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ABSTRACT

ASYMMETRIC MULTIVARIATE ARCHIMEDEAN COPULA
MODELS AND SEMI-COMPETING RISKS DATA ANALYSIS

by
Ziyan Guo

Many multivariate models have been proposed and developed to model high

dimensional data when the dimension of a data set is greater than 2 (d > 3). The

existing multivariate models often force the “exchangeable” structure for part or the

whole model, are not very flexible which tends to be of limited use in practice. There

is a demand for developing and studying multivariate models with any pre-specified

bivariate margins.

Suppose there exists such a class of flexible models with any pre-specified

bivariate margins. Given a multivariate data, what is the distribution function

and how to easily estimate the parameters from this multivariate model are often

important issues to solve.

Dependent censoring has become an increasingly important issue in medical

data analysis. Quite often failure times are subject to dependent censoring and how

to model and quantify such dependence is also of great interest.

The research described in Chapter 2 of this dissertation has been motivated by

the above challenging questions. Copula models are used to address these important

problems.

The first result is to generalize the model construction approach proposed

by Chakak (1993) to d−dimensional models with arbitrarily pre-specified bivariate

margins. The second result is to give the distribution functions for models constructed

using the construction approach proposed in the first result. The third result is to

propose parameters estimation approach and new model selection approach for models



constructed using the construction approach proposed in the first result. Simulation

studies show that the parameter estimate works very well.

The research described in Chapter 3 of this dissertation has been motivated by

the dependent censoring. The copula-graphic estimator (Zheng and Klein 1996) is

first derived in this dissertation for marginal survival functions using Archimedean

copula models based on semi-competing risks data. And its uniform consistency and

asymptotic properties are proved.

A parameter estimation strategy is given to analyze the semi-competing risks

data using Archimedean copula models. The method described in this dissertation

is important and flexible in that it allows us to determine dependence levels between

competing risks when two dependent competing risks are subject to independent

censoring.

Based on the parameter estimation strategy proposed above, a new model

selection procedure is given. An easy way to accommodate possible covariates in

data analysis using the strategies is discussed.

Simulation studies show that the parameter estimate outperforms the estimator

proposed by Lakhal, Rivest and Abdous (2008) for the Hougaard model and the

model selection procedure works quite well. A leukemia data set is fitted by using the

proposed model selection procedure and this dissertation end with some discussion.
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CHAPTER 1

INTRODUCTION

1.1 Objective

In multivariate analysis, it is often a very difficult problem to model non-normal

multivariate data. These random variables might or might not be correlated. Many

multivariate models have been proposed and developed to model high dimensional

data when the dimension of a data set is greater than 2 (d > 3). “Copulas”

are multivariate probability distributions which be used to describe the dependence

between random variables. By Sklar’s theorem [34], every multivariate cumulative

distribution functions can be expressed in terms of its marginals and a copula.

Many different ways to construct asymmetric Archimedean copulas were introduced.

However, most of them are not very flexible. The existing multivariate models often

forces the “exchangeable” structure for part or the whole model, which tends to be of

limited use in practice. There is a demand for developing and studying multivariate

models with any pre-specified bivariate margins.

Suppose there exists such a class of flexible models with any pre-specified

bivariate margins. Given a multivariate data, what is the distribution function

and how to easily estimate the parameters from this multivariate model are often

important issues to solve.

Dependent censoring has become an increasingly important issue in medical

data analysis. Quite often failure times are subject to dependent censoring and how

to model and quantify such dependence is also of great interest.

The research described in this dissertation has been motivated by the above

challenging questions. Copula models is used to address these important problems.

1



1.2 Background Information

The name of copula comes from Latin “cōpulāre” for “link” or “tie”. Copulas

are actually multivariate probability distributions and the marginal probability

distribution of each variable is uniformly distributed on [0,1].

In the statistical literature, the idea of copulas can be traced back to the

20th century. They have been widely used in financial analysts, financial stability,

credit risk management and insurance to model the dependence between variables

and describe the joint probability distribution. Subsequently, over the last few

decades, copulas have also been widely used in Biostatistics, Hydrology, Meteorology,

Environmental Science and so on.

Copulas are multivariate dependence functions which used to describe the

dependence between random variables. They are used for separating the marginal

distributions from a given multivariate distribution (the dependency structure). Why

are they so popular? The main reason is they help to understand the correlation

and expose the various paralogisms associated with the correlation. Copula-based

multivariate models allow separating the pre-specified marginal distributions from

the dependence structure.

There are also some problems associated with the use of copulas due to the

inappropriate application. Moreover, they are sometimes used in a “black-box”

fashion with the development and popularization of machine learning and artificial

intelligence. We aim to give a deeper insight for how to construct general models

allowing arbitrary selection of pairwise correlation which is desired in our practical

applications.

This dissertation is developed based upon the construction approach proposed

by Chakak (1993) [2] which allows arbitrary selection of pairwise correlation. It is a

big step forward since such structure have been thinking about for decades. In this

2



research, the structures were extended to more than two dimensions, and proved the

feasibility of the structure to d−dimensions by mathematical induction method.

1.2.1 Definitions and properties of high dimensional copulas

Many multivariate models have been proposed and developed to model high

dimensional data when the dimension of a data set is greater than 2 (d > 3). This

section is to give the definitions of high dimensional copulas and show some properties

of them [22].

Definition 1.2.1. Copula: A d−dimensional copula C : [0, 1]d → [0, 1] is a

cumulative distribution function with the marginal probability distribution of each

variable is uniform on the interval [0, 1].

Property 1.2.2. Copula: Let u = [u1, u2, · · · , ud], ui ∈ [0, 1] with ∀i ∈ {1, 2, · · · , d}.

Any d−dimensional copula C(u) = C(u1, u2, · · · , ud) has following properties

1. C(u1, u2, · · · , ud) is a non-decreasing function in each variable ui;

2. If at least one ui = 0 in u, then

C(u1, u2, · · · , ud) = C(u1, u2, · · · , ui−1, 0, ui+1, · · · , ud) = 0; (1.1)

3. The ith marginal distribution is obtained by setting all the uj = 1, j 6= i in u.
Since all the marginal probability distribution are uniformly distributed, then

C(u1, u2, · · · , ud) = C(1, 1, · · · , 1, ui, 1, · · · , 1) = ui; (1.2)

3



4. C(u1, u2, · · · , ud) has a non-negative value for any d−dimensional interval, that
is ∀(a1, a2, · · · , ad) ∈ [0, 1]d and ∀(b1, b2, · · · , bd) ∈ [0, 1]d with ai 6 bi and
ti ∈ {1, 2}, P (X1 ∈ [a1, b1], X2 ∈ [a2, b2], · · · , Xd ∈ [ad, bd]) > 0. When ti =
1, xiti = xi1 = ai. When ti = 2, xiti = xi2 = bi. This implies the rectangle
inequality

2∑
t1=1

2∑
t2=1

· · ·
2∑

td=1

(−1)t1+t2+···+tdC(x1t1 , x2t2 , · · · , xdtd) > 0. (1.3)

Example 1.2.3. An example with d = 2: When (a1, a2) ∈ [0, 1]2 and
(b1, b2) ∈ [0, 1]2 with a1 6 b1, a2 6 b2, that is

2∑
t1=1

2∑
t2=1

(−1)t1+t2C(x1t1 , x2t2)

=
2∑

t1=1

[
(−1)t1+1C(x1t1 , x21) + (−1)t1+2C(x1t1 , x22)

]
=(−1)2C(x11, x21) + (−1)3C(x11, x22) + (−1)3C(x12, x21) + (−1)4C(x12, x22)

=C(x11, x21)− C(x11, x22)− C(x12, x21) + C(x12, x22)

=C(a1, a2)− C(a1, b2)− C(b1, a2) + C(b1, b2) > 0

(1.4)

4



Example 1.2.4. An example with d = 3: When (a1, a2, a3) ∈ [0, 1]3, and
(b1, b2, b3) ∈ [0, 1]3 with a1 6 b1, a2 6 b2 and a3 6 b3, that is

2∑
t1=1

2∑
t2=1

2∑
t3=1

(−1)t1+t2+t3C(x1t1 , x2t2 , x3t3)

=
2∑

t1=1

2∑
t2=1

[
(−1)t1+t2+1C(x1t1 , x2t2 , x31) + (−1)t1+t2+2C(x1t1 , x2t2 , x32)

]
=

2∑
t1=1

[(−1)t1+1+1C(x1t1 , x21, x31) + (−1)t1+1+2C(x1t1 , x21, x32)+

(−1)t1+2+1C(x1t1 , x22, x31) + (−1)t1+2+2C(x1t1 , x22, x32)]

=(−1)1+1+1C(x11, x21, x31) + (−1)1+1+2C(x11, u21, x32)+

(−1)1+2+1C(x11, x22, x31) + (−1)1+2+2C(x11, x22, x32)+

(−1)2+1+1C(x12, x21, x31) + (−1)2+1+2C(x12, x21, x32)+

(−1)2+2+1C(x12, x22, x31) + (−1)2+2+2C(x12, x22, x32)

=− C(x11, x21, x31) + C(x11, x21, x32)

+ C(x11, x22, x31)− C(x11, x22, x32)

+ C(x12, x21, x31)− C(x12, x21, x32)

− C(x12, x22, x31) + C(x12, x22, x32)

=− C(a1, a2, a3) + C(a1, a2, b3)

+ C(a1, b2, a3)− C(a1, b2, b3)

+ C(b1, a2, a3)− C(b1, a2, b3)

− C(b1, b2, a3) + C(b1, b2, b3) > 0

(1.5)

5. C(u1, u2, · · · , ud) meets the boundary conditions 0 6 C(u1, u2, · · · , ud) 6 1;

6. The following Fréchet–Hoeffding copula bounds hold

max

0, 1− d+
d∑
i=1

ui

 6 C(u1, u2, · · · , ud) 6 min {u1, u2, · · · , ud} ; (1.6)

5



7. F1, F2, · · · , Fd are given as marginal distributions for random variables
X1, X2, · · · , Xd. The joint distributions function is F (x1, x2, · · · , xd) with
u1 = F1(x1), u2 = F2(x2), · · · , ud = Fd(xd). If X1 ⊥ X2 ⊥ · · · ⊥ Xd, then
F (x1, x2, · · · , xd) =

∏d
i=1 Fi(xi). And

C(u1, u2, · · · , ud) =
d∏
i=1

ui (1.7)

for this situation.

Abe Sklar (1959) [34] introduced the concept and name of copula into

probability theory and proved the theorem named after him. It stated that every

continuous multivariate distribution functions can be expressed in terms of its

marginals and a copula.

Theorem 1.2.5. Sklar’s Theorem: For a d−dimensional distributions function

F (x1, x2, · · · , xd) with marginal distributions F1, F2, · · · , Fd for random variables

X1, X2, · · · , Xd. Then ∀xi ∈ [−∞,∞], i ∈ {1, 2, · · · , d}, there exists a copula C,

such that

F (x1, x2, · · · , xd) = P (X1 6 x1, X2 6 x2, · · · , Xd 6 xd)

= C(F1(x1), F2(x2), · · · , Fd(xd))

= C(u1, u2, · · · , ud).
(1.8)

Sklar’s theorem provided the theoretical foundation for the application of

copulas and linked the d−dimensional distributions function F (x1, x2, · · · , xd) and

6



C(u1, u2, · · · , ud). By Sklar’s theorem, for any multivariate distribution function with

continuous marginal distribution functions, a copula can be defined.

Copulas themselves can be generated in several different ways, including the

method of inversion, geometric methods, and algebraic methods. For instance, given a

known multivariate distribution F (x1, x2, · · · , xd) with continuous margins Fi(xi), i ∈

{1, 2, · · · , d}, the inverse method to obtain a copula is:

Definition 1.2.6. Copula: For (u1, u2, · · · , ud) ∈ [0, 1]d, a d−dimensional copula

C : [0, 1]d → [0, 1] is

C(u1, u2, · · · , ud) = F (F−1
1 (u1), F−1

2 (u2), · · · , F−1
d (ud)). (1.9)

Once a copula was developed, it is easy to develop new multivariate distributions

with arbitrary univariate marginal distribution.

7



Let c(u1, u2, · · · , ud) be the density function of C(u1, u2, · · · , ud), and f(xi), i ∈

{1, 2, · · · , d} be the density function of F (xi), then

f(x1, x2, · · · , xd) =
∂dF (x1, x2, · · · , xd)
∂x1∂x2 · · · ∂xd

=
∂dC(u1, u2, · · · , ud)
∂x1∂x2 · · · ∂xd

=
∂dC(u1, u2, · · · , ud)
∂u1∂u2 · · · ∂ud

∂u1

∂x1

∂u2

∂x2

· · · ∂ud
∂xd

=
∂dC(u1, u2, · · · , ud)
∂u1∂u2 · · · ∂ud

∂F1(x1)

∂x1

∂F2(x2)

∂x2

· · · ∂Fd(xd)
∂xd

= c(u1, u2, · · · , ud)
d∏
i=1

∂Fi(xi)

∂xi

= c(u1, u2, · · · , ud)
d∏
i=1

fi(xi),

(1.10)

that is

c(u1, u2, · · · , ud) =
f(x1, x2, · · · , xd)∏d

i=1 fi(xi)
. (1.11)

Let T denote a survival time with distribution F . The survival function is given

by

S(t) = P (T > t) = 1− F (t). (1.12)
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Extend the previous definitions to the multivariate case. The multivariate survival

function S(t1, t2, · · · , td) is defined by

S(t1, t2, · · · , td) = P (T1 > t1, T2 > t2, · · · , Td > td), (1.13)

where the T1, T2, · · · , Td are survival times with univariate survival functions Si(ti), i ∈

{1, 2, · · · , d}. Then

Si(ti) = P (Ti > ti)

= P (T1 > 0, T2 > 0, · · · , Ti−1 > 0, Ti > ti, Ti+1 > 0, · · · , Td > 0)

= S(0, 0, · · · , 0, ti, 0, · · · , 0).
(1.14)

Please note that the relationship between the multivariate survival function S

and the multivariate distribution function F is not direct same as the univariate case,

which is

S(t1, t2, · · · , td) 6= 1− F (t1, t2, · · · , td). (1.15)
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The following properties and theorems of survival copulas have been studied

and discussed by P. Georges, A-G. Lamy, et al. (2001) [11].

Definition 1.2.7. Survival Copula With marginal survival functions Si(ti), i ∈

{1, 2, · · · , d}, a d−dimensional survival copula C̃ can be defined as

S(t1, t2, · · · , td) = C̃(S1(t1), S2(t2), · · · , Sd(td)). (1.16)

Example 1.2.8. An example for survival copula with d = 2: Let C be the

copula function of the bivariate distribution of (T1, T2) with u1 = S1(t1), u2 = S2(t2),

then

S(t1, t2) = P (T1 > t1, T2 > t2)

= 1− F1(t1)− F2(t2) + F (t1, t2)

= 1− F1(t1) + (1− F2(t2))− 1 + F (t1, t2)

= S1(t1) + S2(t2)− 1 + C(1− S1(t1), 1− S2(t2))

= C̃(S1(t1), S2(t2)).

(1.17)

That is

C̃(S1(t1), S2(t2)) = S1(t1) + S2(t2)− 1 + C(1− S1(t1), 1− S2(t2)), (1.18)

10



which is same as

C̃(u1, u2) = u1 + u2 − 1 + C(1− u1, 1− u2). (1.19)

The survival copula C̃ is a copula function which satisfied:

1. The marginal distribution function of C̃ are uniform;

C̃(u1, 1) = u1 + 1− 1 + C(1− u1, 1− 1)

= u1 + C(1− u1, 0)

= u1 + 0

= u1

(1.20)

and

C̃(1, u2) = 1 + u2 − 1 + C(1− 1, 1− u2)

= u2 + C(0, 1− u2)

= u2 + 0

= u2

(1.21)
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2. If any ui = 0 in u, then

C̃(u1, 0) = u1 + 0− 1 + C(1− u1, 1− 0)

= u1 − 1 + C(1− u1, 1)

= u1 − 1 + 1− u1

= 0
(1.22)

and

C̃(0, u2) = 0 + u2 − 1 + C(1− 0, 1− u2)

= u2 − 1 + C(1, 1− u2)

= u2 − 1 + 1− u2

= 0
(1.23)

3. C̃(u1, u2) has a non-negative value for any two-dimensional interval, that is
∀(v1, v2) ∈ [0, 1]2 and ∀(w1, w2) ∈ [0, 1]2 with vi > wi and i ∈ {1, 2}, P (U1 ∈
[v1, w1], U2 ∈ [v2, w2]) > 0. This implies the rectangle inequality

C̃(v1, v2)− C̃(v1, w2)− C̃(w1, v2) + C̃(w1, w2)

=[v1 + v2 − 1 + C(1− v1, 1− v2)]− [v1 + w2 − 1 + C(1− v1, 1− w2)]−
[w1 + v2 − 1 + C(1− w1, 1− v2)] + [w1 + w2 − 1 + C(1− w1, 1− w2)]

=C(1− v1, 1− v2)− C(1− v1, 1− w2)−
C(1− w1, 1− v2) + C(1− w1, 1− w2) > 0

(1.24)

In the general case, similar results will be obtained.
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Theorem 1.2.9. The relationship between the copula C and the survival copula C̃ is

given by

C̃(u1, u2, · · · , ud) =
d∑
i=0

(−1)i
∑

v(u1,u2,··· ,ud)∈Z(d−i,d,1)

C(v1, v2, · · · , vd)

 (1.25)

where Z(M,N, 1) denotes the set {v ∈ [0, 1]d | vi ∈ [ui, 1],
∑d

i=1X1(vi) = M}. And

C(u1, u2, · · · , ud) =
d∑
i=0

(−1)i
∑

v(u1,u2,··· ,ud)∈Z(d−i,d,0)

C̃(1− v1, 1− v2, · · · , 1− vd)


(1.26)

where Z(M,N, 0) denotes the set {v ∈ [0, 1]d | vi ∈ [0, ui],
∑d

i=1X0(vi) = M}.

In the general case, the survival copulas are not same as copulas except in some

cases. For example, it can be shown that for elliptical copulas C = C̃ (Gaussian,

student’s t). It is also true for the Clayton copulas [3] and Frank copulas [7].

Property 1.2.10. The copula is radially symmetric if and only if

C = C̃ (1.27)
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Then it is equivalent to work with the copula or to work with the survival

copula. It is a very interesting property especially for the computational purpose.

Please note that C(u1, u2, · · · , ud) is a non-decreasing function in each variable

ui, i ∈ {1, 2, · · · , d}. And C̃(u1, u2, · · · , ud) is a non-increasing function in each

variable ui, i ∈ {1, 2, · · · , d} which is different.

1.2.2 Motivation

A rich set of copula families have been developed. Such as the Farlie-Gumbel-

Morgenstern (FGM) copulas, Archimedean copulas, quadratic copulas, cubic copulas,

meta-elliptical copulas (including Gaussian copulas, student’s t copulas) and plackett

copulas are all commonly used copulas. Because of an easy and explicit formula, the

simple way of construction and the nice properties associated, Archimedean copulas

are popular and widely used.

This dissertation will focus on Archimedean copulas. Based on the features of

exchangeability and non-exchangeability, copulas can be divided into two categories:

symmetric copulas and asymmetric copulas. For example, the one-parameter

Archimedean copulas are symmetric copulas. Nested Archimedean copulas and the

vine copulas through pair-copula construction are asymmetric copulas. Details will

be discussed in the next few sections.

Symmetric Archimedean copulas which also called exchangeable Archimedean

copulas are popular due to they allow modeling dependence in arbitrarily high

dimensions and result in a straightforward calculation. Most commonly used

symmetric Archimedean copulas have an easy and explicit formula and one parameter

setting, for instance, Clayton symmetric Archimedean copulas [3], Gumbel-Hougaard

copulas [13, 14] and Frank copulas [7].
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It is too strict that symmetric Archimedean copulas require equal dependence

among different pairs. In practice, the data could be positive correlated, negative

correlated or independent. There are also many asymmetric data need to be

considered, especially for the high dimensional data.

In general, bivariate distribution can be handled easily. The joint distribution

can be described by symmetric Archimedean copulas. Due to the preconditions of

symmetric Archimedean copulas, which require a symmetric dependence between

different pairs of variables and result in only one parameter is allowed, there is a

limitation for high dimensional data when the dimension of a data set is greater than

2 (d > 3). More detailed explanation is discussed below.

The construction of multivariate model via the frailty model is one important

strategy to extend bivariate models to higher dimensions (d > 3). Let S1, S2, · · · , Sd

be univariate survival functions of T1, T2, · · · , Td, respectively and W be a positive

random variable with Laplace transform ψ(s) = E[exp(−sW )]. Let T1, T2, · · · , Td be

dependent random variables that are conditional independent given W = w such that

Pr(Ti > ti|w) = Bi(ti)
w where Bi(t) is defined as the baseline distribution function

for Ti. Then it can be easily shown that

S(t1, t2, · · · , td) = Pr(T1 > t1, T2 > t2, · · · , Td > td)

= ψ
{
ψ−1

[
S1(t1)

]
+ ψ−1

[
S2(t2)

]
+ · · ·+ ψ−1

[
Sd(td)

]}
, (1.28)

where ψ−1 is the inverse function of ψ.

When my adviser Dr. Wang was a PhD student of Dr. David Oakes at

University of Rochester, he took the course “Frailty Models” of Dr. Oakes. In the
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lecture notes of it [25], Dr. Oakes made the following comments about the frailty

models:

1. The frailty representation is very convenient for two survival times, but we may
have d−variate data (T1, T2, · · · , Td);

2. An “exchangeable” multivariate joint distribution is easily derived if all the
components depend on the same frailty W . It can be obtained by

S(t1, t2, · · · , td) = ψ
{
ψ−1

[
S1(t1)

]
+ ψ−1

[
S2(t2)

]
+ · · ·+ ψ−1

[
Sd(td)

]}
;

(1.29)

3. Although this gives total flexibility as to the marginal distribution Si(ti), i =
1, 2, · · · , d, it forces exchangeability of the dependence structure;

4. For example, if W follows gamma distribution, then the Clayton odds ratio θ
are the same for all pairs of components;

5. It would be nice to have a model allowing θi,j for Ti and Tj to differ. To date, it
is not even known what conditions need to impose on the θi,j, 1 6 i < j 6 d to
ensure the existence of a d−variate distribution with Clayton [3] type bivariate
margin.

From above comments, it is obvious that an “exchangeable” multivariate model

is not very useful in practice and an asymmetric (nonexchangeable) multivariate

copula model with any pre-specified bivariate margins are preferred.

Other from the construction method for symmetric multivariate copulas which

was just described, there exist mainly two approaches of constructing asymmetric

multivariate copulas: Nested Archimedean Copula Construction (NACC) and the

vine copulas through Pair-Copula Construction (PCC) as pointed out by Zhang and

Singh (2019) [46].

Recently a series of studies have been introduced, for instance, fully nested

Archimedean copulas were introduced and studied by Joe (1997) [15], Embrechts et
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al. (2001) [4], Whelan (2004) [45], Savu and Trede (2010) [30]. Partially nested

Archimedean copulas were first introduced by Joe (1997) [15]. General nested

Archimedean copulas also called hierarchical Archimedean copulas are a combination

of the two nested Archimedean copulas methods. Kurowicka and Cooke (2005)

[17, 18], introduced the canonical vine as a model construction method. Aas and

Berg (2009) [1] introduced D−vine as another model construction method. More

details will be discussed in the next few sections.

1.2.3 Fully nested Archimedean copulas

Fully nested Archimedean copulas were introduced and studied by Joe (1997) [15],

Embrechts et al. (2001) [4], Whelan (2004) [45], Savu and Trede (2010) [30]. Take

the four-dimensional structure of fully nested Archimedean copulas for example, the

Figure 1.1 shows how to construct it from two-dimension to four-dimension.

Variables u1 and u2 are dependent with each other, the joint distribution

function of (u1, u2) can be modeled by a copula C3(u1, u2). Next, variable u3 and

C3(u1, u2) are dependent, the joint distribution function of (u1, u2, u3) can be modeled

by a copula C2(u3, C3(u1, u2)). Last, variable u4 and C2(u3, C3(u1, u2)) are dependent,

the joint distribution function of (u1, u2, u3, u4) can be modeled by an overall copula

C1(u4, C2(u3, C3(u1, u2))) with distribution function

C(u1, u2, u3, u4) = C1

(
u4, C2(u3, C3(u1, u2))

)
= ϕ−1

1

(
ϕ1(u4) + ϕ1(ϕ−1

2 (ϕ2(u3) + ϕ2(ϕ−1
3 (ϕ3(u1) + ϕ3(u2)))))

)
= ϕ−1

1

(
ϕ1(u4) + ϕ1 ◦ ϕ−1

2 (ϕ2(u3) + ϕ2 ◦ ϕ−1
3 (ϕ3(u1) + ϕ3(u2)))

)
.

(1.30)
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Symbol “◦” represent the product of two functions, such four-dimensional copula

was constructed by three copulas C1, C2, and C3 with generator ϕ1, ϕ2, and ϕ3

respectively.

Figure 1.1 Fully nested Archimedean copulas (four-dimensional structure).

.

That is

� (u1, u2) is modeled by a copula C3 with parameter θ3 and generator ϕ3;

� (C3, u3) is modeled by a copula C2 with parameter θ2 and generator ϕ2;

� (C2, u4) is modeled by a copula C1 with parameter θ1 and generator ϕ1.
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In general, a d− dimensional copula can be constructed by a two-dimensional

copula (total
d(d− 1)

2
different options for the starting two-dimensional copula)

and d − 1 generators with parameters θ1 > θ2 > · · · > θd−1, and all the inverse

functions ϕ−1
1 , ϕ−1

2 , · · ·ϕ−1
d−1 are monotonic functions to make sure the final copula is

a cumulative distribution function by Aas and Berg (2009) [1].

1.2.4 Partially nested Archimedean copulas

Partially nested Archimedean copulas were first introduced by Joe (1997) [15]. Take

the four-dimensional structure of partially nested Archimedean copulas for example,

the Figure 1.2 shows how to construct it from two-dimension to four-dimension.

Figure 1.2 Partially nested Archimedean copulas (four-dimensional structure).

.

Variables u1 and u2 are dependent with each other and variable u3 and u4 are

dependent with each other. The joint distribution function of (u1, u2) and (u3, u4) can

be modeled by copula C3(u1, u2) and C2(u3, u4) respectively. Next, copula C3(u1, u2)
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and copula C2(u3, u4) are dependent with each other, the joint distribution function of

(u1, u2, u3, u4) can be modeled by an overall copula C1(C3(u1, u2), C2(u3, u4)). That

is

� (u1, u2) is modeled by a copula C3 with parameter θ3 and generator ϕ3;

� (u3, u4) is modeled by a copula C2 with parameter θ2 and generator ϕ2;

� (C2, C3) is modeled by a copula C1 with parameter θ1 and generator ϕ1.

Aas and Berg [1], pointed out that the exchangeability between u1 and u2 within

copula C3, and the exchangeability between u3 and u4 within copula C2 in such a

four-dimensional partially nested Archimedean copula. Conclude that the partially

nested Archimedean copulas can be understand as a combination of exchangeable

Archimedean copulas and fully nested Archimedean copulas.

1.2.5 General nested Archimedean copulas

General nested Archimedean copulas are also called hierarchical Archimedean copulas.

The general expressions for them are mainly based on the nested Archimedean

copulas, and the l level Archimedean copulas is generated by (l − 1) > 0 level

Archimedean copulas. Then, the top-level copula is constructed by hierarchical

structures. The d−dimensional jointed distribution has an estimation at point u =

(u1, u2, · · ·ud) ∈ [0, 1]d and total L levels with level number l, where l = 0, 1, 2, · · · , L.

At level l, there are nl groups with group number j = 1, 2, · · · , nl.

At the lowest level l = 0, there are variables u1, u2, · · ·ud. They have been

divided into n1 different groups in the next level l = 1, each group is modeled by a
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regular Archimedean copula C1,j, where j = 1, 2, · · · , n1 with formula

C1,j(uj,dj) = ϕ−1
1,j

 ∑
{uj,dj}

ϕ1,j(uj,dj)

 . (1.31)

� Each copula C1,j has its generator ϕ1,j, j = 1, 2, · · · , n1;

� {uj,dj} is the set contains all the variables which are belong to the copula
C1,j, j = 1, 2, · · · , n1;

�
∑
{uj,dj} ϕ1,j(uj,dj) = ϕ1,j(uj,1) + ϕ1,j(uj,2) + · · ·+ ϕ1,j(uj,dj);

� C1,1, C1,2, · · · , C1,n1 may have different kind of Archimedean copula, for instant,
Clayton copula [3], Gumbel - Hougaard copula [13, 14], Frank copula [7] and so
on.

At the level l = 2, copulas C1,j(j = 1, 2, · · · , n1) have been divided into

n2 different groups in the next level l = 2, each group is modeled by a regular

Archimedean copula C2,i, where i = 1, 2, · · · , n2 with partial exchangeability based

on their structures with formula

C2,i(C1,ki) = ϕ−1
2,i

 ∑
{C1,ki

}

ϕ2,i(C1,ki)

 . (1.32)
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� Each copula C2,i has its generator ϕ2,i, i = 1, 2, · · · , n2;

� {C1,ki} is the set contains all the copulas in level l = 1 which belong to the
copula C2,i, i = 1, 2, · · · , n2;

� C2,1, C2,2, · · · , C2,n2 may have different kind of Archimedean copula, for instant,
Clayton copula [3], Gumbel - Hougaard copula [13, 14], Frank copula [7] and so
on.

Repeat these steps, a L levels hierarchical Archimedean copula CL,1 can be

generated. To make sure the d− dimensional copula CL,1 is a cumulative distribution

function, the following three criteria must be met:

� Each inverse function ϕ−1
l,j must be a strict monotonic functions, where l =

1, 2, · · · , L and j = 1, 2, · · · , nl;

� The number of copulas in each level is decreasing when l increased which is
nl+1 < nl, where l = 0, 1, 2, · · · , L.

The Figure 1.3 shows how a L−level hierarchical Archimedean copula CL,1 looks

like.

Ideally, there are
d(d− 1)

2
different bivariate combinations for a d− dimensional

data. But the nested Archimedean structure cannot satisfy the requirement for

including all the
d(d− 1)

2
different dependent combinations in one structure by Aas

and Berg (2009) [1].

1.2.6 Pair copulas

After Joe (1997) [15] first introduced pair copulas, a series of papers studied

them. Compare to exchangeable Archimedean copulas, there are two major

improvements for pair copulas. One improvement is pair copulas allow
d(d− 1)

2

assigned combinations of copulas. The idea is break down a multivariate density

function into
d(d− 1)

2
bivariate copulas. Among them, there are d− 1 unconditional

copulas and the rest are conditional copulas by Aas and Berg (2009) [1]. And the other
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major improvement is the
d(d− 1)

2
bivariate copulas are not limited to Archimedean

copulas.

Kurowicka and Cooke (2005) [17, 18], introduced the Canonical vine as

construction method. Take the four-dimensional structure of pair copulas for example,

the Figure 1.4 shows how to construct it from two-dimension to four-dimension.

Figure 1.4 Pair copulas (four-dimensional structure with Canonical vine).

.

Aas and Berg (2009) [1] introduced D−vine as another construction method.

Take the four-dimensional structure of pair copulas for example, Figure 1.5 shows

how to construct it from two-dimension to four-dimension.

1.2.7 Discussion

Take the four-dimensional data as an example. If the data is modeled by fully nested

Archimedean copulas structure as illustrated in Figure 1.1 or the data is modeled by
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Figure 1.5 Pair copulas (four-dimensional structure with D−vine).

.

25



partially nested Archimedean copulas structure as illustrated in Figure 1.2, copula

C3 describes the dependence between u1 and u2. The question is how to model

the dependence between u2 and u3? It seems that the question can be solved by

using the four-dimensional pair copulas structure with Canonical vine as illustrated

in Figure 1.4 which is copula C23. The next question is how to model the dependence

between u1 and u4? It seems the four-dimensional Pair copulas structure with D−vine

as illustrated in Figure 1.5 which is copula C14 can provide a better answer to it.

However, if the question change to how to model the dependence between u2 and u4,

none of the methods mentioned above can solve this question. And these structures

are quite complicated because of the complexity of the nest and vine.

Ideally, it is better to have models that can accommodate
d(d− 1)

2
different

pre-specified and unconditional bivariate margins for a d−dimensional data. Both

the nested Archimedean structure and the vine copula structure cannot satisfy this

requirement by Aas and Berg (2009) [1]. Another limitation of the vine copula is that

the dependence structure of the vine copula tends to be quite complicated. If d is

large (for example, d > 500), the dependence structure of the vine copula is almost

intractable.

With above considerations, most of the current structures are not very flexible

[37, 43, 42], the research goal here is to construct general models allowing arbitrary

selection of pairwise correlation which is desired in our practical applications. The

proposed research is an extension of the model construction method proposed by

Chakak (1993) and is a big step forward as researchers have searched for such a

flexible class of models for decades.

In this time and era where each and every aspect of our day to day life has been

technologized, there are many different types of data that generated from various

sources. Needless to say, there are a lot of challenges in the analysis and study of

such different kinds of multivariate distributed data with the methods mentioned
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before. It is then necessary to consider any other structure which can provide more

flexibility and better practicality. It must be easy to use, to extend and stands in

line with the actual phenomenon. The detailed idea, approach and methods will be

discussed in the next chapter.
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CHAPTER 2

ASYMMETRIC MULTIVARIATE ARCHIMEDEAN COPULA
MODELS

2.1 Introduction

This research is an extension to the survival copula of the model construction method

proposed by Chakak (1993) [2] which allows arbitrary selection of pairwise correlation.

It has a fixed or a pre-specified bivariate marginal distribution and allows for different

coefficients for different pairs of random variables. It is a big step forward since such

structure have been searched for decades.

The following discussion will focus on the survival copula which can be easily

transferred to copula. All the copulas discussed in Chapter 2 of this dissertation are

survival copulas, denoted as C instead of C̃ to simplify the notations.

In the following sections, a structure for more than two dimensions will be

constructed, and the feasibility of the structure to d dimensions will be proved by

mathematical induction method. For a better understanding, some demonstrations

for the approach based upon the proposed structure will be given. The examples

will focus on the Clayton copulas [3], Gumbel - Hougaard copulas [13, 14], and

Frank copulas [7]. Methods regarding parameter estimation, model selection and

data simulation will be discussed at this chapter.

2.2 Method of Constructing Asymmetric Multivariate Archimedean

Copula Models

Suppose that all the univariate marginal survival functions are absolutely continuous.

That is, for all tj, tk(∀j, k ∈ N) in the support of the survival functions, it is easy to
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have

tj = S−1
j

(
Sj(tj)

)
, (2.1)

and

tk = S−1
k

(
Sk(tk)

)
. (2.2)

So that the bivariate joint survival functions Sjk(tj, tk) with marginal survival

functions Sj(tj) and Sk(tk) can be written as

Sjk(tj, tk) = Sjk

(
S−1
j

(
Sj(tj)

)
, S−1

k

(
Sk(tk)

))
= Cjk

(
Sj(tj), Sk(tk)

)
(2.3)

where Cjk is a copula which is determined uniquely by Sjk. If Sjk is absolutely

continuous, the copula Cjk is differentiable which means
∂2

∂tj∂tk
Cjk(tj, tk) exists.

The following properties were reviewed by Schweizer and Wolff (1981) [32],

Schweizer and Sklar (1983) [31]:
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Property 2.2.1. For ∀ tj, tk, C = Cjk, if u = Sj(tj) ∈ [0, 1], v = Sk(tk) ∈ [0, 1], and

∀ 0 6 u1 6 u2 6 1, ∀ 0 6 v1 6 v2 6 1, then

1. C(u, 1) = u,C(1, v) = v;

2. C(u, 0) = 0, C(0, v) = 0;

3. C(u2, v2)− C(u1, v2)− C(u2, v1) + C(u1, v1) > 0.

For any d−dimensional copula (d > 3), ui = Si(ti) ∈ [0, 1], i = {1, 2, · · · , d},

the following properties have been proved:

Lemma 2.2.2. Assuming that the joint survival function of (U1, U2, · · · , Ud) is defined

on [0, 1]d and the marginal distributions are all uniform [0, 1], if C is the corresponding

copula function such that

C(u1, u2, · · · , ud) = Pr(S(T1) 6 u1, S(T2) 6 u2, · · · , S(Td) 6 ud)

where Si(ti) = Ui, i ∈ {1, 2, · · · , d} is the survival function. Then C has the following

properties:

1. C(u1, u2, · · · , ui−1, 1, ui+1, · · · , ud) = C(u1, u2, · · · , ui−1, ui+1, · · · , ud).

2. C(u1, u2, · · · , ui−1, 0, ui+1, · · · , ud) = 0.
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Proof. For ∀ ui = 1, i ∈ {1, 2, · · · , d}, then

C(u1, u2, · · · , ui−1, 1, ui+1, · · · , ud)

= P (U1 < u1, U2 < u2, · · · , Ui−1 < ui−1, Ui < 1, Ui+1 < ui+1, · · · , Ud < ud)

= P (S1(t1) < u1, S2(t2) < u2, · · · , Si−1(ti−1) < ui−1, Si(ti) < 1,

Si+1(ti+1) < ui+1, · · · , Sd(td) < ud)

= P (S1(t1) < u1, S2(t2) < u2, · · · , Si−1(ti−1) < ui−1,

Si+1(ti+1) < ui+1, · · · , Sd(td) < ud)

= P (U1 < u1, U2 < u2, · · · , Ui−1 < ui−1, Ui+1 < ui+1, · · · , Ud < ud)

= C(u1, u2, · · · , ui−1, ui+1, · · · , ud)

For ∀ ui = 0, i ∈ (1, 2, · · · , d), then

C(u1, u2, · · · , ui−1, 0, ui+1, · · · , ud)

= P (U1 < u1, U2 < u2, · · · , Ui−1 < ui−1, Ui < 0, Ui+1 < ui+1, · · · , Ud < ud)

= P (S1(t1) < u1, S2(t2) < u2, · · · , Si−1(ti−1) < ui−1, Si(ti) < 0,

Si+1(ti+1) < ui+1, · · · , Sd(td) < ud)

= P (∅)

= 0

Lemma 2.2.2 is useful in proving the properties for the proposed multivariate

models. The research goal is to find a model with any pre-specified bivariate marginal

survival function Sjk(tj, tk). The idea underlying the method of construction by
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Chakak (1993) [2] is that, the bivariate survival function

S1·2(t1, t2) = P (T1 > t1|T2 > t2)S2(t2) (2.4)

can be determined completely by the conditional probability since the marginal

distribution function is specified. The three-dimensional construction approach has

joint survival function as

S12·3(t1, t2, t3) = P (T1 > t1, T2 > t2|T3 > t3)S3(t3). (2.5)

Given t3, the bivariate conditional survival function S12|3(t1, t2|T3 > t3) has continuous

marginals denoted by

S1|3(t1|T3 > t3) = P (T1 > t1|T3 > t3), (2.6)
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and

S2|3(t2|T3 > t3) = P (T2 > t2|T3 > t3). (2.7)

with densities

∂t1S1|3(t1|T3 > t3) =
∂

∂t1
[P (T1 > t1|T3 > t3)]

=
∂

∂t1

[
S13(t1, t3)

S3(t3)

]

=

∂

∂t1
S13(t1, t3)

S3(t3)
,

(2.8)

and

∂t2S2|3(t2|T3 > t3) =
∂

∂t2
[P (T2 > t2|T3 > t3)]

=
∂

∂t2

[
S23(t2, t3)

S3(t3)

]

=

∂

∂t2
S23(t2, t3)

S3(t3)

(2.9)
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respectively. Using Sklar’s Theorem (1959) [34], there exists a copula C12|3 such that

C12|3
(
S1|3(t1|T3 > t3), S2|3(t2|T3 > t3)

)
= P (T1 > t1, T2 > t2|T3 > t3)

= S12|3

(
S−1

1|3
(
S1|3(t1|T3 > t3)

)
, S−1

2|3
(
S2|3(t2|T3 > t3)

)) (2.10)

where S12|3 is the joint conditional survival function of T1 and T2 given T3 > t3.

Similar results of copula C23|1 and C13|2 can be derived on condition T1 > t1

and on condition T2 > t2 respectively. Then for any (t1, t2, t3) in the support of joint

survival function, the following joint survival functions can be derived

S23·1(t1, t2, t3) = C23|1(S2|1(t2), S3|1(t3))S1(t1), (2.11)

S13·2(t1, t2, t3) = C13|2(S1|2(t1), S3|2(t3))S2(t2), (2.12)

S12·3(t1, t2, t3) = C12|3(S1|3(t1), S2|3(t2))S3(t3). (2.13)
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And for tk = 0, where i, j, k ∈ {1, 2, 3} and i 6= j 6= k 6= i the copulas should satisfy

Cij|k(u, v) = Cij(u, v) (2.14)

to preserve its bivariate margins in the joint survival function. And Cij is the copula

corresponding to the joint survival function of (Ti, Tj) with u = Si(ti) and v = Sj(tj).

Based on above considerations, if the Cij|k is replaced by Cjk (the idea was first

proposed by Chakak in 1993 [2]), the corresponding tri-variate survival functions can

be expressed as:

S23·1(t1, t2, t3) = C23|1

(
C12(S1(t1), S2(t2))

S1(t1)
,
C13(S1(t1), S3(t3))

S1(t1)

)
S1(t1)

= C23

(
C12(S1(t1), S2(t2))

S1(t1)
,
C13(S1(t1), S3(t3))

S1(t1)

)
S1(t1)

(2.15)

S13·2(t1, t2, t3) = C13|2

(
C12(S1(t1), S2(t2))

S2(t2)
,
C23(S2(t2), S3(t3))

S2(t2)

)
S2(t2)

= C13

(
C12(S1(t1), S2(t2))

S2(t2)
,
C23(S2(t2), S3(t3))

S2(t2)

)
S2(t2)

(2.16)
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S12·3(t1, t2, t3) = C12|3

(
C13(S1(t1), S3(t3))

S3(t3)
,
C23(S2(t2), S3(t3))

S3(t3)

)
S3(t3)

= C12

(
C13(S1(t1), S3(t3))

S3(t3)
,
C23(S2(t2), S3(t3))

S3(t3)

)
S3(t3) (2.17)

2.2.1 Three-dimensional structures

Based on the discussion above, the three-dimensional structures have the following

expressions:

S23·1(t1, t2, t3) = C23|1

(
S12(t1, t2)

S1(t1)
,
S13(t1, t3)

S1(t1)

)
S1(t1)

= CI
(
S1(t1), S2(t2), S3(t3)

) (2.18)

S13·2(t1, t2, t3) = C13|2

(
S12(t1, t2)

S2(t2)
,
S23(t2, t3)

S2(t2)

)
S2(t2)

= CII
(
S1(t1), S2(t2), S3(t3)

) (2.19)

S12·3(t1, t2, t3) = C12|3

(
S13(t1, t3)

S3(t3)
,
S23(t2, t3)

S3(t3)

)
S3(t3)

= CIII
(
S1(t1), S2(t2), S3(t3)

)
(2.20)
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It is easy to check that all the three models above allow the bivariate margins

to have different parameter values (not exchangeable). These structures (see Figure

2.1) can provide arbitrary pair selections which give the maximize flexibility and

better practicality. They can be easily used, extended and also stand in line with the

pre-specified bivariate structures.

Figure 2.1 Three-dimensional structure for proposed method.

.

Take the S12·3 as an example, the checking procedure is as below:

37



1. When t1 = 0, then

S12·3(0, t2, t3) = C12|3

(
S13(0, t3)

S3(t3)
,
S23(t2, t3)

S3(t3)

)
S3(t3)

= C12|3

(
1,
S23(t2, t3)

S3(t3)

)
S3(t3)

=
S23(t2, t3)

S3(t3)
S3(t3)

= S23(t2, t3).

(2.21)

The result S23(t2, t3) is the pre-specified bivariate marginal distribution by
applying Lemma 2.2.2.

2. When t2 = 0, then

S12·3(t1, 0, t3) = C12|3

(
S13(t1, t3)

S3(t3)
,
S23(0, t3)

S3(t3)

)
S3(t3)

= C12|3

(
S13(t1, t3)

S3(t3)
, 1

)
S3(t3)

=
S13(t1, t3)

S3(t3)
S3(t3)

= S13(t1, t3).

(2.22)

The result S13(t1, t3) is the pre-specified bivariate marginal distribution by
applying Lemma 2.2.2.

3. When t3 = 0, then

S12·3(t1, t2, 0) = C12|3(S13(t1, 0), S23(t2, 0))

= C12|3(S1(t1), S2(t2))

= S12(t1, t2). (2.23)
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The result S12(t1, t2) is also the pre-specified bivariate marginal distribution by
applying Lemma 2.2.2.

The other two models S23·1 and S13·2 have the similar properties. The checking

procedures are omitted here.

2.2.2 Four-dimensional structures

Generalization to four-dimensions can be performed as below

S123·4(t1, t2, t3, t4) = P (T1 > t1, T2 > t2, T3 > t3|T4 > t4)S4(t4) (2.24)

By Sklar’s theorem [34], then

S123·4(t1, t2, t3, t4)

= C123|4
(
P (T1 > t1|T4 > t4), P (T2 > t2|T4 > t4), P (T3 > t3|T4 > t4)

)
S4(t4)

(2.25)

To preserves the pre-specified bivariate marginal distribution, the copula C123|4 is

required to equal to CI or CII or CIII from the three-dimensional structures from
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Section 2.2.1. And for i ∈ {1, 2, 3},

P (Ti > ti|T4 > t4) =
P (Ti > ti, T4 > t4)

P (T4 > t4)

=
Si4(ti, t4)

S4(t4)
. (2.26)

Then

S123·4(t1, t2, t3, t4)

= C123|4

(
C14(S1(t1), S4(t4))

S4(t4)
,
C24(S2(t2), S4(t4))

S4(t4)
,
C34(S3(t3), S4(t4))

S4(t4)

)
S4(t4) (2.27)

Similar results of copula S234·1, S134·2 and S124·3 can be derived on condition

T1 > t1, T2 > t2 and on condition T3 > t3 respectively. Then for any (t1, t2, t3, t4)

in the support of joint survival function, the following joint survival functions can be

derived

S234·1(t1, t2, t3, t4) = C123|1

(
S12(t1, t2)

S1(t1)
,
S13(t1, t3)

S1(t1)
,
S14(t1, t4)

S1(t1)

)
S1(t1) (2.28)
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S134·2(t1, t2, t3, t4) = C134|2

(
S12(t1, t2)

S2(t2)
,
S23(t2, t3)

S2(t2)
,
S24(t2, t4)

S2(t2)

)
S2(t2) (2.29)

S124·3(t1, t2, t3, t4) = C124|3

(
S13(t1, t3)

S3(t3)
,
S23(t2, t3)

S3(t3)
,
S34(t3, t4)

S3(t3)

)
S3(t3) (2.30)

S123·4(t1, t2, t3, t4) = C123|4

(
S14(t1, t4)

S4(t4)
,
S24(t2, t4)

S4(t4)
,
S34(t3, t4)

S4(t4)

)
S4(t4)

(2.31)

These structures (see Figure 2.2) can be easily proved that they stand in

line with the three-dimensional structures from Section 2.2.1 and the pre-specified

bivariate structures.

Take the S123·4 as an example, the checking procedure is as below:
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Figure 2.2 Four-dimensional structure for proposed method.

.

1. When t1 = 0, then

S14(t1, t4)

S4(t4)
=
S14(0, t4)

S4(t4)
=
S4(t4)

S4(t4)
= 1.

(2.32)

Hence,

S123·4(0, t2, t3, t4) = C123|4

(
1,
S24(t2, t4)

S4(t4)
,
S34(t3, t4)

S4(t4)

)
S4(t4)

= C23|4

(
S24(t2, t4)

S4(t4)
,
S34(t3, t4)

S4(t4)
,

)
S4(t4)

= S23·4(t2, t3, t4)

(2.33)

which is the three-dimensional structure from Section 2.2.1 by applying Lemma
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2.2.2.

2. When t2 = 0, then

S24(t2, t4)

S4(t4)
=
S24(0, t4)

S4(t4)
=
S4(t4)

S4(t4)
= 1.

(2.34)

Hence,

S123·4(t1, 0, t3, t4) = C123|4

(
S14(t1, t4)

S4(t4)
, 1,

S34(t3, t4)

S4(t4)

)
S4(t4)

= C13|4

(
S14(t1, t4)

S4(t4)
,
S34(t3, t4)

S4(t4)
,

)
S4(t4)

= S13·4(t1, t3, t4)

(2.35)

which is the three-dimensional structure from Section 2.2.1 by applying Lemma
2.2.2.

3. When t3 = 0, then

S34(t3, t4)

S4(t4)
=
S34(0, t4)

S4(t4)
=
S4(t4)

S4(t4)
= 1.

(2.36)
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Hence,

S123·4(t1, t2, 0, t4) = C123|4

(
S14(t1, t4)

S4(t4)
,
S24(t2, t4)

S4(t4)
, 1

)
S4(t4)

= C12|4

(
S14(t1, t4)

S4(t4)
,
S24(t2, t4)

S4(t4)
,

)
S4(t4)

= S12·4(t1, t2, t4)

(2.37)

which is the three-dimensional structure from Section 2.2.1 by applying Lemma
2.2.2.

4. When t4 = 0, then

S123·4(t1, t2, t3, 0) = C123

(
S1(t1), S2(t2), S3(t3)

)
(2.38)

where C123 = CI or CII or CIII which are the three-dimensional structures from
Section 2.2.1.

5. When t1 = 0, t2 = 0, t3 6= 0, t4 6= 0, then

S123·4(0, 0, t3, t4) = C123|4

(
1, 1,

S34(t3, t4)

S4(t4)

)
S4(t4)

=
S34(t3, t4)

S4(t4)
S4(t4)

= S34(t3, t4)
(2.39)

which is the pre-specified bivariate marginal distribution by applying Lemma
2.2.2.
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6. When t1 = 0, t2 6= 0, t3 = 0, t4 6= 0, then

S123·4(0, t2, 0, t4) = C123|4

(
1,
S24(t2, t4)

S4(t4)
, 1

)
S4(t4)

=
S24(t2, t4)

S4(t4)
S4(t4)

= S24(t2, t4)
(2.40)

which is the pre-specified bivariate marginal distribution by applying Lemma
2.2.2.

7. When t1 6= 0, t2 = 0, t3 = 0, t4 6= 0, then

S123·4(t1, 0, 0, t4) = C123|4

(
S14(t1, t4)

S4(t4)
, 1, 1

)
S4(t4)

=
S14(t1, t4)

S4(t4)
S4(t4)

= S14(t1, t4)
(2.41)

which is the pre-specified bivariate marginal distribution by applying Lemma
2.2.2.

8. When t1 = 0, t2 6= 0, t3 6= 0, t4 = 0, then

S123·4(0, t2, t3, 0) = C123|4

(
1,
S24(t2, t4)

S4(0)
,
S34(t3, t4)

S4(0)

)
S4(0)

= C23

(
S2(t2), S3(t3)

)
= S23(t2, t3)

(2.42)

which is the pre-specified bivariate marginal distribution by applying Lemma
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2.2.2.

9. When t1 6= 0, t2 = 0, t3 6= 0, t4 = 0, then

S123·4(t1, 0, t3, 0) = C123|4

(
S14(t1, t4)

S4(0)
, 1,

S34(t3, t4)

S4(0)

)
S4(0)

= C13

(
S1(t1), S3(t3)

)
= S13(t1, t3)

(2.43)

which is the pre-specified bivariate marginal distribution by applying Lemma
2.2.2.

10. When t1 6= 0, t2 6= 0, t3 = 0, t4 = 0, then

S123·4(t1, t2, 0, 0) = C123|4

(
S14(t1, t4)

S4(0)
,
S24(t2, t4)

S4(0)
, 1

)
S4(0)

= C12

(
S1(t1), S2(t2)

)
= S12(t1, t2)

(2.44)

which is the pre-specified bivariate marginal distribution by applying Lemma
2.2.2.

The other three models S234·1, S134·2 and S124·3 have the similar properties. The

checking procedures are omitted here.

2.2.3 d−dimensional structures

Now the goal is to extend the above model construction approach to any d−dimensional

data (d > 3) so that any bivariate margins are pre-specified and the pairwise

dependence can be distinct for any i 6= i′ and j 6= j′. The idea is simple. Suppose
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that any d−dimensional structure as below

S12···(d−1)·d(t1, t2, · · · , td−1, td)

= C12···(d−1)|d

(
S1d(t1, td)

Sd(td)
,
S2d(t2, td)

Sd(td)
, · · · ,

S(d−1)d(td−1, td)

Sd(td)

)
Sd(td) (2.45)

satisfying the requirements that the survival function of any bivariate margin of the

d−dimensional (and also the model of lower dimensions constructed in the same way)

is a pre-specified bivariate copula model with parameter θij for 1 6 i < j 6 d where

θij are not necessarily the same for different subscripts (i, j) (this fact has just been

proved for d = 3). Then the (d+ 1)−dimensional structure can be constructed as:

S12···d·(d+1)(t1,t2, · · · , td−1, td, td+1)

= C12···d|(d+1)

(
S1(d+1)(t1, td+1)

Sd+1(td+1)
,
S2(d+1)(t2, td+1)

Sd+1(td+1)
, · · · ,

S(d−1)(d+1)(td−1, td+1)

Sd+1(td+1)
,
Sd(d+1)(td, td+1)

Sd+1(td+1)

)
Sd+1(td+1)

(2.46)

This structure can be easily proved that it stands in line with the d−dimensional

structure and the bivariate structures. The checking procedure is as below:
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1. When ti = 0, i ∈ {1, 2, · · · , d}, then the (d+1)−dimensional structure is reduced
to

S12···d·(d+1)(t1, · · · , ti−1, 0, ti+1, · · · , td−1, td, td+1)

= C12···(i−1)i(i+1)···d|(d+1)

(
S1(d+1)(t1, td+1)

Sd+1(td+1)
, · · · ,

S(i−1)(d+1)(ti−1, td+1)

Sd+1(td+1)
, 1,

S(i+1)(d+1)(ti+1, td+1)

Sd+1(td+1)
, · · · ,

S(d−1)(d+1)(td−1, td+1)

Sd+1(td+1)
,

Sd(d+1)(td, td+1)

Sd+1(td+1)

)
Sd+1(td+1)

= C12···(i−1)(i+1)···d|(d+1)

(
S1(d+1)(t1, td+1)

Sd+1(td+1)
, · · · ,

S(i−1)(d+1)(ti−1, td+1)

Sd+1(td+1)
,

S(i+1)(d+1)(ti+1, td+1)

Sd+1(td+1)
, · · · ,

S(d−1)(d+1)(td−1, td+1)

Sd+1(td+1)
,

Sd(d+1)(td, td+1)

Sd+1(td+1)

)
Sd+1(td+1)

= S12···(i−1)(i+1)···d·(d+1)(t1, · · · , ti−1, ti+1, · · · , td+1)

(2.47)

which is the d−dimensional structure by applying Lemma 2.2.2. Here
the C12···(i−1)(i+1)···d|(d+1) is the (d − 1)−dimensional structure satisfying the
desired nonexchangeable property and S12···(i−1)(i+1)···d·(d+1) is the d−dimensional
structure built based on it, which also satisfies the desired nonexchangeable
property as previous assumed.

2. Similarly, when td+1 = 0, it is easy to show that the (d + 1)−dimensional
structure is also reduced to a d−dimensional structure satisfying the desired
nonexchangeable property.

S12···d·(d+1)(t1, · · · , td, 0) = C12···d
(
S1(t1), · · · , Sd(td)

)
(2.48)

where C12···d is the d−dimensional structure satisfying the desired nonex-
changeable property.
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3. The (d + 1)−dimensional model stands in line with any pre-specified bivariate
margins can be proved as follows: when tj 6= 0, td+1 6= 0 and every other
ti = 0, (i, j ∈ {1, 2, · · · , d}, i 6= j), the (d+ 1)−dimensional structure is reduced
to

S12···d·(d+1)(0, · · · , 0, tj, 0, · · · , 0, td+1)

= C12···d|(d+1)

(
1, · · · , 1,

Sj(d+1)(tj, td+1)

Sd+1(td+1)
, 1, · · · , 1

)
Sd+1(td+1)

=
Sj(d+1)(tj, td+1)

Sd+1(td+1)
Sd+1(td+1),

= Sj(d+1)(tj, td+1)

(2.49)

which is the pre-specified bivariate marginal distribution by applying Lemma
2.2.2.

4. When tj 6= 0, tk 6= 0, every other ti = 0, (i, j, k ∈ {1, 2, · · · , d}, i 6= j 6= k 6= i)
and td+1 = 0, the (d+ 1)−dimensional structure is reduced to

S12···d|(d+1)(0, · · · , 0, tj, 0, · · · , 0, tk, 0, · · · , 0)

= C12···d|(d+1)

(
1, · · · , 1, Sj(tj), 1, · · · , 1, Sk(tk), 1, · · · , 1

)
= Cjk(Sj(tj), Sk(tk))

= Sjk(tj, tk)

(2.50)

which is the pre-specified bivariate marginal distribution by applying Lemma
2.2.2.

The feasibility of the structure to d−dimensions was proved by mathematical

induction method.

Based on above discussions, the way to construct a d−dimensional model for

d > 3 is that you can start from a tri-variate model and add one additional variable

into the model to build a four-dimensional model according to the same method which
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is used to get the (d+ 1)−dimensional model from a d−dimensional model, then you

can build four such models based on different variables for four-dimensional structure.

Continuing this way, then a five-dimensional model can be builded, · · · , and so on.

The primary advantage of this high dimensional dependence structure is that

it is purely generated from the formulas used to define bivariate survival functions

with the specified copula structure. Secondly, it allows for non-identical levels of

associations (actually can be totally different) for different pairs of random variables

which is desirable in many practical situations. Thirdly, it stands in line with the

existing vine copulas through pair-copula construction, which means the vine copulas

through pair-copula construction will become a special case of it. Some examples will

be demonstrated in the next section the third point mentioned above.

2.2.4 Flexibility for the proposed structures

Take the four-dimensional copulas structures illustrated in Figure 2.2 as examples,

the structures satisfy every possible dependence combination, and you can increase

or decrease the dependence anytime as needed.

Figure 2.3 illustrate one of the possibilities for the four-dimensional structure

which result the same structure as four-dimensional pair copula with Canonical vine

structure (see Figure 1.4).

Figure 2.4 illustrate another possibility for the four-dimensional structure which

result the same structure as four-dimensional pair copula with D-vine structure (see

Figure 1.5).

There are more possibilities exist, you can choose according to the practical use.
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Figure 2.3 Flexibility of proposed method (Decrease the dependences which result
the same structure as four-dimensional pair copula with Canonical vine).

.
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Figure 2.4 Flexibility of proposed method (Decrease the dependences which result
the same structure as four-dimensional pair copula with D-vine).

.
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2.3 Examples Based on Proposed Structures

In order to make a better understanding for the proposed methods and structures,

some examples will be given here. The examples in this section will focus on the

Clayton copulas [3], Gumbel - Hougaard copulas [13, 14] and Frank copulas [7]. And

you are free to replace them with any other Archimedean copulas.

2.3.1 Clayton copulas

Clayton (1978) [3] introduced the model name after him described the transmission

of coronary disease in human population form a father to his son based on following

assumptions:

� It is straightforward to estimate the association parameter given censored
observation on either or both the survival times for pairs of farther and his
son;

� The effect of the parental history is expressible as a constant ratio of age specific
rates;

� The model is symmetric with respect to the father and his son survival times.

The copula proposed by Clayton (1978) [3] has the expression as

Cψ(t1, t2) = (S1(t1)−θ + S2(t2)−θ − 1)−
1
θ (2.51)

where θ ∈ (0,∞) with generator

ψ−1(s) = (1 + s)−
1
θ . (2.52)
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The d−dimensional Clayton copula has the expression as

Cψ(t1, t2, · · · , td) = (S1(t1)−θ + S2(t2)−θ + · · ·+ Sd(td)
−θ − d+ 1)−

1
θ . (2.53)

The relationship between Kendall’s tau and the Clayton copula parameter θ is

given by:

θ =
2τ

1− τ
. (2.54)

2.3.2 Gumbel - Hougaard copula

Consider the Archimedean copula

Cφ(t1, t2, · · · , td) = φ−1(φ(S1(t1)) + φ(S2(t2)) + · · ·+ φ(Sd(td)), (2.55)

with (S1(t1), S2(t2), · · · , Sd(td)) ∈ [0, 1]d and generator

φ−1(s) = exp(−sβ) (2.56)
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where β ∈ (0, 1).

The bivariate asymmetric Gumbel–Hougaard copula [13, 14] with expression

C(t1, t2) = exp
{
−[(− logS1(t1))β + (− logS2(t2))β]

1
β

}
. (2.57)

And the d− demensional copula associated is

C(t1, t2, · · · , td)

= exp
{
−[(− logS1(t1))β + (− logS2(t2))β + · · ·+ (− logSd(td))

β]
1
β

}
(2.58)

which known as the Gumbel–Hougaard copula [13, 14]. It derived from the work by

Gumbel (1960) [13] and has been further considered by Hougaard (1986) [14]. For

this reason, this copula is named as Gumbel-Hougaard copula. It was discovered

independently in survival analysis.

The relationship between Kendall’s tau and the Hougaard copula parameter β

is given by:

β = 1− τ. (2.59)
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In the rest of this dissertation, Gumbel-Hougaard copula will be called as

Hougaard copula for short.

2.3.3 Frank copula

Consider the Archimedean copula

Cφ(t1, t2, · · · , td) = φ−1(φ(S1(t1)) + φ(S2(t2)) + · · ·+ φ(Sd(td)), (2.60)

with (S1(t1), S2(t2), · · · , Sd(td)) ∈ [0, 1]d and generator

ϕ−1(s) = −1

γ
log
(
1 + exp(−s)(exp(−γ)− 1)

)
(2.61)

where γ 6= 0.

The bivariate Frank copula [7] has expression

C(t1, t2) = −1

γ
log

(
1 +

(exp(−γS1(t1))− 1)(exp(−γS2(t2))− 1)

exp(−γ)− 1

)
. (2.62)
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The relationship between Kendall’s tau and the Frank copula parameter γ is

given by:

D(γ) = 1 +
γ

4
(1− τ) (2.63)

where

D(γ) =
1

γ

∫ γ

0

t

et − 1
dt. (2.64)

2.3.4 Three-dimensional structures based on Clayton copulas

Let the pre-specified bivariate marginal distribution S12, S13, S23 be Clayton copulas

[3] and have Clayton parameter θ12, θ13, θ23 respectively. The associated parameters

between t1, t2 and t3 are demonstrated in Figure 2.5. Using Sij = Sθij , (i, j ∈

{1, 2, 3}, i 6= j) is to emphasize that Sij has one parameter θij based on Clayton

copulas.
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Figure 2.5 Three-dimensional structure based on Clayton copulas for proposed
method.

.

Based on the method from Section 2.2, the three-dimensional structure based

on Clayton copulas [3] under condition T3 > t3 is given below:

S12·3(t1, t2, t3)

= P (T1 > t1, T2 > t2|T3 > t3)S3(t3)

= C12|3

(
S13(t1, t3)

S3(t3)
,
S23(t2, t3)

S3(t3)

)
S3(t3)

= C12|3

(
Sθ13(t1, t3)

S3(t3)
,
Sθ23(t2, t3)

S3(t3)

)
S3(t3)

=

((
Sθ13(t1, t3)

S3(t3)

)−θ12
+

(
Sθ23(t2, t3)

S3(t3)

)−θ12
− 1

)− 1
θ12

S3(t3)

=
(
Sθ13(t1, t3)−θ12 + Sθ23(t2, t3)−θ12 − S3(t3)−θ12

)− 1
θ12

(2.65)
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The other two three-dimensional structures based on Clayton copulas [3] under

condition T1 > t1 or T2 > t2 with different parameters for bivariate copulas can also

be derived from the same procedure. All three different three-dimensional structures

are summarized below:

S23·1(t1, t2, t3)

=
(
Sθ12(t1, t2)−θ23 + Sθ13(t1, t3)−θ23 − S1(t1)−θ23

)− 1
θ23

= CI(S1(t1), S2(t2), S3(t3))

(2.66)

S13·2(t1, t2, t3)

=
(
Sθ12(t1, t2)−θ13 + Sθ23(t2, t3)−θ13 − S2(t2)−θ13

)− 1
θ13

= CII(S1(t1), S2(t2), S3(t3))

(2.67)

S12·3(t1, t2, t3)

=
(
Sθ13(t1, t3)−θ12 + Sθ23(t2, t3)−θ12 − S3(t3)−θ12

)− 1
θ12

= CIII(S1(t1), S2(t2), S3(t3))
(2.68)

If θ12 = θ13 = θ23 = θ, the above three different copulas are equal to each other

and result a common expression. Details will be discussed below:
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1. For CI(S1(t1), S2(t2), S3(t3)), when θ12 = θ13 = θ23 = θ, the following expression
can be derived:

CI(S1(t1), S2(t2), S3(t3))

= S23·1(t1, t2, t3)

=
(
Sθ(t1, t2)−θ + Sθ(t1, t3)−θ − S1(t1)−θ

)− 1
θ

=

((
S1(t1)−θ + S2(t2)−θ − 1

)− 1
θ
×(−θ)

+
(
S1(t1)−θ + S3(t3)−θ − 1

)− 1
θ
×(−θ)

− S1(t1)−θ

)− 1
θ

=

((
S1(t1)−θ + S2(t2)−θ − 1

)
+
(
S1(t1)−θ + S3(t3)−θ − 1

)
− S1(t1)−θ

)− 1
θ

=
(
S1(t1)−θ + S2(t2)−θ + S3(t3)−θ − 2

)− 1
θ

;

(2.69)
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2. For CII(S1(t1), S2(t2), S3(t3)), when θ12 = θ13 = θ23 = θ, the following
expression can be derived:

CII(S1(t1), S2(t2), S3(t3))

= S13·2(t1, t2, t3)

=
(
Sθ(t1, t2)−θ + Sθ(t2, t3)−θ − S2(t2)−θ

)− 1
θ

=

((
S1(t1)−θ + S2(t2)−θ − 1

)− 1
θ
×(−θ)

+
(
S2(t2)−θ + S3(t3)−θ − 1

)− 1
θ
×(−θ)

− S2(t2)−θ

)− 1
θ

=

((
S1(t1)−θ + S2(t2)−θ − 1

)
+
(
S2(t2)−θ + S3(t3)−θ − 1

)
− S2(t2)−θ

)− 1
θ

=
(
S1(t1)−θ + S2(t2)−θ + S3(t3)−θ − 2

)− 1
θ

;

(2.70)
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3. For CIII(S1(t1), S2(t2), S3(t3)), when θ12 = θ13 = θ23 = θ, the following
expression can be derived:

CIII(S1(t1), S2(t2), S3(t3))

= S12·3(t1, t2, t3)

=
(
Sθ(t1, t3)−θ + Sθ(t2, t3)−θ − S3(t3)−θ

)− 1
θ

=

((
S1(t1)−θ + S3(t3)−θ − 1

)− 1
θ
×(−θ)

+
(
S2(t2)−θ + S3(t3)−θ − 1

)− 1
θ
×(−θ)

− S3(t3)−θ

)− 1
θ

=

((
S1(t1)−θ + S3(t3)−θ − 1

)
+
(
S2(t2)−θ + S3(t3)−θ − 1

)
− S3(t3)−θ

)− 1
θ

=
(
S1(t1)−θ + S2(t2)−θ + S3(t3)−θ − 2

)− 1
θ
.

(2.71)

So the final expression of three different copulas are equal to each other when

θ12 = θ13 = θ23 = θ, which is an desired property for the proposed structures.

Furthermore, these structures can be easily proved that they stand in line

with the pre-specified bivariate copulas. Take the S12·3 as an example, the checking

procedure is as below:
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1. When t1 = 0, then

S12·3(0, t2, t3) =
(
Sθ13(0, t3)−θ12 + Sθ23(t2, t3)−θ12 − S3(t3)−θ12

)− 1
θ12

=
(
S3(t3)−θ12 + Sθ23(t2, t3)−θ12 − S3(t3)−θ12

)− 1
θ12

=
(
Sθ23(t2, t3)−θ12

)− 1
θ12

= Sθ23(t2, t3)

(2.72)

which is the pre-specified bivariate marginal distribution by applying Lemma
2.2.2.

2. When t2 = 0, then

S12·3(t1, 0, t3) =
(
Sθ13(t1, t3)−θ12 + Sθ23(0, t3)−θ12 − S3(t3)−θ12

)− 1
θ12

=
(
Sθ13(t1, t3)−θ12 + S3(t3)−θ12 − S3(t3)−θ12

)− 1
θ12

=
(
Sθ13(t1, t3)−θ12

)− 1
θ12

= Sθ13(t1, t3)

(2.73)

which is the pre-specified bivariate marginal distribution by applying Lemma
2.2.2.

3. When t3 = 0, then

S12·3(t2, t2, 0) =
(
Sθ13(t1, 0)−θ12 + Sθ23(t2, 0)−θ12 − 1

)− 1
θ12

=
(
S1(t1)−θ12 + S2(t2)−θ12 − 1

)− 1
θ12

= Sθ12(t1, t2)
(2.74)
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which is the pre-specified bivariate marginal distribution by applying Lemma
2.2.2.

The other two models S23·1 and S13·2 have the similar properties. The checking

procedures are omitted here.

2.3.5 Four-dimensional structures based on Clayton copulas

Let the pre-specified bivariate marginal distribution S12, S13, S14, S23, S24, S34 be

Clayton copulas [3] and have Clayton parameter θ12, θ13, θ14, θ23, θ24, θ34 respectively.

In order to be more clear, the associated parameters between t1, t2, t3 and t4 are

demonstrated in Figure 2.6. Using Sij = Sθij , (i, j ∈ {1, 2, 3}, i 6= j) is to emphasize

that Sij has one parameter θij based on Clayton copulas [3].

Figure 2.6 Four-dimensional structure based on Clayton copulas for proposed
method.

.
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Based on the method from Section 2.2, the four-dimensional structures based

on Clayton copulas [3] are given below:

S234·1(t1, t2, t3, t4) = C234|1

(
Sθ12(t1, t2)

S1(t1)
,
Sθ13(t1, t3)

S1(t1)
,
Sθ14(t1, t4)

S1(t1)

)
S1(t1) (2.75)

S134·2(t1, t2, t3, t4) = C134|2

(
Sθ12(t1, t2)

S2(t2)
,
Sθ23(t2, t3)

S2(t2)
,
Sθ24(t2, t4)

S2(t2)

)
S2(t2) (2.76)

S124·3(t1, t2, t3, t4) = C124|3

(
Sθ13(t1, t3)

S3(t3)
,
Sθ23(t2, t3)

S3(t3)
,
Sθ34(t3, t4)

S3(t3)

)
S3(t3) (2.77)

S123·4(t1, t2, t3, t4) = C123|4

(
Sθ14(t1, t4)

S4(t4)
,
Sθ24(t2, t4)

S4(t4)
,
Sθ34(t3, t4)

S4(t4)

)
S4(t4) (2.78)

To preserves the pre-specified bivariate marginal distribution, the copulas C234|1,

C134|2 , C124|3 and C123|4 is required to equal to one of the three-dimensional structures

from formula (2.66), (2.67) and (2.68). Take the copula C123|4 as an example, it means:
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C123|4 = CI(S1(t1), S2(t2), S3(t3))

= S23·1(t1, t2, t3)

=
(
Sθ12(t1, t2)−θ23 + Sθ13(t1, t3)−θ23 − S1(t1)−θ23

)− 1
θ23

(2.79)

or

C123|4 = CII(S1(t1), S2(t2), S3(t3))

= S13·2(t1, t2, t3)

=
(
Sθ12(t1, t2)−θ13 + Sθ23(t2, t3)−θ13 − S2(t2)−θ13

)− 1
θ13

(2.80)

or

C123|4 = CIII(S1(t1), S2(t2), S3(t3))

= S12·3(t1, t2, t3)

=
(
Sθ13(t1, t3)−θ12 + Sθ23(t2, t3)−θ12 − S3(t3)−θ12

)− 1
θ12

(2.81)

These structures can be easily proved that they stand in line with the three-

dimensional structures from formula (2.66), (2.67) and (2.68) and the pre-specified
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bivariate structures. Take the S123·4 as an example, the checking procedure is as

below:

1. When t1 = 0, then

S123·4(0, t2, t3, t4) = C123|4

(
1,
Sθ24(t2, t4)

S4(t4)
,
Sθ34(t3, t4)

S4(t4)

)
S4(t4)

= C23|4

(
Sθ24(t2, t4)

S4(t4)
,
Sθ34(t3, t4)

S4(t4)

)
S4(t4)

= S23·4(t2, t3, t4)

(2.82)

which is same as the three-dimension structure by applying Lemma 2.2.2.

2. When t2 = 0, then

S123·4(t1, 0, t3, t4) = C123|4

(
Sθ14(t1, t4)

S4(t4)
, 1,

Sθ34(t3, t4)

S4(t4)

)
S4(t4)

= C13|4

(
Sθ14(t1, t4)

S4(t4)
,
Sθ34(t3, t4)

S4(t4)

)
S4(t4)

= S13·4(t1, t3, t4)

(2.83)

which is same as the three-dimension structure by applying Lemma 2.2.2.

3. When t3 = 0, then

S123·4(t1, t2, 0, t4) = C123|4

(
Sθ14(t1, t4)

S4(t4)
,
Sθ24(t2, t4)

S4(t4)
, 1

)
S4(t4)

= C12|4

(
Sθ14(t1, t4)

S4(t4)
,
Sθ24(t2, t4)

S4(t4)

)
S4(t4)

= S12·4(t1, t2, t4)

(2.84)

which is same as the three-dimension structure by applying Lemma 2.2.2.
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4. When t4 = 0, then

S123·4(t1, t2, t3, 0) = C123(S1(t1), S2(t2), S3(t3)) (2.85)

where C123 = CI or C123 = CII or C123 = CIII from the three-dimensional
structures.

5. When t1 = 0, t2 = 0, t3 6= 0, t4 6= 0, then

S123·4(0, 0, t3, t4) = C123|4

(
1, 1,

Sθ34(t3, t4)

S4(t4)

)
S4(t4)

=
Sθ34(t3, t4)

S4(t4)
S4(t4)

= Sθ34(t3, t4)

= (S3(t3)−θ34 + S4(t4)−θ34 − 1)
− 1
θ34

(2.86)

which is the pre-specified two-dimensional Clayton copula [3] by applying
Lemma 2.2.2.

6. When t1 = 0, t2 6= 0, t3 = 0, t4 6= 0, then

S123·4(0, t2, 0, t4) = C123|4

(
1,
Sθ24(t2, t4)

S4(t4)
, 1

)
S4(t4)

=
Sθ24(t2, t4)

S4(t4)
S4(t4)

= Sθ24(t2, t4)

= (S2(t2)−θ24 + S4(t4)−θ24 − 1)
− 1
θ24

(2.87)

which is the pre-specified two-dimensional Clayton copula [3] by applying
Lemma 2.2.2.
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7. When t1 6= 0, t2 = 0, t3 = 0, t4 6= 0, then

S123·4(t1, 0, 0, t4) = C123|4

(
Sθ14(t1, t4)

S4(t4)
, 1, 1

)
S4(t4)

=
Sθ14(t1, t4)

S4(t4)
S4(t4)

= Sθ14(t1, t4)

= (S1(t1)−θ14 + S4(t4)−θ14 − 1)
− 1
θ14

(2.88)

which is the pre-specified two-dimensional Clayton copula [3] by applying
Lemma 2.2.2.

8. When t1 = 0, t2 6= 0, t3 6= 0, t4 = 0, then

S123·4(0, t2, t3, 0) = C123|4

(
1,
Sθ24(t2, t4)

S4(0)
,
Sθ34(t3, t4)

S4(0)

)
S4(0)

= C23

(
S2(t2), S3(t3)

)
= S23(t2, t3)

= (S2(t2)−θ23 + S3(t3)−θ23 − 1)
− 1
θ23

(2.89)

which is the pre-specified two-dimensional Clayton copula [3] by applying
Lemma 2.2.2.

9. When t1 6= 0, t2 = 0, t3 6= 0, t4 = 0, then

S123·4(t1, 0, t3, 0) = C123|4

(
Sθ14(t1, t4)

S4(0)
, 1,

Sθ34(t3, t4)

S4(0)

)
S4(0)

= C13

(
S1(t1), S3(t3)

)
= S13(t1, t3)

= (S1(t1)−θ13 + S3(t3)−θ13 − 1)
− 1
θ13

(2.90)
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which is the pre-specified two-dimensional Clayton copula [3] by applying
Lemma 2.2.2.

10. When t1 6= 0, t2 6= 0, t3 = 0, t4 = 0, then

S123·4(0, t2, t3, 0) = C123|4

(
Sθ14(t1, t4)

S4(0)
,
Sθ24(t2, t4)

S4(0)
, 1

)
S4(0)

= C12

(
S1(t1), S2(t2)

)
= S12(t1, t2)

= (S1(t1)−θ12 + S2(t2)−θ12 − 1)
− 1
θ12

(2.91)

which is the pre-specified two-dimensional Clayton copula [3] by applying
Lemma 2.2.2.

The other three models S234·1, S134·2 and S124·3 have the similar properties. The

checking procedures are omitted here.

2.3.6 Three-dimensional structures based on different copulas

The flexibility of the proposed method allows arbitrary selection of pairwise corre-

lation. It is not only the different associated parameters between variables but also

different copulas can be chosen. The examples in this section will focus on the Clayton

copulas [3], Hougaard copulas [13, 14], and Frank copulas [7]. And you are free to

replace them with any other Archimedean copulas.

An example of the three-dimensional structures based on proposed method

which include two Clayton copulas [3] and a Hougaard copula [13, 14] is shown in

Example 2.3.1 with Figure 2.7.

Example 2.3.1. One possible three-dimensional structure for Clayton +

Hougaard:
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Figure 2.7 Flexibility of proposed method (three-dimensional structure: Clayton
+ Hougaard).

.

� (t1, t2) is modeled by a Hougaard copula [13, 14] with parameter β, that is

Sβ(t1, t2) = exp
{
−[(− logS1(t1))β + (− logS2(t2))β]

1
β

}
; (2.92)

� (t1, t3) is modeled by a Clayton copula [3] with parameter θ13, that is

Sθ13(t1, t3) = (S1(t1)−θ13 + S3(t3)−θ13 − 1)
− 1
θ13 ; (2.93)

� (t2, t3) is modeled by a Clayton copula [3] with parameter θ23, that is

Sθ23(t2, t3) = (S2(t2)−θ23 + S3(t3)−θ23 − 1)
− 1
θ23 . (2.94)
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All the three-dimensional structures based on proposed structures for Figure 2.7

are given below:

S23·1(t1, t2, t3)

=
(
Sβ(t1, t2)−θ23 + Sθ13(t1, t3)−θ23 − S1(t1)−θ23

)− 1
θ23

=

([
exp

{
−[(− logS1(t1))β + (− logS2(t2))β]

1
β

}]−θ23

+

[
(S1(t1)−θ13 + S3(t3)−θ13 − 1)

− 1
θ13

]−θ23
− S1(t1)−θ23

)− 1
θ23

(2.95)

S13·2(t1, t2, t3)

=
(
Sβ(t1, t2)−θ13 + Sθ23(t2, t3)−θ13 − S2(t2)−θ13

)− 1
θ13

=

([
exp

{
−[(− logS1(t1))β + (− logS2(t2))β]

1
β

}]−θ13

+

[
(S2(t2)−θ23 + S3(t3)−θ23 − 1)

− 1
θ13

]−θ13
− S2(t2)−θ13

)− 1
θ13

(2.96)

S12·3(t1, t2, t3)

= exp
{
−[(− logSθ13(t1, t3))β + (− logSθ23(t2, t3))β]

1
β

}
= exp

{
−[(− log(S1(t1)−θ13 + S3(t3)−θ13 − 1)

− 1
θ13 )β

+ (− log(S2(t2)−θ23 + S3(t3)−θ23 − 1)
− 1
θ23 )β]

1
β

}
(2.97)
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Another example of the three-dimensional structures based on proposed method

which include a Clayton copula [3], a Hougaard copula [13, 14] and a Frank copula

[7] is shown in Example 2.3.2 with Figure 2.8.

Figure 2.8 Flexibility of proposed method (three-dimensional structure: Clayton
+ Hougaard + Frank).

.

Example 2.3.2. One possible three-dimensional structure for Clayton +

Hougaard + Frank:

� (t1, t2) is modeled by a Hougaard copula [13, 14] with parameter β, that is

Sβ(t1, t2) = exp
{
−[(− logS1(t1))β + (− logS2(t2))β]

1
β

}
; (2.98)
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� (t1, t3) is modeled by a Clayton copula [3] with parameter θ13, that is

Sθ13(t1, t3) = (S1(t1)−θ13 + S3(t3)−θ13 − 1)
− 1
θ13 ; (2.99)

� (t2, t3) is modeled by a Frank copula [7] with parameter γ, that is

Sγ(t2, t3) = −1

γ
log

(
1 +

(exp(−γS2(t2))− 1)(exp(−γS3(t3))− 1)

exp(−γ)− 1

)
. (2.100)

All the three-dimensional structures based on proposed structures for Figure 2.8

are given below:

S23·1(t1, t2, t3)

=− 1

γ
log

{
1 +

[exp(−γSβ(t1, t2))− 1][exp(−γSθ13(t1, t3))− 1]

exp(−γ)− 1

}
=− 1

γ
log

{
1 +

[
exp

(
−γ

[
exp

{
−[(− logS1(t1))β + (− logS2(t2))β]

1
β

}])
− 1

]
[

exp

{
−γ
[
(S1(t1)−θ13 + S3(t3)−θ13 − 1)

− 1
θ13

]}
− 1

]
[exp(−γ)− 1]−1

}
(2.101)
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S13·2(t1, t2, t3)

=
(
Sβ(t1, t2)−θ13 + Sγ(t2, t3)−θ13 − S2(t2)−θ13

)− 1
θ13

=

([
exp

{
−[(− logS1(t1))β + (− logS2(t2))β]

1
β

}]−θ13

+

[
−1

γ
log

(
1 +

(exp(−γS2(t2))− 1)(exp(−γS3(t3))− 1)

exp(−γ)− 1

)]−θ13
− S2(t2)−θ13

)− 1
θ13

(2.102)

S12·3(t1, t2, t3)

= exp

{
−
[(
− logSθ13(t1, t3)

)β
+
(
− logSγ(t2, t3)

)β] 1
β

}

= exp

{
−

[(
− log(S1(t1)−θ13 + S3(t3)−θ13 − 1)

− 1
θ13

)β
+

− log

[
−1

γ
log

(
1 +

(exp(−γS2(t2))− 1)(exp(−γS3(t3))− 1)

exp(−γ)− 1

))β] 1
β
}

(2.103)

These are two examples for reference. You are free to choose any other

Archimedean copulas and construct the model based on the proposed method.
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2.4 Survival Functions for Proposed Structures

By constructing the models using the method proposed in Section 2.2, Oakes’s

question has been answered in a satisfactory way. Now a class of flexible models with

any pre-specified bivariate margins have been obtained. This class of models can

model any non-normal data and have more complicated structures for more than two

dimensions. The research goal in the next few sections is to explore more properties of

this class of models and apply them to model high dimensional data more effectively.

The following discussion based on a basic assumption that the data can be

modeled by the Archimedean copulas. The joint bivariate survival functions of

(T1, T2), (T1, T3) and (T2, T3) follow Archimedean copulas (can be three different

copulas). That is

S(t1, t2) = ψ−1
θ12

{
ψθ12 [S1(t1)] + ψθ12 [S2(t2)]

}
(2.104)

S(t1, t3) = φ−1
θ13

{
φθ13 [S1(t1)] + φθ13 [S3(t3)]

}
(2.105)

and

S(t2, t3) = ϕ−1
θ23

{
ϕθ23 [S2(t2)] + ϕθ23 [S3(t3)]

}
(2.106)
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where S1(t1), S2(t2) and S3(t3) are marginal survival functions of T1, T2 and T3

respectively. ψ−1
θ12

, φ−1
θ13

and ϕ−1
θ23

are the inverse function of ψθ12 , φθ13 and ϕθ23

respectively. ψθ12 , φθ13 and ϕθ23 are defined as the copula generators [22]. θ12, θ13

and θ23 are the unknown parameters.

Based on the property of Archimedean copula, T1, T2 and T3 follow uniform

distribution U [0, 1]. That is

S1(t1) = 1− t1, (2.107)

S2(t2) = 1− t2, (2.108)

and

S3(t3) = 1− t3. (2.109)

Theorem 2.4.1. Let i, j, k ∈ {1, 2, 3} and i 6= j 6= k 6= i, and Ti, Tj and Tk be

uniform random variables. The joint survival function of (Ti, Tj, Tk) can be modeled
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by the proposed structure Sij·k.That is

Sij·k
(
Si(ti), Sj(tj), Sk(tk)

)
= Cij|k

(
Si|k(ti|tk), Sj|k(tj|tk)

)
Sk(tk)

= q−1
θij

{
qθij [Si|k(ti|tk)] + qθij [Sj|k(tj|tk)]

}
Sk(tk)

q is the copula generator. Let

V = C(Ti, Tj, Tk) = Sij·k(Si(Ti), Sj(Tj), Sk(Tk)),

Then V has survival function on [0, 1] as

S∗k(v) = v +

∫ 1−v

0

∫ 1

0

∫ Uk(tj ,tk,v)

Lk(tj ,tk,v)

sij·k(ti, tj, tk) dti dtj dtk,

with

Uk(tj, tk, v) = min

{
1, 0 6 Cij|k(Si|k(Ti|tk), Sj|k(Tj|tk)) 6

v

1− tk

}
,

Lk(tj, tk, v) = max

{
0, 0 6 Cij|k(Si|k(Ti|tk), Sj|k(Tj|tk)) 6

v

1− tk

}
,

and

sij·k(ti, tj, tk) =
∂3

∂ti∂tj∂tk
Sij·k(Si(Ti), Sj(Tj), Sk(Tk)).
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Proof. The survival function of V is

S∗k(v)

=P [C(Ti, Tj, Tk) 6 v]

=E{P [C(Ti, Tj, Tk) 6 v | Tk = tk]}

=E{P [Sij·k(Si(Ti), Sj(Tj), Sk(Tk)) 6 v | Sk(Tk) = Sk(tk)]}

=E{P [Cij|k(Si|k(Ti|tk), Sj|k(Tj|tk))Sk(tk) 6 v | Sk(Tk) = Sk(tk)]}

=E{1[Sk(tk) 6 v]P [Cij|k(Si|k(Ti|tk), Sj|k(Tj|tk)) 6 1 | Sk(Tk) = Sk(tk)]}+

E

{
1[Sk(tk) > v]P

[
Cij|k(Si|k(Ti|tk), Sj|k(Tj|tk)) 6

v

Sk(tk)

∣∣∣∣ Sk(Tk) = Sk(tk)

]}

=E{1[1− tk 6 v] ∗ 1 | Sk(Tk) = 1− tk)]}+

E

{
1[1− tk > v]P

[
Cij|k(Si|k(Ti|tk), Sj|k(Tj|tk)) 6

v

1− tk

∣∣∣∣ Sk(Tk) = 1− tk
]}

=

∫ 1

1−v
1 dtk +

∫ 1−v

0

E

{
1

[
Cij|k(Si|k(Ti|tk), Sj|k(Tj|tk)) 6

v

1− tk

]}
dtk

=v +

∫ 1−v

0

∫ 1

0

∫ Uk(tj ,tk,v)

Lk(tj ,tk,v)

sij·k(ti, tj, tk) dti dtj dtk

(2.110)

with

Uk(tj, tk, v) = min

{
1, 0 6 Cij|k(Si|k(Ti|tk), Sj|k(Tj|tk)) 6

v

1− tk

}
, (2.111)
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Lk(tj, tk, v) = max

{
0, 0 6 Cij|k(Si|k(Ti|tk), Sj|k(Tj|tk)) 6

v

1− tk

}
, (2.112)

and

sij·k(ti, tj, tk) =
∂3

∂ti∂tj∂tk
Sij·k(Si(Ti), Sj(Tj), Sk(Tk)). (2.113)

Theorem 2.4.1 is the survival functions for the three-dimensional proposed

structures. And you can use the same method to get the survival functions for any

d−dimensional proposed structures. Details are ommited here.

Since there are many nice properties for the bivariate structures. It is easy to

think of the application of these nice properties for the proposed structures. Can you

use these nice bivariate properties directly to the proposed d−dimensional structures?

The answer is no. Take the Kendall’s procedure proposed by Genest and Rivest

(1993) [10] for example. This approach can not apply for the proposed d−dimensional

structures. The reason will be discussed below.

The discussion below based on a possible pitfall for the proposed three-

dimensional structures. Let i, j, k ∈ {1, 2, 3} with i 6= j 6= k 6= i, Ti, Tj and Tk are

uniform random variables. The joint survival function of (Ti, Tj, Tk) can be modeled
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by the proposed structure Sij·k.That is

Sij·k
(
Si(ti), Sj(tj), Sk(tk)

)
= Cij|k

(
Si|k(ti|tk), Sj|k(tj|tk)

)
Sk(tk)

= q−1
θij

{
qθij [Si|k(ti|tk)] + qθij [Sj|k(tj|tk)]

}
Sk(tk) (2.114)

q is the copula generator. Let

V = C(Ti, Tj, Tk) = Sij·k(Si(Ti), Sj(Tj), Sk(Tk)), (2.115)

and for 0 6 v 6 1, let

Uk =
qθij [Si|k(Ti|Tk)]

qθij [Si|k(Ti|Tk)] + qθij [Sj|k(Tj|Tk)]
, (2.116)

and

Vk =
V

Sk(Tk)
(2.117)
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Then V is distributed on [0, 1] as

W ∗
k (v)

=P [C(Ti, Tj, Tk) 6 v]

=E{P [C(Ti, Tj, Tk) 6 v | Tk = tk]}

=E{P [C(Ti, Tj, Tk) 6 v | Sk(Tk) = Sk(tk)]}

=E{P [Sij·k(Si(Ti), Sj(Tj), Sk(Tk)) 6 v | Sk(Tk) = Sk(tk)]}

=E{P [Cij|k(Si|k(Ti|tk), Sj|k(Tj|tk))Sk(tk) 6 v | Sk(Tk) = Sk(tk)]}

=E{1[Sk(tk) 6 v]P [Cij|k(Si|k(Ti|tk), Sj|k(Tj|tk)) 6 1 | Sk(Tk) = Sk(tk)]}

+ E

{
1[Sk(tk) > v]P

[
Cij|k(Si|k(Ti|tk), Sj|k(Tj|tk)) 6

v

Sk(tk)

∣∣∣∣ Sk(Tk) = Sk(tk)

]}

=E{1[1− tk 6 v] ∗ 1 | Sk(Tk) = Sk(tk)]}

+ E

{
1[1− tk > v]Gk

(
v

Sk(tk)

) ∣∣∣∣∣ Sk(Tk) = Sk(tk)

}

=E{1[tk > 1− v] ∗ 1 | Sk(Tk) = Sk(tk)]}

+ E

{
1[tk < 1− v]Gk

(
v

1− tk

) ∣∣∣∣∣ Sk(Tk) = Sk(tk)

}

=

∫ 1

1−v
1 dtk +

∫ 1−v

0

Gk

(
v

1− tk

)
dtk

=v +

∫ 1−v

0

Gk

(
v

1− tk

)
dtk

(2.118)
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So V is distributed on [0, 1] as

W ∗
k (v) = v +

∫ 1−v

0

Gk

(
v

1− tk

)
dtk, (2.119)

with

Gk(vk) = vk −
qθij(vk)

q′θij(vk)
, vk =

v

1− tk
. (2.120)

And

Vk =
V

Sk(Tk)

=
V

1− Tk

= Cij|k
(
Si|l(Ti|Tk), Sj|k(Tj|Tk)

)
= q−1

θij

{
qθij
[
Si|k(Ti|Tk)

]
+ qθij

[
Sj|k(Tj|Tk)

]} (2.121)

Why the above discussion is incorrect? The reason is the assumption is not

satisfied. A basic assumption for the Kendall’s procedure is that the bivariate data

must be the pre-specified Archimedean copula. Take the three-dimensional proposed
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structure Sij·k as an example:

P (Ti > ti, Tj > tj|Tk = tk)

=
P (Ti > ti, Tj > tj, Tk = tk)

P (Tk = tk)

=
∂

∂tk
Sij·k(ti, tj, tk)

=
∂

∂tk

{
Cij|k(Si|k(Ti|tk), Sj|k(Tj|tk))Sk(tk)

}
=

{
∂

∂tk
Cij|k(Si|k(Ti|tk), Sj|k(Tj|tk))

}
Sk(tk) + Cij|k(Si|k(Ti|tk), Sj|k(Tj|tk))

{
∂

∂tk
Sk(tk)

}
6=Cij|k(Si|k(Ti|tk), Sj|k(Tj|tk))

(2.122)

So it is not the Archimedean copula as pre-specified. Because the assumption is not

satisfied which result a pitfall to use the Kendall’s procedure directly for the proposed

structure.

It is worth mentioning that you should always check the assumption before use

any existing procedure for the proposed structures. Otherwise, you will get a incorrect

conclusion.

2.5 Parameter Estimation for Proposed Structures

For parameter estimation of the proposed structures, there are two different ways to

approach. The first one is to use the Maximum Likelihood Estimation (MLE). The

other one is to use the pairwise estimation. Details will be discussed in this section.

For any given structures S12···(k−1)(k+1)···d·k based on the proposed construction

method, the parameter estimator from the maximum likelihood estimation can be
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derived through following steps:

First, the likelihood function can be derived by

L =
n∏
h=1

s12···(k−1)(k+1)···d·k(t1, t2, · · · , td), (2.123)

where n is the sample size, and

s12···(k−1)(k+1)···d·k(t1, t2, · · · , td)

=
∂d

∂t1∂t2 · · · ∂td
S12···(k−1)(k+1)···d·k(S1(T1), S2(T2), · · · , Sd(Td)). (2.124)

Second, the log likelihood function can be derived by

` = logL

=
n∑
h=1

log
[
s12···(k−1)(k+1)···d·k(t1, t2, · · · , td)

]
. (2.125)

Next steps are taking the derivative of the log likelihood, and setting them equal to
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0, that are

∂`

∂θij
= 0,

(2.126)

where i, j ∈ {1, 2, · · · , d}, i 6= j. Solve those equations, the parameter estimators θij

by maximum likelihood estimation can be derived.

It is worth mentioning that for this class of models, there is another approach

available for parameter estimation. The dependence parameters for any pair of

random variables can be estimated by the sample estimate of Kendall’s τ . Kendall’s

τij of (Ti, Tj) is defined as

τ = E[sign(Tih′ − Tih)(Tjh′ − Tjh)]

= 4E[S(Ti, Tj)]− 1 (2.127)

where i, j ∈ {1, 2, · · · , d}, i 6= j, and h, h′ ∈ {1, 2, · · · , n}, h 6= h′, n is the sample size.

And the joint survival function S(Ti, Tj) of (Ti, Tj) can be estimated by

Ŝθij ,n(tih, tjh) = P̂ (Ti > tih, Tj > tjh) =
eij,h
n

(2.128)
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where eij,h denote the number of events satisfied tih′ > tih and tjh′ > tjh at the same

time, which is

eij,h = #h′(tih′ > tih, tjh′ > tjh). (2.129)

Next, the pairwise estimators of τij can be estimated by

τ̂ij,n = 4E(Ŝθij(tih, tjh))− 1 = 4E

(
eij,h
n

)
− 1 (2.130)

It can be linked to the parameter θij by τ = g(θ). Then the pairwise estimator

of θij can be estimated by

θ̂ij,n = g−1(τ̂ij,n) (2.131)

where τ̂ij,n is the sample estimate of Kendall’s τ . Here g−1 is the inverse function of

g. And g is a one-to-one function which is uniquely determined by the copula used

to model (Ti, Tj).
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This proposed pairwise estimator of θij offers a simple way for parameter

estimation. Firstly, it only needs the information for (Ti, Tj) from d−dimensional

data (T1, T2, · · · , Td) which is much simpler than the maximum likelihood estimation.

If d is large (for example, d > 500), the estimator of MLE is almost intractable.

Secondly, it only uses the incomplete information from a d−dimensional data, but it

still solves the problem quite well. Details will be given by numerical studies.

2.6 Model Selection for Proposed Structures

For bivariate copula, there are many goodness-of-fit or model selection procedures for

copula models. Oakes (1989) [24] proposed a graphic diagnostic approach to check the

goodness-of-fit for Archimedean copula models. Shih (1998) [33] proposed a goodness-

of-fit test for the Clayton model. The test procedure is designed specifically for the

Clayton model. Wang and Wells (2000) [44] proposed a model selection procedure

within the Archimedean copula family for right-censored bivariate data based on the

so-called L2 norm of the Kendall distribution (basically a distance measure between

the empirical and the estimated Kendall distribution). Genest, Quessy, and Rémillard

(2006) [9] extended the idea in Wang and Wells (2000) [44] and proposed a general

goodness-of-fit test procedure for models belonging to the Archimedean copula family.

Wang (2010) [38] proposed goodness-of-fit tests for Archimedean copula models for

both uncensored and censored bivariate models. The research goal will focus on a

model selection procedure for the multivariate models proposed.

Based on the discussion from previous sections, the models from fomular

(2.18), (2.19) and (2.20) are different when C12 6= C13 6= C23 6= C12. Similarly,

the models from fomular (2.28), (2.29), (2.30) and (2.31) are also different when

C12, C13, C14, C23, C24 and C34 are different with each other. Here the differences

between copulas include they are different types of copulas and also include they are

same type of copulas with different parameters. How to select the best model for
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our data? The answer will greatly help us for applications. In this dissertation, a

simple goodness-of-fit test is given to check the best model for the given uncensored

multivariate data.

The joint survival function S(T1, T2, · · · , Td) of (T1, T2, · · · , Td) can be estimated

by

Ŝn(t1h, t2h, · · · , tdh) = P̂ (T1 > t1h, T2 > t2h, · · · , Td > tdh) =
e12···d,h

n
(2.132)

where n is the sample size and e12···d,h denote the number of events satisfied t1h′ > t1h,

t2h′ > t2h, · · · , tdh′ > tdh at the same time and h, h′ ∈ {1, 2, · · · , n}, h 6= h′, which is

e12···d,h = #h′(t1h′ > t1h, t2h′ > t2h, · · · , tdh′ > tdh). (2.133)

The main idea of the proposed method is to use the least squares approach that

the best model can be chosen to minimize the corresponding sum of squares:

Rk,n =
n∑
h=1

[
Ŝn(t1h, t2h, · · · , tdh)− S∗k(t1h, t2h, · · · , tdh)

]2

. (2.134)
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where S∗k is the survival function from Section 2.4 for the proposed structure

S12···(k−1)(k+1)···d·k and k ∈ {1, 2, · · · , d}.

The model selection procedure is described as follows: suppose that there are

several possible models of proposed structures to fit a d−dimensional data, for each

possible model, the unknown parameters can be estimated by the estimators from

Section 2.5. The model S12···(k−1)(k+1)···d·k producing the smallest Rk,n will be selected

as the best model for analyzing the data set.

2.7 Numerical Studies

In this section, the parameters estimation procedures for three-dimensional data

are demonstrated. The performance of the proposed pairwise estimator in different

scenarios with sample size N = 500 and sample size N = 1000 are evaluated.

Suppose the data follows the copula structure illustrated in Figure 2.5 where

� (t1, t2) is modeled by a Clayton copula [3] with parameter θ12;

� (t1, t3) is modeled by a Clayton copula [3] with parameter θ13;

� (t2, t3) is modeled by a Clayton copula [3] with parameter θ23.

The data generation begins from generating n random variables v1, v2 and v3

respectively from Uniform [0, 1] with v1 ⊥ v2 ⊥ v3 ⊥ v1. Next, you can transform

v1, v2 and v3 through CPI Rosenblatt transform [29, 26] to u1, u2 and u3 by the

proposed three-dimensional structures from fomula (2.66) or (2.67) or (2.68) as

illustrated in Figure 2.5 with parameters θ12, θ13, θ23. And their marginal distributions

are chosen to be exponentially distributed with rate 1, therefore the observation of

data (t1, t2, t3) can be generated with

t1 = − ln(u1), (2.135)
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t2 = − ln(u2), (2.136)

and

t3 = − ln(u3). (2.137)

Here model S12·3 from fomula (2.68) is used for demonstration. The settings for

parameters are θ12 =
6

7
, θ13 = 2, θ23 =

14

3
corresponding to Kendall’s τ12 = 0.3, τ13 =

0.5, τ23 = 0.7 respectively. In each scenario, 1000 times replications for the same

procedure are performed and the estimated Kendall’s τ are compared with the true

value. In the simulations, the proposed pairwise estimators are also compared with

the estimators by MLE. The standard deviation of the estimated Kendall’s τ are

calculated. Table 2.1 shows the simulation results from all scenarios.

The simulation results have shown that the mean values of the proposed pairwise

parameter estimates are very close to the true values even when the Kendall’s τ value

are small. Overall the proposed pairwise estimator works very well under the model

S12·3 for all scenarios. When the sample size N increased from 500 to 1000, the

proposed pairwise estimators are closer to the true values. Also from Tables 2.1, the

estimators from MLE is less biased and outperforms the proposed pairwise estimator

under the model S12·3 when the dependence level is high. Because the estimators
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Table 2.1 Simulation Results using Pairwise Estimation vs. Maximum Likelihood
Estimation for the Clayton Copula

Sample Size N=500

τ Setting τ12 = 0.3 τ13 = 0.5 τ23 = 0.7

Method Pairwise MLE Pairwise MLE Pairwise MLE

Mean of τ̂ 0.304 0.185 0.438 0.520 0.635 0.677

SD of τ̂ 0.0283 0.0277 0.0249 0.0211 0.0209 0.0176

Sample Size N=1000

τ Setting τ12 = 0.3 τ13 = 0.5 τ23 = 0.7

Method Pairwise MLE Pairwise MLE Pairwise MLE

Mean of τ̂ 0.303 0.184 0.438 0.519 0.632 0.675

SD of τ̂ 0.0196 0.0226 0.0181 0.0153 0.0143 0.0108

from MLE uses more information than the proposed pairwise estimators. Overall, the

proposed pairwise estimator is comparable with the estimators from MLE. And the

proposed pairwise estimator is much simpler than the estimators from MLE especially

when d is big.

It is worth mentioning that the simulation studies for the model S23·1 and S13·2

also have been conducted and find that the proposed pairwise estimators works very

well (the simulation results for the model S23·1 and S13·2 are omitted here).

2.8 Discussion

The intellectual merit of this proposed structures should be assessed on (at least)

three levels. On the first level, this research contributes directly to high dimensional

data analysis and survival analysis. The proposed high dimensional models can be
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used to model multivariate data with any bivariate margins. It offers the modelling

flexibility many models such as the hierarchical models, frailty models or vine models

cannot provide. The properties of the proposed models have also been explored to

provide guidance for estimating the parameters of models for a given multivariate

data. The association between competing risks can be decided and quantified using

the copula model assumption and the knowledge of the marginal distributions.

On the second level, multivariate normal distribution has been a dominant

multivariate model because of its simplicity and flexibility for bivariate margins.

The proposed class of models have these nice properties and can be used to model

multivariate non-normal data. The exploration of the properties of this class of models

will not only deepen the understanding of this type of models but also reveal any

advantages of applying these models. The identifiability property established using

the proposed structures has shown the advantages to model dependent competing

risks data using the Archimedean copula models.

On the highest level, the results of this research are especially important in

analyzing multivariate data using copula models. High dimensional data analysis

now has become a hot area with the quick development of the computer science

and the emergence of big data. The proposed modelling techniques will definitely

help to lay a solid foundation for future development and success of multivariate

analysis and survival analysis. The research will contribute to the advancement of

the statistical theory on correlation studies and greatly improve the understanding of

the dependence structure in multivariate data.
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CHAPTER 3

ANALYSIS OF SEMI-COMPETING RISKS DATA USING
ARCHIMEDEAN COPULA MODELS

3.1 Introduction

In medical research, the Disease Free Survival time (DFS) or the Disease Progression

Free survival time (PFS) and the Overall Survival time (OS) are usually observable

for the same subject. Understanding the dependency of DFS/PFS and OS plays an

important role in clinical practice.

For example, DFS/PFS can be used as a surrogate primary endpoint for OS if

the association between DFS/PFS and OS are high [35, 27]. DFS and OS are often

dependent and the OS (denotes by Y ) can censor DFS (denoted by X), but not vice

versa. This type of survival data is called semi-competing risks data [5] and has

received lots of attention recently.

Lagakos (1976) [19, 20] applied a parametric distribution for (X, Y ) in the region

X < Y . Fine, Jiang and Chappel (2001) [5] proposed to model the dependence

structure between X and Y using the Clayton copula [3] model for pairs falling into

the upper wedge (i.e, X < Y ) and applied a procedure proposed by Oakes (1986)

[23] to estimate the association parameter. Lakhal, Rivest and Abdous (2008) [21]

extended their approach and proposed estimation strategies based on an estimating

equation derived from the conditional tau. Their approach is essentially a moment

estimation approach and tends to be quite complicated in setting up their estimating

equation according to different scenarios from the simulation studies.

In this dissertation, target is to determine the true dependence level between X

and Y in semi-competing risks data setting. A novel and effective strategy is proposed

to analyze this type of data using different Archimedean copula models [8].
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A bivariate random vector (X, Y ) follows an Archimedean copula if the joint

survival function of (X, Y ) can be expressed as:

S(x, y) = ψ−1
θ

{
ψθ
[
SX(x)

]
+ ψθ

[
SY (y)

]}
, (3.1)

where SX and SY are marginal survival functions of X and Y respectively, ψ−1
θ is

defined on [0,∞] so that

ψ−1
θ (0) = 1, (3.2)

[ψ−1
θ ]′(s) < 0, (3.3)

[ψ−1
θ ]′′(s) > 0. (3.4)

ψθ is the inverse function of ψ−1
θ , defined as a copula generator [22] and θ is the

unknown parameter.

The first Archimedean copula model was proposed by Clayton (1978) [3].

Another important frailty model, the Hougaard model [13, 14], has

ψ−1
β (s) = exp(−sβ). (3.5)
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Its bivariate survivor function is

S(x, y) = exp

−
{−log [SX(x)

]} 1

β +
{
−log

[
SY (y)

]} 1

β


β
 (3.6)

for β ∈ (0, 1). Besides the Clayton model [3] and the Hougaard model [13, 14], some

well-known models such as the Frank model [7] and the Log-copula model also belong

to this family.

Assuming that (X, Y ) follows an Archimedean copula model, this dissertation

first derive the copula graphic estimator of marginal survival function of Y based on

a semi-competing risks data and prove its asymptotic properties, the copula graphic

estimator was proposed by Zheng and Klein (1995) [47, 16] initially.

Applying the copula-graphic estimator derived in this dissertation, a new

estimation procedure is proposed for association parameters in Archimedean copula

models based on an observed semi-competing risks data set. Using the proposed

parameter estimates, the marginal survival functions of X and Y can be consistently

estimated.

This chapter is organized in the following way: in Section 3.2, the copula-graphic

estimator for survival function of Y based on a semi-competing risks data is derived.

In Section 3.3, a new estimation strategy is presented and the asymptotic properties

of the new parameter estimates is discussed. A model selection procedure is proposed

in Section 3.4 and how to accommodate covariates is described in Section 3.5. The

simulation studies are reported in Section 3.6 and an illustrative example is gived to

demonstrate the usefulness and effectiveness of the porposed strategies in Section 3.7.

The chapter is ended with some discussion in Section 3.8.
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3.2 Copula-graphic Estimator for Marginal Survival Function of Y

Based on Semi-competing Risks Data

Using the similar notation as in Fine, Jiang and Chappel (2001) [5] and Lakhal, Rivest

and Abdous (2008) [21], define

Z = min{X, Y }, (3.7)

δZ = I(Z < C), (3.8)

δX = I(X < Y ), (3.9)

δY = I(Y < C), (3.10)

S = min{Z,C}, (3.11)

R = min{Y,C}. (3.12)

The observable part of a semi-competing risks data can be expressed as

(S, δZ , δZδX , R, δY ). (3.13)

Suppose that (X, Y ) can be modelled by an Archimedean copula with the dependence

parameter θ, one way of estimating the survival function of Y is to apply the copula-
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graphic estimator proposed by Zheng and Klein (1995) [47] to the setting. It is worth

mentioning that the proposed copula-graphic estimator in this dissertation is different

from the one proposed by Lakhal, Rivest and Abdous (2008) [21] as they proposed the

estimator for the marginal survival function of X while the proposed copula-graphic

estimator in this dissertation is developed to estimate the marginal survival function

of Y .

This dissertation has also established uniform consistency and weak convergence

for the copula-graphic estimator of the marginal survival function of Y . The main

purpose of deriving this copula-graphic estimator for survival function of Y is to use

it to develop a new parameter estimation approach for semi-competing risks data.

The idea is described as follows:

� Because C is independent of (X, Y ), the survival function of Z = min{X, Y }
which is π(z) = Pr(Z > z) can be estimated by the Kaplan- Meier estimate,
denote it by π̂(z).

� At points (X, Y,C) where Y < min{X,C} (i.e., δZ = 1, δZδX = 0), the
corresponding survival function of Y has a jump at Y while the corresponding
survival function of X has no jump at X.

� At points (X, Y,C) where C < min{X, Y } (i.e., δZ = 0), the corresponding
survival function of X has no jump at X and the corresponding survival function
of Y has no jump at Y , therefore π̂(z) has no change at these points.

For i ∈ {1, 2, · · · , n}, a semi-competing risks data set includes n independent

replications of

Si = min{Zi, Ci}, (3.14)

δZi = I(Zi < Ci), (3.15)

δZiδXi = I(Zi < Ci)I(Xi < Yi), (3.16)
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Ri = min{Yi, Ci}, (3.17)

δYi = I(Yi < Ci). (3.18)

For any given θ value,

π̂(Si) = ψ−1
θ

{
ψθ

[
ŜX(Si)

]
+ ψθ

[
ŜY (Si)

]}
, (3.19)

if Yi < min{Xi, Ci}, then ŜX(Si)− ŜX(Si−) = 0 and we must have

ψθ

[
ŜY (Si)

]
− ψθ

[
ŜY (Si−)

]
= ψθ

[
π̂(Si)

]
− ψθ

[
π̂(Si−)

]
(3.20)

where 0 = S0 < S1 < S2 < · · · < Sn, suppose that Si are increasingly ordered.

Summing above equality from 0 to t:

ψθ

[
ŜY (t)

]
=

∑
Si6t,Yi<min{Xi,Ci}

{
ψθ
[
π̂(Si)

]
− ψθ

[
π̂(Si−)

]}
(3.21)
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using the property ψθ(1) = 0. Equivalently,

ŜY (t) = ψ−1
θ

 ∑
Si6t,Yi<min{Xi,Ci}

{
ψθ
[
π̂(Si)

]
− ψθ

[
π̂(Si−)

]} . (3.22)

Using the martingale presentation, the above estimator can be expressed as:

ŜY (t) = ψ−1
θ

[∫ t

0

{
ψθ
[
π̂(u)

]
− ψθ

[
π̂(u−)

]}
dN̄(u)

]
, (3.23)

where

Ni(t) = I{Yi 6 t, Yi < min{Xi, Ci}}, (3.24)

N̄(t) =
n∑
i=1

Ni(t), (3.25)

Yi(t) = I{min{Xi, Yi, Ci} > t} = I{Si > t}, (3.26)

Ȳ (t) =
n∑
i=1

Yi(t). (3.27)
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For the Kaplan-Meier estimator π̂(u),

π̂(u) = π̂(u−)

{
1− ∆N̄1(u)

Ȳ1(u)

}
, (3.28)

where

N1i(t) = I{min{Xi, Yi} 6 t,min{Xi, Yi} < Ci}, (3.29)

N̄1(t) =
n∑
i=1

N1i(t), (3.30)

Y1i(t) = I{min{Xi, Yi} > t, Ci > t} = I{Si > t}, (3.31)

Ȳ1(t) =
n∑
i=1

Y1i(t). (3.32)

Therefore

ψθ
[
π̂(u)

]
− ψθ

[
π̂(u−)

]
≈ ψ′θ

[
π̂(u−)

] [
π̂(u)− π̂(u−)

]
= −ψ′θ

[
π̂(u−)

]
π̂(u−)

∆N̄1(u)

Ȳ1(u) (3.33)
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by the Taylor expansion and the formulas given on page 97 in Fleming and Harrington

(1991) [6]. When Yi < min{Xi, Ci} and Yi 6 t for some i, then: min{Xi, Yi} 6 Yi 6 t

and min{Xi, Yi} = Yi < min{Xi, Ci} 6 Ci, therefore if dNi(u) = 1, then ∆N1i(u) = 1.

Assuming that Y and X are both absolutely continuous failure time random variables,

then from dN̄(u) = 1, we have ∆N̄1(u) = 1 (i.e., there are no tied failure times).

Define

Mi(t) = Ni(t)−
∫ t

0

Yi(s)λ
](s)ds (3.34)

and

M̄(t) = N̄(t)−
∫ t

0

Ȳ (s)λ](s)ds (3.35)

as the martingales with respect to the σ field

F it = σ
{
I(Yi 6 t, Yi < min{Xi, Ci}), I(Yi 6 t, Yi > min{Xi, Ci})

}
(3.36)
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and

Ft =
n∨
i=1

F it (3.37)

respectively. The λ](s) is defined as the crude hazard function of Y :

λ](s) =
− ∂

∂u
P (Y > u,min{X,C} > t)|u=t

P (Y > t,min{X,C} > t)

=
− ∂

∂u
P (Y > u,X > t, C > t)|u=t

P (Y > t,X > t, C > t)

=
− ∂

∂u
P (Y > u,X > t)|u=t

P (Y > t,X > t)

(3.38)

because (X, Y ) is independent of C. The corresponding crude cumulative function

was denoted by Λ](s).

Based on above arguments and definitions, then

ψθ

[
ŜY (t)

]
= −

∫ t

0

ψ′θ
[
π̂(u−)

]
π̂(u−)

N̄(u)

Ȳ (u)
(3.39)
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by considering the fact that

Y1i(u) = I{min{Xi, Yi} > u,Ci > u}

= I{Si > u}

= I{Yi > u,min{Xi, Ci} > u}

= Yi(u)

(3.40)

and hence

Ȳ1(u) = Ȳ (u). (3.41)

Now

ψθ

[
ŜY (t)

]
=−

∫ t

0

ψ′θ
[
π̂(u−)

]
π̂(u−)

dN̄(u)− Ȳ (u)λ](u)du

Ȳ (u)
−
∫ t

0

ψ′θ
[
π̂(u−)

]
π̂(u−)λ](u)du

=−
∫ t

0

ψ′θ
[
π̂(u−)

]
π̂(u−)

dM̄(u)

Ȳ (u)
−
∫ t

0

ψ′θ
[
π̂(u−)

]
π̂(u−)λ](u)du.

(3.42)
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Also,

sup
0<u<t

∣∣∣∣∣ Ȳ (u)

n
− P (S > u)

∣∣∣∣∣→ 0, when n→∞, (3.43)

π̂(u−)→ π(u) = P (min{X, Y } > u), when n→∞. (3.44)

Based on above derivations, the estimator estimates a survival function

SY (t) = ψ−1
θ

[
−
∫ t

0

ψ′θ
[
π(u)

]
π(u)λ](u)du

]
. (3.45)

This is because

ψθ

[
ŜY (t)

]
− ψθ

[
SY (t)

]
=

1

n

∫ t

0

−ψ′θ
[
π̂(u−)

]
π̂(u−)

Ȳ (u)/n
dM̄(u)−

∫ t

0

{
ψ′θ
[
π̂(u−)

]
π̂(u−)− ψ′θ

[
π(u)

]
π(u)

}
λ](u)du.

(3.46)

It is easy to show that the first term goes to zero by following the similar arguments in

proving Theorem 3.4.2 in Fleming and Harrington (1991) [6] (the Lenglart inequality

will be applied). The second term goes to zero by the uniform consistency of the

Kaplan-Meier estimate and the boundedness of the derivative function of Φ(s) =
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−ψ′θ(s)s. It has thus proved that the copula-graphic estimator derived is still a

consistent estimator of the survival function of Y given θ.

Now the asymptotic distribution of ŜY (t) is derived as

ψθ

[
ŜY (t)

]
− ψθ

[
SY (t)

]
=

1

n

∫ t

0

−ψ′θ
[
π(u)

]
P (C > u)

dM̄(u)−
∫ t

0

{
ψ′θ
[
π̂(u−)

]
π̂(u−)− ψ′θ

[
π(u)

]
π(u)

}
λ](u)du+ op(1).

(3.47)

Using Gill’s representation (1980) [12] for the Kaplan-Meier estimate, then

√
n
[
π̂(u−)− π(u)

]
=

1√
n

n∑
i=1

[
−π(u)

∫ u

0

dM1i(w)

π1(w)

]
+ op(1) (3.48)

can be derived by noticing the fact that

π(u) = π(u−) = P (min {X, Y } > u) (3.49)
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and the absolute continuity of X and Y . Here π1(w) is defined as

π1(w) = P (S > w) = P (X > w, Y > w,C > w) (3.50)

and M1i(u) is defined as

M1i(u) = N1i(u)−
∫ u

0

I{S > w}λ1(w)dw, (3.51)

where

N1i(u) = I
{

min{X, Y } 6 u,min{X, Y } < C
}
. (3.52)

M1i(u) is the martingale with respect to the σ field,

F i1t = σ
{
I(min{Xi, Yi} 6 t,min{Xi, Yi} < Ci), I(min{Xi, Yi} 6 t,min{Xi, Yi} > Ci)

}
(3.53)
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and

F1t =
n∨
i=1

F i1t (3.54)

respectively. And λ1(t) is defined as the crude hazard function of min{Xi, Yi}:

λ1(t) =
− ∂

∂u
P
(
min{X, Y } > u,C > t

)
|u=t

P
(
min{X, Y } > t, C > t

)
=
− ∂

∂u
P (X > u, Y > u,C > t) |u=t

P (X > t, Y > t, C > t)

=
− ∂

∂u
P (X > u, Y > u) |u=t

P (X > t, Y > t)

(3.55)

by the independence of (X, Y ) and C. Then

√
n

{
ψθ

[
ŜY (t)

]
− ψθ

[
SY (t)

]}
=

1√
n

∫ t

0

−ψ′θ
[
π(u)

]
P (C > u)

dM̄(u) +
1√
n

∫ t

0

Φ′
[
π(u)

] [
−π(u)

∫ u

0

dM̄1(w)

π1(w)

]
λ](u)du+ op(1)

=
1√
n

n∑
i=1

{∫ t

0

−ψ′θ
[
π(u)

]
P (C > u)

dMi(u) +

∫ t

0

Φ′
[
π(u)

] [
−π(u)

∫ u

0

dM1i(w)

π1(w)

]
λ](u)du

}

+ op(1)

(3.56)
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where

Φ(s) = −sψ′θ(s). (3.57)

Overall it can be concluded that

√
n
[
ŜY (t)− SY (t)

]
=

1
√
nψ′θ

[
SY (t)

]×
n∑
i=1

{∫ t

0

−ψ′θ
[
π(u)

]
P (C > u)

dMi(u) +

∫ t

0

Φ′
[
π(u)

] [
−π(u)

∫ u

0

dM1i(w)

π1(w)

]
λ](u)du

}
+ op(1).

(3.58)

Therefore, the copula-graphic estimator derived above is asymptotically normal with

finite variance v(t) for fixed t. And here the analytic form of v(t) is very complicated

and use bootstrap method to estimate its variance is recommended.

Theorem 3.2.1. Let t0 ∈ (0,∞) be such that π(t0) = P (min{X, Y } > t0) > 0.

Suppose (X, Y ) follows an Archimedean copula model and the derivatives of ψθ(s)

and Φ(s) are bounded for s ∈ (π(t0), 1), ŜY (t) is a uniformly consistent estimator of

SY (t) and
√
n[ŜY (t)−SY (t)] converges weakly on D[0, t0) to a Gaussian process with

mean zero and a finite variance v(t).

109



3.3 A New Parameter Estimation Strategy Based on Semi-competing

Risks Data

For a semi-competing risks data (S, δZ , δZδX , R, δY ), where Y as the OS can only

be censored by an independent censoring time C. The true survival function S(Y )

of Y can be estimated by the Kaplan-Meier curve consistently based on (R, δY ),

the Kaplan-Meier estimator denote by ŜK(y) here. Based on the copula-graphic

estimator ŜY derived in previous section, a new parameter estimation strategy for

semi-competing risks data is proposed in this section.

The main idea of the proposed method is to use the least squares approach that

determines the unknown parameter θ value by minimizing the corresponding sum of

squares:

Qn(θ) =
n∑
i=1

ηi

[
ŜY (Yi)− ŜK(Yi)

]2

(3.59)

where

ηi = I(Yi < min{Xi, Ci}). (3.60)

Or equivalently,

θ̂n = arg minθ∈ΘQn(θ). (3.61)
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The estimator as the minimizer of Qn(θ) is obtained by solving the estimating

equation

∂Qn

∂θ
= 0 (3.62)

where

∂Qn

∂θ
= 2

n∑
i=1

ηi

[
ŜY (Yi)− ŜK(Yi)

] ∂ŜY (Yi)

∂θ
. (3.63)

The following regularity conditions are needed to establish the asymptotic normality

of the proposed parameter estimate θ̂n:

Condition 3.3.1. The parameter space Θ is compact and the true parameter θ0 ∈

Int(Θ) (the interior of parameter space Θ).

Condition 3.3.2.
∂SY (y)

∂θ
is continuous in y and bounded by a constant K.

Condition 3.3.3.
ψ′θ1(u)

ψ′θ2(u)
is an increasing function of u when θ2 > θ1.
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Remark: the regularity condition 3.3.3 is satisfied by most Archimedean copula

models such as the Clayton model [3] and the Frank model [7]. It has also been

presented as a condition to prove the Proposition 2 in Rivest and Wells (2001) [28].

Condition 3.3.4. Integration and differentiation operators are interchangeable.

The following theorem can be shown

Theorem 3.3.5. Under regularity conditions 3.3.1-3.3.4, the parameter estimate θ̂n

is consistent and
√
n(θ̂n− θ0) is asymptotic normal with zero mean and variance

σ2

γ2
,

where σ2 and γ2 are defined in proof.

Proof.

Consistency of the parameter estimate θ̂n:

Define S(y) as the true survival function of Y when θ = θ0. And here θ0 is the

true underlying parameter value of θ in assumed Archimedean copula model. The
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estimating equation can be written as:

0 =Mn(θ)

=
1

n
× ∂Qn(θ)

∂θ

=
2

n

n∑
i=1

ηi

[
ŜY (Yi)− ŜK(Yi)

] ∂ŜY (Yi)

∂θ

=
2

n

n∑
i=1

ηi

[
ŜY (Yi)− S(Yi) + S(Yi)− ŜK(Yi)

] ∂ŜY (Yi)

∂θ

=
2

n

n∑
i=1

ηi

[
ŜY (Yi)− S(Yi)

] ∂ŜY (Yi)

∂θ
+ op(1)

(3.64)

by the consistency of the Kaplan-Meier estimate ŜK of survival function S and also the

boundedness of
∂ŜY
∂θ

defined on a compact set (this is true because of the continuity

of
∂ŜY
∂θ

). By the Strong Law of Large Numbers (SLLN),

1

n
× ∂Qn(θ)

∂θ
→ 2E

{
η
[
SY (Y )− S(Y )

] ∂SY (Y )

∂θ

}
= M(θ) (3.65)

in probability as n → ∞ as
∂ŜY
∂θ

converges uniformly to
∂SY
∂θ

in probability. When

θ = θ0 (θ0 is true parameter value), SY (y) = S(y) is the true survival function of Y

and hence M(θ0) = 0 and when θ 6= θ0, SY (y) 6= S(y). Actually SY (y) > S(y) or

SY (y) < S(y) for almost all y when θ 6= θ0 by the Proposition 2 in Rivest and Wells

(2001) [28] (i.e., SY (Y ) are stochastically ordered for different θ values as the limits

of copula graphic estimators based on Archimedean copula models). Now consider
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the limiting function of the copula-graphic estimator

SY (y) = ψ−1
θ

[
−
∫ y

0

ψ′θ
[
π(u)

]
π(u)λ](u)du

]
. (3.66)

At two different θ values say θ1 6= θ2, then

S
(1)
Y (y) = ψ−1

θ1

[
−
∫ y

0

ψ′θ1
[
π(u)

]
π(u)λ](u)du

]
, (3.67)

S
(2)
Y (y) = ψ−1

θ2

[
−
∫ y

0

ψ′θ2
[
π(u)

]
π(u)λ](u)du

]
, (3.68)

respectively. Mimicking the proof of Proposition 2 in Rivest and Wells (2001) [28],

it shows that S
(1)
Y (y) > S

(2)
Y (y) under the assumption that

ψ′θ1(u)

ψ′θ2(u)
is an increasing

function of u when θ1 < θ2. Therefore, if SY (y) is differentiable with respect to θ, it

must be negative given y (i.e.,
∂SY (y)

∂θ
< 0). Under the regularity condition 3.3.3, it

concludes that ‖M(θ)‖ > 0 when θ 6= θ0. By checking the formula (3.65), it implies

that

inf
θ:d(θ,θ0)>ε

‖M(θ)‖ > 0 = ‖M(θ0)‖. (3.69)
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Furthermore, it is easy to show that

sup
θ∈Θ
‖Mn(θ)−M(θ)‖ p−→ 0. (3.70)

By Theorem 5.9 in van der Vaart, A. W. (1998) [36], it concludes that {θ̂n}, such

that {Mn(θ̂n) = 0}, converges in probability to θ0.

Asymptotic normality of
√
n(θ̂n − θ0):

Using the results in Gill (1980) [12] and Rivest and Wells (2001) [28],
√
n
[
ŜK(Yi)− S(Yi)

]
and

√
n
[
ŜY (Yi)− S(Yi)

]
can be represented as the summation of iid random

functions respectively such that:

√
n
[
ŜK(Yi)− S(Yi)

]
=

1√
n

n∑
j=1

[
−S(Yi)

∫ Yi

0

dM2i(u)

P (Y > u,C > u)

]
+ op(1)

=
1√
n

n∑
j=1

h
(K)
ij + op(1) (3.71)

where

N2i(u) = I{Yi 6 u, Yi < Ci}, (3.72)
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λ2(t) =
− ∂

∂u
P (Y > u,C > t)|u=t

P (Y > t, C > t)
, (3.73)

and

M2i(u) = N2i(u)−
∫ u

0

I{S > w}λ2(w)dw. (3.74)

Then

√
n
[
ŜY (t)− S(t)

]
=

1
√
nψ′θ

[
SY (t)

]×
n∑
i=1

{∫ t

0

−ψ′θ
[
π(u)

]
P (C > u)

dMi(u) +

∫ t

0

Φ′
[
π(u)

] [
−π(u)

∫ u

0

dM1i(w)

π1(w)

]
λ](u)du

}

=
1√
n

n∑
j=1

h
(Y )
ij + op(1)

(3.75)
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respectively, where h
(K)
ij and h

(Y )
ij are corresponding influence functions. Using the

Taylor expansion at θ = θ0, the estimating equation can be expressed as:

0 =
n∑
i=1

ηi
∂ŜY
∂θ

(Yi)
[
ŜY (Yi)− ŜK(Yi)

]
=

n∑
i=1

ηi
∂ŜY
∂θ

(Yi)
[
ŜY (Yi)− ŜK(Yi)

]

+
n∑
i=1

ηi


[
∂ŜY
∂θ

(Yi)

]2

+
∂2ŜY
∂θ2

(Yi)
[
ŜY (Yi)− ŜK(Yi)

] (θ̂n − θ0) + op(1)

=
n∑
i=1

ηi
∂ŜY
∂θ

(Yi)
[
ŜY (Yi)− ŜK(Yi)

]
+

n∑
i=1

ηi

[
∂ŜY
∂θ

(Yi)

]2

(θ̂n − θ0) + op(1).

(3.76)

Because ŜY (Yi) − ŜK(Yi) converges to 0 in probability uniformly when n → ∞ and

the derivatives of ŜY with respect to θ are all bounded, then

√
n(θ̂n − θ0) =

1

n

∑n
i=1 ηi

[
∂ŜY
∂θ

(Yi)

]{
√
n
[
ŜK(Yi)− S(Yi)

]
−
√
n
[
ŜY (Yi)− S(Yi)

]}
1

n

∑n
i=1 ηi

[
∂ŜY
∂θ

(Yi)

]2 + op(1).

(3.77)
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By using (3.71) and (3.75) and the fact that
∂ŜY
∂θ
→ ∂SY

∂θ
in probability uniformly

when n→∞, then

√
n(θ̂n − θ0) =

1

n
√
n

∑n
i=1

∑n
j=1 ηi

[
∂ŜY
∂θ

(Yi)

] [
h

(K)
ij − h

(Y )
ij

]
1

n

∑n
i=1 ηi

[
∂ŜY
∂θ

(Yi)

]2 . (3.78)

The numerator is asymptotic normal as it can be written as a second order U statistic

with some fixed variance σ2. The denominator converges to a constant:

γ = E

ηi{[∂SY
∂θ

(Yi)

]2
} (3.79)

using the Strong Law of Large Numbers (SLLN).

In summary, it concludes that
√
n(θ̂n−θ0) is asymptotic normal with zero mean

and variance
σ2

γ2
.

After θ̂n is obtained, the marginal survival function of X can be consistently

estimated by the copula-graphic estimator which was derived in Section 3.2 of this

dissertation.

3.4 Model Selection

A very important issue in modelling the semi-competing risks data is the model

selection. In previous work, this issue has not been addressed adequately. It turns
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out that Qn(θ) defined in Section 3.3 can be used as a model selection criterion. The

best Archimedean copula model can be chosen to minimize the corresponding Qn(θ)

value. The model selection procedure is described as follow.

Suppose that there are several possible families of Archimedean copula models

to fit a semi-competing risks data. For each family, the unknown parameter can be

estimated by minimizing corresponding Qn(θ) defined in Section 3.3. The family of

models producing the smallest Qn(θ) will be selected as the best model for analyzing

the data set.

3.5 Accomodation of Covariates

The method given in Section 3.4 can also accommodate covariates. Suppose that

there is a dichotomous covariate U such as the patient age group (U = 1 representing

young age and U = 2 representing old age). The best models can be selected and

fitted using the proposed strategy and the corresponding model parameters can be

estimated in each age group. When a covariate is continuous, the covariate U could

be categorized in some way to have enough observations in each category, then the

proposed analyses can be performed.

The method given in Section 3.4 can also be modified to accommodate multiple

covariates. The regression analysis can be started from the copula-graphic estimator

then the proposed analyses can be performed.

3.6 Simulation Studies

To evaluate the performance of the proposed estimator, the simulation studies in

different scenarios are given. Under the Houggard model with sample size N =

500, the DFS/PFS time X and OS time Y are simulated from a Hougaard copula

[13, 14] with parameter β = 0.8, 0.6, 0.4 and 0.2 corresponding to Kendall’s τ =

0.2, 0.4, 0.6 and 0.8 respectively. The marginal distribution of X and Y are assumed
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to be exponential distribution with rate 1. The censoring time C is independent of X

and Y and generated from an exponential distribution with rates λ = 0.33, 0.50, 0.67

and 1.00 respectively. In these settings, about 54% (censoring rate λ = 1.00) to

83% of overall survival time Y (censoring rate λ = 0.33) can be observed. In each

scenario, 1000 replications were performed for the same procedure and compare the

estimated Kendall’s tau with the true value. The bootstrap standard deviations of

the estimated Kendall’s tau were compared with the empirical standard deviations

based on the 1000 replications.

In the simulations studies, the proposed estimators (denoted by τ̂) were also

compared with the estimators proposed by Lakhal, Rivest and Abdous (2008) [21]

(denoted by τ̃) for the Hougaard model [13, 14]. The empirical (bootstrap) standard

deviations of τ̂ and τ̃ are denoted by ŜD and S̃D accordingly in Tables 3.1 and 3.2.

The simulation results have shown that the mean values of the proposed

parameter estimates are very close to the true values even when the censoring

proportions are high. Overall the proposed estimator works very well under the

Hougaard model assumption [13, 14] even when the DFS/PFS time X and OS time

Y are both heavily censored.

Also from Tables 3.1 and 3.2, it concludes that the proposed estimator is less

biased and outperforms the estimators proposed by Lakhal, Rivest and Abdous (2008)

[21] under the Hougaard model assumption [13, 14]. Because the estimators proposed

by Lakhal, Rivest and Abdous (2008) [21] are established based on a complicated

estimating equation developed from the conditional tau, the proposed estimators

seem to be simpler and more efficient for the Hougaard model [13, 14].

Once the dependence level between the competing risks has been determined

using the proposed estimator, the marginal survival functions of X can be consistently

estimated using the Wang estimator (2014) [39] or the copula-graphic estimator

proposed by Zheng and Klein (1995) [47] and Rivest and Wells (2001) [28].
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Table 3.3 Selection Percentages for Data from the Clayton Model

Sample Size N=500

Replication M=1000

True Model: Clayton

Fitting Model τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8

Clayton 79.8% 95.7% 99.1% 99.5%

Hougaard 1.2% 0.0% 0.0% 0.0%

Frank 19.0% 4.3% 0.9% 0.5%

It is worth mentioning that the simulation studies for the Clayton model [3]

have also been conducted. It finds that the proposed estimators and the estimators

proposed by Lakhal, Rivest and Abdous (2008) [21] are comparable under the Clayton

model [3] (the simulation results for the Clayton model are omitted here).

The simulations have also been conducted to evaluate the proposed model

selection procedure based on Qn(θ). The DFS/PFS time X and OS time Y from

three different Archimedean copula models have been simulated with parameter

values corresponding to Kendall’s τ = 0.2, 0.4, 0.6 and 0.8 respectively. The marginal

distribution of X and Y are assumed to be exponential distribution with rate 1 and

the censoring time C is independent of X and Y from an exponential distribution

with rate λ = 0.33. Tables 3.3, 3.4 and 3.5 present the selection percentages according

to different τ values.

From these results, it concludes that the percentages of selection increase when

τ values increase if the correct model was fitted. The percentages of selection decrease

when τ values increase if the incorrect model was fitted. Overall, the model selection

procedure works quite well.
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Table 3.4 Selection Percentages for Data from the Hougaard Model

Sample Size N=500

Replication M=1000

True Model: Hougaard

Fitting Model τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8

Clayton 2.8% 0.0% 0.0% 0.0%

Hougaard 79.3% 91.0% 97.3% 98.8%

Frank 17.9% 9.0% 2.7% 1.2%

Table 3.5 Selection Percentages for Data from the Frank Model

Sample Size N=500

Replication M=1000

True Model: Frank

Fitting Model τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8

Clayton 2.4% 0.6% 0.3% 0.4%

Hougaard 12.5% 5.6% 2.4% 1.3%

Frank 85.1% 93.8% 97.3% 98.3%
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Table 3.6 Qn(θ) Value for the Leukemia Data Set (Included in R Package KMsurv).

Sample Size N=137

Fitting Model Qn(θ)

Clayton 0.004

Hougaard 0.014

Frank 0.005

3.7 An Illustrative Example

Using the proposed approach, the leukemia data set used in Fine, Jiang and Chappel

(2001) [5] and also Wang, Chandra, Xu and Sun (2015) [41] was fitted. The data

set is included in R package KMsurv and the details about it can be found in the

following web site: https://cran.r-project.org/web/packages/KMsurv/KMsurv.pdf.

Applying the proposed model selection procedure for this semi-competing risks

data, it concludes that the Clayton model [3] has a Qn(θ) value 0.004 which is smaller

than the Qn(θ) values under the Hougaard model [13, 14] and the Frank model [7],

see Table 3.6. The Clayton model [3] has been chosen to fit this data set based on

the model selection procedure proposed in Section 3.4.

Under the Clayton model assumption [3], the estimated association parameter

is θ̂ = 6.9 with a bootstrap standard deviation ŜDθ = 1.81. The corresponding tau

estimate is τ̂ with a bootstrap standard deviation ŜD. The comparison results are

summarized in Table 3.7. The result based on the proposed procedure is close to

the tau estimate obtained using the approach in Fine, Jiang and Chappel (2001) [5]

under the Clayton model assumption [3].

Next, the data set can be categorized by the age variable into two categories

using the median value as the cut-off point. For the young age group, the Frank

model [7] is the best model based on the proposed strategy. For the old age group,
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Table 3.7 Parameters for the Leukemia Data Set (Included in R Package KMsurv).
Here the Proposed Parameter Estimator is Compared to the Estimator Proposed by
Fine, Jiang and Chappel (2001) [5].

Sample Size N=137

Fitting Model Clayton

Kendall’s Bootstrap

Estimator τ̂ ŜD

Proposed 0.78 0.04

Fine, 2001 0.80 0.04

Table 3.8 Parameters for the Leukemia Data Set (Included in R Package KMsurv)
by Variable Age (Using the Median Value as the Cut-off Point).

Sample Size N=137

Fitting Model Frank

Variable Kendall’s Bootstrap

Age τ̂ ŜD

Young 0.662 0.09

Old 0.726 0.08

the Frank model [7] is also the best model. Results summarized in Table 3.8. The

dependence between the DFS and the OS seems stronger for older patients.

3.8 Discussion

In this dissertation, a copula-graphic estimator has been derived for marginal

survival functions of failure times based on semi-competing risks data. The uniform

consistency and the weak convergence of the copula-graphic estimator have been

proved.
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Based on the copula-graphic estimator of the survival function, a new strategy

to estimate the unknown parameter has been proposed in Archimedean copula models

based on semi-competing risks data. The proposed estimation strategy in this

dissertation is simpler and more general than the method proposed in Fine, Jiang

and Chappel (2001) [5] as the proposed strategy in this dissertation can be applied

under different Archimedean copula model assumptions while the method proposed

by Fine, Jiang and Chappel (2001) [5] can only be applied under the Clayton model

assumption [3].

From the simulation studies in this dissertation, it finds that the proposed

strategy also tends to be simpler and more effective than the strategy proposed by

Lakhal, Rivest and Abdous (2008) [21] for the Hougaard model [13, 14].

Another main advantage of applying the proposed estimation strategy in this

dissertation is the effectiveness of the proposed model selection procedure. The

proposed model selection procedure in this dissertation is new and important for

semi-competing risks data because not much research has been done to select the

best copula model before this work.

When there are covariates in a semi-competing risks data, applying the proposed

estimation and model selection procedures still work after the categorization of the

covariates as long as there are enough patients in each category as shown in the data

analysis example in Section 3.7.

Alternatively, applying a strategy proposed by Wang et al. (2015) [41, 40] using

frailty models also can estimate the dependence level between competing risks. It is

worth mentioning that the data structure setting in Wang et al. (2015) [41] is a little

different from the setting in this dissertation: here in this dissertation, Y can always

be observed unless it is censored by an independent censoring time C. Meanwhile

in Wang et al. (2015) [41], Y can also be censored by a dependent censoring time,
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the extra information provided by some covariates in that setting can be applied to

determine the dependence levels between competing event times effectively.
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