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ABSTRACT

ON RESOURCE-EFFICIENCY AND PERFORMANCE
OPTIMIZATION IN BIG DATA COMPUTING AND NETWORKING

USING MACHINE LEARNING

by
Wuji Liu

Due to the rapid transition from traditional experiment-based approaches to large-

scale, computational intensive simulations, next-generation scientific applications

typically involve complex numerical modeling and extreme-scale simulations. Such

model-based simulations oftentimes generate colossal amounts of data, which must be

transferred over high-performance network (HPN) infrastructures to remote sites and

analyzed against experimental or observation data on high-performance computing

(HPC) facility. Optimizing the performance of both data transfer in HPN and

simulation-based model development on HPC is critical to enabling and accelerating

knowledge discovery and scientific innovation. However, such processes generally

involve an enormous set of attributes including domain-specific model parameters,

network transport properties, and computing system configurations. The vast space

of model parameters, the sheer volume of generated data, the limited amount of

allocatable bandwidths, and the complex settings of computing systems make it

practically infeasible for domain experts to manually deploy and optimize big data

transfer and computing solutions in next-generation scientific applications.

The research in this dissertation identifies such attributes in networks, systems,

and models, conducts in-depth exploratory analysis of their impacts on data transfer

throughput, computing efficiency, and modeling accuracy, and designs and customizes

various machine learning techniques to optimize the performance of big data transfer

in HPN, big data computing on HPC, and model development through large-scale

simulations. Particularly, unobservable latent factors such as competing loads on end

hosts are investigated and an algorithm named Density-Based Spatial Clustering of



Applications with Noise (DBSCAN) is employed to eliminate their negative impacts

on performance prediction using machine learning models such as Support Vector

Regression (SVR). Based on such analysis results, a customized, domain-specific loss

function is employed within machine learning models such as Stochastic Gradient

Descent Regression for throughput prediction to advise bandwidth allocation in HPN.

A Bayesian Optimization (BO)-based online computational steering framework is also

designed to facilitate the process of scientific simulations and improve the accuracy of

model development. The solution proposed in this dissertation provides an additional

layer of intelligence in big data transfer and computing, and the resulted machine

learning techniques help guide strategic provisioning of high-performance networking

and computing resources to maximize the performance of next-generation scientific

applications.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The advance in supercomputing technology is expediting the transition in various

basic and applied sciences from traditional laboratory-controlled experimental method-

ologies to modern computational paradigms involving complex numerical modeling

and extreme-scale simulations of physical phenomena, chemical reactions, climatic

changes, and biological processes.

One typical scientific application of such types is the research on the Earth’s

weather and climate system, which involves multiple physical processes acting over

a wide range of scales spanning from microphysics at the level of individual cloud

droplets to cloud systems at regional and global scales as shown in Figure. 1.1 [51].

Limited by computational resources and incomplete physical understanding, most

of these models contain approximate representations of processes that occur at the

spatiotemporal scales smaller than model grid spacing. Such subgrid parameteri-

zations often contain empirical parameters that need to be validated or tuned against

measurements. Depending on the subgrid processes in question, the number of

tunable parameters can range from several up to hundreds, and the specific values

of these parameters likely vary with weather and cloud regimes. Thus, the process

of “objective tuning” poses a great challenge to the computational communities as

well as the Earth Science community including forecasting of climate, weather, and

renewable energies such as wind and solar.

To facilitate the parameter tuning process, the simulation data generated

by such models needs to be transferred over high-performance network (HPN)

infrastructures to remote sites and analyzed against experimental or observation data
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Figure 1.1 Widely-used multi-scale, multi-physics models for the Earth’s weather
and climate system.

on high-performance computing (HPC) facility. In recent years, high-performance

networks (HPNs) featuring high-speed dedicated connections and advance bandwidth

reservation have been developed and deployed in a rapidly expanding scope to provide

such networking services. For example, OSCARS [2] provides advance reservation of

secure virtual circuit with guaranteed bandwidth within ESnet [1], and AL2S enables

similar services within Internet2 [4] and across other networks. Google’s B4 [46] is a

private software-defined application-friendly wide-area network (WAN) platform that

could be leveraged for big data sciences and industrial applications at the planet scale.

Computer systems such as Data Transfer Nodes (DTNs) in Science DMZ [5] have also

been deployed to support geographically distributed science due to the great benefit

brought by dedicated connections of HPNs.

However, data transfer is a complex process whose throughput performance

is affected by various factors, including not only the hardware specifications of both

network segments and end hosts, but also software configurations of operating systems
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and data transfer applications. Although the exclusive use of HPN connections

minimizes the impact of complex dynamics caused by some factors such as cross

traffic, many other elements involved in a typical big data transfer process still

affect the performance to a great extent, including i) configurations of end host

systems, ii) properties of network connections, and iii) control parameters of data

transfer methods and their underlying transport protocols. It is generally very

difficult to apply an analytical approach to big data transfer performance prediction,

due to i) the lack of accurate throughput performance models for high-performance

transport protocols such as UDT [24], ii) the complex composition of end-to-end HPN

connections, iii) the complexities of end host configurations; iv) the time-varying

workloads in end host systems; and v) other latent variables that may not even be

accessible or measurable. Consequently, HPN technologies and services have not been

fully utilized for big data transfer regardless of the continuous bandwidth upgrades

in backbones.

Moreover, the processing and analysis of such large-scale simulation, obser-

vation, or experimental datasets, are typically structured and orchestrated as

computing workflows. Such big data workflows generally require massive computing

resources for execution on high-performance clusters in cloud environments. Many

research efforts have been made to achieve both computation and energy efficiency in

workflow execution and most of them adopt a top-down design methodology that

takes into consideration both program codes and hardware systems for workflow

performance optimization [27, 17, 26, 44]. The technology stack of such computing

platforms designed for big data workflows involves a large number of configurable

parameters and end users need to request computing resources as needed in advance

through parameter setting.

However, finding a satisfactory configuration for workflow execution in such

complex systems is challenging to end users, who are primarily domain experts.
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Most existing big data systems provide default values for parameter setting, which,

unfortunately, do not always yield the best performance. Moreover, the complexity

in a workflow execution process makes it very difficult to choose and configure the

right set of parameters from different layers in the technology stack as they oftentimes

exhibit complex interactive effects within and across layers. Most of the existing work

for workflow parameter setting is carried out in the context of computational steering,

which enables end users to interact with the computing workflow and system during

execution [28, 45]. Although having achieved remarkable success in their intended

environments, these methods often place an undue burden on end users to spend a

significant amount of time in sifting through the large parameter space based on a

try-and-error process. Therefore, it is still an important yet largely unsolved problem

to decide the best parameter setting for optimal workflow performance in big data

systems, even with the aid of certain domain knowledge in systems and workflows.

1.2 An Integrated Solution

In view of the aforementioned challenges and limitations, we propose an integrated

solution to big data movement in HPNs and big data computing in HPC, which is

comprised of three major components: i) performance prediction of big data transfer

to support bandwidth reservation, ii) performance modeling and prediction of big

data workflows, and iii) collaborative computational steering as a service, in a unified

framework. The overarching goal of our research is to develop a class of machine

learning-assisted big data transfer and big data computing solutions for collaborative

computational steering in support of large-scale, simulation-based computational

sciences. The proposed solutions are expected to streamline, automate, and optimize

the lifecycle of big data workflows and revolutionize the traditional offline and manual

steering approaches.
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Figure 1.2 Framework of the proposed integrated solution.

The overall design of the proposed framework is illustrated in Figure. 1.2. As

shown on the left side of Figure. 1.2, a typical model-based research process in

eScience involves model construction, numerical simulation, and parameter tuning,

which generates large simulation datasets. These datasets are then transferred to

remote facilities using machine learning-assisted transport methods in HPNs. They

are further processed by various computing programs against real-life experimental

datasets or measurements for model validation or calibration, which are mapped as

big data workflow modules and executed in HPC or clusters deployed in clouds. The

interactions between the steering engine and the scientific workflow are carried out

over a unified communication channel that enables the delivery of various steering

commands from multiple users to different simulation processes being executed

concurrently.

1.3 Contributions

This dissertation tackles the problem of optimizing the performance of large-scale

scientific simulations through strategic recommendations of hyper parameter settings

5



using machine learning. We summarize the main contributions of this dissertation as

follows:

� We conduct an exploratory analysis on the effects of latent factors based on

extensive performance measurements collected in the past several years from

data transfer tests using different protocols and applications between various

end sites in several real-life HPN testbeds. We also propose a clustering-based

method to eliminate the negative impact of latent factors on performance

prediction. We further develop a robust performance predictor by incorporating

the proposed elimination method into data preprocessing and customizing

domain-specific loss functions.

� We conduct an in-depth qualitative and comparative exploratory analysis to

investigate the impact of hyper parameters on workflow performance. With the

findings from the exploratory analysis and domain knowledge, we construct

dependent features by mapping subsets of parameters with a number of

candidate functions to model the corresponding workflow performance. We

further propose a feature selection method based on information theory [16] to

identify the most influential parameters.

� We design a framework of Co2Steer for steering as a service with generic models

of simulations and extensible Application Programming Interfaces (APIs)

to interact with and guide model-based simulations towards user-preferred

directions. This computational steering framework can be applied to a

wide spectrum of large-scale scientific applications with similar computation-

computing workflows.
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CHAPTER 2

PERFORMANCE PREDICTION OF BIG DATA TRANSFER

2.1 Related Work

The significance of high-speed dedicated connections provisioned by HPNs has been

widely recognized in both research and industrial communities due to the rapidly

growing big data transfer needs of data- and network-intensive applications. In the

past decade, a great deal of research efforts have been made to predict data transfer

performance using different methods.

2.1.1 Profiling-Based Performance Prediction

Transport performance profiling employs an empirical approach to study the behaviors

of different data transfer applications and their underlying transport protocols. A

profile of transport performance in response to control parameters of transport

methods and network environments is obtained by running data transfer tests

with a sweep of the parameter space and collecting corresponding performance

measurements. Such profiles can help us understand the network behaviors, facilitate

the design of an effective performance predictor, and also be used as benchmarks.

Rao et al . in [39] provided large-scale TCP measurements over a set of 10 Gbps

dedicated connections with emulated delays ranging from 0 ms to 366 ms, and further

in [40] showed that TCP throughput is very sensitive to the connection delay and

behaves in a combination of concave and convex functions. Performance profiling

of UDT [24], another widely-used data transfer protocol in HPN community [7], is

conducted in [18], where UDT behaviors with respect to various application settings

and protocol socket options are measured and analyzed. These measurements and

analyses show that control parameter settings also significantly affect throughput

performance of big data transfer in HPNs. Unfortunately, such effects are not
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taken into consideration in conventional performance prediction methods. Liu et al.

conducted similar research on performance profiling of data transfer methods in [42].

While profiling-based approaches offer better interpretability and explainability as

they provide a deeper insight into the behaviors of data transfer methods under

various circumstances, they typically incur high overhead, sometimes making them

practically infeasible. For example, to obtain a fully-covered transport profile of a

given protocol over a given connection, an exhaustive sweeping of the entire parameter

space may take hours or even days to complete.

2.1.2 Learning-Based Performance Prediction

Along with the emergence of HPN technologies and the accumulation of performance

measurements of big data transfer, machine learning has been increasingly used to

investigate and reveal the behavioral patterns of data transfer protocols and the

underlying host and network infrastructures.

Mirza et al . in [35] considered a set of properties of historical data transfer over

network paths as features to train machine learning models, and then used various

combinations of subsets of these features for evaluation. Although this work was

focused on predicting TCP performance in shared networks, some important features

in such environments such as cross traffic were not directly considered when building

the model. Liu et al . employed regression models to explain the observed performance

patterns extracted from the log files of disk-to-disk wide-area file transfer powered by

GridFTP [52]. They further in [53] expanded the feature set and developed a model

selection strategy for performance prediction of file transfer in wide-area networks.

Based on a retraining process, their approach showed promising prediction accuracy,

which is verified by a comparative evaluation using Globus logs [3].

8



2.2 Problem Statement

The throughput performance y of a data transfer over a dedicated connection is

considered as a function f of a vector of feature variables x involving different

segments including end hosts, network connections, and applications, i.e., y = f(x).

The analytical form of f is typically unknown, and thus we propose to employ

machine learning to build a model to approximate f based on historical performance

measurements of big data transfer.

More formally, we collect a set of measurements used as the training dataset T =

{(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi (i = 1, 2, . . . , n) is a specific set of values of

the feature vector x that collectively determine the corresponding throughput yi. We

aim to estimate f based on T , i.e., f̂(xi) ≈ f(xi) such that f̂(xi) is close enough to

the “true” value yi for all training examples in T and can be used to predict yi given

a future arbitrary xi with high accuracy.

The feature vector x in this context is in the form of a list of observable

variables in the three segments of an end-to-end data transfer path: i) end host

configurations such as CPU speed, RAM size, etc.; ii) connection properties such as

round-trip time (RTT), connection bandwidth, etc.; and iii) control parameters of

data transfer applications such as socket buffer size, number of data streams, etc.

However, there exist certain unforeseeable and unobservable latent factors including

competing loads (since the end hosts are usually shared by multiple users), system

dynamics on end hosts, and instabilities along the network connection, all of which

may also significantly affect the end-to-end data transfer performance. This is mainly

because when the network speed reaches a certain high rate, as in the case of HPNs,

the speed of (mainly incoming) traffic may keep the end hosts (mainly the receiver)

constantly busy and any perturbation under such conditions caused by any latent

factor may overwhelm the end host, leading to unpredictable performance.
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From the perspective of performance prediction, the above “abnormal” behaviors

may result in large noise in the training dataset T . Considering the number of

observable factors in x and the complexity and randomness caused by the latent

factors and other unknowns, it is extremely difficult to build a robust performance

predictor for HPN resource management, which is critical to satisfying bandwidth

requirements of user requests and minimizing resource waste.

Hence, in addition to normal (well-behaving) performance measurements

y, the training dataset T typically also contains some “corrupted” performance

measurements y′ under the effects of both feature vector x and unobservable factors

α, i.e., y′ = f(x) + f ′(α), where f ′(α) represents the collective (negative) effects

imposed by the latent variables and other unknowns. In other words, the performance

measurements in T are sampled from a combined set of {y} and {y′}.

Our work has two technical components: i) use a generic clustering-based

method in data preprocessing to eliminate the “latent-variable-corrupted” data points

from the training set; and ii) employ machine learning methods to build an accurate

performance predictor based on the cleaned training set.

2.3 Analysis of Feature Variables and Latent Factors

Effects of Application-Accessible Parameters Here, we focus on three repre-

sentative control parameters, i.e., buffer size, stream count, and round trip time

(RTT), and show their impact on throughput performance. More comprehensive

profiling results are provided in [42, 39] for both TCP and UDT [24].

The throughput performance measurements with respect to number of streams

and RTT are plotted in Figure. 2.1(a), which shows that, over a 10 Gbps dedicated

connection, using multiple streams help achieve better transport performance,

especially for a long connection delay. This observation actually has motivated the

design of many data transfer toolkits and services such as Globus GridFTP [3] that are

10



1 2 3 4 5 6 7 8 9 10

Stream Number

0

2000

4000

6000

8000

10000

P
er

f.
 (

M
b

p
s)

0 ms

11 ms

22 ms

45 ms

91 ms

(a)

0.02 0.06 0.1 0.14 0.18

TCP Buffer Size (MB)

0

1000

2000

3000

4000

5000

6000

P
er

f.
 (

M
b

p
s)

[1,5]

(5,10]

(10,15]

(15,20]

(20,25]

Stream Number

(b)

Figure 2.1 Illustration of the impact of application-accessible parameters on TCP
performance: (a) performance vs. stream count and RTT; and (b) performance vs.
stream count and buffer size.

being widely used for big data transfer. The behavior under different RTTs indicates

that achieving satisfactory performance over a long-haul connection is difficult even

for a dedicated channel with sufficient bandwidth.

The performance measurements in response to buffer size and number of streams

are plotted in Figure. 2.1(b), which shows that, over short connections, using a large

number of parallel streams only brings a limited performance gain in comparison with

an appropriately set buffer size. In such cases, they jointly dominate the throughput

performance of TCP: the performance generally increases as the buffer size increases;

however, as the number of streams increases, the performance gains from increasing

the buffer size are diminishing, which is probably due to the resource demand of a

high stream count overwhelming the end host system.

2.3.1 Effects of Unknowns

The results presented in Subsection. 2.3 suggest the use of machine learning methods

for performance predication of big data transfer in HPNs. This is because: i)

the performance patterns are qualitatively consistent and stable across different

11



0 50 100 150 200

Buffer Size (KB)

0

1500

3000

4500

6000

7500

P
er

f.
 (

M
b

p
s)

(a) Without latent effects

1 1.5 2.5 3.5 4.5 5.5

Buffer Size (MB)

0

2000

4000

6000

8000

10000

P
er

f.
 (

M
b

p
s)

(b) With latent effects

Figure 2.2 TCP performance vs. buffer size without and with latent effects.

connections, e.g., the throughput increases as the buffer size and number of streams

increase and the achievable throughput decreases as the connection delay increases;

and ii) such patterns cannot be modeled analytically, e.g., the slope of performance

increase with respect to buffer size increase may vary across different connections,

and the optimal number of data streams may depend on not only the network

environments but also the end host system configurations. Such multi-dimensional

accessible control parameters or features make it difficult, if not at all possible,

to derive an analytical form to describe their relationship with the throughput

performance.

However, during our extensive experimentation, we found that there may exist

certain latent variables that also significantly affect the throughput performance.

These latent variables are not easily observable while the data transfer is being

performed due to the data transfer application’s limited access to the end host system

and other unpredictable factors such as competing loads and system dynamics. Such

latent effects, if not excluded, could make machine learning-based prediction biased

or overfitted.
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To show such latent effects, we compare the performance measurements of the

same set of data transfer tests conducted on two different testbeds: i) a production

HPN testbed where the end hosts of data transfer are computing servers shared by

many users (thus competing loads are significant), and ii) our local testbed where the

experimental conditions are strictly controlled and competing loads from other users

are forbidden.

Figure. 2.2 plots the difference in TCP performance with respect to buffer size

with and without the effects of latent variables. As shown in Figure. 2.2(a), TCP

throughput almost linearly increases with the increase of buffer size before reaching

the peak. In Figure. 2.2(b), the maximal achievable TCP performance follows a

similar pattern, i.e., increases linearly as the buffer size increases till reaching the peak.

In addition, there also appear a non-negligible number of performance measurements

below the maximal ones, which may cause inaccuracy in performance prediction for

bandwidth scheduling in HPNs.

Figures. 2.2(a) and 2.2(b) show that in addition to the impact of data transfer

applications and network environments, there are a certain number of unobservable

factors such as system dynamics and competing loads from “hidden” users that could

undermine the performance. Such latent factors originate from unknown features and

are very difficult to estimate due to their unpredictable nature and randomness.

In this work, we propose to use machine learning methods to eliminate the

(negative) effects of such latent variables during data preprocessing and further build

a robust machine learning model for big data transfer performance prediction in

HPNs.

2.3.2 Elimination of Latent Effects Using Clustering

We first describe our approach to eliminate latent effects using clustering-based

methods, and then compare different clustering algorithms.
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Figure 2.3 The case of UDT performance corresponding to buffer size diverges due
to latent effects.

These effects are also illustrated by UDT performance in Figure. 2.3, where

we fix all other parameters and only vary the buffer size. It shows that the UDT

throughput with respect to buffer size diverges to two different patterns with and

without latent effects. These latent factors would seriously impair the quality of a

prediction model. This phenomenon motivates us to use a clustering-based method to

eliminate the measurements that are observed under the conditions with significant

latent effects. Other research (e.g., [53]) also pointed out the negative effects of such

latent factors and a threshold-based method is adopted in [53] to eliminate the effects,

which, although simple, may introduce an unexpected bias into the performance

prediction model.

In addition, due to the nature of the problem, f(x) is considered to be smooth.

In other words, with a slight change to any parameter, e.g., buffer size, the change

in the throughput performance should be bounded. If we have a sufficient number

of data points for different values of control parameters, we are able to see a smooth

pattern of throughput performance, as shown in Figure. 2.3.
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Figure 2.4 Comparison of different clustering algorithms (values are normalized).

As stated previously, our dataset is a combination of performance observations

including both y and y′, which are subject to different mapping functions. Our goal

is to differentiate the divergence of different performance patterns and rule out the

one that is manifested by the “abnormal” data points and is thus less frequently

observed, as the regular pattern (exhibited by the normal data points) would appear

more frequently in real-life bandwidth scheduling. This can be achieved by using

clustering-based methods to categorize y and y′ into different clusters with a certain

distance measure such that the data points within the same cluster are closer to each

other and thus are more likely to be measured under similar conditions with similar

latent effects.

Comparison of Different Clustering Algorithms To choose an appropriate

clustering algorithm to separate “abnormal” data points from normal ones, we

compare several well-known and commonly-used clustering algorithms, as shown in

Figure. 2.4. Conventional clustering methods based on Expectation Maximization

(EM) such as K-means and Gaussian Mixture Model (GMM) aim to maximize the

log-likelihood derived from previous estimates. As shown in Figure. 2.4, K-means

15



0 0.2 0.4 0.6 0.8 1

Buffer Size

0

0.2

0.4

0.6

0.8

1

P
e
rf

.

Cluster 0

Cluster 1

(a) Block size: 8955 bytes

0 0.2 0.4 0.6 0.8 1

Buffer Size

0

0.2

0.4

0.6

0.8

1

P
e
rf

.

Cluster 0

Cluster 1

(b) Block size: 26867 bytes

Figure 2.5 Clustering results of DBSCAN (values are normalized).

and GMM perform poorly in differentiating the data points under different levels

of latent effects, since they simply divide the data points into two groups with

a roughly equal radius. Therefore, we propose to use the Density-Based Spatial

Clustering of Applications with Noise (DBSCAN) algorithm [34] to eliminate the

data points with latent effects and hence facilitate accurate performance prediction.

DBSCAN categorizes the data points into different clusters based on their densities,

where tightly-packed points are grouped together and those in low-density regions

are classified as outliers. The clustering results of DBSCAN on the same datasets as

used in Figure. 2.3 and Figure. 2.4 are presented in Figure. 2.5(a) and Figure. 2.5(b),

respectively, which show the effectiveness of DBSCAN in differentiating data points

with latent effects.

2.4 Prediction of Big Data Transfer Performance

In this section, we first describe a customized loss function used for building a

performance predictor and then present prediction results using various machine

learning models. The performance predictors are all implemented in Python based

on the scikit-learn library [22].
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Customized Loss Function Different from traditional supervised learning methods

that seek an optimal label for a given feature vector [35, 53], for bandwidth scheduling,

we aim to build a model that provides a loosened prediction with a reasonable range.

Together with DBSCAN-based data preprocessing, which eliminates negative

latent effects, we build our performance predictor based on a customized loss function,

as motivated by the domain knowledge of HPN management that requires the reserved

bandwidth over a dedicated connection to match the bandwidth requirement of a

data transfer request with minimal waste. Therefore, the optimal predicted transfer

performance ŷ = f̂(xi) should lie within the range [yi, εyi], where ε ≥ 1 is a small

tunable positive number and yi is the ground truth of the achievable performance

with feature vector xi. The predicted value should be slightly higher than what

a data transfer can utilize to satisfy the request and also minimize the waste.

Inspired by the ε-insensitive loss used by Support Vector Regression (SVR) and other

work [41], we customize the ε-insensitive loss function in Figure. 2.6(a) by restricting

the tolerable errors to be positive only. As shown in Figure. 2.6(b), the optimal value

is parameterized by an error tolerance ε and our objective is to minimize the following

loss

L(θ, ε) =
n∑
i=1

{
max(yi − f̂θ(xi), 0) + max(f̂θ(xi)− ε · yi, 0)

}
, (2.1)

where the loss L(θ, ε) is 0 if the prediction f̂θ(xi) is larger than the observed value

yi but is within the tolerable range bounded by ε; otherwise, L(θ, ε) is the absolute

error.

Evaluation Metric We define a domain-oriented performance evaluation metric,

denoted by γ, similar to the Mean Absolute Percentage Error (MAPE), which is a

commonly-used accuracy metric in statistics. Unlike MAPE that counts the absolute

error, γ counts only the positive errors that fall out of the range governed by ε as
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Figure 2.6 Loss functions.

in Equation. 2.1. This Customized Mean Absolute Percentage Error (CMAPE) is

defined as γ = 1
n
L(θ, ε) = 1

n

∑n
i=1

{
max(yi− f̂θ(xi), 0)+max(f̂θ(xi)− ε ·yi, 0)

}
, ε ≥ 1,

where f̂θ(xi) is the predicted value given feature xi, yi is the corresponding ground

truth, n is the total number of test cases. A proper bandwidth allocation should

satisfy the user requirement with only an inevitable (as governed by ε) amount of

waste. In addition to γ, we also count the Effective Prediction Percentage (EPP,

denoted by β) among all test cases, i.e., β = 1
n

∑n
i=1 I{yi ≤ f̂θ(xi) ≤ ε · yi}, where

I(ψ) is an indicator function that is equal to 1 if ψ is true, and 0, otherwise.

2.4.1 Models in Comparison

We compare four models [37] with the customized loss function defined in Equation. 2.1:

i) linear models as represented by Ridge Regression (RR); ii) non-linear models as

represented by Support Vector Regression (SVR); iii) Neural Networks (NN), where

we use a standard three-layer neural network with ReLU as the activation function;

and iv) ensemble models as represented by Random Forest Regression (RFR).
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2.4.2 Dataset

Our dataset contains about 100,000 records of throughput performance measurements

that are collected from big data transfer tests conducted over local back-to-back

connections and in several other HPNs managed by different institutions.

2.4.3 Results

Our performance evaluation includes two parts: i) compare the prediction results of

SVR on the original dataset with and without the DBSCAN-based preprocessing as

introduced in Subsection. 2.3.2; and ii) compare the performance of the four models

in Subsection. 2.4.1 and select the best one with data preprocessing.

SVR Prediction Accuracy With and Without Preprocessing We first run

the DBSCAN-based preprocessing to filter out data points that are heavily affected

by latent factors and then perform prediction using SVR. This process is repeated

without such preprocessing for comparison. As shown in Figure. 2.7, the accuracy

of SVR-based performance prediction based on the cleaned dataset consistently

outperforms the prediction accuracy based on the original dataset. Note that the

dataset used in these tests is collected from a production HPN, where high-end servers

used as the sender/receiver of data transfer tests are concurrently used by many other

scientists to run their scientific computing jobs.

Prediction Accuracy of Various Models We use the filtered dataset to compare

the prediction accuracy of various models as mentioned in Subsection. 2.4.1 in terms

of different performance criteria including Root Mean Square Error (RMSE), Mean

Absolute Error (MAE), EPP (i.e., β), and CMAPE (i.e., γ). As shown in Figure. 2.8,

the linear RR model performs poorly for all four criteria due to the limited richness

of its hypothesis function set. The NN model performs even worse than RR for

RMSE and MAE, which indicates extensive tuning or more network layers (thus
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Figure 2.7 Comparison of SVR prediction accuracy with and without DBSCAN-
based preprocessing.

higher overhead) are needed. RFR and SVR perform almost equally well for RMSE

and MAE. SVR has the best overall performance since it outperforms all other

models for both of the metrics defined for bandwidth scheduling, i.e., CMAPE and

EPP. Therefore, we choose SVR with the customized loss function for performance

prediction in HPNs.
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Figure 2.8 Performance comparison of various models in different metrics.
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CHAPTER 3

PERFORMANCE PREDICTION OF BIG DATA WORKFLOWS

3.1 Related Work

The importance of user interaction with model-based simulations or computing

workflows has been well recognized in the broad science community. In the past

decade, a large number of research efforts have been made to help end users identify

appropriate parameter settings for computational steering or performance modeling.

We conduct a brief survey of such efforts in this section.

3.1.1 Computational Steering

The main goal of computational steering [36, 14] for scientific workflows is to identify

and recommend the best parameter setting to end users for the simulation or

computing procedures. To facilitate real-time steering, some workflow management

systems (WMS) adopt bottom-up redesign to provide the capability and flexibility of

customization. Pegasus [19], a widely used WMS in the high-performance computing

(HPC) community, allows users to customize framework configuration to meet various

computing needs. Fireworks [9], yet another powerful workflow system designed for

high-throughput performance, achieves high concurrency and efficiency for workflow

execution. Such customizable WMS motivate the exploration of hyper parameter

settings to optimize workflow performance. For example, Lee et al . [29] proposed an

adaptive scheduling method for workflow execution by analyzing historical workflow

execution data collected in Pegasus. Their analysis shows that the hyper parameter

setting of WMS significantly affects the performance of workflow execution with

different computing requirements. Unfortunately, such analysis often introduces high

complexity in interpreting the impact of parameters and hence provides a limited

amount of information to assist in the selection of hyper parameters in WMS.
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3.1.2 Performance Modeling

With the pervasive use of workflow technology and the rapid accumulation of

performance measurements and provenance data, many research efforts have been

made to model workflow execution and predict workflow performance in various WMS

in support of computational steering [32, 21, 12].

Miu et al . in [48] considered a set of properties of historical workflow execution

in WMS as input features to train a decision tree-based model, and then used

various combinations of subsets of these features for evaluation. Although this

work met with some success in predicting workflow performance, some important

features such as execution configuration are not explicitly considered for model

construction. Also, the learning process for performance prediction is black-boxed

and provides limited information for identifying important hyper parameters. Li et al

. [47] employed Support Vector Regression (SVR) to model the observed performance

pattern and achieved efficient scheduling with a candidate assignment strategy based

on performance prediction.

Our research differs from the aforementioned work in two main aspects: i)

We focus on the performance of computing workflows executed in modern big

data systems, as instantiated by Spark-based computing with YARN resource

management. ii) We explore the coupling effects of parameters across various layers

in the big data technology stack and incorporate machine learning-based feature

selection into the construction of a performance-influence model. We would also

like to point out that the proposed exploratory analysis and machine learning-based

methods for workflow performance modeling and prediction are generalizable to other

big data systems with a customizable framework.
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3.2 Problem Statement

The performance (mainly, execution time or makespan) y of a computing workflow

executed in big data systems is typically modeled as a function f of a vector x

of features x across various layers including workflow input, WMS, and resource

management, i.e., y = f(x). Constructing an accurate model function and identifying

the most important components in feature vector x not only help end users understand

how these hyper parameters affect workflow performance, but also provide practical

guidance for end users to set parameters for optimal performance. However, due to

the complexity of the workflow execution process and the large number of involved

control parameters, it is very difficult, if not impossible, to find an analytical form of f ,

which is typically intractable. Some learning-based approaches such as a black-boxed

machine learning model may work in some context, but generally lack interpretability.

Thus, we aim to identify and construct a subset of interpretable features x̂, which

could provide certain guidance to workflow and system configuration (e.g., the ratio of

input data size to memory size), such that a performance-influence model built upon

such interpretable features can achieve higher accuracy in performance prediction

compared to the original feature vector.

More formally, given a training dataset of historical performance measurements

D = {(x1,y1), (x2,y2), . . . , (xn,yn)},

where xi (i = 1, 2, . . . , n) is a set of specific values for the feature vector x that yield

the corresponding performance yi, we aim to construct x̂ based on x, i.e., f̂(x̂i) ≈

yi = f(xi) such that f̂(x̂i) is close enough to the ground truth yi for all training

examples in D and could be used to predict yi with high accuracy for future arbitrary

xi.

The feature vector x in this context is assembled by a set of parameters across

different stages during the life circle of a workflow execution process, including i)
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workflow submission stage such as input data size, module functionality, etc.; ii) Spark

scheduling such as the number of executors, executor cores, executor memory, etc.;

and iii) YARN resource management such as maximum allocated VCores, memory,

etc. However, without domain knowledge, it is difficult to identify the high-order

representation terms x̂ within f̂ and build an accurate prediction model.

Hence, in this work, we conduct a comprehensive exploratory analysis to

construct candidate representation features, and design an information theory-based

learning method to select important dependent features and develop an accurate

performance predictor based on such features.

3.3 Exploratory Analysis

We first conduct an empirical study of the impact of various parameters on workflow

performance in big data systems through repeatedly testing a workflow-based linear

regression experiment. This workflow consists of three pipelined computing modules

performing i) data preprocessing to split the input data into two files for training and

testing, respectively, ii) model training for linear regression with the training data,

and iii) model-based prediction with the testing data. The workflow is implemented

in Spark and executed on a local PC cluster consisting of three virtual machine (VM)

instances (one master node and two slave nodes), each of which is equipped with eight

virtual cores and 24GB memory. By default, each slave node provisions one executor

with one virtual core and 1GB of virtual memory.

The goal of this empirical study with performance analysis is to understand

and explore the individual and coupled effects of various parameters across different

layers. Such an exploratory analysis motivates the use of feature selection in

performance-influence model development and inspires the design and incorporation

of an information theory-based method in the development of a learning model to

achieve high prediction accuracy. Particularly, we focus on investigating the impact
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of a set S of parameters that are commonly accessible and tunable by end users

in the Spark layer, including executor memory size, executor core count, degree of

parallelism, and task core count. To better illustrate the individual impact of each

parameter on the execution performance of computing workloads, we fix all other

parameters with system default values or customized values within a reasonable range

while examining one parameter at a time.

3.3.1 Executor Memory Size

In HDFS, a file is partitioned into data blocks of equal size (except for the last block),

which are then replicated and distributed across the cluster. In Spark, multiple tasks

are launched to process file splits in parallel, each of which corresponds to a data block

by default, in executors on different data nodes. The number of tasks is generally

determined by the input file size, the split size, and the submitted program [49].

Spark-based WMS performs in-memory processing for compute-intensive workloads.

Executors in Spark are memory-demanding Java Virtual Machine (JVM) processes

that provide execution environments for executable units and are executed in

containers provisioned according to user requests. After receiving a Spark job with

a specific parameter setting, Spark further divides the job into multiple sequential

execution stages, each of which contains a set of tasks. In general, a large executor

memory size is conducive to the successful completion of a task without being halted

for more resources or killed by the system.

To understand the impact of executor memory size on workflow performance,

we conduct two sets of experiments where the Spark-based linear regression workflow

is executed in both of two executors, each with four virtual cores and different sizes

of memory. In the first set of experiments, we process an input file whose size is

comparable to the smallest executor memory size (i.e., 800 MB), and repeat each

experiment five times. The workflow execution time and garbage collection (GC)
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time are measured and normalized as plotted in Figure. 3.1(a) and Figure. 3.1(b),

respectively. Note that GC is part of the execution process and the GC time

is included in the workflow execution time. We observe that with a relatively

small executor memory size (e.g., less than 1.5 × file size), increasing the executor

memory size improves the workflow performance. This is because there is a lack

of memory for performing parallel Resilient Distributed Dataset (RDD) operations

of four concurrent tasks in each executor. However, further increasing memory

size beyond what is needed for the input data size does not bring a corresponding

performance gain. For the same reason, the GC time exhibits a similar pattern.

In the second set of experiments, we run the same workflow to process smaller

files, and measure the corresponding performance in response to various executor

memory sizes, as plotted in Figure. 3.1(c) and Figure. 3.1(d). As the input file size

increases from 120MB, 240MB, to 479MB, more tasks are created and executed,

hence causing an increase in both the workflow execution time and the GC time.

These measurements also show that the impact of executor memory size on the

workflow execution time is limited, when processing input data that is relatively

smaller than the executor memory size. This is because the executor provides an

execution environment with sufficient memory to store and process the entire RDD

in Spark. Similar to Figure. 3.1(b), we observe that increasing the executor memory

size reduces the GC time because the GC process is less frequently triggered in the

presence of sufficient memory, as shown in Figure. 3.1(d).

3.3.2 Executor Core Count

In general, the number of cores determines the computing power of an executor as

more cores would be able to run more tasks in parallel and hence achieve faster

execution of heavy iterative workloads. While the specific execution dynamics and

time for processing different file sizes may be different in scale, the performance
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Figure 3.1 Illustration of the effect of executor memory size on the performance
of the linear regression workflow: (a) execution time vs. executor memory; (b) GC
time vs. executor memory size; (c) workflow execution time vs. executor memory
size when processing small files with sufficient memory; and (d) GC time vs. executor
memory size when processing small files with sufficient memory.
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(a) (b)

Figure 3.2 Illustration of the effect of executor core count on the performance of
the linear regression workflow: (a) workflow execution time vs. executor core count
with different file size; and (b) GC time vs. executor core count with different file
sizes.

pattern is qualitatively consistent. As the core count increases, the workflow execution

time decreases as shown in Figure. 3.2(a), while the GC time increases as shown in

Figure. 3.2(b). More executor cores, which mean more computing power to run

more concurrent tasks, finish workflow execution faster, but meanwhile requiring

more memory to store intermediate results and hence triggering the GC process more

frequently. The decrease trend in workflow execution time and the increase trend in

GC time reach a plateau after a certain point, indicating that for a given input data

size, adding an excessive number of cores to the executor would not bring a significant

benefit to the workflow performance.

3.3.3 Degree of Parallelism for RDD

The degree of parallelism is critical to the performance of parallel computing, which is

a viable solution to big data processing. It is generally beneficial to increase the degree

of parallelism, but the performance gain from parallel processing may be offset by

the increased communication overhead for intermediate data collection and exchange.

Spark achieves high-level parallel processing by introducing the concept of Resilient
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(a) Workflow execution time vs. parallelism (b) GC time vs. parallelism

Figure 3.3 Illustration of effects of parallelism on the performance of the linear
regression workflow.

Distributed Datasets (RDDs), which are transformed from the data source (e.g., files

in HDFS) and then partitioned and processed in parallel on different data nodes across

the cluster. RDDs could be further divided into smaller partitions to increase the

degree of parallelism. The parameter “spark.default.parallelism” defines the largest

number of partitions in a parent RDD for distributed RDD operations. Figure. 3.3

plots the performance of the same linear regression workflow to process an input file of

about 4GB in response to different settings of “spark.default-parallelism”. As shown

in Figure. 3.3(a), the performance increases significantly as the degree of parallelism

increases until reaching the “optimal” number of parallelism, and remains stable

afterwards. The total amount of GC time decreases as the degree of parallelism

increases, as shown in Figure. 3.3(b), which is consistent with the total execution

time in Figure. 3.3(a). With a higher degree of parallelism, the RDD is divided into

smaller partitions, which require less memory for processing, and hence trigger the

GC process less frequently.
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3.3.4 Task Core Count

A task is an atomic executable unit that can be executed in an executor on a partition

of a RDD. The parameter “spark.task.cpus” defines the number of cores allocated

to each task. Since Spark tasks are executed in serial and Spark performs parallel

computing at the task level, theoretically, increasing the task core count does not

affect workflow performance. However, since the executor has a fixed number of cores,

increasing “spark.task.cpus” would reduce the number of concurrent task executions

(i.e., the degree of parallelism) with less memory needs. This explains the increase

in the workflow execution time as shown in Figure. 3.4(a) and the decrease in the

GC time as shown in Figure. 3.4(b), which are measured after allocating eight virtual

cores to each executor.

(a) Execution time vs. task core count (b) GC time vs. task core count

Figure 3.4 Illustration of effects of task core count on the performance of the linear
regression workflow.

We also run several other types of workloads such as random forest regression

to examine the impact of different parameters on workflow execution performance.

The performance measurements are qualitatively similar to those measured from

the linear regression workflow. We would like to point out that the impact of

these parameters is complex, especially when there exist coupled effects between
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different parameters, which strongly suggest the use of machine learning algorithms

for performance modeling and prediction.

3.4 Functional and Coupled features

Big data systems encompass a large parameter space constituted by multiple layers

including application (workflow), middleware (e.g., Spark/YARN), and hardware

system (VM provisioning). The performance optimization of big data workflow

execution in such computing systems requires an exploration of the configuration

space, as well as the interacting terms and other high-order mutated terms [38].

Functional and interactive effects are typically hidden to end users. Identifying the

most influential hidden terms, e.g, the ratio of two parameters such as memory

size and input file size, which largely determine the performance of workflow

execution, is of great importance to helping end users with parameter setting for

workflow submission to WMS. To achieve this goal, we probe a comprehensive list of

terms including the parameters sampled in the configuration space and other terms

constructed using heuristic approaches and domain knowledge.

Building an accurate performance-influence model with parameters across

multiple layers in big data systems requires an investigation into both independent and

interactive parameters. We probe both configurable parameters of big data systems

and constructed terms derived from specially designed mapping functions. However,

it is theoretically impossible to consider all parameters in constructing the feature

pool, as the number of possible combinations is exponentially large with respect to

the number of parameters. Hence, we employ different heuristic strategies to sample

candidate features that affect workflow execution time.
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Figure 3.5 Performance profile fitting with an inverse sigmoid-based regression
function in response to the number of parallelism.

3.4.1 Domain Knowledge-based Feature Selection

Many existing big data systems such as Hadoop provide a large number of interfaces

for end users to specify parameter settings according to the needs of their computing.

For example, Spark provides over 160 properties for end users to tune and YARN

specifies over 100 properties in the XML configuration files. A black-box optimization

approach through an exhaustive profiling strategy is practically infeasible, as the

number of required profiling experiments grows exponentially with the number of

parameters. Hence, we adopt the human-in-the-loop (HITL) strategy to perform

configuration space sampling. Based on the domain knowledge, we consider a list of

parameters that are related to the setting of executors and containers as well as some

observable intermediate parameters as shown in Table 3.1.

Functional Features The individual impact of any continuous parameter p in

the configuration space on the workflow performance could be approximated by a

function f(p), which is an important mapping that depicts its independent effect on

the performance. Such representation not only facilitates the interpretability of a
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Table 3.1 List of Parameters Across Different Layers for Workflow Execution.

Layers Parameters Remarks

Workflow

input file size integer, MB

machine learning model string

WMS

executor memory integer, MB

executor CPU integer

driver memory integer

number of executor integer

maximum allocate memory integer, MB

shuffle compress boolean

locality wait integer, secs

number of parallelism integer

memory storage fraction float

Intermediate

CPU consumption integer

memory consumption integer

total GC time integer

total input bytes integer

total shuffle read integer

total shuffle write integer
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performance-influence model based on machine learning, but also provides a valuable

insight into parameter setting.

The exploratory analysis in Section. 3.3 suggests that the regression of the

influence of executor core count and degree of parallelism can be approximated by a

scaled inverse sigmoid function:

f(p) = 1− 1/(1 + e−α(p−p0)), (3.1)

where α and p0 are hyper parameters. As shown in Figure. 3.5, the performance

profile in response to the number of parallelism falls in the convex region of an

inverse sigmoid function. In order to expand functional representation and enrich the

candidate feature pool, we further construct a set of functional mappings including

tanh, sigmoid, inverse sigmoid and exponential functions.

3.4.2 Coupled Features

In big data systems built on Spark and YARN, the setting Y in the YARN layer

often serves as a “threshold”, as it defines important properties of the container,

e.g., maximum memory/CPUs allocated to containers. Different threshold settings

in YARN may have a significantly different impact on the workflow execution time, as

it controls the total number of containers simultaneously provisioned in the system.

The setting S in the Spark layer configures the runtime environment for task execution

by allocating computing resources at the executor and task level. Since Y and S are

controllable parameters in different layers of the system and hence are independent

of each other in parameter setting, the probability of a certain parameter setting

P (Y, S) = P (Y ) · P (S). However, they may affect each other and have complex

coupled effects on the workflow performance, as demonstrated by the interactive

impact between executor memory size (Memory) and executor core count (CPU)

shown in Figure. 3.1. Such interactive impact is also termed as k-interact [10]. As
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Figure 3.6 Independent and interactive influence of Memory and CPU on workflow
performance.

illustrated in Figure. 3.6, individual effect (such as Memory or CPU in Figure. 3.6(a))

is generally observable and measurable, while coupled effect (such as the one between

Memory and CPU in Figure. 3.6(b)) is typically complex and requires extra efforts

to measure.

In order for the predictor to learn the corresponding knowledge from interactive

impact across layers, we construct new features to approximate such coupled effects

by combining various parameters across different layers and fitting the corresponding

performance profile with a certain mapping function. Such parameter combinations

include the ratio of the input file size to the executor memory size, and the ratio of

the executor memory size to the maximum memory size of a container specified in

the YARN layer.

3.5 Workflow Performance Prediction in Big Data Systems

To build an accurate performance-influence model, we propose to use a machine

learning-based algorithm to select critical features x̂ from the candidate feature pool.

We first present the information-theoretic feature selection method and then discuss

the prediction performance of our proposed method.
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3.5.1 Machine Learning-based Feature Selection

Feature selection, which is an important problem in machine learning, produces

a subset of features with minimum irrelevant and redundant information to help

reduce data size and build an effective model without sacrificing prediction accuracy.

Traditional methods as exemplified by learning model-based algorithms iterate

through all possible combinations of subsets and return one that yields the highest

accuracy. However, such an exhaustive search-based strategy is very computationally

expensive and practically infeasible when dealing with a large number of features,

as the total number of possible subsets grows exponentially. Hence, we propose to

employ heuristic algorithms to compute such subsets, and recognize performance

patterns with machine leaning models.

Rational on the Use of Mutual Information-based Algorithms In our

prediction problem, instead of directly modeling in the original feature space, we

conjecture that the performance of big data workflows in big data systems could

be approximated by independent features U , functional features D and interactive

features H, which are hidden in the candidate feature pool, e.g., y = f(x̂) + ε,

where x̂ = {U,D,H}, and ε represents the error caused by system dynamics. Such

an approximation strategy not only improves the explainability of the performance-

influence model, but also provides end users with valuable insights to parameter

setting, e.g., by setting an appropriate ratio of input file size to executor memory size

to avoid resource waste.

However, due to the large candidate feature pool, it is extremely challenging

to perform feature selection, especially considering the complex interactive impact

between individual features, which is commonly recognized as k-way positive

interaction [10]. We further illustrate this property in Figure. 3.7, where we use

the three-way interaction between CPU, memory, and performance as an example.
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Performance

MemoryCPU

Figure 3.7 Three-way positive interaction between CPU, memory, and
performance, where blue dots represent mutual information.

Memory (m) and CPU (c) are independent of each other as they can be specified

separately by end users. Hence, the mutual information between m and c is zero

without any knowledge from performance y. However, given the response value

of performance, the conditional mutual information MI(c,m|y) could be non-zero

and measured from historical data. Such analysis further motivates us to use

information-theoretic feature selection to validate our conjecture and decide a proper

subset of x̂. Based on the new features constructed to represent interactive impact

as discussed in Section. 3.4.2, we propose to measure pair-wise mutual information

to rank the contribution of interactive features to the performance. The mutual

information between two random variables A and B is defined as [16]:

DKL(JA,B||MA ⊗MB),

where MA⊗MB denotes the product of two marginal distributions, JA,B denotes their

joint distribution, || denotes the distance between two distributions, and DKL is the

Kullback Leibler divergence between two distributions .

As stated previously, the performance y is largely affected by U , D and H. As

U could be represented by a weighted value of individual parameters identified in

Section. 3.3, our work is focused on quickly identifying the most important subset
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of constructed features that affect the workflow execution performance to the largest

extent. More formally, we aim to find a subset {S} from candidate features {O},

which could maximize F (·) under a constraint such that the total cost C is limited,

where F is an evaluation metric that could be used to evaluate the correlation between

{S} and y (e.g., in terms of mutual information, accuracy, etc.), and C is the iteration

constraint. To rank the importance of interactions between features, we propose to

use mutual information as a score function to quantify the correlation between S and

y. Therefore, our objective is to solve the following optimization problem:

argmax
S

I(S : y), s.t. C(S) < δ, (3.2)

where I(·) denotes the mutual information.

Note that a set function that maps from N -dimensional feature space to a real

value, i.e., f : 2N → R, is submodular [11] if for every A,B ⊆ N ,

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B),

where N denotes the set of all available features, and A and B are two subsets of N .

Furthermore, as mutual information belongs to the family of submodular function,

maximizing Equation. 3.2 is equivalent to optimizing k-constraint submodular

function, which has been proved to be NP-hard and solved by a greedy heuristic

approach in [11].

Similar to the work in [11], we choose candidate features that affect y in a

greedy manner by thresholding the mutual information between the features and the

response vector. More specifically, in each step of feature selection, we evaluate the

mutual information between candidate features and y, and then choose the one with

the highest value if it is greater than the pre-specified threshold. The pseudocode of

this feature selection process is provided in Algorithm. 1.
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Algorithm 1: Greedy Feature Selection
Input: candidate feature set P, mutual information threshold τ

Output: selected feature set X

1: X = φ;

2: for each ti in P do

3: ti = arg maxti I(X ∪ ti : Y);

4: if arg maxti I(ti : Y) > τ then

5: X = X ∪ ti;

6: return X;

3.5.2 Performance Prediction and Configuration Recommendation

With a subset of critical features selected using the proposed information-theoretic

method, we now need to select an appropriate machine learning model that can

effectively draw information from both individual and dependent features. Towards

this goal, we consider and compare the performance of a set {M} of machine learning

models commonly used for regression, including [37]: i) Linear Regression (LR) as

a linear model, ii) Support Vector Regressor (SVR) as a kernel-based model, iii)

Random Forest Regressor (RFR) as an ensemble model, and iv) Multiple Layer

Perceptron (MLP) as a Neural Network model.

We use the experiment-based cross validation method [13] to solve the following

optimization problem:

argmin
M∗,θ∗m

L(M(X, θm), y), (3.3)

where M denotes a machine learning model with hyper parameter θm, and L is the

loss function. The best model M∗ obtained by optimizing Equation. 3.3 can be

used to predict workflow performance with new parameter settings. Based on such
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predictions, we are able to make performance comparison and then select the optimal

system configuration that results in the minimum execution time for recommendation.

3.6 Performance Evaluation

In this section, we first describe the experimental settings for executing two test

workflows, and then present the prediction results of a performance-influence model

based on our feature selection method.

3.6.1 Test Workflows

To evaluate the performance of workflow execution time prediction, we consider two

test workflows that perform regression on a set of input files. The first workflow

employs linear regression as in the empirical study conducted in Section. 3.3, and the

second workflow employs random forest. Both workflows feature a pipeline structure

that consists of three computing modules as shown in Figure. 3.8. Specifically,

the first module is to split a given input file into two parts with ratio 9:1 for

training and testing, respectively, the second module is to train a model using

linear regression or random forest, and the third module is to test the trained

model. Both of the regression models are implemented in Spark using the MLlib

library [50]. These two workflows are tested with input files of different sizes within

the range {120, 240, 479, 958, 1915, 3830}(MB) on a local PC cluster consisting of 3

VM instances, each of which is assigned with eight virtual cores and 24GB memory.

Data 

preprocessing
Model tuning Inference

Figure 3.8 The pipeline structure of the test workflows for regression.

41



3.6.2 Configuration Space Sampling

We deploy and run these workflows on the same local Hadoop cluster with Spark

and YARN as in the empirical study conducted in Section. 3.3. Although Spark

and YARN provide a large configuration space, most of the settings are irrelevant

to the execution time, e.g., port number, log location, etc. Hence, instead of

investigating the entire configuration space, we focus on tunable parameters related

to executors and observable runtime features as shown in Tab. 3.1. For numerical

parameters, we take sample values incrementally within a valid range, and for

non-numerical parameters such as boolean type, we exhaust all possible values. The

test workflows are executed with such combinatorial settings and the corresponding

workflow performance measurements are used as the data source for performance

prediction.

3.6.3 Performance Prediction Results

We implement a performance-influence model in Python for workflow execution

prediction with different regression algorithms using the scikit-learn library [22].

The performance of this prediction model is evaluated in two steps: i) we compare

the prediction results of various regression algorithms based on the original set of

individual parameters in terms of different performance metrics and select the best

model as the baseline model; and ii) we show the performance improvement of the

baseline model based on both individual and interactive features selected by the

proposed information-theoretic feature selection method.

Performance Comparison of Regression Models We first split the performance

measurement data collected from the execution of two test workflows into two parts

for training and testing, respectively, and then perform 10-fold cross validation [13]

using the training data to fine tune four representative regression models, i.e.,

LR, SVR, RFR, and MLP. We measure the prediction accuracy of these models
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(a) Normalized Root Mean Square Error

(NRMSE)

(b) Normalized Mean Absolute Error

(NMAE)

(c) Normalized Mean Absolute Percetage

Error (NMAPE)

Figure 3.9 Performance comparison of various models in terms of different metrics.
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Figure 3.10 The performance of the RFR-based predictor with an increasing
number of selected features.

in terms of various performance metrics including Normalized Root Mean Square

Error (NRMSE), Normalized Mean Absolute Error (NMAE), and Normalized Mean

Absolute Percentage Error (NMAPE), as plotted in Figure. 3.9. The LR model

performs poorly as it fails to capture the non-linear nature in the performance-

influence relationship. The MLP model exhibits a worse performance because the

training data is insufficient to train a neural network architecture with multiple layers.

RFR and SVR perform almost equally well in terms of NMAPE. However, RFR has

the best overall performance for all metrics, and hence is selected as the baseline

model for further investigation with feature selection for performance improvement.

Performance Improvement with Feature Selection We use the proposed

information-theoretic feature selection method to identify a subset of critical individual

features and construct interactive ones that have the most significant impact on

workflow execution time, as tabulated in Table 3.2. These selected features are

ranked according to the amount of mutual information between each feature and the

response vector, i.e., the workflow execution performance. We rerun the RFR-based

performance predictor with an increasing number of selected features and measure
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Table 3.2 List of Ranked Critical Features

Name Source Description

CPURatio Constructed File size/executor core count

MemoryRatio Constructed File size/executor memory size

FileSize Original Input file size

InvSigPara Constructed Inv-sigmoid mapping of parallelism

the corresponding prediction performance. As shown in Figure. 3.10, the prediction

accuracy improves as more features are considered and the top four are considered

critical features.
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CHAPTER 4

MACHINE LEARNING-ASSISTED COMPUTATIONAL STEERING

4.1 Steering Objectives and Effects of Hyperparameters

In scientific simulations, there are three main goals of computational steering:

performance optimization, algorithm experimentation, and model exploration. In

performance optimization, steering is used to improve an application’s performance,

e.g., by balancing workload in parallel applications. In algorithm experimentation,

it allows the user to adapt program algorithms at run time, e.g., to experiment with

different numerical solving methods. In this work, we focus on model exploration,

where computational steering is used to explore parameter spaces and simulation

processes to gain additional insights into the model behaviors.

Without loss of generality, we define the steering objective of model exploration

as

argmin
~x

f(S(~x), obs), (4.1)

where S is a model of steering with tunable parameters ~x of interest and f is a

user-specified objective function, e.g., the Mean Square Error (MSE) between the

output (simulation data) of the steering model and the observation data obs.

To illustrate the effects of hyperparameters on the steering objective f , we

simulate the WRF-Solar model with various hyperparameter settings, and then fit

the simulation trails and plot the response surface of MSE using Gaussian Regression

Model.

As shown in Fig 4.1, the response surface of f is significantly affected by the

intricate interplay of tunable parameters such as relative dispersion and condensation

rate. Although one ideal approach would be to check all possible parameter settings,

it is practically infeasible to do so because the number of possible parameter
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Figure 4.1 Response surface of Mean Squared Error fitted by Gaussian regression.

settings in a given model-based simulation typically grows exponentially with the

number of parameters. For example, if a simulation involves the interaction of n

binary parameters (that is, each has one of the two states), this leads to checking

and understanding 2n possible parameter settings with respect to the underlying

goal [43, 33, 15]. An additional level of complexity arises from the underlying model

that dictates how these parameters contribute to the goal. In reality, most parameters

are continuous and represent an even much larger number of states or values than

binary ones.

4.2 A Machine Learning-Assisted Framework

To bring optimization-guided autonomy to the generic steering process in various

scientific applications, we propose a framework of Bayesian Optimization-assisted

Steering as a Service for collaborative computational steering, Co2Steer, in support

of large-scale simulation-based computational sciences.

As shown in Figure. 4.2, the overarching framework of Co2Steer integrates the

following technical components: i) transport method for steering, ii) machine learning-
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based automatic parameter tuning, iii) front-end dashboard, and vi) provenance

tracking. The web-based dashboard provides a user interface through a web browser

for users to access Co2Steer, which is hosted as a service. A scientific workflow that

constitutes a model-based simulation process and various post-data processing jobs

are executed in a specific computing system designated by the user. The interactions

between the steering engine and the scientific workflow are carried out over a unified

communication channel that enables the delivery of various steering commands from

multiple users to different simulation processes being executed concurrently. The

output data are analyzed for model validation with visual feedback provided to the

user through the dashboard. The entire steering process, and model validation are

managed, tracked and recorded in a provenance database.

Steering as a Service 

(STaaS)

Local or Cloud-based

Automatic Tuning

Real-time

Simulation 

& Computing

Comparison with 

Observational Data

User Inputs

· Upload model code

· Select models & outputs

· Select model parameters

· Inspect model performance

· Interact with automatic 

tuning 

Provenance Tracking & Storage

Communication Channel

Model

Output

Steering 

Commands

Front-end dashboard

Figure 4.2 Architecture of the Co2Steer framework.

4.2.1 Steering with Bayesian Optimization

Scientific simulations often encompass a large parameter space that constitutes

various of computation-intensive processes. The computational steering problem is to
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determine a specific configuration of model parameters to produce a desired output

with a limited number of trails.

Our approach consists of two steps: i) build a prior belief model (i.e., a Gaussian

regression model M) to describe the relationship between the parameters ~x and the

steering objective y using existing historical trails, and ii) automate the steering

process based on the underlying model M and expert guidance. The second step

continues in an iterative manner until the goal is achieved with a certain error

tolerance. Our approach could be broadly classified as fully automated steering

with supervised algorithms and automated steering with hybrid algorithms. These

solutions are objective-driven and follow the aforementioned two-step approach. We

design the tuning process as an iterative stationary process and propose to use

Gaussian process to explore the unknown mapping f that captures the interplay

between the parameters and the objective.

Fully Automated Steering with Supervised Algorithms The steering objective

of interest is determined by the configuration of a set of control parameters ~x

(e.g., relative dispersion and condensation rate in a weather forecast model) and

the observation f(·) is corrupted with independent, identically distributed noise

ε = N(0, σ2), i.e., y = f(·) + ε. Due to the high computation overhead for simulating

a large number of complex scientific processes, the evaluation of each configuration

could be prohibitively time-consuming. Even with common model complexity and

parameter space, it may oftentimes take half a day to complete.

The second step of our iterative approach selects the next configuration of the

parameters for validation. Hence, it is important to exploit the historical validations

and explore the unknown configurations. BO offers desired properties to balance

exploration and exploitation. In each iteration, BO fits the existing dataset using

a machine learning model M (e.g., Gaussian Process Regression), selects the next

49



query point by maximizing an acquisition function, and updates the dataset. The

implementation details are shown in Algorithm. 2.

Algorithm 2: Bayesian Optimization

Input: surrogate model M, simulation model S, historical dataset D and

acquisition function L

Output: The best configuration ~x∗

1: for ti = 1, 2, . . . , T do

2: fit M with D;

3: obtain the next query point ~x
′

= argmaxx L;

4: simulate with a new configuration: y
′
= S(~x

′
);

5: consolidate the data: D = D ∪ {~x′ , y′};

6: query D to obtain the best configuration ~x∗ that results in the minimum y;

7: return ~x∗;

Semi Automated Steering The use of automated methods does not, however,

obviate the need for subjective judgment concerning the priorities and targets of

the steering process. Moreover, BO is shown to be overconfident in searching some

unexplored boundary region and may lead to unnecessary cost.

To address the overconfidence problem, we propose a hybrid approach to involve

humans in the steering loop, but only in a strategic manner. We present the

dynamic steering procedure to domain experts, who could provide a wide range of

feedbacks - from simple binary feedbacks (e.g., labeling a parameter as important

vs. unimportant) to non-binary feedbacks (e.g., iteratively shrinking the search

boundary), or a combination of both. Based on such feedbacks, we update model

M and repeat the overall computational loop until certain accuracy is achieved.
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4.2.2 API Design and Provenance Tracking

One essential function of Co2Steer is to enable computational steering by a group of

remote collaborative users who wish to keep track of the simulation process SIM and

communicate and share simulation/analysis results DSout or DSfinal with peers while

the simulation is being steered in batch mode. To make this possible, the simulation

steering can no longer remain closed and needs to open up channels to intercept

and distinguish steering commands from different users at runtime. Towards this

goal, we define the syntax and semantics of a set of generic core APIs, and provide

steering capability through automatic mode: Users upload their codes through the

dashboard and Co2Steer identifies the locations in the codes for taking appropriate

steering actions at the entry or exit of a loop that implements the body of a simulation

process.

Figure. 4.3 illustrates the code skeleton of typical model-based simulation

programs that call a set of essential API functions for computational steering by

multiple users simultaneously. Among them, Co2Steer init() initializes the steering

process by subscribing to the communication channel and registering with the

steering service and provenance database. A steering action SA is captured by

Co2Steer recvMsg() in the beginning of each iteration to update the parameter

setting used in the simulation process SIM . All changes and corresponding results

are recorded in the provenance database and also sent back to a group of participating

users for analysis and examination.

Provenance is a key part of the architecture and service in the common

computing infrastructure for tracking processes and analyzing results. Particularly,

in a model-based simulation process, it is critical to keep track of all configuration

options, model versions, parameter choices, etc., all of which have an impact on

the outcome of the model simulation. Such provenance information provides a

complete view of the derivation process from original sources to final results, and
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Co2Steer_init( );

for (t_step = 0; t_step < maxStep; t_step ++)

{

        m = Co2Steer_recvMsg( );

        ps_old  = Co2Steer_loadParamSet( );

        ps_new  = Co2Steer_updateParamSet(m, ps_old);

        Co2Steer_addProven(ps_old, ps_new);

        Co2Steer_sendMsg( );

}

Iteration Body Using ps_new in

Model-based Simulation 1

Iterative

Steering

Process

Steering Engine

providing

Steering as a Service (STaaS)

User B

Co2Steer

Provenance

Database

Co2Steer_init( );

for (t_step = 0; t_step < maxStep; t_step ++)

{

        m = Co2Steer_recvMsg( );

        ps_old  = Co2Steer_loadParamSet( );

        ps_new  = Co2Steer_updateParamSet(m, ps_old);

        Co2Steer_addProven(ps_old, ps_new);

        Co2Steer_sendMsg( );

}

Iteration Body Using ps_new in

Model-based Simulation 2

Communication Channel

Register with the Steering Service

Subscribe to the Communication Channel

User A

User C

Figure 4.3 A code skeleton of typical model-based simulations that make steering
API calls for computational steering engine and communication channel.

enables scientists to verify the correctness of their simulations and reproduce them if

necessary. We design a provenance component using script and integrate it into the

Co2Steer steering engine to provide complete provenance information related to the

execution of the simulation for post-data processing and analysis. The provenance

component automatically records all the information about the simulation process

such as the execution time and parameter settings, and tracks the history and

evolution of all trials.

4.3 Convergence Rate Analysis

The steering objective of our Bayesian Optimization-based framework for large-scale

scientific simulations is to find the optimal hyperparameter setting ~x′ with the least

number of iterations such that the error between simulation result S(~x′) is arbitrarily

close to the observation obs, i.e.,

f(S(~x′), obs)− f(S(~x∗), obs) < δ, (4.2)
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where ~x′ is the best guess of our optimization method, ~x∗ is the unknown global

optimal setting of S, and δ is a positive constant.

To determine the convergence speed of computational steering, we need to

estimate the total number of iterations required to achieves δ accuracy. Moreover,

the general global optimization problem is theoretically intractable without making

any assumptions to function f [30]. Without loss of generality, we consider f

to be Lipschitz continuous, i.e., the simulation error f(·) cannot vary arbitrarily

fast as we change ~x. The convergence rate of our approach is dominated by

the theoretical bound of the Bayesian Optimization technique, which contains two

intertwined components: the surrogate component for exploitation and the acquisition

component for exploration. Our approach follows the standard setting, where the

Gaussian process regression model is selected as the surrogate model and the expected

improvement (EI) function is used as the acquisition model [25]. The convergence

speed of BO has been widely investigated [8, 20]. As stated by Bull in [8], under

certain hypothesis, the expected improvement-based BO is shown to converge to the

minimum of any function on its Reproducing-Kernel Hilbert Space (RKHS) with rate

O( 1
δv/d

), where v is a smooth measure of f and d is the number of parameters to

optimize over. Note that the smooth measure v of f is assumed to be greater than

one to make BO better than random guesses. The time complexity of BO is O(n3),

where n is the number of historical trails, because BO solves Cholesky decomposition

problem for each iteration.

4.4 Validation with Real-World Applications

We develop a prototyped Co2Steer service that enables, optimizes, and tracks

steering-driven simulation-oriented scientific workflows for model exploration and

evaluation. This prototype steering service is deployed on a virtual machine (VM)

instance equipped with eight processors and 20GB memory. We test Co2Steer for
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model-based simulation in a real-life large-scale scientific application, i.e., a WRF

model for climate research.

4.4.1 Case Study: Weather Research and Forecasting

The physical forecasting model of WRF-Solar is built on the widely used community

Weather Research and Forecast (WRF) model [6] with an emphasis on forecasting

solar and wind energies, and contains numerous parameterized subgrid processes

that affect model performance, including cloud and aerosol microphysics, radiative

transfer, planetary boundary layer, turbulence, convection, and land surface. The

tunable parameters involved in the model are shown in Table 4.1. We first introduce

the interested parameters, and then illustrate the tuning effects of such parameters

on the simulation quality. We further perform a point-wise comparison between our

work and default settings and verify the convergence speed of our solution.

Description of Physical Parameterizations and Important Tunable Parameters

The WRF-Solar model is implemented based on Thomas scheme [23], which contains

various sub-processes that simulate aerosol process, cloud droplet, liquid water, etc,.

Particularly, in this case study, we investigate two parameters, namely, relative

dispersion and condensation rate, which are accessible and tunable in representative

processes that simulate the cloud-to-rain autoconversion and effective radius in liquid

water clouds. The final output of this WRF model emulates the evolution of solar

irradiance volume in 90 days.

The effective radius re is simulated based on a Gamma distribution, which

contains two degrees of freedom, i.e., shape parameter and slope parameter.

The relative dispersion ε affects re through the product of a dimensionless

parameter β and the mean volume radius v, i.e.,

r = β · v. (4.3)
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Table 4.1 List of Model Parameters

Symbol Description Default Value Range

ρs Density of snow 100 kg/m3 50-200 kg/m3

ρg Density of graupel 500 kg/m3 [450, 700] kg/m3

ρi Density of ice 890 kg/m3 [700, 900] kg/m3

a Mass power-law constant 0.069 0.0185-0.176

b Fall speed power-law constant 2 [1.9, 2.2]

α Fall speed power-law constant

Rain: 4854 0.15

Ice:1847.5 336-1847.5

Snow:40 129.6-40

Graupel:442 351.2-442

β Fall speed power-law constant

Rain: 1 Fixed

Ice:1 0.6635 - 1

Snow:0.55 0.42- 0.55

Graupel:0.89 0.37 - 0.89

f Fall speed power-law constant

Rain: 195 Fixed

Ice: 0 Fixed

Snow: 125 100-125

Graupel: 0 Fixed

C Capacitance of hydrometeor
Sphere: 0.5 15%

Plates/aggregates: 0.15 15%

Eyx Collection efficiencies

si: 0.05 15% within 0 - 1

rs: 0.95 1

rg: 0.75 15% within 0 - 1

ri: 0.95 15% within 0 - 1

D0 Lower limit of hydrometeor diameter

Cloud:1E−6 C: [0.5E−6, 2E−6]

Rain: 50E−6 R: [50E−6, 100E−6]

Snow: 200E−6, m S: [150E−6, 250E−6]

Graupel:250E−6, m [200E−6, 300E−6]

βcon Condensation rate constant 1.15E23 [1.02E20, 1.67E24]

ε Relative dispersion of cloud droplet spectrum 0.1 0.01 to 1.4
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For cloud droplets, rain, cloud ice and snow, β is calculated as:

β =
(1 + 2× ε2)2/3

(1 + ε2)1/3
, (4.4)

where ε is the relative dispersion. In consideration of all unknown effects (e.g.,

turbulence-related processes), an empirical condensation rate constant βcon is defined

to emulate the turbulence effect.

Tuning Effects on Simulation Quality The simulation result of the WRF model

is a time-series sequence that represents solar irradiance change in 90 steps. The

tuning effects of the relative dispersion on the volume of solar irradiance are plotted

in Fig 4.4. We observe that the simulation result approaches the observation data as

the value of dispersion decreases. However, further decreasing the value of dispersion

does not bring performance improvement. This is because some of the simulation

processes are skipped due to a negligible value of relative dispersion. We would like

to point out that the impact of relative dispersion is complicated, which strongly

suggests the use of machine learning algorithms for parameter tuning.

Figure 4.4 Illustration of tuning effects of dispersion on simulation quality.
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Figure 4.5 Illustration of effects of dispersion on the Mean Squared Error.

Methods in Comparison We compare BO with another heuristic method using

random walk [31]. Instead of exploring the search space as a compact real realm,

random walk first transforms the searching space into grids, and then iteratively

explores the search space by moving a fixed length at a randomly generated angle. We

also compare BO and random walk with the default setting to show the performance

improvement over manual tuning recommended by domain experts.

Evaluation Metrics The execution of Co2Steer in climate research involves both

model-based simulations and real-world observations. To evaluate the effectiveness

of tuning, we calculate Mean Squared Error (MSE), and consider average cumulative

regret that measures the convergence rate of steering. In each iteration of online

steering, the instantaneous “regret” at the i-th iteration is defined as the distance

from the current evaluated value f(S(~xi), obs) to the optima f(S(~x∗), obs), i.e.,

r = f(S(~xi), obs)− f(S(~x∗), obs). (4.5)

The average accumulative regret over t time-steps is calculated as 1
t

∑
i ri.
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Experimental Setting As BO-based tuning relies on historical trails, we randomly

generate two data points to initialize the tuning process. For random walk, we select

the center point of the search area as the start point and set the step size to be

± 0.014 for relative dispersion and ± 1.67E22 for condensation rate, respectively.

In each iteration, the random walk algorithm moves a single mosquito step for each

dimension with equal probability.

Results The performance evaluation includes two parts: i) evaluate the effec-

tiveness of our approach in terms of MSE, and ii) evaluate the efficiency of our

approach in terms of average accumulative regret.

We first plot the smallest MSE among historical tuning trails in terms of

iterations, as shown in Figure. 4.6. The performance of the default setting forms

a straight line and can be used as the baseline. The random walk algorithm performs

poorly due to the limitation of iterations. The simulation error of our approach

drastically decreases with more iterations of steering, and achieves a plateau much

lower than random walk and the default setting recommended by domain experts.

Figure 4.6 Performance comparison in terms of MSE.
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We further compare the convergence rate of our approach with that of random

walk in terms of average accumulative regret. Figure. 4.7 shows that our approach

converges faster than random walk.

Figure 4.7 Convergence rate comparison in terms of average accumulative regret.
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CHAPTER 5

CONCLUSION

This dissertation focus on the development of machine learning-assisted big data

workflow solutions and big data transfer solutions for collaborative computational

steering to support large-scale simulation-based computational sciences.

This dissertation first identifies a comprehensive list of attributes involved in

a typical big data transfer process and then conducts in-depth exploratory analysis

of their impacts on application-level throughput, which provides insights into big

data transfer performance and motivates the use of machine learning. It further

investigates unobservable latent factors such as competing loads on end hosts and use

Density-based spatial clustering of applications with noise (DBSCAN) to eliminate

their negative impact on performance prediction using various machine learning

models such as Support Vector Regression (SVR) and Gradient Boosting Regression.

It also design and implement a customized domain-specific loss function within

machine learning models such as Stochastic Gradient Descent Regression. Extensive

experimental results show that the proposed predictor achieves higher accuracy than

several state-of-the-art methods.

On the other hand, the performance of big data computing on HPC platforms

is also largely determined by workflow parameter settings and the configurations

of underlying computing systems, we propose a codesign framework to help speeding

online data reduction and optimizing performance. We developed a prototype steering

as a service auto-tuning framework, which consists of a set of APIs for domain experts

to execute, monitor, and interact with model-based simulations. We conducted

extensive experiments to evaluate the efficiency and effectiveness of our parameter

tuning method with a real-life WRF model.
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