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ABSTRACT

COHERENT CONTROL OF DISPERSIVE WAVES

by
Jimmie Adriazola

This dissertation addresses some of the various issues which can arise when posing

and solving optimization problems constrained by dispersive physics. Considered

here are four technologically relevant experiments, each having their own unique

challenges and physical settings including ultra-cold quantum fluids trapped by an

external field, paraxial light propagation through a gradient index of refraction,

light propagation in periodic photonic crystals, and surface gravity water waves

over shallow and variable seabeds. In each of these settings, the physics can be

modeled by dispersive wave equations, and the technological objective is to design

the external trapping fields or propagation media such that a high fidelity or degree

of coherence of the wave phenomena is achieved.

Optimal control theory is used as the analytical and computational framework

in addressing these design problems. Optimal control problems are, generally

speaking, challenging searches over infinite-dimensional spaces. Methods from

Hamiltonian dynamical systems, asymptotic analysis, the integrability structure

of the uncontrolled constraints, and simple physical intuition are employed to

better guide these searches. By introducing the dimensional reductions afforded

by these methods, our computational searches are significantly more efficient, over

naively attempting to search the entire space of admissible controls, both in terms

of the desired outcomes and in terms of expended computational resources.

The optimal control problems posed throughout this dissertation also have

the additional challenge of being nonconvex optimization problems. In order

to efficiently address the nonconvex nature of these problems, the program

used is a global, nonconvex search which is then accelerated by fast local

methods. This methodology is specifically tailored toward maintaining feasibility



of implementing the computationally constructed control policies in technolog-

ically relevant settings.
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CHAPTER 1

INTRODUCTION

1.1 The Relevance of Optimal Control Theory in Today’s Technology

Optimal control theory is a branch of applied mathematics where the main goal

is to determine a control policy, in some suitable class of functions, such that a

clearly defined objective or measure of performance involving the state of some

dynamical system is considered optimal. The theory, which is an extension of the

classical calculus of variations, provides a framework for determining optimality

as well as methods for computing optimal control policies.

The necessary and sufficient conditions for optimality in a general class of

problems constrained to finite-dimensional dynamical systems goes back to the

1950’s through the independent works of the Jewish-American applied mathe-

matician Richard Bellman and Russian-Soviet mathematician Lev Pontryagin.

Given the historical context of the Cold War, it is interesting to note one of the

first applications of Pontryagin’s optimal control theory was the maximization

of a rocket’s terminal speed [25] while Bellman used his theory of dynamic

programming to study “games of survival” [6]. Because of its general framework,

optimal control theory continues to impact most scientific fields such as biology,

economics, ecology, engineering, finance, management, and medicine. Therefore,

the utility of optimal control theory for designing technology and policies in a wide

and diverse number of fields cannot be understated.

The aim of this dissertation is to apply methods of deterministic optimal

control theory to problems arising from the technological desire of controlling

coherent dispersive wave phenomena. We investigate the applications of such

control problems to transforming quantum fluids trapped by external magnetic

fields, reshaping laser beams in refractive wave-guides, and manipulating optical

solitons in periodic photonic crystals.
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Of course, optimization problems constrained by infinite-dimensional systems,

such as the ones we consider, are both theoretically and computationally

much more challenging than problems constrained by finite-dimensional systems.

Proving well-posedness of important control problems and constructing compu-

tationally tractable strategies for finding optimal controls in high-dimensional

settings remains an active area of research within applied mathematics. This

dissertation, and its initial focus of research, is motivated by our humble desire

to understand the recent work by others on the optimal control of Bose-Einstein

condensates.

1.2 Interpreting Quantum Control Problems From the Past Decade

Quantum optimal control, as it has come to be known in the literature, concerns

itself with the control of N -body quantum systems. An important example of such

a control problem is the reshaping of a dilute atomic Bose-Einstein condensate

(BEC). Since they were observed in laboratory experiments in the 1990’s, BECs,

an ultra-cold quantum fluid whose mean dynamics resemble that of a single

atom, have proven to be an experimentally reliable and versatile platform for

high-precision storage, manipulation, and probing of interacting quantum fields.

It is likely that future technologies involving quantum computation, simulation,

and metrology will be dependent on the fast manipulation of BECs [46].

Experimentalists over the last two decades have achieved remarkably high,

yet sub optimal degrees of control of BECs by using empirical rules of thumb

and intuition gained from significantly reduced models admitting closed-formed

solutions [72]. Meanwhile, optimal control theory provides a computational

framework for systematically finding highly efficient control policies. This is

demonstrated numerically in three spatial dimensions in the work by Mennemann

et al. [46] which depends on the seminal work due to Hohenester [34] which we

will outline shortly.
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Figure 1.1 An example of rotating a BEC. Shown here are density distributions
|ψGaussian|2 as they are rotated from the initial vertical state with a = 10 and b = 1
to the desired horizontal state with a = 1 and b = 10.

An example of a BEC manipulation studied by Mennemann, et al., is a

rotation of a BEC facilitated by squeezing and elongation. The goal of this

experiment is to reorient the magnetic field confinement concentrated along one

axial direction to another axial direction which in turn reorients the density

distribution of the condensate. A two dimensional example of this is shown in

Figure 1.1 with normalized Gaussian wavefunctions of the form

ψGauss =
4

√
ab

π2
e−ax

2−by2

, (1.1)

where a, b > 0 and (x, y) ∈ R2. Another manipulation Mennemann et al. consider

is one which topolgically changes the support of the wavefunction. An example of

this is shown in Figure 1.2 where a Gaussian wavefunction (1.1), with a = b = 1,

is mapped to the normalized toroidal wavefunction

ψToroid =
2√
3π
re−r, (1.2)

where r = x2 + y2.
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Manipulating the condensate will, in general, excite oscillations in the mean

field of the condensate and distort any intended coherence of the transformed

distribution after the control process has terminated. This dissertation considers

these types of manipulations when we attempt to control BEC optimally.

(a) (b)

Figure 1.2 An example of topologically changing the condensate’s support.
Panel (a) shows the initial distribution |ψGaussian|2 with a = b = 1 while panel
(b) shows the desired distribution |ψToroid|2.

The, now standard, optimal control problem which addresses these distortions,

first proposed by Hohenester [34], is one which maximizes the fidelity between an

evolving field ψ at a final time T and an experimentally-desired state ψd, subject

to a control function u. This problem, expressed in dimensionless form, is

inf
u∈U

J =
1

2
inf
u∈U

{
1− |〈ψd(x), ψ(x, T )〉|2L2(R3) + γ

∫ T

0

|u̇|2dt
}
, (1.3)

subject to the mean field dynamical system

iψt = −1

2
∆ψ + V (x, u(t))ψ + |ψ|2ψ, (1.4a)

ψ(x, 0) = ψ0(x) ∈ H1
(
R3
)
, (1.4b)

where the wavefunction ψ(x, t) belongs to L2 ([0, T ];H1 (R3)), ψ0 is some initial

quantum state, ∆ is the Laplacian operator, V (x, u) models the geometry of

confinement as a potential energy parameterized by the control u(t), U is an
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admissible class of control parameters u ∈ H1([0, T ]) with fixed initial and terminal

conditions, L2(Ω) is the space of square Lebesgue-integrable functions over the

measurable set Ω, and H1(Ω) is the Sobolev space of once weakly differentiable

L2(Ω) functions whose first weak derivatives are also in L2(Ω). Recall that wave

functions are typically normalized to have a unit L2(Ω) norm. Therefore, we also

require that ||ψ||L2(R3) = 1.

The dynamical constraint (1.4a) is known as the Gross-Pitaevskii equation

(GPE), and the confining potential V (x, u(t)) arises due to an applied optical or

magnetic field. How the constraint arises as a model of the mean-field dynamics

of BEC is discussed in detail in [53]. The objective J in Equation (1.3) has

two contributions which, after ignoring the factor of a half, are the infidelity,

defined as 1 − |〈ψd(x), ψ(x, T )〉|2L2(R3) ∈ [0, 1] and the regularization, defined as

γ
∫ T

0
|u̇|2dt. The infidelity is a type of terminal cost which penalizes control policies

that miss the desired wave function ψd. The regularization is a type of running cost

which penalizes the usage of physically undesirable controls with fast variations.

We provide more details in Section 2.2 about how optimal control problems are

generally posed with objectives involving terminal and running costs.

A more general control problem defined through the Hohenester objective

(1.3) and mean field constraint (1.4a), along with a running cost which also

penalizes the amount of work done by the control, was shown to be well-posed

by Hintermuller, et al., for approriately chosen values of γ [33]. The bulk of the

rigorous mathematical justification for the optimal control of mean-field BEC,

as well as the work carried out in this proposal, relies on well-posedness results

such as these. For this reason, we will simply state in which function space our

computations are carried out and provide limited mathematical detail otherwise.

This frees us to focus on the physical and technological applications, modeling,

and development of numerical techniques.

Mennemann, et al., numerically study experimentally motivated transfor-

mations of ψ(x, t), such as the ones in Figure 1.1 and Figure 1.2, by solving
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the associated optimal control problem, after setting γ = 10−6, with a projected

gradient method called Gradient Ascent Pulse Engineering, or GRAPE for short;

Subsection 2.4.4 discusses the idea of GRAPE as it was implemented in this

dissertation. Their work is the source of inspiration for the first problem of study.

Problem 1: Optimal Control of Bose-Einstein Condensates The first

problem this dissertation considers is the coherent control of BEC. Our primary

goal has been two-fold when attempting to understand this problem: can we gain

further physical intuition of the condensate dynamics as it is controlled, and can

we use this physical insight to implement optimization strategies in some easier,

i.e., finite-dimensional, computational setting?

To address these goals, we introduce a Galerkin ansatz which incorporates

the time-dependent nature of the confining potential, and use this as a means

to study two model problems: the optimal squeezing of a BEC in a quadratic

potential and the optimal splitting of a BEC by a time-dependent barrier. These

model problems are posed in one spatial dimension and are representative of the

salient features of the rotation problem 1.1 and splitting problem 1.2.

This work is the subject of Chapter 3 which begins by describing our

approach on modeling the squeezing and splitting problems. We show how

the associated finite-dimensional dynamics are constructed, justified, and further

simplified. We carefully show how the dynamics of the controlled condensate can

be reduced to just a single non-autonomous degree of freedom Hamiltonian system.

In the subsequent section of Chapter 3, we precisely define an objective for the

optimal control of finite-dimensional Hamiltonian systems. We suggest the general

minimization of any reasonable enough function of the canonical coordinates, time,

and controls after the dynamics have evolved for some time T > 0, and specialize

to the physically relevant case of when the function of interest is the Hamiltonian

that generates the dynamics. We then derive the necessary optimality conditions

for this class of Hamiltonian control problems.
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The resulting optimal control problem is non-convex. A technique called

multi-starting, i.e., sampling the space of initial controls in an ad hoc way for the

purposes of a local optimization method, is often used to overcome the nonconvex

nature of optimal control problems. Instead, we pursue a more systematic

approach which makes use of a hybrid optimization method that couples the

use of genetic algorithms, inspired by the work of Storn and Price [64], and

GRAPE in order to find controls which are more likely to be globally optimal.

These methods are used to solve the finite dimensional BEC optimal control

problems of this chapter and are explained in greater detail in Section 2.4. Once

we apply the techniques of Section 2.4 to solve these control problems, we solve

the Gross-Pitaevskii equation (1.4a) using the resulting computed controls to see

if they effectively control the full dynamics. We interpret the results and make

quantitative conclusions about the effectiveness of our overall strategy.

Moving forward, we turn our attention from control of quantum many-body

systems to the design of photonic technology using optimal control theory. We

aspire to contribute to the photonics community by adopting and modifying the

tools we acquired from studying BEC control problems. The first photonics

problem we consider is the reshaping of light propagating in a waveguide, and we

specifically thank Professors Braxton Osting and Alejandro Aceves for providing

this problem for us.

1.3 Designing Photonic Technology

Problem 2: Reshaping Light in Diffractive Wave Guides Reshaping

light remains an active area of research despite having been extensively studied

over thousands of years from the introduction of primitive lenses by the Ancient

Assyrians circa 750 B.C.E [1] to designs based on the sophisticated techniques of

optimal transport [24]. Requiring a laser beam to have a specified irradiance

distribution has diverse and broad applications which include laser/material

processing, laser/material interaction studies, fiber injection systems, optical data
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image processing, and lithography [22]. Geometric optics is the simplest physical

setting in which to study beam reshaping, and one that is often chosen. However,

the wave nature of light cannot be neglected when diffractive effects are present

as is often the case in nano-scale optical technologies.

Diffraction is taken into consideration in a recent paper by Kunkel and

Leger [36]. They demonstrate that the so-called phase retrieval method is a viable

means for numerically constructing a gradient-index (GRIN) optical fiber which

reshapes light to an intended intensity distribution. An example of light reshaping

Kunkel and Leger consider, and we show in Figure 1.3, is one which transforms

sharply peaked intensity profiles to nearly uniform ones.

Figure 1.3 An example of reshaping light with a peaked intensity profile into
one with a more uniform profile. Chapter 4 details the methods used to find such
a mapping.

For purposes of modeling, consider an electromagnetic field propagating

transversely through a linear waveguide, i.e., a waveguide through which the

electrical field responds linearly to the polarization of the propagation media.

Assuming time-harmonic fields with negligible magnetic fields components satisfying

the assumptions of the paraxial approximation, namely, that the direction of

propagation does not deviate much from the axial direction defined by the

waveguide, one can show [30] Schrödinger’s equation (in dimensionless form)

iψz = −1

2
∆⊥ψ + V (x, u(z))ψ, (1.5)
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arises from the inhomogeneous, variable-coefficient Helmholtz equation. Here, z is

the axis of propagation, x is the transverse direction, ∆⊥ is the Laplacian in the

transverse directions, V (x, u(z)) is proportional to a spatially varying refractive

index, and ψ is a spatially varying complex electric amplitude. The numerical

solution of Schrödinger’s equation is significantly cheaper computationally than

either the full numerical solution of Helmholtz’s or Maxwell’s equations. It is for

these reasons, one often commits to studying optical problems in the paraxial limit.

Also, it is clear that reshaping light in the Schrödinger optics regime naturally calls

for the use of quantum optimal control.

The light reshaping problem we consider seeks to find potentials V (x, u(z))

that transform the amplitude ψ as it evolves axially into a transverse stationary

state, i.e., a function ϕd such that

− 1

2
∆⊥ϕd + V (x, u(l))ϕd = λϕd, ϕd ∈ L2 (Ω⊥) , λ ∈ R, (1.6)

at the end of some propagation length l. This feature is highly desirable if the

mode is to then continue propagating through a wave guide since in this case its

absolute value will remain invariant as it evolves axially in z.

Our attempts to solve the light reshaping problem is the subject of Chapter 4

and is organized as follows. The first section precisely states the optimization

problem, which is nearly identical to the quantum optimal control problems

considered by Hohenester [34], with the distinguishing feature being that the

constraints are drawn from a slightly more general class of linear dispersive wave

equations. The intention of the stated problem is to map the nth eigenfunction of

an appropriately defined linear operator to the nth eigenfunction of another linear

operator.

In the subsequent section, we specialize to the case where the linearly

dispersive constraints are given by Schrödinger’s equation (1.5) and provide a proof

of concept in the form of a contrived, yet representative, numerical experiment.

Again we use the optimization methods described in Section 2.4 in order to

9



numerically solve the optimal control problem. We then focus on solving the

light reshaping problem shown in Figure 1.3 and pulse combining problem shown

in Figure 1.4.

Figure 1.4 Another example of light reshaping. Here, we combine three pulses
into one using optimal control theory. More detail is provided in Chapter 4.

Problem 3: Optimal apodization of Bragg gratings Another photonics

problem we consider in this dissertation is the excitation and control of optical

solitons; coherent pulses of localized light balanced by dispersive and nonlinear

focusing effects, in fiber Bragg gratings (FBGs). FBGs are typically short optical

elements in optical fibers with a periodic variation of the refractive index, called

a grating, along an optical fiber. The fiber grating strongly couples forward and

backward propagating waves from successive Fresnel reflection and transmission,

or simply a Bragg resonance, leading to an exponential attenuation of a specific

band of frequencies. Therefore, FBGs can act as a wavelength-specific bandstop

filter.

Meanwhile, the optical dynamics are richer when nonlinearities arising from

the optical Kerr effect are significant. This typically manifests itself as self-phase

modulation, a self-induced phase- and frequency-shift of light, but also manifests in

the cross-phase due to the grating’s coupling of forward and backward propagating

waves. This can lead to strongly focused light, yet when balanced with dispersion,
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Figure 1.5 A visualization of Fiber Bragg Gratings (FBG’s). Because of Bragg’s
law, the transmission and reflection in the spectrum is dependent on the spacing Λ
in the way as it is shown in this figure. Part of this proposal involves constructing
chirped gratings, and so we provide a basic picture of what is meant by that here.
This figure was provided to Wikipedia by users Sakurambo and Grahamwild and
is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

allows for the possibility of solitary waves; a self-reinforcing wave packet that

maintains its shape while it propagates at a constant velocity.

The manipulation of solitary waves using FBGs is generally quite difficult

because of the strong reflection of frequencies in the photonic stopband. Fortunately,

an apodization of the grating, i.e., introducing a spatially varying index of

refraction, can be used successfully to mitigate the strong Bragg reflection of

solitary waves. This technique allows for the possibility of dramatically slowing

light while compressing the width of its support by several orders of magnitude.

Dispersion compensation and pulse compression is essential in applications

that involve high-resolution multi-photon microscopy [2]. In addition, modern

optical communications systems use FBGs as notch filters or as components in

optical add-drop multiplexers [4]. Since information is transmitted as coherent

pulses of light in optical fibers, these pulses need to be manipulated or redirected

as they travel. Therefore, technology that can significantly slow down, or even

halt, solitary waves is highly desirable.

In a series of papers, Rosenthal and Horowitz, [56], [57], outline an

apodization method for exciting highly compressed solitary waves with a central

frequency near the Bragg resonance in the forbidden band gap. These waves,
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called gap solitons, can be excited by propagating a very wide low intensity pulse

toward an apodized grating. This leads to significant compression of the incident

light, and pulse compression techniques such as these may be promising in future

photonics devices where loss of coherence through dispersion is significant. An

example of this excitation scheme is shown in Figure 1.6:

Figure 1.6 A numerical simulation of the Rosenthal and Horowitz experiment
from [56] where a gap soliton has been excited by a specific FBG design. Dashed
lines indicate regions where the two segment apodization varies spatially. We
discuss, in greater detail, experiments of this type in Chapter 5.

Rosenthal and Horowitz [57] claim that their method is efficient. Despite

achieving an increase in the pulse-transmission of an excited gap soliton from

20-30% [48] to around 70%, the work of Rosenthal and Horowitz leaves room for

improvement. We investigate to what extent this method is efficient with the goal

of designing our own FBG apodizers which suffer less severely from losses due to

fiber Bragg back reflection such as in Figure 1.6. In Chapter 5, we outline the

physical models used, precisely define an objective with the intention to maximize

excited pulse energy transmission, and present our numerical results.

Problem 4: Optimal Control of Nearly-Integrable Systems We find,

after studying the control of excited Bragg solitons in Chapter 5, some of the

energy coupled into the grating is incoherent. By this, we mean, the energy

escapes from the localized support of the Bragg soliton on long enough time

scales. To address this, we construct control strategies that exploit the general

mathematical structure of the types of equations that support solitons as exact
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solutions. Improving upon the results of Chapter 5 is the impetus behind our

research of optimal control of solitons in nearly-integrable settings.

(a) (b)

(c) (d)

Figure 1.7 Numerical solutions of the nearly integrable KdV equation (1.7),
Panel (a) and Panel (b), and NLS equation (1.8), Panel (c) and Panel (d), for some
localized disturbances ε(t) explained in greater detail Chapter 6. The solutions at
the final computed time, panels on the right, show filtering unwanted mass from
the primary soliton data generally requires careful consideration.

The existence of solitons has a long and storied history [52] and is an indicator

of an infinite number of conserved quantities and so-called integrability. Equations

with such properties have deep mathematical structure and several interesting

properties. While gap solitons are not classical solitons, the two are related.

The basic governing equations of light propagating through FBG’s, the non-linear

coupled mode equations (NLCME), are related, in some way, to two integrable

systems: the non-linear Schrödinger (NLS) equation and the massive Thirring

model (MTM).
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In Chapter 6, we focus on studying the optimal control of classical solitons

in inhomogeneous media. There, we propose a method based on a spectral

decomposition of total mass into the mass carried by solitons and the mass of

the incoherent radiation. Decompositions of this type are expressed through the

so-called trace formulae [52], which we discuss in Appendix C, and can be roughly

interpreted as a type of nonlinear filtering of incoherent energy from coherent

soliton data.

In Section 6.2 and in Figure 1.7, we numerically demonstrate some of the

generic phenomena one can expect when studying nearly-integrable equations such

as the perturbed Korteweg-deVries (KdV) equation

∂tq + 6q∂xq + ∂3
xq = ε(t)q (1.7)

and perturbed NLS equation

i∂tψt +
1

2
∂2
xψ + |ψ|2ψ = ε(t)ψ. (1.8)

By nearly-integrable, we mean the Cauchy problem involving these equations

is exactly solvable in the absence of the time-localized disturbance ε(t). In

subsequent sections, we then present the soliton-specific control problem for the

KdV equation (1.7) since this is the simplest and earliest model problem of

a Hamiltonian system solvable by means of the Inverse Scattering Transform

(IST) [26].

Equipped with a soliton-specific control framework, we revisit the problem

of designing FBG in Chapter 7. We begin by showing how we can model the

dynamics of light in FBG by an inhomogeneous NLS equation. In Figure 1.8, we

visually demonstrate the basic approach which takes advantage of an appropriate

characteristic coordinate. Once we have a model dispersive wave equation at our

disposal, we treat this as the constraint in our soliton control framework. We

conclude with results from our methodology and leave open the possibility for

future work.
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Figure 1.8 Tracking the wave front shown in Figure 5.3. We show, in Chapter 7,
along the characteristic coordinates, drawn in black, the dynamics can be modeled
by an NLS-type equation.
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CHAPTER 2

ANALYTICAL FORMULATION OF OPTIMAL CONTROL

PROBLEMS AND NUMERICAL TECHNIQUES

2.1 A Brief History of Variational Problems

Problems involving the extremization of a given functional has a long and storied

history which can be traced back to antiquity when Queen Dido famously solved

a type of isoperimetric problem in founding the city of Carthage circa 8th century

BCE [74]. However, a rigorous proof of her solution would not appear until the

European scientific revolution after the methods of calculus and mathematical

analysis emerged [76]. The first functional optimization problems considered

during this time were Newton’s minimal resistance problem in 1687 [62] and the

Brachistochrone problem in 1696 [8]. Although these problems were solved by

various geometric methods, Leonhard Euler provided both a general framework

and necessary conditions for extrema in 1731. Euler named this branch of

mathematics the calculus of variations in 1756 after Joseph Louis Lagrange

provided the more systematic method of variations when Lagrange was just 19

years old [29]. Eventually, in 1879, Karl Weierstrass provided necessary and

sufficient conditions which classified these variational extrema as strong relative

minima building on earlier work by Adrien-Marie Legendre, Carl Gustav Jacob

Jacobi, and many others [68].

In the early 1900’s, Stanis law Zaremba provided existence proofs of minimizers

and his methods were later extended by David Hilbert and Leonida Tonelli [71].

This led to the development of the so-called direct method of the calculus of

variations which is still widely used today [39]. Although the question of existence

could be dispensed with as a mere subtlety, the danger of assuming the existence

of an optimization problem is clear from the following amusing paradox due to

Oskar Perron: “Let N be the largest positive integer. If N > 1, then N2 > N ,

contradicting the definition of N . Hence N = 1”.
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The calculus of variations, as a subject of pure and applied mathematics,

continued to remain relevant. Hilbert posed three problems, of his now famous 23,

which further stimulated research. The 20th problem, solved in a culminating effort

by several mathematicians throughout the 20th century, involves further devel-

opments in techniques for proving existence of minimizers and their connections to

boundary value problems [61] while the 19th problem, solved in 1957 by Ennio De

Giorgi [18] and John Forbes Nash [51], independently, is concerned with regularity

of solutions belonging to a particular class of variational problems. The last of the

three problems, problem 23 on Hilbert’s list, is simply encouragement for further

research in variational calculus:

“So far, I have generally mentioned problems as definite and special

as possible.... Nevertheless, I should like to close with a general problem,

namely with the indication of a branch of mathematics repeatedly mentioned

in this lecture-which, in spite of the considerable advancement lately given it by

Weierstrass, does not receive the general appreciation which, in my opinion, it is

due—I mean the calculus of variations.”

— David Hilbert, 1900 [32]

In order to illustrate a basic problem in the calculus of variations, consider

the following class of variational problems in Lagrange form:

inf
x∈χ
JL[x] = inf

x∈χ

{∫ T

0

L (x(t), x′(t), ..., xn(t), t) dt

}
(2.1)

where the time parameter t ∈ (0, T ) ⊂ R, T is called the time horizon, the

Lagrangian functional JL : χ → R models some geometric or physical scenario,

and the admissible function space χ = {x ∈ Cn(0, T ) : x(0) = x0, x(T ) = xT}

specifies the regularity restrictions and boundary conditions of the curve x(t). The

necessary optimality condition, the Euler-Lagrange equation, for this problem is

n∑
j=0

(−1)j
dj

dtj

(
∂L
∂xj

)
= 0, (2.2)

17



where xj is short-hand for the jth derivative of x(t) with respect to t.

A simple example to consider is the minimization of the arclength function

L(x′(t)) =
√

1 + x′2. Using Equation (2.2), it is easy to show that the linear

function x(t) = c1t + c2, where c1 and c2 are arbitrary constants, extremizes the

arclength functional. Although it is obvious to state a straight line is the curve

with minimum arclength, one could in principle show lines are truly minimizers,

and not just an extremizer, by applying Weierstrass’s conditions [68]. In general,

computing minimum length paths or minimal area surfaces is typically much more

challenging, and is an important task in fields such as differential geometry, image

processing, and Einstein’s theory of relativity.

Another brief application is to let L(x(t), ẋ(t)) = 1
2
ẋ2 − V (x), in Newton’s

notation, where V is a potential energy, so that Equation (2.2) implies Newton’s

second law: ẍ = −∂xV. This was first observed by Lagrange in 1788 and helped

pave the way toward Hamilton’s least action principle of classical mechanics; the

least action principle has served as a fundamental tool of mathematical physics

and analysis of partial differential equations (PDE) ever since. Broad areas of

mathematical physics ranging from potential theory to quantum mechanics make

use of variational principles [39]. For these reasons, the calculus of variations

was still an active area of research throughout most of the 20th century and its

importance is reflected through its inclusion in Hilbert’s famous problem set.

2.2 Structure of Deterministic Optimal Control Problems

Up until the middle of the 20th century, variational problems remained challenging,

yet had become somewhat mathematically routine [45]. However, in the 1950’s,

Lev Pontryagin and his students considered a reformulation of variational problems

which revitalized the field. Moreover, this reformulation, the optimal control

formulation, is better adapted for problems in the applied sciences and technology.

Previous formulations consider the path of a moving point, and its motion

controlled by the value of its momentum ẋ(t) for each moment of time. However, in

18



design problems typical of engineering and economics, one cannot choose momenta

arbitrarily because of underlying dynamic constraints. The critical idea of control

theory is to instead search for a parameter u(t) which determines ẋ(t). In this

sense, the state x of the system together with its momentum ẋ are responses

to a single set of control functions u. This framework is more general, can

handle dynamic constraints, and is more computationally straightforward from

a numerical standpoint.

Throughout this dissertation, our focus is on modeling design problems

from scientific experiments as optimal control problems, such as the optimization

problem with Objective (1.3). In this section, we describe a somewhat general

structure of the optimal control problems studied in this dissertation, and provide

a greater level of detail and the appropriate modifications as we come across each

problem in later chapters.

To this end, let ψ be the state of a dynamical system constraint in a

(generally) complex Banach space Bψ, let an admissible class of control functions

be U = {u ∈ Bu : u(0) = u0, u(T ) = uT}, where u0 and uT are specified boundary

values for the control policy u, and let J : Bψ ×U → R be an objective functional

which is to be minimized. The problem structure mainly considered throughout

this dissertation is of the form

inf
ψ∈Bψ ,u∈U

J [ψ, u] = inf
ψ∈Bψ ,u∈U

{
G(ψ)

∣∣∣∣
t=T

+

∫ T

0

F(∂tu)dt

}
, (2.3)

subject to

∂tψ + P(ψ, u) = 0, (Differential Equation Constraints) (2.4a)

d(ψ) = 0, (Boundary and Initial Data) (2.4b)

where P is a generally nonlinear differential operator such that the constraining

dynamics given by Equation (2.4a) are dispersive [77].

19



Note that a solution of the constraints (2.4) corresponding to a control u ∈ U

induces a map

ψ : U → Bψ : u 7→ ψ(u).

Therefore, the previous optimal control problem can be equivalently stated as an

unconstrained optimization problem over the control function u, i.e.,

inf
u∈U
J [u] = inf

u∈U

{
G(ψ(u))

∣∣∣∣
t=T

+

∫ T

0

F(∂tu)dt

}
, (2.5)

by making use of the so-called reduced functional

J : U → R, u 7→ J [u] := J [ψ(u), u] . (2.6)

Optimal control problem (2.5) is a version of the so-called fixed time, free

endpoint problem studied by Pontryagin, et al., and a simpler, finite-dimensional

version is discussed further in Section 2.3.1. The first term of J is called a

terminal cost and penalizes control policies which fail to drive ψ to the state

which minimizes G at t = T. Sometimes, the terminal cost is referred to as

a soft constraint since it can be viewed as a relaxation of the hard constraint

ψ
∣∣
t=T

= ψ∗T := arg min
{
G
∣∣
t=T

}
used in the so-called free time, fixed endpoint

problem [38]. The second term is called a running cost which we use to regularize

the control u. This relaxes the use of inequality constraints on u, which simplifies

the analysis and numerical study of the control problem. The typical choice

we make is F(z) = γ
2
z2, γ > 0, and is a type of Tikhonov regularization.

This penalizes controls which rapidly vary and often ensures the optimal control

problem remains well-posed, i.e., that solutions exist in the admissible space U [33].

We will make further remarks about the role of Tikhonov regularizations and

typical choices of the parameter γ in Section 2.3.4. In the context of classical

problems from the calculus of variations, optimization problem (2.5) is known as

a Bolza problem [27].
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After posing a Bolza control problem, we are of course tasked with solving

it. However, solving Bolza problems can be quite challenging since the admissible

classes Bψ and U are, in principle, infinite-dimensional. Exact solutions are often

impossible to find, and numerical solutions may be extremely computationally

intensive. Fortunately, many efficient solution strategies exist for solving Bolza

problems. These methods can be generally classified into three families: indirect,

direct, and dynamic programming methods.

2.3 Survey of Existing Optimal Control Paradigms and Available

Strategies

2.3.1 Indirect Methods and Pontryagin’s Principle

“The [maximum] principle was, in fact, the culmination of a long search in the

calculus of variations for a comprehensive multiplier rule, which is the correct way

to view it: p(t) is a “Lagrange multiplier” ... It makes optimal control a design

tool, whereas the calculus of variations was a way to study nature.”

— Francis Clarke, 1989 [16]

The discovery of the Pontryagin Principle initiated the field of optimal

control theory. New and interesting research directions emerged in studies of

differential equations, functional analysis, extremal problems, and computational

science as a result [37]. Moreover, the principle serves as the basis for a class of

numerical techniques called indirect methods.

The general philosophy of an indirect method is to “optimize then discretize.”

By optimize, we mean first use calculus of variations and adjoint state methods [35]

in order to formally derive the necessary optimality conditions given by Pontryagin’s

Principle. In optimal control theory, this generally reduces the problem to the

solution of a boundary value problem which is then solved by discretizing.

Although, there are numerous generalizations and alternate versions of the

Pontryagin Principle, we focus on a particular basic instance of it which captures

the essence of the theory relevant to this dissertation. In order to state the
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principle, consider the following fixed time, free endpoint optimization problem

inf
u∈U
J [u] = inf

u∈H1([0,T ])

{
g(q(T )) +

∫ T

0

r(q(t), u(t))dt

}
, (2.7)

subject to

q̇(t) = f(t, q(t), u(t)), (2.8a)

q(0) = q0, (2.8b)

where f : Rd × U → Rd is a uniformly Lipschitz continuous vector function

of each q, u, and t separately on [0, T ] [10]. The conditions on the function f

guarantees the existence of a unique state q for each control u ∈ U . Further define

the Hamiltonian function H(q, p, u) = pT(t)f(q, u, t) + r(q, u), p ∈ Rd, where T

denotes matrix transpose. The Pontryagin Principle asserts the existence of a

function p∗ which is the conjugate momentum of the optimal trajectory q∗.

Theorem 2.3.1 Assume u∗ is an optimal control for the problem defined by

objective (2.7) and constraints (2.8a). Then there exists a function p∗ : [0, T ]→ Rd

such that

q̇∗(t) = ∂pH(q∗(t), p∗(t), u∗(t)), (2.9a)

ṗ∗(t) = −∂qH(q∗(t), p∗(t), u∗(t)), (2.9b)

p∗(T ) = ∂Tg(x∗(T )), (2.9c)

H(q∗(t), p∗(t), u∗(t)) = inf
u∈U
H(q∗(t), p∗(t), u(t)). (2.9d)

Additionally, the following saturation condition holds: t 7→ H(q∗(t), p∗(t), u∗(t)) is

constant.

Theorem 2.3.1 is considered a milestone in the theory of optimal control [45].

In essence, it converts an optimization problem over an entire function space to

the pointwise optimization problem (2.9d) which depends only on the solution of

a boundary value problem defined by Equations (2.8b), (2.9a), (2.9b), and (2.9c).
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An indirect method is an iterative method which approximates the optimality

conditions of Theorem (2.3.1). In Section 2.4.5, we demonstrate how an indirect

method can be used to solve a toy optimal control problem.

2.3.2 Direct and Pseudospectral Methods

Solving more general optimal control problems using an indirect method can be

extremely difficult due to the curse of complexity present in additional algebraic,

inequality, or non-smooth constraints [13,59]. In addition, it can be shown that if

the admissible class of controls U is not locally convex then indirect methods may

generate erroneous solutions even in very simple contexts [58]. An alternative is to

use a direct method where the philosophy now is to “discretize then optimize.”

In general, this leads to a large-scale nonlinear programming (NLP) problem.

The advantage here is that many state of the art methods exist for solving NLP

problems, and many of these methods do so through approximations of the well-

known Karush-Kuhn-Tucker (KKT) conditions for optimality [12]. NLP problems

are typically better suited to handle more general constraint spaces and overcome

issues arising from the nonconvexity of the admissible space U . Furthermore, NLP

problems are somewhat easier to understand theoretically, and therefore more

accessible to a wider group of engineers, because solving them does not require

functional analysis and calculus of variations.

Although direct methods offer these computational and theoretical advantages,

the solutions computed in this way may fail to converge to the optimality

conditions given by the Pontryagin Principle even though they converge to

the KKT conditions [58]. This failure is due to the noncommutativity of

dualization, i.e., writing extremal conditions through the use of a multiplier

rule, and discretization. Ross, et al. [59], show how these operations can be

made commutative in the context of pseudospectral methods based on Gaussian

quadrature. Consequentially, pseudospectral direct methods are among the best

options for solving deterministic ODE constrained optimal control problems.
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2.3.3 Dynamic Programming

Dynamic programming is a general method for handling mathematical optimization

and computer programming problems. The basic idea is to recursively decompose

a general problem structure into sub-problems. In the context of optimal control,

Bellman’s principle of optimality states that “An optimal policy has the property

that whatever the initial state and initial decision are, the remaining decisions

must constitute an optimal policy with regard to the state resulting from the first

decision” [6].

Applying Bellman’s principle of optimality to the objective functional (2.3)

yields the Hamilton-Jacobi-Bellman (HJB) equation [6]

∂tJ + min
u
{∂qJ · f(t, q, u) + r(q, u)} = 0, (2.10a)

J (q, T ) = g(q(T )). (2.10b)

Once the HJB Equation (2.10a) is solved backward from the terminal condition

(2.10b), Pontryagin’s Principle (2.3.1) determines the optimal control u; this

typically amounts to the computation of a single gradient of J with respect to the

states q. The main advantage of this approach is that the HJB equation provides

necessary and sufficient conditions for minimality. Furthermore, extensions exist

for problems constrained by stochastic differential equations.

Although Bellman’s approach has several theoretical advantages over the

optimal control paradigms of Pontryagin and Ross, solving the HJB equation is

a significant undertaking for two reasons. The first is due to the so-called curse

of dimensionality. Grid based methods, such as ones built from finite-differences,

are impractical when the dimension of the constraint space is large. The second

obstacle is that the HJB equation typically fails to have classical solutions even

for smooth input data and problem domains [5].

The theory of viscosity solutions, discovered by Crandall and Lions in the

1980’s [17], adequately addresses the need for a setting in which to study HJB-
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type equations. This theory was originally motivated to handle optimal control

problems and has since been applied to a wide range of applied mathematics

problems [5].

In addressing the computational challenge of solving the HJB equation,

recent work [60] proposes deep learning techniques which overcome the curse

of dimensionality inherent in grid based methods. This offers interesting future

directions for extending some of our problems to a stochastic setting. However,

we will not pursue dynamic programming based methods in this dissertation since

they do not offer a substantial advantage for the deterministic problems of this

dissertation.

2.3.4 The Role of Tikhonov Regularization

Ill-posed and ill-conditioned problems frequently arise in mathematics. Some

of the problems of this dissertation are ill-posed, and so we must pursue

appropriate regularizations. In order to overcome this common challenge, one

often introduces a type of regularization which either converts the problem to

a well-posed one or better conditions the resulting computational problem. The

Tikhonov regularization technique has been successfully applied in several contexts

ranging from ill-posed optimal control problems [33] to the numerical solution of

poorly-conditioned integral equations [69].

The type of Tikhonov regularization we consider throughout this dissertation

imposes a penalty on control functions which oscillate rapidly. In order to show

how this might help condition a problem in a much simpler context, consider the

following optimization problem

min
x∈Rn

J = min
x∈Rn

{
1

2
xTAx− xTb+

ε

2
xTDTDx

}
(2.11)

where A is a real, symmetric, and positive definite n × n matrix, b ∈ Rn, D is a

differentiation matrix, and ε is some small parameter. By taking the gradient of
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the objective J in Equation (2.11), we see that the optimal vector x∗ satisfies

(
A+ εD2

)
x∗ = b (2.12)

where D2 is shorthand for DTD.

It is well-known that the condition number of a symmetric, positive-definite

matrix, such as the matrix A with condition number denoted by c(A), is given by

the ratio of its largest eigenvalue to its small eigenvalue [65]. For this reason, we

would like to better understand the effect of the Tikhonov regularizer εD2 on the

spectrum of A for small enough ε. To this end, consider the asymptotic expansions

λ(ε) ∼
∞∑
j=0

λjε
j as ε→ 0, (2.13a)

ν(ε) ∼
∞∑
j=0

νjε
j as ε→ 0, (2.13b)

where ν0 and λ0 are defined as the respective eigenvector/eigenvalue pair of the

matrix A. To leading order, we have

Aν0 = λ0ν0, (2.14)

which is automatically satisfied by the definition of ν0 and λ0.

To next order, i.e., O(ε), we have

(A− λ0I)ν1 = (λ1 −D2)ν0, (2.15)

where I is the n × n identity matrix. The Fredholm alternative tells us the

solvability of Equation (2.15) requires the right-hand side to be orthogonal to

the left-eigenvector of A [65]. Since A is symmetric, the left eigenvector of A is

simply νT0 . The solvability condition of Equation (2.15) is then given by

λ1 =
νT0 D

2ν0

νT0 ν0

. (2.16)
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Thus, the resulting condition number is

c(A+ εD2) =
λmax

λmin
∼ λmax

0 + ελmax
1

λmin
0 + ελmin

1

+O
(
ε2
)
, as ε→ 0. (2.17)

Presumably, λmin
0 is nearly 0, so as long as λmin

1 is not, the regularization has a

high likelihood of being effective. Indeed, the asymptotic formula (2.17) gives

a criteria for finding effective differentiation matrices, i.e., effective, A−specific

differentiation matrices solve the following max-min problem

max
D2∈D

min
ν0∈V

{
νT0 D

2ν0

νT0 ν0

}
, (2.18)

where D is the space of all n × n second derivative matrices and V is the set of

eigenvectors of the ill-conditioned matrix A.

To better illustrate the effect this has on a nearly singular operator, take as

an example the symmetric, positive-definite matrix

A =

1 1

1 1 + µ

 , µ > 0 (2.19)

which has eigenvalues

λmin
0 =

1

2

(
−
√
µ2 + 4 + µ+ 2

)
, λmax

0 =
1

2

(√
µ2 + 4 + µ+ 2

)
. (2.20)

Clearly, A is ill-conditioned since c(A) → ∞ as µ → 0 from above. Indeed,

for µ = 10−6, the condition number c(A) ≈ 4 × 106. However, the asymptotic

result (2.17) says simply choosing D to be the forward difference operator

D =


1 0

−1 1

0 −1

 , (2.21)

and ε = 0.1, the regularized condition number c(A + εD2) ≈ 23; a noteworthy

improvement. In fact, the true value of the condition number

c(A+ εD2) =
2 + 4ε+ µ+

√
4− 8ε+ 4ε2 + µ2

2 + 4ε+ µ−
√

4− 8ε+ 4ε2 + µ2
(2.22)
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is even smaller at a value close to 7.

Choosing the operator D is problem-specific. However, we find that

using second order centered-difference matrices D2 is sufficient throughout this

dissertation. This is the choice we make implicitly throughout our work and its

effectiveness is demonstrated in Subsection 2.4.5.

2.4 The Hybrid Method

2.4.1 Overall Strategy

The previous computing paradigms have been extremely successful in many

applications when the constraining dynamics are ODE [6, 13, 58]. However, in

this dissertation, we are often faced with solving PDE constrained optimization

problems. At the time of this writing, and to the best of the author’s knowledge,

there is no clear analogue of Ross’s direct methods from Section 2.3.2 or Bellman’s

approach of Section 2.3.3. Of course, one could discretize the PDE constraints and

control functions and pose the optimization problem as a large-scale NLP problem;

however, theoretical results such as the covector mapping principle are sparse in

this context. Moreover, this approach is somewhat difficult to implement and is

computationally less efficient than other available methods which we will discuss

shortly.

We note that since the admissible classes of controls U used throughout

this dissertation are all locally convex, indirect methods are still theoretically

and computationally viable because we avoid the paradoxical issues that may

arise when using them [58]. Indirect methods are still faced with a major

technical challenge; the non-convexity of either the objective functional or dynamic

constraints. When an optimal control problem is non-convex, indirect methods

alone are not guaranteed to converge to the global optima.

The method we use to solve optimal control problems throughout this

dissertation is a combination of a direct method at the level of the reduced cost

functional (2.6), which we call a semi-direct method in contrast with the fully

28



direct method of Subsection 2.3.2, followed by an indirect method. This approach

is called the hybrid method. Hybrid methods, when used appropriately, can

overcome non-convexity, yet still remain computationally efficient.

Combining direct and indirect methods in order to solve optimization

problems has been done for quite some time. Before the work of Ross, et al. [59],

the astrodynamics community routinely used direct methods based on Eulerian

and Runge-Kutta discretizations (instead of collocation as in Section 2.3.2), solved

the resulting optimization problem using NLP, and then used this solution as an

initial guess for an indirect method [58]. In the quantum control literature, it

seems Sørensen, et al. [63], were the first to use the type of hybrid method we use

in this dissertation. They use a semi-direct method of due to Calarco, et al. [14,23],

which uses a global search routine based on stochastic optimization to overcome

non-convexity. Although it is well-known stochastic optimization methods can

suffer from slow convergence near a local minimum [12], this is ameliorated by

coupling the optimization to an indirect method in order to accelerate convergence.

2.4.2 The Chopped Random Basis Method

The semi-direct method of Calarco, et al. [14,23], is called the Chopped Random

Basis (CRAB) method. It relies on choosing controls from the span of an

appropriately chosen finite set of basis functions so that the optimization is

performed over a set of unknown coefficients. The choice of the basis is problem

specific, but is always chosen so that controls remain in the appropriate admissible

space. The choice of representation we always make throughout this dissertation

is of the form

ur(t) = P(t;u0, uT , T ) +
N−1∑
j=0

εjϕj(t;T ), t ∈ [0, T ], (2.23)

where P is a fixed polynomial, ϕj(t) is some basis function, and the coefficients εj

are parameters to be optimized over. If the polynomial P and the basis functions
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ϕj are chosen wisely enough, then control ansatz (2.23) reliably simplifies the

optimal control problem given by objective (2.6).

The CRAB method can genuinely be viewed as a Galerkin type method.

Recall that the intent behind any Galerkin method is to choose the number of basis

functions N simultaneously large enough to define an accurate approximation, yet

small enough so that the overall procedure remains computationally inexpensive.

For the work in this dissertaion, we use at most 50 basis functions. In this way,

the optimization problem is now a small-scale NLP problem and can be solved

using industry standard techniques.

The technique we use to solve the resulting NLP problem is Differential

Evolution (DE) [64]. DE is a stochastic optimization method used to search for

candidate solutions to non-convex optimization problems. DE draws inspiration

from evolutionary genetics and is thus part of a class of so-called genetic

algorithms. DE searches the space of candidate solutions by initializing a

population of agents within some appropriately chosen region of space. These

agents are then mutated (see Algorithm 1) into a new generation that is necessarily

no worse than the previous generation. As each iteration, or generation, evolves

into the next, inferior agents inherit optimal traits from superior agents. After

a sufficient number of evolutions, the best agent in the final generation is chosen

as the candidate solution most likely to be globally optimal with respect to the

objective functional (2.3). We provide a pseudocode of the general method in

Algorithm 2. A more detailed discussion about DE and further implementation

and benchmarking details can be found in the book by Storn, et al. [55].

Since so few assumptions need to be made about the objective functional,

genetic algorithms as a whole are part of a wider class of optimization methods

called metaheuristics. Although metaheuristics are useful in the context of non-

convex optimization problems such as the one defined in Section 2.2, metaheuristic

methods make no guarantees about the optimality of candidate solutions. For this
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Figure 2.1 An example of vectors in R2 comprising the mutation function in
Algorithm (1). The unlabeled vectors are the linear combinations a+F (b− c), as
F ranges from 0.2 to 1.6, which are used in the crossover defined in Algorithm (1)
and used by Algorithm (2).

Algorithm 1: Differential Evolution Mutation

Result: A vector z mutated from agents in a given generation as

required by differential evolution.

input: 4 distinct members a, b, c, d from the current generation of

agents each with N components, the crossover ratio RC ∈ (0, 1),

and weight F ∈ (0, 2).

1 for j=1:N do

2 Compute a random variable rand;

3 if rand < RC then

4 y ← a[j] + F ∗ (b[j]− c[j])

5 else

6 y ← d[j]

7 end

8 z[j]← y;

9 end
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Figure 2.2 Different iterations of the DE algorithm applied to the peaks function
(2.24). (a): The initial population. (b): The population of vectors after 1 iteration.
(c): After 10 iterations. (d): After 20 iterations. The parameters used are F = 0.6
and RC = 0.9, and the number of agent vectors Npop is 20. Note that although
all Npop vectors are initialized on Ω = [−2.5, 2.5] × [−2.5, 2.5], vectors are not
explicitly constrained to be in Ω at each iteration. This accounts for the missing
vectors in Panel (b).
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Algorithm 2: Differential Evolution

Result: A vector likely to be globally optimal with respect to an

objective J .

input: A maximum number of iterations Nmax, crossover ratio

RC ∈ (0, 1) and weight F ∈ (0, 2)

1 while counter < Nmax do

2 Generate a population pop of Npop vectors.

3 for i=1:Npop do

4 CurrentMember← Popi;

5 Choose three distinct vectors ai, bi, ci different from the vector

Popi;

6 Mutate ai, bi, ci, and the CurrentMember into the mutated vector

z using the mutation parameters RC , F and Algorithm 1;

7 if J(z) < J(CurrentMember) then

8 TemporaryPopi = z;

9 end

10 end

11 Pop← TemporaryPop;

12 counter← counter + 1;

13 end
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reason, we use DE to search for candidate solutions and use these candidates in

order to generate initial controls for in an indirect method.

In order to illustrate the generic behavior of DE, we show, in Figure 2.2, the

effect of minimizing MATLAB’s peaks function

fpeaks(x, y) = 3(1− x)2e−x
2−(y+1)2 −

(
2x− 10x3 − 10y5

)
e−x

2−y2 − 1

3
e−(x+1)2−y2

(2.24)

using DE. We see that an initial, random population of vectors converges to the

globally optimal regions of the function fpeaks. At an intermediate generation, the

population vectors compete between two local minima, yet the population vectors

eventually converge collectively on the more optimal of the two.

We further demonstrate how DE overcomes non-convexity using another test

function. Consider the so-called Ackley function

fAckley(x, y) = −20e−0.2
√

0.5(x2+y2) − e0.5(cos 2πx+cos 2πy) + e+ 20. (2.25)

The Ackley function is highly non-convex. It has several local minima with a

global minima at the origin. In Figure 2.3, we show the convergence of DE to

the global minima in less than 40 iterations and with just Npop = 20 agents, see

Algorithm (2). We also find the parameters RC = 0.9 and F = 0.8, required of

Algorithm 2, work well enough for this test problem.

In the context of the CRAB method, the usage of DE requires uniformly

drawing the coefficients εj from an appropriately constructed N dimensional

hyperrectangle. The half-length of the jth side of the hyperrectangle is chosen

to be

lj =
uT − u0

j2
, (2.26)

so that each εj is sampled from a uniform distribution on [−lj, lj]. We choose

these coefficients to decay quadratically because the Fourier series of an absolutely

continuous functions exhibits the same type of decay [70]. In this way, the search
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(a) (b)

Figure 2.3 Minimization of the Ackley Function (2.25) using the evolutionary
Algorithms 1 and 2. Panel (a) shows the false-color plot of the Ackley function
with the optimal member from each iteration of Algorithm 2 denoted by stars.
Panel (b) shows the Ackley function evaluated at the optimal member of each
iteration.

space of amplitudes εj is not severely restricted, yet the controls generated by the

CRAB method remain technologically feasible throughout each generation.

2.4.3 Inexact Line Searches in Rn

We use a line search strategy throughout this dissertation to numerically

implement indirect methods. We introduce here the basic ideas of a line search in

the simpler setting of unconstrained optimization problems over Rn, i.e.,

min
x∈Rn

J(x), (2.27)

where the function J is assumed to be smooth. Line search approaches are iterative

methods and when applied to minimization problems can be summarized by the

following two steps: first, identify a descent direction pk, and then compute a step

size αk which determines how far xk should move along pk at the kth iteration.

Put simply, line searches determine pk and αk such that

J(xk+1) := J(xk + αkpk) < J(xk). (2.28)
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After a Taylor expansion of Inequality (2.28), we see that

〈pk,∇J(xk)〉Rn +O(αk) < 0. (2.29)

For this to hold uniformly in αk, we should choose the descent direction pk such

that 〈pk,∇J(xk)〉Rn < 0. The most natural choice is pk = −∇J(xk), in which case

the line search is called a gradient descent. Choosing pk = −H(xk)
−1∇J(xk),

where H is the Hessian of J and is assumed to be positive-definite, yields a damped

Newton-Raphson method.

The task of determining αk remains. An exact line search determines the

solution of the subproblem

min
α∈R

J(xk + αpk). (2.30)

Often, computational resources are better allocated toward computing better

search directions pk and away from determining the stepsize α exactly. Therefore,

it is wiser to approximate each αk. A reasonable approach to choosing αk is to

start with some large value of αk and to then continually reduce it until some

criteria is met. Observe that

J(xk + αkpk) = J(xk) + 〈αk, pk∇J(xk)〉Rn +O
(
α2
k

)
. (2.31)

This suggests it is reasonable to decrease αk until

J(xk + αkpk) ≤ J(xk) + 〈αkpk∇J(xk)〉Rn . (2.32)

This inexact line search is called backtracking, and Inequality (2.32) is called the

Armijo-Goldstein condition.

The line search strategies mentioned in this section are perhaps the

most straightforward to implement. Also, since Newton’s method requires a

computation of J ′s second derivatives, which is costly in a high-dimensional

setting, we choose to use the method of gradient descent. Of course, there are many

other options to choose from, see e.g. [12], but for the purposes of this dissertation,
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the basic method of gradient descent with Armijo-Goldstein backtracking is shown

to be adequate.

2.4.4 Gradient Descents in Homogeneous Sobolev Spaces

The last ingredient required of the hybrid method is an appropriate generalization

of a gradient descent in Rn. We use a method due to von Winckel and Borzi [75]

because it automatically preserves the boundary conditions necessary for controls

to stay within the admissible class U mentioned in the context of optimal control

problem (2.3). This method is more recent and has been repeatedly used in

the quantum control literature, see for example [34, 46]. We provide a brief

outline here, but first discuss the means of arriving at the necessary conditions for

optimality.

The problems considered throughout this dissertation are most easily

modeled in Bolza form (2.3); however, determining the extrema of the objective

functional (2.3) is more easily done for Lagrange problems where the relevant

objective functional is expressed in the form

J =

∫ T

0

L(ψ, u, ∂tu)dt. (2.33)

By assuming the terminal penalty function G is sufficiently smooth with respect

to the parameter t, i.e., G ∈ C1(0, T ), we can convert the Bolza functional (2.3)

to Lagrange form by using the fundamental theorem of calculus:

G(ψ, u)

∣∣∣∣
T

= G(ψ, u)

∣∣∣∣
0

+

∫ T

0

∂tGdt. (2.34)

In addition, the input data (2.4) throughout this dissertation will involve initial

conditions specified at the point t = 0. Therefore, we can ignore the first term on

the right hand side of Equation (2.34) since the initial data is assumed fixed when

we optimize over the control u. The resulting Lagrangian functional associated

with the Bolza problem is then given by

L(ψ, u, ∂tu) = ∂tG + F . (2.35)
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We note that this approach is not available if either G 6∈ C1(0, T ) or G is not

known in closed-form. With the exception of the problem of Section 3.3, we will

not encounter these issues and will mainly model optimization problems as Bolza

problems and later convert to Lagrange problems by using this strategy.

The constraint (2.4) can be adjoined to the Lagrangian (2.35) by introducing

a Lagrange multiplier p which exists in the space dual to Bψ; in the language of

optimal control theory, p is called the costate of the system. This motivates the

use of the Hamiltonian function

H = L+ p†P (2.36)

where † denotes the adjoint operator, as is similarly used by Theorem (2.3.1).

The first-order optimality conditions for the Lagrange problem are determined

by the appropriate Euler-Lagrange equations

δψJ = 0, (2.37a)

δpJ = 0, (2.37b)

δuJ = 0, (2.37c)

where δ•J is understood as the functional derivative of J with respect to • [27].

The method of gradient descent, in this context, takes the form

uk+1 = uk − αk∇uH
∣∣
u=uk

, (2.38)

where the stepsize α is chosen using backtracking, and the Armijo-Goldstein

condition for this problem reads

J [uk − α∇ukH (uk)] < J [uk]−
α

2
‖∇ukH(uk)‖2

L2([0,T ]). (2.39)

Until condition (2.39) is satisfied, the value of the stepsize α is decreased by some

constant factor less than one. Since the gradient descent (2.38) depends on which

function space ∇uH(u) is to be understood, we review some basic facts about

calculus on infinite-dimensional (affine) spaces.
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The Gateaux differential of a functional J , evaluated at a point u ∈ U in

the direction of a displacement vector v ∈ C∞c ([0, T ]) is defined by

duJ [u; v] := lim
ε→0

J [u+ εv]− J [u]

ε
, (2.40)

and if this exists for all displacement vectors v in U , the functional J is said to be

Gateaux differentiable. Suppose we have the uniform bound supu∈U |H(u)| ≤ M

for some finite M . By a direct calculation, observe that

duJ [u; v] = lim
ε→0

J [u+ εv]− J [u]

ε

= lim
ε→0

1

ε

(∫ T

0

H[u+ εv]dt−
∫ T

0

H[u]dt

)
= lim

ε→0

1

ε

∫ T

0

∫ 1

0

dsH[u+ sεv]dsdt

= lim
ε→0

∫ T

0

∫ 1

0

H′[u+ sεv]vdsdt

=

∫ T

0

∇uH[u]vdt := 〈δuJ , v〉L2([0,T ]) ,

(2.41)

making use of the bound on H in order to invoke the Lebesgue dominated

convergence theorem in the last equality.

This shows the gradient of H with respect to the L2([0, T ]) inner product

can be identified with the functional derivatives δuJ calculated and expressed

through Equation (2.37c) , i.e., ∇uH = δuJ in the space L2([0, T ]). However,

if one were to perform a gradient descent on an initially admissible control uk,

the increment αk∇uH
∣∣
u=uk

would fail to satisfy the boundary conditions and the

updated function would not be in the admissible set U . This problem is avoided

by revisiting the choice of vector space from which the controls are drawn.

Note that since we expect Taylor’s theorem to hold for all sufficiently regular

functionals on Hilbert spaces, the Taylor series

J [u+ εv] = J [u] + εduJ [u, v] +O(ε2) = J [u] + ε 〈∇uH(u), v〉X +O(ε2) (2.42)

holds term-by-term for all spaces X. The method of von Winckel and Borzi relies

on choosing X to be the homogeneous Sobolev space Ḣ1
0 ([0, T ]), i.e., the vector

39



space of measurable functions, with zero trace on the boundary of [0,T] such that

the norm ||?||Ḣ1
0 ([0,T ]) induced by the inner product

〈?, ?〉Ḣ1
0 ([0,T ]) :=

∫ T

0

(∂t?)
† (∂t?) dt, (2.43)

is finite. This implies, by equating the Gateaux differential with respect to

L2([0, T ]) and with respect to Ḣ1
0 ([0, T ]),

〈δuJ , v〉L2([0,T ]) = 〈∇uH(u), v〉Ḣ1
0 ([0,T ]) =

∫ T

0

∂t∇uH∂tvdt

= −
∫ T

0

∂2
t∇uHvdt = −

〈
∂2
t∇uH, v

〉
L2([0,T ])

(2.44)

where integration by parts is used once along with the boundary conditions of v.

Since this holds for all displacements v ∈ C∞c ([0, T ]), we conclude that in order to

perform a gradient descent at the current control u, we must first solve the strong

form of (2.44)

∂2
t∇uH = −δuJ , ∇uH(0) = ∇uH(T ) = 0 (2.45)

in order to determine the admissible gradient of the objective with respect to the

control. This is the projected gradient descent method of von Winckel and Borzi

which is called the Gradient Descent Pulse Engineering (GRAPE) algorithm by

the quantum control community [46,63,72] and is summarized by Algorithm (3).

Note that boundary value problem (2.45) yields a control gradient with

homogeneous Dirichlet boundary conditions. This implies that the use of an

iterative method which uses the control gradient in an update automatically

preserves the boundary conditions of the control, as desired. In order to solve

the two-point boundary values problems for the control gradients, we use spectral

methods such as Chebyshev collocation [70].

We provide a slight extension of Algorithm (3) appropriate for problems

where, in addition, Neumann boundary data is specified for the admissible class

U . We encounter a problem of this type in subsection 3.2. The idea is to use

the inner product on Ḣ2
0 ([0, T ]), so that we are instead tasked with solving an
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Algorithm 3: Gradient Descent Method in Ḣp
0 ([0, T ]).

Result: Admissible control u which is locally optimal with respect to

the objective functional

input: Initial admissible control u, the objective functional J , tolerance

tol, maximum number of iterations Nmax, and reduction

parameter r ∈ (0, 1)

1 while error > tol and counter < Nmax do

2 Solve the State equations (2.37b);

3 Solve the Costate equations (2.37a);

4 Compute ∇uH via Equation (2.47) with source term (2.37c);

5 while Inequality (2.39) is false and α > tol do

6 α← rα;

7 end

8 if α < tol then

9 break;

10 else

11 u← u− α∇uH;

12 error← J [u]− J [u+ α∇uH];

13 counter← counter + 1;

14 end

15 end
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inhomogeneous biharmonic equation with homogeneous boundary data:

∂4
t∇uH = δuJ , ∇uH(0) = ∇uH(T ) = ∂t∇uH

∣∣
t=0

= ∂t∇uH
∣∣
t=T

= 0. (2.46)

Once again, it is easy to see the gradient ∇uH(u) preserves the appropriate

boundary data when using a line search. In fact, it is also clear that the boundary

value problem

∂2p
t ∇uH = (−1)pδuJ , ∂jt∇uH

∣∣
t=0

= ∂jt∇uH
∣∣
t=T

= 0, j = 0, 1, . . . , p− 1,

(2.47)

generalizes the method of von Winckel and Borzi to the space Ḣp
0 ([0, T ]), for

p ∈ Z+.

2.4.5 A Test of the Hybrid Method

We provide here an example of an exactly solvable optimal control problem which

helps reveal some of the typical numerical difficulties we encounter and overcome

using the techniques of this section. Consider the following Lagrange control

problem

min
u∈U

J = min
u∈U

∫ π

0

(
x+

1

2
u2 +

γ

2
u̇2

)
dt, (2.48)

subject to the forced harmonic oscillator

ẋ = p, x(0) = 0, (2.49a)

ṗ = u− x, p(0) = 0, (2.49b)

where U = {u ∈ H1([0, π]) : u(0) = u(π) = 0}.

Using the costate multipliers λ(t) and µ(t), the equivalent unconstrained

problem is given by

min
u∈U

∫ π

0

L (x, ẋ, p, ṗ, λ, µ, u, u̇) dt

= min
u∈U

∫ π

0

(
x+

1

2
u2 +

γ

2
u̇2 + λ(ẋ− p) + µ(ṗ+ x− u)

)
dt.

(2.50)
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The Euler-Lagrange equations for this problem are given by Equations (2.37a)–(2.37c)

(see also [78]) and reduce to

δL
δx

=
∂L
∂x
− d

dt

∂L
∂ẋ

= 1− λ̇+ µ = 0,
∂L
∂ẋ

∣∣∣∣
t=π

= λ(π) = 0, (2.51a)

δL
δp

=
∂L
∂p
− d

dt

∂L
∂ṗ

= λ− µ̇ = 0,
∂L
∂ṗ

∣∣∣∣
t=π

= µ(π) = 0, (2.51b)

δL
δλ

=
∂L
∂λ

= ẋ− p = 0, x(0) = 0, (2.51c)

δL
δµ

=
∂L
∂µ

= ṗ+ x− u = 0, p(0) = 0, (2.51d)

δL
δu

=
∂L
∂u
− d

dt

∂L
∂u̇

= u− µ− γü = 0, u(0) = u(π) = 0. (2.51e)

Note that the costate terminal conditions are a result of an integration by parts

again test functions ϕ ∈ C∞c ([0, T )), which do not necessarily vanish at t = π, in

the construction of the adjoint operator present in the costate equations (2.51a)

and (2.51b). More detail about the analogous derivation of these Euler-Lagrange

equations in the context of PDE constraints is provided later on in this dissertation;

for example in Appendix B.1.

Now, it’s easy to see the following functions

λ∗ = − sin(t), (2.52a)

µ∗ = − cos(t)− 1 (2.52b)

are the optimal costates. This implies, after using the method of variation of

parameters, see e.g. [7], to solve Equation (2.51e), the optimal control is

u∗ =
csch

(
π√
γ

)(
(γ + 2) sinh

(
π−t√
γ

)
+ γ sinh

(
t√
γ

))
− cos(t)− γ − 1

γ + 1
. (2.53)

Additionally, we solve for the optimal state x∗ in a similar fashion which results

in

x∗ = −
(
2(γ + 1)2

)−1
(

2γ(γ + 2) cosh

(
t
√
γ

)
+ (γ + 1)(2γ + t sin(t) + 2) + 2 cos(t)

+ csch

(
π
√
γ

)(
(γ + 2) cosh

(
π
√
γ

)
− γ
)(
√
γ sinh

(
t
√
γ

)
− sin(t)

)
, (2.54)
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while the optimal objective J∗ is found to be

J∗ =
√
γ tanh

(
π

2
√
γ

)coth2
(

π
2
√
γ

)
(γ + 1)2

+ 1

− π(2γ + 3)

4(γ + 1)
. (2.55)

We now turn towards numerically approximating the optimal control u∗

using the methods detailed in Section 2.4. In order to ensure numerical validity

in our program and maintain focus on the accuracy of the numerical optimization

methods, we use MATLAB’s built-in ordinary differential equation (ODE) solvers.

We solve the state and costate equations (2.51a)–(2.51d) with MATLAB’s ODE45

solver. We also use BVP4C to solve Equation (2.45), required by Algorithm (3),

with the inhomogeneity given by δJ
δu

from Equation (2.51e).

We perform a test on the effectiveness of gradient descent using the

GRAPE algorithm, Algorithm (3), without the aid of the CRAB method of

Subsection 2.4.2. We use the admissible function u0 = t(t − π) as an initial

control, set the Tikhonov parameter γ = 1, and use 1000 discretization points on

the time interval [0, π]. We show the result of the computation in Figure 2.4.

We see the residual difference between the objective J evaluated at the final

control computed through GRAPE and the optimal objective J∗ is small. In fact,

the efficiency

E(ucomputed, u∗) = 1−
∣∣∣∣J(ucomputed)− J(u∗)

J(u∗)

∣∣∣∣ (2.56)

is about 0.9. However, the point-wise error between the computed functions

uGRAPE and x(uGRAPE) against the exact functions u∗ and x∗, which can be seen

in Figure 2.4, remains relatively large. We could, of course, attempt to overcome

these errors and refine the efficiency E further by guessing different admissible

initial controls, but this is the reason behind using the CRAB method in the first

place.
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(a) (b)

(c)

Figure 2.4 The result of using the GRAPE algorithm of Subsection 2.4.4.
Panel (a) shows the initial, final computed, and exact controls u, while Panel
(b) shows the initial, final computed, and exact states x. Panel (c) shows the local
convergence of GRAPE.

We now show the result of using the hybrid method with initial controls

found via the CRAB method. We use the 6 mode CRAB

ur(t) =
6∑
j=1

εj sin(jt), (2.57)

and use differential evolution parameters Npop = 50, F = 0.8, CR = 0.9, and

Nmax = 30. We input the resulting CRAB control, uCRAB, into the GRAPE

algorithm and find a final control which yields an efficiency of 0.994. In addition,

the point-wise errors in the control and state have been significantly reduced. The

results of the computation are shown in Figure 2.5.
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(a) (b)

(c)

Figure 2.5 The result of first using the CRAB method of Subsection 2.4.2 and
following up with GRAPE. The conventions are consistent with those in Figure 2.4.

We now investigate the role of the Tikhonov parameter γ. To this end, we

use the same computational setting as that of Figure 2.5, but with γ = 0.0058.

We see, in Figure 2.6, the optimal state x∗ oscillates strangely in the vicinity of

the boundary point t = π. This results in a significantly more computationally

difficult control problem; a difficulty which is reflected through the failure of our

numerics to resolve this oscillatory behavior. Increasing the number of CRAB

functions, adjusting differential evolution parameters, and refining the temporal

discretization do little to ameliorate this difficulty. Therefore, this suggests the

optimal control problem (2.48) may be ill-posed in the absence of the Tikhonov

regularization.
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(a) (b)

Figure 2.6 An example of where the Tikhonov parameter γ is small. The
conventions here are consistent with previous figures, yet we see the optimal state
x∗ is oscillatory near the right end of the boundary in Panel (b). This hints at the
ill-posedness of optimal control problem (2.48) for small values of γ.

Upon reflection, the unregularized control problem is certainly ill-posed. The

first term
∫ π

0
xdt, present in objective J, is unbounded from below. In addition, by

fortune of the closed-form expressions (2.53) and (2.54), we can make more direct

conclusions. For example, we see that u∗ fails to remain a function in H1([0, π])

as γ → 0. We can also see the limit as γ → 0 spells disaster for the optimal state

x∗.

We show the onset of the ill-posed effects on the control u∗ and state x∗ in

Figure 2.7. It is, perhaps, surprising to see how abruptly the effects of ill-posedness

take place once γ crosses the numerically observed threshold of 0.01. We see that

once γ ≈ 0.05, x∗ oscillates so wildly that even a discretization of 106 points cannot

resolve the intermediate points of its oscillations.

From this toy problem, we learn the value of the Tikhonov regularization in

optimal control. We also learn the merit of the hybrid optimization method as

an effective tool for computationally solving optimal control problems. For these

reasons, we will omit details about which values of γ are best or how effective

different optimization strategies are. Instead, we will state which values of γ are

sufficient in numerically solving the optimal control problems of each chapter in

this dissertation. Additionally, the bulk of our optimal control results will be the
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(a) (b)

Figure 2.7 The onset of ill-posedness as γ is reduced. Shown here are the optimal
controls u∗, given by Equation (2.53) and shown in Panel (a), and the optimal
states x∗ in the vicinity of the boundary point t = π, given by Equation (2.54)
and shown in Panel (b).

result of the hybrid optimization method and further details, such as the level of

refinement from GRAPE on a CRAB control will mostly be neglected.
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CHAPTER 3

OPTIMAL CONTROL OF HAMILTONIAN DYNAMICAL

SYSTEMS IN BOSE-EINSTEIN CONDENSATES

3.1 Introdution

As discussed in Section 1.1, manipulating Bose-Einstein condensates (BEC)

trapped by an external field is an important problem in nanoscale engineering. In

this chapter, we consider the control of solutions to the Gross-Pitaevskii Equation

(GPE)

i∂tψ = −1

2
∂2
xψ + V (x, u(t))ψ + |ψ|2ψ (3.1)

as a model for BEC in a time dependent potential. Recall the objective is to

compute a time-dependent function u ∈ H1(0, T ), which controls the shape of the

external trap V (x, u(t)), in order to drive the initial condition ψ(x, 0) = ψ0(x) ∈

H1 (R) to some desired state. The precise control problem we consider will be

stated in Section 3.4.

The novelty of this chapter lies in the model reduction we use to improve

the computational complexity of the control problem. The reduced model is

constructed via a Galerkin truncation and motivates the use of insights from

Hamiltonian mechanics. In the following sections, we illustrate the method using

two somewhat standard experiments from quantum control, [33, 46,63,72].

3.2 The Squeezing Problem

The first problem we address is that of squeezing and elongation discussed in

Section 1.1 and shown in Figure 1.1. As a model problem, we consider the

squeezing of a stationary wave packet centered about the origin and trapped in a

quadratic potential, i.e. V (x, u(t)) = 1
2
ux2 in Equation (3.1), with the endpoints

of the control fixed as u(0) = u0 > 0, u(T ) = uT > u0.
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We pursue the following Galerkin ansatz of the wavefunction ψ,

ψ(x, t) =
∞∑
n=0

cn(t)ϕn(x;u(t)), (3.2)

where each of the ϕn(x;u(t)) are instantaneously normalized eigenfunctions of the

equation

− 1

2
∂2
xϕn +

1

2
ux2ϕn = Enϕn, (3.3)

i.e., the linear Schrödinger equation with a u-dependent quadratic potential. The

eigenfunctions ϕn(x;u) are well-known; they are Hermite functions and can be

generated by means of the Rodrigues formula

ϕn(x;u) = (−1)n
π−1/4

√
2nun/4 n!

u1/8e
u1/4x2

2 ∂nxe
−u1/4x2

. (3.4)

The first three are

ϕ0(x;u) = ξe−
1
2

√
ux2

, (3.5a)

ϕ1(x;u) =
√

2ξuxe−
1
2

√
ux2

, (3.5b)

ϕ2(x;u) =
√

2ξu
(
2
√
ux2 − 1

)
e−

1
2

√
ux2

, (3.5c)

where ξ = π−1/4u1/8. We truncate this expansion after the third term, and discard

the single odd term involving ϕ1(x;u) because of the even symmetry engineered

into the problem. For convenience, these first two even eigenstates and their

time dependent coefficients will be relabeled as the n = 0, 1 states. We pursue a

numerical justification for this truncation and discuss it later on in this section.

In order to derive the equations governing the time-dependent coefficients

present in expansion (3.2), we substitute the expansion into the GPE (3.1) and

project onto each mode using the standard L2 (R) inner product. Letting † denote

complex conjugation and overhead dots denote time derivatives, the resulting ODE

50



are

iċ0 =

√
uc0

2
− iu̇c1

4
√

2u

+ ξ2

(
|c0|2 c0√

2
+
|c1|2 c1

32
+

3 |c1|2 c0

4
√

2
− |c0|2 c1

2
+

3c2
1c
†
0

8
√

2
− c2

0c
†
1

4

)
, (3.6)

and

iċ1 =
5
√
uc1

2
+

iu̇c0

4
√

2u

+ ξ2

(
41 |c1|2 c1

64
√

2
− |c0|2 c0

4
+

3 |c0|2 c1

4
√

2
+
|c1|2 c0

16
+
c2

1c
†
0

32
+

3c2
0c
†
1

8
√

2

)
. (3.7)

These equations can be written in Hamiltonian form as

iċn = +∂c†nH, n = 0, 1, (3.8a)

iċ†n = −∂cnH, n = 0, 1, (3.8b)

where the Hamiltonian H
(
c0, c

†
0, c1, c

†
1;u
)

is given by

H =

√
u

2

(
|c0|2 + 5 |c1|2

)
− u̇

2
√

2u
=
{
c0c
†
1

}
+ξ2

 |c0|4

2
√

2
+

41 |c1|4

128
√

2
+

3 |c0|2 |c1|2

4
√

2
+

3<
{
c2

0c
†2
1

}
8
√

2
− 2<

{
c0c
†
1

}(
|c0|2 −

|c1|2

8

) .

(3.9)

It is easy to see the “discrete” mass Md(t) = |c0(t)|2 + |c1(t)|2 is conserved

by the dynamics of the Hamiltonian system (3.8). Moreover, since we assume

the wavefunction ψ is normalized, Md(t) should be chosen to equal M(t) =

||ψ(·, t)||2L2(R) = 1. We further assume the initial state is at a local minimum

of the Hamiltonian H with u̇ set to 0 since, presumably, this state is stationary

for some time before an intended transformation through the control u(t) occurs

in a physical setting.

In order to validate the use of the finite-dimensional dynamics (3.8) as a

model problem, we perform the following numerical study. We fix the time domain
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t ∈ [0, T ], T > 0, and use a linear ramp of the form u(t) = (uT − u0) t
T

+ u0. In

particular, we choose u0 = 1, uT = 100, and T = 2.5. The comparisons we make

involve the full numerical solution of the GPE (3.1), denoted ψGPE, projected onto

the span of the two even modes, i.e.,

ψproj(x, t) =
1∑

n=0

〈ψGPE(x, t), ϕn(x;u(t))〉L2(R) ϕn(x;u(t)) :=
1∑

n=0

cproj
n ϕn(x;u(t)),

(3.10)

and the Galerkin representation (3.2) with cn(t) determined by a numerical

solution of Equations (3.8).

We solve the GPE using a second order in time split-step Fourier method

detailed in Appendix A.1. Consistent with previous assumptions, we use an initial

condition of the form

ψ∗0(x) = c∗0(0)ϕ0(x, u0) + c∗1(0)ϕ1(x, u0), (3.11)

i.e., a superposition of the first two even states. The initial values c∗0(0) and c∗1(0)

are chosen to minimize Hamiltonian (3.9) with u̇
∣∣
t=0

= 0. We solve the initial

value problem governed by Hamilton’s Equations (3.8), also with initial values

c∗0(0), c∗1(0), by using a fourth-order Runge-Kutta method. We provide visual

comparisons of these numerical solutions in Figure 3.1.

We find the finite-dimensional dynamics, facilitated by the two even mode

Galerkin expansion (3.2), works well to capture the qualitative behaviors of the

GPE (3.1). First, we find good visual agreement in the so-called Rabi frequency,

i.e. the frequency of energy transfer between the first two even modes. This

agreement is exhibited by the similar periodic behavior between cn(t), which is

determined by Equations (3.8), and cproj
n (t) = 〈ψGPE(·, t), ϕn(·;u(t))〉L2(R) , which

is determined by a projection from the numerical solution of the GPE. Secondly,

we find there is only about a 3% discrepancy between the discrete mass Md(t)

and the projection of the full mass M(t) onto the discrete modes by the end of

the control process at t = T, i.e.,
|M(T )−Mproj

d (T )|
M(T )

≈ 0.03 We see in Figure 3.1 this
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discrepancy can be mainly attributed to the tails in the support of the distribution

|ψGPE|2.

(a) (b)

(c) (d)

Figure 3.1 A numerical demonstration showing comparisons between a full
numerical solution of Equation (3.1), shown in Panel (c) in absolute value squared,
and the finite-dimensional approximation (3.2) with both initial conditions set by
Equation (3.11). Panel (a) shows the numerical solution of Equations (3.6), (3.7),
the projected coefficients cproj

n defined in Equation (3.10), and the mass discrepancy
between the mass M(t) of the full numerical solution and the projected discrete
mass Mproj(t). Panel (b) shows the resulting ansatz (3.2) in absolute value squared
with the numerical coefficients cn(t) from Panel (a). Panel (d) is the quantity
|ψproj(x, t)|2 given by Equation (3.10).

One of our primary goals in this chapter is to find an optimal control u(t)

which squeezes the width of an initial wavefunction, prepared mostly in the ground

state, without exciting a significant long-term transfer of mass to higher states.

Because of the strong numerical agreements demonstrated by Figure 3.1, we
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conclude the Hamiltonian dynamical system (3.8) provides a sound model for

purposes of constructing a potentially successful optimal control problem.

We now seek to further interpret the model dynamical system (3.8) for

purposes of constructing an appropriate optimal control problem. To this end, we

systematically pursue appropriate changes of variables which reduce the number

of degrees of freedom. As currently stated, Hamiltonian (3.9) has two degrees of

freedom and is time-dependent, or two and a half degrees of freedom for short.

Through the use of canonical transformations, changes of variables which preserve

the form of Hamilton’s equations, we reduce the dimensionality of the squeezing

problem to one and a half degrees of freedom. This allows the use of phase plane

techniques which provide further insight into our problem.

We begin by converting to action-angle coordinates through the canonical

transformation

c0 =
√
ρ0e
−iθ0 , c1 =

√
ρ1e
−iθ1 . (3.12)

Hamiltonian (3.9) then becomes

H =

√
u

2
(ρ0 + 5ρ1)− u̇

4u

√
2ρ0ρ1 sinφ+

3ξ2

8
√

2
ρ0ρ1 cos(2φ)

+

√
2ξ2

256

(
64ρ2

0 + 96ρ1ρ0 + 41ρ2
1 +

(
8ρ

3/2
1

√
2ρ0 − 56ρ

3/2
0

√
2ρ1

)
cos(φ)

)
, (3.13)

where φ = θ0 − θ1. The advantage of using action-angle coordinates here is that

the dependence of Hamiltonian (3.13) on a single phase φ becomes clear. By

Noether’s Theorem, this symmetry implies the freedom to eliminate either of the

cyclic variables ρ0 or ρ1 through a conserved quantity; in this case through Md =

ρ0 + ρ1 = 1. An appropriate choice turns out to be ρ0 = 1− J and ρ1 = J so that

H =

√
u

2
(1 + 4J) +

ξ2

128
√

2

(
9J2 − 32J + 64

)
− u̇

2
√

2u

√
(1− J)J sin(φ)

+
ξ2

16

(√
(1− J)J(8− 7J) cos(φ) + 3

√
2(1− J)J cos(2φ)

)
(3.14)
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The problem has now been reduced to a one and a half degree of freedom

system, as desired. We pursue two more canonical transformations in order to

visualize the phase portrait in more familiar variables. The first maps back to polar

coordinates via η =
√
Jeiφ, where η is a complex-valued generalized coordinate.

The second and final canonical transformation

η =
q + ip√

2
, η† =

q − ip√
2
, (3.15)

reminiscent of the familiar Dirac ladder operators, yields

H(q, p, u) =
ξ2

512
√

2

(
57p4 − 160p2 + 18p2q2 − 39q4 + 32q2 + 256

)
+
√
u

(
q2 + p2 +

1

2

)
+
ξ2

64

√
2− p2 − q2

(
9q3 − 16q + 9p2q − 8

√
2πu̇

u
p

)
. (3.16)

We visualize the phase portrait associated with Hamiltonian (3.16) in the

following way. We use the same numerical setting as that of Figure 3.1. We denote

the initial and final Hamiltonians H (q, p, u0), H (q, p, uT ) as H0, HT , respectively.

We plot the contour lines of H0,HT and their respective stable fixed points. This

visual diagram, shown in Figure 3.2, further demonstrates the failure of a simple

linear ramp control when squeezing the condensate in (q, p) coordinates. The

phase portrait reveals how significant Rabi oscillations present in Figure 3.1 are

simply the radial distance between the final state (q(T ), p(T )) and the nearest

stable fixed point (q∗, p∗) of Hamiltonian (3.16). This insight is the basis of the

optimal control strategy of this chapter and is discussed further in Section 3.4.

We can characterize the persisting dynamics by using a standard linearization

about the stable fixed point (q∗, p∗) [66]. Assume the control u > 1 is constant for

t ≥ T , and let Q = q − q∗, P = p− p∗. The resulting linear system is given by

dx

dt
:=

d

dt

Q
P

 =

∂q∂pH ∂2
pH

−∂2
qH −∂p∂qH


(q∗,p∗)

Q
P

 := Ax. (3.17)
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Figure 3.2 Phase portraits for H0, shown by dotted lines and a red star at
its stable fixed point, and HT , shown by solid lines and a blue star at its stable
fixed point. The black line represents the evolution of the coefficients (3.2) from
Figure 3.1 after being mapped to (q, p) coordinates. The black circle is the
corresponding intial state, and red circle the final state.

It is straightforward to show

Q̈+ ω2
0(u)Q = 0, (3.18)

where the natural frequency ω0(u) is given by

ω2
0(u) = det(A) =

(
∂2
pH∂2

qH− ∂q∂pH∂p∂qH
) ∣∣∣∣

(q∗,p∗)

. (3.19)

This is given explicitly by

ω2
0(u) = 4u

(
1− 25

512π
u−1/2

)
. (3.20)

After further letting ζ2 =
(

2
√
u− 5ξ2

8
√

2

)(
2
√
u+ 5ξ2

8
√

2

)−1

, q̃ = q(T ) − q∗, and p̃ =

p(T )− p∗, we see that

q = q∗ + q̃ cos(ω0t) + p̃ζ sin(ω0t) +O(q̃2, p̃2, q̃p̃), (3.21a)

p = p∗ + p̃ cos(ω0t)− q̃ζ−1 sin(ω0t) +O(q̃2, p̃2, q̃p̃), (3.21b)

where O(q̃2, p̃2, q̃p̃) is shorthand for terms quadratic in q̃ and p̃.
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In conclusion, this section reveals that a successful optimal control strategy

should drive the state of the condensate to the global minimum of the finite dimen-

sional Hamiltonian (3.9). Furthermore, sub-optimality is almost entirely charac-

terized by the amplitude of simple harmonic motion, given by Equations (3.21),

about the fixed point (q∗, p∗).

3.3 The Splitting Problem

We refer to the problem of topologically changing the support of the condensate,

mentioned in Section 1.1 and shown in Figure 1.2, as the “splitting” problem. In

the case of one spatial dimension and “splitting” potential V (x, u) = 1
2
x2 +uδ(x),

the linear Schrödinger equation is exactly solvable for each value of u. For this

reason, we use this potential and pursue the same strategy as in Section 3.2,

i.e., track the evolution of the time-dependent coefficients in the appropriate

eigenfunction expansion and use canonical transformations to gain a visual

understanding of the resulting dynamics.

In order construct a Galerkin ansatz such as the one used in Section 3.2, we

must solve the following eigenvalue problem

− 1

2
∂2
xϕn +

1

2
x2ϕn + uδ(x)ϕn = Enϕn. (3.22)

We provide brief details here on how to solve eigenvalue problem (3.22), but a more

thorough computation and discussion is provided in work due to Viana-Gomes and

Peres [73]. First, note that integrating (3.22) in a neighbourhood about the origin

leads to a jump condition on the derivative:

lim
ε→0

∂xϕ(x)
∣∣+ε
−ε = 2uϕ

∣∣
x=0

. (3.23)

Since the jump condition is automatically satisfied by any odd function in C1(R),

the odd-parity states are still given by the Rodrigues formula (3.4) with the value
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of u set to 1 there. Therefore, only the even-parity states feel the effect of the

delta-function at the origin and must be modified.

Now, upon searching for solutions of the form ϕ = e−x
2/2w(x), letting z =

x2, and writing the energy in the more customary form E = ν + 1
2
, ν ∈ R,

Equation (3.22) and condition (3.23) become

z∂2
zw +

(
1

2
− z
)
∂zw +

ν2

2
w = 0, z > 0, (3.24a)

∂zw
∣∣
z=0

= uw
∣∣
z=0

. (3.24b)

Equation (3.24a) is called Kummer’s equation and admits solutions of the form

w(z) = AνU

(
−ν

2
,
1

2
, z

)
+BνM

(
−ν

2
,
1

2
, z

)
(3.25)

where the second term involves Kummer’s function

M(a, b, z) =
∞∑
n=0

a(n)zn

b(n)n!
, (3.26)

with (·)(n) denoting the rising factorial defined as

a(n) :=
n−1∏
k=0

(a+ k), (3.27)

and the first term involves Tricomi’s confluent hypergeometric function

U (a, b, z) =
Γ(1− b)

Γ(a+ 1− b)
M(a, b, z) +

Γ(b− 1)

Γ(a)
z(1−b)M(a+ 1− b, 2− b, z), (3.28)

with Γ denoting the standard gamma function. The coefficients Aν and Bν are

simply appropriate normalization constants. Since it can be shown the function

M
(
−ν

2
, 1

2
, z
)

is not in L2(R), [73], we must set Bν = 0 in Equation (3.25).

The behavior of the Tricomi function U(·, ·, z) near the origin in the context

of boundary condition (3.24b) leads to the following nonlinear equation

ν − u
Γ
(
1− ν

2

)
Γ
(

1
2
− ν

2

) = 0 (3.29)
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in ν. Briefly note that if the control satisfies u=0, then from Equation (3.29),

ν=0, and we recover the even Hermite basis given by the Rodrigues formula (3.4),

as we expect. In general, a numerical solution of Equation (3.29), demonstrated

in [73], shows there is a countably infinite sequence of solutions {νn} each satisfying

νn+1 = νn + 2. Thus it suffices to solve Equation (3.29) on the interval [0,1], the

interval containing the ground state value of ν, since this determines all other

solutions. For ν ∈ [0, 1], the first two even eigenfunctions are given by

ϕj(x; ν) = Nj(ν)e−
x2

2 U

(
−ν + 2j

2
,
1

2
, x2

)
:= Nj(ν)e−

x2

2 Uj(x
2, ν), j = 0, 1,

(3.30)

where Nj(ν) are ν-dependent normalization constants given by

N−2
j (ν) =

∫
R
e−x

2

U2
j

(
x2, ν

)
dx, j = 0, 1. (3.31)

These eigenfunctions ϕj(x; ν) will serve as the set of basis functions in the ensuing

Galerkin expansion.

Note that as ν → 1, the control u has infinite strength, i.e., u → ∞, since

the gamma function has a pole at the origin. In this case, the first two even

eigenfunctions reduce to the simple form of “split” wavefunctions

ϕ0(x; 1) = 2
1
2π−

1
4 |x| e−

x2

2 , (3.32a)

ϕ1(x; 1) = 2π−
1
4 3−

1
2

(
|x|3 − 3

2
|x|
)
e−

x2

2 , (3.32b)

which can be seen in Figure 3.3.

Proceeding with the same strategy from Section 3.2, we have after projecting

onto each mode using the standard L2 (R) inner product,

iċ0 = α0c0 + α1c1 + u (β0c0 + β1c1) + γ0|c0|2c0 + γ2|c1|2c1 + 2γ3|c0|2c1

+ γ3c
2
0c
†
1 + 2γ4c

†
0c

2
1 + γ4|c1|2c0 − i∆c0, (3.33)

iċ1 = α1c0 + α2c1 + u (β1c0 + β2c1) + γ3|c0|2c0 + γ1|c1|2c1 + 2γ4c
2
0c
†
1

+ γ2c
†
0c

2
1 + γ4|c0|2c1 + 2γ2|c1|2c0 + i∆c1, (3.34)
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(a) (b)

Figure 3.3 Panel (a) shows u(ν) as determined by Equation (3.29). As can be
seen, large values of u are needed to attain a value of ν close to 1. Panel (b) shows
the first two excited even states in (3.30) for the values of ν = 0, 1.

where

2α0 =
〈
ϕ0, x

2ϕ0 − ∂2
xϕ0

〉
, 2α1 =

〈
ϕ0, x

2ϕ1 − ∂2
xϕ1

〉
, 2α2 =

〈
ϕ1, x

2ϕ1 − ∂2
xϕ1

〉
,

(3.35a)

β0 = 〈ϕ0, δ(x)ϕ0〉 , β1 = 〈ϕ0, δ(x)ϕ1〉 , β2 = 〈ϕ1, δ(x)ϕ1〉 , (3.35b)

γ0 =
〈
ϕ4

0

〉
, γ1 =

〈
ϕ4

1

〉
, γ2 =

〈
ϕ0, ϕ

3
1

〉
, γ3 =

〈
ϕ1, ϕ

3
0

〉
, γ4 =

〈
ϕ2

0, ϕ
2
1

〉
, (3.35c)

∆ = 〈ϕ0, ∂tϕ1〉 = −〈∂tϕ0, ϕ1〉 . (3.35d)

We make use of the relation

∂xUj(x, ν) = x (ν + 2j)U

(
1− j − ν

2
,
3

2
, x2

)
, j = 0, 1, (3.36)

in order to handle the spatial derivatives required of Equation (3.35a), after an

integration by parts. Since the derivatives in relation (3.36) are only defined

weakly at the origin, and smooth everywhere else, we make the computational

choice of defining the derivatives at the origin as the average of the one-sided

limiting values.

We calculate time derivatives of the Tricomi functions and normalization

coefficients in Equation (3.30) numerically using finite centered differences.

Meanwhile, we handle all quadratures required by inner products (3.35) numer-
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ically using the trapezoidal rule. Since we also intend to solve the ODE (3.33)

and (3.34) several times in an optimization routine, we store the values of the

Tricomi functions (3.28) over space and time and call the values whenever we

compute inner products (3.35).

We perform the same experiment as the one shown in Figure 3.1, but with

u(t) = 3t and t ∈ [0, 10]. In order to approximate the delta function in present

in the splitting potential and in the Schrödinger equation (3.22), we use the heat

kernel as a nascent delta function, i.e.,

δ(x) = lim
a→∞

1

2πa
e−

x2

2a , (3.37)

and use a = 10 as an approximation. Once again, we find good quantitative

agreement between the GPE (3.1) and the model problem defined by the

ODE (3.33), (3.34), and we show this in Figure 3.4.

Although many of the inner products required in constructing this finite

dimensional problem cannot be computed in closed form, it is possible to show

the Hamiltonian associated with ODE (3.33) and (3.34) for this problem is indeed

given by

H = (α0 + uβ0) |c0|2+(α2 + uβ2) |c1|2+2 (α1 + β1)<
{
c0c
†
1

}
+

1

2
γ0 |c0|4+

1

2
γ1 |c1|4

+ 2
(
γ3 |c0|2 + γ2 |c1|2

)
<
{
c0c
†
1

}
+ γ4

(
|c0|2 |c1|2 + 2<

{
c2

0c
†2
1

})
+ 2∆=

{
c†0c1

}
.

(3.38)

Applying the same canonical transformations as in Section 3.2, we arrive at

H =α0 +
γ0

2
+
√

2− p2 − q2

(
q

(
α1 + γ3 +

1

2
(γ2 − γ3)

(
p2 + q2

)
+ β1u

)
+ ∆p

)
+

1

2
(p2 + q2) (α2 − α0 − γ0 + (β2 − β0)u) +

γ4

2

(
3q2 − p2

)
+

1

8
(γ0 + γ1)

(
p4 + q4

)
+
γ4

4

(
p4 − 3q4

)
+

1

4
(γ0 + γ1 − 2γ4) p2q2 + β0u.

(3.39)

We find the same leading order dynamics in the linearization about the stable fixed

point (q∗, p∗), Equations (3.21), with natural frequency and amplitude parameters
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(a) (b)

(c) (d)

Figure 3.4 A numerical demonstration showing comparisons between a
full numerical solution of Equation (3.1), shown in Panel (c) in absolute
value squared, and the finite-dimensional approximation (3.2), with eigen-
functions (3.22), and with both initial conditions set by the appropriately
modified version of Equation (3.11). Panel (a) shows the numerical solution of
Equations (3.33), (3.34), the projected coefficients cproj

n defined in Equation (3.10),
and the mass discrepancy between the mass M(t) of the full numerical solution
and the projected discrete mass Mproj

d (t). Panel (b) shows the resulting ansatz
(3.2) in absolute value squared with the numerical coefficients cn(t) from Panel
(a). Panel (d) is the quantity |ψproj(x, t)|2 given by Equation (3.10).
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given by

ω2
0 = (α0 − α2 + γ0 + γ4 + β0u− β2u) (α0 − α2 + γ0 − 3γ4 + β0u− β2u) , (3.40)

ζ2 = (α0 − α2 + γ0 + γ4 + β0u− β2u) (α0 − α2 + γ0 − 3γ4 + β0u− β2u)−1 .

(3.41)

Clearly, the same physical interpretations and optimization strategies apply here

as they did in Section 3.2.

Figure 3.5 Phase portraits for H as in Equation (3.39) associated with the
numerical experiment from Figure 3.4. The conventions are consistent with those
in Figure 3.2.

3.4 Optimal Control Framework

We now state a general optimal control problem where the constraining dynamics

are Hamiltonian. Soon after we will specialize to a particular form used to avoid

significant Rabi oscillations motivated by Sections 3.2 and 3.3. To this end, let

u0, uT ∈ R be boundary values for the control u(t). The admissible class of controls

U we consider is the set of all once weakly differentiable functions with prescribed

boundary conditions, i.e. U = {u ∈ H1 ([0, T ]) : u(0) = u0, u(T ) = uT} . The

general Hamiltonian optimal control problem we study is

min
u∈U

J = min
u∈U

{
F (q, p, u, t)

∣∣∣∣
t=T

+

∫ T

0

G (q, p, u, u̇, t) dt

}
, (3.42)
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subject to Hamilton’s equations

q̇ = +∂pH, q(0) ∈ q0 ∈ R, (3.43a)

ṗ = −∂qH, p(0) ∈ p0 ∈ R. (3.43b)

Recall from Section 2.2 the first term in objective J is called the terminal cost and

will be used to penalize deviations from some desired state of the Hamiltonian

system. Also recall the second term is called the running cost and can serve

different purposes in an optimal control problem, such as control regularization or

penalizing resource expenditures.

Stating the necessary extremal conditions requires the use of Gateaux

differentiation. To help compute the Gateaux derivatives, we convert the terminal

cost into a running cost by using the fundamental theorem of calculus:

F
∣∣
t=T
− F

∣∣
t=0

=

∫ T

0

dF

dt
dt

=

∫ T

0

(
∂F

∂q
q̇ +

∂F

∂p
ṗ+

∂F

∂u
u̇+

∂F

∂t

)
dt

=

∫ T

0

(
∂F

∂q

∂H
∂p
− ∂F

∂p

∂H
∂q

+
∂F

∂u
u̇+

∂F

∂t

)
dt

:=

∫ T

0

(
{F,H}+

∂F

∂u
u̇+

∂F

∂t

)
dt,

(3.44)

where the third line uses constraint (3.43) and the last line uses the definition of

the Poisson brackets {·, ·}. Recall the main advantage of expressing the terminal

cost in (3.42) as the running cost (3.44) is in the ease of computing gradients with

respect to the state and control variables.

By using the method of Lagrange multipliers, we express the Hamiltonian

optimal control problem in unconstrained Lagrange form as

min
u∈U

J = min
u∈U

{∫ T

0

L (q, q̇, p, ṗ, u, u̇, λ, µ) dt

}
, (3.45)

where

L = {F,H}+
∂F

∂u
u̇+

∂F

∂t
+G+ λT

(
q̇ − ∂H

∂p

)
+ µT

(
ṗ+

∂H
∂q

)
, (3.46)
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the notation T denotes the matrix transpose, and where the cost F
∣∣
t=0

has been

dropped since initial values for the state and control variables are specified,

therefore fixed when taking derivatives. The necessary conditions for a locally

extremal solution to Lagrange problem (3.45) are given by the Euler-Lagrange

equations:

δL
δq

=
∂L
∂q
− d

dt

∂L
∂q̇

= 0,
∂L
∂q̇

∣∣∣∣
t=T

= 0, (3.47a)

δL
δp

=
∂L
∂p
− d

dt

∂L
∂ṗ

= 0,
∂L
∂ṗ

∣∣∣∣
t=T

= 0, (3.47b)

δL
δu

=
∂L
∂u
− d

dt

∂L
∂u̇

= 0, (3.47c)

δL
δλ

=
∂L
∂λ

= 0, (3.47d)

δL
δµ

=
∂L
∂µ

= 0. (3.47e)

In deriving these Euler-Lagrange equations, the terminal conditions are the results

of an integration by parts against arbitrary functions φ ∈ C∞c ([0, T )), i.e., the space

of infinitely differentiable functions with compact support on the interval [0, T ),

where the the interval of compact support has a closed/open bracket due to the

problem’s specified/unspecified initial/terminal conditions, respectively.

Motivated by intuition gained by the phase portraits in Sections 3.2 and 3.3,

we specialize optimal control problem (3.45) to the case for when F = H. This also

has the advantage of simplifying the Euler-Lagrange equations since {H,H} = 0.

Furthermore, we choose the simple Tikhonov regularization G = γ
2
u̇2 as we did

previously in Subsection 2.4.5. In this case, the necessary optimality conditions
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reduce to

δL
δq

= µ
∂2H
∂q2
− λ ∂

2H
∂q∂p

+ u̇
∂2H
∂q∂u

− λ̇ = 0,
∂L
∂q̇

∣∣∣∣
t=T

= λ(T ) = 0,

(3.48a)

δL
δp

= µ
∂2H
∂p∂q

− λ∂
2H
∂p2

+ u̇
∂2H
∂p∂u

− µ̇ = 0,
∂L
∂ṗ

∣∣∣∣
t=T

= µ(T ) = 0,

(3.48b)

δL
δu

= µ
∂2H
∂u∂q

− λ ∂
2H

∂u∂p
+ u̇

∂2H
∂u2
− d

dt

∂H
∂u
− γü = 0, u(0) = u0, u(T ) = uT ,

(3.48c)

δL
δλ

= q̇ − ∂H
∂p

= 0, (3.48d)

δL
δµ

= ṗ+
∂H
∂q

= 0. (3.48e)

To summarize the equations concisely,

d

dt



q

p

λ

µ

γu̇


= A



∂H
∂q

∂H
∂p

λ

µ

u̇


−



0

0

0

0

d
dt
∂H
∂u


,


q(0)

p(0)

u(0)

 =


q0

p0

u0

 ,


λ(T )

µ(T )

u(T )

 =


0

0

uT

 ,

(3.49)

where

A =



0 1 0 0 0

−1 0 0 0 0

0 0 ∂2H
∂q2 − ∂2H

∂q∂p
∂2H
∂q∂u

0 0 ∂2H
∂p∂q

−∂2H
∂p2

∂2H
∂p∂u

0 0 ∂2H
∂u∂q

− ∂2H
∂u∂p

∂2H
∂u2


=

 J 02×3

03×2 D
(
∂H
∂q
,−∂H

∂p
, ∂H
∂u

)
 , (3.50)

with J denoting the corresponding skew-symmetric matrix and D denoting the

Jacobian matrix.

Recall Equations (3.48a) and (3.48b) are called the costate equations and

are solved backward in time from their respective terminal conditions. Equation
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(3.48c), along with the prescribed boundary conditions on the control, is a two-

point boundary value problem for u. Since solving these equations in closed form

is often not possible, we resort to the numerical methods discussed in Chapter 2

in order to solve the optimal control problem (3.42).

3.5 Numerical Results

We use the hybrid optimization method of Section 2.4 in order to numerically solve

optimal control problem (3.42) for the model problems of Sections 3.2 and 3.3.

We choose the time horizon consistent with the numerical experiments shown in

Figures 3.1 and 3.4, i.e., T = 2.5 for the squeezing problem and T = 10 for the

splitting problem. For both problems, we use 15 sine modes and an admissible

linear ramp for the CRAB algorithm, i.e., the CRAB we use is

ur(t) = (uT − u0)
t

T
+ u0 +

15∑
j=1

εj sin

(
jπt

T

)
(3.51)

In order to determine the unknown coefficients εj using differential evolution, we

use parameters of F = 0.8, RC = 0.9, NP = 40, and Nmax = 30 required by

Algorithms (1) and (2). We also set Tikhonov parameter γ = 10−4, and find this

to be sufficient for avoiding the onset of possible ill-posedness such as that shown

in Figure 2.7.

It is important to note that the value ofHT for both model problems depends

on the quantity u̇
∣∣
t=T

. Since the Hamiltonian is abruptly changed at t = T to

one with constant control, the minimum value of the Hamiltonian we are truly

interested in is independent of any terms which depend on the derivative of the

control. For this reason, we choose to minimize the Hamiltonian with u̇ set to 0

at t = T which motivates the use of GRAPE in Ḣ2
0 ([0, T ]). Recall that computing

gradients using Equation (2.46) importantly preserves both Dirchlet and Neumann

data. This allows us to use a line search for controls which perform more optimally

with the respect to the modified Hamiltonian HT

∣∣
u̇=0

.
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For both the squeezing and splitting problems, we show the Galerkin

coefficients, computed controls, and resulting numerical solution of the GPE with

optimal and linear controls up until some time T. We show the persisting dynamics

afterwards with constant control u(T ), and the associated phase diagram in the

appropriate coordinates. The result of squeezing is in Figure 3.8. Splitting is

shown in Figure 3.10.

The total time for computing the optimal control policies is on the order of

minutes. The squeezing problem takes an average of about half a minute while

the splitting problem takes an average of a more honest 3-5 minutes on an average

workstation. The splitting problem takes more time since for each evaluation of

the objective in Equation (3.42) because we must compute the inner products of

Equations (3.35).

(a) (b)

Figure 3.6 The result of the squeezing experiment using a linear ramp. The
conventions used here are consistent with Figure 3.1

Lastly, we are interested in a quantitative measure for comparing our results

to solutions of the corresponding GPE. To this end, we use the infidelity term from

the Hohenester objective (1.3) between the computed solution of the GPE and the

corresponding ground state eigenfunction ϕ0(x) at time t = T. More precisely, we

use

J infidelity(t) =
1

2

(
1− |〈ϕ0(x, T ), ψ(x, t)〉|2L2(Rn)

)
. (3.52)
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We start by showing the result of using a linear ramp in Figure 3.6 for

purpose of comparison. This figure is similar to Figure 3.1, yet the persisting

dynamics, i.e., the dynamics after the time T, are better shown.

Then, in Figure 3.7, we show the result of using GRAPE to compute a

local minimum downhill from the linear ramp in Figure 3.6. There, we show

the locally optimal control, locally optimal state dynamics, the corresponding

numerical solution of the GPE (3.1), the corresponding phase portrait for the

reduced dynamics, and convergence of GRAPE.

We see that after using GRAPE, the bulk of the condensate’s support is

more concentrated at the origin. Indeed, this corresponds with the value of the

Hamiltonian HT having been reduced by nearly a factor of 2. Furthermore,

since we know the numerical value of HT , we can use the efficiency E, i.e.,

Equation (2.56). We find that the efficiency is about 0.941. However, this result

is only locally optimal, as to be expected, and so we must pursue controls which

are globally optimal.

Turning to the complete hybrid method, we find results which are more

optimal by all accounts. We show, in Figure 3.8, the result of using CRAB followed

by GRAPE in Ḣ2
0 ([0, T ]). The efficiency E is now about 0.972. We also see the

infidelity J infidelity has been reduced by an order of magnitude with respect to the

infidelity of the linearly controlled condensate.

We show similar results for the splitting problem of Section 3.3. Again, all

conventions used here are similar to those of Figure 3.4. We first show the result

of splitting using a linear ramp in Figure 3.9. We then show the result of CRAB in

Figure 3.10. Recall, the absence of GRAPE is due to difficulties in differentiating

the Hamiltonian (3.38) with respect to the control u. Despite this difficulty, we still

find a control with an efficiency of about 0.962 and a condensate with significantly

reduced infidelities.
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(a) (b)

(c) (d)

Figure 3.7 The result of using the GRAPE algorithm of Subsection 2.4.4 with
the linear ramp from Figure 3.6 as an initial control. Conventions used here are
similar to conventions used in Figures 3.1 and 3.2. Panel (a) shows the Galerkin
coefficients which satisfy Equations (3.2) with optimal control u. Panel (b) is the
numerical solution of the GPE with the optimal control u from Panel (a) up until
the dotted black line. The persisting dynamics are computed with constant control
u(T ). Panel (c) shows the resulting phase portrait with the inset showing the
persistent dynamics. The black trajectory in the inset is the numerical solution of
Equations (3.48d) and (3.48e) where the Hamiltonian is given by Equation (3.16).
The nearby blue trajectory is given by Equations (3.21) which are the result of a
linearization about the stable fixed point denoted by the central blue star. Panel
(d) shows the convergence of GRAPE.
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(a) (b)

(c) (d)

Figure 3.8 The result of using the hybrid optimization technique outlined in
Section 2.4. The conventions used here are identical to those used in Figure 3.7.
Panel (d) shows the infidelity (3.52) of the optimal control and infidelity of the
linear control from Figure 3.6.

(a) (b)

Figure 3.9 The result of the splitting experiment using a linear ramp. The
conventions used here are consistent with Figure 3.4.
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(a) (b)

(c) (d)

Figure 3.10 The result of using the CRAB method on the splitting problem of
Section 3.2. The same conventions of Figures 3.4 and 3.8 are used here.
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3.6 Experience Gained and Transition to More Difficult Control

Problems

Although we pursue a reduction of the GPE dynamics to a single non-autonomous

degree of freedom, optimal control problems in this dimensionally reduced setting

are still highly effective by several accounts. Moreover, we provide a complete

characterization of the physics of controlled condensates using standard dynamical

systems techniques. It is easy to see the techniques of this chapter can be applied to

other control problems constrained by Hamiltonian PDE, and perhaps to problems

where posing an optimal control problem is challenging, if not impossible, without

the visual aid of a phase diagram in a low dimensional setting.

On a more practical level, the reduced dynamical systems studied throughout

this chapter offer opportunities to apply the methods of optimal control in a

basic, yet still technologically relevant setting. Now equipped with this experience,

transitioning to solving more challenging PDE constrained optimization setting is

made simpler. The basic optimal control framework and methodology remains

nearly invariant, and the bulk of the computational effort is placed on numerically

solving the constraining PDE.
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CHAPTER 4

OPTIMAL RESHAPING OF STATIONARY STATES IN

LINEARLY DISPERSIVE MEDIA

4.1 Introduction

This chapter addresses another important problem from nanoscale engineering;

the problem of reshaping light in a linearly refractive waveguide. As discussed in

Section 1.3, Schrödinger’s equation (1.5) governs the relevant state dynamics, and

from this perspective, the control function we search for represents a confining

potential. The work presented in this chapter is influenced by and aimed at

extending work due to Kunkel and Leger [36].

We provide a natural generalization of the light reshaping problem of Kunkel

and Leger which also allows the use of methods from the quantum control

literature, e.g. [9, 14, 23, 34, 46, 63, 72]. Since the methods and formulations

presented here are more general, this work is applicable to a potentially wider

range of problems which the methods of Kunkel and Leger may not be able to

address.

Another novelty of this chapter is in how we address the practical and

computational aspects of a medium to large-scale optimization problem. Since

the potentials we consider are multi-dimensional, i.e., they are functions of the

waveguide’s transverse and axial directions, we seek to appropriately reduce the

search space of optimal controls. One of these reductions assumes a particular form

of the potential along the transverse dimension with axially dependent parameters.

Another reduction used, originally by Kunkel and Leger [36], is a partition of the

optimal control problem into a small number of stages along the axial direction.

The utility of these methods is demonstrated numerically on three reshaping

problems including the reshaping problems shown in Figures 1.3 and 1.4.
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4.2 General Problem Setup

The control problem we consider in this chapter uses the objective of Hohenester,

et al., constrained by a class of linear dispersive wave equations which includes

the Schrödinger Equation (1.5). The objective of the problem is to find

an appropriately defined control which aids in dispersively evolving an initial

stationary state into another stationary state at the axial end of the waveguide.

With this in mind, let x ∈ Rn be the transverse coordinate, γ > 0 be a Tikhonov

regularization parameter, and z ∈ (0, l) be the axial coordinate, with l > 0. The

optimal control problem we pose is

inf
u∈U

J = inf
u∈U

{
1

2

(
||ϕd(·)||4L2(Rn) − |〈ϕd(·), ψ(·, l)〉|2L2(Rn)

)
+
γ

2

∫ l

0

|∂zu|2 dt
}
, (4.1)

subject to the dispersive initial value problem

i∂zψ + P (x, u,D)ψ = 0, (4.2a)

ψ(x, 0) = ϕ0(x). (4.2b)

The differential operator P is defined by

P (x, u,D) =
∑
|α|≤m

aα(x, u)Dα, (4.3)

where the multi-index α is a set of n integers, P is at least a first-order operator,

i.e., m > 0, the coefficients aα(x, u) are functions in C0
b ([0, l];Hm−1 (Rn)), and

Dα :=
∂α1

∂xα1
j

. . .
∂αn

∂xαnj
.

The space Ck
b (Ω) is the space of essentially bounded, k-times continuously

differentiable functions, i.e.,

Ck
b (Ω) := Ck(Ω) ∩ L∞(Ω). (4.4)

The only restrictions on the class of operators P (x, u,D) we consider are that

the point spectrum associated with P is non-empty and Whitham’s dispersive
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wave criteria is satisfied, i.e., the dispersion relation has only real roots and the

determinant of its Hessian is non-vanishing [77]. The search for optimal controls

is performed over the admissible class U = {u ∈ H1 ([0, l]) : u(0) = u0, u(l) = ul}.

The initial condition ϕ0(x) and the desired state ϕd(x), are chosen such that

−P (x, u(0), D)ϕ0(x) = λ0ϕ0(x), (4.5a)

−P (x, u(l), D)ϕd(x) = λdϕd(x), (4.5b)

i.e., they are the initial and terminal eigenfunctions of the linear operators

P (x, u(z), D). We assume these eigenfunctions are both in the space Hm−1(Rn).

We also assume that the eigenfunctions ϕ0 and ϕd have the same “mass”, i.e.,

||ϕ0||L2(Rn) = ||ϕd||L2(Rn) so that the infimum of the infidelity in objective (4.1) is

0.

Remark In the case of P = 1
2
∆ − V (x, u), the constraint dynamics (4.2a)

reduce to the Schrödinger Equation (1.5). With the above assumptions in

place, the regularity of the wavefunction ψ solving Equation (1.5) is known [44];

ψ ∈ C1([0, l];H1(R)n). Moreover, in this case, the Schrödinger control problem

with objective functional (4.1) is well-posed for sufficiently large γ > 0 [33].

General results on the regularity of wavefunctions ψ for operators P with an

arbitrary multi-index α and well-posedness of the corresponding control problem

is, of course, not known.

In Appendix B.1, we formally derive the optimality conditions for the

problem with Objective (4.1) constrained by Equation (4.2a). We find

i∂zp = P †p, ip(x, l) = 〈ϕd, ψ(x, l)〉L2(Rn) ϕd, (4.6a)

γ∂2
zu = −<〈p, ∂uPψ〉L2(Rn) , u(0) = u0, u(l) = ul, (4.6b)

where † is the Hermitian adjoint operator. Note that these equations generalize the

optimality conditions of the Pontryagin Principle (2.3.1) to a linear PDE setting
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in the case of differential operators P smooth enough with respect to controls u.

Equation (4.6a) is the adjoint equation of Equation (4.2a) and governs the axial

evolution of the costate p backwards from the terminal condition. Equation (4.6b)

governs the optimal control u, and together with the boundary conditions defined

through the admissible class U , is a boundary value problem on [0, l].

4.3 Beam Reshaping with the Pöschl-Teller Potential

For the remainder of the chapter, we commit to numerical demonstrations

involving Schrödinger’s equation with transverse coordinate x ∈ R. In order to

demonstrate the beam reshaping problem in a simple setting, we consider initial

and terminal eigenfunctions for which V (x, u(0)) and V (x, u(l)) can be computed

in closed form.

It is well-known that the so-called Pöschl-Teller potential,

V (x) = −s(s+ 1)

2
sech2(x),

has associated Legendre functions as eigenfunctions for the time-independent

Schrödinger equation [54]. Therefore, we consider the problem of reshaping the

ground state eigenfunction for s = 1 to the ground state corresponding to s = 4.

We find that parametrizing the potential V (x) with a depth control u(z) and a

width control v(z) to be sufficient in our search for an optimal, axially varying

Pöschl-Teller potential. More precisely, we assume the following form of the

potential

V (x, u(z), v(z)) = −u(z)

2
sech2(v(z)x), (4.7)

where the initial and terminal eigenfunctions are given by

ϕ0(x) = − 1√
2

sech(x), (4.8a)

ϕd(x) = − 3

2
√

3
sech2(x), (4.8b)
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and the appropriate control boundary conditions are

u(0) = 2, u(l) = 20, (4.9a)

v(0) = 1, v(l) = 1. (4.9b)

In the context of the dispersive constraint (4.2a), the differential operator

P (x, u, v,D) is 1
2
∂2

∂x2 − V (x, u, v). Optimality conditions (4.6a)–(4.6b), along with

constaint (4.2a), reduce to

i∂zψ = −1

2
∂2
xψ + V (x, u(z), v(z))ψ, ψ(x, 0) = ϕ0(x), (4.10)

i∂zp = −1

2
∂2
xp+ V (x, u(z), v(z))p, ip(x, l) = i 〈ϕd, ψ(x, l)〉L2(R) ϕd(x), (4.11)

γ∂2
zu = −<〈p, ∂uV ψ〉L2(R) , u(0) = u0, u(l) = ul, (4.12)

γ∂2
zv = −<〈p, ∂vV ψ〉L2(R) , v(0) = v0, v(l) = vl. (4.13)

We briefly note that Equations (4.10)–(4.13) are linearized versions of the

optimality conditions for the system whose dynamics are governed by the

GPE (3.1), see e.g. [34].

We use the hybrid method outlined in Section 2.4 to solve the resulting

optimal control problem. In order to solve the state equation (4.10) and costate

equation (4.11), we use a split-step Fourier method identical to the one used for the

GPE (3.1), mutatis mutandis, which is outlined in Appendix A.1. These methods

assume periodic boundary conditions. Therefore, we truncate the transverse

domain such that interference from the periodic boundary is minimal yet the

domain is still small enough to make numerical computations feasible. Also, recall

that in order to compute the control gradients of objective (4.1) which preserve

boundary conditions (4.9a) and (4.9b), we require the numerical solution of the

boundary value problems (2.45) with inhomogenieties given by Equations (4.12)

and (4.13). To this end, we use Chebyshev collocation [70] with the second order
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differentiation matrix given by

(DN)00 =
2N2 + 1

6
,

(DN)NN = −2N2 + 1

6
,

(DN)jj = − xj

2
(
1− x2

j

) , j = 1, ..., N − 1,

(DN)ij =
ci
cj

(−1)i+j

(xi − xj)
, j = 1, ..., N − 1,

(4.14)

where N is the number of axial points, and use MATLAB’s “backslash” command

to invert it.

In this section, we choose the following domain and discretization parameters:

l = 3, l × 27 discretization points in z, and x ∈ [−4π, 4π] with 211 discretization

points. In order to gauge the efficiency of a computed optimal control, we compare

our results to a naive control strategy, i.e., assuming u(z) and v(z) are linear

functions. We see the suboptimality of a naive control strategy in Figure 4.1.

(a) (b)

Figure 4.1 The result of deepening the Pöschl-Teller potential (4.7) linearly
over time without varying the width. Panel (a) shows the intensity profiles of the
initial and terminal eigenfunctions and the computed solution of Schrödinger’s
Equation (4.10) with potential (4.7) corresponding to the controls in Panel (b).

To test GRAPE, the iterative indirect method of Subsection 2.4, we use the

linear controls used to generate Figure 4.1 as initial controls. Also, we choose the

Tikhonov regularization parameter γ = 10−6, and backtracking parameters α = .4

and c = .5 as they appear in the context of Inequality (2.39), for the remainder
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of the chapter. We show, in Figure 4.2, the beam reshaping has only marginally

improved. Although we see the gradient descent has converged, this result is not

inspiring.

(a) (b)

(c) (d)

Figure 4.2 The result of using the gradient descent method of Subsection 2.4.4
using the linear controls of Figure 4.1 as initial guesses. Panel (a) shows intensity
profiles for the relevant eigenfunctions and computed wavefunctions corresponding
to linear controls and the computed controls shown in Panel (b). Panel (c)
demonstrates the local convergence of the method while Panel (d) is the resulting
potential V (x, u(z), v(z)), c.f. Equation (4.7).

We now turn to the CRAB method of Subsection 2.4.2. In the context of

Algorithm 2, we use parameters RC = 0.9, F = 0.8, Npop = 40, and iterate 70

times. We use only 10 sine modes for each control function u(z) and v(z) required
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by Equation (2.23), i.e.,

ur(z) = (ul − u0)
10∑
j=1

ru
j2

sin

(
jπz

l

)
+ (ul − u0)

z

l
+ u0, (4.15a)

vr(z) =
10∑
j=1

rv
j2

sin

(
jπz

l

)
, (4.15b)

where ru and rv are random variables drawn uniformly from [−1, 1]. We find

several control functions u and v perform significantly better than the previous

computations shown in Figures 4.1 and 4.2 with respect to the objective

functional (4.1). One computational result is shown in Figure 4.3.

We see that the CRAB method essentially solves the Pöschl-Teller beam

reshaping problem on its own without assistance of a further gradient descent.

Although not shown, an application of a gradient descent method does not

improve the result to machine precision. For this reason, we conclude the result of

Figure 4.3 is a local minimum and extremely competitive among the many global

minimizers that may exist for this optimal control problem.

4.4 The Beam Reshaping Problems of Kunkel and Leger

4.4.1 The Top Hat Problem

We now consider beam reshaping problems originally considered by Kunkel and

Leger [36]. The first of these problems, shown in Chapter 4 through Figure 1.3,

involves the transformation of some exactly known eigenfunction/potential pair

into the “top hat” mode

ϕtophat(x) = Ae−ax
m

, (4.16)

where A is a normalization coefficient, and, for the sake of computational

demonstration, we choose a = 10−3 and m = 8. The terminal potential which has

ϕtophat as its ground state eigenfunction is not known in closed-form. Therefore,

the first step in attacking the top hat problem is to numerically solve an inverse

problem. The inverse problem of determining a potential given its eigenfunction

is an example of an inverse scattering problem [52].
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(a) (b)

(c) (d)

Figure 4.3 The result of using the CRAB method. The above panels
demonstrate computational results in the same format as Figure 4.2. Panel (c)
shows the fidelity of optimal members from each iteration of differential evolution
and are denoted by uopt and vopt.
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The inverse scattering problem we are now tasked with solving can be posed

as the least squares problem:

min
Vl(x)∈C0(R)

J = min
Vl(x)∈C0(R)

1

2
||ϕtophat(x)− ϕ(x;Vl(x))||2L2(R) (4.17)

subject to

− 1

2
∂2
xϕ(x) + Vl(x)ϕ(x) = λϕ(x). (4.18)

In order to solve this problem, we use MATLAB’s fmincon to solve the least-

squares problem (4.17) via routine optimization methods while using a pseudo-

spectral method to compute the Schrödinger eigenfunctions from Equation (4.18).

Solving this inverse scattering problem appears and is fairly routine outside of the

issue of appropriately truncating the transverse domain. The naive approach of

making the transverse domain sufficiently large and then truncating introduces

significant round-off error. Fortunately, the so-called Sinh-Cloot change of

variables x = sinh(cξ), ξ ∈ [−π, π], c > 1, facilitates solutions of Equation (4.18)

in a way that suffers less severely from round-off [11]. Using the Sinh-Cloot change

of variables, the linear operator present in Equation (4.18) is now

L = − 1

2c2
sech(cξ)dξ (sech(cξ)dξϕ) + Vl(x)

= − 1

2c2
sech(cξ)<

{
F−1

{
k2F {sech(cξ)ϕ} − ikcF {sech(cξ)tanh(cξ)ϕ}

}}
+ Vl(x),

(4.19)

where F ,F−1 denote the forward and inverse Fourier transformation pair,

respectively, which diagonalize the operator L [70]. We compute Fourier and

inverse Fourier transforms via MATLAB’s fftw and ifftw functions, and pass the

operator as an anonymous function into MATLAB’S eigs in order to calculate

the spectrum. We show the resulting top hat potential Vl from this procedure,

with c = 3, in Figure 4.4

Once Vl(x) has been computed, we are prepared to address the beam

reshaping problem. We reduce the search space of possible potentials by assuming
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Figure 4.4 The resulting top hat potential which solves the inverse scattering
problem (4.17) with top hat eigenfunction (4.16).

they take the following form:

V (x, z) = u(z)V0(x) + v(z)Vl(x), (4.20)

where u(l) = v(0) = 0, and u(0) = v(l) = 1. For sake of numerical demonstration,

we choose V0(x) to be the Pöschl-Teller potential (4.7) with s = 1 and choose the

length of the axial domain to be l = 7.

We show the results of the optimal control problem using the hybrid method

of Section 2.4 in Figure 4.5. We use a CRAB given by

ur(z) =
10∑
j=1

ru
j2

sin

(
jπz

l

)
+ 1 +

z

l
, (4.21a)

vr(z) =
10∑
j=1

rv
j2

sin

(
jπz

l

)
− z

l
, (4.21b)

and use the DE parameters from Section 4.3 to search for the amplitudes ru and

rv. The result is then refined by Algorithm (3) in the space Ḣ1
0 ([0, l]). In order

to better show the solution of the Schrödinger equation over both the axial and

transverse dimensions, we use the logarithmic scale

S(ψ) = log(|ψ|2 + ε), (4.22)

where ε > 0. Figure 4.5(a) shows the agreement between the intensity profiles of

ϕd(x) = ϕtophat(x) (in red) and ψ(x, l) (in black).
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(a) (b)

(c) (d)

Figure 4.5 A numerical solution of the top hat problem. Panel (a) shows the
intensity profiles for the initial, desired, and final computed wavefunctions . Panel
(b) shows the axial evolution of the wavefunction intensity on the logarithmic
scale (4.22) with ε = 0.5. Panel (c) shows the computed controls u(z) and v(z)
resulting from the hybrid method. Panel (d) shows the optimal potential resulting
from panel (c) and the assumed form (4.20).
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4.4.2 The Beam Combining Problem

The “beam combining” problem is another problem considered by Kunkel and

Leger where the intention is to merge several pulses into one, c.f. Figure 1.4. To

this end, we choose to use an initial configuration of three seperated Pöschl-Teller

potentials, i.e.,

V0(x) = −1

2

(
sech(x− a)2 + sech(x+ a)2 + sech(x)2

)
, (4.23)

ϕ0(x) = − 1√
6

(sech(x− a) + sech(x+ a) + sech(x)) , (4.24)

with a positive spacing parameter a. Although ϕ0(x) is not exactly an

eigenfunction of V0(x), the approximation that ϕ0(x) is an eigenfunction improves

upon choosing a large enough; we use a value of a = 10.

We find Kunkel and Leger’s strategy of breaking the optimal control problem

into two stages is valuable. In the context of this problem, we first perform an

optimization on the interval [0, 30] where we use V0(x) as an initial potential and

the top hat potential solving Equation (4.17) and shown in Figure 4.4 as the

terminal potential Vl(x) in the ansatz (4.20). We use the CRAB (4.21), use DE

parameters consistent with Section (4.3), and refine using a gradient descent in

Ḣ1
0 ([0, 30]). We then perform a similar optimization on the interval [40, 70] where

the terminal data, i.e., the terminal potential and resulting terminal wavefunction,

is used as initial data and the now terminal potential is given by a single Pöschl-

Teller potential with s = 3.

We further refine our results by relaxing the restriction of the search space

from the assumed form (4.20) via a gradient descent on a wider space. That is, we

perform a full two-dimensional gradient descent on the potential V (x, z) resulting

from the two-stage optimization. To compute the gradient in this case requires a

solution of the Dirichlet problem

∇2
x,z∇VJ = −δVJ , (4.25a)

∇VJ
∣∣
∂Ω

= 0, (4.25b)
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where the inhomogeneity is given by

− δVJ = γ∇2
x,zV + < 〈p, ψ〉L2(R) , (4.26)

∇2
x,z is the Laplacian operator over x and z, and ∂Ω is the boundary of the

computational domain [−15π, 15π] × [0, 70]. Note that this is the method of von

Winckel and Borzi, from Subsection 2.4.4, in the space Ḣ1
0 (Ω).

Note that the source term (4.26) in Equation (4.25a) arises from Equation (4.6a)

and involves the computation of the Laplacian ∇2
x,z which itself arises from the

proper modification of the Tikhonov regularization in objective (4.1). In order to

solve the Dirichlet problem (4.25), we use the standard trick of adding Kronecker

tensor products, denoted ⊗, of differentiation matrices, each over their respective

orthogonal coordinates x and z, with identity matrices I of the appropriate size.

More specifically,

∇2
x,z ≈ Ix ⊗D2

x +D2
z ⊗ Iz, (4.27)

where D2
x and D2

z are second order Chebyshev matrices given by Equation (4.14),

and where Ix, Iz are appropriately sized identity matrices. The gradient ∇VJ is

then found by reshaping the source term −δVJ , numerically inverting the matrix

operator given by approximation (4.27), and reshaping the resulting vector in

one-to-one correspondence with the computational domain Ω. We compute the

Laplacian present in inhomogeneity (4.26), similarly.

We find this method modestly refines the result of using a two-stage optimal

control framework. Although the refinement is slight, there is satisfaction in that

the space of computationally viable potentials has been thoroughly searched. For

sake of brevity, we choose to show, in Figures 4.6 and 4.7, the final result of the

von Winckel and Borzi method in Ḣ1
0 (Ω), after inputting the optimal controls

computed through the two-stage hybrid optimization strategy.
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(a) (b)

Figure 4.6 A numerical solution of the beam combining problem (4.1) with
initial data given by Equations (4.23), (4.24) and terminal data given by
Equations (4.7), (4.8) with s=3. Panel (a) shows the resulting Schrödinger
wavefunction ψ(x, z) using the logarithmic scale (4.22) with ε = .1, and Panel
(b) shows the two stages of the computed optimal potential V (x, z) .

(a)

Figure 4.7 The initial, desired, and final computed intensity profiles, |ϕ0(x)|2,
|ϕd(x)|2, and |ψ(x, l)|2, respectively, corresponding to Figure 4.6.
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4.5 Conclusion and Future Work

The work presented in this chapter further demonstrates our capability of solving

reshaping problems using the tools from the quantum control literature. We learn

the utility of intuitive control strategies when tackling optimizations over large

dimensional spaces. Indeed, we find that without using intuition to guide our

searches, attempts to solve any of the reshaping problems in this chapter are

extremely challenging.

In addition, the control problem (4.1) has constraints from a somewhat wide

class of dispersive wave equations given by the Equation (4.2a). We observe,

in Appendix B.1, the formally derived optimality conditions for the optimal

control problem (4.1) are analogous to the optimality conditions in Pontryagin’s

principle (2.3.1). We pose future mathematical work concerning this observation

here.

Problem: Well-Posedness of Eigenfunction Reshaping Problems Given

an open set Ω ⊂ Rn, a spatial variable x ∈ Ω, an evolution parameter z ∈

[0, l], l > 0, the initial condition ψ0 ∈ Bψ0 (Ω) , desired condition ϕd ∈ Bψd (Ω) ,

desired function space Bψ, and multi-index α, determine the admissible class U

and admissible variable coefficients aα(x, u(z)) ∈ BA, present in the constraining

Equation (4.2a), such that the optimality conditions of the control problem (4.1)

are given by

i∂zψ = +δp†H, ψ ∈ Bψ

i∂zp
† = −δψH, p ∈ B∗ψ,

ip(x, l) = 〈ϕd(·), ψ(·, l)〉L2(Rn) ϕd(x),

J [u∗] = min
u∈U
J [u],

(4.28)

where B∗ψ is the dual of Bψ and the Hamiltonian H is

H = <
{
〈p, Pψ〉L2(Ω) − 〈ϕd, ψ〉L2(Ω) 〈∂zψ, ϕd〉L2(Ω)

}
+
γ

2
|∂zu|2 . (4.29)
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Additionally, determine the saturation conditions analogous to those of Theorem

(2.3.1).

The solution of this problem would first address the following question:

for which domains Ω, initial conditions ψ0(x), and desired states ϕd(x) can the

regularity of the coefficients aα(x, u(z)) be determined such that the optimal

control problem (4.1) is well-posed? The solution would then provide the

admissible spaces BA and U .

It is, perhaps, more helpful to consider the simpler and particularly useful

instances of this problem, such as when the wavefunction ψ is governed by a

Schrödinger or Dirac operator and the spatial domain is given by Ω = Rn.

Fixing the function spaces Bψ0 and Bψd , the feasibility of the desired space Bψ

is determined by the possible choices of BA. If Bψ is feasible, this leaves us with

determining the space U such that the conditions (4.28) and the appropriate

saturation condition, e.g. that the Hamiltonian H(ψ∗, p∗, u∗) is a constant

independent of x ∈ Rn and z, follow.

We believe the solution of this problem appropriately generalizes Pontryagin’s

principle in this context. We are aware of similar work done for fixed-

end point, free-time optimal control problems constrained by the Schrödinger

equation (4.10) [40] and the wave equation [41], but none that precisely address

the above stated problem, or one from a more general perspective. We hope that

in posing this problem, we not only inspire future mathematical work, but also

continue to motivate the use of the optimal control strategies used throughout

this dissertation to problems in other mathematically similar, yet technologically

different contexts.

In the coming chapter, we transition to a different experimental setting where

the chief difficulty of designing technology is in posing the appropriate optimal

control problem. Equipped with the computational methodologies developed so

far throughout this dissertation, we address various PDE constrained optimization

problems over the next three chapters. This methodology allows us to focus
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more of our attention on the subtler issues associated with analytically and

computationally modeling technology design through optimal control theory.
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CHAPTER 5

APODIZER DESIGN TO EFFICIENTLY COUPLE LIGHT INTO A

FIBER BRAGG GRATING

5.1 Experimental and Technological Context

Systems that dramatically slow light have been observed in a wide variety of

experimental settings over the past two decades and offer enticing technological

applications involving efficient optical switches, sensitive interferometry, and

optical quantum memory [21]. Of the several experimental platforms which can

generate slow light, fiber Bragg gratings (FBGs) offer the considerable advantage

of having structural properties which can be tailored specifically to the light source

characteristics.

An FBG is an optical element whose index of refraction varies periodically.

The grating enables the fiber to attain a strong dispersion of light over a short

distance due to a resonance between the grating’s period and electromagnetic

wavelengths near the Bragg wavelength λB = 2n̄Λ, where n̄ denotes the average

index of refraction in the fiber and Λ denotes the period of the structure, see

Figure 1.5. The FBG strongly couples forward and backward propagating waves

near the resonant wavelength. This creates a photonic bandgap, i.e., an interval

of frequencies of low-amplitude light which are back-reflected. This bandgap is

centered at the Bragg angular frequency ωB = πc
n̄Λ
, where c is the speed of light in

vacuum.

In the presence of materials with an appreciable Kerr nonlinearity, i.e.,

materials in which the index of refraction responds proportionally to the electric

field intensity [49], high intensity light will shift the Bragg frequency. For positive

nonlinearities, the refractive index increases with intensity, therefore shifting the

Bragg frequency ωB to lower ones. Lower frequencies near the value of the

frequency ωB in the absence of the Kerr effect are still Bragg reflected, but

even more so with higher intensities. Meanwhile, higher frequencies are hardly
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reflected at higher intensities. Therefore, at the edges of a high intensity region of

light, the light is continuously Bragg reflected into the high intensity region which

propagates through the grating seemingly unimpeded. Systems, such as these,

which exhibit coherent structures arising from a balance between nonlinear effects

and dispersion typically lead to the existence of solitary waves.

Indeed, Aceves and Wabnitz constructed a two-parameter class of solitary

wave solutions [3], often called Bragg solitons to distinguish them from the

classical notion of a soliton [52]. These waves solve evolution equations derived

from Maxwell’s equations using coupled-mode theory, which we briefly discuss

in Section 5.2, and can travel with a speed anywhere from the speed of light

in the medium down to zero. The existence of Bragg solitons demonstrates the

possibility of slow light in FBG’s. While Bragg solitons can in theory propagate

at slow speeds, it is difficult to initialize such waves experimentally. To create

a Bragg soliton, one must input light at a frequency inside the bandgap, and

such frequencies are strongly reflected. Neglecting nonlinear effects, the FBG

essentially acts as a band-stop filter, reflecting wavelengths whose frequency is

within the bandgap.

To overcome this, Mok, et al. [48], use a two-pronged strategy to couple

light into an FBG. First, they use an apodized grating, i.e., the grating strength

is ramped up gradually from zero. Secondly, they input so-called out-gap solitons,

wave packets with a mean frequency outside of the bandgap. As a result of the

apodization, the light coupled into the grating has its frequency gradually shifted

into the bandgap. Although this experiment is the first of its type and generated a

pulse with a group velocity 16% that of light in vacuum, this pulse contained only

about 20-30% of the the input energy, while the remaining light was back-reflected,

rendering the setup highly inefficient.

In order to address this inefficiency, Rosenthal and Horowitz [57], designed a

two-segment apodization function that allowed the creation of a pulse that retains

about 68% of the incident energy and with a speed roughly 3.2% of light speed.
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Despite this remarkable improvement in efficiency, the authors provide limited

mathematical detail about the process behind discovering such a design. This

leaves room for quantitative investigations into the efficiency of generating slow

light using FBGs.

We build on the method of Rosenthal and Horowitz by mathematically

formulating an appropriate optimal control problem. The objective of the problem

is to design an apodization profile which maximizes the coupling of light into the

FBG. By jointly optimizing the apodization profile with that of an additional

parameter, the grating chirp, we achieve a higher coupling efficiency of 82.6%

transmission, while further reducing the pulse speed to about 0.5% that of light.

This chapter is organized as follows: in Section 5.2, we provide the physical

model and give precise details of the numerical experiments performed in the

previous works mentioned that motivate ours. We attempt to gain intuition behind

the experiment by performing fits of the numerical data to the Aceves and Wabnitz

waveform. We also gain an understanding of the light/apodization interaction via

computations of the associated power spectra. In Section 5.3, we formulate the

optimal control problem which seeks to maximize the energy transmitted into the

fiber while treating the grating structure as the control. We provide the necessary

optimality conditions for the control problem and then present our numerical

results in Section 5.4.

5.2 The Physical and Numerical Model

5.2.1 Brief Overview of Coupled-Mode Theory

The evolution of the electric field propagating in an optical fiber is governed by

the one dimensional non-linear wave-equation

∂2
τ

(
n2(z, E2)E

)
= ∂2

zE, (5.1)

in dimensionless units where the speed of light c = 1, and where z denotes the

axial direction of propagation. Let ε be a small contrast of the index of refraction
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n so that it can be modeled as [31]

n = 1 + ε
(
ν(εz) cos(2kBz + 2Φ(εz)) + |E|2

)
(5.2)

Here the coefficient ν describes the strength of the grating and Φ′ describes the

chirp, i.e., the local modulation of the grating’s wavelength. The final term

describes a Kerr nonlinearity with small Kerr coefficient ε.

Using a two-scale expansion with an ansatz,

E =
√
ε
(
u(εz, ετ)ei(kB(z−τ)+Φ) + v(εz, ετ)e−i(kB(z+τ)+Φ)

)
+O

(
ε

3
2

)
(5.3)

and letting x = εz, t = ετ denote the slow variables, the following system of

hyperbolic equations, known as the nonlinear coupled-mode equations (NLCME),

i∂tu+ i∂xu+ κ(x)v + η(x)u+
(
|u|2 + 2 |v|2

)
u = 0,

i∂tv − i∂xv + κ(x)u+ η(x)v +
(
2 |u|2 + |v|2

)
v = 0.

(5.4)

arise as solvability conditions on the forward and backward slowly varying

envelopes u(x, t), v(x, t), respectively [31]. The coefficient κ(x) is proportional

to the local strength ν(x) of the grating while η(x) is proportional to the local

chirp Φ′(z). We refer to regions where κ(x) and η(x) are 0 as the bare fiber to

indicate the absence of the grating.

For low-amplitude light, the NLCME reduce to a set of linear coupled-mode

equations

i∂tu+ i∂xu+ κ(x)v + η(x)u = 0,

i∂tv − i∂xv + κ(x)u+ η(x)v = 0.

(5.5)

When κ and η are constant, this system has a dispersion relation given by

Ω(Q) = η ±
√
Q2 + κ2. (5.6)

By introducing a chirp η(x) into the grating, we see that this both shifts the center

of and widens the bandgap, i.e., the set of frequencies Ω ∈ (η −
√
Q2 + κ2, η +√

Q2 + κ2 that are strongly reflected by the grating, see Figure 5.1.
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(a) (b)

Figure 5.1 Introducing a chirp η shifts and the bandgap present in the linear
coupled-mode equations’ (5.5) dispersion relation (5.6). Both panels have κ set to
1. Panel (a) has η set to 0 while Panel (b) has η set to 1.

In the case of a uniform grating, that is, where κ ≡ κ0 and η ≡ 0, the

NLCME admit a two-parameter family of translationally invariant solitary wave

solutions, called Bragg solitons [3],

uB =

√
κ0(1 + c)

3− c2

(
1− c2

)1/4
W (X)exp (iφ(X)− iT cos θ) ,

vB = −
√
κ0(1− c)

3− c2

(
1− c2

)1/4
W ∗(X)exp (iφ(X)− iT cos θ) ,

(5.7)

where

X = κ0

(
1− c2

)−1/2
(x− ct) ,

T = κ0

(
1− c2

)−1/2
(t− cx) ,

φ(X) =
4c

3− c2
arctan

(
tanh (X sin θ) tan

θ

2

)
,

W (X) = sin θ sech

(
X sin θ − iθ

2

)
,

(5.8)

with free parameters 0 ≤ θ ≤ π and −1 < c < 1. The dependence of the Bragg

soliton on the parameters, we can see, is quite complicated, but we make a few

observations. The parameter c describes the velocity of the pulse, appears in

a Lorentz contraction, and, through the factors (1 ± c)1/2, controls the relative

amplitude of the forward and backward envelopes. Note that for stationary Bragg

solitons, c = 0, the frequency of the stationary oscillation is given by κ0 cos δ so
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as δ is increased from 0 to π, the frequency of the standing wave moves from the

right edge of the band gap to the left edge, while always remaining inside the gap.

It is important to note the NLCME possess two conserved quantities, an

energy

E =

∫ ∞
−∞

(
|u|2 + |v|2

)
dx :=

∫ ∞
−∞
Edx, (5.9)

and a momentum

P = i

∫ ∞
−∞

(
∂xu

†u+ ∂xv
†v
)
dx :=

∫ ∞
−∞
Pdx, (5.10)

where † denotes complex conjugation. Allowing the coefficients to vary in space

breaks the translation invariance, so that conservation of momentum fails to hold,

however energy remains conserved. We make use of the energy (5.9) in posing an

optimal control problem in Section 5.3.

5.2.2 The Numerical Setting

Using the physical modelling discussed in Subsection 5.2.1, we can now provide

the numerical setting of the Rosenthal and Horowitz experiment. Let κ(x) be the

grating profile that grows from κ = 0 for x ≤ 0 to a value κ0 for x ≥ a > 0. The

pulse is launched with a fixed profile from a point x = xinput < 0 in the bare fiber

and has a momentum directed toward the apodization region xapod ∈ [0, a]. The

Rosenthal and Horowitz experiment does not take into consideration the utility of

a chirp η(x). For this reason, we set η ≡ 0 in this section and postpone discussions

of η′s role until we define the relevant optimal control problem in Section 5.3.

The existence of the solitary wave (5.7) demonstrates that slow light in

FBGs is theoretically possible. Mok, et al., achieve 20% energy transmission, and

significant slowing of light by simply using a raised cosine profile. Rosenthal and

Horowitz significantly improve on the energy transmission by using two-segment

apodization profiles of the form
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κ(x) =


ζκ0

2

(
1− cos πx

L1

)
0 < x ≤ L1

ζκ0 + κ0

L2
(1− ζ)(x− L1) L1 < x < a = L1 + L2.

(5.11)

The Mok, et al., design is simply the case ζ = 1, and we provide a graph of the

apodization profile (5.11), with ζ = 0.995 in Figure 5.2.

Figure 5.2 The Rosenthal and Horowitz apodization function (5.11), with ζ =
0.995, κ0 = 2mm−1, and L1 = L2 = 1.5cm.

The experiment is modelled as a signaling problem, i.e., the solution is

initialized by a time-dependent boundary condition at the “input” endpoint.

Rosenthal and Horowitz use a three parameter family of input pulse data of the

form

u(xinput, t) = Asech

(
t− φ
σ

)
e−iΩt, v(x, 0) = 0, (5.12)

where xinput denotes the left-most endpoint of the spatial domain, as an initial

gap soliton outside the forbidden band gap of the dispersion relation (5.6). The

intention of the experiment is to have out–gap soliton of the form (5.12) interact

with the apodization (5.11), and, through the coupled-mode dynamics (5.4),

transform into an in–gap soliton of the form (5.7).

We show a numerical reproduction of the Rosenthal and Horowitz experiment,

alongside results of the Mok, et al., design, in Figure 5.3. There, we observe the

vastly improved energy transmission resulting from choosing ζ = 0.995, instead of

ζ = 1, in the apodization function (5.11). The choices of the remaining apodization
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parameters, in SI units, are L1 = 1.5cm, L2 = 1.5cm, κ0 = 2mm−1, while

the signalling data parameters are A = 16.4W, σ = 96.4ps, φ = 4ns, and

Ω = 0.398GHz.

We use a second order in time operator splitting method, detailed in

Appendix A.1, to solve Equation (5.4) with a spatial discretization of 4000 points

and temporal discretization of 12000 points. We solve Equation (5.4) out to 6 ns,

set xinput = −20 cm, and set the right endpoint to 16 cm. The numerical method

and majority of these parameters will remain consistent throughout this chapter,

unless otherwise noted.

(a) (b)

Figure 5.3 Numerical simulations of Equation (5.4) with the apodization design
(5.11) consistent with the parameters detailed in the text. Dashed lines provided
to help visualize the regions in space over which the two segment apodization
varies, cf. (5.11) and Figure 5.2. Panel (a) corresponds to the original Mok, et al.,
design, i.e., ζ = 1, while Panel (b) has ζ = 0.995.

To justify the incredible performance of the two-segment apodization

function, Rosenthal and Horowitz appeal to ideas from soliton perturbation theory.

They argue that the second segment of the apodization function adiabatically shifts

the high-intensity waveform, initially at x = L1, into the band gap, and, as a result,

minimizes back-reflection. We believe the nature of this argument to be somewhat

ad hoc, and the efficiency of the Rosenthal and Horowitz apodization as well as

the interpretation of its results requires further investigation.
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In order to gain traction with understanding the Rosenthal and Horowitz

results shown in Figure 5.3, we attempt to fit spatial solitary waves of the

form (5.7) to the numerical simulation data at specific times. The first fit is

performed at the time t = 3.42ns, which is near the critical excitation time. By

critical excitation time, we mean the time when the highly compressed waveform

has reached its maximum amplitude. We also perform a fit at t = 6ns, well after

the waveform has exited the apodization region x ∈ [0, a]. We show the fitting

parameters and result at t = 3.42ns in Figure 5.4 and at t = 6ns in Figure 5.5. In

these fits, we see somewhat convincing evidence the excited waveforms are Bragg

solitons, especially in the power density.

Figure 5.4 A least-squares fit of a Bragg soliton of the form (5.7) to the solution
of the Rosenthal experiment at the critical excitation time t = 3.42ns. The least
squares fit is performed on the waveform featured in Panel (a). Panel (b) displays
the resulting fit with Bragg soliton parameters c = 0.003, θ = 6.14, Ψ0 = 1.96,
and T = −17900.

The next step we take in order to better interpret the results of the Rosenthal

and Horowitz experiment is to make use of spatial and temporal power spectra.

Recall that the power spectrum of a function f ∈ L1(R) is the squared absolute

value of the Fourier transform

f̂(k) =

∫ ∞
−∞

f(x)e−ikxdx. (5.13)

We show the spatial power spectrum of each moment in time, which, by

Plancherel’s theorem, is Ê(k, t) = |û(k, t)|2 + |v̂(k, t)|2, in Figure 5.6. Meanwhile,

in Figure 5.7, we show the temporal power spectrum of each point in space, i.e.,
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Figure 5.5 An attempt to fit a Bragg soliton of the form (5.7) in least squares
to the solution of the Rosenthal experiment at the final time t = 6ns. The Bragg
soliton parameters found are c = −0.004, θ = 6.16, Ψ0 = 4.61, and T = −21, 200.

Ê(x, ω) = |û(x, ω)|2 + |v̂(x, ω)|2. These power spectra are easily computed via the

fftw function in MATLAB and visualized using the logarithmic scale (4.22) with

ε = 1.

We see that, indeed, allowing the apodization to vary slowly in space helps to

broaden the spatial power spectrum centered about the k = 0 mode in Figure 5.6.

We also see that this manifests in a denser temporal power spectrum in the

forbidden band gap centered about ω = 0 in Figure 5.7. At the critical excitation

time, the Rosenthal and Horowitz scheme allows the incident out-gap soliton and

the excited back-reflected out-gap soliton enough time to transfer their power

spectra to the power spectrum centered at the in-gap soliton frequency. In this way,

we begin to understand the adiabadicity hypothesis of Rosenthal and Horowitz.

We recenter our focus back on understanding to what extent the Rosenthal

and Horowitz scheme is efficient. A brute force search over the dimensionless

apodization parameters ζ and λ ∈ (0, 1), which determines the apodization lengths

given by

L1 = 3(1− λ) cm, L2 = 3λ cm, (5.14)

easily addresses the desire to know the local efficiency of the Rosenthal and

Horowitz apodization. We see, in Figure 5.8, the choice (λ, ζ)RH = (0.5, 0.995)

is not locally optimal. The optimal parameters (λ, ζ)∗ we find through this search
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(a) (b)

Figure 5.6 Spatial power spectra Ê(k, t), in the logarithmic scale (4.22), for the
numerical data shown in Figure 5.3. The Mok, et al., power spectrum is shown
in Panel (a) while the Rosenthal and Horowitz power spectrum is shown in Panel
(b).

(a) (b)

Figure 5.7 Temporal power spectra Ê(x, ω), in the logarithmic scale (4.22), for
the numerical data shown in Figure 5.3. The Mok, et al., power spectrum is shown
in Panel (a), while the Rosenthal and Horowitz power spectrum is shown in Panel
(b).
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are in fact (0.567, .99244). This greatly encourages the use of optimal control

theory in a pursuit of apodization functions which optimally couples light into a

Bragg grating.

(a) (b)

Figure 5.8 A brute force search for the greatest transmitted fraction of energy
in the 2-parameter family of apodizers, of the form (5.11), (5.14), with all other
conventions consistent with that of Figure 5.3. The Rosenthal and Horowitz
apodizer is the sub-optimal point (λ, ζ)RH = (0.5, 0.995), shown by the blue star,
while the globally optimal point is (λ, ζ)∗ = (0.567, .99244), shown by the red star.

5.3 The Optimal Control Formulation and Optimality Conditions

We now precisely formulate an optimal control problem whose objective is to

find the grating structures which simultaneously fulfill the desired outcome of the

Rosenthal and Horowitz experiment, yet maximize the transmission of light into

the constant grating portion of the optical fiber. To this end, we make use of the

following local conservation law

∂tE + ∂xFE = 0, (5.15)

where FE is the local energy flux. Note that this conservation law is the differential

form of energy conservation, where the energy is given by Equation (5.9).

We treat the grating functions κ(x) and η(x) as the control functions,

and assume that the apodization region is of fixed width a > 0, consistent

with the Rosenthal and Horowitz apodization function (5.11). In addition, we
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use the conventions consistent with those of Figure 5.2, including signalling

data (5.12), length of the spatial domain, duration of simulation time, and number

of discretization points. The admissible class C of grating functions we search over

is the space of absolutely continuous functions such that

κ(x) =


0 x ≤ 0,

κ0 a ≤ x,

and η(x) =


0 x ≤ 0,

0 a ≤ x.

(5.16)

Now, the optimal control problem we seek to solve is

min
(κ,η)∈C

J = min
(κ,η)∈C

{
−
∫ T

0

FE(u, v; a)dt+
γ

2

∫ a

0

(
∂2
xκ

2 + ∂2
xη
)
dx

}
, (5.17)

subject to the differential equation constraint (5.4).

The first term in the objective J has the appearance of a running cost in

time. However, the following simple calculation demonstrates that this term can

instead be written as∫ T

0

FE(u, v; a)dt =

∫ T

0

∫ a

∞
∂xFEdtdx =

∫ ∞
a

∫ T

0

∂tEdtdx =

∫ ∞
a

E(x, T )dx,

(5.18)

by the fundamental theorem of calculus, Fubini’s theorem, and conservation

law (5.15). In this sense, the term which promotes a greater energy flux into

the constant grating portion can be written as a running cost of terminal energy

in space. The second term in objective J is the usual Tikhonoff regularization, yet

appropriately taken over space. The inclusion of this regularization is motivated

by its successful application throughout the earlier chapters of this dissertation.

In order to solve Problem (5.17), we again employ the use of the hybrid

optimization method of Section 2.4. Since the line search portion of the

hybrid method requires computations of the gradient, we formally derive the
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Euler-Lagrange equations in Appendix B.1. We find

i∂tλ+ i∂xλ+
(
η + 2E + u†2

)
λ+

(
κ+ 4v†<{u}

)
µ = 0, (5.19)

i∂tµ− i∂xµ+
(
η + 2E + v†2

)
µ+

(
κ+ 4u†<{v}

)
λ = 0, (5.20)

λ(x, T ) = 2iH(x− a)<{u(x, T )} , (5.21)

µ(x, T ) = 2iH(x− a)<{v(x, T )} , (5.22)

γ∂2
xκ =

∫ T

0

<
{
λ†v + µ†u

}
dt, (5.23)

γ∂2
xη =

∫ T

0

<
{
λ†u+ µ†v

}
dt, (5.24)

where H(x− a) is Heaviside’s function. As usual, we find two costate equations,

Equations (5.19) and (5.20), which are evolved backward in time from the terminal

conditions, Equations (5.21) and (5.22). We use the numerical method detailed

in Appendix A.2 to solve these costate equations. Equations (5.23) and (5.24)

are used in the computation of control gradients as required by Algorithm (3).

Computations of the gradient are performed in the space Ḣ1
0 ([0, a]), and we use the

Chebyshev differentiation matrices (4.14) in order to solve the resulting boundary

value problem.

5.4 Numerical Results

We now present the results of using the hybrid optimization method of Section 2.4

on optimal control problem (5.17). We relax the constraint that the optimization

is performed solely over x ∈ [0, a], which is used as notational convenience, and

instead allow the domain x ∈ [x0, a], where a > x0 > 0. In all simulations, we

find the Tikhonoff parameter γ on the order of 10−6 to be satisfactory. We use

differential evolution parameters Npop = 50, F = 0.8, CR = 0.9, and Nmax = 30

as required by Algorithm (2).

105



The 12 mode CRAB ansatz we use throughout this section is

κr(x) = (κ0 − κRH(x0))
12∑
j=1

rκ
j2

sin

(
jπ
x− x0

a− x0

)
+ (κ0 − κRH(x0))

x− x0

a− x0

+ κ(x0),

(5.25a)

ηr(x) =
κ0

100

12∑
j=1

rη
j2

sin

(
jπ
x− x0

a− x0

)
, (5.25b)

on the optimization domain x ∈ [x0, a], where rκ and rη are random variables

drawn uniformly from [−1, 1], κRH is a Rosenthal and Horowitz apodization (5.11)

with free parameters (λ, ζ), and κ0 = 2mm−1, consistent with the constant grating

portion of κRH. From experience, we find that chirp functions which are about

two orders of magnitude smaller than κ0 perform well; this is why we include the

factor of 100 in the CRAB ansatz for η. All other conventions regarding numerical

simulations are consistent with those used so far throughout this chapter.

(a) (b)

Figure 5.9 The result of using the hybrid method to find more efficient
apodization functions κ nearby the (λ, ζ)RH apodization. 72.9% of the incident
light is now coupled into the grating. The conventions of Panel (a) are consistent
with those of Figure 5.3.

Motivated by the results of the brute force search shown in Figure 5.8, we

begin by searching for nearby grating functions that perform optimally relative

to the Rosenthal and Horwitz apodizer (5.11), which successfully couples about

68% of the energy of the signalling data into the grating. We set x0 = 1.5cm
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and a = 3cm consistent with the apodization parameters (λ, ζ)RH, and use the

associated Rosenthal and Hororwitz function everywhere else outside [x0, a].

Without taking the chirp η into account, the hybrid method finds an

apodization function which couples 72.9% of the incident light into the grating,

and we show this in Figure 5.9. We also show, in Figure 5.10, that by performing

an optimization over the domain consistent with the optimal parameters (λ, ζ)∗

shown in Figure 5.8, we find an apodization function which couples 74.1% of the

incident light.

(a) (b)

Figure 5.10 The result of using the hybrid method to find more efficient
apodization functions κ which are nearby the (λ, ζ)∗ apodization. 74.1% of the
incident light is now coupled into the grating.

By keeping the optimization domain consistent with the parameters (λ, ζ)∗,

yet including a chirp in the optimization, we show, in Figure 5.11, grating

functions which couple 77.7% of the incident light. From the optimal apodization

functions, shown in Figures 5.9–5.11, we observe a clear pattern: the nearby

efficient apodization functions have a large negative gradient to the right of the

optimization boundary point x0.

For this reason, we slightly extend the width of the optimization domain

to [1.19, 3.4]cm, and perform the search again. We show, in Figure 5.12, grating

functions which now successfully couple 82.6% of the incident light. The extension

of the domain is chosen judiciously. We extend the domain so that the entire

grating structure is still reasonably within some technological constraint, e.g.,
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15% larger than the total size of the Rosenthal and Horowitz apodization region.

The left endpoint x0 is chosen ad hoc until we find an optimal grating function κ

such that κ′(x0) > 0.

(a) (b)

Figure 5.11 The result of including a chirp in the search for efficient grating
functions near the (λ, ζ)∗ apodization. 77.7% of the incident light is now coupled
into the grating.

We also show, in Figure 5.12, the resulting spatial and temporal power

spectra. We learn that allowing the optimization domain to be slightly wider,

we can make significant gains by slightly increasing the spectral power exchange

time between the out-gap coupled modes and the in-gap one. We also find that the

resulting in-gap soliton has a group velocity with a magnitude 0.53% that of light

speed. We emphasize this unintended, yet fortuitous improvement in the slow

down of the coupled light against the result of the original (λ, ζ)RH apodization

visually in Figure 5.13.

Changing the width of the optimization domain introduces an unsystematic

aspect to our method. Therefore, we turn toward searching for optimal grating

functions on the original domain x ∈ [0, 3]cm. We first perform a gradient descent,

using Algorithm (3), downhill from the (λ, ζ)RH apodization function to find a

grating structure that is locally optimal over the entire the admissible space C. We

find grating functions which are 78.2% efficient and show the results in Figure 5.14.

The final result we show, in Figure 5.15, is one which does not involve the

Rosenthal and Horowitz class of apodization functions (5.11). Remarkably, our
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(a) (b)

(c) (d)

Figure 5.12 The result of relaxing the optimization domain to be slightly wider,
i.e., x0 = 1.19cm and a = 3.4cm. Panel (c) shows the computed spatial power
spectrum, while Panel (d) shows the computed temporal power spectrum. The
spectral densities show a greater coupling of light into the band gap than that of
Figures 5.6 and 5.7.

(a) (b)

Figure 5.13 A long time simulation consistent with the results of Figure 5.12.
Panel (a) is the result of the locally optimally grating structure, while Panel (b)
is the result of the (λ, ζ)RH apodization.
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(a) (b)

(c)

Figure 5.14 The result of using the gradient descent method (3) in order to find
locally optimal grating functions downhill from the (λ, ζ)∗ apodization. 78.2% of
the incident light is coupled into the grating. Panel (c) shows the local convergence
of the gradient descent on the objective functional (5.17).
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best grating structure, which is only 66% efficient, is similar in profile to the

Rosenthal and Horowitz shape near the ends of the boundary. Since the resulting

grating structure is found after 12 hours of computational time on a personal

computer, the value of Rosenthal and Horowitz’s intuition behind their design

should not be understated.

(a) (b)

Figure 5.15 The result of using the hybrid method with the optimization domain
x ∈ [0, 3]cm. The efficiency of the grating structure is comparable to that of the
(λ, ζ)RH apodization function at around 66%.

5.5 Concluding Remarks

In this chapter, we formulate a simple and physically motivated optimal control

problem aimed at efficiently coupling light into an FBG. By employing numerical

optimization methods widely used in the quantum control literature, we demon-

strate the viability of optimal control in the design of fiber Bragg gratings which

act as efficient compressors and pulse-delayers. We optimize previously reported

designs, and provide guidance on how to explore the space of possible designs.

Consistent with the work of previous chapters, the methodology used here can be

applied, with suitable modifications, to other problems constrained by dispersive

equations.

In addition, by considering the chirp of the grating as part of the design, we

see an improvement in both the transmission of the light and the effectiveness of

the grating as a pulse-delayer. Moreover, we find the globally optimal apodization
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functions for this problem are most likely ones which have features similar to

the Rosenthal and Horowitz design. We also observe that in cases where we see

significant gains in the transmission of light into the fiber, we find this comes at

the cost of decoherence through two possible mechanisms: radiation buildup and

solitary wave fissioning.

Figure 5.16 Panel (a) displays solutions of Equation (5.4) at t = 5ns
corresponding to the optimal grating structures in Figure 5.12 and. Panel (b)
shows a Bragg soliton fitting with parameters c = −0.007, θ = 31.3,Ψ0 = 2.66,
and T = −13071. Evidence of solitary wave decoherence is present.

Evidence of radiation buildup is seen in the contrast between the tails of the

power densities shown in Figures 5.4 and 5.5. Further evidence exists through the

temporal power spectra at spatial points well beyond the apodization region in

Figure 5.12 and the associated Bragg soliton fits in Figure 5.16. We find that the

grating structure is only 78.1% effective in terms of coherent energy since 94.5% of

the total belongs to the Bragg soliton rendering this result to be less impressive.

Some decoherence may be due to solitary wave fissioning, although we do

not observe clear evidence of its presence here. Even if evidence of the onset of

fissioning is unconvincing, its presence is certainly possible and well-understood.

Fissioning, as a culpable mechanism of decoherence, has been well-studied over

the past few decades. Indeed, numerical studies by Mak and Malomed [43]

demonstrate the possibilities of Bragg soliton splitting, albeit in a slightly different

experimental context. Theoretical insight behind this mechanism is based on

the inverse scattering formalism and the mechanism has been accounted for
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in nearly-integrable versions of the Korteweg-deVries equation in work due to

Zabusky and Tappert [67] and the Benjamin-Ono equation in work due to

Choi [15].

We believe the numerical results of this section, in particular those of

Figure 5.12, serve as an impetus for investigating the coupled-mode dynamics more

thoroughly. The intention behind our studies is to gain insight into an optimization

framework tailored toward maintaining coherence and fidelity in highly intense

solitary waves. For these reasons, this dissertation continues forward with optimal

control problems involving nearly-integrable dispersive wave equations.
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CHAPTER 6

OPTIMAL CONTROL OF SOLITONS IN NEARLY-INTEGRABLE

SETTINGS

6.1 Introduction

In this chapter, we propose a method for designing locally inhomogeneous media

intended to coherently transform spatial solitons. In the homogeneous setting, the

evolution equations are integrable, i.e., they are exactly solvable and possess an

infinite number of conservation laws. By nearly-integrable, we mean the evolution

equations would be integrable in the absence of these localized inhomogenieties.

The optimal control problem is formulated in terms of a certain time-dependent

spectrum associated with the inverse scattering formalism. We provide a numerical

demonstration of the optimal control problem’s merit for when the constraining

dynamics are given by the Korteweg-deVries equation.

6.2 Canonical Examples of Nearly-Integrable Systems

Many nonlinear wave equations are known to support solitons as exact solutions.

In fact, there are an infinite number of integrable PDE which can be constructed

via the so-called AKNS hierarchy [52]. Despite the presence of this vast

zoo of solitons and integrable equations, certain equations, like the Korteweg

deVries (KdV) equation, nonlinear Schrödinger (NLS) equation, and the Toda

lattice, recur throughout many textbooks and serve as great educational and

historical gateways to the beautiful mathematics of integrable systems. Many of

these integrable equations serve as model problems in several different physical

situations. Indeed, integrable nonlinear wave equations almost universally

appear as solvability conditions when seeking uniform approximations to difficult

wave propagation problems such as those governed by Maxwell’s equations,

the Navier-Stokes equation, or even continuum limits of discrete anharmonic

oscillators.
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As a model problem, consider the perturbed KdV equation as it appears in

the context of surface gravity waves:

∂tq + 6q∂xq + ∂3
xq + Γ(t)q = 0, (6.1)

where t is a slowly varying spatial scale, x is the reference frame coordinate of a

propagating unidirectional solitary wave, Γ(t) = 9
4
∂t logD, D(t) is proportional

to the slowly varying depth below the fluid surface, and q(x, t) is proportional

to the leading order contribution to the fluid velocity potential. Equation (6.1)

appears as a solvability condition for free-surface dynamics constrained by ideal

fluid flow; see [52] for a complete derivation and more detailed account of the

relevant physics.

Consider an initial soliton of the form

q(x, 0) = α2 sech2 αx

2
, (6.2)

with α > 0, which exactly solves Equation (6.1) in the absence of topography

gradients ∂tD. We show, in Figure 6.1, a numerical simulation of Equation (6.1)

with initial condition (6.2) and sigmoidally-shaped topography D. The initial

soliton fissions into four solitons as it interacts with the topography. Numerical

evidence that the fissioned solitary waves are indeed solitons is captured by the

expected KdV soliton-soliton interaction: solitons exchange every one of their

conserved quantities upon colliding which manifests a phase shift as the only

directly observable effect. The number of solitons which can fission from the

initial soliton is accounted for by work due to Zabusky [67] and only depends

on the relative change in depth across the shelves of the topography and the

parameter α. This problem serves as the canonical example of soliton fissioning;

one of two generic features of nearly-integrable dynamics.

Another expected feature of nearly-integrable dynamics is the shedding or

buildup of radiation. Consider the following perturbed NLS equation

iψt +
1

2
∂2
xψ + |ψ|2ψ + i∂t logD(t)ψ = 0, (6.3)
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(a) (b)

Figure 6.1 Numerical solution of equation (6.1) in Panel (a) using the split-step
Fourier, integrating factor technique with periodic boundary conditions detailed
in Appendix A.3. Evidence soliton fissioning is seen through the phase shift
of interacting solitons as they wrap around the periodic domain. The initial
condition (6.2) has α = 1/2. Panel (b) shows the final computed solution q,
top, and the topography D(t), bottom.

with 2-parameter family of initial soliton conditions

ψ(x, 0) = 2λ sech(2λx)eicxe
iπ
4 , (6.4)

as a model system. We show, in Figure 6.2, the resulting dynamics are somewhat

complex where we see a mix of soliton fissioning and radiation shedding in the

tails. The purpose of this numerical experiment is to show, in general, it can be

quite difficult to resolve the main soliton after it has been perturbed, unlike the

numerical experiment of Figure 6.1.

6.3 A Soliton Control Strategy and its Optimality Conditions

The aim of building a soliton-specific control strategy is to avoid losses of coherence

due to either fissioning or radiation shown in Figures 6.1 and 6.2. To this end, we

seek a clear representation of the mass content present in the intended coherent

soliton. Indeed, there is a well-known formula for the KdV equation, called the

trace formula, which fulfills this desire:

∫ ∞
−∞

qdx = 4
N∑
k=1

ηk +
2

π

∫ ∞
0

ln
(
1− |R(ξ)|2

)
dξ. (6.5)
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(a) (b)

Figure 6.2 Panel (a) shows a numerical solution of the NLS equation (6.3) using
the split-step Fourier method of Appendix A.1 and periodic boundary conditions.
Here, λ = 0.5, c = 0.01 are used in initial condition (6.4). Panel (b) shows the
presence of soliton fissioning and radiation buildup.

A derivation of this formula and a primer on the inverse scattering formalism for

the KdV equation are provided in Appendix C. Trace formulae such as (6.5)

generally exist for integrable nonlinear wave equations [52], so the methods

developed here are applicable to other problems involving the coherent control

of solitons.

The left-hand side of Equation (6.5) is the total mass of solutions to

Equation (6.1) and is not conserved due to the presence of the topography profile

D. In fact, it is straightforward to show that by integrating Equation (6.1) by

parts over R, the local mass changes through∫
R
q(x, t)dx =

α2

2

(
D(0)

D(t)

) 9
4
∫
R

sech2 αx

2
dx = 2α

(
D(0)

D(t)

) 9
4

:= βD−
9
4 . (6.6)

The first N terms on the right-hand side of Equation (6.5) correspond to the N

bound states of the eigenvalue problem,

∂2
xψ +

(
ζ2 + q(x, t)

)
ψ = 0, (6.7)

where ζ = iη, associated with the KdV equation through the inverse scattering

transform. The singular values ηk account for the mass of each soliton. The last

term on the right-hand side of Equation (6.1) accounts for the radiation buildup
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through the continuous spectrum of the eigenvalue problem (6.7) and is the Fresnel

reflection coefficient of q.

We show, in Figure 6.3, the computed differences among the various terms in

the trace formula (6.5). We see that, indeed, the trace formula is a computationally

accurate way of accounting for the mass of each fissioned soliton, even if each of

the solitons is distorted by their mutual interactions at a given moment.

(a) (b)

Figure 6.3 Demonstration of the accuracy of the trace formula (6.5). Panel (a)
shows the computed solution of Equation (6.1) at t = 70 with periodic boundary
conditions and initial condition (6.2) with α = 1

4
. Panel (b) shows the scaled

singular values ηk, computed by the spectral method used to solve the inverse
scattering problem (4.17). The bottom portion compares a direct computation of
the mass via the periodic trapezoidal rule, the sum of the scaled singular values,
and the mass law (6.6).

Now, consider the perturbed KdV equation (6.1) and its associated trace

formula (6.5). The physical intuition we gain from the trace formula (6.5) is

that as a soliton evolves in an inhomogeneous medium, the soliton can only shed

mass due to two mechanisms: fissioning and radiation buildup. Since we would

like to maximize the mass in the main soliton, evolved from the soliton initial

condition (6.2), and assuming q is strictly real so that the Schrödinger operator

in Equation (6.7) is self-adjoint, it’s clear we’re interested in minimizing

ΛJ =

∫ ∞
−∞

qdx− 4η1. (6.8)
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Therefore, a natural optimal control problem to study is

inf
D∈D
J =

1

2
inf
D∈D

∫ T

0

(
Λ2
J + γ∂tD

2
)
dt (6.9)

subject to the perturbed KdV equation (6.1) and intial soliton condition (6.2).

The use of the admissible class

D =
{
D ∈ H1 ([0, T ]) : D(0) = D0, D(T ) = DT , D0 > DT > 0

}
ensures the mass, given by Equation (6.6) does not grow arbitrarily large.

The usual Tikhonov term has been introduced to regularize the objective to

ensure well-posedness of the control problem. We choose to use ΛJ in a running

cost, instead of a terminal cost, for two reasons: it is far easier to prove existence

of minimizers and simpler to derive the necessary optimality conditions. We show,

in Appendix B.3, the nature of the difficulty in using a terminal cost.

However, the drawback of using a running cost is that evaluations of J

require a greater amount of computation time. By using a terminal cost, an

evaluation of J requires one solve of Equation (6.1) and one solve of the eigenvalue

problem (6.7) at t = T. By using a running cost, we must instead solve the

eigenvalue problem (6.7) several times for each evaluation of J .

In Appendix B.3, we show the necessary optimality conditions are given by

∂2
xϕ+ (q − η2

1)ϕ− 2∂2
xψ1 − 2

(
ψ1ϕ+ 4βD−

9
4η−1

1

) (
∂2
xψ1 + (q − η2

1)ψ1

)
= 0,

(6.10)

γ∂2
tD −

9

4
∂t
pq

D
+

9

4
D−2∂tD +

9

4
β2D−

11
2 − 9η1βD

− 13
4 = 0, (6.11)

∂tp+ 6q∂xp+ ∂3
xp− Γ(t)p− ϕψ1 −

1

2
η1ψ

2
1 = 0, (6.12)

p(x, T ) = 0, (6.13)

where p is the adjoint state to q, ϕ is the adjoint state to eigenfunction ψ1

corresponding to the singular value η1, ϕ ∈ L2(R), and D ∈ D.
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6.4 A Numerical Demonstration

We now provide a demonstration of the control strategy outlined in Section 6.3.

This demonstration simply serves as a proof of concept for the soliton control

strategy, and a more serious undertaking of determining the efficiency of our

strategy will be done when this method is applied to the problem of Chapter 5 in

Chapter 7.

To this end, we use the sigmoidally shaped topography shown in Figure 6.1

as a reference. Since the optimality conditions (6.12)–(6.11) take a fair amount

of commitment to solve, with the only available solution technique being a

costly finite difference method, we choose to only use the CRAB method in the

optimization. We leave further exploration of the optimal control problem using

the GRAPE methodology as future work. Instead, we rely on a CRAB, analogous

to Equation (5.25), with differential evolution parameters consistent with those

used in Section 5.4.

We see, in Figure 6.4, topographies which perform more optimally than the

initial topography of Figure 6.1. There is now 5% more mass in the primary soliton

while the amplitude of the secondary soliton has been reduced by a factor of two.

We also see, in Figure 6.5, the fissioning happens less abruptly than before. This

is seen both in the solution of Equation (6.1) and the eigenfunction ψ1 solving

Equation (6.7). We note that the resemblance of the solutions of Equation (6.1)

and Equation (6.7) in Figure 6.5 is reflected through the fact that the initial

condition (6.2) is a Pöschl-Teller potential (4.7) with respect to the ground state

eigenfunction ψ1 which takes the form of Equation (4.8).

Although our numerical results for this section are not that enticing, it is

difficult to judge the extent to which our demonstration can be optimized. We

believe we thoroughly search the space of admissible topographies, corresponding

to the boundary values of the initial topography in Figure 6.4, using our method.

Indeed, what we see is that our numerical simulations are constrained by and

verify a theoretical result due to Mei [42].
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(a) (b)

(c) (d)

Figure 6.4 The result of using the CRAB method in order to solve the optimal
control problem (6.9). Panel (a) shows the initial and resulting topographies.
Panel (b) shows the resulting solutions of Equation (6.1) and the initial condition.
Panels (c) and (d) show the corresponding mass decomposition via the trace
formula (6.5) for the initial and optimized topographies, respectively.
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(a) (b)

(c) (d)

Figure 6.5 Shown here are the eigenfunctions |ψ1|2 solving Equation (6.7).
Panel (a) corresponds to the numerically computed potential q, which solves
Equation (6.1) with the initial topography from Figure 6.4, in Panel (b). Panel
(c) corresponds to the potential q, resulting from the optimized topography shown
in Figure 6.4, displayed in Panel (d).
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Mei predicts that if the topography varies slowly over t, then the number of

solitons that will fission is determined only by the change in depth D(0)−D(T ).

Mei’s result, in the context of our demonstration, predicts we should observe four

solitons after the topographical interaction, and we see that this result is quite

robust in that it also holds for topographies that transition rapidly as those shown

in Figure 6.4.

We also note, going forward, our method is intended for a refinement of the

results of Chapter 5. The results of Chapter 5 indicate that gaining even a few

percentage points of efficiency is a difficult task. Moreover, our refinement method

motivates the efficient design of FBG as a two-stage optimal control problem,

similar to the strategy used for the beam combining problem of Chapter 4, where

the refinement is taken over the second stage. In this way, the soliton control

method creates an opportunity to use an optimal control formulation which is not

otherwise available.
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CHAPTER 7

DESIGNING BRAGG GRATINGS USING COHERENT SOLITON

CONTROL

7.1 Intended Goal of the Chapter

When modeling BEC in Chapter 3, we learn it is a worthwhile task to

seek mathematically motivated control strategies through simplifications of the

constraining dynamics. In studying profile reshaping problems in Chapter 4, we

learn the merit of computing optimal controls in stages. Equipped with this

experience, we seek simpler models of coupled-mode wave propagation in FBGs

so that the soliton-specific techniques of Chapter 6 can be employed to refine the

numerical results of Chapter 5 through a two-stage optimal control problem.

We search for simpler evolution equations by using the standard method

of multiple scales [7, 47]. We find, not surprisingly, the reduced model is a

nearly-integrable equation of nonlinear Schrödinger-type. We show, numerically,

simulated coupled-mode data can be mapped to nonlinear Schrödinger solitons in

the correct frame of reference.

We then pose an optimal control strategy of the same flavor as that of

Chapter 6 over the latter portion of the apodization region given by Equation (5.11).

We solve the control problem with the numerical techniques of Chapter 2. Finally,

we use the optimal grating structure found in the nonlinear Schrödinger regime,

couple this with the optimal grating structure found through a maximization

of the global full-width at half maximum over the first apodization region, and

numerically solve the NLCME (5.4) with the full grating structure to verify its

overall performance.

This chapter unifies the skills, knowledge, and experience gained from

Chapters 2–6. In this way, the work presented here is the culmination of the

work done in this dissertation.
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7.2 The Nonlinear Schrödinger Regime

7.2.1 Multiple Scale Analysis

Recall the apodization function (5.11) varies slowly in x over its second apodization

region. In addition, we see that the group velocity v of the excited in-gap soliton

shown in Figure 5.8 is, to good approximation, constant. By investigating the

dynamics in a frame of reference which moves at the velocity v, we expect to find

simpler evolution laws than that of Equations (5.4) in the original coordinates x

and t.

In order to find the frame of reference which moves with the group velocity

v and the evolution law, let us define the small parameter

ε :=

√
maxx ∂xκ

maxx,t {|u|, |v|}
. (7.1)

This parameter is, indeed, small for the simulation shown in Figure 5.8, and is

about two orders of magnitude smaller than the scale of the apodization function κ.

We assume the grating structures vary very slowly, i.e., κ = κ(ε2x) and η = η(ε2x).

Furthermore, assume the relevant dynamics evolve over the two time scales t and

T = εt, and the three length scales, x, X = εx, and ζ = ε2x. The reason for these

choices in scales will become more apparent in Subsection 7.2.2.

For the purposes of a multiple-scales analysis, assume the following expansion

w = εw0 + ε2w1 + ε3w2 +O(ε4), wi =

ui
vi

 , i = 0, 1, 2. (7.2)

By substituting the multiple-scale expansion (7.2) into the NLCME (5.4), using

the multiple-scale operators

∂t → ∂t + ε∂T , (7.3)

∂x → ∂x + ε∂X + ε2∂ζ , (7.4)

and collecting terms in powers of ε, we find, to leading order,

L0w0 = 0, (7.5)
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where the linear operator is given by L

L0 = i

 ∂
∂t

+ ∂
∂x

+ η κ

κ ∂
∂t
− ∂

∂x
+ η

 . (7.6)

Solutions of Equation (7.6) are of the form

w0 = A(X,T, ζ)ϕ+e
iΦ, (7.7)

where the phase

Φ =

∫ x

0

Q(s)ds− Ωt, (7.8)

is defined through the dispersion relation

(Ω− η)2 = κ2 +Q2. (7.9)

The Lorentz factor embedded in this definition is denoted by γ = (1 − v2)−1/2,

while the group velocity is computed through v = ∂QΩ. The linear eigenfunction

ϕ+, sometimes referred to as a Bloch state [19], in the ansatz (7.7) is given by

ϕ+ =
1√

2
√
Q2 + κ2

 κ√√
Q2+κ2−Q

−
√√

Q2 + κ2 −Q

 . (7.10)

To next order, O(ε2), we find the inhomogeneous linear equation

L0w1 = −L1w0, (7.11)

where the operator L1 is given by

L1 = i

 ∂
∂T

+ ∂
∂X

0

0 ∂
∂T
− ∂

∂X

 . (7.12)

The inhomogeniety present on the right-hand side of Equation (7.11) introduces

terms that are resonant with the spectrum of the operator L1. Eliminating these

resonant terms, via the Fredholm alternative, gives a solvability condition: the
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envelope A depends only on the combination of variables X + vT . This gives us

the correct frame of reference ξ := X + vT to study the coupled-mode dynamics

given by Equations (5.4) through the evolution of the envelope A(ξ, ζ) present in

ansatz (7.7).

Introducing the coordinate ξ renders (7.11) solvable, and we search for

solutions linearly independent from the ansatz at the previous order. To this

end, we use

w1 = B(ξ, ζ)ϕ−e
iΦ, (7.13)

where the Bloch state ϕ− is given by

ϕ− =
1√

2
√
Q2 + κ2


√√

Q2 + κ2 −Q
κ√√

Q2+κ2−Q

 (7.14)

and is linearly independent from the Bloch state used in the ansatz (7.7) at order

O(ε), as desired. By substituting w1 into Equation (7.11), we find the envelope B

can be related to A by

B(ξ, ζ) = − i∂ξA

γη + 2γ2κ
. (7.15)

Now, to O(ε3), the nonlinear terms make an appearance, and we find that

L1w2 = −L2w1 −N (w0), (7.16)

where

L2 = i

 ∂
∂ζ

0

0 ∂
∂ζ

 , N (w0) =

(|u0|2 + 2|v0|2)u0

(2|u0|2 + |v0|2) v0

 . (7.17)

Assuming the ansatz at this order

u2 = C(ξ, ζ)ϕ−e
iΦ, v2 = C(ξ, ζ)ϕ−e

iΦ, (7.18)
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and suppressing resonant terms, once again via the Fredholm alternative, we find

the solvability condition on C(ξ, ζ) is such that

C(ξ, ζ) =
i

η + 2γκ

(
∂ξB − γ(1− v)∂ζA+

iγ

2

(
v2 + 2v − 3

)
|A|2A

)
. (7.19)

Substituting (7.15) and (7.19) into equations (7.16), we find the the envelope

A(ξ, ζ) satisfies the following nonlinear-Schrödinger equation (NLSE):

i∂ζA = −β
2
∂2
ξA+ Γ|A|2A, (7.20)

where the ζ dependent coefficients β(ζ) and Γ(ζ) are given by

β(ζ) =
2

γ2v (η + 2γκ)
, (7.21)

Γ(ζ) =
(3− v2)

2v
. (7.22)

Here, the ζ dependence of β and Γ is reflected through the ζ dependence of the

group velocity v, the chirp η, the apodization strength κ, and v-dependent Lorentz

factor γ. We also note that an equation of this type is not entirely new. Indeed,

for the chirpless case η ≡ 0, an identical equation is derived by DeSterke [21].

7.2.2 Mapping the Simulated Data to Solitons

The passage toward numerically modeling coupled-mode dynamics via the model

envelope equation (7.20) is through the characteristic coordinate ξ. From the

various numerical simulations shown throughout Chapter 5, we observe that the

excited solitary wave typically travels at a near constant group velocity in the

second apodization region given by Equation (5.11). By viewing the simulated

data over space and time, mappping coupled-mode data onto the coordinate ξ is

done by simple geometric means.

First, we search for points of maximum coupled-mode power |u|2 + |v|2.

This is done by fixing time and then computing the pointwise maximum in

space. We compute the best-fit curve through these maximal points, and

then interpolate simulated coupled-mode data along the characteristic direction
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perpendicular to this best-fit curve via MATLAB’s scatteredInterpolant. We

display these computed characteristic coordinates in Figure 7.2.2 as it relates to

the coupled-mode data from Figure 5.3.

Figure 7.1 Tracking the Rosenthal and Horowitz coupled-mode wave front from
Figure 5.3. The curve of maximal power is drawn in red with the computed
characteristic coordinates ξ in black. Observe the group velocity in the apodization
region x ∈ [1.5, 3] cm is nearly constant which is further reflected by a constant
slope in the coordinate ξ throughout this region.

We see, in Figure 7.2.2, a family of characteristic coordinates determined by

the evolution parameter ζ. That is, the evolution of the characteristc coordinate ξ

takes place as we move along the coordinate ε2x. In this sense, the NLSE (7.20) is

an evolution equation for the coupled-mode data mapped onto the characteristic

coordinate ξ. To complete the numerical mapping to the NLS regime requires

the use of Ansatz (7.7) along with considerations of the natural scales present in

Equation (7.20).

Consider the four-parameter family of possible soliton intitial conditons

ψ(ξ, 0) = 2λ sech(2λ(ξ − ξ0))ei(cξ+θ)e
iπ
4 , (7.23)

for the homogeneous NLSE (6.3). In order to relate this soliton to the NLSE (7.20),

we rescale the envelope A→ 3
√

Γψ, the characteristic coordinate ξ → Γ2/3β−1/2ξ,

and the evolution variable ζ → 3
√

Γζ.We then have a total of five fitting parameters

to work with: the wavenumber Q, the time parameter in the phase Φ of the leading

order solution (7.6), and the three NLS parameters λ, c, and θ. We show the result
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(a) (b)

Figure 7.2 Fitting the ansatz (7.6) with the NLS soliton (7.23) to the simulated
data interpolated onto the characteristic coordinates in Figure 7.2.2. The fitting
parameters found were roughly λ = 18, p = 30, θ = 1.8, ξ0 = −43, Q = 0.03,
and time shift T = −11000.

of a fitting performed at the point where the line ε−2ζ = 2cm intersects the

characteristic coordinate ξ.

We use the fitted NLS soliton, shown in Figure (7.2), as an initial conditon

for the NLSE (7.20). In solving the NLSE, we see that the inhomogeniety is in

the coefficient of the dispersive term ∂2
xA. Critically, this variable coefficient is

a function of the evolution parameter ζ, and not the coordinate ξ. This means

we can still use efficient spectral methods in order to solve, what will become,

the constraining dynamics of an optimal control problem. The numerical method

used to solve the NLSE (7.20) is an appropriately slight modification of the method

discussed in Appendix A.1.

We show, in Figure 7.3, a sample simulation of Equation (7.20) for the

Rosenthal and Horowitz grating structure (5.11) without chirp. We see the generic

difficulty in using an apodized grating with increasing Bragg grating strength in

the NLS regime: the soliton experiences compression at the cost of losing coherence

by generating radiation.
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(a) (b)

Figure 7.3 Numerical solution of the NLSE (7.20) with the Rosenthal and
Horowitz apodization (5.11). The parameters used for the initial soliton
condition (7.23) are λ = 1, ξ0 = 0, p = 2, θ = 0, and wavenumber Q = .03
required by the coefficients (7.21) and (7.22).

7.3 Optimal Control Framework and the Trace Formula

In this section, we consider an optimal control strategy which makes use of the

soliton-specific optimal control framework detailed in Section 6.3. Our main

objective here is to refine grating structures shown in Section 5.4. As we did

in Chapter 6, we use nonlinear filtering via the trace formula, but for the

appropriately scaled NLSE (7.20).

Recall, the inverse scattering formalism, see Appendix C, associates a linear

eigenvalue problem, called the Zakharov-Shabat system, with a potential given

by an integrable nonlinear wave equation. For the homogeneous NLSE (6.3), the

Zakharov-Shabat eigenvalue problem is given by

∂ξϕ = −iλϕ+ ψ(ξ, ζ)φ, (7.24)

∂ξφ = iλφ− ψ†(ξ, ζ)ϕ, (7.25)

where λ is the eigenvalue and ψ solves the NLSE (7.20) with β = Γ = 1.
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In work due to Moore, et al. [50], it is shown the trace formula corresponding

to the discrete spectrum of the operator

A = i

 ∂ξ −ψ

−ψ† −∂ξ

 (7.26)

can be used to nearly reconstruct the “soliton-like” portion of the wavefunction ψ

in a computationally viable way. The formula is

ψ = −
N∑
k=1

(
ϕ2
k∫

R φkϕk
+

φ†2k∫
R φ
†
kϕ
†
k

)
(7.27)

where N is the cardinality of the point spectrum of ψ and each eigenfunction ϕk

and φk correspond to the eigenvalue λk.

In order to compute the reconstruction through formula 7.27, we use a

spectral collocation method due to Yang [80], which we briefly outline here. First,

we truncate the spatial domain to the finite, symmetric one ξ ∈ [−L/2, L/2].

Note that this is sufficient, instead of pursuing the rescaling approach using in

Subsection 4.2 since we assume reconstructed wavefunctions will have a high degree

of regularity. Second, we assume the following expansions of the eigenfunctions ϕ

and φ, and the potential ψ :

ϕ(ξ) =
n=N∑
n=−N

ane
iknξ, (7.28)

φ(ξ) =
n=N∑
n=−N

bne
iknξ, (7.29)

ψ(ξ, ·) =
n=N∑
n=−N

cne
iknξ, (7.30)

where kn = nk0 = 2nπ
L
. Substitute expansions (7.28)–(7.30) into Equations (7.24)

and (7.25). The resulting eigenvalue problem is

i

K B

B† −K


a

b

 = λ

a

b

 , (7.31)
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where B is a Toeplitz matrix of size (2N + 1) × (2N + 1) with its first column

given by (c0, c1, ... cN , 01×N)T and its first row by (c0, c−1, ..., c−N , 01×N), the

operator ∂ξ has been diagonalized into

Kij =


−N − 1 + i, i = j,

0, i 6= j,

i = 1, ..., 2N + 1, (7.32)

a = (a−N , ..., aN)T, and b = (b−N , ..., bN)T. We solve the eigenvalue

problem (7.31) using MATLAB’s built-in function eig.

We test this reconstruction method and numerical procedure on the so-called

Satsuma Yajima potential

ψYS(ξ) = α sech(ξ), (7.33)

with an amplitude of α = 1.8, and a spatial domain of ξ ∈ [−2π, 2π] with N =

210 discretization points. Note that the Satsuma–Yajima potential (7.33) is not

exactly an NLS soliton of the form (7.23). Despite this, we see, in Figure 7.4, that

the reconstruction formula (7.27) faithfully reconstructs the bulk of the potential.

Figure 7.4 A reconstruction, via a numerical solution of the eigenvalue problem
(7.31), of the nearly soliton-like portion of the Satsuma-Yajima potential (7.33).

Now equipped with a way to accurately filter radiation components from data

numerically simulated by Equation (7.20), we can investigate the following optimal

control problem. Let the first contribution to the discrete trace formula (7.27) be
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denoted by

Λ = − ϕ2
1∫

R φ1ϕ1

− φ†21∫
R φ
†
1ϕ
†
1

(7.34)

The optimal control problem, analogous to that of Section 6.3, we pose is

min
(κ,η)∈C′

J = min
(κ,η)∈C′

{∫
R
dξ
(
|ψ|2 − |Λ|2

) ∣∣∣∣
ζ=ζ1

+
γ

2

∫ ζ1

ζ0

(
∂ζκ

2 + ∂ζη
2
)
dζ

}
, (7.35)

where C ′ is an admissible class of grating functions given by

C ′ =
{
κ, η ∈ H1 ([ζ0, ζT ]) : κ(ζ0) = κ0, κ(ζT ) = κT , η(ζ0) = η0, η(ζT ) = ηT

}
,

(7.36)

s and where ζ0 and ζ1 correspond to the shallow apodization region we are

interested in optimizing over. Note that the prescribed boundary conditions in

the definition of the class C ′ are such that the grating structure across both

apodization regions is continuous. Deriving the optimality conditions for optimal

control problem is similar to procedure outlined in Appendix B.3. In addition,

since numerically approximating the gradient of the functional J is somewhat

difficult to implement, we choose to rely solely on the CRAB method in the

numerical optimization.

7.4 Numerical Results

We present here the result of using the optimal control problem on refining the

Rosenthal and Horowitz apodization function (5.11), and leave future computa-

tional investigations with other grating structures and apodization domains as

the subject of future work. In Figure 7.5, we show the numerical solution of

Equation (7.20) from the Rosenthal and Horowitz apodization function (5.11) and

a grating function resulting from an optimization over the CRAB

κr(ζ) = (κT − κ0)
10∑
j=1

rκ
j2

sin

(
jπ

ζ − ζ0

ζT − ζ0

)
+ (κT − κ0)

ζ − ζ0

ζT − ζ0

+ κ0, (7.37)
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(a) (b)

(c)

Figure 7.5 The result of using the CRAB method, with ansatz (7.37), in order
to solve the optimal control problem (7.3). Panel (a) shows the solution of
Equation (7.20) with the a more optimal grating function than the Rosenthal
Horowitz grating (5.11) used to generate Panel (b). Panel (c) shows the
corresponding final computed solutions at ζ = ζT . The coordinate ξ̃ is the shifted
coordinate ξ − ξ0 where ξ0 is defined through Equation (7.23).
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The DE parameters used are the same as those in Subsection 6.4. We see that

more compression has been achieved without the excitation of more radiation.

(a) (b)

(c)

Figure 7.6 The result of using the optimal grating structure, shown in Panel
(c), to solve the NLCME (5.4). More energy is coupled into the constant grating
in Panel (a) than is done by the resulting Rosenthal and Horowitz power density
shown in Panel (b).

In Figure 7.6, we show the optimal grating function used to generate

Figure 7.5 in the NLCME regime, while also showing the resulting solution of

Equations (5.4). We see that more energy is coupled into the constant grating

than before. The total energy coupled into the grating is about 74%, yet, we

see that there is still a significant excitation of radiation in Figure 7.7, where the

energy of the Bragg soliton is only about 70%.

We learn that although in the NLS regime less radiation is excited and the

resulting Bragg soliton has a stronger power density, the control objective (7.3)
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(a) (b)

Figure 7.7 Panel (a) shows the coupled-modes, in absolute value squared,
resulting from the solution of the soliton control problem (7.3) at t = 6ns, while
Panel (b) shows the resulting coupled-modes from the Rosenthal and Horowitz
apodization (5.11).

fails to suppress further excitation of the radiation once radiation has already been

coupled into the constant grating. For this reason, careful investigations of how

to more effectively apply the soliton-specific control developed here will be carried

out in future work.
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APPENDIX A

NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS

A.1 Numerical Method for Solving Schrödinger-Type Equations

It is necessary to solve the GPE (3.1) in order to validate the dimensionality

reductions used throughout Chapter 3. Additionally, we must solve Equations

(4.10), (4.11), and (6.3), which all have a similar structure to equation (3.1),

several times in order to solve optimal control problems. Therefore, in this section,

we discuss an efficient numerical method for solving the generalized GPE

i∂tψ = −1

2
∂2
xψ + V (x, t)ψ + s|ψ|2sψ, (A.1)

where s ≥ 0, so that the required adjustments for solving Equations (3.1), (4.10),

(4.11), and (6.3) are clear. The boundary conditions are assumed to be periodic

so that the use of spectral methods is straightforward.

We use an operator splitting method, and, to this end, rewrite Equation

(A.1) in the form

i∂tψ = Lψ +N (ψ), (A.2)

where the linear operator is given by L = −1
2
∂2
x and the nonlinear and inhomo-

geneous operator N (ψ) incorporates the remaining terms. The idea of operator

splitting is to “split” the operators on the right-hand side of Equation (A.2). Then,

one solves the resulting equations in an alternate and successive manner. More

explicitly, we choose to use a second order in time operator splitting, often referred

to as Strang splitting [28], to approximate the resulting matrix exponential by

e(L+N )Mh = eLh/2eNheLh . . . eLheNheLh/2 +O
(
h2
)
, (A.3)

where h = T/M is the time discretization for a given number of time steps M .
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The solution of the linear equation resulting from the matrix exponential

eLh is facilitated by the Fourier transform and is given by

ψn+1 = F−1
{
F{ψn}e−

ihk2

2

}
, (A.4)

where F and F−1 denote the Fourier and inverse Fourier transformation, respec-

tively. Fourier and inverse Fourier transforms are computed via the fast Fourier

transform functions in MATLAB, fftw and ifftw, with discretized wavenumbers

k ∈
[
−N/2+1

2πl
, N/2−1

2πl

]
, where 2l units of length are assumed in the truncated spatial

domain and N is the number of spatial discretization points.

The nonlinear equation resulting from the matrix exponential eNh is quite

simple. Since the nonlinearity does not involve spatial derivatives, we are simply

tasked with solving ODEs. Using polar coordinates, i.e., letting

ψ = ρ(x, t)eiθ(x,t), (A.5)

results in the ODE

∂tρ(x, t) = 0,

∂tθ(x, t) = −sρ2s − V (x, t).

(A.6)

The first of these equations is a statement about conservation of the mass

||ψ0||L2(R). The second equation, governing the phase θ, can be solved via any

number of standard numerical ODE techniques; we simply use the second-order

accurate midpoint method. The update for the phase θ, in this case, is

θ(x, tn+1) = θ(x, tn)− hsρ(x, tn)2s − hV
(
x, tn +

h

2

)
(A.7)

The power of operator splitting is evident: the implementation of the method

is incredibly straightforward since it is explicit, yet the update

ψn+1 = eLh/2eNheLh/2ψn (A.8)

only requires the computation of two fast Fourier transforms, two fast inverse

Fourier transforms, and a pointwise evaluation of the potential V . In fact,
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the Strang splitting formula (A.3) cuts the required number of Fourier and

inverse Fourier transforms approximately in half. Moreover, since the operators

are split into a stiff linear operator and a non-stiff nonlinear operator, issues

of numerical stability are less relevant. For the Schrödinger-type equations

considered throughout this dissertation, we can always find a suitable and

computationally reasonable enough time discretization h which yields a stable

computation for a given spatial discretization 2l
N

.

A.2 Numerical Methods for Solving Coupled-Mode Equations

The coupled-mode equations

i∂tu+ i∂xu+ κ(x)v + η(x)u+
(
|u|2 + 2 |v|2

)
u = 0,

i∂tv − i∂xv + κ(x)u+ η(x)v +
(
2 |u|2 + |v|2

)
v = 0,

(A.9)

are somewhat more difficult to solve than the GPE (A.1). The experience gained

from the previous section strongly encourages us to continue using operator

splitting methods whenever they are available. For this reason, we follow a

known operator splitting method, first developed by Rosenthal and Horowitz [56],

for solving Equation (A.9). They use a method which is first-order in time,

and we improve this to a second-order in time method by using a symmetric

Strang-MacNamara splitting [28].

This improvement is critical in an optimization since it cuts the number

of necessary spatial discretization points in half, which also effectively cuts the

computation time of evaluating the functional (5.17) in half; searches for optimal

grating functions is on the order of hours. Note that the splitting methods of

this section fundamentally assume the solutions of Equations (A.9) are analytic.

Although this is a strong assumption to make given that the grating functions

are only assumed to be absolutely continuous, we believe the resulting numerical

simulations justify this assumption a posteriori.

Most operator splitting methods split the linear and nonlinear operators

into two separate operators, as was done in the previous section. However,
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since the numerical simulations require signalling data without a backpropagating

component v(x, t), this means solving the state equations (5.4) using a method

which splits the linear and nonlinear operators is not available; v is excited by the

coupling through the linear and nonlinear terms.

Instead, the method of Rosenthal and Horowitz splits Equation (5.4) into

∂t

u
v

 = (A+B)

u
v

 , (A.10)

where the matrix operator A is defined as

A = i

−∂x •+ (| • |2 + 2|v|2) • 0

0 ∂x •+ (2|u|2 + | • |2) •

 , (A.11)

using • to help express how the operator A functions, and where the matrix B is

B = i

η κ

κ η

 . (A.12)

Computations involving the matrix exponential of B are simple. Using the Taylor

series definition of the matrix exponential and diagonalizing the operator B into

canonical form, we have

eB∆t =
∞∑
n=0

(B∆t)j

j!
= P

∞∑
n=0

(∆tΛ)n

n!
P−1 = Pei∆tΛP−1

= ei∆tη

 cos(κ∆t) i sin(κ∆t)

i sin(κ∆t) cos(κ∆t)

 ,

(A.13)

where the matrix Λ is the 2× 2 diagonal eigenvalue matrix of B, and P is a 2× 2

matrix whose columns are eigenvectors of B.

The computation of eA∆t is more subtle and explicitly assumes analyticity

of the coupled modes u and v. Observe the effect of the following operator on

monomials:

ea∂xxm =
∞∑
k=0

(a∂x)
k

k!
xm =

m∑
k=0

m
k

 akxm−k = (x+ a)m. (A.14)
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Remarkably, the effect of this operator is simply a spatial translation of a units.

Therefore, it is easy to show the effect of this operator on a function f(x), analytic

in a neighborhood about x = 0, is

ea∂xf(x) = f(x+ a). (A.15)

This implies directly that

eA∆t

u(x, t)

v(x, t)

 =

ei∆(|u(x−∆t,t)|2+2|v(x,t)|2)u(x−∆t, t)

ei∆(2|u(x,t)|2+|v(x+∆t,t)|2)v(x+ ∆t, t)

 , (A.16)

is simply an appropriately coupled, advective update.

Clearly, this method also couples the spatial and temporal discretizations,

and for this reason, we follow Rosenthal and Horowitz in choosing ∆t = ∆x := ∆.

The first-order composition of propagators, after M time steps, is straightforward:

e(A+B)M∆ = eB∆eA∆ . . . eB∆eA∆ +O (∆) . (A.17)

The improvement we make on this method is facilitated by using the symmetric

average suggested by MacNamara and Strang [28]:

e(A+B)M∆ =
1

2M
(
eA∆eB∆ + eB∆eA∆

)
. . .
(
eA∆eB∆ + eB∆eA∆

)
+O

(
∆2
)
, (A.18)

where the matrix exponential eA∆eB∆ is computed by similar means of computing

eB∆eA∆. Note that the previously used splitting formula (A.3) is not easily

available because of the coupling of discretizations ∆.

As required by the gradient descent algorithm (3), we must also solve the

costate, or coupled-mode adjoint, equations

i∂tλ+ i∂xλ+
(
η + 2E + u†2

)
λ+

(
κ+ 4v†<{u}

)
µ = 0, (A.19)

i∂tµ− i∂xµ+
(
η + 2E + v†2

)
µ+

(
κ+ 4u†<{v}

)
λ = 0, (A.20)

λ(x, T ) = 2iH(x− a)<{u(x, T )} , (A.21)

µ(x, T ) = 2iH(x− a)<{v(x, T )} , (A.22)
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derived in Section B.2. To this end, we use the splitting

∂t

λ
µ

 = (C +D)

λ
µ

 , (A.23)

where the matrix operator C is defined as

C =

−∂x 0

0 ∂x

 , (A.24)

and the matrix D is given by

D = i

f1 f2

f3 f4,

 (A.25)

where

f1(x, t) = η + 2
(
|u|2 + |v|2

)
+ u†2, (A.26)

f2(x, t) = κ+ 4v†<{u}, (A.27)

f3(x, t) = κ+ 4u†<{v}, (A.28)

f4(x, t) = η + 2
(
|u|2 + |v|2

)
+ v†2. (A.29)

In order to evolve the costates, we must do so backwards in time, since the

terminal conditions (A.21)–(A.22) are specified at the final time of simulation.

The first-order backward composition of operators

e−(C+D)M∆ = e−D∆e−C∆ . . . e−D∆e−C∆ +O (∆) , (A.30)

is straightforward to form through computations of

e−C∆

λ(x, t)

µ(x, t)

 =

λ(x+ ∆, t)

µ(x−∆, t)

 (A.31)

and

e−D∆ = e−
i∆
2

(f1+f4)

cos
(
ϕ∆
2

)
− iφ

ϕ
sin
(
ϕ∆
2

)
−2if2

ϕ
sin
(
ϕ∆
2

)
−2if3

ϕ
sin
(
ϕ∆
2

)
cos
(
ϕ∆
2

)
+ iφ

ϕ
sin
(
ϕ∆
2

)
 , (A.32)
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where

φ = f1 − f4, (A.33a)

ϕ =
√
φ2 + 4f2f3. (A.33b)

Using the symmetric average (A.18) as before, and computing e−D∆e−C∆ via

similar means, yields a second-order in time method for the adjoint coupled-mode

equations (A.19)–(A.22).

A.3 Numerical Method for the Perturbed Korteweg-deVries

Equation

We use the Strang splitting method (A.3) in order to solve the KdV-type

Equation (6.1). To this end, the KdV-type equation is written in the form

∂tq = Lq +N (A.34)

where the linear operator is given by L = −∂3
x, and the operator N incorporates

all other terms. The update for the linear operator is given simply by

qn+1 = F−1
{
F{qn}eihk

3
}
. (A.35)

Computing the update for N is slightly more challenging than that of

Equation (A.1). In the case of Equation (6.1), we are tasked with solving

∂tq + 3∂xq
2 + Γ(t)q = 0. (A.36)

We use an integrating factor and the Fourier transform to rewrite this as

∂t

(
e−

∫ t Γ(s)dsq̂
)

= −3ikq̂2, (A.37)

where, by the explicit form of Γ, the integrating factor can be computed in closed

form as e−
9
4

∫ t ∂s logD(s)ds = D−
9
4 (t). Now, using the change of variables w = D−

9
4 q̂,

we have

∂tw = −3ikD
9
2F
{
F−1 {w}2} , (A.38)
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which is an ODE which can easily be solved by the midpoint rule as was done in

Section A.1.
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APPENDIX B

OPTIMALITY CONDITIONS FOR CONTROL PROBLEMS

B.1 Optimality Conditions for Control of Stationary States

Recall the optimal control problem of Chapter 4:

min
u∈U
J = min

u∈U

{
1

2

(
||ϕd||4L2(Rn) − |〈ϕd, ϕT 〉|

2
L2(Rn)

)
+
γ

2

∫ l

0

|∂zu|2 dz
}
, (B.1)

subject to

i∂zψ + P (x, u,D)ψ = 0, (B.2a)

ψ(x, 0) = ϕ0(x), (B.2b)

where the wave function ψ(x, t) ∈ L2
(
[0, T ];H |α|−1 (R)

)
, and all other conventions

are consistent with the problem description in Section 4.2.

We use the strategy outlined in Subsection 2.4.4, and reflected by Equation

(2.36), in order to compute Gateaux derivatives of the objective J . That is, we

use the method of Lagrange multipliers, and the fundamental theorem of calculus

to convert the Bolza control problem (B.1) into the Lagrange form (2.35). The

infidelity, in this case, can be rewritten as

Jinfidelity = −
∫ l

0

<{〈ϕd, ψ〉 〈∂zψ, ϕd〉} dz. (B.3)

By using the Lagrange multiplier p ∈ L2
(
[0, T ];H |α|−1 (R)

)
, the Lagrange density

is given by

L = <{〈p, i∂zψ + Pψ〉 − 〈ϕd, ψ〉 〈∂zψ, ϕd〉}+
γ

2
|∂zu|2,

=

∫
Rn
<
{
S
(
ψ, ψ†, p†, ∂zψ, Pψ, u

)}
dx+

γ

2
|∂zu|2

(B.4)

where † denotes hermitian conjugation.

The unconstrained optimization problem now takes the Lagrange form

min
u∈U

∫ l

0

L(ψ, ∂zψ, Pψ, ψ
†, p†, u, ∂zu)dz. (B.5)
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We now show how to use Lagrange’s method of variations to formally compute

the necessary optimality conditions of problem (B.5). Start by writing a formal

Taylor series about each of its optimal functional variables

ψ =
∞∑
n=0

εnψn, p =
∞∑
n=0

εnpn, u =
∞∑
n=0

εnun, (B.6)

where the first term in each expansion is a functional variable in the set of local

minimizers of J and each function thereafter in the respective expansion is in

an appropriate function space, i.e., they are infinitely differentiable in all of its

variables and, ∀n ∈ N, satisfy the adjoint boundary conditions

ψn(x, 0) = 0, pn(x, 0) = 0

un(0) = 0, un(l) = 0

lim
x→±∞

ψn = 0, lim
x→±∞

pn = 0.

(B.7)

The nth functional derivative of the objective is then defined as

δnJ :=
1

n!

dnJ

dεn

∣∣∣∣
ε=0

. (B.8)

Using the formal series (B.6), we can, in principle, compute as many functional

derivatives as desired. For the purposes of Chapter 4, we are only interested

in the first functional derivative δJ. By making use of the Lebesgue Dominated

Convergence Theorem, Leibniz’s rule, the chain rule, integration by parts, and

boundary conditions (B.7), we compute the first functional derivative δJ as follows:
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dεJ
∣∣
ε=0

= lim
ε→0

dε

∫ l

0

L(ψ, ∂zψ, Pψ, ψ
†p†, u, ∂zu)dz,

=

∫ l

0

lim
ε→0

∂εL(ψ, ∂zψ, Pψ, ψ
†, p†, u, ∂zu)dz,

=

∫ l

0

(
〈∂ψS, ∂εψ〉+ 〈∂∂zψS, ∂ε∂zψ〉+ 〈∂PψS, ∂εPψ〉+

〈
∂ψ†S, ∂εψ†

〉) ∣∣
ε=0

dz

+

∫ l

0

(〈
∂p†S, ∂εp†

〉
+ ∂uL∂εu+ ∂∂zuL∂ε∂zu

) ∣∣
ε=0

dz,

=

∫ l

0

〈
ψ1, ∂ψS − ∂z∂∂zψS + P †∂PψS + ∂ψ†S

〉
dz

+

∫ l

0

(〈
p1, ∂p†S

〉
+ u1

† (∂uL − ∂z∂∂zuL)
)
dz +

〈
ψ1
†, ∂∂zψL

〉 ∣∣
z=l
,

:=
〈
ψ1, ∂∂zψL

∣∣
z=l

〉
Rn +

〈
ψ1, δψJ + δψ†J

〉
L2([0,l])

+
〈
p1, δp†J

〉
L2([0,l])

+ 〈u1, δuJ 〉L2([0,l]) .

(B.9)

Since the functional perturbations ψ1, p1, and u1 are arbitrary in their respective

function spaces, we can conclude by the Fundamental Lemma of the Calculus of

Variations [27], δJ vanishes if and only if the Euler-Lagrange equations

δψJ + δψ†J = ∂ψS − ∂z∂∂zψS + P †∂PψS + ∂ψ†S = 0, ∂∂zψL
∣∣
z=l

= 0, (B.10a)

δp†J = ∂p†S = 0, ψ(x, 0) = ϕ0(x), (B.10b)

δuJ = ∂uL − ∂z∂∂zuL = 0, u ∈ U (B.10c)

are satisfied. The corresponding equations reduce to

i∂zp = P †p, ip(x, l) = 〈ϕd, ψ(x, l)〉L2(Rn) ϕd, (B.11a)

i∂zψ = Pψ, ψ(x, 0) = ϕ0(x), (B.11b)

γ∂2
zu = −<〈p, ∂uPψ〉L2(Rn) , u(0) = u0, u(l) = ul. (B.11c)

A revealing way to view the system of optimality conditions (B.11) is through

the Hamiltonian

H = <{〈p, Pψ〉 − 〈ϕd, ψ〉 〈∂zψ, ϕd〉}+
γ

2
|∂zu|2. (B.12)
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From this, we see that the state ψ and adjoint state p† form the following

Hamiltonian system

i∂zψ = +∇p†H, (B.13)

i∂zp
† = −∇ψH, (B.14)

where the gradient operator ∇ is understood in the sense of L2([0, l]), i.e., if we

let

J =

∫ l

0

Hdz, (B.15)

then

∇p†H = δp†J , (B.16)

∇ψH = δψJ . (B.17)

This result provides part of the appropriate generalization of the Pontryagin

principle (2.3.1) to the optimal control problem (4.1) constrained by class of linear

dispersive wave equations (4.2a).

B.2 Optimality Conditions for Coupling Light into Bragg Gratings

We now derive the optimality conditions for the optimal control problem of

Chapter 4, written here

min
(κ,η)∈C

J = min
(κ,η)∈C

{
−
∫ T

0

FE(u, v; a)dt+
γ

2

∫ a

0

(
∂2
xκ

2 + ∂2
xη
)
dx

}
, (B.18)

subject to

i∂tu+ i∂xu+ κ(x)v + η(x)u+
(
|u|2 + 2 |v|2

)
u = 0,

i∂tv − i∂xv + κ(x)u+ η(x)v +
(
2 |u|2 + |v|2

)
v = 0,

(B.19)

149



where the admissible class C of grating structures is given by the space of absolutely

continuous functions on R such that

κ(x) =


0 x ≤ 0,

κ0 a ≤ x,

and η(x) =


0 x ≤ 0,

0 a ≤ x.

(B.20)

To this end, let H(x− a) denote Heaviside’s function. We rewrite the energy flux

term in objective (B.18), assuming the flux vanishes at infinity, as

−∂tFE
∣∣
x=a

=

∫ ∞
−∞

H(x− a)

∫ T

0

∂tEdtdx

=

∫ ∞
−∞

H(x− a)

∫ T

0

(
u†∂tu+ u∂tu

† + v†∂tv + v∂tv
†) dtdx, (B.21)

by using the fundamental theorem of calculus and the conservation laws (5.9), (5.15).

Using the method of Lagrange multipliers, we define the Lagrangian

L =<
〈
λ, i∂tu+ i∂xu+ κ(x)v + η(x)u+

(
|u|2 + 2 |v|2

)
u
〉
L2([0,T ])

+<
〈
µ, i∂tv − i∂xv + κ(x)u+ η(x)v +

(
2 |u|2 + |v|2

)
v
〉
L2([0,T ])

+H(x− a)

∫ T

0

(
u†∂tu+ u∂tu

† + v†∂tv + v∂tv
†) dt,

(B.22)

so that the objective in optimal control problem (B.18) in Lagrange form is

J =

∫
R
<
{
L
(
u, v, ∂tu, ∂tu

†∂tv, ∂tv
†, ∂xu, ∂xv, κ, η, λ

†, µ†
)}
dx (B.23)

Using the typical arguments from the classical calculus of variations [27] and used

in the previous section, we find the desired optimality conditions by taking the

appropriate functional derivatives. Setting functional derivatives with respect to

the state variables to zero gives

δJ
δu

+
δJ
δu†

= 0, (B.24a)

→ i∂tλ+ i∂xλ+
(
η + 2E + u†2

)
λ+

(
κ+ 4v†<{u}

)
µ = 0, (B.24b)

δJ
δv

+
δJ
δv†

= 0, (B.24c)

→ i∂tµ− i∂xµ+
(
η + 2E + v†2

)
µ+

(
κ+ 4u†<{v}

)
λ = 0, (B.24d)
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where→means the equation that is implied by the vanishing functional derivative.

An integration by parts yields boundary terms (B.25) which must also be set to

zero:

(∂∂tuL+ ∂∂tu†L)

∣∣∣∣
t=T

= 0→ λ(x, T ) = 2iH(x− a)<{u(x, T )} , (B.25a)

(∂∂tvL+ ∂∂tv†L)

∣∣∣∣
t=T

= 0→ µ(x, T ) = 2iH(x− a)<{v(x, T )} . (B.25b)

Since variations of the states u and v need not vanish at t = T, equations (B.25)

must be satisfied. Indeed, these conditions determine, what is in essence, an initial

condition for the equations (B.24) which can then be solved backwards in time.

Next, setting functional derivatives with respect to the control variables to

zero gives

δκJ =

∫ T

0

<
{
λ†v + µ†u

}
dt− γ∂2

xκ = 0, (B.26a)

δηJ =

∫ T

0

<
{
λ†u+ µ†v

}
dt− γ∂2

xη = 0. (B.26b)

Equations (B.26), together with the boundary conditions implied by the admissible

class C, gives two-point boundary value problems over the domain [0, a]. Lastly,

vanishing functional derivatives with respect to the costate variables λ† and µ†

gives back the state equations (B.19), i.e., the NLCME.

B.3 Optimality Conditions for Korteweg-deVries Contol

Recall the optimal control problem of Chapter 6:

inf
D∈D
J =

1

2
inf
D∈D

∫ T

0

(
Λ2
J + γ∂tD

2
)
dt (B.27)

subject to

∂tq + 6q∂xq + ∂3
xq + Γ(t)q = 0,

q(x, 0) = α2 sech2 αx

2
,

(B.28)
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where Γ = 9
4
∂t logD, α > 0, γ > 0, the admissible class of topographies D(t) is

D =
{
D ∈ H1([0, T ]) : D(0) = D0, D(T ) = DT , DT > D0

}
, (B.29)

and the first term in the running cost is given by

ΛJ =

∫
R
qdx− 4η1(t), (B.30)

where η1 is the smallest singular value, in absolute value, of the eigenvalue problem

∂2
xψ +

(
q − η2

)
ψ = 0. (B.31)

Our strategy for formally deriving the necessary optimality conditions here

mimics those of the previous sections of this appendix. We being by converting

ΛJ to a functional which more explicitly involves the ground state eigenfunction

ψ1. This is easily done by using the Rayleigh quotient

η2
1 =

∫
R

(
qψ2

1 − (∂xψ1)2) dx. (B.32)

The Lagrangian for our problem is thus given by

L =
〈
p, ∂tq + 6q∂xq + ∂3

xq + Γ(t)q
〉
L2(R)

+
〈
ϕ, ∂2

xψ + (q − ξ)ψ
〉
L2(R)

+
1

2

((
βD−

9
4 − 4ξ1/2

)2

+ γ (∂tD)2

)
,

=

∫
R
S
(
q, ∂tq, ∂xq, ∂

3
xq, p, ψ, ∂xψ, ∂

2
xψ, ξ, ϕ,D

)
dx+ F (ξ,D, ∂tD) ,

(B.33)

where we use Lagrange multipliers p and ϕ, made explicit use of the Rayleigh

quotient (B.32) and the mass law (6.6), and, for sake of clarity in using the chain

rule, we use the notation

F (ξ,D, ∂tD) = β2D−
9
2 − 8βD−

9
4 ξ

1
2 +

γ

2
∂tD

2, (B.34)

ξ =

∫
R
G(q, ψ, ∂xψ)dx, (B.35)

G(q, ψ, ∂xψ) = qψ2 − (∂xψ)2 , (B.36)
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with the subscript on the ground state ψ1 dropped. Taking the appropriate

functional derivatives and setting them equal to 0 gives

δqJ = ∂qS − ∂x∂∂xqS − ∂3
x∂∂3

xq
S − ∂t∂∂tqS + ∂ξF∂qG = 0, (B.37)

δψJ = ∂ψS − ∂x∂∂xψS + ∂2
x∂∂2

xψ
S + (∂ξS + ∂ξF) (∂ψG − ∂x∂∂xψG) = 0, (B.38)

δDJ = ∂DS − ∂t∂∂tDS + ∂DF − ∂t∂∂tDF = 0, (B.39)

∂∂tqS
∣∣
t=T

= 0, (B.40)

while setting functional derivatives with respect to the Lagrange multipliers p and

ϕ yields Equations (B.28) and (B.31), respectively. For the explicit forms of F ,S,

and G, the corresponding Euler-Lagrange equations (B.37)–(B.39) read

∂tp+ 6q∂xp+ ∂3
xp− Γ(t)p− ϕψ − 1

2
ξ

1
2ψ2 = 0, (B.41)

∂2
xϕ+ (q − ξ)ϕ− 2∂2

xψ − 2
(
ψϕ+ 4βD−

9
4 ξ−

1
2

) (
∂2
xψ + (q − ξ)ψ

)
= 0, (B.42)

γ∂2
tD −

9

4
∂t
pq

D
+

9

4
D−2∂tD +

9

4
β2D−

11
2 − 9ξ

1
2βD−

13
4 = 0, (B.43)

p(x, T ) = 0. (B.44)
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APPENDIX C

THE KORTEWEG-DEVRIES TRACE FORMULAE

We outline a method for constructing the trace formulae; representations of

conserved quantites of integrable systems in terms of the spectrum of the

associated Zakharov-Shabat (ZS) operator. This method is presented for the

Korteweg-deVries (KdV) equation in full detail in the book [52]. We present

the basics of the inverse scattering transform as an aid for understanding the

trace formula (6.5). Unfortunately, we skip over much of the beautiful machinery

of the inverse scattering transform so that our goal can be met in a somewhat

concise fashion.

We start by observing that the following change of variables, first suggested

by Miura and Gardner [26]. Let q(x, t) satisfy the Korteweg-deVries equation

∂tq + 6q∂xq + ∂3
xq = 0. (C.1)

Then, by substituting

q = w +
i

2ζ
∂xw +

1

4ζ2
w2, (C.2)

into Equation (C.1), and substituting

w = 2iζ∂x logψ − 2ζ2, (C.3)

into the resulting equation, we arrive at

∂2
xψ +

(
ζ2 + q(x, t)

)
ψ = 0. (C.4)

The inverse scattering formalism seeks to understand the behavior of an integrable

system, in this case the KdV equation, through the scattering properties of the

potential energy q(x, t) as it appears in Equation (C.4). It is also helpful to

know Schrödinger’s equation can be rewritten as a system of first order equations,
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referred to as the (Zakharov-Shabat) form,∂x − iζ 1

−u ∂x + iζ


ψ
ϕ

 =

0

0

 , (C.5)

by letting ∂xψ = iζψ−ϕ. The associated eigenvalue problem (C.4) written in the

form of (C.5) is canonical.

When using singular perturbative techniques in quantum mechanics, it is

common to rewrite the Schrödinger equation in terms of a Ricatti equation by

letting [7]

ψ = eiζx+Φ, (C.6)

so that

− 2iζ∂xΦ = q + ∂2
xΦ + ∂xΦ

2. (C.7)

We can iteratively solve for ∂xΦ, by setting

∂xΦ =
∞∑
n=1

(2iζ)−nRn. (C.8)

It’s easy to see that the functions Rn(x) are such that

R1 = −q,

Rn+1 = −∂xRn −
n−1∑
k=1

RkRn−k, n ≥ 1,
(C.9)

Up to a sign difference, equations (C.9) are the conserved densities of the

KdV equation. Historically speaking, Miura knew how to calculate the first 10

conserved quantities by shear brute force. Gardner more systematically expanded

equations (C.2)–(C.4) in powers of ζ−1 and integrated. We can view the usage

of the Liouville-Green method as another systematic means of calculating an

arbitrary number of conservation laws, or better yet, the most straightforward

way of finding conserved quantities of more complicated, yet still integrable

PDE. Moreover, using equations (C.5) and (C.9), we can establish the following
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asymptotic result(
ψ − 1

2iζ
ϕ

)
e−iζx ∼ exp

(
−
∞∑
n=1

(2iζ)−n
∫ ∞
−∞

Rndx

)
, as x→ −∞. (C.10)

Result (C.10) will be relevant again shortly.

Once we’ve established properties of the associated ZS eigenvalue problem,

the basic idea of inverse scattering on the infinite real line proceeds as follows.

Imagine there is a wave traveling inward from +∞ and incident on some potential.

We expect the following Fresnel equations

Ψ ∼ e−iζx +R(ζ)eiζx, as x→ +∞,

Ψ ∼ T (ζ)e−iζx, as x→ −∞,
(C.11)

where Ψ is any evanescent solution to the Schrödinger equation, to hold in the

appropriate limits. The following Volterra integral equations

ϕ(ζ, x) = e−iζx − ζ−1

∫ ∞
x

dξ sin(ζ(x− ξ))q(ξ, t)ϕ(ζ, ξ), (C.12)

ψ(ζ, x) = eiζx − ζ−1

∫ ∞
x

dξ sin(ζ(x− ξ))q(ξ, t)ψ(ζ, ξ) (C.13)

are the irregular solutions of equation (C.4). These equations make sense whenever

q(x, t) has the right polynomial decay in space, i.e.
∫
R x|q(x, t)|dx < ∞ [79].

This will always be the case for problems we are computationally interested in

solving. However, for purposes of justifying what follows, Deift and Trubowitz [20]

established the correct class of potentials to study are those potentials that satisfy∫
R
(1 + x2)|q(x, t)|dx <∞. (C.14)

In essence, this condition requires that q be in L1(R) ∩ H1
0 (R), by Plancherel’s

theorem [39]. Therefore, by the Riemann-Lebesgue Lemma, we see the following

limits of Equations (C.12) and (C.13)

ϕ(x, ζ) ∼e−iζx, as x→ −∞,

ψ(x, ζ) ∼eiζx, as x→ +∞,
(C.15)
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hold. Additionally, if q and ζ are real, then we have

ϕ̄(x, ζ) = ϕ(x,−ζ) = ϕ∗(x, ζ) (C.16)

ψ̄(x, ζ) = ψ(x,−ζ) = ψ∗(x, ζ), (C.17)

with ∗ denoting complex conjugation. By the linear independence of the irregular

solutions (C.12), we can express any solution to the Schrödinger equation as a

linear combination of a conjugate pair of just one irregular solution. For this

reason, one has the freedom to express the particular solution

ϕ(x, ζ) = a(ζ)ψ̄ + b(ζ)ψ. (C.18)

Moreover, and to serve as further justification of expressing the fundamental

solution (C.18), the Wronskian

W (ϕ̄, ϕ) = W
(
ψ̄, ψ

)
= 2iζ, (C.19)

implies

|a|2 − |b|2 = 1, (C.20)

by manipulating (C.18) while taking derivatives and conjugates of the definitions

when appropriate. For reasons that will become obvious, divide through by

a(ζ). By requiring that our solution satisfy the Fresnel equations (C.11) in the

appropriate limit, the left hand side tells us

lim
x→−∞

ϕ(x, ζ)

a(ζ)
=

1

a(ζ)
e−iζx = T (ζ)e−iζx, (C.21)

while the right hand side informs us of how

lim
x→∞

ψ̄ +
b(ζ)

a(ζ)
ψ = e−iζx +

b(ζ)

a(ζ)
eiζx = e−iζx +R(ζ)eiζx. (C.22)

By inverting the relation (C.18) we have

ψ(x, ζ) = a(ζ)ϕ̄− b̄ϕ(x, ζ). (C.23)
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We can now connect the conserved quantities, calculated through the Liouville-

Green method, to the scattering coefficient a(ζ) by observing that(
ψ − 1

2iζ
ϕ

)
e−iζx ∼ a(ζ), as x→ −∞, (C.24)

implies, remarkably,

ln a(ζ) ∼ −
∞∑
n=1

(2iζ)−n
∫ ∞
−∞

Rndx, as x→ −∞. (C.25)

A key thing to note here is that this expression informs us directly of how

lim
ζ→∞

a(ζ) = 1. (C.26)

Now, let ζk = iηk denote the kth eigenvalue corresponding to the discrete

spectrum of the Schrödinger eigenvalue problem, and, for the moment, assume

the function

f(ζ) =
∞∏
k=1

ζ + iηk
ζ − iηk

a(ζ). (C.27)

f(ζ) is analytic whenever ={ζ} > 0, and tends to ∞ as ζ → ∞,={ζ} ≥ 0.

Therefore, by Cauchy’s integral formula

ln f(ζ) =
1

2πi

∫ ∞
−∞

ln f(ξ)

ξ − ζ
dξ, (C.28)

and using the Cauchy-Goursat theorem we have

1

2πi

∫ ∞
−∞

ln f(ξ)

ξ + ζ
dξ = 0, (C.29)

by closing the contour in the upper half-plane and using the bound (C.26) on a(ζ)

as ζ →∞. Taking ξ → −ξ in the second equation and subtracting the two, using

the relations between a, b, and R, and some algebraic manipulation along with

another application of Cauchy-Goursat, we have

ln a(ζ) =
∞∑
k=1

ln
ζ − iηk
ζ + iηk

+
1

2πi

∫ ∞
−∞

ln |a|−2

ξ − ζ
dξ,

=
∞∑
k=1

ln
ζ − iηk
ζ + iηk

− ζ

πi

∫ ∞
0

ln
(
1− |R|2

)
ξ2 − ζ2

dξ.

(C.30)
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The trace formulae are found by expanding the left and right hand sides in inverse

powers of ζ. For the optimal control strategy of Chapter 6, we only need the first

which is ∫ ∞
−∞

qdx = 4
N∑
k=1

ηk +
2

π

∫ ∞
0

ln
(
1− |R|2

)
dξ. (C.31)

This formula tells us exactly how the mass of any solution to the KdV equation

decomposes into the spectral contributions of the bound and radiative states of

the associated ZS eigenvalue problem (C.5).
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