
Performance Improvements Are Relative to “Vanilla” KVM.

workloads
KVM w/

enhanced HALT-Polling VSMT-IO

vCPU
switches

spinning
time

perf.
imprv.

vCPU
switches

spinning
time

perf.
imprv.

Sockperf
MatMul

12.5K 40.1%
16.1%

3.3K
- 56.5%

8.2% 57.4%
Redis

PageRank
43.9K 27.5%

8.4%
15.1K

- 88.3%
7.7% 123.1%

To illustrate the inefficiency issue on a well-tuned system with high efficiency,

we have enhanced the HALT-Polling implementation in KVM. The enhancement makes

HALT-Polling more effective, so as to further reduce context switches between vCPUs

and make vCPUs more responsive to I/O events. Specifically, with the “vanilla”

implementation, an idle vCPU is not allowed to perform HALT-Polling when there is

another vCPU ready to run on the same hyperthread. The enhancement removes this

restriction. It also increases the maximum timeout that is allowed in HALT-Polling.

(HALT-Polling adjusts timeout value dynamically between 0 and a maximum value.) The

enhancement improves the performance of the applications by 7.7% ∼ 16.1%.

As shown in Table 3.1, both application combinations incur frequent vCPU switches.

For example, Redis and PageRank incur a vCPU switch about every 1 millisecond on each
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hyperthread. At the same time, a substantial portion of CPU time is spent by polling (e.g.,

40.1% for Sockperf and MatMul). vCPU switches and such massive polling inevitably

degrade performance, as we will show later.
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Figure 3.1 Tweaking existing techniques for scheduling I/O workload cannot substantially
improve performance. (The throughputs are normalized to those with vanilla KVM.)

The performance advantage of the enhanced HALT-Polling is achieved by increasing

polling to reduce costly vCPU switches. This demonstrates some potential to tweak

existing designs. However, to improve performance significantly, major changes must be

made. To illustrate this, Figure 3.1 shows how the performance of Redis and PageRank

changes when tweaking the key parameters of polling and priority boosting. We first tweak

the timeout used in HALT-Polling and vary it from 10 microseconds to 5 milliseconds.

Figure 3.1(a) shows that increasing timeout only slightly improves performance when

timeout value is small. However, the performance improvement of these two applications

hits a plateau at about 10% after the timeout value reaches 200 microseconds.

Then, we adjust the scheduling delay parameter in Linux. The parameter controls

the delay between a vCPU being woken up upon an I/O event and the vCPU preempting

another vCPU. Thus, increasing the parameter essentially reduces the priority of I/O-
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bound vCPUs and reduces vCPU switches. As Figure 3.1(b) shows, the average

performance barely changes; and increasing this parameter is basically sacrificing I/O

performance for higher processor throughputs.

The aim of VSMT-IO is to substantially reduce the overhead caused by spinning

and vCPU switches. The reduced overhead improves the performance of computation

workloads. As shown in Table 3.1, reducing more than 2/3 of vCPU switches and

eliminating spinning lead to significant performance improvement to PageRank (123.1%

relative to vanilla KVM or 107.1% relative to enhanced KVM). More importantly, the

performance improvement of computation workload is not at the cost of I/O performance.

With VSMT-IO, the throughput of Redis is increased by 88.3% over vanilla KVM or

73.7% over enhanced KVM. The system I/O throughput is also increased by 75.1% over

enhanced KVM.

3.2.2 Overhead of Polling and Context Switches

Existing techniques for improving I/O performance are inefficient on SMT processors,

because context switches and polling waste the resource that can be otherwise utilized by

the computation on other hardware threads. Targeting virtualized clouds, this subsection

highlights the overhead of these operations with experiments and explains how such high

overhead is incurred.

Table 3.2 VCPU Switches and HALT-Polling on A Hyperthread Slow Down the
Computation on the Other Hyperthread.

Hyperthread 1 Hyperthread 2 Relative performance
- MatMul 100%

vCPUs Switches MatMul 32%
HALT-Polling MatMul 73%
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In the experiments, we run a MatMul thread on a hyperthread. Then, on the other

hyperthread, we make two vCPUs switch back and forth or make a vCPU repeat the HALT-

Polling loop. We check how the performance of MatMul is impacted by these operations.

The experiments show that vCPU switches slow down MatMul by about 70%,

and HALT-Polling slows it down by about 30% (Table 3.2). While the slowdowns

explain the inefficiency of polling and priority boosting techniques, we were surprised

at these slowdowns. We expected the slowdown caused by vCPU switches to be around

50%, because there are two streams of instructions compete for CPU resource on the

hyperthreads, and expected the slowdown caused by HALT-Polling to be minimal, because

PAUSE instruction is designed to consume minimal resource.

We have diagnosed the slowdowns. vCPU switches cause large slowdowns mainly

because the L1 data cache shared by both hyperthreads needs to be flushed during vCPU

switches to address the L1 Terminal Fault problem [98; 99]. Other costly operations,

including TLB flush [100], handling rescheduling IPIs [101], and the execution of

scheduling algorithm, also contribute to the performance impact incurred by vCPU

switches. The slowdown caused by HALT-Polling is larger than expected because the

operations other than PAUSE are executed. HALT-Polling is implemented in the VMM.

Thus, VM EXIT is incurred when a vCPU enters HALT-Polling. VM EXITs are costly

operations [102]. During the polling, the instructions controlling the busy-loop are

executed repeatedly. They are also more costly than PAUSE.
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3.3 Basic Idea and Technical Issues

As Section 3.2 shows, polling and priority boosting incur high overhead on SMT

processors; tweaking these techniques yields only marginal performance improvements.

This requires that a new and efficient technique be developed to handle I/O workloads.

On a SMT processor, an efficient technique must consume minimal hardware

resources. In a scheduling technique for improving I/O performance, two factors

determine its hardware resource consumption. One is how to handle an I/O workload while

it is waiting for the completion of an I/O operation. The other is how to quickly resume the

execution of the I/O workload upon the completion of the expected I/O operation. Polling

and priority boosting each concentrate on reducing the resource consumption of only one

factor, but at the cost of high resource consumption in the other factor. Our solution aims

to minimize the resource consumption of both factors.

Our solution leverages two features of SMT processors: 1) hardware-based blocking

support, and 2) intense resource sharing between hardware threads. With these features,

we implement a Context Retention mechanism for vCPUs. While a vCPU is waiting

for the completion of I/O operations, it can “block” itself on a hardware thread, and

release all its resources for other hardware threads to use, except for its hardware context.

This minimizes the resource consumption required by waiting for the completion of I/O

operations. With the hardware context, the vCPU can be quickly “unblocked” without

context switches upon the completion of the I/O operations. This minimizes the resource

consumption required to quickly resume the execution of I/O workloads. Table 3.3

summarizes the benefits of context retention from the perspectives of both I/O workloads

and computation workloads.
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Table 3.3 Summary of Benefit and Overhead of Context Retention.
Benefit Overhead

I/O better responsiveness
timeslice charged

for context retention

Computation
extra resources from reduced
context switches and polling

resource
underutilization

Though context retention consumes minimal hardware resources, it does incur some

overhead, which are as summarized in Table 3.3 and must be reduced for better efficiency.

From the perspective of computation workloads, because not all the hardware threads can

be used for computation, the overhead is reflected by resource underutilization. Given that

a x86 core has two hyperthreads, to avoid low utilization, one must be doing computation

while the other does context retention. Even with this arrangement, full utilization may

not be achieved.

From the perspective of I/O workloads, they are charged for vCPU usage while they

retain contexts; so only short context retention periods are cheaper than descheduling and

rescheduling vCPUs; but longer retention periods are not. This problem can be illustrated

by the performance of I/O workload Redis in Figure 3.1(a). Increasing HALT-Polling

timeout improves the performance of Redis when the timeout value is low. However,

after the timeout exceeds 0.5 millisecond, further increasing the timeout degrades its

performance. This is because, with a longer timeout, polling consumes more timeslice

and reduces the timeslice available to the computation in Redis. Though polling is used

in this experiment, if polling is replaced with context retention, the performance trend

would be similar.

For the above overhead issues, a natural solution is to control the maximum length

of context retention, such that extended context retention periods will not cause high
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overhead. However, this solution cannot deal with the overhead of the context retention

periods that are relatively short. Reducing this overhead requires some enhancement in

vCPU scheduling. For example, resource underutilization can be mitigated by scheduling

a resource-demanding vCPU on a hyperthread when context retention is in progress on the

other hyperthread; the vCPUs with much timeslice consumed by context retention can be

compensated with extra timeslice.

In addition to the overhead issues, context retention also creates some challenge

on the integration of symbiotic scheduling methods, which are needed for improving

CPU performance. The key of symbiotic scheduling is to estimate how well a group

of workloads can corun on a SMT core (i.e., symbiosis level) [103; 76; 77; 78;

79]. This is achieved by monitoring workload executions periodically. For instance,

SOS (Sample, Optimize and Symbiosis) [75] samples workload executions periodically

in sample phases to determine their symbiosis levels, and preferentially coschedules

tasks with the highest symbiosis levels in symbiosis phases. Thus, existing symbiotic

scheduling methods require that the resource demand of a workload change steadily during

its execution. Due to context retention and burstiness of I/O operations [93], the resource

demand of an I/O workload changes dramatically during its execution on a vCPU. Existing

symbiotic scheduling methods cannot handle such workloads. This issue may be addressed

by coscheduling I/O workloads with computation workloads, such that symbiosis levels

can be lifted by overlapping context retention with resource-demanding computation.

Existing symbiotic scheduling methods can still be used to handle computation workloads.
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3.4 VSMT-IO Design

We implement our idea and address the technical issues in VSMT-IO. In this section, we

present the overall architecture of VSMT-IO and its major components.
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Figure 3.2 VSMT-IO Architecture. Key components are in orange.

3.4.1 Overview

Figure 3.2 shows the overall architecture of VSMT-IO. VSMT-IO incorporates four major

components:

The Long Term Context Retention (LTCR) mechanism on each core implements

context retention. To prevent extended context retention periods causing high overhead

(resource underutilization and timeslice consumption), it enforces a context retention

timeout, and dynamically adjusts the timeout value.
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The Retention Aware Symbiotic Scheduling (RASS) algorithm is mainly to

increase the symbiosis levels of the vCPUs running on the hypertheads in each core.

To achieve this, RASS classifies vCPUs into two categories, CPU-bound vCPUs and

I/O-bound vCPUs, and schedules CPU-bound vCPUs on a hyperthread and I/O-bound

vCPUs on the other hyperthread. CPU-bound vCPUs run on both hyperthreads only when

I/O-bound vCPUs are not ready to run. In this way, the resource-demanding computation

on CPU-bound vCPUs can overlap to the greatest extent with the resource-conserving

context retention periods on I/O-bound vCPUs. Increased symbiosis levels improve CPU

performance and reduce the overhead of context retentions. At the same time, using a

dedicated hyperthread for I/O-bound vCPUs allows them to use extra CPU time as a

“compensation” for the timeslice charged in context retention periods, and further prevents

them from being unfairly penalized.

The Workload Monitor on each core monitors vCPU executions. It characterizes

the workloads on the vCPUs and measures performance. It provides workload information

for RASS to classify and schedule vCPUs and for the workload adjuster introduced below

to adjust the workloads between cores. It provides performance information for LTCR to

adjust the timeout value.

The effectiveness of RASS relies on the heterogeneity of the workloads on each

core, some being CPU-bound and some others being I/O-bound. The Workload Adjuster

supplements RASS. It adjusts the workloads on each core to maintain their heterogeneity

by migrating vCPUs between cores.
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Algorithm 1 Context Retention Timeout Adjustment
1: Td : desired timeout value; Te: effective timeout value; Tinit : initial timeout value; P: time

period between two adjustments

2: Td ← Tinit

3: while true do
4: Te← Td , collect performance data for a time period of P
5: if TESTTIMEOUT(Td * 1.1) then
6: Td ← Td ∗1.1; continue
7: else
8: Te← Td , collect performance data for a time period of P
9: end if

10: if TESTTIMEOUT(Td * 0.9) then
11: Td ← Td ∗0.9; continue
12: end if
13: end while
14: function TESTTIMEOUT(T )
15: Te← T , collect performance data for a time period of P
16: Scpu← average speed-up of CPU-bound vCPUs
17: Sio← average speed-up of I/O bound vCPUs
18: if Scpu > 1 and Sio > 1 then return true; end if
19: return false
20: end function

3.4.2 Long Term Context Retention (LTCR)

On x86 processors, we implement vCPU context retention with the vCPU Monitor/mwait

support. Specifically, to wait for an I/O event, a vCPU calls a mwait instruction paired

with a vCPU Monitor instruction that specifies a memory location in guest OS. The mwait

instruction “blocks” the vCPU and keeps its context on the hyperthread. With the vCPU

Monitor/mwait support, the mwait instruction ends automatically when the content at

the memory location is updated or an interrupt is directed to the hyperthread. Since both

I/O events and timeouts can be notified with interrupts, we choose to use interrupts to stop
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mwait. To prevent mwait from being terminated by memory writes prematurely, we set

the memory location used in vCPU Monitor read-only.

The context retention timeout is to balance the cost and benefit of context rentention.

Based on the summary in Table 3.3, for I/O workloads, lengthening a context retention is

always a gain when it consumes less timeslice than descheduling and then rescheduling

a vCPU. For computation workloads, context retention is rewarding when the amount of

resource saved by reducing context switches and polling exceeds the amount of resource

that cannot be utilized due to context retention. In the cases where one hyperthread does

computation and the other hyperthread does context retention, context retention is always

rewarding if it is not longer than the time spent on descheduling and then rescheduling a

vCPU, based on the measurements shown in Table 3.2. Thus, context retention timeout

can be set to be at least the time required by descheduling and rescheduling a vCPU. Then,

longer timeouts can be tested.

LTCR uses algorithm 1 to adjust the context retention timeout periodically. The

algorithm slightly increases or decreases the timeout value, checks whether performance

is improved with the new value, and keeps the new value if it is. The algorithm uses the

vCPU performance information collected by the workload monitor to determine whether

performance is improved. Specifically, it uses IPC (instruction per cycle) to measure

the performance of CPU-bound vCPUs, and uses the frequency of context retentions

(i.e., number of context retentions per second) to measure the performance of I/O-bound

vCPUs. Then, the algorithm calculates a speed-up for each vCPU. A speed-up value

greater than 1 indicates that the performance of the vCPU has been improved with the new

timeout value. It averages the speed-up values of CPU-bound vCPUs, and averages the
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speed-up values of I/O-bound vCPUs. The algorithm determines that the performance is

improved and the new timeout value should be kept only if both average values are greater

than 1.

3.4.3 Retention Aware Symbiotic Scheduling (RASS)

RASS schedules the vCPUs on each core with the main aim of maximizing the compu-

tation throughput of the core. This is achieved by increasing the symbiosis levels of the

vCPUs running on the hypertheads. RASS combines two methods. One is unbalanced

scheduling that maximizes the overlapping between resource-demanding computation and

resource-conserving context retention periods (Section 3.4.3). The other is symbiotic

scheduling based-on cycle accounting to select CPU-bound vCPUs with high symbiosis

levels when both hardware threads need to run CPU-bound vCPUs (Section 3.4.3).

Unbalanced Scheduling Unbalanced scheduling classifies vCPUs into two categories,

CPU-bound vCPUs and I/O-bound vCPUs, and schedules them on paired hyperthreads

(See Figure 3.3). The classification is based on how much time each vCPU spends on

context retention. Specifically, for each vCPU, a context retention rate is calculated and

updated periodically. It is the ratio between the time spent on context retention in last time

period and the period length. When a new period begins, the vCPUs are ranked based on

their context retention rates. The vCPUs with higher context retention rates are considered

to be I/O-bound, and the rest are CPU-bound.

When the hyperthread running I/O-bound vCPUs is idle, a CPU-bound vCPU is

selected based on the symbiosis level (Section 3.4.3) and migrated to this hyperthread.

This is to improve the utilization of CPU hardware to further increase CPU performance.
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Figure 3.3 Computation and context retention are distributed to different hyperthreads
with unbalanced scheduling.

The CPU-bound vCPU can only run with a priority lower than the I/O-bound vCPUs. It

is preempted and migrated back when an I/O-bound vCPU becomes ready to run. This

is to prevent the CPU-bound vCPU from blocking I/O-bound vCPUs and degrading I/O

performance.

Unbalanced scheduling assumes that each vCPU has been attached with a weight,

e.g., that used in Linux Completely Fair Scheduler (CFS). When classifying the vCPUs,

it tries to balance the total weight of CPU-bound vCPUs and the total weight of I/O-

bound vCPUs, and make them roughly equal. This is mainly to balance the load on the

hyperthreads and reduce the migration of CPU-bound vCPUs.

The compensation to I/O-bound vCPUs for the timeslice consumed by context

retentions can also be implemented by adjusting the weights of vCPUs. For example,

the weights of the vCPUs can be increased based on their context retention rates. For

the vCPUs that spend more time on context retentions than other vCPUs, their weights are
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increased by larger percentages. In this way, fewer vCPUs are classified as I/O-bound, and

share the same hyperthread. However, we found that this adjustment is not necessary in

most cases. The main reason is that I/O-bound vCPUs usually have low CPU utilization.

Thus, even with context retention, some I/O-bound vCPUs still cannot fully consume

their timeslice. Other I/O-bound vCPUs that need more timeslice acquire automatically

extra timeslice as compensation. This is because the scheduler is work-conserving, and

I/O-bound vCPUs have higher priority than CPU-bound vCPUs on the hyperthread and

are supplied with extra timeslice first.

Symbiotic Scheduling Based on Cycle Accounting When both hyperthreads need to

run CPU-bound vCPUs, the symbiosis levels between vCPUs must be considered. RASS

determines the symbiosis levels using the cycle accounting technique [104; 105; 106; 107].

It is a symbiotic scheduling technique for threads. We only adapt its method that estimates

the symbiosis levels between threads and use it on vCPUs.

We select this technique because of its high practicality. To estimate the symbiosis

levels between threads, it samples and characterizes each individual thread, and inputs

the characterization into an interference estimation model. Compared to SOS (Sample,

Optimize and Symbiosis), which samples the execution of possible thread combi-

nations [75], the cycle accounting technique has a much lower complexity (O(n) vs.

O(n2)) and thus higher practicality.

The cycle accounting technique uses three parameters, which are the components of

the CPI (cycler per instruction), to characterize a thread. The base component (B) is the

number of cycles used to finish an instruction when all the required hardware resource and

data are locally available; the miss component (M) is the number of cycles used to handle
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misses (e.g., cache misses and TLB misses); the waiting component (W) is the number of

cycles waiting for hardware resource to become available. The CPI value is roughly the

sum of B, M, and W.

When the parameters of a thread are being measured, the cycle accounting technique

requires that the thread run alone on the core without any computation on the other

hyperthread so as to eliminate interference. This incurs non-trivial overhead. To reduce

this overhead, we take advantage of context retentions, and measure the parameters of a

CPU-bound vCPU when it is running on a hyperthread and context retention is in progress

in the other hyperthread. We obtain the base component, the miss component, and the CPI

of the vCPU using hardware counters, and calculate the waiting component from this.

3.4.4 Workload Adjuster

The effectiveness of RASS relies on the heterogeneity of the workloads on each core,

some being CPU-bound and some others being I/O-bound. Its performance advantage may

diminish when workloads become homogeneous due to factors, such as load balancing and

phase changes in workloads. The workload adjuster is designed to maintain the workload

heterogeneity on each core.

The workload adjuster measures workload heterogeneity and characterizes the

overall workload type by calculating the standard deviation and the average value of vCPU

context retention rates. If a group of vCPUs have a small deviation value, their workloads

are generally homogeneous; if the average context retention rate of a group of vCPUs

is very high, these vCPUs are likely to be I/O-bound; if the average rate is very low, the

vCPUs are likely to be CPU-bound. The workload adjuster calculates these values for each
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core, and updates them periodically to detect the need for workload adjustment. When the

standard deviation drops below a pre-set threshold, workload adjustment starts.

To adjust the workloads, the adjuster finds the core with the smallest deviation.

Then, based on the average context retention rate of the core (e.g., a very small average

value of CPU-bound vCPUs), the adjuster searches for another core, which is dominated

by the other type of vCPUs (e.g., I/O-bound vCPUs). The search is done by examining

the average context contention rates of other cores. The desired core is the one with the

average context contention rate that differs from the former average rate by the largest

degree (e.g., a very large average value of I/O-bound vCPUs). After a such core is found,

the adjuster ranks the vCPUs based on their context retention rates on each of these two

cores, selects the vCPU ranked in the middle on each core, and swaps the two vCPUs.

3.5 Implementation Details

We have implemented a prototype of VSMT-IO based on Linux/KVM. We added/-

modified about 1300 lines of source code mainly in KVM kernel modules and Linux

CFS 2. The workload monitor and the long-term context retention (LTCR) components

are mainly implemented in a KVM kernel module by changing kvm main.c. In LTCR,

the context retention mechanism needs to be implemented in guest OS to minimize

overhead. Though it can be implemented as an idle driver kernel module [108], we

choose to directly change the idle loop in idle.c to simplify the implementation. Context

retention is implemented with a loop, which repeatedly calls vCPU Monitor, mwait,

and the need sched() function of Linux kernel. It is inserted at the beginning of each

iteration of the idle loop. Implementing context retention with a loop is to prevent it
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from being terminated prematurely by irrelevant interrupts. The loop terminates when a

thread becomes “ready” on the vCPU (fulfilled with the need sched() call). Thus, context

retention can finish upon the expected I/O event. The loop also ends if a timer interrupt

“marking” the timeout of the context retention is received by the vCPU. To differentiate

this interrupt from regular timer interrupts, we change the two unused bits in the VM

execution control register, and use them as a timeout flag.

Retention aware symbiotic scheduling and workload adjuster are implemented based

on Linux CFS in fair.c and core.c. Thus, the original scheduling and load balancing

policies implemented in CFS are followed in most cases, e.g., when deciding which

I/O-bound vCPU is the next to run on a hyperthread. However, when deciding which

CPU-bound vCPU is the next to run, the symbiotic scheduling policy in RASS and the

fairness based scheduling policy in CFS have different objectives, and thus may decide to

select different vCPUs. To coordinate these different objectives, our implementation let

Linux CFS select a few vCPUs based on its policies. Then, among these vCPUs, RASS

selects a vCPU based on symbiosis.

3.6 Performance Evaluation

With the prototype implementation, we have evaluated VSMT-IO extensively with a

diverse set of workloads. The objectives of the evaluation are four-fold: 1) to show

that VSMT-IO can improve I/O performance with high efficiency and benefit both I/O

workload and computation workload, 2) to verify the effectiveness of the major techniques

used in VSMT-IO, 3) to understand the performance advantages of VSMT-IO across

2Source code can be found at https://github.com/vSMT-IO/vSMT-IO.
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diverse workload mixtures and different scenarios, and 4) to evaluate the overhead of

VSMT-IO.

3.6.1 Experiment Settings

Our evaluation was done on a DELLTM PowerEdgeTM R430 server with two 2.60GHz

Intel Xeon E5-2690 processors (two NUMA zones), 64GB of DRAM, a 1TB HDD, and

an Intel I350 Gigabit NIC. Each processor has 12 physical cores, and each physical core

has two hyperthreads. With KVM, we built four VMs, each with 24 vCPUs and 16GB

memory. Both the host OS and guest OS are Ubuntu Linux 18.04 with kernel updated to

5.3.1. We test VSMT-IO with a large and diverse set of workloads generated by typical

applications from different domains, as summarized in Table 3.4. In the experiments, each

VM encapsulates one workload.

We test VSMT-IO under two settings. Under the first setting, we launch two VMs;

thus each vCPU has a dedicated hyperthread. We compare VSMT-IO against three

competing solutions: 1) Blocking, which immediately deschedules the vCPUs waiting

for I/O events, and is implemented by disabling HALT-Polling in KVM; 2) Polling, which

is implemented by booting guest OS with parameter idle=poll configured [109] (timeout

is not enforced for best I/O performance); and 3) HaltPoll implemented in KVM, which

combines polling and priority boosting techniques.

Under the second setting, we launch four VMs; thus, each hyperthread is time-shared

by two vCPUs. Without a timeout, Polling is not a choice for improving I/O performance

under this setting. Thus, we compare VSMT-IO against 1) vanilla KVM, which

uses priority boosting to improve I/O performance, because HaltPoll implemented
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Table 3.4 Benchmark Applications Used to Test VSMT-IO.

App. Workload Description
Redis Serve requests (randomly chosen keys, 50% SET, 50% GET) [110].
HDFS Read 10GB data sequentially with HDFS TestDFSIO [51].

Apache HadoopTeraSort with Apache Hadoop [51].
HBase Read and update records sequentially with YCSB [54].
MySQL OLTP workload generated by SysBench for MySQL [111].
Nginx Serve web requests generated by ApacheBench [112].
ClamAV Virus scan a large file set with clamscan [49].
RocksDB Serve requests (randomly chosen keys, 50% SET, 50% GET) [113].
PgSql TPC-B-like workload generated by PgBench [114].
Spark PageRank and Kmeans algorithms in Spark [115].
DBT1 TPC-W-like workload [116].

XGBoost Four AI algorithms included in XGBoost [117] system.
MatMul Multiply two 8000x8000 matrices of integers.
Sockperf TCP ping-pong test with Sockperf [118].

in vanilla KVM is inactive under this setting, and 2) HaltPoll enhanced to support

time-sharing (described in Section 3.2.1).

We measure the throughputs of the workloads. We also collect response times if

the workloads report them. The performance measurements may vary significantly across

different workloads. When we present them in figures, for clarity, we normalize them

against those of Blocking under the first setting and priority boosting (i.e., vanilla

KVM) under the second setting.

3.6.2 One vCPU on Each Hyperthread

Under the first setting, I/O workloads can achieve the best performance with Polling. We

want to compare the effectivenss of VSMT-IO on improving I/O performance against

that of Polling by comparing the performance of I/O workloads managed with these

two solutions. Without a timeout, Polling incurs high overhead on SMT processors,
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and degrades the performance of other workloads on the processors. Blocking and

HaltPoll are more efficient solutions than Polling under this setting. We want to compare

the efficiency of VSMT-IO against that of Blocking and HaltPoll by comparing the

performance of computation workloads when they are collocated with I/O workloads

managed with these three solutions.

With the above objectives, we launch two VMs. We run MatMul in one VM, which

is computation-intensive, and run an I/O-intensive benchmark in the other VM. Figure 3.4

shows the normalized throughputs of MatMul and eight I/O-intensive benchmarks selected

to co-run with MatMul. Note that the performance with Blocking is shown with the flat

line at 100%.

With VSMT-IO, the I/O-intensive benchmarks achieve similar performance as they

do with Polling. The largest difference is with DBT1, 4.1%. This is because DBT1 incurs

a large number of random accesses to the HDD, which have long latencies exceeding the

timeout value used in LTCR. On average, the I/O intensive benchmarks are only 2.3%

slower with VSMT-IO. This shows that VSMT-IO is highly effective on improving I/O

performance.

The high effectiveness of VSMT-IO is achieved with high efficiency. This is

reflected by MatMul achieving higher performance with VSMT-IO consistently in all

the experiments than it with the other three solutions. On average, with VSMT-IO

the performance of MatMul is 37.9%, 14.5%, and 27.6% higher than it with Polling,

Blocking, and HaltPoll, respectively.

66



 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

R
o
ck

sD
B

M
atm

u
l

C
lam

A
V

M
atm

u
l

P
g
S

Q
L

M
atm

u
l

M
y
S

Q
L

M
atm

u
l

D
B

T
1

M
atm

u
l

H
b
ase

M
atm

u
l

M
o
n
g
o
D

B
M

atm
u
l

H
D

F
S

M
atm

u
l

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t 

(%
)

Polling

HALT-Polling

vSMT-IO

Figure 3.4 Throughputs of MatMul and eight I/O-intensive benchmarks when MatMul is
collocated with each of the benchmarks in two VMs. Each vCPU runs on a dedicated
hyperthread. Throughputs are normalized to those of Blocking.

3.6.3 Multiple vCPUs Time-Sharing a Hyperthread

With multiple vCPUs on each hyperthread, context switches are usually incurred when

improving I/O performance. It becomes more difficult for I/O-improving solutions to

maintain high efficiency. We want to know to what extent the effectiveness and efficiency

of VSMT-IO can be maintained. At the same time, VSMT-IO can be fully exercised under

this setting. We want to verify the effectiveness of the major techniques in VSMT-IO.

In the experiments, we launch four VMs. On two of the VMs, we run two instances

of the same benchmark, which is computation-intensive, e.g., Nginx, or AI algorithms in

XGBoost. On the other two VMs, we run two instances of another benchmark, which is

I/O-intensive, e.g., web server, or file server.

Figure 3.5 shows the normalized throughputs for eight benchmark pairs. In each

pair, the first benchmark is I/O intensive, and the second benchmark is computation

intensive. The enhanced HaltPoll can effectively improve the throughputs of I/O-
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intensive benchmarks, because polling can “absorb” some context switches caused by

I/O operations. Compared to vanilla KVM, the throughputs of I/O intensive benchmarks

are increased by 36.9% on average. However, polling consumes CPU resources and

may degrade the performance of other workloads (e.g., Nginx and Regression). Because

the length of polling is carefully controlled in HaltPoll, on average the throughputs of

computation-intensive benchmarks are similar to those with vanilla KVM.

Compared to enhanced HaltPoll, VSMT-IO can more effectively improve the

throughputs of I/O-intensive benchmarks. On average, their throughputs are 29.5% higher

than those with enhanced HaltPoll. More importantly, this is achieved by improving

the throughputs of computation-intensive workloads at the same time. On average, the

throughputs of computation-intensive workloads with VSMT-IO are 22.8% and 18.4%

higher than those with enhanced HaltPoll and vanilla KVM, respectively.
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Figure 3.5 Throughputs of eight pairs of benchmarks. Each benchmark has two instances
running on two VMs. Each hyperthread is time-shared by 2 vCPUs. Throughputs are
normalized to those with vanilla KVM. Benchmarks BinaryClassify, MultipleClassify,
Regression and Prediction are AI algorithms in XGBoost.
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The results in Figure 3.5 confirm that VSMT-IO can maintain its effectiveness and

efficiency when each hyperthread is time-shared by vCPUs. To further investigate how the

throughputs are improved with VSMT-IO, we collect the frequencies of vCPU switches

(shown in Table 3.5) and profile the workload on the hyperthreads for I/O-bound vCPUs

(results shown in Table 3.6).

Table 3.5 Number of VCPU Switches is Substantially Reduced with VSMT-IO for the
Eight Benchmark Pairs.

Benchmark Pairs Number of vCPU Switches Per Second

Vallina KVM Enhanced
HaltPoll VSMT-IO

(RocksDB,Nginx) 29.3k 15.2k 1.9k
(ClamAV,BinaryClassify) 11.8k 8.7k 3.2k

(PgSql,Regression) 9.5k 8.0k 2.8k
(MySQL,Prediction) 11.5k 9.3k 4.5k

(DBT1,MultipleClassify) 61.3k 29.5k 3.9k
(HBase,PageRank) 23.4k 12.3k 3.9k
(MongoDB,Kmeans) 33.3k 20.8k 9.3k

(HDFS,Apache Hadoop) 34.0k 30.6k 1.7k

The effectiveness of VSMT-IO on improving I/O performance relies on context

retentions holding vCPU contexts on hyperthreads (the LTCR component). It is reflected

by reduced context switches. As shown in Table 3.5, VSMT-IO can reduce vCPU switches

significantly by up to 95% (80% on average). As a comparison, enhanced HaltPoll

can only reduce vCPU switches by at most 51% (32% on average). This explains the

superiority of VSMT-IO over HaltPoll.

The high efficiency of VSMT-IO comes partially from its capability to reduce

vCPU switches. It also comes from LTCR and RASS controlling the overhead incurred

by context retentions. While the effectiveness of RASS on controlling the overhead
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Table 3.6 Time (Percentage) Spent By Context Retentions, I/O-bound VCPU, and CPU-
bound VCPU on the Hyperthreads for I/O-bound VCPUs.

Benchmark
Pairs

Context
Retentions

I/O
Workload

Computation
Workload

(RocksDB,Nginx) 28.1% 34.3% 37.6%
(ClamAV,BinaryClassify) 39.8% 31.6% 28.6%

(PgSql,Regression) 42.3% 19.2% 38.5%
(MySQL,Prediction) 30.0% 33.5% 36.5%

(DBT1,MultipleClassify) 32.7% 54.4% 12.9%
(HBase,PageRank) 53.9% 31.9% 14.2%
(MongoDB,Kmeans) 34.4% 45.3% 20.3%

(HDFS,Apache Hadoop) 33.0% 45.2% 21.8%

is self-evident, the effectiveness of LTCR can be confirmed with the results shown in

Table 3.6. LTCR limits the context retention lengths to prevent high overhead. As a result,

on the hyperthreads for I/O-bound vCPUs, for most benchmark pairs, the time spent on

context retentions is less than 40%. With context retention lengths well controlled, more

than 20% of the CPU time on these hyperthreads can be used by CPU-bound vCPUs to

improve CPU throughput.

To understand how the two major techniques in VSMT-IO, xWait and Unbalancer,

improve performance, we enable these techniques separately, and show the performance

of two pairs of benchmarks, HBase with PageRank, and MongoDB with Kmeans, in

Figure 3.6. xResolver is enabled along with Unbalancer, because it is a supplement

to Unbalancer. Figure 3.6 shows that the performance improvements of I/O-intensive

workloads are mainly from the xWait technique; and the performance improvements

of computation-intensive workloads are mainly from the Unbalancer technique. When

xWait is enabled, the throughputs of I/O-intensive workloads, HBase and MongoDB, are

significantly increased by 41.1% and 44.7%, respectively. However, it barely increases the
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Figure 3.6 Normalized throughputs (relative to those achieved with vanilla KVM) of two
pairs of benchmarks when xWait and Unbalancer are enabled separately.

throughputs of PageRank and Kmeans. Further enabling Unbalancer (with xResolver) can

effectively improve the throughputs of all the workloads.

Some benchmarks report response times. Figure 3.7 compares how their response

times are reduced with VSMT-IO and HaltPoll. Relative to vanilla KVM, HaltPoll

reduces the response times by 28.7% on average. VSMT-IO can reduce the response

times by larger percentages (50.8% on average). To investigate how VSMT-IO reduces

response times, we monitor the state changes of the vCPUs during the executions of

these benchmarks, collect the time spent by vCPUs at the following states: 1) Running,

including context retention, on a hyperthread, 2) Ready and waiting to be scheduled, 2)

Waiting for an event. In Table 3.7, for each benchmark, we show the time (in milliseconds)

spent in these states for serving a request.
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Figure 3.7 Response times of RocksDB, ClamAV, PgSql, MySQL, DBT1, HBase, and
MongoDB normalized to those with vanilla KVM (shown with the horizontal line at 100%).

Table 3.7 Time Spent By VCPUs in Three States When Processing a Request with Vanilla
KVM, Enhanced HaltPoll, and VSMT-IO.

Benchmark Vallina KVM Enhanced
HaltPoll VSMT-IO

Run Ready Wait Run Ready Wait Run Ready Wait
RocksDB 116.2 132.6 378.1 131.7 88.0 305.4 129.8 69.0 237.2
ClamAV 15.2 45.7 10.9 12.9 29.7 10.5 11.0 21.1 9.5
PgSql 14.7 37.6 10.1 12.3 27.1 9.4 13.5 19.7 8.7
MySQL 111.4 319.7 88.9 90.7 167.9 89.5 87.5 136.7 80.6
DBT1 346.2 1831.4 1390.2 361.6 842.9 1035.8 306.9 643.2 641.6
HBase 266.2 655.0 901.8 237.8 323.3 795.9 241.6 315.0 654.3
MongoDB 376.1 528.6 1444.1 365.3 345.2 1276.6 351.7 256.0 897.9

The response times are reduced with VSMT-IO mainly because vCPUs spend less

time on waiting to be scheduled or for events. As shown in Table 3.7, VSMT-IO can

significantly reduce the time in the Ready state (53.6% on average). This is because context
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retention reduces context switches between vCPUs, and thus reduces the scheduling delay

associated with the switches. We have noticed that the time in the Waiting state is

substantially reduced for some benchmarks (e.g., DBT1). This is because finishing an I/O

operation sometimes need the collaboration of multiple vCPUs in the VM. For example,

after a vCPU sends out an I/O request and becomes idle, another vCPU may receive the

response and must notify the former vCPU by sending it an inter-processor interrupt (IPI).

In this case, reducing the Ready time of the latter vCPU (i.e., scheduling it earlier) can

also reduce the Waiting time of the former vCPU.

3.6.4 Applicability and Overhead

VSMT-IO targets heterogeneous workloads with intensive I/O operations and heavy

computation. We want to know how well VSMT-IO performs for the workloads with

different heterogeneity. This subsection tests the performance and overhead of VSMT-IO

for different workload mixes. We still use 4 VMs to run 4 instances of 2 applications in

the experiments. But we change VM sizes (i.e., the number of vCPUs in a VM) to change

the workload mix. For example, to make the workload more I/O-intensive, we increase

the sizes of the 2 VMs running I/O-intensive benchmarks and reduce the sizes of the VMs

running computation-intensive benchmarks. The total number of vCPUs of the 4 VMs is

kept fixed (96 vCPUs).

Figure 3.8 shows the normalized throughputs of two benchmark paris, HBase with

PageRank, and MongoDB with Kmeans, when the VM sizes for I/O-intensive benchmarks

and computation-intensive benchmarks are changed from (12,36) to (36,12). (The ratios

of the vCPUs running these benchmarks vary from 24:72 to 72:24.) Figure 3.9 shows
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Figure 3.8 Normalized throughputs of VSMT-IO under different workload mixes.
Throughputs are normalized to those with vanilla KVM.
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Figure 3.9 Normalized response times of VSMT-IO under different workload mixes.
Response times are normalized to those with vanilla KVM.

the response times of HBase and MongoDB in these experiments. Though VSMT-IO can

improve performance for all these workload mixes, it improves performance by the largest

percentages when the number of vCPUs running I/O-intensive benchmarks is the same as

the number of vCPUs running computation-intensive vCPUs.

We also run PageRank and Kmeans in two VMs with 48 vCPUs each, and show the

normalized throughputs (labeled with “0:96”) in Figure 3.8. Because both benchmarks

74



are computation intensive, there is no space for VSMT-IO to improve performance. The

performance difference between VSMT-IO and vanilla KVM is unnoticeable (less than

2%). This shows that the overhead of VSMT-IO is very low.

We have also evaluated the performance of VSMT-IO with 8 VMs (192 vCPUs).

We find that VSMT-IO consistently shows better performance than vanilla KVM and

enhanced HaltPoll, for heterogeneous workloads; but the performance improvement is

similar to that with 4 VMs. The performance advantage of VSMT-IO is more determined

by the mix of workloads than the number of VMs on each server.

3.7 Related Work

Improving I/O performance in virtualized systems. I/O performance problems in virtu-

alized systems have been intensively studied; and various solutions have been proposed,

including shortening time slices [119; 32; 120; 121], task-aware priority boosting [33;

61; 17; 36; 62; 63; 64; 65; 66; 67; 68; 69; 70], and task consolidation [122; 123; 124; 125;

87]. These solutions are not designed for SMT processors, and are orthogonal to our work.

Shortening time slices of vCPUs can reduce the latency of I/O workloads in virtualized

systems. However, it may incur significant performance degradation caused by context

switches. Task-aware priority boosting improves I/O performance in virtualized systems

by prioritizing I/O-intensive workloads. For instance, xBalloon [17] maintains the high

priority of I/O-intensive workloads by reserving CPU resource for them. However, this

may hurt the performance of computation-intensive workloads. vMigrater [87] prioritizes

I/O-intensive workloads by migrating them away from to-be-descheduled vCPUs to other

vCPUs, such that they can keep running and generating I/O requests. However, it is
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designed for VMs with multiple vCPUs, and may incur high workload migration cost.

Task consolidation solutions can improve I/O performance by reducing the descheduling

and rescheduling of vCPUs. They consolidate workloads onto fewer vCPUs if the

workloads are I/O-intensive, such that these vCPUs can be kept active with relatively

low cost. These solutions may also incur high cost due to frequent workload migrations.

Polling is used in these solutions to keep vCPUs active. This is inefficient on SMT

processors and can be improved by replacing polling with context retention.

Symbiotic scheduling aims to maximize the throughput of SMT processors by selecting

the tasks with complementary resource demands and coscheduling them on the same SMT

core [75; 76; 77; 78; 79; 80]. For instance, SOS (Sample, Optimize, Symbiosis) and its

variants [75; 103; 76; 77; 78; 79; 80] sample task executions when they are coscheduled

onto the same core, and preferentially coschedule those with small slowdowns. These

solutions only target processor throughput, and cannot be used to improve the performance

of I/O-intensive workloads.

Other scheduling solutions for SMT processors. Instead of maximizing processor

throughput, some scheduling solutions aim to secure resources for individual tasks on

SMT processors to ensure their decent performance [81; 103; 126; 127]. For instance,

ELFEN [81] aims to ensure the high performance of latency-critical tasks when they

are collocated with batch tasks on SMT processors. It puts a latency-critical task and

batch tasks on different hardware threads in the same core, and “blocks” batch tasks when

the latency-ciritical task is making progress. The efficiency is low with this solution,

because each core has only one active hardware thread at any moment, and resource

is underutilized. Tasks on the same SMT processor may not share the resources in a
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fair way. Various solutions have been proposed to enforce fairness among the tasks in

a SMT-enabled system [128; 129; 130]. For instance, progress-aware scheduler [128]

periodically estimates the progress of tasks, and prioritizes the tasks with relatively slow

progress. VSMT-IO is orthogonal to these solutions. It increases efficiency to improve

both CPU performance and I/O performance.

3.8 Conclusion and Future Work

Despite the prevalence of SMT processors, the problems with how to improve I/O

performance and efficiency on SMT processors are surprisingly under-studied. Existing

techniques used in CPU schedulers to improve I/O performance are seriously inefficient

on SMT processors, making it difficult to achieve high CPU throughput and high I/O

throughput. Leveraging the hardware feature of SMT processors, the paper designs

VSMT-IO as an effective solution. The key technique in VSMT-IO is context retention.

VSMT-IO targets virtualized clouds and x86 systems and addresses a few challenges

in implementing context retention in real systems. Extensive experiments confirm its

effectiveness.

NUMA systems have become ubiquitous. Though our evaluation demonstrates

that VSMT-IO achieves better performance than competing solutions, the designs in

VSMT-IO have not been optimized for NUMA systems. As future work, we want to

make VSMT-IO “NUMA-aware” to further improve its performance. For example, the

workload adjuster can be enhanced by adjusting workloads within each NUMA node

before it migrates vCPUs across NUMA nodes.
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CHAPTER 4

JUPITER: EFFECTIVE AND QOS-AWARE COSCHEDULING FOR
MULTI-THREADED WORKLOADS IN MULTI-TENANT CLOUDS

4.1 Introduction

It has been widely noticed and intensively studied that the performance of multi-threaded

applications is highly vulnerable to the time-sharing of CPUs [11; 131; 132; 133; 134; 135;

136; 137]. The vulnerability incurs a few performance issues compromising the Qualify

of Service (QoS) for multi-threaded applications, such as the bad performance, the unfair

performance penalty, low CPU utilization, and the sensitivity of the performance to other

applications in the system.

The emergence of cloud computing and virtualization, where CPU cores are

time-shared by multiple virtual machines (VMs), makes it more pressing to solve these

problems for multi-threaded applications. First, an increasing number of applications

become multi-threaded and run in clouds for high performance and low cost. However,

the low performance caused by the performance vulnerability may make running multi-

threaded applications in clouds cost-ineffective. Second, the abstraction of VMs gives

an illusion of dedicated computers to users, making the users have high expectations

for performance and performance isolation. However, for multi-threaded workloads,

such expectation can hardly be met, because their performance is more sensitive to the

workloads in other VMs collocated in the same server. This leads to frustrating user

experiences.
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To mitigate these QoS issues of multi-threaded applications in multi-tenant clouds,

we propose techniques to fundamentally enhance coscheduling. Coscheduling [11] is

a widely-used approach for reducing the performance vulnerability of multi-threaded

applications. Various coscheduling schemes [138; 139; 140; 141] have been designed for

OSs and virtual machine monitors (VMMs). Coscheduling aims to reduce the execution

delay of multi-threaded applications at their synchronization/communication points, which

is the main cause of their performance vulnerability. The main idea is to maximize

the co-running of collaborating threads; i.e., when a thread is scheduled to run, its

collaborating threads should be scheduled as quickly as possible so as to run in parallel

with the thread. To maximize the co-running of collaborating threads, most co-scheduling

schemes temporarily prioritize these threads, such that they can preempt the execution of

other threads to get the cores to co-run and are less likely to be preempted by other threads

during the co-running.

Unfortunately, the effectiveness of existing coscheduling approaches is seriously

limited when used in multi-tenant clouds due to the following three reasons. First,

when a system has two or more multi-threaded applications, the effectiveness of the

existing coscheduling approaches is limited, because there are conflicting demands for

prioritizing different applications on the same set of hardware. Existing approaches focus

mainly on one multi-threaded application and lack a mechanism to resolve the conflicts

from multiple multi-threaded applications. Even worse, existing coscheduling approaches

indiscriminately prioritize the threads to be co-scheduled in each application, significantly

increasing the likelihood of conflicts.
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Second, existing coscheduling schemes cannot address well the trade-off between

improving the effectiveness and reducing the notorious adverse effects of coscheduling.

They may unnecessarily sacrifice effectiveness when trying to reduce the adverse effects.

For example, relaxed coscheduling [138] reduces CPU fragmentation by coscheduling

fewer threads; this is at the cost of lower application performance, as our experiments

show in §4.3.

Third, the performance vulnerability problem becomes even more pronounced when

applications having dynamic changing workloads (e.g., the workload variation caused by

changing parallelism). The scheduler usually provisions time slice periodically at a fixed

rate, and does not allow unused time slice in the periods with the light workload to be

accumulated and used later when the workload is heavy. Thus, such workload changes

are penalized. Existing coscheduling approaches lack a mechanism to deal with such a

performance penalty.

In this work, we address the above issues of coscheduling with three novel

ideas. First, prioritize threads in an asymmetric way. The observation is as follows.

Existing coscheduling approaches prioritize collaborating threads indiscriminately. This

unnecessarily increases prioritized executions, and thus increases their conflicts and

adverse effects. However, it is not necessary to boost the priority of all the collaborating

threads to the same high level. For example, some threads can quickly produce the data

required by other threads; even if they are scheduled late, they may still be able to produce

the data before other threads need it; thus, there is no need to boost the priority of these

threads. Second, prioritize threads less aggressively to further reduce the adverse effects

of coscheduling without reducing its effectiveness. Coscheduling can be done in a less
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aggressive way as long as the application performance is not reduced. Third, effectively

combine coscheduling with the leaky bucket technique [142] to deal with the vulnerability

caused by the dynamic changing workload.

Targeting virtualized multi-tenant clouds, we implement our idea in JUPITER,

an effective and QoS-aware coscheduling approach for virtual CPUs (vCPU). The

general ideas and techniques developed in the paper can be universally applied to other

types of virtualized environments (e.g., containers) and non-virtualized environments in

conventional operating systems. We choose to implement and test our ideas in VMM

for two reasons: 1) in multi-tenant clouds, where virtual machines are dominantly used,

performance isolation and QoS issues are more critical than in other environments; 2)

due to the semantic gap between the VMM and the guest systems, the VMM has less

information about the workloads in guest systems, making the problems more challenging

with VMs. If our ideas and techniques can be implemented at the VMM level, and are

tested to be effective, they may also be implemented in other environments and work

effectively.

This paper makes the following major contributions. First, the paper identifies

and addresses three critical issues with coscheduling to substantially improve the QoS

for multi-threaded applications in clouds while minimizing the adverse effects caused by

co-scheduling. Second, it implemented JUPITER in Linux/KVM [143]. JUPITER runs

in the VMM layer, and thus is transparent to applications and VMs. Third, it evaluated

JUPITER on a diverse set of 7 programs, including two server programs MongoDB [24]

and PgSql [114], four popular AI programs in XGBoost [144] library, a widely used

TPC-W [116] benchmark, a parallel compression utility PBZip2 [145], a multi-threaded
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scientific kernel MatMul, 13 programs in Splash2X [146] benchmark suit, and all 13

programs in Parsec [147] benchmark suit. The experiments show: 1) JUPITER can greatly

improve QoS. On average, the QoS of JUPITER is 1.4x higher than three related systems.

2) JUPITER can improve system throughput. On average, JUPITER can improve system

throughout by 50.8% compared with three related systems.
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Figure 4.1 Existing coscheduling approaches are not effective to mitigate the performance
vulnerability problem for multi-threaded workloads. “p.” and “s.” mean programs from
Parsec and Splash2X benchmark suits, respectively.

4.2 Background and Motivation

4.2.1 Coscheduling

Time-sharing CPU cores reduces the efficiency of multi-threaded applications due to

the interplay of three factors: frequent synchronizations and communications between

threads, work-conserving scheduling, and unfairness of conventional OS schedulers

for multi-threaded applications. Specifically, in a multi-threaded application, threads

need to frequently wait at synchronization/communication points. Under conventional

work-conserving schedulers, a waiting thread will be descheduled to let the core be

used for running other threads. However, when this waiting thread becomes ready to

make progress, it may not be immediately scheduled. Such a delay not only postpones
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the progress of this particular thread, but also causes a “chain effect” through the

synchronizations and communications between threads of the same application. For

example, other collaborating threads will also be delayed, waiting for the data produced

by this thread. Since conventional OS schedulers cannot effectively enforce fairness

for multi-threaded applications, such waiting time can be significantly lengthened,

exacerbating the unfair performance degradation of the whole application.

Coscheduling was proposed to deal with this problem for multi-threaded appli-

cations by co-running collaborating threads. By maximizing co-running, when a thread

reaches a synchronization/communication point, the required data is either ready for use

or will be produced by the collaborating threads very soon. In addition to reducing the

waiting time for data, coscheduling can also reduce the waiting for cores. After a thread

finished waiting for data at a synchronization/communication point, it can immediately be

executed to make progress, since threads of this application are coscheduled.

Strictly co-running the collaborating threads can be implemented by using a

non-work-conserving scheduler, but this can considerably reduce system throughput.

Therefore, existing coscheduling approaches usually choose to boost the priority of

the threads that synchronize/communicate frequently, so that they are less likely to be

preempted by other threads during the co-running. However, such solutions are no longer

effective in multi-tenant clouds where the multi-threaded applications are executed within

the VMs.
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4.2.2 Motivating Experiments and Goals

In this subsection, we conduct a few experiments with real-world applications on

coscheduling to demonstrate that the performance issues persist on VMs, which promise

isolated and dedicated execution environments.

Our experiments have two VMs consolidated on the same physical server. We run

one multi-threaded benchmark in each VM, where we fix one VM to run streamcluster

and the other to run different benchmarks in different experiments. All benchmarks are

from Parsec [147] and Splash2X [148] benchmark suites. Section 4.5 gives the detailed

configuration and settings.

We evaluate the coscheduling approach designed for VMs [149], namely balance

scheduling, because it can avoid the performance degradation caused by the vCPU

stacking problem [59]. We examine two settings: 1) single-thread setting, where each

benchmark runs sequentially with one thread in a single-vCPU VM, and the two VMs

share one core; and 2) multi-threaded setting, where each benchmark runs in parallel with

16 threads in a 16-vCPU VM, and the two VMs share the 16 cores.

Figure 4.1(a) shows that when streamcluster is collocated with different

benchmarks, the multi-threaded executions suffer significant performance variation with

the execution time varying widely between 171s and 493s. Some of the execution times

are exceptionally long, indicating that the performance of streamcluster is very low.

For instance, the execution time of streamcluster is 348s∼493s when it is collocated

with fft, radiosity, or raytrace. This is 5.5x∼7.8x slow down, relative to the

solo execution of streamcluster (i.e., no other VMs collocated with the VM running

streamcluster). The slowdown is much higher than the reduction of the CPU time
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that streamcluster is entitled to use, 2x, i.e., from 100% of the system CPU time for

its solo execution to 50% when collocated with another benchmark. This indicates that

vulnerability of streamcluster to time sharing is high1.

Figure 4.1(b) shows the CPU utilizations2 of streamcluster and the benchmarks

colocated with it. This can verify that the low performance is caused by streamcluster

being unfairly penalized. When streamcluster is collocated with fft, radiosity, or

raytrace, its CPU utilization is far below 50%, the fair share of CPU time that each

benchmark is entitled to use, and fft, radiosity, and raytrace have CPU utilization

much higher than 50%.

Figure 4.1(b) also indicates that the vulnerability of multi-threaded applications

reduces the system throughput. For instance, for the mixed workloads of streamcluster

and raytrace, the total CPU utilization is below 70%. However, when streamcluster

or raytrace runs in solo, its CPU utilization is much higher than 50%. The system

throughput may be reduced because, when a multi-threaded workload is unfairly penalized

and cannot fully utilize its share of CPU time, the unused CPU time may be wasted if

other workloads in the system cannot utilize it either. Our evaluation (§4.5) confirms that

the system throughput of the mixed workloads can be improved through mitigating the

performance vulnerability problem.

To show that the performance vulnerability is a particular problem of multi-threaded

applications, Figure 4.1 (a) compares the performance degradation and performance

variation of streamcluster in the multi-threaded setting against those in the single-

thread setting. The execution times of streamcluster in the single-thread setting

1In our experiments, main memory is not over-committed; and the benchmarks have minimal I/O
operations. Thus, the contention for other types of resource is not a major factor.
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vary from 1018s to 1055s. Compared to the execution time of streamcluster when

it runs alone, the execution times are increased by 2.3x∼2.4x, which are roughly

corresponding to the reduction of CPU time available to streamcluster. This indicates

that streamcluster shows more robust performance when executed as a single thread

than that with multi-threaded executions.

Coscheduling can reduce the performance vulnerability of multi-threaded appli-

cations through corunning collaborating threads. However, its effectiveness is seriously

limited in existing co-scheduling schemes, and multi-threaded applications may still

suffer serious QoS issues. To illustrate this, we repeat the experiments with balance

scheduling [149] and two different coscheduling schemes in the VMM to manage

vCPUs, including conventional coscheduling [11] and demand-based coscheduling [141;

150]. Since balance scheduling and conventional coscheduling are not open source, we

implemented them in Linux/KVM based on their papers. Balance scheduling does not

force the vCPUs in the same VM to be scheduled simultaneously; it only balances them

onto different cores to avoid worst performance scenarios, in which multiple vCPUs from

the same VM are stacked on the same core. With balance scheduling, we want to show

the normal performance of multi-threaded applications without co-running. Conventional

coscheduling and demand-based coscheduling show the performance of multi-threaded

applications with strict co-running and less strict coscheduling, respectively.

Figure 4.1 (c) shows the execution times and CPU utilizations of streamcluster

when it is collocated with different other applications. The experiments do confirm the

effectiveness of corunning collaborating threads. For instance, when streamcluster

2CPU utilization of a benchmark here refers to the proportion of CPU time utilized by the VM
running the benchmark.
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is collocated with fft, radiosity or raytrace, demand-based coscheduling and

conventional coscheduling can reduce the execution time by 17.5% and 22.8% on

average, relative to that with balance scheduling. The average CPU utilization of

streamcluster is increased from 11.3% with balance scheduling to 20.7% with demand-

based coscheduling and 22.4% with conventional coscheduling, indicating that the unfair

penalty on streamcluster is mitigated.

However, Figure 4.1 (c) also clearly shows that the effectiveness of corunning is

seriously limited. When collocated with fft, radiosity or raytrace, the performance

of streamcluster is still unfairly penalized, with CPU utilization still substantially lower

than 50%; compared to the solo executions, the execution time of streamcluster is

lengthened by 4.8x∼6.6x for demand-based coscheduling and 4.5x∼7.1x for conventional

coscheduling.

The objective of the paper is to minimize the vulnerability of multi-threaded appli-

cations to the contention for CPU time when CPU cores are time-shared, so as to substan-

tially improve the Quality of Service (QoS) for these applications, including preventing

low performance, improving fairness, and increasing performance predictability. Another

objective of the paper is to improve system throughput when systems are dominated with

multi-threaded applications.

With a work-conserving scheduler, when an application is unfairly penalized and

cannot fully utilize its CPU time share, other applications collocated with it may be

unfairly rewarded, and obtain extra CPU time to achieve better performance. Improving

the performance of the application may decrease the performance of other applications.

87



The paper considers such performance decreasing is favorable, since fairness and system

throughput may be improved.

For instance, when streamcluster is collocated with vips, because vips cannot

effectively utilize its CPU time share, streamcluster can utilize 75% of the CPU time

in the system and reduce the execution time to 117s (shown in Figure 4.1 (a)). However,

the better performance is achieved at the cost of fairness. In the example, vips is unfairly

penalized, and its CPU utilization is only 11%. Thus, the performance of vips should

be improved, though this may increase the execution time of streamcluster. For the

collocation of streamcluster and vips, our solution aims to make streamcluster and

vips fairly share CPU time and both achieve decent performance.

4.3 Main Ideas on Improving Coscheduling

This section identifies three key factors affecting the effectiveness of coscheduling. Then,

it explains the directions and main ideas on substantially improving coscheduling, which

are motivated by these factors.

• Factor 1: Conflicting Resource Demand for Boosting Multiple Applications

There lacks a mechanism to resolve conflicting resource demand for boosting

multiple applications. When the threads of an application need to be coscheduled,

coscheduling needs to boost the priority of these threads to facilitate them to corun.

For brevity, the paper refers to these threads prioritized threads. When a system has

two or more applications that rely on coscheduling to maintain high performance, it is

possible that multiple prioritzed threads are scheduled together on the same core, and

cause conflicts. The conflicting threads contend for the core, in order to maximize their
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corunning with the threads on other cores that are collaborating with them. Since not all

the conflicting threads can be boosted, without a mechanism to resolve the conflicts, the

effectiveness of coscheduling are counteracted.

Even worse, existing coscheduling approaches indiscriminately prioritize the threads

to be coscheduled in each application. This unnecessarily increases the number of

prioritized threads and the likelihood of conflicts. In some cases, this can even make

conflicts unavoidable.

Time

thread 0

thread 1

App1 App2
(a) One iteration execution in multi-threaded app1 and app2
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Time
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core 1
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(b) Existing coscheduling schemes 

cannot resolve conflicts
(c) Conflicts aware coscheduling scheme

thread 2
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thread 3
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A unit of computation in App2A unit of computation in App1Red color indicates the main thread

Figure 4.2 Existing coscheduling approaches are not effective for multiple applications
that need coscheduling simultaneously.

Figure 4.2 explains this problem. Figure 4.2 (a) shows execution of a single iteration

for a 4-thread application (denoted by App1), and another single iteration for another 4-

thread application (denoted by App2). For each application, main thread (thread 1 in

App1, and thread 0 in App2) generates and distributes tasks to other threads; when the

tasks finish, the iteration ends, and main thread continues to generate and distribute tasks

in a new iteration.
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Figure 4.2 (b) illustrates the problems caused by the lack of a mechanism to resolve

conflicts and indiscriminately prioritizing threads. The subfigure shows the execution

of one iteration of these two applications when they collocated on a 4-core computer.

Coscheduling tries to prioritize all the eight threads. A conflict happens on core 0 between

thread 0 of App1 and thread 0 of App2 when time is 1. If the conflict is not resolved

correctly, and the core is given to thread 0 of App1, thinking that all the other threads in

App1 are running, the execution of App2 will be significantly delayed, and it takes eight

units of time to finish these two iterations.

In Figure 4.2 (c), we assume that a resolving mechanism can correctly determine

that thread 0 of App2 takes the core when the conflict happens. It takes only six units of

time to finish the iteration. Compared to the schedule in Figure 4.2 (b), the schedule in

Figure 4.2 (c) significantly improves the performance of App2 and system throughput; it

might also improve the performance of App1: in Figure 4.2 (c), the second iteration of

App1 can start from time is 6, but in Figure 4.2 (b) the second iteration can start from time

is 6 only when thread 1 of App2 is migrated to core 0 or core 3.

• Factor 2: High Adverse Effects and High Cost to Reduce Adverse Effects

Existing coscheduling approaches enforce corunning aggressively by trying to

schedule prioritized threads as early as possible and without interruption. This makes

coscheduling notorious for its adverse effects and overhead. For instance, with existing

coscheduling approaches, threads being coscheduled may aggressively preempt other

running threads, and this increases context switches overhead. When threads being

coscheduled run on the cores, they cannot be interrupted; thus these cores cannot handle

the tasks with real high priority (e.g., latency-sensitive tasks), causing the priority inversion
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problem. When the collaborating threads of one application cannot use all the idle cores,

and the remaining idle cores are enough to support other threads to corun, the CPU

fragmentation problem is caused [149].

Existing coscheduling approaches may unnecessarily sacrifice the effectiveness

when trying to reduce the adverse effects. For instance, to reduce CPU fragmentation,

relaxed coscheduling [138] allows users to adjust the aggressiveness of coscheduling; a

higher relax level makes coscheduling less aggressive by allowing a smaller portion of

threads to start corunning. Though reducing CPU fragmentation helps improving system

throughput, we show in Figure 4.3 that the system throughput is actually reduced (i.e.,

38.5% on average) when making coscheduling less aggressive, because the effectiveness

of coscheduling is reduced and the performance of multi-threaded applications is reduced

as well. Relaxed coscheduling is evaluated with a commercial hypervisor through

adjusting the relax level from high to low.

• Factor 3: Time Varying Computation Workload

Coscheduling boosts the priority of the threads within short time periods, which

are determined by the available time slice of these threads. Thus, it cannot deal with the

waiting periods longer than the time slices on the threads. Such long waiting periods

reduce the computation workload in those periods and are reflected by the workload

changing over time. Such workload changes are usually penalized, because scheduler

usually provisions time slice periodically at a fixed rate, and unused time slice in the

periods with light workload cannot be used later when workload is heavy. This “use it or

lose it” policy is mainly to prevent an application from accumulating much time slice and

later causing starvation to other applications when it intensively uses the time slice.
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Figure 4.4 Leaky bucket is effective in mitigating performance vulnerability.

To justify the necessity to deal with this issue, we implemented a simple leaky

bucket mechanism in Linux/KVM, which allows an application to accumulate a certain

amount of unused time slice and use the accumulated time slice. We rerun the benchmark

combinations in §4.2 using balance scheduling with this leaky bucket mechanism.

Figure 4.4 compares the performance of streamcluster when it is collocated with fft,

radiosity, or raytrace, and confirms that its workload changes do contribute to its

performance vulnerability.

•Main Ideas

The above key factors motivate us to improve coscheduling from three directions.

First, prioritize threads in an asymmetric way. This is to reduce/resolve conflicts, and also

to reduce adverse effects. As the paper explains earlier, the indiscriminate prioritization
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increases both conflicts and adverse effects. However, there is no necessity to boost the

priority of all the threads to the same high level. For instance, delaying the scheduling

of some threads will not delay the execution of other threads or the waiting time of these

threads at synchronization/communication points. Instead, the delay of scheduling such

threads reduces or resolves conflicts by yielding resource to other threads that really need

high priority. This can be illustrated using thread 0 in App1 in Figure 4.2 (b); as long as

the thread can finish its task before time is 5, delaying its execution will not increase

the waiting time of thread 1, since thread 3 cannot finish before time is 5. Delaying

the execution of thread 0 in App1 resolves the conflict and allows thread 0 in App2 to

utilize the resource to reduce the waiting time of other threads in App2. In addition, the

comparison between Figure 4.2 (b) and (c) shows that further delaying the execution of

the thread reduces the number of context switches (i.e., from two context switches on core

0 in Figure 4.2 (b) to one context switch in Figure 4.2 (c)).

Second, prioritize threads less aggressively to reduce the adverse effects of

coscheduling without reducing its effectiveness. As we have shown above using thread 0

in App1 as an example, when reducing the aggressiveness of coscheduling (i.e., delaying

the scheduling of a thread in the example), the adverse effects of coscheduling can be

lowered. Moreover, if the reduction of aggressiveness is controlled within a certain range

(i.e., the delay is not significant), the performance of the application is not degraded

and the effectiveness of coscheduling is not affected. Thus, it is a natural idea to make

coscheduling the least aggressive when keeping its effectiveness.

Third, combine the leaky bucket technique and coscheduling to further improve the

effectiveness of coscheduling.
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4.4 Design and Implementation

We implemented the main ideas described in §4.3 into JUPITER, which is a vCPU

scheduler based on KVM. This section introduces the main challenges, overall design,

and major components of JUPITER. Although the design is for vCPU scheduling, most

parts of the design can be directly used in scheduling multi-threaded applications in

multi-programming systems or containers. As explained in §3.1, we choose to implement

our ideas in the VMM level for the following reasons. 1) VMs are prevalently used in

clouds; 2) it is more challenging to implement the ideas at the VMM layer than other

layers.

JUPITER consists of two parts, an Enhanced Leaky Bucket (ELB) mechanism and

a JUPITER coscheduling mechanism. ELB is to periodically assign time slice to each

VM in the system, and the JUPITER coscheduling mechanism is to schedule the vCPUs

in each VM. We introduce the JUPITER coscheduling mechanism first, because the ELB

mechanism needs the feedback from JUPITER coscheduling mechanism, and the JUPITER

coscheduling mechanism is the major part.

4.4.1 JUPITER Coscheduling Mechanism

Overall Design and Challenges JUPITER implements the first two ideas introduced

in §4.3. Thus, the problem it targets is essentially how to prioritize vCPUs in each VM in

an asymmetric and unaggressive way, so as to 1) make the workload in the VM achieve

the best performance with the CPU time assigned to the VM and 2) keep adverse effects

low at the same time. JUPITER coscheduling mechanism addresses two challenges: how

to effectively control the priorities of vCPUs, and how to achieve the above two goals?
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To address the challenge with effective control of vCPU priorities, we identify/create

a few system parameters that have the most influence on the relative progress of vCPUs,

since the progress of vCPUs is the most important factor determining whether the vCPUs

may spend much time on waiting for each other. Note that the priority used in JUPITER

coscheduling mechanism is different from the system priority of the vCPUs (e.g., the

“nice” values in Linux systems), and we choose to not use the system priorities in our

coscheduling mechanism for two reasons: 1) they are used by the system for other

purposes, which we do not want to mess up; and 2) they cannot provide the fine-grained

control over the relative progress of vCPUs. In our design, we choose the following

parameters: 1) rescheduling latency to control the time that the computation starts. In

system designs, rescheduling latency is the parameter determining when a vCPU can be

scheduled after it becomes “ready”. In some systems (e.g., Linux), there is a system-wide

rescheduling latency for all the vCPUs; we need to modify the system to create a private

rescheduling latency for each vCPU. 2) time slice of a vCPU to control how much progress

a vCPU can make after it is scheduled to run. In some rare cases, when the scheduler finds

that these two parameters cannot effectively control the priority of a vCPU, it also checks

whether the execution of the vCPU may be interrupted by other vCPUs and takes this

factor into account.

To address the second challenge, we use a step-by-step iterative method to adjust

the parameters above to approach to the two goals, i.e., high performance and low adverse

effects. Specifically, for the first goal, it is not possible to directly measure the end-to-end

performance of the workload in a VM. Instead, we use the CPU time consumed by the

VM as an indicator of the amount of progress made by the workload. This indicator is
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reliable because the CPU time consumed by effective computation is roughly proportional

to the amount of finished computation, idling does not consume CPU time, and vCPUs

that perform excessive busy waiting are preempted promptly and consume little CPU time.

For the adverse effects, it is not realistic either to measure it in practice. Thus, instead of

measuring it, we lower the priorities of the vCPUs under the condition that lowering the

priorities will not reduce workload performance.

There are two challenging issues with adjusting the parameters to achieve the goals.

One is whether the priority of the vCPU should be higher or lower, and the other one

is which parameter should be adjusted. There are a few design choices on adjusting the

parameters. For instance, the parameters can be adjusted based on the CPU utilization of

the workload. If CPU utilization has been maximized within the CPU share of the VM,

we adjust the parameters to lower the priorities; otherwise, we adjust the parameters to

improve CPU utilization. However, this design has a scalable issue to maintain a global

CPU utilization for each VM, which might be high if each VM has a large number of

vCPUs.

We choose to use a more scalable way, which adjusts the parameters of each vCPU

based on the status of the vCPU: if increasing the priority of the vCPU helps improving

performance, we increase the priority; otherwise, we reduce the priority to reduce adverse

effects. We check the status of the vCPUs at the beginning of each period when the VMM

is about to allocate new time-slice to the vCPUs of a VM, and based on the status adjust

its parameters gradually. For example, if a vCPU has fully utilized its time-slice in the

previous period and the vCPU is in a “ready” state, meaning that it could have made more

progress if there were more CPU time, we will allocate more CPU time in the coming
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period to improve performance. We introduce the detailed design and the components for

adjusting the parameters below.

Design and Implementation Details The implementation of JUPITER coscheduling

mechanism includes three key components: (1) a time-slice adjustment component for

Dynamically Adjusting the Time-Slice (DATS) distribution between the vCPUs of each

VM, (2) a Dynamically Adjusting reScheduling Latency (DASL) component, and (3)

a Resource Conflict Resolver (RCR). The first two components reduce conflicts and

the last component detects and resolves the conflicts that cannot be reduced by the

first two components. For the first two components, we focus on introducing how the

adjustment decisions are made, since enforcing the decisions is straight-forward and

system-dependent.

The time-slice allocation component collects the amount of time-slice consumed by

each vCPU periodically and uses the amount of time-slice consumed by the vCPUs in

the previous period to adjust the amount of time-slice to be allocated to the vCPUs in

the upcoming period. Specifically, for a vCPU that has been preempted earlier due to the

depletion of time slice, the component increases its time-slice. For other vCPUs, since they

still have unused time-slice at the end of the period, there is no need to further increase their

time-slice. The component assigns a weight to each vCPU. To increase the time-slice of a

vCPU, the component increases the weight by 10%. The component keeps the total weight

of the vCPUs in a VM fixed. Thus, it reduces the weight of other vCPUs accordingly based

on their original weights.
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The rescheduling latency adjustment component looks at whether the vCPU has

consumed its time-slice and whether the vCPU can still make progress at the end of each

period. For a vCPU that is in a “ready” or “running” state at the end of previous period, the

vCPU cannot consume its time-slice quickly. This may be caused by rescheduling delay.

Thus, the component decreases the rescheduling latency of the vCPU by 10%. For the

vCPUs that have consumed their time-slice and become idle at the end of previous period,

the component increases their rescheduling latencies.

There are scenarios, in which a vCPU with a low rescheduling latency has tasks

depending on the completion of the tasks on other vCPUs with high rescheduling latencies.

Since the tasks on the vCPUs with high rescheduling latencies complete late, the task on

the vCPU with a low rescheduling latency cannot start early. Thus, it is possible that

the vCPU with a low rescheduling latency still cannot consume its time-slice, no matter

how its rescheduling latency is reduced. To detect such scenarios, when the rescheduling

latency of a vCPU has been reduced to a minimal value allowed by the system, if a

vCPU still cannot consume its time slice, the component assumes that the vCPU may be

delayed by other vCPUs with high rescheduling latencies. To pin-point these vCPUs, the

component uses wake-up inter-processor interrupts (IPIs) sent to the vCPU as indicators to

find out the source vCPUs sending out the IPIs. Then it reduces the rescheduling latencies

of these source vCPUs.

Resource Conflict Resolver. The adjustment of time-slice distribution and

rescheduling latencies of vCPUs effectively make the vCPUs having asymmetric and low

priorities. They significantly reduce conflicts. However, conflicts cannot be completely

avoided by these two components. The last component detects and tries to resolve such
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conflicts by migrating vCPUs between cores. For JUPITER coscheduling mechanism,

conflicts arise when the total amount of time-slice allocated to the vCPUs scheduled on

the same core exceeds the core’s capacity. For example, a conflict arises when, in a time

period of 80ms, each of two vCPUs scheduled on the same core is allocated with 50ms

time-slice. The vCPUs with low rescheduling latencies may also have conflicts. A conflict

arises when a core is running a vCPU with low rescheduling latency and another vCPU

with low rescheduling latency becomes ready to run. If the former vCPU is preempted

promptly, its task is essentially delayed since the task cannot be finished quickly. If the

former vCPU is not preempted promptly, the latter vCPU cannot be rescheduled quickly.

RCR tries to resolve conflicts by adjusting the layout of vCPUs on physical cores.

Since adjusting vCPU layout is costly, RCR does the adjustment in a conservative way.

Specifically, to detect and resolve conflicts caused by high demands for CPU time, after

the time-slice allocation component has adjusted the amounts of time-slice to be allocated

to each vCPU, for each core, RCR calculates an aggregated amount of time-slice for the

vCPUs scheduled on the core. Then, RCR finds out the core with the largest aggregated

amount and the core with the smallest aggregated amount. If the largest aggregated

amount is greater than the smallest aggregated amount by 10%, RCR tries to balance

the aggregated amounts by swapping some of the vCPUs on the two cores.

To detect and resolve conflicts caused by the vCPUs with low rescheduling latencies,

after the rescheduling latency adjustment component has adjusted the rescheduling latency

of each vCPU, RCR categorizes the vCPUs into two groups based on their rescheduling

latencies — vCPUs with low rescheduling latencies and vCPUs with high rescheduling

latencies. In each period, RCR monitors the execution of the vCPUs with low rescheduling
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latencies. It counts the number of times that these vCPUs are preempted and the number

of times that these vCPUs are not scheduled after they become ready and have waited

a long time exceeding their rescheduling latencies. After the period, it uses the total

number as the number of conflicts on the core caused by the vCPUs with low rescheduling

latencies. Then, RCR finds out the core with the most conflicts and the core with the

fewest conflicts. If the difference between the numbers of conflicts exceeds a threshold (2x

in implementation), RCR selects half of the vCPUs with low rescheduling latencies on the

core with the most conflicts and half of the vCPUs with high rescheduling latencies on the

cores with the fewest conflicts, and then swaps the vCPUs. Low thresholds increase vCPU

migration overhead. High thresholds “cripple” the conflict resolver. Thus, we measured

how vCPU migrations reduce with increased thresholds, and selected the threshold values

at knee points to make trade-off.

4.4.2 Enhanced Leaky Bucket

In time-sharing environments, “loan and borrow” is a commonly used and effective

variant of the leaky bucket mechanism. We also choose to integrate the “loan and

borrow” method with the JUPITER coscheduling mechanism. Here, we explain the special

designs in the integration, and the details of the original method can be found in [151].

Specifically, the “loan” and “borrow” operations essentially change the time slice available

to each application. Due to the performance vulnerability of multi-threaded applications,

these operations may have a significant impact on performance and must be carried out

carefully. In JUPITER, when a VM “loans” another VM CPU time, the amount is increased

gradually, and the performance degradation (i.e., CPU utilization in our implementation)
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of the lending VM is closely monitored. If the degradation exceeds a threshold (5%

in implementation), we stop increasing the amount of the “loan” to prevent significant

performance degradation of the lending VM. At the same time, if there are multiple

borrowing VMs, the lending VM chooses to “loan” the VMs which can generate the most

significant performance improvement; thus, it refers to the RCR component to identify the

VMs suffering the fewest conflicts.

4.5 Evaluation
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Figure 4.5 QoS under BS, CC, DC, and JUPITER systems in the homogeneous setting:
higher normalized throughput means better QoS.
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Figure 4.6 QoS under BS, CC, DC, and JUPITER systems in the heterogeneous setting:
higher normalized throughput means better QoS.

We evaluated JUPITER by answering the following questions. 1) How much can

JUPITER improve QoS compared to prior systems (§4.5.1)? 2) How much can JUPITER
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improve system performance (§4.5.2)? 3) Can JUPITER consistently improve QoS across

different VM sizes (§4.5.3)? 4) How effective is each technique in JUPITER (§4.5.4)? 5)

Can JUPITER efficiently handle the adversarial workload? What is JUPITER’s overhead

(§4.5.5)?

Experimental setup. We conducted experiments on a DELLTM PowerEdgeTM R720

server with 64GB of DRAM and two 2.40GHz Intel® Xeon® E5-2665 processors.

Each processor has 8 cores. We created two or four VMs using Linux KVM [143],

where each VM has 16 vCPUs and 16GB memory. Both the host OS and guest OS

were Ubuntu 16.04 with the Linux kernel version 4.19.1. The vCPUs in each VM

were laid out on the cores in a way to prevent the vCPU stacking problem [149;

152].

We implemented JUPITER in Linux KVM and evaluated it on 7 real-world appli-

cations, including 2 database server programs PgSql [114] and MongoDB [24], classical

programs in Parsec [147] and Splash2X [146] benchmark suites, 4 widely used AI

programs in XGBoost [153], a TPC-W like benchmark from the OSDL database test

suite DBT1 [116], a parallel compression utility PBZip2 [145], and a parallel CPU-bound

program MatMul.

Our experiments were conducted under two main settings: 1) homogeneous setting

where VMs ran the same workload; and 2) heterogeneous setting where VMs ran different

workloads. We show the average results of five runs in all experiments.

We compared JUPITER with BALANCE SCHEDULING (BS) [149] and two repre-

sentative coscheduling systems: CONVENTIONAL COSCHEDULING (CC) [11; 149] and

DEMAND-BASED COSCHEDULING (DC) [141; 150]. We chose BS as the baseline
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because BS performs better than Vanilla KVM in our experiments, which is also confirmed

in [149]. Because BS and CC are not open source, we implemented them according to their

papers.

4.5.1 QoS Improvement

We first compared the QoS provided by BS, CC, DC, and JUPITER on various programs

running in four 16-vCPU VMs consolidated on the server. Under the homogeneous

setting, all VMs ran the same workload. Under the heterogeneous setting, one VM ran

a synchronization-intensive workload, while the other three ran the same computation-

intensive workload (e.g., MatMul or PgSql). Since the throughputs of different appli-

cations vary largely, we normalized the throughput of one application by dividing it with

the throughput of the same application running in a VM on a dedicated server (i.e., the

solo run). Hence, the larger the normalized throughput, the better the QoS.

Figure 4.5 shows the normalized throughputs of different applications under the four

systems in the homogeneous setting. On average, the performance of JUPITER is 1.6x,

1.4x, and 1.3x higher than BS, CC, and DC, respectively.

In particular, JUPITER outperforms CC, because CC coschedules the coordinated

threads only when there are enough available pCPUs, which incurs CPU fragmentation

and extra context switches. Although DC can more quickly coschedule urgent vCPUs

by monitoring the IPI information and increase the priority of the urgent vCPUs, these

vCPUs may not use up their fair share of CPU time. This is because with multiple multi-

threaded workloads there can be multiple prioritized vCPUs on the same core that contend

on the CPU resource. Similarly, although BS is designed to avoid CPU fragmentation
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and increase the likelihood of coscheduling coordinated vCPUs by scheduling them on

different physical CPUs, it is not able to properly handle the contention from multiple

multi-threaded workloads.

The heterogeneous setting, shown in Figure 4.6, evaluates the amount of

performance degradation incurred on the synchronization-intensive workloads, when

collocated with computation-intensive workloads (i.e., MatMul). For synchronization-

intensive workloads, we choose the six applications (i.e., bodytrack, facesim, dedup,

streamcluster, ocean cp, volrend) from Parsec and Splash2X benchmark suites,

together with XGBoost and PBZip2 applications. The average normalized throughput of

the synchronization-intensive workloads is 20.5%, 19.4%, 23.2% and 32.6% for BS, CC,

DC and JUPITER, respectively. Meanwhile, the normalized throughputs of the collocated

computation-intensive workload (i.e., MatMul) are comparable among different systems.

JUPITER achieves significantly better QoS than the other systems for

synchronization-intensive applications, when collocated with computation-intensive

workloads. This is because the threads waiting for the remaining threads to reach the

synchronization cannot make any progress, even if their vCPUs have abundant remaining

time slice. However, when co-run with computation-intensive MatMul, the unused CPU

fair share of the synchronization-intensive application is used by MatMul without any

compensation under BS, CC, and DC. In contrast, JUPITER solves this problem with DATS

and ELB.

Next, we conduct similar homogeneous and heterogeneous experiments for latency-

sensitive applications: TPC-W and MongoDB. For these applications, we normalize the

measured response time by dividing it with the response time under the solo run. Hence,
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Figure 4.8 QoS for latency-sensitive applications in the heterogeneous setting: lower
normalized latency means better QoS.

the lower the normalized latency, the better the QoS of the application. As shown in

Figure 4.7, the average latencies under the heterogeneous setting are 207.2%, 192.4%,

194.7% and 176% for BS, CC, DC and JUPITER, respectively. The improvement of

JUPITER again comes from the fact that it intelligently resolves the resource contention

for coordinated threads of multiple multi-threaded workloads.
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For the heterogeneous setting with the co-running computation-intensive PgSql,

Figure 4.8 shows that the average latencies become 297.8%, 230.1%, 223.2% and 174.5%

for BS, CC, DC and JUPITER, respectively. The latencies under BS drastically increase

in the heterogeneous setting, because it does not ensure the co-running of synchronizing

threads, which results in high synchronization overhead. This problem deteriorates when

the collocated computation-intensive workloads can unfairly take advantage of that. The

unfairness issue lessens under CC and DC. As JUPITER solves this problem with DATS and

ELB, it effectively reduces the average latencies under BS, CC, and DC by 77.3%, 35.9%,

and 33.7%, respectively.

4.5.2 System-Wide Improvement

The next experiments examine the overall system performance in the heterogeneous

setting, with two 16-vCPU VMs consolidated on the server. We vary the application in one

VM and co-run it with freqmine or dedup in the other VM, as they have different features.

Freqmine is computation-intensive with less synchronization among threads, while Dedup

is synchronization-intensive. We calculate the geometric mean of applications’ speedups

(i.e., weighted speedup) as a measure of the overall system performance. We normalized

the weighted speedup to that of BS for different applications.

Figure 4.9 presents the results when the co-runner is freqmine. On average, the

weighted speedup of JUPITER is 1.3x, 1.4x, and 1.2x higher than BS, CC, and DC,

respectively. For most applications, CC has the worst performance, since it causes adverse

effects (e.g., CPU fragmentation, execution delay, extra context switches) to the whole

system. These adverse effects are much more severe when the co-runner is dedup with

107



frequent synchronizations. As shown in Figure 4.10, the weighted speedup of CC is

49.2%, 46.1%, and 81.2% worse compared to BS, DC, and JUPITER, respectively.
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Figure 4.10 Weighted speedup when co-running with dedup: higher weighted speedup
means better system-wide performance.

JUPITER has notably better system-wide performance than the other systems

because it allows VMs containing multi-threaded applications to better utilize physical

CPUs. For instance, when co-running with freqmine, the average CPU utilization under

BS, CC, DC, and JUPITER is 74.3%, 61.7%, 81.2%, and 90.8%, respectively. We notice

that, even under JUPITER, the CPU utilization is not close to 100% for some benchmarks.

This is because some benchmarks have certain execution phases where the computation is

sequential and cannot utilize all the CPUs.
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Furthermore, JUPITER reduces performance variation when the co-running

workload incurs different levels of interferences. On average, the standard deviation

of weighted speedups is 11.3, 20.8, 12.6, and 6.2 under BS, CC, DC, and JUPITER,

respectively. This is because JUPITER not only accumulates and compensates unused

CPU fair share, but also allocates CPU time to vCPUs considering both their demands and

resource conflicts.

Together with the results in Section 4.5.1, we can clearly see that JUPITER

can improve system performance and QoS consistently, regardless of the collocated

workloads.

4.5.3 Consistent Advantage across Different VM Sizes

Next, we set up 4 VMs and vary the number of vCPUs of each VM from two to

16. Figure 4.11 and Figure 4.12 show the performance of JUPITER and BS under

the homogeneous and heterogeneous settings, respectively. Again, JUPITER achieves

significantly higher normalized throughput than BS. In addition, the varying number of

vCPUs does not affect JUPITER much, while BS has higher performance degradation given

more vCPUs. This is because JUPITER not only accumulates and compensates the unused

fair share of VMs, but also improves the ability of the synchronization-intensive workload

to use up its fair share of CPU time. Specifically, it distributes the fair share of a VM to its

vCPUs based on their demands and urgency, which allows faster execution of the critical

thread and hence faster progress of the dependent vCPUs.
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Figure 4.11 QoS with varying number of vCPUs under homogeneous setting.
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Figure 4.12 QoS with varying number of vCPUs under heterogeneous setting.
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Figure 4.13 Performance analysis of JUPITER’s different techniques.
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4.5.4 Effectiveness of JUPITER’s Each Technique

Figure 4.13 analyzes the improvement of JUPITER’s different techniques. This experiment

has four 16-vCPUs VMs running the same workload. The throughput is normalized to BS.

On average, performance improvement is 46.3%, 69.1% and 29.5% for individual DATS,

DASL and ELB, respectively. DATS and DASL have more improvement than ELB, indicating

that only compensating the unused CPU fair share may be sufficient for achieving better

QoS. This is because within one VM the critical vCPU may not be allocated with enough

CPU time or be fast scheduled, so the dependent vCPUs cannot make progress even

with an abundant CPU time. These three techniques work synergistically and improve

performance by 2.33x compared with BS. RCR can further improve the performance of

JUPITER by 33.5%, as the coordinated threads can co-run for a long time without being

interrupted.

4.5.5 Robustness to Adversarial Workload

Finally, we evaluate the robustness of JUPITER on handling the adversarial workload. In

Figure 4.14, there are two MongoDB clients at 0s. From 6s to 7s, three new MongoDB

clients are added at the beginning of each time period (i.e., 100ms) and then killed at the

beginning of the following time period. Initially, JUPITER cannot correctly predict the time

amount for vCPUs due to the severe change in workloads, its throughput is slightly worse

than that of BS. However, this lasts shortly. At 6.5s, when JUPITER finds that it cannot

consecutively predict the time amount for vCPUs correctly, it is disabled automatically.

In the disabled time periods, it still makes the prediction for the coming time periods, but

all the decisions are not enforced to the system. From 6.6s to 7.0s, JUPITER’s throughput
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Figure 4.14 JUPITER’s performance on handling adversarial workloads. Four 16-vCPU
VMs are consolidated on the server. Each VM is running MongoDB.

is almost the same as BS’s throughput. This shows JUPITER incurs low overhead (less

than 3%). From 7.1s to 7.5s, JUPITER can again correctly predict the CPU time used by

vCPUs. Thus, it automatically starts from 7.6s. JUPITER’s throughput improvement over

BS resumes.

4.6 Related Work

Co-scheduling. Co-scheduling [11; 154; 155] is a representative scheme for multi-

threaded applications to mitigate synchronization delay by executing cooperative threads

simultaneously. However, its original form that always co-runs the cooperative threads

incurs high overhead (e.g., CPU fragmentation, execution delay, etc.) because threads

cannot be scheduled until all their required CPUs become available. Hence, many

coscheduling variants have been designed to mitigate such overhead.
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Balance scheduling [149] increases the likelihood of coscheduling coordinated

threads by scheduling them on to different CPUs. Demand-based coscheduling [136;

135; 136; 141; 140] dynamically applies coscheduling to coordinated threads, whereas

non-communicating threads are managed in an uncoordinated fashion. Once it detects the

coordination demand, it prioritizes coordinated threads via preempting the other threads

running on CPUs. Relaxed coscheduling [138] mitigates CPU fragmentation through only

coscheduling a subset of collaborating threads to prevent their runtime from being largely

skewed. Similarly, flexible coscheduling [139; 134; 156; 157] only applies coscheduling

to synchronization-intensive workloads to improve their performance. Meanwhile,

uncoordinated workloads can fill CPU fragmentation caused by coscheduling to improve

system throughput.

Existing coscheduling approaches are not effective to multiple collocated workloads

that all need coscheduling simultaneously. Moreover, they do not consider QoS in multi-

tenant clouds. In contrast, JUPITER is a general, efficient, and QoS-aware approach that

can greatly improve QoS for collocated multi-threaded workloads in clouds.

CPU fair scheduling. Many existing systems focus on proportional-share scheduling [97;

158; 159; 160; 161; 158; 162; 163; 164; 165; 166; 151]. The basic idea is to assign CPU

resources to applications based on their CPU share or weight. However, these works do

not consider synchronization among threads, nor do they consider QoS in multi-tenant

environments. Moreover, they allow threads’ CPU allocations to be forfeited without

compensation. For instance, completely fair scheduler [97] and credit scheduler [163;

164] improve the priority of awoken threads by withdrawing part of their credits, which

can cause CPU fairness problems.
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For multi-tenant clouds, FLEX [167] focuses on the CPU fairness problem among

VMs when they have different sizes (i.e., number of vCPUs). It improves fairness among

VMs by dynamically tuning the weights of VMs. Preemptive multi-queue fair queuing

(P-MQFQ) [168] improves fairness among programs through preempting the programs

that use more CPU fair share. However, FLEX and P-MQFQ do not consider the fairness

problems among multiple collocated workloads that need to be prioritized simultaneously.

In particular, they cannot handle resource conflicts when these workloads need to be

prioritized to get their CPU fair share at the same time.

Other works on improving QoS in clouds includes resource provisioning [3; 4; 5;

169; 170; 12; 171; 172; 89; 173; 174] and VM placement (i.e., admission control) [6;

7; 175; 176; 88; 13; 177]. These works mainly consider QoS in coarse-grain, which is

orthogonal to JUPITER.

XEN and Co. [133] presents workloads perfromance degradation caused by

rescheduling delay in XEN hyppervisor (e.g., Domain0 is not scheduled on time to process

send-out or received packets), and it develops a communication-aware CPU scheduler,

expecting to schedule delayed domains timely and fairly to mitigate such delay and

improve performance.

4.7 Conclusion

The paper addresses the critical issue of poor QoS, unfairness, and low performance for

running multi-threaded applications in clouds. Existing coscheduling-based solutions for

multi-threaded applications are no longer effective for multi-tenant cloud environments.

The work identifies three reasons that make coscheduling ineffective for VMs, proposes
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a new QoS-aware approach, and tests with extensive experiments. Our solution can

significantly improve the QoS of multi-threaded applications running in standalone

servers. In the future, we plan to design the corresponding admission control strategies that

can distribute workloads smartly to a cluster of servers to provide better QoS guarantees.
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CHAPTER 5

CONCLUSION

Multi-threaded applications of different tenants remain notoriously difficult to achieve

QoS in clouds. These applications often suffer severe performance degradation and

interference, scalability problems, fairness issues, and so on.

To improve the multi-threaded QoS in clouds, we have identified three major reasons

and invented three systems, VMIGRATER, VSMT-IO, and JUPITER, with each addressing

a distinct research problem. We have shown that our systems can greatly improve the QoS

of multi-threaded applications.

As future work, we plan to extend our systems to wider scenarios. For instance, we

want to extend the design of VSMT-IO to processors with more hardware threads, test if

more thoroughly, and seek the adoption in real systems utilized in industry.
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