

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

PRIVATE AND FEDERATED DEEP LEARNING:
SYSTEM, THEORY, AND APPLICATIONS FOR SOCIAL GOOD

by
Han Hu

During the past decade, drug abuse continues to accelerate towards becoming the most

severe public health problem in the United States. The ability to detect drug­abuse risk

behavior at a population scale, such as among the population of Twitter users, can help to

monitor the trend of drug­abuse incidents. However, traditional methods do not effectively

detect drug­abuse risk behavior in tweets, mainly due to the sparsity of such tweets and

the noisy nature of tweets. In the first part of this dissertation work, the task of classifying

tweets as containing drug­abuse risk behavior or not, is studied. Millions of public tweets

were collected through the Twitter API, and a large human labeled dataset with both expert

labels and crowd­sourced (through the Amazon Mechanical Turks) labels was built. Three

papers on this topic were published: The first work leveraged large quantities of unlabeled

tweets with self­taught deep learning (DL); In the second work, the method of mitigating

the imbalance of tweets’ classes through the ensemble of DLmodels was proposed. Results

on the testing dataset showed improved performance over traditional and recent methods.

Statistical analysis on the results of applying the model on 3­million tweets also yield

interesting and meaningful results. Based on the detection model, a demo system was built,

which allows the geographical and various statistical information of drug abuse indication

tweets to be viewed on live interactive maps.

The development of the drug abuse detection models revealed the importance of

privacy preservation in DL. Related works have demonstrated that the privacy of the

training data of a DL model can be exploited through either reconstruction attack or

membership­inference attack. Thus, due to the sensitive nature of the drug abuse detection

model, the privacy of the training data has to be rigorously protected before themodel can be

made public. The goal of the first work in this direction was to develop a novel mechanism

for preserving differential privacy (DP), such that the privacy budget consumption is

independent of the training steps and grants the ability to adaptively inject noise according

to the importance of features to improve the model utility. Then, in the second work, the aim

was to develop a scalable DP preserving algorithm for deep neural networks, with certified

robustness to adversarial examples. The robustness bound was strengthened by a novel

adversarial objective function, and by injecting noise into both input and latent space. For

the first time, a novel stochastic batch training that allows the training of the DP models to

be parallelized, was proposed. In the third work along this line, the goal was to preserve

DP in the setting of lifelong learning (L2M), given the more challenging privacy risk that

the L2M posts. A scalable and heterogeneous algorithm was proposed and implemented,

which allows the efficient training and the continuous releasing of new versions of L2M

models without affecting the DP protection.

Despite that DP­DL can provide provable privacy protection, another aspect of

privacy protection is to protect the data itself. In the foreseeable future, more rigorous

data privacy regulations will be widely implemented, which promotes the use of federated

learning (FL). In the third part of the dissertation work, the FLSys, a prototype mobile­cloud

federated deep learning system was designed and implemented. By utilizing modern cloud

architecture, the FLSys is designed to achieve energy efficiency, tolerance failure tolerance,

and scalability. To demonstrate the capability of the FLSys, the task of mobile human

activity recognition, which aims at predicting human activities with smartphone sensors,

was selected. For model developing purpose, two data collection campaigns were launched

to collect human activity data through smartphone sensors in the wild from hundreds of

volunteers. A simple yet effective way of data augmentation to combat the non­I.I.D

(Independent and Identically Distributed) issue that plagues FL was proposed.

PRIVATE AND FEDERATED DEEP LEARNING:
SYSTEM, THEORY, AND APPLICATIONS FOR SOCIAL GOOD

by
Han Hu

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Information Systems

Department of Informatics

December 2021

Copyright © 2021 by Han Hu

ALL RIGHTS RESERVED

APPROVAL PAGE

PRIVATE AND FEDERATED DEEP LEARNING:
SYSTEM, THEORY, AND APPLICATIONS FOR SOCIAL GOOD

Han Hu

Dr. Nhathai Phan, Dissertation Advisor Date
Assistant Professor of Informatics, New Jersey Institute of Technology

Dr. Frank A. Biocca, Committee Member Date
Chair, Professor of Informatics, New Jersey Institute of Technology

Dr. Cristian M. Borcea, Committee Member Date
Associate Dean, Professor of Computer Science, New Jersey Institute of Technology

Dr. Dejing Dou, Committee Member Date
Professor of Computer and Information Science, University of Oregon in Eugene, Oregon

Dr. Ruoming Jin, Committee Member Date
Professor of Computer Science, Kent State University in Kent, Ohio

BIOGRAPHICAL SKETCH

Author: Han Hu

Degree: Doctor of Philosophy

Date: December 2021

Undergraduate and Graduate Education:

• Doctor of Philosophy in Information Systems,
New Jersey Institute of Technology, Newark, New Jersey, 2021

• Bachelor of Science in Computer Science,
Zhejiang University of Technology, Hangzhou, China, 2015

Major: Information Systems

Presentations and Publications:

H. Hu, N. Phan, X. Ye, R. Jin, K. Ding, D. Dou, and H. Vo, DrugTracker: a community­
focused drug abuse monitoring and supporting system using social media and
geospatial data (Demo Paper). In Proceedings of the 27th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, pp
564­567, 2019.

H. Hu, N. Phan, J. Geller, S. Iezzi, H. Vo, D. Dou, and S. A. Chun, An ensemble deep
learning model for drug abuse detection in sparse Twitter­Sphere. In Proceedings of
the 17th World Congress of Medical and Health Informatics, pp 163­167, 2019.

H. Hu, N. Phan, J. Geller, S. A. Chun, R. Jin, K. Ding, D. Kenne, and D. Dou, An insight
analysis and detection of drug abuse risk behavior on Twitter with self­taught deep
learning. In Computational Social Networks, vol. 6, no. 10, 2019.

H. Hu, N. Phan, J. Geller, H. Vo, B. Manasi, X. Huang, S. Di Lorio, T. Dinh, and S. A.
Chun, Deep self­taught learning for detecting drug abuse risk behavior in Tweets, in
Proceedings of the 7th International Conference onComputational Social Networks,
2018. doi: 10.1007%2F978­3­030­04648­4_28 pp 330–342.

H. Hu, P. Moturu, K. Dharan, J. Geller, S. Di Lorio, N. Phan, H. Vo, and S. A.
Chun, Deep learning model for classifying drug abuse risk behavior in Tweets, In
Proceedings of the IEEE International Conference onHealthcare Informatics, 2018.
doi: 10.1109/ICHI.2018.00066 pp 386–387.

iv

H. Hu, Y. Fang, R. Jin, W. Xiong, X. Qian, D. Dou, and N. Phan, Recursive structure
similarity: a novel algorithm for graph clustering. In Proceedings of the 30th IEEE
International Conference on Tools with Artificial Intelligence, pp 395–400, 2018.

N. Phan, M. T. Thai, H. Hu, R. Jin, T. Sun, and D. Dou, Scalable differential privacy with
certified robustness in adversarial learning. In Proceedings of the 37th International
Conference on Machine Learning, pp 7683­7694, 2020.

P. Lai, N. Phan, H. Hu, A. Badeti, D. Newman, and D. Dou, Ontology­based inter­
pretable machine learning for textual data. In Proceedings of the International Joint
Conference on Neural Networks, pp 1­10, 2020.

W. Liu, X. Ye, N. Phan, andH. Hu, Scalable self­taught deep­embedded learning framework
for drug abuse spatial behaviors detection. In Proceedings of the 8th International
Conference on Computational Data & Social Networks, pp 223­228, 2019.

N. Phan, X. Wu, H. Hu, and D. Dou, Adaptive laplace mechanism: differential privacy
preservation in deep learning. In Proceedings of the IEEE International Conference
on Data Mining, pp 385­394, 2017.

P. Lia, N. Phan, D. Newman, H. Hu, A. Badeti, and D. Dou, Ontology­based inter­
pretable machine learning with learnable anchors, In Proceedings of the Knowledge
Representation & Reasoning Meets Machine Learning (KR2ML) Workshop at
NeurIPS’19, 2019.

N. Phan, H. Hu, R. Jin, A. Chen, M. Thai, Consistently bounded differential privacy in
lifelong learning, Under Review.

H. Hu*, X. Jiang*, V. D. Mayyuri, A. Chen, D. M. Shila, A. Larmuseau, R. Jin, C. Borcea,
N. Phan, FLSys: toward an open ecosystem for federated learning mobile apps,
IEEE Transactions on Mobile Computing Under Review.

v

至我敬爱的家人们，感谢你们的鼓励与付出。
This dissertation is dedicated to my family for the inspiring,
encouragement, and support.

人生是一场长跑。
Life is a marathon, it’s not a sprint.

–Phillip C. McGraw

vi

ACKNOWLEDGMENT

First and foremost, I would like to express my sincere gratitude to my advisor Nhathai Phan

for the support of my Ph.D. study without reservation. Thanks to his patience, motivation,

and immense knowledge, I was able to pick up my research subject quickly. Without his

vision and guidance, this dissertationwould not be possible. He is an extremely kind, caring,

and supportive advisor that I could not have asked for more. I would also thank Songhua

Xu for inspiring me to pursue the Ph.D. degree and admitting me to this Ph.D. program.

Secondly, my gratitude also goes to Professor Frank A. Biocca, Cristian Borcea,

Shaohua Wang, and Dejing Dou, for kindly serving on my dissertation committee. Their

insightful inputs greatly helped both my research effort and the writing of this dissertation.

Then, I must thank Professor Y.F. Brook Wu, James Geller, Ruoming Jin, Xinyue Ye,

Yixing Fang, Soon Ae Chun, and My T. Thai, who guided me when I am at lost, assisted

me when I need help, and collaborated with me in various papers. I also would like to thank

all my fellow Ph.D. students for sharing both the struggles and the joys of the Ph.D. life.

I would like to thanks the Department of Informatics for granting the position of

Teaching Assistant that funds my Ph.D. studies. This dissertation work is also supported in

part by National Science Foundation grants CNS­1935928, CNS­1850094, CNS­1747798,

and CNS­1650587.

Last but not least, I want to thank my uncle’s family for supporting me locally in the

United States. I also want to thank my roommates for being the best roommates I could

have met.

vii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION ... 1

1.1 Overview ... 1

1.2 Drug Abuse Detection and Analysis in Online Social Media 3

1.2.1 Background ... 3

1.2.2 Traditional Drug Abuse Monitoring Systems 5

1.2.3 Social Media­Based Analytical Studies 5

1.2.4 Studies Utilizing Social Media Data for Classification Tasks 6

1.2.5 In Attempt to Scale the Models Up ... 7

1.2.6 In Need of an Real­time User Interface forMonitoring Online Social
Media Drug Abuse Data ... 8

1.2.7 Contributions in this Dissertation ... 9

1.3 Differential Privacy in Deep Learning with Certified Robustness Bounds 11

1.3.1 Background ... 11

1.3.2 Privacy Protection in Deep Learning 11

1.3.3 Privacy Protection with Adversarial Defence 13

1.3.4 Privacy Protection in Lifelong Learning 14

1.3.5 Contribution in this Dissertation... 15

1.4 Federated Learning on Mobile Devices ... 19

1.4.1 Background ... 19

1.4.2 Federated Learning Systems ... 21

1.4.3 Coping with Non­IID Data in FL Training 22

1.4.4 Human Activity Recognition... 23

1.4.5 Contributions in this Dissertation ... 23

2 DRUG ABUSE DETECTION AND ANALYSIS IN ONLINE SOCIAL MEDIA . 26

viii

TABLE OF CONTENTS
(Continued)

Chapter Page

2.1 An Ensemble Deep Learning Model for Drug Abuse Detection
in Sparse Twitter­Sphere .. 26

2.1.1 Methods ... 26

2.1.2 Experimental Results .. 32

2.1.3 Conclusions ... 36

2.2 An Insight Analysis and Detection of Drug­Abuse Risk Behavior on Twitter
with Self­Taught Deep Learning... 36

2.2.1 Method... 36

2.2.2 Deep Self­Taught Learning Approach 39

2.2.3 Experiments... 40

2.2.4 Experimental Results .. 43

2.2.5 An Insight Analysis of Drug Abuse Risk Behavior on Twitter 46

2.2.6 Discussion and Limitations... 53

2.2.7 Future Research .. 53

2.2.8 Conclusion .. 54

2.3 DrugTracker: ACommunity­focusedDrugAbuseMonitoring and Supporting
System using Social Media and Geospatial Data 55

2.3.1 DrugTracker System... 55

2.3.2 Conclusion and Future Work ... 61

3 DIFFERENTIAL PRIVACY IN DEEP LEARNING WITH CERTIFIED
ROBUSTNESS BOUNDS .. 62

3.1 Adaptive Laplace Mechanism: Differential Privacy Preservation in Deep
Learning ... 63

3.1.1 Preliminaries and Related Work ... 63

3.1.2 ϵ­Differential Privacy.. 63

3.1.3 Differential Privacy in Deep Learning...................................... 64

3.1.4 Layer­wise Relevance Propagation ... 66

ix

TABLE OF CONTENTS
(Continued)

Chapter Page

3.1.5 Adaptive Laplace Mechanism (AdLM) 68

3.1.6 Private Relevance .. 70

3.1.7 Private Affine Transformation Layer with Adaptive Noise 74

3.1.8 Perturbation of the Loss Function FL(θ)................................... 81

3.1.9 The Correctness and Characteristics of the AdLM 86

3.1.10 Experimental Results .. 92

3.1.11 Conclusions ... 97

3.2 Scalable Differential Privacy with Certified Robustness in Adversarial
Learning ... 98

3.2.1 Background ... 98

3.2.2 Notations and Terminologies... 103

3.2.3 Stochastic Batch (StoBatch) Mechanism................................... 103

3.2.4 DP Feature Representation Learning 106

3.2.5 Adversarial Learning with Differential Privacy 113

3.2.6 Certified Robustness... 122

3.2.7 Verified Inference .. 128

3.2.8 Distributed Training ... 130

3.2.9 Experiments... 135

3.2.10 Conclusion .. 149

3.3 Consistently Bounded Differential Privacy in Lifelong Learning 149

3.3.1 Background ... 149

3.3.2 Privacy Risk & Problem Statement ... 151

3.3.3 Preserving Lifelong DP ... 156

3.3.4 Gradient Update g ... 158

3.3.5 Episodic and Projected Gradients gref and g̃ 160

3.3.6 Scalable and Heterogeneous Training 166

x

TABLE OF CONTENTS
(Continued)

Chapter Page

3.3.7 Experiments... 171

3.3.8 Conclusion and Future Work ... 181

4 FEDERATED LEARNING ON MOBILE DEVICES 182

4.1 FLSys: Toward an Open Ecosystem for Federated Learning Mobile Apps ... 183

4.1.1 Contributors to this Dissertation ... 183

4.1.2 System Requirements ... 183

4.1.3 FLSys Overview ... 184

4.1.4 System Architecture ... 186

4.1.5 Prototype Implementation .. 190

4.1.6 Phone Implementation .. 192

4.1.7 Cloud Implementation .. 194

4.1.8 Asynchronous Federate Averaging Implementation...................... 195

4.1.9 FLSys Setup Workflow ... 195

4.1.10 HAR­Wild: Data, Model, and Training 197

4.1.11 Data Collection ... 198

4.1.12 Data Preprocessing .. 199

4.1.13 Model Design... 201

4.1.14 HAR­Wild Async Augmented Training 202

4.1.15 Evaluation ... 203

4.1.16 HAR­Wild Model Evaluation .. 205

4.1.17 SA Model Evaluation ... 208

4.1.18 HAR­Wild over FLSys Emulation Performance 209

4.1.19 Fault Tolerance and Scalability .. 211

4.1.20 FLSys Performance on Smart Phones 212

4.1.21 Conclusions, Lessons Learned, and Future Work 216

xi

TABLE OF CONTENTS
(Continued)

Chapter Page

5 OTHER WORK .. 219

5.1 Recursive Structure Similarity: A Novel Algorithm for Graph Clustering 219

5.1.1 Abstract .. 219

5.1.2 Introduction ... 219

5.1.3 Related Work ... 220

5.1.4 Recursive Structure Similarity ... 221

5.1.5 Recursive Structure Similarity Algorithm 224

5.1.6 Experimental Settings ... 228

5.1.7 Accuracy and Quality Measures ... 228

5.1.8 Accuracy results.. 231

5.1.9 Structural quality results .. 231

5.1.10 Consistency and robustness results.. 235

5.1.11 Conclusions ... 235

6 CONCLUSIONS AND FUTURE DIRECTIONS .. 237

6.1 Drug Abuse Detection and Analysis in Online Social Media 237

6.2 Differential Privacy in Deep Learning with Certified Robustness Bounds 238

6.3 Federated Learning on Mobile Devices ... 239

REFERENCES ... 240

xii

LIST OF TABLES

Table Page

2.1 Details of Pre­trained Word Embeddings ... 30

2.2 Imbalanced Tweets Dataset Variants... 33

2.3 Results of Each Dataset Variant .. 35

2.4 Instances of Manually Annotated Positive Tweets and Negative Tweets 38

2.5 Parameter Settings for All Models ... 42

2.6 Most Frequent Hashtags in Positive Tweets and Negative Tweets.................. 48

2.7 DrugName andAbuseBehavior Co­occurrence FrequencyDifferences Between
Positive Tweets and Negative Tweets .. 49

2.8 Chi­Square Test of Time of Day Distribution .. 50

2.9 Geo­tag Types and Frequency .. 56

3.1 Notations and Terminologies. ... 104

3.2 Average Forgetting Measure .. 167

3.3 Statistics of the HARW Dataset .. 172

3.4 Average Forgetting Measure on Random Orders of HARW Tasks 179

4.1 Total Number of Minutes for Each Labeled Activity.................................. 198

4.2 Number of Samples in the Dataset for 51 Users 206

4.3 Model Settings of HAR­W and Baselines .. 207

4.4 HAR­Wild vs. Baselines: Macro­Model Performance 208

4.5 SA Model Performance per Class in FLSys Training 210

4.6 Model Performance per Class in FLSys Training 212

4.7 Training Resource Consumption and Latency ... 213

4.8 Inference Resource Consumption and Latency .. 214

5.1 Datasets... 229

5.2 Ground­Truth Based Accuracy Results ... 232

5.3 Quality Test Results .. 234

xiii

LIST OF FIGURES

Figure Page

2.1 Ensemble CNN model structures. .. 31

2.2 Drug Abuse Detection System. There are 4 steps as follows: (1) Tweets will be
collected through Twitter APIs. (2) Preprocessed tweets will be labeled by
humans, AI techniques, and crowd­sourcing techniques. (3) Labeled tweets
will be used to augment the training data of our AI models and data analysis
tasks to identify tweets with drug abuse risk behaviors, through a self­taught
algorithm. And (4) Trained systems will be used in different drug abuse
monitoring services and interactive user interfaces................................. 37

2.3 Accuracy, Recall, and F1­value of each baseline model on the seed dataset. 44

2.4 Accuracy, Recall, and F1­value of the five self­taught learningmodels, including
st­CNN, st­LSTM, st­SVM, st­NB, and st­RF....................................... 45

2.5 Performance comparison between custom Word2vec embedding and Google
News Word2vec embedding.. 45

2.6 Word frequency distribution of the classification results. 47

2.7 Normalized frequency of top 20 frequent words in positive tweets, compared
with in negative tweets. ... 47

2.8 Normalized frequency of top 20 frequent words in negative tweets, compared
with in positive tweets. ... 48

2.9 Time of day distribution comparison between positive tweets and negative tweets. 50

2.10 Dot map of positive tweets across the United States. 51

2.11 Number of positive tweets, per state, normalized by state population of 12 or
older. ... 52

2.12 Basic architecture of the DrugTracker system. ... 55

2.13 Mapping Area: (a) Choropleth and (b) Heatmap. 58

2.14 An example of polygon­shaped query area. .. 59

2.15 Analysis functions: (a) Tweet samples, (b) Temporal analysis, (c) Category
frequency, and (d) Word cloud. .. 60

3.1 An instance of differentially private neural networks. 65

xiv

LIST OF FIGURES
(Continued)

Figure Page

3.2 An instance of relevance of each input feature given to the classification output
(MNIST dataset). Red neurons indicate stronger relevances, and green
neurons indicate weaker relevances. .. 68

3.3 The average differentially private relevance of each input feature givenMNIST
dataset.. 74

3.4 Accuracy for different noise levels on the MNIST dataset. 92

3.5 Accuracy for different noise levels on the CIFAR­10 dataset........................ 93

3.6 Stochastic Batch mechanism. ... 100

3.7 Conventional accuracy on the MNIST dataset given ϵ, under l∞(µa = 0.2) and
Ta = 10. ... 141

3.8 Conventional accuracy on the CIFAR­10 dataset given ϵ, under l∞(µa = 0.2)
and Ta = 3. ... 142

3.9 Conventional accuracy on the MNIST dataset given µa (ϵ = 0.2, tight DP
protection) and Ta = 10. .. 143

3.10 Conventional accuracy on the CIFAR­10 dataset given µa (ϵ = 2, tight DP
protection) and Ta = 3. ... 144

3.11 Certified accuracy on the MNIST dataset. ϵ is set to 1.0 (tight DP protection)
and Ta = 10. .. 145

3.12 Certified accuracy on the CIFAR­10 dataset. ϵ is set to 2 (tight DP protection)
and and Ta = 3. .. 146

3.13 Accuracy on the CIFAR­10 dataset, under Strong Iterative Attacks (Ta =
1, 000; 2, 000). ϵ is set to 2 (tight DP protection). 147

3.14 Accuracy on the Tiny ImageNet dataset, under Strong Iterative Attacks (Ta =
1, 000; 2, 000). ϵ is set to 5. .. 148

3.15 Average accuracy on the permuted MNIST and CIFAR­10 datasets, and on the
HARW dataset (higher the better). .. 168

3.16 p value for 2­tail t­tests on the permuted MNIST and CIFAR­10 datasets, and
on the HARW dataset (lower the better). .. 169

3.17 Average accuracy and p value for 2­tail t­tests on the HARW dataset with
random task orders (higher the better). ... 176

xv

LIST OF FIGURES
(Continued)

Figure Page

3.18 p value for 2­tail t­tests on the HARW dataset with random task orders (lower
the better).. 177

4.1 FLSys Asynchronous Protocol and Architecture. Typical operations: 1⃝ Phone
Manager of Client #1 registers with the Cloud Manager of Model 1, which grants
registration based on training settings. 2⃝ Phone Manager of Client #1 fetches
up­to­date global model from a designated storage, trains it with local data, and
uploads local gradients to a designated storage. 3⃝ PhoneManager of Client #2 tries
to register, but is denied. 4⃝ Phone Manager of Client #2 successfully registers at a
later time, but the training misses the deadline, thus its gradients upload is denied.
5⃝ Clients #1 and #2 try to register during server aggregation and are denied. 6⃝
Each model’s Aggregator loads the gradients updates, aggregates them, and saves
the aggregated model. ... 185

4.2 HAR­Wild model architecture. ... 201

4.3 Number of data points of each class for each user. 202

4.4 HAR­Wild accuracy under different settings. .. 205

4.5 SA model architecture.. 209

4.6 Aggregation time and participating clients ... 211

5.1 The variance of a node i, where i′ is a replication of i and k denotes the
neighbors of i. .. 222

5.2 Upper: Consistency test result on Karate. Lower: Robustness test result on
Karate .. 233

xvi

CHAPTER 1

INTRODUCTION

1.1 Overview

In this dissertation, a series of work on three distinctive yet interconnected fields will be

presented. In the first part of the dissertation, our aim is to provide an improved method

of monitoring the on­going drug abuse epidemic through the lens of online social media,

utilizing the state­of­the­art AI techniques. In the first work, we demonstrate the feasibility

and the improved performance of a trained neural networks in identifying tweets, a type of

short posts on the online social media platform Twitter, that contains drug abuse­related

contents. The training data is constructed by manually identifying tweets, which are

automatically cultivated with drug abuse­related keywords, with drug abuse contents. Then

in the second work, we provide improved detection model that utilizes the large quantity of

unlabeled tweets through self­training mechanism. In addition, we run the trained detection

model on a large quantity of tweets (i.e., 3 million tweets) and preformed quantitative and

qualitative analysis over the detection results. The analysis not only shows that the detection

model is effective, but also reveals interesting properties that were not explored by previous

work. Given the fact that a significant portion of tweets are geo­tagged, it makes sense

to explore the analysis results in conjunction with their geographical proprieties. Aiming

to extend the impact of this study, and to provide a tool for inspecting the geographical

proprieties of the monitoring results in a visual and interactive way, we implement and

demonstrate a web­based data visualization tool in the third work.

The great potential ofmonitoring the drug abuse epidemic through online social media

is explored and demonstrated in the first part of this dissertation. However, a significant

roadblock of privacy issue prevents the work to be wildly and openly adopted. With

the modern standard of privacy, any model to be released that is trained with private or

1

individually identifiable data, has to employ strict privacy protection methods. Given the

individual identifiable nature of tweets and the sensitive nature of the drug abuse­related

topic, strict and rigorous privacy protection will be required for the work in the first part.

Thus, in the second part of this dissertation, we switch the course to the developing of

more advanced privacy protection methods for deep learning. Our aim here is to advance

both the empirical and theoretical aspects of the differential privacy (DP) mechanism, a

promising privacy protection mechanism that is originated from the field of database but is

quickly found its place in deep learning. Three pieces of work are presented in this part of

the dissertation. In the fourth work, we propose a novel Adaptive Laplace Mechanism

(AdLM) for differential privacy protection in deep learning. Two key features set the

AdLM apart from existing mechanism: (1) The privacy budget consumed by AdLM is

totally independent of the number of training epochs; and (2) The amount of noise that

the AdLM injects to different weight depends on the importance of that weight. These

features mean that the model will be able to have better utility while having the same level

of privacy protection, when compared with existing methods. Then, in the fifth work, we

propose a more advanced DP mechanism that: (1) Works together with adversarial training

and addresses the previously unattended aspect of DP; (2) The provided DP protection is

bounded with certified robustness; and (3) Allows fully parallelized training of DP deep

learning models. And in the sixth work, we propose novel DP mechanism for Lifelong

Learning (L2M). L2M has great potential to be used in the drug abuse detection tasks in

order to capture the ever changing trends and expressions of drug abuse­related topics.

Here is yet another privacy protection method that has great potential, the Federated

Learning (FL). FL means to train the models at where the data is collected. In the mobile

computing setting as an example, it means to use the data collected on each smartphone,

and the ever growing mobile computation power, to jointly train a model, instead of

uploading the collected data and conducting centralized training. Sharing gradients or

model parameters that can be protected by DP further protects privacy of each user. When

2

the epidemic of COVID­19 hits, we were presented an unique opportunity to conduct

a study that collects sensor data from smartphones for studying human behaviors and

mental health. We also see this study an opportunity to pursue better privacy protection

techniques by working on FL, in conjunction with DP. Thus, we step into the track of

FL and make our first work in the field. In this work, we propose and implemented a

prototype FL framework, which is a first working prototype in the literature that employs

application­system co­design approach. Differ from existing proprietary FL system of the

Gboard (Google’s keyboard app), our design propose an architecture with the following

three aims: (1) To provide easy integration of FL with a wide variety of apps, by sharing the

FL framework among different apps that want to use FL; (2) To provide low overhead and

high efficiency for having many FL models co­exist on one smartphone; and (3) To provide

users a place to see and to control the behaviors of different FL models, with unified user

experiences.

Thus, this dissertation consists of the aforementioned three tracks. The following

introductions will give detailed introduction, background, related works, and contribution

of each individual work.

1.2 Drug Abuse Detection and Analysis in Online Social Media

1.2.1 Background

Misuse and abuse of prescription drugs and of illicit drugs have been major public health

problems in the United States for decades. A “Public Health Emergency”declared in

2017 [1] and several official surveys [2] all show that the problem has been getting worse

in recent years. For example, the most recent reports from the National Survey on Drug

Use and Health (NSDUH) [2] estimate that 10.6% of the total population of people ages 12

years and older (i.e., about 28.6 million people) have misused illicit drugs in 2016, which

represents an increase of 0.5% over 2015. According to the Centers for Disease Control and

Prevention (CDC), opioid drugs were involved in 42,249 known deaths in 2016 nationwide

3

[3]. In addition, the number of heroin­related deaths has been increasing sharply over five

years and has surpassed the number of firearm homicides in 2015 [4]. The emerging new

problems, such as the epidemic of illicitly manufactured fentanyl (IMF) [5], marijuana­

related traffic accidents [6], and marijuana use among adolescents [7] are posing further

increasing threats to public health.

In April 2017, the Department of Health and Human Services announced their

“Opioid Strategy” to battle the country’s drug abuse crisis [1]. In the Opioid Strategy, one of

the major aims is to strengthen public health data collection, in order to inform a timeliness

public health response as the epidemic evolves. Given its 100 million daily active users and

500 million daily tweets [8] (messages posted by Twitter users), Twitter has been used as

a sufficient and reliable data source for many detection tasks, including epidemiology [9]

and public health [10, 11, 12, 13, 14, 15], at the population scale, in a real­time manner.

Motivated by these facts and the urgent needs, our goal in this dissertation is to develop

a large­scale computational system to detect drug abuse risk behaviors via Twitter sphere.

Twitter is a popular social media platform that has 100 million daily active users and 500

million daily tweets [8] (messages posted by Twitter users), most of which are publicly

accessible, on a wide range of topics.

Several studies [12, 16, 17, 18, 15, 19] have explored the detection of prescription

drug abuse on Twitter. Still, the current state­of­the­art approaches and systems are limited

in terms of scales and accuracy. They typically applied keyword­based approaches to

collect tweets explicitly mentioning specific drug names, such as Adderall, Oxycodone,

Quetiapine, Metformin, Cocaine, marijuana, weed, meth, tranquilizer, etc. [12, 17, 15, 19].

However, that may not reflect the actual distribution of drug abuse risk behaviors on online

social media, since: (1) The expressions of drug abuse risk behaviors are often vague,

in comparison to common topics, i.e., a lot of slang is used; and (2) Relying on only

keyword­based approaches is susceptible to lexical ambiguity in natural language [14].

In addition, the drug abuse risk behavior Twitter data is very imbalanced, i.e., dominated

4

by non­drug abuse risk behavior tweets, such as drug­related news, social discussions,

reports, advertisements, etc. The limited availability of annotated tweets makes it even

more challenging to distinguish drug abuse risk behaviors from drug­related tweets. Yet,

existing approaches [12, 17, 15, 19] have not been designed to address these challenging

issues for drug abuse risk behavior detection on online social media.

1.2.2 Traditional Drug Abuse Monitoring Systems

Traditionally, drug abuse activities and trends are monitored through both large­scale

surveys, such as NSDUH [2] and the Monitoring the Future project [20]; and reporting

systems, such as the FDA MedWatch program [21], the National Poisoning Data System

[22], the Drug Abuse Warning Network (DAWN) [23]. The results derived from these

surveys [24], clearly show that there is an epidemic of drug abuse across the United States.

Generally these systems and surveys are considered as trustworthy sources for getting the

general picture of the drug abuse epidemic. Nonetheless, a recent report [25] states that

the estimated number of deaths due to prescription drugs could be inflated due to the

difficulties in determining whether a drug is obtained by prescription or not. We assert that

the ambiguities highlighted in this new report raise questions about the reliability of the

earlier surveys, and thus, such a report illustrates the potential value of social media­based

studies.

1.2.3 Social Media­Based Analytical Studies

In recent years, increasing number of studies utilize online social media data to find trends,

preform estimations, and conduct mass monitoring. Many of the existing studies were

focusing on the quantitative analysis utilizing data from online social media. Several studies

found positive correlations between Twitter data and real world data. Chary et al. [26]

performed semantic analysis on 3.6 million tweets with 5% labeled and found significant

agreement with the NSDUH data. Hanson et al. [17] conducted a quantitative analysis

5

on 213,633 tweets discussing Adderall, and found positive geo­temporal correlations.

Another study from their team [16] focused on how possible drug­abusers interact with

and influence others in online social circles. The results showed that strong correlation

could be found: (1) Between the amount of interaction about prescription drugs and a level

of abusiveness shown by the network; and (2) Between the types of drugs mentioned by the

index user and his or her network. Shutler et al. [19] performed a qualitative analysis of six

prescription opioids, i.e., Percocet, Percs, OxyContin, Oxys, Vicodin, and Hydros. Tweets

were collected with exact word matching andmanual classification. Their primary goal was

to identify the key terms used in tweets that likely indicate drug abuse. They found that the

use of Oxys, Percs andOxyContin was common among the tweets where there were positive

indications of abuse. Meng et al. [27] used traditional text and sentiment analysis methods

to investigate substance use patterns and underage use of substance, and the association

between demographic data and these patterns. Ding et al. [28] investigated the correlation

between substance (tobacco, alcohol, and drug) use disorders and words in Facebook users’

“Status Updates” and “Likes”. Their results showing word patterns are different between

users who have substance us disorder and users who do not have. McNaughton et al. [18]

measured online endorsement of prescription opioid abuse by developing an integrative

metric through the lens of Internet communities. Simpson et al. [29] demonstrated an

attempt to identify emerging drug terms using NLP techniques. Furthermore, Twitter and

social media have been shown to be reliable sources in analyzing drug abuse and public

health­related topics, such as cigarette smoking [10, 14], alcohol use [13], and even cardiac

arrest [11].

1.2.4 Studies Utilizing Social Media Data for Classification Tasks

There also have been studies that focused on designing machine learning models to

preform classification on online social media posts. Katsuki et al. [30] trained SVM

on a dataset of 1,000 tweets for classification of tweets for relevance and favorability of

6

online drug sales. Coloma et al. [31] illustrated the potential of social media in drug

safety surveillance with two case studies multiple online social media platforms. Sarker

et al. [15] proposed a supervised classification model, in which different features such

as n­grams, abuse­indicating terms, slang terms, synonyms, etc., were extracted from

manually annotated tweets. Then, these features were used to train traditional machine

learning models to classify drug abuse tweets and non­abuse tweets. Recently, many work,

including one of our work [32], explored the use of more advanced deep learning models

for drug­related classification tasks on online social media. Following our work, Kong et

al. [33] proposed deep learning model that utilizes geographical prior information as input

features. Chary et al. [12] discussed how to use AI models to extract content useful for

purposes of toxicovigilance from social media, such as Facebook, Twitter, and Google+.

Weissenbacher et al. [34] proposed deep neural network based model to detect drug name

mentions in tweets. Mahata et al. [35] proposed an ensemble CNNmodel to classify tweets

from three classes, i.e., personal medication intakes, possible personal medication intake,

and non­intake. Work have also been done in perspectives other than content­based analysis

and classification. Zhang et al. [36] proposed a complex schema, which models all possible

interactions between users and posts, for automatic detection of drug abusers on Twitter. Li

et al. [37] evaluated deep learning models against traditional machine learning models on

the task of detecting illicit drug dealers on Instagram.

1.2.5 In Attempt to Scale the Models Up

Although existing studies have shown promising approaches toward the detecting of drug­

related posts and information on popular online social media platforms, such as Twitter

and Instagram, their limitations can be identified as: (1) Limited in scale, as the methods

proposed in many studies do not scale well, or rely on larger manually annotated training

dataset for higher performance; (2) Limited in scope, as most studies focus on a small

group of drugs; and (3) Limited in performance, as many methods use traditional machine

7

learning models. In this dissertation, we propose a novel deep self­taught learning system

to leverage a huge number of unlabeled tweets. Self­taught learning [38] is a method that

integrated the concepts of semi­supervised and multi­task learning, in which the model

can exploit examples that are unlabeled and possibly come from a distribution different

from the target distribution. It has already been shown that deep neural networks can take

advantage of unsupervised learning and unlabeled examples [39, 40]. Different from other

approaches mainly designed for image processing and object detection [41, 42, 43, 44], our

deep self­learning model shows the ability to detect drug abuse risk behavior given noisy

and sparse Twitter data with a limited availability of annotated tweets.

1.2.6 In Need of an Real­time User Interface for Monitoring Online Social Media
Drug Abuse Data

Even though drug abuse has reached epidemic proportions [3], there still lacks tools and

means to prevent drug abuse epidemics effectively, especially for local communities and

organizations, who are at the front and center of the fight. Several well­known resources

have been developed for toxicovigilance monitoring include the National Poisoning Data

System [22], the U.S. Food and Drug Administration, the Drug Abuse Warning Network

[23] and the MedWatch program [21]. These existing systems usually provide statistical

data in the typical yearly fashion, which does not offer adequate information about drug

abuse activities in a timely manner. This leads to difficulty in managing available resources

and efforts (e.g., antidotes, recovery education, etc.), and to challenges in policy­making

towards achieving best practices in prevention and recovery.

In addition, the prevalent usage of social network sites, mobile apps, forums, and the

internet marketplace, has increasingly been recognized as a major factor in the spread of

drug abuse epidemics [45]. Social media apps and the internet also make the purchase of

illegal drugs more convenient; access to drugs can be just a few keystrokes away [46]. As

both the exchange of information and the obtaining of drugs become easier and faster, the

8

drug use trends become more volatile, diversified, and potentially lethal. Increasingly, one

drug can result in damage, even loss of lives in a short time window (a few hours/days) [46].

It is an urgent demand to detect and monitor drug abuse activities on online social media.

1.2.7 Contributions in this Dissertation

In this chapter, we present work from three papers along the topic of drug abuse detection

through online social media.

In the first part, we propose an ensemble of two types of deep learning­based methods

as better options, among classifiers, for situations in which the collected data is inevitably

imbalanced, because they are more robust than traditional machine learning models. Our

ensemble deep learning model combines word­level CNNmodels and character­level CNN

models to perform classification. We compare our models with baseline models on a dataset

we collected, where we can configure the class distribution of positive versus negative

tweets in the training data and test data. By changing the percentage of positively and

negatively labeled data in the dataset, we can simulate the imbalanced datasets that were

collected by different means. We validate the performance of different models in a variety

of settings to get a clearer picture of how imbalanced data affect classification performance.

In the second part, to address the aforementioned challenges of the noisiness of the

Tweet data and the lack of labeled Tweet data, our main contributions are to propose:

(1)A large­scale drug abuse risk behavior tweets collection mechanism based on supervised

machine learning and data crowd­sourcing techniques; and (2) A deep self­taught learning

algorithm for drug abuse risk behavior detection. We first collect tweets through a filter,

in which a variety of drug names, colloquialisms and slang terms, and abuse­indicating

terms (e.g., overdose, addiction, high, abuse, and even death) are combined together. We

manually annotate a small number of tweets as seed tweets, which are used to train machine

learning classifiers. Then, the classifiers are applied to large number of unlabeled tweets

to produce machine­labeled tweets. The machine­labeled tweets are verified again by

9

humans on Mechanical Turk, i.e., a crowd­sourcing platform, with good accuracy but at

a much lower cost. The new labeled tweets and the seed tweets are combined to form a

sufficient and reliable labeled data set for drug abuse risk behavior detection by applying

deep learning models, i.e., convolution neural networks (CNN) [47] and long­short term

memory (LSTM) models [48]. Then, we propose a self­taught learning algorithm, in which

the training data of our deep self­taught learning models will be recursively augmented

with a set of new machine­labeled tweets. These machine­labeled tweets are generated by

applying the previously trained deep learning models to a random sample of a huge number

of unlabeled tweets. Based on our pervious work [49], we extended the analysis of the

classification results from our three million tweets dataset. We apply the proposed model

to our geolocation­tagged dataset to acquire classification results for analysis. Results from

the analysis show that the drug abuse risk behavior­positive tweets have distinctive patterns

of words, hashtags, drug name­behavior co­occurrence, time­of­day distribution and spatial

distribution, compared with other tweets. These results show that our approach is highly

effective in detecting drug abuse risk behaviors.

Then in the third part of this chapter, we develop a community­focused drug abuse

monitoring and supporting system, called DrugTracker, using social media and geospatial

data to provide local communities and organizations with the tools and capabilities to

identify and understand the specific needs of drug misusers and/or abusers in near real­time.

A such system will have crucial benefits to connect local communities and organizations

with individuals and families, who are struggling with drug abuse, towards a better

prevention and recovery outcome. In our system, well­trained deep learning models are

integrated into the data collection process to detect tweets that contain drug abuse risk

behaviors. Then end­users can operate the web­based interactive monitoring interface

to browse the collected data in a spatial­temporal context in order to acquire insightful

patterns about drug abuse risk behaviors. Our system is available on GitHub: https:

//github.com/hu7han73/DrugVis.

10

1.3 Differential Privacy in Deep Learning with Certified Robustness Bounds

1.3.1 Background

Today, deep learning has become the tool of choice in many areas of engineering, such

as autonomous systems, signal and information processing, and data analytics. Deep

learning systems are, therefore, not only applied in classic settings, such as speech and

handwriting recognition, but also progressively operate at the core of security and privacy

critical applications.

For instance, self­driving cars make use of deep learning for recognizing objects and

street signs [50]. Detection systems for email spam integrate learningmethods for analyzing

data more effectively [51]. Furthermore, deep learning has applications in a number of

healthcare areas, e.g., phenotype extraction and health risk prediction [52], prediction of the

development of various diseases, including schizophrenia, cancers, diabetes, heart failure,

etc. [53], and many more. This presents an obvious threat to privacy in new deep learning

systems which are being deployed. Yet, there are only a few scientific studies in preserving

privacy in deep learning.

Lifelong learning (L2M) is crucial for machine learning to acquire new skills through

continual learning, pushing machine learning toward a more human learning in reality.

Given a stream of different tasks and data, a deep neural network (DNN) can quickly

learn a new task, by leveraging the acquired knowledge after learning previous tasks, under

constraints in terms of the amount of computing and memory required [54]. As a result, it

is quite challenging to train an L2M model with a high utility.

1.3.2 Privacy Protection in Deep Learning

In the past few decades, a subject of significant interest has been how to release the

sensitive results of statistical analyses and data mining, while still protecting privacy. One

state­of­the­art privacymodel is ϵ­differential privacy [55], which ensures that the adversary

cannot infer any information about any specific record with high confidence (controlled

11

by a privacy budget) from the released learning models, even if all the remaining tuples

of the sensitive data are possessed by the adversary. The privacy budget controls the

amount by which the output distributions induced by two neighboring datasets may differ:

A smaller privacy budget value enforces a stronger privacy guarantee. Differential privacy

research has been studied from both theoretical and application perspectives [56, 57]. The

mechanisms of achieving differential privacy mainly include adding Laplace noise [55], the

exponential mechanism [58], and the functional perturbation method [56].

It is significant and timely to combine differential privacy and deep learning, i.e.,

the two state­of­the­art techniques in privacy preserving and machine learning. However,

this is a challenging task, and only a few scientific studies have been conducted. In [59],

Shokri and Shmatikov proposed a distributed training method, which injects noise into

“gradients” of parameters, to preserve privacy in neural networks. In this method, the

magnitude of injected noise and the privacy budget ϵ are accumulated in proportion to the

number of training epochs and the number of shared parameters. Thus, it may consume an

unnecessarily large portion of the privacy budget, as the number of training epochs and the

number of shared parameters among multiple parties are often large [60].

To improve this, based on the composition theorem [61], Abadi et al. [62] proposed a

privacy accountant, which keeps track of privacy spending and enforces applicable privacy

policies. However, the approach is still dependent on the number of training epochs, as it

introduces noise into “gradients” of parameters in every training step. With a small privacy

budget ϵ, only a small number of epochs can be used to train the model [62]. In practice,

that could potentially affect the model utility, when the number of training epochs needs to

be large to guarantee the model accuracy.

A recent approach towards differentially private deep neural networks was explored

by Phan et al. [60]. This work proposed deep private auto­encoders (dPAs), in which

differential privacy is enforced by perturbing the cross­entropy errors in auto­encoders [39].

Their algorithm was designed particularly for auto­encoders, in which specific objective

12

functions are applied. A different method, named CryptoNets, was proposed in [63]

towards the application of neural networks to encrypted data. A data owner can send their

encrypted data to a cloud service that hosts the network, and get encrypted predictions in

return. This method is different from our context, since it does not aim at releasing learning

models under privacy protections.

1.3.3 Privacy Protection with Adversarial Defence

The pervasiveness of machine learning exposes new vulnerabilities in software systems, in

which deployed machine learning models can be used (a) to reveal sensitive information in

private training data [64], and/or (b) to make the models misclassify, such as adversarial

examples [65]. Efforts to prevent such attacks typically seek one of three solutions:

(1)Models which preserve differential privacy (DP) [55], a rigorous formulation of privacy

in probabilistic terms; (2) Adversarial training algorithms, which augment training data to

consist of benign examples and adversarial examples crafted during the training process,

thereby empirically increasing the classification accuracy given adversarial examples

[66, 67]; and (3) Certified robustness, in which the model classification given adversarial

examples is theoretically guaranteed to be consistent, i.e., a small perturbation in the input

does not change the predicted label [68, 69, 70].

On the one hand, privatemodels, trainedwith existing privacy­preservingmechanisms

[62, 59, 60, 71, 72, 73, 74], are unshielded under adversarial examples. On the other hand,

robust models, trained with adversarial learning (with or without certified robustness to

adversarial examples), do not offer privacy protections to the training data [75]. That

one­sided approach poses serious risks to machine learning­based systems; since adver­

saries can attack a deployed model by using both privacy inference attacks and adversarial

examples. To be safe, a model must be i) private to protect the training data, and ii) robust

to adversarial examples. Unfortunately, there still lacks of study on how to develop such a

model, which thus remains a largely open challenge [76].

13

Simply combining existing DP­preserving mechanisms and certified robustness

conditions [68, 69, 77] cannot solve the problem, for many reasons. (a) Existing sensitivity

bounds [60, 71, 72] and designs [73, 74, 76, 78, 79] have not been developed to protect

the training data in adversarial training. It is obvious that using adversarial examples

crafted from the private training data to train our models introduces a previously unknown

privacy risk, disclosing the participation of the benign examples [75]. (b) There is an

unrevealed interplay among DP preservation, adversarial learning, and robustness bounds.

(c) Existing algorithms cannot be readily applied to address the trade­off among model

utility, privacy loss, and robustness. (d) It is challenging in applying existing algorithms to

train large DNNs given large data (i.e., scalability); since, they employ the vanilla iterative

batch­by­batch training, in which only a single batch of data instances can be used at each

training step, such that the privacy loss can be estimated [74, 76, 73, 78, 79]. That prevents

us from applying scalable methods, e.g., distributed adversarial training [80], to achieve

the same level of DP on large DNNs and datasets. Therefore, bounding the robustness of a

model (which both protects the privacy and is robust against adversarial examples) at scale

is nontrivial.

1.3.4 Privacy Protection in Lifelong Learning

Orthogonal to the difficulties, L2M models are vulnerable to adversarial attacks, i.e.,

privacy model attacks [81, 64, 82, 81, 83], when DNNs are trained on highly sensitive

data, e.g., clinical records [53, 84], user profiles [85, 86], and medical images [87, 88].

In practice, the privacy risk will be more significant since an adversary can observe

multiple versions of an L2M model released after training on each task. Different versions

of the model parameters can be considered as an additional information leakage, compared

with a model trained on a single task (shown in Theorem 3.7). Memorizing previous

tasks while learning new tasks further exposes private information in the training set, by

continuously accessing the data from the previously learned tasks (i.e., data stored in an

14

episodic memory [54, 89, 90, 91, 92]); or accessing adversarial examples produced from

generative memories to imitate real examples of past tasks [93, 94, 95]. Unfortunately, there

is a lack of study offering privacy protection to the private training data in L2M.

To address this problem, we propose to preserve differential privacy (DP) [55],

a rigorous formulation of privacy in probabilistic terms, in L2M. Applying existing

DP­preserving mechanisms in deep learning [60, 96, 62, 59, 73, 74, 97], which have not

been designed for L2M, cannot solve the problem, for many reasons. Compared with

single trained models: (1) The continual learning and memorizing process consumes a large

privacy budget, since the privacy loss can be accumulated in both learning and memorizing

across tasks; (2)The growing of the episodicmemory after each training task (i.e., by adding

data into the episodic memory) makes it hard to bound the privacy budget; (3)Releasing one

version of an L2Mmodel will cause additional privacy risk in learning a new task or training

on new data of past tasks; and (4) The difference in terms of data sizes, i.e., heterogeneity,

among tasks introduces a challenge in addressing the trade­off between privacy protection

and model utility, since i) different tasks requires different numbers of training steps, and

ii) tasks can be trained in different orders. Both factors can affect DP protection (Equation

(3.80), Theorem 3.7). These issues prevent us from training and releasing L2M models

on streaming tasks and data, under DP protection. Thus, preserving DP in L2M remains a

largely open challenge.

1.3.5 Contribution in this Dissertation

Our contribution in this dissertation is three­fold.

Contribution to the Basic Differential Privacy Mechanism There is an urgent demand

for the development of a privacy preserving mechanism, such that: (1) It is totally

independent of the number of training epochs in consuming privacy budget; (2) It has the

ability to adaptively inject noise into features based on the contribution of each to the model

output; and (3) It can be applied in a variety of deep neural networks. Mechanisms with

15

such characteristics will significantly enhance the operation of privacy preservation in deep

learning.

Motivated by this, we develop a novel mechanism, which is called Adaptive Laplace

Mechanism (AdLM), to preserve differential privacy in deep learning. Our idea is to

intentionally add “more noise” into features which are “less relevant” to the model output,

and vice­versa. To achieve that, we inject Laplace noise into the computation of Layer­wise

Relevance Propagation (LRP) [98] to estimate a differentially private relevance of each

input feature to the model output. Given the perturbed features, we figure out a novel way

to distribute adaptive noise into affine transformations and loss functions used in deep neural

networks as a preprocessing step, so that preserving differential privacy is feasible. As a

result, we expect to improve the utility of deep neural networks under ϵ­differential privacy.

It is worth noting that our mechanism does not access the original data again in the training

phase. Theoretical analysis derives the sensitivities and error bounds of our mechanism,

and shows that they are totally independent of the number of epochs.

Different from [62, 59], in our mechanism, the injected noise and the privacy budget

consumption do not accumulate in each training step. Consequently, the privacy budget

consumption in our mechanism is totally independent of the number of training epochs. In

addition, different from [60], our mechanism can be applied in a variety of deep learning

networks with different activation functions. Convolution neural networks (CNNs) [47] are

used as an example to validate the effectiveness of our mechanism. Rigorous experiments

conducted on MNIST and CIFAR­10 datasets [99] show that our mechanism is effective

and outperforms existing solutions.

Contribution to the Scalable Differential Privacy Mechanism Motivated by the open

problem of differential privacy with adversarial learning, we develop a novel stochastic

batch (StoBatch) mechanism to: 1) preserve DP of the training data, 2) be provably and

16

practically robust to adversarial examples, 3) retain high model utility, and 4) be scalable

to large DNNs and datasets.

In StoBatch, privacy­preserving noise is injected into inputs and hidden layers to

achieve DP in learning private model parameters (Theorem 3.2). Then, we incorporate

ensemble adversarial learning into our mechanism to improve the decision boundary under

DP protections, by introducing a concept of DP adversarial examples crafted using benign

examples in the private training data (Equation (3.49)). To address the trade­off between

model utility and privacy loss, we propose a new DP adversarial objective function to

tighten the model’s global sensitivity (Theorem 3.4); thus, we reduce the amount of noise

injected into our function, compared with existing work [60, 71, 72]. An end­to­end privacy

analysis shows that, by slitting the private training data into disjoint and fixed batches

across epochs, the privacy budget in our StoBatch is not accumulated across gradient

descent­based training steps (Theorems 3.4, 3.5).

After preserving DP in learning model parameters, we establish a new connection

between DP preservation in adversarial learning and certified robustness. Noise injected

into different layers is considered as a sequence of randomizing mechanisms, providing

different levels of robustness. By leveraging the sequential composition theory in DP

[100], we derive a generalized robustness bound, which is a composition of these levels

of robustness in both input and latent spaces (Theorem 3.6 and Corollary 3.1), compared

with only in the input space [70] or only in the latent space [101].

To bypass the iterative batch­by­batch training, we develop a stochastic batch

training. In our algorithm, disjoint and fixed batches are distributed to local trainers, each

of which learns DP parameters given its local data batches. A synchronous scheme can be

leveraged to aggregate gradients observed from local trainers; thus enabling us to efficiently

compute adversarial examples from multiple data batches at each iteration. This allows us

to scale our mechanism to large DNNs and datasets, under the sameDP guarantee. Rigorous

17

experiments conducted on MNIST, CIFAR­10 [47, 99], and [102] datasets show that our

mechanism notably enhances the robustness and scalability of DP DNNs.

Contribution to the Differential Privacy in Lifelong Learning Motivated by the

problem in L2M, we introduce a new definition of lifelong differential privacy (Lifelong

DP), in which the participation of any data tuple in any tasks is protected under a consistently

bounded DP guarantee, given the released parameters in both learning new tasks and

memorizing previous tasks (Definition 3.5). This is significant, by allowing us to train

and release new versions of an L2M model, given a stream of tasks and data, under DP

protection.

Based upon this, we propose a novel algorithm, denoted as L2DP­ML, to preserve

Lifelong DP. In L2DP­ML, privacy­preserving noise is injected into inputs and hidden

layers to achieve DP in learning private model parameters in each task (Algorithm 3.6).

Then, we configure the episodic memory as a stream of fixed and disjoint batches of

data (Algorithm 3.7), to efficiently achieve Lifelong DP (Theorem 3.8). The previous

task memorizing constraint is solved, by inheriting the recipe of the well­known A­gem

algorithm [54], under Lifelong DP. To our knowledge, our study establishes the first formal

connection between DP preservation and L2M compared with existing work of DP in L2M

[103, 104], inwhich there is a lack of a concrete definition of adjacent databaseswith unclear

or not well­justified DP protection.

Rigorous experiments, conducted on permutedMNIST, permuted CIFAR­10 datasets

[105], and an L2M task on our collected dataset for human activity recognition in the wild

show promising results in preserving DP in L2M. Lifelong DP opens a long­term avenue

to achieve better model utility with lower computational cost under DP protection in L2M.

18

1.4 Federated Learning on Mobile Devices

1.4.1 Background

Federated Learning (FL) [106] has the potential to bring deep learning (DL) on mobile

devices, while preserving user privacy during model training. FL balances model perfor­

mance and user privacy through three design features. First, each device trains a local

model on its raw data. Second, the gradients of the local models from multiple users

are sent to a server for aggregation to compute a global model that is more accurate than

individual local models. Third, the server shares the global model with all users. During

this federated training, the raw data from individual users never leave their devices. A

wide range of mobile apps, e.g., predicting or classifying health conditions based on mobile

sensing data, can benefit from running DL models on smart phones using FL, which offers

privacy­preserving global training that incentivizes user participation.

Despite progress on theoretical aspects and algorithm/model design for FL [107, 108,

109, 110, 111], the lack of a publicly available FL system has precluded the widespread

adoption of FLmodels on smart phones, despite the potential of suchmodels to apply DL on

mobile [sensing] data, in a privacy­preserving manner, for novel mobile apps. Furthermore,

this has also limited our understanding of how real­world applications can benefit from

FL. To the best of our knowledge, the only existing FL systems are either unavailable

for the research and practice communities (e.g., Google [106], FedVision [112]), under

development [113], or do not support mobile devices [114]. Most of the existing FL

studies are based on simulations [115, 107, 108, 109, 110, 111], which may lead to an

oversimplified view of the applicability of FL models in real­world. In the meantime,

although demonstrated in several scenarios such as keyboard typing prediction [116], FL

lacks real­world applications, which can drive the design of FL systems. Indeed, real­world

benchmarks for FL are pivotal to help shape the developments of FL systems [117].

In this work, we take a unique application­system co­design approach to design,

build, and evaluate an FL system. Our system design is informed by a critical mobile

19

app: human activity recognition (HAR) on the phones, which is important for industry,

public health, and research. Simply speaking, mobile apps using HAR can harness

recognized human physical activities using data collected from phone sensors. From an

industry point of view, accurate HAR can help the smart phone manufacturers to be smart

about allocating resources and extending battery life. The Covid­19 pandemic highlights

the public health importance of understanding individual & population behaviors under

government orders and (health) emergencies [118]; furthermore, combining user activities

with mental wellness surveys and prediction has the potential to develop personalized

interventions to help individuals to better cope with anxiety, stress, and substance abuse,

and other important societal issues [119]. Current research on HARmodels uses centralized

learning on data collected in controlled lab environments on standardized devices and

controlled activities [120, 121, 122, 123, 124, 125, 126]. Instead, we use HAR in the

wild (open environments, where the user mobility, activities, or application usage are not

controlled in any way). The privacy­sensitive nature of the mobile (sensor) data make this

application ideal for studying the design of FL systems. Furthermore, this paper presents

the first HAR study under FL.

In addition to HAR, we analyzed other real­life applications [127, 106, 128, 116, 112]

to inform our system design. A list of important questions emerges, and many of these

questions are not addressed in existing FL system designs [106, 116, 113, 128] that largely

ignored the constraints of mobile devices:

• How can we balance FLmodel performance with resource constraints on the phones?

• How to ensure the training conducted on phones is completed on time, despite limited
resources, i.e., computation power and battery life?

• How can the server achieve seamless scalability in the presence of large and variable
numbers of users who typically train different models and how can the system
simultaneously cope with potential communication failures (e.g., connectivity lost
on the phone)?

• How does the server aggregate individual training outcomes efficiently for an
accuratemodel? After a global model is shared with the phones, how can a third­party
DL app utilize this model?

20

Currently, there is no FL system in the literature that can address most of these

questions. In terms of design, the closest related work is [106], which focuses on system

scalability, secure aggregation, and fault­tolerance. However, it does not present a system

implementation and evaluation, and how to use third­party models and make them available

to third­party apps on mobile devices. Mobile operating system (OS) providers use FL in

their OSs for applications such as next word prediction on the keyboard [116], but their

solutions are application­specific and lack system details. Verma et al. [129] and Liu et

al. [112] introduce web­services based FL architectures, which are not tailored to mobile

devices. An under construction FL system [113] does not focus on application­system

co­design aspects such as efficient data collection or scalability. Yet another open source

system, FATE [114], currently has only elementary support for deep learning and does not

have any support for mobile devices.

1.4.2 Federated Learning Systems

FL can be categorized into Horizontal FL, Vertical FL, and Federated Transfer Learning

(FTL) [128]. In Horizontal FL, data are partitioned by device user Ids, such that users

share the same feature space [128]. In Vertical FL, different organizations have a large

overlapping user space with different feature spaces. These organizations aim at jointly

training a model to predict the same model outcomes, without sharing their data. In FTL,

the datasets of these organizations differ in both the user space and the feature space.

In Vertical FL and FTL, different organizations need to align their common users

and exchange intermediate results by applying encryption techniques [130]. The server

cannot just average the gradients, but it needs to minimize a joint loss. At inference stage,

the organizations may have to send their individual intermediate results to the server to

compute a final result. The systems of these two categories rely on cryptography and their

interactions are more complex. Our FLSys focuses on Horizontal FL, with an option for

21

extension to Vertical FL and FTL in the future. For simplicity, we will use FL to indicate

Horizontal FL in the rest of the work.

The work in [106] describes the design of a scalable FL system for mobile devices.

This system shares several of our design goals (e.g., scalability, fault­tolerance). However,

this work does not present a system implementation and evaluation, as we do for FLSys.

Also, FLSys addresses additional unanswered design questions such as how to train

concurrently multiple models for different applications, and how third party app developers

to use the system. Furthermore, unlike this work, FLSys focuses on data collected from

the phone’s sensors, which adds challenges related to efficient and effective data collection.

Another system that shares some goals with FLSys is FedML [113], which is still under

construction. In addition, FedML focuses more on software engineering aspects, rather than

on system aspects such as efficient sensor data collection or scalability as in FLSys. A third

open source system FATE [114] is still in its infancy with limited support of deep learning

and does not work on mobile devices.

While a significant amount of FL research focuses on improving the security and

privacy of federated training procedures [131, 132], this is outside the scope of our research.

We focus on system design, implementation, and evaluation using HAR and SA models.

1.4.3 Coping with Non­IID Data in FL Training

A well­reported issue restricting the perform­ance of models trained by FL is non­IID data

distribution across users [133, 109]. Different from centralized learning, the datasets among

different users may follow different distributions in FL, because of the heterogeneous

devices, imbalanced class distribution, different user behaviors, etc. As a result, DL models

trained in FL algorithms usually suffer from inferior performance when compared with

centralized models [133].

To mitigate the non­IID issue, several algorithms have been proposed [107, 108,

109, 110, 111]. In FedProx [107], a regularization is introduced to mitigate the gradient

22

distortion from each device. Sarkar et al. [108] presented a cross­entropy loss to downweigh

easy­to­classify examples and focus training on hard­to­classify examples. Verma et

al. [111] proposed to estimate the global objective function by averaging different objective

functions given a common region of features among users, and keep different objective

functions estimated from local users’ data in different regions of the feature space. Data

augmentation approaches have been proposed [109], including a global data distribution

based data augmentation [110]. The federated training of our HAR­Wild and SA models

use a uniform data augmentation method, similar to these techniques.

1.4.4 Human Activity Recognition

Our HAR model focuses on sensing and classification of physical activities through smart

phone sensors. Recent work show that deep learning models are effective in HAR tasks.

For example, Ignatov [120] proposed a CNN based model to classify activities with raw

3­axis accelerometer data and statistical features computed from the data. Several pieces of

work [121, 122, 126] proposed LSTM­based models and achieved similar performances.

Most research onHARmodels uses centralized learning on data collected in controlled

lab environments with standardized devices and controlled activities, in which the partic­

ipants only focus on collecting sensor data with a usually high and fixed sampling rate

frequency, i.e., 50Hz or higher. Although there are good publicly available HAR datasets,

e.g., WISDM [123], UCI HAR [124], and Opportunity [125], they are not representative

for real­life situations. Different from existing work, this work shows that HAR­Wild over

FLSys performs well on the data collected in the wild, which are subject to fluctuating

sample rates and non­IID data distribution.

1.4.5 Contributions in this Dissertation

In this dissertation, we presents FLSys, the first FL system in the literature created using an

application­system co­design approach to address the aforementioned research questions.

23

FLSys is a key component toward creating an open ecosystem of FL models and apps that

use these model. Such an FL ecosystem will allow third­party model/app developers to

easily develop and deploy FL models/apps on smart phones. Consequently, the users will

benefit from novel FL apps based on mobile [sensing] data collected on the phones.

To tackle fault­tolerance and resource constraints on the phones, FLSys utilizes an

asynchronous interaction model between mobile devices and the cloud, which 1) allows the

devices to self­select for training when they have enough data and resources, and 2) allows

the sever to operate correctly in the presence of communication failures with the phones.

For energy efficient data collection, FLSys supports on­demand configuration of sensor

types, sampling rates, and the period for data flushing from memory to storage. The FL

server in the cloud achieves good scalability through a design based on function as a service

computation and scalable storage. FLSys is flexible, in the sense that it can train multiple

models concurrently. It provides a common API for third­party apps to train different DL

models with different FL aggregation methods in the cloud. While implemented in Android

and AWS, FLSys has a general system design and API that can be extended to other mobile

OSs and cloud platforms.

To study how HAR can be supported by FLSys in the wild, we collected data from

100+ college students in two areas during April ­ August 2020. The students used their

own Android phones, and their daily­life activities were not constrained in any way by

our experiment. Data collected on mobile devices is non­IID, which affects FL­trained

models [127]. We have evaluated a variety of HARmodels in both centralized and federated

training, and designed HAR­Wild, a Convolution Neural Network (CNN) model with a

data augmentation mechanism to mitigate the non­IID problem. To showcase the ability of

FLSys to work with different FL models, we also built and evaluated a natural language

sentiment analysis (SA) model on a dataset with 46,000+ tweets from 436 users.

We carried out a comprehensive evaluation of FLSys together with HAR­Wild and SA

to quantify the model utility and the system feasibility in real life conditions. We performed

24

the evaluation under three training settings: 1) centralized training, 2) simulated FL, and

3) Android FL. Centralized training provides an upper bound on model accuracy and is

used to compare our HAR­Wild model with baseline approaches. The results demonstrate

that HAR­Wild outperforms the baseline models in terms of accuracy. Furthermore, the

federated HAR­Wild performance using simulations (TensorFlow and DL4J), Android

emulations, and Android phone experiments is close to the upper bound performance

achieved by the centralized model. The results on smart phones demonstrate that FLSys

can perform communication and training tasks within the allocated time and resource limits,

while the FL server is able to handle a variable number of users. Finally, micro­benchmarks

on Android phones show FLSys with HAR­Wild and SA are practical in terms of training

and inference time, memory and battery consumption.

25

CHAPTER 2

DRUG ABUSE DETECTION AND ANALYSIS IN ONLINE SOCIAL MEDIA

Chapter Abstract: Abuse of prescription drugs and of illicit drugs has been declared

a “national emergency” [1]. This crisis includes the misuse and abuse of cannabinoids,

opioids, tranquilizers, stimulants, inhalants, and other types of psychoactive drugs, which

statistical analysis documents as a rising trend in the United States. Even though drug abuse

has reached epidemic proportions [3], there still lacks tools and means to prevent drug

abuse epidemics effectively, especially for local communities and organizations, who are

at the front and center of the fight. This section of work has three aims: (1) To design data

collection pipelines that collects potentially drug abuse­related posts, and deep­learning

models that classify collected posts as drug abuse­related or not, in order to facilitate large­

scale and time­sensitive detection of drug abuse trends through the lens of online social

media; (2) To analyze the collected data and the classification results in terms of patterns of

words, hashtags, drug name­behavior co­occurrence, time­of­day distribution and spatial

distribution, which demonstrates the effectiveness of such method designed in the first aim,

as well as providing insights for future research; and (3) Design and implement a tool to

visualize the collected data, the classification results, and the analysis results in a web­based

interactive user interface to support local communities.

2.1 An Ensemble Deep Learning Model for Drug Abuse Detection
in Sparse Twitter­Sphere

2.1.1 Methods

In this subsection, we present the definition of the drug abuse­related risk behavior detection

problem, our methods for collecting tweets, our methods for labeling tweets, and our

ensemble deep learning approach.

26

Problem Definition In this work, our first goal is to build a Twitter dataset consisting of

tweets that are related to drug abuse risk behaviors (positive tweets), and tweets that are

not (negative tweets). The“drugs”in the term“drug abuse risk behaviors”in this study

include Schedule 1 and Schedule 2 drugs and their derivatives [134], including marijuana,

heroin, cocaine, fentanyl, etc. The reasons that we include marijuana even though it is

legalized in several states are that: (1) Marijuana is still a controlled substance in the federal

law, whether for medical use or recreational use; and (2) Marijuana can still cause harm to

adolescents [7], can cause“use disorder”[24], and is related to traffic fatalities [6]. The

term“abuse risk behavior”can be defined as“The existence of likely abusive activities,

consequences, and endorsements of drugs.”Tweets that contain links to or summarize news

and reports related to drug abuse, and tweets that merely express opinions about drug abuse,

are counted as negative in this study. Our main goal in this dissertation is to train a model

that can accurately classify positive and negative tweets in a highly imbalanced (drug abuse)

dataset.

Data Collection Although there are human­labeled drug abuse Twitter datasets (e.g.,

Sarker’s dataset [15]) available, due to Twitter’s data policy, which prohibits the direct

sharing of tweet contents, by the time we access the tweets in that dataset, more than

40% of tweets are either removed or hidden from the public. This significantly affects

the quality and integrity of existing publicly available datasets. Therefore, we need to build

a new dataset from scratch. In our framework, raw tweets are collected through a set of

Application Programming Interfaces (Twitter APIs) via keyword filtering. By defining a

set of keywords, the API will fetch tweets that contain any of the keywords from either

the real­time stream of tweets or from archived tweets. For a more complete coverage

of drug­related topics, we selected three types of keywords: (1) Formal drug names, e.g.,

marijuana, cocaine, OxyContin, fentanyl, etc.; (2) Slang terms for drugs, e.g., pot, blunt,

coke, crack, smack, etc.; and (3) Drug abuse­related behaviors and symptoms, e.g., high,

27

amped, addicted, headache, dizzy, etc. The number of keywords we used is limited to 400

by the Twitter APIs.

DataAnnotation Webuild a comperhaensive guide, accessable at https:// goo.gl/tqWddS,

based on Sarker’s guide [15]. Each one of the three members in out research team with

experience in health informatics annotates the 1,794 tweets from Hu et al.’s study [49]

independently following the guide. A final label for each seed tweet is determined by

majority voting from three labels.

To acquire annotated tweets rapidly, at low cost, and with increased percentage of

positive tweets, we (1) use these labeled tweets as“seed”tweets to train a SVM classifier;

(2) run the SVM classifier on the unlabeled dataset, and randomly sample 5,000 machine

labeled tweets that have prediction probability (esitmated with Platt scaling) > 0.8; and

(3) post the 5,000 tweets (without identification information) onto the Amazon Mechanical

Turk (AMT) crowdsourcing platform for annotation. AMT is a well­known crowdsourcing

platform where Posters can post Human Intelligence Tasks (HITs) and Workers finish HITs

for micro­payments. A literature study [135] evaluated AMT as a thrustworthy platform to

obtain human labeled data. The same guide is used to guide the Workers how to annotate

the tweets. Each tweet is posted as one HIT that requires theWorker to label it as positive or

negative following the guide. Each HIT is replicated as three assignments to be completed

by three individual Workers. We set the price of each assignment to be $0.05, a very

generous price compared to what was reported in Buhrmester’s work [135] All HITs are

completed within hours after being posted. The final label of each tweet is aggregated

from the three labels by majority voting. Our annotators also label 1,000 tweets randomly

sampled from the 5,000 tweets with as a measure of quality check.

Feature Extraction Machine learning models require numerical features to work with.

Feature extraction transforms text features into numerical features in the form of vectors.

To cover the content ambiguity in drug abuse­related tweets, a variety of feature extraction

28

methods are used in this study. In our word­level CNN models, we use pre­trained word

embedding models that were trained on large corpora to transformwords into dense vectors.

We test several pre­trained models as Mahata’s work [136] suggested. With our word­level

CNN model, the Drug Chatter embedding has the best average performance on our dataset;

thus, it is chosen as the pre­trained word embedding model for this study. The details of

the tested word embedding models are shown in Table 2.1. Each tweet is converted to

a sequence of 400­dimensional vectors. Considering that the length limit of each tweet

nowadays is 280 chars, the sequence length is set to 40. In our char­level CNN, the

preprocessing step only turns all characters to lower case as suggested by [137]. Each

character is then converted into a 128­dimensional trainable randomly­initialized vector.

Instead of being fixed, the character embeddings are trained along with other layers in the

model.

We also replicate the features extracted in Sarker et al. study [15], including: (1) The

tokenization process; (2) The abuse­indicating term features, consisting of the presence

and the counts of abuse­indicating terms obtained from Hanson et al. [17]; (3) The drug­

slang lexicon features, consisting of the presence and the counts of terms longer than five

characters found in an online drug abuse dictionary [138]; (4) The word cluster features,

represented by 150­dimensional one­hot vectors, were constructed by identifyingwords that

belong to certain word clusters in a dataset [15] that contains 150 drug­related word clusters;

and (5) The synonym expansion features, accomplished by identifying all synonyms of all

nouns, verbs, and adjectives in the tokenized tweets using WordNet [139].

An Ensemble Deep Learning Model for Drug Abuse Detection in Sparse Twitter­

Sphere In this subsection, we present our novel ensemble deep learning model for drug

abuse risk behavior detection by integrating extracted features from tweets into CNN

models. Our ensemble model takes the outputs of multiple prediction models, word­level

CNN (W­CNN) and char­level CNN (C­CNN) [137] in our case, and feed them to a

29

Table 2.1 Details of Pre­trained Word Embeddings

Name Model Corpus Vocabulary Dim.

GoogleNews [140] Word2vec 100 billion words 3 million 300

Glove_Comm [141] Glove 42 billion words 1.9 million 300

Godin [142] Word2vec 400 million tweets 3 million 400

Drug_chatter [143] Word2vec 1 billion tweets 1.6 million 400

meta­learner that gives the final predictions. We design W­CNN and C­CNN for this task.

In fact, both the W­CNN and the C­CNN share a similar structure as shown in Figure 1.

The inputs of our W­CNN are vectors of shape [40, 400] where 40 is the maximum

sequence length (number of words allowed) in an input tweet, and 400 is the length of the

pre­trained word embeddings. The input of our C­CNN is shaped as [280, 128] where 280 is

the maximum possible length of a tweet, and 128 is the length of the vector representation of

each character in the charset. The auxiliary features in the input include: (1) The synonym

expansion features in the form of synonymous words are directly concatenated with the

input tweets (before they are transformed into vectors); and (2) The remaining auxiliary

features, in the form of 154­dimensional vectors, are concatenated to the last hidden layer of

the dense layers. For each convolution kernel size, the W­CNN model has two convolution

layers with ReLU activation functions stacked together. Each is followed by a max­pooling

layer.

The C­CNN model has one convolution layer for each convolution kernel size

with Tanh activation function, followed by a global­max­pooling layer that performs

max­pooling over all outputs of convolution layers with different kernel sizes. Both models

have one dense layer block, consisting of two dense layers with 1,024 hidden units each,

and one Softmax output layer with two units. The activation functions are slightly different,

as the W­CNN model uses ReLU, while the C­CNN model uses SELU. The output of the

30

Figure 2.1 Ensemble CNN model structures.

31

last hidden layer is concatenated with vectors of abuse­indicating term features, drug­slang

lexicon features, and word cluster features, before being fed into the output layer.

Finally, a number of independently trained CNN models of both types are ensembled

together by majority voting. Model ensembles were also used in Sarker et al. study [9] to

reduce variability and bias, in order to improve prediction performance. We apply the same

ensemble strategy to both our deep learning models and the baseline models.

Experimental Design Our main objective in this experiment is to directly compare the

performances of the ensemble traditional machine learning model and the ensemble deep

learning model. For the ensemble traditional machine learning model, two of each type of

baseline models, six in total, are trained and ensembled together. For the ensemble deep

learning model, six models of three types (two for each type) are used. The three types are

denoted as follows. (1)“char_aux”is the char­level CNN model with auxiliary features.

(2)“char_cnn”is the plain char­level CNNwithout any auxiliary features. (3)“word_aux”

is the word­level CNN model with all auxiliary features. For deep learning models, it is

extremely easy to overfit, due to the rather small number of training and test data elements;

thus, the model is saved at each training epoch, and the best epoch is found among the saved

models. For each class distribution scenario, each model is trained with the same six sets

of training data and tested on the corresponding test data. All results reported are averaged

results from the 6­fold cross­validation.

2.1.2 Experimental Results

Data Annotation Results From Jan 2017 to Feb 2017, we collected 3,265,153 tweets

in total. The“seed”dataset that we annotated to be used to train the pre­filter consistes

of 1,794 tweets, including 280 positive labels and 1,514 negative labels. Our annotator

achieved the agreement score of 0.414, measured by Krippendoff’s Alpha. For the AMT

labeled dataset, we removed duplicate tweets from it, resulting dataset contains 4,736 tweets

with 2,657 positive labels and 2,079 negative labels. The agreement score is 0.456measured

32

by Alpha, which can be considered as a reliable result in our study as demostrated in [144],

since: (1) We are performing data annotation with data aggregation to reduce variability,

instead of typical content analysis [145]; (2) The Krippendoff’s Alpha is sensitive to data

imbalance; and (3) We focus on sparse and imbalanced data distributions. For the 1,000

tweets for quality check, we got the Kappa score of 0.910 between our final labels and

the labels we obtain from AMT. This is showing that our annotation guide was followed

consistently by both our annotators and AMT Workers.

To simulate the data imbalance scenarios, we configured the class distribution

and pre­sampled the dataset into six blocks for each distribution scenario, for 6­fold

cross­validation. Each model was trained and tested on the same sets of training and test

data to ensure a fair comparison. The number of data points included in each distribution

scenario was maximized, but it was inevitably different between scenarios. Table 2.2 shows

the dataset in each class distribution scenario.

Table 2.2 Imbalanced Tweets Dataset Variants

Class Distribution
(positive: negative)

of training data # of testing data

50:50 split 3450 690

40:60 split 2850 570

30:70 split 2450 490

20:80 split 2150 430

10:90 split 1900 380

Drug Abuse Detection Results Table 2.3 shows the results for all individual models and

two ensemblemodels. The ensemblemodel results are separated from the individualmodels

for easier viewing. The highest value of each measure is marked in bold font. There

is an interesting trend in the results of ensemble models. When the data is balanced or

nearly balanced, the traditional ensemble machine learning model has a better performance

33

than the ensemble deep learning model. At 50:50 and 40:60 splits, the ensemble machine

learning model is superior over the ensemble deep learning model for most of the criteria.

This is partially due to the relatively small dataset size. When the data becomes more

imbalanced, e.g., at a 30:70 split, the ensemble deep learning model becomes better and

has a higher F1­score for positive labels, compared with the traditional ensemble machine

learning model. At 20:80 and 10:90 splits, the ensemble deep learning model takes the lead,

most significantly in each measure for positive labels. The larger model capacity and the

ability of the deep learning models to learn more complex non­linear functions can better

distinguish the semantic differences between positive tweets and negative tweets, when the

distribution of classes is heavily imbalanced.

Looking at individual machine learning models, Random Forest and SVM show

a strong performance on all datasets, and they are especially good when the dataset is

balanced. Naïve Bayes also has a good performance on a balanced dataset, but on an

imbalanced dataset, it is heavily biased towards negative labels and has a poor performance

for positive labels. Deep learning models generally have more stable performance,

compared to traditional machine learning models, across all datasets, and a smaller

difference between precision and recall, but their peak performances are not as good.

Comparing between deep learningmodels, auxiliary features do not give C­CNN significant

performance boost, and W­CNN is also not as good as the C­CNN model. However, in

additional results that are not shown in this dissertation due to space limitations, auxiliary

features give the plain W­CNN model a performance boost.

By investigating the performance of each individual model and the ensemble model

that includes it, we can see that our ensemble strategy works well for deep learning models,

as most of the measures for the ensemble model are higher than for any of its components

corresponding measures. This effect was only observed a few times for traditional machine

learning models. We expect that, by using more complicated ensemble strategies, deep

learning has the potential to reach an even better performance level.

34

Table 2.3 Results of Each Dataset Variant

Class Distribution: 50:50 split

Measure char_aux char_cnn word_aux SVM RF NB Ensemble CNN Ensemble ML

Accuracy 0.8506 0.8477 0.8466 0.8415 0.8586 0.8384 0.851 0.8575
Precision_p 0.8315 0.824 0.8198 0.8063 0.8404 0.8319 0.8468 0.835
Recall_p 0.8797 0.8845 0.8894 0.9 0.886 0.8493 0.8575 0.8918
F1_score_p 0.8549 0.8531 0.8529 0.8504 0.8624 0.8402 0.852 0.8623

Class Distribution: 40:60 split

Measure char_aux char_cnn word_aux SVM RF NB Ensemble CNN Ensemble ML

Accuracy 0.8528 0.8563 0.843 0.8444 0.8494 0.8427 0.8567 0.8582
Precision_p 0.8007 0.8055 0.7818 0.8104 0.777 0.7862 0.8079 0.8047
Recall_p 0.8421 0.8454 0.8443 0.7982 0.8746 0.8341 0.8428 0.8531
F1_score_p 0.8207 0.8248 0.8113 0.8041 0.8229 0.8093 0.8249 0.828

Class Distribution: 30:70 split

Measure char_aux char_cnn word_aux SVM RF NB Ensemble CNN Ensemble ML

Accuracy 0.8522 0.8507 0.8483 0.8429 0.8537 0.8452 0.8599 0.8595
Precision_p 0.7253 0.7223 0.718 0.7467 0.7137 0.7218 0.7402 0.7426
Recall_p 0.8209 0.818 0.8158 0.7234 0.8583 0.7914 0.8231 0.8163
F1_score_p 0.7695 0.7666 0.7635 0.7336 0.7789 0.7538 0.7792 0.7771

Class Distribution: 20:80 split

Measure char_aux char_cnn word_aux SVM RF NB Ensemble CNN Ensemble ML

Accuracy 0.8624 0.8568 0.8506 0.8384 0.8475 0.8527 0.8674 0.8508
Precision_p 0.6325 0.6128 0.5965 0.564 0.5838 0.6261 0.6416 0.5908
Recall_p 0.7558 0.7868 0.8023 0.8547 0.8295 0.6609 0.7713 0.8295
F1_score_p 0.6878 0.6878 0.6823 0.6792 0.685 0.6425 0.7001 0.69

Class Distribution: 10:90 split

Measure char_aux char_cnn word_aux SVM RF NB Ensemble CNN Ensemble ML

Accuracy 0.8638 0.8664 0.8445 0.8355 0.8592 0.8961 0.8728 0.8636
Precision_p 0.4112 0.4153 0.376 0.3609 0.3875 0.4762 0.4338 0.3975
Recall_p 0.7368 0.7346 0.7171 0.8114 0.6776 0.2939 0.7281 0.6754
F1_score_p 0.5243 0.5275 0.4882 0.499 0.4925 0.3611 0.5389 0.4999

35

2.1.3 Conclusions

In this study, we investigated how the data imbalance issue influences the performance

of classifiers that are trained for identifying tweets that are related to drug abuse. We

first collected a dataset with a broad selection of drug abuse­related keywords and slang

terms. We explored the use of the Amazon Mechanical Turk platform as a reliable source

for acquiring human­labeled tweets, and we obtained a solid dataset. We designed an

ensemble deep learning classification model with both word­level and char­level CNNs,

and we conducted a direct comparison with traditional machine learning models on our

dataset, with simulated class imbalance. Experimental results show that our ensemble deep

learning models have better performance than traditional machine learning models when

the data is off­balance. Results also show that the ensemble strategy we used is effective

for improving deep learning models. Finally, our analysis of the collected three million

tweets, labeled by our model, shows an interesting temporal pattern that agrees with our

intuition.

2.2 An Insight Analysis and Detection of Drug­Abuse Risk Behavior on Twitter
with Self­Taught Deep Learning

2.2.1 Method

In this subsection, we present the definition of the drug abuse risk behavior detection

problem, our system for collecting tweets, labeling tweets, and our deep self­taught learning

approach. The system overview is shown in Figure 2.2.

Problem Definition We use the term “drug abuse risk behavior” in the wider sense,

including misuse and use of Schedule 1 drugs that are illegal; and misuse of Schedule 2

drugs, e.g., Oxycodone, which includes the use thereof for non­medical purposes, and the

symptoms and side­effects of misuse. Our task is to develop classification models that can

classify a given unlabeled tweet into one of the two classes: a drug abuse risk behavior

36

tweet (positive), or a non­drug abuse risk behavior (negative) tweet. The main criteria for

classifying a tweet as drug abuse risk can be condensed into: “The existence of abusive

activities or endorsements of drugs.” Meanwhile, news, reports, and opinions about drug

abuse are the signals of tweets that are not considered as containing abuse risk.

Tweet Data Collection In our crawling system, raw tweets are collected through Twitter

APIs. For the collection of focused Twitter data, we use a list of the names of illegal and

prescription drugs [146] that have been commonly abused over time, e.g., Barbiturates,

OxyContin, Ritalin, Cocaine, LSD, Opiates, Heroin, Codeine, Fentanyl, etc. However, the

data is very noisy, since: (1) There is no indication of how to distinguish between drug abuse

and legitimate use (of prescription drugs) in collected Tweets, and (2) Many of slang terms

are used in expressing drug abuse risk behavior. To address this problem, we added slang

terms for drugs and abuse­indicating terms, e.g., “high,” “stoned,” “blunt,” “addicted,” etc.,

into our keyword search library. These slang terms are clearly expressing that the tweets in

question were about drug abuse. As a result, most of the collected data is drug abuse­related.

Figure 2.2 Drug Abuse Detection System. There are 4 steps as follows: (1) Tweets will
be collected through Twitter APIs. (2) Preprocessed tweets will be labeled by humans, AI
techniques, and crowd­sourcing techniques. (3) Labeled tweets will be used to augment the
training data of our AI models and data analysis tasks to identify tweets with drug abuse
risk behaviors, through a self­taught algorithm. And (4) Trained systems will be used in
different drug abuse monitoring services and interactive user interfaces.

37

To obtain trustworthy annotated data, we design two integrative steps in labeling

tweets. In the first step, 1,794 tweets randomly chosen from collected tweets were manually

annotated as positive or negative by three team members who have experience in health

informatics. Several instances of positive tweets and negative tweets are illustrated in

Table 2.4. These labeled tweets are considered seed tweets, which then are used to train

traditional binary classifiers, e.g., SVM, Naive Bayes, etc., to predict whether a tweet is

a drug abuse risk behavior tweet or not. The trained classifiers are applied to unlabeled

tweets to predict their labels, which are called machine labels. In the second step, 5,000

positive machine­labeled tweets with high classification confidence are verified again on

Amazon Mechanical Turk (AMT), which is a well­known crowd­sourcing platform. To

improve the trustworthiness and to avoid bias in the annotated data, each tweet is labeled

by three individual workers. The workers are instructed to follow with the same annotation

instructions that our annotators have followed. Our annotators also labeled a random sample

of 1,000 tweets and compare the labels with the results from AMT, as a quality check.

Table 2.4 Instances of Manually Annotated Positive Tweets and Negative Tweets

Tweets

Positive
“Ever since my Acid trips like whenever I get super high I just start ­

lightly hallucinating and it’s tbh creepy.”

“drove like 10 miles on these icy ass roads all to get some weed if imma ­

be locked up in my house for awhile imma need some weed.”

“Smoking a blunt at home so much better than going to the woods in ­

Brooksville and puking on yourself Bc you drank too much reball.”

Negative
“Just watched Fear and Loathing in Las Vegas for the first time ­

and I think I should have been on acid to fully understand it.”

“today I was asked if I do heroin because I went to Lancaster????”

“Morgan told me my Bitmoji looks like a heroin addict?”

38

Tweet Vectorization Raw tweets need to be first pre­processed, then represented as

vectors, before they can be used in training machine learning models. In this study, we

choose a commonly used pre­processing pipeline, followed by three different vectorization

methods. The pre­processing pipeline consists of following steps:

• The tweets are tokenized and lower­cased. The special entities, i.e., including Emojis,
URLs, mentions, and hashtags, are removed or replaced with special keywords. The
non­word characters, i.e., including HTML symbols, punctuation marks, and foreign
characters, are removed. Words with three or more repeating characters are reduced
to at most three successive characters.

• Stop­words are removed according to a custom stop­word list. Stemming is applied
using the standard Porter Stemmer.

After the preprocessing steps, common vectorization methods are used to extract

features from tweets, including: (1) Term frequency, denoted as tf, (2) Tf­idf, and

(3) Word2vec [140]. Word2vec is an advanced and effective word embedding method

that converts each word into a dense vector of fixed length. We considered two different

Word2vec models: (i) A custom Word2vec model, which was trained on our three million

drug abuse­related tweets. The model contains 300­dimensional vectors for 1,130,962

words and phrases; and (ii) GoogleWord2vec, which is a well­known pre­trainedWord2vec

model built from part of a Google News dataset with about 100 billion words, and the model

contains 300­dimensional vectors for three million words and phrases.

2.2.2 Deep Self­Taught Learning Approach

By applying both traditional and advanced machine learning models, such as SVM, Naive

Bayes, CNN, and LSTM to the small and static annotated data, i.e., 6,794 tweets, we

can achieve reasonable classification accuracies of nearly 80%, as indicated in Figure 2.4

when the number of iteration k is zero, which is equivalent to applying models without

the proposed self­taught method. To develop a scalable and trustworthy drug abuse risk

behavior detection model, we need to: (1) Improve classification models to achieve higher

accuracy and performance; and (2) Leverage the large number of unlabeled tweets, i.e.,

39

three million tweets related to drug abuse, to improve the system performance. Therefore,

we propose a deep self­taught learning model by repeatedly augmenting the training data

with machine­labeled tweets. The pseudo­code of our algorithm is as follows:

• [Step 1:] Randomly initialize labeled dataD consisting of 5,794 annotated tweets as
the training set. Initialize a test data T consisting of the remaining 1,000 annotated
tweets.

• [Step 2:] Train a binary classification modelM using the labeled data D. M could
be a CNN model or an LSTM model.

• [Step 3:] Use the modelM to label the unlabeled data U , which simply consists of
three million unlabeled tweets. The set of new labeled tweets is denoted asD, which
is also called machine­labeled data.

• [Step 4:] Sample tweets from the machine­labeled dataset D with a high classi­
fication confidence, and then add the sampled tweets D+ into the labeled data D
to form a new training dataset: D = D

⋃
D+. A tweet is considered to have a

high classification confidence if it has a classification probability p ∈ [0, 1] higher
than a predefined sampling threshold δ. Sampled machine­labeled tweets will not be
sampled again: U = U −D+.

• [Step 5:] Repeat Steps 2­4 for k iterations, where k is a user­predefined number.
Return the trained modelM .

With the self­taught learning method, the training data contains the annotated dataD,

which is automatically augmented with highly confident, machine­labeled tweets, in each

iteration. This approach has the potential of increasing the classification performance of our

model over time. In addition, the unlabeled data can be collected from the Twitter APIs in

real time, to capture the evolving of English (slang) terms about drug abuse risk behaviors.

In the literature, data augmentation approaches have been applied to improve the accuracy

of deep learning models [39]. However, the existing approaches [39, 42, 43, 44] are quite

different from our proposed model, since they focused on image classification tasks, instead

of drug abuse risk behavior detection as in our study. Note that, to ensure fairness, test data

T is separated from other data sources during the training process.

2.2.3 Experiments

Dataset The seed dataset contains 1,794 tweets that were manually labeled by three

annotators, including 280 positive tweets and 1,514 negative tweets. The agreement score

40

among three annotators is 0.414, measured by Krippendoff’s Alpha. We then selected

5,000 tweets labeled by the machine learning model (i.e., SVM) with a high confidence

level (δ > 0.7), and rendered them verified on AMT. The AMT workers have the

agreement score of 0.456, measured by Krippendoff’s Alpha. Note that both agreement

scores should be considered as reliable result in out study settings [144], since: (1) Our

task is to reduce variability in data annotation, instead of typical content analysis [145];

(2) The Krippendoff’s Alpha is sensitive to data imbalance and sparseness, which are

the characteristics of our dataset. Our integrative labeling approach resulted in a reliable

and well­balanced annotated data set, with 6,794 labeled tweets, including 3,102 positive

labels and 3,677 negative labels. For the unlabeled data, we have the three million drug

abuse­related tweets with geo­location information covering the entire continental U.S.

(lower 48 states and D.C.).

Baseline methods In our experiments, Random Forest (RF), Naive Bayes (NB), and

SVM are employed as baseline approaches for the binary classification task, i.e., to classify

whether a tweet is a drug abuse risk behavior tweet or not. Table 2.5 shows the parameter

settings of baseline approaches and the proposed models. Note that for the Naive Bayes

method, we useGaussianNaive Bayes withWord2vec embedding. Meanwhile, we use term

frequency (i.e., tf) and tf­idf vectorization for Multinominal Naive Bayes. This is because:

(1) The vectors generated by term frequency­based vectorization has a very high number of

dimensions and could be only represented by sparse­matrix, which was not supported by the

chosen implementation of Gaussian Naive Bayes; and (2) The Multinominal Naive Bayes

require non­negative inputs, but vectors generated by Word2vec embedding has negative

values. Regarding our self­taught CNN (st­CNN) and self­taught LSTM (st­LSTM)

models, the Adam Optimizer algorithm with default learning rate is used for training. The

number of iterations k is set to 6, and the sampling threshold δ is set to 0.7, for all methods.

41

All the experiments have been conducted on a single GPU, i.e., NVIDIA TITAN Xp with

12 GB memory and 3,072 CUDA cores.

Table 2.5 Parameter Settings for All Models

Baseline Model Parameter Setting
SVM c=5.0, gamma=0.01, kernel:rbf
Random Forest n_estimators=500, class_weight=balanced, max_depth=20
Naive Bayes
(Gaussian) default

Naive Bayes
(Multinominal) default

Proposed Model Layers Parameter Setting

Self­taught CNN
(st­CNN)

embedding size: 300, max_length: 20
dropout dropout_rate: 0.2

convolutional kernerl_sizes: [2,3,4], number_kernels: 20
activation_function: Relu, strides: 1

max pooling pool_size: 2
flatten no parameter
concatenate no parameter
dropout dropout_rate: 0.5

two dense layers dense_layer_1: size: 520x500;
dense_layer_2: size: 500x2

Self­taught LSTM
(st­LSTM)

embedding size: 300, max_length: 20
dropout dropout_rate: 0.2
LSTM sequence_output: False
dropout dropout_rate: 0.5

two dense layers dense_layer_1: size: 300x500;
dense_layer_2: size: 500x2

Measures Accuracy, recall, and F1­value are used to validate the effectiveness of the

proposed and baseline approaches. Due to the small size and the imbalanced label

distribution, we adopted the Monte Carlo Cross­Validation technique. In each run, a fixed

number of data instances is sampled (i.e., without replacement) as the test dataset, and the

rest of the data as the training dataset. Multiple runs (i.e., 3 times) are generated for each

model in each set of parameters and experimental configurations. We report the average of

42

these runs as result. Definitions of the accuracy, recall, and F1­value are given as follows,

where TP ,TN ,FP ,FN are the number of true positives, true negatives, false positives, and

false negatives, correspondingly.

Accuracy = TP+TN

TP+TN+FP+FN
; Recall = TP

TP+FN
; F1­value = 2TP

2TP+FP+FN

Experiment questions: Our task of validation concerns three key issues: (1) Which

parameter configurations are optimal for the baseline models on the seed dataset, i.e., SVM,

RF, and NB? (2)Which self­taught learning model is the best in terms of accuracy, recall,

and F1­value, given the 6,794 annotated tweets and the three million unlabeled tweets? and

(3)Which vectorization setting is more effective? To address these concerns, our series of

experiments are as follows.

2.2.4 Experimental Results

Experiment on seed dataset with baseline models Figure 2.3 illustrates the accuracy,

recall, and F1­value of each algorithm with different parameter configurations, i.e., term

frequency tf, tf­idf, and Word2vec, on the (annotated) seed dataset. The term “custom” is

used to indicate the Word2vec embedding trained with our own drug abuse­related tweets,

compared with the pre­trained Google News Word2vec embedding, denoted as “google.”

It is clear that the SVM model using the custom­trained Word2vec embedding achieves

the best and the most balanced performance in terms of all three measures, i.e., accuracy,

recall, and F1­value, at approximately 67%. Other configurations usually have a lower

recall, which suggests that the decisions they make bias towards the major class, i.e.,

non­drug abuse risk behavior tweets. From the angle of classifiers, SVM model achieves

the best overall performance. Random Forest has slightly less average accuracy than the

SVM model, but worse recall and F1­value. Furthermore, from the view of vectorization

approach, it is clear that Word2vec embedding outperforms term frequency and tf­idf in

most of the cases. Several possible combinations of settings are not shown in Figure 2.3

due to poor performances.

43

Figure 2.3 Accuracy, Recall, and F1­value of each baseline model on the seed dataset.

Experiment on self­taught learningmodels As shown in the previous experiment, SVM

model using the custom­trained Word2vec embedding achieves the best performance, we

decided to apply the same model structure to compare with our deep self­taught learning

approaches. In this experiment, at each epoch, 10,000 machine­labeled tweets were

randomly sampled and merged into the training set. Figure 2.4 shows the experimental

results of the five self­taught models, including self­taught CNN (st­CNN), self­taught

LSTM (st­LSTM), self­taught SVM (st­SVM), self­taught NB (st­NB), and self­taught

RF (st­RF). All configurations of classifiers and vectorization methods are tested. For the

sake of clarity, we only illustrate the best­performing setting for each model in Figure 2.4. It

is clear that our proposed deep self­taught learning approaches (i.e., st­LSTM and st­CNN)

outperform traditional models, i.e., st­SVM, st­NB, and st­RF, in terms of accuracy, recall,

and F1­value, in all cases. Deep learning models achieve 86.53%, 88.6%, and 86.63% in

terms of accuracy, recall, and F1­value correspondingly.

Experiment on vectorization settings The impact of two different Word2vec represen­

tations on the st­CNN, i.e., the custom Word2vec embedding we trained from our corpus,

44

Figure 2.4 Accuracy, Recall, and F1­value of the five self­taught learning models,
including st­CNN, st­LSTM, st­SVM, st­NB, and st­RF.

Figure 2.5 Performance comparison between custom Word2vec embedding and Google
News Word2vec embedding.

and pre­trained Google News Word2vec embedding, is shown in Figure 2.5. The Google

NewsWord2vec achieves 0.1%, 0.4%, and 0.3% improvements in terms of accuracy, recall,

and F1­value (86.63%, 89%, 86.83%, respectively) compared with the custom trained

Word2vec embedding. In addition, it is clear that Google News Word2vec embedding

outperforms the custom trained Word2vec in most of the cases. This is because the Google

News Word2vec embedding was trained on a large­scale corpus, which is significantly

richer in contextual information, compared with our short, noisy, and sparse Twitter

datasets.

45

2.2.5 An Insight Analysis of Drug Abuse Risk Behavior on Twitter

To gain insights in drug abuse risk behaviors on Twitter, we use our best performing deep

self­taught learning model to annotate over three million drug abuse­related tweets with

geo­tags and perform quantitative analysis. There are 117,326 tweets classified as positive,

and 3,077,827 tweets classified as negative. The positive tweets correspond to 3.67% of the

whole dataset. We performed analysis from three aspects: word and phase distributions,

temporal distributions, and spatial distributions.

Word and phase distributions We first visualize the top frequent words by word cloud,

as shown in Figure 2.6. The word distribution in positive tweets (Figure 2.6(a)) is

remarkably different from word distribution in negative tweets (Figure 2.6(b)). In fact,

drug abuse tweets usually consist of abuse­indicating terms, and drug names, such as

“blunt,” “high,” “smoke,” “weed,” “marijuana,” “grass,” “juic,” etc., (Figure 2.6(a)). In

addition, the high concentration of dirty words, e.g., “s**t,” “f**k,” “as*,” “bit**,” etc.,

clearly suggests the expression patterns that the drug abusers may have (Figure 2.6(a)).

This expression pattern does not likely exist in negative tweets. Then, we further show

the comparison of normalized word frequency between positive tweets and negative tweets

(words from positive tweets got normalized by the number of positive tweets, and negative

words by negative tweets), regarding the 25 most frequent words in positive tweets (Figure

2.7) and 25 most frequent words in negative tweets (Figure 2.8). Note that in Figure

2.7, the y­axis is clipped at 0.25, which is the value of word “weed”, while the word

“smoke” has the normalized frequency of 0.44. These two figures further show that:

(1) Positive­frequent words are more likely to have lower normalized frequency in negative

tweets, and vise­versa; and (2) Some ordinary words, i.e., “go”, “want”, “day”, and “good”,

still share similar normalized frequency between positive and negative tweets.

Hashtags also play an import role in the Twitter sphere as a way for users to:

(1) To express their opinion more clearly; and (2) To improve information sharing

46

(a) Positive tweets (b) Negative tweets
Figure 2.6 Word frequency distribution of the classification results.

Figure 2.7 Normalized frequency of top 20 frequent words in positive tweets, compared
with in negative tweets.

efficiency. Tweets that share same Hashtags can be grouped together and easily found,

while popular Hashtags can make the tweets more visible to wider audience. Table 2.6

shows the most frequent Hashtags in positive tweets and negative tweets. It is clear that the

Hashtags in positive tweets are almost exclusively related to drug abuse, while the Hashtags

in negative tweets cover much wider range of topics.

Finally for word and phase analysis, we extract the co­occurrence frequencies of

combinations of drug name and drug abuse behavior. For each combination, we count the

number of positive tweets and negative tweets that contain all words in that combination,

then sort it by the absolute difference of normalized frequency between positive tweets and

negative tweets. Table 2.7 shows the top 25 observed combinations. The “Relative_ratio”

47

Figure 2.8 Normalized frequency of top 20 frequent words in negative tweets, compared
with in positive tweets.

Table 2.6 Most Frequent Hashtags in Positive Tweets and Negative Tweets

Positive tweets

#weed, #smoke, #cannabis, #marijuana, #glassofig, #scientificglass,

#WeedFirm, #maryjane, #dabs, #kush, #3wordsbetterthanIloveyou,

#MarijuanaFunFacts, #pot, #dank, #high, #thc, #stoner, #blunt,

#highlife, #AcademyAward, #OscarNominations, #ganja, #waterpipes,

#np, #herblife

Negative tweets

#job, #snow, #hiring, #photo, #traffic, #CareerArc, #NBAVote, #Simon,

#winter, #jobs, #Hospitality, #peace, #WomensMarch, #love, #Toronto,

#Trump, #STAR, #nowplaying, #Orlando, #AZ, #np, #Veterans,

#Retail, #SoundCloud, #nyc, #Inauguration, #cat, #weather, #MAGA

column is showing the ratio that the combination appears in positive tweets over the appears

in all tweets. This analysis spots the more frequently used drug abuse risk behavior

indication word combinations, which will support further data collection.

Temporal analysis To examine if there are different time patterns for positive tweets and

negative tweets to be posted, we extract the local posting time of each tweet, then perform

48

Table 2.7 DrugName andAbuseBehavior Co­occurrence FrequencyDifferences Between
Positive Tweets and Negative Tweets

Combo Pos_count Neg_count Ratio_diff Relative_ratio
trash high 1131 1387 0.9189% 1166.04%
acid trip 547 239 0.4585% 1863.66%
acid drop 256 168 0.2127% 1603.13%
glass amp 374 3472 0.2060% 171.11%
acid take 222 167 0.1838% 1509.61%
lean amp 280 2391 0.1610% 192.55%
coke high 195 186 0.1602% 1343.14%
coke take 185 512 0.1410% 646.57%
lean hit 180 745 0.1292% 446.33%
acid amp 162 367 0.1262% 761.96%
molly pop 160 328 0.1257% 823.11%
acid hit 132 138 0.1080% 1278.34%
lean pop 121 118 0.0993% 1327.49%
acid use 115 238 0.0903% 817.21%
shrooms trip 105 55 0.0877% 1751.49%
lean high 108 136 0.0876% 1147.54%
lean use 159 1479 0.0875% 170.62%
blow high 125 675 0.0846% 337.93%
upper high 112 382 0.0830% 537.16%
dope high 106 509 0.0738% 383.46%
coke amp 137 1413 0.0709% 146.07%
acid high 65 57 0.0535% 1402.44%
coke snort 82 571 0.0513% 251.20%
molly amp 88 777 0.0498% 183.80%
crack hit 108 1360 0.0479% 104.18%

49

Figure 2.9 Time of day distribution comparison between positive tweets and negative
tweets.

1­hour­interval binning. As shown in Figure 2.9, where x­axis are time slots, and y­axis

is the proportion (normalized count) of tweets. The results shown in Figure 2.9 are very

interesting. The time patterns are obviously different between positive tweets and negative

tweets. In fact, the chi­square test results on the data in Figure 2.9 shown in Table 2.8

clarifies that the pattern differences are significant for the time frames of ‘All day’ and

‘Night time.’ This result shows a very plausible phenomenon that tweets with drug abuse

risk behaviors are more active in night time than in day time.

Table 2.8 Chi­Square Test of Time of Day Distribution

Type Chi square P­value(95%)

All day 46.467257 0.002615305***

Day time (8 A.M. to 6 P.M.) 6.87318202 0.650321116

Night time (6 P.M. to 8 A.M.) 39.5940753 0.000160637***

Spatial analysis The geo­location information tags in tweets are very useful for capturing

the distribution of drug abuse risk behaviors. The geo­tagging information on Twitter

usually comes in two forms: GPS coordinates, or a “Place Object” associated with the

50

Figure 2.10 Dot map of positive tweets across the United States.

tweet. We first visualize geo­distribution of the positive tweets by plotting each geo­tag

across the continental United States in Figure 2.10. By making this fine granularity, we

can confirm that the collected tweets generally follow the population distribution. Then,

we aggregate the geo­tags into state level, normalized with state’s population of age group

12 or older, and draw the Figure 2.11 with the numbers scaled to [­1,1]. From Figure 2.11,

we can see that the District of Columbia has an extremely high ratio of positive tweets,

follow by Louisiana, Texas, and Nevada that have relative high rate. Other states with high

rate including California, Georgia, Maryland and Delaware. Furthermore, the distribution

of other states’ data showing that the collected tweets align relatively well with state level

population distribution.

The other spatial analysis we perform is the alignment between our state level counts

of positive tweets, normalized with state population, and the 2016­2017 National Survey on

Drug Use and Health (NSDUH) survey data. Here the normalization is meant to decorrelate

the count of tweets from the population of each state, and is done by simply dividing the

count of positive tweets by the population (2017 census estimation) for each state. We

51

Figure 2.11 Number of positive tweets, per state, normalized by state population of 12 or
older.

choose to perform normalization with population for two reasons: (1) We have little to no

control of the sampling process, in terms of geo­location distribution, when crawling data

from Twitter, which means the bias is unavoidable and uncontrollable; and (2) Thus the

state population figures are more reliable, stable, and representative. NSDUH is a creditable

source of drug abuse­related population scale estimation. If our Twitter data can align with

the reliable survey data, we can argue that the Twitter based studies have the prediction

power that should not to be ignored. By computing the Pearson’s R between the normalized

number of tweets and the NSDUH prevalence rate, over the same age group (12 or older),

it is surprising to find that in our study even without further categorization, the Twitter

data is significantly correlated (p < 0.05) with some of the most important categories in the

NSDUH study: (1) “Illicit Drug Use Other ThanMarijuana in the Past Month” (r = 0.387);

(2) “Cocaine Use in the Past Year” (r = 0.421); (3) “Methamphetamine Use in the Past

Year” (r = −0.372); (4) “Pain Reliever Use Disorder in the Past Year” (r = −0.375); and

(5) “Needing But Not Receiving Treatment at a Specialty Facility for Illicit Drug Use in the

Past Year” (r = 0.336). We argue that, when large quantity of Twitter data is available, we

can perform more detailed and creditable studies on the population scale.

52

2.2.6 Discussion and Limitations

According to our experimental results, our deep self­taught learning models achieved

promising performance in drug abuse risk behavior detection in Twitter. Many assumptions

call for further experiments. First, how to optimize the classification performance by

exploring the correlations among parameters and experimental configurations. For instance,

for SVM and RF models, unigram feature works better than n­gram feature on term

frequency; however, for tf­idf, it is the opposite situation. Second, the pre­trained Google

News Word2vec embedding performs better than the custom­trained Word2vec embedding

may also be situational. These findings indicate the necessity of leveraging size and quality

of the training data for training word embedding, given that the available data may better

fit the classification task but be short in quantity. Nevertheless, among the measures, recall

receives a more significant boost than accuracy and F1­value. We may argue that the

proposed self­taught algorithm helped correcting the bias in the classifiers caused by the

imbalanced nature of the training dataset. More experiments need to be conducted to verify

this interesting point.

2.2.7 Future Research

The study we presented in this dissertation can be improved in many ways. Here we

elaborate several of the future research directions. Firstly, we plan to incorporate the well­

trained classifier into a real­time drug abuse risk behavior monitoring and analysis system

that aims at providing community­level stakeholders with timely accessible detection

results for supporting their efforts, such as recovery services and public educations, on

combating the opioid crisis. Secondly, we can utilize more information that can be

extracted from tweets, such as user tweeting history, user demographic attributes, and user

interactions, to further improve the model in terms of performance, scope, and credibility.

Thirdly, the extra information that we extract further enables the analysis of connections

among users and tweets, on both social network plane and geo­spatial network plane, which

53

can help to acquire knowledge regarding how the drug trend propagates through both planes.

Last but not least, we may expand the study to other major online social media platforms,

i.e., Reddit and Instagram, and more specialized online forum Blulelight.

2.2.8 Conclusion

In this study, we proposed a large­scale drug abuse risk behavior tweet collectionmechanism

based on supervised machine learning and data crowd­sourcing techniques. Challenges

came from the noisy and sparse characteristics of Twitter data, as well as the limited

availability of annotated data. To address this problem, we propose deep self­taught learning

algorithms to improve drug abuse risk behavior tweet detectionmodels by leveraging a large

number of unlabeled tweets. An extensive experiment and data analysis were carried out

on three million drug abuse­related tweets with geo­location information, to validate the

effectiveness and reliability of our system. Experimental results shown that our models

significantly outperform traditional models. In fact, our models correspondingly achieve

86.53%, 88.6%, and 86.63% in terms of accuracy, recall, and F1­value. This is a very

promising result, which significantly improves upon the state­of­the­art results.

Further data analysis gain insights into the expression patterns and the geo­distribution

that the drug abusers may have on Twitter. For example, the words and phrases used in

drug abuse risk behavior­positive tweets have distinctive frequencies that can be used in

data collection to improve the quality of raw data. The uneven geographical distribution

of tweets makes it appealing to perform further analysis that associates tweets with other

geographical data.

54

Figure 2.12 Basic architecture of the DrugTracker system.

2.3 DrugTracker: A Community­focused Drug Abuse Monitoring and Supporting
System using Social Media and Geospatial Data

2.3.1 DrugTracker System

We opt to implement DrugTracker as a web­based visualization system, since web­based

systems are more flexible and requires virtually no setup process for end­users. Our system

(Figure 2.12) includes two major parts: (1) The back­end, which runs on a server and

provides data services, including data collection, data pre­processing, deep learning models

for drug abuse risk behavior detection, and data management; and (2) The front­end, which

runs on web browsers to provide interactive User Interfaces (UIs), for making queries and

visualizing analysis results.

Back­end Services The back­end does the heavy lifting in the system, which runs a

complete pipeline of collecting and processing data coming from social media and other

sources (e.g., census data). There are three major modules in the back­end, including the

data collection module, the data processing module, and the data management module.

55

Table 2.9 Geo­tag Types and Frequency

Geo Type Sub­type Percentage

Place

Country 0.29%

Admin 13.63%

City 70.69%

Neighborhood 0.32%

POI 1.06%

Coordinates ­ 14.01%

For the data collection, we use tweets as a major source of geo­tagged social media

data for its availability and abundance. We collect tweets through the publicly available

Streaming API [147] using a typical keyword­based crawler well­integrated with trained

deep learning models (i.e., CNN and LSTM models) designed to detect drug abuse risk

behaviors in tweets [49, 148]. In our previous work [49, 148], we built our human labeled

drug abuse risk behavior dataset, and demonstrated that a deep learning model, which was

trained with both labeled data and large number of unlabeled data, can achieve state­of­art

classification performance (86.63% of Accuracy, 89% of Recall, 86.83% of F1­value) on

our dataset. The module is able to continuously collect newest tweets, to feed tweets to

deep learning models, and to update the system with live data, so that the drug trend can be

tracked and analyzed in near real­time.

The use of geo­tags in tweets is not straight forward. Statistics of the 2017 dataset,

as shown in Table 2.9, tell us that there are two major types of available geo­tags: ‘place’

Object and ‘coordinates’ Object. The ‘coordinates’ Objects are GPS points that comes

from Twitter users who have location service turned on, while each ‘place’ Object refers to

a named place entity that the tweet is associated with (but not necessarily originating from)

[147]. However, the ‘place’ Objects have several types but the resolution/granularity of

each Object of same type may vary. In this demonstration, we opt to only use ‘coordinates’

56

as geo­tags, as they provide the highest location precision with an adequate quantity of data

points.

For offline data, such as geographical data and demographic data, we use publicly

available data from trusted sources (e.g., Census Bureau). A work­flow is built to pre­join

the tweets data with offline data as a pre­processing step for performance reason. In our

system, we first collect Census Tract data, in the format of Shapefile, and population census

data, in the form of spread­sheets. Then we joined (table­join and spatial­join) these data

with tweets, so that each tweet record in our database is associated with offline data.

The pre­processed tweets data is stored and managed in a NoSQL database (e.g.,

MongoDB). For the fields in the original tweet objects, only those fields that are used by

the front­end are stored. Several further pre­processing steps are preformed, including:

(1) The time­stamp of each tweet, which is in UTC, is converted to local time using

geo­location information; (2) Re­identification information in each tweet’s texts, i.e., User

Mention and URL, are removed; and (3) The sub­category of each tweet is extracted by

identifying drug abuse­related keywords. Indexes are created for the fields of time­stamp,

text, keywords, and geo­location to support fast text queries and spatial queries. Python and

PHP scripts are served as the interface between the back­end and the front­end that execute

queries and generate responses to the front­end.

Front­end Interactive Visualization The front­end is built based on the open­sourced

NeighborVis System [149]. The basic UI layout and some components are inherited,

while new functions are added to incorporate the different functions offered in our system.

The front­end is a dynamic web page constructed with HTML and Javascript. Javascript

framework Leaflet is used for the core mapping functionality. Other frameworks, such as

Heatmap­js and D3 are used for drawing heatmap and charts, respectively.

One noticeable change we made to the system is that the tweets displayed to the

users in the front­end are always aggregated into some desired form instead of individually.

57

(a) Choropleth

(b) Heatmap
Figure 2.13 Mapping Area: (a) Choropleth and (b) Heatmap.

This is done for two reasons: (1) To protect the sensitive information that the tweets and

the classification results contain; and (2) To enable the displaying and analysis of tweets at

population scale, as it is impractical to showmillions of tweets on the map. The aggregation

can be done on different types of administrative regions or entities, depending on the users’

needs. For demonstration, we aggregate our data into Census Tract level. The UI of our

system is demonstrated in Figures 2.13­2.15. The visualization layout is divided into three

sections from left to right: (1) Query Management; (2) Mapping Area; and (3) Statistical

Information.

58

Figure 2.14 An example of polygon­shaped query area.

Query Management. To begin, users should provide a query by clicking a button

on the left panel to launch a query interface (Figure 2.13). A query has two mandatory

constraints: temporal constraint and spatial constraint, and one optional constraint: content

constraint. The temporal constraint limits the local posting­time of tweets and is specified

by a start and an end date. The spatial constraint limits the location where the tweets are

from and can be either a user defined area (optional shapes are circle, rectangle, and polygon

Figure 2.14), or a list of states. The actual query area has a minimum granularity (Census

Tract level in demonstration) to prevent the disclosure of individual tweet’s location. The

content constraint can be a list of keywords and phrases, e.g., “get high,” “smoke blunt,”

etc. Users can also query multiple datasets at once to improve efficiency.

Once the query is submitted, the back­end will process the query and send aggregated

results to front­end for displaying in the mapping area. Our system provides two basic

mapping options: Choropleth and Heatmap (Figure 2.13). Choropleth displays the number

of tweets that match the query within each area with a color mapping from green (low) to red

(high). Jenks natural breaks is the default classification (binning) method. The choropleth

59

(a) Tweet samples (b) Temporal analysis

(c) Category frequency (d) Word cloud
Figure 2.15 Analysis functions: (a) Tweet samples, (b) Temporal analysis, (c) Category
frequency, and (d) Word cloud.

can also display the tweets data conjugated with selected offline data (e.g., normalize the

number of tweets by the population in each Census Tract). Heatmap provides a way to view

the data in a more analog way, by showing the density in a spectrum of colors from blue

(low) to red (high). On the left­side panel, users can select which dataset and query to view,

and can fine­tune the parameters of the generated maps (e.g., opacity, number of bins, and

heatmap intensity).

There is a collapsible panel (Figure 2.15) on the right consisting of five sub­panels,

each of which presents a set of information corresponding to the current query that aids

60

the analysis, including: (1) Query information, shows the parameters that are used for this

query; (2) Random samples of tweets in the query (Figure 2.15a); (3) Temporal analysis

of different scopes, including by year, by month, by week, by day, by weekday, and by

hour­of­day (Figure 2.15b); (4)Word cloud of most popular words in among the tweets in

the query (Figure 2.15d); and (5) Bar chart of frequency of each category (e.g., type of drug

mentioned in each tweet) (Figure 2.15c). If the user is interested in more detailed analysis,

by clicking the items in these panels, e.g., a keyword in (Figure 2.15d), and a category in

(Figure 2.15c), a sub­query with updated parameters will be launched and new results will

be displayed. The user can easily switch between queries to compare them.

2.3.2 Conclusion and Future Work

In this study, we developed a community­focused drug abuse monitoring and supporting

system, called DrugTracker, using social media and geospatial data in near real­time.

Our DrugTracker system provides vital source of information when combating the drug

abuse epidemiology, and proposed a function rich visualization system that can help local

communities and organizations being informed about drug trends, locating drug abuse

hot­spots, and reaching online users who may in need for help.

Some future work can be done on the proposed system. Here we just name a few:

(1) Integrates more varieties of offline geospatial data that fits the needs of different

aggregation levels; (2) Integrates more advanced privacy preserving methods that enables

more detailed analysis with lower risk of unwanted leak of privacy; and (3) Further enrich

the system with social connections (e.g., following, user mention) to enable the association

of social connection information with geospatial data that aids the analysis.

61

CHAPTER 3

DIFFERENTIAL PRIVACY IN DEEP LEARNINGWITH CERTIFIED
ROBUSTNESS BOUNDS

Chapter Abstract Today, deep learning has become the tool of choice in many areas

of engineering, such as autonomous systems, signal and information processing, and data

analytics. Deep learning systems are, therefore, not only applied in classic settings, such as

speech and handwriting recognition, but also progressively operate at the core of security

and privacy critical applications. The pervasiveness of machine learning exposes new

vulnerabilities in software systems, in which deployed machine learning models can be

used (a) to reveal sensitive information in private training data [64], and/or (b) to make

the models misclassify, such as adversarial examples [65]. In this subsection, we present

our effort in three aspects of privacy preserving in deep learning: (1) The developing a

novel mechanism to preserve differential privacy in deep neural networks, such that:1. The

privacy budget consumption is totally independent of the number of training steps; 2. It has

the ability to adaptively inject noise into features based on the contribution of each to the

output; and 3. It could be applied in a variety of different deep neural networks; (2) The

preserving of differential privacy (DP) in lifelong learning (L2M); and (3) The developing

of a scalable algorithm to preserve differential privacy (DP) in adversarial learning for deep

neural networks (DNNs), with certified robustness to adversarial examples.

62

3.1 Adaptive Laplace Mechanism: Differential Privacy
Preservation in Deep Learning

3.1.1 Preliminaries and Related Work

In this subsection, we revisit differential privacy, existing techniques in preserving differ­

ential privacy in deep learning, and the Layer­wise Relevance Propagation (LRP) algorithm

[98].

LetD be a database that contains n tuples x1, x2, . . . , xn and d+1 attributesX1, X2, . . .

, Xd, Y , and for each tuple xi = (xi1, xi2, . . . , xid, yi). We assume, without loss of

generality,
√∑d

j=1 x
2
ij ≤ 1 where xij ≥ 0. This assumption can be easily enforced by

changing each xij to
xij−αj

(βj−αj)·
√
d
, where αj and βj denote the minimum and maximum values

in the domain of Xj .

To be general, let us consider a classification task with M possible categorical

outcomes, i.e., the data label yi given xi ∈ L is assigned to only one of theM categories.

Each yi can be considered as a vector of M categories yi = {yi1, . . . , yiM}. If the l­th

category is the class of xi, then yil = 1, otherwise yil = 0. Our objective is to construct a

differentially private deep neural network from D that (i) takes xi = (xi1, xi2, . . . , xid) as

input and (ii) outputs a prediction of yi that is as accurate as possible. To evaluate whether

model parameters θ lead to an accurate model, a cost functionFD(θ) is used to measure the

difference between the original and predicted values of yi.

3.1.2 ϵ­Differential Privacy

As the released model parameter θ may disclose sensitive information of D, to protect the

privacy, we require that the model training should be performed with an algorithm that

satisfies ϵ­differential privacy. The definition of differential privacy is as follows:

Definition 3.1. ϵ­Differential Privacy [55]. A randomized algorithmA fulfills ϵ­differential

privacy, if for any two databases D and D′ differing at most one tuple, and for all O ⊆

Range(A), we have:

63

Pr[A(D) = O] ≤ eϵPr[A(D′) = O] (3.1)

where the privacy budget ϵ controls the amount by which the distributions induced by

D and D′ may differ. A smaller ϵ enforces a stronger privacy guarantee of A.

A general method for preserving ϵ­differential privacy of any function F (on D) is

the Laplace mechanism [55], where the output of F is a vector of real numbers. In fact, the

mechanism exploits the global sensitivity ofF over any two neighboring data sets (differing

at most one record), which is denoted asGSF(D). GivenGSF(D), the Laplace mechanism

ensures ϵ­differential privacy by injecting noise η into each value in the output of F(D):

pdf(η) = ϵ
2GSF (D)

exp(−|η| · ϵ
GSF (D)

), where η is drawn i.i.d. from Laplace distribution

with zero mean and scale GSF(D)/ϵ.

Research in differential privacy has been significantly studied, from both the theoreti­

cal perspective, e.g., [56, 150], and the application perspective, e.g., data collection [151],

spatio­temporal correlations [152, 153], data streams [154], stochastic gradient descents

[155], recommendation [57], regression [56], online learning [156], publishing contingency

tables [157], and spectral graph analysis [158].

3.1.3 Differential Privacy in Deep Learning

Deep neural networks define parameterized functions from inputs xi ∈ D to outputs,

i.e., a prediction of yi, as compositions of many layers of hidden neurons and nonlinear

functions. For instance, Figure 3.1 illustrates amultilayer neural network, in which there are

k hidden layersH = {h1, . . . , hk}. Rectified linear units (ReLUs) and sigmoids are widely

used examples of activation functions. By adjusting parameters of these neurons, such

parameterized functions can be trained with the goal of fitting a finite set of input­output

data instances. We specify a loss functionFD(θ) that represents the penalty formismatching

64

Figure 3.1 An instance of differentially private neural networks.

between the predicted and original values of yi. FD(θ) on parameters θ is the average of the

loss over the training examples {x1,..., xn}. Stochastic gradient descent (SGD) algorithm is

used to minimize the cross­entropy error [39], given the model outputs and true data labels.

In the work of Abadi et al. [62], to preserve differential privacy, normal (Gaussian)

distribution noise is added into the gradients g̃ of parametersW as follows. At each training

step t, the algorithm first takes a random sample Lt with sampling probability L/n, where

L is a group size and n is the number of tuples in D. For each tuple xi ∈ Lt, the gradient

gt(xi) = ∇θtFxi(θt) is computed. Then the gradients will be bounded by clipping each

gradient in l2 norm, i.e., the gradient vector gt is replaced by gt/max(1, ∥g2t∥/C) for a

predefined threshold C. Normal distribution noise is added into gradients of parameters θ

as:

65

g̃t ←
1

L

∑
i

(gt(xi)
max(1, ∥gt(xi)

2∥
C

)
+N (0, σ2C2I)

)
(3.2)

θt ← θt − ξtg̃t (3.3)

where ξt is a learning rate at the training step t.

Finally, differentially private parameters θ, denoted θ, learned by the algorithm

are shared to the public and other parties. Overall, the algorithm introduces noise into

“gradients” of parameters at every training step. The magnitude of injected noise and the

privacy budget ϵ are accumulated in proportion to the number of training epochs.

Compared with the work in [62], the goal is similar: learning differentially private

parameters θ. However, we develop a novel mechanism in which the privacy budget

consumption is independent of the number of training epochs. Our mechanism is different.

We redistribute the noise so that “more noise” will be added into features which are “less

relevant” to the model output, and vice­versa. Moreover, we inject noise into coefficients

of affine transformations and loss functions, such that differentially private parameters can

be learned.

3.1.4 Layer­wise Relevance Propagation

Layer­wise Relevance Propagation (LRP) [98] is a well­accepted algorithm, which is

applied to compute the relevance of each input feature xij to the model outcome Fxi(θ).

Given the relevance, denoted R(k)
m (xi), of a certain neuron m at the layer k, i.e., m ∈ hk,

for the model outcome Fxi(θ), LRP algorithm aims at obtaining a decomposition of such

relevance in terms of messages sent to neurons of the previous layers, i.e., the layer (k­1)­th.

These messages are called R(k−1,k)
p←m (xi). The overall relevance of each neuron in the lower

layer is determined by summing up the relevance coming from all upper­layer neurons:

66

R(k−1)
p (xi) =

∑
m∈hk

R(k−1,k)
p←m (xi) (3.4)

where the relevance decomposition is based on the ratio of local and global affine

transformations and is given by:

R(k−1,k)
p←m (xi) =


zpm(xi)
zm(xi)+µ

R
(k)
m (xi) zm(xi) ≥ 0

zpm(xi)
zm(xi)−µR

(k)
m (xi) zm(xi) < 0

(3.5)

with: zm(xi) is the affine transformation of neuronm ∈ hk:

zpm(xi) = pxi ×Wpm (3.6)

zm(xi) =
∑
p∈hk

zpm(xi) + bm (3.7)

s.t. pxi is the value of neuron p given xi,Wpm is a weight connecting the neuron p to

neuron m, and bm is a bias term. A predefined stabilizer µ ≥ 0 is introduced to overcome

unboundedness.

In Equation (3.5), in order to back propagate the relevance, we need to compute the

relevance R(k)
m (xi) at the last hidden layer, i.e., the k­th layer, from the output layer. Given

the output variable o, R(k)
m (xi) is computed as follows:

R(k)
m (xi) =


zmo(xi)
zo(xi)+µ

Fxi(θ) zo(xi) ≥ 0
zmo(xi)
zo(xi)−µFxi(θ) zo(xi) < 0

(3.8)

67

Given k hidden layers {h1, . . . , hk}, by using Equations (3.4), (3.5), and (3.8), we can

compute the relevance of every hidden neuron and input feature. As in [98], the following

equation holds:

Fxi(θ) =
∑
m∈hk

R(k)
m (xi) = . . . =

∑
xij∈xi

Rxij
(xi) (3.9)

whereRxij
(xi) is the relevance of the feature xij given the model outcomeFxi(θ). To

ensure that the relevanceRxij
(xi) ∈ [−1, 1], eachRxij

(xi) is normalized to
Rxij (xi)−χ

(φ−χ) , where

φ andχ denote themaximum andminimumvalues in the domain of
{
Rxi1

(xi), . . . , Rxid
(xi)

}
.

Figure 3.2 An instance of relevance of each input feature given to the classification output
(MNIST dataset). Red neurons indicate stronger relevances, and green neurons indicate
weaker relevances.

3.1.5 Adaptive Laplace Mechanism (AdLM)

In this subsection, we formally present our mechanism. Given a loss function F(θ) with

model parameters θ, the network is trained by optimizing the loss function F(θ) on D by

applying SGD algorithm on T random training batches consequently. At each training step,

a single training batch L is used. A batch L is a random set of training samples in D with

a predefined batch size |L|.

The pseudo­codes of Algorithm 3.1 outline five basic steps in our mechanism to learn

differentially private parameters of the model. The five basic steps are as follows:

68

Step 1 (Lines 1­7). In the first step, we obtain the average relevances of all the j­th

input features, denoted as Rj(D), by applying the LRP algorithm on a well­trained deep

neural network on the database D. Rj(D) is computed as follows:

Rj(D) =
1

|D|
∑
xi∈D

Rxij
(xi) (3.10)

Then, we derive differentially private relevances, denoted asRj , by injecting Laplace

noise into Rj for all the j­th input features. The total privacy budget in this step is ϵ1.

Step 2 (Lines 8­14). In the second step, we derive a differentially private affine

transformation layer, denoted h0. Every hidden neuron h0j ∈ h0 will be perturbed

by injecting adaptive Laplace noise into its affine transformation to preserve differential

privacy given a batch L. Based on Rj , “more noise” is injected into features which are

“less relevant” to the model output, and vice­versa. The total privacy budget used in this

step is ϵ2. The perturbed affine transformation layer is denoted as h0L (Figure 3.1).

Step 3 (Line 15). In the third step, we stack hidden layers {h1, . . . , hk} on top of the

differentially private hidden layer h0L to construct the deep private neural network (Figure

3.1). The computations of h1, . . . , hk are done based on the differentially private layer

h0L without accessing any information from the original data. Therefore, the computations

do not disclose any information. Before each stacking operation, a normalization layer,

denoted h, is applied to bound non­linear activation functions, such as ReLUs (Figure 3.1).

Step 4 (Lines 16­19). After constructing a private structure of hidden layers

{h0L,h1, . . . , hk}, we need to protect the labels yi at the output layer. To achieve this,

we derive a polynomial approximation of the loss function F . Then, we perturb the loss

function F by injecting Laplace noise with a privacy budget ϵ3 into its coefficients to

preserve differential privacy on each training batch L, denoted FL(θ).

69

Step 5 (Lines 20­30). Finally, the parameter θT is derived by minimizing the loss

function FL(θ) on T training steps sequentially. In each step t, stochastic gradient descent

(SGD) algorithm is used to update parameters θt given a random batchL of training samples

inD. This essentially is an optimization process, without using any additional information

from the original data.

In our mechanism, differential privacy is preserved, since it is enforced at every

computation task that needs to access the original dataD. Laplace noise is injected into our

model only once, as a preprocessing step to preserve differential privacy in the computation

of the relevance Rj(D), the first layer h0L, and the loss function FL(θ). Thereafter, the

training phase will not access the original data again. The privacy budget consumption

does not accumulate in each training step. As such, it is independent of the number of

training epochs.

3.1.6 Private Relevance

In this subsection, we preserve differential privacy in the computation of the relevance

of each j­th input feature on database D by injecting Laplace noise into Rj(D). We set

∆R = 2d
|D| based on the maximum values of all the relevances Rj(D) (line 4, Algorithm

3.1). In lines 5­6, the relevance of each j­th input feature Rj(D) is perturbed by adding

Laplace noise Lap(∆R
ϵ1
). The perturbed relevance is denoted as Rj . In line 7, we obtain the

set of all perturbed relevances R(D):

R(D) =
{
Rj

}
j∈[1,d] (3.11)

where Rj =
1

|D|
∑
xi∈D

Rxij
(xi) + Lap(

∆R

ϵ1
) (3.12)

70

Algorithm 3.1 Adaptive LaplaceMechanism (DatabaseD, hidden layersH , loss function
F(θ), and privacy budgets ϵ1, ϵ2, and ϵ3, the number of batches T , the batch size |L|)
1: Compute the average relevance by applying the LRP Algorithm
2: ∀j ∈ [1, d] : Rj(D) = 1

|D|
∑

xi∈D Rxij (xi) #Equation3.10#
3: Inject Laplace noise into the average relevance of each j­th input feature
4: ∆R = 2d/|D| #Lemma 3.1#
5: for j ∈ [1, d] do
6: Rj ← 1

|D|
∑

xi∈D Rxij (xi) + Lap(∆R
ϵ1

)

7: R(D) = {Rj}j∈[1,d]
8: Inject Laplace noise into coefficients of the differentially private layer h0
9: ∆h0 = 2

∑
h∈h0 d #Lemma 3.3#

10: for j ∈ [1, d] do
11: ϵj ← βj × ϵ2 #Equation (3.18)#

12: for xi ∈ D, j ∈ [1, d] do
13: xij ← xij +

1
|L|Lap(

∆h0
ϵj

) #perturb input feature xij#

14: b← b+ 1
|L|Lap(

∆h0
ϵ2

) #perturb bias b#
15: Construct hidden layers {h1, . . . , hk} and normalization layers {h1, . . . , h(k)}
16: Inject Laplace noise into coefficients of the approximated loss function F̂
17: ∆F = M(|h(k)|+ 1

4 |h(k)|
2) #Lemma 3.5#

18: for xi ∈ D,R ∈ [0, 2], l ∈ [1,M] do
19: ϕ

(R)
lxi ← ϕ

(R)
lxi + 1

|L|Lap(
∆F
ϵ3

) #perturb coefficients of F̂

20: Initialize θ0 randomly
21: for t ∈ [T] do
22: Take a random training batch L

23: Construct differentially private affine transformation layer
24: h0L(W0)← {hL(W)}h∈h0
25: s.t. hL(W) =

∑
xi∈L

(
xiW T + b)

])
26: Construct differentially private loss function
27: FL(θt) =

∑M
l=1

∑
xi∈L

∑2
R=0

(
ϕ
(R)
lxi W

T
l(k)

)R
28: Compute gradient descents
29: θt+1 ← θt − ηt

1
|L|▽θtFL(θt) #ηt is a learning rate#

30: Return θT #(ϵ1 + ϵ2 + ϵ3)­differentially private#

71

The computation of R(D) is ϵ1­differential private. The correctness is based on the

following lemmas.

Lemma 3.1. Let D and D′ be any two neighboring databases. Given R(D) and R(D′)

be the relevance of all input features on D and D′, respectively, and denote their

representations as

R(D) =
{
Rj(D)

}
j∈[1,d] s.t. Rj(D) =

1

|D|
∑
xi∈D

Rxij
(xi)

R(D′) =
{
Rj(D

′)
}
j∈[1,d] s.t. Rj(D

′) =
1

|D′|
∑
x′i∈D′

Rx′
ij
(x′i)

Then, we have the following inequality:

1

|D|

d∑
j=1

∥∥∥ ∑
xi∈D

Rxij
(xi)−

∑
x′i∈D′

Rx′
ij
(x′i)

∥∥∥
1
≤ 2d

|D|
(3.13)

where d is the number of features in each tuple xi ∈ D.

Proof of Lemma 3.1

Proof. Assume thatD andD′ differ in the last tuple. Let xn (x′n) be the last tuple inD (D′).

We have that

∆R =
1

|D|

d∑
j=1

∥∥∥ ∑
xi∈D

Rxij
(xi)−

∑
x′i∈D′

Rx′
ij
(x′i)

∥∥∥
1

=
1

|D|

d∑
j=1

∥∥∥Rxnj
(xn)−Rx′

nj
(x′n)

∥∥∥
1

≤ 2

|D|
max
xi∈D

d∑
j=1

∥Rxij
(xi)∥1 ≤

2d

|D|

72

Equation (3.13) holds.

Lemma 3.2. Algorithm 3.1 preserves ϵ1­differential privacy in the computation of R(D).

Proof of Lemma 3.2:

Proof. LetD andD′ be two neighbor databases. Without loss of generality, assume thatD

andD′ differ in the last tuple xn (x′n). Rj(D) is calculated as done in line 6, Algorithm 3.1,

and R(D) =
{
Rj(D)

}
j∈[1,d] is the output of the Algorithm 3.1 (line 7). The perturbation

of the relevance Rj(D) can be rewritten as:

Rj =
1

|D|
∑
xi∈D

Rxij
(xi) + Lap(

∆R

ϵ1
) (3.14)

Since all the input features are perturbed, we have that

Pr
(
R(D)

)
Pr

(
R(D′)

) =

∏d
j=1 exp

(ϵ1∥ 1
|D|

∑
xi∈D Rj(xi)−Rj∥1

∆R

)
∏d

j=1 exp
(ϵ1∥ 1

|D|
∑

x′
i
∈D Rj(x′i)−Rj∥1
∆R

)
≤

d∏
j=1

exp(
ϵ1
|D|∆R

∥∥∥ ∑
xi∈D

Rj(xi)−
∑
x′i∈D′

Rj(x′i)
∥∥∥
1
)

≤
d∏

j=1

exp(
ϵ1
|D|∆R

∥∥∥Rj(xn)−Rj(x′n)
∥∥∥
1
)

≤
d∏

j=1

exp(
ϵ1
|D|∆R

2max
xn∈D

∥∥Rj(xn)
∥∥
1
)

≤ exp(ϵ1
2maxxn∈L

∑d
j=1∥Rj(xn)∥1

|D|∆R
)

≤ exp(ϵ1)

73

Consequently, the computation ofR(D) preserves ϵ1­differential privacy inAlgorithm

3.1.

Figure 3.3 The average differentially private relevance of each input feature givenMNIST
dataset.

Lemma 3.2 shows that the computation of the relevances R(D) is differentially

private. Figure 3.3 illustrates the differentially private relevance Rj (Equation (3.12)) of

each j­th coefficient given the databaseD. It is worth noting that the relevance distribution

is not identical. In the next subsection, R(D) is used to redistribute the noise injected into

the affine transformation layer h0 in our deep neural network.

3.1.7 Private Affine Transformation Layer with Adaptive Noise

In general, before applying activation functions such as ReLU and sigmoid, the affine

transformation of a hidden neuron h ∈ h0 can be presented as:

hxi(W) = b+ xiW T (3.15)

where b is a static bias, andW is the parameter of h. Given a training batch L, h can

be rewritten as:

hL(W) =
∑
xi∈L

(b+ xiW T) (3.16)

74

Given the above representation of each neuron hL(Wh), we preserve differential

privacy in the computation of h0 onL by injecting Laplace noise into inputs b and xi of every

neuron hL(W) ∈ h0. Intuitively, we can apply an identical noise distribution 1
|L|Lap(

∆h0
ϵ2

)

to all input features, where ∆h0 = 2
∑

h∈h0 d (line 9, Algorithm 3.1). This approach works

well when every input feature has an identical contribution to the model outcome. This

approach is described in the following subsection Identical Laplace Mechanism (ILM).

Identical Laplace Mechanism (ILM) We can add an identical noise distribution of
1
|L|Lap(

∆h0
ϵ2

) to all input features, where∆h0 = 2
∑

h∈h0 d (line 9, Algorithm 3.1) to preserve

differential privacy in the computation of h0. In fact, we have that ∀xi ∈ D, j ∈ [1, d] :

xij = xij +
1
|L|Lap(

∆h0
ϵ2

). For each h ∈ h0L, h can be re­written as:

hL(W) =
d∑

j=1

[∑
xi∈L

(
xij +

1

|L|
Lap(

∆h0

ϵ2
)
)
W T

]
+

∑
xi∈L

(
b+

1

|L|
Lap(

∆h0

ϵ2
)
)

(3.17)

Let us consider the static bias b = 1 as the 0­th input feature and its associated

parameterWb, i.e., xi0 = b = 1 andW = Wb ∪W , we have that

hL(W) =
d∑

j=0

[∑
xi∈L

(
xij +

1

|L|
Lap(

∆h0

ϵ2
)
)
W T

]
=

d∑
j=0

[∑
xi∈L

xij + Lap(
∆h0

ϵ2
)
]
W T =

d∑
j=0

ϕ
h

jW
T

where ϕh

j =
[∑

xi∈L xij + Lap(
∆h0
ϵ2

)
]
.

75

We can see that ϕh

j is the perturbation of the input feature xij associated with the j­th

parameterWj ∈ W of the hidden neuron h on L. Since all the hidden neurons h in h0 are

perturbed, we have that:

Pr
(
h0L(W0)

)
=

∏
h∈h0

d∏
j=0

exp
(ϵ2∥∑xi∈L xij − ϕ

h

j ∥
∆h0

)

∆h0 is set to 2
∑

h∈h0 d and h0L(W0) = {hL(W)}h∈h0 is the output, we have that

Pr
(
h0L(W0)

)
Pr

(
h0L′(W0)

) =

∏
h∈h0

∏d
j=0 exp

(ϵ2∥
∑

xi∈L xij−ϕ
h
j ∥1

∆h0

)
∏

h∈h0
∏d

j=0 exp
(ϵ2∥

∑
x′
i
∈L′ x′

ij−ϕ
h
j ∥1

∆h0

)
≤

∏
h∈h0

d∏
j=0

exp(
ϵ2
∆h0

∥∥∥∑
xi∈L

xij −
∑
x′i∈L′

x′ij

∥∥∥
1
)

≤
∏
h∈h0

d∏
j=1

exp(
ϵ2
∆h0

∥∥∥xnj − x′nj∥∥∥
1
)

≤
∏
h∈h0

d∏
j=1

exp(
ϵ2
∆h0

2max
xn∈L

∥∥xnj∥∥1
) ≤

∏
h∈h0

d∏
j=1

exp(
2ϵ2
∆h0

)

≤ exp(ϵ2
2
∑

h∈h0 d

∆h0
) = exp(ϵ2)

Consequently, based on the above analysis, the computation of h0L(W0) preserves

ϵ2­differential privacy in Algorithm 3.1 by injecting an identical Laplace noise 1
|L|Lap(

∆h0
ϵ2

)

into all input features. In addition, given the identical Laplace noise, we do not need to use

the differentially private relevance R(D), since we do not need to redistribute the noise in

the first affine transformation layer h0.

76

Problems with the ILM In practice, this assumption usually is violated. For instance,

Figure 3.2 illustrates the relevance, estimated by the LRP algorithm [98], of each input

feature given different handwritten digits. It is clear that the relevances are not identical.

The differentially private relevances are not identical as well (Figure 3.3). Therefore,

injecting the same magnitude of noise into all input features may affect the utility of

differentially private neural networks.

To address this problem, we propose an Adaptive Laplace Mechanism (AdLM), to

adaptively redistribute the injected noise to improve the performance. Given hidden units

hxi(W) in Equation (3.15), our key idea is to intentionally addmore noise into input features

which are less relevant to the model output Y , and vice­versa. As a result, we expect to

improve the utility of the model under differential privacy. In fact, we introduce a privacy

budget ratio βj and the privacy budget ϵj for each j­th input feature as follows:

βj =
d× |Rj|∑d

j=1 |Rj|
s.t. ϵj = βj × ϵ2 (3.18)

We set ∆h0 = 2
∑

h∈h0 d based on the maximum values of all the input features xij

(line 9, Algorithm 3.1). In line 11, βj can be considered as the fraction of the contribution

to ∆h0 from the j­th input feature to the hidden neuron h ∈ h0. In lines 12­13, each input

feature xij of every hidden neuron h in the first affine transformation layer h0 is perturbed

by adding adaptive Laplace noise 1
|L|Lap(∆h0/ϵj). The perturbed input features are denoted

as xi. In lines 20­21, given a random training batchL, we construct the differentially private

affine transformation layer h0L, which consists of perturbed hidden neurons hL(W):

h0L(W0) =
{
hL(W)

}
h∈h0

s.t. hL(W) =
∑
xi∈L

(
xiW T + b

)

77

where b = b + 1
|L|Lap(

∆h0
ϵ2

) is the perturbed bias (line 14). The following lemma

shows that Algorithm 3.1 preserves ϵ2­differential privacy in the computation of h0L.

Lemma 3.3. Let L and L′ be any two neighboring batches. Given parameterW0, let h0L

and h0L′ be the first affine transformation layers on L and L′, respectively, and denote their

representations as follows:

h0L(W0) = {hL(W)}h∈h0 s.t. hL(W) =
∑
xi∈L

(b+ xiW T)

h0L′(W0) = {hL′(W)}h∈h0 s.t. hL′(W) =
∑
x′i∈L′

(b+ x′iW T)

Then, we have the following inequality:

∆h0 =
∑
h∈h0

d∑
j=1

∥∥∥∑
xi∈L

xij −
∑
x′i∈L′

x′ij

∥∥∥
1
≤ 2

∑
h∈h0

d (3.19)

where d is the number of features in each tuple xi ∈ D.

Proof of Lemma 3.3:

Proof. Assume that L and L′ differ in the last tuple. Let xn (x′n) be the last tuple in L (L′).

We have that

∆h0 =
∑
h∈h0

d∑
j=1

∥∥∥∑
xi∈L

xij −
∑
x′i∈L′

x′ij

∥∥∥
1

=
∑
h∈h0

d∑
j=1

∥xnj − x′nj∥1 ≤ 2max
xi∈L

∑
h∈h0

d∑
j=1

∥xij∥1 (3.20)

78

Since ∀xi, j : xij ∈ [0, 1], from Equation (3.20) we have that: ∆h0 ≤ 2
∑

h∈h0 d.

Equation (3.19) holds.

Lemma 3.4. Algorithm 3.1 preserves ϵ2­differential privacy in the computation of h0L(W0)

(lines 24­25).

Proof of Lemma 3.4:

Proof. From lines 24­25 in the Algorithm 3.1, for each h ∈ h0L, h can be re­written as:

hL(W) =
d∑

j=1

[∑
xi∈L

(
xij +

1

|L|
Lap(

∆h0

ϵj
)
)
W T

]
+

∑
xi∈L

(
b+

1

|L|
Lap(

∆h0

ϵ2
)
)

(3.21)

Let us consider the static bias b = 1 as the 0­th input feature and its associated

parameterWb, i.e., xi0 = b = 1 andW = Wb ∪W , we have that

hL(W) =
d∑

j=0

[∑
xi∈L

(
xij +

1

|L|
Lap(

∆h0

ϵj
)
)
W T

]
(3.22)

=
d∑

j=0

[∑
xi∈L

xij + Lap(
∆h0

ϵj
)
]
W T =

d∑
j=0

ϕ
h

jW
T (3.23)

where ϕh

j =
[∑

xi∈L xij + Lap(
∆h0
ϵj

)
]
.

We can see that ϕh

j is the perturbation of the input feature xij associated with the j­th

parameterWj ∈ W of the hidden neuron h on L. Since all the hidden neurons h in h0 are

perturbed, we have that:

Pr
(
h0L(W0)

)
=

∏
h∈h0

d∏
j=0

exp
(ϵj∥∑xi∈L xij − ϕ

h

j ∥
∆h0

)

79

∆h0 is set to 2
∑

h∈h0 d (line 9 in Algorithm 3.1). h0L(W0) is the output (lines 24­25

in Algorithm 3.1). We have that

Pr
(
h0L(W0)

)
Pr

(
h0L′(W0)

) =

∏
h∈h0

∏d
j=0 exp

(ϵj∥
∑

xi∈L xij−ϕ
h
j ∥1

∆h0

)
∏

h∈h0
∏d

j=0 exp
(ϵj∥

∑
x′
i
∈L′ x′

ij−ϕ
h
j ∥1

∆h0

)
≤

∏
h∈h0

d∏
j=0

exp(
ϵj
∆h0

∥∥∥∑
xi∈L

xij −
∑
x′i∈L′

x′ij

∥∥∥
1
)

≤
∏
h∈h0

d∏
j=1

exp(
ϵj
∆h0

2max
xn∈L

∥∥xnj∥∥1
) ≤

∏
h∈h0

d∏
j=1

exp(
2ϵj
∆h0

)

≤
∏
h∈h0

d∏
j=1

exp(ϵ2
2

d×|Rj |∑d
j=1 |Rj |

∆h0
)

≤ exp(ϵ2
2
∑

h∈h0 d
[∑d

j=1
|Rj |∑d
j=1 |Rj |

]
∆h0

) = exp(ϵ2)

Consequently, the computation of h0L(W0) preserves ϵ2­differential privacy in Algor­

ithm 3.1.

Lemma 3.4 shows that we can redistribute the noise in the computation of the first

hidden layer h0L under differential privacy. In addition, given a batch L, without accessing

additional information from the original data, none of the computations on top of h0L risk

the privacy protection under differential privacy. These computation tasks include the

application of activation functions, e.g., ReLU and sigmoid, on h0L, the computation of

hidden layers h1, . . . , hk, local response normalizations, drop­out operations, polling layers,

etc. (line 15, Algorithm 3.1). This result can be applied to both fully­connected layers and

convolution layers. In this work, we applied ReLU on top of h0L and other layers h1, . . . , hk.

Local response normalization layers are used after the application of ReLUs in each hidden

layer to bound ReLU functions.

80

Local Response Normalization The hidden units of the lower layer will be considered

as the input of the next layer (Figure 3.1). To ensure that this input is bounded hxi ∈ [0, 1],

as in [159, 60], we add a local response normalization (LRN) layer on top of each hidden

layer. Given a fully­connected layer, as in [60], given an input xi, each perturbed neuron

hxi(W) can be directly normalized as follows: hxi ←
(
hxi(W) − χ

)
/(φ − χ), where φ

and χ denote the maximum and minimum values in the domain of {hxi}i∈L.

Given a convolution layer with a perturbed neuron hkij at location (i, j) in the k­

th feature map, based on [159], our local response normalization (LRN) is presented as

follows:

h
k

ij ← h
k

ij/max
(
h
k

ij,
(
q + α

min(N−1,k+l/2)∑
m=max(0,k−l/2)

(h
m

ij)
2
)β) (3.24)

where the constants q, l, α, and β are hyper­parameters, N is the total number of

feature maps. As in [159], we used q = 2, l = 5, α = 10−4, and β = 0.75 in our

experiments.

3.1.8 Perturbation of the Loss Function FL(θ)

On top of our private deep neural network (Figure 3.1), we add an output layer with the

loss function FL(θ) to predict Y . Since the loss function FL(θ) accesses the labels yi given

xi ∈ L from the data, we need to protect the labels yi at the output layer. First, we derive a

polynomial approximation of the loss function based on Taylor Expansion [160]. Then, we

inject Laplace noise into coefficients of the loss function F to preserve differential privacy

on each training batch L.

The model output variables {ŷ1, . . . , ŷM} are fully linked to the normalized highest

hidden layer, denoted h(k), by weighted connections W(k) (Figure 3.1). As common, the

81

logistic function can be used as an activation function of the output variables. Given, l­th

output variable ŷl and xi, we have:

ŷil = σ
(
hxi(k)W

T
l(k)

)
(3.25)

where hxi(k) is the state of h(k) derived from h0xi by navigating through the neural

network.

Cross­entropy error [39] can be used as a loss function. It has been widely used

and applied in real­world applications [39]. Therefore, it is critical to preserve differential

privacy under the use of the cross­entropy error function. Other loss functions, e.g., square

errors, can be applied in the output layer, as well. In our context, the cross­entropy error

function is given by:

FL(θ) = −
M∑
l=1

∑
xi∈L

(
yil log ŷil + (1− yil) log(1− ŷil)

)
= −

M∑
l=1

∑
xi∈L

(
yil log(1 + e−hxi(k)W

T
l(k)) + (1− yil) log(1 + ehxi(k)W

T
l(k))

)
(3.26)

Based on [60] and Taylor Expansion [160], we derive the polynomial approximation

of FL(θ) as:

82

F̂L(θ) =
M∑
l=1

∑
xi∈L

2∑
q=1

2∑
R=0

f
(R)
ql (0)

R!

(
hxi(k)W

T
l(k)

)R
=

M∑
l=1

∑
xi∈L

[2∑
q=1

f
(0)
ql (0) +

(2∑
q=1

f
(1)
ql (0)

)
hxi(k)W

T
l(k)

+
(2∑

q=1

f
(2)
ql (0)

2!

)
(hxi(k)W

T
l(k))

2
]

(3.27)

where ∀l ∈ [1,M] : f1l(z) = yil log(1 + e−z) and f2l(z) = (1− yil) log(1 + ez).

To achieve ϵ3­differential privacy, we employ functional mechanism [161] to perturb

the loss function F̂L(θ) by injecting Laplace noise into its polynomial coefficients. So,

we only need to perturb F̂L(θ) just once in each training batch. To be clear, we denote

{ϕ(0)
lxi , ϕ

(1)
lxi , ϕ

(2)
lxi } as the coefficients, where ϕ(0)

lxi =
∑2

q=1 f
(0)
ql (0) and ϕ(1)

lxi and ϕ(2)
lxi are

coefficients at the first order and the second order of the function F̂L(θ). In fact, ϕ
(1)
lxi and

ϕ
(2)
lxi will be combinations between the approximation terms

∑2
q=1 f

(1)
ql (0),

∑2
q=1

f
(2)
ql (0)

2!
, and

hxi(k).

In Algorithm 3.1, we set∆F =M(|h(k)|+ 1
4
|h(k)|2) (line 17). In essence, coefficients

ϕ
(R)
lxi with R ∈ [0, 2] are functions of the label yil only. Therefore, we can perform the

perturbation by injecting Laplace noise 1/|L|Lap(∆F
ϵ3
) into ϕ(R)

lxi for every training label

yil ∈ D (lines 18­19). Then, the perturbed coefficients, denoted ϕ(R)

lxi are used to construct

the differentially private loss function FL(θt) (line 27) during the training process without

accessing the original label yil again (lines 20­30). Stochastic gradient descent and back­

propagation algorithms are used to minimize the perturbed loss function FL(θt).

Now, we are ready to state that the computation of FL(θt) is ϵ3­differentially private,

and our mechanism preserves (ϵ1 + ϵ2 + ϵ3)­differential privacy in the following lemmas.

83

Lemma 3.5. Let L and L′ be any two neighboring batches. Let F̂L(θ) and F̂L′(θ) be the

loss functions on L and L′, respectively, then we have the following inequality:

∆F =
M∑
l=1

2∑
R=0

∥∥∥∑
xi∈L

ϕ
(R)
lxi −

∑
x′i∈L′

ϕ
(R)

lx′i

∥∥∥ ≤M(|h(k)|+
1

4
|h(k)|2)

where |h(k)| is the number of hidden neurons in h(k).

Proof of Lemma 3.5

Proof. Assume that L and L′ differ in the last tuple. Let xn (x′n) be the last tuple in L (L′).

We have that

∆F =
M∑
l=1

2∑
R=0

∥∥∥∑
xi∈L

ϕ
(R)
lxi −

∑
x′i∈L′

ϕ
(R)

lx′i

∥∥∥
=

M∑
l=1

2∑
R=0

∥∥ϕ(R)
lxn − ϕ

(R)
lx′n

∥∥ (3.28)

We can show that ϕ(0)
lxn =

∑2
q=1 f

(0)
ql (0) = ynl log 2+(1−ynl) log 2 = log 2. Similarly,

we can show that ϕ(0)
lx′n

= log 2. As a result, ϕ(0)
lxn = ϕ

(0)
lx′n
. Therefore

84

∆F =
M∑
l=1

2∑
R=0

∥∥ϕ(R)
lxn − ϕ

(R)
lx′n

∥∥ =
M∑
l=1

2∑
R=1

∥∥ϕ(R)
lxn − ϕ

(R)
lx′n

∥∥
≤

M∑
l=1

2∑
R=1

(∥∥ϕ(R)
lxn

∥∥+
∥∥ϕ(R)

lx′n

∥∥) ≤ 2max
xn

M∑
l=1

2∑
R=1

∥ϕ(R)
lxn ∥

≤ 2max
xn

[M∑
l=1

(
1

2
− ynl)

|h(k)|∑
e=1

hexn(k) +
M∑
l=1

(1
8

∑
e,g

hexn(k)hgxn(k)
)]

≤ 2(
1

2
M × |h(k)|+

1

8
M × |h(k)|2)

=M(|h(k)|+
1

4
|h(k)|2)

where hexn(k) is the state of e­th hidden neuron in h(k).

Lemma 3.6. Algorithm 3.1 preserves ϵ3­differential privacy in the computation of FL(θt)

(line 27).

Proof of Lemma 3.6

Proof. Let L and L′ be two neighbor batches. Without loss of generality, assume that L and

L′ differ in the last tuple xn (x′n). ∆F is calculated as done in line 17, Algorithm 3.1, and

FL(θt) =
∑M

l=1

∑
xi∈L

∑2
R=0 ϕ

(R)

lxi

(
hxi(k)W

T
l(k)

)R is the output of line 27 of the Algorithm

3.1. Note that hxi(k) is the state of h(k) derived from h0xi by navigating through the neural

network. The perturbation of the coefficient ϕ(R)
l , denoted as ϕ(R)

l , can be rewritten as:

ϕ
(R)

l =
[∑
xi∈L

ϕ
(R)
lxi + Lap(

∆F
ϵ3

)
]

(3.29)

We can see that ϕ(R)

l is the perturbation of the coefficient ϕ(R)
l associated with the

labels yil in the training batch L. We have that

85

Pr
(
FL(θt)

)
Pr

(
FL′(θt)

) =

∏M
l=1

∏2
R=0 exp

(ϵ3∥
∑

xi∈L ϕ
(R)
lxi
−ϕ(R)

l ∥1
∆F

)
∏M

l=1

∏2
R=0 exp

(ϵ3∥
∑

x′
i
∈L′ ϕ

(R)
lxi
−ϕ(R)

l ∥1
∆F

)
≤

M∏
l=1

2∏
R=0

exp(
ϵ3
∆F

∥∥∥∑
xi∈L

ϕ
(R)
lxi −

∑
x′i∈L′

ϕ
(R)

lx′i

∥∥∥
1
)

≤
M∏
l=1

2∏
R=0

exp(
ϵ3
∆F

∥∥∥ϕ(R)
lxn − ϕ

(R)
lx′n

∥∥∥
1
)

≤
M∏
l=1

2∏
R=0

exp(
ϵ3
∆F

2max
xn∈L

∥∥ϕ(R)
lxn

∥∥
1
)

≤ exp(ϵ3
2maxxn∈L

∑M
l=1

∑2
R=0∥ϕ

(R)
lxn ∥1

∆F
)

≤ exp(ϵ3
M(|h(k)|+ 1

4
|h(k)|2)

∆F
) = exp(ϵ3)

Consequently, the computation of FL(θt) preserves ϵ3­differential privacy in Algori­

thm 3.1.

3.1.9 The Correctness and Characteristics of the AdLM

The following theorem illustrates that the Algorithm 3.1 preserves ϵ­differential privacy,

where ϵ = ϵ1 + ϵ2 + ϵ3.

Theorem 3.1. Algorithm 3.1 preserves ϵ­differential privacy, where ϵ = ϵ1 + ϵ2 + ϵ3.

Proof of Theorem 3.1

Proof. At a specific training step t ∈ T , it is crystal clear that the computation of h0L

is ϵ2­differentially private (Lemma 3.4). Therefore, the computation of the hidden layers

h1, . . . , hk and normalization layers h are differentially private. This is because they do

not access any additional information from the data. At the output layer, the loss function

86

FL(θt) is ϵ3­differentially private (Lemma 3.6). The computation of gradients 1
|L|▽θtFL(θt)

and descents is an optimization process, without using any additional information from the

original data. Thus, θt+1 is differentially private (line 29, Algorithm 3.1).

This optimization process is repeated through T steps without querying the original

data D (lines 21­30). This is done because Laplace noise is injected into input features

xij and coefficients ϕ(R)
lxi as preprocessing steps (lines 3­19). Note that xij and ϕ

(R)

lxi are

associated with features xi and the label yi, respectively. h0L and FL(θt) are computed

based on xij and ϕ
(R)

lxi . As a result, the noise and privacy budget consumption will not be

accumulated during the training process.

Finally, FL(θt) uses the outputs of h0L, which essentially uses the differentially

private relevances R(D) as of one inputs. R(D), h0L, and FL(θt) are achieved by applying

ϵ1, ϵ2, and ϵ3­differential privacy mechanisms. Furthermore, FL(θt) and h0L access the

same training batch L at each training step. Therefore, based on the composition theorem

[61], the total privacy budget in Algorithm 3.1 must be the summation of ϵ1, ϵ2, and ϵ3.

Consequently, Algorithm 3.1 preserves ϵ­differential privacy, where ϵ = ϵ1 + ϵ2 +

ϵ3.

Note that ∆R and ∆h0 are dependent on the number of input features d. ∆R is

negatively proportional to the number of tuples in D. The larger the size of D, the less

noise will be injected into the private relevance R. ∆F is only dependent on the number of

neurons in the last hidden layer and the output layer. In addition, ∆R,∆h0 , and ∆F do not

depend on the number of training epochs. Consequently:

• (1)The privacy budget consumption in ourmodel is totally independent of the number
of training epochs.

• (2) In order to improve the model utility under differential privacy, our mechanism
adaptively injects Laplace noise into features based on the contribution of each to the
model output.

• (3) The average error incurred by our approximation approach, F̂L(θ), is bounded
by a small number M × e2+2e−1

e(1+e)2
as stated in the Lemma 3.7 in the subsection

Approximation Error Bounds below.

87

• (4) The proposed mechanism can be applied to a variety of deep learning models,
e.g., CNNs [47], deep auto­encoders [39], Restricted Boltzmann Machines [162],
convolution deep belief networks [163], etc., as long as we can perturb the first affine
transformation layer.

With these characteristics, our mechanism has a great potential to be applied in large

datasets, without consuming excessive privacy budgets. In the experiment subsection, we

will show that our mechanism leads to accurate results.

Approximation Error Bounds The following lemma illustrates the result of how much

error our approximation approach, F̂L(θ) (Equation (3.27)), incurs. The error only depends

on the number of possible classification outcomesM . In addition, the average error of the

approximations is always bounded. As in [60, 161], the approximation of the loss function

FL(θ) by applying Taylor Expansion without removing all polynomial terms with order

larger than 2 is as follows:

F̃L(θ) =
M∑
l=1

∑
xi∈L

2∑
q=1

∞∑
R=0

f
(R)
ql (zql)

R!

(
gql(hxi(k),Wl(k))− zql

)R

∀l ∈ {1, . . . ,M}, let f1l, f2l, g1l, and g2l be four functions defined as follows:

g1l(hxi(k),Wj) = hxi(k)W
T
l(k)

g2l(hxi(k),Wj) = hxi(k)W
T
l(k)

f1l(z1l) = yil log(1 + e−z1l)

f2l(z2l) = (1− yil) log(1 + ez2l) (3.30)

where ∀q, l : zql is a real number.

∀q, l, by setting zql = 0, the above equation can be simplified as:

88

F̃L(θ) =
M∑
l=1

∑
xi∈L

2∑
q=1

∞∑
R=0

f
(R)
ql (0)

R!

(
hxi(k)W

T
l(k)

)R (3.31)

As in [60], our approximation approach works by truncating the Taylor series in

Equation (3.31) to remove all polynomial terms with order larger than 2. This leads to

a new objective function in Equation (3.27) with low­order polynomials as follows:

F̂L(θ) =
M∑
l=1

∑
xi∈L

2∑
q=1

2∑
R=0

f
(R)
ql (0)

R!

(
hxi(k)W

T
l(k)

)R
=

M∑
l=1

∑
xi∈L

[2∑
q=1

f
(0)
ql (0) +

(2∑
q=1

f
(1)
ql (0)

)
hxi(k)W

T
l(k)

+
(2∑

q=1

f
(2)
ql (0)

2!

)
(hxi(k)W

T
l(k))

2
]

We are now ready to state the following lemma to show the approximation error bound

of our approach.

Lemma 3.7. Given two polynomial functions F̃L(θ) (Equation (3.31)) and F̂L(θ) (Equation

(3.27)), the average error of the approximation is always bounded as follows:

|F̃L(θ̂)− F̃L(θ̃)| ≤M × e2 + 2e− 1

e(1 + e)2
(3.32)

where θ̃ = argminθ F̃L(θ) and θ̂ = argminθ F̂L(θ).

Proof of Lemma 3.7:

89

Proof. Let θ̃ = argminθ F̃L(θ) and θ̂ = argminθ F̂L(θ), U = maxθ
(
F̃L(θ) − F̂L(θ)

)
and S = minθ

(
F̃L(θ) − F̂L(θ)

)
. We have that U ≥ F̃L(θ̂) − F̂L(θ̂) and ∀θ∗ : S ≤

F̃L(θ
∗)− F̂L(θ

∗). Therefore, we have:

F̃L(θ̂)− F̂L(θ̂)− F̃L(θ
∗) + F̂L(θ

∗) ≤ U − S

⇔ F̃L(θ̂)− F̃L(θ
∗) ≤ U − S +

(
F̂L(θ̂)− F̂L(θ

∗)
)

In addition, F̂L(θ̂)− F̂L(θ
∗) ≤ 0, so F̃L(θ̂)− F̃L(θ

∗) ≤ U − S. If U ≥ 0 and S ≤ 0

then we have:

|F̃L(θ̂)− F̃L(θ
∗)| ≤ U − S (3.33)

Equation (3.33) holds for every θ∗. Therefore, it still holds for θ̃. Equation (3.33)

shows that the error incurred by truncating the Taylor series approximate function depends

on the maximum and minimum values of F̃L(θ)−F̂L(θ). To quantify the magnitude of the

error, we first rewrite F̃L(θ)− F̂L(θ) as:

F̃L(θ)− F̂L(θ) =
M∑
l=1

[
F̃L(Wl(k))− F̂L(Wl(k))

]
=

M∑
l=1

[∑
xi∈L

2∑
q=1

∞∑
R=3

f
(R)
ql (zql)

R!

(
gql(hxi(k),Wl(k))− zql

)R]

To derive the minimum and maximum values of the function above, we look into the

remainder of the Taylor Expansion for each l. Let zl ∈ [zql − 1, zql + 1]. According

90

to the well­known result [164], 1
|D|

(
F̃L(Wl(k)) − F̂L(Wl(k))

)
must be in the interval[∑

q

minzl f
(3)
ql (zl)(zl−zql)3

6
,
∑

l

maxzl f
(3)
ql (zl)(zl−zql)3

6

]
.

If
∑

q

maxzl f
(3)
ql (zl)(zl−zql)3

6
≥ 0 and

∑
q

minzl f
(3)
ql (zl)(zl−zql)3

6
≤ 0, then we have that:

∣∣∣ 1

|L|

[
F̃L(θ)− F̂L(θ)

]∣∣∣
≤

M∑
l=1

∑
q

maxzl f
(3)
ql (zl)(zl − zql)3 −minzl f

(3)
ql (zl)(zl − zql)3

6
(3.34)

This analysis applies to the case of the cross­entropy error­based loss function as

follows. First, for the functions f1l(z1l) = yil log(1+e−z1l) and f2l(z2l) = (1−yil) log(1+

ez2l), we have

f
(3)
1l (z1l) =

2yile
z1l

(1 + ez1l)3

f
(3)
2l (z2l) = (1− yil)

e−z2l(e−z2l − 1)

(1 + e−z2l)3

It can be verified that argminz1l f
(3)
1l (z1l) = −2e

(1+e)3
< 0, argmaxz1l f

(3)
1l (z1l) =

2e
(1+e)3

> 0, argminz2l f
(3)
2l (z2l) = 1−e

e(1+e)3
< 0, and argmaxz2l f

(3)
2l (z2l) = e(e−1)

(1+e)3
> 0.

Thus, the average error of the approximation is at most

∣∣F̃L(θ̂)− F̃L(θ̃)
∣∣ ≤M ×

[(2e

(1 + e)3
− −2e

(1 + e)3
)

+
(e(e− 1)

(1 + e)3
− 1− e
e(1 + e)3

)]
=M × e2 + 2e− 1

e(1 + e)2

91

Therefore, Equation (3.32) holds.

(a) accuracy vs. ϵ

(b) ϵ = 0.5 (large noise)

(c) ϵ = 2.0 (small noise)

Figure 3.4 Accuracy for different noise levels on the MNIST dataset.

3.1.10 Experimental Results

We have carried out an extensive experiment on two well­known image datasets, MNIST

and CIFAR­10. The MNIST database of handwritten digits consists of 60,000 training

92

(a) accuracy vs. ϵ

(b) ϵ = 2.5 (large noise)

(c) ϵ = 8.0 (small noise)

Figure 3.5 Accuracy for different noise levels on the CIFAR­10 dataset.

93

examples, and a test set of 10,000 examples [47]. Each example is a 28× 28 size gray­level

image. The CIFAR­10 dataset consists of color images categorized into 10 classes, such as

birds, dogs, trucks, airplanes, etc. The dataset is partitioned into 50,000 training examples

and 10,000 test examples [99].

Competitive Models We compare our mechanism with the state­of­the­art differentially

private stochastic gradient descent (pSGD) for deep learning proposed by [62]. CNNs are

used in our experiments for both algorithms. The hyper­parameters in pSGD are set to

the default values recommended by Abadi et al. [62]. To comprehensively examine the

proposed approaches, our mechanism is implemented in two different settings: (1) The

Adaptive Laplace Mechanism (Algorithm 3.1)­based CNN with ReLUs, simply denoted

AdLM; and (2) An Identical Laplace Mechanism­based CNN with ReLUs (ILM), in

which an identical Laplace noise 1
|L|Lap(

∆h0
ϵ2

) is injected into each feature xij to preserve

ϵ2­differential privacy in the computation of the affine transformation layer h0. In the ILM

algorithm (described in Subsection 3.1.7), we do not need to use the differentially private

relevances R(D).

MNIST Dataset The designs of the three models are the same on the MNIST dataset. We

used two convolution layers, one with 32 features and one with 64 features. Each hidden

neuron connects with a 5x5 unit patch. A fully­connected layer with 25 units and an output

layer of 10 classes (i.e., 10 digits) with cross­entropy loss with LRN are used. The batch

size is 1,800. This also is the structure of the pre­trained model, which is learned and used to

compute the average relevances R(D). The experiments were conducted on a single GPU,

i.e., NVIDIA GTX TITAN X, 12 GB with 3,072 CUDA cores.

Figure 3.4 a illustrates the prediction accuracy of each model as a function of the

privacy budget ϵ on the MNIST dataset. It is clear that our models, i.e., AdLM and ILM,

outperform the pSGD, especially when the privacy budget ϵ is small. This is a crucial result,

since smaller privacy budget values enforce stronger privacy guarantees. When the privacy

94

budget ϵ is large, e.g., ϵ = 2, 4, 8, which means small noise is injected into the model, the

efficiencies of all the models are almost converged to higher prediction accuracies.

The AdLM model achieves the best performance. Given a very small privacy budget

ϵ = 0.25, it achieves 90.2% in terms of prediction accuracy, compared with 88.46%

obtained by the ILM and 82.09% obtained by the pSGD. Overall, given small values of

the privacy budget ϵ, i.e., 0.2 ≤ ϵ ≤ 0.5, the AdLM improves the prediction accuracy

by 7.7% on average (i.e., 91.62%) compared with the pSGD (i.e., 83.93%). The result is

statistically significant with p < 0.01 (t­test).

Figures 3.4b­c illustrate the prediction accuracy of each model vs. the number of

epochs under ϵ = 0.5 and ϵ = 2.0, respectively. Given large noise, i.e., ϵ = 0.5, the pSGD

quickly achieves higher prediction accuracies (i.e., 88.59%) after a small number of epochs,

compared with other models (Figure 3.4b). However, the pSDG can only be applied to train

the model by using a limited number of epochs; specifically because the privacy budget is

accumulated after every training step. Meanwhile, our mechanism is totally independent of

the number of epochs in the consumption of privacy budget. Therefore, after 500 epochs,

our models outperform the pSGD. The AdLM achieves the best performance, in terms of

prediction accuracy: 93.66%, whereas the ILM and the pSGD reached only 92.39% and

88.59%, respectively. Interestingly, given small noise, i.e., ϵ = 2.0, our models achieve

higher accuracies than the pSGD after a small number of epochs (Figure 3.4c). This result

illustrates the crucial benefits of being independent of the number of training epochs in

preserving differential privacy in deep learning. With our mechanism, we can keep training

our models without accumulating noise and privacy budget.

CIFAR­10 Dataset The designs of the three models are the same on the CIFAR­10

dataset. We used three convolution layers, two with 128 features and one with 256 features.

Each hidden neuron connects with a 3x3 unit patch in the first layer, and a 5x5 unit patch in

other layers. One fully­connected layer with 30 neurons, and an output layer of 10 classes

95

with a cross­entropy loss with LRN are used. The batch size is set to 7,200. This also is

the structure of the pre­trained model, which is learned and used to compute the average

relevances R(D).

Figure 3.5a shows the prediction accuracies of each model as a function of the privacy

budget ϵ on the CIFAR­10 dataset. Figures 3.5b­c illustrate the prediction accuracy of each

model vs. the number of epochs under different noise levels. Similar to the results on the

MNIST dataset, the results on CIFAR­10 strengthen our observations: (1) Our mechanism

outperforms the pSGD in terms of prediction accuracy, given both modest and large values

of the privacy budget ϵ (Figure 3.5a); and (2) Our mechanism has the ability to work with

large­scale datasets, since it is totally independent of the number of training epochs in the

consumption of privacy budget (Figures 3.5b­c).

In fact, the AdLM improves the prediction accuracy by 5.9% on average (i.e., to

77%) compared with the pSGD (i.e., 71.1%). The result is statistically significant with

p < 0.01 (t­test). Given large noise, i.e., ϵ = 2.5, our models including the AdLM and ILM

outperform the pSGD after 800 epochs (Figure 3.5b).

Adaptive Laplace Noise It is important to note that by adaptively redistributing the noise

into input features based on the relevance of each to the model output, we can achieve much

better prediction accuracies in both MNIST and CIFAR­10 datasets given both small and

large values of privacy budget ϵ. This is clearly demonstrated in Figures 3.4a and 3.5a, since

the AdLM outperforms the ILM in all cases. Overall, the AdLM improves the prediction

accuracy by 2% and 5% on average on MNIST and CIFAR­10 datasets correspondingly,

compared with the ILM. The result is statistically significant with p < 0.05 (t­test). Note

that the ILM injected an identical amount of noise into all input features, regardless of their

contributions to the model output. This is an important result, since our mechanism is the

first of its kind, which can redistribute the noise injected into the deep learning model to

96

improve the utility. In addition, the reallocation of ϵ1, ϵ2, and ϵ3 could further improve the

utility. This is an open research direction in the future work.

Computational Efficiency In terms of computation efficiency, there are two differences

in our mechanism, compared with a regular deep neural network: (i) The pre­trained model;

and (ii) The noise injection task. In practice, the pre­trained model is not necessarily

identical to the differentially private network trained by our AdLM. A simple model can

be used as a pre­trained model to approximate the average relevance R(D), as long as the

pre­trained model is effective in terms of prediction accuracy even over a small training

dataset. Achieving this is quite straight­forward, because: (1) The pre­trained model is

noiseless; and (2) The number of training epochs used to learn a pre­trained model is small

compared with the one of differentially private models. In fact, we only correspondingly

need 12 and 50 extra epochs to learn the pre­trained models on MNIST and CIFAR­10

datasets. Training pre­trainedmodels takes about 10minutes on a single GPU, i.e., NVIDIA

GTX TITAN X, 12 GB with 3,072 CUDA cores. Therefore, the model pre­training for the

computation of R(D) is efficient.

Another difference in our mechanism is the noise injection into input attributes and

coefficients of the loss function F̂ . In this task, the computations of ∆R, ∆h0 , ∆F , Rj , βj ,

x, and ϕ are efficient and straight­forward, since there is not any operation such as argmin,

argmax, sorting, etc. The complexity of these computations is O
(
|D|(d + M)

)
, which

is linear to the size of the database D. In addition, these computations can be efficiently

performed in either a serial process or a parallel process. Therefore, this task does not affect

the computational efficiency of our mechanism much.

3.1.11 Conclusions

In this part of the dissertation, we proposed a novel mechanism, called Adaptive Laplace

Mechanism (AdLM), to preserve differential privacy in deep learning. Our mechanism

conducts both sensitivity analysis and noise insertion on deep neural networks. It is totally

97

independent of the number of training epochs in the consumption of privacy budget. That

makes our mechanism more practical. In addition, our mechanism is the first of its kind

to have the ability to redistribute the noise insertion toward the improvement of model

utility in deep learning. In fact, our mechanism has the ability to intentionally add more

noise into input features which are less relevant to the model output, and vice­versa.

Different activation functions can be applied in our mechanism, as well. These distinctive

characteristics guarantee the ability to apply our mechanism on large datasets in different

deep learning models and in different contexts. Our mechanism can clearly enhance the

application of differential privacy in deep learning. Rigorous experimental evaluations

conducted on well­known datasets validated our theoretical results and the effectiveness

of our mechanism.

3.2 Scalable Differential Privacy with Certified Robustness
in Adversarial Learning

3.2.1 Background

In this subsection, we revisit DP, adversarial learning, and certified robustness.

Differential Privacy LetD be a database that contains N tuples, each of which contains

data x ∈ [−1, 1]d and a ground­truth label y ∈ ZK (one­hot vector), with K possible

categorical outcomes y = {y1, . . . , yK}. A single true class label yx ∈ y given x ∈ D is

assigned to only one of the K categories. On input x and parameters θ, a model outputs

class scores f : Rd → RK that maps x to a vector of scores f(x) = {f1(x), . . . , fK(x)} s.t.

∀k ∈ [1, K] : fk(x) ∈ [0, 1] and
∑K

k=1 fk(x) = 1. The class with the highest score value

is selected as the predicted label for x, denoted as y(x) = maxk∈K fk(x). A loss function

L(f(x), y) presents the penalty for mismatching between the predicted values f(x) and

original values y. The notations and terminologies used in this work are summarized in

98

Table 3.1 of Subsection 3.2.2). Let us briefly revisit DP DNNs, starting with the definition

of DP.

Definition 3.2. (ϵ, δ)­DP [55]. A randomized algorithm A fulfills (ϵ, δ)­DP, if for any two

databases D and D′ differing at most one tuple, and for all O ⊆ Range(A), we have:

Pr[A(D) = O] ≤ eϵPr[A(D′) = O] + δ

ϵ controls the amount by which the distributions induced byD andD′ may differ, δ is

a broken probability.

DP also applies to general metrics ρ(D,D′) ≤ 1, where ρ can be lp­norms [165].

DP­preserving algorithms in DNNs can be categorized into three lines: 1) introducing noise

into parameter gradients [62, 166, 59, 73, 74, 76], 2) injecting noise into objective functions

[60, 71, 72], and 3) injecting noise into labels [167].

Adversarial Learning For some target model f and inputs (x, yx), the adversary’s goal

is to find an adversarial example xadv = x + α, where α is the perturbation introduced by

the attacker, such that: (1) xadv and x are close, and (2) the model misclassifies xadv, i.e.,

y(xadv) ̸= y(x). In this work, we consider well­known lp∈{1,2,∞}(µ)­norm bounded attacks

[168], where µ is the radius of the p­norm ball. To improve the robustness of models,

prior work focused on two directions: 1) Producing correct predictions on adversarial

examples, while not compromising the accuracy on legitimate inputs [66, 67, 169, 170, 171,

172, 173, 174]; and 2) Detecting adversarial examples [175, 176, 177, 178, 179]. Among

existing solutions, adversarial training appears to hold the greatest promise for learning

robust models [180]. A well­known algorithm was proposed in [181]. The algorithm is

revisited in the Algorithm 3.2 in the following subsection.

99

(a) An instance of DP DNNs and verified inference

(b) An instance of stochastic batch training

Figure 3.6 Stochastic Batch mechanism.

Pseudo­code of Adversarial Training [181] Let lp(µ) = {α ∈ Rd : ∥α∥p ≤ µ} be

the lp­norm ball of radius µ. One of the goals in adversarial learning is to minimize the

risk over adversarial examples: θ∗ = argminθ E(x,ytrue)∼D
[
max∥α∥p≤µ L

(
f(x + α, θ), yx

)]
,

where an attack is used to approximate solutions to the inner maximization problem, and

the outer minimization problem corresponds to training the model f with parameters θ

over these adversarial examples xadv = x + α. There are two basic adversarial example

attacks. The first one is a single­step algorithm, e.g., FGSM algorithm [168], in which only

a single gradient computation is required to find adversarial examples by solving the inner

maximization max∥α∥p≤µ L
(
f(x+α, θ), yx

)
. The second one is an iterative algorithm, e.g.,

Iterative­FGSM algorithm [182], in which multiple gradients are computed and updated

in Tµ small steps, each of which has a size of µ/Tµ.

Given a loss function:

L(θ) =
1

m1 + ξm2

(∑
xi∈Bt

L
(
f(xi, θ), yi

)
+ ξ

∑
xadvj ∈B

adv
t

Υ
(
f(xadvj , θ), yj

))

100

where m1 and m2 correspondingly are the numbers of examples in Bt and Badv
t at

each training step. Algorithm 3.2 presents the vanilla adversarial training.

Algorithm 3.2 Adversarial Training [181]
Input: DatabaseD, loss function L, parameters θ, batch sizesm1 andm2, learning rate ϱt,
parameter ξ
1: Initialize θ randomly
2: for t ∈ [T] do
3: Take a random batch Bt with the sizem1, and a random batch Ba with the sizem2

4: Craft adversarial examples Badv
t = {xadvj }j∈[1,m2] from corresponding benign

examples xj ∈ Ba

5: Descent: θ ← θ − ϱt∇θL(θ)

Certified Robustness and DP Recently, some algorithms [68, 69, 77, 183, 184, 70] have

been proposed to derive certified robustness, in which each prediction is guaranteed to

be consistent under the perturbation α, if a robustness condition is held. Given a benign

example x, we focus on achieving a robustness condition to lp(µ)­norm attacks, as follows:

∀α ∈ lp(µ) : fk(x+ α) > max
i:i ̸=k

fi(x+ α) (3.35)

where k = y(x), indicating that a small perturbation α in the input does not change

the predicted label y(x). To achieve the robustness condition in Equation (3.35), [101]

introduce an algorithm, called PixelDP. By considering an input x (e.g., images) as

databases in DP parlance, and individual features (e.g., pixels) as tuples, PixelDP shows

that randomizing the scoring function f(x) to enforce DP on a small number of pixels in an

image guarantees robustness of predictions. To randomize f(x), random noise σr is injected

into either input x or an arbitrary hidden layer, resulting in the following (ϵr, δr)­PixelDP

condition:

Lemma 3.8. (ϵr, δr)­PixelDP [101]. Given a randomized scoring function f(x) satisfying

(ϵr, δr)­PixelDP w.r.t. a lp­norm metric, we have:

101

∀k, ∀α ∈ lp(1) : Efk(x) ≤ eϵrEfk(x+ α) + δr (3.36)

where Efk(x) is the expected value of fk(x), ϵr is a predefined budget, δr is a broken

probability.

At the prediction time, a certified robustness check is implemented for each prediction,

as follows:

Êlbfk(x) > e2ϵr max
i:i ̸=k

Êubfi(x) + (1 + eϵr)δr (3.37)

where Êlb and Êub are the lower and upper bounds of the expected value Êf(x) =

1
n

∑
n f(x)n, derived from the Monte Carlo estimation with an η­confidence, given n is the

number of invocations of f(x) with independent draws in the noise σr. Passing the check

for a given input guarantees that no perturbation up to lp(1)­norm can change the model’s

prediction. PixelDP does not preserve DP in learning private parameters θ to protect the

training data.

Functional Mechanism Functional mechanism [161] achieves ϵ­DP by perturbing the

objective functionLD(θ) and then releasing themodel parameter θminimizing the perturbed

objective function LD(θ) instead of the original θ, given a private training dataset D. The

mechanism exploits the polynomial representation of LD(θ). The model parameter θ is a

vector that contains d values θ1, . . . , θd. Let ϕ(θ) denote a product of θ1, . . . , θd, namely,

ϕ(θ) = θc11 ·θc22 ···θ
cd
d for some c1, . . . , cd ∈ N. LetΦj(j ∈ N) denote the set of all products of

θ1, . . . , θd with degree j, i.e.,Φj =
{
θc11 ·θc22 ···θ

cd
d

∣∣∣∑d
a=1 ca = j

}
. By the Stone­Weierstrass

Theorem [185], any continuous and differentiable L(xi, θ) can always be written as a

102

polynomial of θ1, . . . , θd, for some J ∈ [0,∞], i.e., L(xi, θ) =
∑J

j=0

∑
ϕ∈Φj

λϕxi
ϕ(θ)

where λϕxi
∈ R denotes the coefficient of ϕ(θ) in the polynomial.

For instance, the polynomial expression of the loss function in the linear regression

is as follows: L(xi, θ) = (yi − x⊤i θ)
2 = y2i −

∑d
j=1(2yixij)θj +

∑
1≤j,a≤d(xijxia)θjθa,

where d (= d) is the number of features in xi. In fact, L(xi, θ) only involves monomials

in Φ0 = {1},Φ1 = {θ1, . . . , θd}, and Φ2 = {θiθa
∣∣i, a ∈ [1, d]}. Each ϕ(θ) has its own

coefficient, e.g., for θj , its polynomial coefficient λϕxi
= −2yixij . Similarly, LD(θ) can be

expressed as a polynomial of θ1, . . . , θd, as

LD(θ) =
∑
xi∈D

L(xi, θ) =
J∑

j=0

∑
ϕ∈Φj

∑
xi∈D

λϕxi
ϕ(θ) (3.38)

To achieve ϵ­DP, LD(θ) is perturbed by injecting Laplace noise Lap(∆
ϵ
) into its

polynomial coefficients λϕ, and then the model parameter θ is derived to minimize the

perturbed function LD(θ), where the global sensitivity ∆ = 2maxx
∑J

j=1

∑
ϕ∈Φj
∥λϕx∥1

is derived given any two neighboring datasets. To guarantee that the optimization of

θ = argminθ LD(θ) achieves ϵ­DP without accessing the original data, i.e., that may

potentially incur additional privacy leakage, grid search­based approaches are applied to

learn the ϵ­DP parameters θ with low loss LD(θ). Although this approach works well in

simple tasks, i.e., logistic regression, it may not be optimal in large models, such as DNNs.

3.2.2 Notations and Terminologies

All notations and terminologies used in this work are described in Table 3.1.

3.2.3 Stochastic Batch (StoBatch) Mechanism

StoBatch is presented in Algorithm 3.5. Our DNN (Figure 3.6a) is presented as: f(x) =

g(a(x, θ1), θ2), where a(x, θ1) is a feature representation learning model with x as an input,

103

Table 3.1 Notations and Terminologies.

D and x Training data with benign examples x ∈ [−1, 1]d

y = {y1, . . . , yK} One­hot label vector ofK categories

f : Rd → RK
Function/model f that maps inputs x
to a vector of scores f(x) = {f1(x), . . . , fK(x)}

yx ∈ y A single true class label of example x
y(x) = maxk∈K fk(x) Predicted label for the example x given the function f

xadv = x+ α Adversarial example where α is the perturbation
lp(µ) = {α ∈ Rd : ∥α∥p ≤ µ} The lp­norm ball of attack radius µ

(ϵr, δr) Robustness budget ϵr and broken probability δr
Efk(x) The expected value of fk(x)

Êlb and Êub

Lower and upper bounds of
the expected value Êf(x) = 1

n

∑
n f(x)n

a(x, θ1) Feature representation learning model with x and parameters θ1
Bt A batch of benign examples xi

RBt (θ1) Data reconstruction function given Bt in a(x, θ1)

h1Bt = {θT1 xi}xi∈Bt

The values of all hidden neurons in the hidden layer h1
of a(x, θ1) given the batch Bt

R̃Bt (θ1) andRBt
(θ1) Approximated and perturbed functions ofRBt (θ1)

xi and x̃i Perturbed and reconstructed inputs xi

∆R = d(β + 2) Sensitivity of the approximated function R̃Bt (θ1)

h1Bt Perturbed affine transformation h1Bt

xadvj = xadvj + 1
m
Lap(∆R

ϵ1
) DP adversarial examples crafting from benign example xj

Bt and B
adv
t Sets of perturbed inputs xi and DP adversarial examples xadvj

LBt

(
θ2

)
Loss function of perturbed benign examples in Bt, given θ2

Υ
(
f(xadvj , θ2), yj

)
Loss function of DP adversarial examples xadvj , given θ2

LBt

(
θ2

)
DP loss function for perturbed benign examples Bt

L2Bt
(θ2) A part of the loss function LBt

(
θ2

)
that needs to be DP

f(M1, . . . ,Ms|x)
Composition scoring function given
independent randomizing mechanismsM1, . . . ,Ms

∆x
r and∆h

r Sensitivities of x and h, given the perturbation α ∈ lp(1)

(ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2) Privacy budget to protect the training dataD
(κφ
κ+φ

)max Robustness size guarantee given an input x at the inference time

104

and g will take the output of a(x, θ1) and return the class scores f(x). At a high level,

there are four key components: (1) DP a(x, θ1), which is to preserve DP in learning the

feature representation model a(x, θ1); (2) DP Adversarial Learning, which focuses on

preserving DP in adversarial learning, given DP a(x, θ1); (3) Certified Robustness and

Verified Inferring, which are to compute robustness bounds given an input at the inference

time; and (4) Stochastic batch training (Figure 3.6b). To establish theoretical results in

DP preservation and in deriving robustness bounds, let us first present our mechanism in

the vanilla iterative batch­by­batch training (Algorithm 3.3). The network f (Lines 2­3,

Algorithm 3.3) is trained over T training steps. In each step, a disjoint and fixed batch ofm

perturbed training examples and a disjoint and fixed batch of m DP adversarial examples,

derived from D, are used to train our network (Lines 4­12, Algorithm 3.3).

Algorithm 3.3 Adversarial Learning with DP
Input: Database D, loss function L, parameters θ, batch size m, learning rate ϱt, privacy
budgets: ϵ1 and ϵ2, robustness parameters: ϵr, ∆x

r , and ∆h
r , adversarial attack size µa, the

number of invocations n, ensemble attacks A, parameters ψ and ξ, and the size |hπ| of hπ
1: Draw Noise χ1 ← [Lap(∆R

ϵ1
)]d, χ2 ← [Lap(∆R

ϵ1
)]β , χ3 ← [Lap(∆L2

ϵ2
)]|hπ |

2: Randomly Initialize θ = {θ1, θ2}, B = {B1, . . . , BN/m} s.t. ∀B ∈ B : B is a batch
with the sizem,B1∩. . .∩BN/m = ∅, andB1∪. . .∪BN/m = D, B = {B1, . . . , BN/m}
where ∀i ∈ [1, N/m] : Bi = {x← x+ χ1

m
}x∈Bi

3: Construct a deep network f with hidden layers {h1 + 2χ2

m
, . . . , hπ}, where hπ is the

last hidden layer
4: for t ∈ [T] do
5: Take a batch Bi ∈ B where i = t%(N/m), Bt ← Bi

6: Ensemble DP Adversarial Examples:
7: Draw Random Perturbation Value µt ∈ (0, 1]

8: Take a batch Bi+1 ∈ B, Assign B
adv
t ← ∅

9: for l ∈ A do
10: Take the next batch Ba ⊂ Bi+1 with the sizem/|A|
11: ∀xj ∈ Ba: Craft xadvj by using attack algorithm A[l] with l∞(µt), B

adv
t ←

B
adv
t ∪ xadvj

12: Descent: θ1 ← θ1 − ϱt∇θ1RBt∪B
adv
t
(θ1); θ2 ← θ2 − ϱt∇θ2LBt∪B

adv
t
(θ2) with the

noise χ3

m
Output: ϵ = (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2)­DP parameters θ = {θ1, θ2}, robust model with
an ϵr budget

105

3.2.4 DP Feature Representation Learning

Our idea is to use auto­encoder to simultaneously learn DP parameters θ1 and ensure that

the output of a(x, θ1) is DP, since: (1) It is easier to train, given its small size; and (2) It

can be reused for different predictive models. A typical data reconstruction function (cross­

entropy), given a batch Bt at the training step t of the input xi, is as follows: RBt(θ1) =∑
xi∈Bt

∑d
j=1

[
xij log(1+e−θ1jhi)+(1−xij) log(1+eθ1jhi)

]
, where hi = θT1 xi, the hidden

layer h1 of a(x, θ1) given the batch Bt is denoted as h1Bt = {θT1 xi}xi∈Bt , and x̃i = θ1hi is

the reconstruction of xi.

To preserve ϵ1­DP in learning θ1 where ϵ1 is a privacy budget, we first derive

the 1st­order polynomial approximation of RBt(θ1) by applying Taylor Expansion [160],

denoted as R̃Bt(θ1). Then, Functional Mechanism [161] (revisited in Subsection 3.2.1)

is adapted to inject noise into coefficients of the approximated function R̃Bt(θ1) =∑
xi∈Bt

∑d
j=1

∑2
l=1

∑1
r=0

F(r)
lj (0)

r!

(
θ1jhi

)r, where F1j(z) = xij log(1 + e−z), F2j(z) =

(1 − xij) log(1 + ez), we have that: R̃Bt(θ1) =
∑

xi∈Bt

∑d
j=1

[
log 2 + θ1j

(
1
2
− xij

)
hi

]
.

In R̃Bt(θ1), parameters θ1j derived from the function optimization need to be ϵ1­DP. To

achieve that, Laplace noise 1
m
Lap(∆R

ϵ1
) is injected into coefficients

(
1
2
− xij

)
hi, where∆R

is the sensitivity of R̃Bt(θ1), as follows:

R̃Bt(θ1) =
∑
xi∈Bt

d∑
j=1

[
θ1j

((1
2
− xij

)
hi +

1

m
Lap(

∆R
ϵ1

)
)]

=
∑
xi∈Bt

[d∑
j=1

(
1

2
θ1jhi)− xix̃i

]
(3.39)

To ensure that the computation of x̃i does not access the original data, we further

inject Laplace noise 1
m
Lap(∆R

ϵ1
) into xi. This can be done as a preprocessing step for all the

benign examples inD to construct a set of disjoint batches B of perturbed benign examples

(Lines 2 and 5, Algorithm 3.3). The perturbed function now becomes:

106

RBt
(θ1) =

∑
xi∈Bt

[d∑
j=1

(
1

2
θ1jhi)− xix̃i

]
(3.40)

where xi = xi+
1
m
Lap(∆R

ϵ1
), hi = θT1 xi, hi = hi+

2
m
Lap(∆R

ϵ1
), and x̃i = θ1hi. Let us

denote β as the number of neurons in h1, and hi is bounded in [−1, 1], the global sensitivity

∆R is as follows:

Lemma 3.9. The global sensitivity of R̃ over any two neighboring batches, Bt and B′t, is:

∆R ≤ d(β + 2).

Proof of Lemma 3.9

Proof. Assume that Bt and B′t differ in the last tuple, xm (x′m). Then,

∆R =
d∑

j=1

[∥∥ ∑
xi∈Bt

1

2
hi −

∑
x′
i∈B′

t

1

2
h′i
∥∥
1
+
∥∥ ∑

xi∈Bt

xij −
∑
x′
i∈B′

t

x′ij
∥∥
1

]

≤ 2max
xi

d∑
j=1

(∥1
2
hi∥1 + ∥xij∥1)

≤ d(β + 2)

By setting ∆R = d(β + 2), we show that the output of a(·), which is the perturbed

affine transformation h1Bt
= {θT1 xi + 2

m
Lap(∆R

ϵ1
)}xi∈Bt

, is (ϵ1/γ)­DP, given γ = 2∆R
m∥θ1∥1,1

and ∥θ1∥1,1 is the maximum 1­norm of θ1’s columns [186]. This is important to tighten

the privacy budget consumption in computing the remaining hidden layers g(a(x, θ1), θ2).

107

In fact, without using additional information from the original data, the computation of

g(a(x, θ1), θ2) is also (ϵ1/γ)­DP.

Similarly, the perturbation of each benign example x turns Bt = {xi ← xi +

1
m
Lap(∆R

ϵ1
)}xi∈Bt into a (ϵ1/γx)­DP batch, with γx = ∆R/m. We do not use the

post­processing property of DP to estimate the DP guarantee of h1Bt
based upon the DP

guarantee of Bt, since ϵ1/γ < ϵ1/γx in practice. So, the (ϵ1/γ)­DP h1Bt
provides a more

rigorous DP protection to the computation of g(·) and to the output layer.

Lemma 3.10. The computation of the batch Bt as the input layer is (ϵ1/γx)­DP, and the

computation of the affine transformation h1Bt
is (ϵ1/γ)­DP.

Proof of Lemma 3.10

Proof. Regarding the computation of h1Bt
= {θT1 xi}xi∈Bt

, we can see that hi = θ
T

1 xi is a

linear function of x. The sensitivity of a function h is defined as the maximum change in

output, that can be generated by a change in the input [101]. Therefore, the global sensitivity

of h1 can be computed as follows:

∆h1 =
∥
∑

xi∈Bt
θ
T

1 xi −
∑

x′
i∈B

′
t
θ
T

1 x
′
i∥1

∥
∑

xi∈Bt
xi −

∑
x′
i∈B

′
t
x′i∥1

≤ max
xi∈Bt

∥θT1 xi∥1
∥xi∥1

≤ ∥θT1 ∥1,1

following matrix norms [186]: ∥θT1 ∥1,1 is the maximum 1­norm of θ1’s columns. By

injecting Laplace noise Lap(∆h1
ϵ1

) into h1Bt , i.e., h1Bt
= {θT1 xi + Lap(

∆h1
ϵ1

)}xi∈Bt
, we

can preserve ϵ1­DP in the computation of h1Bt
. Let us set ∆h1 = ∥θT1 ∥1,1, γ = 2∆R

m∆h1
,

and χ2 drawn as a Laplace noise [Lap(∆R
ϵ1
)]β , in our mechanism, the perturbed affine

transformation h1Bt
is presented as:

108

h1Bt
= {θT1 xi +

2χ2

m
}xi∈Bt

= {θT1 xi +
2

m
[Lap(

∆R
ϵ1

)]β}xi∈Bt

= {θT1 xi + [Lap(
γ∆h1

ϵ1
)]β}xi∈Bt

= {θT1 xi + [Lap(
∆h1

ϵ1/γ
)]β}xi∈Bt

This results in an (ϵ1/γ)­DP affine transformationh1Bt = {θ
T

1 xi+[Lap(
∆h1
ϵ1/γ

)]β}xi∈Bt
.

Similarly, the perturbed inputs Bt = {xi}xi∈Bt
= {xi + χ1

m
}xi∈Bt = {xi +

[Lap(∆x
ϵ1/γx

)]d}xi∈Bt , where∆x is the sensitivity measuring the maximum change in the input

layer that can be generated by a change in the batchBt and γx = ∆R
m∆x

. Following [101],∆x

can be computed as follows: ∆x =
∥
∑

xi∈Bt
xi−

∑
x′
i
∈B′

t
x′
i∥1

∥
∑

xi∈Bt
xi−

∑
x′
i
∈B′

t
x′
i∥1

= 1. As a result, the computation

of Bt is (ϵ1/γx)­DP. Consequently, Lemma 3.10 does hold.

Departing from the vanilla Functional Mechanism, in which only grid search­based

approaches can be applied to find DP­preserving θ1 with a low lossRBt
(θ1), our following

Theorem 3.2 shows that gradient descent­based optimizing RBt
(θ1) is (ϵ1/γx + ϵ1)­DP in

learning θ1 given an (ϵ1/γx)­DPBt batch. In fact, in addition to hi, hi, x̃i, based on Lemma

3.10, we further show that the computation of gradients, i.e., ∀j ∈ [1, d] :
δRBt

(θ1)

δθ1j
=∑m

i=1 hi(
1
2
− xij), and descent operations given the (ϵ1/γx)­DP Bt batch are (ϵ1/γx)­DP,

without incurring any additional information from the original data. As a result, gradient

descent­based approaches can be applied to optimize RBt
(θ1) in Algorithm 3.3, since all

the computations on top of Bt are DP, without using any additional information from the

original data.

Theorem 3.2. The gradient descent­based optimization ofRBt
(θ1) preserves (ϵ1/γx+ ϵ1)­

DP in learning θ1.

Proof of Theorem 3.2

109

Proof. Given χ1 drawn as a Laplace noise [Lap(∆R
ϵ1
)]d and χ2 drawn as a Laplace noise

[Lap(∆R
ϵ1
)]β , the perturbation of the coefficient ϕ ∈ Φ = {1

2
hi, xi}, denoted as ϕ, can be

rewritten as follows:

for ϕ ∈ {xi} : ϕ =
∑
xi∈B

(ϕxi
+
χ1

m
) =

∑
xi∈B

ϕxi
+ χ1

=
∑
xi∈B

ϕxi
+ [Lap(

∆R
ϵ1

)]d (3.41)

for ϕ ∈ {1
2
hi} : ϕ =

∑
xi∈B

1

2
(hi +

2χ2

m
) =

∑
xi∈B

(ϕxi
+
χ2

m
)

=
∑
xi∈B

ϕxi
+ χ2 =

∑
xi∈B

ϕxi
+ [Lap(

∆R
ϵ1

)]β (3.42)

we have

Pr
(
RBt

(θ1)
)
=

d∏
j=1

∏
ϕ∈Φ

exp
(
−
ϵ1∥

∑
xi∈Bt

ϕxi
− ϕ∥1

∆R

)

∆R is set to d(β + 2), we have that:

Pr
(
RBt

(θ1)
)

Pr
(
RB

′
t
(θ1)

) =

∏d
j=1

∏
ϕ∈Φ exp

(
− ϵ1∥

∑
xi∈Bt

ϕxi−ϕ∥1
∆R

)
∏d

j=1

∏
ϕ∈Φ exp

(
−

ϵ1∥
∑

x′
i
∈B′

t
ϕx′

i
−ϕ∥1

∆R

)
≤

d∏
j=1

∏
ϕ∈Φ

exp(
ϵ1
∆R

∥∥∥ ∑
xi∈Bt

ϕxi
−

∑
x′
i∈B′

t

ϕx′
i

∥∥∥
1
)

≤
d∏

j=1

∏
ϕ∈Φ

exp(
ϵ1
∆R

2 max
xi∈Bt

∥∥ϕxi

∥∥
1
) ≤ exp(

ϵ1d(β + 2)

∆R
) = exp(ϵ1) (3.43)

110

Consequently, the computation ofRBt
(θ1) preserves ϵ1­DP in Algorithm 3.3 (Result

1). To show that gradient descent­based optimizers can be used to optimize the objective

function RBt
(θ1) in learning private parameters θ1, we prove that all the computations on

top of the perturbed data Bt, including hi, hi, x̃i, gradients and descent, are DP without

incurring any additional information from the original data, as follows.

First, by following the post­processing property in DP [100], it is clear that the

computations of h1Bt
= {hi}xi∈Bt

= θT1 {xi}xi∈Bt
is (ϵ1/γx)­DP. As in Lemma 3.10,

we also have that h1Bt
= {hi + 2χ2

m
}xi∈Bt

is (ϵ1/γ)­DP. Given this, it is obvious that

x̃i = {x̃i}xi∈Bt
= θ1{hi}xi∈Bt

is (ϵ1/γ)­DP, i.e., the post­processing property in DP.

In addition, the computations of h1Bt
, h1Bt

, and x̃i do not access the original data Bt.

Therefore, they do not incur any additional information from the private data, except the

privacy loss measured by (ϵ1/γx)­DP, since the computations of h1Bt
and x̃i are based on

the (ϵ1/γx)­DP h1Bt
. (Result 2)

Second, the gradient of a particular parameter θ1j , with ∀j ∈ [1, d], can be computed

as follows:

∀j ∈ [1, d] : ∇θ1jRBt
(θ1) =

δRBt
(θ1)

δθ1j
=

m∑
i=1

hi(
1

2
− xij) (3.44)

=
m∑
i=1

(hi +
2χ2

m
)(
1

2
− xij) (3.45)

=
[m∑

i=1

hi(
1

2
− xij)

]
+ χ2 −

[2χ2

m

m∑
i=1

xij
]

(3.46)

In Equation (3.46), we have that
∑m

i=1 xij = (
∑m

i=1 xij) + Lap(∆R
ϵ1
) (Equation

(3.41)), which is (ϵ1/γx)­DP. Therefore, the term 2χ2

m

∑m
i=1 xij also is (ϵ1/γx)­DP (the

post­processing property in DP). (Result 3)

111

Regarding the term
∑m

i=1 hi(
1
2
− xij) in Equation (3.46), its global sensitivity given

two arbitrary neighboring batches, denoted as ∆g, can be bounded as follows: ∆g ≤

2maxxi
∥hi(12 − xij)∥1 = 3β. As a result, we have that:

[m∑
i=1

hi(
1

2
− xij)

]
+ χ2 =

[m∑
i=1

hi(
1

2
− xij)

]
+ [Lap(

∆g

ϵ1/
∆R
∆g

)]β (3.47)

which is (ϵ1/∆R
∆g

)­DP. (Result 4)

From Results 3 and 4, the computation of gradients∇θ1jRBt
(θ1) is (ϵ1/∆R

∆g
+ ϵ1/γx)­

DP, since: (1) The computations of the two terms in Equation (3.46) can be treated as two

independent DP­preserving mechanisms applied on the perturbed batch Bt; and (2) This

is true for every dimension j ∈ [1, d], each of which ∇θ1j is independently computed and

bounded. It is important to note that this result is different from the traditional DPSGD

[62], in which the parameter gradients are jointly clipped by a l2­norm constant bound,

such that Gaussian noise can be injected to achieve DP. In addition, as in Equation (3.44),

the computation of ∇θ1jRBt
(θ1) only uses (ϵ1/γx)­DP Bt = {xi}xi∈Bt

and (ϵ1/γ)­DP

h1Bt
, without accessing the original data. Basically, h1Bt

is computed on top ofBt, without

touching any benign example. Therefore, it does not incur any additional information from

the private data, except the privacy loss (ϵ1/∆R
∆g

+ ϵ1/γx)­DP. In practice, we observed that

ϵ1/γx ≫ ϵ1/
∆R
∆g

≊ ϵ1× 1e− 3, which is tiny. We can simply consider that the computation

of gradients ∇θ1jRBt
(θ1) is (ϵ1/γx)­DP without affecting the general DP protection. In

addition to the gradient computation, the descent operations are simply post­processing

steps without consuming any further privacy budget. (Result 5)

From Results 1, 2, and 5, we have shown that all the computations on top of

(ϵ1/γx)­DPBt, including parameter gradients and gradient descents, clearly are DP without

accessing the original data; therefore, they do not incur any additional information from

the private data (the post­processing property in DP). As a result, gradient descent­based

112

approaches can be applied to optimizeRBt
(θ1) in Algorithm 3.3. The total privacy budget

to learn the perturbed optimal parameters θ1 in Algorithm 3.3 is (ϵ1/γx+ ϵ1)­DP, where the

ϵ1/γx is counted for the perturbation on the batch of benign examples Bt.

Consequently, Theorem 3.2 does hold.

3.2.5 Adversarial Learning with Differential Privacy

To integrate adversarial learning, we first draft DP adversarial examplesxadvj using perturbed

benign examples xj , with an ensemble of attack algorithms A and a random perturbation

budget µt ∈ (0, 1], at each step t (Lines 6­11, Algorithm 3.3). This will significantly

enhances the robustness of our models under different types of adversarial examples with

an unknown adversarial attack size µ.

xadvj = xj + µ · sign
(
∇xj
L
(
f(xj, θ), y(xj)

))
(3.48)

with y(xj) is the class prediction result of f(xj) to avoid label leaking of xj during

the adversarial example crafting. Given a set of DP adversarial examples Badv
t , training the

auto­encoder with Badv
t preserves (ϵ1/γx + ϵ1)­DP.

Theorem 3.3. The gradient descent­based optimization of R
B
adv
t
(θ1) preserves (ϵ1/γx +

ϵ1)­DP in learning θ1.

The proof of Theorem 3.3 is in Result 4 of the proof in Page 117. It can be extended

to iterative attacks as: xadvj,0 = xj ,

xadvj,t+1 = xadvj,t +
µ

Tµ
· sign

(
∇xadvj,t

L
(
f(xadvj,t , θ), y(x

adv
j,t)

))
(3.49)

where y(xadvj,t) is the prediction of f(xadvj,t , θ), t ∈ [0, Tµ − 1].

113

Second, we propose a novel DP adversarial objective function LBt(θ2), in which the

loss function L for benign examples is combined with an additional loss function Υ for

DP adversarial examples, to optimize the parameters θ2. The objective function LBt(θ2) is

defined as follows:

L
Bt∪B

adv
t
(θ2) =

1

m(1 + ξ)

(∑
xi∈Bt

L
(
f(xi, θ2), yi

)
+ ξ

∑
xadvj ∈B

adv
t

Υ
(
f(xadvj , θ2), yj

))
(3.50)

where ξ is a hyper­parameter. For the sake of clarity, in Equation (3.50), we denote

yi and yj as the true class labels yxi
and yxj

of examples xi and xj . xadvj and xj share the

same label yxj
.

Nowwe are ready to preserveDP in objective functionsL
(
f(xi, θ2), yi

)
andΥ

(
f(xadvj ,

θ2), yj
)
in order to achieve DP in learning θ2. Since the objective functions use the true

class labels yi and yj , we need to protect the labels at the output layer. Let us first present

our approach to preserve DP in the objective function L for benign examples. Given hπi

computed from the xi through the network with Wπ is the parameter at the last hidden

layer hπ. Cross­entropy function is approximated as: LBt

(
θ2
)
≊

∑K
k=1

∑
xi

[
hπiWπk −

(hπiWπk)yik − 1
2
|hπiWπk| + 1

8
(hπiWπk)

2
]
≊ L1Bt

(
θ2
)
− L2Bt

(
θ2
)
, where L1Bt

(
θ2
)
=∑K

k=1

∑
xi

[
hπiWπk− 1

2
|hπiWπk|+ 1

8
(hπiWπk)

2
]
, and L2Bt

(
θ2
)
=

∑K
k=1

∑
xi
(hπiyik)Wπk.

Based on the post­processing property of DP [100], hπBt
= {hπi}xi∈Bt

is (ϵ1/γ)­

DP, since the computation of h1Bt
is (ϵ1/γ)­DP (Lemma 3.10). Hence, the optimization

of L1Bt

(
θ2
)
does not disclose any information from the training data, and

Pr(L1Bt
(θ2))

Pr(L
1B

′
t
(θ2))

=

Pr(hπBt
)

Pr(h
πB

′
t
)
≤ eϵ1/γ , given neighboring batches Bt and B

′
t. Thus, we only need to preserve ϵ2­

114

DP in the function L2Bt
(θ2), which accesses the ground­truth label yik. Given coefficients

hπiyik, the sensitivity ∆L2 of L2Bt
(θ2) is computed as:

Lemma 3.11. Let Bt and B
′
t be neighboring batches of benign examples, we have the

following inequality: ∆L2 ≤ 2|hπ|, where |hπ| is the number of hidden neurons in hπ.

Proof of Lemma 3.11

Proof. Assume that Bt and B
′
t differ in the last tuple, and xm (x′m) be the last tuple in Bt

(B
′
t), we have that

∆L2 =
K∑
k=1

∥∥∥ ∑
xi∈Bt

(hπiyik)−
∑
x′
i∈B

′
t

(h′πiy′ik)
∥∥∥
1
=

K∑
k=1

∥∥hπmymk − h′πmy′mk

∥∥
1

Since ymk and y′mk are one­hot encoding, we have that∆L2 ≤ 2maxxi
∥hπi∥1. Given

hπi ∈ [−1, 1], we have

∆L2 ≤ 2|hπ| (3.51)

Lemma 3.11 does hold.

The sensitivity of our objective function is notably smaller than the state­of­the­art

bound [72], which is crucial to improve our model utility. The perturbed functions become:

LBt

(
θ2
)
= L1Bt

(θ2)−L2Bt
(θ2),whereL2Bt

(θ2) =
∑K

k=1

∑
xi

(
hπiyik+ 1

m
Lap(∆L2

ϵ2
)
)
Wπk.

Theorem 3.4. Algorithm 3.3 preserves (ϵ1/γ + ϵ2)­DP in the gradient descent­based

optimization of LB

(
θ2
)
.

Proof of Theorem 3.4

115

Proof. LetBt andB
′
t be neighboring batches of benign examples, and χ3 drawn as Laplace

noise [Lap(∆L2

ϵ2
)]|hπ |, the perturbations of the coefficients hπiyik can be rewritten as:

hπiyik =
∑
xi

(hπiyik +
χ3

m
) =

∑
xi

(hπiyik) + [Lap(
∆L2
ϵ2

)]|hπ |

Since all the coefficients are perturbed, and given ∆L2 = 2|hπ|, we have that

Pr(LBt
(θ2))

Pr(LB
′
t
(θ2))

=
Pr(L1Bt

(θ2))

Pr(L1B
′
t
(θ2))

×
Pr(L2Bt

(θ2))

Pr(L2B
′
t
(θ2))

≤ eϵ1/γ
K∑
k=1

exp(− ϵ2∥
∑

xi
hπiyik−hπiyik∥1

∆L2
)

exp(−
ϵ2∥

∑
x′
i
hπiyik−hπiyik∥1

∆L2
)

≤ eϵ1/γ
K∑
k=1

exp(
ϵ2
∆L2

∥∥∑
xi

hπiyik −
∑
x′
i

hπiyik
∥∥
1
)

≤ eϵ1/γ exp(
ϵ2
∆L2

2max
xi

∥hπi∥1) = eϵ1/γ+ϵ2

The computation of L2Bt

(
θ2
)
preserves (ϵ1/γ + ϵ2)­differential privacy. Similar

to Theorem 3.2, the gradient descent­based optimization of L2Bt

(
θ2
)
does not access

additional information from the original input xi ∈ Bt. It only reads the (ϵ1/γ)­DP

h1Bt
= {hi + 2χ2

m
}xi∈Bt

. Consequently, the optimal perturbed parameters θ2 derived from

L2Bt

(
θ2
)
are (ϵ1/γ + ϵ2)­DP.

We apply the same technique to preserve (ϵ1/γ + ϵ2)­DP in the optimization of

the function Υ
(
f(xadvj , θ2), yj

)
over the DP adversarial examples xadvj ∈ B

adv
t . As the

perturbed functions L and Υ are always optimized given two disjoint batches Bt and

B
adv
t , the privacy budget used to preserve DP in the adversarial objective function LBt(θ2)

is (ϵ1/γ + ϵ2), following the parallel composition property [100]. The total budget to

116

learn private parameters θ = {θ1, θ2} = argmin{θ1,θ2}(RBt∪B
adv
t
(θ1) + L

Bt∪B
adv
t
(θ2)) is

ϵ = (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2) (Line 12, Algorithm 3.3).

DP at the Dataset Level Our mechanism achieves DP at the batch level Bt ∪B
adv
t given

a specific training step t. By constructing disjoint and fixed batches from D, we leverage

both parallel composition and post­processing properties of DP to extend the result to ϵ­DP

in learning {θ1, θ2} on D across T training steps. There are three key properties in our

model: (1) It only reads perturbed inputs Bt and perturbed coefficients h1, which are DP

across T training steps with a single draw of Laplace noise (i.e., no further privacy leakage);

(2) GivenN/m disjoint batches in each epoch, ∀x, x is included in one and only one batch,

denotedBx ∈ B. As a result, the DP guarantee to x inD is equivalent to the DP guarantee to

x inBx; since the optimization using any other batches does not affect theDP guarantee of x,

even the objective function given Bx can be slightly different from the objective function

given any other batches in B; and (3) All the batches are fixed across T training steps

to prevent additional privacy leakage, caused by generating new and overlapping batches

(which are considered overlapping datasets in the parlance of DP) in the typical training.

Theorem 3.5. Algorithm 3.3 achieves (ϵ1+ϵ1/γx+ϵ1/γ+ϵ2)­DP parameters θ = {θ1, θ2}

on the private training data D across T gradient descent­based training steps.

Proofs of Theorem 3.3 and Theorem 3.5

Proof. First, we optimize for a single draw of noise during training (Line 3, Algorithm

3.3) and all the batches of perturbed benign examples are disjoint and fixed across epochs.

As a result, the computation of xi is equivalent to a data preprocessing step with DP,

which does not incur any additional privacy budget consumption over T training steps (the

post­processing property of DP) (Result 1). That is different from repeatedly applying a

DP mechanism on either the same or overlapping datasets causing the accumulation of the

privacy budget.

117

Now, we show that our algorithm achieves DP at the dataset levelD. Let us consider

the computation of the first hidden layer, given any two neighboring datasets D and D′

differing at most one tuple xe ∈ D and x′e ∈ D′. For any O =
∏N/m

i=1 oi ∈
∏N/m

i=1 h1Bi
(∈

Rβ×m), we have that

P
(
h1D = O

)
P
(
h1D′ = O

) =
P (h1B1

= o1) . . . P (h1BN/m
= oN/m)

P (h1B′
1
= o1) . . . P (h1B′

N/m
= oN/m)

(3.52)

By having disjoint and fixed batches, we have that:

∃!B̃ ∈ B s.t. xe ∈ B̃ and ∃!B̃′ ∈ B′ s.t. x′e ∈ B̃′ (3.53)

From Equations (3.52), (3.53), and Lemma 3.10, we have that

∀B ∈ B, B ̸= B̃ : B = B
′ ⇒

P
(
h1B = o

)
P
(
h1B′ = o

) = 1 (3.54)

Equations (3.53) and (3.54)⇒
P
(
h1D = O

)
P
(
h1D′ = O

) =
P
(
h1B̃ = õ

)
P
(
h1B̃′ = õ

) ≤ eϵ1/γ (3.55)

As a result, the computation of h1D is (ϵ1/γ)­DP given the dataD, since the Equation

(3.55) does hold for any tuple xe ∈ D. That is consistent with the parallel composition

property of DP, in which batches can be considered disjoint datasets given h1B as a DP

mechanism [100].

This does hold across epochs, since batches B are disjoint and fixed among epochs.

At each training step t ∈ [1, T], the computation of h1Bt
does not access the original

data. It only reads the perturbed batch of inputs Bt, which is (ϵ1/γx)­DP (Lemma 3.10).

118

Following the post­processing property in DP [100], the computation of h1Bt
does not incur

any additional information from the original data across T training steps. (Result 2)

Similarly, we show that the optimization of the functionRBt
(θ1) is (ϵ1/γx + ϵ1)­DP

across T training steps. As in Theorem 3.2 and Proof 3.2.4, we have that Pr
(
RB(θ1)

)
=∏d

j=1

∏
ϕ∈Φ exp

(
− ϵ1∥

∑
xi∈B ϕxi−ϕ∥1

∆R

)
, whereB ∈ B. Given any two perturbed neighboring

datasets D and D′ differing at most one tuple xe ∈ D and x′e ∈ D
′:

Pr
(
RD(θ1)

)
Pr

(
RD

′(θ1)
) =

Pr
(
RB1

(θ1)
)
. . . P r

(
RBN/m

(θ1)
)

Pr
(
RB

′
1
(θ1)

)
. . . P r

(
RB

′
N/m

(θ1)
) (3.56)

From Equations (3.53), (3.56), and Theorem 3.2, we have that

∀B ∈ B, B ̸= B̃ : B = B
′ ⇒

P
(
RB(θ1)

)
P
(
RB

′(θ1)
) = 1 (3.57)

Equations (3.56) and (3.57)⇒
P
(
RD(θ1)

)
P
(
RD

′(θ1)
) =

P
(
RB̃(θ1)

)
P
(
RB̃′(θ1)

) ≤ eϵ1 (3.58)

As a result, the optimization of RD(θ1) is (ϵ1/γx + ϵ1)­DP given the data D (which

is ϵ1/γx­DP (Lemma 3.10)), since the Equation (3.58) does hold for any tuple xe ∈ D.

This is consistent with the parallel composition property in DP [100], in which batches can

be considered disjoint datasets and the optimization of the function on one batch does not

affect the privacy guarantee in any other batch, even the objective function given one batch

can be slightly different from the objective function given any other batch in B. In addition,

∀t ∈ [1, T], the optimization of RBt
(θ1) does not use any additional information from the

original data D. Consequently, the privacy budget is (ϵ1/γx + ϵ1) across T training steps,

following the post­processing property in DP [100] (Result 3).

119

Similarly, we can also prove that optimizing the data reconstruction functionR
B

adv
t

(θ1)

given the DP adversarial examples crafted in Equations (3.48) and (3.49), i.e., xadvj , is also

(ϵ1/γx + ϵ1)­DP given t ∈ [1, T] on the training data D. First, DP adversarial examples

xadvj are crafted from perturbed benign examples xj . As a result, the computation of the

batch Badv

t of DP adversarial examples is 1) (ϵ1/γx)­DP (the post­processing property of

DP [100]), and 2) does not access the original data ∀t ∈ [1, T]. In addition, the computation

of h
1B

adv
t

and the optimization ofR
B

adv
t

(θ1) correspondingly are ϵ1/γ­DP and ϵ1­DP. In fact,

the data reconstruction functionR
B

adv
t

is presented as follows:

R
B

adv
t

(θ1) =
∑

xadvj ∈B
adv
t

[d∑
i=1

(
1

2
θ1ih

adv
j)− xadvj x̃advj

]

=
∑

xadvj ∈B
adv
t

[d∑
i=1

(
1

2
θ1ih

adv
j)− xjx̃advj − µ · sign

(
∇xj
L
(
f(xj, θ), y(xj)

))
x̃advj

]

=
∑

xadvj ∈B
adv
t

[d∑
i=1

(
1

2
θ1ih

adv
j)− xjx̃advj

]
−

∑
xadvj ∈B

adv
t

µ · sign
(
∇xj
L
(
f(xj, θ), y(xj)

))
x̃advj

(3.59)

where hadvj = θT1 x
adv
j , h

adv
j = hadvj + 2

m
Lap(∆R

ϵ1
), and x̃advj = θ1h

adv
j . The right

summation component in Equation (3.59) does not disclose any additional information,

since the sign(·) function is computed from perturbed benign examples (the post­processing

property in DP [100]). Meanwhile, the left summation component has the same form with

RBt
(θ1) in Equation (3.40). Therefore, we can employ the Proof 3.2.4 in Theorem 3.2, by

replacing the coefficientsΦ = {1
2
hi, xi}withΦ = {1

2
hadvj , xj} to prove that the optimization

ofR
B

adv
t

(θ1) is (ϵ1/γx + ϵ1)­DP. As a result, Theorem 3.3 does hold. (Result 4)

In addition to the Result 4, by applying the same analysis in Result 3, we can

further show that the optimization ofRDadv(θ1) is (ϵ1/γx+ ϵ1)­DP given the DP adversarial

120

examplesDadv crafted using the dataD across T training steps, since batches used to created

DP adversarial examples are disjoint and fixed across epochs. It is also straightforward

to conduct the same analysis in Result 2, in order to prove that the computation of the

first affine transformation h
1B

adv
t

= {θT1 xadvj + 2
m
Lap(∆R

ϵ1
)}

xadvj ∈B
adv
t

given the batch of DP

adversarial examples Badv

t , is (ϵ1/γ)­DP with t ∈ [1, T] training steps. This is also true

given the data level Dadv. (Result 5)

Regarding the output layer, the Algorithm 3.3 preserves (ϵ1/γ+ϵ2)­DP in optimizing

the adversarial objective functionL
Bt∪B

adv
t
(θ2) (Theorem 3.4). We apply the same technique

to preserve (ϵ1/γ + ϵ2)­DP across T training steps given disjoint and fixed batches derived

from the private training dataD. In addition, as our objective functionsR and L are always

optimized given two disjoint batches Bt and B
adv
t , the privacy budget used to preserve DP

in these functions is (ϵ1 + ϵ1/γ + ϵ2), following the parallel composition property in DP

[100]. (Result 6)

With the Results 1­6, all the computations and optimizations in the Algorithm 3.3

are DP following the post­processing property in DP [100], by working on perturbed inputs

and perturbed coefficients. The crafting and utilizing processes of DP adversarial examples

based on the perturbed benign examples do not disclose any additional information. The

optimization of our DP adversarial objective function at the output layer is DP to protect the

ground­truth labels. More importantly, the DP guarantee in learning given the whole dataset

level D is equivalent to the DP guarantee in learning on disjoint and fixed batches across

epochs. Consequently, Algorithm 3.3 preserves (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2)­DP in learning

private parameters θ = {θ1, θ2} given the training data D across T training steps. Note

that the ϵ1/γx is counted for the perturbation on the benign examples. Theorem 3.5 does

hold.

121

3.2.6 Certified Robustness

Now, we establish the correlation between our mechanism and certified robustness. In the

inference time, to derive the certified robustness condition against adversarial examples

x+α, i.e., ∀α ∈ lp(1), PixelDP randomizes the function f(x) by injecting robustness noise

σr into either input x or a hidden layer, i.e., x′ = x + Lap(∆
x
r

ϵr
) or h′ = h + Lap(∆

h
r

ϵr
),

where ∆x
r and ∆h

r are the sensitivities of x and h, measuring how much x and h can be

changed given the perturbation α ∈ lp(1) in the input x. Monte Carlo estimation of the

expected values Êf(x), Êlbfk(x), and Êubfk(x) are used to derive the robustness condition

in Equation (3.37).

On the other hand, in our mechanism, the privacy noise σp includes Laplace noise

injected into both input x, i.e., 1
m
Lap(∆R

ϵ1
), and its affine transformation h, i.e., 2

m
Lap(∆R

ϵ1
).

Note that the perturbation ofL2Bt

(
θ2
)
is equivalent toL2Bt

(θ2) =
∑K

k=1

∑
xi
(hπiyikWπk+

1
m
Lap(∆L2

ϵ2
)Wπk). This helps us to avoid injecting the noise directly into the coefficients

hπiyik. The correlation between our DP preservation and certified robustness lies in the

correlation between the privacy noise σp and the robustness noise σr.

We can derive a robustness bound by projecting the privacy noise σp on the scale of

the robustness noise σr. Given the input x, let κ = ∆R
mϵ1

/∆x
r

ϵr
, in our mechanism we have

that: x = x + Lap(κ∆x
r/ϵr). By applying a group privacy size κ [100, 101], the scoring

function f(x) satisfies ϵr­PixelDP given α ∈ lp(κ), or equivalently is ϵr/κ­PixelDP given

α ∈ lp(1), δr = 0. By applying Lemma 3.8, we have

∀k, ∀α ∈ lp(κ) : Efk(x) ≤ eϵrEfk(x+ α),

or ∀k, ∀α ∈ lp(1) : Efk(x) ≤ e
ϵr
κ Efk(x+ α)

With that, we can achieve a robustness condition against lp(κ)­norm attacks, as

follows:

122

Êlbfk(x) > e2ϵr max
i:i ̸=k

Êubfi(x) (3.60)

with the probability ≥ ηx­confidence, derived from the Monte Carlo estimation of

Êf(x). Our mechanism also perturbs h (Equation (3.40)). Given φ = 2∆R
mϵ1

/∆h
r

ϵr
, we further

have h = h + Lap(φ∆
h
r

ϵr
). Therefore, the scoring function f(x) also satisfies ϵr­PixelDP

given the perturbation α ∈ lp(φ). In addition to the robustness to the lp(κ)­norm attacks,

we achieve an additional robustness bound in Equation (3.60) against lp(φ)­norm attacks.

Similar to PixelDP, these robustness conditions can be achieved as randomization processes

in the inference time. They can be considered as two independent and certified defensive

mechanisms applied against two lp­norm attacks, i.e., lp(κ) and lp(φ).

One challenging question here is: “What is the general robustness bound, given κ

and φ?” Intuitively, our model is robust to attacks with α ∈ lp(
κφ
κ+φ

). We leverage the

theory of sequential composition in DP [100] to theoretically answer this question. Given

S independentmechanismsM1, . . . ,MS , whose privacy guarantees are ϵ1, . . . , ϵS­DPwith

α ∈ lp(1). Each mechanismMs, which takes the input x and outputs the value of f(x)with

the Laplace noise only injected to randomize the layer s (i.e., no randomization at any other

layers), denoted as f s(x), is defined as: ∀s ∈ [1, S],Msf(x) : Rd → f s(x) ∈ RK . We aim

to derive a generalized robustness of any composition scoring function f(M1, . . . ,Ms|x) :∏S
s=1Msf(x) bounded in [0, 1], defined as follows:

f(M1, . . . ,MS|x) : Rd →
∏

s∈[1,S]

f s(x) ∈ RK (3.61)

Our setting follows the sequential composition in DP [100]. Thus, we can prove that

the expected value Ef(M1, . . . ,MS|x) is insensitive to small perturbations α ∈ lp(1) in

Lemma 3.12, and we derive our composition of robustness in Theorem 3.6, as follows:

123

Lemma 3.12. Given S independent mechanismsM1, . . . ,MS , which are ϵ1, . . . , ϵS­DP

w.r.t a lp­norm metric, then the expected output value of any sequential function f of them,

i.e., f(M1, . . . ,MS|x) ∈ [0, 1], satisfies:

∀α ∈ lp(1) : Ef(M1, . . . ,MS|x) ≤ e(
∑S

s=1 ϵs)Ef(M1, . . . ,MS|x+ α)

Proof of Lemma 3.12

Proof. Thanks to the sequential composition theory in DP [100], f(M1, . . . ,MS|x) is

(
∑

s ϵs)­DP, since for any O =
∏S

s=1 os ∈
∏S

s=1 f
s(x)(∈ RK), we have that

P
(
f(M1, . . . ,MS|x) = O

)
P
(
f(M1, . . . ,MS|x+ α) = O

) =
P (M1f(x) = o1) . . . P (MSf(x) = oS)

P (M1f(x+ α) = o1) . . . P (MSf(x+ α) = oS)

≤
S∏

s=1

exp(ϵs) = e(
∑S

s=1 ϵs)

As a result, we have

P
(
f(M1, . . . ,MS|x)

)
≤ e(

∑
i ϵi)P

(
f(M1, . . . ,MS|x+ α)

)

The sequential composition of the expected output is as:

124

Ef(M1, . . . ,MS|x) =
∫ 1

0

P
(
f(M1, . . . ,MS|x) > t

)
dt

≤ e(
∑

s ϵs)

∫ 1

0

P
(
f(M1, . . . ,MS|x+ α) > t

)
dt

= e(
∑

s ϵs)Ef(M1, . . . ,MS|x+ α)

Lemma 3.12 does hold.

Theorem3.6. (Composition of Robustness) GivenS independent mechanismsM1, . . . ,MS .

Given any sequential function f(M1, . . . ,MS|x), and let Êlb and Êub are lower and upper

bounds with an η­confidence, for the Monte Carlo estimation of Êf(M1, . . . ,MS|x) =

1
n

∑
n f(M1, . . . ,MS|x)n = 1

n

∑
n(
∏S

s=1 f
s(x)n).

∀x, if ∃k ∈ K : Êlbfk(M1, . . . ,MS|x) >

e2(
∑S

s=1 ϵs)max
i:i ̸=k

Êubfi(M1, . . . ,MS|x), (3.62)

then the predicted label k = argmaxk Êfk(M1, . . . ,MS|x), is robust to adversarial

examples x + α, ∀α ∈ lp(1), with probability ≥ η, by satisfying: Êfk(M1, . . . ,MS|x +

α) > maxi:i ̸=k Êfi(M1, . . . ,MS|x + α), which is the targeted robustness condition in

Equation (3.35).

Proof of Theorem 3.6

Proof. ∀α ∈ lp(1), from Lemma 3.12, with probability ≥ η, we have that

125

Êfk(M1, . . . ,MS|x+ α) ≥ Êfk(M1, . . . ,MS|x)
e(

∑s
s=1 ϵs)

≥ Êlbfk(M1, . . . ,MS|x)
e(

∑S
s=1 ϵs)

(3.63)

In addition, we also have

∀i ≠ k : Êfi:i≠k(M1, . . . ,MS|x+ α) ≤ e(
∑S

s=1 ϵs)Êfi:i ̸=k(M1, . . . ,MS|x)

⇒ ∀i ̸= k : Êfi(M1, . . . ,MS|x+ α) ≤ e(
∑S

s=1 ϵs)max
i:i ̸=k

Êubfi(M1, . . . ,MS|x) (3.64)

Using the hypothesis (Equation (3.62)) and the first inequality (Equation (3.63)), we

have that

Êfk(M1, . . . ,MS|x+ α) >
e2(

∑S
s=1 ϵs)maxi:i ̸=k Êubfi(M1, . . . ,MS|x)

e(
∑S

s=1 ϵs)

> e(
∑S

s=1 ϵs)max
i:i ̸=k

Êubfi(M1, . . . ,MS|x)

Now, we apply the third inequality (Equation (3.64)), we have that

∀i ̸= k : Êfk(M1, . . . ,MS|x+ α) > Êfi(M1, . . . ,MS|x+ α)

⇔ Êfk(M1, . . . ,MS|x+ α) > max
i:i ̸=k

Êfi(M1, . . . ,MS|x+ α)

The Theorem 3.6 does hold.

126

There is no ηs­confidence for each mechanism s, since we do not estimate the

expected value Êf s(x) independently. To apply the composition of robustness in our

mechanism, the noise injections into the input x and its affine transformation h can be

considered as two mechanismsMx andMh, sequentially applied as (Mh(x),Mx(x)).

WhenMh(x) is applied by invoking f(x) with independent draws in the noise χ2, the

noise χ1 injected into x is fixed; and vice­versa. By applying group privacy [100] with

sizes κ and φ, the scoring functions fx(x) and fh(x), givenMx andMh, are ϵr/κ­DP and

ϵr/φ­DP with α ∈ lp(1). With Theorem 3.6, we have a generalized bound as follows:

Corollary 3.1. (StoBatch Robustness). Given: ∀x, if ∃k ∈ K : Êlbfk(Mh,Mx|x) >

e2ϵr maxi:i ̸=k Êubfi(Mh,Mx|x) (i.e., Equation (3.62)), then the predicted label k of our

function f(Mh,Mx|x) is robust to perturbations α ∈ lp(κφ
κ+φ

) with the probability≥ η, by

satisfying ∀α ∈ lp(κφ
κ+φ

) : Êfk(Mh,Mx|x+ α) > maxi:i ̸=k Êfi(Mh,Mx|x+ α)

Proof of Corollary 3.1

Proof. ∀α ∈ lp(1), by applying Theorem 3.6, we have

Êlbfk(Mh,Mx|x) > e2(
ϵr
κ
+ ϵr

φ
)max
i:i ̸=k

Êubfi(Mh,Mx|x)

> e2(
κ+φ
κφ

)ϵr max
i:i ̸=k

Êubfi(Mh,Mx|x) = e2(ϵr/
κφ
κ+φ

)max
i:i ̸=k

Êubfi(Mh,Mx|x)

Furthermore, by applying group privacy, we have that

∀α ∈ lp(
κφ

κ+ φ
) : Êlbfk(Mh,Mx|x) > e2ϵr max

i:i ̸=k
Êubfi(Mh,Mx|x) (3.65)

127

By applying Proof 3.2.6, it is straight to have

∀α ∈ lp(
κφ

κ+ φ
) : Êfk(Mh,Mx|x+ α) > max

i:i ̸=k
Êfk(Mh,Mx|x+ α)

with probability ≥ η. Corollary 3.1 does hold.

Comparedwith state­of­the­art robustness analysis [70, 101], in which either the input

space or the latent space are randomized, the advantage of our robustness bound is the

composition of different levels of robustness in both input and latent spaces.

3.2.7 Verified Inference

At the inference time, we implement a verified inference (Algorithm 3.4, Subsection 3.2.3)

to return a robustness size guarantee for each example x, i.e., the maximal value of κφ
κ+φ

,

for which the robustness condition in Corollary 3.1 holds. Maximizing κφ
κ+φ

is equivalent

to maximizing the robustness epsilon ϵr, which is the only parameter controlling the size of
κφ
κ+φ

; since, all the other hyper­parameters, i.e., ∆R, m, ϵ1, ϵ2, θ1, θ2, ∆x
r , and ∆h

r are fixed

given a well­trained model f(x):

(
κφ

κ+ φ
)max = max

ϵr

∆Rϵr
mϵ1(∆x

r +∆h
r/2)

s.t. Êlbfk(x) > e2ϵr max
i:i ̸=k

Êubfi(x) (i.e., Equation (3.62)) (3.66)

The prediction on an example x is robust to attacks up to (κφ
κ+φ

)max. The failure

probability 1­η can be made arbitrarily small by increasing the number of invocations

of f(x), with independent draws in the noise. Similar to [101], Hoeffding’s inequality

is applied to bound the approximation error in Êfk(x) and to search for the robustness

128

bound (κφ
κ+φ

)max. We use the following sensitivity bounds ∆h
r = β∥θ1∥∞ where ∥θ1∥∞

is the maximum 1­norm of θ1’s rows, and ∆x
r = µd for l∞ attacks. In the Monte Carlo

Estimation of Êf(x), we also propose a new method to draw independent noise to control

the distribution shifts between training and inferring, in order to improve the verified

inference effectiveness, without affecting the DP protection and the robustness bounds.

Details of this method is described in the following subsection.

Algorithm 3.4 Verified Inferring
Input: (an input x, attack size µa)
1: Compute robustness size (κφ

κ+φ
)max in Equation (3.66) of x

2: if (κφ
κ+φ

)max ≥ µa then
3: Return isRobust(x) = True, label k, (κφ

κ+φ
)max

4: else
5: Return isRobust(x) = False, label k, (κφ

κ+φ
)max

Effective Monte Carlo Estimation of Êf(x) Recall that the Monte Carlo estimation

is applied to estimate the expected value Êf(x) = 1
n

∑
n f(x)n, where n is the number

of invocations of f(x) with independent draws in the noise, i.e., 1
m
Lap(0, ∆R

ϵ1
) and

2
m
Lap(0, ∆R

ϵ1
) in our case. When ϵ1 is small (indicating a strong privacy protection), it

causes a notably large distribution shift between training and inference, given independent

draws of the Laplace noise.

In fact, let us denote a single draw in the noise as χ1 = 1
m
Lap(0, ∆R

ϵ1
) used to

train the function f(x), the model converges to the point that the noise χ1 and 2χ2 need

to be correspondingly added into x and h in order to make correct predictions. χ1 can

be approximated as Lap(χ1, ϱ), where ϱ → 0. It is clear that independent draws of the

noise 1
m
Lap(0, ∆R

ϵ1
) have distribution shifts with the fixed noise χ1 ≊ Lap(χ1, ϱ). These

distribution shifts can also be large, when noise is large. We have experienced that these

distribution shifts in having independent draws of noise to estimate Êf(x) can notably

degrade the inference accuracy of the scoring function, when privacy budget ϵ1 is small

resulting in a large amount of noise injected to provide strong privacy guarantees.

129

To address this, one solution is to increase the number of invocations of f(x), i.e.,

n, to a huge number per prediction. However, this is impractical in real­world scenarios.

We propose a novel way to draw independent noise following the distribution of χ1 +

1
m
Lap(0, ∆R

ϵ1
/ψ) for the input x and 2χ2 +

2
m
Lap(0, ∆R

ϵ1
/ψ) for the affine transformation

h, where ψ is a hyper­parameter to control the distribution shifts. This approach works

well and does not affect the DP bounds and the certified robustness condition, since:

(1) Our mechanism achieves both DP and certified robustness in the training process; and

(2) It is clear that Êf(x) = 1
n

∑
n f(x)n = 1

n

∑
n g

(
a(x + χ1 +

1
m
Lapn(0,

∆R
ϵ1
/ψ), θ1) +

2χ2 +
2
m
Lapn(0,

∆R
ϵ1
/ψ), θ2

)
, where Lapn(0, ∆R

ϵ1
/ψ) is the n­th draw of the noise. When

n → ∞, Êf(x) will converge to 1
n

∑
n g

(
a(x + χ1, θ1) + 2χ2, θ2

)
, which aligns well

with the convergence point of the scoring function f(x). Injecting χ1 and 2χ2 to x and

h during the estimation of Êf(x) yields better performance, without affecting the DP and

the composition robustness bounds.

3.2.8 Distributed Training

In the vanilla iterative batch­by­batch training for DP DNNs, at each step, only one batch

of examples can be used to train our model, so that the privacy loss can be computed

[74, 73, 78, 79]. Parameters θ1 and θ2 are independently updated (Lines 4­12, Algorithm

3.3). This prevents us from applying practical adversarial training [187, 80], in which

distributed training using synchronized SGD on many GPUs (e.g., 128 GPUs) is used to

scale adversarial training to large DNNs. Each GPU processes a mini­batch of 32 images

(i.e., the total batch size is 128× 32 = 4, 096).

To overcome this, a well­applied technique [73] is to fine­tune a limited number of

layers, such as a fully connected layer and the output layer, under DP of a pre­trained model,

i.e., VGG16, trained over a public and large dataset, e.g., ImageNet, in order to handle

simpler tasks on smaller private datasets, e.g., CIFAR­10. Although this approach works

well, there are several utility and security concerns: (1) Suitable public data may not always

130

be available, especially for highly sensitive data; (2) Trojans can be implanted in the pre­

trained model for backdoor attacks [188]; and (3) Public data can be poisoned [189]. Fine­

tuning a limited number of layers may not be secure; while fine­tuning an entire of a large

pre­trained model iteratively batch­by­batch is still inefficient.

To address this bottleneck, we leverage the training recipe of [187, 80] to propose a

distributed training algorithm, called StoBatch (Figure 3.6b), in order to efficiently train

large DP DNNs in adversarial learning, without affecting the DP protection (Algorithm

3.5, Subsection 3.2.3). In StoBatch, fixed and disjoint batches B are distributed toN/(2m)

local trainers, each of which have two batches {Bi1, Bi2} randomly picked from B with

i ∈ [1, N/(2m)] (Line 4, Algorithm 3.5). At each training step t, we randomly pick

N local trainers, each of which gets the latest global parameters θ from the parameter

server. A local trainer i will compute the gradients ∇iθ1 and ∇iθ2 to optimize the

DP objective functions R and L using its local batch Bi1 and ensemble DP adversarial

examples crafted from Bi2 (Lines 5­14, Algorithm 3.5). The gradients will be sent back

to the parameter server for a synchronized SGD (Lines 15­16, Algorithm 3.5), as follows:

θ1 ← θ1 − ϱt
N
∑

i∈[1,N]∇iθ1, θ2 ← θ2 − ϱt
N
∑

i∈[1,N]∇iθ2. This enables us to train large

DNNs with our DP adversarial learning, by training from multiple batches simultaneously

with more adversarial examples, without affecting the DP guarantee in Theorem 3.5; since

the optimization of one batch does not affect the DP protection at any other batch and at the

dataset level D across T training steps (Theorem 3.5).

In addition, the average errors of our approximation functions are always bounded,

and are independent of the number of data instances N in D (details described in the

following subsection). This further ensures that our functions can be applied in large

datasets.

Our approach can be extended into two different complementary scenarios: (1) Dis­

tributed training for each local trainer i, in which the batches {Bi1, Bi2} can be located

acrossM GPUs to efficiently compute the gradients∇iθ1 =
1
M
∑

j∈[1,M]∇i,jθ1 and∇iθ2 =

131

Algorithm 3.5 StoBatch Training
Input: Database D, loss function L, parameters θ, batch size m, learning rate ϱt, privacy
budgets: ϵ1 and ϵ2, robustness parameters: ϵr, ∆x

r , and ∆h
r , adversarial attack size µa, the

number of invocations n, ensemble attacks A, parameters ψ and ξ, the size |hπ| of hπ, a
number of N random local trainers (N ≤ N/(2m))
1: Draw Noise χ1 ← [Lap(∆R

ϵ1
)]d, χ2 ← [Lap(∆R

ϵ1
)]β , χ3 ← [Lap(∆L2

ϵ2
)]|hπ |

2: Randomly Initialize θ = {θ1, θ2}, B = {B1, . . . , BN/m} s.t. ∀B ∈ B : B is a batch
with the sizem,B1∩. . .∩BN/m = ∅, andB1∪. . .∪BN/m = D, B = {B1, . . . , BN/m}
where ∀i ∈ [1, N/m] : Bi = {x← x+ χ1

m
}x∈Bi

3: Construct a deep network f with hidden layers {h1 + 2χ2

m
, . . . , hπ}, where hπ is the

last hidden layer
4: Distribute fixed and disjoint batches B to N/(2m) local trainers, each of which have

two batches {Bi1, Bi2} randomly picked from B with i ∈ [1, N/(2m)]
5: for t ∈ [T] do
6: Randomly Pick N local trainers, each of which Gets the latest global parameters
θ from the parameter server

7: for i ∈ [1,N] do
8: Assign Bt,i ← Bi1

9: Ensemble DP Adversarial Examples:
10: Draw Random Perturbation Value µt ∈ (0, 1], Assign Badv

t,i ← ∅
11: for l ∈ A do
12: Take the next batch Ba ⊂ Bi2 with the sizem/|A|
13: ∀xj ∈ Ba: Craft xadvj by using attack algorithm A[l] with l∞(µt), B

adv
t,i ←

B
adv
t,i ∪ xadvj

14: Compute∇iθ1 ← ∇θ1RBt,i∪B
adv
t,i
(θ1),∇iθ2 ← ∇θ2LBt,i∪B

adv
t,i
(θ2)with the noise

χ3

m
15: Send ∇iθ1 and∇iθ2 to the parameter server
16: Descent: θ1 ← θ1 − ϱt

1
N
∑

i∈[1,N]∇iθ1; θ2 ← θ2 − ϱt
1
N
∑

i∈[1,N]∇iθ2, on the
parameter server
Output: ϵ = (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2)­DP parameters θ = {θ1, θ2}, robust model with
an ϵr budget

132

1
M
∑

j∈[1,M]∇i,jθ2; and (2) Federated training, given each local trainer can be considered as

an independent party. In this setting, an independent party can further have different sizes

of batches. As long as the global sensitivities ∆R and ∆L2 are the same for all the parties,

the DP guarantee in Theorem 3.5 does hold givenD be the union of all local datasets from

all the parties. This can be achieved by nomalizing all the inputs x to be in [−1, 1]d. This

is a step forward compared with the classical federated learning [190]. We focus on the

distributed training setting in this work, and reserve the federated learning scenarios for

future exploration.

Approximation Error Bounds To compute how much error our polynomial approx­

imation approaches (i.e., truncated Taylor expansions), R̃Bt(θ1) (Equation (3.39)) and

LBt

(
θ2
)
, incur, we directly apply Lemma 4 in [60], Lemma 3 in [161], and the well­known

error bound results in [164]. Note that R̃Bt(θ1) is the 1st­order Taylor series and LBt

(
θ2
)

is the 2nd­order Taylor series following the implementation of [191]. Let us closely follow

[60, 161, 164] to adapt their results into our scenario, as follows:

Given the truncated function R̃Bt(θ1) =
∑

xi∈Bt

∑d
j=1

∑2
l=1

∑1
r=0

F(r)
lj (0)

r!

(
θ1jhi

)r,
the original Taylor polynomial function R̂Bt(θ1) =

∑
xi∈Bt

∑d
j=1

∑∞
l=1

∑1
r=0

F(r)
lj (0)

r!

(
θ1jhi

)r,
the average error of the approximation is bounded as

1

|Bt|
|R̂Bt(θ̃1)− R̂Bt(θ̂1)| ≤

4e× d
(1 + e)2

(3.67)

1

|Bt|
|L̂Bt(θ̃2)− L̂Bt(θ̂2)| ≤

e2 + 2e− 1

e(1 + e)2
×K (3.68)

where θ̂1 = argminθ1 R̂Bt(θ1), θ̃1 = argminθ1 R̃Bt(θ1), L̂Bt(θ2) is the original

Taylor polynomial function of
∑

xi∈Bt
L
(
f(xi, θ2), yi

)
, θ̂2 = argminθ2 L̂Bt(θ2), and θ̃2 =

argminθ2 LBt(θ2).

133

Proof. Let U = maxθ1
(
R̂Bt(θ1)− R̃Bt(θ1)

)
and S = minθ1

(
R̂Bt(θ1)− R̃Bt(θ1)

)
.

We have that U ≥ R̂Bt(θ̃1)−R̃Bt(θ̃1) and ∀θ∗1 : S ≤ R̂Bt(θ
∗
1)−R̃Bt(θ

∗
1). Therefore,

we have

R̂Bt(θ̃1)− R̃Bt(θ̃1)− R̂Bt(θ
∗
1) + R̃Bt(θ

∗
1) ≤ U − S (3.69)

⇔R̂Bt(θ̃1)− R̂Bt(θ
∗
1) ≤ U − S +

(
R̃Bt(θ̃1)− R̃Bt(θ

∗
1)
)

(3.70)

In addition, R̃Bt(θ̃1)− R̃Bt(θ
∗
1) ≤ 0, it is straightforward to have:

R̂Bt(θ̃1)− R̂Bt(θ
∗
1) ≤ U − S (3.71)

If U ≥ 0 and S ≤ 0 then we have:

|R̂Bt(θ̃1)− R̂Bt(θ
∗
1)| ≤ U − S (3.72)

Equation (3.72) holds for every θ∗1, including θ̂1. Equation (3.72) shows that the error

incurred by truncating the Taylor series approximate function depends on the maximum and

minimum values of R̂Bt(θ1)− R̃Bt(θ1). This is consistent with [60, 161]. To quantify the

magnitude of the error, we rewrite R̂Bt(θ1)− R̃Bt(θ1) as:

R̂Bt(θ1)− R̃Bt(θ1) =
d∑

j=1

(
R̂Bt(θ1j)− R̃Bt(θ1j)

)
(3.73)

=
d∑

j=1

(|Bt|∑
i=1

2∑
l=1

∞∑
r=3

F(r)
lj (zlj)

r!

(
glj(xi, θ1j)− zlj

)r) (3.74)

134

where g1j(xi, θ1j) = θ1jhi and g2j(xi, θ1j) = θ1jhi.

By looking into the remainder of Taylor expansion for each j (i.e., following

[60, 164]), with zj ∈ [zlj − 1, zlj + 1], 1
|Bt|

(
R̂Bt(θ1j) − R̃Bt(θ1j)

)
must be in the

interval
[∑

l

minzj F
(2)
lj (zj)(zj−zlj)2

2!
,
∑

l

maxzj F
(2)
lj (zj)(zj−zlj)2

2!

]
. If

∑
l

maxzj F
(2)
lj (zj)(zj−zlj)2

2!
≥

0 and
∑

l

minzj F
(2)
lj (zj)(zj−zlj)2

2!
≤ 0, then we have that | 1

|Bt|

(
R̂Bt(θ1) − R̃Bt(θ1)

)
| ≤∑d

j=1

∑
l

maxzj F
(2)
lj (zj)(zj−zlj)2−minzj F

(2)
lj (zj)(zj−zlj)2

2!
. This can be applied to the case of our

auto­encoder, as follows:

For the functions F1j(zj) = xij log(1 + e−zj) and F2j(zj) = (1 − xij) log(1 + ezj),

we have F(2)
1j (zj) =

xije
−zj

(1+e−zj)2
and F(2)

2j (zj) = (1 − xij)
ezj

(1+ezj)2
. It can be verified that

argminzj F
(2)
1j (zj) =

−e
(1+e)2

< 0, argmaxzj F
(2)
1j (zj) =

e
(1+e)2

> 0, argminzj F
(2)
2j (zj) = 0,

and argmaxzj F
(2)
2j (zj) = 2e

(1+e)2
> 0. Thus, the average error of the approximation is at

most:

1

|Bt|
|R̂Bt(θ̃1)− R̂Bt(θ̂1)| ≤

[(e

(1 + e)2
− −e

(1 + e)2
)
+

2e

(1 + e)2

]
× d =

4e× d
(1 + e)2

(3.75)

Consequently, Equation (3.67) does hold. Similarly, by looking into the remainder

of Taylor expansion for each label k, Equation (3.68) can be proved straightforwardly. In

fact, by using the 2nd­order Taylor series with K categories, we have that: 1
|Bt| |L̂Bt(θ̃2)−

L̂Bt(θ̂2)| ≤ e2+2e−1
e(1+e)2

×K.

3.2.9 Experiments

Model Configurations The MNIST database consists of handwritten digits [47]. Each

example is a 28× 28 size gray­level image. The CIFAR­10 dataset consists of color images

belonging to 10 classes, i.e., airplanes, dogs, etc. The dataset is split into 50,000 training

samples and 10,000 test samples [99]. Tiny Imagenet (64× 64× 3) has 200 classes. Each

class has 500 training images, 50 validation images, and 50 test images. We used the first

135

thirty classes with data augmented, including horizontal flip and random brightness, in the

Tiny ImageNet dataset in our experiment. In general, the dataset is split into 45,000 training

samples and 1,500 test samples [102, 192]. The experiments were conducted on a server of

4 GPUs, each of which is an NVIDIA TITAN Xp, 12 GB with 3,840 CUDA cores. All the

models share the same structure, consisting of 2 and 3 convolutional layers, respectively

for MNIST and CIFAR­10 datasets, and a ResNet18 model for the Tiny ImageNet dataset.

Both fully­connected and convolution layers can be applied in the representation

learning model a(x, θ1). Given convolution layer, the computation of each feature map

needs to be DP; since each of them independently reads a local region of input neurons.

Therefore, the sensitivity ∆R can be considered the maximal sensitivity given any single

feature map in the first affine transformation layer. In addition, each hidden neuron can

only be used to reconstruct a unit patch of input units. That results in d (Lemma 3.9) being

the size of the unit patch connected to each hidden neuron, e.g., d = 9 given a 3 × 3 unit

patch, and β is the number of hidden neurons in a feature map.

MNIST:We used two convolutional layers (32 and 64 features). Each hidden neuron

connects with a 5x5 unit patch. A fully­connected layer has 256 units. The batch size m

was set to 2,499, ξ = 1, ψ = 2. I­FGSM, MIM, and MadryEtAl were used to draft l∞(µ)

adversarial examples in training, with Tµ = 10. Learning rate ϱt was set to 1e− 4. Given a

predefined total privacy budget ϵ, ϵ2 is set to be 0.1, and ϵ1 is computed as: ϵ1 = ϵ−ϵ2
(1+1/γ+1/γx)

.

This will guarantee that (ϵ1+ϵ1/γx+ϵ1/γ+ϵ2) = ϵ. ∆R = (142+2)×25 and∆L2 = 2×256.

The number of Monte Carlo sampling for certified inference n is set to 2,000.

CIFAR­10: We used three convolutional layers (128, 128, and 256 features). Each

hidden neuron connects with a 4x4 unit patch in the first layer, and a 5x5 unit patch in

other layers. One fully­connected layer has 256 neurons. The batch size m was set to

1,851, ξ = 1.5, ψ = 10, and Tµ = 3. The ensemble of attacks A includes I­FGSM,

MIM, and MadryEtAl. We use data augmentation, including random crop, random flip,

and random contrast. Learning rate ϱt was set to 5e − 2. In the CIFAR­10 dataset, ϵ2 is

136

set to (1 + r/3.0) and ϵ1 = (1 + 2r/3.0)/(1 + 1/γ + 1/γx), where r ≥ 0 is a ratio to

control the total privacy budget ϵ in our experiment. For instance, given r = 0, we have

that ϵ = (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2) = 2. ∆R = 3× (142 + 2)× 16 and ∆L2 = 2× 256. N

andM are set to 1 and 4 in the distributed training. The number of Monte Carlo sampling

for certified inference n is set to 1,000.

Tiny ImageNet: We used a ResNet­18 model. Each hidden neuron connects with a

7x7 unit patch in the first layer, and 3x3 unit patch in other layers. The batch size m was

set to 4,500, ξ = 1.5, ψ = 10, and Tµ = 10. The ensemble of attacks A includes I­FGSM,

MIM, and MadryEtAl. Learning rate ϱt was set to 1e − 2. In the Tiny ImageNet dataset,

ϵ2 is set to 1 and ϵ1 = (1 + r)/(1 + 1/γ + 1/γx), where r ≥ 0 is a ratio to control the total

privacy budget ϵ in our experiment. ∆R = 3× (322 + 2)× 49 and ∆L2 = 2× 256. N and

M are set to 1 and 20 in the distributed training. The number of Monte Carlo sampling for

certified inference n is set to 1,000.

Experimental Results In this subsection, we will show and explain the experimental

results on MNIST and CIFAR datasets, and with the scenario of under strong attack.

Results on the MNIST Dataset Figure 3.7 illustrates the conventional accuracy of each

model as a function of the privacy budget ϵ on the MNIST dataset under l∞(µa)­norm

attacks, with µa = 0.2 (a pretty strong attack). It is clear that our StoBatch outperforms

AdLM, DP­SGD, SecureSGD, and SecureSGD­AGM, in all cases, with p < 1.32e−4. On

average, we register a 22.36% improvement over SecureSGD (p < 1.32e − 4), a 46.84%

improvement over SecureSGD­AGM (p < 1.83e− 6), a 56.21% improvement over AdLM

(p < 2.05e − 10), and a 77.26% improvement over DP­SGD (p < 5.20e − 14), given

our StoBatch mechanism. AdLM and DP­SGD achieve the worst conventional accuracies.

There is no guarantee provided in AdLM and DP­SGD. Thus, the accuracy of the AdLM

and DPSGD algorithms seem to show no effect against adversarial examples, when the

137

privacy budget is varied. This is in contrast to our StoBatch model, the SecureSGD model,

and the SecureSGD­AGMmodel, whose accuracies are proportional to the privacy budget.

When the privacy budget ϵ = 0.2 (a tight DP protection), there are significant

drops, in terms of conventional accuracy, given the baseline approaches. By contrast,

our StoBatch mechanism only shows a small degradation in the conventional accuracy

(6.89%, from 89.59% to 82.7%), compared with a 37% drop in SecureSGD (from 78.64%

to 41.64%), and a 32.89% drop in SecureSGD­AGM (from 44.1% to 11.2%) on average,

when the privacy budget ϵ goes from 2.0 to 0.2. At ϵ = 0.2, our StoBatch mechanism

achieves 82.7%, compared with 11.2% and 41.64% correspondingly for SecureSGD­AGM

and SecureSGD. This is an important result, showing the ability to offer tight DP protections

under adversarial example attacks in our model, compared with existing algorithms.

Figure 3.9 presents the conventional accuracy of each model as a function of the

attack size µa on the MNIST dataset, under a strong DP guarantee, ϵ = 0.2. Our

StoBatch mechanism outperforms the baseline approaches in all cases. On average, our

StoBatch model improves 44.91% over SecureSGD (p < 7.43e − 31), a 61.13% over

SecureSGD­AGM (p < 2.56e − 22), a 52.21% over AdLM (p < 2.81e − 23), and

a 62.20% over DP­SGD (p < 2.57e − 22). More importantly, our StoBatch model is

resistant to different adversarial example algorithms with different attack sizes. When

µa ≥ 0.2, AdLM, DP­SGD, SecureSGD, and SecureSGD­AGM become defenseless. We

further register significantly drops in terms of accuracy, when µa is increased from 0.05 (a

weak attack) to 0.6 (a strong attack), i.e., 19.87% on average given our StoBatch, across all

attacks, compared with 27.76% (AdLM), 29.79% (DP­SGD), 34.14% (SecureSGD­AGM),

and 17.07% (SecureSGD).

Figure 3.11 demonstrates the certified accuracy as a function of µa. The privacy

budget is set to 1.0, offering a reasonable privacy protection. In PixelDP, the construction

attack bound ϵr is set to 0.1, which is a pretty reasonable defense. With (small perturbation)

µa ≤ 0.2, PixelDP achieves better certified accuracies under all attacks; since PixelDP does

138

not preserve DP to protect the training data, compared with other models. Meanwhile, our

StoBatch model outperforms all the other models when µa ≥ 0.3, indicating a stronger

defense to more aggressive attacks. More importantly, our StoBatch has a consistent

certified accuracy to different attacks given different attack sizes, compared with baseline

approaches. In fact, when µa is increased from 0.05 to 0.6, our StoBatch shows a small

drop (11.88% on average, from 84.29%(µa = 0.05) to 72.41%(µa = 0.6)), compared

with a huge drop of the PixelDP, i.e., from 94.19%(µa = 0.05) to 9.08%(µa = 0.6) on

average under I­FGSM, MIM, and MadryEtAl attacks, and to 77.47%(µa = 0.6) under

FGSM attack. Similarly, we also register significant drops in terms of certified accuracy

for SecureSGD (78.74%, from 86.74% to 7.99%) and SecureSGD­AGM (81.97%, from

87.23% to 5.26%) on average. This is promising.

Results on the CIFAR­10 Dataset Results on the CIFAR­10 dataset further strengthen

our observations. In Figure 3.8, our StoBatch clearly outperforms baseline models in all

cases (p < 6.17e − 9), especially when the privacy budget is small (ϵ < 4), yielding

strong privacy protections. On average conventional accuracy, our StoBatch mechanism

has an improvement of 10.42% over SecureSGD (p < 2.59e − 7), an improvement of

14.08% over SecureSGD­AGM (p < 5.03e − 9), an improvement of 29.22% over AdLM

(p < 5.28e − 26), and a 14.62% improvement over DP­SGD (p < 4.31e − 9). When the

privacy budget is increased from 2 to 10, the conventional accuracy of our StoBatch model

increases from 42.02% to 46.76%, showing a 4.74% improvement on average. However,

the conventional accuracy of our model under adversarial example attacks is still low, i.e.,

44.22% on average given the privacy budget at 2.0. This opens a long­term research avenue

to achieve better robustness under strong privacy guarantees in adversarial learning.

The accuracy of our model is consistent given different attacks with different adver­

sarial perturbations µa under a rigorous DP protection (ϵ = 2.0), compared with baseline

approaches (Figure 3.10). In fact, when the attack size µa increases from 0.05 to 0.5, the

139

conventional accuracies of the baseline approaches are remarkably reduced, i.e., a drop of

25.26% on average given the most effective baseline approach, SecureSGD. Meanwhile,

there is a much smaller degradation (4.79% on average) in terms of the conventional

accuracy observed in our StoBatch model. Our model also achieves better accuracies

compared with baseline approaches in all cases (p < 8.2e− 10). Figure 3.12 further shows

that our StoBatch model is more accurate than baseline approaches (i.e., ϵr is set to 0.1 in

PixelDP) in terms of certified accuracy in all cases, with a tight privacy budget set to 2.0

(p < 2.04e− 18). We register an improvement of 21.01% in our StoBatch model given the

certified accuracy over SecureSGD model, which is the most effective baseline approach

(p < 2.04e− 18).

Scalability under Strong Iterative Attacks First, we scale our model in terms of

adversarial training in the CIFAR­10 dataset, in which the number of iterative attack steps

is increased from Tµ = 3 to Tµ = 200 in training, and up to Ta = 2,000 in testing. Note that

the traditional iterative batch­by­batch DP adversarial training (Algorithm 3.3) is nearly

infeasible in this setting, taking over 30 days for one training with 600 epochs. Thanks

to the parallel and distributed training, our StoBatch only takes ≊ 3 days to finish the

training. More importantly, our StoBatch achieves consistent conventional and certified

accuracies under strong iterative attacks with Ta = 1, 000, compared with the best baseline,

i.e., SecureSGD (Figure 3.13). Across attack sizes µa ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5} and

steps Ta ∈ {100, 500, 1000, 2000}, on average, our StoBatch achieves 44.87±1.8% and

42.18±1.8% in conventional and certified accuracies, compared with 29.47±12.5% and

20±6.1% of SecureSGD (p < 1.05e− 9).

We achieve a similar improvement over the Tiny ImageNet, i.e., following [192],

with a ResNet18model, i.e., a larger dataset on a larger network (Figure 3.14). On average,

across attack sizesµa ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5} and stepsTa ∈ {100, 500, 1000, 2000},

our StoBatch achieves 29.78±4.8% and 28.31±1.58% in conventional and certified

140

accuracies, compared with 8.99±5.95% and 8.72±5.5% of SecureSGD (p < 1.55e− 42).

Key observations (1) Incorporating ensemble adversarial learning into DP preservation,

tightened sensitivity bounds, a random perturbation sizeµt at each training step, and compo­

sition robustness bounds in both input and latent spaces does enhance the consistency,

robustness, and accuracy of DP model against different attacks with different levels of

perturbations. These are key advantages of our mechanism; (2) As a result, our StoBatch

model outperforms baseline algorithms, in terms of conventional and certified accuracies in

most of the cases. It is clear that existing DP­preserving approaches have not been designed

to withstand against adversarial examples; and (3) Our StoBatch training can help us to

scale our mechanism to larger DP DNNs and datasets with distributed adversarial learning,

without affecting the model accuracies and DP protections.

(a) I­FGSM attacks (b) FGSM attacks

(c) MIM attacks (d) MadryEtAl attacks
Figure 3.7 Conventional accuracy on the MNIST dataset given ϵ, under l∞(µa = 0.2) and
Ta = 10.

141

(a) I­FGSM attacks (b) FGSM attacks

(c) MIM attacks (d) MadryEtAl attacks
Figure 3.8 Conventional accuracy on the CIFAR­10 dataset given ϵ, under l∞(µa = 0.2)
and Ta = 3.

142

(a) I­FGSM attacks (b) FGSM attacks

(c) MIM attacks (d) MadryEtAl attacks
Figure 3.9 Conventional accuracy on the MNIST dataset given µa (ϵ = 0.2, tight DP
protection) and Ta = 10.

143

(a) I­FGSM attacks (b) FGSM attacks

(c) MIM attacks (d) MadryEtAl attacks
Figure 3.10 Conventional accuracy on the CIFAR­10 dataset given µa (ϵ = 2, tight DP
protection) and Ta = 3.

144

(a) I­FGSM attacks (b) FGSM attacks

(c) MIM attacks (d) MadryEtAl attacks
Figure 3.11 Certified accuracy on the MNIST dataset. ϵ is set to 1.0 (tight DP protection)
and Ta = 10.

145

(a) I­FGSM attacks (b) FGSM attacks

(c) MIM attacks (d) MadryEtAl attacks
Figure 3.12 Certified accuracy on the CIFAR­10 dataset. ϵ is set to 2 (tight DP protection)
and and Ta = 3.

146

(a) Conventional Accuracy (Ta = 1, 000) (b) Certified Accuracy (Ta = 1, 000)

(c) Conventional Accuracy (Ta = 2, 000) (d) Certified Accuracy (Ta = 2, 000)
Figure 3.13 Accuracy on the CIFAR­10 dataset, under Strong Iterative Attacks (Ta =
1, 000; 2, 000). ϵ is set to 2 (tight DP protection).

147

(a) Conventional Accuracy (Ta = 1, 000) (b) Certified Accuracy (Ta = 1, 000)

(c) Conventional Accuracy (Ta = 2, 000) (d) Certified Accuracy (Ta = 2, 000)
Figure 3.14 Accuracy on the Tiny ImageNet dataset, under Strong Iterative Attacks (Ta =
1, 000; 2, 000). ϵ is set to 5.

148

3.2.10 Conclusion

In this part of the dissertation, we established a connection among DP preservation to

protect the training data, adversarial learning, and certified robustness. A sequential

composition robustness was introduced to generalize robustness given any sequential and

bounded function of independent defensive mechanisms in both input and latent spaces.

We addressed the trade­off among model utility, privacy loss, and robustness by tightening

the global sensitivity bounds. We further developed a stochastic batch training mechanism

to bypass the vanilla iterative batch­by­batch training in DP DNNs. The average errors

of our approximation functions are always bounded by constant values. Last but not

least, a new Monte Carlo Estimation was proposed to stabilize the estimation of the

robustness bounds. Rigorous experiments conducted on benchmark datasets shown that

our mechanism significantly enhances the robustness and scalability of DP DNNs. In

future work, we will test our algorithms and models in the Baidu Fedcube platform [193].

In addition, we will evaluate our robustness bounds against synergistic attacks, in which

adversarial examples can be combined with other attacks, such as Trojans [194, 188], to

create more lethal and stealthier threats [195].

3.3 Consistently Bounded Differential Privacy in Lifelong Learning

3.3.1 Background

Let us first revisit L2M with A­gem and DP. In L2M, we learn a sequence of tasks T =

{t1, . . . , tm} one by one, such that the learning of each new task will not forget the models

learned for the previous tasks. LetDi is the dataset of the i­th task. Each tuple contains data

x ∈ [−1, 1]d and a ground­truth label y ∈ ZK , which is a one­hot vector of K categorical

outcomes y = {y1, . . . , yK}. A single true class label yx ∈ y given x is assigned to only

one of the K categories. All the training sets Di are non­overlapping; that is, an arbitrary

input (x, y) belongs to only one Di, i.e., ∃!i ∈ [1,m] : (x, y) ∈ Di (x ∈ Di for simplicity).

On input x and parameters θ, a model outputs class scores f : Rd → RK that map inputs

149

x to a vector of scores f(x) = {f1(x), . . . , fK(x)} s.t. ∀k ∈ [1, K] : fk(x) ∈ [0, 1] and∑K
k=1 fk(x) = 1. The class with the highest score is selected as the predicted label for x,

denoted as y(x) = maxk∈K fk(x). A loss function L(f(θ, x), y) presents the penalty for

mismatching between the predicted values f(θ, x) and original values y.

Lifelong Learning Given the current task τ (≤ m), let us denote Tτ = {t1, . . . , tτ−1}

is a set of tasks that have been learnt. Although there are different L2M settings, i.e.,

episodic memory [196, 197, 89, 90, 91, 92, 198] and generative memory [93, 94, 95],

we leverage one of the state­of­the­art algorithms, i.e., A­gem [54], to demonstrate our

privacy preserving mechanism, without loss of the generality of our study. A­gem avoids

catastrophic forgetting by storing an episodic memory Mi for each task ti ∈ Tτ . When

minimizing the loss on the current task τ , a typical approach is to treat the losses on the

episodic memories of tasks i < τ , given by L(f(θ,Mi)) = 1
|Mi|

∑
x∈Mi

L(f(θ, x), y), as

inequality constraints. In A­gem, the L2M objective function is:

θτ = argmin
θ
L
(
f(θτ−1, Dτ)

)
s.t. L

(
f(θτ ,Mτ)

)
≤ L

(
f(θτ−1,Mτ)

)
(3.76)

where Mτ = ∪i<τMi is the episodic memory with M1 = ∅, L
(
f(θτ−1,Mτ)

)
=∑τ−1

i=1 L
(
f(θτ−1,Mi)

)
/(τ − 1), θτ−1 is the values of model parameters θ learned after

training the task tτ−1, indicating that the model will not forget previously learned tasks

{t1, . . . , tτ−1}, given the memory replaying constraint L
(
f(θτ ,Mτ)

)
≤ L

(
f(θτ−1,Mτ)

)
.

At each training step, A­gem [54] has access to only Dτ and Mτ to compute the

projected gradient g̃ (i.e., by addressing the constraint in Equation (3.76)), as follows:

g̃ = g − g⊤gref
g⊤refgref

gref (3.77)

150

where g is the updated gradient computed on a batch sampled from Dτ , gref is an

episodic gradient computed on a batch sampled fromMτ , and g̃ is used to update the model

parameters θ in Equation (3.76).

Differential Privacy guarantees that the released statistical results, computed from

the underlying sensitive data, will be insensitive to the presence or absence of one record

in a dataset. Let us briefly revisit the definition of DP, as follows:

Definition 3.3. (ϵ, δ)­DP [55]. A randomized algorithm A is (ϵ, δ)­DP, if for any two

neighboring databases D and D′ differing at most one tuple, and ∀O ⊆ Range(A), we

have:

Pr[A(D) = O] ≤ eϵPr[A(D′) = O] + δ (3.78)

where ϵ controls the amount by which the distributions induced by D and D′ may

differ, and δ is a broken probability. A smaller ϵ enforces a stronger privacy guarantee.

DP also applies to general metrics ρ(D,D′) ≤ 1, where ρ can be a lp­norms

[165]. DP­preserving algorithms in deep learning can be categorized into three lines:

(1) Introducing noise into parameter gradients [62, 166, 59, 73, 74, 76] for streaming data

[199] and Q­learning [97]; (2) Injecting noise into objective functions [60, 71, 72, 96]; and

(3) Injecting noise into labels [167]. In [200], local DP is used to maintain up­to­date data

statistics over time. These existing mechanisms have not been designed to preserve DP in

L2M. That is different from our goal in this study.

3.3.2 Privacy Risk & Problem Statement

In this subsection, we focus on analyzing the unknown privacy risk in L2M and introduce

a new concept of Lifelong DP.

151

Privacy Risk Analysis One benefit of L2M is that end­users can use an L2Mmodel after

training each task τ , instead of waiting for the model to be trained on all the tasks. Thus, in

practice, the adversary can observe the model parameters θ1, . . . , θm after training each task

t1, . . . , tm. Note that the adversary does not observe any information about the (black­box)

training algorithm. Another key property in an L2Mmodel is the episodic memory, which is

kept to be read at each training step incurring privacy leakage. Therefore, the training data

D and episodic memoryM need to be protected together across tasks. Finally, in L2M, at

each training step for any task ti (i ∈ [1,m]), we only have access toDi andMi, without a

complete view of the cumulative dataset of all the tasks∪i∈[1,m]Di andMm = ∪i∈[1,m−1]Mi.

This is fundamentally different from the traditional definition of a database in both DP (Def.

3.3) and in a model trained on a single task. To cope with this, we propose a new definition

of lifelong neighboring databases, as follows:

Definition 3.4. Lifelong Neighboring Databases. Given any two lifelong databases

datam = {D,M} and data′m = {D′,M′}, where D = {D1, . . . , Dm}, D′ =

{D′1, . . . , D′m}, M = {M1, . . . ,Mm}, M′ = {M′1, . . . ,M′m}, Mi = ∪j∈[1,i−1]Mj ,

and M′i = ∪j∈[1,i−1]M ′
j . datam and data′m are called lifelong neighboring databases if,

∀i ∈ [1,m]: (1) Di and D′i differ at most one tuple; and (2)Mi andM ′
i differ at most one

tuple.

A Naive Mechanism Given the aforementioned properties and Def. 3.4, to preserve DP

in L2M, one can employ the well­applied moment accountant in [62] to train the model f

by injecting Gaussian noise into parameter gradients g and gref in Equation (3.77), with

a privacy budget ϵDτ on each dataset Dτ and ϵMτ on the episodic memory Mτ . The post­

processing property in DP [100] can be applied to guarantee that g̃, computed from the

perturbed g and gref , is also DP. Let us denote this mechanism as A, and Aτ is used to

denote A applied on the task τ . A naive approach is to repeatedly apply A on the sequence

of tasks T, as follows:

152

θτ = argmin
θ
AτL

(
f(θτ−1, Dτ)

)
s.t. L

(
f(θτ ,Mτ)

)
≤ L

(
f(θτ−1,Mτ)

)
(3.79)

Since training data is non­overlapping among tasks, the parallel composition property

in DP [61] can be applied to estimate the total privacy budget consumed across all the tasks:

Pr[A(datam) = {θi}i∈[1,m]] ≤ eϵPr[A(data′m) = {θi}i∈[1,m]] + δ (3.80)

where ϵ = maxi∈[1,m](ϵDi
+ ϵMi

), and ∀i, j ∈ [1,m] : δ is the same for ϵDi
and ϵMj

.

A(datam) indicates that the model is trained from scratch with the mechanism A,

given randomly initiated parameters θ0, i.e., A(θ0, datam). Intuitively, we can achieve the

traditional DP guarantee in L2M, as the participation of a particular data tuple in each dataset

Dτ is protected under the released (ϵ, δ)­DP {θi}i∈[1,m]. However, this approach introduces

unknown privacy risks in each task and in the whole training process, as discussed next.

At each task, the parallel composition property is not sufficient to ensure that the

privacy budget will not be accumulated across tasks (Theorem 3.7). Together with

lacking of a complete view of the cumulative data of all the tasks ∪i∈[1,m]Di and Mm =

∪i∈[1,m−1]Mi, observing the intermediate parameters {θi}i<τ turns the mechanism Aτ into

a list of adaptive DPmechanismsA1, . . . , Aτ sequentially applied on tasks t1, . . . , tτ , where

Ai : (
∏i−1

j=1Rj) × Di → Ri. This is an instance of adaptive composition, which we can

model by using the output of all the previous mechanisms {θi}i<τ as the auxiliary input of

the Aτ mechanism. Therefore, given an outcome θτ ∈ Rτ , the privacy loss c(·) at θτ can

be measured as follows: c(θτ ;Aτ , {θi}i<τ , dataτ , data′τ) = log Pr[Aτ ({θi}i<τ ,dataτ)=θτ]
Pr[Aτ ({θi}i<τ ,data′τ)=θτ]

153

The following theorem shows that: ∀τ ∈ [1,m], the privacy loss is the sum of the

privacy loss consumed in previous tasks.

Theorem 3.7. Let the privacy loss be defined as above. Then, we have that: ∀τ > 1 :

c(θτ ;Aτ , {θi}i<τ , dataτ , data′τ) =
∑τ

i=1 c(θ
i;Ai, {θj}j<i, datai, data′i).

Proof of Theorem 3.7

Proof. Let us denote A1:i as A1, . . . , Ai, we have:

c(θτ ;Aτ , {θi}i<τ , dataτ , data′τ) = log
Pr[Aτ ({θi}i<τ , dataτ) = θτ]

Pr[Aτ ({θi}i<τ , data′τ) = θτ]

= log
τ∏

i=1

Pr[Ai(θ
i−1, datai) = θi|A1:i−1({θj}j<i−1, data1:i−1) = θ1:i−1]

Pr[Ai(θi−1, data′i) = θi|A1:i−1({θj}j<i−1, data′1:i−1) = θ1:i−1]

=
τ∑

i=1

log
Pr[Ai(θ

i−1, datai) = θi|A1:i−1({θj}j<i−1, data1:i−1) = θ1:i−1]

Pr[Ai(θi−1, data′i) = θi|A1:i−1({θj}j<i−1, data′1:i−1) = θ1:i−1]

=
τ∑

i=1

c(θi;Ai, {θj}j<i, datai, data′i)

Consequently, Theorem 3.7 does hold.

As a result of the Theorem 3.7, the privacy budget at each task τ cannot be simply

bounded by maxτ∈[1,m](ϵDτ + ϵMτ), given δ (Equation (3.80)). This problem might be

addressed by replacing the max function in Equation (3.80) with a summation function:

ϵ =
∑

τ∈[1,m](ϵDτ + ϵMτ), to compute the upper bound of the privacy budget for an entire of

the continual learning process. However, the challenging issues in bounding the privacy risk

is still the same, centering around the growing number of tasksm, information disclosure via

the episodic memory, and the heterogeneity among tasks for the following reasons. (1) The

larger the number of tasks, the larger the privacy budget will be (proportionally) consumed

154

by the
∑

function. (2) More critically, memorizing previous tasks will further disclose

information about the data in the past, since gref (Equation (3.77)) is computed using a

batch randomly sampled from the episodic memory consisting of data from previous tasks,

i.e.,Mτ = ∪i<τMi. Continuing to access the episodic memory intensifies the privacy risk

over time. (3) The growing of the episodic memoryM by adding new tuplesMτ−1 selected

fromDτ−1 after training on each task τ −1makes it more challenging to bound the privacy

budget ϵ (Equation (3.80)). In fact, given that ∀i ∈ [1, τ−1] :Mi andM ′
i differs at most one

tuple,Mτ andM′τ will differ at most τ − 1 tuples causing additional privacy leakage. Also,

the data sampling probability to compute gref is affected by the increasing size ofM [62].

(4) Different tasks may require different numbers of training steps due to the difference in

terms of the number of tuples in each task; thus, affecting the privacy budget ϵ. (5) The

order of training tasks also affect the privacy budget, since computing gref by using data in

the episodic memory from one task may be more than other tasks. Therefore, bounding the

DP budget in L2M is non­trivial.

Lifelong Differential Privacy To address these challenges, we propose a new definition

of (ϵ, δ)­Lifelong DP to guarantee that an adversary cannot infer whether a data tuple is

in the lifelong training dataset datam, given the released parameters {θi}i∈[1,m] learned

from a growing stream of an infinite number of new tasks, denoted ∀m ∈ [1,∞), under

a consistently bounded DP budget (ϵ, δ) (Equation (3.81)). A consistently bounded DP

means having only one fixed value of the privacy budget (ϵ, δ), regardless the number of

tasksm. In other words, if there exists an i ≤ m and an ϵ′ < ϵ, such that releasing {θj}j∈[1,i]

given training dataset datai is (ϵ′, δ)­DP, then (ϵ, δ) is NOT a consistently bounded DP

budget, since it weakens the previously existed protection (ϵ′, δ) at the task i (Equation

(3.82)). A consistently bounded DP is significant in practice, by enabling us to keep training

an L2M model and releasing its parameters, without intensifying the end­to­end privacy

budget consumption. Our Lifelong DP can be formulated as:

155

Definition 3.5. (ϵ, δ)­Lifelong DP. Given a lifelong database datam = {D,M}, where

D = {D1, . . . , Dm} andM = {M1, . . . ,Mm}, a randomized algorithm A achieves (ϵ, δ)­

Lifelong DP, if for any of two lifelong neighboring databases (datam, data′m), ∀m ∈ [1,∞)

we have that

Pr
[
A(datam) = {θi}i∈[1,m]

]
≤ eϵPr

[
A(data′m) = {θi}i∈[1,m]

]
+ δ (3.81)

∄(ϵ′ < ϵ, i ≤ m) : Pr
[
A(datai) = {θj}j∈[1,i]

]
≤ eϵ

′
Pr

[
A(data′i) = {θj}j∈[1,i]

]
+ δ (3.82)

3.3.3 Preserving Lifelong DP

To preserve Lifelong DP, we address the following problems: (1) The privacy loss

accumulation across tasks; (2) The overlapping between the episodic memory M and

the training data D; and (3) The data sampling process for computing gref given the

growing M. Our network is a multi­layer neural network stacked on top of a feature

representation learning model. Then, we design a new Lifelong DP preservation algorithm,

called L2DP­ML (Algorithm 3.6), in computing the gradients g, gref , and g̃ (Equations

(3.83) and (3.87)). To overcome an expensive computation cost, we develop a scalable and

heterogeneous algorithm through a streaming batch training (Algorithm 3.7), to efficiently

learn Lifelong DP parameters (Theorem 3.8).

Network Design In our Algorithm 3.6, a DNN is designed as f(x) = G(a(x, θ1), θ2),

where a(x, θ1) is a feature representation learning model, i.e., an auto­encoder, with x as

an input, and a typical multi­layer neural network G(·, θ2), i.e., a CNN, taking the output

of a(x, θ1) and returning the class scores f(x). Given a datasetDτ , the objective functions

156

of a(·) and G(·) can be the classical cross­entropy error functions for data reconstruction

RDτ (θ1) at the input layer and for classification LDτ (θ2) at the output layer.

This network design allows us to: (1) Tighten the sensitivity of our model, since it is

easy to train a(·) using less sensitive objective functions, given its small sizes; (2) Reduce

the privacy budget consumption, since the computations of G(·) automatically is DP when

the output of a(x, θ1) is DP; and (3) Provide a better re­usability, given that a(·) can be

reused and shared for different predictive models. For instance, RDτ (θ1) can be presented

as follows:

RDτ (θ1) =
∑

xr∈Dτ

d∑
s=1

[
xrs log(1 + e−θ1shr) + (1− xrs) log(1 + eθ1shr)

]

where the transformation of xr is hr = θ⊤1 xr, the hidden layer h1 of a(x, θ1) given

Dτ is h1Dτ = {θ⊤1 xr}xr∈Dτ , and x̃r = θ1hr is the reconstruction of xr. Our L2M objective

function is defined as:

{θτ1 , θτ2} = argmin
θ1,θ2

[RDτ (θ
τ−1
1) + LDτ (θ

τ−1
2)] (3.83)

s.t. RMτ (θ
τ
1) ≤ RMτ (θ

τ−1
1) and LMτ (θ

τ
2) ≤ LMτ (θ

τ−1
2)

where {θ1, θ2} are the model parameters; while, {θτ1 , θτ2} are used to indicate the

values of {θ1, θ2} after learning task τ .

157

Algorithm 3.6 Lifelong DP ­ Machine Learning (L2DP­ML)
Input: T={ti}i∈[1,m], {Di}i∈[1,m], ϵ1, ϵ2
1: Draw Noise χ1 ← [Lap(

∆R̃
ϵ1

)]d, χ2 ← [Lap(
∆R̃
ϵ1

)]β , χ3 ← [Lap(
∆L̃
ϵ2

)]|hπ |

2: Randomly Initialize: θ0 = {θ01, θ02}, M1 = ∅, ∀τ ∈ T : Dτ = {xr ← xr +
χ1

|Dτ |}xr∈Dτ ,
hidden layers {h1 + 2χ2

|Dτ | , . . . , hπ}
3: for τ ∈ [1,m] do
4: if τ == 1 then
5: Compute g ← {∇θ1RDτ

(θτ−11),∇θ2LDτ
(θτ−12)} with the noise χ3

|Dτ |
6: else
7: Mτ ←Mτ−1 ∪ {Dτ−1}
8: Randomly Pick a dataset Dref ∈Mτ

9: Compute Gradients:
10: g ← {∇θ1RDτ

(θτ−11),∇θ2LDτ
(θτ−12)} with the noise χ3

|Dτ |
11: gref ← {∇θ1RDref

(θτ−11),∇θ2LDref
(θτ−12)} with the noise χ3

|Dref |

12: g̃ ← g − g⊤gref
g⊤refgref

gref

13: Descent: {θτ1 , θτ2} ← {θ
τ−1
1 , θτ−12 } − ϱg̃ # learning rate ϱ

14: Release: {θτ1 , θτ2}
Output: (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2)­Lifelong DP parameters {θi}i∈[1,m] = {θi1, θi2}i∈[1,m]

3.3.4 Gradient Update g

To compute the gradient update g for {θτ1 , θτ2} (Equation (3.83)) on the current task τ , we

first derive polynomial forms ofRDτ (θ1) and LDτ (θ2), by applying the 1st and 2nd orders

of Taylor Expansion [160] as:

R̃Dτ (θ1) =
∑

xr∈Dτ

d∑
s=1

[
θ1s

(1
2
− xrs

)
hr

]
(3.84)

L̃Dτ

(
θ2
)
=

K∑
k=1

∑
xr∈Dτ

[
hπrWπk − (hπrWπk)yrk −

1

2
|hπrWπk|+

1

8
(hπrWπk)

2
]

(3.85)

where hπr computed from the xr through the network withWπ is the parameter at the

last hidden layer hπ. Laplace noise is injected into polynomial coefficients of the function

R̃Dτ (θ1), which are the input x and the first transformation h1. As in [96], the global

sensitivity ∆R̃ is bounded as: ∆R̃ ≤ d(|h1|+ 2), with |h1| is the number of neurons in h1.

158

The perturbed R̃ function becomes:

RDτ
(θ1) =

∑
xr∈Dτ

[d∑
s=1

(
1

2
θ1shr)− xrx̃r

]
(3.86)

where xr = xr +
1
|Dτ |Lap(

∆R̃
ϵ1
), hr = θ⊤1 xr, hr = hr +

2
|Dτ |Lap(

∆R̃
ϵ1
), x̃r = θ1hr, hr

is clipped to [−1, 1], and ϵ1 is a privacy budget.

More importantly, the perturbation of each example x turns the original data Dτ

into Dτ = {xr ← xr +
1
|Dτ |Lap(

∆R̃
ϵ1
)}xr∈Dτ , which is a (ϵ1/γx)­DP dataset with γx =

∆R̃/|Dτ | (Algorithm 3.6, line 2). Based upon this result, all the computations on top

of the (ϵ1/γx)­DP dataset Dτ , including hr, hr, x̃r, and the computation of gradients,

i.e., ∀s ∈ [1, d] : ∇θ1sRDτ
(θ1) =

δRDτ
(θ1)

δθ1s
=

∑|Dτ |
r=1 hr(

1
2
− xrs) are shown to be

(ϵ1/γx)­DP, without incurring or accessing any additional information from the original

data Dτ . As a result, the total privacy budget used to perturb R̃ is (ϵ1 + ϵ1/γx), by having
Pr
(
RDτ

(θ1)
)

Pr
(
R

D
′
τ
(θ1)

) × Pr
(
Dτ

)
Pr
(
D

′
τ

) ≤ (ϵ1 + ϵ1/γx). Details are available in our proof of Theorem 3.8

(Subsection 3.3.5).

A similar approach is applied to perturb the objective function L̃Dτ (θ2) at the output

layer with a privacy budget ϵ2. The perturbed function of L̃ is denoted as LDτ
(θ2). As in

Lemma 3 [96], we further have that the output of a(·), which is the perturbed transformation

h1Dτ
= {θ⊤1 xr + 2

|Dτ |Lap(
∆R̃
ϵ1
)}xr∈Dτ

, is (ϵ1/γ)­DP, given γ =
2∆R̃

|Dτ |∥θ1∥1,1
and ∥θ1∥1,1 is the

maximum 1­norm of θ1’s columns [186]. As a result, the computations of all the hidden

layers of G(a(·), θ2) are (ϵ1/γ)­DP, since the input of G(a(·), θ2) is (ϵ1/γ)­DP h1Dτ
, i.e.,

the post­processing property of DP [100] (Algorithm 3.6, line 2). This helps us to (1) avoid

extra privacy budget consumption in computing g(a(·), θ2); (2) significantly tighten the

sensitivity of the function LDτ
(i.e., ∆L̃ ≤ 2|hπ|); and (3) achieve DP gradient update

∇θ2LDτ
(θ2) for θ2. The total privacy budget used to perturb L̃ is (ϵ1/γ + ϵ2), by having

Pr
(
LDτ

(θ2)
)
/Pr

(
LD

′
τ
(θ2)

)
≤ (ϵ1/γ + ϵ2). Consequently, the total privacy budget in

159

computing the gradient updates g, i.e., {∇θ1RDτ
(θτ−11),∇θ2LDτ

(θτ−12)}, for the current

task τ is (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2)­DP (Algorithm 3.6, lines 5 and 10).

3.3.5 Episodic and Projected Gradients gref and g̃

Now we are ready to present our approach in achieving Lifelong DP, by configuring the

episodic memoryMτ as a fixed and disjoint set of datasets {D1, . . . , Dτ−1} (Algorithm 3.6,

line 7); such that, at each training step, the computation of gradient updates gref (Equation

(3.77)) for θ1 and θ2, i.e.,∇θ1RDref
(θ1) and∇θ2LDref

(θ2), using a randomly picked dataset

Dref ∈Mτ (Algorithm 3.6, lines 8 and 11), is (ϵ1+ϵ1/γx+ϵ1/γ+ϵ2)­DP, without incurring

any additional privacy budget consumption for the datasetDref . Then Equation (3.77) can

be used to compute the projected gradient g̃ from g and gref . Based on the post­processing

property of DP [100], the projected gradient g̃ is also (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2)­DP. Hence,

the L2M objective function (Equation (3.83)) can be reformulated as:

{θτ1 , θτ2} = argmin
θ1,θ2

[RDτ
(θτ−11) + LDτ

(θτ−12)]

s.t. RMτ (θ
τ−1
1) ≤ RMτ (θ

τ−1
1),LMτ (θ

τ−1
2) ≤ LMτ (θ

τ−1
2)

whereMτ = {D1, . . . , Dτ−1} (3.87)

By using the perturbed functionsR and L, the constrained optimization of Equation

(3.87) can be addressed similarly to Equation (3.77), when the projected gradient g̃ is

computed as: g̃ = g−(g⊤gref)/(g⊤refgref)gref , where g is the gradient update on the current

task τ , and gref is computed using a dataset Dref randomly selected from the episodic

memoryMτ .

Theorem 3.8 shows that Algorithm 3.6 achieves (ϵ, δ)­Lifelong DP in learning

{θi}i∈[1,m] = {θi1, θi2}i∈[1,m], where ϵ = (ϵ1+ ϵ1/γx+ ϵ1/γ+ ϵ2) and δ = 0. There are three

160

key properties in our algorithm: (1) For every x in the whole training set D = {Di}i∈[1,m],

x is included in one and only one dataset, denoted Dx ∈ D. As a result, the DP guarantee

to x in D = {Di}i∈[1,m] is equivalent to the DP guarantee to x in Dx; (2) Given the

episodic memory as a fixed and disjoint set of datasets across T training tasks, we can

prevent additional privacy leakage, caused by: (i) Differing at most i − 1 tuples between

neighboring Mi and M′i for all i ∈ (1,m]; and (ii) Generating new and overlapping sets

of data samples for computing the episodic gradient (which are considered overlapping

datasets in the parlance of DP) in the typical training. Therefore, the optimization on one

task does not affect the DP protection of any other tasks, even the objective function given

one task can be slightly different from the objective function given any other tasks; and

(3) Together with (1) and (2), by having one and only one privacy budget for every task,

we can simultaneously achieve Equations (3.81) and (3.82) in Lifelong DP (Def. 3.5).

Theorem 3.8. Algorithm 3.6 achieves (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2)­Lifelong DP in learning

{θi1, θi2}i∈[1,m].

Proof of Theorem 3.8

Proof. ∀τ ∈ T, letDτ andD
′
τ be neighboring datasets differing at most one tuple xe ∈ Dτ

and x′e ∈ D
′
τ , and any two neighboring episodic memories Mτ and M′τ . Let us denote

Algorithm 3.6 as the mechanism A in Definition 3.5. We first show that Algorithm 3.6

achieves typical DP protection. ∀τ and Dref , we have that

Pr
[
A({θi}i<τ , dataτ) = θτ

]
= Pr

(
RDτ

(θτ−11)
)
Pr

(
Dτ

)
Pr

(
LDτ

(θτ−12)
)

× Pr
(
RDref

(θτ−11)
)
Pr

(
Dref

)
Pr

(
LDref

(θτ−12)
)

Therefore, we further have

161

Pr
[
A({θi}i<τ , dataτ) = θτ

]
Pr

[
A({θi}i<τ , data′τ) = θτ

] =
Pr

(
RDτ

(θτ−11)
)

Pr
(
RD

′
τ
(θτ−11)

) Pr(Dτ

)
Pr

(
D
′
τ

) Pr(LDτ
(θτ−12)

)
Pr

(
LD

′
τ
(θτ−12)

)
×
Pr

(
RDref

(θτ−11)
)

Pr
(
RD

′
ref

(θτ−11)
) Pr(Dref

)
Pr

(
D
′
ref

) Pr(LDref
(θτ−12)

)
Pr

(
LD

′
ref

(θτ−12)
) (3.88)

In addition, we also have that:

∃!Dτ ∈ D s.t. xe ∈ Dτ and ∃!D
′
τ ∈ D

′ s.t. x′e ∈ D
′
τ (3.89)

where D = {D1, . . . , Dm}.

Together with Equation (3.89), by having disjoint and fixed datasets in the episodic

memory, we have that:

(xe ∈ Dτ or xe ∈ Dref), but (xe ∈ Dτ and xe ∈ Dref) (3.90)

Without loss of the generality, we can assume that xe ∈ Dτ : Equations (3.88) ­ (3.90)

⇒

Pr
[
A({θi}i<τ , dataτ) = θτ

]
Pr

[
A({θi}i<τ , data′τ) = θτ

] =
Pr

(
RDτ

(θτ−11)
)

Pr
(
RD

′
τ
(θτ−11)

) Pr(Dτ

)
Pr

(
D
′
τ

) Pr(LDτ
(θτ−12)

)
Pr

(
LD

′
τ
(θτ−12)

) (3.91)

≤ (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2) (3.92)

This is also true when xe ∈ Dref and xe ̸∈ Dτ .

As a result, we have

162

∀τ ∈ [1,m] :
Pr

[
A({θi}i<τ , dataτ) = θτ

]
Pr

[
A({θi}i<τ , data′τ) = θτ

] ≤ (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2) (3.93)

After one training step, Dτ will be placed into the episodic memory Mτ to create

the memory Mτ+1. In the next training task, Dτ can be randomly selected to compute

the episodic gradient gref . This computation does not incur any additional privacy budget

consumption for the dataset Dτ , by applying the Theorem 4 in [96], which allows us to

compute gradients across an unlimited number of training steps using RDτ
(θτ−11) and

LDτ
(θτ−12). Therefore, if the same privacy budget is used for all the training tasks in T,

we will have only one privacy loss for every tuple in all the tasks. The optimization in one

task does not affect the DP guarantee of any other tasks. Consequently, we have

∄ϵ′ < (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2),∃i ≤ m (3.94)

s.t. Pr
[
A({θj}j<i, datai) = θi

]
≤ eϵ

′
Pr

[
A({θj}j<i, data′i) = θi

]

Equation (3.94) can be further used to prove the Lifelong DP protection. Given datam

whereMt = Dt in Algorithm 3.6, we have that

Pr
[
A(datam) = {θi}i∈[1,m]

]
=

m∏
i=1

Pr
[
A({θj}j<i, datai) = θi

]
(3.95)

Therefore, we have

163

Pr
[
A(datam) = {θi}i∈[1,m]

]
Pr

[
A(data′m) = {θi}i∈[1,m]

] =
m∏
i=1

Pr
[
A({θj}j<i, datai) = θi

]
Pr

[
A({θj}j<i, data′i) = θi

]
=

m∏
i=1

[Pr(RDi
(θi−11)

)
Pr

(
RD

′
i
(θi−11)

) Pr(Di

)
Pr

(
D
′
i

) Pr(LDi
(θi−12)

)
Pr

(
LD

′
i
(θi−12)

)
×
Pr

(
R

D
i
ref

(θi−11)
)

Pr
(
R

D
i′
ref

(θi−11)
) Pr(Di

ref

)
Pr

(
D

i′

ref

) Pr
(
L

D
i
ref

(θi−12)
)

Pr
(
L

D
i′
ref

(θi−12)
)] (3.96)

where data′m = {D, {M ′
i}i∈[1,m]}, andM ′

i = D
′
i in Algorithm 3.6.

Since all the datasets are non­overlapping, i.e., ∩i∈[1,m]Di = ∅, given an arbitrary

tuple xe, we have that

∃!Dτ ∈ D s.t. xe ∈ Dτ and ∃!D
′
τ ∈ D

′ s.t. x′e ∈ D
′
τ (3.97)

Thus, the optimization of {θi1, θi2} = argminθ1,θ2 [RDi
(θi−11) + LDi

(θi−12)] for any

other task i different from τ does not affect the privacy protection of xe in D. From

Equations (3.96) and (3.97), we have

Pr
[
A(datam) = {θi}i∈[1,m]

]
Pr

[
A(data′m) = {θi}i∈[1,m]

] =
Pr

(
RDτ

(θτ−11)
)

Pr
(
RD

′
τ
(θτ−11)

) Pr(Dτ

)
Pr

(
D
′
τ

) Pr(LDτ
(θτ−12)

)
Pr

(
LD

′
τ
(θτ−12)

)
×

m∏
i=1

Pr
(
R

D
i
ref

(θi−11)
)

Pr
(
R

D
i′
ref

(θi−11)
) Pr(Di

ref

)
Pr

(
D

i′

ref

) Pr
(
L

D
i
ref

(θi−12)
)

Pr
(
L

D
i′
ref

(θi−12)
) (3.98)

The worse privacy leakage case to xe is thatDτ is used in everyD
i

ref , i.e., τ = 1 and

∀i ∈ [2,m] : D
i

ref = Dτ , with D
1

ref = ∅. Meanwhile, the least privacy leakage case to xe

164

is that Dτ is not used in any D
i

ref , i.e., ∀i ∈ [2,m] : D
i

ref ̸= Dτ , with D
1

ref = ∅. In order

to bound the privacy loss, we consider the worse case; therefore, from Equation (3.98), we

further have that

Pr
[
A(datam) = {θi}i∈[1,m]

]
Pr

[
A(data′m) = {θi}i∈[1,m]

] ≤ m∏
i=1

Pr
(
RDτ

(θi−11)
)

Pr
(
RD

′
τ
(θi−11)

) Pr(Dτ

)
Pr

(
D
′
τ

) Pr(LDτ
(θi−12)

)
Pr

(
LD

′
τ
(θi−12)

) (3.99)

Equation (3.99) is equivalent to the continuously training of our model by optimizing

R and L with Dτ used as both the current task and the episodic memory, across m steps.

By following the Theorem 4 in [96], the privacy budget is not accumulated across training

steps. Therefore, we have that

∀m ∈ [1,∞) :
Pr

[
A(datam) = {θi}i∈[1,m]

]
Pr

[
A(data′m) = {θi}i∈[1,m]

]
≤

m∏
i=1

Pr
(
RDτ

(θi−11)
)

Pr
(
RD

′
τ
(θi−11)

) Pr(Dτ

)
Pr

(
D
′
τ

) Pr(LDτ
(θi−12)

)
Pr

(
LD

′
τ
(θi−12)

)
=
Pr

(
RDτ

(θ1)
)

Pr
(
RD

′
τ
(θ1)

) Pr(Dτ

)
Pr

(
D
′
τ

) Pr(LDτ
(θ2)

)
Pr

(
LD

′
τ
(θ2)

)
≤ (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2) (3.100)

In the least privacy leakage case, we have that

165

∀τ ≤ m :
Pr

[
A(dataτ) = {θi}i∈[1,τ]

]
Pr

[
A(data′τ) = {θi}i∈[1,τ]

]
≥
Pr

[
A({θi}i<τ , dataτ) = θτ

]
Pr

[
A({θi}i<τ , data′τ) = θτ

]
≥ (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2) (3.101)

As a result, we have that

∄(ϵ′ < ϵ, τ ≤ m) : Pr
[
A(dataτ) = {θi}i∈[1,τ]

]
≤ eϵ

′
Pr

[
A(data′τ) = {θi}i∈[1,τ]

]
(3.102)

where ϵ = (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2).

From Equations (3.100) and (3.102), we have that Algorithm 3.6 achieves (ϵ1 +

ϵ1/γx + ϵ1/γ + ϵ2)­Lifelong DP in learning {θi}i∈[1,m] = {θi1, θi2}i∈[1,m]. Consequently,

Theorem 3.8 does hold.

3.3.6 Scalable and Heterogeneous Training

Although computing the gradients given the whole dataset Dτ achieves Lifelong DP, it

has some shortcomings: (1) consumes a large computational memory to store the episodic

memory; (2) computational efficiency is low, since we need to use the whole dataset Dτ

andDref to compute the gradient update and the episodic gradient at each step; This results

in a slow convergence speed and poor utility.

Scalability To address this, we propose a streaming batch training (Algorithm 3.7), in

which a batch of data is used to train the model at each training step, by the following steps.

(1) Slitting the private training dataDτ (∀τ ∈ T) into disjoint and fixed batches (Algorithm

166

Algorithm 3.7 L2DP­ML with Streaming Batch Training
Input: T={ti}i∈[1,m], {Di}i∈[1,m], batch size λ, privacy budgets: ϵ1 and ϵ2, learning rate ϱ

1: Draw Noise χ1 ← [Lap(
∆R̃
ϵ1

)]d, χ2 ← [Lap(
∆R̃
ϵ1

)]β , χ3 ← [Lap(
∆L̃
ϵ2

)]|hπ |

2: Randomly Initialize θ = {θ1, θ2}, M1 = ∅, ∀τ ∈ T : Dτ = {xr ← xr +
χ1

λ }xr∈Dτ , hidden
layers {h1 + 2χ2

λ , . . . , hπ}, where hπ is the last hidden layer
3: for τ ∈ T do
4: B = {B1, . . . , Bn} s.t. ∀B ∈ B : B is a random batch with the size s, B1 ∩ . . . ∩ Bn = ∅,

and B1 ∪ . . . ∪Bn = Dτ

5: for B ∈ B do
6: if τ == 0 then
7: Compute Gradients:
8: g ← {∇θ1RB(θ

τ−1
1),∇θ2LB(θ

τ−1
2)} with the noise χ3

λ
9: Descent: {θτ1 , θτ2} ← {θ

τ−1
1 , θτ−12 } − ϱg

10: else
11: Select a batch Be randomly from a set of batches in episodic memoryMτ

12: Compute Gradients:
13: g ← {∇θ1RB(θ

τ−1
1),∇θ2LB(θ

τ−1
2)} with the noise χ3

λ
14: gref ← {∇θ1RBe(θ

τ−1
1),∇θ2LBe(θ

τ−1
2)} with the noise χ3

λ

15: g̃ ← g − g⊤gref
g⊤refgref

gref

16: Descent: {θτ1 , θτ2} ← {θ
τ−1
1 , θτ−12 } − ϱg̃

17: Randomly Select a batch B ∈ B
18: Mτ ←Mτ−1 ∪B

Output: (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2)­Lifelong DP parameters {θi}i∈[1,m] = {θi1, θi2}i∈[1,m]

Table 3.2 Average Forgetting Measure

Permuted MNIST
L2DP­ML (ϵ = 0.5) L2DP­ML (ϵ = 1) L2DP­ML (ϵ = 2) A­gem

0.305 ± 0.00886 0.278 ± 0.00907 0.237 ± 0.00586 0.162 ± 0.01096

Permuted CIFAR­10
L2DP­ML (ϵ = 4) L2DP­ML (ϵ = 7) L2DP­ML (ϵ = 10) A­gem

0.033 ± 0.00896 0.062 ± 0.01508 0.034 ± 0.00184 0.133 ± 0.00859

L2DP­ML (ϵ = 0.2) L2DP­ML (ϵ = 0.5) L2DP­ML (ϵ = 1)

HARW (5Hz ­ 0.1133 ± 0.0003 0.1124 ± 0.00029 0.1106 ± 0.00026

10Hz ­ A­gem Balanced A­gem Balanced L2DP­ML (ϵ = 0.2)

20Hz ­ 0.1269 ± 0.00045 0.1593 ± 0.00021 0.1309 ± 0.002

50Hz) L2DP­ML (ϵ = 0.2, 2 epochs) L2DP­ML (ϵ = 0.2, 5 epochs) Heterogeneous L2DP­ML (ϵ = 0.2)

0.1639 ± 0.00074 0.2031 ± 0.0013 0.1920 ± 0.00034

167

(a) Permuted MNIST (20 tasks)

(b) Permuted CIFAR­10 (17 tasks)

(c) HARW (5Hz ­ 10Hz ­ 20Hz ­ 50Hz)

Figure 3.15 Average accuracy on the permuted MNIST and CIFAR­10 datasets, and on
the HARW dataset (higher the better).

168

(a) Permuted MNIST (20 tasks)

(b) Permuted CIFAR­10 (17 tasks)

(c) HARW (5Hz ­ 10Hz ­ 20Hz ­ 50Hz)

Figure 3.16 p value for 2­tail t­tests on the permuted MNIST and CIFAR­10 datasets, and
on the HARW dataset (lower the better).

169

3.7, line 4). (2) Using a single draw of Laplace noise across batches (Algorithm 3.7, lines

1­2). That prevents additional privacy leakage, caused by: (i) Generating multiple draws of

noise (i.e., equivalent to applying one DP­preservingmechanismmultiple times on the same

dataset); (ii) Generating new and overlapping batches (which are considered overlapping

datasets in the parlance of DP); and (iii) More importantly, for any example x, x is included

in only one batch. Hence, each disjoint batch of data in Algorithm 3.7 can be considered

as a separate dataset in Algorithm 3.6. (3) For each task, we randomly select a batch to

place in the episodic memory (Algorithm 3.7, line 17). (4) At each training step, a batch

from the current task is used to compute the gradient g, and a batch randomly selected from

the episodic memory is used to compute the episodic gradient gref (Algorithm 3.7, lines

11­14). Thus, Algorithm 3.7 still preserves (ϵ1+ϵ1/γx+ϵ1/γ+ϵ2)­LifelongDP, by applying

Theorem 3.8. The computational complexity and memory consumption are reduced, since

only a small batch of data from each task will be stored in the episodic memory.

Heterogeneity Based upon this, our algorithm can be applied to address the heterogeneity

in terms of data sizes among tasks, which is different from multi­modal tasks in [201]. We

can train one task with multiple epochs, without affecting the Lifelong DP protection in

Algorithm 3.7, by 1) keeping all the batches fixed among epochs, and 2) at the end of

training each task, we randomly select a batch of that task to place in the episodic memory.

The order of the task does not affect the Lifelong DP protection, since the privacy budget is

not accumulated across tasks. These distinct properties enable us to customize our training,

by having different numbers of training epochs for different tasks and having different

training orders of tasks. Tasks with smaller numbers of data tuples can have larger numbers

of training epochs. This helps us to achieve better model utility under the same privacy

protection, as shown in our experimental results. Our algorithm can also be used to train

L2M models on new data of past tasks. New data is split into disjoint and fixed batches,

which will be fed into Algorithm 3.8, without affecting our Lifelong DP protection.

170

3.3.7 Experiments

Our validation focuses on understanding the impacts of the privacy budget ϵ and the

heterogeneity on model utility. We have experimented on permuted MNIST [105] and

permuted CIFAR­10 datasets, and our human activity recognition in the wild (HARW)

dataset. PermutedMNIST is a variant ofMNIST [47] dataset, where each task has a random

permutation of the input pixels, which is applied to all the images of that task. We adopt

this approach to permute the CIFAR­10 dataset, including the input pixels and three color

channels. Our HARWdataset was collected from 116 users, each of whom provided mobile

sensor data and labels for their activities on Android phones consecutively in three months

(either April 1st ­ June 31st, or May 10th ­ August 10th, 2020). HARW is an ultimate task

for L2M, since different sensor sampling rates, e.g., 50Hz, 20Hz, 10Hz, and 5Hz, from

different mobile devices are considered as L2M tasks. The data collection and processing

of our HARW dataset is presented as follows.

Data Collection of HARW Dataset We utilize Android smartphones to collect sensor

data “in the wild” from university students as subjects for the following reasons:

(1) University students should have relatively good access to the smartphones and related

technologies; (2) University students should be more credible and easier to be motivated

than other sources (e.g., recruiting test subjects on crowd­sourcing websites); and (3) It

will be easier for our team to recruit and distribute rewards to students. We launched

two data collection runs at two universities for three months each. During the course of

three months, we let the participants to collect data and labels by themselves (in the wild),

and only intervene through reminding emails if we saw a decline in the amount of daily

activities. A total of 116 participants were recorded after the two data collection runs.

Data Processing of HARW Dataset For the demonstration purpose of this work, we

use only accelerometer data. Our data processing consists of the following steps: (1) Any

duplicated data points (e.g., data points that have the same timestamp) are merged by taking

171

the average of their sensor values; (2) Using 300 milliseconds as the threshold, continuous

data sessions are identified and separated by breaking up the data sequences at any gap

that is larger than the threshold; (3) Data sessions that have unstable or unsuitable sampling

rates are filtered out. We only keep the data sessions that have a stable sampling rate of 5Hz,

10Hz, 20Hz, or 50Hz; (4) The label sessions that are associated with each data session (if

any) are identified from the raw labels. Note that the label sessions are also filtered with the

following two criteria to ensure good quality: (a) The first 10 seconds and the last 10 seconds

of each label session are trimmed, due to the fact that users were likely operating the phone

during these time periods; (b) Any label session longer than 30 minutes is trimmed down

to 30 minutes, in order to mitigate the potential inaccurate labels due to users’ negligence

(forgot to turn off labeling); and (5)We sample data segments at the size of 100 data points

with slidingwindows. Different overlapping percentages were used for different classes and

different sampling rates. The majority classes have 25% overlapping to reduce the number

of data segments, while the minority classes have up to 90% overlapping to increase the

available data segments. The same principle is applied to sessions with different sampling

rates. We sample 15% of data for testing, while the rest are used for training (Table 3.3).

Table 3.3 Statistics of the HARW Dataset

Class Description N training N testing

Walking Walking 49376 8599

Sitting Exclude in vehicle 52448 8744

In­Vehicle, Car Driving, sitting 49536 8586

Cycling 14336 2537

Workout, Running 1984 319

*All classes exclude phone position = “Table”

172

Data Normalization of HARW Dataset In our L2DP­ML models, we normalize the

accelerometer data with the following steps: (1) We compute the mean and variance of

each axis (i.e.,X , Y , and Z) using only training data to avoid information leakage from the

training phase to the testing phase. Then, both training and testing data are normalized with

z­score, based on the mean and variance computed from training data; (2) Based on this, we

clip the values in between [min,max] = [−2, 2] for each axis, which covers at least 90%

of possible data values; and (3) Finally, all values are linearly scaled to [−1, 1] to finish the

normalization process, as x = 2× [x−min
max−min

− 1/2].

Experiment Setting A­gem [54], which is one of the state­of­the­art L2M algorithms, is

included in our experiments to show the upper bound in terms of model performance, since

A­gem is a noiseless model. We aim to show how much model utility is compromised for

the Lifelong DP protection.

To evaluate the heterogeneity, we derive several versions of our algorithm (Algorithm

3.7), including: (1) Balanced L2DP­ML, in which all the tasks have the same number of

training steps, given a fixed batch size. This is also true for a Balanced A­gem algorithm;

(2) L2DP­ML with the same number of epochs for all the tasks; and (3) Heterogeneous

L2DP­ML, in which a fixed number of training epochs is assigned to each task. The

numbers of epochs among tasks can be different. For instance, 5 epochs are used to train

tasks with 5Hz, 10Hz, and 20Hz data, and 1 epoch is used to train the task with a larger

volume of 50Hz data. The number of epochs is empirically identified by the data size

of each task, since the search space of the number of epochs for each task is exponentially

large. We do not consider the model derived from Equation (3.80), since it does not preserve

Lifelong DP.

Model Configuration In the permuted MNIST dataset, we used three convolutional

layers (32, 64, and 96 features). Each hidden neuron connects with a 5x5 unit patch. A

fully­connected layer has 512 units. The batch size s was set to 2,500, and learning rate

173

ϱ = 0.1. Given a predefined total privacy budget ϵ, ϵ2 is set to be 0.1, and ϵ1 is computed

as: ϵ1 = ϵ−ϵ2
(1+1/γ+1/γx)

. This ensures that (ϵ1+ ϵ1/γx+ ϵ1/γ+ ϵ2) = ϵ. ∆R̃ = (142+2)× 25

and ∆L̃ = 2 × 512. In the permuted CIFAR­10 dataset, we used a Resnet­18 network

(64, 64, 128, 128, and 160 features) with kernels (4, 3, 3, 3, and 3). One fully­connected

layer has 256 neurons. The batch size s was set to 500, and learning rate ϱ = 0.2. ϵ2 is

set to (1 + r/3.0) and ϵ1 = (1 + 2r/3.0)/(1 + 1/γ + 1/γx), where r ≥ 0 is a ratio to

control the total privacy budget ϵ in our experiment. For instance, given r = 0, we have

that ϵ = (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2) = 2. ∆R̃ = 3× (142 + 2)× 16 and ∆L̃ = 2× 256.

In the HARW dataset, each data tuple includes 100 values × 3 channels of the

accelerometer sensor, i.e., 300 values in total as a model input. The classification output

includes five classes of human activities, i.e., walking, sitting, in car, cycling, and running

(Table 3.3). Given 20Hz, 5Hz, 10Hz, and 50Hz tasks, we correspondingly have 881, 7553,

621, and 156,033 data points in training and 159, 1,297, 124, and 27,134 data points in

testing. We used three convolutional layers (32, 64, and 96 features). Each hidden neuron

connects with a 2x2 unit patch. A fully­connected layer has 128 units. The batch size s

was set to 120, and learning rate ϱ = 5e− 5. Given a total privacy budget ϵ, ϵ2 is set to 0.1

and ϵ1 = ϵ−ϵ2
(1+1/γ+1/γx)

to ensure that (ϵ1 + ϵ1/γx + ϵ1/γ + ϵ2) = ϵ. ∆R̃ = 4(142 + 2) and

∆L̃ = 2× 128.

The experiments were conducted on a server of 4 GPUs, each of which is an NVIDIA

TITAN Xp, 12 GB with 3,840 CUDA cores. The number of runs for each experiment on

the permuted MNIST and CIFAR­10 datasets is 5 and on the HARW dataset is 10. For

reproducibility, our implementation is available here1.

Evaluation Metrics To evaluate our models, we employ the well­applied average accu­

racy and forgetting measures after the model has been trained with all the batches up till

task τ [202, 54], defined as follows: (1) average accuracyτ = 1
τ

∑τ
t=1 aτ,n,t, where aτ,n,t ∈

1https://www.dropbox.com/s/xzz318ap700kq4a/L2DP-ML.zip?dl=0

174

[0, 1] is the accuracy evaluated on the test set of task t, after the model has been trained

with the nth batch of task τ , and the training dataset of each task, Dτ , consists of a total

n batches; (2) average forgettingτ = 1
τ−1

∑τ−1
t=1 f

τ
t , where f τ

t is the forgetting on task t

after the model is trained with all the batches up till task τ . f τ
t is computed as follows:

f τ
t = maxl∈{1,...,τ−1}(al,n,t− aτ,n,t); and (3)We measure the significant difference between

two average accuracy curves induced by two models A and B after task τ , using a p value

(2­tail t­tests) curve:

p value
(
{1
i

i∑
t=1

a
(A)
i,n,t}i∈[1,τ], {

1

i

i∑
t=1

a
(B)
i,n,t}i∈[1,τ]

)
(3.103)

All statistical tests are 2­tail t­tests.

Results in Permuted MNIST Figure 3.15a and Table 3.2 illustrate the average accuracy

and forgetting measure of each model as a function of the privacy budget ϵ on the MNIST

dataset. There is a small gap in terms of average accuracy between the noiseless A­gem

model (showing an upper bound performance) and our L2DP­ML models given a small

number of tasks. The gap is increased when the number of tasks increased (23.3% at ϵ = 0.5

with 20 tasks). The larger the privacy budget (i.e., ϵ = 2.0), the higher the average accuracy

we can achieve, i.e., an improvement of 9.92%with p < 2.83e−14, compared with smaller

privacy budgets (i.e., ϵ = 0.5). Even though our model can achieve a high average accuracy

given a small number of tasks, the result shows that it is not easy to preserve Lifelong DP

while retaining a high model utility. Also, our L2DP­ML models have a relatively good

average forgetting with tight privacy protection (ϵ = 0.5, 1, and 2), compared with the

noiseless A­gem model.

Results in Permuted CIFAR­10 Permuted CIFAR­10 tasks are very difficult to classify,

even with the noiseless A­gem model, i.e., 35.24% accuracy on average. Interestingly,

175

(a) HARW 50Hz ­ 20Hz ­ 10Hz ­ 5Hz

(b) HARW 20Hz ­ 50Hz ­ 5Hz ­ 10Hz

(c) HARW 20Hz ­ 5Hz ­ 10Hz ­ 50Hz

Figure 3.17 Average accuracy and p value for 2­tail t­tests on the HARW dataset with
random task orders (higher the better).

176

(a) HARW 50Hz ­ 20Hz ­ 10Hz ­ 5Hz

(b) HARW 20Hz ­ 50Hz ­ 5Hz ­ 10Hz

(c) HARW 20Hz ­ 5Hz ­ 10Hz ­ 50Hz

Figure 3.18 p value for 2­tail t­tests on the HARW dataset with random task orders (lower
the better).

177

on the CIFAR­10 dataset (Figure 3.15b and Table 3.2), the gap between A­gem and our

L2DP­ML model is notably shrunken when the number of tasks increases (from 16.47%

with 1 task to 9.89% with 17 tasks, at ϵ = 4). In addition, the average forgetting values

in our L2DP­ML are better than the noiseless A­gem model. This is a promising result.

We also registered that the larger the privacy budget (i.e., ϵ = 10), the higher the average

accuracy that we can achieve, i.e., an improvement of 4.73% with p < 1.15e−9, compared

with smaller budgets (i.e., ϵ = 4).

Results in HARW On the HARW task, a real­world application (Figure 3.15c and Table

3.2), our L2DP­MLmodel achieves a very competitive average accuracy, given a very tight

DP budget ϵ = 0.2 (i.e., 61.26%) compared with the noiseless A­gem model (i.e., 62.27%),

across four tasks. Our model also achieves a better average forgetting, i.e., 11.33, compared

with 12.69 of the noiseless A­gem model. That is promising. Increasing the privacy budget

modestly increases the model performance. The differences in terms of average accuracy

and forgetting are not significant. This is also true, when we randomly flip the order of

the tasks (Figure 3.17 and Table 3.4). The results showed that our model can effectively

preserve Lifelong DP in HARW tasks.

Heterogeneous Training and DP Budgets Heterogeneous training, with customized

numbers of epochs and task orders, further improves our model performance, under the

same Lifelong DP protection. Figure 3.16 illustrates the p values between the average

accuracy curves of our L2DP­ML, given 1) heterogeneous training with different numbers

of epochs, 2) task orders, and 3) privacy budgets, over its basic settings, i.e., ϵ = 0.5 for the

permuted MNIST dataset, ϵ = 4 for the permuted CIFAR­10 dataset, and ϵ = 0.2 for the

HARW dataset, with the number of training epochs set to 1.

In the permuted MNIST dataset (Figures 3.15a, 3.16a), when our L2DP­ML model

is trained with 2 or 3 epochs per task, the average accuracy is improved, i.e., 2.81% given

2 epochs and 4.8% given 3 epochs, with p < 8.44e − 9. In the permuted CIFAR­10 data,

178

Table 3.4 Average Forgetting Measure on Random Orders of HARW Tasks

L2DP­ML (ϵ = 0.2) L2DP­ML (ϵ = 0.5) L2DP­ML (ϵ = 1)

0.1016 ± 0.0002 0.1012 ± 0.0001 0.098 ± 0.0001

HARW (50Hz ­ A­gem Balanced A­gem Balanced L2DP­ML (ϵ = 0.2)

20Hz ­ 10Hz ­ 5Hz) 0.1029 ± 0.0002 0.1241 ± 0.0002 0.1274 ± 0.0008

L2DP­ML (ϵ = 0.2, 2 epochs) L2DP­ML (ϵ = 0.2, 5 epochs) Heterogeneous L2DP­ML (ϵ = 0.2)

0.1148 ± 0.0002 0.1012 ± 0.0014 0.1442 ± 0.0003

L2DP­ML (ϵ = 0.2) L2DP­ML (ϵ = 0.5) L2DP­ML (ϵ = 1)

0.0769 ± 2.07e­5 0.0761 ± 3.88e­5 0.0772 ± 6.7e­5

HARW (20Hz ­ A­gem Balanced A­gem Balanced L2DP­ML (ϵ = 0.2)

50Hz ­ 5Hz ­ 10Hz) 0.0781 ± 2.28e­5 0.14 ± 3.26e­4 0.1248 ± 0.0013

L2DP­ML (ϵ = 0.2, 2 epochs) L2DP­ML (ϵ = 0.2, 5 epochs) Heterogeneous L2DP­ML (ϵ = 0.2)

0.0775 ± 8.45e­5 0.099 ± 0.0015 0.1268 ± 0.00028

L2DP­ML (ϵ = 0.2) L2DP­ML (ϵ = 0.5) L2DP­ML (ϵ = 1)

0.0928 ± 5.34e­5 0.0921 ± 8.64e­5 0.089 ± 8.64e­5

HARW (20Hz ­ A­gem Balanced A­gem Balanced L2DP­ML (ϵ = 0.2)

5Hz ­ 10Hz ­ 50Hz) 0.0866 ± 1.1e­4 0.1723 ± 0.00066 0.144 ± 0.0031

L2DP­ML (ϵ = 0.2, 2 epochs) L2DP­ML (ϵ = 0.2, 5 epochs) Heterogeneous L2DP­ML (ϵ = 0.2)

0.1161 ± 0.0003 0.1792 ± 0.0017 0.1395 ± 0.00026

179

using larger numbers of training epochs shows significant performance improvements over

a small number of tasks (Figure 3.16b). When the number of tasks becomes larger, the

p values become less significant (even insignificant), compared with the p value curves

of larger DP budgets (i.e., ϵ = 2 and ϵ = 10 in the MNIST and CIFAR­10 datasets).

Meanwhile, training with a larger number of epochs yields better results with small numbers

of tasks (i.e., fewer than 6 tasks), compared with larger DP budgets.

In the HARW tasks, the improvement is more significant (Figures 3.15c, 3.16c).

Heterogeneous and Balanced L2DP­MLmodels outperform the basic settings with uniform

numbers of training epochs, i.e., 1, 2, and 5 epochs. On average, we registered an

improvement of 1.93% given the Balanced L2DP­ML and an improvement of 5.14% given

the Heterogeneous L2DP­ML, over the basic setting (1 training epoch). The results are

statistically significant (Figure 3.16c). The average forgetting values of the Balanced

L2DP­ML (0.1593) and the Heterogeneous L2DP­ML (0.1920) are higher than the basic

setting (0.1133), with p < 2.19e− 5 (Table 3.2). This is expected as a primary trade­off in

L2M, given a better average accuracy. In fact, the average forgetting values are also notably

higher given larger uniform numbers of epochs, i.e., 2 and 5 epochs, and the Balanced

A­gem. We do not address this fundamental issue in L2M since it is out­of­scope of this

study. We focus on preserving Lifelong DP.

We observe similar results in randomly flipping the order of the tasks (Figures 3.17

and 3.18, Table 3.4). Among all task orders, our Heterogeneous L2DP­ML achieves the

best average accuracy (66.4%) with the task order [5Hz, 10Hz, 20Hz, 50Hz] (Figure 3.15c)

compared with the worse order [20Hz, 50Hz, 5Hz, 10Hz] (56.69%) (Figure 3.17b), i.e.,

p < 9.9e−5. More importantly, in both average accuracy and forgetting, our Balanced and

Heterogeneous L2DP­ML models achieve a competitive performance compared with the

noiseless Balanced A­gem, which is considered to have the upper bound performance, and

a better performance compared with having the uniform numbers of epochs across tasks.

180

This obviously shown that the distinct ability to offer the heterogeneity in training across

tasks greatly improves our model performance, under the same Lifelong DP protection.

3.3.8 Conclusion and Future Work

In this dissertation, we showed that L2M introduces unknown privacy risk and challenges

in preserving DP. To address this, we established a connection between DP preservation

and L2M, through a new definition of Lifelong DP. In Lifelong DP, the participation of

any tuple in any training set is protected, under a consistently bounded DP loss, given the

released model parameters in both learning and memorizing tasks. A consistently bounded

DP means having only one fixed value of the privacy budget, regardless the number of

tasks. We proposed the first scalable and heterogeneous mechanism, called L2DP­ML, to

preserve Lifelong DP. Our model shows promising results in several tasks with different

settings; therefore, opening a long­term avenue to achieve better model utility with lower

computational cost, under Lifelong DP.

181

CHAPTER 4

FEDERATED LEARNING ONMOBILE DEVICES

Chapter Abstract Federated Learning (FL) [106] has the potential to bring deep learning

(DL) on mobile devices, while preserving user privacy during model training. Despite

progress on theoretical aspects and algorithm/model design for FL [107, 108, 109, 110, 111],

the lack of a publicly available FL system has precluded the widespread adoption of FL

models on smart phones. In this dissertation, we presents FLSys, the first FL system

in the literature created using an application­system co­design approach to address the

aforementioned research questions. FLSys is a key component toward creating an open

ecosystem of FL models and apps that use these model. Such an FL ecosystem will allow

third­party model/app developers to easily develop and deploy FL models/apps on smart

phones. Consequently, the users will benefit from novel FL apps based on mobile [sensing]

data collected on the phones. We co­designed FLSys with a human activity recognition

(HAR) in the wild FL model. HAR sensing data was collected in two areas from the

phones of 100+ college students during a five­month period. We implemented HAR­Wild,

a CNN model tailored to mobile devices, with a data augmentation mechanism to mitigate

the problem of non­Independent and Identically Distributed (non­IID) data that affects FL

model training in the wild. A sentiment analysis (SA) model is used to demonstrate how

FLSys effectively supports concurrent models, and it uses a dataset with 46,000+ tweets

from 436 users. We conducted extensive experiments on Android phones and emulators

showing that FLSys achieves good model utility and practical system performance.

The rest of the chapter is organized as follows. SSubsection 4.1.4 explains the design

of FLSys, while Subsection 4.1.5 describes its prototype implementation. Subsection 4.1.10

presents the HAR model and data. Subsection 4.1.15 shows the experimental results. The

chapter concludes in Subsection 4.1.21 with lessons learned and future work.

182

4.1 FLSys: Toward an Open Ecosystem for Federated Learning Mobile Apps

4.1.1 Contributors to this Dissertation

The prototype of FLSys was designed and implemented collaboratively with my colleague

Xiaopeng Jiang. The author’s contributions are the design of the training protocol,

the implementation of the FL simulation process, and the implementation of cloud­

side components in FLSys. Xiaopeng Jiang designed and implemented the mobile­side

components, the deep learning model, the communication protocol, and the FL emulation

process. The high­level design and the data pre­processing steps were designed and

implemented collaboratively by the author and Xiaopeng Jiang. For a better understanding

of the framework andmy contribution, thewhole framework is presented in this dissertation,

including Xiaopeng Jiang’s part.

4.1.2 System Requirements

Our aim is to design and build an FL system that addresses the list of important questions

mentioned in the Subsection 1.4.1. We use the HAR model, detailed in Subsection 4.1.10,

to illustrate an entire category of FL models based on mobile [sensing] data collected in the

wild. We extract five key requirements derived from this model and from other real­world

FL applications, such as next word prediction, on­device search query suggestion [116],

on­device robotic navigation [203], on­device item ranking [106], object recognition [112],

sentiment analysis, etc., and utilize them to guide our FLSys design: (R1) Effective

data collection: The data collection on the phone must balance resource consumption

(e.g., battery) with sampling rates required by different models; (R2) Tolerate phone

unavailability during training: Since the phones may sometimes be disconnected from

the network or choose not to communicate to save battery power, the interaction between

the phones and the cloud must tolerate such unavailability during federated training;

(R3) Scalability: The cloud­based FL server of our system must be able to scale to large

numbers of users in terms of both computation and storage; (R4) Model flexibility: The

183

system must support different DL models for different application scenarios and different

aggregation functions in the cloud; and (R5) Support for third­party apps: The system must

provide programming support for third party apps to concurrently access different models

on the phones.

4.1.3 FLSys Overview

FLSys addresses requirements R1 − R5 synergistically. Figure 4.1a show its overall

process of one training round, and Figure 4.1b shows its system architecture. These figures

emphasize four novel contributions made in FLSys, compared with existing FL systems

[106, 116, 129, 113, 128]: (1) FLSys allows the phones to self­select for training when

they have enough data and resources; (2) FLSys has an asynchronous design (Figure 4.1a),

in which the server in the cloud tolerates client failures/disconnections and allows clients

to join training at any time. (3) FLSys supports multiple DL models that can be used

concurrently by multiple apps; each phone trains and uses only the models for which it

has subscribed; and (4) FLSys acts as a “central hub” on the phone to manage the training,

updating, and access control of FL models used by different apps.

These features balance model utility with mobile device constraints, and can help

create an ecosystem of FL models and associated apps. FLSys allows different developers

to build FL models/apps and provides a simple way for users to take advantage of these

apps, as it offers a unifying system for the development and deployment of FL models and

apps that use these models. FLSys acts as common middleware layer for all these apps

and models. The users just need to download/install the apps, and FLSys will take care of

downloading/installing the FLmodels used by the apps, will perform FL training as needed,

and will run FL inference on behalf of the apps.

184

(a) Asynchronous Protocol with Phone Self­Selection and Multiple Models

(b) FLSys Architecture
Figure 4.1 FLSys Asynchronous Protocol and Architecture. Typical operations: 1⃝ Phone
Manager of Client #1 registers with the Cloud Manager of Model 1, which grants registration
based on training settings. 2⃝ Phone Manager of Client #1 fetches up­to­date global model from
a designated storage, trains it with local data, and uploads local gradients to a designated storage.
3⃝ Phone Manager of Client #2 tries to register, but is denied. 4⃝ Phone Manager of Client #2
successfully registers at a later time, but the training misses the deadline, thus its gradients upload
is denied. 5⃝ Clients #1 and #2 try to register during server aggregation and are denied. 6⃝ Each
model’s Aggregator loads the gradients updates, aggregates them, and saves the aggregated model.

185

4.1.4 System Architecture

The architecture (Figure 4.1b) has two main components: (1) FL Phone Manager, which

coordinates the FL activities on the phone; and (2) FL Cloud Manager, which coordinates

the FL activities in the cloud. These two components work together to support the

three phases of the FL operation: data collection and preprocessing, model training and

aggregation, and mobile apps using inference. In the following, we describe each phase

and explain how the system architecture satisfies the five system requirements.

Data Collection and Preprocessing The FL Phone Manager controls the data collection

using one or multipleData Collectors. A basic Data Collector is tasked with collecting data

from one sensor at a given sampling rate. Such basic Data Collectors could be embedded

in more complex ones to collect different types of data at the same time. It is important

to have one app that coordinates data collection because having multiple apps collecting

overlapping sets of data multiple times is inefficient. Having the FL Manager to coordinate

the data collection also simplifies sensor access control.

To satisfy requirement R1, FLSys supports on­demand configuration of sensor types,

sampling rates, and the period for data flushing from memory to storage. Each model

informs the FL Phone Manager of the type of data and sampling rate it needs. In this way,

the FL Phone Manager knows which Data Collectors to invoke and which sampling rates

are needed. The FL Phone Manager balances sensing accuracy (i.e., high sampling rate)

with resource consumption.

To regulate and keep such balance aligned with the user experience, the FLSys has

three features: (1) include several built­in sampling rate settings, with empirical values

from our experiences; and (2) collect key statistics of the data collection (e.g., CPU time

consumed, battery life impact, etc.) and show them to the user, upon request; and (3) provide

global level controls for the user to adjust the data collection behaviors, should the user feel

that their experience is impacted by data collection.

186

The Data Collectors store the sensed data in the Raw Data Storage and inform the FL

Phone Manager each time new data is added to the Raw Data Storage. For efficiency, the

Data Collectors can buffer a certain amount of sensed data in memory before committing it

to the storage. The FL PhoneManager can dynamically reconfigure the data flushing period

that defines when the data is written to storage. Data Collectors set this data flushing period.

Somemodels may use the raw data directly, while others may require additional processing.

The FL PhoneManager decides when to invoke the model­specificData Processors, which

will store the data in the Processed Data Storage. This is a matter of policy and can be done

any time new data is available in the Raw Storage Data or at a regular interval. The only

constraint is to have all the data preprocessed before a new local model training operation.

Federated Training To satisfy requirement R2, we make two design decisions. First,

FLSys allows the phones to self­select for training when they have enough data and

resources. This is different from traditional FL architectures [106], where the server selects

the phones to participate in training, which may not be available or may not have enough

data or resources for training. Second, in FLSys, the communication between the phones

and the cloud is asynchronous to cope with phone disconnections. The software at the cloud

side is designed to tolerate missing messages from the phones. Overall, FLSys reduces

communication overhead and increases client utility, at the expense of less control in the

client sampling process, compared to [106].

In order to use a given model on the phone, the FL Phone Manager first registers the

phone with the FL Cloud Manager. If the phone model and mobile OS are known to work

with the model, the FL CloudManager registers the phone with theNewModel Notification

Service, which works as a Publish­Subscribe cloud service, and returns the subscription to

the phone. This subscription allows the phone to receive asynchronous notifications when a

new global model is available for download. The FL Phone Manager downloads the model

at a time determined based on the model usage frequency and power settings.

187

The training for each model is done in rounds. The FL Cloud Manager decides the

duration of a round, based on preferences associated with each model. For example, the

server may start a new aggregation (i.e., by invoking the Model Aggregator for a certain

model) when a given time interval has passed or when a certain number of local training

updates have been received from the phones. The FL Phone Manager decides when to

participate in training. This decision is done based on local policies that attempt to balance

inference accuracy, the amount of input data for training, and the resources consumed during

training. The intention to participate in training for a given model is conveyed by a message

sent to the FL Cloud Manager. Based on the model preferences (e.g., amount of data, and

the number of users in a training round), the server may decide to ask the phone to train for

the model and to provide the FL Phone Manager with a URL to upload the results in the

Cloud Local Gradients Storage. If there is a deadline for participation in the round, the FL

Cloud Manager lets the FL Phone Manager know about it.

The FL Phone Manager invokes the Model Trainer for the given model and passes

as parameter the location of the data in the Processed Data Storage. After the training is

done, the Model Trainer stores the newly computed gradients in the Phone Local Gradients

Storage. The FL PhoneManager decides when to upload these gradients to the Cloud Local

Gradients Storage. The FL CloudManager will invoke theModel Aggregator for the model

when the duration for the round expires or when enough updates have been uploaded. The

Model Aggregator reads the updates from the Cloud Local Gradients Storage, computes

the aggregated weights, and stores them in the Cloud Global Model Weights Storage. The

intermediate training state is stored in the Training State Storage to provide lower I/O

latency compared with the other types of cloud storage in our design. This is because

FLSys needs frequent access to these data during training. Then, the Model Aggregator

sends a notification via the New Model Notification Service to let the phones know that a

new model version is available.

188

The cloud­side system satisfies requirement R3, as it can scale to large numbers of

users due to its modular design that decouples computation, communication, storage, and

notification services. The cloud elasticity features of each service allow different services

to scale up or down according to the workload.

As we observe from the architecture, each model is managed individually by FLSys,

and multiple models can co­exist both at the phones and the cloud. In the cloud, different

models use independent cloud resources, which can be scaled independently. On the phone,

independent model trainers and inference runners are responsible for different applications.

The cloud contains all the models in the system, while each phone contains only the models

for which it has subscribed. This modular design allows our system to satisfy requirement

R4.

Mobile Apps Using Inference We decouple mobile apps that need inference on the

phones from the models that provide the inference. This allows an app to use multiple

models, while the same model can be used by multiple apps. FLSys provides an API and a

library that can be used by third­party app developers to perform inference using DLmodels

on the phone. In this way, the system architecture satisfies requirement R5. When an app

needs an inference from a model, it sends a request to the FL Phone Manager using one of

the OS IPC mechanisms. The FL Phone Manager then generates the input for the inference

from the data stored in the Processed Data Storage of Raw Data Storage, and then invokes

theModel Runner with this input. The Model Runner sends the result to the App using the

IPC.

Model Concurrency Given the design of FLSys, both the FL Phone Manager and the FL

Cloud Manager are able to handle multiple models concurrently. However, the meanings

of concurrency are slightly different for each side. FL Cloud Manager needs to handle the

aggregation of all models that are registered with it. Also there is the need to communicate

to a potentially large number of clients for each model at the same time. FLSys handles this

189

concurrency through services provided by the underlying cloud platform, which support

concurrency by design. FLSys just needs to orchestrate the invocation of these services.

The FL Phone Manager needs to handle concurrent training and inference. Our preliminary

experiments on smart phones show parallel training of multiple models is very slow due

to resource contention. It also affects the user experience on the phones. Therefore, we

decided to train models sequentially. The FL Phone Manager can request to participate in

training rounds for multiple models concurrently, but it locally decides a sequential order

in which to train these models, based on parameters such as frequency of model usage by

apps, the training round deadlines, and historical training latency for each model. Finally,

the inference requests from the apps are executed as soon as they are received to maintain

good user experience.

4.1.5 Prototype Implementation

We implemented an end­to­end FLSys prototype in Android and AWS cloud, which have

been chosen because they are the market leaders for mobile OSs and cloud platforms,

respectively. The FLSys design is general and it can be implemented in other mobile

OSs and cloud platforms. The prototype implements all of the components described

in the system architecture (Figure 4.1b). This subsection reviews the implementation

technologies, the reasons for selecting them, and then focuses on the Android implemen­

tation and the AWS implementation of FLSys.

DeepLearning Framework We choose Deep Learning for Java (DL4J) as the underlying

framework for the on­device DL­related operations (i.e., training and model execution)

because it is the only mature framework that supports model training on Android devices.

While theModel Aggregator in the cloud could be implemented using other DL technologies,

for consistency, we implement it in DL4J as well. The models are stored as zipped JSON

and bin files stored in folders on the phone and in AWS S3 buckets in the cloud.

190

On­device Communication For IPC among Android apps/services, we use Android

Bound Service and Android Intent. A bound service can efficiently serve another appli­

cation component because it does not run in the background indefinitely. Through IPC,

the FL Phone Manager can provide third­party apps with an interface to request inference

results without revealing the model or the data. Furthermore, it can communicate with the

Data Collector.

Cloud Platform and Services We opt to utilize the Function­as­a­service (FaaS) archi­

tecture for our cloud computation. The core cloud components of FLSys are implemented

and deployed as AWS Lambda functions [204]. We decided to choose FaaS for our

implementation for five reasons. First, it matches our asynchronous, event­based design, as

Lambda functions are triggered by events. Second, it provides fine­grained scalability at the

function level; therefore leading to less resource consumption in the cloud. Furthermore,

computation and storage are scaled automatically and independently by the cloud platform.

Third, unlike other cloud platforms, it does not require running virtual machines when

no computation is necessary; this saves additional resources and reduces cost. Fourth,

FaaS simplifies the development and deployment of our prototype because it does not

require software installation, system configuration, etc. Fifth, different functions can be

implemented in different programming languages making the implementation even more

flexible.

Lambda functions are triggered in different ways in our prototype. We use the AWS

API Gateway to define and deploy HTTP and REST APIs. For instance, we create a REST

API to relay clients’ requests to participate in the FL training to the Lambda function that

handles these requests. We also use the AWS EventBridge to define rules to trigger and

filter events for Lambda functions.

FLSys uses a number of cloud services for storage, authentication, and publish­

subscribe communication. For model storage, validation datasets, and FL Cloud Manager

191

configuration files, we use AWS S3, which offers a reliable and cost­effective solution for

data accessed infrequently. More importantly, AWS S3 buckets can be accessed directly

by phones, which simplifies the asynchronous communication in FLSys. To authenticate

clients and allow them to upload and download models from the AWS S3, FLSys uses

Identity Pool in AWS Cognito. To store data that is accessed frequently, such as training

round states and model states, we use AWS DynamoDB, a reliable NoSQL database. AWS

SNS is utilized in conjunction with the Google FCM to notify clients when newly trained

models are ready. The use of a Google Cloud service in our AWS implementation was

necessary in order to push notifications directly to apps on the phones when a new global

model is ready in the cloud.

4.1.6 Phone Implementation

The phone implementation (left­side of Figure 4.1b) consists of three apps: a FL Phone

Manager, a HAR Data Collector, and a Testing App used to test model inference.

Data Collector We implemented a HAR Data Collector app designed for long­term

and battery efficient data collection. To that end, sensor values are not collected at an

enforced fixed high frequency, but are instead collected independently through Android

listeners whose actual frequency is variable, determined by the underlying OS. This is

appropriate for data collection in the wild. In our experience, this tends to be much

friendlier to the performance and battery life of the user devices, lowering the risk that

a user abandons FLSys prematurely due to concerns about how it is affecting their device

resources. Furthermore, users are given the option to pause or stop data collection of all

or a subset of sensors in case they have resource consumption or privacy concerns. For

simplicity, the raw data and the processed data are stored as files.

FL PhoneManager The FL Phone Manager app decides to initiate an on­device training

round based on evaluating a Ready To Config policy (RTCp). We implemented a simple

192

policy to check if the phone is charging and is connected to the network before declaring

its availability for training. If yes, it sends a Ready To Config message (RTCm) to the

FL Cloud Manager. RTCm is implemented as an HTTP request with JSON payload and

is sent to a REST API URL in AWS. The FL Cloud Manger either accepts or denies the

phone’s participation in this training round, based on a simple Accept/Deny for Training

policy (A/DFTp) that checks the phone model and client identity.

The phone is accepted for a round of training when it receives an Accept For Training

message (AFTm). AFTm contains the information of the AWS S3 locations from where to

download the latest global model weights and where to upload the local gradients. The

message also contains the deadline for this training round’s completion. The FL Phone

Manager evaluates a Start To Train policy (STTp) based on the available device resources

and the round’s deadline to determine whether to actually perform the on­device training

for this round or not.

The FL Phone Manager will create the corresponding Model Trainer if it decides to

train. The Model Trainer is implemented with Android native AsyncTask class to ensure

the trainer is not terminated by Android, even when the app is idle. AsyncTask also enables

multiple trainers to train in the background. Once the training is complete, the Model

Trainer uploads the local gradients to the corresponding AWS S3 location.

Model inference is implemented as a background service with Android Interface

Definition Language (AIDL), and it gets inference requests from third­party apps. When

such a request is received, the FL PhoneManager uses the current sensor data from the Data

Collector as input for the model, runs the inference, and responds to the third­party apps

with the inference results.

Testing App We implemented a simple testing App to test model inference. The App

uses AidlConnection to interface with the FL Phone Manager. Let us note that the App

itself does not access any data or model.

193

4.1.7 Cloud Implementation

The cloud implementation (right­side of Figure 4.1b) consists of two main components: FL

Cloud Manager and Model Aggregator.

FL Cloud Manager The FL Cloud Manager is implemented as a series of Lambda

Functions (FaaS service in AWS). When starting a training round, it reads a configuration

file and determines the deadline for the round (i.e., the time when the round must finish).

During the period between the start time and the deadline, the FL CloudManager accepts or

denies clients’ requests for training (RTCm). When the deadline is reached, the FL Cloud

Manager executes the Model Aggregator according to the Start for Aggregation policy

(SFAp). The current policy checks if enough clients have submitted their local gradients

in the AWS S3 (a configurable parameter). Then, the Lambda function implementing the

FL CLoud Manager schedules an event for itself to perform the next training round and

terminate. The training process stops when the pre­defined number of rounds is achieved,

or the desired performance (model accuracy) is achieved, if the model developers provided

a validation dataset.

ModelAggregator For implementation simplicity, theModel Aggregator uses the federa­

ted average technique [205], with the assumption that each client contributes equally

to the global model in each training round. When it is invoked, it loads the uploaded

local gradients, and aggregates their gradients to the global model of this round. Once

the global model is updated, the Model Aggregator invokes AWS SNS to notify clients

that they can download the newly aggregated model. Note that the Model Aggregator

is called dynamically through reflection, such that different aggregation functions can be

dynamically swapped.

194

4.1.8 Asynchronous Federate Averaging Implementation

Algorithm 4.1 shows the pseudo­code of our asynchronous federated averaging process.

The algorithm consist of three procedures, which execute asynchronously. “ClientLoop”

(lines 1­12) runs at clients and executes a round of training (lines 7­12), if the phone

self­selects for training and the cloud accepts it (lines 1­6). “ServerRTCmHandler” (lines

13­17) is a part of the FL Cloud Manager and decides whether a phone is accepted for

training. “ServerLoop” (lines 18­40) also runs at the FL Cloud Manager. It performs

the aggregation of local gradients and controls the progression of training. The clients

participating in a training round must submit their local gradients before the deadline for

the round expires. When the deadline comes, the procedure first evaluates the Start for

Aggregation policy, which checks whether there are enough local gradient updates in order

to preform aggregation. If yes, the aggregation is preformed (line 24­26); if not, this round

is aborted, but the uploaded gradient updates will be carried to the next round. After

aggregation, the procedure may check against pre­defined conditions to decide whether

this aggregation outcome should be accepted or not (lines 27­30). Finally, the procedure

checks if a new round should be started by evaluating the Start New Round policy. If a new

round is to be started, a new deadline will be set (lines 33­36). Otherwise, the procedure

terminates.

4.1.9 FLSys Setup Workflow

By design, FLSys acts as a service provider that handles multiple FL models with minimum

input from the users. The setup procedures for FLSys are divided into two stages. The first

stage involves the FL Cloud Manager and the app developers without user involvement.

The second stage involves the FL Phone Manager and the mobile apps that use FL models,

and it requires minimum user involvement. The FL Cloud Manager is deployed before the

first stage, and the FL Phone Manager should be installed on the user’s device before the

195

Algorithm 4.1 AsynFedAveraging
1: procedure ClientLoop()
2: while true do
3: readyToConfig ← evaluateReadyToConfigPolicy(powerState, wifiState,...)
4: if readyToConfig then
5: response← sendRTCm()
6: if response == “AFT” then
7: B ← sampling(DL)
8: θl ← θt

9: for batch b ∈ B do
10: θl ← θl − η∇L(θl; b)
11: ∆l ← θl − θt

12: uploadClientGradients(∆l)

13: procedure ServerRTCmHandler(RTCm)
14: if evaluateAcceptForTrainingPolicy(RTCm) then
15: returnResponse(“AFT”)
16: else
17: returnResponse(“DFT”)

18: procedure ServerLoop()
19: deadlineTriggered← false
20: setupDeadline() (deadlineTriggered← true when triggered)
21: while true do
22: if deadlineTriggered then
23: if evaluateStartForAggregationPolicy() then
24: {∆1, ...∆k} ← loadClientGradients()
25: ∆t = (

∑
k ∆k)/k

26: θt+1 ← θt + γ∆t

27: if isRoundAcceptable() then
28: acceptRound(θt+1)
29: else
30: abortRound()
31: else
32: abortRound()
33: if evaluateStartNewRoundPolicy() then
34: startNewRound()
35: deadlineTriggered← false
36: setupDeadline()
37: else
38: stopTraining()
39: else
40: wait()

196

second stage. To illustrate these stages, let us briefly explain the setup workflow using the

HAR app as an example.

In the first stage, the developers of the HAR app need to register themodel with the FL

Cloud Manager. If the model is developed by the app developers, then the developers need

to provide the FL model to be trained and the training plan (e.g., training frequency, number

of rounds, number of participants in a round, etc.) to register the app. If the developers plan

to use an existing FL model, then they need to specify which model to use to register the

app. After registration, an unique key for the authentication between the app and the FL

Phone Manager in the second stage will be provided.

The second stage is typically triggered during the installation process of the HAR

app on the user’s device. The app will communicate with the FL Phone Manager and

authenticate itself using the aforementioned unique key. Once the app is successfully

authenticated, the FL Phone Manager will perform a series of operations and eventually

become ready to serve the FL model for the app. These operations including: (1) Register

the phone with the FL Cloud Manager; (2) Set up communication channels with the app;

(3) If the model does not exist on the phone, it downloads the model specified by the app

and the training plan from the FL Cloud Manager; If the model already exists on the phone,

it only establishes the connection between the app and that model; and (4) Set up the local

training schedule and notify the user. After the second stage, the FL model that the HAR

app needs is installed on the phone, ready for inference and training. The training plan

can be adjusted by the developers through the FL Cloud Manager, if the developers own

the model. User­experience related parameters can be adjusted by the user through the FL

Phone Manager.

4.1.10 HAR­Wild: Data, Model, and Training

We co­designed FLSys with a HARmodel, which was used to extract themain requirements

for FLSys, and then to demonstrate the efficiency and effectiveness of FLSys. To show

197

that FLSys works with different concurrent models, we also implemented and evaluated

a sentiment analysis (SA) model, as described in Subsection 4.1.15. In this Subsection,

we describe the HAR dataset, our HAR­Wild model, and its training algorithm using data

augmentation to deal with non­IID data in the wild.

Table 4.1 Total Number of Minutes for Each Labeled Activity.

Label Total minutes Label Total minutes

sitting 862544.50 table 864904.00

walking 158087.40 mounted 49440.29

driving 38013.98 strap 2485.22

lying 488596.70 vehicle_car 72121.55

cycling 2589.50 vehicle_train/subway 355.24

workout_gym 3649.47 vehicle_motorcycle 88.84

workout_running 2212.69 home 1171968.00

workout_others 16500.13 outside 41886.80

palm 511092.20 travel 14094.12

bag 6446.19 elevator 924.09

pocket 99557.67 office 17562.08

4.1.11 Data Collection

Although there are good HAR datasets publicly available, e.g., WISDM [123], UCI

HAR [124], they are not representative for real­life situations. These datasets were collected

in rigorously controlled environments on standardized devices and controlled activities, in

which the participants only focused on collecting sensor data with a usually high and fixed

sampling rate frequency, i.e., 50Hz or higher.

Thus, given our goal to test FLSys with data collected in the wild, we have used

our Data Collector, described in Subsection 4.1.6, to collect data from 116 users at two

universities. We opt to collect data from university students as subjects for the following

reasons: (1) University students should have relatively good access to the smartphones

198

and related technologies; (2) University students should be more credible and easier to be

motivated than other sources (e.g., recruiting test subjects on crowd­sourcing websites);

and (3) It will be easier for our team to recruit and distribute rewards to students. The data

collection was approved by the IRBs at both universities.

The students collected data from April 1st to August 10th, 2020. Each user provided

mobile accelerometer data and labels of their activities on their personal Android phones.

We provided labels in five categories for participants to choose form: “Walking,” “Sitting,”

“In Car,” “Cycling,” and “Running”. The phones were naturally heterogeneous, and the

daily­life activities were not constrained by our experiments.

Therefore, we collected a novel HAR dataset in the wild that is different from the

existing datasets in the following three aspects: (1) The sensors’ sampling rates vary from

time to time and from user to user, due to battery constrains, device variability, and usability

targets; (2) The same basic activity will generate different signals since different users will

have different habits of carrying smart phones; (3) Label distributions are not just biased,

but vary significantly among users.

The data and labels for each user are uploaded to the backend server that runs

on a secure AWS instance fully managed by Unknot.id and NJIT. Upon registration,

each account will get a unique random identifier for the user. The raw data and labels

are associated only with this identifier to ensure user anonymity. The total size of the

accumulated raw data is about 1 TB.

4.1.12 Data Preprocessing

Our data processing consists of the following steps: (1) Any duplicated data points (e.g.,

data points that have the same timestamp) are merged by taking the average of their sensor

values; (2) Using 300 milliseconds as the threshold, continuous data sessions are identified

and separated by breaking up the data sequences at any gap that is larger than the threshold;

(3) Data sessions that have unstable or unsuitable sampling rates are filtered out. We only

199

keep the data sessions that have a stable sampling rate of 5Hz, 10Hz, 20Hz, or 50Hz;

(4) Data sessions are also filtered with the following two criteria to ensure good quality:

(a) The first 10 seconds and the last 10 seconds of each data session are trimmed, due to

the fact that users were likely operating the phone during these time periods; (b) Any data

session longer than 30 minutes is trimmed down to 30 minutes, in order to mitigate the

potential inaccurate labels due to users’ negligence (forgot to turn off labeling); and

(5)We sample data segments at the size of 100 data points with sliding windows. Different

overlapping percentages were used for different classes and different sampling rates. The

majority classes have 25% overlapping to reduce the number of data segments, while the

minority classes have up to 90% overlapping to increase the available data segments. The

same principle is applied to sessions with different sampling rates. We sample 15% of data

for testing, while the rest are used for training. Details are shown in Table 4.2.

Data Normalization In our models, the accelerometer data is normalized as x ∈ [−1, 1]d

to achieve better model utility. We compute the mean and variance of each axis (i.e., X ,

Y , and Z) using only training data to avoid information leakage from the training phase to

the testing phase. Then, both training and testing data are normalized with z­score, based

on the mean and variance computed from training data. Based on this results, we choose

to clip the values in between [min,max] = [−2, 2] for each axis, which covers at least

90% of possible data values. Finally, all values are linearly scaled to [−1, 1] to finish the

normalization process:

x = 2× [
x−min

max−min
− 1/2] (4.1)

200

Figure 4.2 HAR­Wild model architecture.

4.1.13 Model Design

The design of our HAR­Wild model has two requirements: low computational complexity

and small memory footprint. Satisfying these requirements ensures the model can work

efficiently on phones. Figure 4.2 shows our model architecture. For a low computation

complexity, HAR­Wild is based on CNN (instead of RNN, e.g., LSTM) and tailored to

work well on mobile devices. In addition, instead of using data from multiple sensors,

HAR­Wild can achieve comparable results with several baseline approaches by using only

accelerometer data, which makes the training faster.

The accelerometer data are processed into data segments of shape [3, 100], indicating

100 data points of 3 axis: X, Y, and Z. We leverage the recipe of ResNet model [206] into a

small­size model, by using the processed accelerometer data as input of (1) a sequence of a

1D­CNN ­ a Batch Norm ­ a 1D­CNN ­ a Batch Norm ­ a Flatten layer, and (2) a sequence of

a 1D­CNN ­ a Batch Norm ­ a Flatten layer. The two flatten layers are concatenated before

feeding them into a sequence of a Drop Out layer ­ a Dense layer ­ and an Output layer. By

doing so, HAR­Wild can memorize and transfer the low level latent features learned from

the very first 1D­CNN, directly derived from the input data, to the output layer for better

classification. We use Global Average Pooling [207] given its small memory footprint,

201

Figure 4.3 Number of data points of each class for each user.

instead of the popular Local Max/Average Pooling [208]. A small­size model is expected to

perform better on data collected in the wild, since the data will likely have more distribution

drift, increasing the chance of model overfitting on large­size models.

4.1.14 HAR­Wild Async Augmented Training

The performance of FL models is negatively affected by non­IID data distribution [133,

109, 127], and we observed this to be true for HAR­Wild as well. Figure 4.3 shows the

data distribution of HAR­Wild. To address this problem, we leverage data augmentation

training [209] and tailor it to mitigate the distortion in computing gradients at client­side

by balancing the client data with a small number of augmentation data samples without an

undue computational cost.

The pseudo­code for HAR­Wild Asynchronous Augmented Learning is described

in Algorithm 4.2. This algorithm is integrated in Algorithm 4.1 by replacing lines 7­12

from Algorithm 4.1 with the AugmentedGradients procedure in Algorithm 4.2. Before the

whole training process starts, the FL Cloud Manager executes the procedure Init (lines 1­3,

Algorithm 4.2), which first collects a small pool of random samples for each class that will

202

be used for data augmentation (line 2). These data can be collected from a small number

of volunteers or controlled users who share IID data with the FL Cloud Manager in FLSys.

The augmentation data pool could also come from publicly available datasets. Then, the

augmentation data pool A is delivered to each client (line 3). In each training round, each

client (i.e., phone) randomly samples the augmentation data (line 8). Then, the sampled

augmentation data DA will be combined with the local data DL (line 10, Concatenate(DA,

DL)) to compute the local gradients (lines 11­13, LocalTraining). The local gradients are

then sent to the cloud for the asynchronous average aggregation and model update (line 14).

In order to deliver the augmentation data to the clients (line 3), we consider two

objectives: (i) privacy­preserving, and (ii) communication efficiency. One naive approach

is to send data to augment the missing classes at the clients in each training round, since

the local missing data can change over time. In this approach, the FL Cloud Manager

needs to know which classes are missing for each client in each training round. This could

increase the communication cost and significantly increase data privacy risk; since the cloud

learns certain aspects of the user behavior based on the classes that miss data over time. To

achieve both privacy­preserving and communication efficiency, the approach implemented

in our FLSys (Algorithm 4.2) first delivers the entire augmentation data to every client

only once at the beginning of the training process. Then, the clients use only the data

necessary to augment their missing data in each training round. Given the small size of the

augmentation data, the overhead of also sending unnecessary augmentation data is minimal,

without causing extra data privacy risk.

4.1.15 Evaluation

The evaluation has two main goals: (i) Analyze the performance of the two FL models,

HAR­Wild and sentiment analysis (SA), to understand if they perform similarly with their

centralized counter­parts; (ii) Quantify the system performance of FLSys with HAR­Wild

and SA on Android and AWS. In terms of system performance, we investigate energy

203

Algorithm 4.2 HAR­Wild Asynchronous Augmented Learning
1: procedure Init(clients)
2: augmentation pool A ← sampleAugmentData(clients)
3: deliverAugmentPool(A, clients)
4: procedure AugmentedGradients(Round t, Client i)
5: Augmentation data pool A
6: Local data pool Li

7: θl ← θt

8: augmentation data DA = sampleAugmentData(A)
9: local data DL = sampleData(Li)
10: training data DT = concatenate(DA, DL)
11: for batch b ∈ DT do
12: θl ← θl − η∇L(θl; b)
13: ∆l ← θl − θt
14: uploadClientGradients(∆i)

efficiency and memory consumption on the phone, system tolerance to phones that do not

upload local gradients, and FL aggregation scalability in the cloud. We also study the overall

response time for third party apps that use FLSys on the phone. For model evaluation, we

use Accuracy, Precision, Recall, and F1­score metrics. For system performance, we report

execution time and memory consumption for both the phones and the cloud, and battery

consumption on the phones.

Most of the evaluation is done in the context of HAR­Wild, which illustrates a typical

FL model based on mobile sensing data. However, to demonstrate that FL works for

different models, we also show results for the SA model. The rest of the Subsection is

organized as follows: Subsection 4.1.16 evaluates HAR­Wild under different scenarios.

Subsection 4.1.17 describes the SA model and shows its performance. Subsection 4.1.18

shows the HAR­Wild performance over the FLSys prototype. Since we did not have

enough phones, we show the results using Android emulators to replay each user’s data.

Subsection 4.1.19 presents scalability and fault­tolerance results for HAR­Wild over FLSys

in AWS. Finally, Subsection 4.1.20 presents results for HAR­Wild and SA over FLSys on

two types of Android phone models.

204

(a) Centralized and Simulated FL

(b) Android Emulated FL vs. Simulated FL (c) Linux FL Emulation

Figure 4.4 HAR­Wild accuracy under different settings.

4.1.16 HAR­Wild Model Evaluation

Table 4.2 shows the basic information of our collected dataset used for all HAR­Wild

experiments. Some of the users have very limited numbers of labeled activities; thus, we

select data from 51 users who labeled a reasonable amount of samples.

We perform centralized and simulated evaluation to assess HAR­Wild’s utility

comparedwith several baselines. Centralized trainingworks as an upper bound performance

for FL models. In addition, it allows us to fine­tune the model’s hyper parameters. The

205

Table 4.2 Number of Samples in the Dataset for 51 Users

Type
Class 0

Walking

Class 1

Sitting

Class 2

In Car

Class 3

Cycling

Class 4

Running

Training 48855 51499 49185 14281 1920

Testing 8514 8828 8595 2514 319

evaluation includes three variants of HAR­Wild: HAR­W­32, HAR­W­64, andHAR­W­128,

which have the numbers of convolution­channels set to 32, 64, and 128. We derive

two versions of our HAR­W­64 model in simulated FL with (HAR­W­64­uniform) and

without (HAR­W­64­stock) the data augmentation. The augmentation data, consisting of

640 samples of each class, is fixed and shared with all clients.

Baseline approaches To demonstrate that HAR­Wild is competitive with respect to

state­of­the­art HAR models, we consider two baseline models: (1) Bidirectional LSTM

with 3­axial accelerometer data as input. This is a typical model for time­series data, and

we fine­tune it based on grid­search of hyperparameters; and (2) The CNN­based models

proposed by Ignatov [120], with additional features (CNN­Ig) and without additional

features (CNN­Ig_featureless) using recommended settings in [120]. For a fair comparison,

we used TensorFlow implementations for all models. Table 4.3 shows all the hyper­

parameters and model configurations.

Results Figure 4.4a shows that HAR­Wild models outperform the baseline approaches.

On average, HAR­W­64 performs best and achieves 82.49% accuracy compared with

78.68%, 76.39%, and 77.08% of the BiLSTM, CNN­Ig and CNN­Ig­featureless. Our

HAR­Wild models also achieve the best performance in all the other metrics (Table

4.4). Overall, HAR­W­64 (60,613 trainable weights) has the best trade­off among model

accuracy, convergence speed, and model size, and we use it in all the following experiments

for HAR­Wild.

206

Table 4.3 Model Settings of HAR­W and Baselines

Model Optimizer Other key parameters

HAR­Wild (centralized) Adam
LR=0.0005, dropout_rate=0.4,

batch_size=1024,

Sampling: Same as class distribution

HAR­Wild (sim­FL) Adam

client_LR=0.005, server_LR=1.0,

dropout_rate=0.4, batch_size=128,

Sampling: [50, 100] samples per class,

[15, 30] augment samples per class

HAR­Wild (FLSys) Adam

client_LR=0.005, server_LR=1.0,

dropout_rate=0.4, batch_size=64,

Sampling: [50, 100] samples per class,

[15, 30] augment samples per class

CNN­Ig (centralized) Adam
LR=0.0005, dropout_rate=0.05,

batch_size=1024

Sampling: Same as class distribution

BiLSTM (centralized) Adam
LR=0.0005, dropout_rate=0.2,

batch_size=1024

Sampling: Same as class distribution

207

In the simulated FL, we replay the data collected in the wild for each user. HAR­

Wild trained with FL and data augmentation achieves 71.8% accuracy, which is about

10% less than the accuracy of the centralized­trained HAR­Wild. This is the cost of

privacy­protection provided by FL.We notice the substantial benefits of data augmentation,

since HAR­W­64­uniform outperforms HAR­W­64­stock (without data augmentation), in

all metrics.

Table 4.4 HAR­Wild vs. Baselines: Macro­Model Performance

Model Accuracy Precision Recall F1­score

HAR­W­32­centralized 0.8186 0.8486 0.8360 0.8409

HAR­W­64­centralized 0.8249 0.8512 0.8354 0.8428

HAR­W­128­centralized 0.8262 0.8529 0.8449 0.8484

BiLSTM 0.7868 0.8074 0.7831 0.7941

CNN­Ig 0.7639 0.7970 0.7715 0.7834

CNN­Ig_featureless 0.7708 0.8004 0.7779 0.7878

HAR­W­64­fed­stock 0.5368 0.3828 0.3569 0.3190

HAR­W­64­fed­uniform 0.7181 0.7464 0.7419 0.7378

4.1.17 SA Model Evaluation

FLSys is designed and implemented to be flexible, in the sense that the training and

inference of multiple models can run concurrently. On the server, different applications

use independent AWS resources. On the phone, independent model trainers and inference

runners are responsible for different applications. This subsection showcases the training

performance of the SA model, a text analysis application that interprets and classifies the

emotions (positive or negative) from text data. With the inferred emotions of mobile users’

private text data, a smart keyboard may automatically generate emoji to enrich the text

before sending.

208

Figure 4.5 SA model architecture.

We build the SA model specifically for tweet data. We use the FL benchmark dataset

Sentiment140 1, which consists of 1,600,498 tweets from 660,120 users. We select the

users with at least 70 tweets, and this sub­dataset contains 46,000+ samples from 436 users.

Figure 4.5 shows our SA model architecture. We first extract a feature vector of size 768

from each tweet with DistilBERT [210]. Then, we apply two fully connected layers with

relu and softmax activation, respectively, to classify the feature vector into positive or

negative. The number of hidden states of the first fully connected layer is set to 128 to

balance the convergence speed and model size. In the FL version of the model, 5% of the

users are used for data augmentation, and the rest of the users follow 4:1 train­test split.

Results While the reference implementation associated with this benchmark dataset

reached 70% accuracy [211] using 100 users with stacked LSTM in FL simulation, our SA

model achieves superior performance, as shown in Table 4.5. Centralized learning achieves

81% accuracy, while FL achieves 79% accuracy (an acceptable drop).

4.1.18 HAR­Wild over FLSys Emulation Performance

This set of experiments tests FLSys with HAR­Wild by running the actual phone code

in Android emulators. However, since Android emulation is slow and costly, we run

several larger­scale experiments with the same DL4J algorithms and functions in Linux,

1http://help.sentiment140.com/home Retrieved on June 15, 2021

209

Table 4.5 SA Model Performance per Class in FLSys Training

Class Accuracy Precision Recall F1­score Support

CL
negative

0.81
0.75 0.69 0.72 3159

positive 0.84 0.88 0.86 5746

FL
negative

0.79
0.73 0.64 0.68 3159

positive 0.81 0.87 0.84 5746

which is much faster; this enables us to conduct larger­scale experiments. This subsection

demonstrate that FLSys and HAR­Wild can work well in real­life, where they are deployed

on Android phones.

All the phone components of the prototype, except for Data Collector and Data

Preprocessor, run in the emulators. The cloud part of the prototype runs in AWS. The

Android emulators run on top of virtual machines (VMs) in Google Cloud, as AWS does

not support nested virtualization. We run 10 VMs in Google Cloud, and each VM has 16

vCPUs and 60GB memory. On each instance, we run 4 Android v10 emulators from AVD

manager in Android Studio. Each emulator is loaded with 3 users’ data files, and each file

is sampled twice as different clients. In each round, each Android emulator participates

in training on behalf of a few clients. We set the deadline for the round in the FL Cloud

Manager to 6 minutes.

Results Figure 4.4b shows that HAR­Wild with 64 clients emulation in both Android and

Linux on FLSys achieve comparable accuracy with the simulated FL with TensorFlow, i.e.,

69.07%, 68.50%, and 66.00%. Figure 4.4c shows the results of HAR­Wild with higher

number of clients (up to 960) using Linux emulations. The client data was over­sampled

from the original 51 users. HAR­Wild model achieves up to 69.17% accuracy, and more

clients help the model converge quicker with better performance.

210

Figure 4.6 Aggregation time and participating clients

4.1.19 Fault Tolerance and Scalability

Fault Tolerance In daily life, some clients may fail to upload a trained model to the FL

Cloud Manager due to network or computation issues. This set of experiments verifies the

fault tolerance of FLSys in terms of model performance as a percentage of clients dropped

out randomly in each round. Figure 4.4c shows the accuracy of HAR­Wild with up to

50% clients dropping out randomly from 480 clients in each round. With 1,000 rounds of

training, the accuracy is reduced by at most 3.11%. This is a promising result showing that

FLSys can tolerate reasonably large dropout rates during training.

Scalability As discussed in Subsection 4.1.5, computation and storage scale indepen­

dently in the cloud for FLSys. This set of experiments verifies the scalability of FLSys

across training rounds. The only FL function that may be computationally intensive in the

cloud is the Model Aggregator. Figure 4.6 shows the Model Aggregator in AWS scales

linearly with the number of participating clients. We also observe that the aggregation of

960 clients generally finishes in less than 4 minutes. By interpolating these results and

given the current 15 minutes execution time limit of an AWS Lambda process [204], the

FLSys prototype (with single­threaded aggregator) can handle up to 3,600 clients, which is a

211

sufficient number of clients, per training round. This number can bemultiplied substantially

by implementing both thread­level and process­level parallelization to handle real­world

traffic volume.

4.1.20 FLSys Performance on Smart Phones

We benchmarked FLSys with HAR­Wild and SA on Android phones using a testing app to

evaluate training and inference performance. We also assessed the resource consumption

on the phones. We used two phones with different specs (Google Pixel 3 and Pixel 3a).

Table 4.6 Model Performance per Class in FLSys Training

Model Class Accuracy Precision Recall F1­score

HAR­W­64

0

0.6907

0.7003 0.6628 0.6810

1 0.5922 0.8655 0.7032

2 0.8606 0.5443 0.6668

3 0.8324 0.6450 0.7268

4 0.6682 0.9028 0.7680

Training Performance Table 4.7 shows the training time and the resource consumption

on the phones. The training time is recorded by training 650 samples for 5 epochs for HAR­

Wild, and 100 samples for 5 epochs for SA, which are the optimum scenarios determined

in Subsection 4.1.18. Foreground training is done while leaving the screen on, and it uses

the full single core capacity. It provides a lower bound for the training time. However, in

reality, we expect training to be done in the background, either on battery or on charger.

As in practice, other apps or system processes working in background may interfere with

training. We take 10 measurements for each benchmark, and report the mean and standard

deviation.

Training for one round is fast on the phones. The foreground training time on the

more powerful phone, Pixel 3, is just 0.7 min for HAR­Wild, and 0.22 min for SA. The

212

Table 4.7 Training Resource Consumption and Latency

Model HAR SA

Phone
Google

Pixel 3a

Google

Pixel 3

Google

Pixel 3a

Google

Pixel 3

Maximum RAM

Usage (MB)
156 165 128 136

Foreground Training Time

Mean/SD (min)
1.23/0.01 0.70/0.06 0.33/0.005 0.22/0.002

Background Training Time

on Charger

Mean/SD (min)

3.94/0.04 3.58/0.10 0.84/0.006 0.76/0.02

Background Training Time

on Battery

Mean/SD (min)

85.82/33.07 79.96/36.82 25.42/5.72 24.19/8.12

Battery Consumption

per Round (mAh)
9.72 3.79 2.02 0.76

Number of Training Rounds

for Full Battery
308 769 1481 3846

213

Table 4.8 Inference Resource Consumption and Latency

Model HAR SA

Phone
Google

Pixel 3a

Google

Pixel 3

Google

Pixel 3a

Google

Pixel 3

Maximum RAM

Usage (MB)
158 177 108 129

Foreground Inference Time

Mean/SD (millisecond)
38.48/10.07 36.59/6.43 11.90/3.71 10.11/2.88

Background Inference Time

on Charger

Mean/SD (millisecond)

99.73/19.76 99.60/33.69 20.65/4.45 15.59/5.89

Background Inference Time

on Battery

Mean/SD (millisecond)

100.11/19.69 100.11/21.45 19.58/3.93 17.42/5.69

Battery Consumption

per prediction (µAh)
4.12 1.94 2.3 0.17

Millions of inferences

for Full Battery
0.73 1.50 1.30 17.63

214

background training time on charger, which is the expected situation for FL training, is good

for any practical situation. The phones experience a higher training time compared with the

foreground case (completed one training round in less than 4 minutes). The background

training time on battery is notably longer, since Android attempts to balance computation

with battery saving.

The results show training is also feasible in terms of resource consumption. The

maximumRAMusage of the app is less than 165MB, andmodern phones are equipped with

sufficient RAM to handle it. While we did not perform experiments for battery consumption

in the foreground (as this test was used just for a lower bound on computation time), we

measured battery consumption for background training on battery. The phones could easily

perform hundreds of rounds of training on a fully charged battery. It is worth noting that,

typically, one round of training per day is enough, as the users need enough time to collect

new data.

Inference Performance The results in Table 4.8 demonstrate that FLSys can be used

efficiently by third­party apps. The inference time is measured within the testing app, and

thus includes the latency due to both FLSys and the FL models. We continuously perform

predictions for 30 minutes and report the average values. The inference time for the three

scenarios on the third­party app, foreground, background on charger, and background on

battery, follows a similar trend as training. FLSys and HAR­Wild/SA have reasonable

resource consumption, which make them effective in practice.

In the real world, inference may be expected in both foreground and background. One

inference can be completed within tens of milliseconds for foreground and background on

charger, which is good for all practical applications. The latency for background on battery

is hundreds of milliseconds, which is still acceptable for many applications. However, the

two phones experience high standard deviation in this scenario. This is because inference

is typically a short task, and whenever it is interfered by other processes, its execution may

215

be significantly prolonged. Nevertheless, background inference is typically used to assist

an application, such as advertisement, and even latency in the orders of seconds may be

acceptable for practical purposes.

FLSys and HAR­Wild also have reasonable resource consumption, which make them

effective in practice. The maximum RAM usage for inference is less than 177MB. The

battery consumption per prediction is low enough to execute millions of predictions with

a full battery. With further optimization, such as model pruning and compression, the

resource consumption can be even lower.

4.1.21 Conclusions, Lessons Learned, and Future Work

This chapter presented our experience with designing, building, and evaluating FLSys,

an end­to­end federated learning system. FLSys was designed based on requirements

derived from real­life applications that learn from mobile user data collected in the

wild, such as human activity recognition (HAR). Compared with existing FL systems,

FLSys balances model utility with resource consumption on the phones, tolerates client

failures/disconnections and allows clients to join training at any time, supports multiple

DL models that can be used concurrently by multiple apps, and acts as a “central hub”

on the phone to manage the training, updating, and access control of FL models used by

different apps. We built a complete prototype of FLSys in Android and AWS, and used

this prototype to demonstrate that FLSys is effective and efficient in practice in terms of

model performance, resource usage, and latency. We believe FLSys can open the path

toward creating an FL ecosystem of models and apps for privacy­preserving deep learning

on mobile sensing data. In terms of actual deployment of FLSys in practice, we believe

it can be offered as FL as a Service (FLaaS) by cloud providers. Next, we report lessons

learned and future work.

Buildmechanisms to copewith non­IID data Since our data collection happened during

the Covid­19 pandemic, we expected to see somewhat similar data from users who mostly

216

stayed indoors. However, the data was non­IID strengthening the idea that data collected

in the wild will almost always be non­IID. A future work in FLSys is to provide support for

model and data­specific augmentation and other approaches to cope with non­IID data.

Beware the simulation pitfalls One common practice in FL simulations is to use the same

instances/placeholders in memory for the different clients. Such simulations must carefully

reset the instances for different clients to avoid any information leakage among clients,

which can never happen in a real system. Our initial experiments showed unexpectedly

different results between simulations and Android emulators with DL4J for the same

settings. The first problem we discovered was that Batch Normalization (BN) is not

supported in DL4J for specific data shapes. We implemented our own BN in DL4J, but

the simulation results still did not match the experimental results. Finally, we realized that

BN does not work well for FL (consistent with [212]), but it does work in the simulations

due to shared instances among the simulated clients. Thus, the FL models used in the

reported experiments do not use BN. The second problem we noticed was that the Adam

optimizer worked well for simulation, but not for the Android emulator experiments. This

was also caused by shared instances accessed by all clients in the simulation. This should not

happen in practice given privacy leakage through the shared instances. The lesson learned

was that simulation may show better results than experiments with real systems for FL.

Since most of FL papers in the literature are based on simulations, which may suffer from

similar problems with the ones described here. We believe FLSys offers an opportunity to

test such FL models in real­life conditions.

Balance mobile resources and model accuracy In the current FL literature, there are

no results to show the FL models work well on mobile devices, while consuming a limited

amount of resources on these devices (e.g., battery power, memory). A lesson that we

understood early on is that FLSys will need to balance resource usage on mobiles with

model accuracy. Therefore, FLSys used an asynchronous design in which policies on the

217

mobile devices are evaluated to decide when it makes sense for the device to participate

in training and consume resources. Our results show that good model accuracy can be

achieved even when a significant number of mobile devices do not participate in training

in order to save resources. Let us also note that real systems cannot expect to run the same

number of rounds that we observe in simulations. For example, it is common to see 10,000

rounds in simulations. However, in real life, mobile devices may not train more than once

a day due to both resource consumption and lack of enough new data. In such a situation,

running 10,000 rounds will take over 27 years. Thus, models must be optimized for a

realistic number of rounds.

Design for flexibility FLSys was designed for model flexibility on the phones from the

beginning (i.e., allow apps to use multiple interchangeable models). However, we did

not originally design for flexiblity in the cloud. At first, we used virtual machines in the

cloud and durable cloud storage for all FL operations. When we analyzed scalability and

performance issues, we realized that an FaaS solution and different types of storage are

necessary. Therefore, we changed the design of the FLSys in the cloud to allow for different

types of cloud platforms and storage options. Thus, FLSys can easily be ported to other

cloud platforms beyond AWS.

Future Work In the near future, we will add features to allow FLSys to support

continuous data collection, which is what we expect to see in real­life scenarios. We will

also focus on designing and implementing privacy and security components for FLSys.

Finally, we plan to improve FLSys from a DevOps point of view. We will evaluate the

system performance under concurrent training of multiple models, plug­n­play modules,

and support a dashboard.

218

CHAPTER 5

OTHERWORK

5.1 Recursive Structure Similarity: A Novel Algorithm for Graph Clustering

5.1.1 Abstract

A various number of graph clustering algorithms have been proposed and applied in

real­world applications such as network analysis, bio­informatics, social computing, and

etc. However, existing algorithms usually focus on optimizing specified quality measures

at the global network level, without carefully considering the destruction of local structures

which could be informative and significant in practice. In this work, we propose a

novel clustering algorithm for undirected graphs based on a new structure similarity

measure which is computed in a recursive procedure. Our method can provide robust and

high­quality clustering results, while preserving informative local structures in the original

graph. Rigorous experiments conducted on a variety of benchmark and protein datasets

show that our algorithm consistently outperforms existing algorithms.

5.1.2 Introduction

In general, graph clustering, or community detection, is to detect cluster or community

structures in a given system or network by analyzing its corresponding graph using

information from the graph’s topology. Graph clustering is one of the most important ways

of network analysis [213, 214].

A wide variety of methods have been developed to perform graph clustering, and

many of them can obtain impressive results in competitive running time. However, there

are still weaknesses and limitations in existing methods. For instance, in Spectral clustering

algorithm [213], the relation between the original minimum cut problem over actual

clustering and the relaxed version of it is still not clear, and the necessity of providing the

number of clusters k limits the scope of the Spectral clustering. ForModularity optimization

219

methods [215, 216, 217], they suffer from inconsistency and may easily get stuck in local

maximum due to their randomness nature. Even very effective, Markov Cluster Algorithm

(MCL) [214] has an issue of eliminating the graph’s original structure. This results in

producing star­like clusters, which may destroy dense and informative local structures.

In this work, we propose a novel community detection algorithm for undirected

graph based on a new structure similarity measure. Structure similarity in general is

a type of similarity measure that shows how two nodes are similar to each other, at

the graph structure point of view. By incorporating structure similarity with Shannon’s

information theory, we define a novel recursive structure similarity as a measure of the

weight, or the carrying information, for each edge in the graph. In our algorithm, the

structure similarity is calculated recursively until it converged to an equilibrium state in

which each edge has a consistent weight, which enables clustering through removing

weak edges. Rigorous experiments conducted on well­known benchmark datasets and

well­constructed protein­protein interaction datasets show that our algorithm consistently

outperforms existing algorithms given a variety of quality and accuracy measures.

5.1.3 Related Work

Community detection or graph clustering has been extensively researched through many

different tracks. Here we briefly revisit the early and traditional methods of addressing the

problem, as well as the state­of­the­art methods.

Hierarchical clustering algorithms [218] approach this problem by revealing a hierar­

chical structure of the target graph, given that many graphs do have hierarchical structures.

Partitional clustering approaches [219] are often used to find a given number of clusters

by mapping data points into metric space and then minimizing some chosen cost functions

which are based on distance measures. For instance, DBSCAN [220] utilizes density by

scanning each data point’s perimeter and merging points and clusters if they are within a

distance threshold.

220

Spectral clustering has been researched extensively, but there are still problems to be

solved. For example, the relationship between the original minimum cut problem and the

relaxed version of the graph partition problem is still unclear. One of the most recent works

[221] proposed a quite effective normalized spectral clustering algorithm.

The divisive method proposed by Girvan and Newman [222] is a significant contri­

bution for clustering. In this method, edge betweenness, as a centrality measure, is used to

pick edges that are to be removed. Later, Modularity optimization­basedmethods [223, 217]

that use greedy techniques to give approximated results became widely adopted.

Another branch contains Random­Walk based methods such as MCL [214] and

Infomap [224]. MCL iteratively performs a sequence of expansion, inflation, and normal­

ization operations on the transfer matrix of the graph, which represents the Random Walk

probability of every edge, until it converges. It was commonly used in bio­informatics

because of its simplicity. Infomap [224] algorithm uses a probability flow of Random

Walks to represent information flow in the network, and then reveals community structure

by compressing a description of the probability flow.

5.1.4 Recursive Structure Similarity

In this subsection, we first give the definition of the graph and show how the weight, or the

carrying information, of each edge is quantified by defining variance and covariance using

Shanon’s information theory. Then, we demonstrate how community detection can be done

using the quantified information.

We consider an undirected and unweighted network G = (V,E) with n nodes ∈ V

and l edges ∈ E. Given node i and node j, their direct connection status is denoted as Iij ,

where Iij = 1 if the two nodes are directly connected, and Iij = 0 otherwise. We always

have Iij = Iji, since edges are undirected. We adopt the convention that Iii = 1, which

means that any node i is considered connected with itself. We have the edge weight between

node i and j denoted as θij , and θij = θji. A weight matrix Θ = (θij)n×n is where each

221

edge’s weight θij is kept. Originally, all entries in Θ equals to 1.0. Our goal is to quantify

the information carried in each edge, which is then reflected in weight matrixΘ. By setting

a threshold τ , weakly connected edges will be removed to extract communities.

Quantifying the Information Carried in the Network G To quantify the information

carried in the networkG, we first quantify howmuch information is carried in a single node

and a single edge. Let us consider only one node i and one of its neighbors k. Given the

fact that, for every pair of nodes (e.g., node i and node k), we have both θik and θki in the

weight matrix Θ. For making notation confusion free, we denote one of the nodes i as i′

and replicate all its connections to k, as shown in Figure 5.1. The self­connection Iii is

now denoted as a direct connection Iii′ = 1 between i and i′. Also, an indirect connection

between i and i′ through neighbor k appears. Considering all the original neighbors of node

i, in Figure 5.1, the weighted sum of all the indirect connections between i and i′ is:

∑
k ̸=i,k ̸=i′

Iikθikθki′ (5.1)

Figure 5.1 The variance of a node i, where i′ is a replication of i and k denotes the
neighbors of i.

For a node i, we define its variance, σ2
i , as the sum of weighted connections that i

has, including direct and indirect connections, given weight matrix Θ. The intuition of this

definition is that the variance of a node i given its connections is a measure of how much

structural information is reserved in its local network. The greater variance a node i has,

222

the larger amount of the local structural information it carries. Given that θik = θki′ , the

variance of a node i can be denoted as follows:

σ2
i = σ2

i (Θ) = 1 +
∑

k ̸=i,k ̸=i′

Iikθikθki′ = 1 +
∑
k ̸=i

Iik(θik)
2 (5.2)

Similarly, the covariance of an edge ij between a pair of nodes i and j is a measure of

how much information is shared among i and j. A pair of nodes with higher covariance is

more likely to be in the same cluster, since they sharemore information and cutting themwill

cost more information loss. The covariance between nodes i and j can be simply defined as

a product of howmuch information each node carries and the weighted connection between

them:

Covij(Θ) = σiσjθij (5.3)

By convention, the total information the networkG = (V,E) carries can be measured

as the sum of the covariances of all the edges in E:

Info(G) =
∑
ij∈E

Covij(Θ) =
∑
ij∈E

σiσjθij (5.4)

In (5.4), the total information in the network G is measured based on how nodes

directly share information via only weighted direct connections θij . However, nodes can

also indirectly share information to each other through their common neighbors. Therefore,

the total information or the covariance Covij(Θ) between node i and node j needs to be

decomposed into direct and indirect information sharing, correspondingly denoted as dij(Θ)

223

and dcij(Θ). Given two different nodes i and j, the direct information sharing is difficult to

define at this moment, but the indirect information sharing dcij(Θ) can be defined as follows:

dcij(Θ) =
n∑

k=1

IikIkjdik(Θ)dkj(Θ) (5.5)

The direct information sharing dij(Θ) can be then defined:

dij(Θ) = Covij(Θ)− dcij(Θ) (5.6)

From (5.6), we have an alternative expression of the covariance Covij(Θ) as:

σiσjθij = dij(Θ) +
n∑

k=1

IikIkjdik(Θ)dkj(Θ) (5.7)

5.1.5 Recursive Structure Similarity Algorithm

In (5.7), dij(Θ) can be further defined as an arbitrary kernel function of the weight matrix

Θ. For clustering problems, we formulate dij(Θ) as: dij(Θ) = θij . Equation (5.7) now

becomes:

σiσjθij = θij +
n∑

k=1

IikIkjθikθkj (5.8)

To generalize (5.8), we use a hyper­parameter λ to control the degree of the direct

information contributes to the total information of the graph as follows:

224

σiσjθij = λθij +
n∑

k=1

IikIkjθikθkj. (5.9)

Now we are ready to define our Recursive Structure Similarity (RSS) algorithm (Alg.

5.1) to solve (5.9) and learn the weight matrix Θ. Since (5.9) depends on the weight

matrix Θ, while the weight matrix Θ is also the goal that we want to learn, we begin with

some initial estimation of the weights and compute them iteratively (re­weighting) until

reaching convergence. Start from an initial estimation of the weight matrix, by applying

the coordinate descent algorithm, we have the explicit formula for θ(m)
ij at them­th iteration

based on the previous state of the weight matrix Θ(m−1) as follows:

θ
(m)
ij =

λθ
(m−1)
ij +

∑n
k=1 IikIkjθ

(m−1)
ik θ

(m−1)
kj

σ
(m−1)
i σ

(m−1)
j

(5.10)

Equation (5.10) is also the definition of the new recursive structure similarity

measure.

Convergence Analysis In our algorithm, we consider two extreme cases: (1) When λ

is extremely large, in the numerator of right­hand­side of (5.10), the first term λθ
(m−1)
ij

dominates the second term
∑n

k=1 IikIkjθ
(m−1)
ik θ

(m−1)
kj . Therefore, we haveΘ(m) = Θ(m−1) =

... = Θ(0). This means the weight matrix Θ(0) will stay unchanged and we could not learn

the weights; and (2) When λ = 0, we can simplify (5.9) as Σ(Θ)ΘΣ(Θ) = Θ2, where

Σ(Θ) = diag{σ1, · · · , σn}. By the property of idempotent matrix, we can show that Θ(m)

converges to an identitymatrix. Through these two facts we can conclude that, when enough

iterations of (5.10) are preformed, any λ value that is between the two extreme stages will

bring Θ to a stable state where communities can be distinguished.

225

Algorithm 5.1 Recursive Structure Similarity
1: procedure Parameter Initialization
2: G← Graph(n, l) // import the graph
3: Θ← {}
4: for all i, j ∈ (Iij = 1) do
5: θij ← 1.0 // default edge weight=1.0
6: Θ← Θ ∪ θij

7: Θ
′ ← Θ // create a copy of Θ

8: for all θij ∈ Θ do
9: θij ← init(θij , G)

10: procedure Parameter Estimation
11: p← 0 // loop index
12: δ ← ϵ // ϵ being the threshold of δ value
13: while p < max_iteration and δ >= ϵ do
14: for all θij ∈ Θ do
15: θ

′
ij ← RSS(θij) // RSS() being the Equation (5.10)

16: θij ← θ
′
ij

17: δ ← d(Θ,Θ
′
) // d(Θm,Θm+1) being the Equation (5.12)

18: p← p+ 1

19: procedure Community Detection
20: C ← {} // Empty set of clusters
21: for all θij ∈ Θ do
22: if θij > τ then
23: if Gi & Gj /∈ (any c ∈ C) then
24: c← {Gi, Gj} // create a new cluster
25: C ← C ∪ c
26: else if Gi ∈ (c ∈ C) & Gj /∈ (c ∈ C) then
27: c← c ∪Gj

28: else if Gi /∈ (c ∈ C) & Gj ∈ (c ∈ C) then
29: c← c ∪Gi

return C

226

CommunityDetectionwithRSS Herewe present howwe useRSS to perform community

detection. The pseudo code is shown in Alg. 5.1. Our Recursive Structure Similarity

Clustering algorithm consists of three stages. The initialization stage reads the graph from

the file and initializes the weight matrix Θ. All the entries in the Θ would be initiated by

using the modified cosine similarity as:

2 + |Γi ∩ Γj|√
(1 + |Γi|)(1 + |Γj|)

(5.11)

where |Γi| is the number of neighbors of node i.

In the second stage, RSS is applied iteratively to update the weight matrix Θ. In

each iteration, (5.10) is applied to each entry in the current Θ(m) to create Θ(m+1). The

hyper­parameter λwas set to 2 for our tests. This stage is terminated when a desired number

of iterations (max_iteration) is reached, or when the average difference betweenΘ(m) and

Θ(m+1) is smaller than a pre­defined threshold ϵ:

1

l

∑
Iij=1

∣∣θ(m)
ij − θ

(m−1)
ij

∣∣ < ϵ (5.12)

The setting of max_iteration and ϵ depends on the graph, the required level of

convergence, and the desire of running time. The max_iteration was set to 5000, and

we used ϵ = 10−8 in our tests to ensure good convergence.

In the final stage, the input is the weight matrix Θ and the list of nodes, and the

output is a set of clusters. The clusters are separated from each other by removing edges

that have connection strengths below certain threshold τ . Threshold τ is a hyper­parameter

that controls the sparsity of the result. A larger τ will let more edges to be removed thus

227

creates more clusters. The choice of τ is domain dependent. An example of it is τ = 10−5.

Given a Θ, this stage can be repeated to find the optimum τ for desired clustering results.

Here we analyze our algorithm’s time complexity. For a reasonably sparse graph

with n nodes and l edges, Edeg(G) being the expected average degree of each node, and

Eneighbors(i, j) being the expected number of common neighbors that any pair of nodes i and

j has, then the time complexity will beO
(
2lmEdeg(G)Eneighbors(i, j)

)
. Also, in the second

stage, which is most time­consuming stage, eachm­th step of this algorithm is based on the

static (m− 1)­th state, and the order of entries to be updated does not affect the final result.

This property enables a distributed parallel implementation of our algorithm for handling

large dataset.

5.1.6 Experimental Settings

Datasets Six datasets were used for our experiments. The small benchmark datasets we

used were: “Zachary’s karate club” (Karate), a social network; Polbooks, a co­purchase

network; PPI5, a protein­protein interaction network; and DBLP, a citation network. For

datasets with ground­truth, we used LCDIP and BioGRID protein­protein interaction (PPI)

network datasets, both of which were used by [225] for evaluation purposes. The LCDIP

and BioGRID datasets were accompanied by the gold standards, MIPS and SGD [225].

Table 5.1 shows details of each dataset and ground­truth.

Baseline Approaches We chose four effective clustering algorithms as baseline approa­

ches with which to compare with. These measures are: MCL [214], FastUnfolding [216],

Infomap [224], and a newly proposed version of Spectral clustering [221].

5.1.7 Accuracy and Quality Measures

We first focused on how accurately the clustering results could represent or align with

real, meaningful communities. We used the following five measures: Clustering­wise

Sensitivity (CWS) [226], Clustering­wise Positive Predictive Value (PPV) [226],

228

Table 5.1 Datasets

Type Name # of nodes # of edges # of clusters

Benchmark

Network

Karate 34 78 ­

Polbooks 126 440 ­

PPI5 184 261 ­

DBLP 1,230 3,410 ­

PPI

Network

LCDIP 4,980 22,076 ­

BioGRID 5,640 59,748 ­

PPI

Gold Standard

SGD ­ ­ 323

MIPS ­ ­ 203

Geometric Accuracy (ACC) [226], Fraction (FRAC) [226, 227], and MaximumMatching

Ratio (MMR) [225]. For all these measures, the higher the scores are, the better.

For measuring the quality of community detection results, we chose the following

seven measures suggested by [228]: Internal Density (In­Dens) [229], Edges Inside (Edges­

In) [229], Average Degree (Avg­Deg) [229], Cut Ratio (CutRatio) [230], Normalized Cut

(N­Cut) [231], Average­ODF (Avg­ODF) [232], and Modularity (Mod.) [233]. These

measures in general can show us, for a given set of nodes, how community­like its

connectivity structure is [228], disregarding if the clusters reflect real­world communities

or not. Note that all these measures are computed in a per­cluster manner, then an average

score of all clusters was used. For In­Dens, Edges­In, Avg­Deg, and Mod., a higher score

is better; for CutRatio, N­Cut, and Avg­ODF, a lower score is better.

Consistency and Robustness Measures There are many possible definitions of structure

similarity [234], but our algorithm should work with any structure similarity definition as

the initial estimation of the recursive structure similarity. Thus, we tested whether using

different initial structure similarity estimations will affect the consistency and robustness

of our algorithm. The meaning of consistency for our algorithm is unusual since there is no

229

randomness in the results. Instead, wewant to knowwhether, using different initial structure

similarity measures will change the outcomes of our algorithm, as the iteration process goes.

Robustness refers to whether our algorithm will converge to the same equilibrium states

given different initial structure similarity estimations.

For testing the consistency and robustness, we chose six structure similarity measures

suggested by [234] as our algorithm’s initial weight for each edge. These initial measures

were modified to fit the definition of recursive structure similarity. We tested the two

following scenarios: (1) Robustness: whether our algorithm would converge to the same or

similar results, when different initial measures are used. (2) Consistency: when we change

the clustering threshold (τ value), whether different initial structure similarity measures

would cause the structure of clusters in the results to change. The aforementioned seven

clustering quality measures were used. In the following formulas (Equation (5.13)), We

show the definitions of the six different structure similarity measures of a node pair. In

these formulas, i and j are any two nodes, and Γi means the set of neighbors of i.

Default(Cosine) =
2 + |Γi ∩ Γj|√

(1 + |Γi|)(1 + |Γj|)

Jaccard =
2 + |Γi ∩ Γj|
2 + |Γi ∪ Γj|

min =
2 + |Γi ∩ Γj|

min((1 + |Γi|), (1 + |Γj|))

sqrt =
√
2 + |Γi ∩ Γj|

square = 2 + |Γi ∩ Γj|2

vertex =
2 + |Γi ∩ Γj|

(1 + |Γi|)(1 + |Γj|)
(5.13)

230

5.1.8 Accuracy results

In this test, to ensure fair comparison, we used each algorithm’s default parameter. For our

algorithm (denoted as RSS), we used parameter settings mentioned in algorithm subsection.

For MCL, we used I = 3.0 as the inflation value. For Infomap, we ran the program with

defaultMarkov − time option value 1.0. For FastUnfolding (denoted as FUF), we ran it

without q (Modularity increase threshold) parameter, which means highest accuracy [216].

Because Spectral was not suitable for graphs in this scale, we did not include Spectral in

accuracy test. Since there were two gold standards for both BioGRID and LCDIP datasets,

we evaluated each result with both gold standards.

From the shown results (Table 5.2) we can see that, in all dataset and ground­truth

combinations, our algorithm beats all others in the measures of ACC, FRAC, MMR, and

PPV. These results clearly show that in protein­protein interaction network analysis, our

algorithm has a significant advantage over other methods in terms of the quality of the

clusters and the number of meaningful clusters. We can also see that our method does not

have the lead in CWS, but does not fall short by much. The reason for this could be that our

method tend to predict more clusters with sizes smaller than those in the gold standards.

5.1.9 Structural quality results

Because these seven quality measure scores are strongly correlated to the number of clusters

in a clustering result, we had to select appropriate parameters for each algorithm. Once each

method gave the exact same number of clusters for each dataset, a fair comparison could

be made. This constrain means that the clustering results might not be optimized (e.g., 4

clusters instead of 2 for Karate dataset, due to the fact that FastUnfolding can not produce

result with 2 clusters). During the test we found that if the dataset is large, it was very

unlikely to be able to align the number of clusters for all methods, and this was the reason

for us to use only small benchmark datasets for quality testing. To adjust the clustering

results, for our algorithm, we adjust τ value. For MCL it means to adjust the −I value.

231

Table 5.2 Ground­Truth Based Accuracy Results

Algorithm ACC CWS FRAC MMR PPV

Dataset: BioGRID, gold standard: SGD

RSS 0.619 0.811 0.377 0.202 0.472
MCL 0.310 0.388 0.055 0.044 0.247

FUF 0.537 0.797 0.226 0.112 0.362

Infomap 0.555 0.831 0.187 0.081 0.371

Dataset: LCDIP, gold standard: MIPS

RSS 0.400 0.414 0.350 0.152 0.386
MCL 0.269 0.199 0.238 0.110 0.363

FUF 0.383 0.460 0.270 0.117 0.319

Infomap 0.387 0.470 0.217 0.085 0.319

Dataset: LCDIP, gold standard: SGD

RSS 0.587 0.644 0.358 0.184 0.534
MCL 0.409 0.335 0.271 0.153 0.500

FUF 0.518 0.621 0.294 0.148 0.432

Infomap 0.526 0.650 0.197 0.089 0.426

Dataset: BioGRID, gold standard: MIPS

RSS 0.460 0.572 0.318 0.139 0.370
MCL 0.274 0.352 0.032 0.016 0.214

FUF 0.434 0.630 0.191 0.089 0.300

Infomap 0.456 0.650 0.169 0.068 0.320

232

For Infomap we adjust theMarkov­time option. For FastUnfolding algorithm, we adjust

parameter q. For Spectral clustering we just give the k (number of clusters) value. Due to

the page limitation, here we show some of the results for each dataset in Table 5.3.

In Table 5.3, for measures of Edges­In, CutRatio, Avg­ODF, and Mod., our results

are mostly dominant in all datasets. On the other hand, for In­Dens, Avg­Deg, and N­Cut,

although our method does not outperform others, there is no other method is dominant in all

datasets. These results show that our algorithm can consistently provide clustering results

that are good in each aspect of structural quality. But it is also interesting to see that, for

the measures from the same aspect, e.g., In­Dens, Edges­In, and Avg­Deg, our method only

excels in Edges­In. One possible reason to explain this is that our method can find most

densely connected clusters, but tend to assign nodes on the edges of the clusters to larger

clusters thus lowering some of the normalized measures.

Figure 5.2 Upper: Consistency test result on Karate. Lower: Robustness test result on
Karate

233

Table 5.3 Quality Test Results

Algorithm In­Dens Edges­In Avg­DegCutRatio N­Cut Avg­ODFMod.

Dataset: PPI5, Number of Clusters: 40

RSS 13.54 187 45.53 39.49 23.68 5.15 0.63
MCL 26.41 152 58.09 58.61 18.44 12.76 0.55

Spectral 25.58 152 55.72 49.96 18.53 11.52 0.52

FUF 26.88 160 60.17 57.05 17.92 12.09 0.58

Infomap 20.72 161 55.16 80.01 19.30 9.22 0.58

Dataset: Karate, Number of Clusters: 4

RSS 1.58 63 10 4.08 1.75 0.63 0.37

MCL 1.45 49 8.66 8.31 2.00 1.84 0.19

Spectral 1.80 57 12.42 4.91 1.15 0.92 0.42
FUF 1.80 57 12.42 4.91 1.15 0.92 0.42

Infomap 1.95 59 12.25 4.72 1.15 0.99 0.42

Dataset: Polbooks, Number of Clusters: 18

RSS 9.16 314 42.46 56.42 12.12 5.67 0.46
MCL 11.91 148 41.11 111.42 12.59 11.90 0.25

Spectral 12.81 187 55.90 79.34 10.55 9.74 0.34

FUF 9.15 261 44.88 86.28 11.92 6.29 0.42

Infomap 13.38 250 52.73 90.82 11.01 9.01 0.42

Dataset: DBLP, Number of Clusters: 252

RSS 185.34 2,567 715.18 347.53 101.05 60.47 0.74
MCL 188.99 1,970 650.97 618.97 117.12 101.55 0.57

spectral 212.61 2,347 740.41 362.55 86.95 76.08 0.67

FUF 210.53 2,491 762.60 373.53 88.38 75.15 0.72

Infomap 158.88 2,339 676.07 905.84 107.46 52.25 0.68

234

5.1.10 Consistency and robustness results

We evaluated the consistency of our algorithm by plotting the number of iterations that

the algorithm runs against clustering quality measures. In each sub­figure of upper part of

Figure 5.2, X axis is the number of iterations our algorithm runs, and Y axis is the value

of quality measures. Different line colors and shapes stands for different initial structure

similarity measures.

As we can see in the upper part of Figure 5.2, although there are some variations

at the beginning and early stage, all results align perfectly with other results at the end,

which indicates that our algorithm is consistent against different initial structure similarity

measures.

We evaluated the robustness by plotting the number of clusters against each structural

quality measure. In each sub­figure of lower part of Figure 5.2, the X axis is the number

of clusters detected by our algorithm, and the Y axis is the value of quality measures.

Different line color stands for different initial structure similarity definitions. As we can

see in lower part of Figure 5.2, except when the number of clusters is small, different initial

structure similarity measures have very little impact on the structure quality of detected

clusters, which means that as long as the initial structure similarity measure follows general

definition of recursive structure similarity, our algorithm will give robust clustering results.

5.1.11 Conclusions

In this work, we proposed a novel clustering algorithm for detecting community structures

in undirected graphs. We newly defined a recursive structure similarity based on Shannon’s

information theory, which can quantify the carried information of edges using variance and

covariance. And the clustering process is done by conducting a recursive procedure that

effectively shows the graph’s networking process. We put our algorithm into a competition

for clustering quality and accuracy with widely used clustering algorithms. The results

show that our algorithm can consistently outperform other methods in the majority of

235

quality and accuracy measures. Other test results confirm that our algorithm is also robust

against different variants of initial structure similarity measures. Another advantage that

our algorithm has is that there is no random factor to affect the outcome.

236

CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

In this chapter, we conclude this dissertation in each direction it covers and show the future

research directions.

6.1 Drug Abuse Detection and Analysis in Online Social Media

In this line of work, we explore the usefulness of online social media in the detecting

and tracking of the drug abuse epidemic. In the first part, we explore the utilization of

crowd­sourcing platform for acquiring labeled dataset, where drug abuse related tweets are

identified from regular tweets filteredwith drug abuse terms. Then, we design an ensembled

deep learning model and employ self­learning technique to train the model on the naturally

biased dataset and achieve superior performance over traditional machine learning models.

Based on this model, in the second part, we run our model on a dataset of three million

tweets. We perform various statistical, temporal, and spacial analysis on the identified drug

abuse related tweets. The interesting patterns identified from the results provide insights

of the usefulness of online social media in reflecting the trend of drug abuse epidemic.

Having the detection results, in the third part, we develop a community­focused drug abuse

monitoring and supporting system that provides a function rich visualization interface that

can help local communities an organizations being informed about drug trends, locating

drug abuse hot­spots, and reaching online users who may in need for help.

During the course of the aforementioned projects, we also identified many directions

for future work. Here we list the most important ones: (1) To establish a long term, large

scale drug abuse trend monitoring system that uses Lifelong Learning (L2M) models to

track the ever changing and emerging trend of drug abuse; (2) To expend the source of data

from Twitter to other popular social media platforms, e.g. Reddit, Instagram, or even short

video­based Tiktok, and to extend themodel from using only text data to images and sounds;

237

(3) To build a real­time drug abuse monitoring system that is capable of continuously

processing and integrating data from multiple sources, training and evaluating detection

models, and performing comprehensive visualization; (4) To explore the popularity and

impact of the songs with drug abuse mentions in their lyrics over the social media users.

6.2 Differential Privacy in Deep Learning with Certified Robustness Bounds

In this line of work, we propose novel privacy protection mechanisms with theoretical

foundations that enhance the privacy protection while keeping the models’ utilities. In the

first part, we proposed Adaptive Laplace Mechanism (AdLM), a DP preserving mechanism

for deep learning that makes the consumption of privacy budget independent to the number

of training epochs. It also improves the model utility over previous privacy mechanism

by injecting noise into different parts of the features. In the second part, we established a

connection among DP preservation to protect the training data, adversarial learning, and

certified robustness. We developed a stochastic batch training mechanism to bypass the

vanilla iterative batch­by­batch training, enabling large scale distributed DP training. We

also proposed a new Monte Carlo Estimation scheme to stabilized the estimation of the

robustness bounds of prediction results. In the third part, that L2M introduces unknown

privacy risk and challenges in preserving DP. We proposed a new definition of Lifelong DP

that protects any tuple in any training set with a consistently bounded DP loss. We also

proposed the first scalable and heterogeneous mechanism, L2DP­ML to preserve Lifelong

DP.

The future work of the differential privacy track falls in the following categories:

(1) Test and refine the proposed mechanisms with real­world platforms, datasets, and newer

attacks; (2) Explore newer and better mechanisms to achieve better model utility with lower

computational cost, under regular DP and Lifelong DP.

238

6.3 Federated Learning on Mobile Devices

In this line of work, we present our experience with designing, building, and evaluating

FLSys, an end­to­end federated learning system. FLSyswas designed based on requirements

derived from real­life applications that locally collects data from mobile users in the wild

and trains FL models, such as human activity recognition (HAR). The main design goal

of the FLSys is to preserve the resources on the mobile phones, by providing a “central

hub” that manages the training and evaluation of FL models for different applications. This

also provides a unified user experience by having all the FL related settings at one place,

reducing the chance of having conflicted settings for different applications. FLSys is also

robust to failures and disconnections, and allows clients to join training at any time. We built

a complete prototype of FLSys in Android and AWS, and used this prototype to demonstrate

that FLSys is effective and efficient in practice in terms of model performance, resource

usage, and latency.

In the future, we plan to further develop the FLSys in the following directions: (1) To

add features to allow continuous data collection and on device processing, which aligns with

real­world needs; (2) To implement privacy and security features and intergral components

of the FLSys; (3) To improve FLSys from a DevOps point of view, including continues

model evaluation, OTA re­configuration and plug­n­play modules.

239

REFERENCES

[1] Office of Health Policy, “HHS acting secretary declares public health emergency to
address national opioid crisis,” Accessed: June 17, 2019. [Online]. Available:
https://www.hhs.gov/about/news/2017/10/26/hhs­acting­secretary­declares­public
­health­emergency­address­national­opioid­crisis.html

[2] Substance Abuse and Mental Health Services Administration, U.S. Department of Health
and Human Services, “Key substance use and mental health indicators in the united
states,” Accessed: June 17, 2019. [Online]. Available: https://datafiles.samhsa.gov/

[3] National Institute on Drug Abuse, “Overdose death rate,” Accessed: June 17, 2019.
[Online]. Available: https://www.drugabuse.gov/related­topics/trends­statistics/o
verdose­death­rates

[4] Gun Violence Archive, “Gun violence archive,” Accessed: June 17, 2019. [Online].
Available: http://www.gunviolencearchive.org/past­tolls

[5] J. K. O’Donnell, J. Halpin, C. L. Mattson, B. A. Goldberger, and R. M. Gladden, “Deaths
involving fentanyl, fentanyl analogs, and u­47700—10 states, july–december
2016,” Morbidity and Mortality Weekly Report, vol. 66, no. 43, pp. 1197–1202,
2017. doi: 10.15585/mmwr.mm6643e1

[6] B. Hansen, K. Miller, and C. Weber, “Early evidence on recreational marijuana legalization
and traffic fatalities,” Economic Inquiry, vol. 58, no. 2, pp. 547–568, 2020. doi:
10.1111/ecin.12751

[7] E. J. D’Amico, A. Rodriguez, J. S. Tucker, E. R. Pedersen, and R. A. Shih, “Planting
the seed for marijuana use: changes in exposure to medical marijuana advertising
and subsequent adolescent marijuana use, cognitions, and consequences over
seven years,” Drug and Alcohol Dependence, vol. 188, pp. 385–391, 2018. doi:
10.1016/j.drugalcdep.2018.03.031

[8] S. Aslam, “Twitter by the numbers,” Accessed: June 17, 2019. [Online]. Available:
https://www.omnicoreagency.com/twitter­statistics

[9] A. Signorini, A. M. Segre, and P. M. Polgreen, “The use of Twitter to track levels of disease
activity and public concern in the us during the influenza a h1n1 pandemic,” PLOS
ONE, vol. 6, no. 5, pp. 1–10, 2011. doi: 10.1371/journal.pone.0019467

[10] Y. Aphinyanaphongs, A. Lulejian, D. P. Brown, R. Bonneau, and P. Krebs, “Text classi­
fication for automatic detection of e­cigarette use and use for smoking cessation
from Twitter: a feasibility pilot,” in Proceedings of the Pacific Symposium on
Biocomputing, no. 21, 2016, pp. 480–491.

240

[11] J. C. Bosley, N. W. Zhao, S. Hill, F. S. Shofer, D. A. Asch, L. B. Becker, and R. M.
Merchant, “Decoding Twitter: surveillance and trends for cardiac arrest and resus­
citation communication,” Resuscitation, vol. 84, no. 2, pp. 206–212, 2013. doi:
10.1016/j.resuscitation.2012.10.017

[12] M. Chary, N. Genes, A. McKenzie, and A. F. Manini, “Leveraging social networks for
toxicovigilance,” Journal of Medical Toxicology, vol. 9, no. 2, pp. 184–191, 2013.
doi: 10.1007/s13181­013­0299­6

[13] N. Hossain, T. Hu, R. Feizi, A. M. White, J. Luo, and H. Kautz, “Precise localization of
homes and activities: detecting drinking­while­tweeting patterns in communities,”
inProceedings of the 10th International AAAI Conference onWeb and SocialMedia,
2016, pp. 587–590.

[14] M. Myslín, S.­H. Zhu, W. Chapman, and M. Conway, “Using Twitter to examine smoking
behavior and perceptions of emerging tobacco products,” Journal of Medical
Internet Research, vol. 15, no. 8, p. e174, 2013. doi: 10.2196/jmir.2534

[15] A. Sarker, K. O’connor, R. Ginn, M. Scotch, K. Smith, D. Malone, and G. Gonzalez,
“Social media mining for toxicovigilance: automatic monitoring of prescription
medication abuse from Twitter,” Drug Safety, vol. 39, no. 3, pp. 231–240, 2016.
doi: 10.1007/s40264­015­0379­4

[16] C. L. Hanson, B. Cannon, S. Burton, andC.Giraud­Carrier, “An exploration of social circles
and prescription drug abuse through Twitter,” Journal of Medical Internet Research,
vol. 15, no. 9, p. e189, 2013. doi: 10.2196/jmir.2741

[17] C. L. Hanson, S. H. Burton, C. Giraud­Carrier, J. H. West, M. D. Barnes, and B. Hansen,
“Tweaking and tweeting: exploring Twitter for nonmedical use of a psychostimulant
drug (Adderall) among college students,” Journal of Medical Internet Research,
vol. 15, no. 4, p. e62, 2013. doi: 10.2196/jmir.2503

[18] E. C.McNaughton, R. A. Black, M. G. Zulueta, S. H. Budman, and S. F. Butler, “Measuring
online endorsement of prescription opioids abuse: an integrative methodology,”
Pharmacoepidemiology and Drug Safety, vol. 21, no. 10, pp. 1081–1092, 2012.
doi: 10.1002/pds.3307

[19] L. Shutler, L. S. Nelson, I. Portelli, C. Blachford, and J. Perrone, “Drug use in the
Twittersphere: a qualitative contextual analysis of tweets about prescription
drugs,” Journal of Addictive Aiseases, vol. 34, no. 4, pp. 303–310, 2015. doi:
10.1080/10550887.2015.1074505

[20] National Institute on Drug Abuse, University of Michigan, “Monitoring the future,”
Accessed: June 17, 2019. [Online]. Available: http://www.monitoringthefuture.org

241

[21] D. A. Kessler, S. Natanblut, D. Kennedy, E. Lazar, P. Rheinstein, C. Anello, D. Barash,
I. Bernstein, R. Bolger, K. Cook, M. P. Couig, J. Donlon, J. Johnson, C. Lorraine,
T. McGinnis, J. Nazario, S. Nightingale, C. Peck, M. Pendergast, S. Rastogi,
C. Reynolds, R. Schapiro, L. Tollefson, and A. Wion, “Introducing MEDWatch:
a new approach to reporting medication and device adverse effects and product
problems,” The Journal of the American Medical Association, vol. 269, no. 21, pp.
2765–2768, 06 1993. doi: 10.1001/jama.1993.03500210065033

[22] American Association of Poison Control Centers, “National poisoning data system,”
Accessed: June 17, 2019. [Online]. Available: www.aapcc.org/data­system

[23] D. Brookoff, E. A. Campbell, and L. M. Shaw, “The underreporting of cocaine­related
trauma: drug abuse warning network reports vs hospital toxicology tests,”
American Journal of Public Health, vol. 83, no. 3, pp. 369–371, 1993. doi:
10.2105/ajph.83.3.369

[24] D. S. Hasin, A. L. Sarvet, M. Cerdá, K. M. Keyes, M. Stohl, S. Galea, and M. M. Wall,
“US adult illicit cannabis use, cannabis use disorder, and medical marijuana laws:
1991­1992 to 2012­2013,” JAMA Psychiatry, vol. 74, no. 6, pp. 579–588, 2017. doi:
10.1001/jamapsychiatry.2017.0724

[25] P. Seth, R. A. Rudd, R. K. Noonan, and T. M. Haegerich, “Quantifying the epidemic of
prescription opioid overdose deaths,” American Journal of Public Health, vol. 108,
no. 4, pp. 500–502, 2018. doi: 10.2105/AJPH.2017.304265

[26] M. Chary, N. Genes, C. Giraud­Carrier, C. Hanson, L. S. Nelson, and A. F. Manini,
“Epidemiology from tweets: estimating misuse of prescription opioids in the USA
from social media,” Journal of Medical Toxicology, vol. 13, no. 4, pp. 278–286,
2017. doi: 10.1007/s13181­017­0625­5

[27] H.­W. Meng, S. Kath, D. Li, and Q. C. Nguyen, “National substance use
patterns on Twitter,” PLOS ONE, vol. 12, no. 11, pp. 1–15, 11 2017. doi:
10.1371/journal.pone.0187691

[28] T. Ding, W. K. Bickel, and S. Pan, “Social media­based substance use prediction,”
Computing Research Repository, 2017. [Online]. Available: http://arxiv.org/abs/17
05.05633

[29] S. S. Simpson, N. Adams, C. M. Brugman, and T. J. Conners, “Detecting novel and
emerging drug terms using natural language processing: a social media corpus
study,” JMIR Public Health and Surveillance, vol. 4, no. 1, p. e2, 2018. doi:
10.2196/publichealth.7726

[30] T. Katsuki, T. K. Mackey, and R. Cuomo, “Establishing a link between prescription drug
abuse and illicit online pharmacies: analysis of Twitter data,” Journal of Medical
Internet Research, vol. 17, no. 12, p. e280, 2015. doi: 10.2196/jmir.5144

242

[31] P. M. Coloma, B. Becker, M. C. J. M. Sturkenboom, E. M. van Mulligen, and J. A.
Kors, “Evaluating social media networks in medicines safety surveillance: two case
studies,”Drug Safety, vol. 38, no. 10, pp. 921–930, 2015. doi: 10.1007/s40264­015­
0333­5

[32] H. Hu, P. Moturu, K. Dharan, J. Geller, S. Di Lorio, N. Phan, H. Vo, and S. Chun,
“Deep learning model for classifying drug abuse risk behavior in tweets,” in
Proceedings of the IEEE International Conference onHealthcare Informatics, 2018.
doi: 10.1109/ICHI.2018.00066 pp. 386–387.

[33] C. Kong, J. Liu, H. Li, Y. Liu, H. Zhu, and T. Liu, “Drug abuse detection via broad learning,”
in Proceedings of the International Conference on Web Information Systems and
Applications, 2019, pp. 499–505.

[34] D. Weissenbacher, A. Sarker, A. Klein, K. O’Connor, A. Magge, and G. Gonzalez­
Hernandez, “Deep neural networks ensemble for detecting medication mentions in
tweets,” Journal of the American Medical Informatics Association, vol. 26, no. 12,
pp. 1618–1626, 09 2019. doi: 10.1093/jamia/ocz156

[35] D. Mahata, J. Friedrichs, R. R. Shah, and J. Jiang, “Detecting personal intake of medicine
from Twitter,” IEEE Intelligent Systems, vol. 33, no. 4, pp. 87–95, 2018. doi:
10.1109/MIS.2018.043741326

[36] Y. Zhang, Y. Fan, Y. Ye, X. Li, and E. L. Winstanley, “Utilizing social media to combat
opioid addiction epidemic: automatic detection of opioid users from Twitter,” in
Workshops at the 32nd AAAI Conference on Artificial Intelligence, 2018.

[37] J. Li, Q. Xu, N. Shah, and T. K. Mackey, “A machine learning approach for the detection
and characterization of illicit drug dealers on instagram: model evaluation study,”
Journal of Medical Internet Research, vol. 21, no. 6, p. e13803, 2019. doi:
10.2196/13803

[38] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Self­taught learning: transfer
learning from unlabeled data,” in Proceedings of the 24th International Conference
on Machine Learning, 2007. doi: 10.1145/1273496.1273592 pp. 759–766.

[39] Y. Bengio, “Learning deep architectures for ai,” Foundations and Trends® in Machine
Learning, vol. 2, no. 1, pp. 1–127, 2009. doi: 10.1561/2200000006

[40] J. Weston, F. Ratle, and R. Collobert, “Deep learning via semi­supervised embedding,” in
Proceedings of the 25th International Conference on Machine Learning, 2008. doi:
10.1145/1390156.1390303 pp. 1168–1175.

[41] A. Bettge, R. Roscher, and S. Wenzel, “Deep self­taught learning for remote sensing
image classification,” Computing Research Repository, 2017. [Online]. Available:
http://arxiv.org/abs/1710.07096

243

[42] X. Dong, D. Meng, F. Ma, and Y. Yang, “A dual­network progressive approach to
weakly supervised object detection,” in Proceedings of the 25th ACM International
Conference on Multimedia, 2017. doi: 10.1145/3123266.3123455 pp. 279–287.

[43] J. Gan, L. Li, Y. Zhai, and Y. Liu, “Deep self­taught learning for facial beauty
prediction,” Neurocomputing, vol. 144, pp. 295–303, 11 2014. doi:
10.1016/j.neucom.2014.05.028

[44] Y. Yuan, X. Liang, X. Wang, D.­Y. Yeung, and A. Gupta, “Temporal dynamic graph lstm
for action­driven video object detection,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 1801–1810.

[45] L. Orsolini, D. Papanti, J. Corkery, and F. Schifano, “An insight into the deep web; why
it matters for addiction psychiatry?” Human Psychopharmacology: clinical and
Experimental, vol. 32, no. 3, p. e2573, 2017. doi: 10.1002/hup.2573

[46] S. Schmidt, “‘it is taking people out’: more than 70 people overdose on k2 in a
single day in new haven,” 2018, accessed: June 17, 2020. [Online]. Available:
https://www.washingtonpost.com/news/morning­mix/wp/2018/08/16/it­is­taking
­people­out­more­than­70­people­overdose­on­k2­in­a­single­day­in­new­haven

[47] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient­based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998. doi: 10.1109/5.726791

[48] S. Hochreiter and J. Schmidhuber, “Long Short­Term Memory,” Neural Computation,
vol. 9, no. 8, pp. 1735–1780, 11 1997. doi: 10.1162/neco.1997.9.8.1735

[49] H. Hu, N. Phan, J. Geller, H. Vo, B.Manasi, X. Huang, S. Di Lorio, T. Dinh, and S. A. Chun,
“Deep self­taught learning for detecting drug abuse risk behavior in tweets,” in
Proceedings of the 7th International Conference onComputational Social Networks,
2018. doi: 10.1007%2F978­3­030­04648­4_28 pp. 330–342.

[50] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter,
D. Langer, O. Pink, V. Pratt et al., “Towards fully autonomous driving: systems
and algorithms,” in Proceedings of the IEEE Intelligent Vehicles Symposium, 2011.
doi: 10.1109/IVS.2011.5940562 pp. 163–168.

[51] D. Lowd and C. Meek, “Good word attacks on statistical spam filters,” in Proceedings
of the Second Conference on Email and Anti­Spam, 2005. [Online]. Available:
http://www.ceas.cc/papers­2005/125.pdf

[52] Y. Cheng, F. Wang, P. Zhang, and J. Hu, “Risk prediction with electronic health records: a
deep learning approach,” in Proceedings of the SIAM International Conference on
Data Mining, 2016. doi: 10.1137/1.9781611974348.49 pp. 432–440.

[53] E. Choi, A. Schuetz, W. F. Stewart, and J. Sun, “Using recurrent neural network models for
early detection of heart failure onset,” Journal of the American Medical Informatics
Association, vol. 24, no. 2, pp. 361–370, 2017. doi: 10.1093/jamia/ocw112

244

[54] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny, “Efficient lifelong
learning with A­GEM,” in Proceedings of the 7th International Conference
on Learning Representations. OpenReview.net, 2019. [Online]. Available:
https://openreview.net/forum?id=Hkf2_sC5FX

[55] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in private
data analysis,” in Proceedings of the Theory of Cryptography Conference, 2006, pp.
265–284.

[56] K. Chaudhuri and C. Monteleoni, “Privacy­preserving logistic regression,” in Proceedings
of the Advances in Neural Information Processing Systems, vol. 21. Curran
Associates, Inc., 2009, pp. 289–296. [Online]. Available: https://proceedings.neur
ips.cc/paper/2008/file/8065d07da4a77621450aa84fee5656d9­Paper.pdf

[57] F. McSherry and I. Mironov, “Differentially private recommender systems: building
privacy into the netflix prize contenders,” in Proceedings of the 15th ACM
Special Interest Group on Knowledge Discovery and Data Mining International
Conference on Knowledge Discovery and Data Mining. ACM, 2009. doi:
10.1145/1557019.1557090 pp. 627–636.

[58] F. McSherry and K. Talwar, “Mechanism design via differential privacy,” in Proceedings
of the 48th Annual IEEE Symposium on Foundations of Computer Science, 2007.
doi: 10.1109/FOCS.2007.66 pp. 94–103.

[59] R. Shokri and V. Shmatikov, “Privacy­preserving deep learning,” inProceedings of the 53rd
Annual Allerton Conference on Communication, Control, and Computing, 2015.
doi: 10.1109/ALLERTON.2015.7447103 pp. 909–910.

[60] N. Phan, Y. Wang, X. Wu, and D. Dou, “Differential privacy preservation for deep
auto­encoders: an application of human behavior prediction,” in Proceedings of
the 30th AAAI Conference on Artificial Intelligence. AAAI Press, 2016, pp.
1309–1316. [Online]. Available: http://www.aaai.org/ocs/index.php/AAAI/AAAI
16/paper/view/12174

[61] C. Dwork and J. Lei, “Differential privacy and robust statistics,” in Proceedings of the
41st Annual ACM Symposium on Theory of Computing. ACM, 2009. doi:
10.1145/1536414.1536466 pp. 371–380.

[62] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang,
“Deep learning with differential privacy,” in Proceedings of the ACM Special
Interest Group on Security, Audit and Control Conference on Computer and
Communications Security. ACM, 2016. doi: 10.1145/2976749.2978318 pp.
308–318.

[63] R. Gilad­Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing,
“Cryptonets: applying neural networks to encrypted data with high throughput
and accuracy,” in Proceedings of The 33rd International Conference on
Machine Learning, vol. 48, 2016, pp. 201–210. [Online]. Available: https:
//proceedings.mlr.press/v48/gilad­bachrach16.html

245

[64] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit confidence
information and basic countermeasures,” in Proceedings of the 22nd ACM Special
Interest Group on Security, Audit and Control Conference on Computer and
Communications Security. ACM, 2015. doi: 10.1145/2810103.2813677 pp.
1322–1333.

[65] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in
Proceedings of the IEEE Symposium on Security and Privacy, vol. 1. IEEE
Computer Society, 2017. doi: 10.1109/SP.2017.49 pp. 39–57.

[66] N. Kardan and K. O. Stanley, “Mitigating fooling with competitive overcomplete output
layer neural networks,” in Proceedings of the International Joint Conference on
Neural Networks, 2017. doi: 10.1109/IJCNN.2017.7965897 pp. 518–525.

[67] A. Matyasko and L.­P. Chau, “Margin maximization for robust classification using deep
learning,” inProceedings of the International Joint Conference on Neural Networks.
IEEE, 2017. doi: 10.1109/IJCNN.2017.7965869 pp. 300–307.

[68] M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier, “Parseval networks:
improving robustness to adversarial examples,” in Proceedings of the 34th
International Conference on Machine Learning, vol. 70, 2017, pp. 854–863.

[69] E. Wong and J. Z. Kolter, “Provable defenses against adversarial examples via the
convex outer adversarial polytope,” in Proceedings of the 35th International
Conference on Machine Learning, vol. 80, 2018, pp. 5283–5292. [Online].
Available: http://proceedings.mlr.press/v80/wong18a.html

[70] H. Salman, J. Li, I. P. Razenshteyn, P. Zhang, H. Zhang, S. Bubeck, and G. Yang,
“Provably robust deep learning via adversarially trained smoothed classifiers,” in
Proceedings of the 33rd Conference on Neural Information Processing Systems,
2019, pp. 11 289–11 300. [Online]. Available: https://proceedings.neurips.cc/paper
/2019/hash/3a24b25a7b092a252166a1641ae953e7­Abstract.html

[71] N. Phan, X. Wu, and D. Dou, “Preserving differential privacy in convolutional deep
belief networks,”Machine Learning, vol. 106, no. 9­10, pp. 1681–1704, 2017. doi:
10.1007/s10994­017­5656­2

[72] N. Phan, X. Wu, H. Hu, and D. Dou, “Adaptive laplace mechanism: differential privacy
preservation in deep learning,” inProceedings of the IEEE International Conference
on Data Mining. IEEE Computer Society, 2017. doi: 10.1109/ICDM.2017.48 pp.
385–394.

[73] L. Yu, L. Liu, C. Pu, M. E. Gursoy, and S. Truex, “Differentially private model publishing
for deep learning,” in Proceedings of the IEEE Symposium on Security and Privacy.
IEEE, 2019. doi: 10.1109/SP.2019.00019 pp. 332–349.

246

[74] J. Lee and D. Kifer, “Concentrated differentially private gradient descent with adaptive per­
iteration privacy budget,” in Proceedings of the 24th ACM Special Interest Group
on Knowledge Discovery and Data Mining International Conference on Knowledge
Discovery and Data Mining. ACM, 2018. doi: 10.1145/3219819.3220076 pp.
1656–1665.

[75] L. Song, R. Shokri, and P. Mittal, “Privacy risks of securing machine learning models
against adversarial examples,” in Proceedings of the ACM Special Interest Group on
Security, Audit andControl Conference onComputer andCommunications Security.
ACM, 2019. doi: 10.1145/3319535.3354211 pp. 241–257.

[76] N. Phan, M. N. Vu, Y. Liu, R. Jin, D. Dou, X. Wu, and M. T. Thai, “Heterogeneous
gaussian mechanism: preserving differential privacy in deep learning with provable
robustness,” in Proceedings of the 28th International Joint Conference on Artificial
Intelligence. ijcai.org, 2019. doi: 10.24963/ijcai.2019/660 pp. 4753–4759.

[77] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses against adversarial
examples,” in Proceedings of the 6th International Conference on Learning
Representations. OpenReview.net, 2018. [Online]. Available: https://openreview
.net/forum?id=Bys4ob­Rb

[78] B. Wu, S. Zhao, G. Sun, X. Zhang, Z. Su, C. Zeng, and Z. Liu, “P3SGD: patient
privacy preserving SGD for regularizing deep cnns in pathological image classi­
fication,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. Computer Vision Foundation / IEEE, 2019. doi:
10.1109/CVPR.2019.00220 pp. 2099–2108.

[79] Z. Xu, S. Shi, A. X. Liu, J. Zhao, and L. Chen, “An adaptive and fast
convergent approach to differentially private deep learning,” in Proceedings of
the 39th IEEE Conference on Computer Communications. IEEE, 2020. doi:
10.1109/INFOCOM41043.2020.9155359 pp. 1867–1876.

[80] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch sgd: training
imagenet in 1 hour,” Computing Research Repository, 2017. [Online]. Available:
http://arxiv.org/abs/1706.02677

[81] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference attacks against
machine learning models,” in Proceedings of the IEEE Symposium on Security and
Privacy. IEEE Computer Society, 2017. doi: 10.1109/SP.2017.41 pp. 3–18.

[82] Y. Wang, C. Si, and X. Wu, “Regression model fitting under differential privacy and model
inversion attack,” in Proceedings of the 24th International Joint Conference on
Artificial Intelligence. AAAI Press, 2015, pp. 1003–1009. [Online]. Available:
http://ijcai.org/Abstract/15/146

247

[83] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, “Towards the science of security
and privacy in machine learning,” Computing Research Repository, 2016. [Online].
Available: http://arxiv.org/abs/1611.03814

[84] R. Miotto, L. Li, B. A. Kidd, and J. T. Dudley, “Deep patient: an unsupervised represen­
tation to predict the future of patients from the electronic health records,” Scientific
Reports, vol. 6, no. 1, pp. 1–10, 2016. doi: 10.1038/srep26094

[85] M. Roumia and S. Steinhubl, “Improving cardiovascular outcomes using electronic
health records,” Current Cardiology Reports, vol. 16, no. 2, p. 451, 2014. doi:
10.1007/s11886­013­0451­6

[86] J.Wu, J. Roy, andW. F. Stewart, “Predictionmodeling using ehr data: challenges, strategies,
and a comparison of machine learning approaches,” Medical care, pp. S106–S113,
2010. doi: 10.1097/MLR.0b013e3181de9e17

[87] S. M. Plis, D. R. Hjelm, R. Salakhutdinov, E. A. Allen, H. J. Bockholt, J. D.
Long, H. J. Johnson, J. S. Paulsen, J. A. Turner, and V. D. Calhoun, “Deep
learning for neuroimaging: a validation study,” in Proceedings of the 2nd
International Conference on Learning Representations, 2014. [Online]. Available:
http://arxiv.org/abs/1312.5847

[88] M. Helmstaedter, K. L. Briggman, S. C. Turaga, V. Jain, H. S. Seung, and W. Denk,
“Connectomic reconstruction of the inner plexiform layer in the mouse retina,”
Nature, vol. 500, no. 7461, pp. 168–174, 2013. doi: 10.1038/nature12346

[89] M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, and G. Tesauro, “Learning
to learn without forgetting by maximizing transfer and minimizing interference,”
in Proceedings of the 7th International Conference on Learning Representations.
OpenReview.net, 2019. [Online]. Available: https://openreview.net/forum?id=B1
gTShAct7

[90] D. Abati, J. Tomczak, T. Blankevoort, S. Calderara, R. Cucchiara, and B. E. Bejnordi,
“Conditional channel gated networks for task­aware continual learning,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, 2020. doi: 10.1109/CVPR42600.2020.00399 pp. 3930–3939.

[91] X. Tao, X. Hong, X. Chang, S. Dong, X. Wei, and Y. Gong, “Few­shot class­incremental
learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. Computer Vision Foundation / IEEE, 2020. doi:
10.1109/CVPR42600.2020.01220 pp. 12 180–12 189.

[92] J. Rajasegaran, S. H. Khan, M. Hayat, F. S. Khan, andM. Shah, “itaml: an incremental task­
agnostic meta­learning approach,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. Computer Vision Foundation / IEEE,
2020. doi: 10.1109/CVPR42600.2020.01360 pp. 13 585–13 594.

248

[93] H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual learning with deep generative replay,”
in Proceedings of the 29th Conference on Neural Information Processing Systems,
2017, pp. 2990–2999. [Online]. Available: https://proceedings.neurips.cc/paper/2
017/hash/0efbe98067c6c73dba1250d2beaa81f9­Abstract.html

[94] C. Wu, L. Herranz, X. Liu, J. van de Weijer, and B. Raducanu, “Memory replay gans:
learning to generate new categories without forgetting,” in Proceedings of the
30th Conference on Neural Information Processing Systems, 2018, pp. 5966–5976.
[Online]. Available: https://proceedings.neurips.cc/paper/2018/hash/a57e8915461
b83adefb011530b711704­Abstract.html

[95] O. Ostapenko, M. Puscas, T. Klein, P. Jahnichen, and M. Nabi, “Learning to remember: A
synaptic plasticity driven framework for continual learning,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. Computer
Vision Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.01158 pp. 11 321–
11 329.

[96] N. Phan, M. T. Thai, H. Hu, R. Jin, T. Sun, and D. Dou, “Scalable differential privacy
with certified robustness in adversarial learning,” in Proceedings of the 37th
International Conference on Machine Learning, vol. 119, 2020, pp. 7683–7694.
[Online]. Available: http://proceedings.mlr.press/v119/phan20a.html

[97] B. Wang and N. Hegde, “Privacy­preserving q­learning with functional noise in continuous
spaces,” in Proceedings of the 31st Conference on Neural Information Processing
Systems, 2019, pp. 11 323–11 333. [Online]. Available: https://proceedings.neurip
s.cc/paper/2019/hash/6646b06b90bd13dabc11ddba01270d23­Abstract.html

[98] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.­R. Müller, and W. Samek,
“On pixel­wise explanations for non­linear classifier decisions by layer­wise
relevance propagation,” PLOS ONE, vol. 10, no. 7, pp. 1–46, 07 2015. doi:
10.1371/journal.pone.0130140

[99] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,”
Master’s thesis, Department of Computer Science, University of Toronto, 2009.
[Online]. Available: https://www.cs.toronto.edu/~kriz/learning­features­2009­TR
.pdf

[100] C. Dwork and A. Roth, “The algorithmic foundations of differential privacy,” Foundations
and Trends in Theoretical Computer Science, vol. 9, no. 3–4, pp. 211–407, 08 2014.
doi: 10.1561/0400000042

[101] M. Lécuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana, “Certified robustness to adver­
sarial examples with differential privacy,” in Proceedings of the IEEE Symposium
on Security and Privacy, 2019. doi: 10.1109/SP.2019.00044 pp. 656–672.

[102] A. Tavanaei, “Embedded encoder­decoder in convolutional networks towards explainable
AI,” Computing Research Repository, 2020. [Online]. Available: https://arxiv.org/
abs/2007.06712

249

[103] S. Farquhar and Y. Gal, “Differentially private continual learning,” Computing Research
Repository, 2019. [Online]. Available: http://arxiv.org/abs/1902.06497

[104] N. Phan, M. T. Thai, D. M. Shila, and R. Jin, “Differentially private lifelong learning,”
in Proceedings of the Privacy in Machine Learning Workshop of the 31st
Conference on Neural Information Processing Systems, 2019. [Online]. Available:
https://priml­workshop.github.io/priml2019/papers/PriML2019_paper_34.pdf

[105] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska­Barwinska et al., “Overcoming catastrophic
forgetting in neural networks,” Computing Research Repository, 2016. [Online].
Available: http://arxiv.org/abs/1612.00796

[106] K. A. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon,
J. Konečný, S. Mazzocchi, B. McMahan, T. V. Overveldt, D. Petrou, D. Ramage,
and J. Roselander, “Towards federated learning at scale: system design,” in
Proceedings of Machine Learning and Systems, 2019.

[107] A. K. Sahu, T. Li, M. Sanjabi, M. Zaheer, A. Talwalkar, and V. Smith, “On the
convergence of federated optimization in heterogeneous networks,” Computing
Research Repository, 2018. [Online]. Available: http://arxiv.org/abs/1812.06127

[108] D. Sarkar, A. Narang, and S. Rai, “Fed­focal loss for imbalanced data classification in
federated learning,” Computing Research Repository, 2020. [Online]. Available:
https://arxiv.org/abs/2011.06283

[109] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated learning
with non­iid data,” Computing Research Repository, 2018. [Online]. Available:
http://arxiv.org/abs/1806.00582

[110] M. Duan, D. Liu, X. Chen, R. Liu, Y. Tan, and L. Liang, “Self­balancing federated
learning with global imbalanced data in mobile systems,” IEEE Transactions
on Parallel and Distributed Systems, vol. 32, no. 1, pp. 59–71, 2021. doi:
10.1109/TPDS.2020.3009406

[111] D. C. Verma, G. White, S. Julier, S. Pasteris, S. Chakraborty, and G. Cirincione,
“Approaches to address the data skew problem in federated learning,” in
Proceedings of the Artificial Intelligence and Machine Learning for Multi­Domain
Operations Applications, vol. 11006. SPIE, 2019. doi: 10.1117/12.2519621 pp.
542–557.

[112] Y. Liu, A. Huang, Y. Luo, H. Huang, Y. Liu, Y. Chen, L. Feng, T. Chen, H. Yu, and Q. Yang,
“Fedvision: an online visual object detection platform powered by federated
learning,” in Proceedings of the 34th AAAI Conference on Artificial Intelligence,
vol. 34, no. 08, 2020. doi: 10.1609/aaai.v34i08.7021 pp. 13 172–13 179.

250

[113] C. He, S. Li, J. So, M. Zhang, H. Wang, X. Wang, P. Vepakomma, A. Singh, H. Qiu,
L. Shen, P. Zhao, Y. Kang, Y. Liu, R. Raskar, Q. Yang, M. Annavaram,
and S. Avestimehr, “Fedml: A research library and benchmark for federated
machine learning,” Computing Research Repository, 2020. [Online]. Available:
https://arxiv.org/abs/2007.13518

[114] FedAI, “FATE: an industrial grade federated learning framework,” 2021, accessed: June
18, 2021. [Online]. Available: https://fate.fedai.org/

[115] V. Mugunthan, A. Peraire­Bueno, and L. Kagal, “Privacyfl: A simulator for privacy­
preserving and secure federated learning,” in Proceedings of the 29th ACM
International Conference on Information and Knowledge Management. ACM,
2020. doi: 10.1145/3340531.3412771 pp. 3085–3092.

[116] T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong, D. Ramage, and F. Beaufays,
“Applied federated learning: improving google keyboard query suggestions,”
Computing Research Repository, 2018.

[117] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: challenges, methods,
and future directions,” IEEE Signal Processing Magazine, vol. 37, no. 3, pp. 50–60,
2020. doi: 10.1109/MSP.2020.2975749

[118] G. D. Jacobsen and K. H. Jacobsen, “Statewide covid­19 stay­at­home orders and
population mobility in the united states,” World Medical & Health Policy, vol. 12,
no. 4, pp. 347–356, 2020. doi: 10.1002/wmh3.350

[119] K. R. Choi, M. V. Heilemann, A. Fauer, and M. Mead, “A second pandemic:
mental health spillover from the novel coronavirus (COVID­19),” Journal of the
American Psychiatric Nurses Association, vol. 26, no. 4, pp. 340–343, 2020. doi:
10.1177/1078390320919803

[120] A. Ignatov, “Real­time human activity recognition from accelerometer data using convolu­
tional neural networks,” Applied Soft Computing, vol. 62, pp. 915–922, 2018. doi:
10.1016/j.asoc.2017.09.027

[121] A. Murad and J.­Y. Pyun, “Deep recurrent neural networks for human activity recognition,”
Sensors, vol. 17, no. 11, p. 2556, 2017. doi: 10.3390/s17112556

[122] F. Hernández, L. F. Suárez, J. Villamizar, and M. Altuve, “Human activity recog­
nition on smartphones using a bidirectional lstm network,” in Proceedings of the
XXII Symposium on Image, Signal Processing and Artificial Vision, 2019. doi:
10.1109/STSIVA.2019.8730249 pp. 1–5.

[123] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recognition using cell phone
accelerometers,” ACM Special Interest Group on Knowledge Discovery and
Data Mining Explorations Newsletter, vol. 12, no. 2, pp. 74–82, 2011. doi:
10.1145/1964897.1964918

251

[124] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes­Ortiz, “A public domain dataset
for human activity recognition using smartphones,” in Proceedings of the 21st
European Symposium on Artificial Neural Networks, 2013.

[125] R. Chavarriaga, H. Sagha, A. Calatroni, S. T. Digumarti, G. Tröster, J. d. R. Millán, and
D. Roggen, “The opportunity challenge: a benchmark database for on­body sensor­
based activity recognition,” Pattern Recognition Letters, vol. 34, no. 15, pp. 2033–
2042, 2013. doi: 10.1016/j.patrec.2012.12.014

[126] Y. Chen, K. Zhong, J. Zhang, Q. Sun, and X. Zhao, “Lstm networks for mobile human
activity recognition,” in Proceedings of the International Conference on Artificial
Intelligence: Technologies and Applications, 2016. doi: 10.2991/icaita­16.2016.13
pp. 50–53.

[127] P. Kairouz, H. B.McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. A. Bonawitz,
Z. Charles, G. Cormode, R. Cummings, R. G. L. D’Oliveira, S. El Rouayheb,
D. Evans, J. Gardner, Z. Garrett, A. Gascón, B. Ghazi, P. B. Gibbons, M. Gruteser,
Z. Harchaoui, C. He, L. He, Z. Huo, B. Hutchinson, J. Hsu, M. Jaggi, T. Javidi,
G. Joshi, M. Khodak, J. Konečný, A. Korolova, F. Koushanfar, S. Koyejo,
T. Lepoint, Y. Liu, P. Mittal, M. Mohri, R. Nock, A. Özgür, R. Pagh, M. Raykova,
H. Qi, D. Ramage, R. Raskar, D. Song, W. Song, S. U. Stich, Z. Sun, A. T. Suresh,
F. Tramèr, P. Vepakomma, J. Wang, L. Xiong, Z. Xu, Q. Yang, F. X. Yu, H. Yu,
and S. Zhao, “Advances and open problems in federated learning,” Computing
Research Repository, 2019. [Online]. Available: http://arxiv.org/abs/1912.04977

[128] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: concept and
applications,” ACM Transactions on Intelligent Systems and Technology, vol. 10,
no. 2, pp. 1–19, 01 2019. doi: 10.1145/3298981

[129] D. Verma, G. White, and G. de Mel, “Federated ai for the enterprise: a web services
based implementation,” in Proceedings of the IEEE International Conference on
Web Services, 2019. doi: 10.1109/ICWS.2019.00016 pp. 20–27.

[130] Z. Feng, H. Xiong, C. Song, S. Yang, B. Zhao, L. Wang, Z. Chen, S. Yang,
L. Liu, and J. Huan, “Securegbm: secure multi­party gradient boosting,” in
Proceedings of the IEEE International Conference on Big Data, 2019. doi:
10.1109/BigData47090.2019.9006000 pp. 1312–1321.

[131] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai, “Privacy­preserving
deep learning via additively homomorphic encryption,” IEEE Transactions on
Information Forensics and Security, vol. 13, no. 5, pp. 1333–1345, 2018. doi:
10.1109/TIFS.2017.2787987

[132] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage,
A. Segal, and K. Seth, “Practical secure aggregation for privacy­preserving machine
learning,” in Proceedings of the ACM Special Interest Group on Security, Audit and
Control Conference on Computer and Communications Security. ACM, 2017. doi:
10.1145/3133956.3133982 pp. 1175–1191.

252

[133] J. Konečný, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated optimization:
distributed machine learning for on­device intelligence,” Computing Research
Repository, 2016. [Online]. Available: http://arxiv.org/abs/1610.02527

[134] Office of the Law Recision Counsel, “Drug Abuse Prevention and Control. Definitions,
21 U.S.C Sect. 802,” Accessed: June 17, 2019. [Online]. Available: https:
//www.deadiversion.usdoj.gov/21cfr/21usc/802.htm

[135] M. Buhrmester, T. Kwang, and S. D. Gosling, “Amazon’s mechanical turk: a new source of
inexpensive, yet high­quality, data?” Perspectives on Psychological Science, vol. 6,
no. 1, pp. 3–5, 2011. doi: 10.1177/1745691610393980

[136] D. Mahata, J. Friedrichs, Hitkul, and R. R. Shah, “#phramacovigilance ­ exploring
deep learning techniques for identifying mentions of medication intake from
Twitter,” Computing Research Repository, 2018. [Online]. Available: http:
//arxiv.org/abs/1805.06375

[137] X. Zhang, J. Zhao, and Y. LeCun, “Character­level convolutional networks for text
classification,” in Proceedings of the 28th International Conference on Neural
Information Processing Systems ­ Volume 1, 2015, pp. 649–657.

[138] NoSlang.com, “Drug slang translator,” Accessed: June 17, 2019. [Online]. Available:
https://www.noslang.com/drugs/dictionary.php

[139] G. A. Miller, “WordNet: a lexical database for English,” Communications of the ACM,
vol. 38, no. 11, pp. 39–41, 1995. doi: 10.1145/219717.219748

[140] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed representations
of words and phrases and their compositionality,” Computing Research Repository,
2013. [Online]. Available: http://arxiv.org/abs/1310.4546

[141] J. Pennington, R. Socher, and C. D. Manning, “Glove: global vectors for word
representation,” in Proceedings of the Conference on Empirical Methods
in Natural Language Processing, 2014, pp. 1532–1543. [Online]. Available:
http://www.aclweb.org/anthology/D14­1162

[142] F. Godin, “Twitter Word2vec model,” 2015, accessed: June 17, 2019. [Online]. Available:
https://www.fredericgodin.com/software/

[143] A. Sarker and G. Gonzalez, “A corpus for mining drug­related knowledge from Twitter
chatter: language models and their utilities,” Data in Brief, vol. 10, pp. 122–131,
2017. doi: 10.1016/j.dib.2016.11.056

[144] L. A. Jeni, J. F. Cohn, and F. De La Torre, “Facing imbalanced data–recommendations
for the use of performance metrics,” in Proceedings of the International Humaine
Association Conference on Affective Computing and Intelligent Interaction, 2013.
doi: 10.1109/ACII.2013.47 pp. 245–251.

253

[145] K. A. Hallgren, “Computing inter­rater reliability for observational data: an overview and
tutorial,” Tutorials in Quantitative Methods for Psychology, vol. 8, no. 1, pp. 23–34,
2012. doi: 10.20982/tqmp.08.1.p023

[146] U.S. National Institute on Drug Abuse, “Commonly abused drugs,” Accessed: June 17,
2019. [Online]. Available: https://www.drugabuse.gov/drug­topics/commonly­use
d­drugs­charts

[147] twitter.com, “Twitter privacy policy,” Accessed: June 17, 2019. [Online]. Available:
twitter.com/en/privacy

[148] H. Hu, N. Phan, J. Geller, S. Iezzi, H. T. Vo, D. Dou, and S. A. Chun, “An ensemble deep
learning model for drug abuse detection in sparse Twitter­Sphere,” in Proceedings
of the 17th World Congress on Medical and Health Informatics, vol. 264. IOS
Press, 2019. doi: 10.3233/SHTI190204 pp. 163–167.

[149] Y. Zhao, A. Curtis, X. Ye, J. Yang, C. Ma, S. AL­Dohuki, F. Kamw, and
S. Jamonnak, “Neighborvis,” 2018, accessed: June 17, 2019. [Online]. Available:
http://vis.cs.kent.edu/NeighborVis/index.html

[150] D. Kifer and A. Machanavajjhala, “No free lunch in data privacy,” in Proceedings of the
ACM Special Interest Group on Management of Data International Conference on
Management of Data. ACM, 2011. doi: 10.1145/1989323.1989345 pp. 193–204.

[151] U. Erlingsson, V. Pihur, and A. Korolova, “Rappor: randomized aggregatable privacy­
preserving ordinal response,” in Proceedings of the ACM Special Interest Group on
Security, Audit andControl Conference onComputer andCommunications Security.
ACM, 2014. doi: 10.1145/2660267.2660348 pp. 1054–1067.

[152] C. Liu, S. Chakraborty, and P. Mittal, “Dependence makes you vulnberable: differential
privacy under dependent tuples,” in Proceedings of the 23rd Annual Network and
Distributed System Security Symposium. The Internet Society, 2016. [Online].
Available: http://wp.internetsociety.org/ndss/wp­content/uploads/sites/25/2017/0
9/dependence­makes­you­vulnerable­differential­privacy­under­dependent­tuple
s.pdf

[153] Y. Cao, M. Yoshikawa, Y. Xiao, and L. Xiong, “Quantifying differential privacy under
temporal correlations,” in Proceedings of the IEEE 33rd International Conference
on Data Engineering, 2017. doi: 10.1109/ICDE.2017.132 pp. 821–832.

[154] T.­H. H. Chan, M. Li, E. Shi, and W. Xu, “Differentially private continual monitoring
of heavy hitters from distributed streams,” in Proceedings of the International
Symposium on Privacy Enhancing Technologies Symposium, 2012, pp. 140–159.

[155] S. Song, K. Chaudhuri, and A. D. Sarwate, “Stochastic gradient descent with differentially
private updates,” in Proceedings of the IEEE Global Conference on Signal and
Information Processing, 2013. doi: 10.1109/GlobalSIP.2013.6736861 pp. 245–248.

254

[156] P. Jain, P. Kothari, and A. Thakurta, “Differentially private online learning,” in Proceedings
of the 25th Annual Conference on Learning Theory, vol. 23, 2012, pp. 24.1–24.34.
[Online]. Available: https://proceedings.mlr.press/v23/jain12.html

[157] X. Xiao, G. Wang, and J. Gehrke, “Differential privacy via wavelet transforms,” IEEE
Transactions on Knowledge and Data Engineering, vol. 23, no. 08, pp. 1200–1214,
08 2011. doi: 10.1109/TKDE.2010.247

[158] Y. Wang, X. Wu, and L. Wu, “Differential privacy preserving spectral graph analysis,” in
Proceedings of the Pacific­Asia Conference on Advances in Knowledge Discovery
and Data Mining, 2013, pp. 329–340.

[159] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Proceedings of the 26th Annual Advances in
Neural Information Processing Systems, 2012, pp. 1106–1114. [Online]. Available:
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a6
8c45b­Abstract.html

[160] G. B. Arfken and H.­J. Weber, Mathematical Methods for Physicists. San Diego, CA,
USA: Academic Press Harcourt Brace Jovanovich, 1967.

[161] J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M.Winslett, “Functional mechanism: regression
analysis under differential privacy,” Proceedings of the Very Large Data Base
Endowment, vol. 5, no. 11, pp. 1364–1375, 2012. doi: 10.14778/2350229.2350253

[162] P. Smolensky, Information Processing in Dynamical Systems: foundations of Harmony
Theory. Cambridge, MA, USA: MIT Press, 1986, pp. 194–281.

[163] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep belief networks for
scalable unsupervised learning of hierarchical representations,” in Proceedings of
the 26th Annual International Conference on Machine Learning. ACM, 2009.
doi: 10.1145/1553374.1553453 pp. 609–616.

[164] T. M. Apostol, Calculus, Volume 1. Hoboken, NJ, USA: John Wiley & Sons, 1991.

[165] K. Chatzikokolakis, M. E. Andrés, N. E. Bordenabe, and C. Palamidessi, “Broadening the
scope of differential privacy usingmetrics,” inProceedings of the 13th International
Symposium on Privacy Enhancing Technologies, ser. Lecture Notes in Computer
Science, vol. 7981. Springer, 2013. doi: 10.1007/978­3­642­39077­7_5 pp. 82–
102.

[166] M. Abadi, Ú. Erlingsson, I. Goodfellow, H. B. McMahan, I. Mironov, N. Papernot,
K. Talwar, and L. Zhang, “On the protection of private information in machine
learning systems: two recent approches,” in Proceedings of the IEEE 30th
Computer Security Foundations Symposium, 2017, pp. 1–6. [Online]. Available:
https://conferences.computer.org/sp/pdfs/csf/2017/3217a001.pdf

255

[167] N. Papernot, S. Song, I. Mironov, A. Raghunathan, K. Talwar, and Ú. Erlingsson,
“Scalable private learning with PATE,” in Proceedings of the 6th International
Conference on Learning Representations. OpenReview.net, 2018. [Online].
Available: https://openreview.net/forum?id=rkZB1XbRZ

[168] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” in Proceedings of the 3rd International Conference on Learning
Representations, Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available:
http://arxiv.org/abs/1412.6572

[169] Q. Wang, W. Guo, K. Zhang, A. G. Ororbia II, X. Xing, X. Liu, and C. L. Giles, “Learning
adversary­resistant deep neural networks,” Computing Research Repository, 2016.
[Online]. Available: http://arxiv.org/abs/1612.01401

[170] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a defense to
adversarial perturbations against deep neural networks,” in Proceedings of the
IEEE Symposium on Security and Privacy. IEEE Computer Society, 2016. doi:
10.1109/SP.2016.41 pp. 582–597.

[171] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami,
“The limitations of deep learning in adversarial settings,” in Proceedings of
the IEEE European Symposium on Security and Privacy. IEEE, 2016. doi:
10.1109/EuroSP.2016.36 pp. 372–387.

[172] S. Gu and L. Rigazio, “Towards deep neural network architectures robust to adversarial
examples,” in Proceedings of the 3rd International Conference on Learning
Representations, 2015. [Online]. Available: http://arxiv.org/abs/1412.5068

[173] N. Papernot and P. McDaniel, “Extending defensive distillation,” Computing Research
Repository, 2017. [Online]. Available: http://arxiv.org/abs/1705.05264

[174] H. Hosseini, Y. Chen, S. Kannan, B. Zhang, and R. Poovendran, “Blocking transferability
of adversarial examples in black­box learning systems,” Computing Research
Repository, 2017. [Online]. Available: http://arxiv.org/abs/1703.04318

[175] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting adversarial
perturbations,” in Proceedings of the 5th International Conference on Learning
Representations. OpenReview.net, 2017. [Online]. Available: https://openreview
.net/forum?id=SJzCSf9xg

[176] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. D. McDaniel, “On the
(statistical) detection of adversarial examples,” Computing Research Repository,
2017. [Online]. Available: http://arxiv.org/abs/1702.06280

[177] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: detecting adversarial examples in deep
neural networks,” in Proceedings of the 25th Annual Network and Distributed
System Security Symposium,. The Internet Society, 2018. [Online]. Available:
http://wp.internetsociety.org/ndss/wp­content/uploads/sites/25/2018/02/ndss2018
_03A­4_Xu_paper.pdf

256

[178] M. Abbasi and C. Gagné, “Robustness to adversarial examples through an ensemble
of specialists,” in Proceedings of the 5th International Conference on Learning
Representations, 2017. [Online]. Available: https://openreview.net/forum?id=S1
cYxlSFx

[179] J. Gao, B. Wang, and Y. Qi, “Deepmask: masking DNN models for robustness against
adversarial samples,” Computing Research Repository, 2017. [Online]. Available:
http://arxiv.org/abs/1702.06763

[180] F. Tramèr, A. Kurakin, N. Papernot, I. J. Goodfellow, D. Boneh, and P. D. McDaniel,
“Ensemble adversarial training: attacks and defenses,” in Proceedings of the 6th
International Conference on Learning Representations. OpenReview.net, 2018.
[Online]. Available: https://openreview.net/forum?id=rkZvSe­RZ

[181] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial machine learning at scale,”
in Proceedings of the 5th International Conference on Learning Representations.
OpenReview.net, 2017. [Online]. Available: https://openreview.net/forum?id=BJ
m4T4Kgx

[182] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in the physical world,”
in Proceedings of the 5th International Conference on Learning Representations.
OpenReview.net, 2017. [Online]. Available: https://openreview.net/forum?id=HJ
GU3Rodl

[183] J. Cohen, E. Rosenfeld, and Z. Kolter, “Certified adversarial robustness via randomized
smoothing,” in Proceedings of the 36th International Conference on Machine
Learning, vol. 97, 2019, pp. 1310–1320.

[184] B. Li, C. Chen, W. Wang, and L. Carin, “Second­order adversarial attack and
certifiable robustness,” Computing Research Repository, 2018. [Online]. Available:
http://arxiv.org/abs/1809.03113

[185] W. Rudin, Principles of Mathematical Analysis, 3rd ed. New York, NY, USA:
McGraw­Hill New York, 1976. ISBN 007054235. [Online]. Available: http:
//www.loc.gov/catdir/toc/mh031/75017903.html

[186] Wikipedia, “Operator norm,” 2018, accessed: June 17, 2020. [Online]. Available:
https://en.wikipedia.org/wiki/Operator_norm

[187] C. Xie, Y. Wu, L. v. d. Maaten, A. L. Yuille, and K. He, “Feature denoising for improving
adversarial robustness,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. Computer Vision Foundation / IEEE, 2019. doi:
10.1109/CVPR.2019.00059 pp. 501–509.

[188] Y. Liu, S. Ma, Y. Aafer, W.­C. Lee, J. Zhai, W. Wang, and X. Zhang, “Trojaning attack
on neural networks,” in Proceedings of the 25th Annual Network and Distributed
System Security Symposium. The Internet Society, 2018. [Online]. Available:
http://wp.internetsociety.org/ndss/wp­content/uploads/sites/25/2018/02/ndss2018
_03A­5_Liu_paper.pdf

257

[189] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras, and T. Goldstein,
“Poison frogs! targeted clean­label poisoning attacks on neural networks,” in
Proceedings of the 32nd Conference on Neural Information Processing Systems,
2018, pp. 6106–6116. [Online]. Available: https://proceedings.neurips.cc/paper/2
018/hash/22722a343513ed45f14905eb07621686­Abstract.html

[190] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas, “Federated learning of
deep networks using model averaging,” Computing Research Repository, 2016.
[Online]. Available: http://arxiv.org/abs/1602.05629

[191] TensorFlow, “TensorFlow SoftMax implementation,” 2018, accessed: June 17, 2020.
[Online]. Available: https://github.com/tensorflow/tensorflow/blob/r1.4/tensorflo
w/python/ops/nn_impl.py

[192] D. Hendrycks and T. G. Dietterich, “Benchmarking neural network robustness to
common corruptions and perturbations,” in Proceedings of the 7th International
Conference on Learning Representations. OpenReview.net, 2019. [Online].
Available: https://openreview.net/forum?id=HJz6tiCqYm

[193] Baidu.com, “Fedcube,” 2020, accessed: June 17, 2020. [Online]. Available: http:
//fedcube.baidu.com/

[194] T. Gu, B. Dolan­Gavitt, and S. Garg, “Badnets: identifying vulnerabilities in the machine
learning model supply chain,” Computing Research Repository, 2017. [Online].
Available: http://arxiv.org/abs/1708.06733

[195] R. Pang, H. Shen, X. Zhang, S. Ji, Y. Vorobeychik, X. Luo, A. Liu, and T. Wang, “A tale of
evil twins: adversarial inputs versus poisoned models,” in Proceedings of the ACM
Special Interest Group on Security, Audit and Control Conference on Computer and
Communications Security. ACM, 2020. doi: 10.1145/3372297.3417253 pp. 85–99.

[196] S. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl: incremental classifier
and representation learning,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. IEEE Computer Society, 2017. doi:
10.1109/CVPR.2017.587 pp. 5533–5542.

[197] D. Lopez­Paz and M. Ranzato, “Gradient episodic memory for continual learning,” in
Proceedings of the 29th Conference on Neural Information Processing Systems,
2017, pp. 6467–6476. [Online]. Available: https://proceedings.neurips.cc/paper/2
017/hash/f87522788a2be2d171666752f97ddebb­Abstract.html

[198] S. Ebrahimi, F. Meier, R. Calandra, T. Darrell, and M. Rohrbach, “Adversarial continual
learning,” in 16th European Conference on Computer Vision, ser. Lecture Notes in
Computer Science, vol. 12356. Springer, 2020. doi: 10.1007/978­3­030­58621­
8_23 pp. 386–402.

258

[199] M. Lécuyer, R. Spahn, K. Vodrahalli, R. Geambasu, and D. Hsu, “Privacy accounting and
quality control in the sage differentially privateML platform,” ACMSpecial Interest
Group in Operating Systems Operating Systems Review, vol. 53, no. 1, pp. 75–84,
2019. doi: 10.1145/3352020.3352032

[200] M. Joseph, A. Roth, J. Ullman, and B. Waggoner, “Local differential privacy for
evolving data,” Journal of Privacy and Confidentiality, vol. 10, no. 1, 2020. doi:
10.29012/jpc.718

[201] H. Liu, F. Sun, and B. Fang, “Lifelong learning for heterogeneous multi­modal tasks,” in
Proceedings of the International Conference on Robotics and Automation. IEEE,
2019. doi: 10.1109/ICRA.2019.8793517 pp. 6158–6164.

[202] A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. Torr, “Riemannian walk for incremental
learning: understanding forgetting and intransigence,” in Proceedings of the 15th
European Conference on Computer Vision, ser. Lecture Notes in Computer Science,
vol. 11215. Springer, 2018. doi: 10.1007/978­3­030­01252­6_33 pp. 556–572.

[203] B. Liu, L. Wang, and M. Liu, “Lifelong federated reinforcement learning: a learning archi­
tecture for navigation in cloud robotic systems,” IEEE Robotics and Automation
Letters, vol. 4, no. 4, pp. 4555–4562, 2019. doi: 10.1109/LRA.2019.2931179

[204] Amazon Web Services, “Lambda quotas,” 2021, accessed: June 18, 2021. [Online].
Available: https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted­limits.h
tml

[205] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication­
efficient learning of deep networks from decentralized data,” in Proceedings of the
20th International Conference on Artificial Intelligence and Statistics, vol. 54, 2017,
pp. 1273–1282.

[206] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2016. doi: 10.1109/CVPR.2016.90 pp. 770–778.

[207] M. Lin, Q. Chen, and S. Yan, “Network in network,” in Conference Track Proceedings
of the 2nd International Conference on Learning Representations, 2014. [Online].
Available: http://arxiv.org/abs/1312.4400

[208] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA, USA: MIT
Press, 2016. [Online]. Available: http://www.deeplearningbook.org

[209] E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S. Kim, “Communication­efficient
on­device machine learning: federated distillation and augmentation under
non­iid private data,” Computing Research Repository, 2018. [Online]. Available:
http://arxiv.org/abs/1811.11479

259

[210] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled version of BERT:
smaller, faster, cheaper and lighter,” Computing Research Repository, 2019.
[Online]. Available: http://arxiv.org/abs/1910.01108

[211] S. Caldas, P. Wu, T. Li, J. Konečný, H. B. McMahan, V. Smith, and A. Talwalkar,
“LEAF: A benchmark for federated settings,” Computing Research Repository,
2018. [Online]. Available: http://arxiv.org/abs/1812.01097

[212] X. Li, M. Jiang, X. Zhang, M. Kamp, and Q. Dou, “Fedbn: federated learning on non­iid
features via local batch normalization,” Computing Research Repository, 2021.
[Online]. Available: https://arxiv.org/abs/2102.07623

[213] W. E. Donath and A. J. Hoffman, “Lower bounds for the partitioning of graphs,” IBM
Journal of Research & Development, vol. 17, no. 5, pp. 420–425, 09 1973. doi:
10.1147/rd.175.0420

[214] A. J. Enright, S. Van Dongen, and C. A. Ouzounis, “An efficient algorithm for large­scale
detection of protein families,” Nucleic Acids Research, vol. 30, no. 7, pp. 1575–
1584, 2002. doi: 10.1093/nar/30.7.1575

[215] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community structure in very
large networks,” Physical Review E, vol. 70, no. 6, p. 066111, 2004. doi:
10.1103/PhysRevE.70.066111

[216] V. D. Blondel, J.­L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of commu­
nities in large networks,” Journal of Statistical Mechanics: Theory and Experiment,
vol. 2008, no. 10, p. P10008, 2008. doi: 10.1088/1742­5468/2008/10/p10008

[217] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, and
D.Wagner, “Onmodularity clustering,” IEEE Transactions on Knowledge andData
Engineering, vol. 20, no. 2, pp. 172–188, 2007. doi: 10.1109/TKDE.2007.190689

[218] J. Friedman, T. Hastie, R. Tibshirani et al., The Elements of Statistical Learning. New
York, NY, USA: Springer Series in Statistics, 2001, vol. 1.

[219] M. E. Celebi, Partitional Clustering Algorithms. New York, NY, USA: Springer
International Publishing, 2014.

[220] T. N. Tran, K. Drab, and M. Daszykowski, “Revised dbscan algorithm to cluster data with
dense adjacent clusters,” Chemometrics and Intelligent Laboratory Systems, vol.
120, pp. 92–96, 2013. doi: https://doi.org/10.1016/j.chemolab.2012.11.006

[221] A. Y. Ng, M. I. Jordan, and Y.Weiss, “On spectral clustering: analysis and an algorithm,” in
Proceedings of the 14th International Conference on Neural Information Processing
Systems: Natural and Synthetic. MIT Press, 2001, pp. 849–856.

[222] M. Girvan andM. E. J. Newman, “Community structure in social and biological networks,”
Proceedings of the National Academy of Sciences of the United States of America,
vol. 99, no. 12, pp. 7821–7826, 2002. doi: 10.1073/pnas.122653799

260

[223] M. E. J. Newman and M. Girvan, “Finding and evaluating community structure
in networks,” Physical review E, vol. 69, no. 2, p. 026113, 2004. doi:
10.1103/PhysRevE.69.026113

[224] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex networks
reveal community structure,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 105, no. 4, pp. 1118–1123, 2008. doi:
10.1073/pnas.0706851105. [Online]. Available: https://www.pnas.org/content/105
/4/1118

[225] T. Nepusz, H. Yu, and A. Paccanaro, “Detecting overlapping protein complexes in protein­
protein interaction networks,” Nature Methods, vol. 9, no. 5, pp. 471–472, 2012.
doi: 10.1038/nmeth.1938

[226] S. Brohee and J. Van Helden, “Evaluation of clustering algorithms for protein­protein
interaction networks,” BMC Bioinformatics, vol. 7, no. 1, pp. 1–19, 2006. doi:
10.1186/1471­2105­7­488

[227] G. D. Bader and C. W. V. Hogue, “An automated method for finding molecular complexes
in large protein interaction networks,” BMC Bioinformatics, vol. 4, no. 1, pp. 1–27,
2003. doi: https://doi.org/10.1186/1471­2105­4­2

[228] J. Yang and J. Leskovec, “Defining and evaluating network communities based on ground­
truth,” Knowledge and Information Systems, vol. 42, no. 1, pp. 181–213, 2015. doi:
10.1007/s10115­013­0693­z

[229] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi, “Defining and identifying
communities in networks,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 101, no. 9, pp. 2658–2663, 2004. doi:
10.1073/pnas.0400054101

[230] S. Fortunato, “Community detection in graphs,” Physics Reports, vol. 486, no. 3­5, pp.
75–174, 2010. doi: https://doi.org/10.1016/j.physrep.2009.11.002

[231] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888–905, 2000. doi:
10.1109/34.868688

[232] G. W. Flake, S. Lawrence, and C. L. Giles, “Efficient identification of web communities,”
in Proceedings of the 6th ACM Special Interest Group on Knowledge Discovery and
Data Mining International Conference on Knowledge Discovery and Data Mining.
ACM, 2000. doi: 10.1145/347090.347121 pp. 150–160.

[233] M. E. J. Newman, “Modularity and community structure in networks,” Proceedings of the
National Academy of Sciences of the United States of America, vol. 103, no. 23, pp.
8577–8582, 2006. doi: https://doi.org/10.1073/pnas.0601602103

[234] E. A. Leicht, P. Holme, and M. E. J. Newman, “Vertex similarity in networks,” Physical
Review E, vol. 73, no. 2, p. 026120, 2006. doi: 10.1103/PhysRevE.73.026120

261

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication Page
	Acknowledgment
	Table of Contents (1 of 5)
	Table of Contents (2 of 5)
	Table of Contents (3 of 5)
	Table of Contents (4 of 5)
	Table of Contents (5 of 5)
	Chapter 1: Introduction
	Chapter 2: Drug Abuse Detection and Analysis in Online Social Media
	Chapter 3: Differential Privacy in Deep Learning with Certified Robustness Bounds
	Chapter 4: Federated Learning on Mobile Devices
	Chapter 5: Other Work
	Chapter 6: Conclusions and Future Directions
	References

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

