Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen



The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.



ABSTRACT

ADVANCES IN DEEP LEARNING WITH APPLICATIONS TO
COMPUTER VISION AND ASTRONOMY

by
Zhihang Hu

Deep Learning has spanned a variety of applications in computer vision as well
as computational astronomy. These two aspects obtained similar data structure,
therefore, their solutions can be transferable between each other. This dissertation
look into two video-related tasks in computer vision and propose a novel problem in
computational astronomy.

Specifically, acquiring an in-depth understanding of videos has been a cornerstone
problem in computer vision. This problem has been studied by various researchers
from different perspectives, among which video prediction has attracted much
attention. Video prediction aims to generate the pixels of future frames given a
sequence of context frames. In practice, unlabeled video sequences can be gathered
autonomously from a sensor or recording device. A machine capable of predicting
future events using these video sequences in an unsupervised manner will gain
extensive and deep knowledge about its physical environment and surroundings.
However, despite its appealing prospects, accurate video prediction remains an open
problem. The major challenge is the inherent uncertainty in the dynamics of the
world. A typical example is that the future trajectory of a ball hitting the ground is
inherently random.

This dissertation proposes new generative adversarial networks (GANs) for
stochastic video prediction. The proposed framework, dubbed Video-Prediction-
GAN(VPGAN), employs an adversarial inference model and a cycle-consistency loss
function to empower the framework to obtain more accurate predictions. In addition,

a conformal mapping network structure is incorporated into VPGAN to enable action



control for generating desirable future frames. In this way, VPGAN can produce
fake videos of an object moving along a specific direction. Experimental results
based on different datasets demonstrate the good performance of VPGAN and its
superiority over existing methods. Other contributions of this dissertation include the
development of a Three-Dimensional atrous convolutional long short-term memory
network for background subtraction used in video processing and an extension of
VPGAN for synthesizing vector magnetograms of active regions in different solar
cycles. The dissertation concludes by pointing out some directions of future research

in applying deep learning to computer vision and astronomy.
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CHAPTER 1

INTRODUCTION

Deep Learning [37][49] have achieved tremendous attention and rapid growth in the
field of Artificial Intelligence recent years. In fact, it actually has a long-term history,
and this third wave of neural networks research blast initiates from two major reasons.

First, the availability of faster GPU and better hardware-software infrastructure
allows learning models to go deeper and larger capacity [?] which serve as two crucial
factors in neuroscience(imitating human-brain structure).

Also, the availability of larger size datasets such as CIFAR-10 [48], ImageNet10k
[17] enable the models to do richer and more accurate representative learning which
reduces human hand-crafted impact and increases the generalization of learned
features.

These advances naturally fit the common traits of computer vision and
astronomy problems which are usually high dimensional, hand-crafted difficult. Thus,
deep learning are widely applied on visual problems such as image segmentation,
video manipulation, or astronomical image super-resolution, etc and quickly push the

accuracy to human-level.

1.1 Motivation
Although deep learning techniques played as the state-of-the-art role in many
standardized problems, they're still far from satisfactory. In this dissertation, we

propose to look into three Computer vision - Astronomical related open questions.

1.1.1 Background Subtraction
Background subtraction, or foreground detection, is a challenging problem in video

processing. This problem is mainly concerned with a binary classification task, which



designates each pixel in a video sequence as belonging to either the background or
foreground scene. Traditional approaches [76][13] for tackling this problem lack
the power of capturing deep information in videos from a dynamic environment
encountered in real-world applications, thus often achieving low accuracy and
unsatisfactory performance. Such dissatisfaction forbids the future application of
automic video surveillance processing and requires huge human-labor to examine
those video data in many scenarios. This requires us to come up with a solution that

tackles these difficulties.

1.1.2 Video Prediction

The ability of predicting future frames in video sequences, known as video prediction,
is an appealing yet challenging task in computer vision. This task requires an in-depth
representation of video sequences and a deep understanding of real-word causal rules.
Existing approaches [62][14] for tackling the video prediction problem can be classified
into two categories: deterministic and stochastic methods. Deterministic methods
lack the ability of generating possible future frames and often yield blurry predictions.
On the other hand, although current stochastic approaches can predict possible future
frames, their models lack the ability of action control in the sense that they cannot
generate the desired future frames conditioned on a specific action. Thus, in this
research, we desire to come up with a model that could do both accurate predictions

and action control.

1.1.3 Magnetograms Prediction

Many important magnetic field parameters are derived from vector magnetograms.
These parameters have been used to analyze and forecast solar flare activity.
Unfortunately, the most recent solar cycle 24 has been relatively weak with few large

flares, though it is the only solar cycle in which consistent vector magnetograms



are available through the Helioseismic and Magnetic Imager (HMI) aboard the Solar
Dynamics Observatory (SDO). In this paper we look into another major instrument,
namely the Michelson Doppler Imager (MDI) aboard the Solar and Heliospheric
Observatory (SOHO). The data archive of SOHO/MDI covers more active solar
cycle 23 with many large flares. However, SOHO/MDI data only has line-of-sight
(LOS) magnetograms, without vector magnetograms. This motivates us to take
advantage of deep learning’s strong representation capability to generate artificial

vector magnetograms for astronomical research.

1.2 Contributions
We’ve done many works to tackle the above open questions, our main contributions

are concluded in three aspects in the following dissertation.

1.2.1 Three-Dimensional Atrous ConvLSTM Network

We introduce a new 3D atrous convolutional neural network (CNN), used as a
deep visual feature extractor, and stack convolutional long short-term memory
(ConvLSTM) networks on top of the feature extractor to capture long-term depen-
dencies in video data. This novel architecture is named a 3D atrous convolutional
long short-term memory network. The new network can capture not only deep spatial
information but also long-term temporal information in the video data. We train the
proposed 3D atrous ConvLLSTM network with focal loss to tackle the class imbalance
problem commonly scen in background subtraction. Experimental results on a wide
range of videos demonstrate the effectiveness of our approach and its superiority over

existing methods.

1.2.2 Generative Adversarial Networks with Action Control
We propose new generative adversarial networks (VPGAN) for stochastic video

prediction. Our framework, called VPGAN, employs an adversarial inference model



and a cycle-consistency loss function to empower the framework to obtain more
accurate predictions. In addition, we incorporate a conformal mapping network
structure into VPGAN to enable action control for generating desirable future frames.
In this way, VPGAN is able to produce fake videos of an object moving along
a specific direction. Experimental results show that the combination of VPGAN
with a pre-trained image segmentation model outperforms existing stochastic video

prediction methods.

1.2.3 Dual attention generative adversarial networks

We propose a new deep learning approach, specifically a generative adversarial
network (GAN) model, to combine SOHO/MDI LOS magnetograms with Ho
observations from the Big Bear Solar Observatory (BBSO) for synthesizing B, and
B, transverse fields. The generated magnetic field components B; and B, along
with the MDI LOS magnetograms, which can be treated as B, components, create
vector magnetograms for different solar cycles. This way we are able to expand the
availability of vector magnetograms in different solar cycles that had stronger flare
activity. Experimental results show that the generated Bj and B, have good quality,
with the average Pearson product-moment correlation coefficient (PPMCC) being

approximately 80% based on our test datasets.

1.3 Organization

The structure of this dissertation is organized as follows,

Chapter 2. Three-Dimensional Atrous Convolutional Long Short-Term
Memory Network for Background Subtraction

In this chapter, we give a brief picture of the problem of background subtraction
and explain our work in details. Experimental results with quantitative data and

visualization are also presented.



Chapter 3. Generative Adversarial Networks for Stochastic Video
Prediction with Action Control

In this chapter, we introduce the difficulties of video understanding and prediction.
Then, followed a detail illustration of our research methodology and experimental

results.

Chapter 4. Deep learning-based synthesis of vector magnetograms using
generative adversarial networks

In this chapter, we introduce the intuition and astronomical background of the
magnetograms prediction problem. A detail description of our research and

quantitative experimental results are also presented in this chapter.

Chapter 5. Conclusion
This chapter gives the conclusion part of the dissertation. In this part we have to
explain the concluding points which we get during the implementation as well as

testing of our research.

Chapter 6. Further Work
This chapter suggests some of the future work to be done with this dissertation which

could be useful for further research in this field.



CHAPTER 2

THREE-DIMENSIONAL ATROUS CONVOLUTIONAL
LONG SHORT-TERM MEMORY NETWORK
FOR BACKGROUND SUBTRACTION

2.1 Background

Separating moving foreground objects from stationary background images in a video
sequence captured by static or moving cameras has been an important problem in
computer vision [67]. It finds many applications such as video surveillance, traffic
monitoring and motion detection. A useful technique for tackling this problem
is background subtraction. Background subtraction, also known as foreground
detection, is a binary classification task, which designates each pixel in the video
sequence as belonging to either the background or foreground scene [12, 3].

This task has been extensively studied in the past. An earlier method was
to use Gaussian mixture models (GMMs) to construct the background model and
designate each pixel as foreground or background [91]. Probability distributions were
adaptively updated using an EM algorithm. Several improved GMMs were later
proposed to enhance classification accuracy [36, 53, 107].

Robust principal component analysis (RPCA) [99] was another popular approach
for background subtraction. It was based on [71], which considered video frames
as a combination of backgrounds, foregrounds and noise. Several variations of the
RPCA method were adopted to construct the background model. For example, Zhou
et al. [105] developed Decolor, which employed RPCA and a Markov random field
(MRF) for foreground detection. Feng et al. [26] introduced online-RPCA (ORPCA);
Shakeri and Zhang [83] used ORPCA and Decolor together. There have also been

fuzzy [102, 24, 85] and statistical methods [8, 90] for background subtraction. Several



hybrid approaches, such as IUTIS-3 and IUTIS-5 [10], were proposed to combine these
methods and run a genetic algorithm on them to select the best combination of the
methods. Braham et al. [11] presented a semantic background subtraction method
to reduce false positives.

One weakness of the above traditional methods is that they are unable to learn
latent feature representations of the background model, and hence are insufficient to
handle real-world situations. Recently, some researchers approached the background
subtraction problem using deep learning, as deep learning achieved good results in
many areas [73, 74, 75, 87]. For example, Braham and Van Droogenbroeck [12], and
later Babaee et al. [3], proposed convolutional neural networks (CNNs) [49] to solve
the background subtraction problem. They adopted a fixed background model, which
was generated from a temporal median operation over N video frames. A scene-
specific CNN was trained with corresponding image patches from the background
images, video frames and ground truth pixels. Then, a patch around each pixel
was fed to the CNN and a score was calculated, which determined the label of the
pixel. Wang et al. [97] proposed a cascade CNN model, which was based on a multi-
scale convolutional neural network. It used several video frames as input, and the
data were run through networks of different scales. The results were then combined
together to make predictions. These authors reported that deep learning yields a
better result than the traditional methods, as deep learning can capture latent feature
representations from the background model.

However, there still exist insufficiencies in the existing deep learning systems.
First, some of these systems [12, 97| are scene-specific; they require training samples
from specific evaluation data, which may not be available in certain situations.
Second, some of the systems [3] only use a small patch around each pixel as input
to the CNN, without taking into consideration the whole frame. Third, many of the

existing systems [12, 3, 97| require pre- or post-processing of the data, and hence are



not based on an end-to-end learning framework. These existing systems often use 10
frames as input to their CNN model; none of them consider long-term dependencies
of the input video sequences.

In this research, we propose a new approach for background subtraction to
address the above insufficiencies. The major contributions of our work include:
Firstly, a new 3D atrous convolutional neural network (CNN) able to learn deep
spatial-temporal features without losing resolution information;

Secondly, a new deep learning model combining our 3D atrous CNN with two
convolutional long short-term memory (ConvLSTM) networks.

Finally, training the new deep learning model, named a two-level 3D atrous
ConvLSTM network, with focal loss [55] to tackle the class imbalance problem in
which the number of pixels belonging to the background scene is much larger than
the number of pixels belonging to the foreground scene.

By combining our 3D atrous CNN with two ConvLSTM networks, we can learn
both short-term and long-term spatial-temporal information of the input video data.
Furthermore, we employ a completely end-to-end framework that doesn’t require any
pre- or post-processing of the data. Our experimental results show that the proposed
deep learning model is more accurate than existing methods.

The rest of this research is organized as follows. Section 2.2 formalizes the
problem studied here and details our approach for tackling this problem. Section
2.3 reports experimental results, evaluating the performance of our approach and
comparing it with existing methods. Section 2.4 concludes the research and points

out some directions for future research.



2.2 Proposed Approach

2.2.1 Problem Formulation

The background subtraction problem addressed in this research is formally defined as
follows. Given is a sequence of frames or images (F1, Fy, ..., Fy,) of resolution N x M|
where each frame Fj, 1 < k < n, is a matrix of N columns and M rows of pixels. Our
goal is to derive a sequence of binary masks (Y1,Ys,...,Y,,) of resolution N x M, such
that Yy(i,5) = -1, 1 <k <n, 1 <i< N, 1<j< M, indicates the corresponding
pixel in Fy(i,j) belongs to the background scene and Y} (7, j) = 1 indicates the pixel

in Fy(7,j) belongs to the foreground scene.

2.2.2 Three-Dimensional Atrous CNN

Three-Dimensional Atrous Convolution In order to capture both the spatial
and temporal information in a video sequence without losing resolution, we propose
to use a technique called 3D atrous convolution. This technique is an enhancement
of two previous methods: 3D CNNs [43] and atrous convolution [16].

Two-Dimensional convolution has been frequently used in image processing. It
is powerful in extracting spatial information from an image. However, in computer
vision and video processing, 2D convolution is insufficient as it does not consider
the temporal information encoded in multiple contiguous frames. To effectively
incorporate the temporal information into video processing, Ji et al. [43] proposed
3D CNNs and applied them to human action recognition.

On the other hand, while the encoder-decoder model [61] is effective in image
segmentation, the multiple combination of max-pooling layers significantly reduces
the spatial resolution of the resulting feature maps, causing the loss of spatial
information about an image. Even though transposed convolution [61, 101] can
recover the spatial resolution, it cannot restore the lost information about the

image. To solve this problem, Chen et al. [16] used atrous convolution for image



segmentation without losing spatial resolution where the term “atrous convolution”
means convolution with upsampled filters.

The reason why we need atrous convolution in the time domain, besides the
spatial domain, is that we want to have a larger view from the time domain. Consider
movements that are not significant in just a few frames but become significant in a
larger range of frames. Under this circumstance, a larger view from the time domain
can help us identify those movements. Traditional convolution with a huge kernel is
unrealistic here as it requires a large number of parameters. Therefore, we propose
to use 3D atrous convolution in our network, which works as follows.

We define the value at (x,y, z) on the jth feature map in the ith layer, denoted

TYZz

v;;, given kernel size (P, Q;, R;) of atrous rate (s,t), as follows:

vy~ = ReLU (bi; +Q), (2.1)

where

ijmV(i-1)m

0= ' = P XU axs) (). (2.2)

Here, ReLU is the rectifier function, b;; stands for the bias for this jth feature map,

m indexes over all the feature maps in the (¢ — 1)th layer connected to this jth

pqr
igm

feature map, w!!’ is the weight at the position (p,q,r) of the kernel connected to
this jth feature map, and P;, Q);, R; are the height, width and length of the kernel,
respectively. The atrous rate (s,t) in Equation (2.2) corresponds to the stride with
which we sample the input signal; this sampling is equivalent to convolving the input
with upsampled filters produced by inserting s — 1 zeros and ¢t — 1 zeros between
two consecutive filter values along each spatial dimension and temporal dimension

respectively, as illustrated in Figure 2.1.
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[lustration of Three-Dimensional atrous convolution with kernel size (3,3,3) and rate
(2,2).

Input

2DbC2 2DC3 2DC4 Output

Figure 2.1 Architecture of our feature extractor CNN, which has 10 layers. Layer
1 is the input layer. There are two parallel structures in layers 2, 3, 4 represented
by green and orange cubes respectively to gain different temporal information. Their
outputs are concatenated in 3DC31 in layer 5. 2D atrous convolution is applied to
the remaining layers 6, 7, 8, 9 to eliminate the time dimension and perform image
segmentation. Layer 10 is the output layer.
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In Figure 2.1, the kernel size is (3, 3, 3), which is represented by 3 blue rectangles
at top, 3 blue rectangles in the middle and 3 blue rectangles at bottom in each of the
Ist, 3rd, and 5th gray rectangles in the bottom row of Figure 2.1. The atrous rate
(s,t) = (2,,2) is shown as follows. The space between two blue rectangles inside each
of the 1st, 3rd, and 5th gray rectangles in the bottom row of Figure 2.1 represents
that s — 1 =2 —1 = 1 zero is inserted between two consecutive filter values along
each spatial dimension. The 2nd and 4th gray rectangles in the bottom row of Figure
2.1 represent that t — 1 = 2 — 1 = 1 zero is inserted between two consecutive filter

values along each temporal dimension.

The CNN Architecture Figure 2.2 illustrates our proposed 3D atrous CNN
architecture. This CNN consists of 10 layers, with the first and the last as the input
and output layer. For each time step ¢, the CNN takes as input a sequence of 2k frames
(Fi—k,..., Fiix_1) where k is set to 6. In order to have different temporal views of
our data, we construct two parallel structures Sy, Sy in layers 2, 3, 4, represented by
green and orange cubes respectively in Figure 2.2.

The first layer of the first structure S; focuses on local temporal information
instead of the whole sequence of frames. We group six frames together with a stride
of 3 and connect them to 3DC11, 3DC12, 3DC13 respectively. Here 3DC11 (3DC12,
3DC13, respectively) represents 3D atrous convolution in unit 1 (2, 3, respectively)
of structure S;. Then 3DC11, 3DC12 are connected to 3DC14, and 3DC12, 3DC13
are connected to 3DC15. Here 3DC14 (3DC15, respectively) represents 3D atrous
convolution in unit 4 (5, respectively) of structure S;. Finally 3DC14, 3DC15 are
both connected to 3DC16, where 3DC16 represents 3D atrous convolution in unit 6
of structure S;. We apply a temporal atrous rate of 1 to the first structure S;.

The second structure Sy is comprised of 3DC21, 3DC22, 3DC23 where 3DC21

(3DC22, 3DC23, respectively) represents 3D atrous convolution in unit 1 (2, 3,
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respectively) of structure Ss. We group 12 frames together and connect these 12
frames to 3DC21. (For clarity, lines connecting the 12 input frames to 3DC21 are
not shown in Figure 2.2.) 3DC21 is then connected to 3DC22, which is connected to
3DC23. In order to conduct a ‘skip’ view in our model, we apply a temporal atrous
rate of 4 to the second structure Ss.

The two parallel structures S, Sy are connected to 3DC31. We then apply 2D
atrous convolution to eliminate the temporal dimension, and derive four 2D atrous
convolution layers: 2DC1, 2DC2, 2DC3, 2DC4. Finally, the output is the probability
mask of frame F; showing the probability of ecach pixel in the frame belonging to
the foreground scene. In our model, we employ a dropout layer in every 2D atrous
convolution layer, with a dropout rate of 0.3 to avoid overfitting.

The novelty of our proposed 3D atrous CNN architecture is that, in contrast
to existing CNNs (e.g., [43]), we apply two structures (streams) to the temporal
dimension for generating feature maps. Our experimental results indicate that this
architecture performs better than architectures using only one stream, S; or S, for

feature map generation.

2.2.3 Our Deep Learning Model
ConvLSTM Network In the past several years, the long short-term memory
(LSTM) model, which is a special recurrent neural network (RNN) [66], has been
applied to sequence modeling, especially in learning long-term dependencies for speech
recognition [34], text generation [93], video processing [22], among others. LSTMs
give solutions to the problems of vanishing and exploding gradients by incorporating
memory states that enable the networks to learn whether to forget or update hidden
states given new information.

In general, an LSTM unit includes a forget gate f, input gate 7, output gate

o, input modulation gate g, and memory cell c. A drawback of LSTMs is that it is
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2
ConvLSTM? pudZs

2
ConvLSTM? &G ConvLSTM?

1 1
O Ot+1

Ot—1

ConvLSTM?

ConvLSTM?

ConvLSTM!?

D(Xe_1) | O(Xe-1) O(X¢) D(Xer1) [D(Xes1)

CNN

Figure 2.2 Illustration of how the proposed 2-level 3D atrous ConvLLSTM network
works at time steps t — 1, ¢ and t + 1. The input of ConvLSTM" at time step t
comprises the output of our feature extractor CNN (i.e., ¢(X:)) and the output of
ConvLLSTM? for time step ¢ — 1 (i.e., 0?_;). The input of ConvLSTM? at time step
t comprises the output of our feature extractor CNN (i.e., ¢(X;)) and the output of
ConvLSTM! (i.e., of). The input of our feature extractor CNN comprises 12 frames
as shown in Figure 2.2; for clarity, only four frames are drawn here.
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insufficient to capture spatial information. Shi et al. [84] developed convolutional

LSTM (ConvLSTM) models to overcome this problem.

The ConvLSTM updates for time step ¢ are as follows [84]:

Ji
U
Gt
Ct

Ot

o(Wapsxy+Wiyshioy +Wepoc1+by),

o(Waixxy + Wy xhy_y + Wy 01 +b;),

tanh(W. % x; + Whe * hy_1 + b.), (2.3)
Jeoci1 +itog,

0(Wao # @ + Who # hy—1 + Weo 0 1 + bo),

o o tanh(c),

where o is the logistic sigmoid function, * denotes the convolution operator, o denotes

the Hadamard product, x; is the input vector, f; is the forget gate’s activation vector,

1; is the input gate’s activation vector, g, is the input modulation gate’s activation

vector, ¢; is the cell state vector, o; is the output gate’s activation vector, and h; is the

hidden vector. The weight matrix subscripts are self-explanatory; for instance Wj;

is the hidden-input gate matrix. All the vectors and gates including zy, ¢, hy, fi, ¢, 04

are 3D tensors whose last two dimensions are spatial dimensions. ConvLSTMs can

be adopted as building blocks for more complex neural network structures. Multiple

levels can be created by using the output gate’s activation vector of the ConvLSTM

in level j — 1 as the input to the ConvLSTM in level j.

Two-Level Three-Dimensional Atrous ConvLSTM Network Our deep learning

model is constructed by stacking layers of ConvLSTMs above our feature extractor

CNN. The rationale behind this design is that, although the 3D atrous CNN can

capture deep spatial-temporal features and achieve good performance in background
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segmentation, CNNs in general only handle a short sequence of data. For example,
Braham and Van Droogenbroeck [12] used 1 frame as input to their CNN networks to
perform image segmentation. If the input of these CNN networks is a long sequence
of data, the networks would not only suffer from too many parameters (which would
consume too much memory), requiring long training and execution time, but also
produce poor segmentation results.

To overcome these problems, we propose a new deep learning model, named
a two-level 3D atrous ConvLSTM network, by combining our 3D atrous CNN with
ConvLSTMs where the 3D atrous CNN is effective in extracting spatial-temporal
features without losing resolution information and ConvLSTMs are powerful in
manipulating video sequences. Specifically, our model works by passing a sequence of
input frames X; = (Fy_g, ..., Ft1x—1) through a pretrained feature extractor ¢, which
is our proposed 3D atrous CNN shown in Figure 2.2, to produce a fixed-size tensor
¢(X¢). Here ¢(X;) represents the output tensor of the 2DC4 layer of our 3D atrous
CNN (see Figure 2.2). This computed tensor ¢(X;) then becomes part of the input
of our ConvLSTMs. Multiple ConvLLSTMs could be stacked on top of the feature

extractor ¢.

Algorithm 1 2-Level 3D Atrous ConvLSTM Network

Input: A sequence of frames (Fy, F, ..., F,).
Output: A sequence of binary masks (Y7,Ys,...,Y,).
1: for each time step t, 1 <t <n, do

Let X; be the sequence of 2k frames (F} g, ..., Fiip_1);
Our 3D atrous CNN takes X; as input and produces ¢(X;) as output;
ConvLSTM! takes 2} = #(X;) ® 02 ; as input and updates f},hi,it, ol cl

using Equation (2.3);

5. ConvLSTM? takes z7 = ¢(X;) @ o; as input and updates fZ, h?,i?, 07, ¢} using
Equation (2.3);

6:  Let Y; = thresholdy,_13(07);

end for

creturn Y, 1 <t <n

®

Figure 2.3 illustrates how our 2-level 3D atrous ConvLLSTM network works;

Algorithm 7 presents details. For each time step ¢, f/ hl i, 0l,cl, 1 < j < 2,
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represent the states of the ConvLSTM in the jth level, denoted ConvLSTM/. These
states are updated using Equation (2.3). The input of ConvLSTM! (ConvLSTM?
respectively) at time step ¢, denoted x; (z?, respectively), is the concatenation of
the two vectors ¢(X;) and o7 ; (#(X;) and o}, respectively), denoted ¢(X;) & o7 ,
(6(X;) @ o}, respectively). The algorithm compares each value in o?, which is the
output gate’s activation vector of ConvLSTM?, with a user-determined threshold 6.
(In this study, € is set to 0.5.) If the value is greater than or equal to 6, then the
value is replaced by 1; otherwise the value is replaced by —1. This yields a matrix Y;
of 1s and —1s, where Y} is the binary mask produced by our algorithm for frame F;
at time step t.

The novelty of the proposed deep learning model is that, unlike existing work
[22] which combines a CNN with LSTMs, our model combines the proposed 3D atrous
CNN with ConvLSTMs. Furthermore, we design a novel way of connections between
the 3D atrous CNN and ConvLSTMs which is effective for the background subtraction

task.

2.2.4 Training with Focal Loss

Focal Loss The background subtraction problem tackled here is an imbalanced
classification problem in which pixels belonging to the background scene outnumber
pixels belonging to the foreground scene. Many of the background pixels are very
‘easy’ to classify, which means that their impact on the loss function is small. However,
when summed over a huge number of such easy samples, the small loss values can
overwhelm the rare class (foreground). Following Lin et al. [55], we apply the focal
loss to our training procedure to handle the class imbalance problem. Let y € {1, —1}

specify the ground-truth class and let p represent our model’s estimated probability
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for the class (foreground) with label y = 1. We define ¢ as follows:

P ify=1

1—»p otherwise.

As in [55], we incorporate a modulating factor (1 — ¢)” to the cross entropy loss
—log(q) with focusing parameter v > 0. Let a € [0, 1] be a weighting factor for class
1 (foreground) and 1 — « for class —1 (background). We adopt an a-balanced variant

of the focal loss:

FL(g) = —a(1 — ¢)" log(q). (2.5)

This is useful in our training process, particularly when we apply the focal loss to our

3D atrous CNN and ConvLSTMs with v = 2 and a = 0.25.

Training As shown in Algorithm 1, at ecach time step ¢, our 2-level 3D atrous
ConvLSTM network takes as input a sequence of 2k frames Xy = (Fy_g, ..., Fiyp_1).
We choose k& = 6 because 12 frames are sufficient to model short-term movement and
meanwhile do not require too many parameters for the network. In dealing with videos
of different resolutions, we resize the videos to a uniform resolution. Each video is a
sequence of frames. We use the first eighty percent of the frames as training data and
the last twenty percent of the frames as test data. The pixel values in each frame are
normalized into decimal numbers between 0 and 1. We pretrain our 3D atrous CNN
using the training data and embed the pretrained CNN into the ConvLSTM models

and train the entire 2-level 3D atrous ConvLSTM network again. The parameters of
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the pretrained CNN are tunable in our full network. Fine tunning these parameters

helps improve our results.

2.3 Experiments and Results
In this section, we describe implementation details of our proposed 2-level 3D atrous
ConvLSTM network architecture. A series of experiments were conducted to evaluate
the performance of the network architecture and compare it with existing methods.
We first introduce the dataset used in the experiments, then show the configurations of
the network architecture, define performance metrics and finally present experimental

results.

2.3.1 Dataset

We used CDnet2014 [96] in our experiments. CDnet2014 is a video dataset for
testing change detection algorithms. This dataset contains eleven video categories
with 4 to 6 video sequences in each category. These eleven video categories are:
Baseline, Dynamic Background, Shadow, Bad Weather, Low Frame Rate, Turbulence,
Night Videos, PTZ, Camera Jitter, Intermittent Object Motion, and Thermal. The
resolutions of these videos range from 320 x 240 to 720 x 486. We resized the videos

to a uniform resolution, namely 320 x 240.

2.3.2 Configuration

Our deep learning model was implemented using TensorFlow. In training this model,
we adopted the RMSProp optimizer [1], with learning rate = 107%, decay = 0.9,
momentum = 0.0, and epsilon = 1078. A batch size of 7 was used for training. The
focal loss was used as the loss function of our model. The model contains our 3D
atrous CNN with 10 layers, and two ConvLLSTMs stacked on top of the 3D atrous
CNN (see Figures 2.2 and 2.3). Table 2.1 presents details of our network architecture.

In the table, for each layer with 3D as a prefix, the first and second numbers of Kernel
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Table 2.1 Details of proposed Two-Level Three-Dimensional Atrous ConvLSTM
Network Architecture

Layer Dimension Kernel Atrous Rate Channels
3DC11 3D (3,3,6) (1,1,1) 64
3DC12 3D (3,3,6) (1,1,1) 64
3DC13 3D (3,3,6) (1,1,1) 64
3DC14 3D (3,3,4) (2,2,1) 128
3DC15 3D (3,3,4) (2,2,1) 128
3DC16 3D (3,3,12) (4,4,1) 256
3DC21 3D (3,3,3) (1,1,4) 64
3DC22 3D (3,3,6) (2,2,2) 128
3DC23 3D (3,3,6) (4,4,2) 256
3DC31 3D (3,3,36) (1,1,1) 256
2DC1 2D (3,3) (1,1) 512
2DC2 2D (3,3) (2,2) 256
2DC3 2D (3,3) (1,1) 128
2DC4 2D (3,3) (1,1) 64
ConvLSTM* 2D (3,3) (1,1) 1
ConvLSTM? 2D (3,3) (1,1) 1

and Atrous Rate represent spatial dimensions, and the third number represents the
temporal dimension.

Notice that in our architecture, we connected 2DC4 to ConvLSTM! (see Figures
2.2 and 2.3). This default model is denoted as Mopcy. There are other options such
as connecting 2DC3 (2DC2 and 2DC1, respectively) to ConvLSTM!, denoted Mapcs
(Mspco and Maopcy, respectively). Another model, denoted Mjsp, is only using the
pretrained 3D atrous CNN as the learning model without including any ConvLSTM.

As our experimental results show later, Mypcys achieves the best performance.

2.3.3 Evaluation

We define a true positive (true negative, false positive, false negative, respectively)
to be a pixel in the test data where our model predicts the pixel belongs to the
foreground (background, foreground, background, respectively) scene and the pixel is,
according to the ground truth, actually in the foreground (background, background,
foreground, respectively) scene. TP (TN, FP, F N, respectively) denotes the number

of true positives (true negatives, false positives, false negatives, respectively). We
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Table 2.2 Performance Evaluation of Our Model on the CDnet2014 Dataset

Category TPR TNR FPR FNR PWC PRE Fy
Baseline 0.9863 0.9998 0.0003 0.0183 0.0977 0.9937 0.9897
Dynamic Background 0.9831 0.9996 0.0009 0.0179 0.1213 0.9793 0.9789
Shadow 0.9819 0.9994 0.0013 0.016 0.1475 0.9843 0.9813
Bad Weather 0.9734 0.9933 0.0008 0.0124 0.1166 0.9658 0.9609
Low Frame Rate 0.9026 0.9996 0.0024 0.0357 0.3466 0.9024 0.8994
Turbulence 0.9538 0.9999 0.0003 0.0362 0.0679 0.9421 0.9488
Night Videos 0.9538 0.9985 0.0010 0.0447 0.3677 0.9626 0.9489
PTZ 0.9639 0.9998 0.0006 0.0679 0.0973 0.9537 0.9582

Camera Jitter 0.9791 0.9997 0.0019 0.0213 0.1556 0.9756 0.9645
Intermittent Motion  0.9677 0.9996 0.0006 0.0244 0.2546 0.9780 0.9637
Thermal 0.9813 0.9997 0.0003 0.0129 0.0980 0.9899 0.9833

Table 2.3 Performance Comparison of Six Background Subtraction Methods

Method TPR TNR FPR FNR PWC PRE Fy
Our Model 0.9701 0.9991 0.00012 0.0224 0.246 0.9661 0.9615
Cascade [97] 0.9506  0.9968  0.0032  0.0494 1.0722 0.8997  0.9209
IUTIS-5 [10] 0.7849 09948  0.0052  0.2151 1.1986 0.8087  0.7717
SemanticBGS [11]  0.7890 0.9961  0.0039  0.2110 0.3281 0.8305  0.7892
DeepBS [3] 0.7545 0.9905  0.0095  0.2455 1.992 0.8332  0.7458
SuBSENSE [90]  0.8124 0.9904  0.0096  0.1876 1.678 0.7509  0.7408

use several metrics to evaluate the performance of our model and compare it with
existing methods. These performance metrics include the true positive rate (T'PR),
also known as sensitivity or recall, true negative rate (TNR) or specificity, false
positive rate (F'PR), false negative rate (F.NR), percentage of wrong classification

(PWC), precision (PRFE) and F; measure, which are defined as follows:

TP
TPR= ———
R TP+ FN
TN
INR =75 Fp

Table 2.4 The F Values of Our Model and Cascade for Each Category of CDnet2014

Method  Baseline  Dynamic  Shadow Bad Low  Turbulence Night PTZ  Camera Intermit. Thermal
Background Weather Frame Videos Jitter ~ Motion

Our Model  0.9897 0.9789 0.9813 0.9609 0.8994 0.9488  0.9489 0.9582 0.9645 0.9637  0.9833
Cascade  0.9786 0.9658 0.9593  0.9431  0.8370 0.9108 0.8965 0.9168 0.9758  0.8505  0.8958
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FPR:TN+FP
FN
FNR= 755w (26)

(FP+ FN) x 100

P —
we TP+TN+ FP+ FN
TP
PRE=—"—__
R TP+ FP
2xTPR x PRE
F1:

TPR+ PRE

We applied our model to the eleven video categories in CDnet2014. Table 2.2
presents the results. It can be seen from the table that our model achieves high
Fy values, even for very challenging categories such as Dynamic Background and
Camera Jitter. For Night Videos and Low Frame Rate categories, the performance
of our model degrades, mainly due to the resolutions and insignificant changes in
the foreground scenes of the videos in these two categories. In Turbulence and PTZ
videos, there exist inconsistent background scenes throughout the video frames, which
have impact on the segmentation (prediction) results.

Next, we compared our model with five methods developed by others, including
SemanticBGS [11], Cascade [97], IUTIS-5 [10], DeepBS [3] and SuBSENSE [90].
These are top methods widely used in the community which are representatives
of existing deep learning models and typical traditional models. Among these five

existing methods, Cascade [97], SemanticBGS [11] and DeepBS [3] arc based on deep
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learning while IUTIS-5 [10] and SuBSENSE [90] are traditional methods that are not
based on deep learning.

Table 2.3 presents the results. Fach number in the table represents the average
over the eleven categories of CDnet2014. The best value for each performance metric
is highlighted in boldface. We note that, among the five existing methods, Cascade
[97], which employs a multi-scale CNN to perform background subtraction, is the
best. Our model outperforms Cascade in F; measure by 4%, and is much better than
the other four existing methods.

Table 2.4 shows the F} values of our model and Cascade for each category of
CDnet2014. The best F} value in each category is highlighted in boldface. It can
be seen from Table 2.4 that our model outperforms Cascade [97] in every category,
except Camera Jitter, of the CDnet2014 dataset.

Figure 2.4 displays some results produced by our model, Cascade [97] and
TUTIS-5 [10] where our model and Cascade are based on deep learning while ITUTIS-5
is a traditional method not based on deep learning. The first row in Figure 2.4 shows
an input frame taken from one of six categories of CDnet2014 including Baseline, Bad
Weather, Camera Jitter, Dynamic Background, Intermittent Object Motion, and Low
Frame Rate. The second row shows ground truth data. The third row gives the results
produced by Cascade [97] based on the input frames in the first row. The fourth row
gives the results of TUTIS-5 [10]. The last row presents the results produced by our
model.

It can be seen from Figure 2.4 that the results produced by our model are
generally closer to the ground truth data, compared to the results of the other two
methods. For instance, look at the results for Bad Weather in the second column.
The head of the person in the middle of the scene is hardly seen in the result of
Cascade displayed in the third row, and her upper body almost disappears in the

result of IUTIS-5 displayed in the fourth row. By contrast, in the result of our model
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Dynamic Intermittent
Background Object Motion

Baseline Bad Weather Camera Jitter Low Frame Rate

Figure 2.3 Example results produced by Cascade (third row), IUTIS-5 (fourth row)
and our model (last row). The first row shows input frames from six categories of
CDnet2014. The second row shows the ground truth for each input frame.

displayed in the last row, the head and upper body of this person are clearly shown
as in the ground truth.

Finally we compared our default model Mspcy with the other models Maopcs
Moapez2, Mapcr and M3p described in Section 3.2. Table 2.5 presents the results. Each
Fy value in the table represents the average over the eleven categories of CDnet2014.
The highest F} value is highlighted in boldface. Clearly, the Mypcy model, in which
the 2DC4 layer of our 3D atrous CNN is connected to ConvLSTM!, achieves the best
performance. This happens probably because the two ConvLSTMs, which serve as the
last layers of our pretrained 3D atrous CNN, are both 1-channel 2D convolution layers,
and the features from 2DC4 are more suitable for such layers than 2DC3, 2DC2 and

2DC1. The fact that Mopcys beats Msp indicates that stacking two ConvLSTMs on
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Table 2.5 The F; Values of Five Different Deep Learning Models

Model Fl

Mapcs  0.9615
Mapcs  0.9556
Mopes  0.9531
Mopcr  0.9512
Msp  0.9521

top of our 3D atrous CNN is effective, allowing us to capture long-term dependencies
through the time dimension.

Our 3D atrous CNN accepts as input 12 frames (see Figure 2.2). We have also
tested on different numbers of input frames. The 3D atrous CNN uses two streams
(structures) S; and Sy for feature map generation, with a temporal atrous rate of 1
for S; and a temporal atrous rate of 4 for S;. We have compared this architecture
with alternative architectures using only one structure, Sy or Sy, or two structures
with different temporal atrous rates. Moreover, our proposed deep learning model
combines the 3D atrous CNN with two ConvLSTMs (see Figure 2.3). We have tested
on alternative models with different numbers of ConvLSTMs. Experimental results
showed that the proposed 2-level 3D atrous ConvLSTM network architecture yielded

the best performance.

2.4 Summary
In this chapter, we propose a new approach for video background subtraction. Our
approach works by combining a 3D atrous convolutional neural network (CNN), used
as a feature extractor, with two convolutional long short-term memory (ConvLSTM)
networks. This new deep learning model is powerful in processing videos and
analyzing sequential data in general. It is not scene specific, and does not require
any pre- or post-processing of input video data. We trained this model with focal
loss to tackle the class imbalance problem commonly seen in background subtraction.

Experimental results on a variety of video sequences demonstrated the effectiveness
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of the proposed approach and its superiority over existing methods. In future
works we plan to extend the proposed deep learning model for video prediction and
segmentation. We are also exploring applications of the model to video processing in

scientific domains (e.g., solar physics).
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CHAPTER 3

GENERATIVE ADVERSARIAL NETWORKS FOR
STOCHASTIC VIDEO PREDICTION WITH ACTION CONTROL

3.1 Background

Acquiring an in-depth understanding of videos has been a cornerstone problem in
computer vision. This problem has been studied by various researchers from different
perspectives, among which video prediction has attracted much attention. Video
prediction aims to generate the pixels of future frames given a sequence of context
frames [69, 63]. This task finds many applications ranging from autonomous driving,
robotic planning, to object tracking. In practice, unlabeled video sequences can
be gathered autonomously from a sensor or recording device. A machine capable
of predicting future events using these video sequences in an unsupervised manner
will have gained extensive and deep knowledge about its physical environment and
surroundings [4, 52].

However, despite its appealing prospects, accurate video prediction remains an
open problem. The major challenge is the inherent uncertainty in the dynamics of
the world [19]. A typical example is that the future trajectory of a ball hitting the
ground is inherently random. Deterministic methods [78, 69, 89] are unable to handle
this inherent uncertainty. Furthermore, the improper loss functions adopted in many
of the deterministic methods often result in blurry predictions.

With the advent of models such as generative adversarial networks (GANSs)
[32] and variational auto-encoders (VAEs) [77], the quality of prediction results has
been improved. Furthermore, stochastic methods based on these models are able to

generate multiple future frames using some randomly sampled noise [4, 19, 52, 38, 54].
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However, the adversarial loss functions in GANs tend to be difficult to tune, and
these networks suffer from the mode collapse problem, i.e., they select a few prominent
modes without being able to adequately cover the space of possible predictions
[4, 52]. Moreover, the stochastic methods lack the understanding and control of
latent-variable space, rendering action control impossible. Hence, they are unable to
generate desirable future frames.

To tackle these problems, we present in this research a new GAN-based
framework, named VPGAN, for stochastic video prediction. The main contri-
butions of our work include the following: Firstly, we introduce a new adversarial
inference model designed for stochastic video prediction and incorporate a novel
cycle-consistency loss into the model to better learn actions that take place in video
sequences for enhancing the quality of predicted frames.

Secondly, we incorporate a conformal mapping [2] network structure into our
VPGAN framework to enable action control for generating desirable future frames.

Finally, we combine a pre-trained image segmentation model, SegNet [5], with
our VPGAN framework to exploit its effectiveness in image understanding. Having
more semantic understanding of the frames in video sequences would enable VPGAN
to generate more accurate predictions.

To the best of our knowledge, this is the first work to incorporate action control
into the video prediction task so as to generate specific future frames. Furthermore,
the combination of our VPGAN framework with the pre-trained image segmentation
model (SegNet) outperforms existing stochastic video prediction methods as shown

in our experimental results reported in the research.

3.2 Related Work
A wide range of deterministic methods for video prediction have been developed in

the past. Many of these methods worked by generating future frames from the latent
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states of a deep learning model such as recurrent neural networks (RNNs) [66] and
convolutional long short-term memory networks (ConvLSTMs) [84]. Ranzato et al.
[78] designed an RNN-like network for natural language processing, which was able to
predict future frames in a discrete space of patch clusters. Srivastava et al. [89] applied
long short-term memory (LSTM) networks to capture long-term pixel dynamics of
videos. Oh et al. [69] adapted an encoder-decoder model to encode action movement
into the encoder and generate frames conditioned on the action movement. Oliu et
al. [70] stacked multiple double-mapping GRU (gated recurrent unit) layers to build
a folded recurrent neural network for future video prediction. All these deterministic
methods suffered from the inherently blurry predictions obtained from the standard
mean squared error (MSFE) loss function.

Mathieu et al. [63] developed a stochastic GAN-based model for video
prediction. This model used an adversarial loss function instead of least absolute
deviations (L; loss) and least square errors (Ls loss). Tulyakov et al. [92] described
the MoCoGAN framework, which decomposed a video into a content part and a
motion part. They trained two GANs together, one of which was a motion GAN
and the other was a content GAN, for video generation. Similar decomposition
schemes have been used by Denton and Birodkar [20] and Villegas et al. [94] who
developed the MCnet+Res system. These decomposition methods borrow the idea
from background subtraction techniques [40] and work well in rather simple scenarios.
Hou et al. [38] introduced a bidirectional constraint network, BCnet-D, and used a
video adversarial loss function to constrain the motion of predictions. Li et al. [54]
solved the video prediction problem in two phases: a multiple time step flow prediction
phase followed by a flow-to-frame synthesis phase where the second phase is modeled
as a generative process. However, these GAN-based models suffer from problems
such as mode collapse and instability [32]. These problems have been addressed by

several researchers. For example, Gulrajani et al. [35] proposed to use the Wasserstein
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distance to handle training instability. Mescheder et al. [65] provided some training
mechanisms and tricks to overcome such problems.

Apart from GAN-based models, another popular technique for generative
models is the VAE-based framework [77]. This framework aims to minimize the
reconstruction loss and regularization term (KL divergence between a posterior
distribution and a prior). It employs a Bayesian support vector machine, permitting
efficient Bayesian inference. VAE-based models have acquired great success in image
generation [77, 95]. However, they suffer from the same problem when used in video
prediction. Specifically, the Ly reconstruction loss function used by these models tends
to produce blurry results as it generates the expected value of all the possibilities for
each pixel independently [4, 52]. Hence, few works have applied VAEs directly to
video prediction.

The fact that GANs lack Bayesian inference while VAEs suffer from an
inappropriate loss function leads to combining GANs with VAEs. State-of-the-art
VAE-GAN hybrids include SVG-LP [19] and SV2P [4, 52], both of which perform
stochastic video prediction. Notice that VAE-GAN hybrids are not the only type
of models that incorporate inference mechanisms into GANs. There are many
other efforts such as ALI [23] and BiGANs [21]. In particular, the adversarially
learned inference (ALI) model jointly learns a generation network and an inference
network using an adversarial process, and has been successfully applied to some
semi-supervised learning tasks.

In this work, we propose a new adversarial inference model in the spirit of ALI
and designed specifically for video prediction, and incorporate it into our VPGAN
framework. This adversarial inference model is totally different from the Bayesian
inference used in the VAE-GAN hybrids such as SVG-LP [19] and SV2P [4, 52].
Furthermore, VPGAN employs a cycle-consistency loss function to enhance the

quality of prediction results. We show experimentally that the combination of our
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Figure 3.1 Overview of our VPGAN framework. The framework has four
components responsible for adversarial inference, cycle-consistency loss, image
segmentation and action control respectively.

VPGAN with a pre-trained image segmentation model, SegNet [5], outperforms the
existing VAE-GAN hybrids including SVG-LP and SV2P as well as other methods.
The rest of this chapter is organized as follows. Section 3.3 formalizes the
problem studied here and details our approach for tackling this problem. Section
3.4 reports experimental results, evaluating the performance of our approach and
comparing it with the existing methods. Section 3.5 concludes the work and points

out some directions for future research.

3.3 The Proposed Approach
Figure 3.1 presents an overview of our VPGAN framework. The framework
consists of (i) the adversarial inference model mentioned in the previous section for
stochastic video prediction, (ii) the cycle-consistency loss module that introduces
cycle constraints into the prediction space to improve overall accuracy, and (iii) the
image segmentation model, SegNet, to further improve prediction accuracy. The
action control module aims to generate desirable future frames in which an object

moves along a specific direction, and has little impact on prediction accuracy.
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3.3.1 Problem Formulation

The task of stochastic video prediction can be formalized as learning a multi value
function f : RVXMXT s RNXM from a collection of T context frames X, ..., Xr_1,
each of which is a matrix of N rows and M columns of pixels, to some possible future
frames {X7}.

It is natural to think that the transformation from frame X;_; to frame X, is
caused by some variation Z;. In [20, 94, 92], the latent variable Z; is considered as
the motion of objects. However, in practice, Z; contains not only object motion, but
also variations of the physical environment and surroundings. In fact, due to adding
some constraints to the latent variable, Z; is the accumulation of multiple factors, i.e.,
Zy=Z}+Z2+ ...+ ZF. Furthermore, because the variation between frames is small
as environmental changes usually don’t take place in a sudden, we assume that the
prior distribution of Z; is a standard Gaussian N(0,I). Based on this assumption, the

video data can be described as a sequence of pairs (Xo, Zy), ..., (X¢, Z), 0 <t <T.

3.3.2 Adversarial Inference

Let X represent the frames and let Z represent the variations under consideration. Let
Pdata(X) represent the true distribution of X. We wish to construct a joint distribution
q(X, Z) such that q(X, Z) is a good approximation of pgu,(X). In practice, it is hard
to match ¢(X,Z) with pgua(X). On the other hand, because the video data can
be described as a sequence of pairs (Xg, Zy), ..., (X¢, Z;), we can consider matching
q(X,Z) with the joint distribution of (X;, Z;), denoted p(X,Z). When ¢(X,2)
and p(X, Z) are matched, their marginal distributions are also matched. However,
performing the matching using a traditional loss such as M.SE and L; would result
in blurry predictions. Instead, we incorporate a new adversarial inference model into
our framework. By playing a min-max game between the true evidence (X, Z;) and

generated fake sample (X7, Z7), we can match ¢(X, Z) with p(X, Z).
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Figure 3.2 Illustration of the VPGAN learning process. Both of Gy, Gy are
generators. Discriminator D(X, Z) tries to discriminate between true (X, Z) and
fake (X', 2").

Figure. 3.2 illustrates the VPGAN learning process during training. VPGAN
employs two generators: py, = Gy(X,Z) and q9 = Gyp(X, Z). Let X;_,4_1 denote
the frames X;_,,...,X;_1 and let Z;_,;_ 1 denote the variations Z;_,,...,Z;_1.
Intuitively, past variations should have a ‘momentum impact’ on the present variation.
Thus, we generate the variation at time t, Z;, conditioned on the past frames
Xi—n, ..., X1 and past variations Z,_,, ..., Z;_1. That is to say, Z;, ~ py(Z|Xi—n:—1,
Zt_pt—1). Variations Z;_,._1 are contained in the frames X; ,;_1 but specifying them
explicitly through the input would help p, focus more on the ‘momentum impact.’
The generator p, in this case could be viewed as an encoder that encodes the past
variations Z;_,, ..., Z;_1 into the latent variable space.

On the other hand, we generate the fake frame at time ¢, X/, conditioned on
variation Z, sampled from a prior, ¢u.ior(Z), and a single past frame X; 4, i.e., X}
~ qo(X|Z], X;-1). Here, conditioning on one single past frame is reasonable as Z
represents the changes between frames, and conditioning on less information would
enforce Z to learn the ‘true’ variation efficiently. Thus, the generator ¢y serves as a
decoder in our framework, which decodes the variation Z, and generates new frame

X/,
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The symbol D(X,Z) in Fig. 3.2 represents the discriminator, which tries to
distinguish between the true evidence (X;, Z;) and the generated fake sample (X7, Z}).
VPGAN keeps on generating fake samples until the discriminator D(X,Z) can not
distinguish between the true evidence and generated fake sample, at which moment
the training process terminates. When the training is completed, the two joint
distributions ¢(X, Z) and p(X, Z) match with each other.

Denote py(Z| Xi—nit—1, Zt—nii—1) by Gy(Xi—ni-1,

Zy—nu—1) and qo(X|Z], Xi—1) by Go(Z], X;—1). The adversarial loss function used in

the training is calculated as:

La’dv = EXthdata (X) [
lOg D(Xtv GU)(Xt—n:t—l) Zt—n:t—l))]
+ EZ{thpmcn(Z) [

1 _IOgD(GG(szXt—l)vzg)] (31)

Fig. 3.3 illustrates the VPGAN feed-forward inference process during testing.
The figure shows how to generate or predict the next frame X; based on the past
frames X;_,.;_1. First, the past frames X;_,.;_1 and past encoded vectors Z;_,,;_1 are
sent to the encoder p,, which generates the next encoded vector (variation) Z;. Then
the decoder gy takes X, and Z; together, and predicts the next frame X,;. Depending
on different variations (latent variables) Z;, gy can predict multiple possible next
(future) frames {X7}.

During training and inference, we calculate py, and gy as follows:

Pu(Z| Xt nit—1, Zt—ni—1) ~ N(py(X, Z), 04(X, Z)I) (3.2)
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Figure 3.3 Illustration of the VPGAN inference process.
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Go(X|Ze, Xe1) ~ N(po(X, Z),00(X, Z)I) (3-3)

Based on the assumption that the prior distribution of Z is a standard Gaussian, we

have

Qprior(Z) ~ N(Oa I) (34)

The sampling procedure used in calculating p, and gg can be computed by
the reparameterization trick [46]. Specifically, instead of sampling directly from the
Gaussian function with the complicated parameters, we treat the sampling procedure
as a deterministic transformation of some noise such that the transformation’s

distribution is computable. Thus, we calculate Z; as:

Z= (X 2) + 0,(X. 2) 9 €, &~ N(0.T) (3.5)

where ® denotes the Hadamard product (element-wise product).

3.3.3 Cycle-Consistency Loss

Cycle consistency is based on the idea of using transitivity as a way to regularize
structured data. Here we propose a new cycle-consistency loss function for video
prediction. With the same generator in (3.3), we generate the frame at time ¢ — 1,
X;_1, conditioned on the opposite of Z; and X;. That is, we generate X,_; conditioned

on —Z, and X, where X,_; is approximately equal to X;_; as expressed in (3.6) below:

X1~ Xt—l n~ QG(X| — 2y, Xt) (3'6)
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Figure 3.4 Illustration of cycle consistency in our framework.

This is reminiscent of the cycle-consistency loss used for image-to-image
translation in [106]. However, our cycle-consistency loss function is different from
that in [106] because our loss function is mainly designed for video prediction rather
than image translation. Since the prior Z; follows a standard Gaussian distribution
(cf. (3.4)), it is natural to consider the opposite variation to be the negative of Z,.
Fig. 3.4 illustrates how cycle consistency works in our framework. As shown in the
figure, we generate the current frame X; (right) conditioned on the previous frame
X1 (left) and variation Z;. On the other hand, with the same generator, we generate

the previous frame X;_; conditioned on the current frame X; and the negative of Z;.
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Mathematically, denote qo(X|Z;, X;—1) by Go(Zi, Xi—1) and qo(X| — Z4, X;) by
Go(—2Z;, X). Our cycle-consistency loss is calculated as:
L}:ycle = EXtth—l"’prlata(X){
| X — Go(Z, Go(— 21, X4)) |1

+ || Xicr = Go(—2Z, Go(Zy, Xo—1)) |In} (3.7)

Here, we utilize L; loss as the reconstruction loss. The loss function L/, in (3.7)

only considers one-step cycle consistency. We can generalize the formula in (3.7) to
take into account cycle consistency of multiple steps (more precisely, k steps) for video

prediction. We first define a single-multi loss as follows:

l?ycle = EXt,Xt—kdiata(X){H Xt - G@(Zu
G9<Zt—17 cee >G9(_Zt7Xt))) ||1
+ || Xeep — Go(— 24,

Go(—Zi—1, ..., Go(Z4, Xi—k))) |1} (3.8)

Our multi (k steps) cycle-consistency loss is generalized by summing up all single-

multi losses as follows:

k
ngycle = Zai' iycle (39)
=1
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k

eyele for k > 2 since the procedure

It could be very time consuming to calculate L

2

eyele Would require up to

includes iterative calculation of generator Gy. For instance, [

2

eyete Would require 12 times calculation.

8 times calculation, and the overall L
When using the multi cycle-consistency loss, it is natural to take into account

a multi-reconstruction loss. The computational cost is mainly involved in calculating

L% e; computing the multi-reconstruction loss takes relatively less time. Define I7,.,,
as follows:

k _
lrecon - EXt:---th—kdiam(X){

0 Xt,Go(Zyy .oy Go(Zi—ps1, Xi—k))) } (3.10)

Here, 0 stands for the reconstruction distance between the ground truth X; and
Go(Zsy oo Go(Zs_py1, Xi—)). Generally, Ly loss is applied, but in order to obtain

more accurate results and reduce the impact of future averaging,” we let § be the L,

k

rocon 18 naturally defined as:

plus perceptual loss [44]. Then, L

k
Lfecon = Z bl ’ lf‘econ (311)
i=1

Combining the multi cycle-consistency loss and multi-reconstruction loss defined in

this subsection, our overall loss, denoted L., is calculated as follows:

Lioss = aLgay + BL(]?ycle + ALfecon (312)

The perceptual loss [44] is widely applied in evaluating the reconstruction

quality of images. It could be the distance on the Kth feature map, for some K,
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of some convolutional neural network, such as VGG16 [86] or ResNet [37] pre-trained
on ImageNet [17]. In our study, we applied the simple ResNet [37] to our model.
Notice that, although the multi cycle-consistency loss enforcing long-dependency
consistency likely enables more accurate action learning and prediction, its training
and inference time would be approximately & times larger than that for the one-step
cycle-consistency loss. Moreover, it may suffer from gradient loss. Therefore, in our

VPGAN framework, we only utilize the one-step cycle-consistency loss given in (3.7).

k

eycte Will be presented in the experiments

The evaluation of different k values for L
section.

It should be pointed out that, in a recent study [38] Hou et al. also incorporated
transitivity regularization into their BCnet-D model. The main difference between
our VPGAN and BCnet-D is that our backward function go(X| — Z;, X;) in (3.6)
and forward function go(X|Z;, X;—1) in (3.3) are designed in a consistent way and
arc both optimized during training while Hou et al. used a pre-trained backward
function. Our loss function results are thus quite different from those of Hou et al.

We generalize our formulas to take into account cycle consistency of multiple steps

(k-steps cycle-consistency loss).

3.3.4 Image Segmentation

When constructing the generators Gy and G, for video prediction, as illustrated
in Fig. 3.2, existing methods such as SVG-LP [19] and SV2P [4] employ long
short-term memory (LSTM) and convolutional neural networks (CNNs) to capture
the spatio-temporal information in the video data. Here we propose to further
combine a pre-trained image segmentation model with the generators Gy and Gy,
which are implemented by our previously developed convolutional long short-term
memory and CNN network [40]. The motivation behind this combination is that

when performing the video prediction task, a method needs to understand the scene
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Figure 3.5 Combining the pre-trained image segmentation model SegNet, used as a
feature extractor, with the generator G, in VPGAN.

and variations between frames, where the variations between frames are mainly
caused by the interactions between objects. Therefore, recognizing the objects and
understanding their interactions are critical in predicting the variations.

Since there are well-performed image segmentation models such as SegNet [5],
U-Net [79] and DeepLabv3 [15], using onc of them as a feature extractor stacked
below the generators Gy and Gy, would achieve appealing results. For example, Fig.
3.5 shows a combination of SegNet with the generator G, in VPGAN. G, takes, as
input, X;_,+_1, Zi_n.+—1 and the output of SegNet, and produces, as output, generated
variations. In our framework, we choose SegNet due to its better performance than

the other image segmentation models as our experimental results show later.
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3.3.5 Action Control

In practice, it is natural to consider the generation of desirable images or videos using
GANs. Since GANs generally generate data from a random sample of the latent
variable space Z, it is hard to control the behavior of GANs. In this subsection, we
propose new techniques for generating desirable frames using GANs.

In Section 3.3.3, we use Z; and —Z; to represent the opposite variations in
the video space H. Specifically, for a movement dataset, Z; should be able to learn
the moving direction of an object, and then —Z; should mainly represent the object’s
moving in the opposite direction. That is, from the encoding space (i.e., latent variable
space) Z to the video space H, we preserve what we call a ‘symmetry’ property,
meaning that if 7, Z, are symmetric in the encoding space Z, then the corresponding
generated movements should be symmetric in the video space H.

In addition, we wish to manipulate the latent variable space Z so as to generate
desirable moving directions, through preserving ‘orthogonality,” or more precisely,
through preserving angles between the encoding space Z and the moving direction of
an object. This orthogonality property can be preserved by first enforcing the latent
variable space Z to be a subset of R?. Although the moving direction of an object in a
video sequence is in R?, the latent variable Z € Z C R? may not simply represent the
moving direction of the object, for the following reasons: Firt, the moving direction
and Z may not be in the same coordinate system, as the decoder from the latent
variable space Z to the video space H may contain rotation operations.

Second, the latent variable Z may contain not only direction information, but
also velocity, momentum, and other information.

Third, the latent variable Z may contain information related to environmental
changes.

Thus, the angles between any two vectors in the latent variable space Z may not

be preserved in the decoding process. To overcome this problem, we add a network to
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Figure 3.6 Illustration of our modified model for action control.

our framework to preserve such angles. This network acts as a mapping, denoted T,
which maps a latent variable from the latent variable space Z to the moving direction
space D C R?. The moving direction v(X;_1, X;) of an object between frames X; ;
and X; can be computed by running an optical flow algorithm [9]. Thus, our modified
model consists of two decoders: one from the latent variable space Z C R? to the
video space H, and the other decoder, 7, from the latent variable space Z to the
moving direction space D C R?. Fig. 3.6 illustrates this modified model.

The moving direction loss, denoted Li,ouing, is calculated as:

< 7(2),0(Xio1, X;) >
|

Loving = -1 3.13
@ X 319

where < - > represents the inner product of two vectors. Such a loss function penalizes
the angle difference between two vectors. Our overall training loss is updated to take

into account the moving direction loss, and is calculated as:

LlOSS = aLadU + ﬁLlccycle + )\Lfecon + /JJLmoving (314)

The Adam optimizer [47] is employed to optimize Lj,gs.
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Based on a mathematical concept known as ‘conformal mapping’ [2], we
introduce and add the network, 7, to our model. Formally, a mapping f = (f1,..., f»)
where f : U — V', U,V C R", is conformal (or angle-preserving) at a point ug € U if it
preserves the orientation and angles between directed curves through ug. A mapping

f is conformal iff it is homomorphic and its derivative is nowhere zero, i.e.,

af1 af1
it a_g]ccl ann 0 -0
- : .. : oL 1
J g : . % | Lo (3.15)
Ofn Ofn
ar_ﬁl % 0 -0

In our VPGAN framework, the mapping 7 is implemented using a 3-layer affine
transformation [31, 68]. Such an affine transformation enforces 7 to be conformal;
therefore it preserves the angle between any two vectors through '0/. In this way, if we
know a latent variable Z moving toward a specific direction, we can then control the
generated moving direction by manipulating the latent variable Z (through rotating
with some angle since the angle is preserved between the latent variable space Z and
the moving direction space D). Under this circumstance, we actually do not need
to know details concerning Z, such as velocity, momentum and other information.

Algorithm 1 depicts our action control procedure.

Algorithm 2 Action Control

1: Sample n sets of continuous frames {X;_1, X;}, in which objects move toward
the same direction.

Encode the frames into Z},..., Z" in the latent variable space Z.

Calculate the mean of Z},..., Z" and denote the mean by Z.

Compute the angle ¢ between the desired direction and sampled direction.
Rotate Z by the angle ¢ in the latent variable space Z.

Decode Z into the video space H.

The advantages of our proposed action control algorithm are the following:
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Figure 3.7 Impact of k£ on the (a) SSIM measure and (b) running time of VPGAN
on the Moving Mnist datasct. Given 10 context frames, VPGAN predicts 30 frames
recursively, one by one. The X-axis represents different T (time step) values, and
for each T value the Y-axis represents the (a) SSIM value computed based on the
ground truth and the frame predicted in step T and (b) running time of VPGAN for
generating the T frames.

e [t suffices to enforce a conformal mapping 7 from the latent variable space (i.c.,

encoding space) Z to the moving direction space D (see Fig. 3.6). It is not

necessary to handle the latent variables Z/,. .., Z! individually.

e Even when the latent variables accumulate many different factors, such as
environmental changes, momentum information and so on, our action control

algorithm is still able to generate objects moving in the desired direction.

3.4 Experiments and Results
A series of experiments were conducted to evaluate the performance of our VPGAN
framework using different datasets, including Moving Mnist [89], BAIR [27], KTH [81]
and UCF101 [88]. Moving Mnist [89] is a simple dataset and we used it for generating
desired movements. BAIR, KTH and UCF101 are more complicated datasets. We
evaluated our cycle-consistency loss function, compared different image segmentation
models, and performed ablation studies using these four datasets. To our knowledge,

the current best methods on BAIR are SVG-LP [19] and SV2P [4, 52]. The current
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best methods on KTH are SVG-LP, SV2P and BCnet-D [38]. The current best
methods on UCF101 are BCnet-D and MCnet+Res [94]. We compared our VPGAN
with the current best methods on the respective datasets. As in [19, 4, 38, 98],
we adopt two performance metrics: structural similarity index measure (SSIM) and
peak-signal-to-noise ratio (PSNR). The higher the metric values a method has, the
more accurate the method is.

Our experimental methodology is as follows. We used the training data available
in each dataset (Moving Mnist, BAIR, KTH) to train VPGAN. Then we took 10
testing frames from each dataset and used the 10 frames as context frames, denoted
C1, Co, ..., Cqp. In step 1, the trained VPGAN predicted or generated a frame Fy
at T=1 conditioned on the 10 given context frames C;, C,, ..., Cig. In step 2, the
trained VPGAN generated a frame Fy at T=2 conditioned on the last 9 given context
frames Cy, Cs, ..., Cig and the predicted frame F;. In step 3, the trained VPGAN
generated a frame F3 at T=3 conditioned on the last 8 given context frames Cz, Cy,
..., C1p and the two predicted frames F; and Fy. We used VPGAN to predict or
generate n frames in total (e.g., n = 30). In step 30, the trained VPGAN generated
a frame F3g at T=30 conditioned on the 10 predicted frames Fag, Fa1, ..., Fag. For
the UCF101 dataset, we used 3 frames as context frames and predicted 8 frames as
done in [38]. We draw and present performance charts where the X-axis represents
different T values, and for each T value the Y-axis represents the SSIM (PSNR) value

computed based on the ground truth and the frame predicted or generated in step T.

3.4.1 Evaluation of Cycle-Consistency Loss

We present in (3.9) the general formula of our multi (k steps) cycle-consistency

k

loss function, L, ..

Here we show experimentally how different k& values affect the
performance of VPGAN. We trained VPGAN (without the action control module)

using different & values on the Moving Mnist dataset [89] with the objective loss as
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defined in (3.12). The action control module was excluded because we were only
interested in the impact of k£ on the behavior of VPGAN.

Fig. 3.7 shows the SSIM results and running time of VPGAN for different &
values on the Moving Mnist dataset. (The PSNR results are similar and not shown

here.) It can be seen from Fig. 3.7(a) that using L* . yields slightly more accurate

cycle

results than using L*~! . This is understandable given that L* 1 is part of L*

Cycle cycle cycle’

shown in (3.9). Enforcing earlier cycle consistency is undoubtedly more important
than doing it k steps later (since k-steps cycle consistency couldn’t be preserved if
one-step cycle consistency isn’t preserved). We decrease the value of a; in (3.9) as
i becomes larger. Therefore, as shown in Fig. 3.7(a), there isn’t a big performance

gap between L*~! and L* in terms of the SSIM measure. On the other hand,

cycle cycle

using Lcycle requires much more running time than using L'gyc}e, as shown in Fig.
3.7(b). The running time difference between Lcyde and Lcyde lies in the calculation

of [* which requires 4k iterations of calculating Gy. The total time complexity

cycle’

for LF .. is O(k?) iterations of calculating Gy. Similar results were obtained on

cycle
the other datasets. After evaluating the trade-off between the model accuracy and

running time, we decided to use L! k = 1) for our VPGAN framework in

cycle (i'e'7
subsequent experiments since the accuracy difference between the different £k values
is not statistically significant (p > 0.05) according to the non-parametric Friedman

test [39] while the time complexity grows with square.

3.4.2 Comparison of Image Segmentation Models

Here we compare the image segmentation models SegNet [5], U-Net [79] and
DeepLabv3 [15] on different datasets. Fig. 3.8 presents the SSIM results on Moving
Mnist and BAIR. (The PSNR and SSIM results on the other datasets are similar and
not shown here.) In Fig. 3.8, VPGAN is our default model that is combined with
SegNet. U-NetV is the model obtained by replacing SegNet in VPGAN with U-Net.
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Figure 3.8 SSIM results of DeepLabV, U-NetV and VPGAN on two different
datasets (a) Moving Mnist and (b) BAIR respectively. Given 10 context frames,
the models predict 30 frames recursively, one by one. The X-axis represents different
T (time step) values, and for each T value the Y-axis represents the SSIM value
computed based on the ground truth and the frame predicted in step T.

DeepLabV is the model obtained by replacing SegNet in VPGAN with DeepLabv3.
The accuracy difference between these models is not statistically significant (p > 0.05)
on Moving Mnist while SegNet is the best on BAIR according to the Friedman test.

As a result, we choose SegNet in our framework.

3.4.3 Ablation Studies

We performed ablation studies by considering four models: VPGAN, VPGAN-C
representing VPGAN without our cycle-consistency loss function, VPGAN-S repre-
senting VPGAN without SegNet, and VPGAN-CS representing VPGAN without
the cycle-consistency loss function and SegNet. Fig. 3.9 shows that the full model
VPGAN achieves the best SSIM results on BAIR and KTH. (The PSNR and
SSIM results on the other datasets are similar and not shown here.) According
to the Friedman test, the difference between VPGAN and VPGAN-C (VPGAN-S,
VPGAN-CS respectively) is statistically significant (p < 0.05). These results

demonstrate the effectiveness of different components in VPGAN.
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Figure 3.9 SSIM results of VPGAN-CS, VPGAN-C, VPGAN-S and VPGAN on two
datasets (a) BAIR and (b) KTH respectively. Given 10 context frames, the models
predict 30 frames recursively, one by one. The X-axis represents different T (time
step) values, and for each T value the Y-axis represents the SSIM value computed
based on the ground truth and the frame predicted in step T.

3.4.4 Results on the BAIR Dataset

The BAIR robot pushing dataset [27] involves a series of videos generated by a Sawyer
robotic arm pushing a variety of objects. All of the videos have relatively similar
surroundings (table settings) with a static background. Each video collects actions
taken by the robotic arm corresponding to the commanded gripper pose. This dataset

is very challenging for two reasons:
1. The movement is almost random and quite unpredictable.

2. It is areal-world video, with various objects and interactions between the robotic
arm and objects (rather than a single frame-centered object with a neutral

background).

The videos have a resolution of 64 x 64 pixels. Thus, our input dimension is 64 x 64 x 3.

Fig. 3.10 presents some examples of frames generated by our approach on the
BAIR dataset. The figure shows the potential of VPGAN in generating many possible
future frames conditioned on different latent variables. It can be seen from the figure

that all the random generations produced by our approach have the same good image
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Figure 3.10 Examples of generated frames on the BAIR dataset to show the potential
of VPGAN in generating many possible future frames.

T-8 T=9 T=10 T=11
KRR
| ¥ .,,-:.‘ S S
—
] ]
e ) JOR UG PR

S

quality as the ground truth. Fig. 3.11 compares our approach with SVG-LP [19] and
SV2P [52] on the BAIR dataset. It is clear that the proposed VPGAN framework
outperforms the related methods. The difference between VPGAN and the existing
methods is statistically significant with for example p = 0.0082 between VPGAN and
the current best SVG-LP based on SSIM and the Friedman test.

3.4.5 Results on the KTH Dataset
The KTH action dataset [81] contains various types of videos collected in real-world
cameras. These videos include human subjects carrying out six activities (walking,
jogging, running, boxing, hand waving, and hand clapping). For the first three
activities, the human subject enters and leaves the frame multiple times, leaving
the frame empty with a mostly static background for multiple frames at a time. Like
the BAIR dataset, the videos in the KTH dataset have a resolution of 64 x 64 pixels.
Fig. 3.12 presents examples of frames generated by our approach on the KTH
dataset. It can be seen from the figure that when T > 10, the image quality of
the particular ‘human’ drops significantly and the ‘human’ part becomes blurry.
Nevertheless, the quality of the frames generated by our approach is as good as

the ground truth for all the different T values in the figure. Fig. 3.13 compares
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Figure 3.11 Comparison of SVG-LP, SV2P and VPGAN on the BAIR dataset based
on (a) SSIM and (b) PSNR mecasures. Given 10 context frames, the models predict 30
frames recursively, one by one. The X-axis represents different T (time step) values,
and for each T value the Y-axis represents the (a) SSIM value and (b) PSNR value
computed based on the ground truth and the frame predicted in step T.
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Figure 3.12 Examples of frames generated by VPGAN on the KTH dataset.

our approach with SVG-LP [19], SV2P [52] and BCnet-D [38] on the KTH dataset.
Again, it is evident that the proposed VPGAN framework performs better than
the existing methods. The difference between VPGAN and the existing methods
is statistically significant with for example p = 0.0253 between VPGAN and the

current best BCnet-D based on SSIM and the Friedman test.

3.4.6 Results on the UCF101 Dataset
UCF101 [88] contains realistic action videos collected from YouTube. It has 13320

videos from 101 action categories. It is a very challenging dataset and gives the
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Figure 3.13 Comparison of SVG-LP, SV2P, BCnet-D and VPGAN on the KTH
dataset based on (a) SSIM and (b) PSNR measures. Given 10 context frames, the
models predict 20 frames recursively, one by one. The X-axis represents different T
(time step) values, and for each T value the Y-axis represents the (a) SSIM value and

(b) PSNR value computed based on the ground truth and the frame predicted in step
T.

largest diversity in terms of actions and with the presence of large variations in camera
motion, object appecarance and pose, object scale, viewpoint, cluttered background,
illumination conditions, and so on [88]. In evaluating our method on the UCF101
dataset, we conditioned VPGAN on 3 frames to generate 8 frames, resized with a
resolution of 240 x 320 pixels, as done in [38].

Fig. 3.14 presents examples of frames generated by our approach on the UCF101
dataset. It can be seen from the figure that our approach maintains accurate results
in the first 5 predictions though the human part becomes fuzzy in the latter 7-8
predictions. Fig. 3.15 compares our approach with BCnet-D [38] and MCnet+Res
[94] on the UCF101 dataset. It can be seen from the figure that the proposed
VPGAN framework performs better than BCnet-D and MCnet+Res. The difference
between VPGAN and the existing methods is statistically significant with for example
p = 0.0047 between VPGAN and the current best BCnet-D based on SSIM and the

Friedman test.
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Figure 3.14 Examples of frames generated by VPGAN on the UCF101 dataset.
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Figure 3.15 Comparison of BCnet-D, MCnet+Res and VPGAN on the UCF101
dataset based on (a) SSIM and (b) PSNR measures. Given three context frames, the
models predict eight frames recursively, one by one. The X-axis represents different
T (time step) values, and for each T value the Y-axis represents the (a) SSIM value
and (b) PSNR value computed based on the ground truth and the frame predicted
in step T.
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Figure 3.16 Generating desired movements of Mnist characters. ‘5’ is moving toward

the left. ‘3’ is moving downward. ‘7’ is moving toward the right. ‘9’ is moving
right-down.
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3.4.7 Evaluation of Action Control
In Section 3.3.5, we introduce the network 7 to accomplish action control. Since 7 is
a conformal mapping, in theory, it preserves angles between the latent variable space
and the moving direction space. However, in practice, its accuracy is affected by the
training procedure. We used the Moving Mnist dataset [89] to evaluate 7. The reason
for choosing this simple dataset is that we were mainly interested in the potential of
action control with our techniques. Moving Mnist could well reflect the movement of
a single character and doesn’t involve complicated environmental changes.

Fig. 3.16 presents some frames generated by our VPGAN on Moving Mnist. Our
‘next frame’ was generated by choosing a specific direction and executing Algorithm
1. By comparing the generated frames and ground truth in Fig. 3.16, we can see that
each character in Moving Mnist is actually moving around the space randomly, but

by executing Algorithm 1, we can gain action control of the character.

3.5 Summary
In this research, we present an adversarial inference framework (VPGAN) for

stochastic video prediction, and incorporate cycle consistency and conformal mapping

54



into our VPGAN framework. Cycle consistency relieves the problem of blurry
predictions to obtain more accurate results while conformal mapping enables action
control through manipulating latent variables. Our experimental results show that
the proposed VPGAN approach works well on different datasets and outperforms
existing methods when combined with SegNet.

In future works we plan to extend the VPGAN framework for video processing
in scientific domains (e.g., solar physics). In solar physics, deep learning has drawn
a lot of interest due to its effectiveness in processing big and complex observational
data gathered from diverse instruments [57]. Video is the most common form of
observational data. We plan to use VPGAN to predict solar videos and compare
them with the observational data, and also use VPGAN to enhance the quality of the

observational data.
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CHAPTER 4

DEEP LEARNING-BASED SYNTHESIS OF
VECTOR MAGNETOGRAMS USING GENERATIVE
ADVERSARIAL NETWORKS

4.1 Background

Deep learning is a branch of machine learning where neural networks are designed
to learn from large amounts of data [50]. It has been used extensively in computer
vision, natural language processing, and lately in biology [25, 100], medicine [7, 104],
heliophysics [30, 58, 59|, astronomy [45, 60|, and so on. Deep learning employs various
networks such as deep neural networks, deep belief networks, convolutional neural
networks and recurrent neural networks, among which generative adversarial networks
(GANS) have draw significant interest in recent years [33]. In a Generative Adversarial
Network (GAN) model, two neural networks, called the generator and discriminator
respectively, contest with each other in a zero-sum game. The generator generates
fake samples while the discriminator evaluates the fake samples. The contest operates
in terms of data distributions. The generator learns to map from a latent space to
a data distribution while the discriminator distinguishes the fake samples produced
by the generator from the true data distribution. The generator’s objective is to fool
the discriminator by producing fake samples that the discriminator thinks are part
of the true data distribution. When this objective is accomplished, the training of
the GAN model is completed. GANs have been used in video prediction [41], image
enhancement [18], image-to-image translation [42], and image generation (synthesis)
[45, 60].

For example, Kim et al. generated farside solar magnetograms from STEREO

Extreme UltraViolet Imager (EUVI) 304-A images using a deep learning model based
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on conditional generative adversarial networks (¢cGANs) [45]. The authors trained
their model using pairs of Solar Dynamics Observatory (SDO)/Atmospheric Imaging
Assembly (AIA) 304-A images and SDO/Helioseismic and Magnetic Imager (HMI)
magnetograms. They reported some preliminary results obtained from the cGAN
model [45]. Liu et al. performed a more detailed analysis of the cGAN model and
concluded that more research needs to be performed to obtain scientifically reliable
magnetograms [60].

Inspired by Kim et al.’s work, we propose here a new deep learning model,
dubbed MagGAN, to generate vector magnetograms. The c¢cGAN model, whose
architecture was developed for image-to-image translation in computer vision, is not
applicable to our work [42]. Instead, we design a novel architecture and loss function
tailored for vector magnetograms generation to take into account the magnetic field
strength. We apply MagGAN to generate synthetic magnetic field components B,
and B,. The synthetic B, and B, along with the line-of-sight (LOS) component of
the magnetic field, which can be treated as B.,, create vector magnetograms.

Our work is motivated by the observation that solar cycle 24 (from 2008 to
2019) has been relatively weak, though it is the only solar cycle in which consistent
vector magnetograms are available through SDO/HMI where SDO was launched
in 2010. We therefore intend to study solar cycle 23 (from 1996 to 2008), which
had stronger solar flare activity. Specifically, we consider a major data archive,
namely the Solar and Heliospheric Observatory (SOHO)/Michelson Doppler Imager
(MDI) archive with data from 1996 to 2011, which covers the more active solar cycle
23 [80]. However, SOHO/MDI data only has line-of-sight (LOS) magnetograms,
without vector magnetograms. By using SOHO/MDI LOS magnetograms and Hao
observations (images) obtained from the Big Bear Solar Observatory (BBSO), our
MagGAN is able to generate synthetic magnetic field components B;, and B, and

hence create synthetic vector magnetograms for solar cycle 23. These generated

57



vector magnetograms will be useful for analyzing and forecasting solar flare activity.
For example, one can derive magnetic field parameters from the vector magnetograms
and use the magnetic field parameters to predict the occurrence of solar flares within
next 24 hours [56, 58]. It should be pointed out that since we are mainly interested in
solar flares, we cut active regions (ARs) patches of 256 x 256 pixels that may produce
flares from the LOS magnetograms. Here, an AR is a connected component in which
the magnetic field strength of some pixel must be greater than 800 Gauss. We then
align the cut ARs patches with the corresponding regions in the Ha images. Finally,
we use the aligned pairs of regions to train MagGAN to generate synthetic By, B, in
the ARs. Thus, our approach differs from the work of Kim et al., who performed the

alignment of pairs of full-disk images.

4.2 Methods

4.2.1 Datasets

As mentioned above, the LOS magnetograms obtained by SOHO/MDI can date back
to the year of 1996. Thus, SOHO/MDI and its successor, SDO/HMI, provide LOS
magnetograms with the coverage of the most recent two solar cycles (#23 and #24)
starting from 1996. In addition, SDO/HMI has provided vector magnetograms of
the recent ten years starting from May 1, 2010. Specifically, HMI observes the full
solar disk at 6173 A with a resolution of 17 (arcsecond) and cadence of 12 minutes.
Meanwhile, BBSO has provided Ha observations (images) since 1970s. BBSO’s full-
disk Ha observations are taken every ~30 minutes, up to 6 hours, for one observing
day at the wavelength of 6563 A with the same resolution. Unlike satellite-based
instruments such as MDI and HMI, BBSO is a ground-based telescope that sometimes
has seeing limitations due to unstable conditions of Earth’s atmosphere and weather.

In this study, we excluded low-quality Ha images with an incomplete field of view
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(FOV) and cloud shades as well as other out-of-focus images. Then, we selected 3757
high-quality BBSO Ha images in the period from 2011-04-12 to 2017-12-31.

Our training set comprised the selected 3757 Ha images from 2011-04-12 to
2017-12-31 and their temporarily closest HMI LOS magnetograms and HMI vector
magnetograms. For each selected Ha image, there were both HMI LOS magnetograms
and HMI vector magnetograms available within 6 minutes of the Ha image. We cut
active regions (ARs) that may produce flares from the HMI LOS magnetograms and
B,, B, of the HMI vector magnetograms in the training set. Totally, there were
8691 cut ARs from the LOS magnetograms, B, and B, respectively. Furthermore,
we aligned the cut ARs with the corresponding regions in the temporarily closest
training Ho images and 85% of these aligned regions were used to train MagGAN.

MDI and HMI have an overlapping period from 2010-05-01 to 2011-04-11. Our
test set thus comprised the above 15% remaining ARs and selected 100 Ha images
from 2010-05-01 to 2011-04-1 and their temporarily closest MDI LOS magnetograms
in the overlapping period. Here, we cut active regions (ARs) that may produce flares
from the MDI LOS magnetograms in the test set and aligned the cut ARs with
the corresponding regions in the temporarily closest testing Ha images. There were
totally 350 pairs of aligned regions. We input these pairs of aligned regions to the
trained MagGAN model to generate synthetic B, and B,, each with 256 x 256 pixels.
The ground truth data of B, and B, obtained from HMI vector magnetograms were

used to validate whether our predicted B and B, were good or not.

4.2.2 Overview of MagGAN

Generating synthetic B, and B, amounts to solving a regression problem because
the output of the generating procedure consists of real numbers, i.e., magnetic field
strengths. Since the active regions of HMI LOS magnetograms (images) contain

complex and diverse patterns, we propose a new GAN architecture composed of a
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novel convolutional neural network (CNN) [51] with self-attention [103] to solve this
regression problem. Figure 4.1 presents an overview of the entire MagGAN-learning
(training) process specifically for generating synthetic B!, where the discriminator,
denoted D,, and generator, denoted (., competes and learns in an adversarial way

for training the following loss function, denoted L?, , to reach an equilibrium:

adv

minnjljaxL’” (G2, Dy) = Ep,pparaBnllog Dy (LOS, B, )] (4.1)

x

+ EBQNPDATA(Bm)[log(l - D:,;(LOS, B;))]

B. = G,(LOS,Ha)

Here, F takes the expectation over Ppara(B,), which is the true distribution of B,.
The generator G, takes as input an aligned pair of HMI LOS and Ha images and
generates as output the magnetic field component B!.. The discriminator D, takes as
input the pair of HMI LOS and B!, (B,, respectively) images and produces as output
"Fake” features ("Truth” features, respectively) for the fake sample B! (the ground
truth B,, respectively). Initially, D,(LOS, B,) = 1 and D,(LOS, B,) = 0. When
the equilibrium is reached, the training is completed where the discriminator cannot
tell the difference between the generated fake sample and ground truth. We adopt

the same training scheme for generating the magnetic field component B, with the

Y

generator G, discriminator D,, and loss L. ,, .

Figure 4.2(a) illustrates the generator Gz; G, is implemented similarly and its
description is omitted. The aligned pair of HMI LOS and Ha images is first fed to
a ResNet-like structure [37]. The output of the ResNet is then distributed through
fully connected layers to two modules: the channel attention module (CAM) and
position attention module (PAM), both of which were originally designed for DANet

[28]. CAM and PAM leverage the self-attention mechanism to better capture and
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Figure 4.1 Overview of the training process of MagGAN. LOS represents an active
region of an HMI line-of-sight magnetogram, Ha represents the corresponding region
of the Ha image temporarily closest to the LOS, B, is the ground truth and B! is
the generated fake sample.

transform a wider range of contextual information into local features, thus enhancing
their representation capability. Both CAM and PAM are calculated in a similar
way where CAM applies the self-attention mechanism to image channels and PAM
focuses on the calculation of location information. The outputs of CAM and PAM
are then combined and sent to two convolutional blocks to produce the magnetic field
component B’ .

The discriminator D, employs the same architecture as the generator G, except
that D, takes as input the pair of HMI LOS and B! (B,, respectively) images
and produces as output ”Fake” features (" Truth” features, respectively) for the fake
sample B/ (the ground truth B,, respectively); see Figure 4.2(b). The discriminator
D, is implemented similarly and its description is omitted.

During inference (testing), MagGAN takes as input an aligned pair of MDI LOS
and Ha images and predicts as output a fake sample B (B,, respectively) through
the trained generator G, (G, respectively). These B! and B, are generated magnetic

field components corresponding to the input MDI LOS and Ha images.
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Figure 4.2 (a) Illustration of the generator G, of MagGAN, which takes as input
the aligned pair of HMI LOS and Ha images and generates as output the fake sample
B!. (b) Hlustration of the discriminator D, of MagGAN, which takes as input the
pair of HMI LOS and B! images and produces as output ”"Fake” features for the fake
sample B..

4.2.3 Loss Function

A large portion of an active region (AR) has low magnetic field strengths where the
magnetic field strength of a pixel is smaller than 200 Gauss. Relatively few pixels in

an AR have magnetic field strengths larger than 200 Gauss. To tackle this imbalanced

problem, we propose a novel weighted L, loss of a pixel p, defined as:

LY(s'5) = |2l o (4.2)
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Here, s’ represents the generated magnetic field strength at p, s represents the true
magnetic field strength at p, and ¢ is a threshold. The absolute difference between
s and s at p, usually reflected by the L; loss, is multiplied by a weight, |2|. This
suggests that a pixel p with a larger (smaller, respectively) magnetic field strength
yield a larger (smaller, respectively) L? loss.

Let u, (0., respectively) denote the mean (variance, respectively) of the
magnetic field strengths of all pixels in B,. Let p, (o,, respectively) denote the
mean (variance, respectively) of the magnetic field strengths of all pixels in B,. Let
_ 0 20y (4.3)

Oz o

T

The weighted L, loss between the generated fake sample Bj (B,, respectively)
and the ground truth B, (B,, respectively) is denoted by L.(B;, B,) (L.(By, B,),
respectively), in which the L? loss of each pixel p in B and B, (B, and B,,
respectively) is defined as in Equation (4.2) and the threshold ¢ equals ¢, (cy,
respectively). The total loss, denoted Ly, is defined as the sum of the adversarial
loss in Equation (4.1) and the weighted L, loss, as shown in Equation (4.4) below:

Linag = 0.2 % (L2, + L)) + L (B., B,) + L.(B}, B,) (4.4)

adv

The training of MagGAN is conducted by applying the Adam [6, 108] optimizer to
minimizing the total loss, Ly,q4, until an equilibrium is reached. In our experiments,
we use a batch size of 2 to save memory and train MagGAN with 35 epochs in

generating the magnetic field components on an NVIDIA GeForce RTX 2080 GPU

machine.
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4.3 Results

4.3.1 Performance Metrics

We conducted a series of experiments to evaluate the performance of MagGAN based
on four performance metrics: mean absolute error (MAE) [82], percent agreement
(PA) [64], R-squared [82] and Pearson product-moment correlation coefficient
(PPMCC) [29, 72]. For each magnetic field component, we compared its ground
truth values with our MagGAN-predicted values and computed the four performance
metrics.

The first performance metric is defined as:

N
1
MAE = N;|s,-—sg|, (4.5)

where N = 256 x 256 = 65536 is the total number of pixels in a magnetic

field component, and s; (s},

respectively) denotes the true (MagGAN-predicted,
respectively) magnetic field strength for the ith pixel, 1 <1i < 65536, in the magnetic
field component. This metric is used to quantitatively assess the dissimilarity
(distance) between the ground truth values and MagGAN-predicted values in the

magnetic field component.

The second performance metric is defined as:

M
PA = = % 100%, (4.6)

where M denotes the total number of agreement pixels in a magnetic field component.
We say the ith pixel in the magnetic field component is an agreement pixel if |s; — s/
is smaller than a user-specified threshold. (The default threshold is set to 200 Gauss

for Biotar, Be, By, B, respectively.) This metric is used to quantitatively assess the
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similarity between the ground truth values and MagGAN-predicted values in the
magnetic field component.

The third performance metric is defined as:

Zz‘]\;(Si — 57)°
Zz’]L(Si —3)?

R-squared =1 —

, (4.7)

where s = % Zfil s; denotes the mean of the ground truth values for all the pixels
in a magnetic field component. The R-squared value, ranging from —oo to 1, is
used to measure the strength of the relationship between the ground truth values
and MagGAN-predicted values in the magnetic field component. The larger (i.e.,
the closer to 1) the R-squared value is, the stronger relationship between the ground
truth values and MagGAN-predicted values we have.

The fourth performance metric is defined as:

orogG

where T and G represent the ground truth values and MagGAN-predicted values,
respectively, in a magnetic field component, ur and pug are the mean of 7' and G
respectively, or and og are the standard deviation of T' and G respectively, and
E(-) is the expectation. The value of PPMCC ranges from —1 to 1. A value of 1
means that a linear equation describes the relationship between T" and G perfectly
where all data points lying on a line for which G increases as T increases. A value
of —1 means that all data points lie on a line for which G decreases as T' increases.
A value of 0 means that there is no linear correlation between the variables 7" and

G. PPMCC measures the linear correlation between the ground truth values and
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MagGAN-predicted values, quantifying how close these values are [29, 72, 82]. Notice
that PA, R-squared and PPMCC do not have units while MAE has a unit (Gauss).

4.3.2 Experimental Results
In this section, we evaluate the performance of MagGAN and present our experimental
results. Based on the test set described in the ”Datasets” subsection, our MagGAN
consists of two different sets of data, 214 images of the Helioseismic Magnetic Imager
(HMI) and about 100 images of the Michelson Doppler Imager dataset (MDI).
There are totalyl 350 pairs of true magnetic field components B, and B,, each
also with 256 x 256 pixels. Table 4.1 presents the average performance metric values
of MagGAN based on the data in the test set. We separate the results of MDI and
HMI as format M DI :;, HM1I :. The table shows that the overall results of synthetic
B, and B, perform very close (< 100) to the true B, and B, for both MDI and
HMI. Notice that there is a slight degradation in the results of MDI compared to

HMI, mainly due to the lower resolution of the MDI instrument and larger time gaps

between MDI images and corresponding Ha images.

Magnetic Field Components MAE PA R-squared PPMCC

MDI: B,, B, 85.98 85.13% 0.6254 0.8124
MDI: B,, B, 87.56 82.17% 0.6678 0.7956
HML: B, B, 63.23  90.23% 0.7824 0.8623
HMI: B,, B, 66.34 91.45% 0.7921 0.8312

Table 4.1 Average Performance Metric Values of the MagGAN Model Based on the
Data in Our Test Set

In addition to quantitative results, we next show some visualization results of
MDI. Figure 4.3 presents results for a simple active region. It compares MagGAN-
predicted magnetic field components By, B, and true magnetic field components
B,, B, where the magnetic field components, selected from the test set, contain
relatively simple patterns. The first column shows MagGAN-predicted B, (top) and

B, (bottom), each with 256 x 256 pixels. The second column shows true B, (top) and
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B, (bottom), each also with 256 x 256 pixels. The third column shows scatter plots.
The X-axis and Y-axis in each scatter plot represent true magnetic field strengths and
MagGAN-predicted magnetic field strengths respectively. The diagonal line in each
scatter plot corresponds to pixels whose true magnetic field strengths are identical to
MagGAN-predicted magnetic field strengths. It can be seen from Figure 4.3 that the
MagGAN-predicted magnetic field strengths are very close to the true magnetic field

strengths.

MagGAN-Predicted By Trus By Ground Truth.

Figure 4.3 Comparison between MagGAN-predicted magnetic field components B,
B; and true magnetic field components B,, B, where the magnetic field components,
selected from the test set, contain relatively simple patterns. The first column shows
MagGAN-predicted B;, (top) and B, (bottom). The second column shows true B,
(top) and B, (bottom). The third column shows scatter plots. The X-axis and
Y-axis in each scatter plot represent true magnetic field strengths and MagGAN-
predicted magnetic field strengths respectively. The diagonal line in each scatter plot
corresponds to pixels whose true magnetic field strengths are identical to MagGAN-
predicted magnetic field strengths.

Figure 4.4 compares MagGAN-predicted magnetic field components B;,, B, and

true magnetic field components B,, B, where the magnetic field components, selected
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from the test set, contain relatively complex patterns. It can be seen from Figure
4.4 that the MagGAN-predicted magnetic field strengths and the true magnetic field

strengths are also highly correlated, though they are not as close to as those in Figure

4.3.
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Figure 4.4 Comparison between MagGAN-predicted magnetic field components B,
B,, and true magnetic field components B,, B, where the magnetic field components,
selected from the test set, contain relatively complex patterns. The first column
shows MagGAN-predicted B, (top) and B, (bottom). The second column shows
true B, (top) and B, (bottom). The third column shows scatter plots. The X-axis
and Y-axis in each scatter plot represent true magnetic field strengths and MagGAN-
predicted magnetic field strengths respectively. The diagonal line in each scatter plot
corresponds to pixels whose true magnetic field strengths are identical to MagGAN-
predicted magnetic field strengths.

We have shown above sample results for MDI dataset. Below we present
prediction results on the HMI dataset. We selected a complex region in year 2017,

and applied MagGan to this region.
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Figure 4.5 Comparison between MagGAN-predicted magnetic field components B,
B; and true magnetic field components B,, B, where the magnetic field components,
selected from the test set, contain relatively complex patterns. The first column
shows MagGAN-predicted B/, (top) and B, (bottom). The second column shows
true B, (top) and B, (bottom). The third column shows scatter plots. The X-axis
and Y-axis in each scatter plot represent true magnetic field strengths and MagGAN-
predicted magnetic field strengths respectively. The diagonal line in each scatter plot
corresponds to pixels whose true magnetic field strengths are identical to MagGAN-
predicted magnetic field strengths.

Figure 4.5 compares relatively complex patterns between ground truth and our
predicted results. Quantitative results in Table 4.1 indicate that the predictions
on the HMI test dataset are more accurate than the predictions on the MDI test
dataset, which is well reflected in Figure 4.5. The predictions and scatter plots in
Figure 4.5 look more similar and accurate compared to the results in Figure 4.4
where both figures present results for complex regions. This happens because of the

difference between the HMI instrument and the MDI instrument. MDI data have
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lower resolution and larger time gaps. Thus, the model trained on HMI data would
achieve higher error rates when tested on MDI data.

So far we have considered B, and B, separately. Next, we evaluate our model’s
performance by combining B, and B, together. Based on the test set, MagGAN
generated 350 pairs of synthetic Bj, and B, . Figure 4.6 shows the average prediction
errors of MagGAN as a function of magnetic field strengths based on the 350 pairs of
synthetic Bj, and B, . For each magnetic field strength, &, the corresponding prediction

error 0 is defined as:

6= |y/5E 53y = /(502 + (57, (49)

where s, , (s,,,, respectively) represents the true magnetic field strength for a pixel p

!/

1.y Tespectively)

in B, (B,, respectively) such that /s, +s2, equals k, and s, , (s
represents the MagGAN-predicted magnetic field strength for the same pixel p in
B, (B,, respectively). Tt can be seen from Figure 4.6 that the prediction errors are
bounded and do not exceed 190 Gauss even when magnetic field strengths are larger
than 1600 Gauss. This happens because the loss function used by MagGAN takes
into consideration the magnetic field strengths of pixels in active regions (ARs). The
results in Figure 4.6 are encouraging since significant flares are likely to occur in ARs
with very large magnetic field strengths. Our MagGAN tool can make pretty accurate

predictions in these ARs, and hence will help to produce reliable flare forecasting

results.

4.4 Summary
We propose a new deep learning approach (MagGAN) for generating synthetic
magnetic field components to create synthetic vector magnetograms. This approach

allows us to extend the active region (AR) coverage with vector magnetograms for
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Figure 4.6 Average prediction errors of MagGAN as a function of magnetic field
strengths based on the data in our test set.

both of solar cycles 23 and 24. One can then derive useful magnetic field parameters
from the vector magnetograms to forecast solar flare activity [56, 58, 59]. Our
experimental results show that the synthetic magnetic field components generated
by MagGAN are very close to the ground truth in our test dataset. This good
performance is due to MagGAN’s innovative architecture and loss function tailored
for vector magnetogram generation. Thus, we conclude that the proposed approach is
feasible, and opens new directions for using Al-generated data to perform heliophysics

research.
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CHAPTER 5

CONCLUSION

The work and research of this dissertation aims mainly to solve three real-world appli-
cation problems. Our novel architecture design not only enable us to outperform many
existing methodology but also may introduce new features into these applications.
In the work of background subtraction, we're the first to introduce three dimen-
sional convolution and stacked-ConvLSTM into background subtraction problem. We
created a big gap in accuracy compared to previous simple deep learning model.
The following work of video prediction, our proposed methodology of embedding
conformal mapping into the feedforward inference enables the new feature of gaining
control in generative models which is regarded as a important missing feature in GAN.
Finally, the work of magnetograms predictions is also significant as we're the
first to propose and formulate this problem, our research would be great value to
astronomers as they could make physics interpretation on those solar cycles where

they may lack data previously.
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CHAPTER 6

FUTURE WORK

Our work provides a solid basis for each of the open problems, and they’re also

extendable regarding different aspects in the future work.

Background Subtraction

Pursuing the better and more powerful model is always the goal of deep learning
research. Transformer based models have shown great potential in vision tasks, visual
transformer has proved be the new state-of-the-art in many image related problems.
The future direction for Background Subtraction task could be a specific designed

transformer-based architecture for such video task.

Video Prediction with Action Control
The aim of gaining control in generative model has always been a important missing
feature in Generative Adversarial Network (GAN), we proposed to use conformal map
in our previous work to gain direction control’ in video prediction task. But it indeed
induced limitation that requires the latent space to obtain the same dimension as
output space which reduces the representation capability of generative models.
Conformal mapping could be regarded as a special transform in the orthogonal
group theory. Therefore, our future direction could be enforcing group properties into

generative models to preserve rotation equivalence.

Magnetograms Prediction
The main purpose of this research lies in the lack of Michelson Doppler Imager
(MDI) vector magnetograms for astronomical research purpose. Our previous solution

proposed to trained a generative model on Helioseismic Magnetic Imager (HMI) data
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and applied it on MDI data as both of the data obtain same structure and only differ
in arcsecond resolution. The accuracy on MDI dataset is far from perfect and this
motivates us to develop a more powerful model. Since these data are from two distinct
instruments of different resolution, transfer learning between these two data domains

maybe a good improvement direction of future work.
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