

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

TOWARDS IMPROVING THE SECURITY OF
THE SOFTWARE SUPPLY CHAIN

by
Hammad Afzali

A software supply chain comprises a series of steps performed to develop and

distribute a software product. History has shown that each of these steps is vulnerable

to attacks that can have serious repercussions and can affect many users at once. To

address the attacks against the software supply chain, end users must be provided

with verifiable guarantees about the individual steps of the chain and with assurances

that the steps are securely chained together.

In this dissertation, the security of several individual steps in the software supply

chain is enhanced. The first step of the chain, managing the source code, usually relies

on a version control system (VCS). A compromised or malicious VCS can corrupt

the integrity of the source code (e.g., by inserting a backdoor). Popular web-based

repository hosting services such as GitHub lack strong security features that are

otherwise available when using stand-alone client tools, such as the ability to sign

client commits. Essentially, this means that developers who use the web UI give up

the ability to sign their own commits and must fully trust the server. To address this

significant issue, le-git-imate is proposed that incorporates the security guarantees

offered by Git’s standard commit signature into web-based Git hosting services.

Another crucial step in the software supply chain is the code review step, which

helps to find defects in the software and to improve the readability and consistency

of the project’s codebase. Unfortunately, current code review systems do not have

mechanisms to protect the integrity of the code review process, especially when the

code review system is hosted at an untrusted server. To improve this status quo, a set

of key design principles is identified that is necessary to secure the code review process.

Then, these principles are used to propose SecureReview, a security mechanism that

can be applied on top of a Git-based code review system to ensure the integrity of the

code review process and provide verifiable guarantees that the code review process

followed the intended review policy.

With SecureReview in place, auditors have access to verifiable metadata about

the code review process so that they can verify whether the code review server

tampered with the code reviews. However, this verification process is not only a

matter of checking the authenticity and integrity of the code reviews (i.e., verifying a

digital signature). It is also about ensuring that a sequence of code reviews that led to

the approval of the code changes respects the intended code review policy. Depending

on the code review workflow, this process can be quite complex and error prone if done

manually. To address this issue, PolicyChecker is proposed that allows independent

auditors to automatically verify the correctness of the code review process. This

tool adequately interprets different code review policies on GitHub and Gerrit and

enables automatic verification of a given set of code reviews against a given code

review policy. PolicyChecker is useful in two steps of the software supply chain:

(1) when a maintainer merges a branch, so she does not have to blindly rely on the

code review server, (2) when someone pulls a repository and wants to check if the

code was merged according to the code review policy.

TOWARDS IMPROVING THE SECURITY OF
THE SOFTWARE SUPPLY CHAIN

by
Hammad Afzali

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

May 2021

Copyright c� 2021 by Hammad Afzali

ALL RIGHTS RESERVED

APPROVAL PAGE

TOWARDS IMPROVING THE SECURITY OF
THE SOFTWARE SUPPLY CHAIN

Hammad Afzali

Reza Curtmola, Dissertation Advisor Date
Professor of Computer Science, New Jersey Institute of Technology

Justin Cappos, Committee Member Date
Associate Professor of Computer Science and Engineering, New York University,
New York, NY

Cristian Borcea, Committee Member Date
Professor of Computer Science, New Jersey Institute of Technology

Qiang Tang, Committee Member Date
Associate Professor of Computer Science, The University of Sydney, Sydney,
Australia

Abdallah Khreishah, Committee Member Date
Associate Professor of Electrical and Computer Engineering, New Jersey Institute of
Technology

BIOGRAPHICAL SKETCH

Author: Hammad Afzali

Degree: Doctor of Philosophy

Date: May 2021

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,

New Jersey Institute of Technology, Newark, NJ, 2021

• Master of Information Security,
Malek Ashtar University of Technology, Tehran, Iran, 2012

• Bachelor of Information Technology Engineering,
Sharif University of Technology, Tehran, Iran, 2009

Major: Computer Science

Presentations and Publications:

Hammad Afzali, Santiago Torres-Arias, Reza Curtmola, and Justin Cappos,
“SecureReview: Towards verifiable web-based code review systems”, [Under
Journal Submission], 2021

Hammad Afzali, Santiago Torres-Arias, Reza Curtmola, and Justin Cappos, “Towards
adding verifiability to web-based Git repositories”, Journal of Computer
Security, volume 28, no. 4, pages 405-436, 2020

Santiago Torres-Arias, Hammad Afzali, Trishank Karthik Kuppusamy, Reza
Curtmola, and Justin Cappos, “in-toto: Providing farm-to-table guarantees
for bits and bytes”, 28th USENIX Security Symposium (USENIX Security
19), pages 1393-1410, 2019

Hammad Afzali, Santiago Torres-Arias, Reza Curtmola, and Justin Cappos, “le-git-
imate: Towards verifiable web-based Git repositories”, Asia Conference on
Computer and Communications Security (ASIACCS 18), pages 469-482, 2018

iv

To Fatima, Amir, my parents, and my siblings.

v

ACKNOWLEDGMENT

It has been a long journey with lots of ups and downs, and I am grateful to have

experienced every moment, bitter or sweet, of the past years. Today I would not be

writing these words if it were not for my advisor, Prof. Reza Curtmola. His guidance

has always made me strive to put my best foot forward. I immensely appreciate his

invaluable support, encouragement, and commitment.

I am thankful to Prof. Justin Cappos not only for serving on my dissertation

committee but also for his unique insight and help throughout my research. I humbly

extend my sincerest thanks to other members of my dissertation committee: professors

Cristian Borcea, Qiang Tang, and Abdallah Khreishah.

Some friends have been instrumental in this process. I want to thank Ammula

Anilkumar for his help in the first stages of my research and Lukas Pühringer for

technical supports in different projects. An exceptional thank you goes to Santiago

Torres-Arias for his excellent feedback and help in my research.

When it comes to my family, there are no appropriate words to convey my deep

appreciation. My parents have always supported me in exploring new directions in

my life. I am always grateful for the sacrifices and encouragement they have made

from the very beginning, in return for nothing but this moment. I am also quite

thankful to my siblings for their endless and unparalleled love, help, and support.

There is no way to thank Amir, who has never known his dad as anything but

a busy student. Every day he runs to the window to wave goodbye; he makes me

happier, stronger, and more determined than ever before.

My most heartfelt thanks go to Fatima, who selflessly helped me be the person

I am today. Forever, I am indebted to Fatima for all her kindness, and nothing can

express my gratitude for her. It is my privilege to dedicate this work to my love,

Fatima.

vi

Finally, I must thank multiple funding agencies. My research was mainly

funded by the National Science Foundation under Grants Numbers CNS 1409523,

CNS 1801430, and DGE 1565478. It was also sponsored by the Defense Advanced

Research Projects Agency and the Army Research Laboratory under Contract

Number A8650-15-C-7521.

vii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

2 ADDING VERIFIABILITY TO WEB-BASED REPOSITORY HOSTING
SERVICES . 6

2.1 Introduction . 6

2.2 Background . 10

2.2.1 Git Repository Internals . 11

2.2.2 Git Signed Commits . 11

2.2.3 Committing Through the GitHub Web UI 12

2.3 Threat Model . 16

2.3.1 Security Guarantees . 18

2.4 Attacks . 19

2.4.1 Attacks Against Regular Commits 19

2.4.2 Attacks Against Merge Commits 20

2.4.3 Web UI Based Attacks . 23

2.5 Design . 24

2.5.1 Design Goals . 25

2.5.2 A Strawman Solution . 25

2.5.3 le-git-imate Design . 26

2.6 Implementation . 30

2.6.1 Overview . 31

2.6.2 Computing the “Tree Hash” Field 33

2.6.3 Creating and Sending the Commit Object to the Server 37

2.7 Security Analysis . 40

2.7.1 Prevent Web UI Attacks . 40

2.7.2 Ensure Accurate Web UI Commits 41

viii

TABLE OF CONTENTS
(Continued)

Chapter Page

2.7.3 Prevent Modification of Committed Data 42

2.8 Evaluation . 42

2.8.1 Experimental Results . 43

2.8.2 User Experience . 46

2.8.3 Disk Usage and Other Considerations 47

2.8.4 Comparison Between the lightweight and main Designs 48

2.9 User Study . 49

2.9.1 User Study Setup . 49

2.9.2 User Study Description . 50

2.9.3 User Study Results . 52

2.10 Related work . 53

3 ADDING VERIFIABILITY TO WEB-BASED CODE REVIEW SYSTEMS 55

3.1 Introduction . 55

3.2 Background . 58

3.2.1 Code Review Process . 58

3.2.2 Code Review Workflow . 59

3.2.3 GitHub . 60

3.2.4 Gerrit . 63

3.3 Threat Model . 69

3.3.1 Security Guarantees . 72

3.4 Attacks . 72

3.4.1 Code Review Manipulation Attacks 73

3.4.2 Code Review Policy Manipulation Attacks 74

3.5 Solution . 81

3.5.1 Design Principles . 82

3.5.2 A Strawman Solution . 83

ix

TABLE OF CONTENTS
(Continued)

Chapter Page

3.5.3 SecureReview Design . 83

3.6 Deployments . 92

3.6.1 SecureReview for GitHub . 94

3.6.2 SecureReview for Gerrit . 96

3.7 Security Analysis . 97

3.7.1 Achieve Security Guarantees 97

3.7.2 Mitigate Attacks . 98

3.8 Experimental Evaluation . 100

3.9 Related Work . 104

4 AUTOMATED VALIDATION OF THE CODE REVIEW PROCESS . . . 107

4.1 Introduction . 107

4.2 Background . 110

4.2.1 GitHub Code Review Policy 110

4.2.2 Gerrit Code Review Policy . 111

4.2.3 Merge Strategy . 113

4.3 Threat Model . 114

4.4 Solution . 115

4.4.1 Design Overview . 116

4.4.2 Interpret the Code Review Policy 117

4.4.3 Validate the Code Reviews . 121

4.4.4 Extract the Code Reviews . 124

4.5 Implementation . 126

4.5.1 Extract the Code Reviews . 127

4.5.2 Validate the Code Review Process 128

4.6 Evaluation . 131

4.7 Related Work . 134

x

LIST OF TABLES

Table Page

2.1 Repositories Chosen for the le-git-imate’s Evaluation 44

2.2 Regular Commit Execution Time (in seconds) 45

2.3 Merge Commit Execution Time (in seconds) 45

2.4 Demographics for User Study Participants 50

3.1 Repositories Chosen for the SecureReview’s Evaluation 101

3.2 Execution Time for Storing Signed Reviews and Merging Changes 102

3.3 Storage Overhead per Merge Commit 103

4.1 Repositories Chosen for the PolicyChecker’s Evaluation 132

4.2 Execution Time for Validating Code Review Process (in seconds) 133

xii

LIST OF FIGURES

Figure Page

2.1 A Git repository with two branches, master and feature. 10

2.2 The format of a Git commit object. Bold font denotes pre-defined
keywords, and angle brackets (i.e., <>) denote actual values for those
fields. Regular and squash-and-merge commits have only one parent,
whereas merge commits have two (or more) parents depending on how
many branches were merged – we show the case with two parents, the
2nd parent is enclosed between square brackets. 12

2.3 A regular commit on the feature branch. 13

2.4 Merge commit from merging two branches. 14

2.5 Repository state for squash-and-merge operations. 15

2.6 Repository state for rebase-and-merge operations. 16

2.7 Incorrect history merge attack. 21

2.8 The format of the signed verification record . Fields in between square
brackets ([]) are included only for merge commit objects (merge
strategy and hash of 2nd parent commit). 27

2.9 The format of the signed commit object. Fields in between square brackets
([]) are included only for merge commit objects (hash of 2nd parent
commit). 28

2.10 An example of the object tree. 34

3.1 A typical code review workflow. 58

3.2 The typical lifecycle of a pull request on GitHub. 62

3.3 Gerrit workflow [32]. 64

3.4 The typical lifecycle of a code change in Gerrit under the default “Merge
If Necessary” strategy. 67

3.5 Review manipulation attack. 74

3.6 A core review example in which the pull request is merged to the master
branch after receiving two scores of +2, and there is no -2 score. . . . 75

3.7 Code review policy manipulation attack. A malicious server changes the
minimum number of approving reviews. 76

xiii

LIST OF FIGURES
(Continued)

Figure Page

3.8 Code review policy manipulation attack. A malicious server adds an
unauthorized reviewer to the code review process. 78

3.9 Code review policy manipulation attack. A malicious server disables the
policy of dismissing stale pull request approvals. 79

3.10 The review unit ’s format. Each review unit is computed by the reviewer
who performed the review. 86

3.11 The data over which the signature field in a review unit is computed.
Note that the signature for the first review in a Merge Request omits
the first field, as there is no previous review unit. 86

3.12 Create signed code reviews. 87

xiv

CHAPTER 1

INTRODUCTION

With the rise of defense mechanisms to improve the security posture of the computer

systems, traditional attacks (e.g., exploiting vulnerabilities) are becoming more

difficult to be successful. In response to this, attackers have recently focused on a new

avenue of threats called supply chain attacks which are replacing zero day attacks [77]

and allow attackers to get into the authorized software production environment and

subvert a large group of users through a single attack. According to a report by

Symantec [155], there has been a 200% increase in these attacks in 2017. Moreover,

a report by Sonatype [152] shows a growth of 430% in the number of supply chain

attacks aimed at infiltrating open source projects.

A software supply chain is a series of steps (i.e., coding, testing, building,

distributing) performed to create and distribute a software product. Hijacking each

step of the supply chain gives the attackers an entry point to the trusted production

environment to implant malware [159]. Such attacks can happen at any step of

the software development or between steps (when the software is in transit). For

example, the attackers may compromise the coding step [82, 125, 73, 109, 132, 72],

or the build step [162, 65, 80, 131] to insert a malicious code. They may

compromise the distribution server to replace the legitimate package with a malicious

one [138, 111, 107, 143, 129, 31], or even redirect users to install or update a malicious

version of the software [68, 62].

To address the attacks against the software supply chain, end users must be

provided with verifiable guarantees about the individual steps of the chain and with

assurances that the steps are securely chained together. Indeed, the user must be

able to check if a step in the supply chain was performed (e.g., the code review was

done), if the step was performed by the right person (e.g., the authorized developer

1

updated the codebase), and if the materials (e.g., source code) were not tampered

between the steps [159].

In this dissertation, we enhance the security of several individual steps in the

software supply chain. The first step of the supply chain is managing the source code

which is usually done by a version control system (VCS) like Git. To protect the

supply chain against unauthorized changes in the source code, we need to protect

both data and metadata stored in the source code repository as the version control

systems are not trusted. A compromised or malicious VCS can corrupt the integrity

of the source code by inserting a piece of malicious code (i.e., a backdoor) or by

manipulating the metadata of the repository.

The existing security features on VCS-es help to mitigate most attacks. Commit

signing [88] prevents an attacker from tampering with the repository files. Torres-

Arias et al. [160] mitigate attacks against the Git repository metadata. However,

web-based hosting repositories lack these security features, and there is no way to

verify if web UI commits in a repository have been performed by the authorized

developers. That makes web-based Git hosting services an appealing target to get

into the trusted supply chain and subvert the integrity of the software product without

being detected.

Using web-based repositories (such as GitHub and GitLab), users instruct the

server to perform operations on their behalf and have to trust that the server will

execute their requests faithfully. A malicious or a compromised server can instead

execute the requested actions in an incorrect manner and change the contents of

the repository. To counter this, we propose le-git-imate [54, 55], a defense that

incorporates the security guarantees offered by Git’s standard commit signature into

Git repositories that are managed via web UI-based services. le-git-imate pioneers

the ability to sign a web UI commit and create a true GPG-signed Git commit object

exclusively in the browser. Subsequently, anyone who clones the repository can check

2

whether the committed data was tampered by a malicious server or other adversaries.

Our solution does not require any changes in the repository servers and can be used

immediately. With le-git-imate in place, users can take advantage of web-based Git

services without sacrificing security, thus paving the way towards verifiable web-based

Git repositories. We perform a security analysis of le-git-imate, which shows its

effectiveness in mitigating attacks that may occur when developers use the web UI of

web-based Git hosting services. We also evaluate our implementation’s efficiency and

show that le-git-imate has comparable performance with Git’s standard commit

signature mechanism.

Another crucial step in the software supply chain is the code review step, which

helps to find defects in the software and to improve the readability and consistency

of the project’s codebase. Having a code review system in place, new code changes

will become an accepted part of the project’s codebase only after being reviewed

and approved by a number of developers. There are many web services (such as

Gerrit [16], ReviewBoard [43], Phabricator [40], Crucible [11], and Collaborator [9])

that facilitate the code review process by providing a web UI to discuss, review, and

even modify the code changes.

Unfortunately, current code review systems do not provide verifiable guarantees

about the integrity of the review process. In other words, they do not allow an auditor

to validate whether appropriate and authorized code review processes were performed

during the software development, and whether no unauthorized change was added into

the source code. For instance, a malicious or compromised Gerrit server may change

the code review scores to trick the project owner into merging a vulnerable code to

the project’s codebase. The main security issues with current code review systems

can be listed as follows. First, code review systems store the history of a code review

only in their local database. That means a full history of the code review process

is not accessible in the later steps of the software supply chain. Second, there is

3

no guarantee about the integrity of the stored code review information as it can be

manipulated easily by the attackers. That said, there is no way, as an independent

auditor, to fully verify whether a review policy was violated during the code review

process. To improve this status quo, we must provide: (1) verifiable metadata about

the code review process, (2) a way to adequately verify the code review metadata.

To attain these goals, we first propose a set of design principles necessary

to secure the code review process. We then use these principles to propose

SecureReview, a security mechanism that can be applied on top of a Git-based code

review system to ensure the integrity of the code review process and provide verifiable

guarantees that the code review process followed the intended review policy. Our

solution helps the code reviewers to easily sign and store their reviews in the source

repository. In addition, it provides the ability to securely update the project during

the code review process by signing the commits performed through the web UI.

We implement SecureReview as a Chrome browser extension for GitHub and

Gerrit. Nevertheless, our design is general enough to be used on any web-based

code review service that is integrable with a Git repository. We analyze the

security guarantees provided by SecureReview and show its effectiveness in mitigating

different attacks. We also evaluate the efficiency of our implementation and show that

SecureReview adds only a slight overhead. Indeed, it can sign and store code reviews

in less than half a second and merge changes between half a second (on Gerrit) and two

seconds (on GitHub). Moreover, SecureReview adds at most 2 KB per Git commit,

representing less than 0.0006 of the repository size even for small repositories.

With SecureReview in place, auditors have access to verifiable guarantees about

the code review process so that they can attest whether the code review server

tampered with the code reviews. However, this process is not only a matter of

verifying the authenticity and integrity of the code reviews (i.e., verifying a digital

signature). It is also about ensuring that a sequence of code reviews which led to the

4

approval of the code changes respects the intended code review policy. Depending

on the code review workflow, this process can be quite complex and error prone if

done manually. For instance, assume a GitHub project that enforces three approving

reviews for any code change, dismissing any reviews after a new code change, ignoring

code changes from specific users, and finally requiring review from certain users.

Having such a code review policy in place, it is not easy to manually determine if a

code change was merged correctly. This could get worse, for example when it comes

to validate a software release with many code changes.

To tackle this issue, we present PolicyChecker, a code review policy checker

that allows independent auditors to verify the correctness of the code review process.

PolicyChecker not only allows to automatically verify if a given set of code reviews

matches a code review policy but also to adequately interpret different code review

policies. We implement PolicyChecker as a git command which can validate the code

review process on GitHub and Gerrit. However, it can be easily adapted for any Git-

based hosting services as long as the code review format and the code review policy are

known. We analyze our implementation’s efficiency and show that PolicyChecker

can validate the code review process in a repository branch in a timely manner –

on average less than 0.12 seconds to evaluate one merge request, and less than 1.50

seconds to verify a software release. Finally, PolicyChecker can be useful in at least

two steps of the software supply chain: 1) when a maintainer merges a branch, so

she does not have to blindly rely on the code review server, which happens a priori

to the code merging step, 2) when someone pulls a repository and wants to check if

the code was merged according to the code review policy, which happens a posteriori

to the code merging step.

5

CHAPTER 2

ADDING VERIFIABILITY TO WEB-BASED REPOSITORY
HOSTING SERVICES

2.1 Introduction

Web-based repository hosting services such as GitHub [23], GitLab [28], Bitbucket

[4], Sourceforge [45], Gogs [29], Rhodecode [44], Assembla [3] and many others,

have become some of the most used platforms to interact with Git repositories due

to their ease of use and their rich feature-set such as bug tracking, code review, task

management, feature requests, wikis, and integration with continuous integration

and continuous delivery systems. As of April 2021, GitHub reports having over 224

million repositories [98, 100] which represents a growth of more than 2,100% since

2013 [89]. These platforms allow users to make changes to a remote Git repository

through a web-based UI, i.e., by using a web browser, and they comprise a substantial

percentage of the changes made to Git repositories: 48 of the top 50 most starred

GitHub projects include web UI commits and an average of 32.1% of all commits per

project are done through the web UI. For some of these highly popular projects, web

UI commits are actually used more often than using the traditional Git command

line interface (CLI) tool (e.g., 71.8% of merge commits are done via the web UI) 1.

Unfortunately, this ease of use comes at the cost of relinquishing the ability to

perform Git operations using local, trusted software, including Git commit signing.

Instead, a remote party (the hosting server) is instructed to perform actions for the

client. Given that the server performs most of the operations on behalf of the user,

it cannot cryptographically sign information without requiring users to share their

private keys. Effectively, since GitHub does not support user commit signing, those

1These statistics refer to commits after June 1, 2016, when GitHub started to use the
noreply@github.com committer email for web UI commits, thus providing us with the ability to
differentiate between web UI commits and other commits.

6

who use the web UI give up the ability to sign their own commits and must rely

completely on the server.

However, trusting a web-based Git hosting service to faithfully perform those

actions may be unwarranted. A malicious or a compromised server can instead

execute the requested actions in an incorrect manner and change the contents of

the repository. Since Git repositories and other version control system repositories

represent increasingly appealing targets, they have been subjected historically to

such attacks [65, 67, 68, 125, 73, 169, 132, 109, 72, 162, 103, 82], with varying

consequences such as the introduction of backdoors in code or the removal of security

patches. Similar attacks are likely to occur again in the future, since design flaws and

vulnerabilities may remain undiscovered or undisclosed for a prolonged amount of

time, even years [52], and websites may not apply security patches promptly [139, 81].

For example, a user interacting with a GitHub web UI to create a file in the

repository can trigger a post-commit hook that adds backdoored code on the same file

on the server-side. To introduce such a backdoor, an unscrupulous server manipulates

the submitted file and adds it to the newly-created commit object. As a result, from

that moment on, the Git repository will contain malicious backdoor code that could

propagate to future releases.

To counter this, we propose le-git-imate [118], a defense that incorporates

the security guarantees offered by Git’s standard commit signature into web UI-based

Git hosting services such as GitHub or GitLab. le-git-imate is implemented as a

browser extension and allows tools to cryptographically verify that a user’s web UI

actions are accurately reflected in the remote Git repository. To achieve this, we

present two designs. In the first one, which we refer to as lightweight design [54],

le-git-imate computes a verification record on the user side and then embeds it

into the commit object created by the server. The verification record captures what

the user expects to be included in the commit object. Subsequently, anyone who

7

clones the repository can check if the server correctly performed the requested actions

by comparing the user-embedded record to the actual commit object created by the

server. The first design is used as a stepping stone for the second design, which we refer

to as the main design [55]. In the main design, le-git-imate pioneers the ability

to sign a web UI commit and create a standard GPG-signed Git commit object in

the browser. As a result, there is no difference between signed commits created using

le-git-imate and those created by Git client tools. This allows users to validate the

integrity of web UI commits using standard Git tools. With le-git-imate in place,

users can take advantage of GitHub/GitLab’s web-based features without sacrificing

security.

After exploring several strategies to compute the information necessary for the

two designs, we settled on solutions that we implemented exclusively in the browser

using JavaScript, i.e., as a Chrome browser extension. This covers the large majority

of software development platforms (i.e., laptops and desktops). Despite the tedious

task of re-implementing significant functionality of a Git client in JavaScript, this

approach achieves the best portability and does not require the presence of a local

Git client. It also features optimizations that leverage the GitHub/GitLab API to

download the minimum set of Git objects needed to compute the verification record

(for the lightweight design) or the commit signature (for the main design). The

browser extension based on the lightweight design contains 15,838 lines of JavaScript

code, whereas the one based on the main design has 25,611 lines of code (numbers

include several third-party libraries needed to create the necessary Git objects and to

push these objects to the server). Excluding HTML/CSS templates, JSON manifests,

and libraries, the extension consists of a total of 4,095 and 4,467 lines of Javascript

code for the two designs, respectively.

In addition to the cryptographic protections suitable for automatic verification,

le-git-imate provides UI validation to prevent an attacker from deceiving a user into

8

performing an unintended action. To do this, the user is presented with information

about their commit that makes it easy to see its impact. This limits a malicious

server’s ability to trick a user into performing actions they did not intend.

While we focus specifically on le-git-imate’s use with GitHub [23] and

GitLab [28], our work is applicable to other web-based Git repository hosting

services such as Bitbucket [4], RhodeCode [44], Gitea [22], SourceForge [45], and

Assembla [3]. Our techniques are also general enough to be used on web-based code

management tools that can be integrated with a Git repository (e.g., Gerrit [16] for

code reviews, Jira [34] for project management, or Phabricator [40] for web-based

software development).

In this chapter, we make the following contributions:

• We identify new attacks associated with common actions when using the web
UI of a web-based Git hosting service. In these attacks, the server creates a
commit object that reflects a different repository state than the state intended
by the user. The attacks are stealthy in nature and can have a significant
practical impact, such as removing a security patch or introducing a backdoor
in the code.

• We propose le-git-imate, a client-side mechanism for Git repositories that are
managed via the web UI, to mitigate the aforementioned attacks. le-git-imate
pioneers creating the true GPG-signed Git commits in the browser. Hence, it
provides the exact security guarantees offered by Git’s standard commit signing
mechanism.

• We implement le-git-imate as a Chrome browser extension for both GitHub
and GitLab, and have released it as free and open-source software [118]. Our
implementation has several desirable features that are paramount for practical
adoption: (1) it does not require any changes on the server side and can be used
today, (2) it preserves current workflows used in GitHub/GitLab and does not
require the user to leave the browser, (3) commits generated by le-git-imate

can be checked by standard client tools (such as the Git CLI), without any
modifications. le-git-imate also provides the first implementation of Git’s
merge commit functionality in JavaScript, which is of independent interest.
Last, but not least, unlike other existing libraries [33], le-git-imate provides
an implementation of Git commands (i.e., “git commit”, “git merge”, “git
push”) without needing access to the entire repository and without creating a
working directory on the client side.

9

Figure 2.1 A Git repository with two branches, master and feature.

• We perform a security analysis of le-git-imate, which shows its effectiveness in
mitigating attacks that may occur when developers use the web UI of web-based
Git hosting services.

• We evaluate experimentally the efficiency of our implementation. Our findings
show that, when used with a wide range of repository sizes, le-git-imate adds
minimal overhead and has comparable performance with Git’s standard commit
signature mechanism.

• We perform a user study that validates the stealthiness of our attacks against
a GitLab server. The study also provides insights into the usability of our
le-git-imate defense.

Together, our contributions enable users to take advantage of GitHub/GitLab’s

web-based features without sacrificing security. For ease of exposition, throughout

this chapter we will use GitHub as a representative web-based Git hosting service,

but our attacks and defenses (including the le-git-imate browser extension) have

been developed and implemented for both GitHub and GitLab.

2.2 Background

GitHub is a web-based hosting service for Git repositories, and its core functionality

relies on a Git implementation. In this chapter, we describe several Git and GitHub

concepts as background for the attacks introduced in Section 2.4 and the defenses

proposed in Section 2.5. Readers familiar with Git/GitHub internals may skip this

section.

10

2.2.1 Git Repository Internals

Git records a project’s version history into a data structure called a repository. Git

uses branches to provide conceptual separation of different histories. Figure 2.1

shows a repository with two branches: master and feature. As a convention, the

master branch contains production code that has been verified and tested, whereas

the feature branch is used to develop a new feature or fix a bug.

A branch can be merged into another branch to integrate its changes into the

target branch. When a new feature is fully implemented in the feature branch, it

may be integrated into the production code by merging the feature branch into the

master branch. For GitHub, this is often achieved via the pull request mechanism,

in which a developer sends a request to merge a code update from her branch into

another branch of the project, and the appropriate party (e.g., the project maintainer)

does the merge.

To work as depicted above, a Git repository uses three types of objects: commit

objects, tree objects, and blob objects. From the filesystem point of view, each

Git object is stored in a file whose name is a SHA-1 cryptographic hash over the

zlib-compressed contents of the file. This hash is also used to denote the Git object

(i.e, it is the object’s name).

A blob object is the lowest-level representation of data stored in a Git repository.

At the filesystem level, each blob object corresponds to a file. A tree object is similar

to a filesystem directory: It has “blob” entries that point to blob objects (similar to

a filesystem directory having filesystem files) and “tree” entries that point to other

tree objects (similar to a filesystem directory having subdirectories).

2.2.2 Git Signed Commits

Git provides the ability to sign commits: The user who creates a commit object can

include a field that represents a GPG digital signature over the entire commit object.

11

commit <commit object size> tree <hash of tree object>

parent <hash of 1st parent commit object>

[parent <hash of 2nd parent commit object>]

author <author name> <author e-mail> <timestamp> <time zone>

committer <committer name> <committer e-mail> <timestamp> <time zone>

<commit message>

Figure 2.2 The format of a Git commit object. Bold font denotes pre-defined
keywords, and angle brackets (i.e., <>) denote actual values for those fields. Regular
and squash-and-merge commits have only one parent, whereas merge commits have
two (or more) parents depending on how many branches were merged – we show the
case with two parents, the 2nd parent is enclosed between square brackets.

Later, upon pulling or merging, Git can be instructed to verify the signed commit

objects using the signer’s public key. This prevents tampering with the commit object

and provides non-repudiation (i.e., a user cannot claim she did not sign the commit).

However, with a service like GitHub, the server creates a commit object it

cannot sign on behalf of the user, as it lacks the cryptographic key material needed

for the signature.

2.2.3 Committing Through the GitHub Web UI

For every code revision, a new commit object is created reflecting the state of the

repository at that time. This is achieved by including the name of the tree object

that represents the project’s files and directories at the moment when the commit was

done. Each commit object also contains the names of one (or more) parent commit

objects, which reflect the previous state of the repository. The exact format of a

commit object is described in Figure 2.2.

12

Figure 2.3 A regular commit on the feature branch.

Performing a code revision using GitHub’s web UI will result in one of three

possible types of Git commit objects: regular commit, merge commit, squash-and-

merge commit, rebase-and-merge commit.

Regular Commit Object. GitHub’s web UI provides the option to make changes

directly into the repository, such as adding new files, deleting existing files, or

modifying existing files. These changes can then be committed to a branch, which

results in a new regular commit object being added to that branch of the repository.

A new root tree is computed by modifying/adding/deleting the blob entries relevant

to the changeset in the corresponding trees and propagating these changes up to the

root tree. Then, a new commit is added with the new root tree. For example, consider

the repository shown in Figure 2.1. Using GitHub’s web UI in her browser, a user

edits a file under the feature branch and then commits this change. As a result, the

GitHub server will create a new regular commit object C5 that captures the current

state of the feature branch, as shown in Figure 2.3. Attacks against regular commit

objects are described in Section 2.4.1.

Merge Commit Object. Consider a GitHub project in which an owner is

responsible for maintaining a branch called master and contributors work on their own

branches to make updates to the code. When a contributor completes the changes she

is working on, she will send a pull request to the project owner to merge the changes

13

Figure 2.4 Merge commit from merging two branches.

from her branch into the master branch. The project owner will review the suggested

changes in the pull request and will merge them into the master branch. This results

in a new merge commit object as the new head of the master branch. This new

merge commit will contain changes computed using the trees of both branches and

the tree of the common ancestor(s). For example, in Figure 2.4, C5 is the merge

commit object obtained by merging the feature branch into the master branch. In

this case, C5 has two parents, C2 and C4 2. The C5 object is created by the GitHub

server as a result of the project owner’s action to merge the pull request via GitHub’s

web UI. We note that the objects C3 and C4 from the pull request branch become

part of the master branch after the merge. Attacks against merge commit objects

are described in Section 2.4.2.1

Squash-and-Merge Commit Object. When a pull request contains multiple

commits, GitHub provides the squash-and-merge option: The commits from pull

request branch are first “squashed” into a new commit object that retains all the

commits but omits the individual commits from its history. This new squash-and-

merge commit object is then added to the repository. For example, consider the

repository shown in Figure 2.1, in which the project owner receives a pull request

for the feature branch and decides to use the “squash-and-merge” option. As a

2We note that, in general, Git allows to merge n branches (with n ≥ 2), and the resulting merge
commit object will have n parents. However, at the moment, GitHub’s web UI does not allow
merging more than two branches.

14

result, the GitHub server first creates a new commit object by combining all the

changes (commits) mentioned in the pull request, as shown in Figure 2.5(a). The

server then adds the newly created commit object C5 on top of the current head of

the master branch C2, as shown in Figure 2.5(b). The “squash-and-merge” option

for merging a pull request is preferred when work-in-progress changes (e.g., updates

to address reviewer comments) that are important in the feature branch are not

necessarily important to retain when looking at the history of the master branch.

Indeed, objects C3 and C4 are not included in the master branch, and C5 will have

only one parent, which is C2. The new commit object (and tree object) will be

computed in the same way as the procedure for the regular commit described above.

Attacks against squash-and-merge commit objects are described in Section 2.4.2.3.

Rebase-and-merge Commit Object. A pull request may also be merged using

the rebase-and-merge option: all the new commits from the pull request are placed

on top of all the commits in the master branch. However, instead of using a

merge commit, for each commit in the pull request, a new commit is created in

the master branch. This option is preferred when it is important not to pollute the

history of the repository with a new merge commit object that makes it difficult to

follow the evolution of the repository. For example, consider the repository shown in

Figure 2.5 Repository state for squash-and-merge operations.

15

C1

C3

master

C2 C0 C1

C3

feature

C2

C4

(a) During the rebase and merge commit (b) After the rebase and merge commit

feature

C4

C3' C4'

master

C0

Figure 2.6 Repository state for rebase-and-merge operations.

Figure 2.6(a), in which the feature branch is about to be merged into the master

branch using the rebase-and-merge option. The server creates objects C3’ and C4’ on

top of C2, as shown in Figure 2.6(b). Note that objects C3’ and C4’ are equivalent to

objects C3 and C4 in the feature branch (i.e., they point to the same tree object).

Attacks against rebase-and-merge commit objects are described in Section 2.4.2.4.

2.3 Threat Model

We assume a threat model in which the attacker’s goal is to remove code (e.g.,

a security patch) or introduce malicious code (e.g., a backdoor) from a software

repository that is managed via a web interface. We assume the attacker is able to

tamper with the repository (e.g., modify data stored on the Git repository), including

any aspect of webpages served to clients. This scenario may happen either directly

(e.g., a compromised or malicious Git server), or indirectly (e.g., through MITM

attacks, such as nation state attacks against GitHub [105, 120, 104]).

There is evidence that, despite the use of HTTPS, MITM attacks are still

possible due to different facts ranging from design flaws (POET [144], BEAST [75],

CRIME [145], POODLE [128], ROBOT [108], CurveSwap [161], SLOTH [61]), to

implementation bugs (e.g., BERserk [148], Heartbleed [47], goto fail [164]) to highly

resourced adversaries (FREAK [106], LogJam [53], SWEET32 [60], DROWN [57]).

16

Such an attacker will continue to violate the repository’s integrity as long as these

attacks remain undetected. Since commit objects created by the server as a result of

user web UI actions are not signed by the user, the attacker may go undetected for

a long amount of time. Thus, rather than relying exclusively on the ability of web

services to remain secure, client-side mechanisms such as the one proposed in this

work can provide an additional layer of protection.

The attacker can read and write any files on a repository that may contain a

mix of signed commits (e.g., created via Git’s CLI tool) and unsigned commits (e.g.,

created via the web UI). The integrity of commits not created via the web UI can

be guaranteed only if these commits are signed by users using Git’s standard commit

signing mechanism. Our solution is independent of whether commits not created via

the web UI are signed or not. We assume the attacker does not have a developer’s

signing key they are willing to use (such as insiders that do not want to reveal their

identity). As such, the attacker cannot tamper with signed commit objects without

being detected. However, commit objects that are not signed can be tampered with

by the attacker. Since all commits created via the web UI are not user signed (as is the

case with GitHub and GitLab today 3), the attacker can tamper with these objects

when they are created, or directly in the repository after they have been created.

Although the attacker can create arbitrary commits even when users are not

interacting with the repository, these commits are not user-signed and will be detected

upon verification. Removing an existing commit from the end of the commit chain,

or entirely discarding a commit submitted via the web UI are actions that have a high

probability of being noticed by developers. Otherwise, our solutions cannot detect

such attacks, and a more comprehensive solution should be used, such as a reference

state log [160].

3In late October 2017, GitHub started to sign commits made using the GitHub web interface (as
an undocumented feature). Unfortunately, this only provides a false sense of security and does not
prevent any of the attacks we describe in Section 2.4 because GitHub uses its own private key to
sign the commits.

17

We focus on attacks that tamper with commits performed by the user via the

web UI (specific attacks are described in Section 2.4). Such attacks: (1) are stealthy

in nature, since subtle changes bundled together with a developer’s actions are hard

to detect, (2) can be framed as if the user did something wrong, (3) can be executed

either by attackers than control the Git server, or by MITM attackers in conjunction

with a user’s web UI actions, and (4) may be performed by an unscrupulous developer

who later denies having done it and blames it on the web UI’s lack of security. Thus,

we are mainly concerned with two attack avenues:

• Direct manipulation of the commit fields, so that the commit does not reflect
the user’s actions through the web UI.

• Tricking the user into committing incorrect data by manipulating the infor-
mation presented to the user via the web UI. If not handled appropriately,
this attack approach can even circumvent a defense that performs user commit
signatures, because the user can be deceived into signing incorrect data.

We assume attackers cannot get access to developer keys. Alternatively, a

malicious developer in control of a developer key may not want to have an attack

attributed to herself and would thus be unwilling to use this key to sign data they

have tampered with.

2.3.1 Security Guarantees

Answering to the threat model, the goal of a successful defensive system should be

to enforce the following:

• SG1: Prevent web UI attacks. Developers should not be tricked into
committing incorrect information based on what is displayed in the web UI.

• SG2: Ensure accurate web UI commits. The commits performed by
users via the web UI should be accurately reflected in the repository. After
each commit, the repository should be in a state that reflects the developer’s
actions.

• SG3: Prevent modification of committed data: An attacker should not
be able to modify data that has been committed to the repository without being
detected.

18

2.4 Attacks

A benign server will faithfully execute at the Git repository layer the operation

requested by the user at the web UI layer. However, the user’s web UI actions can

be transformed into damaging operations at the repository layer. In this section, we

identify new attacks that can result from some of the most common actions that can

be performed using GitHub’s web UI. Common to these attacks is the fact that the

server creates a commit object that reflects a different state of the repository than the

state intended by the user. In a project with multiple files, subtle changes in some of

the files may go unnoticed by the user performing the commit via the web UI. As a

result, anyone cloning or updating the repository will be unaware they have accessed

a repository that was negatively altered.

2.4.1 Attacks Against Regular Commits

GitHub’s web UI allows users to manipulate repository data. The user can add,

delete, or modify files and directories. The user then pushes a “Commit” button to

commit the changes to the repository. As a result, the GitHub server creates a new

commit object that should reflect the current state of the project’s files. Nevertheless,

the server can instead create a commit object that corresponds to a different project

state, in which files have been added, deleted, or modified in addition to or instead

of those requested by the user.

The attack is easy to execute, as the server simply has to create the blob,

tree and commit objects that correspond to the incorrect state of the repository.

Nevertheless, the attack’s impact can be significant. Since the server can arbitrarily

manipulate the project’s files, it can, for example, introduce a vulnerability by making

a subtle modification in one of the project’s files.

19

2.4.2 Attacks Against Merge Commits

The server can manipulate the various fields of a merge commit object that it creates.

Based on this approach, the following attacks can be executed.

2.4.2.1 Incorrect Merge Commit Attacks. The server can create an incorrect

repository state by manipulating the “tree” field of the merge commit object. The

server generates an incorrect list of blob objects by adding/deleting/modifying project

files, then a tree object that corresponds to this incorrect blob list of blobs, and finally

a merge commit object whose “tree” field refers to the incorrect tree object. A project

owner or developer will not detect the attack when they clone/update the repository

from the server. For example, in Figure 2.4 the feature branch is being merged into

the master branch.

Under benign circumstances, the tree object pointed to by the merge commit C5

object should refer to a set of blob objects that is the union of the sets of blobs referred

to by the trees in C2 and C4. However, the server can manipulate the contents of

the tree object in C5 to include a different set of blobs. The server can introduce

malicious content by adding a new blob that does not exist in the trees in C2 or C4.

Or, the server can remove a vulnerability patch by keeping the blob from the master

over the modified blob in the feature branch that contained the patch. Or it can

simply not include blobs that contained the patch.

By manipulating the set of blobs pointed to by the tree object, the server can

make arbitrary changes to the state of the repository pointed to by the merge commit.

2.4.2.2 Incorrect History Merge Attacks. The server can also create an

incorrect repository state by manipulating the “parent” fields of the merge commit

object. Instead of using the heads of the two branches to perform the merge commit,

the server can use other commits as parents of the merge commit.

20

Figure 2.7 Incorrect history merge attack.

Consider the initial repository shown in Figure 2.1. As shown in Figure 2.4,

a correct merging of the “master” and “feature” branches should result in a merge

commit of C2 and C4 (i.e., the heads of the two branches). However, the server can

create the repository shown in Figure 2.7 by merging the head of the master branch

with C3 instead of C4. This means only the changes introduced in C3 are merged.

The “parent” fields of C5 are set to point to C2 and C3.

The impact of this attack can be severe. If C3 contained a security vulnerability,

which was fixed by the developer in C4 before submitting the pull request, the fix will

be omitted from the master branch after the incorrect merge operation. In a different

flavor of this attack, the malicious server merges the head of the feature branch

(C4) with C1, which is not the head of the master branch, thus omitting potentially

important changes contained in C2.

Unlike the previous attack described in Section 2.4.2.1, the server does not have

to manipulate blob and tree objects, but instead uses incorrect parents when creating

the new merge commit object.

2.4.2.3 Incorrect Squash-and-merge Attacks. Consider the same scenario

described in Figure 2.1, except that the project owner chooses the squash-and-merge

option instead of the default recursive merge strategy to merge changes from the

feature branch into the master branch.

21

As shown in Figure 2.5, the server should first create a new commit object by

combining all the changes (commits) mentioned in the pull request, and then should

add the newly created commit object C5 on top of C2, which is the current head

of the master branch. During the creation of C5, a malicious server can add any

malicious changes or delete/modify any of the existing changes mentioned in the pull

request, and this action may go undetected.

2.4.2.4 Incorrect Rebase-and-merge Attacks. The server can also

manipulate a client’s request to use the rebase-and-merge option to merge

changes from a pull request. Consider the merge scenario described in Figure 2.6(a),

in which the rebase-and-merge option is used to merge the feature branch into

the master branch. As shown in Figure 2.6(b), the server should duplicate the

two commits from the pull request on top of C2, the head of the master branch.

However, a malicious server can add two commits that are not equivalent to the

commits in the feature branch, and this action may go undetected.

2.4.2.5 Incorrect Merge Strategy Attacks. Git can use one of five different

merge strategies when merging branches: recursive, resolve, octopus, ours, and subtree.

Each strategy may in turn have various options. The choice of merge strategy

and options influences what changes from the merged branches will be included

in the merged commit and how to resolve conflicts automatically (e.g., “favoring”

changes in one branch over other branches, or completely disregarding changes in

other branches).

We note that web-based Git hosting services such as GitHub and GitLab allow

a user to merge two branches using the web UI only when there are no merge conflicts.

Currently, such services support only the recursive merge strategy with no options.

Given their track record of constantly adding new features [94, 24], we adopt a

22

forward-looking strategy and consider a scenario in which they might add support for

a richer set of Git’s merging strategies.

The merge strategy introduces an additional attack avenue, as an untrusted

server may choose to complete the merge operation using a merge strategy different

than the one chosen by the user. For example, the server can use a different diff

algorithm to determine the changes between the merged branches than the one

intended by the developer. Or, the server may choose a different automatic conflict

resolution than the one preferred by the developer. This can result in removing

security patches, or merging experimental code into a production branch. The

defenses we propose in Section 2.5 are based on a future-proof design that can also

protect against incorrect merge strategy attacks.

2.4.3 Web UI Based Attacks

The server could display incorrect information in the web UI in order to trick the user

into committing incorrect or malicious data. Web UI attacks are dangerous because

even if a mechanism was in place to allow the user to sign her commits via the web

UI, these signatures would only legitimize the incorrect data.

Incorrect list of changes. Before doing a merge commit, the user is presented

with a list of changes made in one branch that is about to be merged into the other

branch. The user reviews these changes and then decides whether or not to perform

the merge. The server may present a list of changes that is incomplete or different

from the real changes. For example, the server may omit code changes that introduced

a vulnerability. Thus, the user may decide to perform the merge commit based on an

incorrect perception of the changes.

Inconsistent repository views. GitHub may provide inconsistent views of the

repository by displaying certain information in the web UI and then providing different

23

data when the user queries the GitHub API to retrieve individual Git objects. This

might defeat defense mechanisms that rely on the GitHub API.

Hidden HTML tags. A web UI-based mechanism to sign the user’s commits may

rely on the information displayed on the merge commit webpage to capture the user’s

perception of the operation. For example, the head commits of the branches being

merged may be extracted based on a syntactic check that looks for HTML tags with

specific identifiers in the webpage source code. Yet, the server may serve two HTML

tags with the same identifier, one of which has the correct commit value and will be

rendered in the user’s browser, and the other one referring to an incorrect commit

that will not be displayed (i.e., it is a hidden HTML tag). The signing mechanism

will not know which of the two tags should be used, and may end up merging and

signing the incorrect commit – while providing the user with the perception that the

correct commit has been merged.

Malicious scripts. The webpage served by the server in a file edit operation for

a regular commit may contain a malicious JavaScript script that changes the file

content unbeknownst to the user (e.g., silently removes a line of code). As a result,

the user may unknowingly commit an incorrect version of the file.

2.5 Design

In this section, we present le-git-imate, our defense to address misbehavior by

an untrustworthy Git hosting server. The fundamental reason behind these attacks

is that the server is fully trusted to compute correctly the Git repository objects.

Git’s standard commit signature mechanism provides a solution to this problem by

having the client compute a digital signature over the commit object and include this

signature in the commit object that it creates.

We adopt a similar strategy and present first a solution based on a lightweight

design, namely to embed a verification record in the commit object, even when the

24

client does not generate the commit object. We then present an improved solution,

our main design, in which the user is able to generate Git standard commit signatures

in the browser and therefore can sign web UI commits.

2.5.1 Design Goals

We identify a set of design goals that should be satisfied by any solution that seeks

to add verifiability to web-based Git repositories:

1. The solution should embed enough information into the commit object so that
anyone can verify that the server’s actions faithfully follow the user’s requested
actions. More specifically, the solution should offer the same (or similar) security
guarantees as do regular Git signed commits.

2. For ease of adoption and to ensure that it can be used immediately, the solution
should not require server-side changes.

3. The solution should not require the user to leave the browser. This will minimize
the impact on the user’s current experience with using GitHub.

4. The solution should preserve as much as possible the current workflows used
in GitHub: to perform a commit operation, the user prepares the commit and
then pushes one button to commit. In particular, the solution should preserve
the ease of use of GitHub’s web UI and must not increase the complexity of
performing a commit, as this may hurt usability.

5. The solution must be efficient and must not burden the user unnecessarily. In
particular, the solution should not add significant delay, as this will degrade the
user experience and it may hurt usability.

6. The solution should not break existing workflows for Git CLI clients: Regular
signed commits can still be performed and verified by Git CLI clients.

2.5.2 A Strawman Solution

A simple solution can mitigate one of the attacks described in Section 2.4.2, the basic

attack against merge operations. By default, Git uses the recursive strategy with no

options for merging branches. The tree and blob objects corresponding to the merge

commit object are computed using a deterministic algorithm based on the tree and

blob objects of the parents of the merge commit object.

25

As a result, the correctness of the merge operations performed by the Git server

can be verified. After a user clones/pulls a Git repository, the user parses the branch

of interest and computes the expected outcome of all merge operations based on the

parents of the merge commit objects. The user then compares this expected outcome

with the merge operation performed by the server.

This solution is insufficient because it can only mitigate the simplest attack

against a merge commit operation — only when the recursive merge strategy with no

options is used, and the server includes an incorrect list of blob objects in the merge

commit object by adding/deleting/modifying project files. In particular, this solution

cannot handle any of the other attacks we presented, including attacks against

regular commits, against merge commits based on incorrect parents or incorrect merge

strategy, against squash and merge operations, or web UI-based attacks. Instead, we

need a solution that provides a comprehensive defense against all these attacks. In

addition, we need to address design and implementation challenges related to the

aforementioned design goals.

2.5.3 le-git-imate Design

We propose two designs for le-git-imate. The lightweight design computes a

verification record on the client side and embeds it into the commit object created by

the server. The main design gives the user the ability to sign the web UI commits,

i.e., the user creates standard Git signed commits. Both designs use information from

GitHub’s commit webpage as it is rendered in the user’s browser, and thus capture

what the user expects to be included in the commit object. Subsequently, anyone who

clones the repository can check whether the server tampered with the commit objects

by traversing the object tree and validating the verification record or the commit

signatures. We compare the two designs later in Section 2.8.

26

<original commit message>

[<merge commit strategy>]

<commit size>

<tree hash (hash of tree object)>

<hash of 1st parent commit>

[<hash of 2nd parent commit>]

<author name> <author e-mail>

<committer name> <committer e-mail>

<signature over entire verification record>

Figure 2.8 The format of the signed verification record . Fields in between square
brackets ([]) are included only for merge commit objects (merge strategy and hash
of 2nd parent commit).

2.5.3.1 lightweight design . To achieve design goal #1, we are faced with two

challenges. First, the user cannot compute the same exact commit object computed

by the server, because a commit object contains a field, timestamp, that is non-

deterministic in nature, as it is the exact time when the object was created by the

server. The lightweight design takes advantage that, at the moment when the commit

object is being created by the server, most of the fields in the commit object are

deterministic and can be computed independently by the user. Second, we need to

find a way to embed the verification record created by the user in the commit object

that is created by the server. We add verifiability to the Git repository by leveraging

the fact that GitHub (as well as any other web-based Git hosting service) allows

the user to supply the commit message for the commit object. The user creates the

verification record and embeds the verification record into the commit message of the

commit object. The verification record contains information that can later be used

to attest whether the server performed correctly each of the actions requested by the

27

user through the web UI. By including the verification record in the commit message,

our solution also meets design goal #2 – no changes are needed on the server.

We include the deterministic fields of the commit object into the verification

record , as shown in Figure 2.8. For merge commit objects, we also include the merge

commit strategy chosen by the user. All these fields, except the “tree hash”, are

extracted from the GitHub page where the user performs the commit. The “tree

hash” field is computed independently by the user (as described in Section 2.6.2).

The user may describe her commit by providing a message in the GitHub commit

webpage. However, our solution overwrites the user’s message with the verification

record . To preserve the original user’s message, we include it in the verification record

as the “original commit message” field.

commit <commit object size> tree <hash of tree object>

parent <hash of 1st parent commit object>

[parent <hash of 2nd parent commit object>]

author <author name> <author e-mail> <timestamp> <time zone>

committer <committer name> <committer e-mail> <timestamp> <time zone>

<commit message>

<signature over commit fields>

Figure 2.9 The format of the signed commit object. Fields in between square
brackets ([]) are included only for merge commit objects (hash of 2nd parent commit).

2.5.3.2 main design . The main challenge that prevents us from computing a

Git’s standard commit signature for web UI commits is that the commit timestamp

is not determined by the server. To tackle this issue, we create the commit object

exclusively on the client side and push it to the server. That lets the user to set the

commit timestamp and compute a standard commit signature over all the commit’s

fields, as shown in Figure 2.9.

28

When computing the signed commit object on the client side, our main design is

faced with the challenge to meet design goal #3: creating a signed commit object

without requiring the user to leave the browser. We pioneer the ability to create

a standard GPG-signed Git commit object in the browser by re-implementing the

functionality of the git commit and git send-pack commands exclusively in the

browser. That allows the user to create a signed commit object locally and push it to

the server (as described in Section 2.6.3). The commit signature can later be used to

attest whether the server tampered with the web UI commits. By creating a signed

commit in the browser, our solution also satisfies design goal #2.

Just like in the lightweight design, all commit’s fields, except the “tree hash” and

the commit timestamp, are extracted from the GitHub page. The “tree hash” field is

computed independently by the user (as described in Section 2.6.2). As explained in

Section 2.7, le-git-imate provides automated and manual checks to mitigate web

UI attacks that attempt to trick the user by displaying incorrect information on the

GitHub webpage.

2.5.3.3 Verification Procedure. When a developer retrieves the repository for

the first time (e.g., git clone or git checkout), or when she pulls changes from

the repository (e.g., git pull), she will check the validity of the retrieved commits

as follows:

• for lightweight design: execute the Verify Commits procedure which is imple-
mented as a new git command. Note it can be implemented as a Git hook to
be executed after a git clone or a git pull command.

• for main design: run the standard git-verify-commit command.

Verify Commits Procedure. The developer expects each commit to have either

a valid standard commit signature (line 4) or a valid verification record (line 8). If

there is at least one commit that does not meet either one of these conditions, the

verification fails since the developer cannot get strong guarantees about that commit.

29

The function that validates a verification record (Validate Verif Record, line 8)

returns success only if the following two conditions are true: (a) the verification record

contains a valid digital signature over the verification record ; (b) the information

recorded in the verification record matches the information in the commit object.

Specifically, we check that the following fields match: commit size, tree hash, first

parent commit hash, author name, author email, committer name, and committer

email. For merge commit objects, we also check the merge commit strategy and

hashes of additional commit parents. With the verification procedures pointed above,

le-git-imate achieves design goal #6.

PROCEDURE: Verify Commits
Input: RepositoryName
Output: success/fail

1: commits ← Get Commits(RepositoryName)
2: for (each commit in commits) do
3: // Check if the commit is signed
4: if Validate Signed Commit(commit) == false then
5: commit msg ← Extract Commit Msg(commit)
6: verif record ← Extract Verif Record(commit msg)
7: // Validate the verification record
8: if Validate Verif Record(verif record) == false then
9: return fail

10: end if
11: end if
12: end for
13: return success

2.6 Implementation

With the aim of meeting design goals #2, #3, and #4, we implemented our solution

as a client-side Chrome browser extension [5]. After preparing the commit, instead

of using GitHub’s “commit” button to commit the change, the user activates the

extension via a “pageAction” button that is active only when visiting GitHub.

The extension is intended to aid the user in creating a verification record (for the

lightweight design) or a standard signed commit (for the main design). To do so,

30

the extension first parses the GitHub web UI to obtain the relevant information

regarding the user request. That includes the commit type, the head of the repository

branch(es). Then the “tree hash” of the new commit is computed. Next, the extension

run the following steps depending on which design is implemented.

• for lightweight design:

– Compute the signed verification record

– Include the signed verification record into the commit message, and submit
the commit to the server

• for main design:

– Compute the signed commit object

– Push the commit object to the server

In the following, we first give an overview of the implementation of each design.

Then, we outline computing the “tree hash” field, which is a core component of both

designs. We then describe creating a signed commit object in the browser as the main

improvement in the main design over the lightweight design. Finally, we present the

key management component of le-git-imate.

2.6.1 Overview

The extension consists of two JavaScript scripts that communicate with each other

via the browser’s messaging API as follows:

1. The content script [70] runs in the user’s browser and can read and modify the
content of the GitHub webpages using the standard DOM APIs. The content
script collects information about the commit operation from the GitHub commit
webpage and passes this information to the background script.

2. The background script [71] cannot access the content of GitHub webpages but
computes the “tree hash”. This script then performs automatic and manual
checks to prevent web UI-based attacks. In short, the automatic checks ensure
that GitHub providing consistent repository views between the web UI and the
GitHub API (or any other API used by the Git hosting provider). For the
manual checks, the background script allows the user to check the accuracy of
the commit fields by displaying it inside a separated pop-up window. If the
user is satisfied, she hits a button called “finalize commit”. Upon pushing the
button, the following steps are performed.

31

• for lightweight design:

– The background script transfers the verification record to the content
script.

– The content script includes the signed verification record into the
GitHub commit message and triggers the commit button on the
GitHub webpage. As a result, the signed verification record is
embedded into the GitHub repository as part of the commit message.

• for main design:

– The background script creates a signed commit object and pushes the
commit to the server.

– The content script triggers the commit button on the GitHub webpage
to reload the page and notify the user about the changes.

Performing a commit using GitHub’s web UI requires the user to push one

button. With le-git-imate in place, the user can commit with two clicks while

browsing GitHub’s commit webpage (one to activate the extension, and one to transfer

the signed commit to the server and reload the GitHub’s web page). Based on this

design, we argue that le-git-imate achieves design goals #4.

The extension consists of a total of 4273 lines of Javascript code, excluding

HTML templates, JSON manifests, and libraries. All operations to compute commits,

signing and verification are done in pure browser-capable Javascript, which required

the re-implementation of some fundamental Git functions (such as git-merge-file and

git-send-pack) in JavaScript-only versions. The code to fetch arbitrary information

and objects from the repository uses the GitHub API [93], but it could use Git’s pack

protocol [95] to work with other hosting providers just as well.

At the time of developing the le-git-imate extension, previous attempts [27,

35, 26, 13, 33] to implement various Git functions in JavaScript did not offer all

the needed functionalities. le-git-imate provides the first implementation of Git’s

merge commit in JavaScript, which is of independent interest4. In addition, it

implements the git commit and git push commands without needing access to

the entire repository and without creating a working directory on the client side,

4We note that isomorphic-git [33] released its first implementation of the git merge command based
on the diff3 algorithm on September 4, 2019 [112].

32

which is not possible in the standard Git. Although we implemented le-git-imate

as an extension for the Chrome browser, it relies purely on JavaScript and can be

instantiated in other browsers with minimal effort. We have released le-git-imate

as free and open-source software [118].

2.6.2 Computing the “Tree Hash” Field

The extension can populate most of the fields of the new commit by extracting them

from the GitHub commit webpage, except for the “tree hash” field which needs to

be computed independently. We now describe how to compute this field, which is

expected to have the same value as the “tree” field of the commit object (i.e., the

hash of the contents of the tree object associated with the commit object that is

about to be created).

To compute the tree hash, the background script needs the following infor-

mation, which is collected by the content script and passed to the background script:

• for regular commits: branch name on which the commit is performed, name
of the directory(es) that might have been affected by the file operation, and
the following file information depending on the user’s operation that is being
committed:

– add: the name and content of added file(s).

– edit: the name and updated content of edited file(s).

– delete: the name of deleted file(s).

• for merge, squash-and-merge, or rebase-and-merge commits: branch name of
the branches that are being merged.

Basic approach 1. The background script can delegate the computation of the tree

hash field to a script that runs on the user’s local system (outside the browser). The

local script runs a local Git client that clones the branch(es) involved in the commit

from the GitHub repository into a local repository. The Git client simulates locally

the user’s operation and performs the commit in a local repository, from where the

needed tree hash is then extracted.

33

Figure 2.10 An example of the object tree.

Basic approach 2. The previous approach is inefficient for large repositories, as

cloning the entire branch can be time consuming. To address this drawback, the

client could cache the local repository in between commits. That helps the local Git

client to retrieve only new objects that were created since the previous commit.

Optimized approach for regular commits. Delegating the computation of the

tree hash field to a local script is convenient since a local Git client will be responsible

to compute the necessary Git objects. However, whenever GitHub’s web UI is

preferred for commits, this usually implies that the user does not have a local Git

client. Moreover, assuming that the repository is cached in between commits is a

rather strong assumption. We explore an approach in which the tree hash is computed

exclusively using JavaScript in the browser. For this, we have reimplemented in

JavaScript the regular and the merge commit functionality of a Git client. As such,

both designs are implemented exclusively in the browser, without the need to rely

on any software outside of the browser, and without assuming any locally-cached

repository data. Design goal #3 is thus achieved.

Instead of cloning entire branches, we propose an optimized approach. Our

analysis of the top 50 most starred GitHub projects reveals that for a regular commit

performed using GitHub’s web UI, only one file is edited on average, and the median

size of the changes is 76.5 bytes. For merge commits, the median number of changed

34

files in the pull request branch is 2. The median number of commits in the master

branch and in the pull request branch after the common ancestor of these branches

are 10.2 and 3.7, respectively. This raises the possibility to compute the tree object

without retrieving the entire branch. Instead, we only retrieve a small number of

objects and recompute some of the objects in order to obtain the needed tree object.

Our optimized algorithm leverages the fact that GitHub provides an API to

retrieve individual Git objects (blob, tree, or commit). We illustrate the optimized

algorithm with an example for the object tree shown in Figure 2.10. Assume the

user performs an operation on a file under Dir2 and then commits. To compute

the tree object for the commit, the background script first retrieves the tree object

TDir2 corresponding to Dir2, followed by the following steps, which depend on the

performed operation:

• add a file under Dir2: compute a blob entry for the newly added file; re-compute
TDir2 by adding the blob entry to the list of entries in TDir2.

• edit a file under Dir2: compute a blob entry for the edited file; re-compute
TDir2 by replacing the blob entry corresponding to the edited file with the
newly computed blob entry.

• delete a file under Dir2: re-compute TDir2 by removing the blob entry
corresponding to the deleted file.

The change in the TDir2 tree object needs to be propagated to its parent tree

object TDir1 (i.e., the tree object corresponding to Dir1). To do this, the background

script retrieves the TDir1 tree object using GitHub’s API, and then updates it by

changing the tree entry for TDir2 to reflect the new value of TDir2. In general, the

propagation of changes to the parent tree object continues up until we update the

“root” tree object which corresponds to the commit object that will be created by

the server. This “root” tree object is the tree object that we need to compute.

Unlike the basic approach 1 presented earlier, this optimized approach proves

to be much faster (as shown by our evaluation in Section 2.8) and does not require a

35

Git client installed on the user’s local system. We note that all Git objects retrieved

through the API are verified for correctness before being used (they need to either

have a le-git-imate verification record , or a true Git commit signature).

Optimized approach for merge (and squash-and-merge) commits. We

describe this approach for a case of merging two branches: the feature branch is

merged into the master branch. However, it can be extended in a straightforward

manner to handle the merging of multiple branches. Just like in the optimization

for regular commits, we leverage the GitHub API for retrieving a minimal set of

repository objects that are needed to compute the tree object for the merge commit.

The merge commit is a complex procedure that reconciles the changes in the two

branches into a merge commit object. At a high level, the tree of the merge commit

(i.e., the merge tree) is obtained by merging the trees of the head commits of the two

branches. Similarly, we initialize the merge tree using the tree of the master branch,

and then add/update/remove its entries to reflect the blobs were added, modified,

or deleted in the feature branch. To determine the lists of added, modified, and

deleted blobs in the feature branch, we use the following algorithm:

1. Retrieve the tree of the head commit of the feature branch. Let L1 be the list
of all the blob entries in this tree.

2. Retrieve the tree of the commit that is the common ancestor of the two branches.
Let L2 be the list of all the blob entries in this tree.

3. Given lists L1 and L2:

• if a blob entry exists in both lists (i.e., same blob path), but the blob has
different contents (i.e., different SHA1 hash), then add the blob entry to
the list of modified blobs.

• if a blob entry exists in L1 and does not exist in L2, then add it to the list
of added blobs.

• if a blob entry exists in L2 and does not exist in L1, then add it to the list
of deleted blobs.

Since the entries in the trees retrieved from the GitHub API are already ordered

lexicographically based on the paths of the blobs, this algorithm can be executed

36

efficiently (execution time is linear in the number of tree entries). Having obtained

the lists of blobs that were added, modified, and deleted in the feature branch, we add

to the merge tree the entries for the blobs that were added, and remove the entries for

the blobs that were deleted. For modified blobs, we update the corresponding entries

as follows: We use the GitHub API to retrieve the corresponding blobs from the two

branches and then compute the modified blob via a three-way merge.

We note that changes in the tree of a subdirectory have to be propagated up to

the tree of the subdirectory’s parent directory. Similar to our optimization for regular

commits, the propagation of changes to the parent tree object continues up until we

update the “root” tree object which corresponds to the merge commit object that

will be created by the server. This “root” tree object is the tree object that we need

to compute.

2.6.3 Creating and Sending the Commit Object to the Server

le-git-imate’s main design gives the user the ability to sign the web UI commits in

the browser. To do so, the extension creates the signed commit object and pushes it

to the server by reimplementing the functionality of the git commit command and

git send-pack command, respectively. We note that, unlike other existing libraries

such as isomorphic-git [33], we implement this functionality without needing access

to the entire repository and without creating a working directory on the client side.

Create the signed commit object. Once the deterministic fields of the new are

extracted from the GitHub page, le-git-imate simulates the git-commit command

to create the commit object as follows.

1. determine the commit timestamp locally.

2. compute the “tree hash” as detailed in Section 2.6.2.

3. compute a Git’s standard commit signature over the commit’s fields.

4. create the commit object and insert the commit signature into it.

37

5. create all new blob and tree objects related to the new commit.

Push the commit object. Git provides transferring data between two repositories

using two sets of protocols, a pair for pushing data from the client to the server,

and another for fetching data from the server to the client. Both protocols can

be run over ssh, http(s) or ftp. To push data to a remote server, Git uses two

processes,“send-pack” and “receive-pack”. The send-pack process runs on the client

and connects to a receive-pack process on the server. The entire protocol is aimed to

publish what is updated locally to the remote repository on the server.

The data is sent over a custom file called “Packfile” that is a file used to store

Git objects in a highly compressed format. Git objects are normally stored in the

“Loose” format which is storing each entire version of a file in the repository. Unlike

the Loose format, the Packfile stores a single version of a file, and maintain different

patches to derive the other versions of the file.

When the user wants to update a remote repository, Git client runs the send-

pack process to initiate a connection to the server. The receive-pack process on the

server responds with the server’s state, specifying the head of each branch. Using the

server’s response, the client determines the smallest amount of data should be sent to

the server (commits that the server does not have). Then, the client uses send-pack

process to tell the server which branches are going to be updated. For each branch,

the client sends the old head and the new head. Next, the client sends a Packfile of

all the objects the server does not have. Finally, the server replies with a success (or

failure) indication.

To run the protocol depicted above, le-git-imate can simply use Git client to

run the “git-push” command. However, design goal #3 prevents us from leaving

the browser. le-git-imate tackles this challenge by simulating the entire protocol

in the browser. In sum, le-git-imate re-implements the following functionalities of

a Git client in the browser:

38

1. run git-receive-pack process to talk to the server and get the state of the remote
repository.

2. create the packfile of all the objects (i.e, commit, blob, tree) that the server
does not have.

3. send the packfile to the server.

4. get the server’s respond (a success or failure).

2.6.3.1 Key Management. Key management can be either performed manually

or in an automated fashion. le-git-imate provides users with both options to

manage the private key that is used to sign their commits.

• Automatic (Private key store): le-git-imate asks the user to log into a third-
party private key store. Upon successful login, the user’s private key is retrieved
from the third-party server. Then the key is stored locally to avoid asking it
every time that the user wants to perform a commit. However, if the user prefers
not to cache the private key locally, she must authenticate to the third-party
server once per commit.

• Manual (Import local keys): The extension supports manual key management
for those users who dislike storing even a passphrase-protected private key on
a third-party server. Such users have options to either load an existing private
key or generate a new one.

Out of several key management systems ([36, 78, 119]), we leverage Keybase [36]

as a private key store based on its relatively high popularity (over 400,000 active

users5) and on its rich set of APIs. It allows users to store passphrase-protected

private keys on Keybase servers without trusting the Keybase servers. This system

simplifies the private key management by allowing users to retrieve their private key

from a server anywhere anytime and even use one private key across different devices.

We note that Keybase puts the private keys at risk if the passphrase is compromised.

We note that GitHub has recently introduced a feature to verify GPG signed

commits using the public key of the signer [96], which is stored and managed by

GitHub. Unfortunately, relying on an untrusted server to manage user keys does not

fit our threat model, and so le-git-imate does not leverage this feature.

5as of August 28, 2019 [74]

39

2.7 Security Analysis

In this section, we analyze the security guarantees provided by le-git-imate.

2.7.1 Prevent Web UI Attacks

le-git-imate relies in part on extracting information from the commit webpage

in order to compute the verification record (for lightweight design) or the commit

signature (for main design). To prevent the web UI attacks described in Section 2.4.3,

le-git-imate has additional checks that retrieve Git objects via the API, and verify

their correctness before use based on a verification record or a true Git commit

signature.

To defend against a server that presents an incorrect list of changes before a

merge commit, we use the API to compute independently the list of changes based on

the heads of the branches that are being merged. We then compare it with the list of

changes presented on the webpage, and alert the user of any inconsistencies. Since the

“hash tree” field is computed based on Git objects retrieved via the API, the GitHub

server has to create commit objects that are consistent with the commit signature.

Otherwise, any inconsistencies will be detected when the verification procedure is run.

To counter the hidden HTML tags attack, we leverage the fact that a benign

GitHub merge commit webpage should present only one HTML tag describing the

number of commits present in the branches being merged. If more than one such tag

is detected, we notify the user. We also inform the user about the number of commits

that should be visible in the rendered webpage, and the user can visually check this

information. Assuming there are n commits, we then check that there are n HTML

tags describing a commit and report any discrepancy to the user as well.

Before pushing the commit to the server, le-git-imate displays in a pop-up

window three text areas as follows:

40

1. information about parent commit (author, committer, and creation date),
retrieved via the API. This helps the user to detect if the new commit is added
on top of a commit other than the head of the branch.

2. for regular commits, the differences between the parent commit (retrieved via
the API) and the commit that is about to be created. This allows the user
to detect any inconspicuous changes made by malicious scripts in the commit
webpage.

3. the commit’s field. This allows the user to check if the fields of the new commit
match the information displayed on GitHub’s commit webpage.

Whereas these checks may not be 100% effective since they are done manually by

the user, they provide important clues to the user about potential ongoing attacks by

the malicious scripts. Notably, that the pop-up window could be integrated with the

original GitHub webpage. However, the content of GitHub page can be manipulated

by malicious scripts coming from the un-trusted server or other adversaries. To

mitigate this threat, le-git-imate uses an isolated pop-up window to display the

signed information. That is a standard approach followed by similar extensions

like Mailvelope [37] and FlowCrypt [15]. From above discussions, we argue that

le-git-imate achieves security guarantee SG1.

2.7.2 Ensure Accurate Web UI Commits

Creating a signed verification record or a true Git commit signature, le-git-imate

uses information about the user (i.e., author, committer), the state of the repository

(i.e., the head of the branch), and the user’s requested actions (i.e., the “tree

hash” computed over the changes made by the user). To capture such information,

le-git-imate relies on the content of GitHub webpage and a minimum set of Git

objects retrieved from the server. Since all this information is verified before use

(as described in Section 2.7.1), le-git-imate can not be tricked to use incorrect

information. Thus the commits created by le-git-imate reflects the user’s actions,

and our solution achieves security guarantee SG2.

41

2.7.3 Prevent Modification of Committed Data

Commits created by le-git-imate extension, either have a signed verification record

or a true commit signature. In either case, the signature is calculated over a payload of

information, including the commit size, the “tree hash”, the hash of parent(s) commit,

and the commit’s author. That prevents the attackers from changing the committed

data without being detected. Indeed, any unauthorized modifications (e.g., delete a

file or change the author) in the committed data will be caught during the verification

procedure (described in Section 2.5.3.3).

We, therefore, conclude that le-git-imate achieves security guarantee SG3.

2.8 Evaluation

In this section, we study the performance of our browser extension prototype to

see whether it meets design goal #5. Specifically, we investigate whether the

time to sign a web UI commit remains within usable parameters for our different

implementations. In addition, we consider the tradeoffs between setup time and disk

space required.

For this evaluation, we covered five variants of our tool:

• No-Cache: In this approach, a local Git CLI client clones an entire branch and
computes the new Git commit object, whereas the browser extension computes
the verification record based on information from the new commit. This is the
“Basic approach 1” described in Section 2.6.2.

• Cache: This approach is the same as above, but it uses a local copy of the
repository (as cache). Thus, the client retrieves only new objects that were
created since the previous commit. Based on our findings of the top 50 most
starred GitHub projects, we assume a cached local repository is behind the
remote repository by 4 commits (for a regular commit) and by 10 commits (for
a merge commit). This corresponds to the “Basic approach 2” described in
Section 2.6.2.

• NativeSign: A baseline approach in which the local script of the extension
performs a signed commit locally using a Git client. This is the same as the
Cache approach, however, it results in a standard signed Git commit object.

42

• Optimized1: An optimized approach based on the lightweight design [54], that
queries for Git objects on demand to compute the verification record exclusively
in the browser. This does not require a local repository nor any additional tools
outside of the browser.

• Optimized2: An optimized approach based on the main design [55], that queries
for Git objects on demand to create signed commit objects exclusively in the
browser. Compared to the Optimized1 variant, it creates a standard signed Git
commit object on the client side.

2.8.1 Experimental Results

To test our implementations against a wide range of scenarios, we picked five

repositories of different history sizes, file counts, directory-tree depths and file sizes,

as shown in Table 2.1. To simulate real-life scenarios, they were chosen from the top

50 most popular GitHub repositories (popularity is based on the “star” ranking used

by GitHub, which reflects users’ level of interest in a project6).

The client was run on a system with Intel Core i7-6820HQ CPU at 2.70 GHz

and 16 GB RAM. The client software consisted of Linux 4.8.6-300.fc25.x86 64 with

git 2.19 and the gnupg 2-2.7 library for 2048-bit RSA signatures. Experimental data

points in the tables of this section represent the median over 30 independent runs.

For all variants, the time to push the Git commit object to the server is not included

in the measurements. When running the five variants of our tool, we noticed that

one CPU core (out of 8 cores) was used.

We note that, compared to an earlier version of this article [54], the experimental

numbers in this section for the Optimized1 of le-git-imate are smaller. This is

because we have improved the implementation of that variant by reducing the number

of GitHub API calls by two times for regular commits (from four to two API calls)

and by four times for merge commits (from twelve to three API calls).

Regular commits. Table 2.2 shows the execution time for regular commits for all

variants of our tool. A regular commit consists of editing a file that is two subdirectory

6The statistics refer to the top 50 GitHub projects as of August 25, 2019.

43

Table 2.1 Repositories Chosen for the le-git-imate’s Evaluation

Repo. Size File Count File Size History Size

(MB) (Bytes) (# of commits)

gitignore 1.6 193 496 2,883

vue 11.4 526 9,438 2,611

youtube-dl 44.5 916 6,080 16,447

react 87.3 935 10,695 10,199

atom 290.4 827 20,021 35,507

levels below the root level and committing the changed file (we also measured the

time for commits in a subdirectory nested up to four levels below the root level, but

the difference is negligible – under a tenth of a second). The size of the changes for

the edited file was 1.2 kilobytes, which is the maximum size of the changes observed

for the top 50 most starred GitHub projects.

In the case of the No-Cache variant, the execution time is dominated by the time

to clone the repository. Notice that this only requires to retrieve one commit object

with all its corresponding trees and blobs, which leaves little space for optimization. In

contrast, the Cache and NativeSign variants are barely affected by network operations

since only new objects are retrieved from the remote Git repository.

The optimized variants fetch the minimum number of Git objects needed to

compute the commit object. As a result, they are influenced by two factors: 1) the

number of changed files and 2) the location of these files in the repository, which

determines the number of tree objects needed to be retrieved. In particular, repository

size is not a major factor for the performance of the optimized variants.

It is important to point out that the execution time for the optimized variants

is dominated by the time to retrieve the Git objects from the remote server over the

network. On average, Optimized1 is about 300ms faster than Optimized2 due to the

44

Table 2.2 Regular Commit Execution Time (in seconds)

Repo. No-Cache Cache NativeSign Optimized1 Optimized2

gitignore 0.37 0.16 0.16 0.33 0.61

vue 0.85 0.22 0.22 0.35 0.62

youtube-dl 4.01 0.22 0.23 0.32 0.66

react 5.46 0.25 0.25 0.36 0.63

go 14.81 0.20 0.21 0.45 0.72

Table 2.3 Merge Commit Execution Time (in seconds)

Repo. No-Cache Cache NativeSign Optimized1 Optimized2

gitignore 0.41 0.17 0.17 0.87 1.11

vue 0.92 0.36 0.36 0.90 1.19

youtube-dl 4.39 0.22 0.23 1.06 1.39

react 5.73 0.29 0.30 1.31 1.53

go 15.59 0.25 0.25 1.16 1.41

fact that Optimized2 needs to create a packfile of all new objects the server does

not have. That includes, as explained in Section 2.6.3, making additional network

connections. Our experimental results show that if we exclude time to create the

packfile, Optimized2 has a similar performance with Optimized1.

Finally, we point out that optimized variants use the OpenPGP Javascript

library [38] to compute in the browser a digital signature for the verification record or

for the commit object. As opposed to that, computing signatures in the Cache and

NativeSign variants is faster because it is done by the Git client, which is optimized for

specific architectures. If we exclude the signature creation time, Optimized1 exhibits

similar performance with NativeSign.

45

Merge commits. Table 2.3 shows the execution time for merge commits for all

variants of our tool. A merge commit is created by merging into the master branch

an open pull request branch that has no conflicts. Each number in the table is

the median over merging the last open 30 pull requests for each repository (at the

time when the experiment was performed). As such, each pull request consists of a

number of commits ranging from 1 to 16, and a number of changed files ranging from

1 to 75.

None of our variants have complexity worse than linear. Similarly to the regular

commit experiment, the No-Cache variant exhibits a running time linear with the size

of the repository. Likewise, the Cache and NativeSign variants exhibit a slightly higher

time for merge commits when compared to regular commits due to the computation

of the merge operation itself.

The optimized variants perform under 1.5 seconds for all cases – regardless of

repository size, because the time it takes to perform the operation depends on the

number of changed files and directories in the target branch and in the pull request

branch. This explains why the time for the “react” pull request is higher than for

“go”, which is a bigger repository. Similarly to regular commits, the Optimized2

variant is about 300ms slower than Optimized1 on average because it creates the

packfile of all new Git objects that are necessary.

2.8.2 User Experience

From the results above, we concluded that a No-Cache version is out of usable

parameters due to its high execution time. However, the Cache and Optimized

versions perform well under website responsiveness metrics.

Work by Nielsen and Miller [135, 124, 134] suggests that a response under a

second is the limit in which the flow of thought stays uninterrupted, even though the

user will notice the delay. From then on, and up to 10 seconds, responsiveness is

46

harmed, with 10 seconds being a hard limit for the time a user is willing to spend

waiting for a website’s response. Further work [83, 149] presents an “8 second rule”

as a hard limit in which websites should serve information. In addition, work by

Nah [130] sets a usable limit of around two seconds if there is feedback presented to

the user (e.g., a progress bar). Work of Arapakis [56] argues that 1000ms of increased

response time is still hard to notice by some users, depending on the nature of the

activity. Finally, further studies suggest that response times that range from two

seconds to seven seconds are associated with low user drops (and high conversion

rates), given that users are engaging in activities understood to be complex [141].

Using GitHub’s web UI for actions such as code commits and merge commits usually

requires the user to review the code changes, which can take from seconds to minutes.

Under these considerations, and in the context of the above experiments, we

conclude that the Cache, NativeSign, and Optimized versions fall under usable

boundaries.

2.8.3 Disk Usage and Other Considerations

Among the three implementations, NativeSign requires to store a local copy of the

repository. In contrast, the Optimized versions run entirely on the browser and with

fairly minimal memory requirements.

Likewise, the Optimized versions do not require a local installation of a

Git client, a shell interpreter, and any other tools. The size of this Optimized

implementation is much smaller than the official Git binary (as of version 2.19). The

disk space needed for the whole extension is 465KB for the Optimized1 version and

735KB for the Optimized2 version. If we also consider dependencies (which include

other JavaScript libraries that are needed), the storage grows to 1.2MB and 1.67MB,

respectively.

47

Finally, we contrast the required configuration parameters, such as paths to

executables, cache paths, and private key settings. In this case, the Optimized

versions also shine in contrast to the remaining three. Since all operations are

performed in-browser, the Optimized variants can almost work out of the box, as they

only require configuring the key for signing the verification record or the commit.

Due to the reasons outlined above, we consider our Optimized variants to fall

under reasonable parameters for usability. We conclude that, with minimal disk and

memory footprints, minimal configuration parameters, and reasonable delays, our

optimized implementation meets design goal #5.

2.8.4 Comparison Between the lightweight and main Designs

In this section, we compare the two designs by summarizing their various advantages

and drawbacks:

• Verifiability and Compatibility with Existing Workflows: The main design
computes standard Git signed commits which can be verified with the standard
Git CLI tool. The lightweight design introduces a verification record which
requires adding a Git command to the Git CLI tool in order to perform
verification. This may require slight changes to existing workflows, as the
verification now relies on information that exists in the commit message.

• Security: The main design provides the exact security guarantees offered by
Git’s standard commit signing mechanism. The lightweight design provides
security guarantees comparable and compatible with Git’s standard commit
signing mechanism

• Performance: Both designs have comparable performance with Git’s standard
commit signature mechanism. However, the lightweight design is slightly faster
than the main design, because it does not need to create a packfile of all new
objects on the client side.

• Storage: The lightweight design has smaller storage and memory requirements
(15,838 lines of JavaScript code and 1.2MB) compared to the main design
(25,611 lines of JavaScript code and 1.67MB).

• User interface: Both designs have the same user interface.

We conclude that the main design is preferable in general due to its full

compatibility with existing workflows, but the lightweight design may be preferable

48

when performance and storage are critical and even a slight improvement in these

parameters would make a difference.

2.9 User Study

Having received IRB approval, we conducted a user study on 49 subjects with two

primary goals in mind. The first goal was to evaluate the stealthiness of our attacks

against web-based Git hosting services. The second goal was to evaluate the usability

of our le-git-imate browser extension when used by Git web UI users.

2.9.1 User Study Setup

In order to measure user’s interactions with the web-based Git UI, we hosted an

instrumented GitLab server using Flask [14] and the original GitLab source code [28].

For each participant, we assigned a copy of the retrofit repository, which is among

the top 5 most starred GitHub projects in Java. We chose retrofit due to the

participants’ familiarity of Java and the repository being representative for a medium-

to-large repository size (1503 commits, 265 files and 4.5KB average file size).

Our study used the le-git-imate implementation based on the lightweight

design [54]. We argue that the results are applicable to both designs because

their implementations have the same graphical user interface and have very similar

performance (as shown in Section 2.8).

The subjects were recruited as volunteers from the student population at our

institutions, with a majority of them receiving extra course credit as an incentive

to participate. After a screening process to ensure that participants had a basic

understanding of Git and GitHub/GitLab services, 49 subjects took part in the study.

We also discarded six additional participants given that they were unable to complete

any or most of tasks in the user study. Table 2.4 provides demographics about the

study participants.

49

Table 2.4 Demographics for User Study Participants

Subjects 43
Gender
Male 33
Female 10
Age
20 to 25 years 34
25 to 35 years 8
35 years or older 1
GitHub/GitLab membership
More than 2 years 13
Between 1-2 years 18
Less than 1 year 6
Less than 6 months 3
Not using a web-based Git repository 3
GitHub/GitLab use
A few times per day 5
Once per day 4
A few times per week 17
A few times per month 15
Not using GitHub/GitLab 2
Familiarity with Git commit signing
Very familiar (use it on a daily basis) 6
Somewhat familiar (use it sometimes) 23
Not familiar (never use it) 14
Familiarity with public key cryptography
Very familiar 14
Somewhat familiar 27
Not familiar 2

2.9.2 User Study Description

The study consisted of two parts, each of which comprises several tasks. Each task

required participants to interact with the GitLab web UI in order to perform either

a branch merge, or to edit, add, or delete one file in their copy of the retrofit

repository.

During the first part, we collected a baseline usability data of the GitLab web UI

usage, as well as the participants’ ability to detect any of our GitLab web UI attacks.

Participants had to perform 10 tasks, 4 were related to merge commits operations and

6 were related to regular commits using the web UI. To test the attack-stealthiness

50

aspect, the GitLab server would maliciously transform their actions using a pre-

commit hook on 5 out of the 10 tasks.

During the second part of the user study, which consisted of 8 tasks (of which 4

were merge commits and 4 were regular commits), we tried to measure the usability

of our le-git-imate browser extension. Subjects were asked to perform the commits

using the le-git-imate browser extension (which subjects were asked to install

during the study) and a newly-generated GPG key.

To measure the stealthiness of the attacks, we asked the subjects if they think

that the GitLab server performed the tasks correctly after they were done with both

parts. While answering this question, access to the GitLab repository was disabled,

to ensure the users only noticed the attacks before being asked explicitly about them.

In order to assess the usability of the tool and the web UI usage, we recorded

the time taken to perform each task. We compared the time taken to perform similar

tasks with and without the extension in order to assess the burden our tool adds to

the time users take to perform operations. In addition, the subjects were then asked

to rate the usability of the browser extension on a scale of 1 to 10 (1 = least usable,

10 = most usable).

Finally, in order to gain additional insight about the users’ individual answers,

they were required to answer a few general questions about their experience level with

using web-based Git hosting services and demographic questions (age, gender, etc.).

We note that due to two reasons, the usability of the extension was evaluated

only for the lightweight design of le-git-imate. First, both designs benefit from the

same graphical user interface. Second, they have almost the same performance as

detailed in Section 2.8. Thus different designs have no impact on the usability of the

le-git-imate extension, and the results are applicable for both designs.

51

2.9.3 User Study Results

While performing the study, a user could fail on performing a task by either

performing a wrong type of commit than the one required, or because the user did

not perform any commit (i.e., a skipped task). Tasks that were skipped in a time

in which a user did not spend a realistic time to attempt the task (i.e., less than 4

seconds), were labeled as ignored tasks.

Attack stealthiness. During the first part of the study, we expected that a few

participants would detect some of the attacks, especially those that made widely-

visible changes to the repository (such as those that changed multiple files in the

root-level). However, results indicate the opposite, as no participant was able to

detect any attacks. The reason behind it may be that most users are not expecting

a Git web UI to misbehave.

Extension usability. We evaluate the usability of our extension based on several

metrics: percentage of successful tasks and average completion time for tasks in Part

2 compared to tasks in Part 1, and direct usability rating by participants.

In Part 1, subjects were able to successfully complete on average 97.6% of the

tasks (9.76 out of 10). The average time needed to perform a task was 63 seconds.

In Part 2, subjects were able to successfully complete on average 92.1% of the tasks

(7.37 out of 8). Nevertheless, if we discard the ignored tasks (which subjects may

have skipped due to a lack of interest), the successful completion rate increases to

94.8%. It is worth nothing that 10 participants had to perform the same task twice,

as they performed it the first time without using the extension. Notably, once they

realized their mistake, they performed the rest of the tasks using the extension. In

Part 2, the average time needed to perform a task was 44 seconds.

Interestingly, the tasks in Part 2, which are using our browser extension, were

completed faster than those in Part 1. This is likely because users familiar with

GitHub, but not with GitLab, initially needed some time to learn how to perform

52

various types of commits in GitLab. The extension received a direct usability rating

of 8.3 on average.

2.10 Related work

This work builds on previous work in three main areas: version control system (VCS)

security, security in VCS-hosting services, and browser/HTML-based attacks. In this

section, we review the primary research in each of these areas.

Security of VCS-es. Wheeler [163] provides an overview of security issues

related to software configuration management (SCM) tools. He puts forth a set of

security requirements, presents several threat models (including malicious developers

and compromised repositories), and enumerates solutions to address these threats.

Gerwitz [87] provides a description of creating and verifying Git signed commits

by focusing on mechanisms to sign commit data remotely via a web UI on an

untrusted server. Commit signatures were also proposed for other VCS systems,

such as SVN [147]. This work focuses on providing mechanisms to sign commit data

remotely via a web UI on an untrusted server. There have been proposals to protect

sensitive data from hostile servers by incorporating secrecy into both centralized

and distributed version control systems [2, 140]. Shirey et al. [150] analyze the

performance trade-offs of two open source Git encryption implementations. Secrecy

from the server might be desirable in certain scenarios, but it is orthogonal to our goals

in this work. Finally, work by Torres-Arias et al. [160] covers similar attack vectors

where a malicious server tampers with Git metadata to trick users into performing

unintended operations. These attacks have similar consequences to the ones presented

in Section 2.4.

Security of VCS hosting services. In parallel to the VCS security issues, Git

hosting providers face the same challenges as other Software-as-a-Service (SaaS) [165,

154] systems. NIST outlines the issues of key management on SaaS systems on

53

NISTIR-7956 [66], such as blind signatures when a remote system is performing

operations on behalf of the user. This work is a specific instance of the challenges

presented by NIST. Further work explores usable systems for key management and

cryptographic services on such platforms. For example, work by Fahl et al. [78]

presents a system that leverages Facebook for content delivery and key management

for encrypted communications between its users. The motivation behind using

Facebook and other works of this nature [116, 122] is the widespread adoption and

the ease of usage for entry-level users. Based on similar motivation, this work seeks

to bring Git commit signing to the web UI.

Countering Web and HTML-based Attacks. In addition to the effort in

VSC and SaaS security, web UI issues are of particular interest. Substantial

research was done in the field of web-based vulnerability detection that can target

the web application’s database (e.g., SQL Injection) or another user (e.g., Cross

Site-Scripting). While automatic detection of these vectors is relevant to the overall

security of our scheme, we assume that a repository may be malicious or impersonated

(e.g., via a MiTM attack). Additional work in this area, a direct motivation for

Section 2.4.3, explores ways that a UI can use to force user behaviors [69]. While we

do not consider phishing attacks to be part of the threat model (besides a possible

pathway for a MiTM attack), research into the detection of phishing schemes could be

used to identify and leverage compromised web UI’s that trick users into performing

unintended actions [50]. Specifically, we highlight the work by Kulkarni et al. [117]

and Zhang et al. [170], which attempt to identify known-good versions of a web UI,

and warn users of possible impersonations.

54

CHAPTER 3

ADDING VERIFIABILITY TO WEB-BASED CODE REVIEW
SYSTEMS

3.1 Introduction

Code review is a crucial step for software development, aiming to find defects in

the software and to improve software quality [142, 79]. With a code review system

in place, new code changes will be integrated into the project’s codebase only after

being reviewed and approved by a number of reviewers. Over the years, a considerable

amount of research [142, 133, 76, 137, 146, 151] provided evidence on the benefits of

the code review, in particular to (1) catch and fix bugs in an early stage of the

software development, (2) check the clarity of the code and improve maintainability,

(3) comply with coding conventions, (4) mentor less-experienced developers, (5) share

knowledge across the team, (6) accelerate the software development process.

The code review process is currently identified as the top practice in companies

to improve code quality. Both industrial and open source communities have adopted a

modern code review practice which is: (1) tool-based, (2) informal, (3) asynchronous,

and (4) focused on reviewing code changes instead of the entire existing source

code [137, 146]. Modern code review systems such as Gerrit [16], Collaborator [9],

Crucible [11], ReviewBoard [43], and Helix Swarm [30] have become very popular

as they facilitate the code review process by providing an interactive web UI to

discuss and review the code changes. Gerrit, for example, is a highly extensible

and configurable tool that allows developers to review and evaluate each other’s code

easily. It is used by Google for code review in open-source projects like Go, Chromium,

and Android [6]. As of April 2021, GitHub hosts over 224 million repositories [98, 100]

and is used by Microsoft to host thousands of projects and perform many development

55

tasks [51, 121, 123]. It is also notable that just in 2019, 29% of companies are

conducting tool-based reviews on a daily basis [151].

Despite providing a rich set of features, modern code review systems do not

incorporate safeguards against tampering with the code review process. The lack of a

secure code review step is the cause behind a significant percentage of attacks [126].

A compromised code review system can cause great damage [115]. Several important

threats are associated with the code review system [153].

Code review systems are susceptible to attacks that can manipulate the review

process without being detected. For example, consider a project in which a reviewer

finds a security bug in a proposed code change and then gives the change a negative

review score which should block it from being merged into the project’s codebase.

A malicious server, however, can hide or manipulate the negative review in order to

make the change mergeable. As another example, a malicious server can bypass or

tamper with the minimum number of approving reviews required by the review policy

before a change can be merged.

Such attacks are mainly possible due to two major shortcomings of code review

systems: (1) There is no accessible record of the code review process as the review

history is stored in a local database on the code review server. As such, neither

the end user nor anyone else can verify after the code review step what occurred in

that step. (2) There is no reliable code review history as the reviews and the review

policy are not protected and can be tampered with. Signing code commits provides

protection against tampering with the code but does not protect against manipulation

of the code review process itself.

To improve this status quo, we start by identifying a set of key design principles

necessary to secure the code review process. We then use these principles to propose

SecureReview, a security mechanism that can be applied on top of a code review

system in order to ensure the integrity of the code review process and provide verifiable

56

guarantees that the code review process followed the intended review policy. We

implement SecureReview as a client-side browser extension to help developers sign

their reviews in the browser and include them as part of the source code repository.

Although our extension works for the Chrome browser, it can be adapted to work

with other browsers with minimal effort as the entire implementation relies on pure

JavaScript. We also note that SecureReview is implemented on top of GitHub and

Gerrit. Nevertheless, our design is general enough to be used on any web-based

code review service that is integrable with a Git repository (such as GitLab [28],

BitBucket [4], GerritHub [20], Crucible [11], and Phabricator [40]). None of these

protect the code review process and are vulnerable to the same attacks.

Our goal in this work is not to improve the effectiveness of a code review system

(i.e., design better code review policy rules and best practices). Instead, we seek to

lay the foundations for securing a given code review process. In other words, when

a code review policy is in place, our goal is to ensure that the policy is actually

respected, i.e., to ensure the integrity of the code review process.

SecureReview can have an immediate positive impact on the security of the

code review process, an area that has been largely overlooked and is becoming

an appealing target as part of a growing trend of attacks against the software

development chain [156, 10]. Specifically, we make the following contributions:

1. We identify attacks that tamper with the integrity of the code review process.
The attacks are easy to execute, stealthy in nature, and can have significant
impact. For instance, the attacks can lead to shipping a vulnerable or
backdoored piece of code into the software product.

2. We identify a set of key design principles necessary to secure the code review
process. We then apply these principles to design SecureReview, a mechanism
that can be applied on top of a code review system in order to ensure the
integrity of the code review process and provide verifiable guarantees about the
code review process. We then show how to integrate our design into two popular
code review systems, GitHub and Gerrit.

3. We implement SecureReview as a Chrome browser extension for GitHub and for
Gerrit. Our solution features several advantages that can facilitate its practical

57

Figure 3.1 A typical code review workflow.

adoption: (1) it does not require any changes on the server side and can be used
today, (2) it preserves typical code review workflows used in most popular code
review systems and does not require the user to leave the browser, (3) commits
generated by SecureReview can be easily verified by existing client tools (such
as Git).

4. We analyze the security guarantees provided by SecureReview and show its
effectiveness in defending against the aforementioned attacks. We also evaluate
the efficiency of our implementation with a wide range of repository sizes and
show that SecureReview adds only a slight overhead.

3.2 Background

This section provides background on the code review process. After a general

overview, we look at two popular code review systems, GitHub [23] and Gerrit [16].

3.2.1 Code Review Process

Code review is common practice with the purpose of improving the quality,

readability, and maintainability of the source code as well as the knowledge

58

sharing [137]. Code review is usually done in a peer process in which new pieces

of code are reviewed by developers other than the author of the code. Over the

years, different approaches were used to review code, from offline code inspection

meetings to an asynchronous tool-based code review process. Over the past decade,

a modern code review process has been adopted by both open source and industrial

communities [146, 142]. For instance, Microsoft, Google, Facebook, and VMware

perform the review process using CodeFlow [7], Gerrit [16], Phabricator [40] and

ReviewBoard [43], respectively.

After a code author submits a new code change, reviewers check differences

between the proposed change and the codebase (i.e., the stable version of the source

code). Reviewers may accept, reject, or ask for further changes. This process is

repeated until either the reviewers are satisfied and the code change can be integrated

into the codebase, or they reach the conclusion that the code change cannot be

integrated into the codebase.

The “pull-based development model” is a specific form of modern code review,

in which a developer forks a repository and makes changes in the fork. Then, she

submits the changes as a Merge Request. Once the Merge Request is reviewed and

accepted by reviewers, it is integrated into the codebase. Popular web-based code

repository hosting services (such as GitHub [23], GitLab [28], Bitbucket [4]) and

code review systems such as Gerrit [16] adhere to this model.

3.2.2 Code Review Workflow

As shown in Figure 3.1, a typical code review workflow has four steps:

• Step 1 : A code review policy is created by the project owner. The policy
defines the rules that govern the code review process and the conditions that
must be satisfied before proposed changes can be integrated into the codebase.
For example, a minimum number of positive reviews may be required before
merging new changes.

59

• Step 2 : Developers who want to modify the codebase propose changes and
request to merge the proposed changes into the codebase. We refer to this
request as a “merge request” (though different code management systems have
specific names for it: “pull request” in GitHub, “merge request” in GitLab and
“change” in Gerrit). A merge request is then created, and one or more reviewers
are assigned to review the proposed changes.

• Step 3 : After reviewing the proposed changes, reviewers provide feedback,
either positive (e.g., approve changes) or negative (e.g., request new modifi-
cations). In the latter case, developers propose new changes to address
the reviewers’ concerns The review-change cycle continues until reviewers are
satisfied with and approve the changes.

• Step 4 : When the merge policy is satisfied, the approved change is merged to
the codebase by an authorized user. (e.g., by the project owner).

3.2.3 GitHub

GitHub, the most popular web-based hosting service for open source projects, features

integrated code review capabilities for those who want to collaboratively develop code.

A merge request, referred to as “pull request”, allows developers to ask for code review

and to receive feedback about their proposed code changes before those changes can

be integrated into the codebase. This is a highly popular feature: In 2019 alone,

developers made over 87 million pull requests on GitHub [100], which represents a

growth of 28% compared to 2018. We provide next an overview of the GitHub’s code

review process.

3.2.3.1 GitHub Permissions. GitHub defines several permission levels for

contributing to a repository, but four are relevant for the code review process1: read

(can read code and provide code reviews), write (can read/write code and provide code

reviews), maintain (can do most actions related to repositories, including read/write

of code, provide code reviews, and merge pull requests; project managers usually have

1We focus on organization repositories, which are typical for collaborative projects. However, our
work can also cover user account repositories, which have a more limited set of permissions.

60

this permission) and admin (full access, including changing configuration and security

settings, and change user permissions; the project owner has admin permissions).

3.2.3.2 Code Review Policy. The owner of a GitHub project can define a code

review policy which describes, on a per branch basis, the rules pertaining to the code

review process for changes to that branch. By default, code review is disabled, but

can be enabled from a configuration option called “Branch Protection Rules” [97].

The remainder of this section refers to the case when code review is enabled.

With each review, a reviewer provides a rating for the proposed changes and text

feedback. The rating is mandatory and can be one of three values: Approve (reviewer

approves merging the proposed changes), Request changes (reviewer’s feedback must

be addressed before the changes can be merged), and Comment (general feedback

without explicitly approving the changes or requesting additional changes). The text

feedback consists of comments about the proposed changes and is optional if the

Approve rating is chosen.

One of the most common code review policy rules defines the required number

of approving reviews before changes can be merged2. When this number is met, then

the changes can be merged. Although anyone with read access to the repository can

submit a review, only approving reviews from reviewers with write permissions count

towards the required number of approving reviews. It is notable that even though

developers may review their own pull requests, they can only leave comments and,

therefore, their reviews are not counted towards satisfying the required number of

approving reviews. Finally, we note that if a person with write or admin permissions

makes a Request changes review, then that person must later give an approving review

before the changes can be merged.

The review policy may contain additional optional rules. One such rule is to

dismiss existing approving reviews when a code-modifying commit is pushed to the

2By default, the number of required approving reviews is set to 1.

61

C0 origin/master

C0

branchC1

C1

C2

C2

fetch

p
u

sh

p
u

sh

Remote master branch

C3

C3

p
u

sh

origin/branch

C5C4

master

Remote dev branch

Local dev branch

Local master branch

Approve
Request
changes

Request
changes

Figure 3.2 The typical lifecycle of a pull request on GitHub.

pull request branch. In other words, the code review process is reset and any existing

approving reviews before this new commit will not be counted towards satisfying the

required number of approving reviews.

The review policy may have a rule that requires approving reviews from “code

owners”, which is a set of designated individuals that are responsible for code in a

repository. In this case, the required number of approving reviews must be from

these specific individuals. Finally, we note that the project owner can bypass the

code review policy rules, based on her admin permission. For instance, the project

owner can approve her own pull requests, and can merge a pull request even though

there are not enough approving reviews.

3.2.3.3 Create and Merge Pull Requests. In a typical workflow for a pull

request on GitHub, the developer first clones the repository. Then she updates the

code locally and submits the new code change to the GitHub repository. Next, the

developer creates a pull request which will be reviewed by a number of reviewers. If

62

reviewers request for changes or the developer herself decides to submit additional

changes, she can update the pull request by submitting new commits. Finally, when

the pull request is approved (per the code review policy), it can be merged into the

codebase.

Although initially only the project owner has the ability to merge a pull

request (based on her admin and permission), she can extend the admin or maintain

permissions to other trusted users in order to manage day-to-day operations such as

merging pull requests.

For example, consider the pull request shown in Figure 3.2. The developer

creates a local feature branch (“dev”) in which she places her changes and creates a

new commit C1. Receiving feedback from reviewers, she improves her pull request

and submits two new commits (C2 and C3). When C3 is approved by reviewers, the

pull request is merged into the base branch (“master”), which results in commit C5.

3.2.4 Gerrit

Gerrit, a popular code review system used in big open-source projects like Go,

Chromium, and Android [6], is a highly configurable tool that was designed specifically

to support the code review process. Unlike GitHub andother popular web-based

hosting services for open source projects, Gerrit is designed specifically to support

the code review process. Essentially, Gerrit is a Git server that provides a web UI

for the code review process. A merge request, referred to as a “change”, allows code

changes to be reviewed before being integrated into the codebase.

As shown in Figure 3.3, A Gerrit server manages the source code using

two locations: an “authoritative repository” which contains the stable version of

the codebase and a “pending changes” location which is a staging area for new

code changes. According to the Gerrit workflow, developers fetch code from the

authoritative repository and push their new changes to the staging area. The proposed

63

Figure 3.3 Gerrit workflow [32].

changes are being reviewed, possibly updated, and eventually are getting merged (i.e.,

submitted) into the authoritative repository.

Gerrit users’ activity is centered around two types of actions. First, they Gerrit

users can perform reviews on a change. All review information is stored by Gerrit

in a dedicated database, separated from the underlying Git source code repository.

Second, Gerrit users can update the source code in the change (i.e., adding, modifying,

or deleting files). Any modification to a Gerrit change is referred to as a “patch set”

and results in a new Git commit object. We note that users can update the commit

message of the change through the web UI, which also results in a new patch set being

added to the change.

64

3.2.4.1 Gerrit Permissions. Compared to GitHub, Gerrit has a more complex

framework for defining permissions. Access rights are defined based on groups. Every

user is a member of one or more groups, and the users’ access rights are inherited from

the groups to which they belong. The following access rights are the most relevant

for the code review process and can be defined on a per branch basis:

• Read : allows to read any data of a project, including any proposed code changes.

• Code-Review[-2 .. +2] : allows to submit a code review with a rating score that
can range between -2 and +2.

• Upload to Code Review : allows to create a new change for code review. We also
refer to this as a “Create Change” access right.

• Add Patch Set : allows to upload a new patch set to existing changes.

• Submit : allows to merge a change into the destination branch. In addition to
needing this access right, a user can merge a change only if the change also
satisfies the existing code review policy.

• Rebase: allows to rebase changes via the web UI.

• Owner : allows to modify a project’s configuration, which includes
granting/revoking any access rights.

3.2.4.2 Gerrit User Groups. Gerrit comes predefined with the following user

groups which are relevant for the code review process:

• Registered Users are signed-in users who have the Code-Review[-1 .. +1]
permission, meaning they can provide feedback on a change (score between
-1 and +1), but cannot cause it to become approved (which requires score +2)
or rejected (which requires score -2). Users in this group also have Read, Create
Change, and Add Patch Set permissions.

• Change Owners are users who have created a change. They have the Code-
Review[-1 .. +1] permission for that change, meaning they can review and rate
the change but cannot cause it to become approved or rejected. By default,
users from this group also have the following permissions: Read, Add Patch
Set, Rebase, and Submit. We note that a Change Owner will be able to submit
their change only when it meets the rules of the code review policy (i.e., it gets
approved by other reviewers).

65

• Project Owners are users who have the Owner permission and as such can
grant/revoke themselves (or others) any access rights. For example, they can
change the permissions of the default groups (e.g., allowing Registered Users to
block a change). By default, users from this group also have all the permissions
that are relevant for code reviewing (Read, Code-Review[-2 .. +2], Create
Change, Add Patch Set, Submit, and Rebase). Many Gerrit instances use the
name Mantainers for this group.

• Administrators are the most powerful users in Gerrit. In addition to all
permissions of Project Owners, users in this group also have capabilities needed
to administer a Gerrit instance and typically have direct filesystem and database
access. It is noteworthy that, in a typical Gerrit’s workflow, Administrators are
not involved in the code review process.

In addition to these predefined groups, many Gerrit instances also commonly

define the Developers group. This group is created by Project Owners, who can define

new custom groups. Users in this group are typically core developers, who have all

the permissions of Registered Users, plus the ability to Code-Review[-2 .. +2] and

Submit changes.

3.2.4.3 Code Review Policy. The main component of the Gerrit code review

policy is the submit rule. The submit rule is a logic that evaluates code changes

through a rating process to determine if the proposed changes can be merged into

the codebase. Each code review consists of a rating (i.e., a score) and text feedback.

The text feedback is optional and consists of comments about the proposed changes.

The rating is mandatory and is an integer that ranges from -2 to +2. The lowest

rating (-2) indicates that the proposed change cannot be merged unless the viewer’s

feedback is addressed. The highest rating (+2) means that the reviewer approves the

change. Other scores (i.e, -1, 0, +1) indicate that the reviewer prefers other reviewers

to make the final decision on rejecting or approving the change.

The default submit rule in Gerrit is that a change can be merged if it has

received at least a review with the highest score (+2) and no reviews have the lowest

score (-2).

66

Figure 3.4 The typical lifecycle of a code change in Gerrit under the default “Merge
If Necessary” strategy.

3.2.4.4 Create Changes. To create a change on Gerrit, developers upload a new

commit to the Gerrit server which is automatically sent to the pending changes

location to be reviewed. During the course of the review process, reviewers discuss

the change and might ask for improvements.

Any modification to an existing change is called a “patch set”. At the repository

level, a change is always represented by a single commit object. When a patch set is

added, this commit object is amended (i.e., a developer amends the previous commit

using “git commit --amend” and then pushes it to the pending changes location).

Amending a commit in Git means that the commit is being replaced by a new commit

and will not be visible anymore in the repository history. The new commit applies

the modifications in the patch set on top of the previous commit; it may differ from

the previous commit in either or both the commit message or the repository files.

Thus, the latest patch set is equivalent to the entire change, as it contains all the

code modifications introduced by this change.

67

We note that patch sets are normally created by developers to either update

the code or the commit message. However, anybody (including the reviewer) who has

the Add Patch Set permission can create a new patch set.

3.2.4.5 Merge Changes. When enough reviewers approve the change, the last

patch set will be merged into the authoritative repository. For example, consider

the change shown in Figure 3.4. A developer creates the change by sending commit

C1 to the Gerrit server. Reviewers ask for improvements twice and, the developer

submits two amended commits (C2 and C3) to get the change approved.

Different strategies may be employed for merging a change into the codebase.

In Gerrit terminology, the merge strategy is referred to as the “submit type”. Gerrit

supports six submit types, such as Fast Forward Only (the head of the codebase

repository is fast-forwarded to the change commit), and Merge Always (equivalent to

“git merge --no-ff” command that always results in a new merge commit object).

The default submit type in Gerrit isMerge If Necessary, which means Gerrit attempts

a fast-forward strategy if possible, (i.e., no commits were submitted to the codebase

branch after the change was created), otherwise a merge commit is created.

Consider the repository shown in Figure 3.4, in which a developer forks the

authoritative repository with an initial commit C0. She works on her local branch

and submits commit C1 to the server. Gerrit creates a new change and puts C1 in the

staging area to be reviewed. The reviewer gives a -2 score and asks for modifications

in the code. As a result, the developer updates the code and creates commit C2

by amending the previous commit, C1. The reviewer looks into commit C2, is still

not satisfied with the change, and requests further modifications. The developer

then modifies the code and submits commit C3 which is given a +2 score by the

reviewer. At this point, the change is approved for merging into the authoritative

68

repository. Finally, the project owner merges the change by fast-forwarding the head

of the codebase repository to the change commit.

3.2.4.6 Changing Defaults. We note that the project owner may change most

default review policies through the Gerrit web UI. For example, the project owner

can create new groups or can change the permissions of existing groups.

The owner can also change other default global project settings, such as

the review workflow, the submit rule and the submit type. These settings are

defined in three files, project.config, groups, and rules.pl, located under the

refs/meta/config branch. The owner can change these settings based on her ability

to write to this branch. However, we note that customizing the project settings cannot

be done via Gerrit’s web UI and must be done instead through the command line

using the Prolog logic programming language [17].

3.3 Threat Model

We assume a threat model in which the attacker seeks to violate the integrity of

the code review process in a web-based code review system. This can have severe

negative consequences for the code repository, such as merging into the production

codebase code that has not been properly vetted and contains vulnerabilities. Such

dangerous code may consist for example of experimental features that were rejected,

debugging code, or code in which security features were removed intentionally for

testing purposes.

To tamper with the integrity of the code review process, the attacker has two

main avenues: Manipulate the code review policy and/or the steps of the actual

code review process (i.e., the individual code reviews and their sequence). The

former attack can be carried out through a variety of approaches. A malicious server

may deem a code change mergeable even though the minimum number of approving

reviews is not met. It can also add unauthorized users to the code review process

69

or disable some rules (e.g., mandatory reviews from specific users). Moreover, an

attacker may manipulate the code review policy by counting outdated reviews or

changes from unauthorized users. The latter attack can be executed by modifying or

removing existing code reviews (e.g., removing a review with a low score, or changing

the score in a review), or by adding illegitimate code reviews. Specific attacks are

described in Section 3.4.

We assume the attacker is able to tamper with the repository (e.g., modify data

stored on the Git repository) and can modify the internal database that stores the

code review information. The attacker can also tamper with the configuration files

that define the code review policy and other important settings that can affect the

code review process. Finally, the attacker may manipulate the information displayed

to users, for example, by hiding some of the reviews and making a change look like it

is ready to be merged when in fact it is not. This scenario may happen either directly

(e.g., a compromised or malicious code review server), or indirectly (e.g., through

MITM attacks, such as government attacks against GitHub [105, 120])

We assume that all Git commits are signed by the clients who create the commits

and digital signatures provide adequate security (i.e., the attacker cannot compromise

a digital signature scheme). The ability to sign commits on the client side is available

either through Git’s command line tool or by using a tool such as le-git-imate [55]

for commits created using a web-based UI such as GitHub/GitLab. In practice, this

assumption is supported by the fact that most code review systems allow a rule in the

code review policy to require that all commits need to be signed. Even though the

attacker can write to the Git repository, signed commits combined with Git’s commit

hash chaining mechanism greatly limit the attacker’s ability to arbitrarily tamper

with the repository. Removing an existing commit from the end of the commit chain,

or entirely discarding a commit submitted via the web UI are actions that have a high

probability of being noticed by developers. Otherwise, our solutions cannot detect

70

such attacks, and a more comprehensive solution should be used, such as a reference

state log [160].

We focus on attacks that tamper with the integrity of the code review process

(specific attacks are described in Section 3.4). For general attacks that tamper with

commits performed by the user via the web UI, we refer the reader to a comprehensive

list of attacks and defenses [55].

The source code repository associated with the code review system can be

updated by developers. We assume that there are trustworthy individuals in the

system, such as the developers who propose code changes and the users who are

authorized to merge changes (e.g., the project owner or a maintainer). The attacker

does not have the signing key of these trusted individuals. As such, the attacker

cannot tamper with the signed commits.

In addition, we assume that reviewers are not fully trusted and they may

attempt to bypass the code review policies, as long as they do not self incriminate. The

code review policy is calibrated so that the minimum number of approving reviews

reflects the trustworthiness of the reviewers (i.e., there are enough honest reviewers to

avoid a situation where reviewers give misleading scores in order to merge dangerous

code).

Finally, we assume that addressing the following problems is outside the scope

of this dissertation:

• A reviewer who always approves a merge request regardless of the quality of the
proposed change. In other words, we do not address human carelessness.

• A weakness or bug that is not caught by a regular code review system. Our
goal is not to improve the code review system’s ability to catch subtle code
bugs/vulnerabilities.

• A flaw in the code review policy that allows dangerous code to become part
of the codebase. For example, consider a review policy that requires three
approving reviews for code changes, but does not dismiss existing code reviews
upon receiving a new code update. Assume that a merge request gets approved
by two honest reviewers, and then the third reviewer maliciously injects a

71

backdoor to the merge request as well as approves it. This results in merging
dangerous code to the codebase without violating the code review policy. This
attack could be avoided if the review policy enforces all reviewers to re-review
the latest version of the code that is about to be merged. We do not seek to
detect such review policy flaws.

3.3.1 Security Guarantees

Answering to this threat model, the goal of a secure code review system should be to

enforce the following:

• SG1: Prevent unauthorized modification of stored code reviews and
code review policy. An attacker should not be able to modify stored code
review information or the code review policy without being detected.

• SG2: Ensure the integrity of the code review process. The code reviews
(including their content and sequence) should match what the code review policy
prescribes. In other words, no code change should be deemed as mergeable if
the corresponding sequence of code reviews does not satisfy the intended code
review policy.

• SG3: Ensure verifiability of the code review process. The code review
process should be verifiable. This would allow auditors to verify the correctness
of the code review process even after the code review phase.

3.4 Attacks

In this section, we identify new attacks against the code review process. Common

to these attacks is the fact that an unscrupulous code review server can manipulate

arbitrarily code review metadata. Two main attack avenues can be used to manipulate

the code review process: (1) Manipulate the steps of the actual code review process

(i.e., the individual code reviews and their sequence); (2) Manipulate the code review

policy. The goal of these attacks is twofold:

• AG1: Cause the merging of a code change that does not satisfy the
intended code review policy. For example, the code review server can
prevent code defects from being discovered during the code review process and,
therefore, facilitate the merging of dangerous code into the codebase.

72

• AG2: Prevent or delay the merging of a code change even if it satisfies
the code review policy. For example, the server can stop a security patch
from being deployed.

Whereas a scenario involving AG2 has a higher chance of being detected, we

note it as a concern nonetheless.

The attacks described in this section are easy to execute, as the server simply has

to manipulate data in the code review database and/or configuration files describing

the code review policy. Nevertheless, the attacks’ impact can be significant. Many

of the attacks are stealthy in nature due to the lack of protections for code review

metadata and also because subtle violations of the code review policy are difficult to

detect.

3.4.1 Code Review Manipulation Attacks

An attacker can achieve the aforementioned goals by modifying, deleting, or adding

to the existing code reviews. To achieve AG1, the attacker may decide to improve

the rating of existing code reviews, or delete negative reviews, or add new illegitimate

positive reviews. To achieve AG2, the server may lower the rating of existing reviews,

remove positive reviews, or add new negative reviews.

For example, assume that the scenario presented in Figure 3.4 uses a review

policy in which a change is mergeable if there is at least one review with highest

score (+2). Under benign circumstances, the code is being reviewed three times and

reviewers are satisfied with the change after two new patch sets are applied (i.e.,

when commit C3 is submitted). However, the server can alter the reviews as shown

in Figure 3.5 to prevent the code from being carefully reviewed. In this example, the

second review score is improved by 1 (from +1 to +2), thus making the code mergeable

– only changes introduced in C2 are merged. The impact of this attack can be severe.

If C2 contained a security vulnerability, which was fixed by the developer in C3, the

fix will be omitted from the project’s codebase.

73

Figure 3.5 Review manipulation attack.

3.4.2 Code Review Policy Manipulation Attacks

When the code review server determines the review policy is satisfied for a change, it

notifies the merger to proceed with the merging operation (e.g., by rendering a green

“Merge” button on the GitHub pull request page or a blue “Submit” button on the

Gerrit change page). The assumption is that the server correctly assessed that the

review policy is satisfied based on the existing reviews. However, an unscrupulous

server may automatically merge the code change or mislead the merger to merge the

change even if the review policy has not been satisfied.

One way the server can execute a code review manipulation attack is to tamper

with the code review policy (i.e., the rules defining the policy or the configuration

files that are relevant for the policy). This may lead to merging of dangerous code,

for example, if the minimum number of approving reviews is reduced.

Another way to execute a code review manipulation attack is to falsely declare

that a change is mergeable even when it does not satisfy the review policy. The server

counts that such an attack will go unnoticed based on two facts: (1) The merger will

74

Figure 3.6 A core review example in which the pull request is merged to the master
branch after receiving two scores of +2, and there is no -2 score.

not notice that the review policy is not satisfied, especially when a small detail is not

respected. For example, if the review policy requires at least two approving reviews,

the merger may not notice if out of two approving reviews, one review is performed

by a user who is not authorized to provide reviews; (2) After the change is merged,

there is no record of the reviews in the repository, so an auditor cloning the repository

cannot verify the correctness of the code review process. Even when the auditor has

access to the code review server which allows access to the code reviews database,

there is no mechanism for independent validation of the code review process.

We introduce next a variety of code review policy manipulation attacks that

can be used by a malicious server to achieve AG1 and AG2.

3.4.2.1 Bypass a Minimum Number of Approving Reviews. A popular

code review policy rule is that a code change can be merged if it receives a minimum

number of approving reviews. A malicious server can bypass this rule by either

changing the minimum number of approvals or by completely ignoring this rule. For

75

Figure 3.7 Code review policy manipulation attack. A malicious server changes
the minimum number of approving reviews.

example, consider a GitHub code review policy that require that at least 3 reviewers

provide approving reviews. The server can tamper with the review process by

declaring a change is mergeable after only 2 approving reviews. As a result, a change

that has not received enough scrutiny and may still contain security vulnerabilities

will be merged.

For example, consider Figure 3.6 in which a change is submitted to be reviewed.

Assume the review policy is as follows: “A new change is mergeable if it is approved

by at least two reviewers which means receiving a score of +2 from each.” Under

benign circumstances, the pull request is updated tree times and each commit is

reviewed by two reviewers. After submitting commit C4, both reviewers are satisfied

with pull requests and allow it to be merged to the master branch. However, a

malicious server can temper the review process by reducing the minimum required

number of approving reviews as shown in Figure 3.7. Consequently, the pull request

becomes mergeable without incorporating C3 and C4. Because by reviewing C2, the

76

pull request has enough approvals and there is no -2 score to block the merge. The

impact of this attack could be severe if C2 contained a security vulnerability that

was fixed in C3 and C4. In other words, security patch sets were omitted from the

codebase by manipulating the review scores.

3.4.2.2 Count Reviews from Unauthorized Reviewers. A server can

upgrade or downgrade the reviewers’ permissions in order to achieve AG1 and AG2,

respectively. The server can make it look like a user who submitted an approving

review has write permissions, when in fact the user has only read permissions and the

review should not be counted towards the minimum required number of approvals.

The server may also count reviews from the author of the code change. Most code

review system allow receiving reviews from the user who owns code changes, however,

their approval does not count toward the minimum number of approvals. A malicious

server can ignore this policy and the attack can go undetected easily. Finally, the

malicious server can add an unauthorized reviewer to the code review process.

For instance, consider Figure 3.6, and the code review policy described in

Section 3.4.2.1. As shown in Figure 3.8, by adding an unauthorized reviewer the

malicious server can merge the code changes without incorporating C3 and C4.

These attacks are simple to execute, either by manipulating the configuration

files that define user permissions, or by temporarily misrepresenting the user

permissions when the merger is merging the change. In all these cases, the merger can

be deceived to prematurely merge a change that has not received enough reviewing

scrutiny. Similarly, an auditor who wants to later verify if the code review policy was

correctly enforced, has no way to reliably do so.

3.4.2.3 Exclude Required Reviews from Specific Users. Code review

systems may enforce a rule which requires that code changes be reviewed by specific

users. GitHub, for example, allows requiring approving reviews from users in a

77

Figure 3.8 Code review policy manipulation attack. A malicious server adds an
unauthorized reviewer to the code review process.

group called “code owners”. Gerrit also allows defining a rule called “Master

and Apprentice”, according to which all code changes introduced by a user (i.e.,

Apprentice) must be approved by another user called Master.

However, a malicious server may deem a code change mergeable even though

there are not enough approving reviews from specific users. The server can also

manipulate the composition of this group of users from which reviews are required.

The attack can not be detected easily since neither the merger (before merging) nor

a verifier (later, after merging) cannot reliably verify if the server enforced the policy

correctly.

3.4.2.4 Count Outdated Reviews. One common practice is to reset the code

review process when a code-modifying commit (i.e., a patch set) is pushed in a change.

That means existing approving reviews are dismissed and should not be counted

towards the require number of approving reviews. This policy helps to catch bugs

78

Figure 3.9 Code review policy manipulation attack. A malicious server disables
the policy of dismissing stale pull request approvals.

introduced by a patch set. A malicious server, however, may disable/ignore this policy

to take advantage of stale approving reviews and deem a change as mergeable with

insufficient review scrutiny.

Consider Figure 3.6, and the code review policy described in Section 3.4.2.1,

except when new changes are pushed, previous reviews are dismissed. If the server

ignores this policy, the pull request becomes mergeable without addressing comments

by reviewer 1 and also without incorporating C4 as shown in Figure 3.9.

3.4.2.5 Merge Changes without Addressing Comments. A code review

system may enforce addressing all comments before allowing the code change to be

part of the codebase. GitHub by default does not allow to merge a change unless

requests for changes are addressed. Gerrit also allows defining such policy – make a

change submittable if all comments have been resolved. Thus, if any reviewer rejects

a code change, it cannot be merged unless the same reviewer approves it. A malicious

79

server, however, can bypass this policy to prevent discovered code defects from being

patched.

To illustrate this attack, consider Figure 3.6 in which the review policy is as

follows: “A new change is mergeable if it is approved by at least one reviewer and all

comments are addressed (there are no negative scores).” Under benign circumstances,

the pull request is merged when commit C4 is approved. However, a malicious server

can make the code change mergeable by ignoring the fact that all comments must be

addressed. Consequently, the pull request becomes mergeable without incorporating

C3 and C4. Because once the first reviewer approves C2, the pull request has enough

approvals though comments by the second reviewer is not addressed (as shown in

Figure 3.7).

3.4.2.6 Misuse the Project Owner’s Authority. In most popular code review

systems, the project owner has the ability to bypass the code review policy rules – this

includes merging code changes even if the review policy is not satisfied. A malicious

server can take advantage of this authority to merge vulnerable code changes. The

impact of this attack could be severe since during the verification step, the auditor

has no way to verify if the project owner made the merge or a malicious server

impersonates the project owner’s role.

3.4.2.7 Accept Changes from Unauthorized Users. A code review policy

rule may enforce accepting changes only from a specific group of authors. For example,

Gerrit allows setting a rule making a code change submittable if it has a specific

commit author. GitHub also allows to define a similar policy – specify users that

are not allowed to push to matching branches. This rule prevents unintentionally

accepting code changes from inexperienced developers even though their code changes

get approved by reviewers. A malicious server may ignore this policy.

80

3.4.2.8 Modify Project Settings. A malicious server can modify different

project settings to achieve AG1 and AG2. The server can manipulate user

permissions, for example by modifying project configuration files that control access

rights and composition of user groups in Gerrit. Consequently, unauthorized users

will be able to participate in the review process. In a similar scenario, the server

may modify the rating score associated with a group of users. That could result in

approving or rejecting a code changes maliciously. Moreover, an unscrupulous GitHub

server may alter the gitattribute file to keep certain files out of the pull request’s diff.

This can hide a piece of dangerous code from being reviewed by reviewers. Another

malicious change in the configuration is disabling the required status checks. That

could prevent certain CI tests (e.g., vulnerability scans) before merging a code change

to the codebase. Finally, the attacker may take advantage of the fact that some code

review systems such as Gerrit allow users to define new code review policies. For

instance, the default policy in Gerrit is that a change can be merged if it has received

at least a review with the highest score and has no review with the lowest score. A

malicious server may override this policy by adding a new rule saying a code change

is mergeable if it has received a review from a user with special authorization.

3.5 Solution

In this section, we introduce SecureReview, a mechanism that can be applied on top

of a code review system in order to ensure the integrity of the code review process

and provide verifiable guarantees about the code review process. We refer to a code

review system where SecureReview was deployed, as a secure code review system.

We first put forth a set of design principles and then apply them to design the major

components of a secure code review system.

81

3.5.1 Design Principles

Popular code review systems such as GitHub and Gerrit do not provide verifiable

guarantees about the integrity of the review process due to the following shortcomings:

• No accessible record of the code review process: Code review systems
store all code review metadata in an internal database that is not tightly
connected to the source code. Such systems provide no or little access to the
code review information in subsequent steps of the development chain (e.g.,
build). As such, neither the end user nor anyone else can verify after the
code review step what occurred in that step. For instance, in services like
GitHub that allow managing the entire software lifecycle, only an authorized
user can access the code reviews. In services like Gerrit that are dedicated to
the code review process, an authorized user should go through different systems
(packaging, code versioning) to access the code reviews.

• No reliable code review history: Even if there was an automated way to
extract the code review history, it is not possible to validate if the review data
matches what the review policy prescribes. Indeed, current code review systems
do not provide an option to sign the reviews or the review policy nor web UI
commits. Instead, they assume that the reviewers and the code review server are
trusted not to tamper with the review process. Unfortunately, as described in
Section 3.4, code review systems are susceptible to attacks that can manipulate
the review process without being detected. SecureReview addresses this issue
by allowing independent auditors to verify the integrity of the code review
process.

To address the aforementioned shortcomings, we identify a set of design goals

that should be satisfied by any solution that seeks to add integrity to a code review

system.

• DP1: Ability to access the code review history: The code review history
should be accessible for later auditing of the code review process relative to
the source code repository. Code review information can be available either in
partial (e.g., only a summary, such as the rating), or in full form.

• DP2: Verifiability of the entire code review process: The solution should
make it possible to verify the integrity of the code review process relative to the
code review policy.

• DP3: Least attack surface: The solution should minimize the number of
trusted entities.

82

• DP4: Ease of adoption and deployment: For ease of adoption and to
ensure that it can be deployed immediately on top of existing systems, the
solution should require no (or minimal) server-side changes.

• DP5: Ease of use: The solution should preserve as much as possible the
current workflow of web-based code review systems. In particular, it should
preserve the ease of use of the system’s web UI and should not introduce
unnecessary complexity to these systems, as this may hurt usability.

• DP6: Minimum impact on the user’s experience: The solution should
not require the user to leave the browser. This will minimize the impact on the
user’s current experience with using code review systems.

3.5.2 A Strawman Solution

Current code review systems do not have mechanisms to ensure the integrity of the

code review policy. As a result, the integrity of the code review process can be violated

by simply tampering with this policy.

It may be tempting to assume that protecting the integrity of the code review

policy (e.g., by having the project owner digitally sign it) will ensure the integrity of

the entire code review process. Whereas doing so is a necessary step, we argue that

is it not sufficient. Indeed, this approach can mitigate only a subset of the attacks

presented in Section 3.4 (only attacks that manipulate directly the policy rules, but

not attacks that simply ignore the policy or that manipulate the code reviews). Also,

only signing the main rules of the review policy is not enough, because leaving other

configuration information unprotected may lead to code review integrity violations.

Instead, we need a solution that (1) provides a comprehensive defense against all

these attacks, and (2) addresses the design and implementation challenges related to

the aforementioned design principles.

3.5.3 SecureReview Design

In a typical code review workflow (as described in Figure 3.1 of Section 3.2.2), a

Merge Request contains the proposed code changes that will go through a review

83

process before being approved for integration into the codebase. As explained

in Section 3.5.1, existing code review systems that follow this workflow have two

fundamental shortcomings: The code review history is neither accessible nor reliable.

To address these shortcomings, we propose SecureReview, a mechanism to ensure

the integrity of a code review system, by which (1) the reviewers can sign their

reviews, (2) signed reviews are stored along with the codebase, (3) auditors can

validate a posteriori whether the code review process followed the intended review

policy. SecureReview consists of three major components, which we describe next:

(1) Create and store a signed code review policy, (2) Create and store signed reviews,

and (3) Merge changes. We describe next these three components.

3.5.3.1 Create and Store a Signed Code Review Policy. Popular code

review systems allow users to define a code review policy, e.g., GitHub’s Branch

Protection Rules [97] GitLab’s Merge Request Approvals [102] or Gerrit’s Submit

Rules [17].

Common to these code review systems is that a code review policy consists of a

set of rules by which the owner of a software project can define the requirements that

must be fulfilled before a proposed change can be merged into the codebase. GitHub,

for instance, provides a small set of rules such as the minimum number of required

approving reviews and dismissing stale pull request approvals. Gerrit, on the other

hand, has a more complex set of rules and also allows authorized users to add new

customized rules to the code review policy.

Unfortunately, current code review systems, do not protect the code review

policy against a malicious server or against malicious reviewers. To address this

issue, SecureReview adds two new attributes to the review policy.

• Reviewers : A list of users (i.e., public keys) who can review the code. This
ensures that only authorized reviewers are allowed to participate in the code
review process.

84

• Signature: The review policy must be signed with the project owner’s private
key. This protects the review policy from being tampered with.

To protect the code review policy, we are faced with several challenges. First,

we need to determine what should be included as part of the code review policy.

In addition to the explicit code review policy rules, there is additional information

that must be protected to ensure the integrity of the code review process, such as the

CODEOWNERS file in GitHub, or the configuration files in Gerrit (project.config,

groups, and rules.pl that reside under the refs/meta/config branch). Although

not immediately obvious, if these are not protected, an attacker will be able to subvert

the code review process, as shown in Section 3.4.

Second, the project owner needs a mechanism to sign the code review policy.

Third, the signature should be stored on the server in a way that is accessible, so that

it can be retrieved later, whenever verification is performed. Finally, most existing

popular code review systems have a fixed set of policy rules and do not allow us to

define new fields, e.g., a field to store a signature over the review policy.

3.5.3.2 Create and Store Signed Reviews. SecureReview encapsulates each

review in a review unit as shown in Figure 3.10. The <current review information>

field contains the relevant information in the review, such as the reviewer’s rating

and/or a reviewer comment. The signature field is computed by the reviewer over the

data shown in Figure 3.11, creating a “chaining” effect between review units: Each

review unit depends on the prior review unit, thus preventing unauthorized changes

in the middle of the chain.

The signatures will prevent the reviews from being tampered with, thus

addressing one of the limitations of current code review systems. To address the other

limitation, (i.e., reviews are not accessible after the code review phase), we are faced

with a challenge: How to make the reviews accessible in a way that requires no (or

minimal) server-side changes in current code review systems? To tackle this challenge,

85

<current review information>

<reviewer name> <reviewer e-mail>

<review unit signature>

Figure 3.10 The review unit ’s format. Each review unit is computed by the reviewer
who performed the review.

<signature field of the previous review unit>

<current review information>

<reviewer name> <reviewer e-mail>

Figure 3.11 The data over which the signature field in a review unit is computed.
Note that the signature for the first review in a Merge Request omits the first field,
as there is no previous review unit.

SecureReview leverages the fact that most popular code review systems allow the

user to update the Merge Request during the code review process. For instance, users

can customize the commit message for the committed data either through the web UI

or using REST APIs [18, 93, 101]. Using this feature, SecureReview creates a new

signed commit object for each review and allows a reviewer to create and embed the

corresponding review unit in the commit message of the commit object. Depending

on the system, the new commit object is either a completely new object (GitHub),

or is an amended commit (Gerrit) on top of the Merge Request branch. This ensures

that the review is stored in accessible storage (i.e., the source code repository). As

a result, SecureReview provides verifiable guarantees about the integrity of the code

review process. The new commit object is created by the reviewer on her local system

and is pushed to the code review server (as described in Section 3.6).

SecureReview enables the reviewer to create the new commit object on her

local system by first retrieving the signed head commit of the Merge Request branch,

verifying the signature on this commit, and extracting the necessary information from

it (i.e., commit hash, tree hash, commit message) to compute a new signed commit

86

C0

C0

C1

C1 C2

p
u

sh

C6

C8

C3

C3 C4

p
u

sh

C5

C5

p
u

sh

Review1 Review2 Review3

Review1

Review1

Review3
Review2

C7 origin/master

Remote master branch

origin/branch

Remote dev branch

Local dev branch

branch

Review2 Review3

Figure 3.12 Create signed code reviews.

object. This new commit is then pushed to the code review server (as described in

Section 3.6). Thus, each code review results in a new signed commit object in the

Merge Request as depicted in Figure 3.12.

3.5.3.3 Merge Changes. When the Merge Request receives enough reviews and

finally satisfies the code review policy, the Merger – a person in charge of merging

changes into the codebase – merges the Merge Request into the codebase, which

results in a new merge commit.

With SecureReview in place, the Merger needs to perform some additional

actions. First, she retrieves and verifies the signed head commits of the branches

that are being merged and all the signed review units from the commits of the Merge

Request. Second, the Merger checks if each review unit contains the signature field

of the previous review unit. Next, she checks the validity of the signature on each

review unit. Then, the Merger checks if the sequence of reviews indicated by the

signed review units leads to a code change that respects the existing review policy.

87

Finally, the Merger embeds the review units into the commit message of the

merge commit. For this, SecureReview allows the Merger to create a standard Git

signed merge commit object on the client side and push it to the server. This will

ensure that the integrity of the code review process can be verified independently,

even after the code review phase.

SecureReview provides a trade-off between security and usability by giving the

Merger two options for integrating the review units into the merge commit:

• Compact integration: the Merger integrates the review units from the commits
of the Merge Request, without the signature field in each review unit.

• Full integration: the Merger integrates the entire review units from the commits
of Merge Request, including the signature field in each review unit.

From a security perspective, in the Full integration option, the Merger is trusted

to include the review units, but cannot tamper with or remove review units from the

middle of the chain of review units. However, the Merger may omit review units from

the end of the chain. In general, since the Merger is usually a trusted entity (such

as the project owner), this should not be a major concern. Still, the Full integration

provides some accountability for the Merger, as it allows a verifier to check that no

information was tampered in the review units that are included in the merge commit,

thus reducing the trust in the Merger. As opposed to that, the Compact integration

option fully trusts the Merger to correctly integrate the review units.

On the other hand, the Full integration option has the drawback that the

commit message of the merge commit may increase significantly because of the extra

signatures that are included. For example, if a change on the Gerrit server receives 10

reviews 3, the commit message will contain 10 additional signatures, which will add

100 lines to the commit message. A large commit message can affect the readability

3We note that at Google, each code change receives a peak of 12.5 reviews for changes of 1250
lines [146].

88

of the commit message, which will slow down the review process, and the its usability

to automatically generate a release note.

PROCEDURE: Validate Branch
Input: Branch, ReviewPolicy
Output: success/fail

1: if Validate Signature(ReviewPolicy) == false then
2: // The review policy does not have a valid signature
3: return fail

4: end if
5: C ← The set of all commits in the Branch
6: h ← The head commit of the Branch
7: // Check if all the branch commits have valid signatures
8: for all c ∈ C do
9: if Validate Signature(c) == false then

10: return fail

11: end if
12: end for
13: while (C is not empty) do
14: // Extract the commits in the merge request that
15: // corresponds to h
16: MRC ← Extract Merge Request Commits(h)
17: // Check if the sequence of reviews embedded in the
18: // merge request is valid against the review policy
19: if Validate Reviews(MRC, ReviewPolicy) == false then
20: return fail

21: end if
22: // Remove commits in merge request from the set C,
23: // and find the head of remaining commits
24: C ← C \ MRC
25: h ← The head commit of the branch represented by commits left in C
26: end while
27: return success

3.5.3.4 Verifying the Code Review Process. When cloning or pulling changes

from a repository, an auditor can verify the integrity of the code review process for

each branch in the repository by executing the Validate Branch procedure. The

procedure first checks if the code review policy (lines 1-2) and the commits in the

branch (lines 7-9) have valid signatures. It then traverses the commit tree in the

branch and extracts the commits corresponding to a merge request by calling the

89

Extract Merge Request Commit procedure (line 13). The Validate Branch procedure

then calls the Validate Reviews procedure to check whether the merge request was

properly approved according to the intended code review policy (line 16).

At a high level, Validate Reviews contains three steps: (1) extract the review

units from the commits of the merge request and validate the signature over each

review unit; (2) check the chaining between review units (i.e., that each review

includes the signature field of the previous review unit); (3) check whether the

sequence of reviews indicated by the signed review units leads to a code change

that respects the intended code review policy. For step (3) of this procedure, we

check the most common policy rules such as if the minimum number of approvals is

met and if the reviewers are authorized to provide approving reviews. However, since

Gerrit allows a project owner to customize the review policy arbitrarily, a complete

treatment of step (3) would require a more complex check that is outside the scope

of this dissertation.

The Validate Reviews procedure receives as input a valid signed review policy

and a set of commits corresponding to a merge request and checks whether the merge

request was approved according to the intended review policy. After validating the

signatures on the review units and checking the chaining between review units (lines

1-5), it checks if a direct push (i.e., no reviews) is detected (lines 6-12). Then if the

merger is authorized (lines 13-18), the most common code review policy rules are

checked (lines 19-22) such as if the merge request’s creator was allowed to submit a

code change; if reviews are created by authorized reviewers; if the sequence of review

units meets the minimum number of approving reviews defined by the policy; if only

those approvals that satisfy the review policy are counted; if there are required reviews

from specific users; and if outdated approving reviews are dismissed correctly.

90

PROCEDURE: Validate Reviews
Input: Commits, ReviewPolicy
Output: success/fail

1: Reviews ← getReviewUnits(Commits)
2: // Check if review units have valid signature and the chain of review units is valid.
3: if Validate Review Units(Reviews, ReviewPolicy) == false then
4: return fail

5: end if
6: ru ← length(Reviews)
7: if ru == 0 and FirstCommit(Commits) == false then
8: // Check if the committer has the direct push access
9: if DirectPush(Commits, ReviewPolicy) == false then
10: // Unauthorized direct push is detected
11: return fail

12: end if
13: else
14: // Check if the merger has the permission
15: if AuthorizedMerger(Commits, ReviewPolicy) == false then
16: // Unauthorized merge is detected
17: return fail

18: end if
19: // Check the common rules are followed.
20: if CommonRules(Reviews, ReviewPolicy) == false then
21: return fail

22: end if
23: end if
24: return success

3.5.3.5 Versioning the Code Review Policy. Although it may happen seldom

over the lifetime of a project, changing the code review policy is allowed in code review

systems, including in GitHub and in Gerrit. SecureReview assumes that the code

review policy does not change. However, it can be extended to support multiple

versions of the code review policy as follows. When a code change is merged into the

codebase, SecureReview includes the identifier of the current code review policy (we

make the minimal assumption that each code review policy has a unique identifier).

When an auditor runs the Validate Branch procedure, it needs to retrieve the code

review policy that was in place at the time each merge was performed. SecureReview

also needs that the code review system maintains a history of the code review policy.

In a system like Gerrit, the review policy is automatically versioned because the

91

review policy is maintained in three files (project.config, groups, and rules.pl)

located under the refs/meta/config branch. However, in a system like GitHub,

SecureReview would need explicit server-side support for keeping the history of the

review policy.

3.6 Deployments

In this section, we show how to integrate our design into two popular web-based code

review systems, GitHub and Gerrit.

We implement SecureReview as a client-side Chrome browser extension. To

review a Merge Request, a reviewer activates the extension via a browser toolbar

button. The extension uses an isolated pop-up window to allow the reviewer to

create a signed code review and integrate it into the Git repository before merging the

Merge Request into the codebase. Though the pop-up window could be integrated

with the original webpage, it is isolated to prevent malicious scripts (originating

from the untrusted server) from tampering with the code review data. Indeed, this

window can only be written by scripts associated with the SecureReview extension.

This is a normal approach used by security-conscious browser extensions such as

Mailvelope [37] and FlowCrypt [15]. The extension extracts information about the

Merge Request from the web UI and from the code review server via REST APIs [18,

93, 101]. The review unit(s) are stored as part of the commit message of Git commit

objects that are newly created by the extension on the client side and then pushed

to the Git server.

To capture and store reviews, SecureReview provides two options in its Settings

page: (1) Compact versus Full integration, (2) Include versus Exclude review text

feedback. The first one, as described in Section 3.5.3.3, determines if the review

units are integrated with or without their signature field. The second one determines

whether the review text should be included in the review unit, in addition to the

92

review rating. These two options help users control the size of the review units, thus

influencing the readability of the merge commit messages.

SecureReview consists of two JavaScript scripts that communicate with each

other via the browser’s messaging API as follows:

• The content script runs in the browser and can read or modify the Merge

Request page. It obtains the necessary information about the code review
and passes the information to the background script.

• The background script cannot access the content of the Merge Request page
but uses information relayed by the content script to perform the following core
functionality of the extension, and then notifies the content script to reload the
Merge Request webpage:

– For signing and storing reviews: retrieve parent commit object (i.e., parent
commit, tree hash, commit message) create a review unit, embed it in the
commit message, create a signed commit object and push it to the server;

– For merging the change: check if the code review policy is being followed,
create a signed merge commit object that includes the review units in the
commit message and push it to the server.

To maintain efficiency and satisfy design principle DP6 (Minimize minimize the

impact on the user’s experience (i.e., DP6), SecureReview is implemented exclusively

in JavaScript and does not require users to leave the browser. For which, we leverage

prior work that fetches information from the Git repository without retrieving the

whole repository and without creating a working directory on the client side [55].

That is not possible in the standard Git client, which needs the entire repository

locally to create a new commit. SecureReview creates signed commit objects on

the client side and pushes them to the server by reimplementing in JavaScript Git

operations such as committing, amending, merging files, pushing.

With SecureReview in place, an auditor can verify the integrity of the code

review process if she has the source code repository along with the signed code review

policy.

93

3.6.1 SecureReview for GitHub

In this section, we describe how SecureReview adds verifiability to GitHub code

review process by providing code reviewers the ability to sign reviews and store them

as part of the Git repository.

Create and Store a Signed Code Review Policy. In GitHub, the information

that must be protected because it is relevant for the code review policy, consists of the

actual policy rules and the CODEOWNERS file which contains a list of individuals

that can provide approving reviews.

Since GitHub provides no mechanism to protect this information, SecureReview

allows the project owner to compute a digital signature over it. To store the signature,

SecureReview defines a new status for the corresponding branch. Normally, a status

in GitHub is used to check if the commits meet the conditions set for a branch (e.g.,

if the build after a commit is successful or not) [99, 90], but SecureReview stores the

signature as a status parameter, which accepts arbitrary strings. The signature can

be retrieved later from the server, whenever there is a need to attest the integrity of

the code review policy.

Create and Store Signed Reviews. Once a GitHub developer submits a new code

change through a pull request, it can be updated by adding new commits. This allows

her to either update the code or commit information such as the commit message.

Developers can use either the web UI, or the command line, or the GitHub REST

API [93] to update the pull request. SecureReview leverages GitHub’s REST API

to embed the reviews in the Git repository.

For each new review, SecureReview updates the pull request by creating a new

commit object. For which, SecureReview first creates a review unit that encapsulates

the review. The “current review information” field includes the rating (which can be

one of Approve, Request changes, or Comment), and text feedback with the reviewer’s

comments. It then retrieves the latest commit in the pull request and uses its fields

94

to create a new Git commit object that is almost identical, except for two fields: the

commit message field, in which it embeds the review unit, and the committer field,

which is set to be the reviewer. Finally, SecureReview pushes the new commit to the

GitHub server.

To illustrate the “store reviews” on GitHub, we consider the example shown in

Figure 3.2. In which, the reviewer makes three reviews to approve the Pull Request.

Having SecureReview in place, all review information is securely captured as shows

in Figure 3.12. Reviewing commit C1, the reviewer requests for changes by making

Review1. As a result, a new commit (C2) is created on top of C1. At a high level,

SecureReview helps the reviewer to perform the following steps to embed the review

in the GitHub repository: (1) form a review unit to store Review1 ; (2) retrieve the

latest commit from the server to extract the commit hash (i.e., C1) and the “tree

hash” (i.e., T1) (3) compute a signed commit object (i.e., C2) to embed the Review1

in the commit message; (4) push C2 to the server. In a similar manner, the reviewer

uses SecureReview to embed Review2 and Review3 in the repository as shows in

Figure 3.12.

Merge Changes. A pull request branch may be merged into the codebase in four

different ways: (1) as a fast-forward merge, (2) as a regular merge commit with two

parents, (3) using a rebase-and-merge, or (4) using a squash-and-merge.

For the first three merge methods, SecureReview does not interfere with the

regular GitHub merge operation, and the commits created by SecureReview (which

contain review units) will become part of the project’s commit history. For the last

merge method (squash-and-merge), SecureReview extracts the review units from

the commits of the pull request branch and integrates them into the merge commit

object as described in Section 3.5.3.3. When SecureReview is in place on GitHub, it

is recommended that the squash-and-merge method should be used to merge a pull

request in order to avoid adding unnecessary commits to the commit history.

95

3.6.2 SecureReview for Gerrit

Gerrit’s code review policy is defined in three configuration files (i.e.,

project.config, groups, and rules.pl) stored under the refs/meta/config

branch. However, Gerrit does not provide a mechanism to protect these files. To

address this issue, SecureReview allows the project owner to sign the code review

policy (i.e., configuration files) per repository. Gerrit allows the project owner to

customize the code review policy by creating labels on which reviewers vote to

express their opinion about a change (e.g., a predefined label is the “Code-Review”

label) [85, 84]. The value of a label can be an arbitrary string and SecureReview

defines a custom label to store the signature over the code review policy. This custom

label can be later retrieved from the Gerrit server to verify the integrity of the code

review policy.

Create and Store Signed Reviews. Upon creating a change, the developer usually

provides a text description for the change. This description is included in the commit

message of the initial commit corresponding to the change. Gerrit allows developers

to update the commit message of the change by using the web UI, or the command

line, or the Gerrit REST API [18]. SecureReview leverages the Gerrit REST API to

embed the reviews in the Git repository.

When a reviewer performs a new review, SecureReview creates a new patch

set locally in the reviewer’s browser, embeds the review in this patch set, and pushes

the patch set to the Gerrit server. To do this, SecureReview first creates a review

unit that encapsulates the review. The “current review information” field includes

the rating (which by default is an integer ranging from -2 to +2) and text feedback

with the reviewer’s comments. It then retrieves the latest patch set in this change

and uses its fields to create a new Git commit object for the new patch set. This

new patch set is a standard Git signed commit that differs from the latest patch set

in two fields: the commit message field (which will contain the newly created review

96

unit) and the committer field, which is set to be the reviewer. Finally, SecureReview

pushes the new patch set to the Gerrit server.

Merge Changes. Gerrit allows the Merger to select among six merge strategies

called “submit types”. Acting on behalf of the Merger, SecureReview first retrieves

all patch sets in the change from the server. Then, it examines all the patch sets

with review units in this change and verifies the validity of the signature field of each

review unit. It also verifies that each review unit includes the signature field of the

review unit in the previous patch set that contains a review unit. If security checks

are passed, SecureReview extracts the review units from the patch sets of the change

and integrates them into a new patch set, represented by a new merge commit object)

as described in Section 3.5.3.3. Depending on the merge strategy, the merge commit

object will have either one parent (e.g., for fast forward and rebase) or two parents

(for merge always). Finally, SecureReview pushes the signed merge commit object

to the server.

3.7 Security Analysis

In this section, we first show how SecureReview achieves the security guarantees

defined in Section 3.3.1. Then, we analyze SecureReview’s ability to mitigate the

attacks described in Section 3.4.

3.7.1 Achieve Security Guarantees

SecureReview allows the project owner to protect the code review policy using a

digital signature. The review of a proposed change consists of a chain of signed review

units. Each review unit is protected by a digital signature. Thus, any tampering with

the review policy, or with the sequence of review units, or with individual review units,

will be detected during the verification procedure. Thus, under the considered threat

model, SecureReview achieves security guarantee SG1.

97

When a proposed code change is about to be merged, SecureReview checks

whether (1) each review unit contains the signature field of the previous review

unit, (2) each review has a valid digital signature, and (3) the code review policy

has a valid signature. SecureReview also checks whether the sequence of review

units satisfies the intended code review policy, by checking if the policy rules are

satisfied. Each individual review cannot manipulate the reviews of other reviewers,

since SecureReview does not rely on individual reviewers handling reviews other

than their own reviews. As such, under the considered threat model, the code review

process cannot be manipulated, and SecureReview achieves security guarantee

SG2.

An auditor should be able to independently verify the integrity of the code

review process even after the code review phase. That is not possible in the current

code review systems (such as GitHub, GitLab, and Gerrit) even if the auditor could

have access to the code review database. SecureReview embeds the review of each

proposed change in the commit message of a signed commit object which is created by

a trusted individual and is stored in the source code repository. Auditors that clone

the source code repository can retrieve the signed code review policy and can verify

the correctness of the code review process. Thus, SecureReview achieves security

guarantee SG3.

3.7.2 Mitigate Attacks

Code Review Manipulation Attacks. The server may alter the code reviews,

for example, by improving the review score to make a change mergeable. Since code

reviews are signed and SecureReview does not expect a reviewer to handle reviews

other than their own reviews, any modification in the review score will be detected

during the verification procedure – the Validate Reviews procedure (described in

Section 3.5.3.4) fails in line 4.

98

Bypass a minimum number of approving reviews. The server can make a

change mergeable even though it has not received the minimum approved reviews.

With the help of the code review chaining and the signed code review policy, the

verification procedure can detect this malicious behavior – the Validate Reviews

procedure fails in line 11 or 21.

Count reviews from unauthorized reviewers. The server may count approving

reviews from unauthorized reviewers (i.e., author of the code change) toward the

minimum number of approvals. However, the attack will be detected during the

verification procedure when the reviewer’s permission is checked against the code

review policy – the Validate Reviews procedure fails in line 21.

Exclude required reviews from specific users. A malicious server may declare a

change mergeable even though there are not enough approving reviews from specific

users (e.g., code owners in a GitHub project). Checking that policy rule, the

verification procedure will detect the server’s misbehavior – the Validate Reviews

procedure fails in line 21.

Count outdated reviews. The attacker may disable a policy that helps to catch

bugs introduced by a patchset by counting outdated review toward the minimum

number of approvals. With the sequence of signed review units, SecureReview can

help to verify whether the stale approvals were dismissed during the code review

process – the Validate Reviews procedure fails in line 21.

Misuse the project owner’s authority. A malicious server can impersonate the

project owner’s role to merge vulnerable code changes. This attack will be detected

during the verification procedure when we check if the merger was authorized to

merge the code change – the Validate Reviews procedure fails in line 17.

Accept changes from unauthorized users. A malicious server may ignore the

policy that enforces accepting changes only from a specific group of authors. With

99

a deeper inspection over the code review chain, the verification procedure can detect

the server’s misbehavior – the Validate Reviews procedure fails in line 21.

Advanced Attacks. There are some sophisticated attacks that may not be caught

during the verification procedure if it relies on the checks described above. For

example, the server may make a change submittable even though all requests for

changes have not been addressed. Moreover, a malicious server can modify different

project settings (such as user permissions, required status checks, adding arbitrary

review policies, etc) to achieve AG1 and AG2. A very complex check (which is outside

the scope of this chapter) is needed to address these types of attacks.

3.8 Experimental Evaluation

In this section, we explore the different costs of deploying SecureReview on both

Gerrit and GitHub. For benchmarks, we picked five popular repositories from

GitHub 4. and five popular repositories from Gerrit Google Source [21]. To cover

diverse repository configurations, we chose repositories of different history sizes, file

counts, and file sizes (shown in Table 3.15).

We conducted our experiments on a client system with an Intel Corei7

CPU at 2.70 GHz and 16 GB RAM. The client software consisted of Linux

5.0.16-100.fc28.x86 64 with git 2.19 and GnuPG 2-2.7 for 2048-bit RSA signatures.

On the server side, we used GitHub.com itself and a self-hosted Gerrit server on

an Amazon EC2 instance with two vCPUs (Intel XeonE5-2686 at 2.30GHz), 8 GB

RAM, Linux version 5.3.0-1023-aws, Gerrit server 3.2.2, and git 2.17. We also note

that: (1) the time to push the Git commit object to the server is not included in

the measurements, (2) when running SecureReview, only one CPU core on the client

side was used, (3) all commits in the repository have a GPG signature (as mentioned

4Popularity is based on the “star” ranking by GitHub users, which reflects their level of interest in
a project as of July 20, 2020.
5The top five are GitHub repositories, and the bottom five are Gerrit repositories.

100

Table 3.1 Repositories Chosen for the SecureReview’s Evaluation

Repository Size File File Size History Size

(MB) Count (Bytes) (# of commits)

gitignore 4 235 590 3,253

vue 24 549 10,848 3,104

youtube-dl 64 925 6,473 17,720

react 134 1,815 9,576 13,415

go 338 9,140 10,423 44,192

bazlets 1 43 2,209 377

gitiles 6 185 4,818 933

gitblit 29 1095 9,997 3,072

jgit 53 2,463 5,791 7,938

gerrit 234 4,717 7,288 44,944

in Section 3.3), (4) all experimental data points in this section represent the median

over 30 independent runs. For each run, we picked the latest (preferably open) 30

merge requests for each repository.

We focused our experiments on two performance parameters: execution time

and storage overhead. We benchmarked both integration options of SecureReview

(i.e., “Full” and “Compact”), in all these parameters except for execution time, where

the runtime differences were negligible (and thus we only show one metric).

Execution time. Table 3.2 shows the execution times for two major functionalities

of SecureReview: Creating signed reviews and Merging changes. The former includes

reviewing a code change in a merge request branch. For which SecureReview

downloads only the head of the merge request branch. The latter is merging a code

change that has been reviewed four times.

101

Table 3.2 Execution Time for Storing Signed Reviews and Merging Changes

Repo. Sign and Store Merge Changes

gitignore 0.61 1.16

vue 0.67 1.47

youtube-dl 0.65 1.58

react 0.69 1.65

go 0.68 1.94

bazlets 0.37 0.40

gitiles 0.36 0.40

gitblit 0.37 0.41

jgit 0.37 0.42

gerrit 0.37 0.41

To perform a merge commit, SecureReview carries out two major steps. First,

it retrieves all review units, validates their signature, and integrates them into the

commit message. Second, it computes the merge commit object, which could result in

retrieving several tree and blob objects from the server. This depends on the number

of changed files and the location of these files in the repository. Of note, the size

of the repository is not a major factor for the SecureReview’s performance – the

execution time is affected by the number of retrieved Git objects

On Gerrit, SecureReview can sign and store code reviews in less than half a

second. On GitHub, however, it takes a bit more to perform the same operation.

SecureReview can merge changes on Gerrit repositories in under a second whereas,

for Github, this time is closer to a second slower. These differences occur because

the GitHub server’s response to download Git commit objects is not as fast as our

customized Gerrit server. This plays a major role in our tests since SecureReview

requires more GitHub API calls to compute a merge.

102

We note that increasing the number of reviews per merge request will not affect

execution time significantly because we use REST API [18, 93] to get all merge request

commits (i.e., all review units embedded in commits) at once. More review units

could affect the time to verify signatures over review units. However, in the merge

operation, signature verification has a very small portion of the overall execution time

(for a merge request with four review units, signature verification takes 0.023 seconds

out of the 0.40–1.94 seconds needed to execute the merge request).

Table 3.3 Storage Overhead per Merge Commit

Repository Commit C1 C4 F1 F4

Size (Bytes)

DIFF (Bytes) 58 232 572 2288

gitignore 995 6% 23% 57% 230%

vue 784 7% 30% 73% 292%

youtube-dl 1127 5% 21% 51% 203%

react 1061 5% 22% 54% 216%

go 985 6% 24% 58% 232%

bazlets 903 6% 26% 63% 253%

gitiles 1807 3% 13% 32% 127%

gitblit 788 7% 29% 73% 290%

jgit 2257 3% 10% 25% 101%

gerrit 1392 4% 17% 41% 164%

Storage overhead. Table 3.3 shows SecureReview’s storage overhead for both

integration options and a different number of review units per merge request. The

storage overhead caused by SecureReview is the data added to the commit message

– equal to the size of review units. As shown in Table 3.2, we measured the storage

overhead for four configurations: (C1) Compact integration with one review unit of

103

58-byte size, (C4) Compact integration with four review units with a total size of 232

bytes, (F1) Full integration with one review unit of 572-byte size, (F4) Full integration

with four review units with a total size of 2288 bytes.

To measure that overhead, we first computed the size of merge commit objects

created during our execution timing tests (which included four review units per

merge commit) and contrasted it to the same merge commits without SecureReview

enabled. Then, we computed the median difference size between two equivalent merge

commits and therefore measured the overhead caused by embedding the review units

in the repository. Also, we repeated the previous experiment when each merge request

has only one review unit.

When Compact integration is in place, each review unit added about 58B

to the merge commit object (and a total of 232B for four review units). For

Full integration, the storage overhead for one and four review units was 572B and

2288B, respectively. The Compact integration adds less than 8% overhead per

review unit. Full integration, however, has an overhead of 25% to 73% for different

repositories. To put these values in context, the largest storage overhead in Table 3.3

is approximately 2 KB per commit for full integration of reviews, which represents

less than 0.0006 of the repository size even for a small repository like gitignore. Of

note, the storage overhead depends on the size of the original commit message and

the integration option –the larger the commit message is, the less the overhead caused

by SecureReview.

3.9 Related Work

SecureReview is, to the best of our knowledge, the first tool to secure the integrity of

the code review process. Previous attempts in this area have been mostly focused on

identifying best practices to prevent security vulnerabilities in the early steps of the

software development life cycle (i.e., prevent implementation defects before releasing

104

a software product [157, 127]), improving the code review tools themselves, and

improving merge request management. In addition, there is a trove of work related

to the version control system (VCS) security that proves relevant to the security of

code review systems.

There is plenty of work on improving code review quality. Work by Bosu [63]

describes a methodology to evaluate the impact of peer code review on security

vulnerabilities in Open Source Software (OSS) communities. For instance, it suggests

that analyzing a set of keywords used in the code review comments could lead to

identifying security vulnerabilities. This approach is extended in another study [64]

by finding the code changes that are more prone to contain security vulnerabilities

by asking the code reviewers to pay more attention to such code snippets. Work by

Ogale [136] proposes a tool to identify the scope of mandatory code review which is

part of the source code that should be manually reviewed. Ibrahim et al. [110] give

a checklist for the secure code review process that should be done before releasing

the software or even before committing the code to the codebase. While all these

tools improve the security stance of a project, they do not address that the review

process and policy are followed. In this case SecureReview can be useful to ensure

that guidelines by these systems are present (e.g., by encoding them in the review

policies).

Kalyan et al. [113] explore the shortcomings of existing code review tools and

introduce Fistbump, a tool to improve the code review process on GitHub. Fistbump

manipulates the existing pull request interface on GitHub and allows to manage

the discussion between the author of a merge request and the selected reviewers.

Fistbump also applies best practices in web security, such as cross site scripting (XSS)

prevention, and HTTPS communication. Using GitHub APIs, CodeReviewHub [8]

creates a task list per pull request on GitHub and adds a pending task for each

comment. The main goal is to improve the pull request management by keeping

105

track of unaddressed comments and open issues. RevRec [166] tries to improve the

code review process on pull request based systems such as GitHub by recommending

the best code reviewers. These systems are improving the developer experience and

workflow, and their improvements can accommodate SecureReview mechanisms to

provide verifiability that these workflows are followed.

In addition, there are studies that improved the security of the VCS which

relate to the security of the code review process as well. Wheeler [163] provides

an overview of security issues related to software configuration management tools

and provides a set of security principles, threat models, and solutions to address

these threats. Gerwitz [87] provides a detailed description of creating and verifying

Git signed commits. Work by Torres-Arias et al. [160] covers some attack vectors

against VCS where a malicious server tampers with Git metadata to trick users

into performing unintended operations. Whereas this line of work focuses on the

consistency of the VCS itself, SecureReview extends this notion to provide integrity

and consistency to the process by which changes are integrated into the VCS itself.

Perhaps most closely related work to SecureReview is le-git-imate [55], a

defense scheme that provides security guarantees for code changes performed through

untrusted web-based Git repository hosting services such as GitHub and GitLab.

However, le-git-imate’s focus is on signing a web UI commit and creating a

standard GPG-signed Git commit object in the browser. Though this feature is

crucial for the success of SecureReview, it does not provide the ability to validate

the integrity of the code review process.

106

CHAPTER 4

AUTOMATED VALIDATION OF THE CODE REVIEW PROCESS

4.1 Introduction

Code review is the process of spotting bugs and errors at the early stages of software

development to improve the quality of the source code. Thus, it reduces the amount

of time developers must spend to fix defects after the software product is delivered

to the end user. The code review process, however, can be incredibly tedious and

time-consuming if performed only by a human.. Code review tools address this issue

by automating the code review process. Such tools help developers to easily track

code changes, find bugs and errors, and ensure that issues are resolved correctly [58,

146, 59].

In the past years, a variety of features have made the code review tools more

popular. Our analysis of the top 50 most starred GitHub projects (i.e., evaluating

690 thousand commits, 207 thousand pull requests, and 77 thousand reviews) show

that 42 out of 50 top projects have started using GitHub code review features, and

an average of 38% of all pull requests have been reviewed. Notably, many of pull

requests with no code reviews were created before 2015 when GitHub did not have

even basic code review features such as “Highlighted Diffs” (which adds colors to the

code changes) [25].

Code review services, such as GitHub [23] and Gerrit [16], allow the project

owners to define a code review process enforcing certain requirements before merging

code changes into the codebase. GitHub, for instance, allows defining a set of policies

called protection rules for each branch of a Git repository. Doing so, all proposed

code changes (i.e., pull requests) must undergo a code review process before being

merged to the codebase. The review process itself can be defined or modified only by

authorized users such as the project owner or the repository administrators. Besides,

107

project owners can automate many steps of the code review process and find security

vulnerabilities by using code review tools [91], as well as code scanning tools [92].

This all leads to less human errors during the code review and also fastens software

development.

Despite many features provided by modern code review tools, one essential

feature is still missing. Even if a project owner defines a flawless code review workflow,

there is no guarantee that the code review process was followed as intended by the

project owner – the integrity of the code review process is not protected. Indeed, the

users or any independent auditor must assume that the code review server faithfully

followed the code review policy. That is not a wise assumption while a malicious

or a compromised server can tamper with any aspect of the code review workflow.

For instance, a server may impersonate the project owner’s role to dismiss negative

code reviews, or add unauthorized reviewers to participate in the review process, or

bypass any policy (such as the minimum number of approving reviews) without being

detected.

Unfortunately, when the code review step is done, and the source code is shipped

out to the next step of the software development, there is no mechanism, as an

independent auditor, to fully verify whether a review policy was violated during the

code review process. In other words, current code review systems cannot provide

strong guarantees about the code review process and are vulnerable against a wide

range of attacks (as described in Section 3.4). We could tackle this issue if we were

able to validate the integrity of the entire code review process – verify after the code

review step what occurred in that step. To this end, we must provide two essential

security properties: (1) create verifiable metadata about the code review process,

(2) a way to adequately verify a sequence of code reviews against the code review

policy.

108

In Chapter 3, we achieved the first goal by introducing SecureReview which

helps to sign the code review policy as wells embedding verifiable guarantees about

the code review process in the source code repository. To attain the second goal, we

present PolicyChecker that allows auditors to automatically verify the correctness

of the code review process by evaluating the code review metadata. A tool like

PolicyChecker is useful in two steps of the software supply chain: 1) when a

maintainer merges a branch, so she does not have to blindly rely on the code review

server, which happens a priori to the code merging step, 2) when someone pulls a

repository and wants to check if the code was merged according to the code review

policy, which happens a posteriori to the code merging step.

We note that verifying the code review metadata is not only a matter of verifying

the authenticity and integrity of the code reviews (i.e., verifying a digital signature).

It is also about ensuring that a sequence of code reviews which led to the approval

of the code changes respects the intended code review policy. Depending on the code

review workflow, this process can be quite complex and error prone if done manually.

For instance, assume a GitHub project that enforces three approving reviews for any

code change, dismissing any reviews after a new code change, ignoring code changes

from specific users, and finally requiring review from certain users. Having such a

code review policy in place, it is not easy to manually determine if a code change

was merged correctly. This could get worse, for example when it comes to validate a

software release with many code changes.

In this chapter, we make the following contributions:

1. We perform a comprehensive analysis of two popular code review systems,
GitHub [23] and Gerrit [16]. That leads to answer the critical question of
what can be done by whom? For instance, we find out the internal code review
workflow, the exact components of the code review policy on each system, the
user permissions, and how code reviews are evaluated on GitHub and Gerrit.

2. This analysis enables us to design PolicyChecker, the first tool that allows
independent auditors to verify the correctness of the code review process.

109

PolicyChecker receives as inputs the source code repository, the code review
policy, the code review format, and the corresponding public keys. It then
automatically validates that the code review process was followed as prescribed
by the project owner.

3. We implement PolicyChecker as a git command which can be run whenever a
repository is cloned or pulled. Our implementation does not impose any changes
on the server side so that it can be used today. It also preserves the current
code review system’s workflows. PolicyChecker is implemented in Python and
can verify the code review process on GitHub and Gerrit. However, it can be
easily adapted to work with any Git-based hosting services (such as GitLab [28],
BitBucket [4], and GerritHub [20]) as long as the code review format and the
code review policy are known.

4. We analyze our implementation’s efficiency and show that PolicyChecker can
validate the code review process in a repository branch in a timely manner –
on average less than 0.12 seconds to evaluate one merge request, and less than
1.50 seconds to verify a software release.

4.2 Background

Section 3.2 introduced the code review process and two popular code review systems,

GitHub [23] and Gerrit [16]. In this section, we elaborate on the code review policy

(i.e., the rules and the user permissions) and the merge strategy as the background

for the code review process verification.

4.2.1 GitHub Code Review Policy

Github allows project owners to define a review process on a branch basis called

“Branch Protection Rules” [97]. The review process for each branch can be defined

by enabling at least one of the protection rules. We call GitHub’s code review policies

“semi-customized” rules, in which the project owner has a limited set of options to

update the code review process and does not allow to define arbitrary customized

rules.

110

In the following, we explain the rules that are relevant for the code review on

GitHub 1:

1. Required number of approving reviews: A number between 1 to 6 that indicates
the minimum number of approving reviews that a change must receive before
it can be merged.

2. Dismiss stale pull request approvals: If enabled, the code review process is
reset when code-modifying commits are pushed to the merge request branch.
Thus, any existing approving reviews will not be counted towards satisfying the
required number of approving reviews.

3. Require review from code owners: If enabled, the required number of approving
reviews must only be from “code owners”, a set of designated users who are
responsible for certain files in a repository.

4. Restrict who can dismiss pull request reviews: This rule specifies users or
teams (i.e., administrators or people with write access) that are able to remove
reviews. That could help when the project owner does not want to dismiss all
stale approvals automatically, or the reviewer who requested for changes is not
available anymore to give an approving review.

5. Require linear history: If enabled, merge commits can not be created. Therefore,
a merge request can be merged only under the “squash and merge” or “rebase”
merge strategy.

6. Include administrators: If enabled, any code changes by administrators must
be reviewed before being merged to the codebase.

7. Restrict who can push to matching branches: This rule specifies users, or teams
that are allowed to push to a branch.

4.2.2 Gerrit Code Review Policy

Code changes on the Gerrit server are reviewed under a set of policies called submit

rules, a logic that evaluates proposed code changes through a rating process to

determine if the code changes are mergeable. As described in Section 3.2.4, submit

rules are group based and are defined in three files, project.config (which contains

group permissions per namespace, and code review ratings), and groups (which shows

user groups). rules.pl (which indicates the vast majority of customized code review

1We focus on organization repositories, which are typical for collaborative projects. However, our
work can also cover user account repositories, which have a more limited set of permissions.

111

policy), We note that Gerrit’s default rules and any customized rules defined through

the web UI reside under project.config and groups files; other customized rules

will be to the rules.pl file.

Standard Rules. Gerrit default rules determine user premissions to: (1) create

a branch, (2) create a code change, (3) review a code change, (4) puch commits

without reviews, (5) merge code changes, (6) change the project settings, (7) change

the default merge strategy. In addition, the default code review rating ranges from -2

to +2. The highest rating (+2) means that the reviewer approves the code change,

and the lowest rating indicates that the code change cannot be merged unless the

viewer’s feedback is addressed. The project owners and administrators are the only

user groups that can give the highest or lowest ratings (i.e., approve or block a code

change). Another user group that may participate in the code review process is called

registered users, who can rate the changes from -1 to +1. Thus, they have no power

to reject or approve a code change. The default submit rule indicates that a code

change is mergeable if it has received at least a review with the highest score (+2)

and no reviews with the lowest score (-2).

Customized Rules. Gerrit allows users to modify the default or standard code

review rules either through the web UI or the command line. Considering seven

permissions determined by default, the first five permissions can be updated through

the web UI. We call such changes “semi-customized” rules in which the project

owner just modifies some standard rules through the web UI. It is notable that

“semi-customized” rules will be reflected in two files, groups and project.config.

Updating the last two standard permissions (i.e., change the project settings, change

the default merge strategy) or adding any arbitrary rules (e.g., modifying the

code review rating range) must be done through the command line. We call such

changes “customized rules” which are added to the rules.pl file using the Prolog

language [17]. We note that Gerrit has implemented the default submit rules in

112

Java [19] and does not have any rules.pl by default. This file is only created by

users who want to customize the submit rules. Note that the new rules defined in

the rules.pl file will always override the default rules (the new rules have a higher

priority).

4.2.3 Merge Strategy

GitHub. GitHub provides three strategies to merge a pull request into the

codebase: Merge (equivalent to “git merge --no-ff” command that always results

in a new merge commit object even if the fast-forward option is possible), Squash

and Merge (the pull request‘s commits are squashed into a new single commit in

the codebase), Rebase (slightly different from “git rebase” command since the

committer information is updated by GitHub). The Merge strategy will always add

at least two new commits to the codebase: (1) a new merge commit with two parents

(i.e., the previous head of branch, the head of the merge request branch), (2) one or

more commits from the merge request branch. The Squash and Merge strategy will

always result in one new commit in the codebase. Finally, the Rebase strategy will

rewrite all the merge request branch’s commits to the codebase. It thus adds one or

more commits to the codebase depending on the number of commits in the merge

request branch.

Gerrit. Gerrit provides six merge strategies (i.e., “submit type”): Fast Forward

Only (the head of the codebase repository is fast-forwarded to the change commit),

Merge Always (equivalent to “git merge --no-ff” command), Merge If Necessary

(equivalent to “git merge --ff” command that fast-forwards the head of the

repository unless it is not possible and a new merge commit must be created), Rebase

Always (equivalent to “git rebase” command that rewrites the latest patchset and

then fast-forwards the head of the repository to this new commit), Rebase If Necessary

(equivalent to Fast Forward Only the fast-forward option is possible. Otherwise, it is

113

equivalent to Rebase Always), and Cherry Pick (picking the last patchset to create a

brand new commit on top of the codebase). Upon integrating a merge request, Gerrit

creates one or at most two new commits in the codebase. In case of the Merge Always

or Merge If Necessary, two commits will be added to the codebase: (1) a new merge

commit with two parents (i.e., the previous head of branch, the head of the merge

request branch), (2) one or more commits from the merge request branch. In other

merge strategies, only one commit will be added to the codebase (i.e., the head of

the merge request branch).

4.3 Threat Model

We consider a threat model in which the attackers aim to compromise the code review

process – prevent the source code from being properly vetted by the code reviewers.

That can result in shipping a counterfeit or vulnerable version of the source code

to the next step of software development. The attackers can achieve their goal by

manipulating either the code review policy or the code review process’s steps. As

an illustration, the attackers can impersonate the project owner’s authority or count

reviews from unauthorized reviewers to merge a code change that does not satisfy

the intended code review policy. They can even take advantage of stale approvals to

merge a code change with insufficient review scrutiny. The attackers may also decide

to change the reviewers’ permissions to delay the merging of an approved security

patch. They can also improve the rating of existing code reviews, or delete negative

reviews, or add new illegitimate positive reviews.

Normally, the code review server should faithfully enforce the correct code

review policy before merging code changes into the codebase. However, a malicious

code review server (either unscrupulous or compromised) may not respect the

prescribed code review policy by executing some of the aforementioned attacks. For

example, the code review server may present a code change as mergeable, when in

114

fact, it does not meet the prescribed code review policy. Concretely, a GitHub server

may show the “green Merge button” to the project owner, even when not enough

approving reviews have been submitted.

We assume that all commits in the source code repository and the code reviews

are signed. We assume that code reviews are stored in the source code repository

(e.g., as part of the commit messages). The ability to sign and store the code reviews

is available by using a tool such as SecureReview (which is described in Section 3.5).

We assume that the code reviews are either created by SecureReview, or any tool that

preserves the sequence of code reviews performed for each code change. We assume

that the code review policy format is known. For example, GitHub’s code review

policy is a combination of branch protection rules, code owners, and collaborators.

Gerrit’s code review policy is formed by the project.config, rules.pl, and groups files.

We assume that the code review policy is signed by the project owner and is accessible

to any independent auditor (either through access to the source code repository or

an offline channel). We assume that the public keys of project owners, reviewers, and

developers are known and that the attacker can not compromise the corresponding

secret keys.

4.4 Solution

Current code review systems would be secure against a wide range of attacks described

in Section 3.4, if we could achieve two security goals: (1) capture verifiable metadata

about the code review process, (2) find a way to verify the sequence of code reviews.

The first goal was fulfilled in Section 3 by proposing SecureReview which allows

signing the code review policy and capturing verifiable metadata about the code

review process. In this section, we present PolicyChecker, a tool that enables

automatic verification of a given set of code reviews against a given code review

policy. PolicyChecker first interprets the code review policy to extract the rules

115

and user permissions. It then performs multiple checks to ensure that the review

process was followed as intended by the project owner.

A Strawman Solution A basic attack described in Section 3.4.1 is to manipulate

the code reviews (i.e., lower the rating of existing reviews, remove positive reviews,

or add new negative reviews) which can result in approving a buggy code change.

One solution to mitigate this attack is to verify the code review signatures. That

helps to ensure the integrity of the code reviews and, therefore to mitigate the above

attack. However, this solution is incomplete since it can not detect or prevent many

code review policy manipulation attacks (described in Section 3.4.2). A malicious

server, for example, can count outdated reviews, bypass a minimum number of

approving reviews or accept changes from unauthorized users. None of these attacks

are detectable by just checking the code review signatures. Hence, we need a

comprehensive solution that verifies the code review signatures, interprets the code

review policy, and checks if the code review policy sequence followed the code review

policy (as prescribed by the project owner).

4.4.1 Design Overview

PolicyChecker allows independent auditors to verify the correctness of the code

review process performed on the web-based code review services (i.e., GitHub and

Gerrit) that are integrable with a Git repository. When the review process is enabled

on code review systems such as GitHub or Gerrit, each code change (i.e., merge

request) must go through a review process before being merged into the codebase.

Thus, we can validate this process by first examining individual merge requests

(finding out which code reviews led to a merge request being integrated into the

codebase), and then by determining if the sequence of the code reviews satisfies the

intended code review policy.

116

To design PolicyChecker, we are faced with three challenges. First, we should

interpret a variety of policy rules in the code review process. A comprehensive analysis

of Gerrit and GitHub internal workflow allows us to build a system that extracts

different types of rules, determines the priority that each rule shall have in making a

code change mergeable, and deals with a range of dynamic changes in the code review

policy (i.e., customized rules described 4.2.2). We illustrate the PolicyChecker’s

interpreter in Sections 4.4.2 and 4.5.2 for GitHub and Gerrit. Second, we must be

able to verify the integrity of an entire chain of reviews. Our solution relies on the

fact that each code review is signed by the reviewer and also includes a valid GPG

signature computed over the previous code review in the merge request. Hence, we

can validate the integrity of a set of reviews embedded in a merge request. Third, we

need to determine the boundary of each merge request. Without finding the first and

last commit of merge requests, it is not possible to a group of linked reviews (i.e.,

reviews embedded in one merge request). We address this challenge by leveraging the

fact that for each merge request, a combination of the following information is unique:

the merge strategy, the number of parent commits, the committer, and the number

of code reviews embedded in each commit. Section 4.4.4 describes an algorithm that

can determine the boundary of each merge request on Gerrit and GitHub.

PolicyChecker is built upon three main components: (1) interpret the code

review policy, (2) extract the code reviews, (3) validate the code reviews against the

code review process. Next, we describe each component, when applied to GitHub

and Gerrit.

4.4.2 Interpret the Code Review Policy

Recall from Section 4.2 that a code review policy falls into three categories:

1. Standard rules: the project owner relies only on a set of fixed predefined rules
(e.g., default policies on Gerrit).

117

2. Semi-customized rules: the project owner changes some standard parameters of
the existing rules (e.g., branch protection rules on GitHub, new rules defined
through Gerrit’s web UI).

3. Customized rules: the project owner defines rules arbitrarily (e.g., new rules
defined through Gerrit’s command line).

Though interpreting each code review policy faces different challenges, in any

case, we have two common goals: (1) extract individual rules and user permissions,

(2) determine the relation between different rules (e.g., if a certain rule has a higher

priority than others). As an illustration, assume a GitHub repository in which every

code change must go through the code review process. If we find a piece of code

with no code reviews, and we ensure that code review policy allows merging code

without code reviews (i.e., the committer must have the “admin” permission to the

repository and the “push” permission to the branch), we may miss a violation in the

code review process. Indeed, there might be another rule enforcing the administrators

to follow the code review process. In a similar scenario, we may find a code change

being merged by a user who has “write” permission to the branch (i.e., the user is an

authorized merger), while there is another rule saying that only a specific group of

users can push into the branch. That said, we must not only understand individual

rules but also find out how different rules affect each other and code review validation.

An ideal version of PolicyChecker will support all three types of the code review

policy. However, our current implementation can handle the first two categories (i.e.,

Standard and Semi-customized rules) and a limited number of customized rules on

Gerrit. Now we discuss how PolicyChecker interprets different code review policies

on GitHub and Gerrit.

GitHub. We categorize GitHub’s code review policy as semi-customized rules since it

provides a limited set of options to define the code review policy – it does not offer any

predefined rules nor allow to define an arbitrary code review policy. PolicyChecker

interprets the code review policy on GitHub by extracting the following information:

118

(1) branch protection rules (a set of policies to perform the code review process);

(2) collaborators (a list of all project members as well as the permissions granted to

each member); (3) code owners (a specific group of users who must approve a code

change). Some rules (i.g., who can dismiss pull request reviews, reviews from code

owners) have higher priorities. In Section 4.5.2, we describe our implementation to

evaluate different code review rules on GitHub.

Gerrit. Gerrit allows the project owners to create a code review policy by using

predefined rules or by adding new customized rules. Therefore, the code review

policy on Gerrit can fall into any of three categories. PolicyChecker interprets

Gerrit’s code review policy by extracting the following information: (1) submit rules

(a set of policies to perform the review process, which resides on project.config

and rules.pl files); (2) groups (a list of groups, their members, as well as the

permissions granted to each member). In the case of predefined or customized rules

defined through the Web UI (i.e., semi-customized rules), the rules.pl file will be

empty. Therefore, the code review policy is interpreted by extracting information only

from the project.config and groups files. Otherwise, PolicyChecker must deal

with arbitrary rules defined in the rules.pl file using the Prolog language [17]. We

can think of two approaches to handle all Gerrit customized rules: (1) implement a

light Prolog interpreter dedicated to Gerrit rules; (2) integrate PolicyChecker with

an available Prolog interpreter (e.g., SWI-Prolog [46], PySwip [42], Gerrit Prolog

Shell [86]);

We have worked on these approaches; however, our Prolog interpreter is still

a work in progress. The current version of the PolicyChecker [41] can handle an

important set of customized rules as follows:

• the review score range,

• users that can bypass the code review process,

• users that can never add code changes,

119

• if change can be merged with unresolved comments,

• if a specific file can be changed,

• if a specific user committed the change,

• the submit type.

A summary of our efforts towards adding a Prolog interpreter into PolicyChecker is

described in the Appendix.

PROCEDURE:PolicyChecker
Input: Branch, ReviewPolicy, Server
Output: success/fail

1: if Validate Signature(ReviewPolicy) == false then
2: // The review policy does not have a valid signature
3: return fail

4: end if
5: C ← The set of all commits in the Branch
6: h ← The head commit of the Branch
7: // Check if all the branch commits have valid signatures
8: for all c ∈ C do
9: if Validate Signature(c) == false then

10: return fail

11: end if
12: end for
13: while (C is not empty) do
14: // Extract the commits in the merge request that
15: // corresponds to h
16: MRC ← Extract Merge Request Commits(h)
17: // Check if the sequence of reviews embedded in the
18: // merge request is valid against the review policy
19: if Validate Reviews(MRC, ReviewPolicy, Server) == false then
20: return fail

21: end if
22: // Remove commits in merge request from the set C,
23: // and find the head of remaining commits
24: C ← C \ MRC
25: h ← The head commit of the branch represented by commits left in C
26: end while
27: return success

120

PROCEDURE: Validate Reviews GitHub
Input: Commits, ReviewPolicy
Output: success/fail

1: Reviews ← getCodeReviews(Commits)
2: // Check if code reviews have valid signature and the chain of code reviews is valid.
3: if Validate Review Signatures(Reviews, ReviewPolicy) == false then
4: return fail

5: end if
6: // Check if the merger has the permission
7: if AuthorizedMerger(Commits, ReviewPolicy) == false then
8: return fail

9: end if
10: ru ← length(Reviews)
11: if ru == 0 and FirstCommit(Commits) == false then
12: // Check if the committer has the direct push access
13: if DirectPush(Commits, ReviewPolicy) == false then
14: // Unauthorized direct push is detected
15: return fail

16: end if
17: else
18: rules ← inspectReviewPolicy(ReviewPolicy)
19: // Check if reviews created by authorized reviewers
20: if AuthorizedReviewers(Reviews, rules) == false then
21: // Unauthorized reviewer is detected
22: return fail

23: end if
24: // Check if there are required reviews from specific users
25: if RequiredReviews(Reviews, rules) == false then
26: return fail

27: end if
28: // and if the minimum number of approving reviews is met
29: if MinApprovals(Reviews, rules) == false then
30: return fail

31: end if
32: end if
33: return success

4.4.3 Validate the Code Reviews

An auditor can verify the integrity of the code review process for each branch in the

repository by running PolicyChecker. It first checks if the code review policy has a

valid signature (lines 1-2). Then, it validates the commit signatures (lines 7-9). Next,

it traverses the commit tree in the branch and extracts the commits corresponding to

121

a merge request by calling the Extract Merge Request Commits procedure (line 16).

Finally, the Validate Reviews procedure attests if the merge request was properly

approved according to the code review policy (line 19). In general, this procedure

performs three major checks: (1) Validate the commit signatures (2) Validate the code

review signatures (3) Check whether the sequence of code reviews led to approve the

merge request respects the intended code review policy.

GitHub. The Validate Reviews GitHub procedure receives as input a valid signed

review policy and a set of commits corresponding to a merge request. It first checks

if the code reviews have valid signatures and the chain between code reviews is valid

(lines 1-5). Then it checks if the merger has permissions to perform the merge (lines

7-9). Next, it finds the number of code reviews embedded in the merge request.

If there are no reviews, it checks if the merger has permissions to directly merged

the code changes – the merger must be an administrator and the code review policy

must exclude the administrator from the code review policy (lines 12-16). Otherwise,

the Validate Reviews GitHub procedure performs the following checks: if reviews are

created by authorized reviewers – the reviewers are granted the read access (lines

23-25); if there are approving reviews from code owners (lines 26-28); if the sequence

of code reviews meets the minimum number of approving reviews defined by the

policy, such that only those approving reviews that satisfy the policy are counted

(lines 30-32). More details on checks for the minimum number of approvals are

provided in the implementation, Section 4.5.2.

Gerrit. Unlike our GitHub version, the Validate Reviews Gerrit procedure must

validate the code review process against all three types of policies (i.e., standard,

semi and customized rules). It receives as input a valid signed review policy and a

set of commits corresponding to the code change, and checks whether the change was

merged according to the intended code review policy.

122

PROCEDURE: Validate Reviews Gerrit
Input: Commits, ReviewPolicy
Output: success/fail

1: Reviews ← getCodeReviews(Commits)
2: // Check if code reviews have valid signature and the chain of code reviews is valid.
3: if Validate Review Signatures(Reviews, ReviewPolicy) == false then
4: return fail

5: end if
6: // Check if the merger has the permission
7: if AuthorizedMerger(Commits, ReviewPolicy) == false then
8: return fail

9: end if
10: ru ← length(Reviews)
11: if ru == 0 and FirstCommit(Commits) == false then
12: // Check if the committer has the direct push access
13: if DirectPush(Commits, ReviewPolicy) == false then
14: return fail

15: end if
16: else
17: rules ← inspectReviewPolicy(ReviewPolicy)
18: if isCustomizedRules(rules) == false then
19: // Check if the author of code was authorized
20: if AuthorizedAuthor(Commits, ReviewPolicy) == false then
21: return fail

22: end if
23: // Check if reviews created by authorized reviewers
24: if AuthorizedReviewers(Reviews, rules) == false then
25: return fail

26: end if
27: // Check if the blocked reviews are authorized
28: if isAllowedBlock(rules, Reviews) == false then
29: return fail

30: end if
31: // Check if the approving reviews are authorized
32: if isAllowedApprove(rules, Reviews) == false then
33: return fail

34: end if
35: // Check if the minimum number of approving reviews is met
36: if MinApprovals(rules, Reviews) == false then
37: return fail

38: end if
39: else
40: // Check if customized rules are followed correctly
41: if CustomizedRules(rules) == false then
42: return fail

43: end if
44: end if
45: end if
46: return success

123

After validating the code review signatures, and the chain between code reviews

is valid (lines 1-5), it checks if the merger has permissions to perform the merge (lines

7-9); if there is a direct push, the committer has direct push access (lines 11-15). In

the case of no customized rules, it checks if the author of the code was allowed to

submit a merge request (lines 20-22); if reviews are created by authorized reviewers

(lines 24-26); if block reviews (i.e., lowest scores) are given by authorized users (lines

28-30); if approving reviews (i.e., highest scores) are given by authorized users (lines

32-34); if the sequence of code reviews meets the minimum number of approving

reviews defined by the policy, such that only those approving reviews that satisfy

the policy are counted, and outdated approving reviews are dismissed correctly (lines

36-38). In the case of customized rules, PolicyCheckerperforms additional checks,

which are detailed in Section 4.5.2.

4.4.4 Extract the Code Reviews

PolicyChecker extracts all code reviews related to a merge request by determining

the boundary of a merge request – finding all commits that belong to a merge

request. At a high level, PolicyChecker performs three steps to get the code reviews:

(1) finding the merge strategy, (2) finding the number of commits per merge request,

(3) extracting merge request’s commits.

GitHub. The Extract Merge Request Commits GitHub procedure first finds the

number of the commit’s parents (line 2). If there are no parents, the repository’s first

commit is found (lines 3-5). If the commit has two parents, the merge strategy is

“Merge” and all merge request’s commits are extracted by calling the getPRCommits

procedures (line 29). In one parent’s case, the procedure extracts the code reviews

embedded in the commit (line 12). Then, it detects the merge strategy based on the

number of code reviews embedded in the commit.

124

PROCEDURE: Extract Merge Request Commits GitHub
Input: Commit
Output: MergeRequestCommits

1: MRC ← {}
2: p ← The number of Commit’s parents
3: if p == 0 then
4: // The first commit in the repository
5: return MRC, “FirstCommit”
6: end if
7: // Set the default merge strategy to “Merge”
8: MergePolicy ← “Merge”
9: if p == 1 then
10: MRC ← MRC

�
Commit

11: // Extract the code reviews embeded in the Commit
12: CodeReviews ← getCodeReviews(Commit)
13: n ← The number of CodeReviews
14: if n == 0 then
15: // A direct push
16: MergePolicy ← “DirectPush”
17: else if n == 1 then
18: if isFirstReview(CodeReviews) == false then
19: // A rebase commit
20: MergePolicy ← “Rebase”
21: MRC ← MRC

�
getRebaseCommits(Commit)

22: end if
23: else
24: // A squash and merge commit
25: MergePolicy ← “SquashAndMerge”
26: end if
27: else
28: // Extract commits for a merge commit
29: MRC ← MRC

�
getPRCommits(Commit)

30: end if
31: return MRC, MergePolicy

As a result, there are three options: (1) The commit has no code reviews, which

means the commit was pushed directly to the codebase without being reviewed (lines

13-16); (2) The commit has only one code review; therefore, the merge request’s

commits are extracted by calling the getRebaseCommits procedures (line 17-22);

(3) The commit has more than one code review, which means two or more commits

are squashed. Thus, the merge strategy is “SquashAndMerge” (line 23-26).

125

PROCEDURE: Extract Merge Request Commits Gerrit
Input: Commit
Output: MergeRequestCommits

1: p ← The number of Commit’s parents
2: if p == 0 then
3: // The first commit in the repository
4: return
5: else if p == 1 then // One commit is added to the codebase
6: return Commit
7: else// Two commits are added to the codebase
8: return {Commit, Commit’s second parent}
9: end if

Gerrit. PolicyChecker extract the merge request commits on Gerrit by leveraging

the fact that the number of commits in each merge request is at most two. Actually,

the first commit is always the latest patch set in the change, and the second one is

an additional merge commit which is created due to the merge strategy. As a result,

the Extract Merge Request Commits Gerrit procedure is simpler than the GitHub

version. PolicyChecker first checks the number commit’s parents (line 1), In one

parent’s case, the only commit in the merge request is the current commit (lines 5-6).

Otherwise, there are two commits in the merge request: the current commit, and its

second parent corresponding to the latest patchset in the code change.

4.5 Implementation

To validate the code review process performed on a GitHub or Gerrit repository,

the auditor must clone the repository on a local machine and then run the git

validate-reviews command. With PolicyChecker in place, an independent auditor

can verify the integrity of the code review process if she has the code reviews

embedded in the source code repository along with the signed code review policy.

We implemented PolicyChecker as a git command. The current version consists of

a total of 1,108 lines of Python code and has been released as free and open-source

software [41].

126

Given four parameters, PolicyChecker can validate the code review process:

branch (the repository branch name), format (the code review format), key (the

path to the public keys), and CRP (the code review policy)2. Once PolicyChecker

interprets the code review policy (as described in Section 4.4.2), it can perform the

validation process through three major steps:

• Extract the Code Reviews: Parse the sequence of Git commits to find all
code reviews for each merge request.

• Validate the Code Review Process: Perform two checks: (1) The integrity
and the authenticity of the code review policy, Git commits, and code reviews.
(2) A sequence of code reviews that led to merge a code change respects the
intended code review.

In the rest of this section, we describe how we perform each of these three step

for GitHub and Gerrit.

4.5.1 Extract the Code Reviews

To extract code reviews from a repository, we first detect the boundary of each merge

request – find the first and the last commit in the merge request. For which, we

evaluate three things: the merge strategy, the number of parents for the head of the

branch, the number of code reviews embedded in the head of the branch. Below, we

explain how these three pieces of information help to reach our goal.

GitHub. We examine the head of the branch to find the number of parents of the

branch’s head. Depending on the number of parents, we can extract all commits (and

code reviews) in one merge request as follows.

• Two parents: The Merge strategy is used to integrate the merge request. Thus,
we first the common ancestor of two parents (i.e., the parent of the first commit
in the merge request branch). Then any commit from the common ancestor to
the merge request branch’s head is considered the merge request’s commits.

2If the code review policy is not provided, PolicyChecker can be instructed to download the code
review policy from the server. Besides, PolicyChecker helps the project owners to create and sign
a code review policy. That could help project owners that tend to share the code review policy
through an offline channel.

127

• One parent: The merge strategy is either Squash and Merge or Rebase. If the
head commit contains more than one embedded code review, the merge strategy
is Squash and Merge. Because each commit can not have more than one review
unit unless the commits in the merge request branch are squashed together in
one commit. If there is only one review unit embedded in the head commit,
we determine the merge strategy by checking the commit’s timestamp where
the same timestamp for author and committer means the Squash and Merge
strategy.

Gerrit. In the case of Gerrit, the code review extraction is quite easier than GitHub.

On Gerrit, any modification to the merge request (i.e., code change) does not result

in a brand new commit since each commit amends the previous one in the merge

request branch. Thus the head of the merge request branch is equivalent to the entire

branch. That said, merging a code change on Gerrit results in one or at most two

new commits: the head of the merge request branch and a new merge commit (when

the Merge Always or Merge If Neccessary is in place).

Once we extract commits for the latest merge request, we repeat the above

procedure for the remaining commits in the branch until we extract code reviews for

all merge requests. Worthy of note that if we find a merge request with no code

reviews (i.e., a Direct Push), we conclude that the corresponding code changes got

merged without going through the code review process. We will later validate these

commits to ensure that the committer has the permission to push commits with no

reviews (i.e., permission to perform a Direct Push).

4.5.2 Validate the Code Review Process

To validate the code review process, PolicyChecker first checks the integrity and the

authenticity of all inputs. It then checks code reviews against the rules – ensure if

all code changes followed the intended code review policy. Note that the former step

is the same for both Gerrit and GitHub. However, in the second step, the details

128

can vary greatly depending on many factors such as the code review workflows, the

system settings, and code review policies.

4.5.2.1 Input Validation. PolicyChecker verifies digital signatures for the

inputs (i.e., code review policy, Git commits, and code reviews) as follows.

• Code review policy: The code review policy’s signature is validated using
the project owner’s public key. We assume that the code review policy is
signed by the project owner and is accessible to any independent auditor. In
case that the code review policy is not provided locally, the auditor may instruct
PolicyChecker to retrieve the code review policy and its signature from the
server.

• Git commits: The GPG signatures on commits are verified using the “git
verify-commit” command.

• Code reviews: The integrity of code reviews is validated using the GPG
signatures for individual code reviews and the chaining between code reviews
(i.e., a sequence of code reviews embedded in a merge request). Indeed,
PolicyChecker checks that each code review includes a valid GPG signature
computed over the previous code review in the merge request. That helps to
ensure that unauthorized code review changes did not happen in the code review
process.

4.5.2.2 Checking Code Reviews Against Rules. Recall from 4.4.2 that

PolicyChecker extracts different components of the code review policy on GitHub

and Gerrit (i.e., find the review rules and user permissions). It then performs multiple

checks to ensure that the review process was followed as intended by the project owner.

GitHub. PolicyChecker extracts protection rules, code owners, and collaborators

to perform the following checks:

• Authorized Merge Option: If the code review policy requires a linear history,
merge commits can not be pushed to matching branches. Therefore, a merge
request can be merged only under the “squash and merge” or “rebase” merge
strategy.

• Authorized Merger: The merge committer must have the “write” permission
to the branch. However, if the protection rules restrict who can push to the
branch, the committer must be among some specified users who can push into
the branch.

129

• Authorized Author: The author of any code changes in the merge request must
have “read” permission to the branch.

• Authorized Reviewer: The author of any code review must have the “read”
permission to the branch.

• Authorized Direct Push: If the merge request was merged directly, the merge
committer must have the “admin” permission to the repository and the “push”
permission to the branch. Finally, the protection rules must exclude the
administrators from following the code review process.

• Minimum Approvals: If the protection rules ask for ignoring the stale reviews,
any reviews before the latest code change in the merge request will be dismissed.
The remaining reviews must satisfy the minimum number of approving reviews
from the code owners.

Gerrit. PolicyChecker first performs the following checks for Gerrit repositories:

• Authorized Merge Option: The code changes must be merged based on the
authorized “submit type” as described in Section 4.2.3.

• Authorized Merger: The merge committer must be a member of a group who
has the “submit” permission to the branch.

• Authorized Author: The author of any code changes in the merge request
must have the “push” permission to the “pending changes” location (i.e.,
“refs/for/refs” namespace).

• Authorized Reviewer: The author of any code review must have “Code-Review”
permission on the branch. By default, she must be either a project owner, an
administrator, or a registered user.

• Authorized Direct Push: If the code change was merged without going through
the review process, the committer must have “push” permission to the branch.

• Valid Scores: Any score must come from an authorized reviewer. The max
positive and max negative scores can be given only by users who have the
“Code-Review” permission with the highest and the lowest scores. By default,
any score must range from -2 to +2. Finally, the highest (+2) and the lowest
(-2) scores must be given by administrators or project owners.

• Submittable Merge: If there are no customized rules (i.e., the rules.pl file is
empty), the submit rule is determined by rules extracted the project.config

and groups files. Otherwise, PolicyChecker performs checks for customized
rules extracted from the rules.pl file. In the former case, PolicyChecker
follows Gerrit internal workflow [19]. We first capture votes only on the latest
patchset and then checks for:

130

– Authorized Review: Check if the code review is required.

– Authorized Block: Check if giving the lowest score is authorized, and the
reviewer is allowed to give the lowest score (i.e., block the change).

– Authorized Block: Check if giving the highest score is authorized, and the
reviewer is allowed to give the highest score (i.e., approve the change).

We note that the procedure depicted above allows PolicyChecker to handle

default, semi-customized, and an important set of customized rules (as described in

Section 4.4.2).

4.6 Evaluation

In this section, we evaluate the performance of PolicyChecker by investigating the

time needed to verify the code review process on a Git repository. For our benchmark,

we picked five popular repositories from GitHub 3 and five popular repositories from

Gerrit Google Source [21]. We chose repositories of different history sizes, file counts,

and file sizes (as shown in Table 4.14). For each repository, we show the size of the

master branch, the number of files, the average file size, and the number of commits

for each repository. We conducted our experiments on a client system with an Intel

Corei7 CPU at 2.70 GHz and 16 GB RAM. The client software consisted of Linux

5.3.7-301.fc31.x86 64 with git 2.23.

We measured the verification time for one merge request and one software

release. In the former case, we chose a merge request of four commits with three

code reviews. In the latter case, we picked 14 merge requests (each of four commits

and three three code reviews). In both cases, we measured the average time over

30 independent runs. Speaking of the code review policy, we chose the default code

review policy for Gerrit repositories (i.e., a code change is mergeable if it receives

at least a review with the highest score and no reviews have the lowest score). For

3Popularity is based on the “star” ranking by GitHub users, which reflects their level of interest in
a project as of April 1, 2021.
4The top five are GitHub repositories, and the bottom five are Gerrit repositories.

131

Table 4.1 Repositories Chosen for the PolicyChecker’s Evaluation

Repository Size File File Size History Size

(MB) Count (Bytes) (# of commits)

javascript 4 55 6,806 1,867

puppeteer 15 413 6,260 2,109

deno 67 1,375 20,189 5,344

terminal 148 3,257 13,854 2,116

django 279 6,453 10,423 29,431

gitfs 1 43 4,078 123

reviewit 7 529 1,902 84

homepage 26 262 27,949 1,224

jgit 55 2,514 5,888 8,289

gerrit 343 5,043 6,837 49,092

GitHub repositories, we assumed a code review policy in which a merge request is

mergeable if it receives two approving reviews from code owners, one from another

authorized reviewer and stale reviews are dismissed. Finally, we assumed that the

code review policy and the public keys are provided at the verification step. We

point out that our experimental setup is driven by our findings of the top 50 popular

GitHub repositories: (1) the average number of commits per release is 68.7 commits,

(2) the average number of commits per merge request is 3.3 commits. (3) the number

of reviews per merge request is often less than 2, very rarely more than 3.

Table 4.2 shows the execution time to validate the code review process using

PolicyChecker. Regardless of the repository size or the repository structure, on

average, it takes 0.11 seconds to verify one merge request. However, the execution

time to validate a software release (i.e., 68 commits) varies from 1.38 to 1.62 seconds

(with an average of 1.49 seconds). Four operations influence the execution time:

132

Table 4.2 Execution Time for Validating Code Review Process (in seconds)

Repository One Merge Request One Software Release

javascript 0.11 1.53

puppeteer 0.11 1.40

deno 0.10 1.43

terminal 0.10 1.52

django 0.11 1.60

gitfs 0.11 1.43

reviewit 0.11 1.38

homepage 0.11 1.59

jgit 0.11 1.44

gerrit 0.12 1.62

(1) traverse the repository to find all commits involved in a merge request or a software

release; (2) read the commit objects to eaxtract necessary information (i.e., author,

committer, commit message, commit signature); (3) extract the review units from the

commit messages; (4) verify the commits’ signatures, the code reviews’ signatures,

and the review chain. From which the first and last operations play a major role

in the verification. Since the number of signature verifications is the same for all

experiments, the time to traverse a repository causes different execution times. That

is why the execution time to verify a software release (which includes traversing the

commit history) takes a bit more time (i.e., 0.20 seconds on average) on a huge

repository such as gerrit and djando. On the other side, validating just one merge

request exhibits similar performance on different repositories.

133

4.7 Related Work

The code review process has been largely overlooked by security researchers.

A wast majority of efforts have focused on finding security related weaknesses

(vulnerabilities) [39, 127] in the source code rather than securing the code review

process itself. To the best of our knowledge, PolicyChecker is the first tool that

attempts to verify the correctness of the code review process automatically. In this

section, we briefly study the relevant work to the secure code review process.

A variety of code review systems (such as GitHub [23], GitLab [28], Gerrit [16],

Bitbucket [4], Collaborator [9], Crucible [11], ReviewBoard [43], Rhodecode [44],

Helix Swarm [30], gitea [22], CodeFlow [7], Visual Expert [49], and Upsource [48])

have helped developers to improve the quality of the code reviews by automating

this process – reducing the amount of time developers must spend to review a code

change. Moreover, services like GitHub provide seamless integrations with additional

tools (e.g., DeepSource [12] and AccessLint [1]) to find and fix bugs with lower

inspection effort [91]. In particular, vulnerability scanners such as GitHub code

scanning tools [92] allows developers to find security vulnerabilities during the code

review process.

Several previous studies explored approaches that recommend proper code

reviewers for code changes. Work by Yu et al. [168] looks into the history of

reviewers on GitHub (e.g., the time of comments by each reviewer) to propose a

comment networks (i.e., CN-based) approach which recommends reviewers for new

pull requests on GitHub. A similar work by Balachandran [59] relies on automatic

static analysis and reviewer recommendation to propose a software defect detection

technique. RevFinder [158] helps developers finding appropriate code reviewers for

their projects. Fistbump [113] and proposes a web-based tool integrated with GitHub

to facilitate discussion management and issue tracking during the code review process.

134

Another research avenue to improve the quality of the code reviews focuses on

secure coding. Work by Yang [167] proposes a vulnerability prediction tool based

on the CERT-C Secure Coding Standard aiming to eliminate security vulnerabilities.

Kang et al. [114] present a secure-coding checking system to reduce the weaknesses

of open source software products using white box and black box testing and smart

fuzzing technology. Finally, there have been many efforts such as OWASP Code

Review Guide [39] and MITRE Secure Code Review [127] to standardize a set of

secure coding guidelines that helps developers identifying security bugs early in the

software development.

135

CHAPTER 5

CONCLUSION

In this dissertation, we enhanced the security of several individual steps in the

software supply chain. In Chapter 2, we revealed novel attacks that can be performed

stealthily in conjunction with several common web UI actions on GitHub. Common

to all these attacks is the fact that commits created by the server do not reflect the

user’s actions. The impact can be significant, such as removing a security patch,

introducing a backdoor, or merging experimental code into a production branch.

To counter these attacks, we devised le-git-imate, a defense scheme that

provides security guarantees comparable and compatible with Git’s standard commit

signing mechanism. With our solution in place, users can take advantage of GitHub’s

web-based features without sacrificing security. le-git-imate does not require any

changes on the server side and can be used today with existing web UI deployments.

Our experimental evaluation and user study show that le-git-imate incurs a

reasonable performance overhead and presents a minimal usability burden to Git

web UI users.

le-git-imate’s current design provides limited protection against web UI

attacks. As future work, we plan to develop a more comprehensive defense mechanism

against UI attacks, especially through a more tight integration with the provider

of the web-based Git repository hosting service. Adapting le-git-imate to other

web-based repository hosting services will require a degree of manual work that

depends on the specifics of the service’s UI; however, we found that the same general

principles used for GitHub/GitLab are applicable to a wide variety of similar services.

In Chapter 3, we introduced SecureReview, a mechanism that can be applied on

top of code review systems to provide verifiable guarantees about the integrity of the

code review process. SecureReview lays the foundations for securing the code review

136

step, but more future work is needed. In particular, some code review systems allow

the server to automatically merge changes, which raises additional security concerns.

Project owners may be reluctant to publicize code review information due to privacy

concerns. SecureReview can be extended to replace the review content with a hash

of the review (salted to prevent dictionary attacks), and only reveal the content on

demand.

In Chapter 4, we introduced PolicyChecker, a tool that enables automatic

verification of the code review process in web-based core review systems such as

GitHub and Gerrit. This tool can be useful prior to and after the code merging

step to check if the code review process followed the intended code review policy.

Finally, more work is needed to support arbitrarily customized review policies. In

particular, we plan to integrate a Prolog interpreter into PolicyChecker to support

all customized rules on the Gerrit server.

137

APPENDIX
PROLOG INTERPRETER: A WORK IN PROGRESS

An ideal version of PolicyChecker can handle arbitrary code review policies for

Gerrit repositories. Arbitrary policies can be defined in rules.pl using the Prolog

language [17]. As detailed in Section 4.4.2, the current version of PolicyChecker

can handle a limited set of customized rules on Gerrit. In order to implement the

ideal version of PolicyChecker, we have explored two approaches: (1) implement a

light Prolog interpreter dedicated to Gerrit rules; (2) integrate PolicyChecker with

existing Prolog interpreters.

Implement a light Prolog interpreter. We first implemented a simple Prolog

interpreter with two basic operators: (1) remove comment lines, (2) extract facts and

rules. Then we improved our interpreter to create a database of rules and facts using

Gerrit’s default code review policy (groups and project.config). As future work,

we want to convert code reviews and code review policies to Prolog queries on our

database.

Integrate PolicyChecker with existing Prolog interpreters. We have worked

on an integration with PySwip [42], a Python interface that enables us to query

SWI-Prolog [46] in a Python program. For which, we first created a simple database

and performed basic Prolog queries. Then we implemented an interface to easily

work with the PySwip library. That helped us to create the database of code review

rules in Prolog and then to perform queries in the database. This functionality must

be extended to (1) import any customized Gerrit rules into the Prolog database,

(2) perform queries with complex and advanced Prolog syntax.

138

REFERENCES

[1] AccessLint. https://github.com/marketplace/accesslint, last accessed on
04/01/2021.

[2] Apso - Summary. https://savannah.nongnu.org/projects/apso, last accessed on
04/01/2021.

[3] Assembla. https://www.assembla.com, last accessed on 04/01/2021.

[4] Bitbucket. https://bitbucket.org, last accessed on 04/01/2021.

[5] Chrome Extensions. https://developer.chrome.com/docs/extensions/, last
accessed on 04/01/2021.

[6] Code Reviews at Google. https://www.michaelagreiler.com/code-reviews-at-

google/, last accessed on 04/01/2021.

[7] CodeFlow. https://codeflow.co, last accessed on 04/01/2021.

[8] Codereviewhub. https://www.codereviewhub.com/, last accessed on 04/01/2021.

[9] Collaborator. https://smartbear.com/product/collaborator/overview, last
accessed on 04/01/2021.

[10] CrowdStrike. Securing the supply chain. https://www.crowdstrike.com/

resources/wp-content/brochures/pr/CrowdStrike-Security-Supply-

Chain.pdf, last accessed on 04/01/2021.

[11] Crucible. https://www.atlassian.com/software/crucible, last accessed on
04/01/2021.

[12] DeepSource. https://github.com/marketplace/deepsource-io, last accessed on
04/01/2021.

[13] es-git. https://github.com/es-git/es-git, last accessed on 04/01/2021.

[14] Flask. http://flask.pocoo.org, last accessed on 04/01/2021.

[15] FlowCrypt. https://flowcrypt.com, last accessed on 04/01/2021.

[16] Gerrit. https://www.gerritcodereview.com, last accessed on 04/01/2021.

[17] Gerrit Code Review - Prolog Submit Rules. https://gerrit-review.googlesource.
com/Documentation/prolog-cookbook.html, last accessed on 04/01/2021.

[18] Gerrit Code Review - REST API. https://gerrit-review.googlesource.com/

Documentation/rest-api.html, last accessed on 04/01/2021.

139

[19] Gerrit default sumit rules. https://github.com/GerritCodeReview/gerrit/blob/
master/java/com/google/gerrit/server/rules/DefaultSubmitRule.

java, last accessed on 04/01/2021.

[20] GerritHub. http://gerrithub.io, last accessed on 04/01/2021.

[21] Git repositories on gerrit. https://gerrit.googlesource.com/, last accessed on
04/01/2021.

[22] gitea. https://github.com/go-gitea/gitea, last accessed on 04/01/2021.

[23] GitHub. https://github.com, last accessed on 04/01/2021.

[24] The GitHub Blog. https://github.com/blog, last accessed on 04/01/2021.

[25] GitHub Enterprise 2.1.0 Update Released. https://enterprise.github.com/

releases/2.1.0/notes, last accessed on 04/01/2021.

[26] git.js. https://github.com/danlucraft/git.js, last accessed on 04/01/2021.

[27] gitkit-js. https://github.com/SamyPesse/gitkit-js, last accessed on 04/01/2021.

[28] GitLab. https://gitlab.com, last accessed on 04/01/2021.

[29] Gogs. https://gogs.io, last accessed on 04/01/2021.

[30] Helix Swarm. https://www.perforce.com/products/helix-swarm, last accessed
on 04/01/2021.

[31] Horde Groupware contains backdoor. http://www.h-online.com/security/news/

item/Horde-Groupware-contains-backdoor-1433972.html, last accessed
on 04/01/2021.

[32] How Gerrit Works. https://gerrit-review.googlesource.com/Documentation/

intro-how-gerrit-works.html, last accessed on 04/01/2021.

[33] isomorphic-git. https://isomorphic-git.org, last accessed on 04/01/2021.

[34] Jira. https://www.atlassian.com/software/jira, last accessed on 04/01/2021.

[35] js-git. https://github.com/creationix/js-git, last accessed on 04/01/2021.

[36] Keybase. https://keybase.io, last accessed on 04/01/2021.

[37] Mailvelope. https://www.mailvelope.com/en, last accessed on 04/01/2021.

[38] OpenPGP.js. https://openpgpjs.org, last accessed on 04/01/2021.

[39] OWASP Code Review Guide. https://owasp.org/www-project-code-review-

guide/, last accessed on 04/01/2021.

[40] Phabricator. https://www.phacility.com, last accessed on 04/01/2021.

140

[41] PolicyChecker. https://github.com/thesecurereview/policychecker, last
accessed on 04/01/2021.

[42] PySwip. https://github.com/yuce/pyswip, last accessed on 04/01/2021.

[43] ReviewBoard. https://www.reviewboard.org, last accessed on 04/01/2021.

[44] RhodeCode. https://rhodecode.com, last accessed on 04/01/2021.

[45] SourceForge. https://sourceforge.net, last accessed on 04/01/2021.

[46] SWI Prolog. https://www.swi-prolog.org/, last accessed on 04/01/2021.

[47] The Heartbleed Bug. http://heartbleed.com, last accessed on 04/01/2021.

[48] Upsource. https://www.jetbrains.com/upsource/, last accessed on 04/01/2021.

[49] visual-expert. https://www.visual-expert.com/, last accessed on 04/01/2021.

[50] What Are Dark Patterns? https://darkpatterns.org, last accessed on 04/01/2021.

[51] Catalin Cimpanu. Hacker gains access to a small number of Microsoft’s private
GitHub repos. https://www.zdnet.com/article/hacker-gains-access-

to-a-small-number-of-microsofts-private-github-repos/, last
accessed on 04/01/2021.

[52] Lillian Ablon and Andy Bogart. Zero Days, Thousands of Nights: The Life and
Times of Zero-Day Vulnerabilities and Their Exploits. Rand Corporation,
Santa Monica, California, 2017.

[53] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew
Green, J Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel
Thomé, Luke Valenta, et al. Imperfect forward secrecy: How diffie-hellman
fails in practice. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 5–17, 2015.

[54] Hammad Afzali, Santiago Torres-Arias, Reza Curtmola, and Justin Cappos. le-git-
imate: Towards verifiable web-based git repositories. In Proceedings of the
Asia Conference on Computer and Communications Security (ASIACCS 18),
pages 469–482, 2018.

[55] Hammad Afzali, Santiago Torres-Arias, Reza Curtmola, and Justin Cappos. Towards
adding verifiability to web-based git repositories. Journal of Computer
Security, 28(4):405–436, 2020.

[56] Ioannis Arapakis, Xiao Bai, and B Barla Cambazoglu. Impact of response latency
on user behavior in web search. In Proceedings of the 37th International ACM
SIGIR Conference on Research & Development in Information Retrieval, pages
103–112, 2014.

141

[57] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia Heninger, Maik
Dankel, Jens Steube, Luke Valenta, David Adrian, J Alex Halderman, Viktor
Dukhovni, et al. DROWN: Breaking TLS Using SSLv2. In Proceedings of
the 25th USENIX Security Symposium (USENIX Security 16), pages 689–706,
2016.

[58] Alberto Bacchelli and Christian Bird. Expectations, outcomes, and challenges of
modern code review. In Proceedings of the IEEE International Conference on
Software Engineering, page 712–721, 2013.

[59] Vipin Balachandran. Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommendation.
In Proceedings of the 35th IEEE International Conference on Software
Engineering (ICSE), pages 527–534, 2013.

[60] Karthikeyan Bhargavan and Gaetan Leurent. On the practical (in-) security of 64-bit
block ciphers: Collision attacks on http over tls and openvpn. In Proceedings
of the ACM SIGSAC Conference on Computer and Communications Security,
pages 456–467, 2016.

[61] Karthikeyan Bhargavan and Gaëtan Leurent. Transcript collision attacks: Breaking
authentication in TLS, IKE, and SSH. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2016.

[62] Amy Blackshaw. Kingslayer-A Supply Chain Attack. https://www.rsa.com/en-

us/blog/2017-02/kingslayer-a-supply-chain-attack, last accessed on
04/01/2021.

[63] Amiangshu Bosu and Jeffrey C Carver. Peer code review to prevent security
vulnerabilities: An empirical evaluation. In Proceedings of the 7th IEEE
International Conference on Software Security and Reliability Companion,
pages 229–230, 2013.

[64] Amiangshu Bosu, Jeffrey C Carver, Munawar Hafiz, Patrick Hilley, and Derek
Janni. Identifying the characteristics of vulnerable code changes: An empirical
study. In Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pages 257–268, 2014.

[65] Edmund Brumaghin, Ross Gibb, Warren Mercer, Matthew Molyett, and Craig
Williams. CCleanup: A Vast Number of Machines at Risk. https://blog.

talosintelligence.com/2017/09/avast-distributes-malware.html, last
accessed on 04/01/2021.

[66] Ramaswamy Chandramouli, Michaela Iorga, and Santosh Chokhani. Cryptographic
Key Management Issues & Challenges in Cloud Services.(National Institute of
Standards and Technology, Gaithersburg, MD), NIST Interagency or Internal
Report (IR) 7956, 2013. https://doi.org/10.6028/NIST.IR.7956, last
accessed on 04/01/2021.

142

[67] Stephen Checkoway, Jacob Maskiewicz, Christina Garman, Joshua Fried, Shaanan
Cohney, Matthew Green, Nadia Heninger, Ralf-Philipp Weinmann, Eric
Rescorla, and Hovav Shacham. A systematic analysis of the juniper dual
ec incident. In Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security, pages 468–479. ACM, 2016.

[68] Anton Cherepanov. Analysis of TeleBots’ cunning backdoor. https:

//www.welivesecurity.com/2017/07/04/analysis-of-telebots-

cunning-backdoor, last accessed on 04/01/2021.

[69] Sonia Chiasson, Alain Forget, Robert Biddle, and Paul C Van Oorschot. User
interface design affects security: Patterns in click-based graphical passwords.
International Journal of Information Security, 8(6):387, 2009.

[70] Chrome. Content Scripts. https://developer.chrome.com/extensions/content_
scripts, last accessed on 04/01/2021.

[71] Chrome. Manage Events with Background Scripts. https://developer.chrome.

com/extensions/background_pages, last accessed on 04/01/2021.

[72] Catalin Cimpanu. Two malicious Python libraries caught stealing SSH and
GPG keys. https://www.zdnet.com/article/two-malicious-python-

libraries-removed-from-pypi/, last accessed on 04/01/2021.

[73] Barb Darrow. Adobe source code breach; it’s bad, real bad. https://gigaom.

com/2013/10/04/adobe-source-code-breech-its-bad-real-bad/, last
accessed on 04/01/2021.

[74] DBpedia. About: Keybase. https://dbpedia.org/page/Keybase, last accessed on
04/01/2021.

[75] Thai Duong and Juliano Rizzo. Here come the⊕ ninjas. Unpublished manuscript,
320, 2011.

[76] Felipe Ebert, Fernando Castor, Nicole Novielli, and Alexander Serebrenik. Confusion
in code reviews: Reasons, impacts, and coping strategies. In Proceedings of
the 26th IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 49–60, 2019.

[77] eSecurity Solutions. Are Software Supply Chain Attacks Replacing Zero
Day? https://www.esecuritysolutions.com/software-supply-chain-

attacks-v-zero-day, last accessed on 04/01/2021.

[78] Sascha Fahl, Marian Harbach, Thomas Muders, Matthew Smith, and Uwe Sander.
Helping johnny 2.0 to encrypt his facebook conversations. In Proceedings of
the 8th Symposium on Usable Privacy and Security, pages 1–17, 2012.

143

[79] Nargis Fatima, Suriayati Chuprat, and Sumaira Nazir. Challenges and benefits of
modern code review-systematic literature review protocol. In Proceedings
of the IEEE International Conference on Smart Computing and Electronic
Enterprise (ICSCEE), pages 1–5, 2018.

[80] FireEye. Highly Evasive Attacker Leverages SolarWinds Supply Chain to Compromise
Multiple Global Victims With SUNBURST Backdoor. https://www.fireeye.
com/blog/threat-research/2020/12/evasive-attacker-leverages-

solarwinds-supply-chain-compromises-with-sunburst-backdoor.html,
last accessed on 04/01/2021.

[81] Benjamin Fogel, Shane Farmer, Hamza Alkofahi, Anthony Skjellum, and Munawar
Hafiz. Poodles, more poodles, freak attacks too: how server adminis-
trators responded to three serious web vulnerabilities. In Proceedings of the
International Symposium on Engineering Secure Software and Systems, pages
122–137. Springer, 2016.

[82] Brian Fox. Open Source Software Is Under Attack; New Event-Stream Hack
Is Latest Proof. https://blog.sonatype.com/open-source-software-is-

under-attack-new-event-stream-hack-is-latest-proof, last accessed on
04/01/2021.

[83] Dennis F Galletta, Raymond Henry, Scott McCoy, and Peter Polak. Web site delays:
How tolerant are users? Journal of the Association for Information Systems,
5(1):1, 2004.

[84] Gerrit. Gerrit Customized Labels. https://gerrit.opencord.org/Documentation/
config-labels.html#label_custom, last accessed on 04/01/2021.

[85] Gerrit. Labels. https://gerrit.opencord.org/Documentation/intro-project-

owner.html#labels, last accessed on 04/01/2021.

[86] Gerrit. Prolog Shell. https://gerrit-review.googlesource.com/Documentation/
pgm-prolog-shell.html, last accessed on 04/01/2021.

[87] Mike Gerwitz. A Git Horror Story: Repository Integrity With Signed Commits.
https://mikegerwitz.com/2012/05/a-git-horror-story-repository-

integrity-with-signed-commits, last accessed on 04/01/2021.

[88] Git-SCM. Signing Your Work. https://git-scm.com/book/en/v2/Git-Tools-

Signing-Your-Work, last accessed on 04/01/2021.

[89] GitHub. 10 million repositories. https://github.com/blog/1724-10-million-

repositories, last accessed on 04/01/2021.

[90] GitHub. About status checks. https://docs.github.com/en/github/

collaborating-with-issues-and-pull-requests/about-status-checks,
last accessed on 04/01/2021.

144

[91] GitHub. Code review. https://github.com/marketplace/category/code-review,
last accessed on 04/01/2021.

[92] GitHub. Code scanning now available on GitHub Enterprise. https://resources.

github.com/code-scanning/, last accessed on 04/01/2021.

[93] GitHub. GitHub API. https://developer.github.com/v3, last accessed on
04/01/2021.

[94] GitHub. GitHub Platform Roadmap. https://developer.github.com/early-

access/platform-roadmap, last accessed on 04/01/2021.

[95] GitHub. Git’s pack protocol. https://github.com/git/git/blob/master/

Documentation/technical/pack-protocol.txt, last accessed on
04/01/2021.

[96] Github. GPG signature verification. https://github.com/blog/2144-gpg-

signature-verification, last accessed on 04/01/2021.

[97] GitHub. Managing a branch protection rule. https://docs.github.com/en/

github/administering-a-repository/managing-a-branch-protection-

rule, last accessed on 04/01/2021.

[98] GitHub. Search more than 224M repositories. https://github.com/search, last
accessed on 04/01/2021.

[99] GitHub. Statuses. https://docs.github.com/en/rest/reference/repos#

statuses, last accessed on 04/01/2021.

[100] GitHub. The state of the Octoverse. https://octoverse.github.com, last accessed
on 04/01/2021.

[101] GitLab. API Docs. https://docs.gitlab.com/ee/api/, last accessed on
04/01/2021.

[102] GitLab. Merge Request Approvals. https://docs.gitlab.com/ee/user/

project/merge_requests/merge_request_approvals.html, last accessed
on 04/01/2021.

[103] Dan Goodin. Kernel.org Linux repository rooted in hack attack. http:

//www.theregister.co.uk/2011/08/31/linux_kernel_security_breach,
last accessed on 04/01/2021.

[104] Dan Goodin. Meet “Great Cannon”, the man-in-the-middle weapon China used
on GitHub. https://arstechnica.com/security/2015/04/meet-great-

cannon-the-man-in-the-middle-weapon-china-used-on-github/, last
accessed on 04/01/2021.

145

[105] GreatFire. China, GitHub and the man-in-the-middle. https://en.greatfire.

org/blog/2013/jan/china-github-and-man-middle, last accessed on
04/01/2021.

[106] Matthew Green. Attack of the week: FREAK (for ’factoring the NSA for fun
and profit’). https://blog.cryptographyengineering.com/2015/03/03/

attack-of-week-freak-or-factoring-nsa/, last accessed on 04/01/2021.

[107] Hackread. Proton malware. https://www.hackread.com/hackers-infect-

mac-users-proton-malware-using-elmedia-player, last accessed on
04/01/2021.

[108] Hanno Bock, Juraj Somorovsky, and Craig Young. Return Of Bleichenbacher’s Oracle
Threat (ROBOT). In Proceedings of the 27th USENIX Security Symposium
(USENIX Security 18), pages 817–849, 2018.

[109] Egor Homakov. How I hacked GitHub again. http://homakov.blogspot.com/2014/
02/how-i-hacked-github-again.html, last accessed on 04/01/2021.

[110] Ahmed Ibrahim, Mohammad El-Ramly, and Amr Badr. Beware of the vulnera-
bility! how vulnerable are github’s most popular php applications? In
Proceedings of the 16th IEEE International Conference on Computer Systems
and Applications (AICCSA), pages 1–7, 2019.

[111] Edward Iskra. Critical Warning. https://bitcoingold.org/critical-warning-

nov-26, last accessed on 04/01/2021.

[112] isomorphic-git v0.65.0. https://github.com/isomorphic-git/isomorphic-git/

releases/tag/v0.65.0, last accessed on 04/01/2021.

[113] Akshay Kalyan, Matthew Chiam, Jing Sun, and Sathiamoorthy Manoharan. A
collaborative code review platform for github. In Proceedings of the 21st
IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS), pages 191–196, 2016.

[114] Jungho Kang and Jong Hyuk Park. A secure-coding and vulnerability check system
based on smart-fuzzing and exploit. Neurocomputing, 256:23–34, 2017.

[115] Kohsuke Kawaguchi. Summary Report: Git Repository Disruption Incident of
Nov 10th. https://www.jenkins.io/blog/2013/11/25/summary-report-

git-repository-disruption-incident-of-nov-10th/, last accessed on
04/01/2021.

[116] Keybase. Introducing Keybase Chat. https://keybase.io/blog/keybase-chat, last
accessed on 04/01/2021.

[117] SS Kulkarni, Aastha Mittal, and Aniket Nayakawadi. Detecting phishing web pages.
International Journal of Computer Applications, 118(16), 2015.

146

[118] le-git-imate. https://le-git-imate.github.io/, last accessed on 04/01/2021.

[119] Matthew M Lucas and Nikita Borisov. Flybynight: mitigating the privacy risks of
social networking. In Proceedings of the 7th ACM workshop on Privacy in the
electronic society, pages 1–8, 2008.

[120] Bill Marczak, Nicholas Weaver, Jakub Dalek, Roya Ensafi, David Fifield, Sarah
McKune, Arn Rey, John Scott-Railton, Ron Deibert, and Vern Paxson. An
Analysis of China’s “Great Cannon”. In Proceedings of the 5th USENIX
Workshop on Free and Open Communications on the Internet (FOCI 15),
2015.

[121] Matt Cooper. How We Use Git at Microsoft. https://docs.microsoft.com/en-

us/azure/devops/learn/devops-at-microsoft/use-git-microsoft, last
accessed on 04/01/2021.

[122] Marcela S Melara, Aaron Blankstein, Joseph Bonneau, Edward W Felten, and
Michael J Freedman. CONIKS: Bringing Key Transparency to End Users.
In 24th USENIX Security Symposium (USENIX Security 15), pages 383–398,
2015.

[123] Microsoft. Open source projects and samples from Microsoft. https://github.com/
microsoft, last accessed on 04/01/2021.

[124] Robert B Miller. Response time in man-computer conversational transactions. In
Proceedings of the Fall Joint Computer Conference, pages 267–277, 1968.

[125] Michael Mimoso. Hacker Puts Hosting Service Code Spaces Out of Business.
https://threatpost.com/hacker-puts-hosting-service-code-spaces-

out-of-business/106761/, last accessed on 04/01/2021.

[126] Amber Mishra. Secure Code Review – A Necessity. https://www.kratikal.com/

blog/secure-code-review-a-necessity/, last accessed on 04/01/2021.

[127] MITRE. Secure Code Review. https://www.mitre.org/publications/

systems-engineering-guide/enterprise-engineering/systems-

engineering-for-mission-assurance/secure-code-review, last accessed
on 04/01/2021.

[128] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. This poodle bites: exploiting the
ssl 3.0 fallback. Security Advisory, 21:34–58, 2014.

[129] Matt Mullenweg. Passwords Reset. https://wordpress.org/news/2011/06/

passwords-reset, last accessed on 04/01/2021.

[130] Fiona Fui-Hoon Nah. A study on tolerable waiting time: how long are web users
willing to wait? Behaviour & Information Technology, 23(3):153–163, 2004.

147

[131] Ryan Naraine. Adobe code signing infrastructure hacked by sophisticated threat actors.
https://www.zdnet.com/article/adobe-code-signing-infrastructure-

hacked-by-sophisticated-threat-actors/, last accessed on 04/01/2021.

[132] Ryan Naraine. Open-source ProFTPD hacked, backdoor planted in source
code. http://www.zdnet.com/article/open-source-proftpd-hacked-

backdoor-planted-in-source-code, last accessed on 04/01/2021.

[133] Sumaira Nazir, Nargis Fatima, and Suriayati Chuprat. Modern code review
benefits-primary findings of a systematic literature review. In Proceedings
of the 3rd International Conference on Software Engineering and Information
Management, pages 210–215, 2020.

[134] Jakob Nielsen. Usability engineering at a discount. In Proceedings of the 3rd
International Conference on Human-computer Interaction on Designing and
Using Human-computer Interfaces and Knowledge Based Systems (2nd ed.),
pages 394–401, 1989.

[135] Nielsen.com. GLOBAL TRENDS IN ONLINE SHOPPING - A NIELSEN
REPORT. http://www.nielsen.com/us/en/insights/reports/2010/

Global-Trends-in-Online-Shopping-Nielsen-Consumer-Report.html.

[136] Pushkar Ogale, Michael Shin, and Sasanka Abeysinghe. Identifying security spots for
data integrity. In Proceedings of the 42nd IEEE Annual Computer Software
and Applications Conference (COMPSAC), volume 2, pages 462–467, 2018.

[137] Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto
Bacchelli. Information needs in contemporary code review. Human-Computer
Interaction, 2(CSCW):135, 2018.

[138] Idrees Patel. Janus Vulnerability. https://www.xda-developers.com/janus-

vulnerability-android-apps, last accessed on 04/01/2021.

[139] Darren Pauli. It’s 2017 and 200,000 services still have unpatched Heartbleeds. https:
//www.theregister.co.uk/2017/01/23/heartbleed_2017, last accessed on
04/01/2021.

[140] Jeronimo Pellegrini. Secrecy in concurrent version control systems. In Proceedings
of the Brazilian Symposium on Information and Computer Security (SBSeg
2006), 2006.

[141] Nicolas Poggi, David Carrera, Ricard Gavalda, Eduard Ayguadé, and Jordi Torres.
A methodology for the evaluation of high response time on e-commerce users
and sales. Information Systems Frontiers, 16(5):867–885, 2014.

[142] Achyudh Ram, Anand Ashok Sawant, Marco Castelluccio, and Alberto Bacchelli.
What makes a code change easier to review: an empirical investigation
on code change reviewability. In Proceedings of the 26th ACM Joint

148

Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pages 201–212. ACM, 2018.

[143] Thomas Reed. Transmission hijacked again to spread malware, 2016. https:

//blog.malwarebytes.com/threat-analysis/2016/09/transmission-

hijacked-again-to-spread-malware, last accessed on 04/01/2021.

[144] Juliano Rizzo and Thai Duong. Practical padding oracle attacks. In Proceedings of
the 4th USENIX Conference on Offensive Technologies, page 1–8, 2010.

[145] Juliano Rizzo and Thai Duong. The crime attack. In Proceedings of the Ekoparty
Security Conference, 2012.

[146] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto
Bacchelli. Modern code review: a case study at google. In Proceedings of
the 40th ACM International Conference on Software Engineering: Software
Engineering in Practice, pages 181–190. ACM, 2018.

[147] Reza Curtmola Sangat Vaidya, Santiago Torres-Arias and Justin Cappos. Commit
signatures for centralized version control systems. In IFIP International
Conference on ICT Systems Security and Privacy Protection, pages 359–373.
Springer, 2019.

[148] Intel Security. BERserk Vulnerability Part 1: RSA signature forgery attack due
to incorrect parsing of ASN.1 encoded DigestInfo in PKCS#1 v1.5. Part2:
Certificate Forgery in Mozilla NSS (Technical Report), 2014.

[149] P. J. Sevcik et al. Understanding how users view application performance. Business
Communications Review, 32(7):8–9, 2002.

[150] Russell G Shirey, Kenneth M Hopkinson, Kyle E Stewart, Douglas D Hodson, and
Brett J Borghetti. Analysis of implementations to secure git for use as an
encrypted distributed version control system. In Proceedings of the 48th IEEE
Hawaii International Conference on System Sciences, pages 5310–5319, 2015.

[151] SmartBear. The 2019 State of Code Review: Trends and Insights into Collaborative
Software Development. https://smartbear.com/resources/ebooks/the-

state-of-code-review-2019/ , last accessed on 04/01/2021.

[152] Sonatype. 2020 State of the Software Supply Chain. https://www.sonatype.com/

resources/white-paper-state-of-the-software-supply-chain-2020,
last accessed on 04/01/2021.

[153] Dane Stuckeyi. Defending Infrastructure as Code in GitHub Enterprise. https://

www.sans.org/reading-room/whitepapers/securecode/paper/39380, last
accessed on 04/01/2021.

149

[154] Subashini Subashini and Veeraruna Kavitha. A survey on security issues in service
delivery models of cloud computing. Journal of network and computer
applications, 34(1):1–11, 2011.

[155] Symantec. Internet Security Threat Report 2018. https://docs.broadcom.com/

doc/istr-23-2018-en, last accessed on 04/01/2021.

[156] Symantec. Internet Security Threat Report 2019. https://docs.broadcom.com/

doc/istr-24-2019-en, last accessed on 04/01/2021.

[157] Synopsys. Secure Code Review. https://www.synopsys.com/glossary/what-is-

code-review.html, last accessed on 04/01/2021.

[158] Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Raula Gaikovina Kula,
Norihiro Yoshida, Hajimu Iida, and Ken-ichi Matsumoto. Who should review
my code? a file location-based code-reviewer recommendation approach
for modern code review. In Proceedings of the 22nd IEEE International
Conference on Software Analysis, Evolution, and Reengineering (SANER),
pages 141–150, 2015.

[159] Santiago Torres-Arias, Hammad Afzali, Trishank Karthik Kuppusamy, Reza
Curtmola, and Justin Cappos. in-toto: Providing farm-to-table guarantees
for bits and bytes. In Proceedings of the 28th USENIX Security Symposium
(USENIX Security 19), pages 1393–1410, 2019.

[160] Santiago Torres-Arias, Anil Kumar Ammula, Reza Curtmola, and Justin Cappos.
On omitting commits and committing omissions: Preventing git metadata
tampering that (re)introduces software vulnerabilities. In Proceedings of the
25th USENIX Security Symposium (USENIX Security 16), pages 379–395,
2016.

[161] Luke Valenta, Nick Sullivan, Antonio Sanso, and Nadia Heninger. In search
of curveswap: Measuring elliptic curve implementations in the wild. In
Proceedings of the IEEE European Symposium on Security and Privacy
(EuroS&P), pages 384–398, 2018.

[162] Steven J. Vaughan-Nichols. Red Hat’s Ceph and Inktank code repositories were
cracked. http://www.zdnet.com/article/red-hats-ceph-and-inktank-

code-repositories-were-cracked, last accessed on 04/01/2021.

[163] David A. Wheeler. Software Configuration Management (SCM) Security.
http://www.dwheeler.com/essays/scm-security.html, last accessed on
04/01/2021.

[164] David A. Wheeler. “The Apple goto fail vulnerability: lessons learned”.
https://dwheeler.com/essays/apple-goto-fail.html , last accessed on
04/01/2021.

150

[165] Wikipedia. SaaS. https://en.wikipedia.org/wiki/Software_as_a_service, last
accessed on 04/01/2021.

[166] Cheng Yang, Xun-hui Zhang, Ling-bin Zeng, Qiang Fan, Tao Wang, Yue Yu, Gang
Yin, and Huai-min Wang. Revrec: A two-layer reviewer recommendation
algorithm in pull-based development model. Journal of Central South
University, 25(5):1129–1143, 2018.

[167] Joonseok Yang, Duksan Ryu, and Jongmoon Baik. Improving vulnerability prediction
accuracy with secure coding standard violation measures. In Proceedings
of the IEEE International Conference on Big Data and Smart Computing
(BigComp), pages 115–122, 2016.

[168] Yue Yu, Huaimin Wang, Gang Yin, and Charles X Ling. Who should review this
pull-request: Reviewer recommendation to expedite crowd collaboration. In
Proceedings of the 21st IEEE Asia-Pacific Software Engineering Conference,
volume 1, pages 335–342, 2014.

[169] Kim Zetter. ’Google’ Hackers had ability to alter source code’. https://www.wired.
com/2010/03/source-code-hacks, last accessed on 04/01/2021.

[170] Yue Zhang, Jason I Hong, and Lorrie F Cranor. Cantina: a content-based approach
to detecting phishing web sites. In Proceedings of the 16th ACM International
Conference on World Wide Web, pages 639–648, 2007.

151

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment (1 of 2)
	Acknowledgment (2 of 2)

	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Adding Verifiability to Web-Based Repository Hosting Services
	Chapter 3: Adding Verifiability to Web-Based Code Review Systems
	Chapter 4: Automated Validation of the Code Review Process
	Chapter 5: Conclusion
	Appendix: Prolog Interpreter: A Work in Progress
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

