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ABSTRACT

MODEL CHECKS FOR TWO-SAMPLE LOCATION-SCALE

by
Atefeh Javidialsaadi

Two-sample location-scale refers to a model that permits a pair of standardized

random variables to have a common distribution. This means that if X1 and X2

are two random variables with means µ1 and µ2 and standard deviations σ1 and σ2,

then (X1−µ1)/σ1 and (X2−µ2)/σ2 have some common unspecified standard or base

distribution F0. Function-based hypothesis testing for these models refers to formal

tests that would help determine whether or not two samples may have come from some

location-scale family of distributions, without specifying the standard distribution

F0. For uncensored data, Hall et al. (2013) proposed a test based on empirical

characteristic functions (ECFs), but it can not be directly applied for censored data.

Empirical likelihood with minimum distance (MD) plug-ins provides an alternative

to the approach based on ECFs (Subramanian, 2020). However, when working

with standardized data, it appeared feasible to set up plug-in empirical likelihood

(PEL) with estimated means and standard deviations as plug-ins, which avoids MD

estimation of location and scale parameters and (hence) quantile estimation. This

project addresses two issues: (i) Set up a PEL founded testing procedure that uses

sample means and standard deviations as the plug-ins for uncensored case, and

Kaplan–Meier integral based estimators as plug-ins for censored case, (ii) Extend

the ECF test to accommodate censoring. Large sample null distributions of the

proposed test statistics are derived. Numerical studies are carried out to investigate

the performance of the proposed methods. Real examples are also presented for both

the uncensored and censored cases.
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CHAPTER 1

INTRODUCTION

Two-sample location-scale arises in areas such as climate dynamics (Adamson and

Nash, 2013), biomedical (Gerhard and Hothorn, 2010), medicine (Neuhauser et al.

2010), finance (Lunde and Timmermann, 2004) and the mining industry (Hall et

al., 2013). In biomedical studies for examples, when two samples come from a

location-scale family of distributions, incorporating this structure would improve

efficacy comparisons between treatments. For efficient treatment comparisons within

a location-scale framework to bear fruition, however, it is mandatory that a diagnostic

test for location-scale membership be provided. This issue has been addressed, to a

degree, see Hall et al. (2013), who developed a test founded on empirical characteristic

functions (ECFs), but only for uncensored data, and Subramanian (2020), who

developed a test founded on plug-in empirical likelihood (PEL), both for uncensored

and censored data. In this dissertation, an alternative approach based on the PEL,

will be developed. Furthermore, a censored ECF test, which is a nontrivial extension

of its uncensored Hall et al. (2013) counterpart, will also be developed.

The knowledge that two distributions differ only in location and scale is reported

to yield operational and economic advantages, enabling protocols we have for one type

of data to be applied directly on another (Hall et al., 2013). For example, researchers

may be interested in the effectiveness of a new treatment on a specific disease.

Suppose that X and Y are the times taken to obtain relief from the malady when

administered the new and standard treatments respectively. If compelling evidence

can be provided that the distributions of X and Y belong to some location-scale

family, then all the protocol and information available for the standard treatment like,

say, the estimated relief proportion at time t, can be obtained for the new treatment
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directly by exploiting the model structure. Zhang and Yu (2002) used box plots of

censored data to draw conclusions about probable distributional differences in scale

and location. Conclusions based on box plots of censored responses rather than real

lifetimes, on the other hand, may offer an incorrect picture and should be handled

with caution. It is mandatory, therefore, that every such study using location-scale

models include function-based hypothesis testing (Hall et al., 2013, Subramanian,

2020).

Consider two random variables X1 and X2 with distribution functions F1 and F2

respectively, both unspecified. Let the respective means be µ1 and µ2, and standard

deviations be σ1 and σ2. Let F10 and F20 be the distribution functions of U1 =

(X1 − µ1)/σ1 and U2 = (X2 − µ2)/σ2. Then F10(t) = F1(µ1 + σ1 t), t ∈ R and

F20(t) = F2(µ2+σ2 t), t ∈ R. Letting ϕi(t) = µi+σi t, i = 1, 2, then F10(t) = F1(ϕ1(t))

and F20(t) = F2(ϕ2(t)).

Suppose that F10 = F20 := F0 (say). Note that F0, designated as the standard or

base distribution, has mean 0 and variance 1. In turn, the distributions F1 and F2 can

be expressed in terms of F0 by Fi(t) = F0((t − µi)/σi), i = 1, 2. Such considerations

indicate that X1 and X2 may be represented by the equation Xi = µi + σi ε, i = 1, 2,

where ε has distribution F0.

Suppose that two independent samples {Xij, j = 1, . . . , ni, i = 1, 2} of sizes

n1 and n2 are available from the X1 and X2 distributions respectively. Would

these samples support the hypothesis that X1 and X2 belong to some location-scale

family of distributions with standard member F0, where F0 is unspecified? Thus, the

objective, stated formally, would be to devise a test for the hypothesis H0 : F10 = F20

or, equivalently, F1 ◦ ϕ1 = F2 ◦ ϕ2. Since F0, the standard member, is unspecified,

this kind of hypothesis testing may be regarded as function-based (Hall et al., 2013).

Note that model adequacy tests for the case that F0 is unspecified are inherently more
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difficult than tests that operate within the confines of specific location-scale, where

F0 is specified; e.g., standard normal or standard exponential.

It has been well documented that there is a general lack of function-based

hypothesis testing techniques for two-sample location-scale families (Hall et al.

2013). To test equality of distributions of standardized variables, it would seem

obvious to employ empirical distribution functions (EDFs) or empirical quantile

functions (EQFs). According to Hall et al. (2013), however, both these strategies

are impractical for the current situation. The weak limits of test statistics are

not distribution free, hence bootstrap resampling from the data would be required

under the null hypothesis. The bootstrap, on the other hand, does a poor job of

approximating distributions in this case, and the bootstrap estimate of the null

distribution converges particularly slowly. These difficulties prompted Hall et al.

(2013) to devise function-based hypothesis testing in location-scale founded on ECFs.

Such an approach is reported to work effectively and avoids the issues that plague

EDF and EQF-based solutions.

Unfortunately, however, the cited advantages are nullified when there is

censoring. Specifically, when the two censoring distributions are not the same, the

bootstrap approach of Hall et al. (2013) would not be applicable. Therefore, any

advantage that ECFs may have over other approaches is dissipated when there is

censoring. Furthermore, when there is censoring to be accommodated, nontrivial

adjustments not yet devised are needed for the ECF approach to work. Thus, a

search for an alternative to the ECF is not without merit. It is this alternative, the

PEL, that will be the first focus of this project. It will be seen that the proposed

PEL approach applies readily to both uncensored and censored cases. The plug-ins

for the censored case will be based on Kaplan–Meier (KM) integrals (Stute, 1995).

Subsequently, a censored ECF test will also be developed that employs Stute’s (1995)
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KM integrals, with appropriate plug-ins for the means and standard deviations based

on it thereof.

Csörgő (1981) and Marcus (1981) studied the ECF’s convergence and limiting

behavior. Several one-sample issues have been investigated by applying the ECF.

Feuerverger and Mureika (1977) suggested an ECF-based test for symmetry, while

Feuerverger and McDunnough (1981) explored efficient parameter estimation in

one-sample problems when the kind of distribution is given. Tests for univariate

normality based on the ECF were investigated by Epps and Pulley (1983) and

Hall and Welsh (1983). ECF goodness-of-fit tests were studied by Koutrouvelis

and Kellermeier (1981) and Koutrouvelis (1985). Matsui and Takemura (2005)

dealt with goodness-of-fit ECF testing for Cauchy distributions, whereas Meintanis

and Swanepoel (2007) and Huskovâ and Meintanis (2008) dealt with generalized

goodness-of-fit ECF tests.

Prior to Hall et al. (2013), Epps and Singleton (1986) appear to be the only

work on two-sample testing based on ECFs. Otherwise, the challenge of determining

whether two samples are from some location-scale family has received little attention.

One test proposed by Doksum and Sievers (1976) is to see if a nonparametric

confidence band for the quantile comparison function comprises a straight line.

However, because nonparametric confidence bands are generally quite wide, this test

has poor power. Potgieter and Lombard (2008) developed a permutation test based on

a confidence band for a linear quantile comparison function in the setting of matched

pair data. See Hall et al. (2013) and Subramanian (2020) for related references.

For the case when censoring is completely absent, Hall et al. (2013) proposed

their test that relies on integrated weighted squared modulus difference of two ECFs.

Note that their ECF test requires the sample means and standard deviations as plug-

ins. When there is censoring, these straightforward estimates are no more available,

however. Hall et al. (2013) derived the large-sample null distribution of their test
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statistic. Since the weak limit is not distribution free, they proposed a bootstrap test.

While their proposed test correctly applies when there is no censoring, we can not

apply it when the observations are susceptible to random censoring. However, the

plug-ins for the means and standard deviations given in this dissertation, along with

the Kaplan–Meier (KM) estimator, will be utilized to propose a censored ECF test.

Note that the proposed PEL essentially owes its development to that proposed

by Li (2003) to test the adequacy of a parametric distribution. See also Subramanian

(2020), whose PEL test employed minimum distance (MD) estimators of the location

and scale parameters, which require estimation of quantiles. In this dissertation, it

was discovered that, working with standardized variables, it is possible to set up PEL

with estimated means and standard deviations as plug-ins. This offers the advantage

of comparing the ECF and PEL approaches on an even footing. Thus, we propose

a PEL test that avoids MD estimation of location and scale parameters and (hence)

quantile estimation, permitting direct comparisons with the ECF test. Necessarily,

therefore, the likelihood ratio will be indexed by θ, where θ represents the means

and standard deviations, unlike in Subramanian (2020), where the likelihood ratio

was indexed by θ comprising of the location and scale parameters. Furthermore, the

proposed PEL test is founded on estimated standardized variables and computed on

the standardized scale. The PEL using MD estimators, however, was computed on

the original scale. Thus, the apparent resemblance of the two PEL tests camouflages

the fact that the two approaches lead to different sums for Rθ(t), the likelihood ratio,

see Equation (3.8). Also, as reported already, the plug-ins for the proposed PEL are

founded on Stute’s (1995) KM integrals and are quite different from the estimated MD

plug-ins used in Subramanian (2020). In addition, because variables are standardized,

we confront certain nuanced differences, requiring some altered technical treatments

for the large-sample analysis. Finally the plug-ins obtained via Stute’s (1995) KM

integrals also prove decisively important for the censored ECF test that is proposed.
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Just to make matters explicit, the proposed PEL test applies for both censored

and uncensored data. More specifically, the proposed PEL test has the same form

whether the data are censored or uncensored. As already reported, the only difference

is that, for censored data, the plug-ins are based on Stute’s (1995) KM integrals. For

uncensored data, however, the sample means and sample standard deviations suffice

for the plug-ins. Thus, unlike Equation (2.1), the extension of which to censoring

would require non-trivial adjustments, the PEL ratio test statistic would apply for

censored data also.

Because of plug-ins, the proposed PEL test is not asymptotically distribution

free, a phenomenon already well noted (Hjort et al., 2009). Therefore, it is a challenge

to obtain critical values needed for carrying out the test. The full bootstrap, the so-

called ”n bootstrap”, did not work well for the PEL. Following Subramanian (2020),

where failure of the full bootstrap was noted as well, use of smaller bootstrap sample

sizes is warranted. The data-driven procedure given in Subramanian (2020), that

adapts Bickel and Sakov’s (2008) one-sample proposal, yielded a reasonably accurate

choice for the bootstrap sample sizes. The bootstrap sample size was chosen after a

search that involved a diagonal “trajectory”. Subsequently, a relatively more refined

search algorithm, involving two-steps, was investigated. Both approaches identified

bootstrap sample sizes that returned realized levels closer to the nominal 5% level.

The rest of this dissertation is outlined as follows. The ECF test for uncensored

data is introduced in Chapter 2. The plug-in PEL is studied in Chapter 3. In Section

3.1 for uncensored case, we introduce preliminaries and drive the log likelihood ratio

(LR). The null sampling distribution of the uncensored PEL test is described. In

Section 3.2 the extension to right censoring is considered. The algorithms for offering

bootstrap sample size are described in Chapter 3.3. The ECF test for censored data

is introduced in Chapter 4. Simulation results are reported in Chapter 5. Four real

6



examples are presented in Chapter 6. A brief concluding discussion is given in Chapter

7. Technical details are coveredl, in the Appendix.
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CHAPTER 2

ECF TEST FOR UNCENSORED DATA

We consider two random variables X1 and X2 with distribution functions F1 and F2

respectively, both unspecified. Let the respective means be µ1 and µ2, and standard

deviations be σ1 and σ2. Let F10 and F20 be the distribution functions of U1 = (X1−

µ1)/σ1 and U2 = (X2−µ2)/σ2. The null hypothesis is H0 : F10 = F20 or, equivalently,

F1◦ϕ1 = F2◦ϕ2. Suppose that two independent samples {Xkj, j = 1, . . . , nk, k = 1, 2}

of sizes n1 and n2 are available from the X1 and X2 distributions respectively. Let

χUk
(t) = E[exp(itUkj)] be the characteristic function of Ukj. It is estimated by

χ̂Uk
(t) =

1

nk

ni∑
j=1

exp

{
it

(
Xkj − µ̂k

σ̂k

)}

=
1

nk

ni∑
j=1

cos

{
it

(
Xkj − µ̂k

σ̂k

)}

+ i.
1

nk

ni∑
j=1

sin

{
it

(
Xkj − µ̂k

σ̂k

)}
(2.1)

Hall et al.(2013) proposed the test statistic

L̂ =
n1n2

n1 + n2

∫
|χ̂U1(t)− χ̂U2(t)|2w(t)dt, (2.2)

where w(t) is a specified weight function. Let B denotes a Brownian bridge. Hall

et al. (2013) proved that the process n1/2{χ̂Uk
(t)− χUk

(t)} converges uniformly to a

limiting process GFk0
(t) in t ∈ [−A,A] for any finite positive A, where

GFk0
(t) =

∫ {
exp(itx)− itxχUk

(t)− t

2
(x2 − 1)χ

′

Uk
(t)

}
× dB{Fk0(x)}, (2.3)
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and χ
′
Uk

(t) is the first derivative of χUk
(t) . When the two sample are independent,

Hall et al. (2013) proved that(
n1n2

n1 + n2

)1/2

{χ̂U1(t)− χ̂U2(t)}
D−→

∫ {
exp(itx)− itxχU1(t)−

t

2
(x2 − 1)χ

′

U1
(t)

}
d

× [
√

1− λB1{F10(x)}+
√
λB2{F20(x)}]

D
=

∫ {
exp(itx)− itxχU1(t)−

t

2
(x2 − 1)χ

′

U1
(t)

}
× dB{F10(x)} (2.4)

where B1 and B2 are independent copies of B, and λ = limn1,n2→∞
n1n2

n1+n2
is considered

to be within the range (0, 1). Hall et al. (2013) showed that L̂ converges in distribution

to the random variable

L =

∫
|GFk0

(t)|2w(t)dt. (2.5)

The random variable L is distributed as
∑

k≥1 γk(t)Z
2
k , where Z1, Z2, ... are independent

and identically distributed standard normal random variables and γ1(t) > γ2(t) > ...

are the eigenvalues of the covariance function of the process w(t)GFk0
(t). The test

statistic L̂ is not asymptotically distribution free because the eigenvalues γj depend

on the type of underlying distribution. Therefore, for practical applications, one will

have to rely on the bootstrap to perform the test.

To calculate the statistics stated in Equation (2.2), a suitable weight function

must be chosen.

According to Hall et al. (2013) a popular choice of weight function is w(t) =

exp(−ht2). The other boxcar weight function, w(t) = 1, |t| ≤ π/2h, was another

alternative. A third choice was w(t) = (1 − |th|)2, |t| ≤ 1/h; see Hall et al.(2013)

for more insight on selecting w(t).

To estimate the realized level of the test statistic, Hall et al. (2013) proposed

using bootstrap as follows

9



• Generate samples X1 and X2 of size nk, k = 1, 2, from a population that satisfies
the null hypothesis.

• Compute the test statistic.

• Generate B bootstraps by resampling X∗1 and X∗2 , the bootstrap sample, from
only the X1 sample to estimate the bootstrap p-value.

The bootstrap p-value is based on M replications.
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CHAPTER 3

PLUG-IN EMPIRICAL LIKELIHOOD RATIO

We first derive the test statistic when there is no censoring. The form of the derived

likelihood ratio will indicate how, with minor tweaks, it will extend readily to the

censored case.

3.1 The Uncensored Case

For i = 1, 2, let Xi have distribution function Fi with mean µi and standard deviation

σi. Recall that ϕi(t) = µi + σit. The null hypothesis is

F1(ϕ1(t)) = F2(ϕ2(t)), for all t ∈ R. (3.1)

The observed data are Xij, j = 1, . . . , ni, which are independent and identically

distributed (iid) with distribution Fi. We now introduce some relevant results needed

for our analysis.

3.1.1 Uncensored data preliminaries

Let Λi(t) be the group-specific cumulative hazard with associated hazard function

λi(t). However, we will be dealing exclusively with the standardized variables

Uij = (Xij − µi)/σi. Accordingly, we let Λi0(t) be the group-specific cumulative

hazard of Uij with associated hazard function λi0(t). For each t ∈ R, write

Yi0(t) = n−1
i

∑ni

j=1 I(Uij ≥ t). Let F̂i0 be the empirical distribution function (EDF)

of Ui1, ..., Uini
. For ease of transition to the censored setting, we shall consider the

estimator of Λi0(t) given by

Λ̂i0(t) =

∫ t

−∞

d F̂i0(s)

Yi0(s)
, i = 1, 2. (3.2)

11



Let yi0(t) be the limit of Yi0(t). It can be shown that (cf. Major and Rejto,

1988),

Λ̂i0(t)− Λi0(t) =

∫ t

−∞

d
(
F̂i0(u)− Fi0(u)

)
yi0(u)

−
∫ t

−∞

Yi0(u)− yi0(u)

y2
i0(u)

dFi0(u)

+ oP(n−1/2)

=
1

ni

ni∑
j=1

(I(Uij ≤ t))

yi0(Uij)
− 1

ni

ni∑
j=1

∫ t

−∞

I(Uij ≥ u)

yi0(u)
dΛi0(u)

+ oP(n−1/2). (3.3)

Let Ũi1 < · · · < Ũimi
< ∞ denote the mi ≤ ni distinct standardized

observations. Let rij and dij be the number at risk just before Ũij and the number

of failures at Ũij respectively. Let ηi(t) =
∑mi

j=1 I(Ũij ≤ t). A uniformly consistent

estimator of the asymptotic variance function of n
1/2
i (Λ̂i0(·)−Λi0(·)), is (cf. Kalbfleisch

and Prentice, 2002)

ϑ2
i0(t) = ni

∑
j:Ũij≤t

dij
rij(rij − dij)

= ni

ηi(t)∑
j=1

dij
rij(rij − dij)

, i = 1, 2. (3.4)

3.1.2 Proposed plug-in likelihood ratio

Fix t > 0. For known θ ≡
(
µ>,σ>

)>
, where µ = (µ1, µ2)> and σ = (σ1, σ2)>, we

first derive an expression for Rθ(t), the difference between the log of the constrained

and unconstrained maximum likelihoods. For i = 1, 2, let ∆i denote the space of all

survival functions (with distributions having mean zero and variance 1) with support

on the points Ũi1, ..., Ũimi
. For Ki ∈ ∆i, it is well known that the nonparametric

likelihood for (K1, K2) is

L(K1, K2) =
2∏
i=1

mi∏
j=1

(
Ki(Ũij−)−Ki(Ũij)

)dij
. (3.5)

The mechanism for maximizing L(K1, K2) is via its parameterization through the

discrete hazards, λij, j = 1, . . . ,mi, i = 1, 2 (Kalbfleisch and Prentice, 2002).

12



Specifically, writing Ki(Ũij) =
∏j

l=1(1 − λil), the likelihood, expressed in terms of

λij, rij and dij, is

L(K1, K2) =
2∏
i=1

mi∏
j=1

λ
dij
ij (1− λij)rij−dij . (3.6)

Maximizing L(K1, K2) is equivalent to maximizing each quantity in the double

product, giving

λ̂ij = dij/rij, j = 1, . . . ,mi, i = 1, 2. (3.7)

Note that
∏j

l=1(1− λ̂il) = Ŝi0(Ũij) gives the empirical survival function, the estimator

of Si0(t) = 1 − Fi0(t), where Fi0 is the distribution function of Ui. Plugging the

estimates in (3.7) into Equation (3.6), the unconstrained maximum of the left hand

side (LHS) of Equation (3.5) is

L(Ŝ10, Ŝ20) =
2∏
i=1

mi∏
j=1

(
dij
rij

)dij (
1− dij

rij

)rij−dij
.

Recall that ηi(t) =
∑mi

j=1 I(Ũij ≤ t). In Appendix A.1, we maximize Equation

(3.6) subject to K1(·) = K2(·). The constrained estimates λ̃ij are given by Equation

(A.1). The constrained survival function estimates are S̃i0(Ũij) =
∏j

l=1(1 − λ̃il), j =

1, . . . ,mi, i = 1, 2. The Lagrange multiplier γ̂θ(t) satisfies Equation (A.2). For

notational simplicity, we shall suppress its dependence on t. Plugging the estimates
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into Equation (3.6), we obtain

L(S̃10, S̃20) =

η1(t)∏
j=1

(
d1j

r1j − γ̂θ

)d1j (
1− d1j

r1j − γ̂θ

)r1j−d1j
×

m1∏
j=η1(t)+1

(
d1j

r1j

)d1j (
1− d1j

r1j

)r1j−d1j

×
η2(t)∏
j=1

(
d2j

r2j + γ̂θ

)d2j (
1− d2j

r2j + γ̂θ

)r2j−d2j
×

m2∏
j=η2(t)+1

(
d2j

r2j

)d2j (
1− d2j

r2j

)r2j−d2j
.

For fixed t and known θ the log LR, denoted by Rθ(t), is derived in Appendix A.1.1

and is

Rθ(t) =

η1(t)∑
j=1

[
(r1j − d1j) log

(
1− γ̂θ

r1j − d1j

)
− r1j log

(
1− γ̂θ

r1j

)]

+

η2(t))∑
j=1

[
(r2j − d2j) log

(
1 +

γ̂θ
r2j − d2j

)
− r2j log

(
1 +

γ̂θ
r2j

)]
. (3.8)

To define our test statistic, for small enough η > 0, let νi = inf{t : Fi0(t) > η}.

Let α1 = max(ν1, ν2). Let τi = sup{t : Si0(t) > η}. Define α2 = min(τ1, τ2). Let

θ̂ = (µ̂, σ̂)> be a consistent estimator of θ. Our proposed PEL test statistic is

‖Rθ̂‖α2
α1

= supt∈[α1,α2] |Rθ̂(t)|.

Write η̂i(t) = ηi(t|µ̂i, σ̂i). Note that γ̂ ≡ γ̂θ̂(t) solves Equation (A.2) with θ = θ̂

and satisfies D̂2 < γ̂ < −D̂1, where

D̂1 = max
1≤j≤η̂1(t)

{d1j − r1j}, D̂2 = max
1≤j≤η̂2(t)

{d2j − r2j}. (3.9)

After determining the bounds D̂2 and −D̂1, Brent’s method can be used to compute

the root. More specifically, the estimator γ̂ is computed at Ũ1k, k ∈ Υ, where Υ =

{k : α1 ≤ Ũ1k ≤ α2}, then γ̂ and η̂i(t) are plugged into the right hand side (RHS)
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of Equation (3.8) to obtain Rθ̂(Ũ1k), k ∈ Υ. The computed value of the PEL test

statistic is then taken as maxk∈ΥRθ̂(Ũ1k).

3.1.3 Large-sample null distribution

Define ζ̂i(t) = − log Ŝi(t). The plug-ins are µ̂ = (µ̂1, µ̂2)>, where µ̂i = n−1
i

∑ni

j=1Xij,

and σ̂ = (σ̂1, σ̂2)> with σ̂i being the i-th sample standard deviation, the plug-ins

computed from the unstandardized Xij. Recall that ϕi(t) = µi + tσi. Its estimate

is ϕ̂i(t) = µ̂i + tσ̂i. Let λi0(t) be the hazard function associated with Fi0(t), the

distribution function of Ui. Let n = n1 + n2 and n1/n→ ρ as ni →∞, i = 1, 2. Note

that the limit of n2/n is 1 − ρ. Replace ηi(t) in Equation (3.4) with η̂i(t) to obtain

ϑ̂2
i0(t), the estimate of ϑ2

i0(t). Let ϑ2
c(t) be the limit of ϑ̂2

c(t), where

ϑ̂2
c(t) =

ϑ̂2
10(t)

ρ
+
ϑ̂2

20(t)

1− ρ
. (3.10)

In Appendix B, it is shown that−2Rθ̂(t) is asymptotically equivalent to (n1/2V̂(t))2/ϑ2
c(t),

where V̂(t) ≡ ζ̂1(ϕ̂1(t))− ζ̂2(ϕ̂2(t)). In Lemma 3 in Appendix A.1.2, it is shown that

ζ̂1(ϕ̂1(t))− ζ̂2(ϕ̂2(t)) ≡
(
− log Ŝ1(ϕ̂1(t))

)
−
(
− log Ŝ2(ϕ̂2(t))

)
, t ∈ [α1, α2], (3.11)

has the asymptotic representation V̂(t) = A1(t) +B1(t)− (A2(t) +B2(t)) +oP(n−1/2),

where

Ai(t) =
λi0(t)

σi

(
(µ̂i − µi) +

t

2σi
(σ̂2

i − σ2
i )

)
+ oP(n−1/2) (3.12)

Bi(t) = Λi0(t) +
(

Λ̂i0(t)− Λi0(t)
)

+ oP(n−1/2). (3.13)

Then, with Ūi = (ni)
−1
∑ni

j=1 Uij, after elementary calculations it can be shown that

Ai(t) = λi0(t)× 1

ni

ni∑
j=1

[
Uij +

t

2

(
(Uij − Ūi)2 − 1

)]
+ oP(n−1/2). (3.14)
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Plug the asymptotic representation of Equation (3.3) into the RHS of Equation (3.13)

to obtain

Bi(t) = Λi0(t) +
1

ni

ni∑
j=1

{
(I(Uij ≤ t))

yi0(Uij)
−
∫ ∞
−∞

I(u ≤ Uij ∧ t)
yi0(u)

dΛi0(u)

}
+ oP(n−1/2). (3.15)

Because V̂(t) is a difference, Λ10 and Λ20 cancel each other out under the null

hypothesis. Thus

n1/2V̂(t) =
1
√
ρ

{
n
−1/2
1

n1∑
j=1

J1j(t)

}
+

1√
1− ρ

{
n
−1/2
2

n2∑
j=1

J2j(t)

}
+ oP(1). (3.16)

where

Jij(t) = λi0(t)

[
Uij +

t

2

(
(Uij − Ūi)2 − 1

)]
+

[
(I(Uij ≤ t))

yi0(Uij)
−
∫ Uij∧t

−∞

dΛi0(u)

yi0(u)

]
. (3.17)

Let D[α1, α2] be the class of càdlàg functions defined on [α1, α2] equipped with

the supremum norm. The large-sample null distribution of −2Rθ̂(·) is stated in

Theorem 1. The proof is given in Appendix B.

Theorem 1 Let Vi(s, t) = E (Ji1(s)Ji1(t)). Under the null hypothesis, −2Rθ̂(·)

converges weakly in D[α1, α2] to V2(·)/ϑ2
c(·), where V is a centered Gaussian process

with covariance function

Cov(V(s),V(t)) =
V1(s, t)

ρ
+
V2(s, t)

1− ρ
. (3.18)

The continuous mapping theorem guarantees the weak convergence of the PEL test

statistic.
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3.2 Extension to Censored Data

The censoring variables Ci are assumed to be independent with distribution functions

Gi, i = 1, 2. As we know, Xij, j = 1, . . . , ni, are iid failure times having

common distributions as Xi, i = 1, 2. Let Cij, j = 1, . . . , ni, be iid censoring

times having the same distribution as Ci. The observed data are random samples

{(Zij, δij), j = 1, . . . , ni, i = 1, 2}, where Zij = min(Xij, Cij) and δij = I(Xij ≤ Cij).

As in the uncensored case, Uij are the standardized failure times not all of which will

be observed due to censoring. They have distribution function Fi0 and cumulative

hazard Λi0. Let Z̃ij = (Zij−µi)/σi. Those Z̃ij with δij = 1 coincide with the Uij that

are uncensored. The Nelson–Aalen estimator, Λ̂i0(t), of Λi0(t) is given by Equation

(3.2), but will have Ĥ
(1)
i0 (t) ≡ n−1

i

∑ni

j=1 I(Z̃ij ≤ t, δij = 1) as the integrating measure

instead of F̂i0(t). Let ỹi(t) be the limit of Ỹi(t) = n−1
i

∑ni

j=1 I(Z̃ij ≥ t). It can be

shown that [cf. Equation (3.3)], modulo a remainder of oP(n−1/2) (e.g., Major and

Rejto, 1988),

Λ̂i0(t)− Λi0(t) =
1

ni

ni∑
j=1

(
I(Z̃ij ≤ t, δij = 1

)
ỹi(Z̃ij)

− 1

ni

ni∑
j=1

∫ t

−∞

I(Z̃ij ≥ u)

ỹi(u)
dΛi0(u). (3.19)

Let Ũi1 < · · · < Ũimi
< ∞ be the distinct Z̃ij with δij = 1. Let dij and

rij be the number of observed failures at Ũij and the number at risk just before

Ũij respectively. The rij are obtained by summing all dir, r = j, . . . ,mi, and the

censored outcomes greater than Ũij (assuming no ties between failed and censored

items). Then, Equation (3.8), the log LR, holds. Continuing with the same notation

as for the uncensored case, let ηi(t) =
∑mi

j=1 I(Ũij ≤ t). Subsequently, Equation (3.4)

defines ϑ2
i0(·), a uniformly consistent estimator of the asymptotic variance function of

n
1/2
i (Λ̂i0(·)− Λi0(·)).
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Let κi = inf{u : Hi(u) = 1}, where Hi is the common distribution function of

Zij, j = 1, . . . , ni. Also, let Ti1 < Ti2 < . . . < Timi
be the distinct uncensored Zij’s.

To obtain consistent plug-ins for µi and σi, we assume that κi =∞ and that κi is not

an atom of Hi (Stute and Wang, 1993; Stute, 1995). Let ψi be the second moment

Xi. Then ∆Ŝi(Tij) ≡ Ŝi(Tij) − Ŝi(Ti(j−1)) = −Ŝi(Ti(j−1))dij/rij, where Ŝi(Ti0) ≡ 1.

The estimates of µi and ψi are

µ̂i = −
mi∑
j=1

Tij∆Ŝi(Tij); ψ̂i = −
mi∑
j=1

T 2
ij∆Ŝi(Tij). (3.20)

Remark 1 Suppose that h : R1 → R1 satisfies
∫
|h|dF < ∞. If either κi < ∞

or κi is an atom of Hi, then the KM integral
∫
h dF̂i, converges with probability 1

to
∫
h dF̃i, where F̃i(x) = Fi(x)I(x < κi) + Fi(x−)I(x ≥ κi) (Stute, 1995). When

κi = ∞ and κi is not an atom of Hi, then
∫
h dF̂i converges with probability 1 to∫

h dFi. Thus, when these conditions hold, the choices h(x) = x and h(x) = x2 yield

consistent moment estimators in Equations (3.20).

Remark 2 If either κi <∞ or κi is an atom of Hi, Equations (3.20) yield inconsistent

estimators of µi and ψi. Consequently, when used as plug-ins, the process V̂ [see

Equation (3.11)] would be asymptotically biased, the non-vanishing bias being the

difference of the cumulative hazards of (X1 − µ̃1)/σ̃1 and (X2 − µ̃2)/σ̃2 where µ̃i =∫
xdF̃i and σ̃2

i = ψ̃2
i − (µ̃i)

2 and ψ̃i =
∫
x2dF̃i.

To define the test statistic, as for the uncensored case, for small enough η > 0,

let νi = inf{t : Hi0(t) > η}. Let α1 = max(ν1, ν2). Let τi = sup{t : 1 −Hi0(t) > η}.

Define α2 = min(τ1, τ2). With θ̂ = (µ̂, σ̂)>, the censoring adjusted PEL test statistic

is

‖Rθ̂‖
α2
α1

= sup
t∈[α1,α2]

|Rθ̂(t)|.
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Note that the Lagrange multiplier function γ̂θ̂(t), for fixed t, lies between D̂2 and

−D̂1, see Equation (3.9). The censoring adjusted PEL is essentially computed as for

the uncensored case.

As for the uncensored case V̂(t), defined by Equation (3.11), has the asymptotic

representation V̂(t) = A1(t) + B1(t) − (A2(t) +B2(t)) + oP(n−1/2), where Ai(t) and

Bi(t) are given by Equation (3.12) and Equation (3.13) respectively. From here on,

there is considerable departure from the uncensored representation. Let ΛGi
(t) be

the cumulative hazard associated with Gi. We have

Ai(t) =
λi0(t)

σi

(
(µ̂i − µi) +

t

2σi
(σ̂2

i − σ2
i )

)
+ oP(n−1/2)

=
λi0(t)

σi

(
(1− tµi/σi)(µ̂i − µi) +

t

2σi
(ψ̂i − ψi)

)
+ oP(n−1/2). (3.21)

Let Hi be the distribution function of Zij and let H
(0)
i and H

(1)
i be the

subdistribution functions of Zij associated with δij = 0 and δij = 1 respectively.

For i = 1, 2, let (Stute, 1995)

βi0(x) = exp

(∫ x−

−∞

H
(0)
i (dz)

(1−Hi(z))

)
= exp(− log(1−Gi(x−))) =

1

1−Gi(x−)
;

βi1(x) =
1

1−Hi(x)

∫
1{x<w}h(w)γi0(w)H

(1)
i (dw) =

1

1−Hi(x)

∫ ∞
x

h(w)dFi(w);

βi2(x) =

∫ ∫
1{v<x,v<w}h(w)βi0(w)H

(0)
i (dv)H

(1)
i (dw)

=

∫ ∞
−∞

∫ x∧w

−∞

ΛGi
(dv)

1−Hi(v)
h(w)Fi(dw).

To derive the influence function of
∫
h d (F̂i − Fi), Stute (1995) introduced the

conditions ∫ (
h(x)

1−Gi(x−)

)2

H
(1)
i (dx) < ∞; (3.22)∫

|h(x)|
(∫ x−

−∞

ΛGi
(dy)

1−Hi(y)

)1/2

Fi(dx) < ∞. (3.23)
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Assuming (3.22) and (3.23), Stute (1995) derived the influence function of
∫
hdF̂i,

given by

h(Zij)βi0(Zij)δij + βi1(Zij)(1− δij)− βi2(Zij). (3.24)

Plugging βik(x), k = 0, 1, 2, into (3.24) and applying h(x) = x or h(x) = x2, the

influence functions of µ̂i−µi =
∫
x d (F̂i(x)−Fi(x)) and ψ̂i−ψi =

∫
x2 d (F̂i(x)−Fi(x))

are

I
(1)
ij =

(
Zijδij

1−Gi(Zij−)
− µi

)
+

1− δij
1−Hi(Zij)

∫ ∞
Zij

u dFi(u)

−
∫ ∞
−∞

∫ Zij∧u

−∞

dΛGi
(v)

1−Gi(v)
udΛi(u);

I
(2)
ij =

(
Z2
ijδij

1−Gi(Zij−)
− ψi

)
+

1− δij
1−Hi(Zij)

∫ ∞
Zij

u2 dFi(u)

−
∫ ∞
−∞

∫ Zij∧u

−∞

dΛGi
(v)

1−Gi(v)
u2dΛi(u).

Note that I
(1)
ij and I

(2)
ij are centered. In particular, the remark on page 426 of

Stute (1995) implies that the second and third terms of I
(1)
ij and I

(2)
ij have identical

expectations. Thus

µ̂i − µi =
1

ni

ni∑
j=1

I
(1)
ij ; ψ̂i − ψi =

1

ni

ni∑
j=1

I
(2)
ij . (3.25)

Plugging Equation (3.25) into the RHS of Equation (3.21), we obtain the iid

representation

Ai(t) =
λi0(t)

σi

[
(1− tµi/σi)

(
1

ni

ni∑
j=1

I
(1)
ij

)
+

t

2σi

(
1

ni

ni∑
j=1

I
(2)
ij

)]
+ oP(n−1/2). (3.26)

Furthermore, plugging the RHS of Equation (3.19) into the RHS of Equation (3.13),

we obtain

Bi(t) = Λi0(t) +
1

ni

ni∑
j=1


(
I(Z̃ij ≤ t, δij = 1)

)
ỹi(Z̃ij)

−
∫ ∞
−∞

I(u ≤ Z̃ij ∧ t)
ỹi(u)

dΛi0(u)

 .(3.27)
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Thus, mirroring Equation (3.16), we have the iid representation

n1/2V̂(t) =
1
√
ρ

{
n
−1/2
1

n1∑
j=1

J
(c)
1j (t)

}
+

1√
1− ρ

{
n
−1/2
2

n2∑
j=1

J
(c)
2j (t)

}
+ oP(1). (3.28)

where, for j = 1, . . . , ni and i = 1, 2,

J
(c)
ij (t) =

λi0(t)

σi

{(
1− tµi

σi

)
I

(1)
ij +

t

2σi
I

(2)
ij

}
+

{
δijI(Z̃ij ≤ t)

ỹi(Z̃ij)
−
∫ Z̃ij∧t

−∞

dΛi0(u)

ỹi(u)

}
. (3.29)

Let V
(c)
i (s, t) = E

(
J

(c)
i1 (s)J

(c)
i1 (t)

)
. The estimate ϑ̂2

c(t) continues to be as

in Equation (3.10) with the necessary plug-in adjustments. The large-sample null

distribution of −2Rθ̂(·), the censored data extension of the PEL statistic, is stated in

Theorem 2. As in the uncensored case, −2Rθ̂(t) is asymptotically equivalent to the

square of n1/2V̂(t) scaled by the reciprocal of ϑ̂2
c(t). The proof of Theorem 2 follows

exactly like the proof of Theorem 1 and is omitted.

Theorem 2 Assume conditions (3.22) and (3.23) and that κi, the endpoint of the

support of Hi, is +∞ and κi is not an atom of Hi, where i = 1, 2. Suppose

that F10(·) = F20(·). Then the process −2Rθ̂(·) converges weakly in D[α1, α2] to(
V(c)

)2
(·)/ϑ2

c(·), where V(c) is centered Gaussian with covariance function

Cov(V(c)(s),V(c)(t)) =
V

(c)
1 (s, t)

ρ
+
V

(c)
2 (s, t)

1− ρ
. (3.30)

The continuous mapping theorem guarantees the weak convergence of the PEL test

statistic.

3.3 Location-Scale Appropriate Resampling

As was noted in the Introduction section, the bootstrap sample sizes need to be

smaller than n1 and n2. For each case, uncensored and censored, we describe the
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bootstrap and employ an adaptive rule for selecting the bootstrap sample sizes. Since

two bootstrap sample sizes need to be determined, the adaptive rule will be a two-

dimensional extension of that proposed by Bickel and Sakov (2008). Starting with

0 < q < 1, sample sizes n1 and n2 are scaled down successively by employing scaling

factors of higher powers of q, inducing the search to traverse along a “diagonal” path.

Note that Bickel and Sakov’s (2008) search trajectory was horizontal and can only be

applied to the one-dimensional setting; see Subramanian (2020).

3.3.1 Uncensored case

Let mB1 and mB2 be the bootstrap sample sizes that are to be determined, see below.

Given mB1 and mB2 , obtain {X∗ij, j = 1, . . . ,mBi
, i = 1, 2} by resampling from the

EDF of {X11, ..., X1,n1}. Then compute the RHS of Equation (3.8) to obtain R∗
θ̂∗

, the

bootstrap log LR, where θ̂
∗

is the bootstrap estimate of θ.

To obtain mB1 and mB2 , write mB = (mB1 ,mB2)>. Let Ln = ‖Rθ̂‖α2
α1

be the

test statistic, and LmB ,n = ‖R∗
θ̂∗
‖α2
α1

be its bootstrap version, where n = (n1, n2)>. Fix

0 < q < 1 and let [α] be the smallest integer greater than or equal to α. The steps

are:

1. Consider sequence mBk
= [mB1k

,mB2k
]>, where mBik

= [qkni], i = 1, 2, k =
0, 1, 2, ...

2. For each mBk
, obtain B bootstrap replicates of LmBk

,n. Let FLBk,n
be the EDF

computed from the B values of LmBk
,n.

3. Compute k̂ = argmink(supx |FLBk,n
(x) − FLBk+1,n

(x)|), the index minimizing the

Kolmogorov–Smirnov (KS) distance. If the distance is minimized for multiple
k, pick the largest one.

4. The bootstrap sample size vector is then m̂B ≡ mBk̂
= [mB1k̂

,mB2k̂
]> ≡

[m̂B1 , m̂B2 ]>.

The bootstrap PEL is computed 1,000 times and the critical value is the 950-th

ordered value.

22



3.3.2 Censored case

We generate {(Z∗1j, δ∗1j), j = 1, ...,mB1} from the EDF of {(Z11, δ11), ..., (Z1,n1 , δ1,n1)},

but not generate {(Z∗2j, δ∗2j), j = 1, ...,mB2} from the EDF of {(Z21, δ21), ..., (Z2,n2 , δ2,n2)},

since it may not satisfy the null hypothesis. Also, we don’t generate {(Z∗2j, δ∗2j), j =

1, ...,mB2} from the EDF of the first sample since the censoring distributions could

be different. Therefore,

1. Generate X∗1j, j = 1, ...,mB2, from F̂1, the KM estimator of F1. Realizations
greater than the highest uncensored value were assigned an arbitrarily large
value. The rationale is that such an action would not affect LR calculations
over [α1, α2].

2. Compute X∗2j = µ̂2 + (X∗1j − µ̂1)σ̂2/σ̂1, j = 1, . . . ,mB2 , where µ̂i and σ̂i are the
estimators of µi and σi respectively [see Equation (3.20)], and are computed
from the original data.

3. Generate C∗2j, j = 1, . . . ,mB2 , from Ĝ2, the KM estimator of G2. Realizations
greater than the highest censored value were assigned an arbitrarily large value.
This action would not affect LR calculations over [α1, α2].

4. Obtain {(Z∗2j, δ∗2j), j = 1, ...,mB2}, where Z∗2j = min(X∗2j, C
∗
2j) and δ∗2j =

I(X∗2j ≤ C∗2j).

Adaptive selection of bootstrap sample sizes was carried out as for the uncensored

case.
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CHAPTER 4

CENSORED ECF TEST

In this chapter we extend Hall et al’s (2013) approach for censored data. The

extension is non-trivial since one would need plug-ins for the means and standard

deviations. In the proposed extension detailed in this chapter, the plug-ins will be

based on KM integrals (Stute, 1995), described in Chapter 3.

Recall that, for k = 1, 2, F̂k(x) = 1 − Ŝk(x), and Ŝk(x) is the KM estimator

of Sk(x) based on the original (non-standardized) data. The estimated characteristic

function of the standardized variable Uk = (Xk − µk)/σk is

χ̂k(t) =

∫
R

exp

{
it

(
x− µ̂k
σ̂k

)}
dF̂k(x) (4.1)

=

∫
cos

(
t

(
x− µ̂k
σ̂k

))
dF̂k(x) + i

∫
R

sin

(
t

(
x− µ̂k
σ̂k

))
dF̂k(x).

The important insight is to express the estimated characteristic function as an

integral, with the KM estimator as the integrating measure. Additionally, as already

stated, the plug-ins are based on Stute’s (1995) KM integrals.

With these changes, the proposed test statistic will be the same as in Hall et

al. (2013) and is

Ln1,n2 :=
n1n2

n1 + n2

∫
|χ̂1(t)− χ̂2(t)|2w(t)dt, (4.2)

where w(t) is a specified weight function that must be chosen to calculate the test

statistic. According to Hall et al. (2013) a popular choice of weight function is

w(t) = exp(−ht2). The other boxcar weight function, w(t) = 1, |t| ≤ π/2h, was

another alternative. A third choice was w(t) = (1− |th|)2, |t| ≤ 1/h; see Hall et al.

(2013) for more insight on selecting w(t).
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4.1 ECF Censored Case

We obtain an asymptotic iid representation for Ln1,n2 . We use Taylor expansions of

the sine and cosine functions about (µk, σk) and disregard second order terms. From

the sequel it will be clear that those second order terms contribute remainder terms

which are oP(n−1/2). Therefore, considering the dominant (linear) terms, we have

cos

(
t

(
Xk − µ̂k
σ̂k

))
= cos

(
t

(
Xk − µk
σk

))
+ (µ̂k − µk)

t

σk
sin

(
t

(
Xk − µk
σk

))
+ (σ̂k − σk)

t

σk

Xk − µk
σk

sin

(
t

(
Xk − µk
σk

))
= cos

(
t

(
Xk − µk
σk

))
− i2 (µ̂k − µk)

t

σk
sin

(
t

(
Xk − µk
σk

))
− (σ̂k − σk)

t

σk

∂

∂t

{
cos

(
t

(
Xk − µk
σk

))}
. (4.3)

Likewise, we also have

sin

(
t

(
Xk − µ̂k
σ̂k

))
= sin

(
t

(
Xk − µk
σk

))
− (µ̂k − µk)

t

σk
cos

(
t

(
Xk − µk
σk

))
− (σ̂k − σk)

t

σk

Xk − µk
σk

cos

(
t

(
Xk − µk
σk

))
= sin

(
t

(
Xk − µk
σk

))
− (µ̂k − µk)

t

σk
cos

(
t

(
Xk − µk
σk

))
− (σ̂k − σk)

t

σk

∂

∂t

{
sin

(
t

(
Xk − µk
σk

))}
. (4.4)

It follows that, modulus remainder terms which are oP(n−1/2),

exp

{
it

(
Xk − µ̂k
σ̂k

)}
= cos

(
t

(
Xk − µ̂k
σ̂k

))
+ i sin

(
t

(
Xk − µ̂k
σ̂k

))
= cos

(
t

(
Xk − µ̂k
σ̂k

))
+ i sin

(
t

(
Xk − µ̂k
σ̂k

))
− i (µ̂k − µk)

t

σk

{
cos

(
t

(
Xk − µk
σk

))
+ i sin

(
t

(
Xk − µk
σk

))}
− (σ̂k − σk)

t

σk

∂

∂t

[
cos

(
t

(
Xk − µk
σk

))
+ i sin

(
t

(
Xk − µk
σk

))]
= exp

(
it

(
Xk − µ̂k
σ̂k

))
− i (µ̂k − µk)

t

σk
exp

(
it

(
Xk − µk
σk

))
− (σ̂k − σk)

t

σk

∂

∂t

[
exp

(
it

(
Xk − µk
σk

))]
. (4.5)
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The estimated characteristic function given by Equation (4.1) has the asymptotic

representation

χ̂k(t) =

∫
R

exp

{
it

(
x− µk
σk

)}
dF̂k(x)

− i (µ̂k − µk)
t

σk

∫
R

exp

{
it

(
x− µk
σk

)}
dF̂k(x)

−
(
σ̂2
k − σ2

k

) t

2σ2
k

∫
R

∂

∂t

[
exp

(
it

(
x− µk
σk

))]
dF̂k(x) + oP(n−1/2). (4.6)

The integrals in the second and third expressions on the right hand side (RHS) of

Equation (4.6) converge in probability to χk(t) and χ′k(t) respectively (Csörgő, 1981;

Stute, 1995). Applying the delta method, it follows that the third expression of

Equation (4.6) is[
(ψ̂k − ψk)− 2µk(µ̂k − µk)

] t

2σ2
k

χ′k(t) + oP(n−1/2). (4.7)

It follows from Equation (4.6) and expression (4.7) that

χ̂k(t) = χk(t) +

∫
R

exp

{
it

(
x− µk
σk

)}
d
{
F̂k(x)− Fk(x)

}
− (µ̂k − µk)

t

σk

(
iχk(t) +

µk
σk
χ′k(t)

)
−
(
ψ̂k − ψk

) t

2σ2
k

χ′k(t) + oP(n−1/2)

≡ χk(t) + Ik1(t) + Ik2(t) + Ik3(t), (4.8)

where Ik2(t) and Ik3(t) are the third and fourth expressions on the RHS of Equation

(4.8) and

Ik1(t) =

∫
R

exp

{
it

(
x− µk
σk

)}
d
{
F̂k(x)− Fk(x)

}
=

∫
R

cos

{
t

(
x− µk
σk

)}
d(F̂k(x)− Fk(x))

+ i

∫
R

sin

{
t

(
x− µk
σk

)}
d(F̂k(x)− Fk(x)).

The influence function of the KM integral process
∫
h d (F̂k−Fk) is given by Equation

(1.7) and Equation (1.8) of Stute (1995). When h(x) = cos(x) and h(x) = sin(x),
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the influence functions connected with the asymptotic representations of the two

expressions on the RHS above can be obtained. Thus Ik1(t) = 1
nk

∑nk

j=1 I
(j)
k11(t) +

i
nk

∑nk

j=1 I
(j)
k12(t) + oP(n−1/2), where

I
(j)
k11(t) =

cos
{
t
(
Zkj−µk
σk

)}
δkj

1−Gk(Zkj−)
− E

(
cos

{
t

(
Zkj − µk

σk

)})
+

1− δkj
1−Hk(Zkj)

∫ ∞
Zkj

cos

{
t

(
u− µk
σk

)}
dFk(u)

−
∫ ∞
−∞

∫ Zkj∧u

−∞

dΛGk
(v)

1−Gk(v)
cos

{
t

(
u− µk
σk

)}
dΛk(u);

I
(j)
k12(t) =

sin
{
t
(
Zkj−µk
σk

)}
δkj

1−Gk(Zkj−)
− E

(
sin

{
t

(
Zkj − µk

σk

)})
+

1− δkj
1−Hk(Zkj)

∫ ∞
Zkj

sin

{
t

(
u− µk
σk

)}
dFk(u)

−
∫ ∞
−∞

∫ Zkj∧u

−∞

dΛGk
(v)

1−Gk(v)
sin

{
t

(
u− µk
σk

)}
dΛk(u).

Note that I
(j)
k11(t) and I

(j)
k12(t) are centered. In particular, the remark on page 426

of Stute (1995) implies that the second and third terms of I
(j)
k11(t) and I

(j)
k12(t) have

identical expectations. However, we can combine the two influence functions and

obtain

I
(j)
k11(t) + I

(j)
k12(t) =

exp
{
it
(
Zkj−µk
σk

)}
δkj

1−Gk(Zkj−)
− E

(
exp

{
it

(
Zkj − µk

σk

)})
+

1− δkj
1−Hk(Zkj)

∫ ∞
Zkj

exp

{
it

(
u− µk
σk

)}
dFk(u)

−
∫ ∞
−∞

∫ Zkj∧u

−∞

dΛGk
(v)

1−Gk(v)
exp

{
it

(
u− µk
σk

)}
dΛk(u)) ≡ I

(j)
k1 (t).
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The influence functions of µ̂k − µk =
∫
x d
(
F̂k(x)− Fk(x)

)
and ψ̂k − ψk =∫

x2 d
(
F̂k(x)− Fk(x)

)
were determined in Chapter 3. They are given by

I
(j)
k2 =

(
Zkjδkj

1−Gk(Zkj−)
− µk

)
+

1− δkj
1−Hk(Zkj)

∫ ∞
Zkj

u dFk(u)

−
∫ ∞
−∞

∫ Zkj∧u

−∞

dΛGk
(v)

1−Gk(v)
udΛk(u);

I
(j)
k3 =

(
Z2
kjδkj

1−Gk(Zkj−)
− ψk

)
+

1− δkj
1−Hk(Zkj)

∫ ∞
Zkj

u2dFk(u)

−
∫ ∞
−∞

∫ Zkj∧u

−∞

dΛGk
(v)

1−Gk(v)
u2dΛk(u).

Thus

µ̂k − µk =
1

nk

nk∑
j=1

I
(j)
k2 ; ψ̂k − ψk =

1

nk

nk∑
j=1

I
(j)
k3 . (4.9)

Therefore we have

Ik2(t) = − t

σk

(
iχk(t) +

µk
σk
χ′k(t)

)(
1

nk

nk∑
j=1

I
(j)
k2

)
+ oP(n−1/2);

Ik3(t) = − t

σ2
k

χ′k(t)

(
1

nk

nk∑
j=1

I
(j)
k3

)
+ op(n

−1/2).

Plugging the above results into the RHS of Equation (4.6), we obtain the iid

representation

χ̂k(t)− χk(t) =
1

nk

nk∑
j=1

[
I

(j)
k1 (t) +− t

σk

(
iχk(t) +

µk
σk
χ′k(t)

)
I

(j)
k2 −

t

σ2
k

χ′k(t)I
(j)
k3

]
+ op(n

−1/2). (4.10)

Recall that we work with independent samples. We now have

χ̂1(t)− χ̂2(t) = χ̂1(t)− χ1(t)− {χ̂2(t)− χ2(t)}+ χ1(t)− χ2(t)

=
1

n1

n1∑
j=1

[
I

(j)
11 (t)− t

σ1

(
iχ1(t) +

µ1

σ1

χ′1(t)

)
I

(j)
12 −

t

σ2
1

χ′1(t)I
(j)
13

]

− 1

n2

n2∑
j=1

[
I

(j)
21 (t)− t

σ2

(
iχ2(t) +

µ2

σ2

χ′2(t)

)
I

(j)
22 −

t

σ2
2

χ′2(t)I
(j)
23

]
+ χ1(t)− χ2(t) + op(n

−1/2). (4.11)
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Under the null hypothesis χ1(t) = χ2(t). Let ρ be the limit of n1/(n1 +n2) as n1 →∞

and n2 →∞. Then{
n1n2

n1 + n2

}1/2

V̂(cf)(t) :=

{
n1n2

n1 + n2

}1/2

(χ̂1(t)− χ̂2(t))

= (
√

1− ρ)n
−1/2
1

n1∑
j=1

J
(cf)
1j (t)− (

√
ρ)n

−1/2
2

n2∑
j=1

J
(cf)
2j (t) + oP(1),

where

J
(cf)
kj (t) = I

(j)
k1 (t)− t

σk

(
iχk(t) +

µk
σk
χ′k(t)

)
I

(j)
k2 −

t

σ2
k

χ′k(t)I
(j)
k3 . (4.12)

Let V
(cf)
k (s, t) = E

(
J

(cf)
k1 (s)J

(cf)
k1 (t)

)
. Then {n1n2/(n1 + n2)}1/2 V̂(cf)(·) converges in

distribution to G(·), a zero-mean Gaussian process with covariance function at (s, t)

given by

Cov(G(s),G(t)) = (1− ρ)V
(cf)

1 (s, t) + ρV
(cf)

2 (s, t).

The proposed censored test statistic Ln1,n2 converges in distribution to the random

variable

L =

∫
|G(t)|2w(t)dt.

Proof of this follows the steps given in Hall et al. (2013).

The censored ECF test statistic Ln1,n2 is not asymptotically distribution free.

Therefore, it is a challenge to obtain critical values needed for carrying out the test.

The full bootstrap that Hall et al. (2013) proposed did not work well for the censored

case. As is explained in Chapter 3, we are required to use smaller bootstrap sample

sizes. The data-driven procedure given in Subramanian (2020) that adapts Bickel

and Sakov’s (2008) one-sample proposal yielded a reasonably accurate choice for the

bootstrap sample size vector.

For clarity, we once again describe the algorithm to obtain the bootstrap

sample size vector. To obtain mB1 and mB2, the bootstrap sample sizes, write

mB = (mB1,mB2)>. Let Ln = L̂n1,n2 be the test statistic, and LmB ,n = L̂∗n1,n2
be
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its bootstrap version, where n = (n1, n2)>. Fix 0 < q < 1 and let [α] be the smallest

integer greater than or equal to α. The steps are:

1. Consider sequence mBk = [mB1k,mB2k]
>, where mBik = [qkni], i = 1, 2, k = 0, 1, 2, ...

2. For each mBk, obtain B bootstrap replicates of LmBk,n. Let FLk,n
be the EDF

computed from the B values of LmBk,n.

3. Compute k̂ = argmink
(
supx |FLk,n

(x)− FLk+1,n
(x)|

)
. If the supnorm within the

parenthesis is minimized for more than one k, then pick the largest as k̂.

4. The bootstrap sample size vector is then m̂B = [m̂B1, m̂B2]>.

The bootstrap PEL is computed 1,000 times and the critical value is the 950-th

ordered value. Using the identified bootstrap sample sizes, we found that the realized

levels are closer to the nominal 5% level.
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CHAPTER 5

NUMERICAL STUDIES

We first report a power comparison study of the uncensored ECF and PEL tests. We

then report simulation results for the uncensored PEL test. The power comparison

study of the censored PEL an d ECF tests will be reported next and at the end the

simulation results for the censored PEL and ECF tests are reported.

5.1 Power Comparisons for the Uncensored Case

We carried out the first power study as in Hall et al. (2013). The X1 and X2 samples,

each of size 250, were generated from the same location-scale family, namely the t

distribution with 5 degrees of freedom. For each of 10,000 samples, the PEL and ECF

statistics were computed and were arranged in increasing order. The 9,500-th ordered

value was chosen as the critical value. Then, 1,000 X1 samples were generated as they

were when determining the critical value but the X2 samples were drawn from a skew-t

distribution with 5 degrees of freedom, and the skewness parameter was taken over

a range of values between 0.0 ≤ δ ≤ 0.99. The PEL and ECF test statistics were

calculated again for each of these 1,000 samples. The weight function w(t) = e−t
2

was

used to calculate the ECF test. The estimated power at the 5% level of significance

for each test is the proportion of test statistics that exceeded the respective critical

values. The estimated power was plotted against skewness value and reported in

Fig. 5.1. The ECF performs slightly better when δ ∈ (0, 0.5). For δ ∈ (0.5, 1), the

PEL performs slightly better. Thus there seems to be no clear winner.

The critical value for the first power comparison study is obtained for a specified

distribution under the null hypothesis. Since, in practice, no such distribution will

be recognized, one might wish to investigate test efficacy based on a more realistic

power comparison, namely that which makes use of the proposed bootstrap procedure.
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Figure 5.1 First power comparison study of the uncensored PEL and ECF tests.

Therefore, a second power comparison study was done as follows. The X1 sample

of size 250 was generated from the t distribution with 5 degrees of freedom. The

X2 sample of size 250 was generated from the skew-t distribution with 5 degrees

of freedom, with the skewness parameter taken over a range of values between

0.0 ≤ δ ≤ 0.99. The PEL and ECF statistics were computed for each of such

1,000 simulated data sets. Approximate ECF and PEL critical values for each data

set were also obtained — Hall et al.’s (2013) bootstrap for the ECF test and the

proposed model-appropriate bootstrap for the PEL test. The ECF and PEL tests

based rejection indicators were obtained for each data set. The rejection proportions

give the respective empirical powers. The weight function w(t) = e−t
2

was used for

the ECF test, and two values of q (0.9 and 0.85), were investigated for the PEL test.

The diagonal trajectory for selecting the bootstrap sample sizes (Subsection 3.3.1)

was applied. The empirical power was plotted against skewness value and reported

in Fig. 5.2. The PEL test appears to show improved performance over the ECF test.
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Figure 5.2 Second power comparison study of uncensored PEL and ECF (diagonal
path).

For the second power study, we also applied an alternate search trajectory

to zero-in on the bootstrap sample sizes mB1 and mB2 . Taking q = 0.9, we

first navigated through a one-dimensional horizontal path mBkl
= [mB1k

,mB2l
]>,

where mB1k
= [qkn1],mB2l

= [qln2], by fixing index k and running through index

l (k = 0, . . . , 8, l = 0, . . . , 8). The bootstrap sample size vector for each k that

minimized the KS distance between successive EDFs (see Section 3.3.1) is mB.k
=

[mB1k
, m̂B2k

]>, k = 0, . . . 8. In the next step we performed a “downward” search

trajectory along the sequence mB.k
, k = 0, . . . , 8 and zoomed-in on the bootstrap

sample size m̂B = [m̂B1 , m̂B2 ]> that minimized the KS distance between successive

EDF’s when traversing downward along the sequence. The PEL power curve was

plotted and compared with that of ECF, see Fig. 5.3. The PEL test again appears to

show superiority over the ECF test.
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Figure 5.3 Second power comparison study (horizontal and downward trajectory).

5.2 Level Studies for PEL Uncensored Case

The steps for obtaining realized levels of the proposed test are: (i) Generate X1 and

X2 samples from populations satisfying the null hypothesis. (ii) Compute ‖Rθ̂‖α2
α1

,

the PEL statistic. (iii) As explained in Section 5.1, apply adaptive rule to determine

the bootstrap sample sizes mB1 and mB2, and compute the bootstrap PEL from each

of the 1,000 bootstrap resamples. The proportion of rejections in 1,000 replications

gives the realized level.

For our simulations, we used three different populations, namely, normal,

skew-normal with skew parameter δ being 0.99 and 0.95, and logistic. Sample sizes,

indicated by n, were the same for both the samples. A number of values for the factor

q were investigated. Realized levels, p̂, as well as standard errors, (p̂(1− p̂)/1000)1/2,

are reported.

For the normal location-scale study, X1 ∼ N(2, 0.25) and X2 ∼ N(4, 0.36),

which satisfied the null hypothesis. Table 5.1 gives the estimated levels for different
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sample sizes. It can be seen that all the realized levels are reasonably close to the

nominal level of 5%.

Table 5.1 Normal Study for Uncensored PEL with q = 0.93

n Realized level Standard error

100 0.051 0.0069

200 0.053 0.0070

250 0.055 0.0072

For logistic location-scale study, we generated the X1 and X2 samples from a

logistic distribution with location and scale parameters 0 and 1 respectively, denoted

by LG(0, 1). Table 5.2 reports the realized levels. Here too, they were close to the

nominal 5%.

Table 5.2 Logistic Study for Uncensored PEL with q = 0.91

n Realized level Standard error

100 0.051 0.0069

200 0.053 0.0070

250 0.047 0.0080

For our last simulation study, we carried out three different simulations with

the skew-normal (SN) distribution. For the first, the X1 and X2 samples were both

SN with location and scale parameters 0 and 1 respectively, and shape parameter

27.85 yielding skewness δ = 0.99. For the second and third cases, the distribution for

the X1 sample remained unchanged but the X2 sample was from SN with location

and scale parameters 2 and 4 respectively. The skewness for the second study was

δ = 0.99 and for the third study it was δ = 0.95 (shape parameter 9.34). The results

35



are reported in Table 5.3. In all cases, the realized levels were close to the nominal

5%.

Table 5.3 Skew-normal Study for Uncensored PEL

Study no. n q Realized level Standard error

100 0.92 0.055 0.0072

I 200 0.92 0.053 0.0071

250 0.92 0.051 0.0069

100 0.91 0.043 0.0064

II 200 0.91 0.048 0.0069

250 0.91 0.049 0.0068

100 0.91 0.049 0.0068

III 200 0.91 0.046 0.0066

250 0.91 0.051 0.0069

5.3 Level Studies for PEL Censored Case

We used normal, logistic, and extreme value families for our level studies. We carried

out two simulations for the normal case, I and II. For normal study I, we took X1 ∼

N(0, 1) and C1 ∼ N(0.75, 0.81), giving a censoring rate (CR) of about 29%. We

also took X2 ∼ N(2, 9) and C2 ∼ N(4, 25) giving about 37% CR. For normal study

II, we took X1 ∼ N(0, 1) and C1 ∼ N(0.9, 1), giving about 25% CR. We also took

X2 ∼ N(2, 9) and C2 ∼ N(10, 9) giving about 25% CR. The realized levels, presented

in Table 5.4, are close to the nominal 5% level.

For logistic location-scale, we carried out two different simulations. For the

logistic study I, X1 ∼ LG(0, 1) and C1 ∼ LG(0.5, 0.25), giving CR of about 39%.

Also, X2 ∼ LG(1, 4) and C2 ∼ LG(3.5, 0.56), giving CR of about 24%.
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Table 5.4 Normal Study for Censored PEL

Study no. n q Realized level Standard error

100 0.84 0.047 0.0066

I 200 0.84 0.047 0.0066

250 0.84 0.049 0.0068

100 0.87 0.048 0.0068

II 200 0.87 0.049 0.0068

250 0.87 0.045 0.0065

For logistic study II, X1 ∼ LG(0, 1) and C1 ∼ LG(1.5, 1), giving CR of about

25%. Also, X2 ∼ LG(0, 1) and C2 ∼ LG(1.5, 1) giving CR of about 25%.

In both cases, the realized levels, presented in Table 5.5, are close to the nominal

5% level.

Table 5.5 Logistic Study for Censored PEL

Study no. n q Realized level Standard error

100 0.88 0.053 0.007

I 200 0.88 0.054 0.0071

250 0.88 0.049 0.0068

100 0.86 0.048 0.0068

II 200 0.86 0.056 0.0072

250 0.86 0.048 0.0068

We write EVD(a, b) to denote the extreme value distribution, where a and b

are the location and scale parameters respectively. We sampled X1 ∼ EVD(0, 1) and

X2 ∼ EVD(0, 1) Also, C1 ∼ N(0, 1) giving CR of about 38%, C2 ∼ N(0, 2.25) giving
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CR of about 40%. The realized levels presented in Table 5.6 are close to the nominal

5%.

Table 5.6 Extreme Value Study for Censored PEL

n q Realized level Standard error

100 0.86 0.049 0.0069

200 0.86 0.049 0.0069

250 0.86 0.048 0.0068

In conclusion, the PEL method competes favorably with ECF for the uncensored

case while providing a readily feasible extension for the censored case.

5.4 Level Studies for ECF Censored Case

We used normal, logistic, and extreme value families for our level studies. We carried

out two simulations for the normal case, I and II. For normal study I, we took X1 ∼

N(0, 1) and C1 ∼ N(0.75, 0.81), giving a censoring rate (CR) of about 29%. We

also took X2 ∼ N(2, 9) and C2 ∼ N(4, 25) giving about 37% CR. For normal study

II, we took X1 ∼ N(0, 1) and C1 ∼ N(0.9, 1), giving about 25% CR. We also took

X2 ∼ N(2, 9) and C2 ∼ N(10, 9) giving about 25% CR. The realized levels, presented

in Table 5.7, are close to the nominal 5% level.

For logistic location-scale, we carried out two different simulations. For the

logistic study I, X1 ∼ LG(0, 1) and C1 ∼ LG(0.5, 0.25), giving CR of about 39%.

Also, X2 ∼ LG(1, 4) and C2 ∼ LG(3.5, 0.56), giving CR of about 24%.

For logistic study II, X1 ∼ LG(0, 1) and C1 ∼ LG(1.5, 1), giving CR of about

25%. Also, X2 ∼ LG(0, 1) and C2 ∼ LG(1.5, 1) giving CR of about 25%.

In both cases, the realized levels, presented in Table 5.8, are close to the nominal

5% level.
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Table 5.7 Normal Studies for Censored ECF

Study no. n q Realized level Standard error

100 0.85 0.053 0.0070

I 200 0.85 0.047 0.0080

250 0.85 0.049 0.0068

100 0.87 0.048 0.0068

II 200 0.87 0.049 0.0068

250 0.87 0.046 0.0068

Table 5.8 Logistic Studies for Censored ECF

Study no. n q Realized level Standard error

100 0.89 0.052 0.0069

I 200 0.89 0.053 0.007

250 0.89 0.052 0.0069

100 0.87 0.049 0.0068

II 200 0.87 0.051 0.0069

250 0.87 0.049 0.0068

We write EVD(a, b) to denote the extreme value distribution, where a and b

are the location and scale parameters respectively. We sampled X1 ∼ EVD(0, 1) and

X2 ∼ EVD(0, 1) Also, C1 ∼ N(0, 1) giving CR of about 38%, C2 ∼ N(0, 2.25) giving

CR of about 40%. The realized levels presented in Table 5.9 are close to the nominal

5%.
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Table 5.9 Extreme Value Study for Censored ECF

n q Realized level Standard error

100 0.86 0.049 0.0068

200 0.86 0.053 0.0072

250 0.86 0.052 0.007

In conclusion, the PEL method competes favorably with ECF for the uncensored

case while providing a readily feasible extension for the censored case.

40



CHAPTER 6

REAL DATA ANALYSIS

In this chapter, we provide several real examples illustrating the PEL and censored

ECF methods.

6.1 Uncensored Case Illustrations

The first example is based on a biomedical experiment concerned with smoking and

its effect on cholesterol. We consider a data set from Kössler and Mukherjee (2019)

related to an experiment that investigated the health risks of smoking, measured by

cholesterol levels of randomly selected persons of two groups of similar ages. One

group had a history of smoking for at least 25 years (smokers) and the other group

had smoked for no more than 5 years and then stopped (ex-smokers). Information was

available on 43 smokers and 33 ex-smokers. Our goal was to test the null hypothesis

of membership of the distributions of cholesterol levels for smokers and ex-smokers

in some location-scale family. The calculated value of the ECF test statistic was

0.08486. The critical value obtained by the simple bootstrap of Hall et al. (2013) was

0.2786621. It was based on 2,000 bootstrap samples. Furthermore, the p-value was

found to be 0.409, providing little evidence against the null hypothesis. The computed

value of the PEL test statistic was 1.758. The proposed location-scale appropriate

resampling procedure was employed to obtain the critical value. Table 6.1 shows the

critical values obtained for different values of q. In all the cases the null hypothesis

cannot be rejected, suggesting that the samples are likely to be from distributions

belonging to some location-scale family.

We also applied the alternate algorithm described in the power study (see

Section 5.1). The bootstrap sample size vector was determined as (39, 18)>. The
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Table 6.1 Location-scale Model Checks for Smokers Data

q Critical value p-value m̂B

0.98 4.965 0.504 (39,30)

0.97 4.888 0.481 (42,33)

0.96 4.995 0.498 (40,31)

0.95 4.574 0.512 (36,27)

0.94 4.993 0.493 (36,28)

0.93 5.003 0.366 (40,31)

0.92 5.036 0.521 (40,31)

0.91 4.758 0.492 (40,31)

0.90 4.662 0.488 (39,30)

critical value was 4.19 and the p-value was 0.445. The findings appear consistent

with Table 6.1 figures.

The second illustration compares the distributions of the length of stay (LOS)

at hospital of two groups of patients in a clinical trial conducted at the Institute

of Living (Hartford Hospital, Hartford CT). The CYP-guides trial data, on which

this illustration is based, were collected by Tortora et al. (2020). Out of a total

of 1459 patients, 477 were randomly assigned to standard therapy (S) and 982

to genetically-guided therapy (G). Both distributions being strictly positive, we

performed a location-scale analysis on the logarithmic scale.

The ECF test statistic was 0.149 and the critical value was 0.404. The bootstrap

p-value, based on 2,000 bootstrap samples, was 0.335, and does not provide evidence

against the null hypothesis that the S and G groups belong to the same location-scale

family.
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The PEL test statistic was 3.41. Table 6.2 shows critical values for different

values of q and the data-driven value of mB. In all cases the null hypothesis is not

rejected. The result of the PEL study is consistent with findings from the ECF

method. The alternate search algorithm described in the power study returned

(884, 282)> as the bootstrap sample size vector. Here also q = 0.9. The critical

value was 7.89 and the p-value was 0.415. Again, the findings appear to be consistent

with Table 6.2 figures.

Table 6.2 Location-scale Model Checks for CYP-guides Trial Data

q Critical value p-value m̂B

0.95 8.51 0.45 (842,409)

0.94 7.57 0.49 (721,351)

0.93 7.89 0.52 (790,384)

0.92 7.66 0.51 (765,372)

0.91 6.95 0.43 (580,282)

6.2 Censored Case Illustrations

Our censored case illustration is concerned with a study that was designed to evaluate

a new body-cleansing method using 4% chlorhexidine gluconate with a standard

method (initial surface decontamination with 10% povidone-iodine followed with

regular bathing with Dial soap) on burn subjects, see Ichida et al. (1993). The

study period was 18 months. The time until staphylococcus infection (in days) was

recorded, along with a binary variable indicating presence or absence of infection.

The group which received the new bathing solution had 84 subjects, with 24 right

censored. The control group had 70 subjects, with 31 right-censored. The computed

value of the PEL test statistic was 2.1485. Table 6.3 shows critical values and m̂B
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arrived at from different values of q. In all cases the null hypothesis is not rejected,

suggesting that the samples may have arisen from some location-scale family.

Table 6.3 Location-scale Model Checks for the Burn Data (PEL)

q Critical value p-value m̂B

0.9 7.88 0.7 (57,69)

0.89 6.37 0.53 (35,42)

0.88 6.37 0.58 (37,45)

0.87 6.46 0.54 (35,42)

0.86 7.14 0.61 (45,54)

0.85 6.47 0.59 (37,44)

The alternate search algorithm returned (57, 69) as the estimated bootstrap

sample size vector. Here again q = 0.9. The critical value was 8.43 and the p-value

was 0.72. As was the case for the two illustrations before, the findings appear to be

consistent with Table 6.3 figures.

The computed value of the ECF test statistic was 0.2802. Table 6.4 shows

critical values and m̂B arrived at from different values of q. In all cases the null

hypothesis is not rejected, suggesting that the samples may have arisen from some

location-scale family. The result of the ECF study is consistent with findings from

the PEL method.

Table 6.4 Location-scale Model Checks for the Burn Data (ECF)

q Critical value p-value m̂B

0.9 2.81 0.84 (57,69)

0.85 2.312 0.77 (60,72)
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CHAPTER 7

CONCLUSION

The first part of this dissertation introduced a plug-in empirical likelihood approach

for testing the hypothesis that two samples are from some location-scale family. Tests

were developed for both the uncensored and censored cases. Using these tests one

can check whether two samples are being drawn from some location-scale family.

Knowing that distributions differ only in location and scale can facilitate comparisons

and potentially save time and cost. The method would be useful in biomedical studies

where interest may center on comparing the effect of a new treatment effects over a

standard treatment. More generally, in some situations location-scale may provide

greater leverage over fully parametric or fully nonparametric inference, offering a

compromise between the two extremes. In such instances it is imperative to have the

location-scale assumption checked in advance of data analysis. The PEL test would

be a highly useful preliminary two-sample testing device.

Unlike Hall et al.’s (2013) uncensored ECF test, the proposed PEL test applies

equally well to censored data also. This is due to the fact that the PEL ratio assumes

the same form whether the data are censored or uncensored, the plug-ins being the

only difference. For uncensored data, the sample mean and sample standard deviation

are plugged in. For censored data estimators based on Stute’s (1995) KM integrals are

employed. This approach is different from that of Subramanian (2020), who employed

minimum distance plug-ins of location and scale parameters. Since the proposed

approach works with standardized variables, a direct comparison with Hall et al.’s

(2013) uncensored ECF test is rendered feasible. In fact, the plug-ins based on Stute’s

(1995) KM integrals paved the way for setting up a censored ECF test. This facility

is not available with the approach that uses different plug-ins (Subramanian, 2020).
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The power studies indicate that the proposed PEL has the potential to outperform

the ECF test. Several Illustrations with real examples are given.

The failure of the full bootstrap, noted by Bickel and Sakov (2008), recurs with

PEL as well. Resampling with smaller bootstrap sample sizes appears to be effective.

As in Subramanian (2020), Bickel et al.’s (2008) adaptive rule for the one-dimensional

setting is extended to the two-dimensional setting to obtain the estimated bootstrap

sample size vector. Unlike in Bickel and Sakov (2008), however, the two-sample

setting requires minimization over a two-dimensional grid, creating a relatively more

complicated data-driven procedure for determining the bootstrap sample sizes. The

search trajectory proceeded diagonally downward. An alternate algorithm, used to

illustrate the proposed PEL test, employed a two stage approach, first searching

horizontally and then moving downward.

In the second part of this dissertation, the ECF test is extended to accommodate

right censoring. The plug-ins are again based on Stute’s (1995) KM integrals. Critical

values are again based on a model appropriate resampling procedure, which produced

realized levels close to the nominal level. The censored ECF test is illustrated with a

real examples.

There are some potential future research directions. The first would be to

construct an algorithm for computing bootstrap sample sizes that are independent of

the choice of q. Theoretical justification that the algorithm produces bootstrap sample

sizes that, when combined with the location-scale model-appropriate sampling, yields

correct realized levels would be another important direction. Another important

study would be a comprehensive power evaluation of the three methods, namely

censored ECF and PEL (Two methods).
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APPENDIX A

PEL RATIO TEST

This appendix show the lemmas and details we used to derive asymptotic distribution

of PEL test statistics.

A.1 Derivation of the constrained estimates

For known θ, let γθ(t) be a Lagrange multiplier. We find λ̃ij, the λij that maximize

D = log[L(K1, K2)] + γθ(t)

η2(t)∑
j=1

log(1− λ2j)−
η1(t)∑
j=1

log(1− λ1j)

 .

Applying Equation (3.6), it can be readily checked that (cf. Thomas and Grunkemeier,

1975)

D =
2∑
i=1

[ ηi(t)∑
j=1

[
dij log(λij) +

(
rij − dij + (−1)iγθ(t)

)
log(1− λij)

]
+

mi∑
j=ηi(t)+1

[dij log(λij) + (rij − dij) log(1− λij)]
]
.

Maximizing D, it can also be checked that the constrained estimates λ̃ij, i = 1, 2, are

λ̃ij =

 I(i = 2) + (−1)i−1dij/(rij + (−1)iγ̂θ(t)), j = 1, . . . , ηi(t)

I(i = 2) + (−1)i−1dij/rij, j = ηi(t) + 1, . . . ,mi;
(A.1)

Furthermore, γ̂θ(t) satisfies the equation

η1(t)∏
j=1

(
1− d1j

r1j − γθ(t)

)
−

η2(t)∏
j=1

(
1− d2j

r2j + γθ(t)

)
= 0. (A.2)

Note that γ̂θ is hemmed-in between D2 and −D1, where

D1 = max
1≤j≤η1(t)

{d1j − r1j}, D2 = max
1≤j≤η2(t)

{d2j − r2j}. (A.3)

Then
∏j

l=1(1− λ̃il) = S̃i0(Ũij), are the constrained survival function estimates.
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A.1.1 Formula for log likelihood ratio statistic

The log LR statistic is

Rθ(t) := log(L(S̃10, S̃20))− log(L(Ŝ10, Ŝ20)). (A.4)

where the expressions for L(Ŝ10, Ŝ20) and L(S̃10, S̃20) on the RHS of Equation (A.4)

were derived in Section 3.2. Using these derived expressions, we compute the right

hand side of Equation (A.4). Suppressing the dependence on t and θ, we write

R = R̃1 + R̃2 + R̃3 + R̃4, where

R̃1 =

η1(t)∑
j=1

d1j log

(
d1j

r1j − γ̂θ

)
−

η1(t)∑
j=1

d1j log

(
d1j

r1j

)
,

R̃2 =

η1(t)∑
j=1

(r1j − d1j) log

(
1− d1j

r1j − γ̂θ

)
−

η1(t)∑
j=1

(r1j − d1j) log

(
1− d1j

r1j

)
,

R̃3 =

η2(t))∑
j=1

d2j log

(
d2j

r2j + γ̂θ

)
−

η2(t))∑
j=1

d2j log

(
d2j

r2j

)
,

R̃4 =

η2(t))∑
j=1

(r2j − d2j) log

(
1− d2j

r2j + γ̂θ

)
−

η2(t))∑
j=1

(r2j − d2j) log

(
1− d2j

r2j

)
.

Writing R̃1 = R1 − R̆1, where

R̆1 =

η1(t)∑
j=1

(r1j − d1j) log

(
d1j

r1j − γ̂θ

)
−

η1(t)∑
j=1

(r1j − d1j) log

(
d1j

r1j

)
,

we see that

R1 ≡
η1(t)∑
j=1

r1j log

(
d1j

r1j − γ̂θ

)
−

η1(t)∑
j=1

r1j log

(
d1j

r1j

)
= −

η1(t)∑
j=1

r1j log

(
1− γ̂θ

r1j

)
.

Next we write R̃1 + R̃2 ≡ R1 + R2, where R2 = R̃2 − R̆1. Then, after some algebra,

we obtain

R2 =

η1(t)∑
j=1

(r1j − d1j) log

(
1− γ̂θ

r1j − d1j

)
.

48



Applying exactly the same technique, we have that R̃3 + R̃4 ≡ R3 +R4, where

R3 = −
η2(t))∑
j=1

r2j log

(
1 +

γ̂θ
r2j

)
,

R4 =

η2(t))∑
j=1

(r2j − d2j) log

(
1 +

γ̂θ
r2j − d2j

)
.

We have shown that R = R1 + R2 + R3 + R4. Equation (3.8) follows from these

calculations.

A.1.2 Some lemmas with proofs

Recall that ηi(t) =
∑mi

j=1 I(Ũij ≤ t). Also note that ζ̂i0(t) = − log Ŝi0(t), where

Ŝi0(t) = 1 − F̂i0(t) and Fi0(t) is the distribution function of Ui. In the notation

incorporating ties,

Λ̂i0(t) =

ηi(t)∑
j=1

(
dij
rij

)
, ζ̂i0(t) = −

ηi(t)∑
j=1

log

(
1− dij

rij

)
, i = 1, 2, (A.5)

It can be shown that (e.g., Subramanian 2020)

‖Λ̂i0 − ζ̂i0‖α2
α1

:= sup
t∈[α1,α2]

|Λ̂i0(t)− ζ̂i0(t)| = oP(n−1/2). (A.6)

Remark A.1 To prove that certain remainder terms are negligible we require an

important result. Note that Si0(t) = Si(ϕi(t)) and Ŝi0(t) = Ŝi(ϕi(t)), where Si(t) is

the survival function of Xi, Ŝi(t) is the empirical distribution of Xi,1, . . . , Xi,ni
, and

ϕi(t) = µi + σit. Write ϕ̂i(t) = s′, where ϕ̂i(t) = µ̂i + σ̂it, and ϕi(t) = t′. Then

|s′ − t′| = |µ̂i − µi|+ |t||σ̂i − σi| = oP(n−1/2+ε), uniformly on [α1, α2]. From Lemma 1

of Ying et al. (1995),

sup
t∈[α1,α2]

∣∣∣ζ̂i(ϕ̂i(t))− ζi(ϕ̂i(t))− ζ̂i(ϕi(t)) + ζi(ϕi(t))
∣∣∣ = oP(n−1/2), i = 1, 2.(A.7)

Before deploying Taylor expansions of functions of γ̂θ(·) about 0, we need to

obtain a proper uniform rate for γ̂θ(·) (cf. Li, 1995). Upper bounds are derived in

Lemma 1.
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Lemma 1 The Lagrange multiplier, γ̂θ(t), solving Eq. (A.2), satisfies

|γ̂θ(t)| ≤ n2

(
ζ̂1(ϕ1(t))− Λ̂2(ϕ2(t))

)
/Λ̂2(ϕ2(t)), when γ̂θ(t) < 0. (A.8)

|γ̂θ(t)| ≤ n1

(
ζ̂2(ϕ2(t))− Λ̂1(ϕ1(t))

)
/Λ̂1(ϕ1(t)), when γ̂θ(t) > 0. (A.9)

Proof From Equation (A.2), γ̂θ(t) satisfies the equation I1(t)− I2(t) = 0, where

I1(t) =

η1(t)∑
j=1

log

(
1− d1j

r1j − γ̂θ(t)

)
; I2(t) =

η2(t)∑
j=1

log

(
1− d2j

r2j + γ̂θ(t)

)
.

We consider the case γ̂θ(t) < 0. Then, γ̂θ(t) = −|γ̂θ(t)|. Following Li’s (1995)

approach that leads to his equation (2.12), we likewise use − log(1 − x) ≥ x, for

0 ≤ x < 1, to obtain

−I2(t) =

η2(t)∑
j=1

− log

(
1− d2j

r2j + γ̂θ(t)

)

≥
η2(t)∑
j=1

(
d2j

r2j + γ̂θ(t)

)
=

η2(t)∑
j=1

d2j

r2j

(
r2j

r2j − |γ̂θ(t)|

)

≥
η2(t)∑
j=1

d2j

r2j

(
n2

n2 − |γ̂θ(t)|

)
= Λ̂2(ϕ2(t))

(
1

1− |γ̂θ(t)|/n2

)
.

Note that, for large enough n2, 0 < |γ̂θ(t)|/n2 < 1 almost surely, see below. Then, as

in McKeague and Zhao (2005), we use the fact that 1/(1− x) ≥ 1 + x for 0 < x < 1,

to obtain

−I2(t) ≥ Λ̂2(ϕ2(t)) + Λ̂2(ϕ2(t))|γ̂θ(t)|/n2. (A.10)

Turning to I1(t), because −γ̂θ(t) > 0, we can write

I1(t) =

η1(t)∑
j=1

log

(
1− d1j

r1j + |γ̂θ(t)|

)
.
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We again follow Li (1995) by exploiting that log(1− x) + x is decreasing on (0, 1), to

obtain

I1(t) ≥
η1(t)∑
j=1

[
−
(

d1j

r1j + |γ̂θ(t)|

)
+ log

(
1− d1j

r1j

)
+
d1j

r1j

]

= −
η1(t)∑
j=1

d1j

r1j

(
r1j

r1j + |γ̂θ(t)|

)
+

η1(t)∑
j=1

[
log

(
1− d1j

r1j

)
+
d1j

r1j

]

≥ −
η1(t)∑
j=1

d1j

r1j

(
n1

n1 + |γ̂θ(t)|

)
+

η1(t)∑
j=1

[
log

(
1− d1j

r1j

)
+
d1j

r1j

]
= −Λ̂2(ϕ2(t))

(
n1

n1 + |γ̂θ(t)|

)
− ζ̂1(ϕ1(t)) + Λ̂1(ϕ1(t))

= Λ̂1(ϕ1(t))

(
|γ̂θ(t)|

n1 + |γ̂θ(t)|

)
− ζ̂1(ϕ1(t)) ≥ −ζ̂1(ϕ1(t)). (A.11)

Combine inequalities (A.10) and (A.11) to obtain inequality (A.8) from

0 = I1(t)− I2(t) ≥ −ζ̂1(ϕ1(t)) + Λ̂2(ϕ2(t)) + Λ̂2(ϕ2(t))|γ̂θ(t)|/n2.

It remains to show that, for large enough n2, 0 < |γ̂θ(t)|/n2 < 1 a.s. Indeed, assuming

no ties, we note from Equation (3.9) thatD2 < γ̂θ < 0, whereD2 = max1≤j≤η2(t){d2j−

r2j}. Therefore,

max
1≤j≤η2(t)

{d2j − r2j} < γ̂θ ≡ −|γ̂θ| < 0 ⇐⇒ 0 < |γ̂θ| < min
1≤j≤η2(t)

{r2j − d2j}.

Clearly 0 < min1≤j≤η2(t){r2j − d2j} < n2 when t ∈ [α1, α2]. Hence 0 < |γ̂θ(t)|/n2 < 1

a.s.

When γ̂θ(t) > 0, then γ̂θ(t) = |γ̂θ(t)|, the above approach can be repeated by

applying Li’s (1995) technique in reverse order. First obtain the inequality

I2(t) ≥ −Λ̂2(ϕ2(t))

(
n2

n2 + |γ̂θ(t)|

)
− ζ̂2(ϕ2(t)) + Λ̂2(ϕ2(t)) ≥ −ζ̂2(ϕ2(t)). (A.12)

Then obtain the inequality

−I1(t) ≥ Λ̂1(ϕ1(t))

(
n1

n1 − |γ̂θ(t)|

)
≥ Λ̂1(ϕ1(t)) (1 + |γ̂θ(t)|/n1) . (A.13)

Combine inequalities (A.12) and (A.13) to obtain inequality (A.9) from

0 = I2(t)− I1(t) ≥ −ζ̂2(ϕ2(t)) + Λ̂1(ϕ1(t)) + Λ̂1(ϕ1(t))γ̂θ(t)|/n1.
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Lemma 2 The estimate γ̂ θ̂(t), solving Equation (A.2) with θ = θ̂, satisfies ‖γ̂ θ̂‖α2
α1

=

OP(n1/2).

Proof Note from Equation (A.2) that γ̂ θ̂(t) solves the equation Î1(γθ(t))−Î2(γθ(t)) =

0, where

Î1(γθ(t)) =

η̂1(t)∑
j=1

log

(
1− d1j

r1j − γθ(t)

)
; Î2(γθ(t)) =

η̂2(t)∑
j=1

log

(
1− d2j

r2j + γθ(t)

)
.

Following closely the proof of Lemma 1, it follows that the Lagrange multiplier, γ̂ θ̂(t),

satisfies

|γ̂ θ̂(t)| ≤ n2

(
ζ̂1(ϕ̂1(t))− Λ̂2(ϕ̂2(t))

)
/Λ̂2(ϕ̂2(t)), when γ̂ θ̂(t) < 0.(A.14)

|γ̂ θ̂(t)| ≤ n1

(
ζ̂2(ϕ̂2(t))− Λ̂1(ϕ̂1(t))

)
/Λ̂1(ϕ̂1(t)), when γ̂ θ̂(t) > 0.(A.15)

Because of consistency of µ̂i and σ̂i, and strong consistency of Λ̂i on R1, the

denominators on the RHS of inequalities (A.14) and (A.15) are each OP(1), and

are bounded away from 0 uniformly for t ∈ [α1, α2]. It remains to show that the

numerators on the RHS of inequalities (A.14) and (A.15) are each OP(n1/2) uniformly

for t ∈ [α1, α2]. Consider the numerator on the RHS of inequality (A.14). We obtain

the decomposition

ζ̂1(ϕ̂1(t)) = ζ̂1(ϕ̂1(t))− ζ1(ϕ̂1(t))− ζ̂1(ϕ1(t)) + ζ1(ϕ1(t))

+ ζ1(ϕ̂1(t)) + ζ̂1(ϕ1(t))− ζ1(ϕ1(t)),

with a similar representation for Λ̂2(ϕ̂2(t)) [replace (ζ̂1, ζ1) above with (Λ̂2,Λ2)

respectively and (ϕ̂1, ϕ1) above with (ϕ̂2, ϕ2) respectively]. After applying Remark

A.1 (and its variant) to the first four terms of each representation, giving oP(n−1/2)

for each, we are left with

ζ1(ϕ̂1(t))− ζ1(ϕ1(t)) + ζ̂1(ϕ1(t)) = Λ1(ϕ̂1(t))− Λ1(ϕ1(t)) + ζ̂1(ϕ1(t))

= Λ1(ϕ̂1(t)) +OP(n−1/2),
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the last step after applying Equation (A.6) on the original (non-standardized) data.

Likewise we obtain Λ2(ϕ̂2(t))+OP(n−1/2) for the three terms remaining in the second

representation. Noting that Λ1(ϕ1(t)) = Λ2(ϕ2(t)) under the null hypothesis, the

numerator of Equation (A.14) is

n(Λ1(ϕ̂1(t))− Λ2(ϕ̂2(t))) +OP(n1/2) = n(Λ1(ϕ1(t))− Λ2(ϕ2(t))) +OP(n1/2)

= OP(n1/2).

Analogous treatment of the RHS of (A.15) yields OP(n1/2), completing proof of the

lemma.

Lemma 3 Under the null hypothesis, for each i = 1, 2, ζ̂i(ϕ̂i(t)) = Ai(t) + Bi(t) +
oP(n−1/2), where Ai(t) is defined by Equation (3.12) and Bi(t) is defined by Equation
(3.13).

Proof The seven-term decomposition given for ζ̂i(ϕ̂i(t)) in the proof of Lemma 2,

and the consequent application of Remark A.1 through which the first four terms

jointly account for oP(n−1/2) implies that ζ̂i(ϕ̂i(t)) = Ai(t) +Bi(t) + oP(n−1/2), where

Ai(t) = − logSi(ϕ̂i(t)) + logSi(ϕi(t)) and Bi(t) = − log Ŝi(ϕi(t)). Applying Taylor’s

expansions, we have

Ai(t) = −Si(ϕ̂i(t))− Si(ϕi(t))
Si(ϕi(t))

+ oP(n−1/2) = (ϕ̂i(t)− ϕi(t))λi(ϕi(t)) + oP(n−1/2).

Since λi(ϕi(t)) = λi0(t)/σi, and ϕ̂i(t) = µ̂i + tσ̂i, elementary manipulations yield

Equation (3.12). An application of the delta method for Bi(t) ≡ − log Ŝi(ϕi(t)) =

− log Ŝi0(t) produces

Bi(t) = − logSi0(t)− log Ŝi0(t) + logSi0(t) = Λi0(t)− Ŝi0(t)− Si0(t)

Si0(t)
+ oP(n−1/2).

Applying the Duhamel equation (see Andersen et al., 1993) we obtain Equation (3.13).
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APPENDIX B

PROOF OF THEOREM 1

The proof follows standard techniques. From Equation (A.2), h1 (−γ̂ θ̂(t)) −

h2 (γ̂ θ̂(t)) = 0, where

hi(γ) =

η̂i(t)∑
j=1

log

(
1− dij

rij + γ

)
. (B.1)

Note that h1(0) = −ζ̂1(ϕ̂1(t)) and h2(0) = −ζ̂2(ϕ̂2(t)), see Equation (A.5). Note also

that

h
′

i(γ) =

η̂i(t)∑
j=1

dij
(rij + γ)(rij + γ − dij)

, h
′′

i (γ) =

η̂i(t)∑
j=1

dij(2(rij + γ)− dij)
(rij + γ)2(rij + γ − dij)2

.

Note that nih
′
i(0) = ϑ̂2

i0(t), i = 1, 2, where Equation (3.4) defines ϑ2
i0(t). Let |ξ̂i| ≤

|γ̂ θ̂(t)|, i = 1, 2. Taylor’s expansion about 0 yields

h1 (−γ̂ θ̂(t)) = −ζ̂1(ϕ̂1(t))− 1

n1

ϑ̂2
10(t)γ̂ θ̂(t) +

1

2
h
′′

1(ξ̂1)γ̂2
θ̂
(t), (B.2)

h2 (γ̂ θ̂(t)) = −ζ̂2(ϕ̂2(t)) +
1

n2

ϑ̂2
20(t)γ̂ θ̂(t) +

1

2
h
′′

1(ξ̂2)γ̂2
θ̂
(t). (B.3)

First we argue that ‖h′′i (ξ̂i)‖α2
α1

= OP(n−2
i ). Consider the two denominator terms of

h′′i (ξ̂i). By the Glivenko–Cantelli lemma and Lemma 3, each term within parenthesis

is dominated by rij = OP(ni). The denominator is thus OP(n4
i ), uniformly over j =

1, . . . , η̂i(t). Assuming continuity (guaranteeing no ties), the numerator is dominated

by rij = OP(ni) uniformly over j = 1, . . . , η̂i(t). The summation contributes to OP(ni).

Thus ‖h′′i (ξ̂i)‖α2
α1

= OP(n−2
i ). By Lemma 2, therefore∥∥∥h′′i (ξ̂i) (γ̂ θ̂(t))

2
∥∥∥α2

α1

= OP(1/ni) = OP(1/n).

Thus h1 (−γ̂ θ̂(t)) − h2 (γ̂ θ̂(t)) = 0, combined with Equation (3.10), Equation (B.2),

and Equation (B.3) give

0 = −ζ̂1(ϕ̂1(t)) + ζ̂2(ϕ̂2(t))− γ̂ θ̂(t)
(
ϑ2

10(t)/n1 + ϑ2
20(t)/n2

)
+OP (1/n)

= −V̂(t)− γ̂ θ̂(t)ϑ
2
c(t)/n+OP (1/n) .
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Solving for γ̂ θ̂(t), we obtain

γ̂ θ̂(t) =
n

ϑ2
c(t)

{
−V̂(t) +OP (1/n)

}
. (B.4)

To complete the proof of theorem 1, consider Equation (3.8). Using Taylor

expansions of log(1 + x) and log(1 − x) about 0 and applying Equation (B.4), the

leading term of −2Rθ̂(t) equals

(γ̂ θ̂(t))
2

2∑
i=1

η̂i(t)∑
j=1

dij
rij(rij − dij)

= (γ̂ θ̂(t))
2
(
ϑ̂2

10(t)/n1 + ϑ̂2
20(t)/n2

)
. (B.5)

Applying Equation (B.4) for γ̂ θ̂(t) appearing on the RHS of Equation (B.5), the

leading term is(
n
{
V̂(t) +OP(1/n)

}2

/ϑ2
c(t)

)(
nϑ2

10(t)/n1 + nϑ2
20(t)/n2

)
=

1

(ϑ2
c(t))2

{
n1/2V̂(t) + oP(1)

}2

ϑ2
c(t) + oP(1) =

1

ϑ2
c(t)

{
n1/2V̂(t)

}2

+ oP(1),

uniformly over [α1, α2]. The subsequent terms of −2Rθ̂(t) are proportional to

(γ̂ θ̂(t))
l

 2∑
i=1

η̂i(t)∑
j=1

(
1

(rij − dij)l−1
− 1

rl−1
ij

) , l = 3, 4, . . . ,

each of which is oP(1), uniformly for t ∈ [α1, α2]. For example, when l = 3, we have

2

3
(γ̂ θ̂(t))

3

η̂i(t)∑
j=1

(
1

rij − dij
− 1

rij

)(
1

rij − dij
+

1

rij

)
= OP(n3/2)OP

(
max

1≤j≤η̂i(t)

∣∣∣∣ 1

rij − dij

∣∣∣∣+ max
1≤j≤η̂i(t)

∣∣∣∣ 1

rij

∣∣∣∣) niϑ̂
2
i0(t)

= OP(n1/2)OP(n−1
i )OP(n−1

i ) = oP(1).
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