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ABSTRACT

MACHINE LEARNING AND COMPUTER VISION
IN SOLAR PHYSICS

by
Haodi Jiang

In the recent decades, the difficult task of understanding and predicting violent solar

eruptions and their terrestrial impacts has become a strategic national priority, as it

affects the life of human beings, including communication, transportation, the power

grid, national defense, space travel, and more. This dissertation explores new machine

learning and computer vision techniques to tackle this difficult task. Specifically,

the dissertation addresses four interrelated problems in solar physics: magnetic flux

tracking, fibril tracing, Stokes inversion and vector magnetogram generation.

First, the dissertation presents a new deep learning method, named SolarUnet,

to identify and track solar magnetic flux elements in observed vector magnetograms.

The method consists of a data preprocessing component that prepares training

data from a physics-based tool, a deep learning model implemented as a U-shaped

convolutional neural network for fast and accurate image segmentation, and a

postprocessing component that prepares tracking results. The tracking results can be

used in deriving statistical parameters of the local and global solar dynamo, allowing

for sophisticated analyses of solar activities in the solar corona and solar wind.

Second, the dissertation presents another new deep learning method, named

FibrilNet, for tracing chromospheric fibrils in Hα images of solar observations.

FibrilNet is a Bayesian convolutional neural network, which adopts the Monte Carlo

dropout sampling technique for probabilistic image segmentation with uncertainty

quantification capable of handling both aleatoric uncertainty and epistemic uncer-

tainty. The traced Hα fibril structures provide the direction of magnetic fields, where



the orientations of the fibrils can be used as a constraint to improve the nonlinear

force-free extrapolation of coronal fields.

Third, the dissertation presents a stacked deep neural network (SDNN) for

inferring line-of-sight (LOS) velocities and Doppler widths from Stokes profiles

collected by GST/NIRIS at Big Bear Solar Observatory. Experimental results

show that SDNN is faster, while producing smoother and cleaner LOS velocity and

Doppler width maps, than a widely used physics-based method. Furthermore, the

results demonstrate the better learning capability of SDNN than several related

machine learning algorithms. The high-quality velocity fields obtained through Stokes

inversion can be used to understand solar activity and predict solar eruptions.

Fourth, the dissertation presents a generative adversarial network, named

MagNet, for generating vector components to create synthetic vector magnetograms

of solar active regions. MagNet allows us to expand the availability of photospheric

vector magnetograms to the period from 1996 to present, covering solar cycles 23

and 24, where photospheric vector magnetograms were not available prior to 2010.

The synthetic vector magnetograms can be used as input of physics-based models to

derive important physical parameters for studying the triggering mechanisms of solar

eruptions and for forecasting eruptive events.

Finally, implementations of some of the deep learning-based methods using

Jupyter notebooks and Google Colab with GitHub are presented and discussed.
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CHAPTER 1

INTRODUCTION

Solar physics is the branch of astrophysics that specializes in the study of the Sun.

It exploits and explains the detailed measurements, i.e., the observation data, that

are possible only for our closest star. It intersects with many disciplines of pure

physics, astrophysics, and computer science. Understanding the solar activities and

predicting violent solar eruptions and their terrestrial impacts is a difficult task, which

has become a national priority, as it affects the life of human beings such as power

grids and communications networks, and affect spacecraft and satellites.

Machine learning is a method of data analysis that automates analytical model

building. It is a branch of artificial intelligence and computer science which focuses on

the use of data and algorithms to imitate the way that humans learn, allowing patterns

identification and decisions making with minimal human intervention. Computer

vision is an interdisciplinary scientific field that seeks to develop techniques to help

computers gain high-level understanding of the visual world, i.e., the images and

videos. These techniques have drawn a lot of interest in recent years due to its

effectiveness in processing big and complex observational data gathered from diverse

instruments.

This dissertation explores new machine learning and computer vision techniques

to addresses four interrelated problems in solar physics: magnetic flux tracking, fibril

tracing, Stokes inversion and vector magnetogram generation.

First, this dissertation proposes a new deep learning method, called SolarUnet,

to identify and track solar magnetic flux elements or features in observed vector

magnetograms based on the Southwest Automatic Magnetic Identification Suite

(SWAMIS). Our method consists of a data pre-processing component that prepares
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training data from the SWAMIS tool, a deep learning model implemented as a

U-shaped convolutional neural network for fast and accurate image segmentation,

and a post-processing component that prepares tracking results. SolarUnet is applied

to data from the 1.6 meter Goode Solar Telescope at the Big Bear Solar Observatory.

When compared to the widely used SWAMIS tool, SolarUnet is faster while agreeing

mostly with SWAMIS on feature size and flux distributions, and complementing

SWAMIS in tracking long-lifetime features. Thus, the proposed physics-guided deep

learning-based tool can be considered as an alternative method for solar magnetic

tracking.

Second, this dissertation presents a new deep learning method, dubbed

FibrilNet, for tracing chromospheric fibrils in Hα images of solar observations. Our

method consists of a data pre-processing component that prepares training data

from a threshold-based tool, a deep learning model implemented as a Bayesian

convolutional neural network for probabilistic image segmentation with uncertainty

quantification to predict fibrils, and a post-processing component containing a

fibril-fitting algorithm to determine fibril orientations. The FibrilNet tool is applied

to high-resolution Hα images from an active region (AR 12665) collected by the

1.6 m Goode Solar Telescope (GST) equipped with high-order adaptive optics at

the Big Bear Solar Observatory (BBSO). We quantitatively assess the FibrilNet

tool, comparing its image segmentation algorithm and fibril-fitting algorithm with

those employed by the threshold-based tool. Our experimental results and major

findings are summarized as follows. First, the image segmentation results (i.e.,

detected fibrils) of the two tools are quite similar, demonstrating the good learning

capability of FibrilNet. Second, FibrilNet finds more accurate and smoother fibril

orientation angles than the threshold-based tool. Third, FibrilNet is faster than

the threshold-based tool and the uncertainty maps produced by FibrilNet not only

provide a quantitative way to measure the confidence on each detected fibril, but
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also help identify fibril structures that are not detected by the threshold-based tool

but are inferred through machine learning. Finally, we apply FibrilNet to full-disk

Hα images from other solar observatories and additional high-resolution Hα images

collected by BBSO/GST, demonstrating the tool’s usability in diverse datasets.

Third, as obtaining high-quality magnetic and velocity fields through Stokes

inversion is crucial for understanding and predicting solar flares, this dissertation

present a new deep learning method, named Stacked Deep Neural Networks (SDNN),

for inferring line-of-sight (LOS) velocities and Doppler widths from Stokes profiles

collected by the Near Infrared Imaging Spectropolarimeter (NIRIS) on the 1.6 m

Goode Solar Telescope (GST) at the Big Bear Solar Observatory (BBSO). The

training data of SDNN is prepared by the widely used MilneEddington (ME)

method. We quantitatively assess the SDNN tool, comparing its inversion results

with those obtained by the ME tool and related machine learning (ML) algorithms

such as multiple support vector regression, multilayer perceptrons and a pixel-wise

convolutional neural network. Major findings from our experimental study are

summarized as follows. First, the SDNN-inferred LOS velocities are highly correlated

to the ME-calculated ones with the Pearson product-moment correlation coefficient

being close to 0.9 on average. Second, SDNN is faster, while producing smoother

and cleaner LOS velocity and Doppler width maps, than the ME method. Third, the

maps produced by SDNN are closer to ME’s maps than those from the related ML

algorithms, demonstrating the better learning capability of SDNN than the related

ML algorithms. Finally, comparison between the inversion results of ME and SDNN

based on GST/NIRIS and those from the Helioseismic and Magnetic Imager on

board the Solar Dynamics Observatory in flare-prolific active region NOAA 12673

is presented and discussed.

Fourth, solar activities are usually caused by the evolution of solar magnetic

fields. Magnetic field parameters derived from photospheric vector magnetograms of
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solar active regions have been used to analyze and forecast solar flares. Unfortunately,

the most recent solar cycle 24 was relatively weak with few large flares, though

it is the only solar cycle in which consistent time-sequence vector magnetograms

have been available through the Helioseismic and Magnetic Imager (HMI) on board

the Solar Dynamics Observatory (SDO) since its launch in 2010. Here, we looks

into another major instrument, namely the Michelson Doppler Imager (MDI) on

board the Solar and Heliospheric Observatory (SOHO) from 1996 to 2010. The

data archive of SOHO/MDI covers more active solar cycle 23 with many large

flares. However, SOHO/MDI data only has line-of-sight (LOS) magnetograms.

This dissertation proposes a new deep learning approach, specifically a generative

adversarial network (GAN) model, to learn from combined LOS magnetograms,

Bx and By taken by SDO/HMI with Hα observations collected by Big Bear Solar

Observatory (BBSO), and to generate synthetic vector components B′x and B′y, which

would form vector magnetograms with observed LOS data. This way we are able to

expand the availability of vector magnetograms to the period from 1996 to present.

Experimental results obtained by using Hα observations and HMI magnetograms in

the period between 2014-01-01 and 2017-08-04 as training data demonstrated the

good performance of our approach. Specifically, when using the trained model to

predict vector components based on Hα and HMI LOS data and validated by HMI

vector data in the period between 2017-08-05 and 2017-12-31, we obtained an average

Pearson correlation coefficient (CC) of ∼0.9. When using the trained model to predict

vector components based on Hα and MDI LOS data and validated by vector data

from the overlapping period of MDI and HMI between 2010-05-01 and 2011-04-11, we

obtained an average CC of ∼0.75. To our knowledge, this is the first time that deep

learning has been used to create photospheric vector magnetograms of solar active

regions.
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Finally, this dissertation presents the implementations of some of the deep

learning-based methods, SolarUnet and FibrilNet using Jupyter notebooks and

Google Colab with GitHub.

The rest of this dissertation is organized in the following manner. Chapter

2 presents the SolarUnet model for identifying and tracking solar magnetic flux

elements in observed vector magnetograms, Chapter 3 presents the FibrilNet model

for tracing chromospheric fibrils in Hα images of solar observations with uncertainty

quantification. Chapter 4 presents the SDNN model for inferring LOS velocities

and Doppler widths from Stokes profiles collected by GST/NIRIS at Big Bear

Solar Observatory, Chapter 5 presents the MagNet model for generating vector

components to create synthetic vector magnetograms of solar active regions. Chapter

6 illustrates the implementations of some of the deep learning-based methods, Chapter

7 summarizes the dissertation.
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CHAPTER 2

MAGNETIC FLUX TRACKING

2.1 Background and Related Work

Tracking magnetic flux elements is an important subject in heliophysics research

[29, 96, 154].1 Identifying and tracking the surface magnetic elements is useful in

deriving statistical parameters of the local and global solar dynamo, allowing for

sophisticated analyses of solar activity [29]. It not only helps scientists understand the

distribution of magnetic fluxes [121], but also helps estimate the amount of energy in

acoustic waves, which play an important part in the heating of the solar chromosphere

and corona [38]. In addition, magnetic tracking is useful in deriving boundary

conditions of magnetohydrodynamic (MHD) modeling of the solar corona and solar

wind. In the past, many researchers have studied the behaviors and patterns of

magnetic flux elements. For instance, Chen et al. [27] developed a technique to detect

and classify small-scale magnetic flux cancellations and link them to chromospheric

rapid blueshifted excursions. Giannattasio et al. [51] investigated the occurrence

and persistence of magnetic elements in the quiet Sun to understand the scales of

organization at which turbulent convection operates. Moreno-Insertis et al. [114]

reported findings related to small-scale magnetic flux emergence in the quiet Sun.

In magnetic tracking, features are defined as a visually identifiable part of an

image, such as a clump of magnetic flux or a blob in a magnetogram. One of the most

popular software tools for magnetic feature tracking across multiple images/frames

is the Southwest Automatic Magnetic Identification Suite (SWAMIS) [29]. SWAMIS

takes five steps to track magnetic flux elements: (1) feature discrimination for each

frame; (2) feature identification within a frame; (3) feature association across frames;

1In the study presented here, we focus on tracking signed, including positive and negative,
magnetic flux elements.
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(4) occasional noise filtering; and (5) event detection [27]. Magnetic events are broadly

classified into two categories: death and birth [89]; the former refers to the end of a

magnetic features existence while the latter refers to the start of a magnetic features

existence.

In this chapter, we present a new tool, called SolarUnet, to track magnetic

flux elements. Our tool is built using deep learning [94]. The tool can detect

three different types of events in each category, namely (i) disappearance and

appearance, (ii) merging and splitting, and (iii) cancellation and emergence. The

event “disappearance” is defined as the end of a single unipolar magnetic feature

that “fades away” to nothing in the absence of nearby features across two frames;

the opposite event “appearance” is defined as the origin of a single unipolar feature

where the unipolar feature does not exist in the previous frame. The event “merging”

is defined as the combination of two or more like-sign features into a single magnetic

feature; the opposite event “splitting” is defined as the breakup of a single magnetic

feature into at least two like-sign features, where the total flux of all child features is

roughly the same as that of the parent feature. The event “cancellation” is defined as

the demise of a magnetic feature that collides with one or more opposite-sign features,

resulting in the demise of these features or an alive feature carrying the remaining

flux; the event “emergence” is defined as the appearance of opposite-sign features with

approximately the same magnitude or a new feature adjacent to previously existing

opposite-sign features in a nearly flux-conserving manner.

Deep learning, which is a subfield of machine learning, has drawn a lot of interest

in recent years [94]. Inspired by its success in computer vision, speech recognition

and natural language processing, researchers have started to use deep learning in

astronomy and astrophysics [69, 98, 81, 99, 103, 163]. In contrast to the existing

methods for magnetic tracking [88, 90, 27], our SolarUnet tool is built using deep

learning. Compared to the most closely related magnetic tracking tool, SWAMIS,
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which uses hysteresis as the discrimination scheme and a gradient-based “downhill”

method to identify features in a frame, SolarUnet runs faster while producing similar

or complementary results.

2.2 Observations and Data Preparation

We adopted two collections of observations in this study. The first collection was

conducted by the Near InfraRed Imaging Spectropolarimeter (NIRIS) [24] of the

1.6 m Goode Solar Telescope (GST) at the Big Bear Solar Observatory (BBSO)

[25, 56, 54, 149]. This collection contained observations of the magnetic polarity

inversion region in NOAA AR 12665 (431′′, −131′′) during ∼20:16–22:42 UT on 2017

July 13. The obtained data included spectro-polarimetric observations of a full set

of Stokes measurements at the Fe I 1564.8 nm line (0.25 Åbandpass) by NIRIS with

a FOV (field of view) of 80′′ at 0′′.24 resolution and 56 s cadence. Vector magnetic

field products in local coordinates were constructed after removing azimuth ambiguity

[97].

The second collection of observations was conducted with a clear seeing

condition; BBSO/GST achieved diffraction-limited imaging during ∼16:17–22:17 UT

on 2018 June 07. The obtained multi-wavelength observations revealed detailed

structural and evolutionary properties of small scale magnetic polarities in quiescent

solar regions at north of the disk center (−32′′, 294′′). The essential data included

in this collection were the images taken by the GST’s NIRIS using a 2048×2048

pixels Teledyne camera with a ∼80′′ FOV. The spatial resolution (at diffraction

limit θ = λ/D) of the NIRIS images was 0′′.2, and the temporal cadence was 56 s.

The magnetograms were then aligned based on sunspot and plage features, with an

alignment accuracy within 0′′.3, which was the best accuracy by using interpolation.

We prepared our training and testing sets by using the magnetograms taken

from the two collections of observations described above. Because the magnetograms
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Table 2.1 Numbers of Images Used in Our Study

Number of Training Images Number of Testing Images

196 (from the second collection) 147 (from the first collection)

taken on 2018 June 07 had higher quality than the observations conducted on 2017

July 13, we used the higher-quality magnetograms to prepare our training data so as

to obtain a better magnetic tracking model. Specifically, we gathered all 202 frames

from the second collection of observations, and excluded six images with poor quality

(these excluded images were very noisy). The remaining 196 frames were used as

training data for magnetic tracking. The testing set contained all 147 magnetograms

from the first collection of observations. Table 2.1 summarizes the numbers of training

and testing images used in this study.
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Figure 2.1 Illustration of the proposed method (SolarUnet) for identifying and
tracking solar magnetic flux elements. SolarUnet employs a deep learning model for
image segmentation. The training data used to train the deep learning model are
highlighted in the dashed box.

2.3 Methodology

2.3.1 Overview of SolarUnet

Figure 2.1 explains how SolarUnet works. Training magnetograms are pre-processed

in steps 1 and 2, and then used to train the deep learning model for image

segmentation (step 3). The trained model takes a testing magnetogram (step 4)

and produces a predicted mask (step 5). Through post-processing of the predicted

mask, SolarUnet produces magnetic tracking results (step 6).

Specifically, in step 1, we apply SWAMIS with the downhill option to the 196

training magnetograms to get 196 masks. These images, including the magnetograms

and masks, are converted to 8-bit grayscale images of 720×720 pixels, suitable for

our deep learning model. Pixels in the masks belong to three classes represented

by three colors/labels, respectively: positive magnetic flux with a label of 1 (white),

negative magnetic flux with a label of −1 (black), and non-significant flux with a label

of 0 (gray). During pre-processing, we convert the 196 three-class masks obtained
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from SWAMIS to 196 two-class (binary) masks by (i) changing the label of the non-

significant flux regions from 0 to 1; and (ii) changing both the positive magnetic flux

regions and negative magnetic flux regions to significant flux regions with label −1

(step 2).

The 196 magnetograms (images) and two-class (binary) masks are then used

to train the deep learning model, implemented in TensorFlow and Keras, for image

segmentation (step 3). Because our deep learning model needs a large amount of data

in order to train successfully, the model invokes the ImageDataGenerator. in Keras to

perform data augmentation, expanding the training set by shifting, rotating, flipping

and scaling the training images during the model training process. Shifting an image is

to move all pixels of the image horizontally or vertically while keeping the dimensions

of the image the same. Rotating an image is to rotate the image clockwise by a given

number of degrees from 0 to 360. Flipping an image is to reverse the rows or columns of

pixels in the image. Scaling an image is to randomly zoom the image in and either add

new pixel values around the image or interpolate pixel values in the image. We train

the deep learning model using 1 epoch with 10,000 iterations/epoch. In each iteration,

the model randomly selects one of the 196 training magnetograms and its binary

mask, feeds them to the ImageDataGenerator to generate a synthetic magnetogram

and binary mask, and uses the synthetic magnetogram and binary mask to train

the model. There are 10,000 iterations and hence 10,000 synthetic magnetograms

and binary masks are generated through the data augmentation process, where the

10,000 generated magnetograms and binary masks are used for model training.2 We

have chosen to use data augmentation as opposed to acquiring more training data

because the quality of ground-based observations is subject to many factors such as

seeing conditions and observing time limits. Obtaining large volumes of high-quality

2Notice that SWAMIS is applied only to the 196 training magnetograms mentioned in Table
2.1; SWAMIS is never run on the 10,000 generated (synthetic) magnetograms.
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training data requires further observations. Nevertheless, using the synthetic training

images produces reasonably good results as shown in Section 2.4.

When a testing magnetogram is submitted, it is converted to a 8-bit grayscale

image of 720×720 pixels, and fed to the trained deep learning model (step 4).

The trained deep learning model predicts a two-class (binary) mask, containing

non-significant flux regions with label 1 and significant flux regions with label −1

(step 5). We convert the predicted two-class (binary) mask back to a three-class

mask via post-processing as follows. For the non-significant flux regions with label 1,

we change their label from 1 to 0. For the significant flux regions with label −1, we

use the information of radial components in the vertical magnetic field image shown

in Figure 2.1, where the radial components are perpendicular to the plane of the Sun,

to reconstruct positive and negative magnetic flux regions. Specifically, for each pixel

x in the significant flux regions in the predicted binary mask, we check the magnetic

strength of the pixel, y, at x’s corresponding location in the vertical magnetic field

image. If y’s magnetic strength is greater than 150 G, we set x as positive magnetic

flux and change the label of this pixel from −1 to 1. If y’s magnetic strength is

smaller than −150 G, we set x as negative magnetic flux and the label of this pixel

remains −1. If y’s magnetic strength is between −150 G and 150 G, we set x as

non-significant flux and change the label of this pixel from −1 to 0. This yields a

three-class mask with the polarity information.

Finally, we apply our magnetic tracking algorithms described in Subection 2.3.3

to the testing magnetogram and masks to get tracking results (step 6). Magnetic

tracking is often involved with more than one testing magnetogram, and we output

the tracking results in all of the testing magnetograms.

12



2.3.2 Implementation of the Deep Learning Model in SolarUnet

Figure 2.2 illustrates the deep learning model used in SolarUnet, which is a U-shaped

convolutional neural network. We adapt U-Net [35] to our work, enhancing it to

obtain our model. The model has an encoder, a bottleneck, a decoder, followed by a

pixelwise binary classification layer.3 The encoder consists of 4 blocks: E1, E2, E3,

E4. Each block has two 3×3 convolution layers, represented by blue arrows, followed

by a 2×2 max pooling layer, represented by a red arrow. In each convolution layer, we

adopt batch normalization (BN) [70] after convolution, followed by a rectified linear

unit (ReLU) activation function. Furthermore, we add a dropout layer [142] after

each max pooling layer. The four encoder blocks E1, E2, E3, E4 have 32, 64, 128 and

256 kernels, respectively.

3Please see Section 2.6 for more detailed descriptions of the technical terms used here.
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The bottleneck, denoted Bot, mediates between the encoder and the decoder. It

uses two 3×3 convolution layers followed by a 2×2 up-convolution layer, represented

by a green arrow. The bottleneck has 512 kernels. Similar to the encoder, the

decoder consists of 4 blocks: D1, D2, D3, D4. Each block has two 3×3 convolution

layers followed by a 2×2 up-convolution layer. The four decoder blocks D1, D2,

D3, D4 have 256, 128, 64 and 32 kernels, respectively. The input of each decoder

block is concatenated by the output of the corresponding encoder block where the

concatenation is represented by a gray arrow. A dropout layer is added after

each concatenation. Finally, a 1×1 convolution layer, represented by a turquoise

arrow, with 2 kernels followed by a softmax activation function, is used to produce

a segmentation mask. During testing, the deep learning model takes a testing

magnetogram as input and produces a two-class mask as output.

The input resolution of the encoder block E1 is set to 720×720 pixels to

match the size of the testing magnetogram. Each max pooling layer reduces the

size by a factor of 2. Hence, the input resolution of the encoder block E2 (E3, E4,

respectively) is 360×360 (180×180, 90×90, respectively) pixels. The input resolution

of the bottleneck, Bot, is 45×45 pixels. Each up-convolution layer increases the size

by a factor of 2. Thus, the input resolution of the decoder block D1 (D2, D3, D4,

respectively) is 90×90 (180×180, 360×360, 720×720, respectively) pixels.

The loss function, L, used by the deep learning model is the binary cross-entropy

function defined below:

L = −
∑
x

log yc(x,W ). (2.1)

Here, W are the parameters of the convolutional neural network, yc(x,W ) is the

output of the softmax layer of the convolutional neural network, and c is the class

label (1 vs. −1) of each pixel x.
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In training the deep learning model, we adopt adaptive moment estimation

(Adam) to find the optimal parameters of the model. The learning rate of Adam

is set to 0.0001. Adam combines the advantages of two popular methods: AdaGrad

and RMSProp [57]. In most cases, Adam achieves better performance than other

stochastic optimization methods including the stochastic gradient descent (SGD) with

momentum employed by U-Net [57].

Although both our deep learning model and U-Net [35] have the same U-shaped

architecture, they differ in several ways. First, U-Net used SGD with a momentum of

0.99 to train and optimize its model. By contrast, we choose Adam because it achieves

better performance in our case where the training process would be trapped in a poor

local minimum if SGD were used. Second, U-Net focused on imbalanced datasets

and used a weighted cross-entropy loss function to tackle the imbalanced classification

problem. By contrast, because our training set is relatively balanced in the sense that

non-significant flux regions roughly have the same number of pixels as significant flux

regions, we use the binary cross-entropy loss function as defined in Equation. (2.1).

Third, we adopt batch normalization and dropout layers, which were not used by

U-Net. Batch normalization improves model learning, stabilizes the learning process,

reduces the learning (training) time and improves prediction accuracy [70]. Dropout

prevents neural networks from overfitting [142], where overfitting means that a trained

model fits training data too well, and cannot generalize to make predictions on unseen

testing data. Finally, we reduce the numbers of kernels of the encoder, bottleneck and

decoder blocks by a factor of 2 compared to U-Net to speed up the training process

and reduce GPU memory usage.
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2.3.3 Algorithms for Magnetic Tracking and Event Detection

After describing the deep learning model used in SolarUnet, we now turn to the

magnetic tracking algorithms employed by SolarUnet. Based on the positive magnetic

flux regions and negative magnetic flux regions found in Subsection 2.3.1, we

identify signed magnetic flux elements or features in a magnetogram (image/frame)

by utilizing a connected-component labeling algorithm [66] to group all adjacent

segments in the positive magnetic flux regions and negative magnetic flux regions,

respectively, if their pixels in edges or corners touch each other. We filter out those

magnetic features whose sizes are smaller than a user-determined threshold. The

features eliminated from consideration are treated as noise. Then, we assign each

of the remaining features a label number and highlight the features with different

bordering colors. Finally, we consider the association of features (magnetic flux

elements) across different frames to perform event detection.

Based on the observational data and instruments used, we calculate the moving

distance D (number of pixels) of a magnetic flux element X as follows:

D =
C × cadence

725 km/arcsec×∆s
(2.2)

where C is the transverse speed (km/s) on the photosphere according to the

observational environment and Sun’s activity, and ∆s is the pixel scale. In this study,

C is set to 4 km/s. For the NIRIS magnetograms used here, ∆s = 0.083′′/pixel. We

then calculate the radius of the region of interest (ROI) with respect to the location

or position of the magnetic flux element X, denoted ROIp(X), as follows:

radius(ROIp(X)) = 2×D + r (2.3)

where r is the radius of the smallest region that covers the magnetic flux element.

The ROIp(X) defines the region which the magnetic flux element X can not move

beyond between two contiguous frames.
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The magnetic flux Φ(X) is calculated by the surface integral of the normal

component of magnetic field passing through X, as follows:

Φ(X) =

∫
S

Bz dS (2.4)

where Bz is the magnitude of the magnetic field from the vertical magnetic field image

of the testing magnetogram and S is the area of the surface of X.

For any two features or magnetic flux elements X and Y in a frame, we define

the distance between X and Y , denoted Dist(X, Y ), as follows:

Dist(X, Y ) = min
x∈X,y∈Y

d(x, y) (2.5)

where x and y are pixels in X and Y , respectively; and d(x, y) is the Euclidean

distance between x and y. For a given magnetic flux element X in a frame, the

adjacent features of X are defined as the k-nearest neighboring features of X in the

frame. (In the study presented here, k is set to 10.)

Let Xi be a magnetic flux element in the current frame F1. Let Yi be a magnetic

flux element in the next frame F2 where Yi occurs in the ROIp(Xi) in F2. We say Xi

is approximately equal to Yi, denoted Xi ≈ Yi, if Xi and Yi have the same sign, and

|Φ(Xi)− Φ(Yi)

Φ(Xi)
| ≤ ε1 (2.6)

where ε1 is a user-determined threshold based on the observation setting and tracking

task requirement. (In the study presented here, ε1 is set to 0.33.)

With the above terms and definitions, we are now ready to describe our

algorithms for magnetic tracking and event detection. For each magnetic flux element

or feature Xi in the current frame F1, the algorithms below determine and indicate

whether Xi exists in the next frame F2, or Xi is involved in a merging or cancellation

event, or Xi disappears.
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[Main Algorithm]

(i) If there exists a magnetic feature Yi in the ROIp(Xi) in the next frame

F2 such that Xi ≈ Yi, then indicate Xi exists in F2 (more precisely, Xi becomes Yi in

F2) and go to (ii); otherwise go to (iii).

(ii) Check the sign of Xi, highlighting Xi by yellow bordering color if Xi

is positive and by green bordering color if Xi is negative. Exit the Main Algorithm.

(iii) Find all magnetic features in the ROIp(Xi) in the current frame F1.

Group those features in the ROIp(Xi) whose signs are the same as the sign of Xi into

Gsame(Xi) and group those features in the ROIp(Xi) whose signs are opposite to the

sign of Xi into Gopposite(Xi).

(iv) Go to the Merging Algorithm to check whether Xi and the features in

Gsame(Xi) meet the merging criterion. If yes, perform the merging using the Merging

Algorithm and then exit the Main Algorithm; otherwise indicate Xi is not involved

in a merging event.

(v) Go to the Cancellation Algorithm to check whether Xi and the features

in Gopposite(Xi) meet the cancellation criterion. If yes, perform the cancellation using

the Cancellation Algorithm and then exit the Main Algorithm; otherwise indicate Xi

is not involved in a cancellation event.

(vi) If Xi is not involved in a merging event according to (iv) and Xi is not

involved in a cancellation event based on (v), indicate Xi disappears and highlight

Xi by purple bordering color.4 Exit the Main Algorithm.

[Merging Algorithm]

4For the events belonging to the death category, namely disappearance, merging and
cancellation, magnetic features involved in the events are highlighted by different bordering
colors (purple for disappearance, amber for merging and pink for cancellation) in the current
frame F1. For the events belonging to the birth category, namely appearance, splitting and
emergence, magnetic features involved in the events are highlighted by different bordering
colors (blue for appearance, aqua for splitting and red for emergence) in the next frame F2.
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(i) For each feature Xj in Gsame(Xi), check whether there exists a feature

Yj in the ROIp(Xj) in the next frame F2 such that Xj ≈ Yj, and if yes, delete Xj

from Gsame(Xi). Call the remaining set, G′same(Xi). If there are too many features in

G′same(Xi), only keep those adjacent features of Xi in G′same(Xi).

(ii) If there exist a combination Cs of features in G′same(Xi) and a magnetic

feature Yi in the ROIp(Xi) in the next frame F2 where Yi and Xi have the same sign,

such that Equation. (2.7) below is satisfied, then we say Xi and the features in Cs

are merged into Yi:

|
(Φ(Xi) +

∑
X∈Cs

Φ(X))− Φ(Yi)

Φ(Yi)
| ≤ ε2 (2.7)

where Φ(Xi) and Φ(X) have the same sign, ε2 is a user-determined threshold (which

is set to 0.5). Indicate Xi and the features in Cs are merged into Yi by highlighting

Xi and the features in Cs using amber bordering color. Exit the Merging Algorithm.

(iii) If there does not exist Yi or a combination of features satisfying

Equation. (2.7) (i.e., the condition in (ii) is not satisfied), indicate Xi and the features

in Gsame(Xi) do not meet the merging criterion. Exit the Merging Algorithm.

[Cancellation Algorithm]

(i) For each feature Xj in Gopposite(Xi), check whether there exists a feature

Yj in the ROIp(Xj) in the next frame F2 such that Xj ≈ Yj, and if yes, delete Xj from

Gopposite(Xi). Call the remaining set, G′opposite(Xi). If there are too many features in

G′opposite(Xi), only keep those adjacent features of Xi in G′opposite(Xi).

(ii) If there exists a combination Co of features in G′opposite(Xi) such that

Equation. (2.8) below is satisfied, then we say Xi and the features in Co cancel each

other (referred to as balanced cancellation in [29]):

|
Φ(Xi) +

∑
X∈Co

Φ(X)

Φ(Xi)
| ≤ ε2 (2.8)
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where Φ(Xi) and Φ(X) have opposite signs. Indicate Xi and the features in Co cancel

each other by highlighting Xi and the features in Co using pink bordering color. Exit

the Cancellation Algorithm.

(iii) If there exist a combination Co of features in G′opposite(Xi) and a

magnetic feature Yi in the ROIp(Xi) in the next frame F2, such that Equation. (2.9)

below is satisfied, then we say Xi and the features in Co are canceled to yield a feature

Yi carrying the remaining flux (referred to as unbalanced cancellation in [29]):∣∣∣∣ |Φ(Xi) +
∑

X∈Co
Φ(X)| − |Φ(Yi)|

Φ(Yi)

∣∣∣∣ ≤ ε2 (2.9)

where Φ(Xi) and Φ(X) have opposite signs. Indicate Xi and the features in Co are

canceled by highlighting Xi and the features in Co using pink bordering color. Exit

the Cancellation Algorithm.

(iv) If neither the condition in (ii) nor the condition in (iii) is satisfied,

indicate Xi and the features in Gopposite(Xi) do not meet the cancellation criterion.

Exit the Cancellation Algorithm.

To determine whether the magnetic feature Xi appears or is involved in a splitting

or emergence event, we use the same algorithms as described above except that we

treat the next frame F2 as the current frame and the current frame F1 as the next

frame.

2.4 Results

SolarUnet is implemented in Python. Our deep learning model is coded with

TensorFlow and Keras libraries. The data processed by SolarUnet, with the aid

of Astropy [10], include FITS files containing vector magnetic fields, PNG images

of the observational data described in Section 2.2, and image masks obtained from

the SWAMIS tool presented in DeForest et al. [29]. SWAMIS, written in PDL (Perl
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Data Language) and available via SolarSoft [41], was run with the downhill option.

Figures in this section were produced with the aid of matplotlib. Statistical tests

were performed by SciPy [150]. All experiments were conducted on a Dell PC with

i7-8700k CPU, 32GB RAM and a NVIDIA GeForce RTX 2080 GPU for training and

testing the deep learning model.

2.4.1 Magnetic Tracking and Event Detection Results

In this series of experiments, we used the 196 magnetograms mentioned in Table 2.1

and the corresponding masks obtained from SWAMIS to train SolarUnet as described

in Subsection 2.3.1, and then we performed testing on the set of 147 magnetograms

mentioned in Table 2.1. The testing set contained observations in NOAA AR 12665

(431′′, −131′′) during ∼20:16–22:42 UT on 2017 July 13. The filter size threshold was

fixed at 10 pixels. Thus, in the experiments we considered features or magnetic flux

elements having at least 10 pixels.

We present figures to illustrate the six events studied here. Frames taken at

20:15:49 UT and 20:16:45 UT are used to illustrate a disappearance event. Frames

taken at 21:00:48 UT and 21:01:45 UT are used to illustrate an appearance event.

Frames taken at 20:18:38 UT and 20:19:34 UT are used to illustrate a merging event.

Frames taken at 20:19:34 UT and 20:20:30 UT are used to illustrate a splitting event

and a cancellation event. Frames taken at 20:17:41 UT and 20:18:38 UT are used to

illustrate an emergence event. We present enlarged FOV results in these figures with

a FOV of 7.5′′ where each figure has two axes: E-W (x-axis) and S-N (y-axis).

Figure 2.3 shows a disappearance event. In Figure 2.3(A), a magnetic feature

highlighted by purple bordering color exists at E-W = 421′′ and S-N = −191′′, which

is pointed to by a red arrow in the frame from 20:15:49 UT. This feature disappears in

the next frame from 20:16:45 UT as shown in Figure 2.3(B). Figure 2.4 illustrates an

appearance event. In Figure 2.4(A), there exists no feature at E-W = 420′′ and S-N
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Figure 2.3 Example of BBSO/GST images of a disappearance event. The negative
magnetic flux element highlighted by purple bordering color in (A) disappears in (B).
Time in UT is at the bottom right of each image.

= −192′′ in the frame from 21:00:48 UT. However, a new feature appears in the next

frame from 21:01:45 UT, which is highlighted by blue bordering color and pointed to

by a red arrow as shown in Figure 2.4(B).

Figure 2.5 shows a merging event. In Figure 2.5(A), two separate positive

polarity magnetic features highlighted by amber bordering color and pointed to by a

red arrow in the frame from 20:18:38 UT are merged into a single positive polarity

feature at E-W = 453′′ and S-N = −180′′ in the frame from 20:19:34 UT as shown

in Figure 2.5(B). Figure 2.6 illustrates a splitting event. In Figure 2.6(A), a negative

polarity feature exists at E-W = 448′′ and S-N =−179′′ in the frame from 20:19:34 UT.

This negative polarity feature is split into two negative polarity features highlighted

by aqua bordering color and pointed to by a red arrow in the frame from 20:20:30

UT as shown in Figure 2.6(B).

Figure 2.7 shows an unbalanced cancellation event. In Figure 2.7(A), there

exist two magnetic features with opposite signs around E-W = 437′′ and S-N =

−158.5′′ in the frame from 20:19:34 UT. The two magnetic features with opposite

signs, highlighted by pink bordering color, are canceled to yield a negative polarity
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Figure 2.4 Example of BBSO/GST images of an appearance event. The positive
magnetic flux element highlighted in blue bordering color in (B) does not exist in
(A), and hence an appearance event is detected. Time in UT is at the bottom right
of each image.

Figure 2.5 Example of BBSO/GST images of a merging event. Two positive
magnetic flux elements highlighted by amber bordering color in (A) are merged into
a single positive magnetic flux element in (B). Time in UT is at the bottom right of
each image.
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Figure 2.6 Example of BBSO/GST images of a splitting event. A negative magnetic
flux element in (A) is split into two negative magnetic flux elements highlighted by
aqua bordering color in (B). Time in UT is at the bottom right of each image.

magnetic feature carrying the remaining flux, pointed to by a red arrow, in the frame

from 20:20:30 UT as shown in Figure 2.7(B). Figure 2.8 illustrates an unbalanced

emergence event. A new negative polarity feature emerges, next to a pre-existing

positive polarity feature, in the frame from 20:18:38 UT as shown in Figure 2.8(B).

The flux of the positive polarity feature pointed to by a red arrow in Figure 2.8(A)

is approximately equal to the total flux of the two features with opposite signs,

highlighted by red bordering color and pointed to by a red arrow, in Figure 2.8(B).
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Figure 2.7 Example of BBSO/GST images of an unbalanced cancellation event. A
positive magnetic flux element and a negative magnetic flux element, both of which are
highlighted by pink bordering color in (A), are canceled to yield a negative magnetic
flux element carrying the remaining flux, which is pointed to by a red arrow in (B).
Time in UT is at the bottom right of each image.

Figure 2.8 Example of BBSO/GST images of an unbalanced emergence event. A
new negative magnetic flux element emerges, next to a pre-existing positive magnetic
flux element in (A), in a nearly flux-conserving manner where the two magnetic flux
elements with opposite signs are highlighted by red bordering color in (B). Time in
UT is at the bottom right of each image.
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2.4.2 Comparison with SWAMIS

While both SolarUnet and SWAMIS [29] aim to track magnetic features and detect

magnetic events, they differ in two ways.

1. Their feature discrimination and identification algorithms are different.
SWAMIS used hysteresis and a threshold-based method to separate
non-significant flux regions, positive magnetic flux regions and negative
magnetic flux regions. Then it used direct clumping and a gradient based
(“downhill”) method to identify magnetic features in these regions. By
contrast, SolarUnet employs a U-shaped convolutional neural network
to gain knowledge from training data, and then predicts a binary
(two-class) mask containing non-significant flux regions and significant
flux regions. Next, SolarUnet separates the significant flux regions
into positive magnetic flux regions and negative magnetic flux regions
through post-processing of the binary mask. Finally, SolarUnet uses
a connected-component labeling algorithm [66] to group all adjacent
segments in the positive magnetic flux regions and negative magnetic flux
regions, respectively, if their pixels in edges or corners touch each other
to identify positive and negative magnetic flux elements.

2. Their feature tracking and event detection algorithms are different.
SWAMIS used a dual-maximum-overlap criterion to find persistent features
across frames. In contrast, SolarUnet defines the region of interest (ROI)
of a magnetic feature and traces the flux changes of the magnetic features
in the ROI to find the association of features across frames.

It should be pointed out that, although the U-shaped network (i.e., the deep

learning model) in SolarUnet gains knowledge from the training data prepared by

SWAMIS, the model is able to generalize learned features to more generic forms.

In our work, the model gains knowledge from the training images in quiescent solar

regions collected on 2018 June 07 and uses the acquired knowledge to make predictions

on unseen testing images from an active region (NOAA AR 12665) collected on 2017

July 13. With the generalization and inference capability, the model may discover new

magnetic flux elements not found by the SWAMIS method. For example, with the

filter size threshold of SolarUnet fixed at 10 pixels, SolarUnet detected two opposite-

sign features not found by SWAMIS on the testing image (magnetogram) from AR
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Figure 2.9 Illustration of the magnetic flux elements detected by SolarUnet but
not found by SWAMIS on the testing magnetogram from AR 12665 collected on 2017
July 13 20:15:49 UT. (A) SolarUnet identifies a positive feature highlighted by yellow
bordering color and a negative feature highlighted by green bordering color where
the two highlighted features are enclosed by red square boxes numbered by 1 and 2,
respectively. (B) SWAMIS does not find the two features as no bordering color is
shown inside the red square boxes numbered by 1 and 2, respectively. Time in UT is
at the bottom right of each image.

12665 collected on 2017 July 13 20:15:49 UT. Figure 2.9(A) highlights these two

features; Figure 2.9(B) shows that the two features were not found by SWAMIS.

Figure 2.10 compares the feature size distributions of SWAMIS and SolarUnet

on the testing image (magnetogram) where the features had at least 2 pixels (0.007242

Mm2).5 The feature sizes of SWAMIS are represented by blue color and those of

SolarUnet are represented by orange color. It can be seen from Figure 2.10 that

SolarUnet agrees mostly with SWAMIS on the feature size distributions. To quantify

this finding, we conducted the Epps-Singleton two-sample test [33, 53, 52]. According

to the test, the results of SolarUnet and SWAMIS have a significant difference when

p ≤ 0.05. In our case p = 0.858 > 0.05, and hence we conclude that the results of

the two tools are similar. Table 2.2 shows the minimum, maximum, median, mean

5In this and subsequent experiments, features with 1 pixel were considered as noise and
excluded.
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Figure 2.10 Magnetic feature size distributions as derived by SWAMIS (repre-
sented by blue color) and SolarUnet (represented by orange color) on the testing
magnetogram from AR 12665 collected on 2017 July 13 20:15:49 UT. SolarUnet agrees
mostly with SWAMIS on the Magnetic feature size distributions.

and standard deviation (SD) of the feature sizes found by SWAMIS and SolarUnet,

respectively. SWAMIS detected 548 features while SolarUnet identified 543 features.

The largest magnetic feature, which was a negative feature, found by SWAMIS had

60213 pixels (218.03 Mm2). This feature was also detected by SolarUnet, with a

smaller size of 57662 pixels (208.80 Mm2). This size difference occurs due to the

different feature identification and tracking algorithms used by the two tools.
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Figure 2.11 Magnetic feature flux distributions as derived by SWAMIS (repre-
sented by blue color) and SolarUnet (represented by orange color) on the testing
magnetogram from AR 12665 collected on 2017 July 13 20:15:49 UT. SolarUnet agrees
mostly with SWAMIS on the Magnetic feature flux distributions.

Next, for each feature detected by the tools, we calculated its flux using the

formula in Equation. (2.4). Figure 2.11 compares the feature flux distributions of

SWAMIS and SolarUnet. The results in Figure 2.11 are consistent with those in

Figure 2.10; SolarUnet agrees mostly with SWAMIS on the feature flux distributions.

According to the Epps-Singleton two-sample test, the feature flux distributions of

SolarUnet and SWAMIS have a significant difference when p ≤ 0.05. In our case

p = 0.983 > 0.05, and consequently we conclude that the feature flux distributions

of SolarUnet and SWAMIS are similar. Table 2.2 shows the minimum, maximum,

median, mean and standard deviation (SD) of the feature fluxes found by SWAMIS

and SolarUnet, respectively. The feature fluxes detected by SWAMIS ranged from

0.009507×1018 Mx to 1805.13×1018 Mx. The feature fluxes detected by SolarUnet

ranged from 0.011051×1018 Mx to 1780.96×1018 Mx. Some of the small fluxes could

be noise whiles others might be involved in small-scale magnetic flux emergence [114]

or small-scale magnetic flux cancellation [27]. Similar results on feature size and flux

distributions were obtained from the other magnetograms in the testing set.
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To further understand the behavior of SolarUnet and compare it with SWAMIS,

we performed additional experiments to examine the lifetimes of the features identified

and tracked by the two tools. We applied SolarUnet and SWAMIS to all of the 147

testing magnetograms mentioned in Table 2.1. The lifetime of a feature X is defined

as X’s disappearance time minus X’s appearance time. More precisely, assuming X

appears in the mth frame and disappears after the nth frame (i.e., X is not shown

in the (n+ 1)th frame), the lifetime of X is defined to be n−m+ 1 frames. Feature

lifetime is strongly dependent on the feature identification and tracking algorithms

employed by a tool [29], and can be used to measure flux turnover rate [62].

Figure 2.12 compares the lifetimes of features found by SWAMIS and SolarUnet.

SWAMIS tracked 48145 features across the 147 testing magnetograms while SolarUnet

tracked 42470 features. The lifetimes of features found by SWAMIS ranged from

1 frame (56 seconds) to 138 frames (128.8 minutes). The lifetimes of features

detected by SolarUnet ranged from 1 frame to 147 frames (137.2 minutes). SWAMIS

tracked more short-lifetime features than SolarUnet while SolarUnet tracked more

long-lifetime features than SWAMIS. Specifically, among the 48145 features tracked

by SWAMIS, 37110 features had a lifetime of 1 frame while SolarUnet only identified

and tracked 22657 such features. On the other hand, SolarUnet tracked 19813 features

whose lifetimes lasted more than 1 frame while SWAMIS only identified and tracked

11035 such features. SolarUnet complements SWAMIS in tracking long-lifetime

features. We note that the training data of SolarUnet are from SWAMIS. For those

features with short lifetime in the training images, our deep learning model may not

acquire enough knowledge about them, and hence, may miss similar features in the

testing images. This may explain why SolarUnet detects fewer short-lifetime features

than SWAMIS.
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Figure 2.12 Feature lifetime histograms derived from SWAMIS and SolarUnet
based on the 147 testing magnetograms (frames) from AR 12665 collected on 2017
July 13. SWAMIS tracks 48145 features, among which 37110 features have a lifetime
of 1 frame. SolarUnet tracks 42470 features, among which 22657 features have a
lifetime of 1 frame. On the other hand, SolarUnet tracks 19813 features whose
lifetimes last more than 1 frame while SWAMIS only tracks 11035 such features.
SolarUnet complements SWAMIS in tracking long-lifetime features.

2.5 Summary

We develop a deep learning method, SolarUnet, for tracking signed magnetic flux

elements (features) and detecting magnetic events in observed vector magnetograms.

We apply the SolarUnet tool to data from the 1.6 meter Goode Solar Telescope

(GST) at the Big Bear Solar Observatory (BBSO). The tool is able to identify the

magnetic features and detect three types of events, namely disappearance, merging

and cancellation, in the death category and three types of events, namely appearance,

splitting and emergence, in the birth category. We use the BBSO/GST images

to illustrate how our tool works on feature identification and event detection, and

compares with the widely used SWAMIS tool [29].

33



Our main results are summarized as follows:

1. For the testing data considered, SolarUnet agrees mostly with SWAMIS
on feature size (area) and flux distributions, and complements SWAMIS in
tracking long-lifetime features. It is worth noting that because SolarUnet
performs magnetic tracking through making predictions, it is faster than
the current version of SWAMIS. In general, SolarUnet runs in seconds
on a testing magnetogram while the current version of SWAMIS runs in
minutes on the same testing magnetogram.

2. SolarUnet is a physics-guided tool in the sense that it incorporates
physics knowledge into its model and algorithms in several ways. First,
the training data of SolarUnet are from the physics-based SWAMIS tool.
Second, in designing the loss function for the deep learning model used
by SolarUnet, based on the observation that non-significant flux regions
roughly have the same number of pixels as significant flux regions in the
training set, we adopt a binary cross-entropy loss function as defined in
Equation. (2.1) instead of the weighted cross-entropy loss function used by
the related U-Net model [35]. Third, in converting the binary (two-class)
mask predicted by our deep learning model for a testing magnetogram
to a three-class mask with polarity information, we use the information
of radial components in the vertical magnetic field image of the testing
magnetogram to reconstruct positive and negative magnetic flux regions
in the predicted mask. Lastly, by exploiting physics knowledge and
based on the observational data and instruments used, we introduce the
moving distance as defined in Equation. (2.2) and region of interest
(ROI) as defined in Equation. (2.3) of a magnetic flux element to find
the association of features across frames so as to track these features.

3. Although SolarUnet gets training data from SWAMIS, our tool may
discover new features not found by the SWAMIS method. For example,
refer to Figure 2.9. SolarUnet may detect smaller opposite-polarity
features, as shown and highlighted in Figure 2.9(A), near larger magnetic
flux elements. Small-scale energy release phenomena, ranging from
coronal jets down to spicules, may be responsible for providing the upward
flux of energy and momentum for the observed heatings and flows in the
corona, and may plausibly drive the small transients in the solar wind
recently discovered by the Parker Solar Probe [120]. There is mounting
evidence that these events are generated via small-scale magnetic recon-
nection [130], the photospheric signature of which is flux cancellation
involving opposite magnetic polarities [169]. The ability of SolarUnet
in detecting smaller opposite-polarity features near larger magnetic flux
elements in a faster manner can result in an improved determination of
magnetic reconnection rate, thus contributing to the understanding of the
mechanisms of solar coronal heating and the acceleration of the solar wind.
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4. The deep learning model in SolarUnet performs binary (two-class)
classification, i.e., predicting a two-class mask, rather than three-class
classification, i.e., predicting a three-class mask, during image segmen-
tation. SolarUnet produces a three-class mask through post-processing
of the predicted two-class mask as described in item 2 above and
in Subsection 2.3.1. As indicated in the machine learning literature,
multiclass classification including three-class classification often adds more
noise to the loss function [61], and it is easier to devise algorithms for
binary classification [3]. We conducted additional experiments to compare
SolarUnet with a three-class classification method. This method trained
its deep learning model using the three-class masks obtained directly
from SWAMIS, and predicted three-class masks. Its model was the
same as SolarUnet’s model except that (i) its loss function was changed
from the binary cross-entropy function defined in Equation. (2.1) to a
categorical cross-entropy loss with three class labels (1, 0, −1); (ii) its
softmax activation function was modified to output three-class masks.
The three-class classification method used the same tracking algorithms
as described in Subsection 2.3.3 for magnetic tracking and event detection.
The results of the three-class classification method were not as good as
those of SolarUnet. For example, the feature size distribution obtained
from the three-class classification method was significantly different from
the feature size distribution obtained from SWAMIS with p = 0.025 ≤
0.05 according to the Epps-Singleton two-sample test on the testing
magnetogram from AR 12665 collected on 2017 July 13 20:15:49 UT.

Based on our experimental results, we conclude that the proposed SolarUnet

should be considered a novel and alternative method for identifying and tracking

magnetic flux elements. More testing of the method, using different training and test

data, should be performed. With the advent of big and complex observational data

gathered from diverse instruments such as BBSO/GST and the upcoming Daniel K.

Inouye Solar Telescope (DKIST), it is expected that the physics-guided deep learning-

based SolarUnet tool will be a useful utility for processing and analyzing the data.

2.6 Related Technical Terms

Here we explain the technical terms used in describing our deep learning model (i.e.,

the U-shaped convolutional neural network).
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Encoder is a neural network, which takes an input image and generates a high-

dimensional vector that is an abstract representation of the image (see Chapter 8.5.2

in Aggarwal 2018 [2]). By using the encoder, our model can better understand the

content and context of the image.

Decoder is a neural network, which takes a high-dimensional vector and generates a

segmentation mask (see Chapter 8.5.2 in Aggarwal 2018 [2]). By using the decoder,

our model can recover the spatial information in the input image.

Bottleneck, also known as the “compressed code” (see Chapter 8.5.2 in Aggarwal 2018

[2]), is a layer with less neurons than the layer below or above it [50]. In general, it can

be used to obtain a representation of the input with reduced size (dimensionality).

In our model, bottleneck mediates between the encoder and the decoder.

Convolution layer contains multiple kernels where a kernel is a matrix whose elements

(weights) need to be learned from training data (see Chapter 9 in Goodfellow et

al. 2016 [57]). Each kernel is multiplied with an image vector X (via element-wise

multiplications) to produce a new image vector that contains only the important

information in X (see Chapter 8 in Aggarwal 2018 [2]).

Max pooling layer reduces the size of an image vector X while retaining only the

important information in X (see Chapter 8.2 in Aggarwal 2018 [2]).

Up-convolution layer, containing learnable parameters (weights), increases the size

of an image vector X. This layer, also called an upsampling [139] or deconvolution

layer, can recover the spatial information in X (see Chapter 8.5.2 in Aggarwal 2018
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[2]).

Softmax activation function converts a vector of k real values to a vector of k real

values that sum to 1 (see page 14 in Aggarwal 2018 [2]). Softmax is useful because it

converts the scores in the vector to a normalized probability distribution, which can

be displayed to a user. In our model, softmax is used to output the class label (1 vs.

−1 or non-significant flux vs. significant flux) of each pixel.

Rectified linear unit (ReLU) employs an activation function f(x), defined as f(x) =

max(0, x), where x is the input to a neuron, f(x) = x if x ≥ 0 and f(x) = 0 otherwise

(see Chapter 1.2 in Aggarwal 2018 [2]). It is easy to train a model that uses ReLUs,

which often achieves good performance.
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CHAPTER 3

FIBRILS TRACING

3.1 Background and Related Work

Fibrils are thin threadlike absorption features ubiquitously observed in the solar

chromosphere. Depending on their location and dynamic behavior, they may have

different names, e.g., threads of filaments [109, 153], the superpenumbra of sunspots

[108, 76], mottles in quiet-Sun rosette structures [67], etc. Fibrils are often observed

with narrowband solar filtergrams in the chromospheric spectral lines such as Hα,

where they are denser than their surroundings [113]. Physically speaking, fibrils

represent the cool gas “frozen” in magnetic field lines and protected by magnetic

fields from diffusing out [124, 93, 128]. For this reason, fibrils have been traditionally

assumed to be aligned with the direction of the chromospheric magnetic field [39, 40].

Tracing chromospheric fibrils in Hα is an important subject in heliophysics

research [77, 96], and has attracted much attention in the heliophysics community.

The comparison between fibrils and the potential magnetic field may provide a quick

way to examine the nonpotentiality of active regions (ARs) [77]. The orientation of

fibrils could be used as a constraint to improve the non-linear force-free modeling of

coronal fields [158, 5, 36]. Tracing fibrils also helps estimate the amount of energy in

acoustic waves [38] and the free magnetic energy in the chromosphere [5].

Many fibril tracing methods have been developed in recent years. Leenaarts

et al. [96] conducted three-dimensional magnetohydrodynamic simulations to inves-

tigate the relation between chromospheric fibrils and magnetic field lines. Aschwanden

et al. [5] performed nonpotential field modeling of chromospheric structures and

coronal loops with the VCA-NLFFF code. Jafarzadeh et al. [73] adopted the

CRISPEX tool for visual inspection and identification of isolated slender fibrils.
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Gafeira et al. [44] used image processing and contrast enhancement techniques to

identify these fibrils. Asensio Ramos et al. [7] employed the rolling Hough transform

(RHT) for fibril detection and a Bayesian hierarchical model to analyze the pixels in

spectro-polarimetric chromospheric images of penumbrae and fibrils. The authors

concluded that fibrils are often well aligned with magnetic azimuth. This RHT

technique has also been used by Schad [132] to analyze fibrils and coronal rain.

Jing et al. [77] developed a threshold-based algorithm to automatically segment

chromospheric fibrils from Hα observations and extracted direction information along

the fibrils with a fibril-fitting algorithm. The authors further quantitatively measured

the nonpotentiality of the fibrils by the magnetic shear angle. In contrast to the above

methods, our deep learning-based tool (FibrilNet) presented here can automatically

predict fibrils and measure the uncertainties in the predicted results simultaneously.

Deep learning is a branch of machine learning where neural networks are

designed to learn from large amounts of data [94]. It has been used extensively

in computer vision and natural language processing, and more recently in astronomy

and astrophysics for flare prediction, spectroscopic analysis, solar image segmentation,

among others [69, 98, 81, 99, 103, 163, 75]. Different from the previous solar

image segmentation techniques, which focus on predicting a value for each pixel,

our FibrilNet employs a probabilistic segmentation model, specifically a Bayesian

convolutional network, that predicts a value for each pixel accompanied with reliable

uncertainty quantification. Such a model leads to a more informed decision, and

improves the quality of prediction.

In general, there are two types of uncertainty in Bayesian modeling: aleatoric

uncertainty and epistemic uncertainty [79]. Aleatoric uncertainty, also known as

data uncertainty, measures the noise inherent in observations. Epistemic uncertainty,

on the other hand, measures the uncertainty in the parameters of a model;

this uncertainty is also known as model uncertainty. Quantifying uncertainties
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with machine learning finds many applications ranging from computer vision [79],

natural language processing [164], medical image analysis [86] to geomagnetic storm

forecasting [60, 165]. Here we present a new application of uncertainty quantification

with machine learning in fibril tracing.

3.2 Observations and Data Preparation

The Goode Solar Telescope (GST) is a 1.6 m clear aperture, off-axis telescope

at BBSO, which is located in Big Bear Lake, California [25, 56, 55, 149]. GST

is equipped with a high-order adaptive optics system, AO-308, which provides

high-order correction of atmospheric seeing within an isoplanatic patch (about 6′′ at

500 nm in summer), with a gradual roll-off of correction at larger distances [140].

Under a stable seeing condition, BBSO/GST observed AR 12665 at (W27◦, S4◦) on

July 13, 2017, in which the data taken during ∼20:16-22:42 UT were used in the

study presented here.

The Visible Imaging Spectrometer(VIS) [25] of GST utilizes a telecentric mount

of the Fabry-Prot etalon. This imaging system was used for observing the Hα line.

It scanned the target area at 0.6, 0.4 and 0.0 Å (0.08 Å bandpass) from the Hα

line center 6563 Å with a 70′′ circular field of view (FOV). At each wavelength step,

the 25 frames, out of 60 frames taken in succession, with the best contrast were

saved. These frames, with exposure time ranging from 7 to 20 ms and an image

scale of 0′′.03 per pixel, were processed by the high-order AO system and post-facto

speckle image reconstruction algorithms [162], which improved the quality of the

images by correcting the wavefront deformation caused by atmospheric distortion.

An Hα line scan was performed over the FOV, and the position with the minimum

intensity was defined as the Hα line center. It should be pointed out that the GST

narrowband Hα data do not contain the full spectral information, which restricts the
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Figure 3.1 Five test images at (A) 0.0 Å, (B) +0.4 Å, (C) +0.6 Å, (D) −0.4 Å,
(E) −0.6 Å, respectively, from the Hα line center 6563 Å with a 70′′ circular FOV
collected in AR 12665 on 2017 July 13 20:15:58 UT. Enormous amounts of fibrils
exist in these Hα images.

full characterization of fibrils in three dimensions. Therefore, our study of fibrils is

all based on their projected morphology on the observational image plane.

Our dataset contained the GST Hα observations in AR 12665 from 20:16:32 UT

to 22:41:30 UT on July 13, 2017 where the observed region was located at (W27◦,

S4◦). During this period of time, 241 Hα line center images (i.e., those at 0.0 Å from

the Hα line center 6563 Å with a 70′′ circular FOV) were used as training data since

features in these images were abundant. The test set contained five Hα images taken

from AR 12665 at 20:15:58 UT on the same day (see Figure 3.1). Thus, there were 241

training Hα images and 5 test Hα images where the size of each image was 720× 720

pixels. The training and test sets were disjoint, as the training observations and test

observations were taken at different time points. Please note that the five test images
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Figure 3.2 Illustration of the proposed method (FibrilNet) for fibril tracing.
FibrilNet employs a Bayesian deep learning model for probabilistic image segmen-
tation with uncertainty quantification to predict fibrils and a fibril-fitting algorithm
to determine fibril orientations. The training data used to train the Bayesian deep
learning model are highlighted in the dashed box. The tracing results for the test Hα
image include predicted/detected fibrils, their orientations, aleatoric uncertainty and
epistemic uncertainty.

were chosen in such a way that they were on five different wavelength positions rather

than at five different time points on the same wavelength position. The reason why

we did not choose the test images equally distributed over the time series on the same

wavelength position was because the features in the images on the same wavelength

position did not change much across the images. By contrast, the features in the

images on the five different wavelength positions appeared quite differently as shown

in Figure 3.1.

3.3 Methodology

3.3.1 Overview of FibrilNet

Figure 3.2 explains how FibrilNet works. Training Hα images are pre-processed in

steps 1 and 2, and then used to train the Bayesian deep learning model (step 3).

The trained model takes as input a test Hα image (step 4) and produces as output
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a predicted mask accompanied with results for quantifying aleatoric uncertainty and

epistemic uncertainty (step 5). In the post-processing phase (step 6), based on the

predicted mask, fibrils on the test Hα image are detected and highlighted by thin red

curves. Furthermore, the orientations of the detected fibrils are determined based on

a fibril-fitting algorithm where the orientations are shown by different colors.

Specifically, in step 1, we apply the threshold-based tool developed by Jing et

al. [77] to each training Hα image described in Section 3.2 to obtain a corresponding

fibril mask. Fibril patterns on this mask are very thick, which contains a lot of noise.

In step 2, we refine the fibril mask via a skeletonization procedure to obtain a fibril

skeleton in which fibrils are marked by black and regions without fibrils are marked

by white. The skeletonization procedure works by extracting a region-based shape

feature representing the general form of fibrils. This skeletonization procedure results

in better and cleaner images suitable for model training [147].

The training Hα images and fibril skeletons are then used to train the

Bayesian deep learning model for probabilistic image segmentation and uncertainty

quantification (step 3). During training, in order to obtain a robust model, we

use the data augmentation technique described in Jiang et al. [75] to expand the

training set by shifting, rotating, flipping and scaling the training images. In step

4, a test Hα image is fed to the trained Bayesian deep learning model. During

testing, we use the Monte Carlo (MC) dropout sampling technique described in

Subsection 3.3.2 to produce the predicted mask of the test Hα image accompanied

with aleatoric uncertainty and epistemic uncertainty results (step 5). In step 6, by

using the fibril-fitting algorithm based on the polynomial regression model described

in Subsection 3.3.3, our FibrilNet tool outputs detected fibrils marked by red color

on the test Hα image and their orientations represented by different colors.
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3.3.2 Implementation of the Bayesian Deep Learning Model in FibrilNet

The Bayesian deep learning model used by FibrilNet is similar to the model used

in SolarUnet [75] for tracking magnetic flux elements. Both models have 4 encoder

blocks (E1, E2, E3, E4), 4 decoder blocks (D1, D2, D3, D4), mediated by a bottleneck

(Bot). See Figure 3.3 and Jiang et al. [75] for the configuration and parameter settings

of the models. While both models are based on an encoder-decoder convolutional

neural network, they differ in three ways. First, in performing 2×2 max pooling,

represented by a red arrow in Figure 3.3, the corresponding max pooling indices

are stored. During decoding, the max pooling indices at the corresponding encoder

layer are recalled, represented by an orange arrow, to upsample, represented by a

green arrow, as done in Badrinarayanan et al. [12]. This upsampling technique

used by FibrilNet, designed to reduce the number of trainable parameters in the

model (network) and hence save memory, is different from the up-convolution layers

used in SolarUnet. Second, since fibril patterns are relatively vague and harder to

identify than magnetic flux elements, FibrilNet uses twice as many kernels as those in

SolarUnet in all of the blocks in the encoder and decoder, as well as the bottleneck.

Finally, during testing, instead of using the trained model (network) directly to

produce segmentation results as done in SolarUnet, FibrilNet employs a Monte Carlo

(MC) dropout sampling technique, detailed below, to produce, for a test Hα image,

a predicted mask accompanied with aleatoric uncertainty and epistemic uncertainty

results (see Figure 3.2). This MC dropout sampling technique allows FibrilNet to

perform probabilistic image segmentation with uncertainty quantification, which is

lacking in SolarUnet.

Specifically, to quantify uncertainty with the convolutional neural network, we

use a prior probability, P (W), over the network’s weights, W. During training, pairs

of Hα images and their corresponding fibril skeletons, collectively referred to as D,
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are used to train the network. According to Bayes’ theorem,

P (W | D) =
P (D |W)P (W)

P (D)
. (3.1)

Computing the exact posterior probability, P (W | D), is intractable [32]. Nevertheless,

we can use variational inference [59] to learn the variational distribution over the

network’s weights parameterized by θ, qθ(W), by minimizing the KullbackLeibler

(KL) divergence of qθ(W) and P (W | D) [17]. It is known that training a network

with dropout is equivalent to a variational approximation on the network [45].

Furthermore, minimizing the cross-entropy loss of the network is equivalent to the

minimization of the KL divergence [57]. Therefore, we use a binary cross-entropy loss

function and the adaptive moment estimation (Adam) optimizer [57] with a learning

rate of 0.0001 to train our model (network). Let θ̂ denote the optimized variational

parameter obtained by training the model (network); we use qθ̂(W) to represent the

optimized weight distribution.

In deep learning, dropout is mainly used to prevent over-fitting, where a trained

model overfits training data and hence can not be generalized to make predictions on

unseen test data. During training, dropout refers to ignoring or dropping out units

(i.e., neurons) of certain set of neurons which is chosen randomly. During testing,

dropout can be used to retrieve T Monte Carlo (MC) samples by processing the input

test Hα image T times [45]. (In the study presented here, T is set to 50.) Each time

a set of weights is randomly drawn from qθ̂(W). Each pixel in the predicted mask,

shown in step 5 of Figure 3.2, gets a mean and variance over the T samples. If the

mean is greater than or equal to a threshold, the pixel is marked by black indicating

that the pixel is part of a fibril; otherwise the pixel is marked by white indicating

that the pixel is not part of a fibril. (In the study presented here, the threshold is

set to 0.5.) Following Kwon et al. [86], we decompose the variance into the aleatoric

uncertainty and epistemic uncertainty at the pixel. The aleatoric uncertainty captures
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the inherent randomness of the predicted result, which comes from the input test

Hα image, while the epistemic uncertainty comes from the variability of W, which

accounts for the uncertainty in the model parameters (weights).

In the post-processing phase, we use a connected-component labeling algorithm

[66] to group all adjacent black segments if their pixels in edges or corners touch each

other. For each resulting group, which represents a fibril, we locate its pixels in the

predicted mask and highlight their corresponding pixels in the test Hα image by red.

(Resulting groups containing less than 10 pixels are considered as noise and filtered

out.) We then output the detected fibrils highlighted by red color in the test Hα

image, as shown in step 6 of Figure 3.2.

3.3.3 Implementation of the Fibril-Fitting Algorithm in FibrilNet

Most of the detected fibrils are lines or curves. In contrast to Jing et al. [77], which

used a quadratic function to fit the detected fibrils, we adopt a polynomial regression

model here. Specifically, our regression model is a polynomial function with varying

degrees capable of fitting the detected fibrils with different curvatures. In general,

regression analysis investigates the relationship between a dependent variable and an

independent variable [16]. We model a detected fibril as an nth degree polynomial

function as follows:

y = γ0 + γ1x+ γ2x
2 + . . .+ γnx

n + ε, (3.2)

where γi are coefficients and ε is a random error term. In Equation (3.2), the

independent variable x represents the x coordinate of a pixel in the detected fibril

and the dependent variable y represents the y coordinate of the same pixel, where the

x-axis represents the E-W direction and the y-axis represents the S-N direction (see

Figure 3.1). When the degree n equals 1, Equation (3.2) represents a linear regression
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model, meaning that the detected fibril is represented by a straight line. In our work,

n ranges from 1 to 10.

We then use the least squares method [117] to find the optimal γi values. There

are 10 candidate polynomial functions for representing the detected fibril. We use

the R-squared score [117] to assess the feasibility of these 10 candidate polynomial

functions. Specifically, we choose the candidate polynomial function yielding the

largest R-squared score, and use this polynomial function to represent the detected

fibril. To determine the orientation of the detected fibril, we calculate the derivative of

the chosen polynomial function. For each pixel on the detected fibril, we thus obtain

the slope of the tangent at the pixel, leading to the orientation angle of the pixel,

denoted θf , with respect to the x-axis. Notice that the orientation angle θf is in the

0◦−180◦ range, as two directions differing by 180◦ are indistinguishable here because

the detected fibril in Hα does not carry information on the vertical dimension. Thus,

θf represents the direction of the detected fibril with a 180◦ ambiguity [77].

3.4 Results

3.4.1 Tracing Results of FibrilNet Based on Data from AR 12665

In this series of experiments, we used the 241 Hα line center images from 20:16:32

UT to 22:41:30 UT on 2017 July 13 mentioned in Section 3.2 along with their

corresponding fibril skeletons to train the FibrilNet tool as described in Section 3.3.

We then used the trained tool to predict and trace fibrils on the five test images at 0.0

Å, +0.4 Å, +0.6 Å, −0.4 Å, −0.6 Å, respectively, from the Hα line center 6563 Å with

a 70′′ circular FOV collected in AR 12665 on 2017 July 13 20:15:58 UT (see Figure

3.1). Figure 3.4 presents tracing results on the test image at 0.0 Å; tracing results

on the other four test images can be found in the Section 3.6. In all of the tracing

results, fibrils containing 10 or fewer pixels were treated as noise and excluded.

48



Figure 3.4 Fibril tracing results on the test image at 0.0 Å from the Hα line center
6563 Å with a 70′′ circular FOV collected in AR 12665 on 2017 July 13 20:15:58 UT
where training data were 241 Hα line center images taken from the same AR between
20:16:32 UT and 22:41:30 UT on the same day. (A) The original test Hα image. (B)
The enlarged FOV of the region highlighted by the white box 1 in (A). (C) Fibrils (red
curves) on the test Hα image detected by the tool in Jing et al. [77]. (D) Fibrils (red
curves) on the test Hα image predicted by FibrilNet. (E) The aleatoric uncertainty
(data uncertainty) map produced by FibrilNet. (F) The epistemic uncertainty (model
uncertainty) map produced by FibrilNet.
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Figure 3.4(A) shows the original test Hα image. Figure 3.4(B) shows the

enlarged FOV of the region highlighted by the white box 1 in Figure 3.4(A). It

can be seen from Figure 3.4(B) that there are salt-and-pepper noise pixels in the

region highlighted by the white box 2, where the noise pixels are caused by image

reconstruction limitations. Figure 3.4(C) shows the fibrils (red curves) on the test

Hα image detected by the tool (after skeletonization) presented in Jing et al. [77].

Figure 3.4(D) shows the fibrils (red curves) predicted by FibrilNet. FibrilNet uses the

images processed by the tool in Jing et al. [77] as training data. The results in Figures

3.4(C) and 3.4(D) are quite similar, demonstrating the good learning capability of

FibrilNet.

Figures 3.4(E) and 3.4(F) show the aleatoric uncertainty (data uncertainty) and

epistemic uncertainty (model uncertainty) maps, respectively, produced by FibrilNet.

Regions predicted with less uncertainty and higher confidence are colored by blue.

Regions predicted with more uncertainty and lower confidence are colored by red.

We can see that the main source of uncertainty comes from the data rather than

the model. Specifically, the values in the data uncertainty map in Figure 3.4(E)

range from 0 to 0.246 while the values in the model uncertainty map in Figure 3.4(F)

range from 0 to 0.086. Furthermore, we observe that the ends of a detected fibril are

often associated with higher uncertainty. This happens because there is ambiguity

surrounding the transition from the fibril body to the non-fibril background area,

a finding consistent with that in object detection with uncertainty quantification

reported in the literature [79, 86].

Notice also that the map in Figure 3.4(E) shows higher uncertainty in the

noisy region inside the white box 2 compared to the region outside the white box 2.

Specifically, in the noisy region inside the white box 2, 90% of the values are contained

in the range [0.00014 (5%), 0.20528 (95%)]. By contrast, in the region outside the

white box 2, 90% of the values are contained in the range [0 (5%), 0.18969 (95%)].
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Figure 3.5 Orientation angles (colored curves) of the detected fibrils on the test
image at 0.0 Å from the Hα line center 6563 Å with a 70′′ circular FOV collected in
AR 12665 on 2017 July 13 20:15:58 UT. (A) Fibril orientation angles calculated by
the tool in Jing et al. [77]. (B) Fibril orientation angles determined by FibrilNet.
Orientation angles of a number of fibrils, some of which are highlighted by small red
circles here, are calculated wrongly by the tool in Jing et al. [77], but correctly by
FibrilNet.

Furthermore, it is observed in Figure 3.4(C) that the tool in Jing et al. [77] misses

some fibril structures with at least 15 pixels inside the white box 3. These fibril

structures are not present in the mask predicted by FibrilNet either, as shown inside

the white box 3 in Figure 3.4(D). Nevertheless, the uncertainty maps of FibrilNet

are able to catch and display these missed fibril structures with higher uncertainty

by Bayesian inference, as shown inside the white box 3 in Figures 3.4(E) and 3.4(F),

respectively. This finding demonstrates the usefulness of the uncertainty maps, as

they not only provide a quantitative way to measure the confidence on each predicted

fibril, but also help identify fibril structures that are not detected by the tool in Jing

et al. [77] but are inferred through machine learning. It should be pointed out that

the previous fibril tracing tool in Jing et al. [77] does not have the capability of

producing these uncertainty maps as described here.
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Figure 3.5 compares the orientation angles of the fibrils found by the tool in

Jing et al. [77] and by FibrilNet, respectively. The colors of angles between 0◦ and 90◦

range from dark blue to green. The colors of angles between 90◦ and 180◦ range from

green to dark red. It can be seen from Figure 3.5 that the orientation angles found by

the two tools mostly agree with each other, though the angles detected by FibrilNet

tend to be smoother. This happens because FibrilNet uses polynomial functions

of varying degrees, as opposed to the quadratic function employed by the tool in

Jing et al. [77], to better fit the detected fibrils with different curvatures. Notice

also that the quadratic function used by the tool in Jing et al. [77] may produce

wrong angles, which are calculated correctly by the polynomial regression model of

FibrilNet. For example, the orientation angle of the fibril at E-W = 425′′ and S-N

= −190′′, which is highlighted by a small red circle in Figure 3.5, is roughly 90◦. It

is calculated incorrectly by the tool in Jing et al. [77], as shown in Figure 3.5(A).

On the other hand, FibrilNet calculates the orientation angle of this fibril correctly,

as shown in Figure 3.5(B). It should be pointed out that the smoother and more

accurate orientation angles detected by FibrilNet are due to the better fibril-fitting

algorithm used by the tool, as explained above. They are not caused by FibrilNet’s

Bayesian deep learning model, whose purpose is mainly for image segmentation (i.e.,

marking each pixel by black indicating the pixel is part of a fibril or white indicating

the pixel is not part of a fibril as shown in the predicted mask in Figure 3.2) with

uncertainty quantification (i.e., producing the uncertainty maps as shown in Figure

3.4).

3.4.2 Quantitative Assessment of FibrilNet Based on Data from AR

12665

As mentioned above, FibrilNet has two parts: (i) the Bayesian deep learning model

for predicting fibrils with probabilistic image segmentation, and (ii) the fibril-fitting
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algorithm for determining orientations of the predicted fibrils based on the polynomial

regression function in Equation (3.2). Here, we adopt four measures, defined below,

to quantitatively assess the first part, comparing the image segmentation algorithms

employed by FibrilNet and the tool (after skeletonization) in Jing et al. [77], based

on the same data from AR 12665 used in Subsection 3.4.1. Unlike FibrilNet, which

employs deep learning for image segmentation, the tool in Jing et al. [77] used a

threshold-based algorithm rather than machine learning for image segmentation.

Let A (B, respectively) denote the set of 720 × 720 = 518, 400 pixels in the

mask (skeleton, respectively) predicted by FibrilNet (calculated by the tool in Jing

et al. [77], respectively) for a test image. Let p ∈ A be a pixel in A and let q ∈ B

be p’s corresponding pixel in B, i.e., q is at the same position as p. We use A ∩A B

to represent the subset of pixels in A such that for each pixel p in A ∩A B and p’s

corresponding pixel q in B, p and q are marked by the same color. That is, p, q

are both marked by black indicating p (q, respectively) is part of a fibril in A (B,

respectively), or p, q are both marked by white indicating p (q, respectively) is not

part of a fibril in A (B, respectively). Similarly, we use A∩BB to represent the subset

of pixels in B such that for each pixel q in A ∩B B and q’s corresponding pixel p in

A, q and p are marked by the same color. The first quantitative measure is the pixel

similarity (PS), also known as global accuracy [12], which is defined as

PS =
|A ∩A B|+ |A ∩B B|

|A|+ |B|
, (3.3)

where |.| is the cardinality of the indicated set. PS is used to assess the pixel-level

similarity between the mask A predicted by FibrilNet and the skeleton B calculated

by the tool in Jing et al. [77] for the test image. The value of PS ranges from 0 to 1.

The larger (i.e., closer to 1) the PS value, the higher the pixel-level similarity between

the mask A and the skeleton B.
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Let AF (BF , respectively) denote the set of pixels on the fibrils in A (B,

respectively). Thus, in A, the pixels in AF are marked by black while the pixels

not in AF are marked by white. Similarly, in B, the pixels in BF are marked by black

while the pixels not in BF are marked by white. We use AF ∩AF
BF to represent the

subset of pixels in AF such that for each black pixel p in AF ∩AF
BF , p’s corresponding

pixel q is also black, i.e., q is in BF . Similarly, we use AF ∩BF
BF to represent the

subset of pixels in BF such that for each black pixel q in AF ∩BF
BF , q’s corresponding

pixel p is also black, i.e., p is in AF . The second quantitative measure is the fraction

of common fibril pixels (FCFP), defined as

FCFP =
|AF ∩AF

BF |+ |AF ∩BF
BF |

|AF |+ |BF |
. (3.4)

FCFP is used to measure the pixel-level similarity between the fibrils predicted by

FibrilNet and those found by the tool in Jing et al. [77]. The value of FCFP ranges

from 0 to 1. The larger (i.e., closer to 1) the FCFP value, the higher the pixel-level

similarity between the fibrils predicted by FibrilNet and those found by the tool in

Jing et al. [77].

The third quantitative measure is the fraction of disjunct fibril pixels (FDFP),

defined as

FDFP = 1− FCFP . (3.5)

FDFP is used to measure the pixel-level dissimilarity (distance) between the fibrils

predicted by FibrilNet and those found by the tool in Jing et al. [77]. The value of

FDFP ranges from 0 to 1. The smaller (i.e., closer to 0) the FDFP value, the higher

the pixel-level similarity between the fibrils predicted by FibrilNet and those found

by the tool in Jing et al. [77].

The fourth quantitative measure is the Rand Index (RI) [126, 148], which

calculates the ratio of pairs of pixels whose colors (black or white) are consistent
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between the mask A predicted by FibrilNet and the skeleton B calculated by the tool

in Jing et al. [77] for the test image. RI accommodates the inherent ambiguity in

image segmentation, and provides region sensitivity and compensation for coloring

errors near the ends of detected fibrils. For example, consider a wider fibril. FibrilNet

may detect the portion to the left of the center of the fibril and highlight this portion

by red. The tool in Jing et al. [77] may detect the portion to the right of the center of

the fibril and highlight that portion by red. Under this circumstance, FCFP does not

consider there are common pixels between the two red curves, though RI treats the

two red curves as consistent curves. Visually the fibril is indeed found by both tools.

As a consequence, RI is often used in comparing image segmentation algorithms. The

value of RI also ranges from 0 to 1. The larger (i.e., closer to 1) the RI value, the

higher the visual similarity between the fibrils predicted by FibrilNet and those found

by the tool in Jing et al. [77].

Table 3.1 presents the quantitative measure values of FibrilNet based on the five

test images in Figure 3.1. It can be seen from the table that the mask predicted by

FibrilNet and the skeleton calculated by the tool in Jing et al. [77] are very similar

at pixel level, with PS ≥ 95% on the test images. The fraction of common fibril

pixels (FCFP) is about 80%. However, visually, the similarity/consistency between

the fibrils predicted by FibrilNet and those found by the tool in Jing et al. [77]

is much higher, where the similarity/consistency is quantitatively assessed with RI

≥ 91% on the test images. This finding is consistent with the results presented in

Figures 3.4(C) and 3.4(D).

Next, we quantitatively assess the second part of FibrilNet, comparing the fibril-

fitting algorithms employed by FibrilNet and the tool (after skeletonization) in Jing

et al. [77], based on the same data from AR 12665 described in Subsection 3.4.1. The

fibril-fitting algorithms are used to determine orientations of detected fibrils. Let θf

represent the fibril orientation angle of a pixel calculated by the polynomial regression
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Table 3.1 Comparison of the Image Segmentation Algorithms Used in FibrilNet
and the Tool of Jing et al. [77] Based on Four Quantitative Measures and Five Test
Images

Test Image PS FCFP FDFP RI

Hα 0.0 Å 0.9576 0.8038 0.1962 0.9188

Hα +0.4 Å 0.9571 0.8097 0.1903 0.9178

Hα +0.6 Å 0.9659 0.8079 0.1921 0.9340

Hα −0.4 Å 0.9546 0.7922 0.2078 0.9134

Hα −0.6 Å 0.9536 0.8022 0.1978 0.9115

function in FibrilNet, and let θj represent the fibril orientation angle of the same pixel

calculated by the quadratic function in the tool of Jing et al. [77]. The acute angle

difference between θf and θj, denoted δ(θf , θj), is defined as

δ(θf , θj) =

 |θf − θj| if |θf − θj| ≤ 90◦

180◦ − |θf − θj| otherwise
. (3.6)

The angle difference is decided in favor of an acute or right angle, i.e., 0◦ ≤ δ(θf , θj)

≤ 90◦.

Figure 3.6 quantitatively compares the orientation angles of common fibril pixels

calculated by the fibril-fitting algorithms used in FibrilNet and the tool of Jing et al.

[77] based on the test image at 0.0 Å from the Hα line center 6563 Å with a 70′′ circular

FOV collected in AR 12665 on 2017 July 13 20:15:58 UT. Figure 3.6(A) shows the 2D

histogram of the orientation angles of common fibril pixels produced by the two tools

where the x-axis (y-axis, respectively) represents the orientation angles calculated by

FibrilNet (the tool of Jing et al. [77], respectively). The 2D histogram is computed

by grouping common fibril pixels whose orientation angles are specified by their x and

y coordinates into bins, and counting the common fibril pixels in a bin to compute

the color of the tile representing the bin. The width of each bin equals 2 degrees. It
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Figure 3.6 Quantitative comparison of the orientation angles of common fibril
pixels calculated by the fibril-fitting algorithms used in FibrilNet and the tool of
Jing et al. [77] based on the test image at 0.0 Å from the Hα line center 6563
Å with a 70′′ circular FOV collected in AR 12665 on 2017 July 13 20:15:58 UT. (A)
2D histogram of the orientation angles of common fibril pixels produced by the two
tools. (B) Differences of the orientation angles of common fibril pixels produced by
the two tools. The orientation angles of the fibrils highlighted by small red circles
are calculated wrongly by the tool of Jing et al. [77], but correctly by FibrilNet as
indicated in Figure 3.5.

can be seen from Figure 3.6(A) that the orientation angles of common fibril pixels

calculated by the two tools mostly agree with each other, which is consistent with the

findings shown in Figure 3.5. Figure 3.6(B) shows differences of the orientation angles

of common fibril pixels produced by the two tools. It can be seen from Figure 3.6(B)

that most of the common fibril pixels have very small orientation angle differences,

displayed by purple color. For the common fibril pixels with large orientation angle

differences, the orientation angles calculated by the quadratic function used in the

tool of Jing et al. [77] are often incorrect (see, for example, the fibrils highlighted by

the small red circles in Figure 3.6(B) and Figure 3.5).

3.4.3 Application of FibrilNet to Other Data

In this series of experiments, we applied FibrilNet to other types of test images,

including (i) a full-disk image from the Global Oscillation Network Group (GONG)
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[63, 125] at the National Solar Observatory (NSO), (ii) a full-disk image from the

Kanzelhhe Solar Observatory (KSO) [118, 119], (iii) high-resolution superpenumbral

fibrils from BBSO [76], and (iv) two high-resolution quiet Sun regions from BBSO.

The GONG full-disk Hα LH (Learmonth Reduced Hα) data in (i) was collected on

2015 September 28 00:01:34 UT. The KSO full-disk Hα Fi (Full-disk raw image) data

in (ii) was collected on 2015 September 14 09:14:20 UT. The GONG and KSO full-disk

images have relatively low resolution. The BBSO superpenumbra of sunspots in (iii)

was collected at Hα −0.6 Å from AR 12661 (501E, 95N) on 2017 June 4 19:08:44

UT. The two BBSO quiet-Sun regions in (iv) were collected on 2018 July 29 16:33:12

UT and 2020 June 10 16:10:25 UT at Hα −0.6 Å from (604E, 125S) and Hα 0.0

Å from (283E, 789N), respectively. The FibrilNet tool was trained using the same

241 Hα line center images described in Section 3.2. Here we present results without

uncertainty maps. Results with uncertainty maps can be generated similarly as done

in Subsection 3.4.1.

Figure 3.7 shows fibrils (red curves) predicted by FibrilNet on the GONG and

KSO test images. Figure 3.7(A) presents the GONG full-disk Hα image. Figure

3.7(B) shows the enlarged view of the region highlighted by the white box in Figure

3.7(A). In Figure 3.7(C), we see that FibrilNet detects many fibrils on the GONG

image. Figure 3.7(D) presents the KSO full-disk Hα image. Figure 3.7(E) shows the

enlarged view of the region highlighted by the white box in Figure 3.7(D). Figure

3.7(F) clearly demonstrates that FibrilNet detects the threads of filaments and fibrils

on the KSO image.

Figure 3.8 presents fibril prediction results on the BBSO high-resolution test Hα

images. Figure 3.8(A) shows the BBSO superpenumbra of sunspots image used in the

study. It can be seen that there are superpernumbral fibrils around the sunspot in the

center of the image. Figure 3.8(D) shows the predicted superpenumbral fibrils (red

curves) produced by FibrilNet on the image in Figure 3.8(A). We see in Figure 3.8(D)
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Figure 3.7 Fibrils (red curves) predicted by FibrilNet on the GONG and KSO
full-disk Hα images collected on 2015 September 28 00:01:34 UT and 2015 September
14 09:14:20 UT, respectively. (A) The GONG full-disk Hα image. (B) The enlarged
view of the region highlighted by the white box in (A). (C) Fibrils predicted by
FibrilNet on the image in (B). (D) The KSO full-disk Hα image. (E) The enlarged
view of the region highlighted by the white box in (D). (F) Fibrils predicted by
FibrilNet on the image in (E).
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Figure 3.8 Fibrils (red curves) predicted by FibrilNet on additional high-resolution
BBSO test Hα images. (A) The BBSO superpenumbra of sunspots image collected at
Hα −0.6 Å from AR 12661 (501E, 95N) on 2017 June 4 19:08:44 UT. (B) The BBSO
quiet-Sun image collected at Hα −0.6 Å from (604E, 125S) on 2018 July 29 16:33:12
UT. (C) The BBSO quiet-Sun image collected at Hα 0.0 Å from (283E, 789N) on
2020 June 10 16:10:25 UT. (D) Fibrils predicted by FibrilNet on the image in (A). (E)
Fibrils predicted by FibrilNet on the image in (B). (F) Fibrils predicted by FibrilNet
on the image in (C).
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that FibrilNet can distinguish the superpenumbral fibrils from the clusters of spicules

nearby. Figures 3.8(B) and 3.8(C) present the two BBSO quiet-Sun regions. Figures

3.8(E) and 3.8(F) show the predicted mottles in the quiet-Sun rosette structures in

Figures 3.8(B) and 3.8(C), respectively. These high-resolution Hα images clearly

demonstrate the good fibril prediction capability of our tool.

3.5 Summary

We develop a Bayesian deep learning method, FibrilNet, for tracing chromospheric

fibrils in Hα images of solar observations. We apply the FibrilNet tool to

high-resolution Hα images from an active region (AR 12665) collected by BBSO/GST

on July 13, 2017. The tool performs well on these high-resolution Hα images,

predicting fibrils with uncertainty quantification and determining the orientations

of the predicted fibrils. We further apply FibrilNet to full-disk Hα images from

other solar observatories and additional high-resolution Hα images collected by

BBSO/GST, demonstrating the tool’s usability in diverse datasets.

Our main results are summarized as follows:

1. The encoder-decoder convolutional neural network (i.e., the Bayesian
deep learning model) used in FibrilNet, as illustrated in Figure 3.3, is
an enhancement of two deep learning models, namely U-Net [34], based
on which our SolarUnet [75] for magnetic tracking was developed, and
SegNet [12]. FibrilNet predicts fibrils on a test Hα image through image
segmentation (i.e., predicting each pixel in the test Hα image to be black
indicating the pixel is part of a fibril or white indicating the pixel is not
part of a fibril). In computer vision and image processing, U-Net and
SegNet are two of the best image segmentation models. By combining
these two models, FibrilNet produces good image segmentation (i.e., fibril
prediction) results, as described in Section 3.4.

2. The training dataset used in this study comprises 241 high-resolution
Hα line center images in AR 12665 collected by BBSO/GST from
20:16:32 UT to 22:41:30 UT on 2017 July 13. After FibrilNet is trained
on this dataset, we apply the trained model to predict fibrils on five
high-resolution test Hα images from the same active region (AR 12665)
collected by BBSO/GST on 2017 July 13 20:15:58 UT as described in
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Subsection 3.4.1, as well as an additional five test Hα images including
two full-disk Hα images from GONG/KSO and three other high-resolution
Hα images collected by BBSO/GST as described in Subsection 3.4.3.
Our experimental results show that the Bayesian deep learning model
employed by FibrilNet performs well not only on the five high-resolution
test Hα images from AR 12665 that are not seen during training, but also
on the additional five test Hα images. No further training is needed for
FibrilNet to predict fibrils in the additional five test Hα images. This
is achieved by the generalization and inference capabilities of the deep
learning model used by FibrilNet. On the other hand, the threshold-based
tool in Jing et al. [77] is tailored for the high-resolution Hα images
collected by BBSO/GST. When applying the threshold-based tool in
Jing et al. [77] to the GONG full-disk Hα image in Figure 3.7, the
threshold-based tool performs poorly, missing many fibrils on the GONG
Hα image.

3. FibrilNet obtains training data from the threshold-based tool in Jing
et al. [77] where the training dataset contains 241 high-resolution Hα
line center images from AR 12665 collected by BBSO/GST as described
in item 2 above. When applying FibrilNet and the threshold-based
tool to the five high-resolution test Hα images from the same active
region (AR 12665) collected by BBSO/GST, the two tools agree well
on the detected fibrils as described in Subsections 3.4.1 and 3.4.2. This
demonstrates the good learning capability of FibrilNet. When predicting
fibrils on a test Hα image, FibrilNet uses an uncertainty quantification
technique (more precisely a Monte Carlo sampling technique) to process
the test Hα image T times where T = 50 as described in Subsection
3.3.2. Unlike FibrilNet, which employs deep learning, the tool in Jing et
al. [77] used a threshold-based algorithm, rather than machine learning,
for image segmentation to detect fibrils on the test Hα image. It takes
several seconds for the threshold-based tool to process the test Hα image.
When the uncertainty quantification technique is turned off (i.e., T is
set to 1), FibrilNet is ten times faster than the threshold-based tool in
Jing et al. [77] due to the fact that FibrilNet detects fibrils through
making predictions, while the two tools produce similar results. When
the uncertainty quantification technique is turned on (i.e., T is set to 50),
FibrilNet is as fast as the threshold-based tool while producing uncertainty
maps that not only provide a quantitative way to measure the confidence
on each detected fibril, but also help identify fibril structures that are
not detected by the threshold-based tool (i.e., that do not exist in the
training data) but are inferred through machine learning as described in
Subsection 3.4.1. It is worth noting that the main source of uncertainty
comes from the data rather than our deep learning model. Uncertainty
values are higher in the noisy regions of the test Hα image. Furthermore,
the ends of a predicted fibril are often associated with higher uncertainty,
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due to the ambiguity surrounding the transition from the fibril body to
the non-fibril background area. To the best of our knowledge, FibrilNet is
the first tool capable of predicting fibrils with uncertainty quantification.

4. We conducted additional experiments to evaluate the effectiveness of
the data augmentation technique used for training FibrilNet as described
in Subsection 3.3.1. Our experimental results show that, without the
data augmentation technique, the performance of FibrilNet degrades,
particularly when the tool is applied to the GONG and KSO full-disk
Hα images in Figure 3.7. This happens because the data augmentation
technique can increase the generalization and inference capabilities of the
Bayesian deep learning model used by FibrilNet. Our training dataset
comprises 241 Hα line center images from AR 12665 collected on July
13, 2017 as described in Section 3.2. We also performed experiments
where we split the training dataset into two parts based on image quality.
The first part contained 12 Hα line center images with slightly lower
quality. The second part contained the remaining 229 Hα line center
images with higher quality. Since the first part contained too few Hα
images, we expanded it by including 12 lower-quality images from the
other four wavelength positions in AR 12665 studied here, yielding a total
of 60 lower-quality Hα images. Our experimental results show that the
deep learning models trained by all 241 Hα line center images and by
the 229 higher-quality Hα line center images produce similar results. On
the other hand, the performance of the deep learning model trained by
the 60 lower-quality Hα images degrades, and becomes even worse in the
absence of data augmentation, particularly when the model is applied to
the GONG and KSO full-disk Hα images.

5. To further understand the behavior of FibrilNet, we trained the tool
using all 241×5 = 1205 high-resolution Hα images from all five wavelength
positions in AR 12665 studied here and applied the trained tool to the
same test images described in Section 3.4. The results obtained are
similar to those presented here, indicating our tool works equally well
even with fewer training images. When the tool is trained by a much
smaller dataset such as one with less than 100 Hα line center images
from AR 12665 collected on July 13, 2017, the tool still performs well
on the high-resolution test Hα images described in Section 3.4, but finds
fragmented filaments and fibrils, rather than long, complete filaments and
fibrils, on the KSO full-disk Hα image in Figure 3.7, even when the tool is
trained by the data augmentation technique with higher-quality training
images.

6. As mentioned above, the Bayesian deep learning model in FibrilNet
performs image segmentation to predict fibrils with uncertainty quantifi-
cation. On the other hand, the fibril-fitting algorithm in FibrilNet uses
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a polynomial regression function with varying degrees to calculate the
orientation angles of the predicted fibrils. This polynomial regression
model produces more accurate and smoother fibril orientation angles
than the quadratic function used by the tool in Jing et al. [77] as
described in Subsections 3.4.1 and 3.4.2. However, if we replace the
polynomial regression model by the quadratic function in FibrilNet, the
two tools would produce the same orientation angles on common fibril
pixels detected by the tools.

We conclude that FibrilNet is an effective and alternative method for fibril

tracing. It is expected that this tool will be a useful utility for processing observations

from diverse instruments including BBSO/GST and the new DKIST (Daniel K.

Inouye Solar Telescope).

3.6 Additional Results

Figure 3.9 (Figure 3.10, Figure 3.11, Figure 3.12, respectively) compares fibril tracing

results and fibril orientations obtained by FibrilNet and the tool in Jing et al. [77]

on the test image at +0.4 Å (+0.6 Å, −0.4 Å, −0.6 Å, respectively) from the Hα

line center 6563 Å with a 70′′ circular FOV collected in AR 12665 on 2017 July 13

20:15:58 UT where training data were 241 Hα line center images taken from the same

AR between 20:16:32 UT and 22:41:30 UT on the same day.
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Figure 3.9 Fibril tracing results on the test image at +0.4 Å from the Hα line
center 6563 Å with a 70′′ circular FOV collected in AR 12665 on 2017 July 13
20:15:58 UT where training data were 241 Hα line center images taken from the
same AR between 20:16:32 UT and 22:41:30 UT on the same day. (A) Fibrils on
the test Hα image detected by the tool in Jing et al. [77]. (B) Fibrils on the test
Hα image predicted by FibrilNet. (C) The aleatoric uncertainty (data uncertainty)
map produced by FibrilNet. (D) The epistemic uncertainty (model uncertainty) map
produced by FibrilNet. (E) Fibril orientation angles calculated by the tool in Jing
et al. [77]. (F) Fibril orientation angles determined by FibrilNet. Orientation angles
of a number of fibrils, some of which are highlighted by small red circles here, are
calculated wrongly by the tool in Jing et al. [77], but correctly by FibrilNet.
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Figure 3.10 Fibril tracing results on the test image at +0.6 Å from the Hα line
center 6563 Å with a 70′′ circular FOV collected in AR 12665 on 2017 July 13
20:15:58 UT where training data were 241 Hα line center images taken from the
same AR between 20:16:32 UT and 22:41:30 UT on the same day. (A) Fibrils on
the test Hα image detected by the tool in Jing et al. [77]. (B) Fibrils on the test
Hα image predicted by FibrilNet. (C) The aleatoric uncertainty (data uncertainty)
map produced by FibrilNet. (D) The epistemic uncertainty (model uncertainty) map
produced by FibrilNet. (E) Fibril orientation angles calculated by the tool in Jing
et al. [77]. (F) Fibril orientation angles determined by FibrilNet. Orientation angles
of a number of fibrils, some of which are highlighted by small red circles here, are
calculated wrongly by the tool in Jing et al. [77], but correctly by FibrilNet.
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Figure 3.11 Fibril tracing results on the test image at −0.4 Å from the Hα line
center 6563 Å with a 70′′ circular FOV collected in AR 12665 on 2017 July 13
20:15:58 UT where training data were 241 Hα line center images taken from the
same AR between 20:16:32 UT and 22:41:30 UT on the same day. (A) Fibrils on
the test Hα image detected by the tool in Jing et al. [77]. (B) Fibrils on the test
Hα image predicted by FibrilNet. (C) The aleatoric uncertainty (data uncertainty)
map produced by FibrilNet. (D) The epistemic uncertainty (model uncertainty) map
produced by FibrilNet. (E) Fibril orientation angles calculated by the tool in Jing
et al. [77]. (F) Fibril orientation angles determined by FibrilNet. Orientation angles
of a number of fibrils, some of which are highlighted by small red circles here, are
calculated wrongly by the tool in Jing et al. [77], but correctly by FibrilNet.
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Figure 3.12 Fibril tracing results on the test image at −0.6 Å from the Hα line
center 6563 Å with a 70′′ circular FOV collected in AR 12665 on 2017 July 13
20:15:58 UT where training data were 241 Hα line center images taken from the
same AR between 20:16:32 UT and 22:41:30 UT on the same day. (A) Fibrils on
the test Hα image detected by the tool in Jing et al. [77]. (B) Fibrils on the test
Hα image predicted by FibrilNet. (C) The aleatoric uncertainty (data uncertainty)
map produced by FibrilNet. (D) The epistemic uncertainty (model uncertainty) map
produced by FibrilNet. (E) Fibril orientation angles calculated by the tool in Jing
et al. [77]. (F) Fibril orientation angles determined by FibrilNet. Orientation angles
of a number of fibrils, some of which are highlighted by small red circles here, are
calculated wrongly by the tool in Jing et al. [77], but correctly by FibrilNet.
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CHAPTER 4

STOKES INVERSION

4.1 Background and Related Work

Stokes inversion is a method used to infer the physical conditions of the solar

atmosphere based on the interpretation of observed Stokes profiles [9, 21]. Estimates

of the physical magnitudes governing the state of the solar atmosphere can be obtained

through the various inversion algorithms that try to achieve the best fit to the

observed Stokes profiles [145]. One of the most widely used inversion algorithms

is the MilneEddington (ME) [11, 91, 92] algorithm. ME assumes that all the physical

quantities relevant to spectral line formation are constant with depth, and provides a

solution to the radiative transfer equation. Extensions of the ME algorithm include

Helix+ [87], MILOS [115], MERLIN [100] and VFISV [23, 22]. On the other hand,

with the availability of high performance computing, algorithms based on the local

thermodynamic equilibrium (LTE) and non-LTE conditions, which can solve the full

radiative transfer equation, also become popular. Examples of such algorithms include

SIR [129], SPINOR [42], and NICOLE [141].

Since Stokes inversion is a time-consuming task, there have been efforts of

employing machine learning (ML) to accomplish the task. After an ML model is

trained, one can use the trained model to perform Stokes inversion through making

predictions, which reduces the inversion time significantly [105]. Examples of these

ML models include multiple support vector regression (MSVR) [127] and multilayer

perceptrons (MLP) [26]. In recent years, more powerful deep learning approaches have

been developed to solve the Stokes inversion problem. For example, Asensio Ramos

& D az Baso[8] presented two convolutional neural networks (CNN) [94] to perform

Stokes inversion on the synthetic two-dimensional (2D) maps of Stokes profiles where
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the authors exploited the 2D spatial coherence of the field of view. Liu et al. [105]

designed a pixel-level CNN, referred to as PCNN, to perform Stokes inversion on the

Near InfraRed Imaging Spectropolarimeter (NIRIS) data [24] from the 1.6 m Goode

Solar Telescope (GST) at the Big Bear Solar Observatory (BBSO) [25, 56, 55, 149].

The authors used normalized Stokes Q, U, and V profiles as training data where the

labels of the training data were obtained from the output of the ME method.

Typically the ME method can infer five atmospheric parameters, including three

components of the magnetic field vector and two kinematic parameters, i.e., the line-

of-sight (LOS) velocity and Doppler width, which are mostly used by researchers

to understand the evolution of physical properties of the solar atmosphere [80]. In

this paper we propose a new deep learning method, named Stacked Deep Neural

Networks (SDNN), to infer the LOS velocities and Doppler widths from Stokes profiles

of GST/NIRIS. Although both our SDNN and the previous PCNN developed in Liu

et al. [105] perform Stokes inversion on the data from GST/NIRIS, the two tools differ

in three ways. First, PCNN focuses on predicting the total magnetic field strength,

inclination and azimuth angles. In contrast, our SDNN is designed to infer the LOS

velocity and Doppler width in addition to the vector magnetic field. Second, when

applying PCNN to infer the LOS velocity, it fails to infer the granular patterns in the

LOS velocity image of sunspot data. By contrast, SDNN can infer all the convective

granulation structures in the LOS velocity image [116]. Third, the architecture of

SDNN, which is better suited for Stokes inversion, is totally different from that of

PCNN. As demonstrated in our experimental study, SDNN outperforms PCNN on

sevral different datasets.

4.2 Observations and Data Preparation

The GST/NIRIS is a Fabry-Pérot based imaging system, which provides high-

resolution Stokes parameters I, Q, U and V of the Fe1 1560 nm line within a ±0.25
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nm spectral window [24]. A typical field-of-view is about 85′′ with an image scale of

0.′′083 pixel−1 [151, 167, 101, 166]. The data used in this study were obtained from

three active regions (ARs), namely AR 12371, AR 12665, and AR 12673. Our first

dataset, denoted D1, is a 990×950 image from AR 12371 collected at 17:33:00 UT on

2015 June 22. The second dataset, denoted D2, is a 720× 720 image from the same

AR 12371 but collected approximately three days later at 16:55:13 UT on 2015 June

25. The third dataset, denoted D3, is a 720× 720 image from AR 12665 collected at

16:20:12 UT on 2017 July 13. The fourth dataset, denoted D4, is a 720× 720 image

from AR 12673 collected at 19:17:53 UT on 2017 September 6.

Since D1 has the most pixels with the largest range of Stokes component values

among the four datasets, we use D1 as the training set. This dataset has 940,500

pixels. Each pixel is treated as a training data sample containing Stokes component

values and labeled by the LOS velocity and Doppler width calculated by the ME

method. Thus, as in Liu et al. [105], we use the output of the ME method as the

training labels. Notice that the number of spectral points scanned by GST/NIRIS is

usually 60, but varied in some particular days. For instance, there were 56 spectral

points for AR 12673 scanned on 2017 September 6. For consistency reasons, zeros

are added so that the number of spectral points is unified and fixed at 60. There are

four Stokes components I, Q, U, V at each spectral position, so the length of each

training data sample, corresponding to each pixel, is 60 × 4. There are two labels,

namely the LOS velocity and Doppler width, associated with the pixel. Therefore,

the total length of the training data sample fed to our SDNN model is 60× 4 + 2 =

242.

The remaining three datasets, D2, D3, D4, are used as test sets. The training

set and test tests are disjoint. Hence, our SDNN model is tested on data that the

model has never seen during training. Each test data sample in the test sets (D2, D3,

D4) has the same format as the training data samples in D1 except that the test data
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Figure 4.1 Architecture of our SDNN model. This model contains two 1D
convolution neural networks (1D-CNNs) where the first 1D-CNN is stacked on top of
the second 1D-CNN; hence the name SDNN (Stacked Deep Neural Networks) is used.
The input of the SDNN is a sequence of four Stokes I, Q, U and V components where
each component has 60 wavelength sampling points and the four Stokes components
correspond to a pixel. The first 1D-CNN takes as input each Stokes component,
and encodes and produces as output a 240-dimensional feature vector. There are four
Stokes components so the first 1D-CNN outputs four 240-dimensional feature vectors,
which are concatenated to form a 4× 240 feature vector. The second 1D-CNN takes
the 4 × 240 feature vector and produces two numbers representing the estimated
Doppler shift and Doppler width of the input pixel.

sample does not have the two labels. Therefore, the length of the test data sample is

60 × 4 = 240. Because the values of the Stokes components vary, we normalize the

Stokes Q, U, V profiles as done in Liu et al. [105] to facilitate machine learning. In

addition, we normalize the Stokes I profile by dividing the measurements by 10000

since the mean of the measurements is around 10000. The Doppler shift values, which

are obtained directly from the ME method and can be converted to the LOS velocities

as we explain later, range from −0.5 to 0.5. We normalize the Doppler shift values by

adding 0.5 to all the values, so that they range from 0 to 1. The Doppler width values

calculated by the ME method already range from 0 to 1, and hence no normalization

is done and the Doppler width values are used directly for model training.
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4.3 Methodology

Figure 4.1 illustrates the architecture of our deep learning model, SDNN, used to infer

LOS velocities and Doppler widths from Stokes profiles of GST/NIRIS. This model

contains two 1D convolution neural networks (1D-CNN) [82]. The first 1D-CNN

contains 3 convolution blocks followed by a fully connected layer with 240 neurons.

Each convolution block contains two 1D convolution layers with kernels of size 3,

activated by a ReLU (rectified linear unit) function, followed by a 1D max pooling

layer with a kernel of size 2. Each 1D convolution layer in the first (second and third,

respectively) convolution block has 64 (128 and 256, respectively) kernels.

The second 1D-CNN contains four convolution blocks followed by two fully

connected layers activated by ReLU and having 2048 and 1024 neurons, respectively.

Each of the first three convolution blocks contains a 1D convolution layer with a

kernel of size 3 activated by ReLU, followed by a 1D max pooling layer with a kernel

of size 2. The fourth convolution block only contains a 1D convolution layer with a

kernel of size 3 activated by ReLU. The 1D convolution layer in the first (second, third

and fourth, respectively) convolution block has 64 (128, 256 and 512, respectively)

kernels. The output layer has 2 neurons, activated by the linear function, f(x) = ax

[57], which is suitable for predicting continuous numerical values and performs better

than the Tanh function used in Liu et al. [105].

The input of our SDNN model is a sequence of four Stokes I, Q, U and

V components where each component has 60 wavelength sampling points and the

four Stokes components correspond to a pixel. The first 1D-CNN takes as input

each Stokes component, and encodes and produces as output a 240-dimensional

feature vector. There are four Stokes components so the 1D-CNN outputs four

240-dimensional feature vectors, which are concatenated to form a 4 × 240 feature

vector. The second 1D-CNN takes as input the 4× 240 feature vector and produces
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as output two numbers representing the estimated Doppler shift and Doppler width

of the input pixel.

The regression loss function used by our SDNN model is the L1 loss function

[57], defined as follows:

L1 loss =
1

N

N∑
i=1

(
∣∣ydsi − ŷdsi ∣∣+

∣∣ydwi − ŷdwi ∣∣) (4.1)

where N is the total number of pixels in a test set, ydsi (ydwi , respectively) is the

Doppler shift (Doppler width, respectively) of the ith pixel calculated by the ME

method, ŷdsi (ŷdwi , respectively) is the Doppler shift (Doppler width, respectively) of

the ith pixel predicted by our SDNN model. We use the L1 loss function here because

it is more robust to outliers, hence making the model more tolerant to noise in the

training data [161].

We train the SDNN model using the Adam optimizer. The batch size is set to

1024, and the number of epochs is set to 40. During testing, the trained model takes

as input the GST/NIRIS Stokes I, Q, U, and V profiles of each pixel in a test set, and

predicts as output the Doppler shift and Doppler width of the pixel. The predicted

values are denormalized so that they fall in the original (correct) range. We then

convert the Doppler shift, denoted ∆λ, to the LOS velocity, denoted vLOS, as follows:

vLOS =
C ×∆λ

λ
(4.2)

where λ is the GST/NIRIS magnetogram wavelength, which is set to 1.56 um, and

C is the speed of light. The unit of vLOS is km/s.

4.4 Results

4.4.1 Performance Metrics

For each test data sample, which corresponds to each pixel in a test set, we can

use the proposed SDNN model to predict or infer its LOS velocity and Doppler
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width. In addition, we can also use the ME method [11, 91, 92] to calculate its LOS

velocity and Doppler width. We adopted four metrics to evaluate the performance

of our SDNN model and compare it with related machine learning algorithms. We

considered two quantities: LOS velocity and Doppler width. For each quantity, we

compared its ME-calculated values with our SDNN-inferred values and computed the

four performance metrics.

The first performance metric is the mean absolute error (MAE) [131]. MAE

quantitatively assesses the difference between the ME-calculated and SDNN-inferred

values for the test set (test image). The smaller the MAE is, the better performance an

algorithm has. The second performance metric is the percent agreement (PA) [110].

Let yi and ŷi denote the ME-calculated and SDNN-inferred value, respectively, for

the ith pixel in the test image. The ith pixel is an agreement pixel if |yi− ŷi| is smaller

than a threshold. (The default threshold is set to 1 km/s for the LOS velocity and 0.1

Å for the Doppler width.) PA equals the number of agreement pixels divided by the

total number of pixels in the test image multiplied by 100%. Thus PA quantitatively

assesses the similarity between the ME-calculated and SDNN-inferred values for the

test image. The closer to 100% the PA is, the better performance an algorithm

has. The third performance metric is the R-squared value [112], which ranges from

−∞ to 1. R-squared measures the strength of the relationship between the ME-

calculated and SDNN-inferred values for the test image. The larger (i.e., closer to

1) the R-squared value is, the stronger the relationship between the ME-calculated

and SDNN-inferred values we have. The fourth performance metric is the Pearson

product-moment correlation coefficient (PPMCC) [83], which ranges from −1 to 1.

PPMCC quantifies how well the SDNN-inferred values agree with the ME-calculated

values for the test image. The larger (i.e., closer to 1) the PPMCC is, the better

performance an algorithm has.
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4.4.2 Impact of Training Data on the Performance of the SDNN Method

Table 4.1 presents experimental results of using D1 as the training set to train SDNN

and using D2, D3 and D4 as test sets to test SDNN as described in Section 4.2.

SDNN works well on D2 and D3. However, the performance of SDNN degrades on

D4 which contains pixels from AR 12673. We note that AR 12673 is the most flare-

productive active region in solar cycle 24, which shows strong magnetic fields in the

light bridge and apparent photospheric twist [152]. The training set D1 only contains

pixels from AR 12371, and hence the trained SDNN model does not have sufficient

knowledge about AR 12673. To assess and quantify the impact of training data on

the performance of SDNN, we additionally selected a 720 × 720 image with 518,400

pixels (data samples) from AR 12673 collected at 16:18:41 UT on 2017 September

6. We referred to this additional dataset as D5. Thus, the image of D5 was taken

approximately 3 hours before the image of D4. We then combined the 940,500 pixels

in D1 and the 518,400 pixels in D5 to get a new training set, denoted D1 ∪ D5. D1

∪ D5 contains 1,458,900 training data samples (pixels) in total. Results of using D1

∪ D5 as the training set to train SDNN and using D2, D3 and D4 as test sets to test

SDNN are also presented in Table 4.1. Notice that, due to the time difference, D1

∪ D5 and D4 are disjoint even though the data samples in D5 and D4 are from the

same AR 12673.

We see from Table 4.1 that the SDNN model trained by D1 ∪ D5 outperforms

the SDNN model trained by D1 when the two models are tested on D4. This happens

because the SDNN model trained by D1 ∪ D5 acquires more knowledge concerning

D4 than the SDNN model trained by D1 due to the fact that D4 and D5 are from

the same AR 12673 as indicated above. On the other hand, the two models have

similar performance when tested on D2 and D3. Notice that D1, D2 and D3 are from

normal active regions while D4 contains special pixels with extremely large magnetic

field strengths (saturated at the value of 5000 G or even larger). This kind of special
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Table 4.1 Performance Metric Values of SDNN Based on Two Training Sets and
Test Images from Three ARs

LOS Velocity Doppler Width

Test Image Metric D1 D1 ∪ D5 D1 D1 ∪ D5

D2

2015 June 25

16:55:13 UT

(AR 12371)

MAE 0.251 0.260 0.048 0.047

PA 97.8% 97.5% 89.1% 90.3%

R-squared 0.796 0.786 0.317 0.458

PPMCC 0.915 0.912 0.780 0.787

D3

2017 July 13

16:20:12 UT

(AR 12665)

MAE 0.289 0.302 0.039 0.040

PA 97.6% 97.0% 93.2% 93.2%

R-squared 0.768 0.728 0.224 0.278

PPMCC 0.912 0.896 0.716 0.723

D4

2017 September 6

19:17:53 UT

(AR 12673)

MAE 0.952 0.316 0.064 0.034

PA 51.0% 94.5% 82.3% 95.3%

R-squared -0.402 0.749 -1.334 0.208

PPMCC 0.804 0.883 0.516 0.711

pixels (data samples) do not occur in D1, D2, D3. Thus, the model trained by D1

lacks knowledge of extremely large magnetic field strengths, and hence does not work

well on D4. On the other hand, like D4, D5 also contains pixels with extremely large

magnetic field strengths. As a consequence, the model trained by D1 ∪ D5 performs

well on D4. These results indicate that when dealing with normal ARs, the training

data samples in D1 are sufficient to produce good results. On the other hand, when

dealing with special ARs such as AR 12673, the training set must be expanded to

include data samples from the special ARs so that our SDNN model can acquire

sufficient knowledge about the special ARs to produce good results. In view of the

experimental results, we used D1 ∪ D5 as the training set in subsequent experiments.
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4.4.3 Comparison between the SDNN and ME Methods

Here we compare the LOS velocity maps and Doppler width maps produced by the

SDNN and ME methods. Figure 4.2 (Figure 4.3, Figure 4.4, respectively) presents the

LOS velocity maps (top panels) and Doppler width maps (bottom panels) produced

by the two methods based on the test set/image D2 (D3, D4, respectively) with data

samples/pixels from AR 12371 (AR 12665, AR 12673, respectively) collected on 2015

June 25 16:55:13 UT (2017 July 13 16:20:12 UT, 2017 September 6 19:17:53 UT,

respectively). The first columns in the figures show scatter plots, the second columns

show maps produced by the ME method and the third columns show maps produced

by the SDNN method. Pixels on the diagonal line in a scatter plot have identical

ME-calculated and SDNN-inferred values. We see from Figures 4.2, 4.3 and 4.4 that

the maps produced by the two methods are highly correlated. The high correlation

can be seen particularly from the scatter plots of the LOS velocity maps and the

corresponding PPMCC values of ∼0.9 as shown in Table 4.1. Since the training labels

for the SDNN model are produced by the ME method, these results demonstrate the

good learning capability of SDNN. Notice also that the maps produced by SDNN

are smoother and cleaner than those produced by the ME method. We see many

salt-and-pepper noise pixels in the maps of the ME method. The many noise pixels

from the ME method are also reflected in the scatter plots in Figures 4.2, 4.3 and

4.4. For example, refer to the scatter plot of the LOS velocity maps in Figure 4.3

where there is a vertical line on which pixels have a LOS velocity of zero. Many of

the pixels on the vertical line are noisy ones in the LOS velocity map produced by

the ME method.

It is worth noting that the LOS velocity maps in Figure 4.3 contain granular

patterns and a portion of a sunspot penumbra. For example, there are granular

patterns located in the region whose E-W coordinates are between −460′′ and

−450′′ and N-S coordinates are between 190′′ and 200′′. A partial sunspot penumbra
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Figure 4.2 Comparison between the ME and SDNN methods for producing the
LOS velocity maps (top panels) and Doppler width maps (bottom panels) based on
the test image/dataset D2 from AR 12371 collected on 2015 June 25 16:55:13 UT,
where training data were taken from D1 ∪ D5. The first column shows scatter plots
where the X-axis and Y-axis represent the values obtained by the ME and SDNN
methods, respectively. Pixels on the diagonal line in a scatter plot have identical
ME-calculated and SDNN-inferred values. The second and third columns show the
maps produced by the ME and SDNN methods, respectively.

is located in the region whose E-W coordinates are between −450′′ and −440′′ and

N-S coordinates are between 150′′ and 160′′. Figure 4.5 presents an enlarged view

of these two regions. Both ME and SDNN methods produce the granular patterns

with a PPMCC of 0.982 and the partial sunspot penumbra with a PPMCC of 0.893.

The similarity between the local maps produced by the two methods is also reflected

in the scatter plots in Figure 4.5. In addition, we see from Figure 4.5 that the local

maps produced by the SDNN method are smoother and cleaner than those produced

by the ME method. There are many salt-and-pepper noise pixels in the maps of the

ME method, particularly in the region of the partial sunspot penumbra.
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Figure 4.3 Comparison between the ME and SDNN methods for producing the
LOS velocity maps (top panels) and Doppler width maps (bottom panels) based on
the test image/dataset D3 from AR 12665 collected on 2017 July 13 16:20:12 UT,
where training data were taken from D1 ∪ D5. The first column shows scatter plots
where the X-axis and Y-axis represent the values obtained by the ME and SDNN
methods, respectively. Pixels on the diagonal line in a scatter plot have identical
ME-calculated and SDNN-inferred values. The second and third columns show the
maps produced by the ME and SDNN methods, respectively.
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Figure 4.4 Comparison between the ME and SDNN methods for producing the
LOS velocity maps (top panels) and Doppler width maps (bottom panels) based on
the test image/dataset D4 from AR 12673 collected on 2017 September 6 19:17:53 UT,
where training data were taken from D1 ∪ D5. The first column shows scatter plots
where the X-axis and Y-axis represent the values obtained by the ME and SDNN
methods, respectively. Pixels on the diagonal line in a scatter plot have identical
ME-calculated and SDNN-inferred values. The second and third columns show the
maps produced by the ME and SDNN methods, respectively.
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Figure 4.5 Comparison between the ME and SDNN methods for producing the
local LOS velocity maps containing granular patterns (top panels) and a portion of
a sunspot penumbra (bottom panels) based on the test image/dataset D3 from AR
12665 collected on 2017 July 13 16:20:12 UT, where training data were taken from D1
∪ D5. The first column shows scatter plots where the X-axis and Y-axis represent the
values obtained by the ME and SDNN methods, respectively. Pixels on the diagonal
line in a scatter plot have identical ME-calculated and SDNN-inferred values. The
second and third columns show the local LOS velocity maps produced by the ME
and SDNN methods, respectively.
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4.4.4 Comparison with Related Machine Learning Methods

Here we compare SDNN with three related machine learning (ML) methods including

multiple support vector regression (MSVR) [127], multilayer perceptrons (MLP) [26]

and a pixel-wise convolutional neural network (PCNN) [105]. The MSVR method uses

the radial basis function kernel where the regularization parameter is set to 1 and

the epsilon is set to 0.2. The MLP model consists of an input layer, an output layer,

and two hidden layers each of which has 1024 neurons. The PCNN model, which was

originally designed for inferring vector magnetic fields, is modified to output the LOS

velocity and Doppler width, though the same model architecture and hyperparameter

setting are used here.

Figure 4.6 compares the MAE, PA, R-squared and PPMCC values of the four

ML methods based on the test image/dataset D2 (D3, D4, respectively) from AR

12371 (AR 12665, AR 12673, respectively) collected on 2015 June 25 16:55:13 UT

(2017 July 13 16:20:12 UT, 2017 September 6 19:17:53 UT, respectively) where

training data were taken from D1 ∪ D5. It can be seen from Figure 4.6 that SDNN

outperforms the other three ML methods in terms of all the four performance metrics.

When compared to the most closely related PCNN method, SDNN achieves an MAE

of 0.260 (0.302, 0.316, respectively) while PCNN achieves an MAE of 0.455 (0.537,

0.542, respectively), showing an improvement of 42.9% (43.8%, 41.7%, respectively)

by SDNN, on D2 (D3, D4, respectively) in producing the LOS velocity maps for the

three datsets. Furthermore, in producing these LOS velocity maps, SDNN achieves

a PPMCC of 0.912 (0.896, 0.883, respectively) while PCNN achieves a PPMCC of

0.849 (0.676, 0.832, respectively) on D2 (D3, D4, respectively); SDNN beats PCNN

by 7.4%, 32.5% and 6%, respectively, on the three datasets. These results indicate

that our SDNN model is more robust and has a better generalization and inference

capability than the closely related PCNN model. It is worth pointing out that the

granular patterns in the LOS velocity map of the SDNN method as shown in Figure
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4.5, which exhibit important kinematic information on the photospheric surface [72],

are missing from the LOS velocity maps produced by the other three ML methods,

another sign indicating the superiority of the proposed SDNN model.

4.4.5 Comparison between the Inversion Results of SDO/HMI and

GST/NIRIS

So far we have focused on Stokes inversion for GST/NIRIS. There are inversion results

from the Helioseismic and Magnetic Imager (HMI) [134] on board the Solar Dynamics

Observatory (SDO) [123]. Here we compare the inversion results of the space-borne

observatory (SDO/HMI) and ground-based observatory (BBSO/GST). We selected

an HMI Dopplergram from AR 12673 collected on 2017 September 6 19:00:00 UT,

and a temporarily closest test image/dataset, denoted D6, from the same AR 12673

collected by GST/NIRIS on 2017 September 6 19:01:48 UT. We aligned the HMI and

GST/NIRIS images, and applied our SDNN model trained by the dataset D1 ∪ D5

and the ME method to D6, respectively.

Figure 4.7 presents the LOS velocity map from the HMI Dopplergram and the

LOS velocity maps produced by the ME and SDNN methods (top panels), and shows

the corresponding scatter plots (bottom panels). It can be seen from the top panels

that the maps of GST/NIRIS obtained by ME and SDNN are much clearer than the

map from HMI. This happens due to the higher resolution imaging data offered by

GST/NIRIS. On the other hand, the maps from HMI and SDNN are smoother than

the map of ME which contains salt-and-pepper noise pixels. Furthermore, we see

from the left and middle scatter plots in Figure 4.7 that the map produced by SDNN

is closer to the map from HMI with a PPMCC of 0.827 than the map produced by

ME which has a PPMCC of 0.745. The black regression lines in the scatter plots have

a slope of ∼1.4, possibly caused by the offset in calibration, which occurs due to the

intrinsic difference between the two instruments HMI and GST/NIRIS.
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4.5 Summary

We develop a deep learning model (SDNN) to infer LOS velocities and Doppler widths

from Stokes profiles of GST/NIRIS. The labels for training SDNN are prepared by

the widely used MilneEddington (ME) method. We compare the LOS velocity and

Doppler width maps produced by SDNN with those from ME and related machine

learning (ML) algorithms including multiple support vector regression (MSVR),

multilayer perceptrons (MLP) and a pixel-wise convolutional neural network (PCNN).

We also compare the inversion results of ME and SDNN based on GST/NIRIS with

those from SDO/HMI in a dataset taken from flare-prolific AR 12673.

Our main results are summarized as follows.

1. For the test datasets from GST/NIRIS considered in the paper, SDNN
produces smoother and cleaner LOS velocity and Doppler width maps
than the ME method. The same conclusion is obtained when comparing
the inversion results of GST/NIRIS and SDO/HMI. Furthermore, SDNN
performs Stokes inversion through making predictions, and hence is faster
than the computation-based ME method. It takes ∼75 s for SDNN to
process a test image here, which is approximately five times faster than
the ME method.

2. The SDNN-inferred LOS velocities are highly correlated to the
ME-calculated ones with PPMCC being close to 0.9 on average. The LOS
velocity and Doppler width maps produced by SDNN are closer to MEs
maps than those from the related ML methods (MSVR, MLP, PCNN).
Furthermore, both ME and SDNN are able to infer granular patterns
in LOS velocity maps. These patterns exhibit important kinematic
information on the photospheric surface, which are missing from the LOS
velocity maps produced by the other three ML methods. These results
demonstrate the better learning capability of SDNN than the other ML
methods.

3. Training data has a significant impact on the performance of SDNN.
When SDNN is trained by data from normal active regions (ARs), it
performs well on normal ARs, but suffers on special ARs such as AR
12673. AR 12673 contains special pixels with extremely large magnetic
field strengths (saturated at the value of 5000 G or even larger). To acquire
knowledge concerning these extremely large magnetic field strengths, we
have to include some of the special pixels/data samples in the training set.
This finding is consistent with the guidelines suggested in the machine
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learning (ML) literature [16] where an iterative training process with
increasing training data is often used to improve the performance of ML
models.

Based on these results, we conclude that SDNN is an effective and alternative

method for inferring LOS velocities and Doppler widths from Stokes profiles of

GST/NIRIS. It is hoped that SDNN will be a useful tool in producing high-quality

velocity fields that are crucial for understanding and predicting solar flares.
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Figure 4.6 Performance metric values of MSVR, MLP, PCNN and SDNN based
on the test image/dataset D2 (D3, D4, respectively) from AR 12371 (AR 12665, AR
12673, respectively) collected on 2015 June 25 16:55:13 UT (2017 July 13 16:20:12
UT, 2017 September 6 19:17:53 UT, respectively) where training data were taken
from D1 ∪ D5. Left column: performance metric values, displayed by bar charts,
that are obtained in predicting LOS velocities. Right column: performance metric
values obtained in predicting Doppler widths.
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Figure 4.7 Comparison between the inversion results of SDO/HMI and GST/NIRIS
in AR 12673. Top panels (from left to right): the LOS velocity map from the HMI
Dopplergram collected on 2017 September 6 19:00:00 UT, the LOS velocity map
produced by the ME method, and the LOS velocity map produced by the SDNN
method with training data from D1 ∪ D5 where the ME and SDNN methods were
applied to the test image/dataset D6 collected on 2017 September 6 19:01:48 UT.
Bottom panels (from left to right): the scatter plot between ME and HMI, the scatter
plot between SDNN and HMI, and the scatter plot between SDNN and ME.
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CHAPTER 5

VECTOR MAGNETOGRAM GENERATION

5.1 Background and Related Work

The energy source to power solar eruptions is the magnetic energy stored in solar

active regions (ARs). These eruptive events are the direct sources of disturbances in

the near-Earth environment, the so-called space weather. Magnetic energy is divided

into potential and non-potential components [37, 136]. The global coronal magnetic

field and the extension to the heliosphere can be described by the potential field well

[135]. From the solar corona down to the photosphere, the magnetic field becomes

highly non-potential and is in association with the origin of solar activities. The

quantitative measurement of nonpotentiality is usually referred to as free magnetic

energy, which can be calculated using vector magnetograms by nonlinear force-free

field (NLFFF) extrapolation methods [156, 157, 111, 20, 137, 159, 143]. With three-

dimensional (3D) NLFFFs, magnetic topology and magnetic helicity injection can

also be derived in addition to free magnetic energy. The studies of free magnetic

energy and comparisons with energy release provide important information of an AR’s

capability in producing eruptive events including flares and coronal mass ejections

(CMEs) [6], thereby leading to quantitative prediction of future events. The physical

process of the flare or CME initiation can be explained by plasma instability such

as torus and/or kink instabilities [146, 85, 84], or via magnetohydrodynamic (MHD)

processes such as magnetic reconnection [4, 78]. Such processes can be revealed by

numerical MHD simulations using, once again, vector magnetograms as boundary

conditions. In addition, magnetic field parameters such as those of Space-weather

HMI Active Region Patches (also known as SHARP parameters)[19] can be derived

from the vector magnetograms taken by the Helioseismic and Magnetic Imager (HMI)
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on board the NASA Solar Dynamics Observatory (SDO) [134] mission and are widely

used in machine learning-based flare and CME forecasting [18, 28, 155, 1].

Since 2010, consistent time-sequence full disk photospheric vector magne-

tograms have been available through SDO/HMI. This data set covers a relatively

weak solar cycle, namely cycle 24, which had fewer big eruptive events, and therefore

the sampling is not sufficient to understand and predict solar eruptions, Prior

to that, vector magnetograms were available sporadically for certain ARs from

some observatories, while line-of-sight (LOS) magnetograms have been consistently

available from another NASA source: the Michelson Doppler Imager (MDI) on board

the Solar and Heliospheric Observatory (SOHO) [133].

With the importance of vector magnetograms and their unavailability prior to

2010 as described above, we propose a new deep learning approach, specifically a

generative adversarial network (GAN) model, to generate consistent time-sequence

photospheric vector magnetograms of all ARs from 1996 to 2010, which covered a more

active solar cycle 23. Our GAN model is trained by LOS magnetograms, Bx, By from

SDO/HMI combined with Hα observations from Big Bear Solar Observatory (BBSO)

[31]. The validation of our approach uses the overlapping data from 2010-05-01 to

2011-04-11, when MDI and HMI obtained data simultaneously. There is a good

physical reason to use Hα as the additional constraint for this research: in the solar

atmosphere, magnetic fields and flows are at frozen-in condition, and therefore the

Hα fibril structure can provide the direction of magnetic fields in X and Y dimensions

[74].

Deep learning is a branch of machine learning where neural networks are

designed to learn from large amounts of data [94]. It has been used extensively in

computer vision, natural language processing, and lately in biology [35, 144], medicine

[160, 48], heliophysics [47, 103, 104, 75, 74], and astronomy [81, 106, 15]. Deep

learning employs various networks such as deep neural networks, deep belief networks,

90



convolutional neural networks (CNNs) and recurrent neural networks, among which

GANs have drawn significant interest in recent years [58].fu2019dual A GAN model

has two components: the generator that generates fake samples and the discriminator

that tries to classify examples as either real or fake ones. The two components

are trained together in an adversarial way. The contest operates in terms of data

distributions. The generator learns to map from a latent space to a data distribution

while the discriminator distinguishes the fake samples produced by the generator

from the true data distribution. The generators objective is to fool the discriminator

by producing fake samples that the discriminator thinks are part of the true data

distribution. When this objective is accomplished, the training of the GAN model is

completed. GANs have been used in video prediction [68], image enhancement [30],

image-to-image translation [71], and image generation (synthesis) [81, 106].

To date, several deep learning approaches have been developed for estimating

magnetic fields. Kim et al. generated farside solar magnetograms from STEREO/Ext-

reme UltraViolet Imager (EUVI) 304-Å images using a deep learning model based

on conditional GANs (cGANs) [81]. The authors trained their model using pairs of

SDO/Atmospheric Imaging Assembly (AIA) 304-Å images and SDO/HMI magne-

tograms. They reported some preliminary results obtained from the cGAN model

[81]. Liu et al. performed a detailed analysis of the cGAN model and concluded that

more research needs to be performed to obtain scientifically reliable magnetograms

[106]. More recently, Bai et al. presented a CNN to estimate the unsigned radial

component of the magnetic filed and transverse field from photospheric continuum

images [13].

In contrast to the previous work, our new GAN-based method, named MagNet,

aims to generate photospheric vector magnetograms of solar active regions. We design

a novel architecture and loss function tailored for vector magnetogram generation to

take into account the magnetic field strength. Our trained MagNet takes as input
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LOS magnetograms from SOHO/MDI as well as Hα images from BBSO, and produces

as output synthetic magnetic field components B′x and B′y. The generated B′x and

B′y components along with the line-of-sight (LOS) components of the magnetic field,

which can be treated as Bz components, create synthetic vector magnetograms from

1996 to 2010. These generated vector magnetograms will be useful for studying the

triggering mechanisms of solar eruptions and for forecasting eruptive events.

5.2 Observations and Data Preparation

MDI, which is part of the SOHO satellite, acquires a LOS magnetogram every 96

minutes during the period from 1995 to 2011, which covers more active solar cycle 23

with many large flares [133]. The spatial resolution is 4′′ and the full disk images are

collected on a 1024 × 1024 detector. As a successor of MDI, the HMI instrument,

which is part of the SDO mission, provides continuous coverage of full disk Doppler

velocities, LOS magnetograms, and continuum proxy images [134]. HMI has been

operational since May 1, 2010, covering solar cycle 24. HMI observes the full solar disk

at 6173 Å every 12 minutes for a better signal-to-noise ratio. The spatial resolution

is 1′′ and the full disk images are collected on a 4096 × 4096 detector. Photospheric

vector magnetograms have been available since the lunch of SDO/HMI. BBSO, which

is a ground-based observatory, has provided Hα observations (images) since 1970s

[31]. BBSOs full disk Hα observations are taken every 1 minute, up to 9 hours for

one observing day at the wavelength of 6563 Å. The spatial resolution is 2′′ and

the full disk images are collected on a 2048 × 2048 detector. Unlike satellite-based

instruments such as MDI and HMI, the ground-based full disk telescope at BBSO

sometimes has seeing limitations due to unstable conditions of Earth’s atmosphere

and weather.

In our datasets, we excluded low-quality Hα images with an incomplete field

of view (FOV) and cloud shades as well as other out-of-focus images. We selected
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Hα images in the period from 2010-05-01 to 2017-12-31. We then collected their

temporarily closest full disk MDI LOS magnetograms, HMI LOS magnetograms and

HMI vector magnetograms, respectively. Specifically, for each selected Hα image, we

collected all magnetograms available within 6 minutes of the time stamp of the Hα

image. If there were more than one image available, we selected the one with the

closest time stamp.

Our training set, contained selected 2874 Hα images from 2014-01-01 to

2017-08-04 and their temporarily closest HMI LOS magnetograms and HMI vector

magnetograms. Our first test set, contained 226 HMI LOS magnetograms from

2017-08-05 to 2017-12-31 and their temporarily closest Hα images. Our second

test set, contained 115 MDI LOS magnetograms from 2010-05-01 to 2011-04-11

and their temporarily closest Hα images. During this period, both MDI/HMI

LOS magnetograms and HMI vector magnetograms were available. The true vector

components Bx, By used to train our MagNet model and validate our predictions

were obtained from the HMI vector magnetograms.

Because we are mainly interested in solar flares in solar active regions (ARs),

we cut AR patches of 256 × 256 pixels that may produce flares from the full disk

magnetograms collected above. We aligned the AR patches with the corresponding

regions in their temporarily closest Hα images. As a result of the alignment process,

we obtained 8442 AR pairs in the training set, denoted Train HMI, 327 AR pairs in

the first test set, denoted Test HMI, and 159 AR pairs in the second test set, denoted

Test MDI. Furthermore, we removed some low-quality image pairs and obtained 250

AR pairs in Test HMI. For Test MDI, since the MDI and HMI images had a big

resolution gap, in addition to removal of image pairs with low quality, we calculated

the Pearson correlation coefficient (CC) between the HMI LOS magnetogram and

MDI LOS magnetogram for each AR pair. We filtered out those AR pairs with CC

values less than 0.8, obtaining 24 AR pairs in Test MDI.
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Figure 5.1 Overview of the training process of MagNet. LOS represents an active
region of an HMI LOS magnetogram, Hα represents the corresponding region of the
Hα observation (image) temporarily closest to the LOS, Bx is the ground truth and
B′x is the generated fake sample. Dashed lines represent back propagation in the
neural network.

5.3 Methodology

5.3.1 The MagNet Model

Generating synthetic B′x and B′y amounts to solving a regression problem because

the output of the generating procedure consists of real numbers, i.e., magnetic field

strengths. We employ a novel generator architecture containing an advanced CNN

with self-attention [168] to solve this regression problem. MagNet generates B′x and

B′y separately. During training, MagNet takes as input pairs of aligned BBSO Hα

images and HMI LOS magnetograms and uses corresponding HMI vector components

Bx (By, respectively) as labels (ground truth). Fig. 5.1 shows the training process

of MagNet for generating B′x; the training process for generating B′y is similar and

omitted. During testing, MagNet takes a pair of aligned BBSO Hα image and MDI

LOS magnetogram (or HMI LOS magnetogram) and generates a predicted B′x (B′y,

respectively).
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5.3.2 Model Training and Testing

Figure 5.1 presents an overview of the MagNet training process for generating/predicting

B′x where the discriminator, denoted Dx, and generator, denoted Gx, compete and

learn in an adversarial way for optimizing the following loss function, denoted Lxadv,

to reach an equilibrium:

min
Gx

max
Dx

Lxadv(Gx, Dx) = EBx∼PDATA(Bx)[logDx(Bx)]

+ EB′
x∼PDATA(Bx)[log(1−Dx(B

′
x))]

B′x = Gx(LOS,Hα)

(5.1)

Here, E takes the expectation over PDATA(Bx), which is the true distribution of Bx.

The generator Gx takes as input a pair of aligned HMI LOS magnetogram and Hα

image and generates as output the vector component B′x. The discriminator Dx takes

as input the pair of B′x (Bx, respectively) images and produces as output ”Fake”

features (”Real” features, respectively) for the fake sample B′x (the ground truth

Bx, respectively). Initially, Dx(Bx) = 1 and Dx(B
′
x) = 0. When the equilibrium is

reached, the training is completed where the discriminator cannot tell the difference

between the generated fake sample and ground truth. We adopt the same training

scheme for generating/predicting B′y with the generator Gy, discriminator Dy, and

loss Lyadv.

Figure 5.2 illustrates the generator Gx; Gy is implemented similarly and its

description is omitted. During training, each of the input HMI LOS magnetogram

and Hα image is first processed by a convolutional block. Each convolutional block

consists of a convolution layer with batch normalization, followed by a parametric

ReLU (PReLU) activation function [64]. The feature maps produced by the

convolutional blocks are concatenated and fed to a ResNet-like network [65]. The

output of the ResNet-like network is then sent to two modules: the channel attention
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Figure 5.2 Illustration of the generator Gx of MagNet, which takes as input the
pair of aligned HMI LOS and Hα images and produces as output the fake sample B′x.

module (CAM) and position attention module (PAM), both of which were originally

designed for DANet [43]. CAM and PAM leverage the self-attention mechanisms in

the modules to better capture and transform a wider range of contextual information

into local features, thus enhancing their representation capability. Both CAM and

PAM are calculated in a similar way where CAM applies the self-attention mechanism

to image channels while PAM focuses on the calculation of location information. The

outputs of CAM and PAM are combined and sent to convolutional blocks, followed

by upsampling blocks (i.e., convolutional blocks with upsampling), to produce the

vector component B′x.

Figure 5.3 illustrates the discriminator Dx, which employs the architecture

developed by Ledig et al. [95], except that we replace their Leaky ReLU layer with the

PReLU layer. Dx takes as input the pair of B′x (Bx, respectively) images and produces

as output “Fake” features (“Real” features, respectively) for the fake sample B′x (the

ground truth Bx, respectively). The discriminator Dy is implemented similarly.

During inference (testing), MagNet takes as input a pair of aligned MDI (or

HMI) LOS magnetogram and Hα image and produces as output a fake sample B′x

(B′y, respectively) through the trained generator Gx (Gy, respectively). These B′x and

B′y are generated/predicted vector components corresponding to the input MDI (or

HMI) LOS magnetogram and Hα image.
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Figure 5.3 Illustration of the discriminator Dx of MagNet, which takes as input the
pair of B′x (Bx, respectively) images and produces as output “Fake” features (“Real”
features, respectively) for the fake sample B′x (the ground truth Bx, respectively).

For many of the AR patches used in our study, a large portion of each of them

has small magnetic field strengths (≤ 200 Gauss). Relatively few pixels in an AR

patch have large magnetic field strengths (> 200 Gauss). To tackle this imbalanced

problem in our datasets, we employ a novel weighted Lpw loss of a pixel p, defined as:

Lpw(s′, s) = |s
c
||s′ − s|. (5.2)

Here, s′ represents the MagNet-predicted magnetic field strength at p, s represents

the true magnetic field strength at p, and c is a threshold. (In the study presented

here, the threshold was set to 0.95.) The absolute difference between s′ and s at p,

usually reflected by the L1 loss, is multiplied by a weight, | s
c
|. This suggests that

a pixel p with a larger (smaller, respectively) magnetic field strength yield a larger

(smaller, respectively) Lpw loss.

The weighted loss between the predicted B′x and the true Bx, denoted

Lw(B′x, Bx), is defined as:

Lw(B′x, Bx) =
1

N

∑
p∈Bx

Lpw(s′, s), (5.3)

where N is the total number of pixels in Bx. The total loss, denoted LxMagNet, is

defined as the sum of the adversarial loss in Equation (5.1) and the weighted Lw loss
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in Equation (5.3), as shown in Equation (5.4) below:

LxMagNet = λLxadv + Lw(B′x, Bx), (5.4)

where λ was set to 0.001 [95]. The total loss, LyMagNet, for predicting B′y is defined

similarly. The training of MagNet was done by applying the Adam [14] optimizer to

minimizing LxMagNet and LyMagNet individually on two separate NVIDIA A100 GPUs.

5.3.3 Performance Metrics

We adopt three metrics, namely the mean absolute error (MAE) [138], percent

agreement (PA) [110], and Pearson correlation coefficient (CC) [46, 122], to quantita-

tively evaluate the performance of MagNet. The first performance metric is defined

as:

MAE =
1

N

N∑
i=1

|s′i − si|, (5.5)

where N = 256 × 256 = 65536 is the total number of pixels in an AR patch

(vector component), and si (s′i, respectively) denotes the true (predicted, respectively)

magnetic field strength for the ith pixel, 1 ≤ i ≤ 65536, in the vector component.

This metric is used to quantitatively assess the dissimilarity (distance) between the

true magnetic field strengths and predicted magnetic field strengths in the vector

component.

The second performance metric is defined as:

PA =
M

N
× 100%, (5.6)

where M denotes the total number of agreement pixels in the vector component. We

say the ith pixel in the vector component is an agreement pixel if |s′i − si| is smaller

than a threshold. (In the study presented here, the threshold was set to 100 Gauss.)
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This metric is used to quantitatively assess the similarity between the true magnetic

field strengths and predicted magnetic field strengths in the vector component.

The third performance metric is defined as:

CC =
E[(T − µT )(G− µG)]

σTσG
, (5.7)

where T and G represent the true magnetic field strengths and predicted magnetic

field strengths, respectively, in the vector component, µT and µG are the mean of T

and G, respectively; σT and σG are the standard deviation of T and G, respectively;

and E(·) is the expectation. The value of CC ranges from −1 to 1. A value of 1

means that a linear equation describes the relationship between T and G perfectly

where all data points lying on a line for which G increases as T increases. A value

of −1 means that all data points lie on a line for which G decreases as T increases.

A value of 0 means that there is no linear correlation between the variables T and

G. CC measures the linear correlation between the true magnetic field strengths and

predicted magnetic field strengths, quantifying how close these values are [46, 122,

138].

5.4 Results

5.4.1 Quantitative Evaluation of the MagNet Model on HMI and MDI

Data

Our training set, Train HMI, contains 8442 pairs of aligned BBSO Hα images and

HMI LOS magnetograms of ARs in the period between 2014-01-01 and 2017-08-04 as

well as corresponding 8442 vector components Bx (By, respectively) from HMI, which

are used as labels. We employ two test sets to evaluate the performance of the trained

MagNet model. The first test set, Test HMI, contains 250 pairs of aligned BBSO

Hα images and HMI LOS magnetograms of ARs in the period between 2017-08-05

and 2017-12-31. The second test set, Test MDI, contains 24 pairs of aligned BBSO
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Hα images and MDI LOS magnetograms of ARs in the overlapping period of MDI

and HMI between 2010-05-01 and 2011-04-11 when MDI and HMI obtained data

simultaneously. We use the 250 + 24 = 274 corresponding true vector components

Bx and By from HMI to verify whether the predictions made by the trained MagNet

model are correct or not. All the images have 256 × 256 pixels. The data collection

and processing procedures are described in Section 5.2 The training set and the two

test sets are disjoint, so the trained MagNet model can make predictions on data that

it has never seen before.

We adopt three performance metrics described in Subsection 5.3.3, to quanti-

tatively evaluate the performance of MagNet. PA and CC do not have units,

while MAE has a unit of Gauss (G). Table 5.1 presents the average performance

metric values of MagNet based on the data in the two test sets. The row of

Test HMI(B′x) (Test HMI(B′y), respectively) presents the average performance metric

values of MagNet obtained by generating B′x (B′y, respectively) based on the test

data in Test HMI. The row of Test MDI(B′x) (Test MDI(B′y), respectively) presents

the average performance metric values of MagNet obtained by generating B′x (B′y,

respectively) based on the test data in Test MDI. The training data were from

Train HMI.

Table 5.1 shows that the generated B′x (B′y, respectively) components are close

to the true Bx (By, respectively) components with MAE < 100 G for both of the HMI

and MDI test data. The CC is approximately 0.9 for the HMI test data and 0.75 for

the MDI test data. MagNet performs better on the HMI test data than on the MDI

test data. This happens due to several reasons. First, the MagNet model is trained

by HMI data. There is a difference between HMI LOS magnetograms and MDI LOS

magnetograms due to the spatially dependent calibration factor applied to the MDI

magnetograms compared to the HMI magnetograms. The strong-field and weak-field

pixels yield slightly different scaling factors [107]. In addition, the resolution of MDI
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Table 5.1 Average Performance Metric Values of MagNet Based on the Data in
Our Test Sets.

Test Sets MAE PA CC

Test HMI(B′x) 62.70 86.52% 0.9097

Test HMI(B′y) 59.26 85.57% 0.8771

Test MDI(B′x) 75.86 81.06% 0.7410

Test MDI(B′y) 79.95 78.14% 0.7818

images is 4′′, which is lower than the resolution, 1′′, of HMI images. Finally, due

to the larger cadence (96 minutes) of MDI compared to the cadence (12 minutes) of

HMI, the time gaps between the MDI images and their aligned Hα images are often

larger than the time gaps between the HMI images and their aligned Hα images. As

a result, the quality of the aligned pairs for MDI is lower than the quality of the

aligned pairs for HMI. In what follows we present some sample predictions for HMI

and MDI.

5.4.2 Predicting Vector Components of AR 12683 Based on Hα and HMI

LOS Data

Figure 5.4 presents predicted B′x and B′y components for AR 12683 on 2017 October

2 16:00:00 UT where training data were from Train HMI. Figure 5.4(A) shows a pair

of aligned BBSO Hα image and HMI LOS magnetogram of AR 12683. This pair of

images is used as input to the trained MagNet model. Figure 5.4(B) shows the B′x

and B′y components predicted by MagNet with respect to the input, corresponding

true Bx and By components and scatter plots. AR 12683 is a relatively simple active

region. It can be seen from Figure 5.4(B) that MagNet works extremely well on this

simple AR, capable of producing the predicted vector components that are very close

to the true components, with CC values being 0.97 for Bx and By.
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Figure 5.4 Comparison between MagNet-predicted B′x, B
′
y and true Bx, By based

on Hα and HMI LOS data of AR 12683 on 2017 October 2 16:00:00 UT, where
training data were taken from ARs in the period between 2014-01-01 and 2017-08-04.
(A) The test data containing a pair of aligned BBSO Hα image (left) and HMI
LOS magnetogram (right) of AR 12683. (B) The results predicted by MagNet. The
first column shows scatter plots where the X-axis represents the predicted B′x (B′y,
respectively) and the Y-axis represents the true Bx (By, respectively). The diagonal
line in a scatter plot corresponds to pixels whose predicted B′x (B′y, respectively)
values are identical to true Bx (By, respectively) values. The second column shows
the predicted B′x (top) and B′y (bottom). The third column shows the true Bx (top)
and By (bottom).
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5.4.3 Predicting Vector Components of AR 12673 Based on Hα and HMI

LOS Data

AR 12673 is a very complex active region on 2017 September 6. It is the most

flare-productive AR in solar cycle 24, showing strong magnetic fields in the light bridge

and apparent photospheric twist [152]. Furthermore, this active region contains many

pixels with extremely large magnetic field strengths (saturated at the value of 5000 G

or larger). The MagNet model trained by the 8442 pairs of images in the Train HMI

set described in the beginning of “Result” did not perform well on AR 12673, due

to the lack of knowledge of very complex structures and extremely large magnetic

field strengths such as those in AR 12673. To enhance the knowledge of MagNet and

to tackle this extreme case, we created a new training set, denoted Train HMI New,

by manually picking 835 Hα images from complex ARs in 2015 and 5 Hα images

from AR 12673 that do not occur in the test sets. Thus, the new training set and

the test sets are disjoint. This new training set contains 835 + 5 = 840 pairs of

aligned BBSO Hα images and HMI LOS magnetograms as well as corresponding

840 vector components Bx (By, respectively) from HMI used as labels. Figure 5.5

presents the B′x and B′y components for AR 12673 on 2017 September 6 19:00:00

UT predicted by the new MagNet model trained by Train HMI New. Figure 5.5(A)

shows a pair of aligned BBSO Hα image and HMI LOS magnetogram of AR 12673.

This pair of images is used as input to the new MagNet model. Figure 5.5(B) shows

the B′x and B′y components predicted by the new MagNet model with respect to the

input, corresponding true Bx and By components and scatter plots. It can be seen

from Figure 5.5(B) that the new MagNet model works well on the very complex AR

12673. capable of producing the predicted vector components that are close to the

true components, with CC values being 0.94 for Bx and 0.84 for By.
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Figure 5.5 Comparison between MagNet-predicted B′x, B
′
y and true Bx, By based

on Hα and HMI LOS data of AR 12673 on 2017 September 6 19:00:00 UT, where
training data were taken from complex ARs in 2015 and from AR 12673 at time points
different from 19:00:00 UT on 2017 September 6. (A) The test data containing a pair
of aligned BBSO Hα image (left) and HMI LOS magnetogram (right) of AR 12673.
(B) The results predicted by MagNet. The first column shows scatter plots where the
X-axis represents the predicted B′x (B′y, respectively) and the Y-axis represents the
true Bx (By, respectively). The diagonal line in a scatter plot corresponds to pixels
whose predictedB′x (B′y, respectively) values are identical to trueBx (By, respectively)
values. The second column shows the predicted B′x (top) and B′y (bottom). The third
column shows the true Bx (top) and By (bottom).
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5.4.4 Predicting Vector Components of AR 11101 Based on Hα and MDI

LOS Data

Figure 5.6 presents predicted B′x and B′y components for AR 11101 on 2010 August

30 17:36:00 UT where training data were from Train HMI. Figure 5.6(A) shows a pair

of aligned BBSO Hα image and MDI LOS magnetogram of AR 11101. This pair of

images is used as input to the trained MagNet model. Figure 5.6(B) shows the B′x

and B′y components predicted by MagNet with respect to the input, corresponding

true Bx and By components and scatter plots. AR 11101 is a relatively simple active

region. It can be seen from Figure 5.6(B) that MagNet works pretty well on this

simple AR, capable of producing the predicted vector components that are similar

to the true components, with CC values being 0.87 for Bx and 0.88 for By. We note

that, although both AR 11101 and the AR 12683 described above are relatively simple

active regions, the CC values for AR 11101 are lower than those for AR 12683. This

happens because MagNet is trained by HMI data and the vector components of AR

12683 are predicted based on test data also from HMI (though the training set and

test set are collected in different time periods and hence are disjoint). However, the

vector components of AR 11101 are predicted based on test data from MDI.

5.4.5 Predicting Vector Components of AR 11117 Based on Hα and MDI

LOS Data

Figure 5.7 presents predicted B′x and B′y components for AR 11117 on 2010 October

27 22:24:00 UT where training data were from Train HMI. Figure 5.7(A) shows a pair

of aligned BBSO Hα image and MDI LOS magnetogram of AR 11117. This pair of

images is used as input to the trained MagNet model. Figure 5.7(B) shows the B′x

and B′y components predicted by MagNet with respect to the input, corresponding

true Bx and By components and scatter plots. AR 11117 is a relatively complex

active region. It can be seen from Figure 5.7(B) that MagNet works reasonably well
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Figure 5.6 Comparison between MagNet-predicted B′x, B
′
y and true Bx, By based

on Hα and MDI LOS data of AR 11101 on 2010 August 30 17:36:00 UT, where
training data were taken from ARs in the period between 2014-01-01 and 2017-08-04.
(A) The test data containing a pair of aligned BBSO Hα image (left) and MDI
LOS magnetogram (right) of AR 11101. (B) The results predicted by MagNet. The
first column shows scatter plots where the X-axis represents the predicted B′x (B′y,
respectively) and the Y-axis represents the true Bx (By, respectively). The diagonal
line in a scatter plot corresponds to pixels whose predicted B′x (B′y, respectively)
values are identical to true Bx (By, respectively) values. The second column shows
the predicted B′x (top) and B′y (bottom). The third column shows the true Bx (top)
and By (bottom).
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on this complex AR, capable of producing the predicted vector components that are

similar to the true components, with CC values being 0.78 for Bx and 0.79 for By.

Compared to the CC values for the relatively simple AR 11101 described above, the

CC values for the more complex AR 11117 are lower.

5.5 Summary

We present a new deep learning approach (MagNet) for generating vector components

B′x and B′y to create synthetic vector magnetograms of solar active regions. This

approach allows us to expand the availability of photospheric vector magnetograms

to the period from 1996 to present, covering solar cycles 23 and 24. The vector

magnetograms can be used as input of NLFFF extrapolation methods to calculate free

magnetic energy, magnetic topology and magnetic helicity injection. They can also

be used as boundary conditions for MHD simulations. Furthermore, one can derive

useful magnetic field parameters from the vector magnetograms to forecast solar flare

activity [102, 103, 104]. Our experimental results obtained by using Hα observations

and HMI magnetograms in the period between 2014-01-01 and 2017-08-04 as training

data demonstrated the good performance of the proposed approach. Specifically,

when using the trained model to predict vector components based on Hα and HMI

LOS data and validated by HMI vector data in the period between 2017-08-05 and

2017-12-31, we obtained an average Pearson correlation coefficient (CC) of ∼0.9.

When using the trained model to predict vector components based on Hα and MDI

LOS data and validated by vector data from the overlapping period of MDI and HMI

between 2010-05-01 and 2011-04-11, we obtained an average CC of ∼0.75.

Like other machine learning models, the performance of MagNet depends on

training data. For example, in handling the very complex active region AR 12673,

our original model trained by 8442 pairs of images does not perform well. We have

to include complex images in the training set in order to generate satisfactory vector
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Figure 5.7 Comparison between MagNet-predicted B′x, B
′
y and true Bx, By based

on Hα and MDI LOS data of AR 11117 on 2010 October 27 22:24:00 UT, where
training data were taken from ARs in the period between 2014-01-01 and 2017-08-04.
(A) The test data containing a pair of aligned BBSO Hα image (left) and MDI
LOS magnetogram (right) of AR 11117. (B) The results predicted by MagNet. The
first column shows scatter plots where the X-axis represents the predicted B′x (B′y,
respectively) and the Y-axis represents the true Bx (By, respectively). The diagonal
line in a scatter plot corresponds to pixels whose predicted B′x (B′y, respectively)
values are identical to true Bx (By, respectively) values. The second column shows
the predicted B′x (top) and B′y (bottom). The third column shows the true Bx (top)
and By (bottom).
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magnetograms. Most regions in the 8442 pairs of images have small magnetic field

strengths, with the maximum magnetic field strength being much smaller than 5000

G. As a consequence, the model trained by these 8442 pairs of images performs well

in predicting vector components with small magnetic field strengths. It suffers when

predicting vector components having complex structures with very large magnetic

field strengths.

To our knowledge, MagNet is the first tool capable of generating photospheric

vector magnetograms of solar active regions. To further improve the performance of

MagNet, one could use image super-resolution techniques [95] to enhance the quality

of MDI LOS magnetograms before feeding them to the MagNet model. In the current

study, MagNet is trained by HMI data and tested on MDI data. However, HMI and

MDI are two different instruments on different observatories. The performance of

MagNet could be further improved by using transfer learning techniques [49].

109



CHAPTER 6

DEEP LEARNING TOOLS FOR SOLAR PHYSICS

This chapter presents the implementation of some of deep learning-methods using

Jupyter notebooks and Google Colab with Github, e.g. SolarUnet for magnetic flux

tracking and FibrilNet for fibril tracing. The rest two tools will be public available

once the paper are accepted.

Figure 6.1 shows the Github repository of the SolarUnet implemented based on

Jiang et al. [75]. This tool has also been Binder enabled and published at Zenodo.

The following Figures 6.2, 6.3 , 6.4 , 6.5 , 6.6 and 6.7 demo the details of how SolarUnet

tool works on Google Colab.

Figure 6.1 Illustration of the Github repository page of SolarUnet.

Figure 6.8 shows Github repository of the FibrilNet based on Jiang et al. [74].
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Figure 6.2 Illustration of the Google Colab page of SolarUnet: the introduction.

Figure 6.3 Illustration of the Google Colab page of SolarUnet: runtime
environment and data preparation.
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Figure 6.4 Illustration of the Google Colab page of SolarUnet: model training
and predicting.
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Figure 6.5 Illustration of the Google Colab page of SolarUnet: postprocessing
data

Figure 6.6 Illustration of the Google Colab page of SolarUnet: magnetic
tracking.
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Figure 6.7 Illustration of the Google Colab page of SolarUnet: statistics analysis.

Figure 6.8 Illustration of the Github repository page of FibrilNet.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This dissertation addresses four interrelated problems in solar physics: magnetic flux

tracking, fibril tracing, Stokes inversion and vector magnetogram generation. First,

this dissertation presents an encode-decoder deep learning method, SolarUnet to

identify and track solar magnetic flux elements in observed vector magnetograms.

Second, this dissertation presents presents a Bayesian convolutional neural network

for probabilistic image segmentation with uncertainty quantification, to tracing

chromospheric fibrils in Hα images of solar observations. Third, this dissertation

presents a stacked deep neural network (SDNN) for inferring line-of-sight (LOS)

velocities and Doppler widths from Stokes profiles. Fourth, this dissertation presents

a generative adversarial network, named MagNet, for generating vector components

to create synthetic vector magnetograms of solar active regions. Substantial

experimental results have validated and demonstrated of good performance of these

methods. Finally, this dissertation presents the implementations of some of the deep

learning-based methods using Jupyter notebooks and Google Colab with GitHub.

This dissertation develops new machine learning and computer vision based

tools to help understand solar activities and predict violent solar eruptions. In the

future work, the Bayesian convolutional neural network with Monte Carlo dropout

sampling will be investigated and extended to more solar physics related tasks, such

as magnetic tracking, Stokes inversion and vector magnetograms generation. A

operational Stoke inversion model will be developed based on the all types of ARs,

where those ARs will be collected based on a classification algorithm, e.g. Mount

Wilson magnetic classifications. The image super-resolution techniques based deep

learning method will be studied and used to improve the image quality of Hα images
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and MDI LOS magnetograms, as a consequence, the performance of MagNet could

be improved.
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II 8542 Å Line Fibrils. Astronomy and Astrophysics, 599:A133, March 2017.

[8] A. Asensio Ramos and C. J. Dı́az Baso. Stokes Inversion Based on Convolutional
Neural Networks. Astronomy and Astrophysics, 626:A102, 2019.

[9] A. Asensio Ramos, J. Trujillo Bueno, and E. Landi Degl’Innocenti. Advanced Forward
Modeling and Inversion of Stokes Profiles Resulting from the Joint Action of
the Hanle and Zeeman Effects. The Astrophysical Journal, 683(1):542–565,
August 2008.

[10] Astropy Collaboration, T. P. Robitaille, E. J. Tollerud, P. Greenfield, M. Droettboom,
E. Bray, T. Aldcroft, M. Davis, A. Ginsburg, A. M. Price-Whelan, W. E.
Kerzendorf, A. Conley, N. Crighton, K. Barbary, D. Muna, H. Ferguson,
F. Grollier, M. M. Parikh, P. H. Nair, H. M. Unther, C. Deil, J. Woillez,
S. Conseil, R. Kramer, J. E. H. Turner, L. Singer, R. Fox, B. A. Weaver,
V. Zabalza, Z. I. Edwards, K. Azalee Bostroem, D. J. Burke, A. R. Casey,
S. M. Crawford, N. Dencheva, J. Ely, T. Jenness, K. Labrie, P. L. Lim,
F. Pierfederici, A. Pontzen, A. Ptak, B. Refsdal, M. Servillat, and O. Streicher.
Astropy: A Community Python Package for Astronomy. Astronomy and
Astrophysics, 558:A33, October 2013.

[11] L. H. Auer, J. N. Heasley, and L. L. House. The Determination of Vector Magnetic
Fields From Stokes Profiles. Solar Physics, 55(1):47–61, November 1977.

117



[12] V. Badrinarayanan, A. Kendall, and R. Cipolla. SegNet: A Deep Convolutional
Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 39(12):2481–2495, 2017.

[13] X. Bai, H. Liu, Y. Deng, J. Jiang, J. Guo, Y. Bi, T. Feng, Z. Jin, W. Cao, J. Su, and
K. Ji. A Deep Learning Method to Estimate Magnetic Fields in Solar Active
Regions from Photospheric Continuum Images. Astronomy and Astrophysics,
652:A143, August 2021.

[14] L. Balles and P. Hennig. Dissecting Adam: The Sign, Magnitude and Variance of
Stochastic Gradients. In Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July
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W. Schmidt. Morphological Properties of Slender Ca II H Fibrils Observed by
Sunrise II. The Astrophysical Journals, 229:6, March 2017.

120



[45] Y. Gal and Z. Ghahramani. Dropout as a Bayesian Approximation: Representing
Model Uncertainty in Deep Learning. In M. Balcan and K. Q. Weinberger,
editors, Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48
of JMLR Workshop and Conference Proceedings, pages 1050–1059. JMLR.org,
2016.

[46] F. Galton. Regression Towards Mediocrity in Hereditary Stature. The Journal of the
Anthropological Institute of Great Britain and Ireland, 15:246–263, 1886.

[47] R. Galvez, D. F. Fouhey, M. Jin, A. Szenicer, A. Muñoz-Jaramillo, M. C. Cheung,
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[115] D. Orozco Suárez, L. R. Bellot Rubio, J. C. del Toro Iniesta, S. Tsuneta, B. W. Lites,
K. Ichimoto, Y. Katsukawa, S. Nagata, T. Shimizu, R. A. Shine, Y. Suematsu,
T. D. Tarbell, and A. M. Title. Quiet-Sun Internetwork Magnetic Fields from
the Inversion of Hinode Measurements. The Astrophysical Journal Letters,
670(1):L61–L64, November 2007.

[116] A. Ortiz, L. R. B. Rubio, V. H. Hansteen, J. de la Cruz Rodŕıguez, and L. R.
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