
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT 

CRASH INJURY SEVERITY PREDICTION WITH 

ARTIFICIAL NEURAL NETWORKS 

by 

Rima Abisaad 

Motor vehicle crashes are one of our nation’s most serious social, economic and health 

issues.  They are the leading cause of death among children and young adults, killing 

approximately 1.35 million people each year. Providing a safe and efficient transportation 

system is the primary goal of transportation engineering and planning. To help reduce 

traffic fatalities and injuries on roadways, crash prediction models are used to forecast the 

injury severity of potential crashes and apply precautionary countermeasures accordingly. 

Most of these models are reactive as they use historical crash data to categorize crash-

related factors. Recently, advancements have been made in developing proactive crash 

prediction models to measure crash risk in real-time.  

Crash occurrence and the resulting injury severity are influenced by several 

stochastic factors including driver behavior characteristics, roadway characteristics, 

vehicle characteristics, traffic volumes, environmental conditions, and time conditions. 

The objective of this research is to develop a data-driven model for crash injury severity 

prediction using the aforementioned factors intended to support highway safety 

improvement projects.  The model interacts with various data sources in effective and 

efficient manners, which are expected to support state and local traffic management 

agencies in planning and operations to reduce crash injury severity.   

This research explores several types of data and modeling techniques used in crash 

studies. The data associated with crashes on New Jersey freeways in 2017 are collected 



along with INRIX reported speeds. The weighted speed variance across the traffic stream 

before crash occurrence is introduced as a potential variable affecting crash injury severity 

in the prediction model. An Artificial Neural Network (ANN) is developed to estimate  

crash injury severity based on potential risk parameters suggested by previous studies and 

data availability for New Jersey freeways. A linear regression model (LRM) is also 

developed using the same dataset and the performance of both models are compared and 

discussed. While both models have advantages and limitations, the ANN outperforms the 

LRM for all levels of injury severity. In addition, the traffic speed and the weighted speed 

variance are two variables that highly influence the injury severity level resulting from a 

crash. 

The model can be used both proactively and reactively. It can be integrated into the 

State Strategic Highway Safety Plan (SHSP) to allow highway safety programs and 

partners in the State to work together to align goals, leverage resources and collectively 

address the State's safety challenges. The ability to estimate crash injury severity in real-

time allows transportation agencies to deploy active countermeasures to increase safety 

and reduce crashes and associated delays and costs. These countermeasures include 

increasing service patrol coverage, implementing stricter speed rules and lowering 

dynamic speed limits under critical conditions to avoid crash resulting injuries and fatalities 

and enhance emergency response time in case of a crash.  
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1 

CHAPTER 1 

INTRODUCTION 

1.1 Background and Problem Statement 

Motor vehicle crashes are one of the world’s most serious social, economic and health 

issues. According to the global status report on road safety published by the World Health 

Organization (WHO), crashes are the leading cause of death among children and young 

adults aged 5–29 years, and are the cause of death of approximately 1.35 million people 

each year (WHO, 2018). The report also notes that simple prevention measures can 

significantly reduce the number of deaths and serious injuries resulting from crashes. In the 

United States, vehicle crashes resulted in 37,461 deaths, more than 4.6 million injuries and 

property damage totaling of $432 billion. In 2019, over 6.78 million people were involved 

in highway crashes in the United States. There were 36,096 deaths and more than 2.74 

million injuries (National Center for Statistics and Analysis, 2020). Although substantial 

efforts have been invested to improve traffic safety, crashes continue to be a major problem 

worldwide and in the United States.  

According to the National Highway Traffic Safety Administration (NHTSA), 

10,111 lives were lost due to speed-related accidents in 2016, up 4% from 9,723 in 2015. 

2018 recorded 569 speed-related deaths, a 5.7% decrease from the previous year (NHTSA, 

2019). USDOT has made safety its top priority, and crash fatality for the first 9 months of 

2019 reduced 2.2% compared to a year before. An estimated 26,730 people died in motor 

vehicle crashes through September 30, making the third quarter of 2019 the eighth 

consecutive year-to-year quarterly decline in fatalities since the fourth quarter of 2017 

https://en.wikipedia.org/wiki/World_Health_Organization
https://en.wikipedia.org/wiki/World_Health_Organization
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(USDOT, 2019). The NHTSA stated that “The path forward calls for a combination of 

policies, research, and action that requires committed and sustained effort from State, local, 

and Federal governments; and from highway safety partners, schools, and communities – 

all committed to reducing fatalities on our Nation’s roads”. The NHTSA also stated that 

speed-related crashes cost Americans an average of $40.4 billion per year, and that speeding 

was a major contributing factor in 29% of all fatal crashes (NHTSA, 2019). 

The crash injury severity is defined by the NHTSA as the severity of a crash based 

on the most severe injury affecting any person involved. Crashes may lead to property 

damage only (PDO), injury, disability and/or death as well as financial costs to both the 

society and the parties involved. In addition, the normal flow of traffic is disrupted by 

impedance in the travel lanes. Closing a lane or even a shoulder of a road segment will 

disrupt traffic, especially during peak hours, thus leading to reduced travel time reliability 

and increased delay costs in addition to direct medical and property damage costs. With 

more uncertainty of traffic conditions, an unpredicted failure of highway mobility brings 

challenges for transportation authorities, first responders, and motorists responding to the 

unexpected disruptions. 

The Federal Highway Administration (FHWA) office of safety states that 

understanding the most prevalent safety problems on our roadways is the first step in solving 

them and recommends the use of scientific methods and data-driven decisions to reduce the 

number and severity of crashes on roadways (FHWA, 2018). In addition, together with 

stakeholders, partners, and other USDOT agencies, the office of safety is committed to the 

vision of zero deaths and serious injuries on the nation’s roadways by identifying safety 
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needs and delivering programs focusing on roadway safety designs and policies, 

technologies, and analytic processes that improve highway safety performance.  

To date, more than 40 states including New Jersey have incorporated zero-based 

traffic safety efforts. With the aim to reduce fatalities and injuries resulting from crashes, 

the development of a data-driven methodology that predicts the crash injury severity under 

real-time conditions can be integrated into the state Strategic Highway Safety Plan (SHSP) 

to allow highway safety programs and partners in the state to align goals, leverage resources 

and collectively address the state's safety challenges. The ability to estimate crash injury 

severity allows transportation agencies to deploy active measures to increase safety and 

reduce crash severity and associated delays and costs. This in turn can help relieve non-

recurrent congestions and aid in traffic management operations, decision-making and future 

planning.  

In order to reduce the number of people killed and/or injured in traffic crashes, many 

studies have been conducted to identify the risk factors that significantly influence the injury 

outcomes of crashes. Several contributing factors can be classified into roadway, vehicle, 

driver, traffic and environmental characteristics. A good approach can illustrate the 

simultaneous influence of these factors on the crash likelihood and resulting injury severity. 

Previous research has adopted different models to explore the relationship between crashes 

and various factors. Because the injury severity outcome of crashes is regarded as a random 

event, statistical models have been extensively employed to explore the factors contributing 

to crash injury severity. The logistic regression model and the ordered choice model are the 

most commonly used models in crash analysis (Wang, 2005). Other models include 

multivariate Poisson lognormal regression models (Karlis, 2003; Ma, 2006), negative 
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binomial distributions (Chang, 2005; Lord and Mannering, 2010), zero-inflated Poisson and 

zero-inflated negative binomial models (Ma et al., 2017) and generalized additive modeling 

and random-parameters models (Fountas and Anastasopoulos, 2017).  Regression analysis 

gained prominence in crash analysis because it is efficient, easily interpretable, does not 

require many computational resources or tuning, and it outputs well-calibrated predicted 

probabilities. A linear regression model predicts the target as a weighted sum of the inputs. 

The linearity of the relationship makes its interpretation clear and well-defined. Linear 

regression models have long been used to solve quantitative problems such as crash analysis 

and they have proven to yield decent predictions in previous studies (Lui and McGee, 1988; 

Al-Ghamdi, 2002; Kononen et al., 2011; Chen et al., 2016). However, most linear functions 

were formulated under assumptions and predefined underlying simplified relationships 

between dependent and explanatory variables. If these assumptions are violated, the model 

could result in biased estimations. In general, the stochastic nature of crashes is poorly 

described by linear functions with independent variables.  

Other models were explored such as fuzzy logic and artificial neural networks 

(ANNs) as they exhibit better nonlinear approximation properties than traditional linear 

models (Chang, 2005; Lord and Mannering, 2010). While ANNs originated in biology and 

psychology, it rapidly advanced into other areas including business and economics, 

medicine, construction, information technology and transportation engineering (i.e., travel 

behavior, flow and incident management). ANNs can relate input with output and can 

automatically generate identifying characteristics from the learning material that they 

process and use it to deal with new situations. ANNs allow the inclusion of many variables, 

where irrelevant variables readily show negligible weight values, while relevant variables 
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show significant weight values. In addition, no assumptions are required regarding the 

functional form of the relationship between predictor and response variables as the case is 

with the statistical methods. As machine learning techniques can recognize patterns and 

adjust dynamically with gained prominence and maturity, ANNs used in crash modelling 

can predict desired results despite limited data sets. Traffic forecasting complications 

involving random and complex variables can therefore be successfully resolved.  

Regression models and exhibit strengths and weaknesses in different scenarios: 

regression models are straight forward and easily understandable, and ANNs tend to achieve 

a better fit and forecast by catching sophisticated non-linear integrating effects. Therefore, 

a base linear regression model (LRM) is developed in this study in addition to an ANN to 

serve for comparison and assessment purposes. Limitations of previously developed models 

are addressed in this research by improving data quality and investigating the effect of 

additional explanatory variables on crash injury severity. Whereas previous studies used 

speed measures such as travelling speed, mean speed, speed limit, and speed limit deviation, 

this study introduces and analyzes the speed variance as a new factor affecting crash injury 

severity. It is important to note that speed variance has previously been used to model crash 

frequency and/or probability, but its use in crash injury severity modelling is novel in this 

research (Kockelman and Ma, 2010). In addition, traffic speed and count data in most 

previous models are collected by conventional loop detectors. As a variety of massive traffic 

data from infrastructure sensors and floating cars has become available with technology, 

new comprehensive data made way for big data analytics as an emerging method for 

predicting crash injury severity. The traffic data collection technologies utilizing floating-

car concepts have improved rapidly in the past few years, in terms of geographic coverage, 
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sample size, accuracy in detecting vehicle location and data processing algorithms. Such 

improvements provide an opportunity to address the challenges of the existing models and 

increase the accuracy of the predictions generated by the proposed models. Therefore, this 

research strives to fill the related research gaps and contribute to ANN applications in 

improving the accuracy of crash injury severity prediction and traffic incident management 

in general. 

 

1.2 Objective and Work Scope 

 

The objective of this study is to develop an ANN for crash injury severity prediction, 

considering roadway characteristics, speed measures including speed variance, traffic flow, 

and environmental conditions. In addition to the ANN, a base LRM is also developed and 

serves as a basis of comparison and differentiation between the two models. Both models 

are developed using the same set of data and their performances are compared to highlight 

the advantages and limitations of each model. The proposed models interact with various 

real-time data sources in effective and efficient manners, which is expected to support state 

and local traffic management agencies in operations to reduce crash injury severity levels. 

An accurate prediction of the crash injury severity will allow for a more effective traffic 

management and mitigation plans. This in turn will result in reduced travel delay and 

induced medical cost. To achieve the objective of this study, various crash likelihood 

prediction approaches and crash injury severity models will be thoroughly reviewed. 
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1.3 Organization 

 

This dissertation is organized into six chapters. Chapter 1 introduces the research problem, 

the background of the research and the need for this study. It also presents the research 

objectives and work scope. Chapter 2 comprises a thorough review of the current literature 

about crash prediction models. Chapter 2 is divided into three sections. The first section 

covers a general overview of crash injury severity research; the second section covers data 

collection methods used in crash injury severity prediction methods; the third section 

summarizes previously developed crash injury severity prediction methods including 

parametric and non-parametric models, and the fourth section presents a summary of the 

literature review findings and highlights the need for the comprehensive model developed 

in this research. Based on conclusions drawn from Chapter 2, the data collection procedure 

in discussed in Chapter 3. The detailed development of the working database is explained, 

including a database overview, data sources description, data processing, and final database. 

In Chapter 4, the model formulation is presented, and the weighted speed variance is 

introduced to the data acquired in Chapter 3. Consequently, a base LRM is developed using 

qualified freeway crash data in 2017. With the same data, an ANN is developed and 

evaluated in Chapter 4. Chapter 5 discusses the model results and provides a summary of 

the practical implications of the developed models. Chapter 6 presents conclusions and 

discusses the strengths and limitations of the developed models as well as the potential and 

need for future studies. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

This discussion is a comprehensive overview of crash prediction methods and data used to 

formulate them. The first section presents a general synopsis of the research around crash 

injury severity. The second section summarizes the types of data used in developing crash 

prediction models as well as suggested variables proven to affect crashes, and identifies a 

new variable to be added in this research: weighted speed variance. In the third section, 

crash prediction models are presented under two categories: parametric models and non-

parametric models including artificial neural networks. The advantages and disadvantages 

of these models are also discussed. The fourth section summarizes the findings of the 

literature review and justifies the proposed data, variables and model used in this study. 

 

2.1 General Overview of Crash Injury Severity Research 

 

Roadway crashes are the cause of substantial economic loss and human life loss, and the 

injury severity of crashes is of utmost importance on freeways, where high speed limits lead 

to higher injury and fatality rates (Florence et al. 2013). Moreover, freeway lane closures 

due to crashes is the leading cause of nonrecurring congestion and commuter delays, 

particularly significant when crashes occur on busy roadways. Crash prediction models can 

be used to forecast the injury severity of crashes likely to occur and are very important 

safety tools that help remedy economic and social loss. Given the importance of roadway 

safety, substantial effort has been invested into estimating factors associated with crashes 

and their resulting injury severity levels. These include driver behavior characteristics, 
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roadway characteristics, vehicle characteristics, traffic volumes, environmental conditions, 

and time conditions. This section presents a summary of research efforts invested in this 

area and the corresponding findings. 

Previous research has examined crash injury severity using different modeling 

techniques. These techniques can be classified into four groups: discrete outcome models, 

data mining techniques, soft computing techniques and other techniques (Mujalli and Ona, 

2013). 

1.  Discrete outcome models (DOMs) are used to model the probability of a 

specific outcome based on risk factors or characteristics. In general, DOMs 

cannot be calibrated using standard curve-fitting techniques (Ortu´zar and 

Willumsen, 2001). Some examples of DOMs are described below: 

 

• Logit models (LMs) or logistic regression are a special form of 

general linear regression which assumes that a response variable 

follows the logit-function. The logistic model is an approach used to 

describe the relationship of single or several independent variables 

to a binary outcome variable. The multinomial logit model (MNL) is 

used when the outcome variable has more than two unordered 

categories. 

 

• Probit models (PMs) deal with the limitations of LM: they can handle 

random variation; they allow any pattern of substitution; and they are 

applicable to panel data with temporally correlated errors (Train, 

2009). The most used type of PM in the analysis of accident severity 

is the ordered probit model (OPM). The OPM is a generalization of 

the PM to the case of more than two outcomes of an ordinal 

dependent variable.  

 

With regression models, the dependent variable is continuous: it has an infinite 

number of possible outcomes. In that case, discrete choice models cannot be 

applied. Discrete choice models can be used to estimate specific limited 

outcomes from a set of two or more discrete choices. Linear regression is more 

natural and easier. The choice between a regression and a discrete choice model 

is governed by the research objectives and the available data. 

 

2. Data-mining techniques are defined as the process of discovering patterns in 

data. Data mining is popular in different fields of science, economy, 

engineering and more specifically traffic studies. They have also been 
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employed to model the injury severity levels resulting from a crash. Data 

mining techniques include Decision trees and Bayesian networks.  

 

3. Soft computing techniques are based on artificial intelligence and natural 

selection that provides quick and cost-effective solution to very complex 

problems for which analytical formulations might not exist. Some examples 

of soft computing techniques are briefly discussed below: 

 

• Neural networks are interrelated assemblies of simple processing 

elements, units or nodes. The processing ability of the network is 

contained in the inter-unit connection strengths, or weights, obtained 

by a process of adaptation to, or learning from, a set of training 

patterns (Gurney, 1997).  

 

• Evolutionary algorithms (EAs) mimic natural evolution to find an 

optimal solution to a problem (Brameier and Banzhaf, 2007). These 

algorithms exploit differential fitness advantages in a population of 

solutions to gradually improve the state of that population.  

 

• Genetic programming (GP) is defined as any direct evolution or 

breeding of computer programs for the purpose of inductive learning. 

Unlike other EAs, GP can complete missing parts of an existing 

model.  

 

4. Generalized linear models (GLMs) are modeling techniques where the 

response variable can have an error distribution other than a normal 

distribution. The log-linear model is a general form of GLMs where there is 

no distinction between independent and dependent variables; all variables 

are treated as response variables. 
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Figure 2.1 Summary of crash injury severity modeling techniques. 

The state-of-the-art research suggests that statistical models can predict reliable 

estimates by relating crash aggregates to various explanatory measures of speed, flow, site 

characteristics and road geometry, and the reliability of crash prediction models is important 

for the improvement of traffic safety management and the prevention of traffic injury.  

Based on previous research, several stochastic variables affect crash injury severity 

in different degrees under different circumstances. The objective of this study is to develop 

a comprehensive and accurate model for crash injury severity prediction, considering 

roadway characteristics, speed measures including weighted speed variance, traffic flow, 

and environmental conditions. The proposed model interacts with various data sources in 

effective and efficient manners, which is expected to support state and local traffic 

management agencies in planning and operations to reduce both roadway crashes and their 
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injury severity levels. The following sections deliver a thorough background about the 

current literature and in-depth overview of modeling techniques summarized in this section.  

 

2.2 Data Collection Methods and Injury Severity Risk Factors 

 

This section provides a more detailed look into the crash injury severity prediction methods 

by identifying the types of data used in model development and the risk factors associated 

with crash injury severity. The purpose of this section is to identify a good type of data to 

be collected and a list of potential parameters affecting injury severity to be used for the 

model development. 

2.2.1 Data Collection for Crash Prediction Methods 

 

Previous studies have investigated factors affecting crash likelihood and/or injury severity 

over several types of roadways and using different data types. The types of data analyzed 

in crash prediction models are grouped into panel data (or historic data) and real-time data 

crash models. Panel data crash models mainly focus on modeling longitudinal data resulting 

from yearly repeated observations and are therefore unable to capture the effects of 

contributing factors that vary within a year. For example, when it comes to traffic flow and 

weather information, panel data crash studies represent their effects with long-term 

aggregated and/or averaged variables such as annual average daily traffic (AADT) volume 

and number of days with rainfall over a year. Real-time data crash models focus on the 

relative crash risk with real-time traffic and environmental conditions prior to crashes. In 

today’s fast changing world, impromptu decisions are made by the second to accommodate 

unpredictable traffic conditions, hence lies the importance of real-time data in crash 

prediction methods.  
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Panel Data Crash Studies 

 

Panel data gives insight about the past trends and helps analyze mistakes and circumstances 

to be avoided. Corrective actions can be taken accordingly to increase the efficiency of the 

prediction process. The findings from studies using panel data for crash prediction are 

discussed and summarized below.  

Abdel-Aty and Radwan (2000) used historical data and a negative binomial 

distribution model to predict crash frequency as a function of AADT, horizontal curvature, 

section length, lane, shoulder and median widths. Accident data over 3 years, including 

1,606 accidents on a principal arterial in central Florida, were used to build the model. The 

results showed that crash frequency increases with AADT, horizontal curvature and section 

length, while it decreases with lane, shoulder and median width.  

Other studies using historical data showed that traffic volume was a significant 

variable affecting crashes. Greibe (2003) developed accident prediction models based on 

data from 1,036 junctions and 142 km road links in urban areas. Generalized linear 

modelling techniques were used to relate accident frequencies to explanatory variables such 

as AADT, speed limit, number of lanes and road width. The findings illustrated that the 

AADT, highly correlated with crash frequency, was the most important and powerful 

variable in the model. The modelling also showed that road links with high-speed limits 

tend to have lower accident risk. Ye et al. (2018) developed a multivariate Poisson 

regression model to model head-on crashes and analyze crash frequency by collision type 

using crash data for 165 rural intersections in Georgia. The results showed that posted speed 

limit and traffic volume on both the major and minor roads had a positive effect on the 

number of head-on crashes.  
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Garder (2005) examined the simultaneous influence of different variables on the 

crash severity with historical head-on crash data on two-lane rural highways in Maine. The 

ordered probit model results showed that most of the crashes were due to either driver 

inattention and/or distraction, excessive speeds, fatigue, or alcohol/drug use. In addition, 

higher speed limits, more travel lanes, wider shoulder widths and higher AADT were found 

to contribute positively to crash severity. Similar conclusions were drawn by Bham et al. 

(2012); they investigated single-vehicle and multi-vehicle collisions using a multinomial 

logistic regression model. Historical data collected on urban highways in Arkansas between 

2005 and 2007 were used to determine the impacts of several factors on crash outcomes for 

six collision types. The study concluded that slowing or stopping and driving under the 

influence of alcohol were found to be significantly associated with head-on collisions. In 

addition, the authors noted that head-on collisions contribute to a higher risk of severe 

injuries compared to other crash types. 

Other research evaluated the effect of roadway geometry on crash frequency and 

severity. Yan et al. (2011) analyzed Beijing historical crash data over four years to 

understand the relationship between crash patterns and injury severity. Their results showed 

that injury severity levels could be elevated by crash patterns including head-on and angle 

collisions, nighttime, undivided roads, higher speed limit and heavy vehicle involvement. 

The study suggested installation of median, improvement of illumination on road segments, 

and reduced speed limit at roadway locations with high traffic volume. Similar variables 

related to geometric design were found to be correlated with crash injury severity by Ma et 

al. (2017). They used a negative binomial model and a random effect negative binomial 

model. The accident data was retrieved on a 50km long expressway in China, including 567 
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crash records between the years 2006 and 2008. Three explanatory variables, including 

longitudinal grade, road width, and ratio of longitudinal grade and curve radius, were found 

as significantly affecting crash frequency.  

Real-time Data Crash Studies  

 

This section presents studies using real-time data for crash prediction. Unlike panel data 

crash studies where the AADT is a leading contributing factor, real-time data studies show 

that speed data is the primary factor affecting crashes.  

Ahmed and Abdel-Aty (2012) examined freeway locations with high crash 

occurrence using real-time speed data collected from automatic vehicle identification (AVI) 

systems. Travel time, space mean speed data, and crash data of a total of 78 miles on the 

expressway network in Orlando in 2008 were collected. The results of the random forest 

technique showed that the likelihood of a crash is statistically related to speed data obtained 

from AVI segments within an average length of 1.5 miles.  

Real-time data crash studies also concluded that roadway geometry contributes to 

crashes. Yu and Abdel-Aty (2013) presented a multi-level analysis for single- and multi-

vehicle crashes using crash data from a 15-mile mountainous freeway section on I-70. They 

developed an aggregate model using five years of crash data, and a disaggregate model 

using one year of crash data along with real-time traffic and weather data. The model results 

indicated that the effects of the selected variables on crash occurrence vary across seasons 

and that geometric characteristic variables contribute to the segment variations.  

Effati et al. (2015) presented a comprehensive geospatial approach based on the 

fuzzy classification and regression tree (FCART) to predict motor vehicle crashes and their 

severity on two-lane, two-way roads. They applied a bagging algorithm in the FCART 
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model to account for high-variance crash data and improve the performance of the learning 

process. They also conducted a sensitivity analysis to determine the importance of input 

factors. The results showed that vehicle failure, drivers wearing seat belts, and weather 

condition factors are some of the most important factors contributing to crash severity. In 

addition to these factors, geographical factors such as proximity to curves and adjacent 

facilities and land use have a significant effect on crash severity.  

Chen et al. (2016) developed crash prediction models with hourly recorded data to 

describe the time-varying nature of these crash-contributing factors. They developed an 

unbalanced panel data mixed logit model to analyze hourly crash likelihood of highway 

segments, and incorporated temporal driving environmental data, including road surface 

and traffic condition, obtained from the Road Weather Information System (RWIS). Their 

results showed that weekend indicator, November indicator, low speed limit and long 

remaining service life of rutting indicator are found to increase crash likelihood, while 5-

am indicator and number of merging ramps per lane per mile are found to decrease crash 

likelihood. Table 2.1 summarizes the studies discussed in Sections 2.1.1 and 2.1.2 and the 

factors found to be affecting crashes. 
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Table 2.1 Crash-related Factors in Previous Studies 

 

Authors (year) Model Data Type Factors affecting crash 

Abdel-Aty and 

Radwan (2000) 

Negative binomial 

regression  

Panel AADT, horizontal curvature, 

section length, lane, shoulder, and 
median widths 

Greibe (2003) Generalized linear 

model 

Panel Traffic volume 

Garder (2005) Ordered probit 

model 

Panel Driver distraction, excessive 

speeds, AADT, alcohol/drug use 

Bham et al. (2012) Multinomial 

logistic regression  

Panel Slowing or stopping and driving 

under the influence 

Ahmed and Abdel-

Aty (2012) 

Multiple models Real-time Real-time traffic variables and 

visibility conditions 

Yu and Abdel-Aty 

(2013) 

Multi-level 

aggregate model 

Real-time Geometric characteristics 

Effati et al. (2015) Fuzzy classification 

and regression trees 

Real-time Vehicle failure, seat belt usage, 

and weather condition 

Chen et al. (2016) Unbalanced panel 

data mixed logit 
model 

Real-time Weekend indicator, November 

indicator, and low speed limit 

Shi et al. (2016) Multi-level 

Bayesian 

framework 

Real-time Speed and speed variation 

Ma et al. (2017) Negative binomial 

regression 

Panel Longitudinal grade, road width, 

and ratio of longitudinal grade and 

curve radius 

Chiou et al. (2017) Clustering and 

multivariate 

approaches 

Panel Geometric and environmental 

factors in the afternoon, traffic in 

the morning 

Ye et al. (2018) Multivariate 

Poisson regression 

model 

Panel Speed limit and traffic volume  

 

A major difference between crash studies is the type of data used in the research as 

discussed in this section. Panel data crash studies mainly focus on modeling longitudinal 

data resulting from yearly repeated observations, whereas real-time data crash studies focus 

on the relative risk with real-time traffic and environmental conditions prior to crashes. This 
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study is intended to provide reliable predictions for crash injury severity to help reduce 

crash fatalities/injuries, relieve non-recurrent congestions, and aid state and local traffic 

management agencies in traffic management operations using real-time data. As a variety 

of massive traffic data from infrastructure sensors and floating cars has become available 

with technology, this comprehensive data is a promising tool for predicting freeway crash 

injury severity. The traffic data collection technologies utilizing floating-car concepts have 

improved rapidly in the past few years, in terms of geographic coverage, sample size, 

accuracy in detecting vehicle location, and data processing algorithms, and such 

improvements provide an opportunity to address the challenges of the existing models and 

increase the accuracy of the predictions generated by the proposed model.  

2.2.2 Crash Risk Factors 

 

Motor vehicle crashes cause more than 1.2 million deaths worldwide and a greater number 

of injuries yearly. To improve road safety, extensive information about the causes of crashes 

is needed. Police reports prepared on the crash scene are the main source of data used for 

collecting data on the causes of crashes. The degree of crash injury depends on the 

relationship between physical injuries and crash mechanisms, but understanding is often 

limited by complicated crash mechanics (Carlson, 1979). 

In addition to roadway, vehicle, driver, traffic and environmental characteristics 

discussed in the previous section, speed measures such as average speed, speed limit, and 

speed variance are major contributors to crash occurrence and/or injury severity. According 

to the NHTSA, speeding has been involved in approximately one-third of all motor vehicle 

fatalities for more than two decades. Speed also affects the motorist’s safety even when 

driving at the speed limit but too fast for road conditions, such as during bad weather, when 
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a road is under repair, or in a dark area. The exact relationship between crashes and speed 

measures depends on several factors.  

Generally, the safety office of the FHWA states that if on a road the driven speeds 

become higher, the crash rate will increase. In addition, the crash rate is also higher for an 

individual vehicle that drives at higher speed than the other traffic on that road. As speeds 

get higher, crashes also result in more serious injury, for the driver who caused the crash as 

well as for the crash opponent (SWOV, 2012). The World Health Organization suggests 

that speed is the key risk factor in road traffic injuries, influencing both the risk of a road 

crash, as well as the severity of the resulting injuries (WHO, 2004). An increase in average 

speed of 1 km/h typically results in a 3% higher risk of a crash involving injury, with a 4–

5% increase for crashes that result in fatalities. When a collision occurs; for car occupants 

in a crash with an impact speed of 80 km/h, the likelihood of death is 20 times as that with 

the impact speed of 30 km/h.  

The correlation between speed and crashes has been widely discussed in previous 

research. This section presents the main findings of studies analyzing the relationship 

between crashes and speed measures.  Solomon (1974) studied reported accidents on two-

lane and four-lane rural highways. A significant correlation was drawn between speed limit 

deviation and the probability of a crash involvement. In addition, the greater the variation 

in speed of any vehicle from the average speed of all traffic, the greater its chance of being 

involved in an accident. The results suggested that travel speed of many vehicles involved 

in a crash had deviated widely from the speed limit.  

Garber and Gadiraju (1989) investigated the influence of different factors on speed 

variance and quantified the relationship between speed variance and accident rates. It was 
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concluded that speed variance is minimum if the posted speed limit is between 5 and 10 

mph lower than the design speed. Outside this range, speed variance increases with an 

increasing difference between the design speed and the posted speed limit. It was also found 

that drivers tend to drive at increasing speeds as the roadway geometric characteristics 

improve, regardless of the posted speed limit, and that accident rates do not necessarily 

increase with an increase in average speed but do increase with an increase in speed 

variance. They concluded that higher speed does not necessarily lead to more crashes, but 

higher speed variation does, and higher speed affects the severity of the crash rather than its 

likelihood. 

Kloeden et al. (2001) investigated the relationship between free travelling speed and 

the risk of involvement in a casualty crash in 50 mph or greater speed limit zones in rural 

South Australia. Free travelling speed was defined as “the speed of a moving vehicle, not 

closely following another vehicle, and not slowing to leave a road, or accelerating on 

entering one.” They reported that a vehicle traveling six mph above the speed limit doubles 

its risk of being involved in an injury-type crash. The risk becomes nearly six times as great 

when travelling twelve mph above the speed limit. It was shown that even small reductions 

in travelling speeds have the potential to greatly reduce crash and injury. In a subsequent 

study, Kloeden et al. (2002) used a modified logistic regression to model the risk of being 

involved in a casualty crash based on free travelling speed in an urban roadway with 60 

km/h speed limit in South Australia. They reported that travelling speeds directly affect 

crash frequency as opposed to other factors such as the type of drivers who choose to travel 

at different speeds or the variance in travelling speeds. They also concluded that a small 

reduction in travel speed (such as 1 km/h or less) can significantly decrease casualty crashes. 
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Kockelman et al. (2006) concluded that the total number of crashes increased by 

around 3% when the speed limit increased from 55 mph to 65 mph, while the probability of 

a fatal crash increased by 24%. Ma and Kockelman (2006) conducted a cost-benefit analysis 

and suggested that raising speed limits results in substantial travel time saving. The results 

indicated that increasing speed limit (from 55 mph to 65 mph) would save hours of vehicle 

travel (equivalent to $1,607,455), whereas the cost of additional crashes was $437,964.  

Malyshkina and Mannering (2007) studied the influence of the posted speed limit 

on the severity of accidents using Indiana accident data from 2004 (the year before speed 

limits were raised) and 2006 (the year after speed limits were raised) on rural Interstates 

and some multilane non-Interstate highways. The unordered-probability approach that 

includes multinomial, nested, and mixed logit models estimated the injury severity of 

accidents on various roadway classes. The results showed that speed limit affects incident 

severity on some non-Interstate highways whereas it does not affect it on Interstate 

highways.  

While some studies indicate that travelling speed directly affects the crash outcome, 

others indicate that its effect is minimal and speed variation has a greater effect on crashes. 

Cooper (1997) studied the relationship between speeding behavior and crash involvement. 

The author differentiated between two speeding convictions: excessive speed (driving 25 

mph or more above the speed limit) and exceeding the speed limit (driving 5 to 10 mph 

above the speed limit). The results showed that the presence of speeding convictions was 

significantly related to the risk of crash involvement. However, of these two classes of 

speeding conviction, only excessive speed became a more important crash-involvement 

predictor as the severity of subsequent crash events increased. Another observation was that 
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having only speeding convictions of the exceeding-speed-limit type (and no excessive speed 

convictions) seemed to be associated with speed-related crash risk at a very similar level to 

that associated with having non-speeding convictions. 

Golob and Recker (2002, 2003) investigated the effect of speed variation on crashes. 

They studied freeway crashes in Orange County, California, in which traffic flow regimes 

were classified based on speed variation. The highest crash rates during morning peak 

appeared under the conditions of heavy flow, low mean speed, and low speed variation 

whereas the lowest crash rates were found near capacity conditions during low-speed 

variations and high speeds.  

Abdel-Aty et al. (2004) analyzed the relationship between crash likelihood and 

traffic characteristics using matched case-control logistic regression and found that the most 

significant factors influencing the likelihood of crash occurrence were average occupancy 

observed at the upstream station and coefficient of variation in speed at the downstream 

station. Abisaad and Chien (2018) investigated the effect of speed profiles among other 

factors on freeway crashes. Several factors were proven to affect crash injury severity under 

different conditions. The findings showed that the speed variance paired with adverse 

weather conditions and/or other factors are a good indicator for crash injury severity and 

can be used as guidelines for traffic monitoring centers. Depending on weather conditions, 

posted speed limit, and time of day, the traffic patterns should be monitored for potential 

crashes yielding high injury severity levels. Mitigation measures can be applied by 

increasing service patrol coverage, implementing stricter speed rules, and lowering dynamic 

speed limits to increase safety and enhance emergency response time in case of a crash. 
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Table 2.2 summarizes the studies discussed in this section and correlation between speed 

measures and crashes. 

Table 2.2 Relationship between Speed Measures and Crashes from Previous Studies 

 

Authors (year)  Key Findings 

Solomon (1974) 
Speed limit deviation and variation from the average speed of all 

traffic increases chance of crash involvement 

Garber and Gadiraju 

(1989) 

Increase in speed variance affects the severity of the incident 

rather than its likelihood 

Cooper (1997) 
Previous speeding convictions is significantly related to the risk 

of crash involvement 

Kloeden et al. 

(2001) 

Small reductions in travelling speeds greatly reduce crash and 

injury 

Kloeden et al. 

(2002) 

A small reduction in travel speed can significantly decrease 

casualty crashes 

Golob and Recker 

(2002, 2003) 

The highest crash rates appear under heavy flow and low speed 

variation whereas the lowest crash rates happen during low-speed 

variations and high speeds 

Abdel-Aty et al. 

(2004) 

The most significant factors influencing the crash occurrence are 

average occupancy and coefficient of variation in speed  

Oh et al. (2005) 
The most significant variable influencing crash likelihood is the 

standard deviation of speed 

Kockelman et al. 

(2006) 

The total number of crashes and the probability of a fatal crash 

both increase when the speed limit increases 

Ma and Kockelman 

(2006) 

Increasing speed limit saves hours of vehicle travel equivalent to 

an amount higher than the cost of additional crashes 

Malyshkina and 

Mannering (2007) 

Speed limit affects incident severity on some non-Interstate 

highways whereas it does not affect it on Interstate highways 

Kononov et al. 

(2012) 

Once a combination of speed and density threshold is exceeded, 

the crash rate rises rapidly. 

Abisaad and Chien 

(2018) 

The speed variance paired with adverse weather conditions 

and/or other factors are a good indicator for crash injury severity. 
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The proposed model in this research considers big data such as crash information, 

road geometry, directional traffic volumes, and floating-car data. It confirms the unique and 

significant impacts on crash executed by the real-time weather, road surface, and traffic 

conditions. As for the correlation between speed measures and crashes, some studies 

indicate that travel speed directly affects crashes, others argue that its effect is minimal and 

speed variation has a greater effect on crashes, and other studies concluded that speed 

variance does not affect crashes. The literature has contradicting theories on the speed-crash 

debate, which is due to the stochastic nature of factors that lead to incidents, and further 

research presented in this study is required to better understand and identify the factors 

associated with crashes.  

 

2.3 Crash Injury Severity Prediction Models 

 

After identifying the types of data used in crash prediction methods, crash-related factors 

as well as the effect of speed measures on crashes in the previous sections, this section 

reviews the models used in crash injury severity prediction. Injury severity studies institute 

the statistical relationship between the dependent variable, injury severity, and several 

explanatory variables relating to driver characteristics, roadway characteristics and 

environmental conditions. Parametric and non-parametric models used to predict crash 

injury severity are discussed in this section.  

A parametric model is a distribution that can be described using a finite set 

of parameters. Given the parameters, predictions are independent of the observed data used 

in developing the original model. Therefore, the complexity of the model is bounded even 

if the amount of data is unbounded, and this feature limits the flexibility of parametric 
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models compared to non-parametric models. Non-parametric models assume that the data 

distribution cannot be defined in terms of a finite set of parameters, but rather by assuming 

an infinite dimensional or function (Schmidt-Burkhardt, 2011). The amount of information 

that this function can capture about the data can grow as the amount of data grows, and this 

feature provides them with more flexibility in accommodating data sets.  

Parametric models (e.g., polynomial regression, logistic regression, Poisson model, 

etc.) assume a specific form for the model. They are simpler and are interpretable but require 

a greater number of data points. They work well if the assumption is correct. Non-

parametric models (e.g., artificial neural network model, support vector machine model, 

Gaussian process, etc.) do not assume anything about the data and learn from the data 

gradually and are slower. They typically require less data than what is required for 

parametric models. The application of ANNs in engineering science has been proven highly 

efficient in recent years, because of their capability to predict and present desired results 

despite limited data sets. ANNs were recently introduced to the transportation field and their 

use is addressed in this section. 

2.3.1 Parametric Models 

 

Regression analysis has been the most popular technique in developing crash injury severity 

prediction models, and other models described in Section 2.1 have also proven the ability 

to predict crash injury severity (i.e., logit, probit, loglinear, etc.). The reviewed studies on 

crash injury severity using parametric models are grouped into regression model studies and 

other studies. 

Regression Models 
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Lui and McGee (1988) used a logistic regression to analyze the probability of fatal outcomes 

of accidents given that the crash has occurred. They obtained data for accidents including 

at least one fatality and modeled the probability of a fatality as a target variable dependent 

on driver’s age and gender, impact points, car deformation, use of restraint system and 

vehicle weight. Their findings reveal that a heavier car weight can greatly reduce the 

driver’s risk of dying in a two-car crash, because larger cars’ frames can better absorb 

energy from an impact, or the fact that the small and lighter cars tend to roll over more 

easily.  Driver’s age and/or gender was also investigated by Farmer et al. (1997). The study 

examined the impact of vehicle and crash characteristics on injury severity in two-vehicle 

side-impact crashes using a binomial regression model. Their results revealed that rollover 

or ejection from the vehicle increases the likelihood of a serious injury or death and that 

light-duty trucks were fourteen times more likely to roll than cars, when struck on the side. 

While gender was not a statistically significant factor in their results, the oldest drivers (aged 

65 and over) were estimated to be more at risk for serious injury.  

Mao et al. (1997) assessed the factors affecting the severity of motor vehicles traffic 

crashes involving young drivers in Ontario using unconditional logistic regression. Their 

results show that factors significantly increasing the risk of fatal injury crashes include 

drinking and driving, impairment by alcohol, exceeding speed limits, not using seat belts, 

full ejection from vehicle, intersection without traffic control, bridge or tunnel, road with 

speed limit 70-100 km/hour, bad weather, head-on collision, and overtaking. Results of the 

same model applied to major and minor injury crashes demonstrated consistent but weaker 

associations with decreasing levels of crash severity. Another study by Al-Ghamdi (2002) 

using the logistic regression approach examined the contribution of individual variables to 
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the injury severity level resulting from a crash. The study evaluated 560 accidents obtained 

from the police records in Riyadh, Saudi Arabia. The dependent variable was modeled as a 

dichotomous variable that could only take values of fatal or non-fatal crash outcomes. 

According to the logistic regression results, out of nine independent variables used in this 

study, only two were found to be statistically significant with respect to the injury severity: 

location and cause of accident. Moreover, the odds of being in a fatal accident at a non-

intersection location are 2.64 higher than those at an intersection, and the odds of severe 

injury increases on accidents caused by over-speeding and entering the wrong way traffic.  

Similar conclusions were drawn by Kononen et al. (2011). They developed a 

multivariate logistic regression model, based upon National Automotive Sampling System 

Crashworthiness Data System (NASS-CDS) data for calendar years 1999–2008 to predict 

the probability that a crash-involved vehicle will result in serious or incapacitating injuries. 

Model input parameters included: crash direction, change in velocity, multiple vs. single 

impacts, belt use, presence of at least one older occupant (≥55 years old), presence of at 

least one female in the vehicle, and vehicle type. Model sensitivity and specificity were 

40% and 98%, respectively. The results indicated that seat belt use and crash direction were 

the most important predictors of serious injury resulting from a crash. 

Ma et al. (2015) developed a generalized ordered logit model by using police-

reported crash records of selected freeway tunnels in China. They reported five factors 

significantly related to injury severity. The season, time of day, location, tunnel length, and 

adverse weather were found to affect injury severity on freeway tunnels. In addition, less 

fatal injuries occurred during the summer season, and less injury crashes occurred during 

night-time. Subsequently, Ma et al. (2017) developed a method to explore the relationship 
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between various explanatory variables and crash injury severity based on 673 crash records 

collected on rural two-lane highways in China. A partial proportional odds model examined 

factors influencing crash injury severity, and an elasticity analysis was conducted to 

quantify the marginal effects of each contributing factor. The results showed that nine 

explanatory variables, including at-fault driver's age, at-fault driver having a license or not, 

alcohol usage, speeding, pedestrian involved, type of area, weather condition, pavement 

type, and collision type, significantly affect injury severity.  

Behnood and Mannering (2017) applied a random parameters logit model to 

investigate the effects of drug and alcohol consumption on driver injury severities. Using 

data from single-vehicle crashes in Cook County, Illinois, from January 1, 2004, to 

December 31, 2012, separate models for unimpaired, alcohol-impaired, and drug-impaired 

drivers were estimated. A wide range of variables potentially affecting driver injury severity 

was considered, including roadway and environmental conditions, driver attributes, time 

and location of the crash, and crash-specific factors. The results showed that unimpaired 

drivers are more responsive to variations in lighting, adverse weather, and road conditions. 

Age and gender were found to be important determinants of injury severity. Moreover, 

unimpaired drivers tend to have more heterogeneity in their injury outcomes under adverse 

weather and road surface conditions. In contrast, alcohol-impaired and drug-impaired 

drivers have far less heterogeneity in the factors that affect injury severity, resulting from 

the decision-impairing substance.  

Ji and Levinson (2020) adopted the energy loss-based vehicular injury severity 

(ELVIS) to explain the effects of the energy absorption of two vehicles in a collision. A 

multivariate ordered logistic regression with multiple classes was estimated and the results 
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showed that occupants in heavy vehicles absorb less impact from the crashes, suffering less 

significant injuries. Moreover, the number of vehicle occupants is positively correlated to 

the most severe injuries in one vehicle. 

Other Models 

Chang and Wang (2006) used the 2001 accident data for Taipei, Taiwan to develop a CART 

model that establishes the relationship between injury severity and driver/vehicle 

characteristics, highway/environmental variables, and accident variables. The results 

indicated that the most important variable associated with crash severity is the vehicle type. 

Pedestrians, motorcycle, and bicycle riders were identified to have higher risks of being 

injured than other types of vehicle drivers in traffic accidents. Qi et al. (2007) used a discrete 

response ordered probit model to predict accident likelihood. The results illustrated that the 

model performs well in identifying factors associated with traffic accidents. In addition, 

when applied in a predictive setting, the model provided benefits in forecasting the 

likelihood of accidents based on both time-varying and site-specific parameters. Hao and 

Daniel (2014) applied an ordered probit model to explore the causes of driver injury severity 

under various control measures at highway-rail grade crossing in the United States. Their 

analysis found that peak hour factor, visibility, car speed, train speed, driver’s age, area 

type, traffic volume and highway pavement impact driver injury severity at both active and 

passive highway-rail crossings. In another study, Hao and Daniel (2015) applied a mixed 

logit model to explore the determinants of driver injury severity under different weather 

conditions at highway–rail grade crossing.  A reduction in speed limit during inclement 

weather conditions could be particularly effective in controlling injury severity, allowing 

more reaction time for maneuvering and braking before impacts. 



 

 

 

30 

Fountas and Anastasopoulos (2017) used a random threshold hierarchical ordered 

probit model with random parameters to analyze highway accident data collected in the 

State of Washington, between 2011 and 2013. They found seven variables affecting crash 

injury severity. These include geometric characteristics (vertical curve length); traffic 

characteristics (AADT – per lane); driver-specific characteristics (use of alcohol/drugs); 

and accident-specific characteristics (indicator for out-of-control vehicle, speed, indicator 

for vehicle going straight ahead at the time of the accident, and pedestrian involvement 

indicator). Osman et al. (2018) analyzed the injury severity of commercially licensed drivers 

involved in single-vehicle crashes using the ordered response modeling framework. The 

effect of driver's age on all other factors was examined by segmenting the parameters by 

driver's age group. The empirical analysis was conducted using four years of the Highway 

Safety Information System (HSIS) data that included 6247 commercially-licensed drivers 

involved in single-vehicle crashes in the state of Minnesota. Their results showed that 

important factors affecting the crash severity of crashes for commercially licensed drivers 

across all age groups include lack of seatbelt usage, collision with a fixed object, speeding, 

vehicle age of 11 years or more, wind, nighttime, weekday, and female drivers.  

Chen and Jovanis (2000) modelled the relationship between crash severity and 

associated factors using a loglinear model. They analyzed 408 observations considering bus 

crashes in a freeway in Taiwan between 1985 and 1993. Frontal impact collisions and 

driving during late night hours or early morning hours were among the factors affecting 

crash severity.  

Several studies developed more than one model and compared the model 

performances to illustrate advantages and disadvantages of different approaches. Jacob and 
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Anjaneyulu (2013) conducted a study using data of more than 500 kilometers of National 

and State Highways of Kerala, India to highlight the influence of various roadway and 

traffic conditions on traffic safety. They found that factors that cause injury crashes are 

significantly different from those that cause fatal crashes. Four models were developed: a 

multiple linear regression model, a Poisson regression model, a negative binomial 

regression model and a zero-inflated Poisson regression model. The comparison of models 

based on the percentage root mean square error showed that the Poisson regression model 

yielded the most accurate results for predicting fatal and injury crashes.  

Mooradian et al. (2013) also compared several parametric models using the same 

data. They proposed a partial proportional odds (PPO), a type of logistic regression, to 

predict vehicular crash severities on Connecticut state roads using data from 1995 to 2009. 

The PPO model was compared to ordinal and multinomial response models on the basis of 

adequacy of model fit, significance of covariates, and out-of-sample prediction accuracy. 

The study results show that the PPO model has adequate fit and performs best overall in 

terms of covariate significance and holdout prediction accuracy. Wang et al. (2016) used an 

intersection data inventory of 36 safety relevant parameters for three- and four-legged non- 

signalized intersections along state routes in Alabama to study the importance of 

intersection characteristics on crash rate and the interaction effects between key 

characteristics. Four different models were developed and compared: Poisson regression, 

negative binomial regression, regularized generalized linear model, and boosted regression 

trees. The boosted regression tree model significantly outperformed the other models and 

identified several intersection characteristics as having strong interaction effects. Table 2.3 

summarizes the key findings of studies using parametric models discussed in this section. 
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Table 2.3 Summary of Parametric Models and Key Findings  

Authors (year) Model  Key Findings 

Lui and McGee 

(1988) 

Logistic regression Heavier cars reduce the risk of a fatality 

Farmer et al. 

(1997) 

Binomial regression Rollover or ejection increases the likelihood 

of injury or death 

Mao et al. (1997) Unconditional 

logistic regression 

Factors increasing the risk of fatal crashes 

include speeding, not using seat belts, 

ejection, higher speed limit and bad weather 

Chen and 

Jovanis (2000) 

Loglinear 

regression 

Driving during late night or early morning 

affects crash severity 

Al-Ghamdi 

(2002) 

Logistic regression The odds of severe injury increase by over-

speeding 

Chang and Wang 

(2006) 

Classification and 

regression trees  

Pedestrians, motorcycle, and bicycle riders 

have higher risks of injury than other drivers 

Kononen et al. 

(2011) 

Multivariate 

logistic regression 

Seat belt use and crash direction are predictors 

of serious injury 

Jacob and 

Anjaneyulu 

(2013) 

Multiple models Poisson regression yields the most accurate 

results for predicting fatal and injury crashes 

Mooradian et 

al.(2013) 

Multiple models The PPO model performs best overall in terms 

of prediction accuracy 

Hao and Daniel 

(2014) 

Ordered probit 

model 

Peak hour factor, visibility, car speed, train 

speed, driver’s age, area type and traffic 

volume impact driver injury severity 

Hao and Daniel 

(2015) 

Mixed logit model A speed limit reduction in inclement weather 

is effective in controlling injury severity 

 

Ma et al. (2015) Generalized 

ordered logit model 

Season, time of day, location, tunnel length 

and adverse weather affect injury severity 

Wang et al. 

(2016) 

Multiple models The boosted regression tree model 

outperformed the other models 

 

Behnood and 

Mannering 

(2017) 

Random parameters 

logit model 

Age and gender are the most important 

determinants of injury severity 

Fountas and 

Anastasopoulos 

(2017) 

Random threshold 

hierarchical ordered 

probit model 

Factors affecting injury severity include 

AADT per lane, speed, and vertical curve 

length 

Ma et al. (2017) Partial proportional 

odds model 

Alcohol usage, speeding, weather, pavement 

and collision type affect injury severity 
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2.3.2 Non-parametric Models 

 

This section presents non-parametric models, specifically ANN research done in crash 

prediction. ANNs have been widely applied in the transportation field. Their success is due 

to their ability to emulate the human brain and learning power. ANNs allow the inclusion 

of many variables, where irrelevant variables readily show negligible weight values, while 

relevant variables show significant weight values. In addition, no assumptions are required 

regarding the functional form of the relationship between predictor and response variables 

as the case is with the parametric methods.   

Delen et al. (2006) investigated the injury severity experienced by drivers in crashes 

without limiting the study to any specific geographic area of the United States. They 

developed eight binary neural models to classify accidents by level of injury severity from 

no-injury to fatality and conducted sensitivity analysis to identify the prioritized importance 

of crash-related factors. The models investigated several factors related to injury severity 

level such as driver age, gender, alcohol consumption, seat-belt use, daylight/no daylight, 

rollover occurrence, type of crash, and weekends/weekdays. In general, the use of a restraint 

system like a seat belt, use of alcohol or drugs, age and gender, and vehicle role in the 

accident were found to have an important influence on the outcome of the crash. Also, 

weather conditions or the time of the crash did not seem to affect its severity. This result 

was deemed surprising by the authors who suggested it needs further study.  

Other significant crash contributing factors were investigated by Moghaddam et al. 

(2010). They used a series of artificial neural networks to estimate crash severity and to 

Osman et al. 

(2018) 

Ordered response 

model 

Factors affecting the crash severity include 

lack of seatbelt, speeding, wind, nighttime, 

weekday and female drivers 
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identify significant crash-related factors on urban highways. The results illustrated that 

highway width, head-on collision, type of vehicle at fault, ignoring lateral clearance, 

following distance, inability to control the vehicle, violating the permissible velocity and 

deviation by drivers are the most significant factors that increase crash severity in urban 

highways. Their study showed that feedforward backpropagation neural networks yield the 

best results. Fatalities and injuries were modelled together, and property damage crashes 

were modelled separately. Their findings suggest that changes in crash severity does not 

occur necessarily by any single dependent parameter but occurs as a simultaneous result of 

changes of these parameters. 

Akin and Akbas (2010) also developed an ANN to predict intersection crashes in 

Macomb County in Michigan by grouping the crashes into three types: fatal, injury and 

PDO accidents. They modelled the relationship between the crash type and crash properties 

such as time, weather, light condition, surface condition and driver and vehicle 

characteristics using 16,000 crash records. The results showed that the likelihood of being 

involved in a crash is highest at intersections, the last working day of the week witnesses 

the highest crash probability, crash occurrence in the afternoon peak is almost twice as high 

was that in the morning peak, and crash occurrence increases with heavier traffic volumes. 

The ANN’s advantage over traditional parametric models was investigated by Zeng 

and Huang (2014). They proposed a convex combination (CC) algorithm to train a neural 

network (NN) model for crash injury severity prediction, and a modified NN pruning for 

function approximation (N2PFA) algorithm to optimize the network structure. The 

proposed approach was compared with the NN trained by traditional backpropagation (BP) 

algorithm using a two-vehicle Florida crash dataset from 2006. The results showed that the 
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CC algorithm outperformed the BP algorithm both in convergence ability and training 

speed. Both neural networks had better fitting and predicting performance than the ordered 

logit model, which again demonstrates the NN’s superiority over statistical models for 

predicting crash injury severity.   

Several studies developed parametric and non-parametric models using the same set 

of data to compare model performances. Abdelwahab and Abdel-Aty. (2001) examined the 

relationship between driver injury severity and driver, vehicle, roadway, and environment 

characteristics using the multilayer perceptron (MLP) and fuzzy adaptive resonance theory 

(ART) neural networks. Accident data focusing on two-vehicle accidents at signalized 

intersection for 1997 for the Central Florida area was used. They classified an accident into 

one of three injury severity levels using the readily available crash factors. The percentage 

of correct classifications of MLP neural network was compared to that of the ordered logit 

model. Their results revealed that MLP accurately classified 65.6% and 60.4% of cases for 

the training and testing phases, respectively, whereas the ordered logit model correctly 

classified 58.9 and 57.1% of cases for the training and testing phases, respectively. Results 

showed that female drivers are more likely to experience a severe injury than are male 

drivers, and male drivers are more likely to experience fatalities. In addition, drivers at fault 

are less likely to experience severe injury than those not at fault, and drivers in passenger 

cars are more likely to experience a greater injury severity level than drivers of vans or 

pickup trucks.  

Iranitalab and Khattak (2017) compared the performance of four statistical and 

machine learning methods including multinomial logit (MNL), nearest neighbor 

classification (NNC), support vector machines (SVM) and random forests (RF), in 
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predicting traffic crash severity. Two-vehicle crashes were extracted as the analysis data 

from the 2012–2015 crash data from Nebraska. The proposed approach showed that NNC 

had the best prediction performance overall and in more severe crashes. RF and SVM had 

sufficient performances, and MNL was the weakest performing method. Table 2.4 

summarizes the key findings of studies using non-parametric models discussed in this 

section. 

Table 2.4 Key Findings of Non-parametric Models 

 

Authors (year) Model Key Findings 

Abdelwahab and 

Abdel-Aty (2001) 

MLP and ART 

neural networks 

Female drivers are more likely to experience a 

severe injury, and male drivers are more likely 

to experience fatalities; drivers in passenger 

cars are more likely to experience a greater 

injury severity 

Delen et al. 

(2006)  

Binary neural 

model 

The use of a seat belt, use of alcohol or drugs, 

age and gender, and vehicle role in the accident 

influence the outcome of the crash. Weather 

conditions or the time of the accident do not 

affect the severity 

Akin and Akbas 

(2010)  

Artificial neural 

networks 

The likelihood of a crash increases on the last 

working day of the week, in the afternoon peak, 

and with heavier traffic volumes 

Moghaddam et al. 

(2010)   

Artificial neural 

networks 

Highway width, head-on collision, type of 

vehicle at fault and speeding are significant 

factors that increase crash severity in urban 

highways 

Codur and 

Tortum (2015) 

Artificial neural 

networks 

The degree of vertical curvature is the most 

important parameter that affects the number of 

accidents on highways. 

Iranitalab and 

Khattak (2017) 

Multiple 

machine 

learning models 

Nearest Neighbor Clarification (NNC) had the 

best prediction performance overall and in more 

severe crashes, and Multinomial Logit (MNL) 

was the weakest performing method. 
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2.4 Summary 

This chapter presented a thorough literature review on crash injury severity prediction 

models and data used in crash analysis. The findings and conclusions of the comprehensive 

literature review are summarized herein.  

Various factors, in the areas of geometric design, traffic flow, driver and 

environment, have been taken into consideration to predict either crash likelihood, crash 

injury severity, or both. Efforts to improve traffic safety are helped by mathematical models 

that allow researchers to better assess the effect of those factors on crashes. There is no 

unanimity on how to evaluate crash injury severity and the literature has contradicting 

assessments on the best model fit to predict crash outcomes, which is due to the random 

nature of factors and major differences in environments and datasets.  

Panel data crash studies and real-time data crash studies were evaluated and 

discussed. Based on the findings and the fast technology advancement, the proposed model 

uses real-time data as it intends to deliver reliable predictions for crash injury severity. The 

traffic data collection technologies utilizing floating-car concepts have improved rapidly in 

the past few years, and such improvements provide an opportunity to address the challenges 

of the existing models and increase the accuracy of the predictions generated by the 

proposed model. 

Crash prediction models are either parametric or non-parametric, and while the 

parametric conventional models such as regression, logit, and Poisson models have been 

widely explored in previous research, non-parametric models are still being discovered and 

calibrated to accommodate crash analysis. Statistical regression models have been 

extensively employed to analyze injury severity of crashes. However, most regression 
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models have their own model assumptions and pre-defined underlying relationships 

between dependent and independent variables, and if these assumptions are violated, the 

model could result in erroneous estimations. Machine learning techniques can recognize 

patterns and adjust dynamically with gained prominence and maturity. ANNs specifically 

can relate input with output and automatically generate identifying characteristics from the 

learning material that they process. ANNs used in crash modelling, discussed in section 

2.3.2, are capable to predict and present desired results despite limited data sets, and traffic 

forecasting complications involving random and complex variables can therefore be 

successfully resolved.  

The thorough review presented in this chapter reveals that the perfect model for 

crash prediction does not exist, and different models present benefits and limitations 

depending on the data availability and study environment. For predicting dichotomous 

outcomes, logistic regression has become known as the statistical method of choice. In 

general, parametric models are simple and transparent. The magnitude of the influence of 

factors on crashes is directly determined by coefficient weights provided by a regression 

analysis. ANNs represent a newer technique and a potential alternative to regression 

analysis. Non-parametric models have several advantages over conventional parametric 

models and are good data-driven approaches to predict crash injury severity. The theoretical 

advantage of ANNs is that relationships need not be specified in advance since the method 

itself establishes relationships through a learning process. Research has been done to 

compare the performances of ANN and traditional statistical models (Kumar, 2005; Pao, 

2006; Wang & Elhag, 2007; Zhang, 2001; etc.). Most researchers find that ANNs can 

outperform linear models under a variety of situations. 
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Therefore, a base statistical model (LRM) is developed in this study in addition to 

the ANN to serve for comparison and assessment purposes. Although discrete choice 

models are better at predicting a specific injury severity level, linear regression is the most 

used model in quantifying cash risks. It is also more natural and easier, and its use and 

effectiveness will be further investigated in this study.  

The proposed model introduces the use of speed variance in the crash injury severity 

prediction. The literature has opposing views on the effect of speed and speed variation on 

crash occurrence and injury severity. The ongoing discussion about the speed-crash 

relationship is not conclusive due to the multitude of factors that affect crashes under 

different circumstances, and additional research is needed to gain more insight on this 

debate. Both models are developed using the same data to investigate their performances 

experimentally in a data-driven context.  An assessment of the results is conducted based 

on each model’s capacity and their advantages and disadvantages are discussed thoroughly.  
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CHAPTER 3 

DATA ACQUISITION 

 

3.1 Database Overview 

 

To develop a sound model for predicting crash injury severity, significant amount of data 

is required under different categories as discussed in Chapter 2. The data in this study was 

collected from four different databases to form one comprehensive working database. The 

first round of data collection was carried out using data for the year 2016 on New Jersey 

freeways. After collecting crash data from the Plan4Safety database, the number of crash 

records and the corresponding information was not enough to draw reliable conclusions 

from model development, training and testing in terms of unsatisfactory number of crashes. 

The NJDOT crash records retrieved from the NJDOT accident webpage: 

(https://www.state.nj.us/transportation/refdata/accident) were therefore used as the new 

source of crash data for this study during the second round of data collection. The data were 

collected for the year 2017 on NJ freeways using the following data sources: 

• Crash records: Four summary reports retrieved from NJDOT were combined to 

obtain comprehensive crash related information on NJ freeways in 2017.  

 

• Road geometry data: The New Jersey straight line diagrams (SLD) database 

includes road type, road characteristics, number of lanes, posted speed limit and 

median type. 

 

• Traffic volume data: The New Jersey Congestion Management System (NJCMS) 

database includes passenger-car and truck volumes collected from the sources of big 

data. 

 

• Floating-car data: The INRIX database provides traffic speeds for freeway segments 

under normal and crash conditions, which are collected by floating-car technologies. 

 

 

https://www.state.nj.us/transportation/refdata/accident
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Figure 3.1 Process of database consolidation from four data sources. 

 

3.2 Data Sources Description 

 

This section presents an overview of the four databases used to develop the final working 

database. We note that the process to define the working database is based on the availability 

and applicability to predict the crash injury severity as required by the proposed prediction 

models. The database was developed using the advanced computing resources, which 

provided adequate data storage and computing processing to handle the large data resources 

necessary to process and execute the proposed prediction model. 

3.2.1 Crash Record Database 

 

The crash data was obtained from the NJDOT summary reports, which provide detailed 

police reports of crashes occurring in New Jersey for a specific year. Four summary reports 

were retrieved from NJDOT for freeway crashes in 2017: crash table, driver table, vehicle 

table and occupant table. These summary reports are available to the public for years 
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between 2001 and 2019, and the NJDOT is currently working on the 2020 data. Combined 

through an identical case number, the four tables are merged into a crash record database 

including a total of 122 crash related entries.  

The crash injury severity in the state of New Jersey is classified into three levels: 

Fatal crash – Any crash that results in one or more fatal injuries, injury crash – Any crash 

that results in one or more non-fatal injuries, and property damage crash – Any crash that 

does not result in injuries or fatalities. When a crash results in one or more injuries, the 

injury level is specified using the entry “type of most severe injury entry”. There are eight 

possible numerical values for the type of injury shown in Table 3.1. Similarly, other entries 

in the crash database are assigned numerical codes. The interpretation of these codes is 

provided by the NJDOT. 

Table 3.1 Numerical Codes for Most Severe Physical Injury 

Numerical Code Most Severe Physical Injury 

1 Amputation 

2 Concussion 

3 Internal 

4 Bleeding 

5 Contusion/Bruise 

6 Burn 

7 Fracture/Dislocation 

8 Complaint of Pain 

Source: https://www.state.nj.us/transportation/refdata/accident/pdf/NJTR-1_Overlays.pdf.  

Retrieved on January 19, 2019. 

 

3.2.2 NJ-SLD Database 

 

The roadway inventory and geometry data of each crash event (e.g., total number of lanes 

and posted speed limit), was retrieved from the NJDOT SLD. The SLD, initially designed 

as a planning tool, is a one-dimensional graphical depiction of a section of roadway and its 

https://www.state.nj.us/transportation/refdata/accident/pdf/NJTR-1_Overlays.pdf
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related data which includes the Interstate freeways, the US highways, and the State routes. 

The SLD information management system, including the data repository and software, is 

maintained by NJDOT’s Bureau of Transportation Data Development (BTDD). By using 

mileposts, the main geometric characteristics of the crash location such as the posted speed 

limit and the number of lanes at the can be identified. 

3.2.3 NJCMS Database  

 

The traffic flow data, necessary for the analysis of crash impacts, were obtained from the 

NJCMS database. The NJCMS is a data management and data analysis system used 

primarily by the Bureau of Systems Planning to forecast congestion and propose mitigation 

measures for New Jersey roadways. The roadway links in the NJCMS tables are identified 

by SRI or Route Name (e.g., I-80, or I-195), and by start and endmileposts. The link 

information stored in NJCMS was tied to crashes identified in the crash record database 

using these unique link identifiers.  

3.2.4 Floating-car Database 

 

The traffic speed data used for model development are historical speed data from INRIX. 

The historical INRIX speed data is anonymously collected from GPS-enabled vehicles and 

mobile devices through Traffic Message Channel (TMC) and compiled into 1-minute-

average speed. This historic 1-minute speed data were aggregated into 15-minute speed data 

for each TMC upstream of each crash. There are nearly 1,200 directional predefined TMCs 

on the New Jersey interstate freeways. The INRIX raw data was collected for 24 hours a 

day, over a 1-year period from January 2017 to December 2017. This period, including 
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weekdays, weekends, peak and non-peak hours, reflects real traffic conditions before, 

during and after a crash occurred. 

 

3.3 Data Processing 

 

As technology advances and safety becomes more of a priority for DOTs, the process of 

data collection before and after crashes becomes more inclusive. In recent years, new 

parameters are gathered by police reports and floating-car technologies that could be 

included in new research for better crash prediction accuracy. These parameters include 

accurate real-time speed measures and traffic counts, safety equipment available in the 

vehicle, safety equipment used at the time of the crash, airbag deployment, detailed 

occupant information, charges and summons, hazmat involvement, alcohol use and cell 

phone use. A larger database can be used to develop comprehensive crash prediction models 

with increased precision. 

The process to define the final database that is utilized by the models developed in 

the following chapter was based on the applicability to predict the crash injury severity level 

as required by the proposed prediction model. The data was evaluated in terms of data 

structure, compatibility and usability for the models. Since the models are intended to 

support state and local traffic management agencies during operations to reduce crash injury 

severity levels while using real-time data, only the parameters that are known to the 

agencies in real-time before the crash are included in the working database.  

The major issues encountered during data processing are described below.  

1. Crash Record: Discrepancies in time and even the location of observed crashes 

reported in the database were observed. When speed measures were added, a 

few inconsistent records showed normal speed under a severe crash condition. 
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These entries were screened out manually and neglected in the model 

development process.  

 

2. INRIX: While INRIX reported speed was on a TMC basis, which has only 

starting and ending coordinates, the corresponding crash in Crash Record is 

based on the SLD. These two data sources could not be cross-referenced with 

each other. Therefore, a conversion methodology to associate INRIX TMC 

information and SLD information based on SRI and mileposts was developed, 

and the database merged the INRIX TMC data to the SRI-based Crash Record 

data.  

 

3. NJCMS: The SRI in NJCMS is not directional. Since the SRI is a key factor for 

merging databases and for model development, the NJCMS records had to be 

manually updated. 

 

 

3.4 Calculation of Traffic Volume and Weighted Speed Variance 

As discussed in previous studies (Solomon, 1974; Lave, 1985; Garber and Gadiraju, 1989; 

Kloeden et al., 2001; Kloeden et al., 2002), many factors affect crashes including roadway 

design, traffic speeds, traffic density, and vehicle mix and speed variance. Speed averages 

alone are not enough to predict the likelihood and/or crash injury severity of a crash, and 

speed variance also plays an important part in crash occurrence and severity.  

In addition to the data entries processed from several databases described in this 

chapter, two factors are calculated and added to the working database: the traffic volume 

and the weighted speed variance. The calculation procedure and assumptions are retrieved 

from a previous study (Abisaad and Chien, 2018) and discussed in this section. 

3.4.1 Traffic Volume 

The volume counts used in this study are obtained from NJCMS. For each TMC, the 

passenger car count is reported as well as a separate truck count for vehicles with more than 

two axles. The volume is assumed to be equally divided over one-minute intervals since no 
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other data is available. The volume of passenger cars is added to the volume of trucks to 

obtain a total volume: 

 

Xi = VCi + VTi (3.1) 

 

Where VCi and VTi are respectively the volumes of cars and trucks in the traffic stream at 

minute i, and Xi is the total volume of both cars and trucks at minute i. 

3.4.2 Weighted Speed Variance 

As discussed in Chapter 2, speed variance plays an important role in crash occurrence and 

injury severity. In order to identify the best speed variance generated from a specific time 

interval, the intervals were classified into five categories prior to the time of the incident: 

two minutes, four minutes, six minutes, eight minutes and ten minutes. The following 

assumptions are made: 

• The speed profile does not vary greatly during these small two-minute 

intervals. This assumption is reasonable since traffic patterns generally 

require longer than a few minutes to shift, such as from peak to off-peak 

conditions. 

 

• Speed variation patterns more than ten minutes before a crash occurs do not 

have a direct effect on its likelihood and severity. 

 

• The beginning timestamp of the incident recorded in the database is the 

moment when the crash occurred. This is a bold assumption since this data 

is logged manually by the individual filing the report and no advanced 

technology confirms that timestamp. 

 

The 2-minute, 4-minute, 6-minute, 8-minute and 10-minute average speeds are computed 

as follows: 

 



 

 

 

47 

Vn =
∑ vi Xi

n
i=1

∑ Xi
n
i=1

 

 

(3.2) 

Where Vn is the speed average over n minutes before a crash occurred, n = 2, 4, 6, 8 or 10. 

For example, V2 is the average speed over the two minutes before the crash occurred, while 

V10 is the average speed over the ten minutes before the crash occurred, and vi is the INRIX 

reported speed at minute i. 

Since the length of TMC varies, speed variances computed over shorter TMCs will 

have a greater effect than those computed on larger TMCs. Different TMC lengths should 

be accounted for in the computation of speed variance by dividing it by the length of the 

TMC. The weighted speed variances are then calculated for each specific time interval as 

follows: 

 

Sn = 
  ∑(Vn − vi)2

(n−1)∗l
 (3.3) 

 

Where l is the length of a TMC where the speed and volume were reported. The four-minute 

weighted speed variance is used to create the final database for model development. 

To illustrate that the weighted speed variance before the crash is larger than that in 

a similar non-crash time, a historical crash example was used, and speed variances were 

calculated on a four-minute interval basis with and without crash. A crash was reported on 

the eastbound Interstate 287 on April 8 at 15:01. It occurred under dry weather conditions 

and resulted in property damage only and a right shoulder closure for thirty minutes. Table 

3.2 illustrates the spatiotemporal speed variances for the crash situation versus a non-crash 
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situation. The non-crash situation speed variance is calculated at the same timestamps 

during a typical day where no crash occurred. The table shows the highest speed variances 

on the crash day, and lower speed variances on the regular day. The table also shows that 

speed variance was high prior to a crash, and monitoring speed in the traffic stream can 

raise a flag about potential crashes. 

Table 3.2 Spatiotemporal Weighted Speed Variance with and without Crash 

 

 

3.5 Final Database 

 

The final database includes all New Jersey freeway crashes documented in 2017. A total of 

16,649 crashes were distributed over nine freeways as shown in Table 3.3. 

 

 

 

 

 
Weighted Speed Variance (With Crash) 

Timestamp 

Distance to 

Accident (miles) 

14:57-

15:00 

14:56-

14:59 

14:55-

14:58 

14:54-

14:57 

14:53-

14:56 

14:52-

14:55 

0.73 5.02 4.56 4.03 3.81 4.02 3.96 

3.43 1.82 1.25 1.62 1.19 1.24 0.84 

3.86 2.1 1.28 1.67 1.24 0.9 0.67 

4.11 0.59 0.87 1.24 0.24 0.56 0.87 

5.5 0.47 0.24 0.37 0.92 1.28 1.57  
Weighted Speed Variance (Without Crash) 

0.73 0.45 0.63 0.06 0.17 0.24 0.99 

3.43 0.49 0.87 0.12 0.29 0.41 1.69 

3.86 0.62 1.07 0.36 0.29 0.41 1.24 

4.11 0.83 0.83 1.25 0.72 0.69 0.89 

5.5 0 0.25 0.19 0.2 0.2 0.19 
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Table 3.3 Crash Distribution on Freeways by Level of Injury Severity for 2017 

Freeway 

Location 

Miles in NJ Number of crashes Fatalities Injuries PDO 

I-278 1.3 5 0 1 4 

I-676 6.9 204 3 56 145 

I-76 3.08 492 1 99 392 

I-280 17.85 1605 2 350 1253 

I-195 34.17 631 2 140 489 

I-295 68.1 2407 12 562 1833 

I-78 67.83 3326 13 732 2581 

I-287 67.50 3618 5 698 2915 

I-80 68.54 4261 16 942 3303 

Total 335.27 16549 54 3580 12915 

 

New Jersey is a regional corridor for transportation since it is located between two 

major metropolitan centers: New York City and Philadelphia. Its freeways carry large 

volumes of interstate and intrastate traffic and goods. The Interstate system includes 431 

miles and carries around 20 percent of vehicle travel in NJ.  

The NJTP and the GSP are not included in New Jersey's Interstate highway network. 

They are however two of the busiest highways in the United States (Meyer, 2018). These 

two toll roads are maintained by the New Jersey Turnpike Authority (NJTA). On both 

roadways, crashes remain a critical issue as they withstand a high number of crashes per 

year. Figure 3.2 shows the number of crashes by injury severity between 2013 and 2017. 
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 Figure 3.2 Crash numbers by year or NJTP and GSP. 

Due to the difference of configurations and patterns on New Jersey freeways, crash 

data gathered in different locations is too large to be accommodated by one model. The 

factors associated with crashes are arbitrary and complicated by nature and combining all 

freeway data under the same model adds complication to the model’s predictions and leads 

to inaccurate results. Therefore, crash data gathered on I-80, the freeway with the most 

crashes, were chosen for model development and evaluation in the following chapters. The 

crash data recorded on one freeway is homogenous in terms of travel configurations which 

increases the accuracy of predictions. 

The Interstate 80 (I-80) in an east-west coast-to-coast freeway that runs from 

downtown San Francisco, California, to Teaneck, New Jersey. It is the second-largest 



 

 

 

51 

Interstate Highway in the United States, following I-90. The segment of I-80 that runs 

through New Jersey is also known as the Christopher Columbus Highway and the Bergen-

Passaic Expressway.  This segment runs for 65.84 miles from the Delaware Water Gap Toll 

Bridge at the Pennsylvania state line to Teaneck, Bergen County. I-80’s designated end in 

four miles short of New York City, where the New Jersey Turnpike northbound begins. I-

80 runs through rural areas of Warren and Sussex counties and continues through suburban 

surroundings in Morris County, and urban areas of Passaic and Bergen counties. 
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Table 3.4 Descriptive Statistics for Data Collected on I-80 
Factors Type Description Descriptive Statistics 

Injury Severity 

Level 

Nominal 0 = PDO; 1 = Mild Injury; 2 = 

Moderate Injury; 3 = Fatal/Severe 

Injury 

86.8% (n = 3699); 8.0% (n = 340); 

2.6% (n = 110); 2.6% (n = 112) 

Month Nominal 1 = January; 2 = February; 3 = 

March; 4 = April; 5 = May; 6 = 

June; 7 = July; 8 = August; 9 = 

September; 10 = October; 11 = 

November; 12 = December 

7.2% (n = 308); 6.5 % (n = 277); 

7.9% (n = 335); 6.0 % (n = 254); 

8.6 % (n = 366); 8.1 % (n = 346); 

7.4% (n = 316); 7.9 % (n = 338); 

8.3% (n = 353); 11.8 % (n = 501); 

10.6 % (n = 454); 9.7 % (n = 413) 

Day Nominal 1 = Monday; 2 = Tuesday; 3 = 

Wednesday; 4 = Thursday; 5 = 

Friday; 6 = Saturday; 7 = Sunday 

14.9 % (n = 634); 16.0 % (n = 

682); 16.6% (n = 706); 15.3 % (n = 

654); 17.0 % (n = 724); 10.0 % (n 

= 428); 10.2 % (n = 433)    

Peak Period Binary 0 = Non-peak; 1 = Peak 45.1 % (n = 1923); 54.9 % (n = 

2338) 

Direction Binary 0 = Westbound; 1 = Eastbound 50.4 % (n = 2148); 49.6 % (n = 

2113) 

Horizontal 

Alignment 

Binary 0 = Curved; 1 = Straight 18.3 % (n = 780); 81.7% (n = 

3481) 

Road Grade Binary 0 = Level; 1 = Grade 80.8 % (n = 3441); 19.2% (n = 

820) 

Surface Type Binary 0 = Blacktop; 1 = Otherwise 91.2 % (n = 3885); 8.8% (n = 376) 

Surface 

Condition 

Binary 0 = Dry; 1 = Otherwise 75.8 % (n = 3231); 24.2% (n = 

1030) 

Light Condition Binary 0 = Daylight; 1 = Otherwise 69.7 % (n = 2971); 30.3% (n = 

1290) 

Road divided Binary 0 = Barrier Median; 1 = Other 85.5 % (n = 3643); 14.5 % (n = 

618) 

Environmental 

condition 

Binary 0 = Clear; 1 = Other 76.8 % (n = 3274); 23.2 % (n = 

987) 

Temporary 

Traffic Control 

Zone 

Binary 0 = TTCZ; 1 = None 1.7 % (n = 74); 98.3% (n = 4187) 

Speed Nominal Speed (mph) Std Dev. = 17.58; Mean = 50.97 

Average Speed Nominal Speed (mph) Std Dev. = 10.81; Mean = 56.45 

Weighted Speed 

Variance 

Nominal (m/h2) Std Dev. = 0.32; Mean = 4.47 

Speed Limit Nominal Speed limit (mph) 50, 55 or 65 mph 

Milepost Nominal Milepost Std Dev. = 16.84; Mean = 44.84 

Number of Lanes Nominal One-way number of lanes: 2, 3 or 

4 

2.2 % (n = 91); 26.5% (n = 1130); 

71.3% (n = 3040);  
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3.6 Summary 

 

This chapter presented the data collection procedure followed to create an inclusive working 

database that will be used for model development in the next chapter. The final data was 

obtained from combining four resources: crash records, NJ-SLD, NJCMS and floating-car 

data. These databases were introduced and explained, and the challenges faced in the data 

collection procedure were discussed. The traffic volume and the weighted speed variance. 

The data development process yielded a final database consisting of crash information on 

New Jersey’s interstates. This comprehensive data will be used to develop a base LRM and 

an ANN in Chapter 4. 
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CHAPTER 4 

METHODOLOGY 

 

This chapter explains the general structure and development of the Linear Regression Model 

(LRM) and Artificial Neural Network (ANN). The first section is dedicated to the LRM, 

the dependent and explanatory variables used to develop it and its final structure. The 

second section describes the procedure to develop the ANN along with its final proposed 

configuration. 

4.1 Linear Regression Model Development 

 

4.1.1 Dependent Variable and Explanatory Variables 

This study is investigating the possible effect of different traffic-related factors on crash 

injury severity level. The explanatory variables or independent variables are used to predict 

or explain the behavior of the response variable or dependent variable. This section 

introduces the dependent variable and explanatory variables used in the model development. 

The same data are used for the LRM and the ANN development process discussed in 

subsequent sections. As such, the dependent and explanatory variables discussed in this 

section are applicable to both models. 

Dependent Variable 

 

The dependent variable is the one being measured and assessed. It represents the outcome 

resulting from changing input in the explanatory variables. The purpose of the model 

developed in this study is to predict the output of a crash in terms of injury severity, hence 

the dependent variable is “injury severity level”.  
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The “KABCO” injury scale was developed by the National Safety Council (NSC) 

and is frequently used by law enforcement for classifying injuries: 

• K – Fatal; 

• A – Incapacitating injury; 

• B – Non-incapacitating injury; 

• C – Possible injury; and 

• O – No injury. 

In New Jersey, these categories are defined by the State as follows: 

• Killed: Victim is deceased. (Must check “Fatal” box at the top of the report) 

 

• Incapacitated: Victim has a non-fatal injury. Cannot walk, drive or normally 

continue the activities that they could perform before the crash 

 

• Moderate Injury: An evident injury, other than fatal and incapacitating. Injury is 

visible, such as a lump on head, abrasion, bleeding or lacerations 

 

• Complaint of Pain: A reported or claims of injury that is not fatal, incapacitating or 

moderate. Injury is not visible to the investigating officer. 

 

• No injury: No reported injury. 

In the raw data retrieved from the NJDOT crash records website and discussed in 

Chapter 3, there are ten possible levels of injury severity resulting from a crash. In addition 

to the types of most severe injury listed in Table 3.1, there are two additional possibilities: 

no injury, also known as PDO, and fatality. In this model, the injury severity levels were 

narrowed down from ten to four categories. Several types of injury were combined under 

one category because there was not enough data to represent each type in a separate 

category. The definitions follow those provided by New Jersey except that the “K” & “A” 

(Killed and Incapacitated) categories were merged together under “Severe Injury”. 
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Figure 4.1 Injury severity levels categories. 

As shown in Figure 4.1, the dependent variable “injury severity level” can take four 

different values ranging from no injury to severe injury as follows: 0 = Property Damage 

Only (PDO); 1 = Mild Injury (or complaint of pain); 2 = Moderate Injury; 3 = Severe Injury. 

The first category (PDO) is when there are no reported injuries nor complaint of pain by 

anyone involved in the crash, but only injury to property resulting from the crash. The 

second category (mild injury) is when a complaint of pain is reported on the scene by a 

party involved in the crash. The third category (moderate injury) is when any of the 

following is reported on the scene: contusion, bruise, abrasion, burn, fracture or dislocation. 

The fourth category (severe injury) is when the crash leads to one or more fatalities or an 

amputation, concussion, or internal injury. The four categories are summarized in Table 4.1. 
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Table 4.1 Description of Injury Severity Levels 

 
Injury severity level Description Reported injury 

0 PDO No injuries, no complaint of pain 

1 Mild Injury Complaint of pain/no visible injury 

2 Moderate 

Injury 

Contusion, bruise, abrasion, burn, fracture or 

dislocation 

3 Severe Injury amputation, concussion, internal injury or death 

 

Since the LRM is incapable of predicting integers, its output will be a real number referred 

to as Injury Severity Index (ISI) in this research. The ISI will be converted into a real 

number representing one of the four categories cited in Table 4.1 by rounding to the nearest 

integer. 

 

Explanatory Variables 

 

An explanatory variable is a variable that is assumed to have an effect on the dependent 

variable. A change in the explanatory variable inflicts a change in the dependent variable. 

As discussed in Chapter 2, there is a multitude of factors that can cause crashes and/or lead 

to a higher injury severity level resulting from a crash.  

Eighteen explanatory variables are tested to be included in the model development: 

month, day, peak period, direction, horizontal alignment, road grade, surface type, surface 

condition, light condition, road divider, environmental condition, temporary traffic control 

zone, speed, average speed, weighted speed variance, speed limit, milepost and number of 

lanes. These variables were chosen based on suggestions by the literature reviewed in 

Chapter 2 as well as the availability and applicability of the data discussed in Chapter 3. It 

is important to note that the prediction model developed in this research is intended to help 

traffic management centers during operations, and only real-time information available to 

decision makers prior to a crash is considered during model development. More detailed 
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data available after the crash is discarded from the analysis. Such data include information 

about the driver and the passenger(s), safety equipment available, safety equipment used, 

previous crash involvement, cellphone usage, alcohol usage, etc. 

Like the case of the dependent variable, the possible values of explanatory variables 

were also merged to avoid the under representation of some rare categories. An example is 

given to further explain this procedure: the light condition can take seven different values 

according to the State of New Jersey police crash investigation report provided by NJDOT: 

daylight, dawn, dusk, dark (streetlights off), dark (no streetlights), dark (streetlights on, 

continuous), and dark (streetlights on, spot). These categories were reduced to only two 

categories: daylight and otherwise, separating crashes that happened under daylight 

conditions from all others, no matter the condition of streetlights.  

The explanatory variable “Temporary traffic control zone” was not included among 

the potential explanatory variables used for model development. The majority of the data 

entries (98.3%) did not occur in a temporary traffic control zone and the remaining crash 

entries (1.7%) are not statistically sufficient for the explanatory variable to show a 

substantial effect on the injury severity level. Table 4.2 summarizes the final list of 

explanatory variables used in the following sections. 
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Table 4.2 Description of Explanatory Variables 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.2 Step Procedure for Model Development 

 

This section summarizes the step-by-step procedure followed to develop the LRM. A linear 

regression is a simple linear approach to modeling the relationship between a dependent 

variable and one or more explanatory variables. When only one independent or explanatory 

variable exists, the model is called simple linear regression. When there are several 

explanatory variables, the model is called multiple linear regression.  

Linear regression is an attractive model because its representation is very simple and 

straight forward. The representation is a linear equation that combines a set of input values 

(x), the solution to which is the predicted output value (y). As such, both the input values 

Explanatory Variables Type Description 

Month Nominal 1 = January; 2 = February; 3 = March; 4 = 

April; 5 = May; 6 = June; 7 = July; 8 = 

August; 9 = September; 10 = October; 11 = 

November; 12 = December 

Day Nominal 1 = Monday; 2 = Tuesday; 3 = Wednesday; 4 

= Thursday; 5 = Friday; 6 = Saturday; 7 = 

Sunday 

Peak period Binary 0 = Non-peak; 1 = Peak 

Direction Binary 0 = Westbound; 1 = Eastbound 

Horizontal alignment Binary 0 = Straight; 1 = Curved 

Road grade Binary 0 = Level; 1 = Grade 

Surface type Binary 0 = Blacktop; 1 = Other 

Surface condition Binary 0 = Dry; 1 = Other 

Light condition Binary 0 = Daylight; 1 = Other 

Road divider Binary 0 = Barrier Median; 1 = Other 

Environmental condition Binary 0 = Clear; 1 = Other 

Speed Nominal Speed (mph) 

Average speed Nominal Speed (mph) 

Weighted speed variance Nominal (m/h2) 

Speed limit Nominal Speed (mph) 

Milepost Nominal Milepost 

Number of lanes Nominal One-way number of lanes: 2, 3 or 4 

https://en.wikipedia.org/wiki/Linear_regression
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and the output value are numeric. The linear equation assigns a coefficient to each input 

value. If the goal is prediction or forecasting, linear regression can be used to fit a predictive 

model to an observed data set. The general equation for a multiple linear regression is 

formulated in Equation (4.1). 

 

y =  B0 +  B1X1 + B2X2 + ⋯ + BnXn (4.1) 

  

Where: 

• y = the predicted value of the dependent variable 

• B0 = the y-intercept (value of y when all other parameters are equal to 0) 

• B1X1 = the regression coefficient (B1) of the first explanatory variable (X1)  

• B2X2 = the regression coefficient (B2)of the first explanatory variable (X2) 

• BnXn = the regression coefficient (Bn)of the last independent variable (Xn). 

 

Developing a linear regression model means estimating the values of the coefficients 

used in the representation with the available data. Once the regression model is developed, 

if additional values of the explanatory variables are collected, the fitted model can be used 

to predict the response. The use of many variables to predict one particular outcome is one 

of the most useful prediction techniques. In this section, a multiple linear regression model 

is developed where several explanatory variables are used to predict a single quantitative 

outcome. The procedure followed to develop the LRM is depicted in Figure 4.2.  
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Figure 4.2 Step-by-step procedure for LRM development. 

Data Filtering 

 

The 5-step procedure depicted in Figure 4.2 was followed for a first attempt at the LRM 

development conducted using the entire crash database with a total of 4,261 crashes. This 

first model (LRM 1) yielded an R-squared value of 0.165. R-squared explains to what extent 

the variance of one variable explains the variance of the second variable. For instance, if 

the R2 of a model is 0.90, then approximately 90% of the observed variation can be 

explained by the model's inputs.  

There are no rules regarding what the minimum R-squared value should be as this 

varies between research areas. However, a value of 0.165 was considered low in this 

research as less than 20% of the observed variation was explained by the model, and a data 
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sorting process was conducted to narrow down data entries to be used in a second model 

(LRM 2) explained in detail in the following sections. 

Data entries with inconsistent speed measures were removed from the 4,261 initial 

crashes to increase the R-squared value. The speed under crash conditions should be less 

than the speed under normal conditions, and if the data does not show it, it is assumed that 

the speed measure reported from INRIX is not accurate and hence will affect the accuracy 

of the model.  Crashes where the speed measure was more than 5 mph higher than the 

average speed in normal conditions were discarded from the following analysis and 

development of LRM2  

After removing the above-mentioned data entries, the remaining 2,966 crashes were 

tested to develop a new regression model. 2,966 crashes in 2017 on I-80 were randomly 

divided into three groups (i.e., 70%, 20%, and 10% of total crashes, respectively) for 

training, validation, and testing purposes. The model development process using the new 

filtered data is discussed next. 

Correlation Analysis 

 

This section discusses step 2 of the model development: correlation analysis between the 

dependent and explanatory variables. 

Careful consideration of the correlation between explanatory variables and the 

dependent variable is required in regression analysis. Correlation analysis is a statistical 

method used to evaluate the relationship between two variables. A high correlation means 

that two or more variables have a strong relationship with each other, while a weak 

correlation means that the variables are hardly related. This method is strictly connected to 

the linear regression analysis.  
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The correlation is tested by conducting the Pearson’s chi-squared test. Pearson's chi-

square test (X2) is a statistical test applied to sets of categorical data to evaluate how likely 

it is that any observed difference between the sets arose by chance. Pearson’s chi-square 

test was performed to evaluate the relationship between each potential explanatory variable 

and the dependent variable: injury severity level. The computational process for the chi-

square test includes the following steps: 

1. Calculate the chi-square test statistic X2 as follows: 

 

 

 

X2 =  ∑
(f0 − fe)2

fe
 

(4.2) 

 

Where f0 = the observed frequency (the observed counts in the cells) 

and fe = the expected frequency if no relationship existed between the variables. 

 

2. Determine the degrees of freedom, df, of that statistic. 

3. Select a desired level of confidence (significance level, p-value) for the result of 

the test. 

 

4. Compare X2 to the critical value from the chi-square distribution with degrees 

of freedom and the selected confidence level. 

 

5. Sustain or reject the null hypothesis that the observed frequency distribution is 

the same as the theoretical distribution based on whether the test statistic exceeds 

the critical value of X2.  

 

6. If the test statistic exceeds the critical value of X2, the null hypothesis can be 

rejected, and the alternative hypothesis (H1 = there is a difference between the 

distributions) can be accepted. If the test statistic is less than the critical X2  

value, then no clear conclusion can be reached, and the null hypothesis (H0 = 

there is no difference between the distributions.) is sustained but not necessarily 

accepted.  

 

The chi-square statistic is computed using cross tabulation in SPSS. It can be 

evaluated by examining the p-value provided by the software. To make a conclusion about 

https://en.wikipedia.org/wiki/Categorical_data
https://en.wikipedia.org/wiki/Statistic
https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
https://en.wikipedia.org/wiki/Significance_level
https://en.wikipedia.org/wiki/P-value
https://en.wikipedia.org/wiki/Chi-squared_distribution
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the hypothesis with 95% confidence, the p-value of the chi-square statistic should be less 

than 0.05. If so, we can conclude that the variables are not independent of each other and 

that there is a statistical relationship between the explanatory variables. Assumptions are 

made when the chi-square test is conducted: 

• The tested data is randomly picked from the population. 

 

• The categories are mutually exclusive; each subject cannot fit in more than one 

category.  For example, a crash that occurred on Monday cannot be duplicated 

on Tuesday. 

 

Table 4.3 below shows the results of Pearson’s chi-square tests on the dataset. Figure 4.3 

shows the P-values of different independent variables.  

Table 4.3 Pearson's Chi-square Test Results 

Independent Variable Likelihood Ratio Tests 

Chi-square df P-value 

Month 4.468 1 0.035 

Day 0.004 1 0.95 

Peak period 8.306 1 0.004 

Direction 1.713 1 0.191 

Milepost 0.652 1 0.419 

Speed limit 1.018 1 0.313 

Number of lanes 2.7 1 0.1 

Horizontal alignment 0.76 1 0.383 

Road grade 1.27 1 0.26 

Surface type 5.538 1 0.019 

Surface condition 9.689 1 0.002 

Light condition 4.649 1 0.031 

Environmental condition 2.275 1 0.131 

Road divider 1.17 1 0.279 

Speed  29.82 1 0.001 

Average speed 0.458 1 0.499 

Weighted speed variance 10.638 1 0.001 
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After discarding the variables that did not show significance at the 0.05 level, there 

are seven remaining significant explanatory variables. The explanatory variables with a P-

value less than 0.05 are: Month, peak period, surface type, surface condition, light 

condition, speed, and weighted speed variance. These explanatory variables shown in 

Figure 4.3 are considered for model development.  

 

 

Figure 4.3 P-values of explanatory variables. 

Multi Collinearity Analysis 

 

The next step is to evaluate multi collinearity among the variables. Multi collinearity is an 

occurrence where one explanatory variable in a multiple regression model can be linearly 

predicted from other explanatory variables accurately. It creates redundant information and 

might offset the results when trying to determine how well each explanatory variable can 

be used most effectively to predict the dependent variable.  An example of multi collinearity 

might exist between speed and traffic volume. When the traffic volume increases, the speed 

automatically decreases and vice versa, hence those two variables are dependent of each 
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https://en.wikipedia.org/wiki/Variable_(mathematics)
https://en.wikipedia.org/wiki/Multiple_regression
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other. The statistical implications from a model with multi collinearity may not be 

dependable.  

The Pearson’s rank correlation coefficients among the remaining variables are 

summarized in Table 4.4. The only slightly significant correlation exists between Light 

condition and Surface type. However, the Pearson correlation of 0.385 is not exceedingly 

high and both variables can still be included in the model. All seven explanatory variables 

will be considered for model development. 

Table 4.4 Correlations of Explanatory Variables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Correlations 
        

  
Month Peak 

period 

Surface 

type 

Surface 

condition 

Light 

condition 

Speed Weighted 

speed 

variance 

Month Pearson 

Correlation 

1 0.18 0.085 -0.26 0.2 -0.01 0.026 

Sig. (2-tailed) 
 

0.22 0.558 0.068 0.163 0.96 0.858 

N 2076 2076 2076 2076 2076 2076 2076 

Peak period Pearson 

Correlation 

0.175 1 -0.185 -0.135 -0.074 -0.13 0.057 

Sig. (2-tailed) 0.224 
 

0.199 0.35 0.612 0.35 0.693 

N 2076 2076 2076 2076 2076 2076 2076 

Surface type Pearson 

Correlation 

0.085 -0.19 1 0.25 0.385** -0.22 0.207 

Sig. (2-tailed) 0.558 0.2 
 

0.08 0.006 0.12 0.148 

N 2076 2076 2076 2076 2076 2076 2076 

Surface 

condition 

Pearson 

Correlation 

-0.26 -0.14 0.25 1 0.128 0.02 0.047 

Sig. (2-tailed) 0.068 0.35 0.08 
 

0.374 0.88 0.746 

N 2076 2076 2076 2076 2076 2076 2076 

Light 

condition 

Pearson 

Correlation 

0.2 -0.07 0.385** 0.128 1 -0.23 0.181 

Sig. (2-tailed) 0.163 0.61 0.006 0.374 
 

0.11 0.209 

N 2076 2076 2076 2076 2076 2076 2076 

Speed Pearson 

Correlation 

-0.007 -0.13 -0.224 0.023 -0.227 1 -0.04 

Sig. (2-tailed) 0.961 0.35 0.117 0.876 0.113 
 

0.785 

N 2076 2076 2076 2076 2076 2076 2076 

Weighted 

speed 

variance 

Pearson 

Correlation 

0.026 0.06 0.207 0.047 0.181 -0.04 1 

Sig. (2-tailed) 0.858 0.69 0.148 0.746 0.209 0.79 
 

N 2076 2076 2076 2076 2076 2076 2076 

** Correlation is significant at the 0.01 level (2-tailed). 
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Stepwise Regression 

 

The next step is to conduct the stepwise regression procedure with the explanatory variables 

left after eliminating multi collinearity in the previous step. 

The regression model uses the stepwise method in which the choice of explanatory 

variables used in the final model is carried out by an automatic procedure. It involves adding 

or removing potential explanatory variables consecutively and testing for statistical 

significance after each iteration. In each step, a variable is considered for addition to or 

subtraction from the set of independent variables. The forward selection approach involves 

starting with no variables in the model, testing the addition of each variable using a chosen 

model fit criterion, adding the variable whose inclusion gives the most statistically 

significant improvement of the fit, and repeating this process until none improves the model 

to a statistically significant extent. Figure 4.4 shows the iterative process of the stepwise 

regression used to reach the final model. 
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Figure 4.4 Stepwise regression process. 

The results of the stepwise regression are shown in Table 4.5. The predictors from 

steps 1 through 7 are respectively: speed, peak period, weighted speed variance, surface 

condition, horizontal alignment, surface type and month. These are the seven explanatory 

variables that were found significant enough to the change in the dependent variable. The 

R-squared that the model reached using all variables is 0.422, meaning 42.2% of the values 

are explained by the developed LRM. The initial R-squared is 0.393 in step 1, using only 

one independent variable and the most significant to the model: speed. The stepwise method 

automatically adds other variables to the model and calculates the new R-squared based on 

that addition. It keeps adding explanatory variables until the addition no longer yields 

statistically significant results. 

 

Step 0: Start with a null model: No variables

Step 1: Model with one variable: Add “Speed”

Step 2: Model with two variables: Add “Peak Period”

Step 3: Model with three variables: Add “Weighted Speed Variance”

Step 4: Model with four variables: Add “Surface Condition”

Step 5: Model with five variables: Add “Horizontal Alignment”

Step 6: Model with six variables: Add “Surface Type”

Step 7: Model with seven variables: Add “Month”
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Table 4.5 Stepwise Regression Results 

Step  R-squared Adjusted Std. Error of 

the Estimate 

R- squared 

Change 

Sig. F Change 

R- squared 

1 0.393 0.393 1.077 0.012 0 

2 0.405 0.404 1.071 0.01 0 

3 0.415 0.414 1.066 0.002 0 

4 0.417 0.415 1.066 0.003 0.035 

5 0.42 0.419 1.064 0.002 0.012 

6 0.422 0.419 1.063 0.002 0.041 

7 0.422 0.420 1.063 0.002 0.036 

 
 

LRM Final Equation 

  
The linear regression model is presented in Equation (4.3): 

 
 

y = 0.061 +  0.0212 ∗ Sp − 0.0197 ∗ PP + 0.0189 ∗ WSV + 0.005 ∗ SC +
0.0049 ∗ LC + 0.0048 ∗ ST − 0.0032 ∗ Mo +  

(4.3) 

  

Where: 

• y = the predicted value of the injury severity index 

• Sp  = Speed 

• PP =  Peak period  

• WSV = Weighted speed variance  

• SC = Surface condition  

• LC = Light Condition  

• ST = Surface type  

• Mo = Month  

 

While the R-squared of 0.422 is a large increase from the initial R-squared of 0.165, 

this value is still considered not good enough for a model to make reliable predictions as 

only less than half the values can be explained by the LRM. This low R-squared can be 

explained by several reasons: the most important being the data inaccuracy and the 

inadequacy of the LRM to absorb its complicated patterns:  
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• Most crash entries are PDO crashes. In that case, a linear regression is 

modeled to cover the bigger portion of the data and can therefore very poorly 

predict other crash injury severity categories (mild injury, moderate injury, 

and severe injury). 

 

• The lowest number of crashes in the database is that of moderate injury 

crashes and severe injury crashes (2.6% each).  The LRM tends to favor 

majority class over the minority class, and it is very difficult for the LRM 

equation to predict these injury severities as the speed would have to be 

exceedingly high. 

 

• The data has inaccuracies which generally led to an insufficient model 

performance. The overall accuracy and power of the resulting LRM is 

relatively poor and must be further improved by improving the data quality 

if the model is to be used for a meaningful operational crash risk prediction. 

 

• The linear regression is poor in handling classification problems, and this is 

further proven by the low value of R-squared. A better fit would be a discrete 

choice model as discussed in Chapter 2.  

 

 
4.2 Artificial Neural Network (ANN) 

 

This section introduces a non-parametric approach for predicting crash injury severity by 

an artificial neural network (ANN) model. ANNs are computer programs designed to 

simulate the way in which the human brain processes information. ANNs aggregate their 

knowledge by recognizing the patterns and relationships in data and learning through 

experience. 

An ANN consists of artificial neurons aggregated into layers. It models the neurons 

in a human brain by transmitting signals between its artificial neurons. It has been proven 

that an ANN with one hidden layer can approximate any finite nonlinear function with very 

high accuracy. This study adopts several forms of ANNs to find the best performing model 

in predicting crash injury severity. The typical structure of an ANN consists of an input 
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layer, an output layer, and one or more hidden layers. Figure 4.5 depicts the structure of a 

typical ANN. 

 

Figure 4.5 General structure of an ANN. 

ANN Development 

 

The Neural network toolbox in MATLAB was used for developing the ANN. For 

consistency purposes, the same crash data that was used in the LRM development are used 

for the ANN development. 2,966 crashes in 2017 on I-80 were randomly divided into three 

groups (i.e., 70%, 20%, and 10% of total crashes, respectively) for training, validation, and 

testing purposes. The model is initially built on training algorithms that adjust ANN weights 

of all explanatory variables using the training set. The fitted model is used to predict the 

outcome in the validation set that provides an independent evaluation. The testing set is 

designed to give an assessment of the ANN’s performance when the entire design procedure 

is completed. Figure 4.6 illustrates the workflow for ANN design. 
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Figure 4.6 Workflow steps for ANN design. 

4.2.1 ANN Types 

 

Step 1 of the ANN development includes data collection and variable identification. This 

was covered in Section 4.1.1. The same dependent and explanatory variables used for the 

LRM development are used for the ANN development. The next step is to create the desired 

type of ANN. This includes training algorithm, activation function, input, output and 

number of hidden layers.  

In this study, two types of ANNs are tested: a three-layer Feed-Forward (FF) 

network consisting of an input layer, a hidden layer, and an output layer, and a four-layer 

Deep Feed-Forward (DFF) network consisting of an input layer, two hidden layers, and an 

output layer. By having multiple hidden layers, the ANN can compute more complex 
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functions. The number of hidden layers determines the depth of the neural network. In 

general, deeper networks can learn more complex functions. They do however require more 

computation time. 

Training Algorithms 

 

The training (or learning process) of an ANN is carried out by determining the difference 

between the predicted output of the network and the actual output. This difference is known 

as the error. The network then adjusts its weighted associations using this error value. 

Consecutive corrections cause the ANN accuracy to increase until a small acceptable error 

is reached, and the training can be ended.  

Several training algorithms can be used to determine the ANN weights. While every 

algorithm has advantages and disadvantages, the Resilient Backpropagation (RB) is the 

fastest on pattern recognition problems, whereas Levenberg-Marquardt (L-M) has the 

fastest convergence on function approximation problems. Both these algorithms in addition 

to Scaled Conjugate Gradient (SCG) and Variable Learning Rate Propagation (VLRP) are 

used in this study. 

Activation Functions 

 

Activation functions introduce non-linear properties to the ANN. They convert the input 

signal of a node to an output signal. That output signal is then used as input in the next layer. 

Between the i-th neuron of one layer and the j-th neuron of the next layer, the sum of 

products of inputs and their corresponding weights is calculated in Equation (4.4), and the 

activation function is applied to it to get the output of that layer and feed it as an input to 

the next layer as in Equation (4.5). This process repeats itself until the output of the final 

layer is generated. 
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Si =  ∑ Wij Xi

n

i=1

 
(4.4) 

  

Oi = F(Si) (4.5) 

 

 

 

Where Xi  is the input of neuron i 

• Wij is the weight coefficient between neuron i of one layer and neuron j of the next 

layer; 

 

• Oi is the output of neuron I; 

• F is the activation function. 

The ANN calculates the difference between its calculated output and the desired 

output and uses backpropagation to minimize the error until it reaches the minimum value. 

Several activation functions are used in this study: identity, Softplus, Softmax, and   ReLU 

(Rectified linear unit). 

Input, hidden and output layers  

 

Based on potential risk parameters suggested by previous studies and data availability, the 

input layer of the ANN consists of 17 neurons representing the explanatory variables 

discussed in Section 4.1.1. The number of explanatory variables was not narrowed down 

like it was in the process of LRM development by conducting statistical tests, as the ANN 

is a smart and dynamic tool that can recognize explanatory variables that do not have a 

significant effect on the dependent variable and automatically assign them negligible 

weights.  
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The hidden layers are located between the input and output of the network. They 

perform nonlinear transformations of the entered inputs to compute an output. There are 

several methods for determining the number of neurons in the hidden layers. The most 

commonly used are the following: 

• The number of hidden neurons should be between the number of neurons in the input 

layer and the number of neurons in the output layer.  

 

• The number of hidden neurons should be 2/3 the size of the input layer, plus the size 

of the output layer. 

 

The number of hidden neurons used to develop the ANN is 12 as it satisfies both conditions. 

The output layer consists of one neuron: the estimated dependent variable “injury 

severity index”. The output of the ANN is a number between 0 and 3 representing the 

potential crash injury severity index given a crash has occurred at a given location. Figure 

4.7 is a simplified chart of the ANN computation procedure example. 

 

 

Figure 4.7 ANN computation procedure. 
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4.2.2 Weight and Bias Initialization 

 

When the inputs are transmitted from layer to layer between neurons, the weights and biases 

are applied to the inputs. Weights control the signal between two neurons. A weight decides 

how much influence the input will have on the output. Biases are an additional input into 

the next layer that always have the value of 1. The bias unit guarantees that even when all 

the inputs are zeros there will still be an activation in the neuron. In general practice biases 

are initialized with 0 and weights are initialized with random numbers. 

4.2.3 Network Training 

 

ANNs are trained by processing examples that contain a known input and output. This forms 

an association between input and output which is stored within the ANN. The training of an 

ANN is conducted by determining the difference between the predicted output of the 

network and a target output, also known as the error. The network then adjusts its weighted 

associations according to a learning rule using this error value. This iterative process and 

adjustments will cause the neural network to produce output which is increasingly similar 

to the target output. After enough iterations, the training can be terminated based upon 

certain criteria. The training is conducted using the training algorithms discussed in Section 

4.2.1. Figure 4.8 depicts the simplified structure of ANN training.  
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Figure 4.8 Simplified structure of ANN training procedure.    

                        

4.2.4 Network Validation and Final Structure 

 

A validation dataset is used to tune the architecture of the ANN. As previously mentioned, 

I-80 crashes were randomly divided into three groups (i.e., 70%, 20%, and 10% of total 

crashes, respectively) for training, validation, and testing purposes. The validation dataset 

functions as a hybrid: it is training data used for testing, but neither as part of the low-level 

training nor as part of the final testing. Since our goal is to find the network having the best 

performance on crash data, the simplest approach to the comparison of different networks 

is to evaluate the error function using data which is independent of that used for training. 

The performance of the networks is then compared by evaluating the error function using 

an independent validation set, and the network having the smallest error with respect to the 

validation set is selected. The Root Mean Square Error (RMSE) was used as an index to 

determine the optimal ANN type, training algorithm, activation function and numbers of 

hidden layers. The lower the RMSE value, the better the model performance. Using 

different ANN models, each having a different number of hidden layers, input variables, 

training algorithm, and activation function, a total of 11 ANN were tested, and the best 

YES 

NO 
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ANN was chosen based on the lowest RMSE shown in Table 4.6. This RMSE was 

computed from the validation dataset (20% of crash data). 

Table 4.6 RMSEs of Various ANN Models 

ANN Hidden layers Activation function RMSE 

1 1 Identity 0.99 

2 1 Softplus 1.05 

3 1 Softmax 0.81 

4 1 ReLU 0.88 

5 1 Identity 0.96 

6 1 Softplus 1.11 

7 1 ReLU 0.96 

8 2 ReLU 0.88 

9 2 Softplus 0.95 

10 2 Identity 0.98 

11 2 Softplus 0.91 

12 2 ReLU 0.89 

 

ANN3 and yields the lowest RMSE based on the validation dataset. Adding a second hidden 

layer does not enhance the performance of the ANN. Hence a single layer FF ANN model 

is satisfactory to predict crash injury severity with acceptable accuracy along with the 

benefit of reduced computation time as compared to deep ANN models with two or more 

hidden layers.  ANN4 also performs well but uses a different activation function and returns 

a real number output which is referred to as the ISI. The ISI is converted into an integer 

representing one of the four categories cited in Table 4.1 by rounding to the nearest integer. 

The numerical performance of ANN3 and ANN4 is evaluated in Chapter 5. 

The finalized architecture of the proposed ANN model is shown in Figure 4.9. The 

ANN model consists of an input layer with seventeen neurons representing different 

explanatory variables, one optimized hidden layer with twelve neurons and an output layer 

with one neuron representing predicted crash injury severity.  



 

 

 

79 

 

Figure 4.9 Final configuration of proposed ANN. 

 

 

4.3 Key Takeaways from Model Development 

 

Parametric and nonparametric models exhibit strengths and limitations in different 

capacities. This section summarizes the key takeaways from the development process of the 

LRM and ANN.  

Explanatory Variables 

 

The LRM development requires more data sorting and statistical analysis. As discussed in 

Section 4.1, careful consideration of the correlation between explanatory variables and the 

dependent variable is required in regression analysis to avoid skewed predictions of the 

dependent variable. Chi-square tests and multi collinearity tests were conducted to eliminate 
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insignificant explanatory variables from the analysis. The ANN requires less work and can 

readily accept all explanatory variables as input. That is because every input has an 

associated weight in the ANN computations. The weights are initialized randomly and 

updated during the model training process. The ANN then assigns a higher weight to the 

more important input as compared to the ones considered less important.  

Structure Determination 

 

The ANN development requires a trial and error process to determine a good combination 

of its constituents: number of hidden layers, number of neurons in the hidden layers, 

activation function and training algorithm. An optimal neural network structure is derived 

from a series of tests. The LRM on the other hand does not require experimentations, it is 

always under the form of a linear function and there are no additional parameters that require 

trials and optimization. 

Assumptions 

 

The first assumption of linear regression is that there is a linear relationship between the 

explanatory variable and the dependent variable. When the assumption of the linearity is 

not satisfied, a large number of stochastic data entries can lead to the development of an 

unsatisfactory model and a low R-squared value. To address this issue, the LRM 

development requires more meticulous data screening and filtering discussed in Section 

4.1.2. The ANN is however dynamic and adaptive and can intelligently analyze input and 

provide reliable output without the need to remove data entries. In this research and for the 

purpose of consistency, the same data was used for the LRM and ANN development. 

However, the ANN does not assume any underlying patters within the data and uses an 
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exhaustive search to capture those patterns. The ANN has the ability to keep refining its 

outputs until it gets faster and more accurate at what it does. This dynamic learning process, 

also known as backpropagation, involves taking the network’s output, comparing it with an 

ideal result, and feeding it back into the network from scratch.  

Simplicity and Interpretation 

 

As discussed in the previous paragraph, the ANN captures more complicated relationships 

and hidden patterns than the LRM. It might outperform the LRM since it uses a 

sophisticated architecture with designed activation functions. However, the output of the 

LRM is a linear relationship that is clear and well-defined while ANN makes it difficult to 

verify the why of the output. Limitations of ANNs include its “black box” nature, where the 

inputs and outputs are only known without detailed knowledge of its internal workings. 

Even if the ANN has a higher degree of accuracy, it is relatively easy to explain a linear 

model, its assumptions and why the output is what it is.  
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CHAPTER 5  

MODEL EVALUATION  

 

 

 

Two crash injury severity prediction models were developed in Chapter 4. The first section 

of this chapter presents a detailed analysis conducted to evaluate the overall model 

performance of the LRM and ANN for predicting crash injury severity. The second section 

discusses the potential applications of the proposed models to support traffic safety planning 

and operations on freeways. 

 

5.1 Numerical Evaluation and Sensitivity Analysis  

 

5.1.1 Numerical Evaluation 

 

To evaluate the model performance, the Root-Mean-Square-Error (RMSE) is used to 

compute the variability between estimated values and observed values as shown in Equation 

(5.1). A RMSE value of 0 indicates a perfect fit to the data, therefore the smaller the RMSE, 

the better the model performance. The RMSE is a measure of accuracy, to compare 

forecasting errors of different models for a particular dataset and not between datasets, as it 

is scale-dependent. 

 

RMSE =  √
∑ (X̂i − Xi)2N

i=1

N
 

(5.1) 

  

Where: 

• X̂i is the observed injury severity level for crash i; 
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• Xi is the estimated injury severity level derived from the estimated injury severity 

index for crash i; and 

 

• N is the total number of crashes. 

As discussed in Chapter 4, 10% of the data is set aside for testing the model.  The test dataset 

is used once a model is trained using the training and validation sets. The procedure to test 

the model performance is explained below. 

Step 1: Classify the 296 freeway crashes selected for testing by injury severity level 

and further classify the crashes into peak and non-peak periods per each injury severity 

level. The corresponding data distribution of the selected crashes is illustrated in Table 5.1.  

Table 5.1 Test Samples Classified by Injury Severity Level and Peak Period 

 

 

 

Step 2:  Run each crash with the LRM and ANN3 models, respectively. Then 

compute the RMSE based on the predicted injury severity versus the actual injury severity. 

The RMSE is the square root of the variance of the residuals. It indicates how close the 

observed data points are to the predicted values. Whereas R-squared is a relative measure 

of fit, RMSE is an absolute measure of fit. Lower values of RMSE indicate better fit. RMSE 

is a good measure of how accurately the model predicts the response, and it is the most 

important criterion for fit if the main purpose of the model is prediction. The results are 

summarized in Table 5.2. 

 

Injury severity level Number of crashes Peak Non-peak 

PDO 226 132 94 

Mild injury 49 29 20 

Moderate injury 14 9 5 

Severe Injury 7 5 2 
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Table 5.2 RMSE of Test Samples by Injury Severity Level and Peak Period 

 

 

 

 

 

It is found that the ANN model had a lower overall RSME (0.84) and therefore 

outperformed the LRM for all injury severity levels. The lowest RMSE is recorded by the 

ANN for severe injury crashes and the highest RMSE was recorded by the LRM also for 

severe injury crashes. A low value of RMSE means that the difference between the actual 

value of injury severity and the predicted value of injury severity is small. A high value 

translates into a larger error caused by the model. The lowest possible RMSE is 0. This 

value is provided by the ANN for severe injury crashes under non-peak conditions. This 

means that the ANN correctly predicted all crashes in that category and returned no error. 

Based on the results displayed in Table 5.2, both the ANN and LRM offer a smaller RMSE 

with PDO crashes that represent most crashes (226 crash entries). The RMSE of the ANN 

model ranges between a minimum of 0.32 and a maximum of 0.99. The RMSE of the LRM 

is generally higher, ranging between 1.07 and 2.16.  

An additional analysis is conducted where crashes are further subdivided by 

peak/non-peak period to evaluate the model performance under different traffic conditions 

and speed patterns. Furthermore, grouping the crashes into peak and non-peak gives more 

detailed insight on the performance of the models.  

  RMSE 

  ANN LRM 

Injury Severity 

Level 

Peak Non-peak Overall Peak Non-peak Overall 

PDO 0.89 0.73 0.82 1.19 0.89 1.07 

Mild injury 1.04 0.92 0.99 1.35 1.33 1.34 

Moderate injury 0.82 0.89 0.85 1.19 1.14 1.17 

Severe Injury 0.45 0 0.32 2.22 2.01 2.16 

Overall 0.90 0.76 0.84 1.25 0.99 1.14 
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The best performance and lowest RMSE is recorded by the ANN during non-peak 

conditions for severe injury crashes. The highest RMSE is recorded by the LRM during 

peak conditions also for severe injury crashes. Both the LRM and the ANN generally 

perform better in non-peak periods when traffic is flowing smoothly, and speeds follow a 

standard pattern. The model performance somewhat decreases in peak periods when traffic 

patterns become more complex and less predictable. The ANN still generally outperforms 

the LRM. RMSEs calculated from the ANN model also have a smaller variation between 

peak and non-peak periods, as opposed to the RMSEs calculated from the LRM that have a 

large variation for severe injury crashes. 

Step 3: Crashes are divided by environmental condition to evaluate the model 

performance under different weather circumstances. The same testing sample is utilized and 

the data distribution of the selected crashes is shown in Table 5.3. The RMSE distribution 

of the ANN and the LRM model are shown in Table 5.4. 

Table 5.3 Test Samples Classified by Injury Severity Level and Weather Condition 

 

 

 

Table 5.4 RMSE of Test Samples by Injury Severity Level and Weather Condition 

  RMSE 

  ANN LRM 

Injury Severity 

Level 
Clear Other Overall Clear Other Overall 

PDO 0.83 0.79 0.82 1.18 1.04 1.15 

Mild injury 1.12 0.91 1.05 1.44 1.53 1.47 

Moderate injury 0.75 0.75 0.75 1.26 1.41 1.30 

Severe Injury 0 0.5 0.29 2.17 2.39 2.30 

Overall 0.86 0.80 0.84 1.25 1.16 1.24 

Injury Severity Level Number of crashes Clear conditions Other 

PDO 226 184 42 

Mild injury 49 32 17 

Moderate injury 14 10 4 

Severe Injury 7 3 4 



 

 

 

86 

The best performance and lowest RMSE is recorded by the ANN during clear 

weather conditions for severe injury crashes. Under these conditions, the RMSE is 0 which 

means that the ANN correctly predicted the outcome of all tested crashes. The highest 

RMSE is recorded by the LRM also for severe injury crashes during non-clear weather 

conditions. Generally, the model performance decreases during inclement weather periods 

when traffic patterns become more complex and less predictable. As for the ANN, it 

consistently outperforms the LRM by providing lower RMSEs. 

However, the RMSEs calculated in Tables 5.2 and 5.4 are still relatively high and 

the overall predictive power of the models is found to be comparatively poor and must be 

further improved to be used for a meaningful operational crash risk prediction. An overall 

RMSE value of 0.84 is close to 1 and means that the model is missing the prediction by an 

average of 1. For example, if the actual crash injury severity is mild injury (ISL= 1), the 

model could have predicted either a PDO or a moderate injury crash (ISL = 0 or ISL= 2). 

The best performance is witnessed for severe injury crashes when the RMSE hits 0 under 

certain conditions. Even when the RMSE for severe crashes is at its highest of 0.5 in Table 

5.4, it means the model is missing the prediction by 0.5. This result is considered acceptable 

as this range still translates into a severe injury crash and the model can alert decision 

makers to potentially unsafe conditions. 

In addition to the RMSE, the quality of the ANN predictions is evaluated based on 

its precision. The precision calculation requires the true positive (TP) and the false positive 

(FP) numbers for each injury severity level category.  

• TP: True positive value is defined as the number of crash cases under a 

specific injury severity category whose outcome is correctly predicted. 
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• FP: False positive value is defined as the number of crash cases whose 

outcome is falsely predicted as another injury severity level.  

 

Precision =  
TP

TP + FP
 

(5.2) 

 

The results are grouped by injury severity level and displayed in Table 5.5: 

 

Table 5.5 ANN Precision by Injury Severity Level 

 

 

 

The precision of a model represents the percentage of the results that were correctly 

estimated. The results show that the precision is highest for severe injury crashes where the 

model accurately predicted 86% of the testing sample. The precision decreases as the injury 

severity level decreases. It is lowest for PDO crashes where the model accurately predicted 

62% of the data. A good precision depends on the model objective and data type, but the 

ANN precision for severe injuries is considered good as most crashes are accurately 

predicted. The model performs more poorly for less severe injury crashes, and this is due to 

the stochastic nature of crash risk factors and data randomness and inaccuracies.  

5.1.2 Sensitivity Analysis 

 

The ANN captures more complicated relationships and hidden patterns than the LRM, and 

therefore outperforms the LRM as the results showed. However, it is relatively easy to 

explain the assumptions and output of the LRM determine countermeasures accordingly. A 

limitation of the ANN is its “black box” nature, where the output is known without detailed 

Injury Severity Level Number of crashes TP FP Precision 

PDO 226 141 85 0.623 

Mild injury 49 34 15 0.694 

Moderate injury 14 10 4 0.714 

Severe Injury 7 6 1 0.857 
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knowledge of its internal workings. A sensitivity analysis is conducted in this section to 

understand how explanatory variables affect the output of the ANN. The model used in this 

analysis is ANN4 as it returns a continuous output, and it is easier to discern slight ISI 

changes due to input perturbation. The input perturbation technique consists of changing an 

input of the ANN and measuring the corresponding change in the output. The perturbation 

is applied on one input at a time while others are fixed. The analysis is performed on four 

segments. These lane configurations and posted speed limits are typical on I-80. 

• Segment 1: milepost 1.45-3.59, speed limit = 55mph, 2 lanes per direction; 

• Segment 2: milepost 3.59-5.10, speed limit = 55mph, 3 lanes per direction; 

• Segment 3: milepost 8.10-21.51, speed limit = 65mph, 3 lanes per direction; 

• Segment 4: milepost 34.02-42.46, speed limit = 65mph, 4 lanes per direction; 

The ISI is computed for each entry before and after perturbation, and the percent change in 

ISI is computed as shown in Equation (5.2). 

 

% Change in ISI =    
Y′

i − Yi 

Yi
∗ 100   

(5.2) 

 

• Yi is the estimated  injury severity index of crash i using the initial 

explanatory variables without perturbation; 

 

• Y′
i is the estimated  injury severity level of crash i using the altered 

explanatory variables with perturbation; 

 

Step 1: The sensitivity between speed and ISI is conducted on segments 1-4. All 

explanatory variables but the speed are fixed in the ANN. The initial speed is set to 50 mph. 

The speed is then increased or decreased in increments of 10% up to 50%. The new ISI is 

calculated and the % change in ISI is computed. The results are displayed in Table 5.5. 
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When a speed increase/decrease in increments of 10% is added to the initial speed and a 

new output is calculated, the general trend on all four segments shows that higher speeds 

increase the ISI and lower speeds decrease the ISI. This result is expected as discussed in 

Chapter 2 and confirms the findings of previous studies.  

The ISI increases at a faster rate when speeds exceed 60 mph on two-lane highways 

with a 55 mph speed limit (Segment 1). The ISI also decreases substantially when the speed 

is decreased from 50 mph to 35 mph, and it reaches a plateau when the speed further 

decreases beyond 35 mph. On segment 2, the ISI increases slowly with an increase in speed 

until the speed exceeds 65 mph and the ISI starts increasing faster. The decreasing pattern 

is similar to that on segment 1, where the ISI decreases briskly until the speed reaches 35 

mph and then less intensely for lower speeds. 

Even though the ISI is directly proportional to the speed on all segments, the change 

in ISI on three-lane segments with a speed limit of 55 mph is less extreme than it is on two-

lane segments with the same speed limit. A 50% speed increase leading to a 75 mph speed 

on a three-lane segment increases the ISI by 8.53% compared to 17.05% on a two-lane 

segment. The injury severity level remains 1.0 (mild injury) even with a large increase in 

speed on three-lane segments. If the increasing pattern holds on two-lane segments, a 

minimum of 50% increase in speeds is required to raise the injury severity level to moderate 

injury (2.0).  

On Segments 3 and 4 with a higher speed limit (65 mph), the ISI follows the same 

pattern with respect to the speed. The ISI starts increasing faster when speeds exceed 65 

mph on three-lane and four-lane highways. Similarly to segments 1 and 2, the ISI reaches a 

plateau when the speed further decreases beyond 35 mph. The ISI is more sensitive to a 
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speed increase than it is to a speed decrease on segments with 65 mph speed limit. A 75 

mph speed (50% increase from 50 mph) on three-lane and four-lane segments rises the ISI 

by 14.37% and 11.68% respectively, whereas 50% speed reduction decreases the ISI by 

9.59% and 8.76% respectively. The opposite is true for segments 1 and 2 with a lower speed 

limit of 55 mph where the ISI is more sensitive to a speed decrease than it is to a speed 

increase: A 50% speed decrease on two-lane and three-lane segments lowers the ISI by 

20.16% and 16.28% respectively, whereas 50% speed increase raises the ISI by 17.05% and 

8.53% respectively. Figure 5.1 shows the change in ISI with respect to the change in speed 

on all segments. 

   

Figure 5.1 Change in ISI vs. speed on segments 1-4. 
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Step 2: The sensitivity between weighted speed variance (WSV) and ISI is 

conducted on segments 1-4. All explanatory variables but the WSV are fixed in the ANN. 

The initial value is set to 5 m/h2. It is increased in increments of 5 m/h2 up to 25 m/h2. The 

new ISI and the % change in ISI are calculated. The results are displayed in Table 5.6. 
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Table 5.7 Percent Change in ISI after WSV Perturbation, Segments 1-4 

 

 

 

 

 

 

 

 

 

 

When an increase in increments of 5 m/h2 is added to the initial WSV and a new ISI 

output is calculated, the general trend on all four segments shows that a higher WSV 

increases the ISI. On segments 1 and 2, the ISI follows a comparable trend: the ISI increases 

at a steady rate with the increase in WSV. However, a bigger increase in ISI is observed on 

segment 1 compared to segment 2. A WSV of 25m/h2 brings an increase to the ISI of 

16.94% on a two-lane highway whereas it brings an increase of 12.93% on a three-lane 

highway with the same speed limit. On segments 3 and 4 (where the speed limit is 65mph), 

the increase rate of the ISI is slower and more gradual as it reaches a lower maximum of 

8.89% and 7.63% increase respectively when the WSV is highest compared to segments 1 

and 2 with a speed limit of 55mph.  

The increase in ISI due to a WSV increase is however not as extreme as that due to 

a speed increase. The ISI increases by a maximum of 16.94% when the WSV is multiplied 

by 5. A close % increase (17.04%) is reached by increasing the speed by 50% on the same 

segment. Nevertheless, the ISI is directly proportional to the WSV and an increase in WSV 

leads to an increase in ISI on all four segments. Figure 5.2 shows the change in ISI with 

respect to the change in WSV on all segments. 

 

  S1 S2 S3 S4 

WSV 

(m/h2) 
ISI 

% Change 

in ISI 
ISI 

% Change 

in ISI 
ISI 

% Change 

in ISI 
ISI 

% Change 

in ISI 

5 1.24 0.00 1.16 0.00 1.35 0.00 1.31 0.00 

10 1.32 6.45 1.22 5.17 1.38 2.22 1.33 1.53 

15 1.36 9.68 1.26 8.62 1.40 3.70 1.35 3.05 

20 1.41 13.71 1.28 10.34 1.43 5.93 1.37 4.58 

25 1.45 16.94 1.31 12.93 1.47 8.89 1.41 7.63 
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.  

Figure 5.2 Change in ISI vs. weighted speed variance on segments 1-4 

 

 

5.2 Model Applications 

 

A comprehensive crash injury severity prediction ANN using big data was developed and 

evaluated in this research. The model offers a variety of practices and can be used to increase 

safety and optimize budget allocation to mobility by supporting traffic agencies in the 

planning and operation stages. In this section, potential applications for the proposed model 

are presented and safety countermeasures are discussed.  

5.2.1 Network Screening 

 

The AASHTO Highway Safety Manual (HSM) presents a variety of methods for 

quantitatively estimating crash frequency or severity at a variety of locations to develop a 

safer, more efficient roadway transportation system. HSM presents a 6-step Roadway 
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Safety Management Process (RSMP) shown in Figure 5.3. RSMP is a repetitive process to 

managing road safety. 

 

 
Figure 5.3 HSM 6-Step roadway safety management process. 
Source: https://safety.fhwa.dot.gov/tools/crf/resources/cmfs/management.cfm, Retrieved on May 22, 2018. 

 

• Step 1: Network screening is the process of prioritizing sites within a 

transportation network. Sites are ranked in this step, and the sites that are 

deemed to be the most dangerous are prioritized.  

 

• Step 2: Diagnosis is the process of investigating a site by statistical and 

analytical testing to determine the present contributing crash factors. The 

collected evidence helps prioritize safety countermeasures in the next steps. 

 

• Step 3: Countermeasure selection is the recommendation of means expected 

to mitigate the crash contributing factors. They include road design changes, 

public awareness, law enforcement, or EMS policies.  

• Step 4: Economic appraisal is a comprehensive economic assessment 

conducted under the form of a cost-benefit analysis for the proposed 

countermeasures. This maximizes the potential safety benefit per dollar. 

• Step 5: Project prioritization is the creation of a plan that implements the 

safety countermeasures that provide the maximum road safety benefit within 

the total allocated budget.  

 

https://safety.fhwa.dot.gov/tools/crf/resources/cmfs/management.cfm
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• Step 6: Safety effectiveness evaluation is the assessment of how well a 

countermeasure performs once it is applied. This step leads back into step 1 

with updated site information for the next round of network screening. 

 

Network screening is a very important step because financial resources are limited 

and transportation networks are large; it is practically impossible to modify an entire 

network simultaneously. The objective of network screening is to identify emphasis areas 

for directing investments in location specific road safety improvements. Based on existing 

conditions and historical data, transportation agencies can recommend methods to support 

their safety objective in several ways. 

Based on the ANN structure shown in Figure 4.9, some of the explanatory variables 

used as model input vary in real-time such as speed and environmental condition while 

others represent existing conditions: horizontal alignment, road grade, surface type, road 

divider, speed limit and one-way number of lanes. These variables can be assessed during 

network screening.  

Speeding is a factor in almost one-third of all fatal crashes, according to the NHTSA. 

Although agreement is almost general on the relationship between speed and crash severity, 

that relationship is complicated and changes on different road segments as discussed in 

Section 5.1.2. Posting speed limits is the most widely used method for managing speed. The 

MUTCD recommends that speed limits are set within 5 mph of the 85th percentile speed of 

free-flowing traffic. The MUTCD also lists other risk factors such as road geometry, 

roadside development, parking practices, pedestrian activity, and crash experience.  

There are predominantly two speed limit zones on I-80: 55 mph and 65 mph, in 

addition to a 1.45-mile, 50 mph segment near the Delaware water gap area as I-80 enters 

New Jersey from Pennsylvania. During the network screening process, it is recommended 
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that the segments are screened one at a time to determine if a change in speed limit is 

required. A traffic study using existing conditions and crash data should be performed to 

warrant a speed increase/decrease.  

Increasing the speed limit reduces travel time and improves economic productivity 

but it also increases potential injury and/or fatality risks. There are several methods for 

determining an appropriate speed limit on a roadway section such as the engineering 

approach, the expert system approach, the optimization approach and the injury 

minimization or safe system approach. In this case, the acceptance of the human body to 

injury during a crash is the primary factor in identifying appropriate speeds. Speed 

management involves balancing safety and efficiency in travel and that is why a network 

screening using ANN cash injury severity simulations on all segments is required to 

determine appropriate speed limits for combined safety and efficiency. 

When developing tools for safety data analysis, it is important to take into 

consideration the operational needs and abilities of the local authority. New Jersey has 

adopted the national vision for highway safety – Toward Zero Deaths. This calls for a 

national goal of reducing the number of traffic fatalities by half by the year 2030. New 

Jersey’s short-term crash reduction goal is to reduce serious injuries and fatalities by 2.5 

percent annually with the support of all safety partners, thus every countermeasure 

contributing to that goal is worth the invested time and resources. 

5.2.2 Real-time Traffic Management 

 

In addition to network screening and the assessment of existing conditions discussed in the 

previous section, the proposed ANN is a helpful tool that can be used to assist the New 

Jersey Strategic Highway Safety Plan (SHSP) by providing the ability to predict crash injury 
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severity under real-time conditions and shedding light on areas witnessing high 

fatality/severe injury rates during operations. With real-time monitoring of traffic and the 

existence of a comprehensive database reflecting existing conditions on the freeway, crash 

injury severity predictions can be made dynamically at specific locations under different 

time of day given traffic volume, speeds, weather conditions, etc. A heat map is generated 

to visually translate the numbers and point to potential sites considered unsafe. Figure 54 is 

an illustration of this method. It shows the predicted injury severity level at different 

segments and during different times of day given real-time conditions.  
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Real-time countermeasures on specific locations shown on the dynamic heat map can be 

recommended accordingly. Based on the sensitivity analysis results discussed in Section 

5.1.2, speed highly affects the consequences of a crash and examples of countermeasures to 

reduce speed are listed below: 

• Dynamic warning signs: the installation of dynamic warning signs reminds drivers 

of their travel speed and creates a sense of being monitored. These signs are shown 

to reduce vehicle speeds by up to 5 mph and are effective when used at speed 

transitions that occur as a driver enters an urban area. 

 

• Enforcement to improve speed compliance: Enforcement can be a preventive 

method applied before speeding. The physical presence of police serves as a 

psychological traffic calming method. It is also a corrective method if used after 

speeding and punishing the violating driver by police officers or other authorized 

officials. 

 

• Adaptive ramp metering: this strategy consists of deploying traffic signals on ramps 

to dynamically control the rate vehicles enter a freeway facility. This soothes the 

flow of traffic onto the mainline, allowing efficient use of existing freeway capacity. 

 

• Dynamic speed limits: This strategy adjusts speed limits based on real-time traffic, 

roadway, and weather conditions. Dynamic speed limits can be applied to an entire 

roadway segment or individual lanes. Real-time and anticipated traffic conditions 

are used to adjust the speed limits dynamically to meet the safety and mobility 

objectives.  

 

While the ANN model is developed based on I-80 data, the same methodology can  

be applied on other freeways in New Jersey such as the New Jersey Turnpike (NJTP) and 

the Garden State Parkway (GSP) as well as Interstates 278, 676, 76, 280, 195, 295, 78 and 

287. Real-time ANN computations can be extended to a network scale. With real-time 

monitoring of traffic along NJ freeway segments, crash injury severity predictions can be 

made in dynamically covering the entirety of the network. Figure 5.5 is an illustration of 

this method. It shows an example of potential crash injury severity level based on real-time 

computations by the ANN along New Jersey’s Interstate highway network.  
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Figure 5.5 Color-coded freeway segments based 

on real-time injury severity risk. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH 

 

 

 

With the increasing need for roadway mobility, motor vehicle crashes continue to be one of 

the United States’ most serious social, economic and health issues. The capability to 

precisely predict the crash factors and impacts on injury severity is essential to minimize 

both the cost and traffic congestion induced by crashes. In response to this challenge, an 

ANN model for predicting the injury severity level resulting from a crash was developed 

using big data sources in this research. The injury severity level index was predicted using 

explanatory variables proven to affect the crash outcome based on freeway data from 2017. 

The ANN performance was analyzed and compared to the performance of a LRM developed 

with the same set of data. 

 

6.1 Research Contributions 

 

The main contributions of this dissertation are listed below: 

1. A modeling framework was developed for decision makers to predict the anticipated 

crash injury severity in real-time using the available data required for model input. 

Despite the relatively poor performance of the developed models, the numerical 

analysis data suggest that driver decisions such as the traveling speed heavily 

influence the crash injury severity. 

 

2. The weighted speed variance was incorporated in the model as an explanatory 

variable, which proved to be critical to crash injury severity based on the results from 

the sensitivity analysis. The crash injury severity increases when the speed variance 

increases across the traffic stream. 

 

3. The predictive performance of a statistical model and a machine learning model was 

compared. The results show that ANN (machine learning) can explore the linear and 

non-linear relationship between a large set of contributing factors. The explored 

statistical model performs poorly and is not good enough in making reliable 

predictions. 
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4. The effect of traveling speed and weighted speed variance on the crash injury severity 

were demonstrated using sensitivity analysis. The risk of a severe injury increases 

when either one of these measures increases. 

 

5. The presented model can be readily applied in traffic management to identify 

roadway segments with relatively high crash injury severity risk based on the 

available data provided as model inputs. The presented model can be implemented 

to visualize crash risks on roadway segments.  

 

6. The modeling framework can be applied on other freeways in New Jersey and other 

states. Real-time ANN computations can also be extended to a network scale. With 

real-time monitoring of traffic along roadway segments, crash injury severity 

predictions can be made in dynamically covering the entirety of the network. 

Accordingly, traffic agencies can implement traffic calming strategies.  

 

7. The model offers a variety of practices and can be used to increase safety and 

optimize budget allocation to mobility by supporting state and local traffic agencies 

in the construction, operations, and planning phases. The ANN can be used to: 

 

• Identify sites with potential for improvement: quantify crash injury severity 

impacts of alternative highway geometry proposed plans; provide general 

methods useful for identifying sites with potential for improvement, 

diagnosis, and countermeasures.  

 

• Quantify real-time crash injury severity predictions resulting from changes in 

the traffic stream on freeways. With this information, transportation agencies 

can monitor traffic operation in real-time and be alert of potential high injury 

severity risk in specific locations.  

 

• Modify existing conditions to maintain safe operations: based on the 

historical data and the generated model results, crash patterns at existing 

locations can be identified and analyzed to determine potential risk factors 

that increase the likelihood of high injury severity.  

 

• Identify needs and program projects: identify sites most likely to benefit from 

safety improvement, classify targeted crash patterns for the network, and 

prioritize expenditures for efficiency. Isolate unsafe zones based on existing 

conditions and propose improvements for crash injury severity reduction.  

 

 

 

 

 

 

 



 

 

102 
 

 

6.2 Research Limitations 

 

While developing the crash injury severity prediction model, a wealth of insights, 

challenges, areas of potential improvements, and opportunities available to agencies in 

the areas of safety assessment, data collection, and performance measurement were 

identified, all of which are summarized below.  

 

• As each model presents advantages and limitations over the other model, it is 

difficult to say that one model is better than the other under all circumstances.  

The ANN captures more complicated relationships and hidden patterns than the 

LRM, especially when nonlinear relationships are involved. On the other hand, 

the ANN typically requires a large dataset for its optimization. This study 

reaffirmed that roadway crashes are stochastic and complex and while a good 

prediction model is a great tool to monitor traffic conditions and increase safety, 

prediction models react differently to varied sets of data and one model might 

not be optimal under diverse conditions.  

 

• With technological advancement, the transportation industry has been 

experiencing unprecedented massive traffic data obtained from different 

sources, such as infrastructure sensors, mobile devices, and floating cars. It is 

important to appropriately manage and interpret this new and rich form of data 

(big data) in efficient ways. The use of conventional data management tools 

cannot effectively uncover hidden correlations and intricate patterns and other 

insights, which would leave a large amount of traffic data underutilized. For the 

crash injury severity analysis, leveraging big data analytics and advanced 

prediction methods (e.g., ANN models), the accuracy of predicted crash injury 

severity can be significantly improved, in comparison to predictions using 

traditional deterministic approaches with data captured by loop detectors. The 

ability of big data analytics to work faster and adapt gives transportation 

agencies an unprecedented edge to enhance mobility, increase safety and reduce 

crash delays and costs.  

 

• The crash data is retrieved from the NJDOT, and some inaccurate entries 

negatively influence the predictive power of the model. For example, the 

beginning time of a crash is manually entered into the database by the police 

officer who reported to the scene. If this time is inaccurate, the speed 

information used in the model will challenge the accuracy of the prediction. 

Increasing the precision of the beginning timestamp is vital to the prediction 

model. In addition, the traffic counts information at the scenes of crashes are 

important measures for predicting injury severity. However, this data is missing 

for most locations. The hourly traffic volumes recorded in NJCMS are used 

instead for model development.  
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6.3 Future Research 

 

The advantage of using prediction models to estimate crash injury severity is that it becomes 

possible to quantify how changes to a specific characteristic of a facility or to the traffic 

conditions would affect the crash outcome. Creating a good statistical model requires access 

to a large amount of detailed data about existing facilities and accurate crash statistics. This 

data may be nonexistent or hard to obtain for some geographic areas and types of projects. 

In addition, one model is not always the best option for injury severity prediction as 

discussed in this research. Data analysis and prediction is a complicated process that 

requires additional research. Future research needed to enhance the prediction models 

developed in this study shall focus on enhancing the quality of the crash database.  

Improving data accuracy is the most important step to develop a better prediction 

model. Several data entries used in this study can be optimized: more accurate speeds, actual 

traffic volumes and more punctual crash timestamps will substantially improve the 

reliability of the developed model and produce more accurate results. It is also worthwhile 

to develop a self-updating database by gathering data from various sources in an automated 

manner where and when feasible. Linked databases can be updated separately with more 

up-to-date survey and information. For example, any change to the roadway geometry or 

an ongoing work zone can be automated and communicated between databases to reduce 

the time required for manual processing and improve productivity.  As discussed in this 

study, ANNs are dynamic models that can absorb new data and learn and adapt accordingly. 

With the ever-changing dynamics of traffic patterns, it is vital to have up-to-date data 

sources for accurate predictions and results. 
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Moreover, additional performance measures could be provided to further 

assess the predictive capability of the ANN. These measures include but are not 

limited to accuracy, precision, AUC and weighted F1 score. The RMSE was used in 

this research to compare both models for consistency purposes but including more 

performance measures can give a deeper understanding of the model reliability. 

In addition, the proposed model can be further extended to include the driver 

characteristics such as age, gender, driving experience, etc. which were not included 

in this study due to the lack of data availability in real-time. In 2017, major revisions 

were made to the New Jersey crash report manual (NJTR-1) involving the addition 

of new values to fields of the crash database. New values were added to distraction 

due to mobile devices field, and the safety restraints field was expanded with two 

new categories for child restraints. There were also changes in the environmental 

factors, roadway conditions and driving under influence (DUI) fields.  In future 

research and as technology advances, more data can be gathered including more 

parameters such as cellphone usage, drug involvement, and driver related 

characteristics and behavior.  
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