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ABSTRACT

TOWARDS UNDERSTANDING THE ROLE OF
CENTRAL PROCESSING IN RELEASE FROM MASKING

by
Nima Alamatsaz

People with normal hearing have the ability to listen to a desired target sound

while filtering out unwanted sounds in the background. However, most patients

with hearing impairment struggle in noisy environments, a perceptual deficit which

current hearing aids and cochlear implants cannot resolve. Even though peripheral

dysfunction of the ears undoubtedly contribute to this deficit, surmounting evidence

has implicated central processing in the inability to detect sounds in background noise.

Therefore, it is essential to better understand the underlying neural mechanisms by

which target sounds are dissociated from competing maskers. This research focuses

on two phenomena that help suppress background sounds: 1) dip-listening, and

2) directional hearing.

When background noise fluctuates slowly over time, both humans and animals

can listen in the dips of the noise envelope to detect target sound, a phenomenon

referred to as dip-listening. Detection of target sound is facilitated by a central

neuronal mechanism called envelope locking suppression. At both positive and

negative signal-to-noise ratios (SNRs), the presence of target energy can suppress

the strength by which neurons in auditory cortex track background sound, at least

in anesthetized animals. However, in humans and animals, most of the perceptual

advantage gained by listening in the dips of fluctuating noise emerges when a target

is softer than the background sound. This raises the possibility that SNR shapes the

reliance on different processing strategies, a hypothesis tested here in awake behaving

animals. Neural activity of Mongolian gerbils is measured by chronic implantation

of silicon probes in the core auditory cortex. Using appetitive conditioning, gerbils



detect target tones in the presence of temporally fluctuating amplitude-modulated

background noise, called masker. Using rate- vs. timing-based decoding strategies,

analysis of single-unit activity show that both mechanisms can be used for detecting

tones at positive SNR. However, only temporal decoding provides an SNR-invariant

readout strategy that is viable at both positive and negative SNRs.

In addition to dip-listening, spatial cues can facilitate the dissociation of target

sounds from background noise. Specifically, an important cue for computing sound

direction is the time difference in arrival of acoustic energy reaching each ear, called

interaural time difference (ITD). ITDs allow localization of low frequency sounds

from left to right inside the listener’s head, also called sound lateralization. Models of

sound localization commonly assume that sound lateralization from interaural time

differences is level invariant. Here, two prevalent theories of sound localization are

observed to make opposing predictions. The labelled-line model encodes location

through tuned representations of spatial location and predicts that perceived direction

is level invariant. In contrast, the hemispheric-difference model encodes location

through spike-rate and predicts that perceived direction becomes medially biased

at low sound levels. In this research, through behavioral experiments on sound

lateralization, the computation of sound location with ITDs is tested. Four groups

of normally hearing listeners lateralize sounds based on ITDs as a function of

sound intensity, exposure hemisphere, and stimulus history. Stimuli consists of

low-frequency band-limited white noise. Statistical analysis, which partial out overall

differences between listeners, is inconsistent with the place-coding scheme of sound

localization, and supports the hypothesis that human sound localization is instead

encoded through a population rate-code.
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CHAPTER 1

INTRODUCTION

A major hurdle of patients with conductive hearing-loss (CHL) is the ability

to understand speech in noisy environments. Many studies have attempted to

characterize this deficiency and associate it with different regions along the auditory

pathway, more specifically the periphery auditory system [75, 85], and the central

nervous system (CNS) processing [31, 53, 57], however, the full extent of influence of

CHL on CNS and its underlying neural mechanisms is still under investigation. A

necessary first step for understanding the limitations in the hearing impaired is to

study normal auditory function. Normal-hearing listeners (NH) utilize a combination

of mechanisms to resolve target sounds in presence of a background noise (masker).

Here we focus on two of these mechanisms: a specific case of energetic masking referred

to as modulation masking release, and an attentional cue called spatial release from

masking.

1.1 Modulation Masking Release

It is well documented that for tone detection in background noise, normally-hearing

(NH) listeners have better behavioral thresholds when that noise is temporally

modulated as compared to being stationary, a perceptual phenomenon referred to

as modulation masking release (MMR). However, hearing impaired listeners often do

not show a dramatic difference in performance across these two tasks. Behavioral

evidence from Mongolian gerbils (Meriones unguiculatus) with conductive hearing

loss (CHL) supports the idea that sound deprivation alone can reduce MMR. MMR

cannot be alone explained by the mechanical processes of the ear [127]. Due to

similarity of low-frequency hearing range of gerbils to that of humans [125], a

series of electrophysiological investigations were undertaken on gerbils that lead to
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detection of neural correlates of MMR in inferior colliculus, medial geniculate body

and primary auditory cortex A1 [73]. Moreover, a recently published behavioral

study has demonstrated that gerbils exposed to early onset conductive hearing loss

have reduced MMR activity [59].

In previous studies, it has been reported that attention modulates neural

activity of various regions along the auditory pathway [16]. Hence, to measure neural

correlates of MMR in A1, the subject needs to be actively engaged in a behavioral

task. Moreover, several acoustic limitations dictate the head of the subject to be

fixated in a predetermined position to be able to reliably present sound stimuli. By

bearing these considerations in mind, an experimental paradigm has to behaviorally

engage gerbils to respond to acoustic stimuli as the neural activity is recorded via an

implanted microelectrode array.

1.2 Interaural Time Differences

In a different mechanism called spatial release from masking, it has been observed that

spatial segregation of the sources of competing sounds improves detection thresholds

[77]. A wide range of species uses the time delay in propagation of sound waves

from one ear to the other (referred to as interaural time difference or ITD) as a cue

for localizing the direction of a sound source in the azimuthal plane, a phenomenon

called sound lateralization. The specific neural mechanisms by which humans can

accomplish this feat are still incompletely understood. Two competing computational

models, called the labelled-line model [65, 29] and the hemispheric-difference model

[126, 82], can predict aspects of human lateralization performance. These two models

differ in the assumptions they make about the underlying neural code [58].

In the mammalian ascending auditory pathway, the first neural processing stage

where ITDs are encoded, on the timescale of microseconds, is the medial superior

olive (MSO). Here, temporally precise binaural inputs converge, causing changes
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Figure 1.1 Coincidence detection model for processing of interaural time
differences. The construct of tapped delay lines renders each neuron sensitive to
a specific time delay between the right and left auditory signals.

in MSO output firing rate as a function of ITD [36, 136, 119, 25] with ITD-rate

output functions resembling a band-limited cross-correlation of the acoustic inputs

to each ear [6]. A prominent neural model for sound localization, originally proposed

by Jeffress, consists of neurons that are sensitive to the binaural synchronicity of

neural inputs from each ear [65]. In this model, coincidence detector neurons receive

inputs from both ears through labelled delay lines, making each neuron maximally

sensitive to a specific magnitude of ITD (Figure 1.1). This model is computationally

equivalent to calculating the normalized cross-correlation of sounds reaching both

ears and versions of it have successfully been applied in many engineering applications

predicting human localization performance and/or human ability to ignore competing

background masking sound [29, 22, 46, 122, 13].

Several studies support the existence of Jeffress-like neural place code mechanisms

in the avian brain [18, 92]. However, a growing literature indicates that the Jeffress

model cannot fully explain mammalian sensitivity to ITD. Neurons in the mammalian

MSO are assumed to receive two excitatory input from the ipsilateral and contralateral
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auditory pathways, each with a specific delay as a result of different axonal properties

(such as their length, thickness and also myelination patterns) of their post-synaptic

neurons originating from the anterio-ventral cochlear nucleus (AVCN) [44]. Aside

from these excitatory pathways, a set of inhibitory neurons from the medial nucleus

of the trapezoid body (MNTB) also form synaptic connections to the MSO neurons.

Evidence from Mongolian gerbils shows that precise glycinergic inhibitory inputs play

a crucial role in processing ITDs [12, 95], however their role has been controversial [43].

Using a population rate code and incorporating these precise inhibitory pathways, a

non-normalized coincidence detection model of rate-based ITD coding in the MSO

proposes that sound localization can be modeled by calculating differences in firing

rates across hemispheres [82]. This model generally predicts that the locus of the

highest information content of neuronal responses is at the steepest slopes of rate-ITD

curves, where firing rates change most strongly, consistent with the observation that

the peak ITDs of rate-ITD curves often fall outside the physiologically plausible

range [82, 44]. Further support of a rate-based neural population code stems

from the findings that mammalian sound localization can adapt to stimulus history

[99], consistent with a disynaptic feedback loop through the MSO and the superior

periolivary nucleus that normalizes the MSO output gain [120].

The labelled-line model detects temporal coincidence of the signals reaching

both ears and relies on place-coding: neurons are maximally sensitive to a best ITD;

whereas the hemispheric-difference model compares firing rates across hemispheres

and favors a population spike-rate neural code. Both types of model can predict

human sound localization across a range of conditions. They both predict that the

ability to lateralize sound should degrade with decreasing sound intensity, whereas

their predictions differ qualitatively. The Jeffress-type labelled-line model predicts

that neural discharge will become increasingly less sound-evoked and thus more

random as sound intensity decreases. As a result, this model predicts that listeners
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will on average hear sounds from similar locations at low versus high sound levels,

except that the response variability should increase with decreasing sound levels. In

contrast, rate-based models, including hemispheric-difference models, predict that as

sound intensity decreases, firing rates will decrease. Because perceived laterality in

this family of models is computed via the difference across rate-ITD functions, this

means that the maximal discharge rate will be below peak value, causing the location

percept to become increasingly medially biased.

Table 1.1 Conflicting Evidence in the Literature Regarding the Effect of Sound
Level on ITD-based Lateralization

Study Stimulus
Duration
[ms]

Level
[dB SPL] Hemisphere N Bias

Bekesy 1960 Click n/a 10, 30, 40, 50 n/a 10
Most lateral,
few none

Guttman 1962 Click: 0.06-13 kHz 0.1 16,20, 36 n/a 3 Medial

Teas 1962 Click: high-pitched 0.5 10, 20, 30, 40 Right 2 Medial

Mickunas 1963 Click 0.2 30, 60 Right 3 None

Babkoff 1966 Click 0.5 15, 25, 35, 45 Bilateral 2 Medial

Sabin et al. 2006 Noise: 0.5-16 kHz 250
0, 5, 10, 15, 20,
30, 40, 50, 60 Bilateral 6 Medial

In the literature there has been insufficient evidence on the effect of stimulus

level on ITD-invoked lateralization (Table 1.1). In an experiment performed on two

subjects, Teas [124] claims as sounds become softer, there is a significant tendency in

perceiving the sound direction to be more medial (towards the nose line) as opposed

to the louder sounds being heard more lateral. Babkoff et al. [4] also measured the

Hornbostel-Wertheimer constant on two subjects that yielded the same medial bias at

10 dB SL sounds. A conflicting experiment undertaken by Bekesy [129] demonstrated

a bias towards the opposite directions (i.e., lateral side) with sounds at near sensation

threshold. Meanwhile, Mickunas [84] did not observe any level effects after testing

three subjects on relatively loud 30 and 60 dB SL stimuli. All of the mentioned studies

were undertaken on limited number of subjects and the results are not considered to
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be statistically significant. An argument that can be made about the later experiment

is that the stimuli were not as close to the sensation threshold as to invoke any level

dependent effects. A more recent study reported a similar bias at 5 dB SL in a sound

localization task performed on ten blind folded subjects while presented with stimuli

through an array of loud speakers [111].

1.3 Structure of this Dissertation

In Chapter 2, a closed-loop system is developed for synchronized control of animal

behavior and recording neuronal electrophysiology. Gerbils are tested in a behavioral

paradigm that trains them to perform a nose poke and wait for a target sound.

When and if the target sound is presented, the gerbil can advance towards a lick

spout and receive water as reward. In cases where the target sound is not presented,

the gerbil should withdraw from the nose poke and make another attempt. As the

behavioral task in is progress, electrophysiological activity of the auditory cortex will

be recorded using a chronically implanted microelectrode array. The recorded signal

is further processed, visualized and stored for offline analysis. Chapter 3 presents the

results of testing gerbils with target sounds that have lower or higher energy than

the modulated background sound. The hypothesis that signal-to-noise ratio (SNR)

shapes how listening in fluctuating background sound operates is tested by assessing

different neural rate and temporal mechanisms in the primary auditory cortex of

gerbils.

Chapter 4 examines the effect of binaural sound level on lateralization with

low-frequency ITD. For sounds near sensation threshold, the hemispheric-difference

model predicts that with decreasing sound intensity, location percepts will become

increasingly biased towards a focal point. This is contrary to the level-invariance

prediction of place-coding. This confound is tested in two experiments: an

ITD-ITD pointer-target matching task and an ITD identification task. In both
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experiments, normal-hearing listeners judge the lateralization of band-limited noise

tokens. Chapter 5 expands on the findings of the previous chapter and reveals how

ITD lateralization adapts to stimulus history. In the labelled-line model, neurons only

respond to limited spatial directions. Therefore, preceding sound should only lead to

adaptation in neurons sensitive to the preceding sound’s direction. In contrast, the

hemispheric-difference model represents space through spike-rate distances relative

to a perceptual anchor, and hence, predicts that perceived location should adapt

towards a focal point. Here, in four experiments, trained and naïve subjects are

either unilaterally or bilaterally tested on an ITD identification task.

Finally, Chapter 6 summarizes the findings of these experiments, and discusses

their implications on future research.
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CHAPTER 2

ELECTROPHYSIOLOGY AUDITORY RECORDING SYSTEM

Electrophysiology Auditory Recording System is a software and hardware bundle

developed for synchronized rodent auditory behavioral assessment with simultaneous

real-time wireless recording of cortical electrophysiology to study hearing in situations

with background sound. The Electrophysiology Auditory Recording System software

(referred to as EARS software, or EARS for short) supports data acquisition with

up to two simultaneous sound sources, a target and a masker. The masker sound

is played continuously throughout each recording session. The target sound is

triggered through animal behavior and played back at a fixed phase delay relative

to the masker. The signal-to-noise ratio of target and masker can be adjusted

online. General digital/analog input/output operations are facilitated through two

PCIe data acquisition (DAQ) cards (PCIe-6321 and PCIe-6341, National Instruments

Corporation). A single 16-bit analog channel is utilized at 100 kS/s to output auditory

stimuli to a sound amplifier and then into a loudspeaker. 15 analog input channels

are employed for collecting physiological signals from a bioamplifier at a sampling

frequency of 31.25 kS/s per channel. Custom electronic circuits are designed to drive

infrared (IR) emitter diodes and also to condition the output signal of their paired IR

photodiodes to make them compatible with the DAQ card’s digital input channels.

An additional digital channel is used to control the testing booth’s lights. All

input/output channels are synchronized by sharing the sampling clock pulse of the two

DAQ cards via an RTSI bus cable. A syringe pump (NE-1000 Programmable Single

Syringe Pump, New Era Pump Systems, Inc.) is interfaced through a USB-RS232

emulator using its own factory defined protocols and set of commands, to allow

delivering water rewards in an appetitive behavioral paradigm.
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Figure 2.1 The full hardware schematic of the closed-loop recording system
illustrates the association among the aforementioned components. The system is
comprised of the EARS software running an a PC, which control the entire system
through two DAQ cards. These DAQs allow outputting signals to control the
experimental setup, play acoustic stimulus, switch the light on/off, and also enables
receiving signals about contact with nose-poke or lick-spout sensors, recording of
neural activity, and recording the microphone. The neural activity are picked up
by an implanted electrode array attached to wireless head stage transmitter. IR
emmiter and photodiodes are interfaced using custom-designed electronic boards,
and the testing booth’s light is switched by a custom-designed power supply.
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2.1 Electronic Circuits

The hardware components that constitute the recording system may or may not be

able to directly communicate with each other. Most parts are easily made compatible

by using an appropriate cable (such as 68-Pin VHDCI for DAQs), or an adapter

(USB-RS232 emulator for the syringe pump). Although, not all connections are as

easy as plug-and-play, and require custom electronics to fine tune and condition the

signals between different devices.

For example, IR emitter diodes require a certain amount of current to switch

on and radiate an IR beam. Providing less current than required results in a weaker

beam that will not be detected by the paired photodiode, whereas providing more

current than a certain limit would lead to the component burning out. A similar

principle applies to IR photodiodes; they require a bias circuitry specified by the

manufacturer to operate. Moreover, the output of this circuitry is not necessarily

compatible with the readout device (here, a DAQ) and its voltage levels should be

adjusted.

The following sections describe the custom electronic circuitry and their printed

circuit boards (PCBs) that were designed to fit the recording system’s use case. These

boards, as they were, along with all the wires interconnecting them to other devices,

would have been difficult to maintain and manage. Hence, a modular enclosure

(referred to as the electronic box, see Figure 2.2) was designed to contain and organize

the circuit boards. The electronic box was designed in a planar layout and was laser

cut1 out of transparent acrylic sheets. The box could fit multiple movable shelves

that allowed addition of PCBs with various sizes using plastic screws and bolts. The

front and back panels had cuts and engravings for operable switches, knobs, LED

indicators, and BNC connectors.

1For laser cutting see: https://www.ponoko.com
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Figure 2.2 The electronic box, a modular enclosure for custom-designed electronic
circuitry, laser cut and made out of transparent acrylic sheets.

2.1.1 ISR Power Supply

Electronic circuitry are often comprised of various smaller components that each

have their own manufacturer defined power supply level for operation. This could

particularly introduce a challenge in designing a modular system with unknown

requirements for future components. To allow providing power to various components,

an adjustable power supply was designed using the TPS54232 chip (Texas Instruments,

Inc.). This chip is an integrated switching regulator (ISR) capable of providing up

to 2 A of current. The switching technology used in the chip emanates minimal heat

and has very low power loss. The designed circuitry (Figure 2.3) is activated with an

input voltage in the range of 3.5-28 V, and can be programmed to output any voltage

between 0.8 V and 25 V (in steps of 0.1 V). The output is adjusted by placing jumpers

on the P4 pin-headers. Voltage values indicated by the jumpers will be summed as

Vadj and will set the output to:

Vout = Vadj + 0.8. (2.1)
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In the current setup of the recording system, the main use of this power supply

is to provide the IR sensor circuitry with a low noise 5 V supply. In order to yield a

5 V power supply, three jumpers should be place on the 3.2, 0.8 and 0.2 pin-headers:

Vadj = 3.2 + 0.8 + 0.2 = 4.2V,

Vout = Vadj + 0.8 = 4.2 + 0.8 = 5V. (2.2)

The main repository for this ISR power supply is located on GitHub2.

Another instance where this custom circuitry aided design of the recording

system was for rapid switching of the testing booth’s lights. Commercially available

devices for switching power to the lights use electromechanical relays. When changing

from on to off or vice versa, these relays introduce a loud acoustic noise which

interferes with our auditory experiment. The noise often startles the gerbils and

disrupts their behavior. More over, this interference would be reflected in the recorded

neural activity and leads to contamination of all analysis. Another issue with these

types of relays is that they connect to the main power cord, and hence, they would be

switching the entire adapter that delivers power to the lights. Most adapters contain

electrical transformers and are relatively slow when turning on. The animal training

process is extremely time sensitive and such delays would completely impede forming

behavioral associations.

The solution to this problem was quite simple. The ISR power supply boards

have an enable switch (EN) which can either be manually activated with jumpers,

or automatically by receiving a digital signal from the DAQ. The facilitate this feet,

another ISR power supply board was placed in the electronic box. The extra board

was configured to output 11.4 V for powering 2 LED light strips attached to the

ceiling of the animal testing booth.

2ISR power supply design files: https://github.com/nalamat/supply-isr-adj-single
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Figure 2.3 Circuit schematic (top) and PCB layout (bottom left and right) for the
integrated switching regulator (ISR) power supply with an adjustable output voltage.
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2.1.2 LDO Power Supply

ISR power supplies generally excel at power efficiency and are often the go-to type

of regulator for most applications including consumer devices. However, they are

not ideal for use cases where it is necessary to have an accurate and stable supply

voltage without noise. An immediate example of this in neurophysiology would be

when using instrumentation amplifiers. These devices usually have high amplification

gains and small fluctuations in their power supply could greatly impact the quality

of their output signal. For having a high quality and low noise power supply, a low

dropout (LDO) power supply was designed based on the TPS7A470X chip (Texas

Instruments, Inc.). This power supply has an input voltage range of 3-36 V, and

provides a single output voltage that is adjustable from 1.4 to 20.5 V (in 0.1 V steps)

via the P3 pin-headers. The output voltage is determined as:

Vout = Vadj + 1.4. (2.3)

The main repository for this LDO power supply is located on GitHub3.

2.1.3 IR Sensing

A key point of control in a closed-loop system is sensing. In the designed recording

system, sensing is achieved via IR sensors that detect contact with the nose-poke

or lick-spout. There are two parts to IR sensing; first, an IR emitter diode (less

accurately referred to as IR LED) has to generate a sufficiently powerful infrared

beam. Second, an IR photodiode must be placed directly in front of the emitter at

a close enough proximity. When there is no contact, the IR beam will be detected

by the photodiode and electrical current starts flowing through it. On the contrary,

when an animal approaches the nose-poke or lick-spout, the beam is intercepted and

the flow of current through the photodiode stops.

3LDO power supply design files: https://github.com/nalamat/supply-ldo-adj-single
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Figure 2.4 Circuit schematic (top) and PCB layout (bottom left and right) for the
low dropout (LDO) power supply with an adjustable output voltage.
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Figure 2.5 Circuit schematic (top) and PCB layout (bottom left and right) for the
IR sensor board. This circuit can activate a pair of IR emitter diode and photodiode.

To facilitate IR sensing, the circuit board shown in Figure 2.5 was adapted

from a similar design4 using KiCad EDA. This circuit board activates an IR emitter

diode (LTE-302) connected to the E pin, and continuously reads the current flowing

through an IR photodiode (OPS693) connected to the S pin. The value read from

the photodiode is transformed and amplified into a voltage between 0 V and 5 V,

and made available via the IR pin. This readout is an analog signal and thus the

circuit has to further threshold it in order to decide whether a contact has occurred

or not. The cut off threshold is manually adjusted by a potentiometer connected to

the POT2 pin. Eventually, the result of this thresholding is transferred to the TTL

pin as a digital signal with values of either 0 V or 5 V.

4IR sensor design files by Brad Buran: https://github.com/bburan/circuit-IR-sensor
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2.2 Mechanical Design

2.2.1 Nose Poke

During the behavioral task, gerbil learn to poke their nose inside a cylindrical shape

to initiate a trial. This cylinder was designed as a 3D model in SketchUp (Trimble,

Inc.) and printed using a 3D printer (Flashforge, Zhejiang Flashforge 3D Technology

Co., Ltd.). The 3D printer used acrylonitrile butadiene styrene (ABS) or polylactic

acid (PLA) filaments in an additive process to materialize the computer designs.

Both these materials are bio-compatible and safe to use for animal experiments. The

nose-poke (shown in Figure 2.6) had two pair of slots (four slots in total) incorporated

around the body that allowed insertion of IR sensors without exposing the wires to the

animal. Each slot pair had small holes facing inside the nose-poke to allow emanation

of the IR beam from one side to the other. The slot pairs were placed at different

depths to provide the experimenter with flexibility of using shallower contact sensing

in earlier stages of training, or deeper/longer contact during advanced stages of testing

and physiology recording. The sensors were held in place using small plastic screws

(nylon) on the sides, and the nose-poke itself was secured to the cage bars using larger

screw and 3D printed bracket.

2.2.2 Lick Spout

The lick-spout show in Figure 2.7 was also designed and printed as a 3D model using

ABS or PLA filaments. Compared to the nose-poke, the lick-spout required more

flexibility for spout and sensor placement; hence, in addition to the main chassis, it

was designed with two sliding parts. The first part is a long beam at the center which

has a narrowing length-long hole. This hole was inserted with a water tube from the

rear to provide gerbils with a flow of water. The other two lateral beams had slots for

holding IR sensors, and were interconnected to ensure the sensors were always directly

facing each other. On top of the chassis, three thumb screws held the sliding beams
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Figure 2.6 Cylindrical nose-poke designed as a 3D model and printed out of
plastic filaments. IR emitter diode and photodiode pairs are inserted through slots
from behind the nose-poke and are held in place by small screws. The nose-poke
itself is secured to cage bars using a bigger screw and a bracket piece that was also
3D printed.

in place. During early stages of training the experimenter has to ensure that gerbils

discover the lick-spout, and thus, has to advance the sensor and spout beams inside

the cage. Later on, when gerbils fully understand the functionality of the lick-spout

but become impatient with NoGo trials, the beams are retracted behind the cage

bars. Doing so allows licking of the spout for receipt water while prevents excessive

chewing and destruction of the apparatus.

2.2.3 Testing Cage

Gerbils were trained and tested inside a custom cage made mostly out of plastic. In

choosing the proper material for these experiments multiple considerations had to be

made: 1) the material needed to be bio-compatible and safe for contact with animals,

2) sensitization is often a concern for surfaces that come in contact with animals,

and materials such as wood or fabric are often out of question, 3) gerbils have a

stereo-typical chewing behavior that in the long-term is destructive to most types of
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Figure 2.7 Multi-piece lick-spout designed as a 3D model and printed out of
plastic filaments. Two long slots on the back allow insertion of IR emitter diode and
photodiode in two opposing beams. A hole in the back is used to attach a tube of
water to the central beam. Three screws on the top hold the sliding beams in place.
Similar to nose-poke, a 3D printed bracket piece is used to secure the entire lick-spout
against cage bars.

materials, 4) very hard surfaces have excessive reverberation and could potentially

confound an acoustic experiment, 5) most metals could distort the quality of radio

signals and interfere with wireless transmission of neural recordings.

Based on these considerations, high density poly ethylene (HDPE) plastic was

chosen for the cage frame due its relatively high strength and bio-compatibility.

Although for cage bars, fiberglass-epoxy (brand name Garolite) was used that can

endure any amount of chewing. The bars were 1/4" in diameter with 3/8" space in

between each one (the space between the frame and last bars on each side was not

exactly 3/8"). A plastic mesh was placed on the bottom of the cage (see Figure 2.8)

to allow disposal of feces to the bottom tray. The cage was secured at the center of an

HDPE sheet, and the sheet was held on top of a set of polyvinyl chloride (PVC) pipes

forming a table base. The rest of the testing apparatus such as nose-poke, lick-spout

and recording antennae were attached to the cage bars or frame.
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Figure 2.8 Testing cage specifications (on the left) and schematic representation
of all mechanical components that are attached to the cage (on the right). The cage
frame is made out of HDPE and held together using plastic pins and screws. For
cage bars, Garolite was used due to its endurance against chewing. The entire cage
is placed on an HDPE sheet held by a table base made from PVC pipes. Nose-poke
and lick-spout are secured against cage bars, and a loudspeaker is placed directly on
top of the cage.
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2.3 EARS Software

The recording system’s main point of control is the EARS software [1] that was

developed as an open-source package5 using the Python programming language.

EARS provides a platform for running auditory experiments on awake and freely

behaving rodents. This software incorporate many other open-source libraries6, and

was inspired by and partially rewritten from NeuroBehavior7.

EARS allows playback of two simultaneous acoustic stimuli, a continuous

background sound and an on-demand target sound, with microsecond precision

timing. At the same time, signals from the nose-poke and the lick-spout are

monitored for instantaneous decision making. All of the parameters and timings

of the experimental paradigm along with the characteristics of acoustic stimuli could

be adjusted by the experimenter in real-time.

The EARS software facilitates incremental storage of behavioral and electro-

physiological data in HDF5 file format using the PyTables library. In addition to

data storage, the NumPy and SciPy libraries are utilized to process the acquired data

online. The results are then visualized with customized plotting widgets implemented

using the PyQtGraph package. All these tasks are performed in parallel and with

consideration of asynchronous programming confounds and thread-safety measures.

The main entry point to the software is the load.py script which can be

executed from command line as follows:

1 $ python load.py

Optionally, if no particular hardware (DAQ, pump, etc.) is connected, a

simulation mode is available for development and testing purposes:

5EARS source code: https://github.com/nalamat/ears
6SciPy, NumPy, Pandas, PyTables, PyQt, PyQtGraph, PyOpenGL, and PyDAQmx
7NeuroBehavior source code by Brad Buran: https://github.com/bburan/NeuroBehavior
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1 $ python load.py --sim

First the setup window opens for general experiment settings. Depending on the

selected recording type, either the behavior or both behavior and physiology windows

will open for viewing and controlling the experiment session.

2.3.1 Setup and Calibration

The setup window is the first dialog that is shown after opening EARS (see Figure 2.9

Left and setup.py 8). Here, the experimenter can adjust general settings of an

experiment session. The default values are always populated from the last application

run, and thus, for most training sessions, only the Subject ID and Paradigm file

must be selected. Subject ID is an internal name chosen for gerbils at the time of

delivery or when juveniles are being weened. This ID is often concatenation of the

original cage ID and the side of the body where shaving marks are located. The

paradigm file holds all the parameters of an experiment, and is generally named

with either the subject ID or the cage ID. Experiment mode determines the stage

of training (spout/poke/target training, Go/NoGo) or the task engagement mode

(passive, all other options are active). When gerbils are fully trained, implanted, and

ready to be recorded, Recording must be set to Physiology to activate visualization

and storage of neural recordings. Data file specifies the location where all data

will be stored. This field is by default automatically generated from other settings;

however, by unchecking the box next to it, a custom file name can be manually

entered. The Rove checklist allows selection of all parameters that are required

to be randomly roved throughout different trials. When selecting a pre-existing

Paradigm file , Rove becomes deactivated since the rove parameters are already
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Figure 2.9 Left The setup window is the first dialog shown to users after opening
EARS, providing options for setting up an experiment session. Right The calibration
window allows playing and adjusting sound level of experimental stimuli based on
readings from a sound level meter.

specified by the paradigm. To setup a completely new paradigm and specify the

desired rove parameters, Paradigm file has to be cleared.

The setup window also has an option for selecting a Calibration file for

loading calibration data of acoustic stimuli. Although, if there are no calibration

data available, or whenever there has been a change in the acoustic setup of the

testing chamber, all stimuli need to be (re-)calibrated. This process can be performed

in the calibration window that lists all available sound files in the /stim directory

(see Figure 2.9 Right and calibration.py 9). For calibration, a sound file must be

selected, played, and has its level adjusted using the Amplification field. It’s best

to start with a low amplification and gradually increase it until a comfortably audible

sound level is achieved. Then, the read measurement from a sound level meter can

be entered in the Calibration field. The current version of EARS only stores one

8Setup window: https://github.com/nalamat/ears/blob/master/setup.py
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Figure 2.10 The behavior window allows controlling all aspects of the behavioral
paradigm, as well as visualizing all events occurring in real-time.

calibration point per sound file; hence, it is recommended to calibrate all sounds at

the same dB SPL.

2.3.2 Behavior and Physiology

After adjusting general settings of the session, the behavior window is shown (see

Figure 2.10 and behavior.py 10). This dialog has multiple sections for controlling

and monitoring an experiment in real-time.

On the top left corner, some of the session settings that were selected in the

setup window are shown. Below session settings, a multi-column list allows specifying

values for all of the rove parameters. Each green row represents a set of parameters

that will be randomly selected for each Go trial. Values from the red row are only

used for NoGo trials, and the yellow row is used for Go Remind trials. New sets of

values for Go trials can be added or removed.

9Calibration window: https://github.com/nalamat/ears/blob/master/calibration.py
10Behavior window: https://github.com/nalamat/ears/blob/master/behavior.py
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Nose poke Hold period Response

Target on Target off

Water reward

Timeout

Spout Repoke None

HIT

FA

CR

Intertrial
Interval

Subject must wait for the hold duration 
before responding to the target sound. A 
repoke or spout contact will not count as 
a response during this period.

If the target 
duraion met

If minimum poke 
duration met

After the hold period, subject is allowed 
to initiate a response until the maximum 
response duration is elapsed.

If minimum poke duration not 
met, subject must poke again

If poke or spout contact 
occurs, reset timeout

MISS

If poke occurs during this 
interval, nothing happens

Repeat Nogo on 
next trial if the 
option is selected

Go
Nogo

CR: Correct reject

FA: False alarm

Figure 2.11 Flowchart of the appetitive Go/NoGo behavioral paradigm.
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On the bottom left side of the behavior window, all paradigm parameters are

listed except the ones used for rove. These parameters allow fine tuning of the

behavioral paradigm as shown in Figure 2.11. The most important ones are as follows:

• Go probability : The probability that the next trial would be randomly
selected as Go instead of NoGo (modeled with the Bernoulli distribution). This
random selection only occurs if the next trial is not forced to be a Go Remind,
NoGo Remind, or NoGo Repeat.

• Repeat if FA : If checked, after every False Alarm, the trial type is forced to
be NoGo Repeat.

• Target file : The sound file to be played after successful initiation of a trial.
Note that in Figure 2.10 Target file is selected as a rove parameter and is
not shown under paradigm settings.

• Target level : The loudness of the target sound in dB SPL. Calibration data
is used to accurately scale and play the sound at the specified level. Note that
in Figure 2.10, Target level is selected as a rove parameter, and therefore, is
not shown under paradigm settings.

• Target duration : The duration of the target sound in seconds. If the specified
duration exceeds the length of the target file, the waveform is repeated without
any gaps.

• Masker file : The sound file to be played continuously throughout the entire
experiment session. The waveform is looped and repeated without any gaps.

• Masker level : The loudness of the masker sound in dB SPL, scaled according
to the calibration data.

• Masker frequency : This value indicates the frequency of the masker in Hz, and
is only used for insertion of target at a particular phase of a modulated masker.
For stationary maskers, set to zero.

• Phase delay : Phase delay in degrees is used in combination with masker
frequency to calculate the exact insertion time of target at a particular phase
of a modulated masker.

• Min poke duration : In seconds, the amount time a nose-poke should be held
until its acknowledged by the software for trial initiation (See Figure 2.11).

• Max response duration : Determines how long in seconds does the animal have
to respond after successful initiation of a trial to either perform another nose-
poke or approach the lick-spout. If this duration is elapsed, a response of None
is recorded.
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• Timeout duration : The duration in seconds for which the lights are turned off
after a False Alarm.

• Pump rate : Adjusts the rate of water flow by the syringe pump in milliliters
per minute. Typical values are 1-2 mL/min.

• Reward volume : The volume of water in µL given as reward after a successful
spout contact (Hit) in a Go trial.

The bar at the top of behavior window provides controls for saving or loading

paradigm parameters, starting or pausing the experiment, and forcing next trial type

to Go or NoGo Remind. Furthermore, the user can intervene in the predefined

paradigm flow by manually initiating certain actions such as trial start, target

stimulus, pump activation, and timeout. The central pain contains visualizations

for all software or animal generated signals to help monitor the training process and

also the functionality of the system. Finally, the trial log and performance sections

on the right and bottom in order demonstrate trial by trial and statistical summary

of the subject’s behavioral performance throughout the session. More information

about certain fields such as Hit rate, FA rate and d′ is given in Chapter 3.

While configuring an experiment session in the setup window, if Recording

mode is set to Physiology , the physiology window will be shown (see (Figure 2.12

and physiology.py 11). This dialog visualizes the neural activity that are wirelessly

transmitted from the brain implant. On the left side of the physiology window, there

are options for adjusting the pre-processing of these signals, such as: the lower and

higher cutoff frequencies of the applied band-pass filter, amplification scale, visibility

of traces from each electrode, and also whether each trace is included in the grand

mean subtraction.

11Physiology window: https://github.com/nalamat/ears/blob/master/physiology.py
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Figure 2.12 The physiology window shows the pre-processed neural activity in
real-time.

2.3.3 EasyDAQmx: Data Acquisition Interface

National Instruments DAQ cards (NI-DAQs) offer a cost effective means of recording

time series in the physiology of animals and humans. However, a roadblock

to widespread adoption of NI-DAQs in many research labs is that the NI-DAQ

hardware’s drivers, as well as the existing NI-DAQmx programming interface require

expert training in order to be used for sophisticated experimental design. To overcome

these challenges, EasyDAQmx was developed as an open-source library in the Python

programming language and made available for academic use. The main repository

for this library is located on GitHub12.

The library has the following main functionalities: 1. digital input, 2. digital

output, 3. analog input, and 4. analog output.

EasyDAQmx relies on the existing NI-DAQmx programming interface. Having

the capability to both sample and output various modes of data, the NI-DAQ

hardware functions as a hub between a computer and data acquisition hardware.

12EasyDAQmx source code: https://github.com/nalamat/easydaqmx
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This allows researchers to build a methodical data acquisition system, for almost any

research study or experiment.

NI-DAQmx is a free to download application programming interface (API)

which allows users to take full advantage of their NI-DAQ card. This driver gives users

the ability to build applications without manually programming the data collection

and output hardware. Additionally, it allows for the synchronization of multiple

hardware components for near-instantaneous communication between them in the

system.

Another open-source library called PyDAQmx allows users to utilize the NI-

DAQ hardware using Python. Providing a transition from the C++ standard NI-

DAQmx interface to a Python-based interface, PyDAQmx allows for a more dynamic

approach in setting up and conducting experiments with NI-DAQs. This package is

readily accessible from the Python Package Index (PyPI) through the Python Package

Installer (pip) tool.

Based on PyDAQmx, EasyDAQmx simplifies the existing functionalities in

order to provide a more user-friendly programming interface. Primarily this is

accomplished through the creation of several classes that concentrate on how the

user utilizes an NI-DAQ card. For example, when using a card to sample an input,

one would create an instance of the AnalogInput or DigitalInput classes, and when

providing an output signal, one would create an instance of the AnalogOutput or

DigitalOutput classes. That being said, EasyDAQmx is primarily broken down into

six classes four of which are critical for use, and as such will be discussed here. It is

important to note that for each NI-DAQ card in use a separate instance of an input

or output class must be defined in order to prevent overlap among channels/lines,

however, any number of channels or lines can be created per an input/output class.

The DigitalInput class, as the name suggests, initializes the digital inputs for a

NI-DAQ card. The class fundamentally works by using a callback function whenever
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a DigitalInput function is called to determine whether a line is on or off. That

being said, the class takes one required parameter line , which defines the location

of the line to be read (i.e., '/dev1/ai0' or '/dev2/ai0:15' ). The class also takes six

optional parameters, one of which will be discussed here. The debounce parameter

allows for the adjustment of noise filtering on a digital line with options for zero

seconds, 5.12 milliseconds, 10.24 microseconds, and 160 nanoseconds. This allows

for the optimization of any data acquisition system using digital lines preventing

false-positive signals on a line by line basis.

1 digitalInput = daq.DigitalInput('/dev1/port0/line0', debounce=5.12e-3)

2 digitalInput.start()

3

4 value = digitalInput.read() # Returns a single or an array of integers

5

6 digitalInput.stop()

1 def edgeDetected(task, lineName, edge):

2 print('{edge.title()} edge detected on `{lineName}` digital line'

3

4 digitalInput = daq.DigitalInput('/dev1/port0/line0:1',

5 edgeDetected=edgeDetected, lineNames=['poke', 'spout'])

6 digitalInput.start()

The DigitalOutput class, initializes the digital outputs for a NI-DAQ card and

allows for the creation of several output lines. The class has one required parameter

line, functioning identically to its use in the DigitalInput class. The class also

has two optional parameters: name and initialState , each functioning intuitively

as named. One key functionality of the DigitalOutput class, that improves upon

previous usage of python for the NI-DAQ, is that it allows the user to easily change

the output value of lines using the write() function.
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1 digitalOutput = DigitalOutput('/dev1/port1/line0')

2 digitalOutput.start()

3

4 digitalOutput.write(1) # Output logical high

5

6 digitalOutput.stop()

The AnalogInput class initializes the analog inputs for a NI-DAQ card, taking

three required parameters: line , fs , and samples . The line parameter is used

identically to its use in the DigitalInput class, the fs parameter is used to set the

desired analog sampling frequency, and the samples parameter refers to the number

of samples needed to be read from a line. In particular, when defining the samples

parameter, it can be defined for finite sampling given an integer, or it can be defined

for infinite sampling given numpy.inf . However, it should be considered that if given

numpy.inf the user will have to define a callback function. This is done in order to

process data in chunks as they are being made available instead of reading all the

data at once, improving processing efficiency.

1 analogInput = AnalogInput('/dev1/ai0', fs=1000, samples=1000)

2 analogInput.start()

3 data = analogInput.read()

1 def process(task, newData):

2 store(newData)

3 filteredData = filter(newData)

4 plot(filteredData)

5

6 analogInput = AnalogInput('/dev1/ai0', fs=1000, samples=np.inf,

7 dataAqcuired=process)

8 analogInput.start()
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The AnalogInput class also takes 10 other optional parameters, three of which

will be expanded on here. The timebaseSrc parameter allows for the definition of

a sample clock and can be initialized using the sample clock in any NI-DAQ card in

the data acquisition system, or even an external clock. This allows for synchronous

sampling across multiple NI-DAQ cards, if needed, and overcomes the time difference

in sample clocks across hardware. Additionally, the timebaseRate parameter allows

for the specification of rate in Hz of an identified sample clock in the aforementioned

parameter, when using an external clock. It should be noted that, in order to use

the time base functionalities of EasyDAQmx an RTSI cable is required to share and

maintain sample clock signals. Lastly, the startTrigger parameter and functionality

allows for the instantaneous start of an analog input channel upon the rising edge of

a, currently active, digital line. This also enables the synchronous start of multiple

tasks as the startTrigger for one task can be another task, successfully overcoming

the issue of working across multiple NI-DAQ cards or other sample clock issues.

1 analogInput1 = daq.AnalogInput('/dev1/ai0:1', fs=1000, samples=1000,

2 timebaseSrc='/dev1/20MHzTimebase')

3

4 analogInput2 = daq.AnalogInput('/dev2/ai1:15', fs=1000, samples=1000,

5 timebaseRate=20e6, timebaseSrc='/dev1/20MHzTimebase',

6 startTrigger='/dev1/ai/StartTrigger')

7

8 analogInput1.start() # analogInput2 will also start synchronously

The AnalogOutput class initializes the analog outputs for a NI-DAQ card.

The class consists of three required parameters lines , fs , and samples , used

identically as in the AnalogInput class, and 11 additional parameters, four of which

are critical to use. Three of these additional parameter timebaseSrc , timebaseRate ,

32



and startTrigger are used identically to their use in the AnalogInput class;

the dataNeeded parameter, however, is unique to the AnalogOutput class. The

dataNeeded parameter functions to maximize the processing capability of a data

acquisition system, by controlling the amount of data being processed by a task.

When a task commences, the task is given a portion of the data being collected to

be analyzed, but once the task is almost complete the dataNeeded function is called.

This function then prompts the user to provide more data to the task in order for

the task to continue, preventing task error and maximizing the efficiency of the data

acquisition system

1 data = np.random.randn(1000)

2 analogOutput = daq.AnalogOutput('/dev1/ao0', fs=1000, samples=len(data))

3 analogOutput.write(data)

4 analogOutput.start()

1 def dataNeeded(task, nsWritten, nsNeeded):

2 newData = np.random.randn(nsNeeded)

3 return newData

4

5 analogOutput = daq.AnalogOutput('/dev1/ao0', fs=1000, samples=np.inf,

6 dataNeeded=dataNeeded)

7 analogOutput.start()

In summation, EasyDAQmx simplifies the PyDAQmx programming interface

allowing researchers to more readily use Python with NI-DAQ cards. This is done

by reforming the existing, relatively-complex Python functions more intuitively and

prioritizing ease of use and practicality over extensive modularity.
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2.3.4 Pypeline: Online Stream Processing

The Pypeline13 module provides a generic, easy to use, and extendable object-oriented

framework for online processing of data streams in Python, which is particularly suited

for handling multi-channel electrophysiology signals in the EARS software. The main

repository for this module is located on GitHub14.

Inspired by the dplyr package in R, Pypeline allows definition of stream

processing stages as Node s that can be connected to each other using >> , the shift

operator. Alternatively, | or the shell pipe operator can be used.

1 daqs.physiologyInput \

2 >> pypeline.LFilter(fl=300, fh=6e3, n=6) \

3 >> self.physiologyPlot

Here, a key difference with dplyr is that >> only declares the connections in the

pipeline, but no actual processing of data occurs at this statement. All Node s inherit

the write() method that when called, passes new data into the node for processing.

The processed data will further be passed to the connected nodes downstream.

Normally data is processed synchronously in the pipeline, meaning the execution

of the code goes on halt until all downstream nodes are done with their tasks.

Although, a Thread node can be inserted into the pipeline to allow asynchronous

processing of the data. This could prove useful in situations that the data acquisition

thread must not be blocked for too long or when implementing an interactive graphical

user interface (GUI). Note that in the current implementation of Thread , due to

limitations of Python’s global interpreter lock (GIL), multithreaded code does not

actually run in parallel, but asynchronously. If necessary, the wait() method can

13Pypeline was named by combining the words python and pipeline, following the convention of
naming Python packages by either starting with py, or ending with it.

14Pypeline source code: https://github.com/nalamat/pypeline
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be called on the root node to block execution until an asynchronous pipeline is done

processing.

1 daqs.physiologyInput \

2 >> pypeline.Thread() \

3 >> pypeline.LFilter(fl=300, fh=6e3, n=6) \

4 >> pypeline.GrandAverage() \

5 >> pypeline.DownsampleMinMax(ds=32) \

6 >> self.physiologyPlot

Other than linear pipelines, it is possible to connect nodes to multiple branches.

This is done by applying >> between a node and an iterator of nodes. If the left

hand side of >> has a single node, its output data will be passed to each of the nodes

in the iterator in the order of appearance. In the following example, the same signal

is filtered at different frequency bands and then passed on to different plots.

1 daqs.physiologyInput \

2 >> pypeline.Thread() \

3 >> (pypeline.LFilter(fl=None, fh=300 , n=6) >> self.physiologyPlotLow,

4 pypeline.LFilter(fl=300 , fh=6e3 , n=6) >> self.physiologyPlotMid,

5 pypeline.LFilter(fl=6e3 , fh=None, n=6) >> self.physiologyPlotHigh)

If instead of passing the same data to all downstream nodes, a splitting behavior

is required, use the Split node between the source and the list of nodes. The code

below passes spikes detected from each channel of the recorded signal to separate

plots:

1 daqs.physiologyInput \

2 >> pypeline.Thread() \

3 >> pypeline.LFilter(fl=300 , fh=6e3 , n=6) \

4 >> pypeline.SpikeDetector() \
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5 >> pipeline.Split() \

6 >> (self.spikePlot1, self.spikePlot2, self.spikePlot3)

2.3.5 glPlotLib: GPU Accelerated Plotting

The Python programming language is enriched with many data visualization libraries

that are suitable for various applications. However, when it comes to visualizing

neural recordings in real-time, the current tools fail to keep up with the large number

of samples across multiple channels that are being continuously acquired. In the initial

version of the EARS software, PyQtGraph was employed to create optimized widgets

that could partially overcome the limitations of these tools (see plotting.py 15).

One downside of choosing this—or any other—approach that depends on the central

processing unit (CPU) for graphical processing is that it utilizes the majority of the

system’s processing power, thus, impeding performance of other tasks. Alongside

data visualization, EARS also has to perform heavy input and output operations and

insufficient system resources for these tasks often leads to fatal crash of the software.

Most modern computers come with a graphical processing unit (GPU) already

packaged with their CPU, or contain a discrete GPU. GPUs are made of many smaller

processing units that are capable of performing in parallel, hence, outperforming tradi-

tional CPUs in specific tasks such as signal processing and graphical computation.

To further improve the plotting widgets with GPU acceleration and allow advanced

visualization of detected spikes and response time histograms, the PyOpenGL library

was utilized. PyOpenGL has the ability to program GPU cores to run a custom set

of instruction in the GLSL language. By taking advantage of this feature, a new set

of GPU accelerated plotting widgets are defined within the glPlotLib module. The

main repository for this module is located on GitHub16.

15Plotting widgets source code: https://github.com/nalamat/ears/blob/master/plotting.py
16glPlotLib source code: https://github.com/nalamat/glplotlib
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Figure 2.13 GPU accelerated plotting using glPlotLib. The main section of
the screen on the left shows the acquired traces of all electrode channels in a
wrap-around display similar to an oscilloscope. The horizontal axis represents time
over an adjustable time window (currently set to 10 seconds, see labels on the top).
Rectangular markings on the bottom show behavioral events, such as presentation
of the target stimulus, that are most likely to invoke changes in the neural activity.
Circular annotations on neural traces indicate detection of spike events. Enlarged
snippets of these events per each electrode channel are also displayed on the left side
of the screen.

In Figure 2.13 an oscilloscope like display shows the recorded traces of all

electrode channels. With CPU plotting, this display was limited to at most 16

channels. However, GPU accelerated plotting can simultaneously show more than 128

channels, along with annotation of detected spikes and a separate enlarged display

of spike snippets. Furthermore, a histogram of the spiking activity relative to the

target stimulus onset provides experimenters with more insight regarding the neural

activity. This information allow quick decision making during an ongoing experiment

without the need for offline processing of the recorded traces.
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CHAPTER 3

CORTICAL RELIANCE ON TEMPORAL CODING AT NEGATIVE
SIGNAL-TO-NOISE RATIO

Everyday environments often contain multiple concurrent sound sources that fluctuate

over time. Normally hearing listeners can benefit from high signal-to-noise ratios

(SNRs) in energetic dips of temporally fluctuating background sound, a phenomenon

called dip-listening. Specialized mechanisms of dip-listening exist across the entire

auditory pathway. An unresolved issue regarding cortical mechanisms of dip-listening

is how target perception remains invariant to SNR. The current work tests the

hypothesis that at negative SNRs, neuronal readout mechanisms need to increasingly

rely on decoding strategies based on temporal spike patterns, as opposed to spike

count. Recordings from chronically implanted electrode arrays in core auditory cortex

of trained and awake Mongolian gerbils that are engaged in a tone detection task in

10 Hz amplitude-modulated background sound reveal that rate-based decoding is not

SNR-invariant, whereas temporal coding is informative at both negative and positive

SNRs.

3.1 Background

A signature problem for most hearing-impaired individuals is their reduced ability

to dissociate target from background sound. When an auditory target and a

background sound source coincide, the background sound can energetically mask the

target by swamping or occluding the target’s cochlear representation, a problem that

even ideal rehabilitative listening devices cannot solve. However, because natural

sounds inherently fluctuate over time, they rarely overlap continuously [23]. To

segregate competing sound sources into perceived auditory objects, both humans and

animals can exploit these temporal fluctuations [80, 9], a phenomenon called "dip
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listening." Identifying coding strategies for dip-listening wherein behavioral ability

to suppress temporally fluctuating background sound co-varies with target-evoked

neuronal activation may thus hold a key for defining treatment targets for hearing

loss.

Neurophysiological studies in animal models have greatly advanced our mecha-

nistic understanding of dip listening. Specialized neuronal rate- and temporal

coding mechanisms enhance target representations by leveraging high-and-short-term

signal-to-noise energy ratios (SNRs) across multiple processing stages, including

cochlea [87], cochlear nucleus [104], inferior colliculus [73] and auditory cortex (ACx,

[113]). In addition, dip listening can be behaviorally quantified by comparing

detection, discrimination or identification thresholds between temporally fluctuating

vs. steady maskers. The difference in thresholds, called modulation masking release

(MMR), is refractory to training and varies with SNR. At positive SNRs, where target

energy dominates the acoustic mixture, MMR is not observed across a range of tasks.

Even a coding strategy based on net change in long-term acoustic energy may suffice to

detect a target sound. Although, at negative SNRs, where dip-listening can dissociate

the target from the acoustic mixture if the masking envelope fluctuates moderately

(4-32 Hz, peaking around 10 Hz), MMR increases with decreasing SNR. This suggests

that SNR shapes the demands on reliance on short-term temporal processing, thereby

modulating how listening in fluctuating background sound operates, a hypothesis

tested here. Alternatively, SNR in isolation may not be the major factor limiting dip

listening, and task difficulty, which often covaries with SNR, may drive the neuronal

coding strategy for listening in fluctuating background sound.

To test this hypothesis, we here study ACx because this is where auditory

objects emerge, making ACx a promising target while searching for SNR invariance.

Moreover, a mechanism thought to underlie dip listening, envelope locking suppression,

reduces the fidelity by which ACx neurons track background sound when a target
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occurs, at both positive and negative SNRs, at least in anesthetized animals [89, 73].

Whereas, a mechanistic understanding of how SNR shapes the ACx neuronal code

is complicated by the fact that prior neurophysiological work assessing dip listening

often uses untrained animals or animals that could not detect target sound at negative

SNRs [117, 20]. Here we are interested in SNR invariance of auditory cortical

responses in awake gerbil during dip-listening. Gerbils have low-frequency sensitivity

and MMR of comparable magnitude as humans [34, 59], making them a suitable

model for studying SNR invariance during dip listening.

Using appetitive psychometric testing and chronically implanted recording

electrodes, we simultaneously quantify behavioral sensitivity and ACx single-unit

responses. Awake animals either actively detect a tone in modulated masking noise,

at three SNRs (-10, 0 and 10 dB), or passively hear the same sounds without task

engagement. Behavioral accuracy is comparable across SNRs, controlling for task

difficulty. In experiment 1, we contrast the effect of SNR on rate vs. temporal coding

strategies in sound-detecting animals. We previously discovered that a measure of

similarity between the sound-evoked cortical responses when target sound is present

vs. absent, mutual information, is smaller for behaviorally relevant sound as compared

to sound of no behavioral significance, hinting that behavioral relevance may increase

reliance on temporal as opposed to rate coding [83]. To elucidate the role of behavioral

relevance, using the same sounds and similar operant conditioning as in experiment

1, except for giving response reward irrespective of decision, in experiment 2, we test

non-sound-detecting control animals. Our results support the interpretation that

temporal coding can directly serve to detect target sound at across all tested SNRs,

whereas the neuronal information carried in rate coding needs a more nuanced readout

strategy with differing decision criteria at positive vs. negative SNRs.
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3.2 Materials and Methods

All experimental protocols were approved by the Rutgers University Institutional

Animal Care and Use Committee.

3.2.1 Housing

Animals were group housed unless warranted by veterinary exemption for post-

surgical recovery. Environmental enrichment was provided with soft nesting materials

and toys for chewing. The gerbils had unrestricted access to a nutritionally complete

diet through food pellets along with unrestricted water prior to training and during

water breaks, as well as controlled water during testing. Life-brand cereal was given

as treats after each training session. For chronically implanted animals, dietary

supplements such as diet gel, hydrogel, and sunflower seeds were provided before and

after the surgical procedure. Daily checkups ensured animal health and safety. The

vivarium temperature (65-75◦F) and humidity (< 50%) were logged and maintained,

and the vivarium lights were automatically switched throughout the day to regulate

sleep-wake cycle of the animals.

3.2.2 Behavioral Testing

For experiment 1, using an appetitive Go/NoGo paradigm with controlled water

access (Figure 3.1A), six adult Mongolian gerbils (Meriones unguiculatus) were

trained and tested on a tone detection task while fluctuating noise, called masker,

continuously played in the background throughout each session [59]. Specifically,

gerbils detected whether or not a 1 kHz target tone (1 s duration, 50 ms cosine-squared

rise/fall, 40-60 dB SPL) was present in 10 Hz rectangularly amplitude-modulated and

band-limited background noise (50% duty cycle, 10 ms cosine-squared rise/fall ramp

on each rectangular burst, 50 dB SPL, 2/3 octave bandwidth, pseudorandom frozen

noise, centered at the target frequency of 1 kHz; Figure 3.1B).
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Figure 3.1 Testing apparatus and behavioral design. A The test setup included
a loudspeaker above the test area, a nose poke and a lick spout. In addition, for
chronically implanted animals, a wireless system recorded the cortical traces. B The
background sound (brown), consisting of 10 Hz amplitude modulated noise, was
continuously present. On Go trials, an target sound (blue) was additionally played,
consisting of a 1 kHz tone and randomly chosen from -10, 0 or 10 dB SNR. C The
gerbil triggers a new trial by breaking a light beam inside the nose poke, and could
obtain water reward through the lick spout. A loudspeaker, mounted above the test
area played the The gerbil then respond to the trial condition either by licking the
water spout, or by withholding a response through waiting or by poking the nose poke
once more. Depending on the stimulus condition, this response resulted in either a
Hit, a Correct Reject, a Miss or a False Alarm.
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Gerbils were placed inside a testing cage with a nose poke to initiate or abort

a trial and a lick spout to access water (Figure 3.1A). The entire setup was inside a

radio frequency shielded sound-attenuating booth with sound-absorption walls (booth

dimensions: 8’ x 10’ x 7’). A loudspeaker was mounted on the booth ceiling,

approximately 1 m above the center of the cage. Gerbils were initially trained to

associate the 1 kHz target tone with water, then learned to use a nose poke to initiate

a target tone (Go trial) and finally were taught that on some trials, despite nose

poking, no target tone would play and no water reward would be given (NoGo trial).

Specifically, to initiate a trial, gerbils were trained to hold their nose inside the nose

poke for 200 ms and wait for a target stimulus to potentially occur for a potential

water reward from the lick spout.

On Go trials, a target was presented in the continuous background sound,

whereas on NoGo trials, no target was played and thus only the background could be

heard (compare light blue target vs. light brown masking sound traces in Figure 3.1C).

On Go trials, gerbils were then supposed to approach a water spout within a 4.2 s

period after poke onset for a water reward. Successful contact with the spout during

Go trials was scored as HIT. Other responses (either a re-poke in the nose poke

or no poke response) were scored as MISS. On NoGo trials, gerbils were supposed

to withhold any lick spout response. A withheld lick spout response or a re-poke

response to the nose poke were each scored as CORRECT REJECT. However, if

gerbils approached the water spout during a NoGo trial, no water was released, a 1-1.5

sec mandatory timeout was given and the response was scored as FALSE ALARM

(compare light blue / brown sound, grey nose poke and blue lick spout traces in

Figure 3.1C). To discourage guessing, each FALSE ALARM trial was immediately

followed by another NoGo trial for a maximum of 15 sequential NoGo trials. For each

session, the rate of hit responses (HR) and the rate of false alarms (FAR) was then
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used to calculate the behavioral sensitivity, called d′, according to Equation (3.1):

d′ =
√

2 erf -1 (2 HR− 1)−
√

2 erf -1 (2 FAR− 1) , (3.1)

where erf -1 is the inverse error function. Test sessions typically lasted 60 minutes,

but varied in duration, depending on the animal’s satiety and willingness to perform

the task. Averaged across sessions and animals, animals typically performed

approximately 108 Go trials and 62 NoGo trials per session. To computationally

eliminate the possibility of infinite d′, both (HR) and (FAR) were conservatively

bracketed via thresholding such that any observed rate below 0.05 was assumed to

equal 0.05, and any rate exceeding 0.95 was assumed to equal 0.95. Those thresholds

were chosen assuming one guessed trial per SNR per session.

For both training and testing, the masker was fixed throughout each session.

To ensure a fixed phase delay between target and masker, after initiation of a trial

via nose poke, the target onset was delayed until the next 45◦ phase of the masker

occurred. As a result, the target onset could occur between 250 to 350 ms after onset

of a nose poke. This time delay arose as the sum of the 200 ms hold duration for the

nose poke, a fixed 50 ms delay imposed due to limitations of the recording system for

updating the acoustic output, and a 0 to 100 ms phase delay, depending on the phase

when the animal initiated the nose poke during the 100 ms masker cycle.

All animals were initially trained with a masker level of 20 dB SPL and a

target level of 75 dB SPL (55 dB SNR), until they reached criterion performance

(FAR below 30% and d′ above 1.5). Across sequential sessions, the masker was then

gradually raised in steps of 10 dB, to a final masker level of 50 dB SPL (25 dB

SNR). In the final training stage, target sounds at additional, softer intensities were

gradually added in 5 or 10 dB steps across sessions, resulting in a total of three SNRs.

The experimenter’s decisions to increase the masker or decrease the target levels was

guided by whether or not the animal reached criterion performance at all tested SNRs
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Figure 3.2 Average number of sessions per each training and testing stage shown as
shaded progress bars for each of the two gerbil groups. The lower and upper bounds
of session counts are indicated with error bars.

and how confident the animal appeared in the task. All gerbils completed training

within 30 sessions or less. At the conclusion of training, all gerbils were able to

reliably detect tones at -10 dB, 0 and 10 dB SNR.

For testing, the masking noise was continuously present in the background at 50

dB SPL. Three target intensities (40, 50 and 60 dB SPL) were randomly interleaved

from trial to trial, resulting in SNRs of -10 dB, 0 dB and 10 dB. In addition NoGo

trials, without target energy, were randomly interleaved (SNR = −∞ dB) After

animals completed at least three sessions with d′ of 1.9 or better at all SNRs, four of

these sound-detecting gerbils advanced to the neural recording stage.

The two other sound-detecting gerbils were advanced to a separate behavioral

test, to measure the minimum tone duration needed to perform the tone detection

task. These two gerbils were behaviorally tested on tone detection at 0 dB SNR

(50 dB SPL target level and 50 dB SPL masker level) as a function of target tone

duration, across 13 sessions. Specifically, in each test session, seven different target

tone durations (50, 100, 200, 400, 600, 800, 1000 ms) were randomly interleaved from

trial to trial and the gerbil’s behavioral responses were recorded.

To control for the effects of arousal in the neural recordings, two additional

gerbils were trained for experiment 2, using a non-sound-detecting Go/NoGo
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paradigm. Similar to the sound-detecting gerbils in experiment 1, these two gerbils

were initially trained to associate the target tone with water, and then to trigger

target tones by using the nose poke. Unlike the sound-detecting gerbils, the

non-sound-detecting gerbils then moved to a different training stage where water

reward was only contingent on initiating a trial via nose poke and on reaching the

water spout on time. Therefore, both Go trials (when target and background sound

was played) and NoGo trials (when only the background sound was played) could

result in water rewards. Once these two control animals reached a minimum 95%

(HR) and (FAR), indicating that they did not behaviorally discriminate between

Go and NoGo before approaching the lick spout, they were advanced to the neural

recording stage.

3.2.3 Surgical Procedure

For the neural recording stage, we chronically implanted recording electrodes into

left ACx [16, 17, 134]. Specifically, gerbils were initially anesthetized with 4%

isoflurane, 1.5 mg/kg ketoprofen, 0.35 mg/kg dexamethasone, and continuously

given 1-3% isoflurane to maintain sedation. Using stereotactic coordinates, with

the medial-rostral corner at 5 mm lateral and 5 mm rostral to the λ landmark,

a craniotomy was performed (approximate extent 1mm x 2mm ). Using a 25

degree approach angle relative to the vertical axis, the targeted implantation site

was then ascertained at 4.6 lateral and 3.4 mm rostral to λ. At the targeted site,

a durotomy was performed before a silicon microelectrode array with 16 channels

(A4x4-4mm-200-200-1250-H16-21mm, NeuroNexus Technologies, Inc.) was lowered

into the brain at an initial insertion depth of 1.3-1.5 mm from the surface of the

brain. A custom-made microdrive held the array in place inside a recording chamber,

enabling post surgical advancement of electrodes, deeper into the brain tissue. The
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head-post along with the microdrive and implanted array were fixed on the skull using

4-6 bone screws and two layers of dental acrylic.

3.2.4 Recording System

Trained gerbils were tested while cortical potentials were simultaneously recorded,

amplified and transmitted wirelessly to a receiver positioned approximately 1 m

from the cage (W16, Triangle BioSystems International). All input/output channels

were synchronized at 100 kS/s and 16 bits by sharing the sampling clock pulse of

two data acquisition cards (DAQs, PCIe-6321 and PCIe-6341, National Instruments

Corporation) via a Real-Time System Integration bus cable. Specifically, custom

written software, called Electrophysiology Auditory Recording System (EARS),

synchronously controlled auditory stimuli delivery and recorded both behavioral and

physiological responses [1]. EARS communicated with the loudspeaker, nose poke,

licks spout, W16 and a personal computer for data storage and analysis via the two

DAQs. In addition, EARS interfaced with a syringe pump (NE-1000 Programmable

Single Syringe Pump, New Era Pump Systems, Inc.) via a USB-RS232 emulator.

Audio Delivery Auditory stimuli were generated in EARS, D/A converted and

preamplified (E 12:2, Lab.gruppen) before being sent to the loudspeaker (DX25TG59-

04 tweeter, Tymphany HK Ltd). Sound calibration was initially performed by playing

18 bits long maximum length sequence (MLS) twice in a row, recording the response

with a sound level meter placed in the center of the cage (Brüel & Kjær 2250),

and inverting the cross-correlation between the second portion of the MLS and

microphone recording to generate a pre-amplification audio filter that flattened the

speaker response. Periodic re-calibration verified acoustic integrity of the recording

system with +/-2 dB precision from 0.5 to 8 kHz.
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Data Acquisition Furthermore, custom printed circuit boards, connected to nose

poke and lick spout, drove infrared emitter diodes (LTE-302, LITE-ON Technology

Corporation) and their paired photosensors (OPS693, TT Electronics Plc), and

conditioned these optical channel responses before sending them to their appropriate

DAQ digital input channels. In addition, 15 analog input channels collected cortical

potentials from the wireless receiver at a sampling frequency of 31.25 kS/s per channel.

3.2.5 Behavioral-Cortical Assessment

On each recording day, cortical activity in animals was recorded twice, once during

active task engagement mode, and later while the animal passively heard similar

stimuli in a randomly different order of presentation. At the end of each recording

session, electrodes were manually advanced by turning an advancing screw on the

custom-made microdrive by approximately 40 µm.

3.2.6 Analysis

Raw recorded cortical traces along with their associated behavioral events were

analyzed offline in MATLAB (R2017a, The MathWorks Inc), by subtracting from

each recording channel the grand mean across all channels and band-pass filtering

this bias-corrected trace (zero-phase Butterworth, 6th order, 300-6000 Hz). Next, the

resulting band-limited trace were time-windowed around the response time interval.

Specifically, response time intervals were defined as starting at -1 s before potential

target onset and ending +1 s after potential target offset, with the next 45◦ phase of

the masker after the nose poke onset denoted as 0 s. In other words, 0 s marks the

time point when the acoustic target onset occurred during Go trials, or the time when

the target would have started during NoGo trials. Next, spike events were detected as

negative peaks exceeding a threshold of 4.8σn, where σn was the estimated standard
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deviation of the background noise [105]. All events with amplitudes exceeding 30σn

were rejected as artifacts.

The extracted event waveforms were further processed into putative units with

an automatic spike sorting algorithm, using Principal Component Analysis (PCA)

and k-means clustering algorithm (UltraMegaSort 2000, [52]). Visual inspection of

each putative unit then verified that the shape of the unit’s waveform conformed

to a time series typical for an action potential, that the firing rate of this unit was

stable throughout the session, that there were infrequent refractory period violations

(less than 1%), and that each putative unit was separated in at least one principal

component space plot or with the best linear discriminant.

Statistical Comparisons Units that fulfilled all criteria were labelled as single-

unit and further analyzed using seven rate and temporal coding metrics defined below.
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To assess whether rate vs. temporal response codes varied with SNR and across

active and passive listening conditions, repeated measures or mixed design analysis of

variance (rANOVA or mANOVA) was implemented with the rstatix package version

0.7.0 [68] in R version 4.0.3 [106]. A significance level of α = 0.001 was consistently

used throughout the analysis. Whenever the sphericity assumption for within-subjects

factors was violated (based on Mauchly’s test), Greenhouse-Geisser correction was

applied to the results. In addition, behavioral psychometric functions of (HR) were

estimated using generalized linear models (GLM, [106]), assuming binomial response

distributions (link function: logit), and weighing HR proportionally to the trial count

of each stimulus condition.

Response Time Histograms For each unit and SNR during Go trials, as well

as for NoGo trials, response time histograms (RTHs) were calculated with 50 ms

resolution, by first binning spike events into 10 ms time-windows and then convolving

the resulting response probability densities with a 50 ms rectangular kernel. This

resolution was chosen because the slowest time-window to capture envelope-related

acoustic responses is 50 ms, corresponding to the Nyquist rate of the 10 Hz masking

envelope.

Firing Rate For each single-unit and SNR, firing rates were calculated by counting

the number of spike events during incremental time-windows in steps of 50 ms starting

at the target onset, and dividing it by the length of the window in seconds. The

across-trial average and standard deviation of the resulting firing rates were then

used to calculate the separation between Go and NoGo responses. Specifically, for

each SNR, neurometric rate z-scores were calculated as a function of time, according

to Equation (3.2):

z =
µGo − µNoGo

1
2

(σGo + σNoGo)
. (3.2)
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Specifically, for the rate z-score, µGo and σGo were the average firing rate and

standard deviation of firing across Go trials for each target SNR, and µNoGo and σNoGo

were the average and standard deviation of firing rate for the NoGo trials.

Power Spectral Density To estimate the spectral density of the single-unit

responses, point process multi-taper spectrum (MTS) analysis was derived from the

spike event times and pooled across trials [10]. Sparse single-unit events impede

reliable MTS estimates at the single-trial level, a limitation solved here by sampling,

for each SNR, half of the trials randomly with replacement, across 20 repetitions,

using Equation (3.2).

Vector Strength To calculate the strength by which single-units followed the

masker envelope for each individual trial, using Equation (3.3), we calculated the

vector strength (VS) at 10 Hz.

θi = 2π (tifbase − btifbasec) ,

VS =
1

n

√(∑n

i=1
cos θi

)2
+
(∑n

i=1
sin θi

)2
, (3.3)

where ti is the spike time relative to target onset, fbase is the base frequency at which

VS is calculated for (ranging from 1 to 20 Hz in steps of 1 Hz), θi is the phase of

each spike, and n is the total number of spikes (across trials, per target level). Using

Equation (3.4) to approximate the p-value for Rayleigh’s test for uniformity [137],

across all NoGo trials and for each SNR during the Go trials, we then ascertained

whether the VS to the masking envelope differed from zero.

p = exp

[√
1 + 4n+ 4n2

(
1− VS2

)
− (1 + 2n)

]
. (3.4)

Target-Evoked Decorrelation Response To quantify how much the temporal

response pattern of single-unit responses changed when a target tone was added to
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the background sound vs. when just the background sound was present, for each

SNR and single-unit, we compared RTHs across Go vs. NoGo trials. Specifically,

Pearson’s correlation coefficient ρ, between Go and NoGo RTHs were calculated in

running time-windows of 300 ms duration, sliding across the full duration of the

response interval from -1 s to 2 s, with a step size of 10 ms. The 300 ms duration was

chosen conservatively based on the results of the behavioral tone duration thresholds

(see Figure 3.5). A high ρ indicates a high trial-to-trial similarity in the single-

unit RTH between the masker-only response during NoGo trials and the target-and-

masker-combined response during Go trials. In addition, target-evoked decorrelation

responses were derived by calculating the ρ z-score between the masker-only RTH

immediately preceding the target onset vs. the early response during the response

time-window (Equation (3.5), where µonset and σonset were the average and standard

deviation of ρ during the first 300 ms of target response, and µpoke and σpoke were the

average and standard deviation of ρ within 300 ms of the nose poke events).

zdecorrelation =
µonset − µpoke

1
2

(σonset + σpoke)
. (3.5)

Sustained Response To quantify how separable the neural responses were between

Go and NoGo trials, we analyzed the sustained-response interval, excluding onset and

offset responses. Specifically, from each unit’s response 100 ms after tone onset to 100

ms before tone offset we calculated seven metrics. We call the difference in sustained

rates between Go and NoGo in z-units the zsustained.

Mutual Information Under the assumption that during the sustained response

interval neural firing follows a stationary independent identically distributed Poisson

process, we estimated λ parameters of the underlying Poisson distributions. λ was

used to approximate mutual information [83] as an agnostic measure for comparing

response similarity. Mutual information ranges from 0 to 1, with higher values
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indicating low similarity between the Go and NoGo response, and hence, higher

transfer of information over the target-evoked response channel. Conversely, lower

mutual information can be interpreted as sparsity of the neural code in conveying

information.

Similarity Index To quantify the overall similarity of the sound-evoked responses

to the mixture of target and background sound vs. just the background sound, for

each single-unit, a similarity index was calculated using a metric defined in prior work

[73]. Specifically, for each SNR, the time series of each unit’s Go and NoGo RTHs

during the sustained period were plotted against each other and the resulting scatter

plots were fitted using linear regression. The slope of these regression lines is called

similarity index [73]. A similarity index of 1 indicates that when a target occurs, the

response to the mixture of target and background sound is similar to the response to

just the background sound, whereas a zero similarity index indicates that the presence

of target energy strongly changes how a unit responds.

3.3 Results

3.3.1 Sound-Detecting Gerbils

Across all SNRs, the four implanted sound-detecting gerbils could reliably detect

the target tone (solid line at or above d’=1.9 in Figure 3.4), an ability that subtly

improved with increasing SNR [rANOVA: F(1.46, 26.21) = 11.543, p < 0.001, η2G

= 0.18], consistent with our prior work [59]. To reach performance of d’= 1.9 or

better, the target tone needed to be at least 380 ms long, as estimated from tone

detection thresholds at 0 dB SNR as a function of tone duration in two additional,

non-implanted gerbils (see Figure 3.5 and results of GLM fit in Table 3.1). Analysis

revealed that behavioral sensitivity asymptotes at approximately 500-600 ms.

A total of 151 single-units in the freely moving, awake and sound-detecting

gerbils showed target-evoked responses in the presence of masking noise, as evaluated
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Table 3.1 GLM Results for Behavioral Performance vs. Tone Duration

Description Estimate Std. Error z-value p-value

β0 Intercept -0.429 0.047 -9.131 < 0.001 ***

β1 Tone duration 9.041 0.376 24.026 < 0.001 ***

Model: HR = logit−1 (β0 + β1 × Tone duration).

Deegrees of freedom: 143.

Significance codes: ‘***’ p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05, ‘.’ p < 0.1, ‘ ’ p ≥ 0.1.

offline by visually comparing Go vs. NoGo RTHs. Therefore, no units were excluded

from further statistical analysis. First-spike response latencies, shown in Figure 3.6,

were consistent with those typically observed in primary auditory cortex of gerbil

[110]. During NoGo trials, when only the masking sound was played, RTHs robustly

phase-locked to the masker envelope, both in the active and in the passive conditions

(light red and light grey lines in Figure 3.7 A and B track the 10 Hz acoustic envelope

of the masker). In the passive conditions, overall firing rate did not appreciably vary

across time. However, in the active conditions, the firing rate was modulated by the

animal’s behavior, increasing by 21.8% for 200 ms (or two masker cycles) after the

onset of the nose poke ([paired t(151) = 6.2, p < 0.001]; note how the black lines

are steady prior to the tone onset in Figure 3.7A, whereas the red lines rise above

baseline after the nose-poke in Figure 3.7B), followed by suppression until target tone

onset.

In addition, during Go trials, across-unit average RTHs showed target-evoked

onset and offset responses (see darker lines around the blue-shaded target time-

windows in Figure 3.7 A and B). Onset enhancement occurred at all SNRs. Offset

enhancement was pronounced at 10 dB SNR, but weak or absent at 0 and -10 dB SNR.

During the sustained portion of the target sound, from 100 to 950 ms, suppression
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Figure 3.6 Average first-spike latency of all single-units. Error bars show one SEM.

occurred at 10 dB SNR, vs. enhancement at 0 dB and -10 dB SNR, relative to the

response to the masker alone (dark lines fall below zero in Figure 3.7 C and D, whereas

the lighter lines stay positive throughout the sustained time interval). Despite these

non-monotonic changes in sustained firing rate between Go and NoGo trials, power

spectral density analysis confirmed the strength by which the single-units tracked the

masker monotonically decreased with increasing SNR (Figure 3.7 I and J show sharp

peaks near 10 Hz, peak height increasing with decreasing SNR).

Figure 3.8A shows the average sustained firing rates vs. vector strengths at 10

Hz for all single-units, with large symbols denoting units with vector strengths that

were significantly greater than 0, per Rayleigh’s z-test. Linear regression analysis

reveals that at -10 dB SNR and during NoGo trials, units that tended to phase-lock

more strongly to the envelope of the masker also tended to have lower firing rates

in the passive conditions (notice the near absence of data points with high firing

rate and high vector strength in Figure 3.8A), accounting for approximately 15%

of the variance in the data. In contrast, in the active conditions, and in the passive

conditions at 0 dB and 10 dB SNR, average sustained firing rates and vector strengths

were not significantly correlated. Figure 3.8B shows for both active and passive

conditions, vector strength decreased monotonically with increasing SNR [rANOVA
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Figure 3.7 A,B,G,H Response time histogram for sound-detecting (n=4,
units=151) and non-sound-detecting gerbils (n=2, units=56). C,D,I,J Firing rate
z-score of the neural response as a function of time, calculated in incremental windows
relative to target onset. E,F,K,L Power of spectral density of the neural activity
calculated with MTS at different frequencies. Ribbons indicate one standard error of
the mean (SEM).
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Figure 3.8 A,C Vector strength vs. mean firing rate of all units during the
sustained response period. Units with a statistically significant vector strength are
indicated with larger points. Percentage of these units can be seen at the corner of
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strength during the sustained response period as a function of SNR. Here only phasic
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the same code as Figure 3.7.

F(2.4, 350.2) = 53.2, p < 0.001, η2G = 0.112], with no appreciable differences in

vector strengths between active vs. passive listening [rANOVA F(1, 145) = 5.5, p =

0.020, η2G = 0.004].

Next we wondered whether target-evoked decorrelation ρ could be a reliable

cue for detecting target sound at both positive and negative SNRs. This metric

is a similarity measures that captures whether temporal information changes when

target sound occurs, relative to just having background sound. Across both listening

conditions and all SNRs, the target onset sharply reduces ρ (Figure 3.9B, left panel),

showing that in the absence of target energy, single-unit responses are self-similar

across trials. Note that this analysis includes all single-units. Even single-units with

low to absent 10 Hz vector strength, i.e., units that do not appear to track the masker

envelope, robustly and repeatably show this trend (see Supplemental Information).

In addition, in the active conditions, the sharp reduction in ρ is preceded by a small

but consistent increase in ρ (see time-expanded plot in Figure 3.9B, right panel),

suggesting that after the animal initiates as trial via the nose-poke, the single-unit

responses become more sharply tuned to the background sound only, before the
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addition of target sound decorrelates the temporal structure in their responses relative

to just the presence of background sound.

3.3.2 Non-Sound-Detecting Gerbils

The passive conditions were always recorded following active testing on the same

day, after the animal had reached satiety. One striking observation from the

sound-detecting gerbils above is the high similarity in the single-unit responses

between active vs. passive conditions. This raises the possibility that in the nominally

passive listening conditions, these highly trained were, in fact, not ignoring the sounds

reaching their ears, even though they were not actively seeking rewards. As a control

for this caveat, we next tested gerbils that had been conditioned to expect a water

reward simply for initiating the nose poke, even when no tone was playing, i.e., both

Go and NoGo trials were always rewarded. Note that while normally-hearing gerbils

can be trained to reliably detect target sound the current task even at -20 dB SNR

over a dozen training sessions, naive gerbils typically cannot perform the task at

negative SNRs [59].

In this non-sound-detecting control group, we isolated 56 target-responsive

single-units. Visual inspection of the RTHs reveals target-evoked onset or offset

responses at 10 dB SNR, but much reduced or absent onset/offset responses at 0 and

-10 dB SNR (Figure 3.7 G and H). In the passive conditions, the presence of target

energy consistently increased the firing rate as compared to background-sound-only

(all line falls above zero in Figure 3.7I). This response pattern was qualitatively

different from the sound-detecting group (compare Figure 3.7 C vs. I). Not only

were the firing rate differentials between Go and NoGo consistently positive, but they

also fluctuated at 10 Hz (note how all lines are positive in Figure 3.7I, and fluctuate at

10 Hz). In the active conditions, the difference in firing rates between Go and NoGo

sustained responses decreased with increasing SNR, a difference that interacted with
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SNR similar to results from the sound-detecting gerbils (compare Figure 3.7 J vs. B).

Specifically, Go firing rates were suppressed relative to NoGo firing rates at 10 dB

SNR (dark red line falls below zero in Figure 3.7D), but enhanced relative to NoGo

firing rates at 0 and -10 dB SNR (lighter red lines fall above zero in Figure 3.7J). Of

note, unlike in the sound-detecting gerbils, firing rates did not increase after the nose

poke onset and even slightly decreased by 2.6% [paired t(56) = -3.6, p < 0.001)].

Power spectral density was tuned to 10 Hz, and the 10 Hz peak height decreased

with increasing SNR, consistent with the idea of tracking the temporal envelope of

the masker (Figure 3.7 K and L). In the passive conditions, 10 Hz vector strength

and mean firing rate co-varied significantly, except at 10 dB SNR, with lower rate

units more likely to significantly phase-lock to the masker envelope (Figure 3.8C). In

the active conditions, this trend was also apparent, but only for NoGo and -10 dB

SNR cases, where the non-sound-discriminating gerbils presumably could not hear

the target. Similar to the sound-detecting gerbils, here, across-unit average vector

strength decreased with increasing SNR in the passive conditions (Figure 3.8D). On

the other hand, in the active conditions, vector strength plateaued between 0 and

10 dB SNR. Overall vector strength was approximately 0.1 higher in the non-sound

detecting as compared to the sound-detecting group (compare vertical ranges across

Figure 3.8 B and D, [mANOVA F(1, 200) = 68.2, p < 0.001, η2G = 0.103]).

Target-evoked response correlations ρ were considerably more variable across

conditions, as compared to ρ in the sound-detecting gerbils (compare vertical spread

of curves in Figure 3.9 B vs. C). However, even in the non-sound-detecting gerbils,

ρ consistently decreased in the presence of target sound. Of note, unlike for the

sound-detecting gerbils, nose poke initiation was not followed by increased ρ (red lines

do not increase to the right of the grey bar in the time-dilated curve of Figure 3.9C,

right panel).
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3.3.3 Neurometric Analysis

To test our core hypothesis that SNR shapes reliance on short-term temporal

processing, we next analyzed how rate vs. temporal coding strategies varied with

SNR by comparing NoGo vs. Go responses (Figure 3.10). Mutual information

between NoGo and Go spike probability distributions, shown in Figure 3.10A, did

not appreciably vary with SNR [mANOVA F(1.9, 368.7) = 6.9, p = 0.001, η2G =

0.009], consistent with the observation that gerbils can be trained to hear the target

at all SNRs. Sound-discriminating gerbils had much reduced mutual information,

as compared to non-sound discriminating gerbils [mANOVA F(1, 191) = 31.6, p <

0.001, η2G = 0.044]. There was no overall effect of active vs. passive task engagement

[mANOVA F(1, 191) = 0.9, p = 0.356, η2G < 0.001]. Meanwhile, mANOVA revealed

a crossover interaction of SNR and engagement [mANOVA F(2, 382) = 3.1, p =

0.048, η2G = 0.004], consistent with the observation that for both groups of gerbils,

the mutual information was somewhat higher during active vs. passive listening at

+10 dB SNR.

The association of reduced mutual information and better task performance was

also born out when looking at only the Go trials in the active conditions. Figure 3.10B

shows a subset of the data in Figure 3.10A, specifically: the active sound-detecting

data separated into HITs, i.e., Go trials when sound-detecting animals correctly

detected the target, vs. MISSes, i.e., trials when sound-detecting animals fail to

detect a target during a Go trial. The mutual information between NoGo and Go

spike distributions during HITs was lower as compared to MISSes [rANOVA F(1,

22) = 45.5, p < 0.001, η2G = 0.268]. The overall effect of SNR remained significant

[rANOVA F(2, 44) = 7.8, p = 0.001, η2G = 0.091]. The interaction between mutual

information score and SNR was significant, consistent with the observation that at

+10 dB, the difference between MISSes and HITs was greatest overall [rANOVA F(2,

44) = 3.5, p = 0.039, η2G = 0.037].
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Therefore, the current results show, somewhat paradoxically, that when gerbils

were better able to hear the tone, the Go and NoGo responses were more similar

to each other as compared to when tone detection performance was worse (HITs vs.

MISSes or Sound-Detecting vs. Non-Sound-Detecting gerbils). However, note also

that the mutual information metric is agnostic to the readout mechanism employed

by the central nervous system. The results are consistent with the interpretation that

task training prunes information in the neuronal code, removing neuronal discharge

patterns that could be informative because they vary consistently with the presence

of the target but that are presumably not helpful to the sensory decoding mechanisms

that the animal uses.

Figure 3.10C shows the similarity index, i.e., the slope of the regression

fit linking Go target-background-mixture responses with NoGo responses to the

background sound alone [73]. Here, the similarity index did not differ appreciably

across groups [mANOVA F(1, 200) = 0.1, p = 0.769, η2G < 0.001], or active/passive

listening [mANOVA F(1, 200) = 0.8, p = 0.371, η2G < 0.001], but decreased with

increasing SNR across all conditions [mANOVA F(1.8, 366.9) = 45.8, p < 0.001, η2G

= 0.061]. This is consistent with the interpretation that the Go - vs. NoGo-evoked

responses become increasingly similar with decreasing SNR. The sign of the similarity

index is positive across all conditions, suggesting that an SNR-invariant decision

metric based on overall similarity could underlie target detection.

The similarity index combines both rate cues and temporal information. To

disentangle how these cues drive behavioral task performance across positive and

negative SNRs, we next separately analyzed putative decoding mechanism relying on

spike count vs. spike timing. In both groups, here, the Go-NoGo differences in spike

count decreased with increasing SNR (Figure 3.10D; mANOVA F(1.6, 321.1) = 126.1,

p < 0.001, η2G = 0.123), and the magnitude of the Go-NoGo difference was greater in

the active than in the passive conditions [mANOVA F(1, 196) = 35.9, p < 0.001, η2G
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= 0.033]. There was no main effect of group [mANOVA F(1, 196) = 3.0, p = 0.087,

η2G = 0.007]. Across all configurations, except for the passive non-sound-detecting

configuration, the spike count curve as a function of SNR crossed zero, showing that

at -10 dB SNR, more spikes occurred during Go than NoGo trials, whereas at 10 dB,

NoGo trials had a higher spike count than Go trials (In Figure 3.10D, all lines except

for dashed black line cross zero). Therefore, a putative neuronal readout relying

on Go-NoGo spike count distances would need to use different decision strategies at

positive vs. negative SNR, detecting target sound via a decrease in sustained firing

at positive SNR, as compared to increased sustained firing at negative SNRs.

In contrast to the spike count, putative temporal readouts varied monotonically

with SNR, without crossing zero. Specifically, both the 10 Hz modulation power

(Figure 3.10E) and the ρ-index (Figure 3.10F) decreased with increasing SNR [Power:

mANOVA F(1.7, 300.7) = 73.4, p < 0.001, η2G = 0.066; ρ: mANOVA F(2, 406) =

16.1, p < 0.001, η2G = 0.023], with negative z-distances between NoGo vs. Go at all

SNRs. There was no main effect of group [Power: mANOVA F(1, 173) = 0.5, p =

0.499, η2G = 0.001; ρ: mANOVA F(1, 203) = 1.2, p = 0.275, η2G = 0.001]. Analyzing

the 10-Hz vector-strength across groups reveals that the vector strength was higher

in the non-sound detecting as compared to the sound detecting group ([mANOVA

F(1, 200) = 68.2, p < 0.001, η2G = 0.103]; vector strength in Figure 3.8 D was overall

higher than in Figure 3.8 B), with a main effect of SNR [mANOVA F(2.5, 505.5) =

79.3, p < 0.001, η2G = 0.121] and main effect of task engagement [mANOVA F(1,

200) = 28.6, p < 0.001, η2G = 0.018]. The Go-NoGo difference in 10 Hz power was

greater in the active than passive conditions [mANOVA F(1, 173) = 7.2, p = 0.008,

η2G = 0.009], but ρ did not differ appreciably between active and passive listening

[mANOVA F(1, 203) = .3, p = 0.598, η2G < 0.001].

Together, these results suggest that both rate and temporal cues could be used

at the positive SNR. In contrast, at 0 dB SNR, spike count does not appreciably
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differ between Go and NoGo trials [paired t(413) = -2.6, adjusted p = 0.031,

Bonferroni-adjusted for multiple comparisons]. Moreover, at the negative SNR, only

decision metrics relying on temporal coding can operate with a decision criterion that

is consistent with that at the positive SNR.

3.4 Discussion

Moderate background sound disrupt auditory clarity in people with hearing loss, a

challenge that no current clinical treatment approach overcomes for the majority

of individuals. Prior behavioral work establishes that both peripheral mechanisms

and central auditory processing contribute to dip listening. Evidence supporting

central mechanisms include the comodulation masking release phenomenon, where

added masker energy can paradoxically improve target detection and identification

performance, an effect obliterated by backward-masking, another central phenomenon

[47, 24]. Moreover, after an episode of temporary conductive hearing loss from otitis

media, normally hearing children experience reduced ability to listen in the dips up

to six months [41]. Consistent with this, gerbils with chronic juvenile-onset sound

deprivation have raised detection thresholds in modulated noise despite not showing

widened cochlear filters as compared to normally hearing controls [59, 135]. Even a

theoretically ideal hearing aid could not compensate for peripheral dysfunction. In

contrast, central processes could be targeted by rehabilitative technology. To better

understand how hearing loss disrupts auditory clarity in situations with background

sound and how auditory clarity could be restored, we therefore need to define central

mechanisms for hearing in background sound. The current study intends to contribute

towards this goal by examining SNR invariance in auditory cortex.

To elucidate the factors causing dip listening to operate across a range of

negative and positive SNRs, this study sought to test the hypothesis that listening at

negative SNRs is mediated by a stronger reliance on temporal cues, as compared to
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positive SNRs. Evidence supporting this hypothesis comes from behavioral studies in

human listeners showing that an individual’s ability to resolve temporal fine structure

information predicts their ability to suppress temporally fluctuating background

sound [80, 56]. We here recorded auditory cortical responses in normally hearing,

awake and freely moving adult gerbils, while these gerbils either actively detected on

a target tone in 10 Hz modulated noise or passively heard the same sounds. Gerbils

performed with comparable behavioral sensitivity across three SNRs that were either

negative, balanced or positive. In the following sections, we discuss how SNR shapes

the potency of rate vs. temporal neuronal coding cues for solving this task.

Using the conceptual framework of classic decision theory, a tacit premise of

prior work looking at the effect of SNR on tone detection in modulated noise is that the

separation between target and masker along an internal decision variable reduces with

decreasing SNR. Although, this assumption had not explicitly been tested, raising the

possibility that SNR shapes decision variables differently depending on whether they

rely on rate or temporal coding.

3.4.1 Envelope Locking Suppression

In anesthetized untrained cats, phase-locking to a moderately slow amplitude-

modulated masker envelope is suppressed 75 ms after onset of a target tone [73]. This

phenomenon, referred to as hypersensitive locking suppression, emerges at the medial

geniculate body, sculpting response pattern in primary auditory cortex across a range

of positive to negative SNRs, and even for target tones below the quiet threshold of

the neurons [73].

The existence of envelope locking suppression was confirmed in single units in

the primary auditory cortex of anesthetized and untrained rats [50] as well as mice,

albeit with low prevalence across recorded sites [117]. Specifically, in rat, at 0 dB SNR,

average neuronal responses to tones in unmodulated masking noise did not change
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much relative to responses to unmodulated masking noise in isolation, but showed

suppressed envelope following responses when the masking noise was modulated [50].

Furthermore, in mouse, for SNRs ranging from -10 to 20 dB, single units responded

more weakly to tones in modulated narrow-band noise when this narrow-band noise

was presented in isolation, vs. with an incoherently modulated flanking noise vs. with

a coherently flanking noise, and showed overall stronger envelope locking suppression

in the presence of forward-masking fringes [117]. Moreover, in mouse, with decreasing

SNR the firing rate in most units increased, and increased most steeply in the presence

of coherently modulated background sound [117]. In contrast to these mammalian

responses, neuronal responses in the primary auditory cortex homologue in birds,

area L2 of the avian brain, lack locking suppression [72, 91], and have previously been

compared to more strongly resemble inferior colliculus responses in cat vs. auditory

cortex [73].

We here confirm envelope locking disruption at negative and positive SNRs, both

quantitatively through the similarity index as well as qualitatively through visual

inspection of the response time histograms. However, unlike in the prior work in

anesthetized animals, in the current design with awake animals, overall neuronal

discharge rates are enhanced, as opposed to suppressed, at negative SNRs. This

phenomenon was observed in all animals that were engaged in a behavioral task,

even when those animals were not engaged in sound detection. However, non-sound-

detecting animals that were passively exposed to the same sounds showed enhanced

neuronal discharge rates across all SNRs. As a result, spike count differences between

Go and NoGo trials tend to be negative at positive SNRs, and positive at negative

SNRs, an observation that is inconsistent with the interpretation that rate coding

is SNR-invariant. In contrast, neurometric measures that are based on temporal

patterns, including the similarity index and the decorrelation index ρ, do not change
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signs with decreasing SNR, making them viable candidate metrics for the behaviorally

observed SNR-invariant detection of target sound.

Previously, in trained rhesus monkeys that were engaged in a tone detection

task with amplitude-modulated background noise, primary auditory cortex recordings

showed that single-neuron responses were insufficient and pooling of spiking activity

across the population of single neurons was necessary to predict behavioral performance

from neuronal discharge rates [20]. The monkeys were tested across a range from

-5 to 20 dB SNR. Although, performance at 0 and -5 dB SNR was at chance,

suggesting that the monkeys could not detect the target sound at the two lowest

SNRs [20]. Population responses showed enhancement followed by suppression after

the target onset, a phenomenon confirmed by the current results for 0 and 10 dB SNR

(Figure 3.10). Our current work supports these findings but shows that at negative

SNRs and at the population level, spike count is not a viable metric for tone detection.

In addition, prior work on zebra finches finds evidence for SNR-invariant target

feature detectors in primary auditory cortex. When listening for a conspecific target

vocalization while a chorus of different conspecific vocalizations was concurrently

present in the background, some single auditory cortical neurons selectively encoded

the target sound in a manner that is invariant to the background, when those

target sounds are behaviorally recognizable [113]. However, the zebra finches in

this study could not perform the task at the only tested negative SNR of -15 dB

[113]. It is therefore unclear whether the background-invariant encoding of target

sound generalizes to negative SNRs. Here, at the single-unit level, only in the

sound-detecting gerbils did we observe six highly specialized units with responses in

background sound that closely resembled the responses to the target in quiet, across

all SNRs (see Supplements FR+/VS+), hinting that the previously proposed selective

target encoding mechanism may generalize to the mammalian auditory cortex.
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3.4.2 Task Engagement

Others have reported and we confirm that task engagement shaped the anticipatory

neural response, prior to the potential target onset [16]. Specifically, in sound-

detecting animals, the average discharge rate during NoGos did not vary much

between active vs. passive listening, except that after the animal initiated a trial

via the nose poke, the majority of units showed a characteristic increase in firing

rate, followed by a decrease. Whereas, in non-sound-detecting animals, firing rate

did not increase and even modestly declined after nose poking triggered a trial.

This suggests that the increase in firing rate immediately after nose-poking is an

anticipatory auditory-specific response to support the ability to hear out the target,

but only when a gerbil is trying to hear target sound.

3.4.3 Task Training

Overall, sound-detecting animals had higher non sound-evoked discharge rates as

compared to non-sound-detecting animals. We observed that the mutual information

between sustained NoGo and Go responses was higher for non-sound-detecting than

for sound-detecting animals, and higher when sound-detecting animals missed a Go

trial vs. when they responded correctly, consistent with the interpretation that

sensory task training reduced the amount of shared information between Go and

NoGo responses. This reduction in mutual information was not born out in the

other neurometric analyses, where differentiation in neural responses between Go

and NoGo stimuli appeared comparable for sound-detecting gerbils vs. non-sound

detecting gerbils, for both rate and temporal coding metrics. Together, these results

strongly suggest that much of the information that a classifier may initially learn to

interpret from the sensory cortical responses in non-sound detecting gerbils was not,

in fact, utilized by the highly trained animals and hint that learned behavioral ability

to detect the target tone was mediated by readout metrics that are not captured by
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simple rate-decoding or envelope locking suppression, e.g., via emergence of highly

specialized template-matching units.

3.4.4 Clinical Implications

Most hearing-impaired individuals whose hearing has been restored via hearing

aids or cochlear implants find it difficult to dissociate target sound that they are

trying to hear from background sound, a phenomenon called masking. Moreover,

even individuals with comparable peripheral audiometric thresholds can vastly differ

in how well they can identify masked speech, a phenomenon that is thought to

arise from central processing deficits [79, 118, 3, 55, 78]. An extensive literature

demonstrates that the ability to listen in the dips is disrupted in individuals with

hearing loss and in cochlear implant users [90, 61], suggesting that dip-listening

mechanisms could be a key to restoring auditory clarity when background sound

for people with hearing loss. Provision of visual lip-reading cues or reduction in

target set size can restore a hearing impaired person’s ability to identify target

speech at negative SNRs [8, 7]. This phenomenon can be interpreted to mean that

auditory dip-listening mechanisms in hearing impaired individuals function normally,

provided that the overall peripheral SNR is low enough for dip-listening benefits to

be effective. However, an alternative interpretation of this work is that provision

of temporal cues via lipreading or increased stimulus redundancy via smaller set

sizes substitutes malfunctioning auditory temporal cues, filling in central access

to temporal information that is needed to listen in the dips. We currently lack

physiological data to disambiguate these possibilities. The current work demonstrates

that both rate and temporal cues can be effective at positive SNRs, but that reliance

on temporal information is needed for SNR-invariant hearing at negative SNRs.

Moreover, we previously demonstrated that gerbils raised with sound deprivation have

reduced dip-listening abilities despite the fact that their peripheral tuning appears
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intact [59, 135], suggesting that central processes play a key role in dip-listening.

Future work is needed to understand whether the temporal information needed for

dip-listening at negative SNRs can be augmented through other sensory modalities.

3.5 Supplemental Information

3.5.1 Single-Unit Response Types

In order to identify different patterns of single-unit activity, we categorized units as

phasic or tonic based on their ability to follow the envelope of the masker. Pooling

across Go and NoGo trials during either passive or active listening, units that had

at least one significant vector strength (Rayleigh’s p < 0.001, see Equation (3.4) for

details) at the 10 Hz modulation rate of the masker were selected as phasic. The

remaining units that were not able to phase-lock to the masker at any of the stimulus

or task engagement conditions were categorized as tonic.

Among phasic units, we observed four phenotypes based on changes in firing

rate and vector strength in response to the target stimulus during active engagement.

This change was measured by comparing average activity of the unit across all trials

(Go and NoGo) prior to tone onset, with the response of the unit to 10 dB SNR

tones. Single-units that increased in both firing rate and vector strength were labeled

as FR+/VS+, units that only had an enhanced firing rate but not vector strength

as FR+/VS-, units that suppressed their overall firing rate but were better able to

phase-lock to the masker as FR-/VS+, and units that decreased in both firing rate

and vector strength were labeled FR-/VS-. These four phenotypes cover all quadrants

of a rate/temporal response space.

3.5.2 Decoding Sensory Information by Single-Unit Response Type

Table 3.2 shows unit counts for all 4 phasic phenotypes and also tonics that were

detected in each gerbil group. Results show that more than 90% of single-units in
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both gerbil groups had the ability to follow the envelope of the masker. Among them,

the most common phenotype was FR-/VS- with a preference for suppressing both

their overall firing rate, and also their phase-locking to the masker in response to the

target stimulus.

Table 3.2 Detected Unit Counts per Phenotype for Each of the Gerbil Groups

Gerbil group FR-/VS+ FR+/VS+ FR-/VS- FR+/VS- Tonic Total

Sound-detecting 28 6 75 28 14 151

Non-sound-detecting 18 1 30 4 3 56

In all types of phasic and tonic units, sensory information at the population

level could predict behavioral sensitivity (Figure 3.13). For both FR-/VS+ and FR-

/VS-, units at 0 and 10 dB SNR average firing rates decreased in Go vs NoGo trials,

consistent with envelope locking suppression (Figure 3.13 A and C). However, at -10

dB SNR, firing rate increased during Go trials as compared to NoGo, a phenomenon

not predicted by envelope locking suppression. In quiet, FR-/VS+ units showed

suppression of non-sound evoked discharge at the highest sound level, vs. an increase

in firing rate at the lowest sound level.

The FR+/VS+ units responded to the tone-masker mixture with a sustained

enhancement in firing rate (Figure 3.11B). Interestingly, this activity pattern was

consistent across all SNRs in both active and passive tasks, and closely resembled

their response to 60 dB SPL tones in quiet. The spike count z-scores in Figure 3.13B

also reflect this SNR-invariant response strategy, which would be ideal for a masker-

agnostic readout of the target stimulus. Sound-detecting animals reveal 6 units out

of 151 that follow this pattern.
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3.5.3 Discussion of Single-Unit Response Types

The temporal pattern of envelope locking suppression varies non-linearly across units

and SNRs. For instance, while a target sound is present, the majority of units,

FR-/VS- units, show decreased vector strength in following the masker envelope,

a weak target onset response that does not vary appreciably across SNR, and

increased sustained firing with decreasing SNR. In contrast, FR-/VS+ units show

increased vector strength to the masker envelope, increased target onset responses,

and decreased target sustained responses with decreasing SNR. However, for both

types of units, decorrelation between NoGo and Go is a robust, SNR-invariant cue.

When the target energy dominated the acoustic mixture, at 10 dB SNR, the

majority of single-units during active listening decreased their firing rate (FR-) as

compared to when only masker energy was present, in both sound-detecting (103/151)

and non-sound-detecting (48/56) animals. Of those rate-suppressing units, 73% in

sound-detecting and 63% in non-sound-detecting animals also decreased the vector

strength (VS-) by which they tracked the masker. More so, these nominally rate-

suppressing units typically showed a small but consistent enhancement in firing rate

at -10 dB SNR, rejecting the idea of an SNR-invariant rate-based decision criterion

from these units. Intriguingly, unlike in the active modes, and unlike in sound-

detecting animals, in the passive responses of non-sound-detecting animals, firing

rate consistently increases after target onset. Rate-based neurometric sensitivity in

rate-enhancing (FR+) units of non-sound-detecting and passively listening animals

did not vary appreciably was positive at all SNRs.

In contrast, across all rate-suppressing units, in sound-detecting animals, decor-

relation d′, a template model based on the magnitude of the decorrelation of the signal

reaching the ears prior vs. during tone onset, is directly proportional to behavioral

sensitivity and does not vary appreciably with SNR. In non-sound-detecting animals,

the decorrelation d′ analysis predicts an ability to detect the target at 10 and 0 dB,
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but not -10 dB. This prediction mirrors the learning curves in the behavioral data

demonstrating that at the beginning of training, gerbils cannot detect a tone at -10

dB SNR. Indeed, it often takes more than 20 training sessions until gerbils are reliably

able to signal the presence of a tone at -10 dB SNR.

When responding to a target in quiet, during passive listening, the RTHs of the

populations of rate-suppressing units tended to display strong onset responses followed

by sustained suppression. In contrast, rate-enhancing unit responded more slowly to

target sound and in sustained patterns. FR+/VS+ units also showed offset responses.

This hints that these units rebound after inhibition in the presence of target sound

[123]. Intriguingly, in the presence of target sound, FR+/VS+ units increase the

vector strength by which they track the masker. But, despite this increased envelope

locking, decorrelation-based neurometric sensitivity decreases with increasing SNR,

and is small or absent at 0 and 10 dB SNR. In contrast, rate-based neurometric

sensitivity appears to be roughly SNR-invariant, at least over the range of tested

SNRs. Indeed, unlike in the other three unit types, the RTH patterns of FR+/VS+

unit are comparable across SNRs, but differ from their responses to the same targets

in the absence of background sound.

Together, these findings show that at the level of core auditory cortex, at least

two readout mechanisms exist. The majority of units change their firing rate when

target sound is added. In non-sound-detecting and passively listening animals, firing

rate increased at all SNR. In sound-detecting animals or in tasked-engaged non-

sound-detecting animals, firing rate depended non-monotonically on SNR. Although,

decorrelation in the envelope locking response of these units, either through a decrease

or an increase in envelope locking, varies consistently with a change in behavioral

sensitivity and is robust to SNR.
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Figure 3.11 RTH of different unit phenotypes for sound-detecting gerbils. In
addition to the passive and active engagement conditions with modulated masker
(shades of black and red, same as Figure 3.7), here, unit responses to pure tone in
quiet (i.e., in absence of background sound) are also illustrated as shades of blue.
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Figure 3.12 RTH of different unit phenotypes (similar to Figure 3.11) for non-
sound-detecting gerbils. Note: FR+/VS- and tonic units have missing recordings for
the quiet condition.
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Figure 3.13 Average of neurometric rate and temporal metrics (similar to
Figure 3.10) broken down per each of the five unit phenotypes. For unit counts
per phenotype for each gerbil group, refer to Table 3.2.
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CHAPTER 4

LEVEL DEPENDENCE OF HUMAN SOUND LATERALIZATION
WITH INTERAURAL TIME DIFFERENCES

Human sound localization is an important computation performed by the brain.

Models of sound localization commonly assume that sound lateralization from

interaural time differences is level invariant. Here, we observe that two prevalent

theories of sound localization make opposing predictions. The labelled-line model

encodes location through tuned representations of spatial location and predicts that

perceived direction is level invariant. In contrast, the hemispheric-difference model

encodes location through spike-rate and predicts that perceived direction becomes

medially biased at low sound levels. Behavioral experiments find that softer sounds

are perceived closer to midline than louder sounds, favoring rate-coding models of

human sound localization. Analogously, visual depth perception, which is based on

interocular disparity, depends on the contrast of the target. The similar results in

hearing and vision suggest that the brain may use a canonical computation of location:

encoding perceived location through population spike rate relative to baseline.

4.1 Introduction

A fundamental question of human perception is how we perceive target locations in

space. Through our eyes and skin, the activation patterns of sensory organs provide

rich spatial cues. However, for other sensory dimensions, including sound localization

and visual depth perception, spatial locations must be computed by the brain. For

instance, interaural time differences (ITDs) of the sounds reaching the ears allow

listeners to localize sound in the horizontal plane. In the ascending mammalian

auditory pathway, the first neural processing stage where ITDs are encoded, on

the timescale of microseconds, is the medial superior olive (MSO). Here, temporally
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precise binaural inputs converge, and their ITDs are converted to neural firing rate

[35, 136, 119, 96, 25]. The shape of the MSO output firing rate curves as a function

of ITD resembles that of a cross-correlation operation on the inputs to each ear

[6]. How this information is interpreted downstream of the MSO has led to the

development of conflicting theories on the neural mechanisms of sound localization in

humans. One prominent neural model for sound localization, originally proposed by

Jeffress, consists of a labelled line of coincidence detector neurons that are sensitive

to the binaural synchronicity of neural inputs from each ear [65], with each neuron

maximally sensitive to a specific magnitude of ITD (Figure 4.1A). This labelled-line

model is computationally equivalent to a neural place-code based on bandlimited

cross-correlations of the sounds reaching both ears [29]. Several studies support the

existence of labelled-line neural place-code mechanisms in the avian brain [18, 92],

and versions of it have successfully been applied in many engineering applications

predicting human localization performance [30, 46, 122, 13, 48].

A growing literature proposes an alternative to the labelled-line model to explain

mammalian sensitivity to ITD [74]. One reason for an alternative is that two

excitatory inputs should suffice to implement the labelled-line model, but evidence

from experiments on Mongolian gerbils shows that in addition to bilateral excitatory

inputs, sharply tuned bilateral inhibitory inputs to the MSO play a crucial role

in processing ITDs [12]. Moreover, to date no labelled-line type neurons encoding

auditory space have been discovered in a mammalian species. Indeed, using a

population rate-code, several studies proposed that mammalian sound localization can

be modeled based on differences in firing rates across the two populations of neurons

that are tuned to opposing hemispheres (Figure 4.1B; [126, 82, 26]). Rate-based

models generally predict that neuronal responses carry most information at the

steepest slopes of neural-discharge-rate versus ITD curves, where neural discharge

changes most strongly [121], consistent with the observation that the peak ITDs of
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rate-ITD curves often fall outside the physiologically plausible range ([82, 44]; but

see also [66]). In addition, some authors have suggested that how mammalian sound

localization adapts to stimulus history further supports a rate-based neural population

code, as assessed behaviorally or via magnetoencephalography [99, 120, 112].

It is unknown which of the two competing models, broadly characterized as

labelled-line versus rate-code model, describes human sound localization better. Here,

we observe that the two different models predict different dependencies of sound

localization on sound intensity. By combining behavioral data on sound intensity

dependence in normal-hearing listeners with numerical predictions of human sound

lateralization from both models, we attempt to disentangle whether human auditory

perception is based on a place-code, akin to the labelled-line model, or whether it is

instead more closely described by a population rate-code.

An extensive physiology literature characterizes labelled-line versus population-

rate type neurons and suggests that, at least from the perspective of evolution,

birds and mammals use different neural mechanisms to calculate sound direction

(review: [42]). Thus, we searched the avian and mammalian physiology literature

and identified two studies that characterized labelled-line versus population rate-code

neurons at low sound levels and as a function of both sound level and ITD [97, 139].

Both Peña and colleagues (1996) and Zwiers and colleagues (2004) report neural firing

rate in response to acoustic noise stimuli and are thus suitable for predicting each

model’s sensitivity to the acoustic noises we tested in the current study. Here, we ran

a meta-analysis, reconstructing simulated neurons with response characteristics from

each of the two studies and using maximum likelihood estimation to predict source

laterality from these previous findings.
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4.2 Model Predictions

To predict how lateralization depends on sound intensity from the responses of

labelled-line neurons, we estimated neural firing rates from previous recordings in

the nucleus laminaris in barn owl [97]. To estimate lateralization’s dependence

on level based on a population rate-code, we used previous recordings from the

inferior colliculus of rhesus macaque monkey and calculated hemispheric differences

in firing rate [139]. The labelled-line neurons predicted that, as sound intensity

decreases, perceived source laterality would converge towards similar means for low

versus high sound intensities, with increased response variability at decreasing sound

intensities (Figure 4.1C). In contrast, the hemispheric-difference model predicted

that as sound intensity decreases to near threshold levels, perceived laterality would

become increasingly biased toward the midline reference (Figure 4.1D, e.g., note

the shallower slope and thus compressed laterality percepts for red versus blue

curves). For lower sound intensities, predicted source direction is biased towards

midline (compare red and orange versus blue or yellow). For higher sound intensities,

predicted source direction is intensity invariant (blue on top of yellow line). At

higher overall sound intensities, both models predicted that lateralization would be

intensity invariant (see insets in Figure 4.1C versus D). Therefore, analyzing how

sound intensity affects perceived sound direction near sensation threshold offers an

opportunity to disentangle whether our human auditory system relies on a place-based

or rate-based population code for localizing sound based on ITD.

A listener’s ability to discriminate ITD can vary with sound intensity [27].

However, it is difficult to interpret previous findings linking sensitivity to ITD and a

listener’s judgement of sound source direction as a function of sound intensity. Some

reported decreased perceived source laterality near sensation threshold [124, 111], but

others reported weak or no level effects on perceived lateralization [129, 84, 49, 81, 62,

128, 15, 33]. Several factors complicate the interpretation of these previous findings
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Figure 4.1 A Firing rate of a simulated nucleus laminaris neuron with a preferred
ITD of 375 µs, as a function of source ITD. The model predicts source laterality based
on the locus of the peak of the firing rate function. B Hemispheric differences in firing
rates, averaged across all 81 simulated inferior colliculus units. Rate models assume
that source laterality is proportional to firing rate, causing ambiguities at the lowest
sound intensities. Inset: Reconstructed responses of an inferior colliculus unit. The
unit predominantly responds contralaterally to the direction of sound (high-contrast
traces). The hemispheric difference model subtracts this activity from the average rate
on the ipsilateral side (example shown with low-contrast traces). C Mean population
response using labelled-line coding across a range of ITDs and sound intensities.
Inset: The root-mean square (RMS) difference relative to estimated angle at 80 dB
SPL does not change with sound intensity, predicting that sound laterality is intensity
invariant. D Mean population response using hemispheric-difference coding. Inset:
RMS difference relative to estimated angle at 80 dB SPL decreases with increasing
sound intensity, predicting that sound laterality is not intensity invariant. Ribbons
show one standard error of the mean across 100 simulated responses. Sound intensity
is denoted by color (see color key in the figure).
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in the context of the current hypothesis. For instance, assuming an approximately

30 dB dynamic range of rate-level function either at the MSO or downstream in the

binaural pathway (e.g., medial superior olive: [35]; inferior colliculus : [139]), for

stimuli at higher sensation levels (SL) where the rate-level functions saturate, both

the labelled-line and the hemispheric difference model predict level invariance. This

could explain how studies that tested for sound intensity effects over a range of high

intensities did not see an effect. Moreover, when presented in the free field, sounds

also contain interaural level differences and spectral cues, in addition to ITD. For

low-frequency sound, listeners rely dominantly on ITD when judging lateral source

angle. In contrast, for broadband sound, listeners integrate across all three types

of spatial cue [131, 60]. Unlike ITDs, interaural level differences and overall sound

intensity both decrease with increasing source distance, raising the possibility that

for stimuli with high-frequency content, listeners judged softer sounds to be more

medial because they interpreted them to be farther away than louder sounds. Further,

at low sound intensities, the sound-direction-related notches of the spectral cues

at high-frequencies should have been less audible than at higher sound intensities,

increasing stimulus ambiguity. A resulting increase in response variability may have

obscured the effect of level on ITD coding. Finally, some historic studies used only

two or three listeners, suggesting that they may have been statistically underpowered.

Thus, the literature provides insufficient evidence on how ITD-based lateralization

varies with level near sensation threshold.

4.3 Human Perception

Here, we contrasted two competing hypotheses toward the goal of disentangling

whether ITD-based human sound localization relies on a labelled-line versus a

population rate-place neural code. The labelled-line code hypothesis predicted that

the mean perceived direction based on ITD would be intensity invariant, even at
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intensities close to SL. Using a psychophysical paradigm, we studied lateralization

based on ITD as a function of sound intensity in a group of ten normally hearing

listeners (experiment 1). Stimuli consisted of low-frequency noise tokens that were

bandlimited to cover most of the frequency range where humans can discriminate

ITD [14] (here, corner frequencies from 300 to 1200 Hz, shown in Figure 4.2A). In

each one-interval trial, listeners had to indicate perceived laterality across a range of

ITDs from -375 to 375 µs. Lateralization was measured as function of SL. To examine

how sound intensity affects perceived ITD coding of source direction, we modelled

perceived laterality with a nonlinear mixed effect model (NLME) that included fixed

effects of ITD and sound intensity as well as a random effect of listener.

Figure 4.2B depicts lateralization performance with spectrally flat noise at two

sound intensities for a representative listener (TCW ). Figure 4.2C shows raw data

(circles) and NMLE fits (lines) across all listeners. Error bars show one standard

error of the mean across listeners, and shaded ribbons indicate one standard error

of the mean fit across listeners. This model predicts 80.6% of the variance in the

measured responses and is deemed an appropriate fit of the data. Table 4.1 lists

all NLME parameters. In this table Laterality:sound intensity refers to the NLME

weight attributed to acoustic sound intensity of the auditory target. In contrast,

Laterality:audibility captures the NLME weight attributed to pure tone audiometric

thresholds based on the listeners’ perceptual abilities. The NLME model results

show that perceived laterality scores increased with increasing ITD, as expected.

With decreasing sound intensity, percepts were increasingly biased towards midline

(compare order of colored lines, magnified in the inset of Figure 4.2C). These trends

were supported by the NLME model, which revealed significant effects of ITD (p

< 0.001; αx1) and sound intensity (p < 0.001; αy1) on the maximal extent of

laterality, confirming the predicted trend from the hemispheric difference model

and rejecting our null hypothesis. Average pure tone audiometric thresholds affect
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perceived laterality, albeit mildly (p < 0.001; αy2 = -0.06), consistent with a slight

leftward response bias. Sound intensity did not significantly affect the slope of the

psychometric functions (p = 0.14; αx2).

Table 4.1 Non-Linear Mixed Effects Model for Flat-Spectrum Noise Condition

Description Estimate Std. Error t-value p-value

αx0 Intercept: ITD 0.06 0.04 1.58 0.11

αx1 Slope: ITD 2.45 0.05 46.15 <0.001 ***

αx2 Slope: Sound Intensity 0.02 0.01 1.47 0.14

αy1 Laterality: Sound Intensity 0.05 0.01 7.59 <0.001 ***

αy2 Laterality: Audibility 0.01 0.01 4.86 <0.001 ***

Note: 10986 degrees of freedom.

Significance codes: ‘***’ p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05, ‘.’ p < 0.1, ‘ ’ p ≥ 0.1.

In a second experiment, we examined whether these results were robust to the

spectral details of the stimuli. A caveat of testing spectrally flat noise at low sound

intensities is that parts of the spectrum may be inaudible, and this may contribute to

the slight but significant effect of audibility on laterality (αy2). Therefore, the results

of experiment 1 could potentially be confounded by the fact that the bandwidth of

the audible portion of the noise tokens decreased with decreasing sound intensity.

Alternatively, the effect of absolute pure tone detection thresholds that we observe

in our normal-hearing listeners may reflect differences in neural function beyond

audibility. As a control for perceived stimulus bandwidth, the same listeners were

tested again, using inverse A-weighted noises (experiment 2). Inverse A-weighting

boosts sound energy at each frequency in rough proportion to the human threshold.

Resulting inverse A-weighted sensitivity thus achieves nearly constant sensation level

across frequency. All of the original ten listeners from experiment 1 completed
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experiment 2. Methods were similar as in the first experiment, except that the stimuli

consisted of inversely A-weighted noise (compare magnitude spectra in Figure 4.2A).

The data and NLME model fits for the second experiment are shown in Figure 4.2D

(color key identical to Figure 4.2C), and coefficients are listed in Table 4.2. This

second model accounts for 80.4% of the variance in the data, closely fitting the

measured responses. All NLME coefficients are significant (p<0.001 for αx1; αx2; αy1

and αy2). Intercept coefficient (αx0 estimate = -0.60, SE = 0.03, p < 0.001) revealed

a slight leftward response bias, consistent with a slight narrowband interaural level

difference in our stimuli due to precision limits of our test system. The fact that αx2

is significant shows that when all noise portions are approximately equally audible,

as here, with inverse A-weighted noise, both perceived laterality and the slope linking

the change in laterality to ITD decrease with decreasing sound intensity. This is

consistent with the interpretation that by controlling for audibility across-frequency,

the sensitivity of the task to sound level increases, revealing a medial bias effect not

only for the most lateral but also for more medial source angles.

Table 4.2 Non-Linear Mixed Effects Model for Inverse A-Weighted Noise Condition

Description Estimate Std. Error t-value p-value

αx0 Intercept: ITD -0.60 0.03 -19.28 <0.001 ***

αx1 Slope: ITD 2.57 0.06 46.26 <0.001 ***

αx2 Slope: Sound intensity 0.06 0.01 4.98 <0.001 ***

αy1 Laterality: Sound intensity 0.04 0.01 7.10 <0.001 ***

αy2 Laterality: Audibility 0.01 0.01 3.30 <0.001 ***

Note: 10986 degrees of freedom.

Significance codes: ‘***’ p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05, ‘.’ p < 0.1, ‘ ’ p ≥ 0.1.
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Thus, the results confirm the effect of biasing perceived laterality toward midline

with decreasing sound intensity. Therefore, for both spectrally flat noise and A-

weighted noise, statistical analyses, which partialed out overall differences between

listeners, are inconsistent with a labelled-line model of human sound localization.

4.4 Experimental Model

4.4.1 Subject Details

Twelve naïve normal-hearing listeners (ages 18-27, five females) were enrolled in

this study and paid for their time. Their audiometric thresholds, as assessed via

a calibrated GSI 39 Auto Tymp device (Grason-Stadler), were 25 dB hearing level or

better at octave frequencies from 250 to 8000 Hz, and did not differ by more than 10

dB across ears at each octave frequency. This study was approved by and all testing

was administered according to the guidelines of the Institutional Review Board of

the New Jersey Institute of Technology, protocol F217-14. All listeners gave written

informed consent both to participate in the study and to publish the results with

confidential listener identity.

4.4.2 Method Details

Listeners were seated in a double-walled sound-attenuating booth (Industrial Acoustics

Company) with a noise floor of 20.0 dB SPL (wideband LAFeq). Stimuli were digitally

generated in Matlab R2016b (The MathWorks, Inc.), D/A converted through an

external sound card (Emotiva Stealth DC-1) at a sampling frequency of 192 kHz,

with a resolution of 24 bits per sample, and presented to the listener through ER-2

insert earphones (Etymotic Research Inc.). The equipment was calibrated using

an acoustic mannequin (KEMAR model, G.R.A.S. Sound and Vibration) with a

precision of less than ± 5 µs ITD and less than ±1 dB interaural level difference.

Foam eartips were inserted following guidelines provided by Etymotic Research to
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encourage equal representation of sounds to both ears and minimize interaural leakage.

Each session lasted approximately 60 minutes. Listeners kept the insert earphones

placed inside their ears throughout testing. Insert earphones were replaced by the

experimenter after each break. Throughout this study, to generate stimuli, tokens of

uniformly distributed white noise were generated and bandpassed using a zero-phase

Butterworth filter with 36 dB/octave frequency roll-off, and 3 dB down points at 300

and 1200 Hz. Each noise token was 1 s in duration, including 10 ms long squared

cosine ramps at the onset and offset.

4.4.3 Sensation Level Measurements

At the beginning of each session, and, as a re-test control, mid-way through each

session, each individual listener’s SL was measured for the type of sound that was later

on used for training and testing, via one run of adaptive tracking. On each one-interval

trial of each track, a new noise token was generated and presented diotically. Trials

were spaced randomly in time (uniform distribution, inter-token intervals from 3 to

5.5 s). Listeners pressed a button when they heard a sound. No response feedback

was given.

On each trial, a response was scored a “hit” if a listener responded with a button

push before the onset of the subsequent trial, and a “miss” if the listener did not

respond during the interval. If a listener’s response changed from hit to miss or from

miss to hit across sequential trials, this was interpreted as a response reversal. Using

one-up-one-down adaptive tracking, the noise intensity was increased or decreased

after each reversal, with a step size of 5 dB (decreasing) or 2.5 dB (increasing).

Each listener completed ten adaptive-track reversals, with SL threshold equaling the

median of the final six reversals. Each SL was used as reference intensity for the

subsequent 30 minutes of testing. If detection thresholds changed between initial test

and re-test control by more than 5 dB, this indicated that an insert earphone moved,
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and the experimenter replaced the earphones. Thresholds generally did not change

by more than 5 dB.

4.4.4 Training

To train listeners on consistently reporting their perception of ITD, using adaptive

tracking, listeners matched the perceived laterality of a variable-ITD pointer to that

of a fixed-ITD target. Target token intensity was set relative to the listener’s own

diotic sensation threshold, at 10 or 25 dB SL, and presented with 0 dB interaural level

difference. The pointer intensity was fixed at 25 dB SL. Target ITDs spanned the

range from 375 to 375 µs, in 75 µs steps. Target ITDs and SLs were randomly

interleaved across runs, but held fixed throughout each adaptive run. In each

two-interval trial of a run, the pointer token was presented in the first, and the

target token in the second interval. The start ITD of the pointer token at the

beginning of each run equaled 0 µs. Using a hand-held controller (Xbox 360 wireless

controller for Windows, Microsoft Corp.), listeners adjusted the ITD of the pointer

token. Specifically, listeners pushed the directional keys (D-pad) either to the left

or right in order to move and match the pointer direction with that of the target

sound. When a listener indicated a left- or right-ward response, the pointer ITD

was decreased or increased. Initial ITD step size equaled 100 µs, then 50 ± 5 µs

(uniformly distributed) after the first reversal. By the end of the second reversal,

ITD step size was reduced to 25 ± 5 µs (uniformly distributed) and remained the

same for all of the following reversals. Listeners were instructed to “home in” on the

target by moving the pointer initially to a position more lateral than the target, then

more medial than the target with the goal of centering on the target. No response

feedback was provided. A run was completed after a listener had completed a total

of five adaptive-tracking reversals. For each target ITD, the matched pointer ITD

was estimated by averaging the pointer ITDs of the final two reversals. Each listener
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performed three sessions of training: In the first session only a subset of target ITDs

were presented (-375, -150, 0, 150 and 375 µs), whereas the two following sessions

included all of the eleven ITDs. Per training session, each ITD was presented once at

10 and 25 dB SL, for a total of 54 adaptive tracking runs across all training sessions.

To familiarize listeners with the experimental task (described below), at the end of

second and third sessions of training listeners performed an additional five blocks of

the experimental testing task, without response feedback. These task training data

were not used for statistical analysis.

To assess whether listeners could reliably report their lateralization percepts,

training performance was evaluated for each listener by calculating the Pearson corre-

lation coefficient between target ITD and matched pointer ITD in the final training

session. Criterion correlation equaled 0.9 (N=11 ITDs, significance level=0.01,

power=0.95). Ten listeners reached criterion, suggesting that they were able to

consistently report where they perceived the sounds based on ITD. Two of the

originally recruited twelve listeners failed to reach training criterion (R2 = <0.84,

0.87>) and were excluded from testing.

4.4.5 Testing

Using the method of fixed stimuli, we tested lateralization in two experiments.

Except for the stimuli, which consisted of spectrally flat noise tokens in experiment

1 and A-weighted noise tokens in experiment 2, the methods were similar across

the two experiments. Noise tokens were generated from a statistically similar noise

distribution as those presented during both SL measurements and training (see

Overall Design). A touchscreen monitor (Dell P2314T) displayed the response

interface at about 40 cm distance from the listener. Using a precise touch stylus

(MEKO Active Fine Point Stylus 1.5 mm Tip), listeners indicated perceived laterality

of noise in a one-interval task. Noise tokens were presented at 5, 10, 15, 20, and 25 dB
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SL. ITDs varied randomly from trial to trial, in 75 µs steps spanning the range from

-375 µs to ± 375 µs. On each trial, a new token of noise was generated. Each listener

performed 20 blocks of 55 trials each (11 ITDs at each of the 5 sound intensities), with

SL measured both before the first and the eleventh block. ITDs and sound intensity

were randomly interleaved from trial to trial such that each combination of ITD and

sound intensity was presented once before all of them were repeated in a different

random order.

4.5 Analysis

4.5.1 Models

We estimate the combined effects of ITD and sound intensity on predicted source

laterality both in avian labelled-line type units and in binaurally sensitive units of

a mammalian auditory system. The sound intensities where we expect to see an

effect of overall sound level fall below 30 dB SPL, because only in this range would

most auditory neurons fire below saturation, allowing us to disambiguate labelled-line

versus hemispheric rate-difference coding. However, scant data exist for either type

of unit at sound pressure levels below 30 dB SPL. We identified two prior studies that

have measured neural discharge rate as a function of ITD at these very low sound

intensities. Both studies used noise as acoustic stimuli, and the neural response

statistics they report are thus suitable for estimating what type of information would

be available to either type of coding mechanism with the type of noise stimuli that

human listeners lateralized in the behavioral experiments here.

One study in barn owl shows that the output functions of nucleus laminaris

neurons can be modeled through interaural cross-correlation functions, even at very

low sound intensities [97]. That study reports Pearson correlation coefficients between

the neural response function of nucleus laminaris units at 50 dB SPL versus all other

tested sound levels. To reconstruct the spatial information realistically available from
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the output of labelled-line neurons, across both a range of -375 to 375 µs ITD in 20 µs

steps, we first constructed biologically plausible interaural cross-correlation functions

at 50 dB SPL and then added internal noise to the resulting curves to mimic the

Pearson correlation coefficients reported by Peña and colleagues (1996). Our model

predictions pertain to sound intensities spanning the range from 10 to 70 dB SPL,

similar to previous work [97]. Due to overall scarcity of available data at low dB SPL,

here we use firing rate characteristics for unit # 0123795-530.02 [97] with a nominal

best frequency of 1 kHz. To generate the acoustic inputs to the labelled-line model,

we initially generated a Gaussian noise token, duplicated it and introduced a variable

ITD, spanning a range from -375 to 375 µs, with 20 µs step size and 0 dB interaural

level difference. To simulate ITD information available after cochlear processing, we

then processed both noises with a 1/3-octave wide bandpass filter with 24 dB/octave

frequency roll-off, followed by half-wave rectification and low-pass filtering at 1500

Hz. We then simulated internal noise by adding uniformly distributed dichotic noise

tokens with mean spontaneous firing rates of 5% of the root mean square value of

the signal, resulting in left (L) and right (R) inputs to the binaural cross-correlation

neurons, called xL(t) and xR(t). To establish 50 dB SPL reference functions, at each

simulated ITD, we then calculated the binaural cross-correlation function cc(τ) of

xL(t) and xR(t), as follows:

cc(τ) = 300 + (450− 300)

∫ +∞
−∞ xL(t)xR(t+ τ)dt)

max|
∫ +∞
−∞ xL(t)xR(t+ τ)dt|

, (4.1)

with τ signifying the best ITD of each neuron, and extrema scaled such that

cc(τ) spans a range from 300 to 450 spikes/sec, approximating nucleus laminaris

firing rates at 50 dB SPL [97]. To simulate non-sound driven neural discharge, we

then added uniformly distributed random noise ĉcref (τ) = cc(τ) + U(0, µ), with a

mean discharge of µ=5 spikes/sec, [97]. The resulting signal is our reference cross-
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correlation function at 50 dB SPL, called ccref (τ), shown in Figure 4.1A as yellow

bold line for a representative simulated neuron.

For each sound level and ITD, we then statistically reconstructed a family of

interaural cross-correlation functions that match the originally reported functions

[97]. Specifically, we added scaled dichotic uniformly distributed noise tokens nL(t)←

U(0, µ) and nR(t) ← U(0, µ) to the xL(t) and xR(t), such that the monaural inputs

to the binaural cross-correlation functions equal x̂L,R(t) = αxL,R(t)+
√

1− α2nL,R(t).

The resulting cross-correlation function for each sound level and ITD is then ĉc(τ) =

(xL ?xR)(τ), shown for a representative neuron in Figure 4.1A as blue, brown and red

lines corresponding to 70, 30 and 10 dB SPL. We then searched through the space

of scaling coefficients α until the Pearson correlation coefficient between ccref (τ) and

ĉc(τ) matched the coefficients originally reported by Peña and colleagues (1996) with

a precision error of less than 10%.

To estimate predicted sound laterality as a function of sound intensity for these

simulated labelled-line neurons, at each intensity, we then identified the τ where

ĉc(τ) = max(ĉc(τ)). For each sound level and ITD, we calculated predicted sound

laterality in 100 repetitions of these simulations. Figure 4.1C shows mean estimated

laterality across these 100 simulations, with ribbons showing 1 standard error of the

mean across simulations.

To estimate source laterality based on rate-coding, we assayed the mammalian

auditory system, where one previous study reports firing statistics for 81 inferior

colliculus units in rhesus macaque as a function of ITD and over a wide range of

sound intensities, including very low sound intensities [139]. From the previously

published linear regression parameters, we initially reconstruct linear regression

functions linking ITD, sound intensity and firing rate [139]. However, while linear

regression fits afford statisticial convenience, they cannot fully capture the sigmoidally

shaped firing rate functions in mammalian inferior colliculus units. Therefore, we
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multiplied the original linear reconstructions with sigmoid functions. Specifically,

consistent with prior literature, each simulated sigmoidal output function saturates

over a 30 dB dynamic range, has linear growth over the physiologically plausible

range of contralateral ITDs, has a threshold between uniformly distributed between

0 and 10 dB SPL, and a spontaneous non-sound-evoked discharge of between 2 and

10 spikes/second (e.g., [107]).

The inset of Figure 4.1B shows a representative simulated inferior colliculus

unit (color denotes sound intensity, dark shading shows contralateral responses),

whereas Figure 4.1B shows the differences in firing rates for contra minus ipsi-lateral

simulated firing rates, averaged across all 81 simulated inferior colliculus units. From

these resulting differences in contra versus ipsi firing rates we calculated, collapsed

across sound intensities from 0 to 80 dB SPL, the probability density of the firing

rate for each inferior colliculus unit as a function of source ITD. Assuming an ideal

observer, we then classified the sound azimuth as a function of sound intensity via

maximum likelihood estimation. To calculate the mean and variance of predicted

ITD as a function of sound intensity, we then ran a bootstrapping analysis, sampling

with replacement 100 times. Figure 4.1D shows the across-simulation average

predicted source laterality, with ribbons showing one standard error of the mean

across simulations.

4.5.2 Quantification and Statistical Analysis

Growth curve analysis was used to analyze perceived laterality scores as a function

of ITD and sound intensity. For each of the two noise conditions, the perceived

laterality scores were fitted with an NLME model. The model included fixed effects

α and random effects β. Equation (4.2) describes a sigmoidal function linking ITD

to perceived laterality, with a score from left (-1) to right (1). The effect of sound

intensity on the maximal extent of lateralization is αy1. To factor out across-listener
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differences in absolute hearing thresholds, for each listener, we calculated the pure

tone average (PTA) detection threshold in Quiet, averaged across ears, and across

500 and 1000 Hz. Weight αy2 models the contribution of PTA. The slope terms are

αx1 for perceived laterality changes attributed to ITD, and αx2 for laterality-ITD

slopes attributed to sound intensity. Our stimuli were initially calibrated to have a

broadband interaural level difference of 0 dB. However, because the transfer function

of our sound card was not perfectly flat across frequency, fluctuations of ±1 dB

interaural level difference occurred across frequency, on the same order of magnitude

as the minimal threshold for human interaural level difference discrimination [32].

Thus, parameter αx0 factors out central response bias from the lateralization scores.

Random effects of individual differences across listeners were used to model both the

maximal extent of lateralization, βy0,listener, and the perceived midline, βx0,listener,

centering the sigmoid:

response ∼ (αy2 × PTA+ αy1 × intensity + βy0,listener)×(
1

1 + e−[αx2×intensity+αx1×(ITD−αx0−βx0,listener)]
− 0.5

)
. (4.2)

To better conform with the assumptions of the NLME model, prior to fitting,

ITD and sound intensity parameters were scaled by subtracting the mean stimulus

value, and dividing by the standard deviation of stimulus parameters, resulting in

distributions of stimulus parameters with zero-mean and a variance of one. Laterality

scores were then fitted using these normalized parameters, with the nlme package,

programmed in RStudio 1.1 for Windows (RStudio Inc., Boston, MA, USA).

4.5.3 Data and Software Availability

All data and analysis code are available at Dryad: doi:10.5061/dryad.t8c381f.
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4.6 Discussion

Population rate-coding to compute sensory dimension may not be unique to the

auditory system. Similar to sound localization based on the comparison of signals

from the two ears (Figure 4.3A), visual depth is computed in the cerebral cortex

based on signals from the two eyes (Figure 4.3B; [100, 94, 93]). Specifically, in both

primary V1 and extrastriate V3a cortex of rhesus macaque monkeys, three types

of neurons are thought to encode binocular disparity. “Tuned-excitatory” neurons

respond best to zero spatial disparity between the two eyes, whereas “near cells”

responds more vigorously when an object approaches, increasing crossed disparity

between the eyes [94]. Finally, “far cells” fire more vigorously as uncrossed disparity

increases. In V1, the most frequently encountered type of binocular neurons are

of the tuned-excitatory type. However, in V3a the large majority of neurons is

stereo-specific [101] and most neurons are either near or far cells. Functional magnetic

resonance imaging experiments on human stereoscopic vision found that unlike V1

activity, the activity in cortical area V3a predicts behavioral performance on tasks

involving stereoscopic depth [5]. These observations lead us to propose that in order to

compute perceptual space from sensory input, the central nervous system has evolved

a canonical computation that is common to different sensory modalities. Specifically,

we propose that near and far cells encode visual distance from the fixation plane

in a way similar to how inferior colliculus neurons encode auditory azimuthal angle

away from midline reference: firing rate increases monotonically with distance from

perceptual reference anchor or fixation.

We observe that in both the auditory and the visual system, the same cells

that are tuned to binaural ITD or binocular disparity also have intensity-response

functions. A rate-code based on a population of these cells should cause ambiguities

when stimulated below the saturation firing rate, either at low sound intensity or at

low contrast (Figure 4.3C). Thus, based on the analogies between the stereo-depth
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computation and the azimuth-ITD computation, we hypothesized that low visual

contrast might affect the computation of depth in a manner analogous to the effect of

low sound levels in sound localization—there might be a bias to lower perceived depth

at lower contrast (Figure 4.3D). Indeed, one study found such an effect, but only in

some observers [21]. A confounding factor in that earlier study is that perceived depth

is a complicated neural computation, not only dependent on stereoscopic disparity but

also on monocular cues including contrast [93]. Several studies on depth perception

indicate that low contrast is interpreted by the brain as a cue for distance; lower

contrast targets are perceived farther away [114, 109]. However, experiments that

controlled for low contrast bias demonstrated that low contrast causes perceived depth

to shrink, both for near and far deviations from baseline [19]. Thus, there is a link

between population rate-coding and stimulus intensity in perceived visual depth as

in perceived auditory azimuth, two perceptual spatial dimensions computed by the

brain.

To illustrate how rate-based decoding of target location varies with sound

intensity, we here chose a rate-coding model that compares firing rates across

two populations of neurons, tuned to opposite hemifields. This read-out is a

direct realization of the original canonical rate-based model for ITD decoding [126].

Alternative rate-code readouts exist (for a recent summary of binaural models, see

[28]). Most of these rate-code models rely on subtractive comparisons between

populations of neurons that are tuned to opposite hemifields, inherently sharing

ambiguous readouts at low super threshold sound intensities. In contrast, divisive

comparisons between ipsi- and contralaterally tuned neural populations are less likely

to predict the observed behavioral bias due to stimulus intensity [39]. Future work

will need to delineate how specific implementations of rate-based readouts shape

the intensity-induced bias of sound localization. Moreover, it has been suggested

that depending on perceptual task, the mammalian brain could combine place-
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and rate-codes [103, 37]. For instance, the mammalian auditory pathway may

convert place- into rate-codes and vice versa [40, 103]. Even though, downstream

from the inferior colliculus, rate-coding seems to be maintained, at least in the

superior colliculus of rhesus macaque [130, 74]. Moreover, our psychophysical and

computational results suggest that for sound localization based on ITD at low sound

levels, cortical maps do not play a role. There is good evidence for spatial map-like

signals in higher order auditory cortical fields when interaural level differences are

present, at medium to high sound levels [51]. How these ILD-based cortical maps

influence sound localization behavior is yet to be determined.

An additional factor restricting rate-based readouts is that auditory cortex

units display non-linear rate-intensity functions. For instance, excitatory-excitatory

(EE) cells in auditory cortex that are tuned to sound locations near midline are

also often tuned for sound intensity [115, 102, 138, 108, 51]. This intensity tuning

may complicate rate-based decoding at higher sound intensities. Although, it is not

apparent at the very low sound intensities needed to explain the perceptual bias

observed here. There are additional fascinating findings in the neurophysiological

literature regarding frequency and intensity tuning, and interesting correlations

between non-monotonicity in the azimuthal and intensity dimensions [132], but a

detailed discussion of these points is beyond the scope of the present behavioral-

computational study.

In summary, unlike predictions from a rate-code neuronal readout, labelled-line

coding predicts that sound localization is intensity invariant. Our experimental results

show that for low frequency noise, where ITDs are the dominant localization cue, and

at low sound intensities, sound lateralization based on ITD is not intensity invariant;

it becomes increasingly medially biased with decreasing SL. The observed localization

bias is overall small in magnitude, showing that the brain can robustly localize based

on ITD across a large range of sound intensities. However, this bias is of theoretical
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importance as it confirms the prediction of a subtractive rate-based neuronal readout.

Moreover, our auditory finding parallels a phenomenon of visual fixation bias when

calculating visual distance from binocular disparity at low contrast. This casts doubt

on the idea that the neural mechanism of ITD-based sound localization and binocular

disparity-based visual distance estimation are based on place-based coding. Instead,

our perceptual data on auditory localization together with previously published data

on visual distance perception are parsimonious with the idea that a population rate-

code underlies the brain’s computation of location.
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CHAPTER 5

LEVERAGING ADAPTATION TO STUDY PERCEPTUAL
WEIGHTING OF INTERAURAL TIME DIFFERENCES

An important question in auditory cognition is how we perceive the location

of an object in space. Converging evidence from animal models and humans

suggests that when judging sound direction, the central nervous system weighs the

anticipated reliability of binaural cues. Here, we used short-term adaptation to bias

normal-hearing listeners towards source direction favoring either the left or the right

frontal quadrant. Listeners rated perceived laterality of tokens of band-pass filtered

noise (300 Hz – 1200 Hz) with interaural time differences that were randomly selected

from a uniform distribution spanning either -375 to 0 µs or 0 to 375 µs. Using

non-linear mixed effects modeling of behavioral laterality reports, we tested how

exposure to source quadrant affects how listeners weigh the reliability of interaural

time differences. The cue reliability hypothesis predicts that perceived direction

should be skewed, such that unreliable frontal source angles are more affected by

short-term adaptation than the more reliable lateral source angles. Alternatively,

short-term adaptation may affect all source angles equally, predicting an overall shift

in perceived direction. Results show that frontal angles are more strongly affected by

short-term adaptation than lateral angles, supporting the cue reliability hypothesis.

5.1 Introduction

A wide range of species relies on sound localization for both navigation and auditory

scene analysis. For low-frequency sound, interaural time differences (ITDs) are the

dominant cue for determining the direction of a source in the horizontal plane, a

phenomenon called sound lateralization. The mechanisms by which the nervous

system maps ITD into perceived sound direction are incompletely understood.
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In anechoic spaces, a given source angle in the horizontal plane typically gives

rise to the same ITD, across a wide range of source distances. Although, in everyday

environments where background sound and reverberant energy are often present,

ITDs are much less reliable indicators of source direction. This raises the possibility

that when estimating source direction, a listener’s interpretation of ITD changes

depending on the context of the listening environment. Indeed, previous work shows

plasticity in perceived sound direction across a wide range of conditions, including:

1) Prolonged exposure to constant interaural delays [64], 2) Modifications to shape

of the pinnae [54], 3) Long-term procedural learning [133], 4) Chronic unilateral ear

plugging [71], 5) Short-term adaptation to stimulus history [120], 6) In presence of

preceding distractors [70].

However, we have an incomplete understanding of short-term adaptation of

sound lateralization based on the overall uncertainty of ITDs. The steepest point of

the psychometric function linking ITD and perceived laterality is midline (the frontal

direction). Thus, a small change in ITD around 0 µs baseline ITD causes a much larger

change in perceived laterality than a small change in ITD around 375 µs ITD. Thus,

the cue reliability hypothesis predicts that perceived direction should be skewed,

such that unreliable frontal source angles are more affected by short-term adaptation

than the more reliable lateral source angles. Alternatively, short-term adaptation

may affect all source angles equally, predicting an overall shift in perceived direction.

Leveraging short-term plasticity based on stimulus context, we set out to test the

cue reliability hypothesis in human psychophysics experiments. We varied context

by blocking stimuli such that they would predominantly arise from the left, from the

right or from both sides of the head. Normal-hearing listeners judged lateralization

of band-limited noise tokens as a function of interaural time difference and context.
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5.2 Methods

Overall methods were similar to previous work (for detailed description see: [58]).

We tested 34 naïve normal-hearing listeners, 16 females, age 20-30. Audiometric

thresholds were 20 dB HL or better at all octave frequencies and did not differ by more

than 10 dB across ears at each octave frequency. We divided our listeners into four

groups. Using a target matching task without response feedback, we initially trained

three groups to be reliable reporters. Listeners trained and tested on the frontal 1)

left hemisphere (LEFT HEMI, N=8) or, 2) right hemisphere (RIGHT HEMI, N=8)

or, 3) both hemispheres (BOTH HEMIS, N=10). A fourth control group, NAÏVE

RIGHT HEMI (N=8) was tested on the right frontal hemisphere without training.

Listeners were seated in a double-walled sound-attenuating booth. Sounds were

presented through ER-2 earphones. Stimulus consisted of a band-limited random

noise token, generated independently on each trial (300 to 1200 Hz, 1 sec duration,

10 ms cos-squared onset/offset ramps, 192 kHz sampling frequency, 24 bit resolution,

0 dB ILD). ITDs covered the range of 0, ±75, ±150, ±225, ±300 or ±375 µs. Sound

levels varied from 10 to 40 dB sensation level (SL).

Prior to testing all sounds were calibrated using KEMAR manikin and B&K

2250 with 2-cc coupler. This study was approved by the NJIT Institutional Review

Board.

All listeners performed three training sessions (except the naive group) and then

a single session of testing. Each group were presented with their associated range of

ITDs, i.e., RIGHT HEMI: positive ITDs only (including 0), LEFT HEMI: negative

ITDs only (including 0), BOTH HEMI: full range of ITDs.

To analyze the listeners’ responses, a non-linear mixed-effects model (NLME)

was developed that captured the sigmoidal sensitivity of ITD lateralization (for

details, see [58]). The level-1 model formula shown in Equation (5.1) is a shifted

logistic curve (adapted from [76]). Here, fixed effects are designated with β as their
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coefficient, and random effects with b. β3 models the perceived laterality of the

sounds. Larger values for β3 are interpreted as a wider lateralization range with

all ITDs being perceived further away from the midline. β2 captures the slope of

the sigmoidal curve, that is the rate at which increasing ITDs map to more lateral

directions. Larger slopes do not influence the midline anchor, nor they change the

lateralization range, but they push the perceived direction of smaller ITDs laterally.

β1 is the ITD bias that models the shift to the stimulus ITD that was heard by

the listener. For example, the perceived shift in the ITD of the current trial due to

ITD of the previous trial was modeled by this coefficient. β0 captures the laterality

bias, which is a constant shift in the perceived direction for all ITDs. Since other

coefficients also contribute to fitting changes in direction, this bias is mainly observed

as a shift in the perceived midline for stimuli with a 0 µs ITD.

Response = (β3 + b3)

(
1

1 + e−β2(ITD+β1+b1)
− 0.5 + β0

)
+ ε. (5.1)

The level-2 model formulas for the fixed effects (coefficients β0 - β3) are linear

sums of the intercept, the main effects, and the interactions associated with each

coefficient (Equation (5.2)). "Hemi" is an encoded variable indicating the training

hemisphere for each listener group (-1 for left, 0 for both, and +1 for right). All

variables except "Hemi" were normalized as z-scores. "∆ITD−1" is the difference

between the current trial’s ITD and the 1-back ITD. This value was positive for trials

which had an ITD larger than (to the right of) their previous trial. "Block" indicates

the block number throughout a testing session which a trial was presented in.

β0 = β00 + β01Hemi + β02Intensity + β03Hemi× Intensity,

β1 = β10 + β11∆ITD−1 + β12Intensity + β13Intensity ×∆ITD−1,

β2 = β20,

β3 = β30 + β31Intensity + β32Block. (5.2)
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Figure 5.1 Raw lateralization scores from one representative listener.

5.3 Results

Figure 5.1 shows the results of a representative listener. Results follow the expected

sigmoidal trend. Figure 5.2A shows the responses of all 34 participants in the

lateralization task. Circles show the raw across-listener average for each corresponding

ITD and listener group, with error bars showing one standard error of the mean across

listeners. Lines are the fitted model value, with ribbons indicating the predicted

standard error of the mean fit. Figure 5.2B shows the slopes of these fits as a function

of ITD.

Analysis of listener responses with NLME (see Table 5.1) revealed a main effect

of training hemisphere (β01, p < 0.001) on the laterality bias. Groups that were

trained and tested unilaterally on one hemisphere had a bias in their perceived midline

towards the opposite hemisphere. However, the bilaterally tested listeners had no

discernible bias (β00, p = 0.787). This hemisphere-dependant laterality bias increased

during trials that had a higher sound intensity (β03, p < 0.001). For instance, listener’s

that were trained and tested on the right hemisphere perceived stimuli with a 0 µs
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Figure 5.2 Fitted lateralization curves across all four context groups.

ITD to be coming from the left rather than the center. The bias was enhanced for

louder sounds and the perceived directions was shifted even more to the left.

For ITD bias, the results show a main effect of difference with 1-back ITD (β11, p

< 0.001). Overall, listeners were impacted by the ITD of the previous trial’s stimulus,

and their responses were consistently biased towards the direction of the 1-back ITD.

This bias was less pronounced during trials with a louder stimulus (β13, p < 0.001).

Finally, the laterality of listener responses was reduced throughout a testing session

(β32, p < 0.001), and all groups had a lower range of responses towards the end of a

session.

5.4 Discussion

Current results support the idea that short-term plasticity of ITD is more pronounced

in front than at the sides. At the least reliable cue point, 0 µs, results show robust

response biases in all unilaterally tested listeners towards the opposite side, with

a larger effect for the trained group versus the naïve. In contrast, lateralization

at 375 µs base ITD is not appreciably affected by context. Moreover, slope of

lateralization curves increases for unilateral groups compared to the bilateral, hinting

at an expansion in the perceived space and increase in lateralization sensitivity. Thus,
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despite the fact that humans are much more sensitive to frontal ITD than lateral ITD,

as evidenced by lower just-noticable differences in ITD discrimination [14], frontal

ITDs are also more susceptible to short-term adaptation than lateral ITDs, supporting

the cue reliability hypothesis.

109



Table 5.1 NLME Results for All Bilaterally and Unilaterally Trained Groups

Description Estimate Std. Error t-value p-value

Laterality Bias

β00 Intercept 0.0016 0.0058 0.27 0.787

β01 Hemisphere -0.1353 0.0122 -11.14 <0.001 ***

β02 Sound Intensity -0.0101 0.0030 -3.37 <0.001 ***

β03 Interaction -0.0082 0.0020 -4.17 <0.001 ***

ITD Bias

β10 Intercept -0.0259 0.0363 -0.71 0.476

β11 Difference with 1-Back ITD -0.0242 0.0068 -3.53 <0.001 ***

β12 Sound Intensity 0.0765 0.0090 8.49 <0.001 ***

β13 Interaction 0.0260 0.0062 4.23 <0.001 ***

Slope

β20 Intercept 2.0647 0.0617 33.48 <0.001 ***

Laterality

β30 Intercept 1.7907 0.1185 15.11 <0.001 ***

β31 Sound Intensity -0.0118 0.0118 -1.00 0.315

β32 Block Number -0.0114 0.0017 -6.82 <0.001 ***

Note: 8723 degrees of freedom.

Significance codes: ‘***’ p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05, ‘.’ p < 0.1, ‘ ’ p ≥ 0.1.
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CHAPTER 6

SUMMARY

This dissertation established an experimental framework for training and testing of

awake and freely behaving rodents in auditory tasks. A multi-faceted system was

developed for simultaneous behavioral and electrophysiological assessment, that was

used to investigate neural mechanisms of hearing at negative SNRs under interference

with a modulated background. Two groups of gerbils were tested, one naïve to the

task, and another fully trained to detect a target tone stimulus. Computational

techniques were then utilized to analyze different neural coding mechanisms that

could give rise to dip listening. The results demonstrated that both rate and temporal

cues can enable hearing at positive SNRs, but for hearing at negative SNRs, an

SNR-invariant readout pertains dependence on temporal information. Future work is

needed to understand whether the temporal information needed for dip-listening at

negative SNRs can be augmented through other sensory modalities.

In human experiments, it was revealed that at sound levels near the sensation

threshold, lateralization with ITDs becomes less potent. Analysis of behavioral data

with NLME, a powerful statistical tool, showed a medial bias in responses to similar

ITDs at very soft levels. This supports the hypothesis that MSO neurons do not act

as mere cross-correlation calculators and in fact receive level dependent inputs that

influences the measured ITD decision threshold. Furthermore, additional experiments

with four groups of listeners showed robust response biases in all unilaterally-tested

listeners towards the opposite side, with a larger effect for the trained groups versus

the naïve. In contrast, bilaterally trained listeners did not display any response bias.

Results are consistent with the conclusion that human sound localization relies on

population spike-rate coding as opposed to a spatially tuned map.
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APPENDIX

TEACHING ELECTRONIC CIRCUIT FUNDAMENTALS VIA
REMOTE LABORATORY CURRICULUM

A.1 Challenge Statement

The course “Electrical Fundamentals” (EF) is a core requirement for all undergraduate

students in our biomedical engineering program. The curriculum introduces general

principles of device development for electronics-based bioinstrumentation, comprehen-

sively covering foundational acquisition concepts for bioelectric signals. Laboratory-

based learning modules provide hands-on experience with circuit fundamentals. We

here introduce our 6-hour lab curriculum for distance learning, which we developed

in response to the COVID-19 outbreak.

The learning outcomes for the lab curriculum are twofold. The first learning

outcome enables students to design and analyze basic electric circuits of resistors,

capacitors and operational amplifiers (op-amps). The second learning outcome

teaches students to interpret signal characteristics using core bioinstrumentation

equipment, including oscilloscope, function generator and multimeter. Moreover, at

this stage in the EF students’ curriculum, the concept of filters is still in progress.

Therefore, the lab curriculum builds up and deepens the theoretical concept of low-

and high-pass filters through practical experimentation.

Traditionally, our EF labs are taught in studio-style on campus where groups of

students learn to use oscilloscopes, function generators, multimeters and breadboards.

Here, the challenge is to replace these precision instruments with affordable, reliable

and portable components that students could safely and robustly assemble at home.

Moreover, the material needs to be engaging to nurture student interest. Furthermore,

some of our students have limited access to internet. To enable accessibility to all

students, labs need to accommodate asynchronous learning. Finally, due to initial
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uncertainty during the COVID-19 outbreak, the lab curriculum needs to be designed

such that single students can complete lab exercises independently, as opposed to

working in groups.

A.2 Novel Initiative

The remote lab curriculum is taught synchronously in three two-hour sessions. A

ratio of 10 students per teacher is desirable for effective real-time trouble-shooting.

Therefore, for our large undergraduate cohort, we recruit “peer mentors,” in addition

to the EF instructor and teaching assistants. Peer mentors are outstanding

undergraduate students who have previously taken the EF class, who are being

mentored by the principal instructor, and who are now helping their peers with

hands-on circuit troubleshooting.

Lessons utilize the Arduino Uno, a versatile tool that can be robustly employed

in undergraduate engineering education ranging from foundational instruction to

project-based learning and student competitions (e.g., [88, 63, 45]). Here, the

Arduino replaces three traditional pieces of laboratory-learning equipment, 1) the

multimeter, 2) the function generator and 3) the multichannel oscilloscope [2]. We

provide students with a customized Arduino kit, including breadboard and all circuit

components. In addition, each student needs access to a laptop, internet and webcam.

For optimal learning outcomes, the current curriculum encourages synchronous

learning. However, lab instructions are self-contained, enabling students to follow

them independently should poor internet connectivity necessitate asynchronous

learning. At the beginning of each lab session, the instructor demonstrates the

following principles via synchronous teaching: how to assemble the circuit, how to

upload code to the Arduino chip, how to use SerialPlotter to view and interpret time

series data read in by Arduino, and how to further analyze these time series data in

Excel and Matlab.

113



Following initial instruction, students then independently work through the lab

instructions. Work is self-paced, but students are encouraged to finish within the

two-hour time frame of the lab. To facilitate timely completion and to avoid having

students get stuck on their own, the lab instructions provide milestones, frequently

prompting students to submit photos of their circuit as well as numerical values or

plotted time series, via private messaging to the instructional team. As problems arise,

teachers then trouble-shoot with the students via synchronous video chat. Concepts

taught by each milestone are completed before a new concept is introduced, reducing

cognitive load and helping learning and retention (e.g., [67]).

The curriculum consists of three take-home laboratory exercises. Lab 1 instructs

students on component tolerances [69] and reviews basic circuit knowledge. Students

learn how to use the Arduino as a multimeter to measure voltages, currents, and verify

resistances of parallel-serial resistor circuits. In Lab 2, the Arduino functions both

as function generator and multi-channel oscilloscope. Students learn about charge

and discharge behavior of resistor-capacitor (RC) circuits and the time constant tau,

laying the foundation for the concept of low-pass filtering. Lab 3 leverages sonification

to teach active amplification via operational amplifiers (op-amp) circuits. Op-amps

are a challenging new concept for the majority of EF students. To motivate students,

here, the output of the circuit is fed into a loudspeaker, allowing students to experience

the tuning of RC circuits by hearing how the circuit filters sound, as well as listen

to how loud music sounds when it is processed by op-amp circuits. All three lab

exercises, as well as all components needed, are comprehensively explained in the

laboratory instructions (see Supplemental Materials).

To illustrate the overall concept of Arduino-based learning of circuit funda-

mentals, we next explain Lab 2 in detail. The learning goal of Lab 2 is to understand

charging and discharging of resistor-capacitor (RC) circuits. Students learn to use

the voltage traces over R or C to estimate and verify the time constant τ , while also
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building up intuition about temporal and spectral filtering properties of the circuit.

To illustrate temporal filtering properties of a serial RC circuit, students record both

the generated input pulses and the voltage output of the circuit over R or C . Students

then plot the charging and discharging curve, take fiduciary markers and estimate the

decay constant τ . Students discover that for sufficiently slow pulse rates, the capacitor

has enough time to charge and discharge. However, this behavior breaks down as the

pulse rate increases. To estimate the maximum pulse rate that the C can robustly

follow, students increase pulse rate on the function generator, measuring the peak to

peak voltage of the capacitor, VCpp , on the oscilloscope. Students then plot VCpp as a

function of pulse rate and observe how the VCpp amplitude decreases with increasing

pulse rate.

Traditionally, studio-style instruction in Lab 2 uses a function generator to send

voltage traces as inputs to the circuit, consisting of pulses of variable repetition rate.

Students then trace the circuit with a multichannel oscilloscope. Here, the Arduino

functions both as multichannel oscilloscope and simplified function generator, using

the same sampling period for both, with a precision of ±50 microseconds. Specifically,

using our custom code for Lab 2, the Arduino delivers a train of rectangular pulses

(0 or 5 V, with 50% duty cycle and 100% modulation depth, from Arduino pin

A1). An output voltage, across R or C, is simultaneously read in by the Arduino,

sample by sample (from pin A0). The voltage traces of both the generated pulse

train and the recorded measurements are then sent to the student’s laptop via serial

port. SerialPlotter, which is part of Arduino IDE on the laptop, then plots both

voltage traces sample by sample, generating the type of trace that students would

traditionally observe on a multi-channel oscilloscope. The numerical values of these

voltage traces can then be copy-pasted into Excel or Matlab where students can use

them to run detailed analysis, including estimating peak-to-peak voltages and time

constants of the circuit.
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Prior to uploading the code onto the Arduino chip, students can modify four

parameters in the code: 1) the sampling period, 2) the total number of samples

that the Arduino records and sends out (this limits the number of samples plotted,

preventing the plot from rolling), 3) the pulse period (this adjusts the pulse widths

of the output pulse train), and 4) the initial state of the capacitor (charged vs

discharged). On their personal computer or laptop at home, every student opens

the Arduino IDE, inspects the customized code and programs it via the “upload”

IDE function onto the Arduino chip. To prevent lack of coding skills from interfering

with the learning goals of the remote lab curriculum, students do not need to code.

However, they are encouraged to inspect the Arduino code and special breakout

sessions are offered to explain the code to interested students.

A.3 Reflection

The new remote training curriculum was implemented during Spring and Summer

2020 with two different instructors and 70 students. All students were able to complete

all sections of all labs. Due to the ad hoc nature of this learning intervention, no formal

learning outcome data were collected. Instead, student satisfaction was gathered from

informal feedback, suggesting that the remote lab curriculum resulted in self-reported

skill gains and overall high satisfaction.

A number of students commented that it felt empowering to build and

trace circuits at home, with affordable materials, as compared to using expensive

high-fidelity devices at the university. Consistent with prior work on enriched

learning, the inclusion of a sonification experience via their own self-made loudspeaker

to validate circuit functionality was particularly rewarding to many students [116].

Going forward, we will routinely use Arduino-based learning as a first step before

introducing the professional oscilloscope and function generator devices.
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Of note, at the onset of the pandemic, not all of our students had access to

webcams via their laptops. Instead of live circuit trouble-shooting via webcam, these

students emailed us photographs of their circuits instead. However, we discovered

that, aside from being an inefficient use of instructor time, email slows down the

learning momentum [98]. We now mandate webcam-enabled laptops for our course.

Our undergraduate cohort includes a high proportion of underrepresented

minority students, providing the kind of environment where utilization of peer mentors

is a particularly promising method for nurturing BME undergraduate students in

their professional and personal development [86]. Here, peer mentors allowed for

effective trouble-shooting during labs. Moreover, peer mentors made students more

comfortable to ask basic questions as well as help maintain a sense of community

during social isolation due to the COVID-19 crisis. Furthermore, the peer mentors

were able to deepen their knowledge of electronics by learning through teaching their

peers. Both the students in class and the peer mentors reflected very positively on

this experience.

In summary, when student access was limited during COVID-19, a novel

Arduino-based intervention enabled remote teaching while satisfying original learning

outcomes of the EF course. Students were able to measure key parameters of

serial-parallel resistors, RC-circuits and op-amp circuits. Experiential learning via

a custom Arduino kit demonstrated to students how they can build simple electronic

circuits at home, while maintaining accessibility of EF teaching to all students. A lab

format of initial instruction followed by prompting for “fill-in-the-blanks” milestone

answers proved effective for remote learning with synchronous trouble-shooting of

circuits. The use of sonification and peer mentoring further enriched student

motivation. Informal course evaluations suggest that many students benefited

from the remote lab curriculum. Future work will need to formally test teaching

effectiveness [38, 11].
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A.4 Supplemental Materials

All lab instructions and software tools are available on GitHub1 [2].

1Lab instructions and Arduino source code: https://github.com/nalamat/njit-bme-301
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