

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

ON PERFORMANCE OPTIMIZATION AND PREDICTION OF
PARALLEL COMPUTING FRAMEWORKS IN BIG DATA SYSTEMS

by
Haifa AlQuwaiee

A wide spectrum of big data applications in science, engineering, and industry

generate large datasets, which must be managed and processed in a timely and

reliable manner for knowledge discovery. These tasks are now commonly executed

in big data computing systems exemplified by Hadoop based on parallel processing

and distributed storage and management. For example, many companies and research

institutions have developed and deployed big data systems on top of NoSQL databases

such as HBase and MongoDB, and parallel computing frameworks such as MapReduce

and Spark, to ensure timely data analyses and efficient result delivery for decision

making and business intelligence.

This dissertation investigates and addresses two main challenges in such big

data systems: i) performance optimization for distributed information composition,

and ii) performance modeling and prediction of big data applications. To address

the first challenge, analytical cost models are constructed to formulate a Distributed

Information Composition problem in Big Data Systems, referred to as DIC-BDS,

to aggregate multiple datasets stored as data blocks in Hadoop Distributed File

System (HDFS) using a composition operator of specific complexity to produce one

final output. DIC-BDS is rigorously proved to be NP-complete, and two heuristic

algorithms are proposed. Extensive experiments are conducted with various compo-

sition operators of commonly considered degrees of complexity, and experimental

results illustrate the performance superiority of the proposed solutions over existing

methods. To address the second challenge, a class of regression-based machine

learning models is proposed to predict the execution performance of Spark-HBase

applications in Hadoop. Accurate performance modeling and prediction are critical

to optimizing application performance through strategic resource allocation with

suitable parameter settings and also to providing an effective recommendation of

optimal system configurations to end users. An in-depth exploratory analysis

is conducted to identify an exhaustive set of system parameters across multiple

technology layers including Spark and HBase, and examine their effects on the

execution time of Spark-HBase applications. Based on these analysis results, a

subset of critical parameters is selected to develop a performance predictor using

regression-based machine learning. Experimental results show that the resulted

predictor achieves high accuracy with different algorithms in comparison.

ON PERFORMANCE OPTIMIZATION AND PREDICTION OF
PARALLEL COMPUTING FRAMEWORKS IN BIG DATA SYSTEMS

by
Haifa AlQuwaiee

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

December 2021

Copyright ©2021 by Haifa AlQuwaiee

ALL RIGHTS RESERVED

APPROVAL PAGE

ON PERFORMANCE OPTIMIZATION AND PREDICTION OF
PARALLEL COMPUTING FRAMEWORKS IN BIG DATA SYSTEMS

Haifa AlQuwaiee

Prof. Chase Wu, Dissertation Advisor Date
Professor of Computer Science, NJIT

Prof. Ali Mili, Committee Member Date
Professor of Computer Science, NJIT

Prof. Zhi Wei, Committee Member Date
Professor of Computer Science, NJIT

Prof. Jing Li, Committee Member Date
Assistant Professor of Computer Science, NJIT

Prof. Dantong Yu, Committee Member Date
Associate Professor, Martin Tuchman School of Management, NJIT

BIOGRAPHICAL SKETCH

Author: Haifa AlQuwaiee

Degree: Doctor of Philosophy

Date: December 2021

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,

New Jersey Institute of Technology, Newark, NJ, 2021

• Master of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2015

• Bachelor of Computer Science and Education,
Imam Abdulrahman Bin Faisal University, Saudi Arabia, 2005

Major: Computer Science

Presentations and Publications:

H. AlQuwaiee, and C. Q. Wu “On Performance Modeling and Prediction for Spark-
HBase Applications in Big Data Systems.” under review.

H. AlQuwaiee, and C. Q. Wu “On Distributed Information Composition for
Multi-source Big Media-data.” International Symposium on Media Big Data
Intelligent Media, Hangzhou, China, November 2019.

H. AlQuwaiee, S. He, C. Q. Wu, Q. Tang, and X. Shen “On Distributed Information
Composition in Big Data Systems.” Proceedings of the 15th Conference on
eScience (eScience), 168-177, San Diego, USA, Sep 24th-27th 2019.

iv

To the Gallant Soul that departed us too soon;
the Loved, Cherished, Precious and Honourable One,

Thank you for everything ...

Rest In Peace and May Love Surround You Wherever
You Are ...

v

ACKNOWLEDGMENT

In the name of Allah (God), the Most Gracious, the Most Merciful.

First of all, I would like to express my deepest and sincerest gratitude to Allah

for supporting me with the strength and blessings to reach this point of my PhD

journey; Alhamdulillah.

Second, I would like to thank my advisor, Prof. Chase Wu for his valuable

guidance, support, and constant motivation during my doctoral journey at New Jersey

Institute of Technology (NJIT). I truly appreciate that he allowed me to have the

space, time and resources to ignite my passion for research, flourish my intention and

fuel it to improve my research skills.

I am also very thankful to the committee members for being willing to serve in

my dissertation committee Professors: Ali Mili, Zhi Wei, Jing Li, and Dantong Yu.

Special thanks go to Professor Vincent Oria for believing in me and for his bright

opinion about my abilities as a Researcher.

My sincere gratitude goes to the Saudi scholarship program for investing in me

and giving me the opportunity to pursue my graduate studies.

Also, I would like to thank my lab mates: Songlin He, Qianwen Ye and Wuji Liu

at the Center for Big Data (CBD) for their valuable discussion, kindness and help.

Finally, I would like to extend my gratitude to my lovely family and friends:

my parents, my siblings, my niece and nephew, for their endless love, prayers and

support.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

2 ON DISTRIBUTED INFORMATION COMPOSITION IN BIG DATA
SYSTEMS . 5

2.1 Introduction . 5

2.2 Related Work . 7

2.3 Problem Formulation . 8

2.3.1 Cost Models . 8

2.3.2 Problem Definition . 13

2.3.3 Complexity Analysis . 13

2.4 Algorithm Design . 17

2.4.1 The Global List (GL) . 18

2.4.2 Fixed-window Distributed Composition Scheme (FDCS) 19

2.4.3 Dynamic-window Distributed Composition Scheme with Delay
(DDCS-D) . 19

2.4.4 Composition Tree CTree . 23

2.4.5 Group Scheduling for Composition 25

2.4.6 Algorithms for Comparison . 26

2.5 Performance Evaluation . 28

2.5.1 Experimental Settings . 28

2.5.2 Experimental Results . 29

2.6 Conclusion . 32

3 PERFORMANCE PREDICTION FOR SPARK-HBASE APPLICATIONS
IN BIG DATA SYSTEMS . 41

3.1 Introduction . 41

3.2 Related Work . 43

3.2.1 Performance Modeling, Estimation and Prediction for Serial and
Parallel Application . 44

vii

TABLE OF CONTENTS
(Continued)

Chapter Page

3.2.2 Scientific Workflows Modeling and Performance Estimation . . 45

3.2.3 Spark parameters configuration 46

3.2.4 HBase parameters configuration 47

3.3 Problem Formulation . 47

3.3.1 Cost Models . 48

3.3.2 Problem Statement . 53

3.4 Exploratory Analysis . 54

3.4.1 Spark Parameters: . 55

3.4.2 HBase Parameters: . 57

3.5 Performance Prediction of Spark-HBase Applications in Big Data
Systems . 59

3.5.1 Domain Knowledge-based Feature Selection 59

3.5.2 Model Choices . 59

3.6 Performance Evaluation . 60

3.6.1 Experimental Settings . 60

3.6.2 Data Source for Performance Prediction 60

3.6.3 Performance Prediction Results 62

3.7 Conclusion . 62

REFERENCES . 64

viii

LIST OF TABLES

Table Page

2.1 Notations Used in the Cost Models and Problem Definition (Continued) 14

2.2 (Continued) Notations Used in the Cost Models and Problem Definition 15

2.3 The Average TCT (seconds) of Different Algorithms under Different
Problem Sizes with an Operator of Complexity O(n) 36

2.4 The Average TCT (seconds) of Different Algorithms under Different
Problem Sizes with an Operator of Complexity O(n log n) 37

2.5 The Average TCT (seconds) of Different Algorithms under Different
Problem Sizes with an Operator of Complexity O(n2) 38

2.6 The Average TCT of FDCS with Composition Operators of Different
Complexities for Processing 300 Datasets with Different Window Sizes 39

2.7 The Average TCT of DDCS-D with Composition Operators of Different
Complexities for Processing 300 Datasets with Different Delay Time . 40

3.1 Properties of Tables Used in the Experiments 58

3.2 List of Parameters Across Different Layers for Application Execution . . 58

ix

LIST OF FIGURES

Figure Page

2.1 A general cluster structure. 9

2.2 A single-composition operation. 12

2.3 The Global List (GL). 18

2.4 FDCS. 19

2.5 DDCS-D. 24

2.6 Illustration of the composition tree (CTree). 24

2.7 Greedy composition. 27

2.8 Intra-rack and inter-rack bandwidths on the cluster testbed. 28

2.9 The average TCT (seconds) of different algorithms under different
problem sizes with an operator of complexity O(n). 33

2.10 The average TCT (seconds) of different algorithms under different
problem sizes with an operator of complexity O(n log n). 33

2.11 The average TCT (seconds) of different algorithms under different
problem sizes with an operator of complexity O(n2). 34

2.12 The average TCT of FDCS with composition operators of different
complexities for processing 300 datasets with different window sizes. . 34

2.13 The average TCT of DDCS-D with composition operators of different
complexities for processing 300 datasets with different delay time. . . 35

2.14 The average TCT of DDCS-D with composition operators of different
complexities for processing 300 datasets with different delay time. . . 35

3.1 The architecture of a big data analytics system. 49

3.2 Illustration of the dynamic interactions between different components in
big data systems. 53

3.3 Illustration of the effect of number of cores on the execution time for
application (count) on the tables. 56

3.4 Illustration of the effect of number of executors on the execution time for
all tables. 56

3.5 Normalized Root Mean Square Error (NRMSE). 61

x

LIST OF FIGURES
(Continued)

Figure Page

3.6 Normalized Mean Absolute Error (NMAE). 61

3.7 Normalized Mean Absolute Percentage Error (NMAPE). 61

xi

CHAPTER 1

INTRODUCTION

Nowadays, a wide spectrum of applications in various domains produce colossal

amounts of data on a daily basis, which must be managed and processed in a timely

and reliable manner for knowledge discovery [20]. This computing process is now

commonly executed in big data systems exemplified by Hadoop based on parallel

processing and distributed storage and management. The tasks in this process are

typically represented as computing modules and arranged in a workflow structure1 [62]

for coordinated data processing and analysis.

In this dissertation, we investigate and address two main challenges in such big

data systems: i) performance optimization for distributed information composition,

and ii) performance modeling and prediction of big data applications.

Parallel computing has become a norm for big data processing and it is of

great importance to optimizing the performance of such frameworks to meet stringent

application requirements. For example, in workflow-based applications, there may

exist multiple computing modules processing and generating data (intermediate

or semi-final results) in parallel at different locations. Moreover, In big data

systems, even for a single computing module implemented within parallel computing

frameworks such as MapReduce, it may use multiple reducers to produce outputs

stored as different files/data blocks in Hadoop Distributed File System (HDFS) [51].

Since each reducer processes a subset of (key, value) pairs depending on the associated

key assigned to that reducer, it generally does not have access to all (key, value)

1In the context of workflows, these computing components are usually referred to as modules
that represent either a serial computing program or a parallel processing job such as a
MapReduce application in Hadoop.

1

pairs. However, in many big data applications, such distributed information must be

aggregated to produce one final result.

To address this challenge, we construct analytical cost models and formulates

a Distributed Information Composition problem in Big Data Systems, referred to

as DICBDS, to aggregate multiple datasets stored as data blocks in HDFS using

a composition operator of specific complexity. We prove DICBDS to be NP-

complete, and propose two heuristic algorithms, namely, Fixed-window Distributed

Composition Scheme (FDCS) and Dynamic-window Distributed Composition Scheme

with Delay (DDCS-D). Extensive experiments are conducted in Google clouds

with various composition operators of commonly considered degrees of complexity

including O(n), O(n log n), and O(n2), and experimental results illustrate the

performance superiority of the proposed solutions over existing methods. Specifically,

FDCS outperforms all other algorithms in comparison with a composition operator

of complexity O(n) or O(n log n), while DDCS-D achieves the minimum total

composition time with a composition operator of complexity O(n2). These algorithms

provide an additional level of data processing for efficient information aggregation in

existing workflow and big data systems.

There are an increasing number of large-scale applications in business and

scientific domains that require a combination of parallel computing with distributed

data storage and management for big data processing. In fact, it has become a

widely adopted practice in industry to deploy big data systems such as Hadoop on

top of NoSQL databases (such as HBase [7] and MongoDB [8]), and employ parallel

computing frameworks (such as MapReduce [18] and Spark [72, 71]) to ensure timely

data processing and efficient delivery of analysis results in support of decision making

and business intelligence.

We focus our research on Spark applications that run over Hadoop/HDFS [61]

as a data storage system and HBase as a data management system, which are referred

2

to as Spark-HBase applications in this context. The execution of such applications in

big data systems typically has a life circle of computing that spans through several

stages across multiple technology layers: submitting the application to YARN as a

resource manager, assigning executors in Spark for data processing, coordinating with

RegionServers in HBase to determine a logical data block, and accessing the actual

data block stored in Hadoop Distributed File System (HDFS) [4]. Each of these

layers has a large set of parameters for configuration, and it is crucial for any given

Spark-HBase application to decide a subset of configurable parameters according to its

computing needs and performance requirements, e.g., the number of executors and the

number of cores for each executor in Spark as well as database operation API-related

parameters in HBase. Deciding an appropriate setting of effective parameters is

critical to understanding and optimizing application performance for end users, and

also to maximizing the utilization of system resources for infrastructure providers.

However, it is challenging for end users, who are primarily domain experts, to

decide a satisfactory configuration for executing Spark-HBase applications in such

complex computing systems. The execution complexity of Spark-HBase workflows

compounded by system dynamics makes it a daunting task to select and configure a

right set of parameters across different layers of the technology stack. In fact, in most

of the existing big data systems, the parameters are typically set with default values,

which, unfortunately, do not always lead to the best performance. These default

values, once set, are oftentimes used for all applications of disparate types as end

users generally do not have enough knowledge in computing to modify the system

configuration. Even with the aid of certain knowledge, this problem is still largely

unexplored and unresolved.

To address this challenge, we tackle a general problem of optimizing the

execution performance of big data applications deployed on high-performance computing

platforms. We investigate the problem of modeling and predicting the performance

3

of Spark-HBase applications in big data systems by strategically selecting a subset

of hyper parameters and setting their values using machine learning. Our goal is

to achieve an accurate prediction of execution time using a performance-influence

model that takes influential parameters as input features. Towards this goal, we

start by conducting a large number of experiments to run various Spark-HBase appli-

cations with different parameter settings and collect their corresponding performance

measurements. Such measurement data conveys informative knowledge and provides

insights into the performance pattern and execution behavior of these applications

under different configurations in big data systems, which facilitate performance

optimization and configuration recommendation for such applications. We then

conduct an in-depth comparison-based analytical study to investigate the effects of

these parameters on application performance. Based on the data collected from

the exploratory analysis and aided by domain knowledge, we design a class of

regression-based prediction models to estimate the execution time of Spark-HBase

applications, and illustrate the accuracy of such models using different performance

metrics.

4

CHAPTER 2

ON DISTRIBUTED INFORMATION COMPOSITION IN BIG DATA
SYSTEMS

2.1 Introduction

Nowadays, a wide spectrum of applications in science, engineering, and business

domains are generating data of colossal amounts, which require big data computing

systems for timely and efficient processing and analysis [20]. In many of these

applications, various tasks for data generation, processing, visualization, and analysis

are represented as computing modules and assembled in a workflow structure1 [62].

Particularly, in the broad science community, workflow systems have been recognized

as an important technology for mission-critical applications, allowing execution and

management of complex computations on distributed resources [17, 19]. As the era of

big data is widely emerging, workflow applications have been increasingly deployed

in big data systems as exemplified by Hadoop [61, 51] using different computing

frameworks such as MapReduce for batch parallel data processing [18], Spark for

in-memory data processing [71] and Storm for streaming data processing [1]. In

workflow-based applications, there may exist multiple computing modules processing

and producing data (intermediate or semi-final results) in parallel at different

locations, which must be aggregated to produce the final result. Some scientific

workflows such as Montage [9, 31] and CyberShake [31] follow an aggregation approach

to combine different results or data from different sub-workflows or components of

a workflow. In big data computing systems, even for a single computing module

implemented within distributed processing frameworks such as MapReduce, it may

use multiple reducers to produce outputs stored as different files/data blocks in

1In the context of workflows, these computing entities are usually referred to as modules
that represent either a serial computing program or a parallel processing job such as a
MapReduce application in Hadoop.

5

Hadoop Distributed File System (HDFS) [51]. Since each reducer processes a subset

of (key, value) pairs depending on the associated key assigned to that reducer, it

generally does not have access to all (key, value) pairs. In the simplest case to

identify the top n words with the highest use frequency in a large text document, it

is generally insufficient to use a classical WordCount program as each reducer only

outputs the number of occurrences for a subset of words, and another procedure is

typically required to aggregate all these occurrences for a global sorting to determine

the top word list as the final result. In this paper, analytical cost models are

constructed to formulate a Distributed Information Composition problem in Big

Data Systems, referred to as DIC-BDS, to aggregate multiple datasets stored as data

blocks in Hadoop Distributed File System (HDFS) using a composition operator of

specific complexity to produce one final output. DIC-BDS is rigorously proved to be

NP-complete, and two heuristic algorithms are proposed: Fixed-window Distributed

Composition Scheme (FDCS) and Dynamic-window Distributed Composition Scheme

with Delay (DDCS-D). Extensive experiments are conducted in Google clouds

with various composition operators of commonly considered degrees of complexity

including O(n), O(n log n), and O(n2), and compare the performance with existing

methods in the literature in terms of execution time. The experimental results

show the performance superiority of the proposed algorithms over existing methods.

Specifically, FDCS achieves a performance improvement of about 31-61% and

44-65% on average with a composition operator of complexity O(n) and O(n log n),

respectively, and DDCS-D achieves a performance improvement of about 61-95% on

average with a composition operator of complexity O(n2) over other algorithms in

comparison. The proposed algorithms provide an additional level of data processing

for efficient information aggregation in existing workflow and big data systems.

6

2.2 Related Work

In this section, we conduct a survey of related work on distributed information

composition in different computing environments.

In [42], Mayer et al. formulated a set of partitioning and scheduling problems

in TensorFlow and proved them to be NP-complete. In [68], Yun et al. studied a

workflow optimization problem and designed an approach that integrates workflow

mapping and on-node scheduling. Although these problems are discussed in

the framework of TensorFlow or in a generic computing environment, they are

conceptually similar to the problem under this study. However, the solutions proposed

in their work cannot be directly applied to this problem since they require prior

knowledge about the execution of a workflow, which is not always available in practice.

This work is focused on distributed information composition in big data systems

such as Hadoop and provides an additional level of data processing to improve

the performance of existing workflow engines and computing frameworks such as

MapReduce. In particular, a significant number of efforts have been made to improve

the performance of the MapReduce framework. In [21], Elteir et al. proposed

asynchronous data-processing techniques to enhance the performance of MapReduce

without considering data locality, which, however, is an important aspect in this work

and has been extensively explored in many other methods [45, 10, 15, 2, 30, 29, 24,

69, 56].

Information integration or aggregation has also been studied in other contexts

such as service-oriented computing [43] and image composition in volume visual-

ization. Particularly, for the latter, several approaches have been proposed to decide

the composition order of partial images to minimize the total image composition

time on a cluster [64, 67, 46, 55]. These approaches consider minimizing the number

of communication messages. Since this study focuses on the composition time that

mainly depends on the data size and the complexity of the composition operator,

7

the solutions originally designed for image composition are not directly applicable.

For instance, Wu et al. proposed an optimized approach for image composition with

a linear pipeline for efficient image delivery to a remote client [64]. However, the

proposed algorithm does not consider the complexity of composing a segment in each

step/phase. Moreover, they considered data transfer throughput over a wide-area

network connection for remote visualization, which is out of the scope of this work.

In this work, we adopt two algorithms from the literature for performance

comparison with our proposed algorithms. The first one follows a simple greedy

procedure to process and compose distributed data, and the second one is inspired by

a data aggregation method developed in the field of sensor networks [38, 66, 27, 41].

More specifically, in Periodic Sensor Networks (PSN) [25, 53], this method guides

sensors to send data collected over a period of time to a Cluster Head (CH) through

an aggregation tree.

2.3 Problem Formulation

In this section, we construct analytical cost models and defines formally a Distributed

Information Composition problem in Big Data Systems.

2.3.1 Cost Models

Cluster Model As illustrated in Figure 2.1, a cluster is modeled as a tree

of Physical Machines (PMs) connected via high-speed switches. Without loss of

generality, two-level switches are considered. The top-level or root switch Sroot has a

capacity CSroot , and connects other in-rack switches Sin rack, each of which connects

a number of PMs that are located in the same rack R. Each PM is associated with a

resource profile that specifies the CPU frequency fCPU , memory size sRAM , I/O speed

rI/O, disk capacity cdisk, and a Network Interface Card (NIC) with uplink bandwidth

BWup and downlink bandwidth BWdown. Also, each PM provisions a number of

8

VM

VM

VM

VM

VM

VM

Root Switch

In_rack

Switch

PMPM

VM

VM

VM

PM

VM

VM

VM

In_rack

Switch

PM

VM

VM

VM

PM

RackRack

Figure 2.1 A general cluster structure.

Virtual Machines (VMs) and each VM is associated with a set of performance

attributes including CPU frequency f ′CPU , I/O speed r′I/O, and disk capacity c′disk

[62]. However, provisioning VMs on PMs is beyond the scope of this paper.

Composition Model We consider a generic scheme of information composition

that can be applied to many scenarios such as aggregating the output from a workflow

or the output of multiple reduce tasks in the MapReduce framework. Mainly, the

composition model has two components: 1) datasets to be composed, and 2) a

composition operator.

Datasets Suppose that there are n datasets (ds1, ds2, . . ., dsn) that have to be

composed into one final output F . Also, each dataset is of different size sds, where s

denotes the size of dataset ds in bytes. If Hadoop system is considered, the dataset

or data block size ranges from 64 to 128 MB as widely implemented in HDFS [51].

9

In the MapReduce framework [18], such datasets could be the intermediate

results (temporary files) after executing map tasks, or the output of reduce tasks.

The intermediate data produced by a map task is generally stored locally on the

corresponding map node [61], but could be stored in HDFS if there is not enough

storage space on the map node. On the other hand, the output of a reduce task is

generally stored directly in HDFS [51]. In this work, datasets are considered as HDFS

data blocks distributed on a cluster.

Composition Operator Each dataset ds must be processed by a composition

operator ⊕, which could be in different forms, for example, a machine learning

program based on a stochastic gradient descent (SGD) procedure to train the model

or a statistical function to calculate a single value such as the sum or average of

some measurements. Different composition operators are typically of different time

complexity. Also, each operator ⊕ takes two operands opr1 and opr2 and produces

output comp ds of different size that resides on a node of the cluster. Once some

datasets are available and ready to be composed, the location where a composition

process takes place has to be specified. Determining such location depends on

the resource availability of the cluster as well as the computational and storage

requirements of the composition operator. Furthermore, data locality should be

always considered to minimize the communication overhead.

Time Cost

Transfer Time In a cluster environment, datasets are often distributed on different

nodes and have to be transferred over the network for composition. In general,

transfer time = data size / network bandwidth. On each PM, the uplink bandwidth

may be equally shared (if using TCP-friendly protocols) if the PM sends data

concurrently to other PMs; similarly, the downlink bandwidth may be equally shared

10

if the PM receives data concurrently from other PMs. The time cost Tdt of data

transfer is determined by both the data size DS and the sharing dynamics of

bandwidth BW [62]:

Tdt =
DS

min(BWup

ns
, BWdown

nr
)
, (2.1)

where ns and nr are the number of concurrent data transfers from a sender PMs and

to a receiver PMr, respectively.

I/O Cost Generally, in such distributed environment, data is stored using a

distributed file system e.g., HDFS where data is stored as blocks. A block can exist

locally on the computing node node, or remotely over the network, and the cost of

accessing the data is is denoted as TI/O However, computing the actual TI/O time

requires the knowledge about the size of the data being accessed and the speed of the

I/O operation which could be either a read or write operation.

Composition Time Figure 2.2 illustrates a single-composition process, where

two datasets are aggregated by a composition operator ⊕. The time of such

single-composition process is calculated as:

TC = TI/O + Tdt + fCT (O(⊕), DS), (2.2)

where TI/O is the time consumed to read the input data and write the output data,

Tdt is the total time for transferring the data from their source to the destination, and

fCT (O(⊕), DS) is a function that computes the time for the composition operation

given the complexity O(⊕) of the composition operator and the data size DS to

be composed. For a multi-composition process taking place concurrently in parallel,

Equation 2.2 is insufficient to model the composition time. Considering a dynamic

case where the composition process starts at different times, and since multiple

compositions take place concurrently, the longest one is considered as the total time

11

opr1 opr2

comp_ds

composition

operator

Figure 2.2 A single-composition operation.

needed for composition. In other words, the critical path (CP) is considered in this

distributed scheme to define the total composition time (TCT), i.e.,

TCT =
∑

(TI/O + Tdt + fCT (O(⊕), DS))CP , (2.3)

which is the sum of I/O time, transfer time, and composition time along the CP .

12

2.3.2 Problem Definition

We formally define a Distributed Information Composition problem in Big Data

Systems, referred to as DIC-BDS:

Definition 1. Given n datasets (ds1, ds2, ... , dsn) that: (i) are different in sizes

(sds1, sds2, . . . , sdsn), (ii) become available at different time points (t1, t2, . . . ,tn), and

(iii) are distributed across m virtual machines (VM1, VM2, · · · , VMm) provisioned

on a number of PMs, the aim is to compose these datasets using a composition

operator ⊕ that takes two operands opr1 and opr2 at a time and follow a composition

scheme to produce one final output F to minimize the TCT .

2.3.3 Complexity Analysis

The NP-completeness of DIC-BDS is proved by reducing an existing NP-complete

problem, Single Execution Time Scheduling (SETS) [58], to it in polynomial time.

First, a decision version of the problem is stated as follows:

Definition 2. Given the input of DIC-BDS as defined in Definition 1 and a bound

B, does there exist a composition scheme that yields the TCT such that TCT ≤ B?

The SETS problem [58, 42] is defined as follows: Given a set S of jobs that

take unit time, a partial order ≺ on S, k
′

processors, and a time limit tmax, is there a

scheduling function g : S → {0, ..., tmax − 1} such that the following three properties

hold? (i) The scheduling function respects the ordering relation, i.e., v ∈ S ≺ v′ ∈

S → g(v) < g(v′). (ii) The time limit is not exceeded, i.e., ∀v ∈ S : g(v) < tmax, and

(iii) There are at most k
′

active jobs at each point of time, i.e., ∀i ∈ {0, . . . , tmax}:

|{v ∈ S|g(v) = i}| ≤ k′.

Theorem 1: DIC-BDS ∈ NP-complete.

Proof. Obviously, DIC-BDS is in the class of NP. Its NP-hardness is proved by

reducing SETS to it as follows:

13

Table 2.1 Notations Used in the Cost Models and Problem Definition (Continued)

Parameters Definitions

Sroot the root switch

CSroot the capacity of the root switch

Sin−rack an in-rack switch

R a rack of PMs

Tdt time cost of data transfer

DS data size

BWup the uplink bandwidth

BWdown the downlink bandwidth

ns, nr the number of concurrent data transfers from

a sender PMs, to a receiver PMr

BWsup the uplink bandwidth within a rack

BWsdown the downlink bandwidth within a rack

nss, nsr the number of concurrent data transfers from

a sender Sin−rack, to a receiver Sin−rack

PMi the i-th PM

PMs the sender PM

PMr the receiver PM

fCPU(i) the CPU frequency of PMi

sRAM(i) the memory size of PMi

rI/O(i) the I/O speed of PMi

cdisk(i) the disk capacity of PMi

14

Table 2.2 (Continued) Notations Used in the Cost Models and Problem Definition

Parameters Definitions

VMi the i-th VM

m the number of VMs

f ′CPU the CPU frequency of a VM

s′RAM the memory size of a VM

r′I/O the I/O speed of a VM

c′disk the disk capacity of a VM

TI/O the cost of I/O

ds dataset for composition

n the number of datasets for composition

sds the size of dataset ds in bytes

tds the available time of dataset ds

⊕ composition operator

opr1 first operand

opr2 second operand

comp ds dataset resulting from a composition process

F final composition result

TCT Total Composition Time

TC Composition Time of a composition process

CP Critical Path

fCT (O(⊕), DS) function to compute TC given O(⊕) and DS

15

Let ISETS be an arbitrary instance of SETS, which has a set of jobs S and

a partial order ≺ on S. Accordingly, an instance of DIC-BDS is constructed and

denoted as IDIC−BDS. For each partial order ≺i of ISETS, a corresponding bucket bi

of IDIC−BDS is constructed such that the number of datasets in each bucket is the same

as the number of jobs in the corresponding partial order of ISETS. Also, the size of

each dataset is equivalent in value to the number of instructions in the corresponding

job. Moreover, the complexity of the composition operator ⊕ is determined by the

size of the second operand opr2 as illustrated in the following example:

Suppose that ISETS has a partial order ≺1 that has three jobs: J0, J2, and J1.

Accordingly, IDIC−BDS has a bucket b1 that has three datasets: ds0, ds2, and ds1.

Following the partial order ≺1, starting by composing the first dataset with a dummy

data set dsdummy as ⊕(dsdummy, ds0), which produces the first result denoted as r0 of

size sds0 . The second composition is ⊕(r0, ds2) that produces a result of r1 with an

output of size sds2 . The final composition is ⊕(r1, ds1) that produces a result of r2

with an output of size sds1 .

Furthermore, in IDIC−BDS, the number of VMs is set to be k′, which is the

same as the number of processors in ISETS. Also, since the processors in ISETS are

homogeneous, only homogenous VMs in IDIC−BDS are considered. Furthermore, the

focus is only on the execution time of ISETS, which is equivalent to the composition

time of IDIC−BDS. Therefore, the constructed IDIC−BDS is a special case of DIC-BDS

where both the transfer time and I/O time are set to be zero. It is obvious that this

instance construction process can be done in polynomial time.

Next, we show that if there is a solution to ISETS, that solution solves IDIC−BDS

as well. Assuming that the answer of ISETS is true, this means that there exists

a scheduling scheme such that the three properties of SETS are satisfied. If that

scheduling scheme is used as an order to perform the composition process on the

corresponding datasets of IDIC−BDS, the total composition time is minimized. On

16

the other hand, if there is a solution to IDIC−BDS, it implies that there exists an

order that guarantees to minimize the total composition time, and this order can be

used to schedule the execution of the corresponding jobs of ISETS.

Hence, if the answer to the given instance of SETS is YES or NO, the answer

to the constructed instance of DIC-BDS is also YES or NO, and vice versa. This

completes the NP-hardness proof of DIC-BDS.

2.4 Algorithm Design

We design a Distributed Composition Scheme (DCS) as a heuristic approach to solve

DIC-BDS defined in Section 2.3.2.

The main goal of DCS is to minimize TCT . In this scheme, there are two

main types of datasets: (1) the original given datasets (ds1, ds2, · · · , dsn) that

become available for composition at different time points (tds1 , tds2 ,· · · , tdsn) , and (2)

the intermediate results that become available during the entire composition process

(comp ds1, comp ds2, · · · , comp dsl). According to Eq. 2.3, the composition time is

defined as the sum of three time cost components: I/O time, data transfer time, and

time consumed by the composition operator ⊕ for data composition. Typically, the

composition time with a given composition operator is considered to be fixed, and the

I/O time for reading/writing a given amount of datasets does not vary significantly.

However, a network-based data transfer is dynamic in nature, largely depending on

the location of the datasets. Thus, we focus on minimizing the time cost of data

transfer by considering data locality. There are two main phases in the proposed

DCS approach. The first phase is to partition the datasets into groups, and for that,

we design two partitioning algorithms:

1. FDCS: Fixed-window Distributed Composition Scheme

2. DDCS-D: Dynamic-window Distributed Composition Scheme with Delay

17

ds ds

comp_ds comp_ds

dsdsdsds

F

Figure 2.3 The Global List (GL).

The second phase of DCS is to schedule the formed groups for composition.

Moreover, two existing algorithms for performance comparison are adopted,

i.e., greedy composition, and periodic time interval-based grouping, which are briefly

introduced as well.

2.4.1 The Global List (GL)

Prior to providing the details of algorithm design, we design a data structure, referred

to as Global List (GL), which is an important component in our solution.

As illustrated in Figure 2.3, the Global List (GL) is a list-based data structure,

which is used to hold the datasets and maintain their order based on the time of

their availability. GL starts with a pre-defined number of original datasets, and may

change dynamically over time, as composed datasets are removed from GL and new

datasets, i.e., either intermediate results produced by the composition process or

original datasets arriving late, are inserted into GL. However, towards the end of the

composition process, the number of datasets that need to be composed would decline

until producing the last dataset, i.e., the final output F .

Based on this data structure, we design two partitioning algorithms to partition

the datasets into groups, each of which is assigned to a computer node for composition.

These partitioning algorithms build a Composition Tree CTree (Subsection 2.4.4) to

calculate the TCT as shown in Algorithm 3 and are followed by the group scheduling

algorithm (Subsection 2.4.5) to determine the composition order.

18

ds ds ds ds ds ds ds ds

ds ds ds ds ds ds ds

 insert comp_ds into GL
insert comp_ds into GL

comp_ds

GL

wini+k = 4wini = 4

ds

into GL

comp_ds

Figure 2.4 FDCS.

2.4.2 Fixed-window Distributed Composition Scheme (FDCS)

We design a Fixed-window Distributed Composition Scheme (FDCS), whose pseudocode

is provided in Algorithm 1 with an illustration of its process in Figure 2.4.

In this algorithm, we prefix a window size x, which defines the number of

datasets in a group used for composition. We first check if there are x or more

datasets available on the GL. If yes, we create a group of x datasets from the GL and

call a scheduling function for composition; otherwise, we wait until enough datasets

have arrived to form a group for composition.

2.4.3 Dynamic-window Distributed Composition Scheme with Delay

(DDCS-D)

We follow the concept of delay scheduling from [70], which aims to improve the

performance of Hadoop system using a default fair scheduler, and design a Dynamic-

19

Algorithm 1: Fixed-window Distributed Composition Scheme

(FDCS)

Input: a number of datasets (ds1, ds2, ..., dsn) that become available at

different time points (tds1 , tds2 , ..., tdsn), which are stored on the global list

GL, and distributed among different virtual machines (vm1, vm2, · · · , vmm)

Output: a group gri of datasets that are ready for scheduling

1: Initialize x to be the pre-fixed number of datasets in a group;

2: if (GL.size() >= x) then

3: create a group gri;

4: while (gri.size()<= x) do

5: gri.add(dataset);

6: schedule(gri);

7: else

8: wait till there are x or more datasets on GL;

9: if (not the last dataset) then

10: create a group gri;

11: while (gri.size()<= x) do

12: gri.add(dataset);

13: schedule(gri);

14: else

15: return

20

window Distributed Composition Scheme with Delay (DDCS-D). Delay scheduling

is originally introduced for cluster scheduling where fairness is relaxed in order to

explore data locality.

DDCS-D adopts a dynamically changing window size. It starts with a window

size set to be the smallest group size, i.e., 2 datasets for composition. Every time

when a group of datasets are formed, it checks the size of the GL. If the GL size

is larger than the current window size, it increases the window size by adding one

additional dataset; otherwise, the new window size is the same as the number of

available datasets on the GL.

Moreover, to make the composition process more adaptive, we introduce a delay,

which defines an amount of time DDCS-D has to wait before checking the size of

the GL. In this case, we allow more datasets to arrive and be added to the GL,

which may yield a larger group with more datasets for composition. However, an

excessively long waiting time would delay the entire composition process. We will

conduct experiments to provide insights into choosing an appropriate value for the

delay. Compared with FDCS, DDCS-D is more adaptive to the arriving pace of the

datasets. The pseudocode of DDCS-D is provided in Algorithm 2 with an illustration

of its process in Figure 2.5.

21

Algorithm 2: Dynamic-window Distributed Composition Scheme

with Delay (DDCS-D)

Input: a number of datasets (ds1, ds2, ..., dsn) that become available at

different time points (tds1 , tds2 , ..., tdsn), which are stored on the global list

GL and distributed among different virtual machines (vm1, vm2, · · · , vmm)

Output: a group gri of datasets that are ready for scheduling

1: Initialize win size = 2;

2: while (true) do

3: if (GL.size() > win size) then

4: win size = win size + 1;

5: else

6: win size = GL.size();

7: create a group gri;

8: while (gri.size() < win size) do

9: gri.add(ds);

10: schedule(gri);

11: wait for a delay amount of time;

12: return

22

2.4.4 Composition Tree CTree

As shown in Figure 2.6, a CTree, which is a binary tree, is constructed from

multiple leaves to the root as the composition process proceeds. Each node with

two incoming edges and one outgoing edge represents a dataset, and each edge

represents a composition operation associated with a weight reflecting its cost. The

root of the composition tree CTree is the final output F that is generated from the

last composition operation, and the TCT is calculated as the sum of the time cost

components along the critical (longest) path (CP) of the tree, which may or may not

be balanced.

Once a composition operation takes place, the tree is constructed or updated. In

Algorithm 4, after each composition operation, the function update CTree() creates

a branch in the tree that contains: two (parents) nodes, two edges and one child

node. Once the entire composition process is completed, the tree is fully constructed.

Hence, the TCT can be computed by traversing the CP in the CTree, as shown in

Algorithm 3.

Algorithm 3: Calculate the TCT using CTree

Input: Composition Tree CTree

Output: the total composition time TCT

1: initialize TCT = 0;

2: find the critical path CP in CTree;

3: for all (edge e along the CP) do

4: current cost = cost e;

5: TCT = TCT + current cost;

6: return TCT ;

23

ds ds ds ds ds ds

ds ds ds ds ds ds ds

ds ds ds

GL

 insert comp_ds into GL

 insert

comp_ds into

GL
comp_dscomp_ds

wini = 4 wini+k = 5

ds

Figure 2.5 DDCS-D.

ds

ds

ds

ds

ds

ds

ds

ds

ds

ds

TCT is determined by the CP of the CTree

F

Figure 2.6 Illustration of the composition tree (CTree).

24

2.4.5 Group Scheduling for Composition

Once a group gri of datasets become available for composition, the scheduling

algorithm begins by deciding the target node among the ones with available datasets,

which performs all composition operations. We employ a locality-based scheduling

approach to minimize transfer time cost by minimizing transfer overhead. Data

locality is the placement of computation on the same node as its input data [15].

Given a group gr of datasets, we follow two rules to choose the target node as follows:

1. Primary rule of majority vote: We choose the target node to be the one that
holds the majority of the datasets for composition.

2. Secondary rule of minimum transfer cost : We choose the target node to be the
one with the minimum cost of transfer time based on the available network
resources on the cluster, and transfer any needed non-local datasets to it.

Moreover, after performing the composition, we update CTree and GL

accordingly, as detailed in Algorithm 4.

Algorithm 4: Group Scheduling for Composition

Input: a group gri of datasets

Output: true if the composition is completed successfully; false, otherwise

1: while (true) do

2: gri.decide();

3: pairs[] = gri.pair up ds(); group;

4: for all (pair pi ∈ pairs[]) do

5: comp ds = compose(pi);

6: update CTree(pi, comp ds);

7: GL insert(comp ds);

25

2.4.6 Algorithms for Comparison

Greedy Composition A greedy approach has been frequently used for dynamic

information composition. It is a simple heuristic based on a greedy strategy. At any

time, if there are two or more datasets on GL, it selects two datasets and performs

composition regardless of data locality, as detailed in Algorithm 5 and illustrated in

Figure 2.7.

Algorithm 5: Greedy Composition

Input: a number of datasets (ds1, ds2, ..., dsn) that become available at

different time points (tds1 , tds2 , ..., tdsn), which are stored on the global list

GL and distributed among different virtual machines (vm1, vm2, · · · , vmm)

Output: GL after performing all the composition

1: set start time ;

2: while (true) do

3: if (GL.size() >= 2) then

4: opr1 = GL.getOpr1();

5: opr2 = GL.getOpr2();

6: comp ds = compose(opr1, opr2);

7: GL.insert(comp ds);

8: else

9: wait till there are 2 or more datasets on GL;

10: return GL;

For the greedy composition process in Algorithm 5, we calculate the TCT as

the available time of the final output or last dataset F , as shown in Algorithm 6.

Periodic Time Interval-based Grouping This is another simple heuristic, which

repeatedly collects datasets to form a group in every time period of a certain length,

26

Algorithm 6: Determine the TCT for greedy composition

Input: the Global List GL

Output: the total composition time TCT

1: F = GL.retrieveLast();

2: end time = F .getAvalTime();

3: TCT = end time - start time

4: return TCT ;

ds ds ds ds ds ds ds

ds ds ds ds ds ds

ds ds ds ds ds ds

dsds

comp_ds

composition

operator

GL after inserting comp_ds

 insert comp_ds into GL

GL

GL

GL

ds

Figure 2.7 Greedy composition.

27

Rack1

Us-east4-a

1.96 Gbps

Rack2

Us-east1-b

1.96 Gbps

Rack3

Us-

central1-c

1.96 Gbps

657 Mbps

Figure 2.8 Intra-rack and inter-rack bandwidths on the cluster testbed.

e.g., 10 seconds. Both Greedy and Periodic algorithms follow the scheduling procedure

as described in Subsection 2.4.5.

2.5 Performance Evaluation

2.5.1 Experimental Settings

We implement our algorithms in Python and use Google cloud to build a Hadoop

cluster of 3 racks, each of which has 3 computer nodes. These racks are located in

different geographical zones. As shown in Figure 2.8, the bandwidth on the same rack

(intra-rack) is 1.96 Gbps, while the bandwidth between different racks (inter-rack)

may differ.

We consider three degrees of time complexity for the composition operator:

O(n), O(n log n) and O(n2). To evaluate the performance, we consider different

problem sizes in terms of the number of datasets from small to large scales in a range

of [100,1000]. We set the size of each original dataset to be 64MB, the same as the

default data block size in Hadoop 1.

28

We implement two proposed algorithms, i.e., FDCS and DDCS-D, and two

algorithms in comparison, i.e., Greedy and Periodic with a fixed period of 10 seconds.

Each composition experiment is repeated three times and the average performance

is calculated and plotted for comparison. In each performance figure, the x-axis

represents the number of datasets in the range of [100, 1000] and the y-axis represents

the corresponding average TCT .

The source code of the algorithm implementation is made publicly available at

https://github.com/Big-Data-World/Composition-in-Hadoop.git.

2.5.2 Experimental Results

For FDCS, we test different window sizes and select the one that yields the best

performance for each composition operator of a different complexity.

Composition Operator of Complexity O(n) The composition time TC for an

operator of complexity O(n) is relatively small. We use a composition operator of this

complexity to run four different algorithms, i.e., 1) FDCS, 2) DDCS-D, 3) Greedy,

and 4) Periodic. We observe that FDCS performs better than DDCS-D, which is

explained as follows: The window size of DDCS-D increases as the datasets arrive

at a fast pace at the GL, and the time for composing the datasets in a given group

increases accordingly, which yields a latency in the arrival time of the dataset at the

GL. Therefore, the window size shrinks and the time for composing the datasets in

a given group decreases, which makes the newly composed datasets be inserted into

the GL faster. FDCS performs better because it provides more stable processing,

while there is an overhead for DDCS-D due to the variation of the window size and

the delay. Table 2.3 and Figure 2.9 show the performance measurements of different

algorithms processing various numbers of datasets.

29

Composition Operator of Complexity O(n log n) The performance measurements

of the algorithms using a composition operator of complexity O(n log n) are qualita-

tively similar to those produced by the algorithms using the composition operator of

complexity O(n). Table 2.4 and Figure 2.10 show the results of different algorithms

processing various numbers of datasets.

Composition Operator of Complexity O(n2) In this case, DDCS-D starts

outperforming FDCS, which is explained as follows: A composition operator of

complexity O(n2) incurs a large composition time TC , which implies that the

composed datasets are inserted into the GL at a slower pace. FDCS has to wait until

there is a sufficient number of datasets to form a group (as defined in the algorithm),

thus causing a latency. On the other hand, DDCS-D dynamically updates the window

size to accommodate the arrival pace of the datasets.

With a composition operator of complexityO(n2), it still causes some fluctuation

in the window size but is not as frequent as in the cases of O(n) and O(n log n).

Therefore, DDCS-D cuts down the TCT more than FDCS. Table 2.5 and Figure 2.11

show the performance measurements of different algorithms in comparison for

processing various numbers of datasets.

In all these experiments with different complexities, we observe that the Greedy

algorithm performs the worst.

Algorithm Execution Dynamics

The Fluctuation of Window Size To explain the behavior of DDCS-D, we

conduct an experiment to show the fluctuation of the window size over a period

of time. Figure 2.14 plots the change of the window size with three degrees of

complexity for a problem size of 300 datasets. As shown in Figure 2.14, DDCS-D with

a composition operator of complexity O(n) fluctuates the most, but exhibits a stable

30

behavior with O(n log n). This is because the composition time TC is relatively small

and the arrival pace of the datasets to be inserted into the GL is high. Accordingly,

the window size increases to accommodate more datasets, and the time to process a

group increases, which slows down the arrival of more datasets. Hence, DDCS-D is

adaptive by decreasing the window size. In the case of O(n log n), there is almost no

fluctuation, and the windows size always tends to be the minimum, since datasets are

inserted into the GL at a very slow pace as the composition time contributes more.

Optimization of the Window Size in FDCS To find the most efficient window

size for FDCS, we conduct an experiment with 300 datasets. As illustrated in

Table 2.6 and Figure 2.12, FDCS with a composition operator of complexity O(n),

O(n log n), and O(n2) yields the minimum TCT when the window size is 4, 2, and 3,

respectively.

Optimization of the Delay in DDCS-D To find the most efficient delay for

DDCS-D, we conduct an experiment with 300 datasets. Figure 2.13 and Table 2.7

show that DDCS-D with O(n) achieves the minimum TCT when the delay is 1 second,

DDCS-D with O(n log n) achieves the minimum TCT when the delay is 0 seconds (no

delay at all), and DDCS-D with O(n2) achieves the minimum TCT when the delay

is 0.4 seconds.

Analysis of the Results from DDCS-D With a composition operator of

complexity O(n), TC is relatively small and hence the arrival pace of the newly

composed datasets is high. Hence, the grouping in DDCS-D progresses quickly

and it will eventually reach the minimum window size, which is 2. Therefore, we

introduce a delay of 1 second to achieve the most efficient window size of 4, which

yields the minimum TCT . For a composition operator of complexity O(n log n), the

most efficient window size is 2, which is the minimum window size, and there is no

31

delay introduced. In the case of an operator of complexity O(n2), TC is higher than

the other operators. Empirically, we observe that the most efficient window size is 3

with a delay of 0.4 seconds. The arrival pace of the newly composed datasets in the

case of O(n2) is slower than its counterpart O(n). Hence, we have a smaller window

size and less delay with an operator of complexity O(n2).

2.6 Conclusion

We formulate a generic problem of Distributed Information Composition in Big Data

Systems, referred to as DIC-BDS, which is proven to be NP-complete. Heuristic

algorithms for DIC-BDS are designed that take into consideration the arrival

dynamics of datasets, and their performance superiority over other existing methods

for composition operators of various time complexities are demonstrated through

extensive experiments on a real cloud-based cluster. The proposed composition

algorithms add another level of intelligence for big data analytics in existing big

data computing systems.

It would be of future interest to investigate the problem with other distributed

frameworks such as Spark and evaluate our algorithms with real-life big data

workflows.

32

0 200 400 600 800 1000

Problem Size (Number of Datasets)

0

100

200

300

400

500

600
T

C
T

 w
it

h
 s

td
Complexity = O(n)

Greedy

Periodic

FDCS

DDCS-D

Figure 2.9 The average TCT (seconds) of different algorithms under different
problem sizes with an operator of complexity O(n).

0 200 400 600 800 1000

Problem Size (Number of Datasets)

0

200

400

600

800

1000

1200

1400

T
C

T
 w

it
h

 s
td

Complexity = O(n log n)

Greedy

Periodic

FDCS

DDCS-D

Figure 2.10 The average TCT (seconds) of different algorithms under different
problem sizes with an operator of complexity O(n log n).

33

0 200 400 600 800 1000

Problem size (Number of Datasets)

0

0.5

1

1.5

2
T

C
T

 w
it

h
 s

td
10

4 Complexity = O(n
2
)

Greedy

Periodic

FDCS

DDCS-D

Figure 2.11 The average TCT (seconds) of different algorithms under different
problem sizes with an operator of complexity O(n2).

2 4 6 8 10 12

Window Size

0

500

1000

1500

2000

2500

T
C

T
 w

it
h

 s
td

Efficient Window Size

O(n)

O(n log n)

O(n
2
)

Figure 2.12 The average TCT of FDCS with composition operators of different
complexities for processing 300 datasets with different window sizes.

34

0 0.5 1 1.5 2

Delay (seconds)

0

200

400

600

800
T

C
T

 w
it

h
 s

td

Efficient Delay

O(n)

O(n log n)

O(n
2
)

Figure 2.13 The average TCT of DDCS-D with composition operators of different
complexities for processing 300 datasets with different delay time.

0 50 100 150 200 250 300

Timestamp

0

2

4

6

8

10

W
in

d
o

w
 S

iz
e

Fluctuation of Window Size over Time

O(n)

O(n log n)

O(n
2
)

Figure 2.14 The average TCT of DDCS-D with composition operators of different
complexities for processing 300 datasets with different delay time.

35

Table 2.3 The Average TCT (seconds) of Different Algorithms under Different
Problem Sizes with an Operator of Complexity O(n)

of ds Greedy StdDv Periodic StdDv FDCS StdDv DDCS-D StdDv

100 96.72 5.87 59.10 4.48 56.59 3.05 55.20 4.87

200 210.47 6.29 80.49 6.49 74.76 4.68 76.73 6.34

300 219.28 7.43 111.23 7.95 92.08 6.42 93.46 5.59

400 232.36 7.04 139.19 6.52 107.91 8.49 117.82 5.12

500 247.61 8.27 161.36 8.61 109.26 6.27 134.44 7.76

600 304.38 6.72 189.96 7.49 118.19 7.29 151.51 6.42

700 363.42 7.33 218.11 6.42 123.41 6.44 172.17 7.03

800 425.77 8.29 240.19 7.33 134.13 7.22 189.02 8.18

900 489.64 6.43 274.59 5.34 139.12 6.37 213.14 6.19

1000 558.92 8.33 303.10 8.19 147.41 6.31 228.15 5.04

36

Table 2.4 The Average TCT (seconds) of Different Algorithms under Different
Problem Sizes with an Operator of Complexity O(n log n)

of ds Greedy StdDv Periodic StdDv FDCS StdDv DDCS-D StdDv

100 158.62 9.45 90.13 6.78 113.32 7.21 88.01 5.65

200 299.48 7.64 179.45 8.43 146.80 5.44 102.31 4.36

300 445.30 7.63 283.41 7.92 170.23 6.55 123.12 8.32

400 530.94 6.44 339.76 6.32 182.18 6.21 164.17 7.31

500 619.84 9.62 393.60 7.43 198.38 8.33 195.12 7.39

600 758.40 7.38 442.27 5.66 217.90 7.48 227.13 6.46

700 901.42 6.87 487.95 7.12 241.30 6.77 256.36 5.66

800 1045.62 5.42 539.30 7.33 258.19 8.01 291.10 7.21

900 1198.28 6.33 588.13 6.45 277.10 6.42 318.09 8.22

1000 1317.91 8.52 639.39 7.11 301.32 7.41 346.10 7.81

37

Table 2.5 The Average TCT (seconds) of Different Algorithms under Different
Problem Sizes with an Operator of Complexity O(n2)

of ds Greedy StdDv Periodic StdDv FDCS StdDv DDCS-D StdDv

100 1676.83 15.36 193.24 4.38 159.57 3.64 133.78 5.01

200 3337.49 18.28 430.74 5.99 279.74 6.49 197.80 6.44

300 4996.32 18.97 683.61 8.43 391.51 7.84 236.06 8.54

400 6665.37 19.43 945.84 9.84 462.65 8.86 314.91 7.93

500 8329.39 21.87 1055.10 14.37 519.26 10.48 360.83 11.29

600 9999.06 20.56 1173.19 12.44 577.90 8.32 406.98 10.48

700 11682.34 26.44 1281.73 10.82 632.42 9.31 452.20 8.29

800 13373.28 25.64 1393.10 9.41 689.51 8.51 491.11 6.75

900 15071.32 29.39 1503.91 11.19 751.14 9.16 536.51 8.42

1000 16774.08 39.85 1614.38 12.85 811.18 8.17 581.13 7.71

38

Table 2.6 The Average TCT of FDCS with Composition Operators of Different
Complexities for Processing 300 Datasets with Different Window Sizes

window size O(n) StdDv O(n log n) StdDv O(n2) StdDv

2 130.42 6.29 141.17 5.26 261.41 7.88

3 100.05 6.89 159.77 5.49 235.73 7.31

4 89.09 7.76 172.81 5.93 391.52 8.42

5 127.01 8.38 319.92 5.44 692.83 7.19

6 104.09 12.31 253.61 13.28 592.40 10.29

7 128.52 9.07 341.94 12.62 916.40 13.25

8 145.83 7.67 440.14 8.54 1241.30 11.18

9 162.76 6.32 528.26 7.16 1519.19 13.28

10 194.19 11.31 617.22 11.28 1833.46 12.43

11 211.17 9.11 734.40 9.32 2207.11 13.18

39

Table 2.7 The Average TCT of DDCS-D with Composition Operators of Different
Complexities for Processing 300 Datasets with Different Delay Time

delay (seconds) O(n) StdDv O(n log n) StdDv O(n2) StdDv

0 137.75 6.95 121.02 4.87 249.19 6.83

0.2 129.19 7.13 138.33 6.26 280.42 7.61

0.4 122.43 7.42 144.05 5.47 229.40 5.32

0.6 118.92 5.88 146.20 5.39 303.64 8.29

0.8 112.33 6.18 198.83 7.65 276.57 6.24

1 95.44 5.38 274.52 8.27 282.57 7.31

1.2 126.34 6.11 224.85 7.16 263.33 8.33

1.4 131.14 4.47 323.95 10.72 360.42 7.87

1.6 136.47 6.32 435.89 11.26 376.62 6.21

1.8 143.73 7.22 518.23 12.21 484.93 10.44

2 147.37 5.57 624.87 11.17 774.96 11.38

40

CHAPTER 3

PERFORMANCE PREDICTION FOR SPARK-HBASE
APPLICATIONS IN BIG DATA SYSTEMS

3.1 Introduction

Many large-scale applications in various business and scientific domains require a

combination of parallel computing with distributed data storage and management for

big data processing. In fact, it has become a widely adopted practice in industry

to deploy big data systems such as Hadoop on top of NoSQL databases (such as

HBase [7] and MongoDB [8]), and employ parallel computing frameworks (such as

MapReduce [18] and Spark [72, 71]) to ensure timely data processing and efficient

delivery of analysis results in support of decision making and business intelligence.

Such systems typically consist of a stack of technology layers, which provide a large

number of configurable parameters so that end users can request system resources as

needed through parameter settings in advance.

In this work, we tackle a general problem of optimizing the execution performance

of big data applications deployed on high-performance computing platforms. In

specific, we focus our research on Spark applications that run over Hadoop/HDFS [61]

as a data storage system and HBase as a data management system, which are referred

to as Spark-HBase applications in this context. The execution of such applications in

big data systems typically has a life circle of computing that spans through several

stages across multiple technology layers: submitting the application to YARN as a

resource manager, assigning executors in Spark for data processing, coordinating with

RegionServers in HBase to determine a logical data block, and accessing the actual

data block stored in Hadoop Distributed File System (HDFS) [4]. Each of these

layers has a large set of parameters for configuration, and it is crucial for any given

Spark-HBase application to decide a subset of configurable parameters according to its

41

computing needs and performance requirements, e.g., the number of executors and the

number of cores for each executor in Spark as well as database operation API-related

parameters in HBase. Deciding an appropriate setting of effective parameters is

critical to understanding and optimizing application performance for end users, and

to maximizing the utilization of system resources for infrastructure providers.

However, it is challenging for end users, who are primarily domain experts, to

decide a satisfactory configuration for executing Spark-HBase applications in such

complex computing systems. The execution complexity of Spark-HBase workflows

compounded by system dynamics makes it a daunting task to select and configure a

right set of parameters across different layers of the technology stack. In fact, in most

of the existing big data systems, the parameters are typically set with default values,

which, unfortunately, do not always lead to the best performance. These default

values, once set, are oftentimes used for all applications of disparate types as end

users generally do not have enough knowledge in computing to modify the system

configuration. Even with the aid of certain knowledge, this problem is still largely

unexplored and unresolved.

In this work, we investigate the problem of modeling and predicting the

performance of Spark-HBase applications in big data systems by strategically selecting

a subset of hyper parameters and setting their values using machine learning. Our goal

is to achieve an accurate prediction of execution time using a performance-influence

model that takes influential parameters as input features. Towards this goal, we

start by conducting a large number of experiments to run various Spark-HBase appli-

cations with different parameter settings and collect their corresponding performance

measurements. Such measurement data conveys informative knowledge and provides

insights into the performance pattern and execution behavior of these applications

under different configurations in big data systems, which facilitate performance

optimization and configuration recommendation for such applications. We then

42

conduct an in-depth comparison-based analytical study to investigate the effects of

these parameters on application performance. Based on the data collected from

the exploratory analysis and aided by domain knowledge, we design a class of

regression-based prediction models to estimate the execution time of Spark-HBase

applications, and illustrate the accuracy of such models using different performance

metrics.

As a summary, we make the following contributions in this work:

• Modeling of interactions between various components in Spark-HBase
applications. We construct rigorous cost models for various components
involved in the execution of Spark-HBase applications to quantify the execution
time of such applications, and explain the interactions between them.

• Exploratory analysis. We run a large number of experiments and conduct
an in-depth analytical study to explore and investigate the effects of parameter
selection and setting on the performance of Spark-HBase applications in terms
of execution time.

• Performance prediction using machine learning. We utilize the data
produced by the exploratory analysis to train a class of regression-based models
to predict the execution time of Spark-HBase applications.

The rest of the work is organized as follows: Section 3.2 conducts a survey of

related work in performance modeling and parameter setting. Section 3.3 constructs

the cost models and defines the problem under study. We conduct an exploratory

analysis of Spark-HBase application performance in Section 3.4, and design a class

of regression-based models for performance prediction in Section 3.5. Section 3.6

presents the experimental results for performance evaluation. Section 3.7 concludes

our work and sketches a plan of future research.

3.2 Related Work

In this section, we conduct a survey of related work on performance modeling

and prediction in the context of: various computational jobs and applications, and

43

scientific workflows. Specifically, the survey discusses different aspects of prediction

models, characterization and profiling techniques, and performance parameters and

metrics. Also, we conducted a brief survey on the literature of configuring parameters

for both Spark and HBase frameworks.

3.2.1 Performance Modeling, Estimation and Prediction for Serial and
Parallel Application

Modeling and prediction of applications performance has been extensively inves-

tigated in the literature where many studies presented models to estimate the different

metrics of performance such as execution time, CPU utilization, memory usage and

I/O cost [60, 34]. The motivation behind these studies is to: improve the performance,

optimize resources allocation and detect performance issues or flows. In [63] Wu et al.

presented a statistical model based on logistic regression to estimate the execution

time of a serial job at a given point of time in scientific workflows; however, they

did not consider parallel jobs in their proposed model. Others presented models

for parallel applications [28, 35]. In [28], the authors constructed a prediction

model based on neural networks to estimate the execution time for a parallel

application called SMG2000, and they used the hardware and software attributes

as model parameters. In [35] Lee et al. addressed the challenges of analytical

performance modelling for parallel applications by applying statistical techniques

to examine the parameters space. Additionally, they constructed predictive models

based on piecewise polynomial regression and artificial neural networks. For big data

applications, the authors of [36, 54, 32, 60] proposed different models to estimate and

predict performance for different big data parallel computing applications. Song et

al. [54] proposed a simplified prediction framework for Hadoop jobs. It was based

on dynamically analyzing Hadoop jobs accompanied with locally weighted regression

methods for performance prediction. In [60], Wang et al. applied analytical and

44

simulation-driven models to leverage the multi-stage execution structure of Spark jobs

and predict the performance of these jobs in terms of: execution time, memory usage

and I/O cost. The authors of [52] propose different models to predict the execution

time for several Spark applications deployed on hadoop cluster where their models

are based on analytical and off-the-shelf machines learning techniques. Moreover,

in [33], the authors present an approach to estimate the response of Spark streaming

applications. However, their model is based on Palladio Component Model (PCM),

and it focuses on the modeling and prediction the Spark performance for streaming;

whereas our work focuses on modeling Spark applications for batch processing.

Moreover, in their paper [34] they extend PCM to predict the response time and

CPU utilization for Spark batch applications . Several works have been conducted

to investigate and improve the performance of Spark applications that are coupled

with HBase [50, 26, 49]. In [26], the authors conduct comparison experiments to

show the difference in performance between MapReduce and Spark when executed

on HBase and HDFS frameworks. Qin and Niu et al. [49] design AISHS that

manages AIS data by storing it uniformly among the cluster nodes, and optimize the

parallel query method to avoid data shuffling between RDD partitions and HBase

regions. Furthermore, machine learning algorithms and techniques have been widely

adopted in different disciplines in order to improve performance. In [40] Mao et al.

presented Decima that is based on reinforcement learning and neural network to learn

workload-specific scheduling algorithms for Spark clusters.

3.2.2 Scientific Workflows Modeling and Performance Estimation

The authors of [31] examine six different type of scientific workflows from different

fields such as astronomy and bioinformatics. They categorized these workflows based

on the consumption of I/O, memory usage and CPU utilization. The authors assume

that designing general use workflow systems should not be determined based on

45

the attributes of one single workflow. They develop two profiling tools: ioprof to

collect data about process I/O, and pprof to collect data about process runtimes and

consumption of memory and CPU. Profiling workflows indicate that some parts of the

workflow can be optimized in order to improve the performance. Moreover, scientific

workflows consist of a number of computational components of similar or different

complexities that require splitting the data sets into smaller ones for the purpose

of supporting concurrent processing [19]. The efficiency and quality of scheduling

algorithm is determined by the task execution time, data access and information about

the resources; Tasks may access data that are stored in memory, locally on a disk, or

on some external storage [17]. Also, execution time depends mainly on the complexity

of the program [19] [63], and processing a task of workflow in parallel can speed up

the execution significantly [17]. Many papers [44, 39, 48] have presented studies to

improve the performance of workflows. Mainly, we find that there are two approaches

to estimate and predict the execution time for workflows; the first one is based on

scheduling models as in [44], and the other approach is based on machine learning

algorithms and techniques as in [39, 48]. In [44] Nadeem et al. and others proposed to

estimate the execution time of a workflow using radial basis function neural network.

Maheshwari et al. presented a multi-site workflow scheduling technique to model

the performance and predict the execution time of workflows across geographically

dispersed resources [39].

3.2.3 Spark parameters configuration

Spark has over 150 configurable parameters [47, 6] Several research efforts [47, 57] have

studies the impact of configuring and tuning Spark parameters on the applications

performance. The authors of [47] study the impact of configuring and tuning

Spark parameters on the applications performance. They propose a novel tuning

methodology following an efficient trial-and-error approach. They target parameters

46

belonging to the categories of: Shuffle Behavior, Compression and Serialization,

and Memory Management. However, they do not consider tuning the parallelism

degree nor parameters related to YARN or MESOS. Furthermore, the authors in [37]

conducted an exploratory analysis study to examine the effect of different parameters

on the performance of Spark workflows, and propose a feature selection method

based on information theory to identify the most important parameters, and conduct

experiments to evaluate the performance of the method in identifying the best

parameter setting for workflow execution.

3.2.4 HBase parameters configuration

HBase allows the end users to set and configure up to 197 parameters [3, 12]. Several

papers studied the importance of parameters tuning and configuration for HBase

applications and the impact of that on the performance [12, 13, 65]. In [12], the

authors show that the HBase default configuration can lead to poor performance and

hence propose and develop HConfig as a semi-automated configuration manager to

optimize HBase performance. Moreover, Bao and others et al. [13] present PCM

as a policy-driven configuration management system to identify workload sensitive

configuration parameters, and shows that PCM outperforms the default configuration

and provide higher throughput. At last, Xiong et al. [65] propose ATH as a

novel approach to auto-tune the configuration parameters for HBase applications

that is based on an ensemble learning performance model. We surveyed the previous

papers to assist in selecting the parameters for HBase configuration in our model and

experiments.

3.3 Problem Formulation

Spark [72, 71] provides a distributed system for processing data in memory, while

HBase [7, 59] is a data management system that provides efficient access to data

47

stored in HDFS. In this research, we propose a predictive model for Spark-HBase

applications executed over a cluster of HDFS nodes in Hadoop.

3.3.1 Cost Models

Figure 3.1 shows an illustration of the architecture of a big data analytics system

that consists of several layers. we provide a description and construct a cost model

for each layer as follows:

Model of Applications Spark is a fast and efficient computing framework for

processing large amounts of data [72, 71, 60] based on a core concept of Resilient

Distributed Datasets (RDDs) [71] by leveraging distributed memory and providing

parallel data processing [60]. It is an open-source Apache project, which is

mainly designed to provide distributed, in-memory computation in a fault-tolerant

manner. Additionally, due to the nature of its design, Spark is more suitable to

run iterative machine learning and graph processing algorithms. A Spark job is

executed in multiple stages, and each stage has a number of parallel tasks [11] that

perform distinct operations following a Master/Slave approach, more specifically,

a Driver/Worker structure. In this framework, the input data is partitioned into

multiple sets and processed in parallel, and each worker performs tasks on a

corresponding set of data. A Spark job is executed through a Directed Acyclic Graph

(DAG) of stages. The Spark scheduler typically adopts delay scheduling [70] to assign

tasks to workers based on data locality. For data access, if a task has to process a

partition that is in memory on a node, Spark directs it to that node. Moreover, a

task processing a particular partition is sent to a specific location (e.g., an HDFS file)

if the involved RDD requires that.

Model of Spark job execution time Upon submission to a cluster, a Spark

application is divided into one or more jobs and each job is divided into a number

48

Distributed Files System

NoSQL Database

Logical Block Server

Physical

Block
Physical

Block

Physical

Block

Physical

Block

Physical

Block

Logical Block

W/R cache

Block Index

Logical Block

W/R cache

Block Index

Logical Block

W/R cache

Block Index

Logical Block

W/R cache

Block Index

Logical Block

W/R cache

Block Index

Logical Block

W/R cache

Block Index

Parallel Computing Framework

Worker Node

Task11 Task12

Worker Node

Task11 Task12

Worker Node

Task21 Task23

Worker Node

Task21 Task23

Worker Node

Task13 Task22

Worker Node

Task13 Task22

Job1 Job2 Jobn Application

Figure 3.1 The architecture of a big data analytics system.

49

of stages based on the dependency relationship between RDDs, and each stage has

several tasks. The stages can be executed sequentially or in parallel depending on the

dependency between them. However, the tasks within the same stage are processed

in parallel by Spark executors since there is no data dependency between them. The

shuffle time is included within the stage time since the shuffle operations required

for wide dependencies are the boundaries of the stages. A job and its corresponding

stages are denoted as:

Job = {Stagei | 0 ≤ i ≤M}, (3.1)

Stage = {Tasksi,j | 0 ≤ j ≤ N}, (3.2)

where M is the number of stages in a job and N is the number of tasks in a stage.

Furthermore, the Job Execution Time (JET) is the sum of the execution time

of all stages that are executed sequentially in addition to the time spent on job startup

and cleanup, modeled as:

Tjob =
M∑
k=1

Tstagek , (3.3)

where the stage execution time is denoted as (assuming all tasks start at the same

time):

Tstage = longest(TtaskC), (3.4)

where TtaskC is the execution time of the longest task among all parallel tasks in the

same stage. The task execution time is calculated as the sum of deserialization time,

running time, and serialization time, modeled as [60]:

Ttask = Tdeserialize + Trun + Tserialize. (3.5)

Generally, there are three main factors that contribute to JET : i) the execution

time ETSpark of the Spark application determined by the processing power and

50

memory capacity, ii) the time TI/O consumed to access the data managed by HBase

and stored in HDFS, and iii) the time Tdt needed to transfer the data over the network.

As such, JET is a function of all these factors, denoted as:

JET = f(ETSpark, TI/O, Tdt). (3.6)

Model of data management In most big data analytics systems, the underlying

data management is provided by NoSQL databases such as HBase. HBase is an

open-source Apache project that is inspired by Google’s BigTable, and is a column-

oriented, fault-tolerant NoSQL database used for real-time big data applications.

HBase could be deployed on top of a distributed storage system, e.g., HDFS. Such

deployment is widely adopted in industry including Facebook Messages, which is

a classical application at Facebook handling a large number of messages regularly

through HBase [7, 16, 12, 65, 59, 23].

As in traditional RDBMS, the data in HBase is managed in tables that contain

multiple rows, each of which is referenced by a unique key. A row is made of columns,

which are grouped into families. Data items are stored in cells, and each cell is

identified by (row × column-family:column). HBase has a distributed architecture

that consists of four main components: HMaster, ZooKeeper cluster, RegionServers

(RSs), and HBaseClient (HTable). HBase stores data as indexed files in HDFS, and

can host large tables with billions of rows and millions of columns. An HBase table

is logically divided into regions, each of which contains a range of adjacent rows that

are grouped together. A RegionServer may serve one or more regions, whereas a

region is served by only one RegionServer. Each RegionServer has a daemon process,

HRegionServer, which handles HRegions with a number of Stores, each of which

keeps a column family. Furthermore, each Store contains a MemStore that holds

the in-memory modification of the Store and StoreFiles that correspond to an HFile,

which is the file format for HBase. Also, there is one HLog per RegionServer that

51

logs the changes made to Stores. A region is split if the size of the StoreFile exceeds

a threshold [49].

In big data analytics systems, the parallel processing framework with distributed

data storage and management deals with logical blocks (LBs) instead of physical

blocks (PBs) as shown in Figure 3.1. The size of an LB is much smaller than that of

a PB since an LB only stores the indices and the read/write caches of the associated

PBs. Parallel tasks directly process table-based data schemes. However, physical

blocks are read and written indirectly through their indices stored in related logical

blocks that are dispersed across the cluster. A logical block collects logically adjacent

data sets in distributed storage and can be represented as a region in HBase [11]. We

model HBase as a collection of k tables T = T1, T2, . . ., Tk, and use Ti = LBi,1, LBi,2,

. . ., LBi,pi to denote pi logical blocks for any Ti that belongs to T .

Model of data storage Hadoop Distributed File System (HDFS) is a framework to

store very large files in a reliable and fault-tolerant manner, and is mainly designed

to stream data at high bandwidth to user applications [61, 51]. Data is stored as

blocks in HDFS, whose size typically ranges from 64 to 256 MB, and HDFS provides

write-once-read-many semantics on data. Accessing data concurrently in HDFS is

expensive; hence, integrating a management framework such as HBase provides more

efficient data access in general.

Interaction between Spark and HBase over HDFS Figure 3.2 illustrates the

dynamic interactions between different components of the framework in executing

Spark-HBase applications. A Spark job is executed through a Directed Acyclic

Graph (DAG) of stages, and there are several interaction points between Spark and

HBase [5]. In this work, we focus on some basic Spark interactions where HBase

can connect at any point to Spark DAG. HBaseContext is the core of all Spark and

HBase integration since it pushes the HBase configurations into the Spark executors.

52

RDDRDD

RDDRDD

RDDRDD

RDDRDD

RDDRDD

RDDRDD

RegionServer

DataNode

HBase

HDFS

Spark

Stage_x Stage_y

HFile

WAL

Region

MemStore

BlockCache

HFile

WAL

HFile

WAL

HDFS block

Figure 3.2 Illustration of the dynamic interactions between different components
in big data systems.

Additionally, as an HDFS client, HBase stores its HFiles and Write Ahead Logs

(AWL) in HDFS.

3.3.2 Problem Statement

Based on the above descriptions, the performance (specifically, execution time) y of

an Spark-HBase application can be modeled as a function f of a vector x with features

x representing various parameters of the computing and management framework in

big data systems, i.e., y = f(x). However, it is arduous to find an analytical form of

f that is generally intractable due to the large number of parameters involved and

the complexity of the execution process across multiple layers of big data systems.

53

We provide a formal definition of our problem as follows: Given a historical

performance measurement dataset

D = {(x1,y1), (x2,y2), . . . , (xn,yn)},

where xi (i = 1, 2, . . . , n) is a set of specific values for the feature vector x that result

in the corresponding performance yi, our goal is to use a regression-based model to

estimate the execution time based on the features of x such that f(xi) is close enough

to the ground truth yi for all training instances in D and could be used to predict yi

with high accuracy for any given xi in the future.

In this context, we use a set of parameters to assemble the feature vector

x. These parameters are gathered across various stages during the life circle of

an application execution process, including: i) application submission such as input

data size, etc.; ii) Spark scheduling such as the number of executors, executor cores,

executor memory, etc.; and iii) HBase API-related parameter settings such as scanner

cache size, etc. However, it is not straightforward to determine which parameters to

consider without further analysis.

Hence, we conduct a comprehensive exploratory analysis to understand and

explore the effect of selected parameters on the application’s execution time, and

develop a regression-based predictor using these parameters as features.

3.4 Exploratory Analysis

We first conduct an empirical study of the effect of different parameters on

Spark-HBase applications in big data systems by repeatedly running Spark-HBase

applications. We run an application to count the number of records in HBase based

on a specific criterion. The application is written in Scala and executed as Spark

jobs on a cluster of seven virtual machine (VM) instances (one master node and

six slave nodes) provisioned on two physical servers, each of which is equipped with

54

eight virtual cores and 24GB of memory. By default, each slave node provisions one

executor with one virtual core and 1GB of virtual memory. We run our experiments

using four tables of different sizes as detailed in Table 3.1. We use the data of (NYC

yellow taxi trips)1 to build our tables, each consisting of four column families with

twenty-one columns.

3.4.1 Spark Parameters:

We run a set of experiments to explore the effect of the following parameters in Spark:

Number of executors Figure 3.4 shows the average execution time of running

experiments with different numbers of Spark executors per worker in a range of (2-5)

executors on all tables. The results show that the execution time decreases with more

executors processing the tasks especially for table-3, which is the largest among all

tables in our experiments. This observation is justified as follows: having more rows

retrieved from the application indicates that more data is being processed by RDDs,

and hence more executors process these RDDs faster in parallel.

Executor Core Count Generally, the computing power of an executor is determined

by the number of cores. More cores would be able to run more tasks in parallel, which

speeds up the execution of an application with heavy read/scan. Figure 3.3 shows

that as the core count increases, the execution time decreases. Although the exact

execution dynamics and time for reading data from tables of different sizes vary, the

performance pattern is consistent qualitatively.

1https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page. Retrieved on September
2020

55

1 2 3 4 5 6

Number of Cores

10

50

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
in

)

table-1

table-2

table-2.5

table-3

Figure 3.3 Illustration of the effect of number of cores on the execution time for
application (count) on the tables.

1 2 3 4 5

Number of Executors

10

50

E
x

e
c

u
ti

o
n

 T
im

e
 (

m
in

)

table-1

table-2

table-2.5

table-3

Figure 3.4 Illustration of the effect of number of executors on the execution time
for all tables.

56

3.4.2 HBase Parameters:

The goal of the applications we use in our experiments is to read data from HFiles,

which are stored in HDFS, using scan API. Therefore, in our experimental setting,

we focus on examining the effect of tuning parameters that are related to scan and

read operations, and we explore the impact of one parameter related to BlockCache:

BlockCache tuning BlockCache is designated to hold the indices to the data in

HFiles. Disabling BlockCache may lead to a longer execution time since the data

will be read directly from HDFS without caching it in-memory. The parameter

hfile.block.cache.size specifies the percentage of heap to allocate to StoreFile block

cache with a default value of 40%. Also, default configurations require that both

BlockCache (used for reading) and MemStore (used for writing) do not exceed the

threshold of 80% for successful cluster operation. Hence, in our experiments, we

focus on hfile.block.cache.size with percentages of (40%, 50%, 60% and 70%). The

experimental results show various performances with different tables used in terms of

size and region count. More memory does not always yield better performance and we

witness this clearly with tables (2, 3, and 2.5), where assigning 70% to BlockCache

and 2G to heapsize exhibits the longest execution time due to garbage collection.

However, both table-2 and table-2.5 provide better performance with 40% and 60%

of BlockCache, respectively, and the gap between the first instance and the rest of

instances in a set of experiments is the highest.

We would like to emphasize that the effects of these parameters are complex,

which calls for the use of machine learning algorithms for performance modeling and

prediction.

57

Table 3.1 Properties of Tables Used in the Experiments

Name Data Size (GB) rows retrieved rows regions

table-1 2.5 13,990,176 331,160 10

table-2 5 27,814,016 665,350 12

table-2.5 10 46,134,745 1,108,999 12

table-3 27 158,403,144 3,797,922 22

Table 3.2 List of Parameters Across Different Layers for Application Execution

Layers Parameters Remarks

Storage-HDFS input data size integer, MB

Management-HBase BlockCache memory size float

scanner’s number of rows integer

regions count integer

locality percentage float

Computing-Spark executor memory integer, MB

executor CPU integer

application type integer

number of executor integer

58

3.5 Performance Prediction of Spark-HBase Applications in Big Data
Systems

We propose to use machine learning-based regression algorithms to predict the

execution time of Spark-HBase applications. We first describe the method used to

optimize the model performance by tuning parameters and then discuss the prediction

performance of the proposed model.

3.5.1 Domain Knowledge-based Feature Selection

Existing big data systems provide a number of interfaces for end users to set

parameter values to meet the computing needs and performance requirements of

their applications. Particularly, Spark and HBase provide around 150 and 197

parameters [47, 6, 3, 12], respectively, to set and tune in XML configuration files.

It is computationally infeasible to use a black-box optimization approach to configure

the parameters based on an exhaustive profiling strategy since the number of profiling

experiments needed grows exponentially with the number of parameters. Therefore,

we follow the human-in-the-loop (HITL) strategy to consider a subset of parameters

related to Spark executors and HBase RegionServers as shown in Table 3.2 based on

our domain knowledge and empirical study.

3.5.2 Model Choices

To accurately predict the performance of Spark-HBase applications, we consider and

compare the performance of a set {M} of machine learning algorithms that have been

widely used in practice: i) Linear Regression (LR) as a linear model, and ii) Support

Vector Regression (SVR) as a kernel-based model.

We utilize the experiment-based cross validation method [37] to solve the

following optimization problem:

argminM∗,θ∗mL(M(X, θm), y), (3.7)

59

where M denotes a machine learning model with hyper parameter θm, and L is the

loss function. We can use the best model M∗ obtained by optimizing Equation 3.7

to predict application performance with new parameter settings.

3.6 Performance Evaluation

In this section, we set up an experimental environment for executing Spark-HBase

applications, and present the prediction results of the machine learning models used

for performance prediction.

3.6.1 Experimental Settings

We run our experiments on a cluster of seven HDFS nodes, where one node serves as

a the namenode and the other nodes serve as datanodes, and use Apache YARN as a

cluster manager. In the experiments, we run Apache Spark-2.4.7 with Scala-2.11.12

on top of Hadoop-2.7.1 with HBase-1.4.13. There are six Spark workers (with two

executors by default) and five RegionServers, and one of the slave nodes is configured

to be an HBase backup master. Each table has a number of regions managed by

RegionServers, which is the same as the number of tasks processed by Spark executors

as shown in Table 3.1, and each RegionServer manages twelve regions on average.

3.6.2 Data Source for Performance Prediction

We use the data collected from the applications detailed in Section 3.4 as the source

to train and test our proposed models. Spark and HBase has a large parameter space

for configuration, but we focus on those tunable parameters related to executors and

HBase scan API instead of investigating the whole configuration space. For each

numerical parameter, we take sample values within a valid range incrementally.

60

LR SVR

0

0.5

1

1.5

2

2.5

Figure 3.5 Normalized Root Mean Square Error (NRMSE).

LR SVR

0

0.5

1

1.5

2

Figure 3.6 Normalized Mean Absolute Error (NMAE).

LR SVR

0

0.5

1

1.5

2

2.5

Figure 3.7 Normalized Mean Absolute Percentage Error (NMAPE).

61

3.6.3 Performance Prediction Results

We use scikit-learn library [22] to implement an optimized model in Python

for Spark-HBase application execution prediction using two regression algorithms,

and use the collected data of performance measurements to feed the model. We

start by splitting the data into two parts for training and testing, respectively, and

then use the training data to perform a 10-fold cross validation [14] to fine tune

two regression models , i.e., LR and SVR. To measure the prediction accuracy of

these models, we use the following performance metrics: Normalized Root Mean

Square Error (NRMSE), Normalized Mean Absolute Error (NMAE), and Normalized

Mean Absolute Percentage Error (NMAPE), as shown in Figure 3.6, Figure 3.6 and

Figure 3.6, respectively. Generally, both LR and SVR perform fairly well with SVR

achieving higher accuracy. However, we conclude that the data collected from the

exploratory experiments are linearly separable, which explains the high accuracy

obtained from the prediction models. Furthermore, we believe that running a more

complex Spark application would produce performance measurements that could be

non-linear, since a complex application might require setting more parameters than

what we consider in our experiments. Also, we believe that considering other HBase

APIs such as put would expose another scope of HBase parameters to be considered.

3.7 Conclusion

In this work, we investigate the problem of performance modeling and prediction for

Spark-HBase applications in big data systems. We conduct an exploratory analysis of

the effects of different parameters across different layers on Spark-HBase application

performance. We propose to use machine learning-based regression algorithms to

predict the performance of such applications. Experimental results show that the

proposed tuned regression algorithms yield high accuracy compared with the actual

execution time. We plan to explore the effects of more parameters for Spark

62

applications using other HBase APIs, and expand the scope of our investigation to

Spark-HBase scientific workflows.

63

REFERENCES

[1] Apache storm. https://storm.apache.org/index.html, Retrieved on 2019.

[2] Hadoop: Fair scheduler. https://hadoop.apache.org/docs/current/hadoop-
yarn/hadoop-yarn-site/FairScheduler.html, Retrieved on 2019.

[3] Apache hbase reference guide. http://hbase.apache.org/book.html, Retrieved on
2020.

[4] Hbase and hdfs. http://hbase.apache.org/book.html hbase and hdfs, Retrieved on
2020.

[5] Hbase and spark. https://hbase.apache.org/book.htmlspark, Retrieved on 2020.

[6] Spark configuration. https://spark.apache.org/docs/latest/configuration.html,
Retrieved on 2020.

[7] Apache hbase. https://hbase.apache.org/, Retrieved on 2021.

[8] Mongodb. https://www.mongodb.com/, Retrieved on 2021.

[9] Montage: Image mosaic service. http://montage.ipac.caltech.edu/, Retrieved on
2021.

[10] G. Ananthanarayanan, S. Kandula, A. Greenberg G, I. Stoica, Y. Lu, B. Saha, and
E. Harris. Reining in the outliers in map-reduce clusters using mantri. In Osdi,
volume 10, page 24, 2010.

[11] L. Bao, C.Q. Wu, H. Qi, W. Chen, X. Zhang, W. Han, W. Wei, E. Tai, H. Wang,
J. Zhai, and X. Chen. Las: Logical-block affinity scheduling in big data
analytics systems. In INFOCOM Conference on Computer Communications,
pages 522–530. IEEE, 2018.

[12] X. Bao, L. Liu, N. Xiao, F. Liu, Q. Zhange, and T. Zhu. Hconfig: Resource
adaptive fast bulk loading in hbase. In 10th IEEE International Conference on
Collaborative Computing: Networking, Applications and Worksharing, pages
215–224. IEEE, 2014.

[13] X. Bao, L. Liu, N. Xiao, Y. Zhou, and Q. Zhange. Policy-driven configuration
management for nosql. In 8th International Conference on Cloud Computing,
pages 245–252. IEEE, 2015.

[14] C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

64

[15] X. Bu, J. Rao, and Cheng-zhong. Interference and locality-aware task scheduling for
mapreduce applications in virtual clusters. In Proceedings of the 22nd inter-
national symposium on High-performance parallel and distributed computing,
pages 227–238. ACM, 2013.

[16] F. Change, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R. Gruber. Bigtable: A distributed storage system for structured
data. ACM Transactions on Computer Systems (TOCS), 26(2):4, 2008.

[17] R. da Silv, R. Filgueira, I. Pietri, J. Ming, R. Sakellariou, and E. Deelman. A charac-
terization of workflow management systems for extreme-scale applications.
Future Generation Computer Systems, 75:228–238, 2017.

[18] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

[19] E. Deelman, D. Gannon, M. Shields, and I. Taylor. Workflows and e-science: An
overview of workflow system features and capabilities. Future generation
computer systems, 25(5):528–540, 2009.

[20] Y. Demchenko, C. De Laat, and P. Membrey. Defining architecture components of the
big data ecosystem. In International Conference on Collaboration Technologies
and Systems (CTS), pages 104–112. IEEE, 2014.

[21] M. Elteir, H. Lin, and W. Feng. Enhancing mapreduce via asynchronous
data processing. In Parallel and Distributed Systems (ICPADS), the 16th
International Conference on, pages 397–405. IEEE, 2010.

[22] F. Pedregosa. Scikit-learn: Machine learning in python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[23] L. George. HBase: the definitive guide: random access to your planet-size data.
O’Reilly Media, Inc., 2011.

[24] Z. Guo, G. Fox, and M. Zhou. Investigation of data locality in mapreduce. In
Proceedings of the International Symposium on Cluster, Cloud and Grid
Computing (ccgrid 2012), pages 419–426. IEEE Computer Society, 2012.

[25] H. Harb, A. Makhoul, and S. Tawbiand R. Couturier. Comparison of different data
aggregation techniques in distributed sensor networks. IEEE Access, 5:4250–
4263, 2017.

[26] M. Hedjazi, I. Kourbane, Y. Gene, and B. Ali. A comparison of hadoop, spark and
storm for the task of large scale image classification. In 26th Signal Processing
and Communications Applications Conference (SIU), pages 1–4. IEEE, 2018.

[27] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann. Impact of network
density on data aggregation in wireless sensor networks. In C, page 457. IEEE,
2002.

65

[28] E. Ipek, B. De Supinski, M. Schulz, and S. McKee. An approach to performance
prediction for parallel applications. In European Conference on Parallel
Processing, pages 196–205. Springer, 2005.

[29] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed
data-parallel programs from sequential building blocks. In SIGOPS operating
systems review, volume 41, pages 59–72. ACM, 2007.

[30] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg.
Quincy: fair scheduling for distributed computing clusters. In Proceedings of
the SIGOPS 22nd symposium on Operating systems principles, pages 261–276.
ACM, 2009.

[31] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi.
Characterizing and profiling scientific workflows. Future generation computer
systems, 29(3):682–692, 2013.

[32] M. Khan, Y. Jin, M. Li, Y. Xiang, and C. Jiang. Hadoop performance modeling for
job estimation and resource provisioning. IEEE Transactions on Parallel and
Distributed Systems, 27(2):441–454, 2015.

[33] J. Kroß and H. Krcmar. Modeling and simulating apache spark streaming appli-
cations. Softwaretechnik-Trends, 36(4):1–3, 2016.

[34] J. Kroß and H. Krcmar. Model-based performance evaluation of batch and
stream applications for big data. In 25th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS), pages 80–86. IEEE, 2017.

[35] B. Lee, D. Brooks, B. De Supinski, M. Schulz, k. Singh, and S. McKee. Methods of
inference and learning for performance modeling of parallel applications. In
Proceedings of the 12th SIGPLAN symposium on Principles and practice of
parallel programming, pages 249–258. ACM, 2007.

[36] X. Lin, Z. Meng, C. Xu, and M. Wang. A practical performance model for hadoop
mapreduce. In International Conference on Cluster Computing Workshops,
pages 231–239. IEEE, 2012.

[37] W. Liu, C.Q. Wu, Q. Ye, A. Hou, and W. Shen. Performance modeling and prediction
of big data workflows: An exploratory analysis. In 29th International
Conference on Computer Communications and Networks (ICCCN), pages
1–10. IEEE, 2020.

[38] Y. Lu, I. Comsa, P. Kuonen, and B. Hirsbrunner. Dynamic data aggregation
protocol based on multiple objective tree in wireless sensor networks. In
the tenth international conference on intelligent sensors, sensor networks and
information processing (ISSNIP), pages 1–7. IEEE, 2015.

66

[39] K. Maheshwari, E. Jung, J. Meng, V. Morozov, V. Vishwanath, and R. Kettimuthu.
Workflow performance improvement using model-based scheduling over
multiple clusters and clouds. Future generation computer systems, 54:206–218,
2016.

[40] H. Mao, M. Schwarzkopf, S. Venkatakrishnan, Z. Meng, and M. Alizadeh. Learning
scheduling algorithms for data processing clusters. In Proceedings of the ACM
Special Interest Group on Data Communication, pages 270–288, 2019.

[41] K. Maraiya, K. Kant, and N. Gupta. Wireless sensor network: a review on data
aggregation. International Journal of Scientific and Engineering Research,
2(4):1–6, 2011.

[42] R. Mayer, C. Mayer, and L. Laich. The tensorflow partitioning and scheduling
problem: it’s the critical path! In Proceedings of the 1st Workshop on
Distributed Infrastructures for Deep Learning, pages 1–6. ACM, 2017.

[43] S. Mistry, A. Bouguettaya, H. Dong, and A. Erradi. Qualitative economic model for
long-term iaas composition. In International Conference on Service-Oriented
Computing, pages 317–332. Springer, 2016.

[44] F. Nadeem, D. Alghazzawi, A. Mashat, K. Fakeeh, A. Almalaise, and H. Hagras.
Modeling and predicting execution time of scientific workflows in the grid
using radial basis function neural network. Cluster Computing, 20:2805–2819,
2017.

[45] B. Palanisamy, A. Singh, L. Liu, and B. Jain. Purlieus: locality-aware resource
allocation for mapreduce in a cloud. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, page 58. ACM, 2011.

[46] T. Peterka, D. Goodell, R. Ross, H. Shen, and R. Thakur. A configurable algorithm
for parallel image-compositing applications. In Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis, page 4.
ACM, 2009.

[47] P. Petridis, A. Gounaris, and J. Torres. Spark parameter tuning via trial-and-error.
In INNS Conference on Big Data, pages 226–237. Springer, 2016.

[48] I. Pietri, G. Juve, E. Deelman, and R. Sakellariou. A performance model to estimate
execution time of scientific workflows on the cloud. In the 9th Workshop on
Workflows in Support of Large-Scale Science, pages 11–19. IEEE, 2014.

[49] J. Qin, L. MS, and J. Niu. Massive ais data management based on hbase and spark. In
the 3rd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), pages
112–117. IEEE, 2018.

67

[50] B. Shangguan, P. Yue, Z. Wu, and L. Jiang. Big spatial data processing with apache
spark. In the 6th International Conference on Agro-Geoinformatics, pages 1–4.
IEEE, 2017.

[51] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed file
system. In Mass storage systems and technologies (MSST), 2010 IEEE 26th
symposium on, pages 1–10.

[52] R. Singhal and P. Singh. Performance assurance model for applications on
spark platform. In Technology Conference on Performance Evaluation and
Benchmarking, pages 131–146. Springer, 2017.

[53] I. Solis and K. Obraczka. In-network aggregation trade-offs for data collection
in wireless sensor networks. International Journal of Sensor Networks,
1(3-4):200–212, 2006.

[54] G. Song, Z. Meng, F. Huet, F. Magoules, L. Yu, and X. Lin. A hadoop
mapreduce performance prediction method. In 2013 IEEE 10th International
Conference on High Performance Computing and Communications & 2013
IEEE International Conference on Embedded and Ubiquitous Computing,
pages 820–825. IEEE, 2013.

[55] A. Stompel, K. Ma, E. Lum, J. Ahrens, and J. Patchett. Slic: scheduled linear image
compositing for parallel volume rendering. In Proceedings of the Symposium on
Parallel and Large-Data Visualization and Graphics, page 6. IEEE Computer
Society, 2003.

[56] J. Tan, S. Meng, X. Meng, and L. Zhang. Improving reducetask data locality for
sequential mapreduce jobs. In INFOCOM, pages 1627–1635. IEEE, 2013.

[57] R. Tous, A. Gounaris, C. Tripiana, J. Torres, S. Girona, E. Ayguadé, J. Labarta,
Y. Becerra, D. Carrera, and M. Valero. Spark deployment and performance
evaluation on the marenostrum supercomputer. In the International
Conference on Big Data (Big Data), pages 299–306. IEEE, 2015.

[58] J. D. Ullman. Np-complete scheduling problems. Journal of Computer and System
sciences, 10(3):384–393, 1975.

[59] M. Vora. Hadoop-hbase for large-scale data. In Proceedings of the International
Conference on Computer Science and Network Technology, pages 601–605.
IEEE, 2011.

[60] K. Wang and M. Khan. Performance prediction for apache spark platform. In
2015 IEEE 17th International Conference on High Performance Computing
and Communications, 2015 IEEE 7th International Symposium on Cyberspace
Safety and Security, and 2015 IEEE 12th International Conference on
Embedded Software and Systems, pages 166–173. IEEE, 2015.

68

[61] T. White. Hadoop: The definitive guide. O’Reilly Media, Inc., May 19 2012.

[62] C.Q. Wu and H. Cao. Optimizing the performance of big data workflows in
multi-cloud environments under budget constraint. In Proceedings of the 13th
IEEE International Conference on Services Computing, pages 138–145, San
Francisco, USA, June 27 - July 2 2016.

[63] Q. Wu and V. Datla. On performance modeling and prediction in support of scientific
workflow optimization. In the World Congress on Services, pages 161–168.
IEEE, 2011.

[64] Q. Wu, J. Gao, Z. Chen, and M. Zhu. Pipelining parallel image compositing and
delivery for efficient remote visualization. Journal of Parallel and Distributed
Computing, 69(3):230–238, 2009.

[65] W. Xiong, Z. Bei, C. Xu, and Z. Yu. Ath: Auto-tuning hbase’s configuration via
ensemble learning. IEEE Access, 5:13157–13170, 2017.

[66] Y. Yao and J. Gehrke. Query processing in sensor networks. In Cidr, pages 233–244,
2003.

[67] H. Yu, C. Wang, and K. Ma. Massively parallel volume rendering using 2-3 swap
image compositing. In Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, page 48.

[68] D. Yun, C.Q. Wu, and Y. Gu. An integrated approach to workflow mapping and
task scheduling for delay minimization in distributed environments. Journal
of Parallel and Distributed Computing, 84:51–64, 2015.

[69] M. Zaharia, D. Borthakur, J Sen. Sarma, K. Elmeleegy, S. Shenker, and I. Stoica.
Job scheduling for multi-user mapreduce clusters. Technical report, Technical
Report UCB/EECS-2009-55, EECS Department, University of California,
Berkeley, 2009.

[70] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica.
Delay scheduling: a simple technique for achieving locality and fairness in
cluster scheduling. In Proceedings of the 5th European conference on Computer
systems, pages 265–278. ACM, 2010.

[71] M. Zaharia, M. Chowdhury, T. Das, A. Dave, M. McCauley J. Ma, M. Franklin,
S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementation, pages
2–2. USENIX Association, April 2012.

[72] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, and I. Stoica. Spark: Cluster
computing with working sets. HotCloud, 10(10-10):95, 2010.

69

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: On Distributed Information Composition in Big Data Systems
	Chapter 3: Performance Predicted for Spark-HBase Applications in Big Data Systems
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

