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ABSTRACT 

DESIGN AND IMPLEMENTATION OF PHOTOVOLTAIC ENERGY HARVESTING 
AUTOMATON 

by 
Iskandar Askarov 

 

Global domestic electricity consumption has been rapidly increasing in the past three decades. In 

fact, from 1990 to 2020, consumption has more than doubled from 10,120 TWh to 23,177 TWh 

[1]. Moreover, consumers have been turning more towards clean, renewable energy sources such 

as Photovoltaic. According to International Energy Agency, global Solar power generation alone 

in 2019 has reached almost 3% [4] of the electricity supply. Even though the efficiency of 

photovoltaic panels has been growing, presently, the highest efficiency solar panels available to 

an average consumer range only from 20%-22% [14]. Many research papers have been published 

to increase the harvesting efficiency as well as the monitoring implementations for photovoltaic.  

In this thesis, we would like to introduce our design of a photovoltaic energy harvesting 

automaton – “IziBu”. We have aimed our design objectives to be autonomy and scalability. Our 

design includes dual-axis Sun tracking and sensory data acquisition and processing. We have 

made our system to be powered solely by an attached photovoltaic panel using an uninterruptable 

power supply (UPS) and an external battery. Additionally, in case of a complete loss of a charge 

in the battery, our system has an ability to wake up when battery charge reaches the certain level. 

The automaton can operate as a standalone or a cluster member. Entire automaton is controlled 

by the scheduler we have designed.  
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CHAPTER 1 

INTRODUCTION 

Photovoltaic also known as a solar is a widely used renewable energy source around the world. 

According to International Energy Agency, global Solar power generation in 2019 has reached 

almost 3%[4] of the electricity supply. In comparison to wind energy, photovoltaic solutions are 

noise-free and require minimal maintenance. However, one of the drawbacks of photovoltaic is 

its low efficiency.  At the time of this writing, an average consumer has access to only 20%-22% 

[14] efficient photovoltaic panels. Additionally, the highest productivity window is even more 

limited on fixed-tilted photovoltaic installation.   

Many research papers have been published to increase the efficiency of the photovoltaic 

by introducing single-axis and dual-axis solar tracking implementations. For instance, to 

maximize the power transfer from the photovoltaic panel, Aboubakr El Hammoumi et al. [9] 

implement DAST system with a voltage divider using four light-dependent resistors (LDR) 

mounted on four corners of the photovoltaic panel. Output of the voltage divider is fed into 

analog pins of Arduino Uno with ATMega328 microcontroller. Their implementation has 

resulted in a 36.25% increase in power transfer. In addition to solar tracking solutions, data 

monitoring and acquisition have been widely researched and implemented within the industry 

and academia. A paper by Lawrence O. Aghenta et al. [13] implements a very interesting 

SCADA design. A voltage and current sensors are connected to the ESP32 board, which in turn 

is fed into the IoT device. However, their implementation requires an external power source for 

an IoT device to operate. Another SCADA proposal by Tariq Iqbal et al. [10] implements a 

similar approach of monitoring energy supply by photovoltaic and claims that a battery bank also 

powers an energy management system. However, the author does not give any information on 

how ESP32 is powered through a battery bank as no schematic is provided. Hence, we assume 
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that an external power source still powers ESP32. A paper by Layse Nascimento et al. [12] 

implements an off-grid, portable SCADA solution on Arduino Mega2560. Where they 

successfully implemented autonomy using an 8Ah battery. Given that it is a home automation 

system, their design does not have a DAST implementation.  

           In this thesis, we would like to introduce our design of a photovoltaic energy harvesting 

automaton – “IziBu”. We have studied a number of research papers in supervisory control and 

data acquisitions (SCADA) and dual-axis solar tracking (DAST) methods and implementations. 

Therefore, we have aimed our design objectives to be autonomy, scalability. In addition, we have 

also tried to improve on some of the methods and implementations. We have made our system to 

power solely by an attached photovoltaic panel for autonomy. Our automaton is powered using 

an uninterruptable power supply (UPS) and an external Li-Po battery. Additionally, in case of a 

complete loss of a charge in the battery, our system has an ability to wake up when battery 

charge reaches a certain level. This logic has been implemented in the scheduler of the IziBu. 

We have designed our automation to operate as a standalone or a cluster member by 

implementing a leader-follower model. Our system consists of electronic components such as a 

current sensor for monitoring, photoresistors and servo motors for DAST, analog-digital 

converter, relay module, UPS and Li-Po battery. Automation is operated by a Raspberry Pi – a 

single-board computer (SBC). Additionally, we have designed and implemented an event-driven 

scheduler. The majority of the code has been written in C, with some implementations in Python 

programming languages. The main duties of the scheduler are  

- Control DAST.  

- In cluster mode, send or receive and process angular positions for servo motors. 
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- Guaranteeing that photovoltaic panels face the Sun at sunrise by recording historical 

positions of servo motors.  

- Real-time monitoring of an electric current supplied by photovoltaic panel. 

- Track the charge levels of the Li-Po battery and charge whenever necessary. 

- Control the electric current flow from the photovoltaic panel. 

The scheduler divides the system into four run levels: GREEN, YELLOW, RED, and 

BLACK. Every run level indicates battery charge, and scheduler’s behavior depends on  

the system's run level.   
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CHAPTER 2 

IMPLEMENTATION 

On the high level, the implementation of IziBu consist of multiple parts – electronic components 

used to build the setup and the scheduler that was written to control the automaton. In this 

section, we will describe hardware or electronic components that have been used to build the 

automaton.  

2.1 Hardware 

The hardware part of the automaton consists of the metallic structure to mount the photovoltaic 

panel. Photovoltaic cells with parallel connection to increase electric current output. Current 

sensor – ACS712(30A), connected to the photovoltaic panel on one end and PCF8591 AD 

converter on the other. Uninterruptable Power Supply – PiJuice mounted on top of the Raspberry 

Pi Zero W with attached 500mAh Li-Po battery. Three light-dependent resistors (LDR) with 

voltage divider circuit for DAST algorithm implementation. Normally closed relay module to 

control the current from photovoltaic panels. 

2.1.1 Schematic 
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Figure 2.1 Schematic of hardware components. 
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2.1.2 Photovoltaic Panel 

Photovoltaic also known as a Solar is a technology that converts sunlight into a direct electrical 

current. The most common type of photovoltaic panels is silicon-based. Traditionally, Solar 

panels consist of smaller photovoltaic cells connected in series and/or parallel to increase the 

output voltage and/or current. However, given that our objective is to measure the output current 

from the photovoltaic panel. We have connected our solar cells in parallel. According to a 

manufacturer, our photovoltaic cells are rated 2.5Watts and 5V and have a 17% efficiency. Thus 

by equation 2.1,  

! =
#
$

 (2.1) 

 

Where P = 2.5W and V = 5V yields 0.5A per cell. Hence, in theory, a parallel connection from 

six photovoltaic cells should generate up to 3A of current under STC[8]:  

! =%&
!

"
= (&" + &# + &$ + &% + && + &!) 

(2.2) 

The figure below demonstrates the parallel connection of the photovoltaic panels.  

 

 

 

 

 

                    Figure 2.2 Connection diagram of photovoltaic cells. 
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2.1.3 Metal Structure 

The criteria for the design of the metal structure is to be able to mount all components required 

for the automaton and allows to rotate photovoltaic panels with two degrees of freedom. These 

includes photovoltaic panel, servo motors, a single board computer, LDRs, current sensor, 

analog-digital converter and any circuits that was built. Thus, while working on this project, we 

have tried and built various structures. One of the designs we have tried to implement is listed in 

figure 2.3. Two single channel sliders mounted on the plank with photovoltaic panels attached 

between them. Downside of this implementation was the weight of the structure as the base servo 

we used to rotate the structure did not have enough torque to rotate and hold the firm position. 

Eventually, we decided to repurpose the base frame from the robotic arm kit we had available. 

The structure allows us to two mount (base, top) servos for the two degrees of freedom, 

photovoltaic panel, a single board computer, and other components. Figures 2.4 demonstrations 

the current metal structure design we have implemented.  

Figure 2.3 Previous implementation. Figure 2.4 Current implementation. 

2.1.4 Single Board Computer 

One of the main ideas behind the design of the IziBu is autonomy and scalability. As we stated 

previously, a system can be operated as a standalone node or a cluster member. Thus, we decided 
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to implement our solution on a Raspberry Pi Zero W(Rpi) [6], which is the backbone of the 

automaton. Employing Rpi allows us to use Linux operating system with all underlying 

mechanisms to build our software component. Another benefit is that Rpi Zero W is known for 

its low power consumption [16]. Specifications for our model are listed below [3]: 

 

● Dimensions: 65mm × 30mm × 5mm 
● SoC: Broadcom BCM2835 
● CPU: ARM11 running at 1GHz 
● RAM: 512MB 
● Wireless: 2.4GHz 802.11n wireless LAN 
● Bluetooth: Bluetooth Classic 4.1 and Bluetooth LE 
● Power: 5V, supplied via micro USB connector 
● Video & Audio: 1080P HD video & stereo audio via mini-HDMI connector 
● Storage: MicroSD card 
● Output: Micro USB 
● GPIO: 40-pin GPIO, unpopulated 
● Pins: Run mode, unpopulated; RCA composite, unpopulated 
● Camera Serial Interface (CSI) 

 

    Figure 2.5 Raspberry Pi Zero W. 
 
 
Since our design has no use for many ports such as HDMI, Bluetooth, and onboard LED, we 

have decided to power them down, which allows us to save more power on the attached Li-Po 

battery. 
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2.1.5 UPS With Attached Li-Po Battery 

As we described previously, we have tried to design IziBu with autonomy in mind - to be able to 

run the system off-grid. Thus, we used the PiJuice Zero power supply, which perfectly integrates 

with our model of SBC. Additionally, we have attached a 500mAh Li-Po battery to UPS with a 

built-in charge controller. That said, our SBC is powered by Solar panels that charge the attached 

Li-Po battery during the daytime, and the charge controller protects the battery from 

overcharging. When the Sun is below the horizon, the Li-Po battery is used as a power source for 

an automaton.   

 

Figure 2.6 PiJuice Zero. 

 
Additionally, PiJuice Zero allows us to get the real-time status of the attached Li-Po battery 

using several libraries available on the internet [5], which we have integrated with our software 

component.   
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2.1.6 Current Sensor 

 

Figure 2.7 Connection diagram of the ACS712(30A). 

To measure the current from photovoltaic panels, we have used a low-cost ACS712 (30A). The 

figure 2.7 demonstrates the connection diagram of the component. ACS712 is based on the Hall-

Effect principle [2] that measures an electric current flow and outputs the analog signal. The 

component operates on 5V and outputs 66mV/A. This means for every Ampere increase, 

Voltage from ACS712 is increased by 66mV. Given that, Rpi does not have analog ports 

available. We needed to convert the output signal from ACS712 to digital and used a PCF8591 

8-bit AD converter. AD converter was connected to serial ports SCA and SDL on Rpi. 8-bit 

conversion will yield a range from 0-255. We will describe the conversion method in the Master 

controller part of the scheduler section of Chapter 2. Figure 2.8 demonstrates connection diagram 

of PCF8591 AD converter.  

 

Figure 2.8 Connection diagram of PCF8591 AD converter. 
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2.1.7 Relay Module 

We employed a normally closed relay module to control the flow of the current. Rpi powers the 

relay module. Relay is also connected to one of the GPIO pins on Rpi. Given that Rpi controls 

the entire system charging of Li-Po battery takes precedence. Hence, we have connected the NC 

terminal of the relay to the UPS and NO terminal to the ACS712 current sensor. This allows us 

to charge Rpi when there is a flow of a current supply from the Solar panels, even when the 

onboard Li-Po battery is drained. When the battery charge reaches a certain level, the relay is 

switched to redirect the current to the ACS712 sensor. 

Normally closed terminal: UPS 

Normally open terminal: ACS712(30A) 

Common terminal: (-) 

Figure 2.9 Diagram of the relay module. 

2.1.8 Light Dependent Resistors 

LDRs are a component that is widely used to detect the intensity of light. Resistance of LDR 

decreases with the increasing intensity of light, resulting in a drop of the voltage across the 

resistor. 

           We have used LDR as the main component when implementing active-sun tracking in our 

design. LDR was mounted in a 3D printed housing in Figure 2.5. 
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Figure 2.10 3D Model of LDR Housing. 

We have taken the similar approach described in the paper by El. Hammoumi et al. [9], 

and implemented a voltage divider circuit. El. Hammoumi et al. [9] use four LDRs placed in four 

corners of the photovoltaic panel. Our algorithm uses only three LDRs placed in two top corners 

and one bottom-center of the photovoltaic. Figure 2.6 shows the position of the mounted LDR on 

the photovoltaic panel. 

We measure the intensity of light by measuring the output voltage from the voltage divider as 

shown in figure 2.11 and Equation 2.3. 

 

Figure 2.11 Connection diagram of LDRs. 

 

!!" = !#$
#%"&

# +	#%"&
 

(2.3) 



13 

The value RLDR varies by the light intensity thus the output voltage (VAD) in equation 2.3 

produces an analog signal reaching 5 volts max at high light intensity. In order to quantify the 

output, we needed to convert it to a digital signal. Hence, every LDR was connected to a 

PCF8591 AD converter as shown in figures 2.8 and 2.11 . We describe the method of conversion 

in the Sensory component of the scheduler.  

Figure 2.12 Mounting points of LDRs. 

2.1.9 Servo Motors 

In order to get the most optimal power transfer from photovoltaic panels, we have implemented 

sun-tracking with two degrees of freedom. Two DC servo motors were used to implement this 

functionality. Some of the technical characteristics of servo motors are listed in Table 2.1  

Table 2.1 Characteristics of Servo Motors 
Servo model LD-1501MG LDX-218 
Mounting point Base Top 
Pulse-Width 500 ~ 2500µsec (0 ~ 180deg) 500~2500us to (0~180deg) 
Operating voltage 6-7.4V 6-8.4V
Stall torque 13kg.cm @6V;  

15kg.cm @6.5V; 
17kg.cm @7V 

15 kg·cm @ 6V 
17 kg·cm @ 7.4V 

Operating speed 0.16s/60°  @ 7.4V 0.16 sec/60° @ 7.4V 
Running current 100mA 100mA 
Weight 60g 56g 
Dimensions 40*20*40.5mm 40*20*51.4mm 
Deadband 11.1µsec 11.1µsec 
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One of the features that distinguish servos from other motors is the ability to provide 

position feedback. Unfortunately, given that the servos we have employed were primarily 

intended for hobbyists, they lacked feedback. Hence, we have used a file-based SQLite database 

to calibrate and record the historical position of our servos.  

Since using a servo controller module requires an additional power, we have opted to control 

servos directly from RPi using hardware PWM instead. The base frequency of PWM chip on Rpi 

is 19.2Mhz. Thus, in order to get PWM frequency of 50Hz, which is equivalent to 20ms, we set 

the clock divider to 192 and PWM range to 2000. As shown in equation 2.3 where fbase base 

frequency of PWM, n – clock divider and t – PWM range.  

*'() =
**+,-
+ ∗ -

= 	
19.2 ∗ 10!45
192 ∗ 2000

= 5045 
(2.4) 

  

Implementing servo control using a hardware PWM 50Hz frequency allowed to precisely control 

our rotational angles as well as the speed of the servo. Prior to implementing hardware PWM, we 

have also used software pulse-width modulation. That resulted in inaccurate rotations, 7-8 degree 

jumps, and constant jitters. We have ended up damaging multiple servos while trying to 

implement software PWM. Upon our investigation, we have discovered that software 

implementation of pulse-width modulation uses CPU cycles for pulse generation. That said, the 

thread that generates pulse-width relies on process scheduler of the Linux - Completely Fair 

Scheduler (CFS). Thus, it is up to CFS to decide when to execute the process for pulse 

generation.  
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2.2 Software 

The second part of the IziBu is the scheduler. In order to avoid a CPU overhead of interpreter 

languages such as garbage collection and bytecode translations, we have specifically chosen the 

C to be the main programming language for implementation. That said, the scheduler has been 

written as a residential multi-threaded program allowing us to implement IPC using sockets and 

named pipes easily. We also have set up the scheduler as a system-level process with the highest 

priority in Linux. Thus, upon system restart, the IziBu scheduler is started automatically. The 

scheduler itself consists of multiple subcomponents such as Setup and Calibration, IPC 

mechanism, LDR Sensory, Servo motor control and reactive battery charge controller [15], and 

Master Controller. We will describe each of them in this chapter. 

2.2.1 Setup and Calibration 

Setup and Calibration require manual intervention by a user. As we have stated previously, we 

have used multiple servos to achieve the current state of the IziBu. Since we do not require our 

servos to have a full rotation of 0-180* due to obstacles of the metal structure, we use this setup 

to set the limit of the servos as well as get the mapping values for PWM to angular values of the 

servo. Calibrated data is stored in a file-based SQLite database. During the initial Setup phase 

system generates the database and allows the user to indicate the direction of the servo, whether 

it rotates up/down or left/right. These values are useful for a user during the actual operation of 

the automaton, as every operation is recorded in the log file. Additionally, the user is able to run 

the servos and set the hard stop for each servo. All these values are recorded in the Motor table 

listed below.  
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Figure 2.13 Structure of Motor table in SQLite database. 

2.2.2 IPC Mechanism 

As we have stated previously, we designed IziBu to operate in standalone as well as a member of 

a cluster. For a clustering mode, we have implemented TCP/IP sockets in a second iteration of 

the scheduler. In clustering mode, follower nodes are fully operated by a leader node. Execution 

payloads are sent by a leader node to all follower nodes via TCP protocol. Thus, no calculation 

are done by the follower nodes. For clustering we require all nodes to be in the same WiFi 

network. 

 

Figure 2.14 Cluster communication mode of the IziBu. 

Given the complexity of the TCP protocol, an improvement to the current design can be achieved 

by employing UDP protocol. Simplicity of the UDP protocol allows the transmission of the 

CREATE	TABLE	Motor 
( 

HostNameVARCHAR(6)	NOT	NULL		DEFAULT('MASTER'), 
DirectionIDSMALLINT		NOT	NULL		DEFAULT(0) 
MotorIDSMALLINT		NOT	NULL		DEFAULT(0) 
RealRotationalDegreeSMALLINT		NOT	NULL		DEFAULT(90), 
HardwareRealLowRangeValueSMALLINTNOT	NULL		DEFAULT(0), 
HardwareRealHighRangeValueSMALLINTNOT	NULL		DEFAULT(0), 
SoftwareRealLowRangeValueSMALLINTNOT	NULL		DEFAULT(0), 
SoftwareRealHighRangeValueSMALLINTNOT	NULL		DEFAULT(0) 

); 
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payload to the followers without an unnecessary overhead of the TCP such as synchronization, 

acknowledgement and lost packet retransmission. However, in case of the UDP it is best 

implement a heartbeat mechanism between leader and followers. This would allow for a leader 

node to know how many followers are in a ready/live state to receive the payload.  

In standalone mode, we implemented named pipes. Each servo motor controller has a 

dedicated named pipe from which it receives a payload. The payload contains an angular degree 

for a servo to rotate. Payloads are sent by the Master controller calculated by DAST algorithm. 

We will describe the LDR sensory module and DAST algorithm in the next section.  

2.2.3 LDR Sensory Controller 

 

Figure 2.15 LDR marked locations on photovoltaic panel. 

Main functionality of the LDR sensory module is to read, interpret the signals received by LDRs 

and run them through DAST algorithm. Due to trial-and-error, we have discovered that the most 

optimal performance of the DAST algorithm is achieved by creating an equilateral triangle. 

Thus, as shown in the figure 2.15, we have mounted three LDRs on the top corners and bottom 

center of the photovoltaic panel. We have stated previously in the LDR section that we measure 

the output of the voltage divider circuit. As solar intensity increases LDR value increases as well. 

Which in turn outputs higher voltage in analog format. In order to interpret the analog value to 
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digital, we connect all outputs to an 8-bit PCF8591 AD converter and use the conversion formula 

below.  

$ =
7+89:;!+<=- ∗ 5.0	>:9-?

255
(2.5) 

Figure 2.16 Implementation of Analog-Digital conversion. 

Function digitalGetVoltagePCF8591 is the implementation of the conversation formula. 

AnalogOutput is returned by analogGetValuePCF8591 function. aChannel parameter is the 

channel we are reading. Thus, LDR sensory algorithm used for DAST is given in equations 2.5 - 

2.7 and figure 2.17. Where variables A, B, and C are the LDR values, @. 	is angular position for 

base servo, A. 	is angular position for top servo and -	is sleep time.  

@. = B
@./" + 1	&*	7 > D
@./" − 1	&*	7 < D (2.6) 

A. = B
A./" + 1	&*	7 > G	|	D > G
A./" − 1	&*	7 < G	|	D < G (2.7) 

- = B
10	?IJ	&*	7 = D	and	7 = G	8+N	7 ≠ 0

> 10 sec &*	7 = D = G = 0 (2.8) 

Figure 2.15 is the pseudo code implementation of above equations. 

float	digitalGetVoltagePCF8591(int	aChannel,	int	aFileDescriptor) 
{

if	(aFileDescriptor	<=	0	||	aChannel	<	0)	return	0.0;
return	analogGetValuePCF8591(aChannel,	aFileDescriptor)	*	PCF8591_Voltage	/	255.0;

}
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While	true 
If	A	=	B	=	C	=	0	then

sleep	=	getSleepTime_BasedOnTimeOfTheDay()
if	A	=	B	=	C	!=	0	then

sleep	10	seconds
If	A	>	B	then

increment	angular	value	of	base	servo	by	1
If	A	<	B	then

decrement	angular	value	of	base	servo	by	1
If	A	>	C	or	B	>	C	then

increment	angular	value	of	top	servo	by	1
If	B	<	C	or	B	<	C	then

decrement	angular	value	of	top	servo	by	1

Figure 2.17 Pseudo code of DAST algorithm. 

Function getSleepTime_BasedOnTimeOfTheDay is just a shortened version of the logic 

that calculates sleep value. For example, at night time, there is no need to read LDR values. 

Additionally, sleep period helps with noise avoidance. Sleep times can be manually set. Once 

angular values are adjusted, they are pushed to a named pipe of Servo Motor controller. Figure 

2.18 demonstrates flowchart of the DAST algorithm.  

Figure 2.18 Flowchart of the DAST algorithm. 
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2.2.4 Servo Motor Controller 

A separate thread controls each servo. Every thread receives angular positions from Master 

Controller calculated from DAST algorithm. The payload is a 2-byte unsigned integer pushed 

into a named pipe represents the rotational angle. Since mechanical components cannot execute 

the command fast enough and to avoid the overflow, we discard three out of four payloads 

within the pipe as shown in figure 2.19. Once the payload is received, it is converted to a PWM 

value and sent to the servo for execution.  

 

Figure 2.19 Flow of the Servo Motor Controller Thread. 

To rotate the servo motor to certain degree, we convert the angular value to target duty cycle. 

Conversion method is listed in equations 2.8 

S0()12134- = T
(U5+6 −	U5.7) × (W)+89-) −	W5.7)

W5+6 −	W5.7
+	W5.7X 	× 	

19.2 × 10!

192
 

(2.9) 

Where Tmin and Tmax is the pulse width of the servo and W5.7 and W5+6maximum and minimum 

rotational angles of the servo. These values are obtained during the initial calibration/setup of the 

system. Finally, W)+89-) is the target angular position of the servo which is calculated by the 

DAST algorithm. 
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2.2.5 Battery Controller 

The battery controller is a reactive component responsible for the Li-Po battery. It was written 

using a PiJuice library. The battery Controller can get the charge level, current, and voltage of 

the battery. Additionally, it is responsible for enabling and disabling battery charging and setting 

the system wake up level when battery charge reaches the certain level.  

2.2.6 Master Controller 

Master controller (MC) is a main driver that operates all the components listed above. MC 

divides the system into four run levels based on Li-Po battery charge level. 

Table 2.2 Description of Run Levels 

Run Level Battery Level Action 
GREEN 80% - 100% No need to charge. 
YELLOW 20% - 79% No need to charge. 
RED 5% - 19% Charge if energy source is 

available. 
BLACK 0% - 4% Charge if energy source is 

available. Otherwise set wake-
up level to 5% and perform 
system halt. 

Upon startup, MC reads the configuration file to obtain all necessary attributes to perform 

general initialization of the system such as startup of attached devices, SQLite database, 

download sunrise and sunset data for the current day from weather.com, IPC initialization. Post 

initialization phase searches for the most optimal position to adjust the solar panel. Given that we 

store historical information of angular positions in our database, we take the average of the last 

three days of the current time and adjust the photovoltaic panel accordingly. Hence, 
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Y =
1
3
%Y
)/"

)/$
=	
1
3
(Y)/$ + Y)/# + Y)/") 

(2.10) 

In case the optimal position has not been found, MC initiates a surround scan to locate the Sun 

by executing the LDR Sensory controller. Once Sun is located, the position is recorded in the 

database every 15 minutes. Earlier in LDR Sensory controller section, we mentioned a 

mysterious function getSleepTime_BasedTimeOfTheDay(). This function calculates the sleep 

time based on the sunrise and sunset data we download during the initialization phase of MC. 

Given that the sunrise and sunset times shift daily, download happens automatically every day 

between 00:00 and 01:00. Once data is downloaded and parsed, IziBu compares and calculates 

the adjustment angles for the Servo Controllers, which in turn are pushed to pipes to be read by 

Servo Motor Controller. Hence, photovoltaic panels will be ready to harvest Sun energy upon 

sunrise. In addition, MC controls the current flow from the photovoltaic panel to the ACS712 

sensor. MC switches the relay module and redirects the current to UPS for Li-Po charging if the 

battery has dropped to RED run level. When the battery reaches 100% (GREEN run level), the 

relay is switched to NC and redirects the current to the current sensor for continuous current 

monitoring. As previously stated, we use ACS712-30A Hall-Effect current sensor, which outputs 

66mV/A analog signal. For every 1A increase in current flow, we get a 0.066 V increase in the 

output signal. We have connected our sensor to the PCF8591 8-bit converter and used the 

conversion method 

! =
$ − 2.5
0.066

(2.11) 

Where I is the output current and V is the output from Equation 2.3. 
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By default, the output current from the photovoltaic panel is directed to UPS. This was done by 

connecting the NC terminal of the relay to UPS. Thus, if the Li-Po battery dies before sunrise, 

that is in BLACK run level and less than 5% charge remaining, IziBu has been programmed to 

auto-start the system once the battery charge level is back in the RED run level. The battery will 

remain to charge until it reaches 100%. Section 2.2.7 includes flowchart of the scheduler.



2.2.7 Flowchart 

Figure 2.20 First part of flowchart. 
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Figure 2.21 Second part of flowchart. 
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CHAPTER 3 

EXPERIMENTAL RESULTS 

In order to achieve experimental results and see how much power is supplied to an automaton, 

we have used a DC Power supply by Eventek Model KPS305D. It allows us to control voltage 

and current sent to IziBu. 

3.1 Initialization and Setup 

Figure 3.1 demonstrates the output results of the initialization phase of the scheduler. As shown, 

all attached devices have been initialized, sunrise and sunset data have already been downloaded, 

and the position for the next sunrise has been calculated.  

        Figure 3.1 Screenshot of initialization. 

3.2 Current and LDR Sensory Results 

To simulate the power transfer of the photovoltaic panel to an automaton, we have set the 

voltage value to 5.2V, and 0.2 A. Supply current has been fluctuating between 0.1A to 0.2A. 

Figures 3.2 and 3.3 demonstrates input from a DC power supply, LDR calculated values (A, B, 

C), angular value for every servo, and incoming current read from the power supply. 
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Figure 3.2 Screenshot of Current and LDR Sensory results. 

Figure 3.3 DC power supply. 

3.3 Li-Po Battery Management 

Figure 3.4 demonstrates the battery management interface we integrated into IziBu. The 

management interface is part of a Setup and Calibration component of the IziBu. The current 

selection in the screenshot is #7, which exports all battery info. Additionally, battery charging 

can be enabled or disabled.  
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Figure 3.4 Screenshot of Li-Po battery management component. 

3.4 Autonomy 

The last experiment we conducted was the autonomy of the IziBu. We charged the battery to 

95%, disabled battery charging, and disconnected the power supply. Then we retrieved battery 

charge levels in 5-minute intervals. Given that our battery capacity is only 500mAh, we were 

able to reach 66 minutes of autonomy. Autonomy can be improved by connecting a larger 

battery.  
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   Figure 3.5 Battery discharge graph. 
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CHAPTER 4 

CONCLUSION 

 In this thesis, we introduced the base design of photovoltaic energy harvesting automaton 

IziBu. The objective of this study was to design and implement a complete application of the off-

grid, scalable system with autonomy functionality. The system consisted of hardware and 

software components. The hardware component includes a single board computer with Linux 

OS, current sensor, photoresistors for light intensity detection and DAST implementation, relay 

module to control the current flow, and analog-digital converter. The software component has 

been designed to be event-driven, reactive and includes multiple subcomponents to utilize 

hardware devices and a general logic that completes the automaton.  
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