
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT

DATA-DRIVEN LEARNING FOR ROBOT PHYSICAL
INTELLIGENCE

by
Leidi Zhao

The physical intelligence, which emphasizes physical capabilities such as dexterous

manipulation and dynamic mobility, is essential for robots to physically coexist

with humans. Much research on robot physical intelligence has achieved success on

hyper robot motor capabilities, but mostly through heavily case-specific engineering.

Meanwhile, in terms of robot acquiring skills in a ubiquitous manner, robot learning

from human demonstration (LfD) has achieved great progress, but still has limitations

handling dynamic skills and compound actions. In this dissertation, a composite

learning scheme which goes beyond LfD and integrates robot learning from human

definition, demonstration, and evaluation is proposed. This method tackles advanced

motor skills that require dynamic time-critical maneuver, complex contact control,

and handling partly soft partly rigid objects. Besides, the power of crowdsourcing is

brought to tackle case-specific engineering problem in the robot physical intelligence.

Crowdsourcing has demonstrated great potential in recent development of artificial

intelligence. Constant learning from a large group of human mentors breaks the limit

of learning from one or a few mentors in individual cases, and has achieved success in

image recognition, translation and many other cyber applications. A robot learning

scheme that allows a robot to synthesize new physical skills using knowledge acquired

from crowdsourced human mentors is proposed. The work is expected to provide a

long-term and big-scale measure to produce advanced robot physical intelligence.



DATA-DRIVEN LEARNING FOR ROBOT PHYSICAL
INTELLIGENCE

by
Leidi Zhao

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Engineering

Helen and John C. Hartmann Department of Electrical and Computer
Engineering

August 2021



Copyright © 2021 by Leidi Zhao

ALL RIGHTS RESERVED



APPROVAL PAGE

DATA-DRIVEN LEARNING FOR ROBOT PHYSICAL
INTELLIGENCE

Leidi Zhao

Dr. Cong Wang, Dissertation Advisor Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Edwin Hou, Committee Member Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Lu Lu, Committee Member Date
Assistant Professor of Mechanical and Industrial Engineering, NJIT

Dr. Qing Liu, Committee Member Date
Assistant Professor of Electrical and Computer Engineering, NJIT

Dr. Xuan Liu, Committee Member Date
Associate Professor of Electrical and Computer Engineering, NJIT



BIOGRAPHICAL SKETCH

Author: Leidi Zhao

Degree: Doctor of Philosophy

Date: August 2021

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 2021

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2016

• Bachelor of Science in Electrical Engineering,
Shanghai Maritime University, Shanghai, China, 2015

Major: Computer Engineering

Presentations and Publications:

L. Zhao, C. Wang, L. Lu, “Handling Crowdsourced Data using State Space
Discretization for Robot Learning and Synthesizing Physical Skill,”
International Journal of Intelligent Robotics and Applications, 4, 390–402
(2020)

J. Li, L. Lu, L. Zhao, C. Wang, J. Li , “An Integrated Approach for Robotic
Sit-To-Stand Assistance: Control Framework Design and Human Intention
Recognition,” Control Engineering Practice, 107 (2021): 104680

L. Zhao, C. Wang, L. Lu, “Data-Oriented State Space Discretization for Crowdsourced
Robot Learning of Physical Skills,” American Society of Mechanical Engineers
(ASME) Letter in Dynamic Systems and Control, 2021

C. Wang, B. Wang, L. Zhao, C. Maranon, N. Goswamy, J. Y. Lee, and G. Wang,
“High-Fidelity Teleoperated Scaled Vehicles for Research and Development of
Intelligent Transportation Technologies,” in American Society of Mechanical
Engineers (ASME) Dynamic Systems and Control Conference (DSCC), 2020

L. Zhao, R. Lawhorn, C. Wang, L. Lu, B. Ouyang, “Synthesis of Robot Hand
Skills Powered by Crowdsourced Learning,” IEEE International Conference on
Mechatronics (ICM), 2019

iv



L. Zhao, Y. Zhao, S. Patil, D. Davies, C. Wang, L. Lu, B. Ouyang, “Robot Composite
Learning and the Nunchaku Flipping Challenge” IEEE International Conference
on Robotics and Automation (ICRA), pages 3160-3165, 2018.

J. Li, L. Lu, L. Zhao, C. Wang, X. Huo, “A Human-Centered Control Framework for
Robotic Sit-to-Stand Assistance” IEEE/ASME International Conference on
Advanced Intelligent Mechatronics (AIM), pages 845-850, 2018

L. Zhao, R. Lawhorn, S. Patil, S. Susanibar, L Lu, C Wang, B Ouyang, “Multiform
Adaptive Robot Skill Learning From Humans,” American Society of Mechanical
Engineers (ASME) Dynamic Systems and Control Conference(DSCC), 2017.

,

v



"Fate has no pity,
And God’s night is infinite.
Your matter is time, ceaseless time.
You are each solitary moment."

−Jorge Luis Borges

vi



ACKNOWLEDGMENT

I would like to give my heartfelt thanks to my advisor, Dr. Cong Wang, for his

illuminating guidance and continuous support through each stage of the research.

I also want to express my gratitude to all my committee members: Dr. Edwin

Hou, Dr. Lu Lu, Dr. Qing Liu, and Dr. Xuan Liu for the support of my research.

I appreciate the support from my beloved department and school, Helen and

John C. Hartmann Department of Electrical and Computer Engineering at New Jersey

Institute of Technology. Thanks for my department providing teaching assistantship

to me. I also appreciate the research funding from National Science Foundation Award

(Grant number 1944069). Their financial supports make my research ideas come true.

I am also extremely grateful to all the members of our CAR lab and Dr. Lu’s

lab who have kindly provided me assistance and inspiration during the research.

Finally, many thanks go to my family and friends for their unfailing love and

unwavering support.

vii



TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 COMPOSITE LEARNING SCHEME . . . . . . . . . . . . . . . . . . . . . 3

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Composite Skill Learning . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Adaptive learning from definition . . . . . . . . . . . . . . . . . 5

2.2.2 Learning from demonstration with data conditioning . . . . . . 8

2.2.3 Learning from evaluation . . . . . . . . . . . . . . . . . . . . . 10

2.3 Inverted Pendulum Swing-up and Balancing . . . . . . . . . . . . . . . 10

2.4 The Nunchaku Flipping Challenge . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Hardware preparation . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 The experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 ROBOT PHYSICAL INTELLIGENCE POWERED BY CROWDSOURCED
LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 A Crowdsourced Learning Scheme . . . . . . . . . . . . . . . . . . . . 24

3.2.1 An elementary example . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2 State space discretization using pseudo-random sequences . . . . 27

3.2.3 Synthesis of the rough skill . . . . . . . . . . . . . . . . . . . . 31

3.2.4 Generation of the control action . . . . . . . . . . . . . . . . . . 32

3.2.5 Processing new demonstration trajectories . . . . . . . . . . . . 33

3.3 Validation I - The Fidgeting Test . . . . . . . . . . . . . . . . . . . . . 34

3.4 Data-oriented State Space Discretization . . . . . . . . . . . . . . . . . 37

3.4.1 Dynamic cell allocation . . . . . . . . . . . . . . . . . . . . . . 38

3.4.2 Nearest neighbor search for data-oriented discretization . . . . . 38

viii



TABLE OF CONTENTS
(Continued)

Chapter Page

3.5 Validation II - The Bottle Puzzle . . . . . . . . . . . . . . . . . . . . . 46

3.5.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.2 Physical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

ix



LIST OF FIGURES

Figure Page

2.1 The skill of swing-up and balancing of an inverted pendulum defined by a
human mentor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 A robot learned to swing up and balance an inverted pendulum. . . . . . 12

2.3 Motion variables of the robot and the pendulum. . . . . . . . . . . . . . . 12

2.4 Revised Petri net. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Control deployment of the test setup. . . . . . . . . . . . . . . . . . . . . 15

2.6 A fingered robot hand with tactile sensors. . . . . . . . . . . . . . . . . . 15

2.7 Motion capture gadgets used in the tests. . . . . . . . . . . . . . . . . . . 18

2.8 The nunchaku flipping trick. . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.9 Initial Petri net definition of the nunchaku flipping trick. . . . . . . . . . 19

2.10 Nunchaku flipping learned by a robot. . . . . . . . . . . . . . . . . . . . 21

3.1 Two-step skill synthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 An example of state space discretization and its graph representation. . . 26

3.3 3D state space discretization using 64 points of different distributions and
their projections to a 2D subspace - (a) full-factorial design, (b) uniform
random numbers, (c) low-discrepancy pseudo-random sequence. . . . . 29

3.4 A trajectory registered to a discrete state space. . . . . . . . . . . . . . 30

3.5 VR interface and simulated robot hand. . . . . . . . . . . . . . . . . . . . 35

3.6 A skill synthesized using a knowledge library that covers (a) 21% of the
state space, (b) 67% of the state space. . . . . . . . . . . . . . . . . . . 36

3.7 Success rate of new skill synthesis. . . . . . . . . . . . . . . . . . . . . . . 36

3.8 Open v.s. irregular working regions in the state space. . . . . . . . . . . . 38

3.9 Construction of neighbor lists for DG. . . . . . . . . . . . . . . . . . . . . 42

3.10 Successful autonomous solving of the bottle puzzle (simulated). . . . . . . 48

3.11 Physical setup of the bottle puzzle test. . . . . . . . . . . . . . . . . . . . 49

3.12 Sensing and control deployment of the physical test. . . . . . . . . . . . . 50

3.13 Successful autonomous solving of the bottle puzzle (physical test). . . . . 50

x



CHAPTER 1

INTRODUCTION

For robots to become physically autonomous and replace human labors in many

demanding tasks, physical intelligence is of fundamental importance. Compared to

decision-making type of intelligence such as recognizing languages and determining

gaming strategies, physical intelligence emphasizes physical capabilities such as

dexterous manipulation and dynamic mobility. While recent research on artificial

intelligence has achieved great success in decision-making tasks and shown capability

of outclassing humans on gaming, diagnosis, translation, etc., the physical intelligence

of robots is still at a relatively early stage. In this dissertation, we focus on data-driven

learning for robot physical intelligence, especially, we want robot can learn advanced

manipulation skill without case-specific engineering, and have the ability to gain

ubiquitous physical intelligence.

In Chapter 1, we present a scheme of composite robot learning from human that

empowers robots to acquire advanced manipulation skills that require

1. dynamic time-critical compound actions (as opposed to semi-static low-speed
single-stroke actions),

2. contact-rich interaction between the robot and the manipulated objects exceeding
that of firm grasping and requiring control of subtle bumping and sliding, and

3. handling of complex objects consisting of a combination of parts with different
materials and rigidities (as opposed to single rigid or flexible bodies).

In Chapter 2, we present a method that allows robots to synthesize new physical

skills based on knowledge learned from crowdsourced human mentors. The method

features:

1. Capability of synthesizing new physical skills instead of replicating or adjusting
human-demonstrated skills.

2. Sustainable management of a continuously growing massive knowledge library
learned from a large number of crowdsourced human mentors.

1



Several simulation experiments and physical tests are conducted to validate the

two proposed learning scheme. The hardware preparation, control system deployment,

and environment setup are also explained in this dissertation. Chapter 3 summarizes

the proposed learning schemes and gives the conclusions.

2



CHAPTER 2

COMPOSITE LEARNING SCHEME

2.1 Introduction

Advanced motor capabilities are necessary for ubiquitous coexistence of robots and

humans. Much research on robot dynamics and control does show success in realizing

hyper robot motor capabilities. Representative work includes the running and hopping

humanoid robot ASIMO by Honda Motor [1], the hyper balancing legged [2][3] and

wheeled [4] robots by Boston Dynamics, the high speed running cheetah robot by

MIT [5], the dynamic vision guided regrasping [6], knotting [7], and pen spinning [8]

robots by the University of Tokyo. Despite the application of adaptive and learning

control, these works require extensive case-specific engineering that rely heavily on ad

hoc models and control strategies, and lack scalability to ubiquitous applications.

Regarding the ubiquity of robot skill acquisition, a potential solution lies in

robot reinforcement learning (RL) from trial and error as well as robot learning from

human demonstration (LfD), which have become two hot topics in robotic research.

First studied in the 1980s, LfD aims at providing intuitive programming measures

for humans to pass skills to robots [9]. Among the latest and most achieved, one

well-known work is presented in [10], where a PR2 robot learned rope tying and cloth

folding.

However, most LfD achievements so far are for semi-static decision-making

actions instead of dynamic skills, partly due to the reliance on parameter-heavy

computationally-intensive (for real-time evaluation) models such as deep neural

networks (DNNs). In order to make the motion presentable to an audience, typical

demonstration videos feature accelerated playback rates of up to ×50.

A few works in LfD do have achieved dynamic skills such as robots playing

table tennis and flipping pancakes [11] as well as ball-paddling and ball-in-a-cup

3



tricks [12], but with recorded human demonstration as the initial trajectories for a

robot reinforcement learning (RL) from (self) trial and error. The application of

RL often features structurally parameterized control policies (e.g., [13][14]) in the

form of the combination of a few basis elements and can thus reduce the real-time

computation load. The choice of the basis elements are often quite case-specific.

M.P.Deisenroth and etc. [15] gives a survey of robot RL. RL enables a robot to search

for optimal control policy not from demonstration but from trial-and-error practice,

with the goal of maximizing a reward function. Proper design of the reward function

and the corresponding maximization strategy is another factor that is usually quite

case-specific. The same authors of the survey also achieved dynamic robot motor

skills such as playing table tennis [16] and throwing darts [17] via RL with motion

primitives as basis elements. However, these works are mainly for stroke-based moves,

and have not addressed compound actions.

Regarding these issues, we started studying a composite learning scheme, which

showed success in an inverted pendulum swing-up experiment [18] and in the nunchaku

flipping challenge [19].

2.2 Composite Skill Learning

So far, the majority of the robot learning from human research community has

been focusing on the concept of robot learning from demonstrations (LfD). In many

occasions, LfD has become a synonym of robot learning from human [9]. A few

went further and explored techniques such as allowing robot learners to ask questions

[20] and human mentors to give critiques [21] along with demonstration. Theories

of human learning point out that effective learning needs more than observation of

demonstrations [22]. In particular, explicit explanation of the underlying principals

(e.g., [23]) and testing with feedbacks (e.g., [24]) are necessary in effective teaching

of complex skills. Expecting a learner to master new skills solely from observing

4



demonstrations is analogous to learning from a silent teacher, which certainly could

only achieve limited outcomes. This explains why the reinforcement learning (RL)

assisted LfD shows effectiveness in learning dynamic motor skills - because the RL is

in some sense a follow-up testing and feedback mechanism.

In regard to the limit of LfD, we propose a composite learning method that

integrates robot learning from definition, demonstration, and evaluation.

2.2.1 Adaptive learning from definition

We use Petri nets (PN) to define compound skills that includes multiple subprocedures.

The places in the PN consist of the state variables of the robot, such as posture, joint

velocities, and torques. The states and transitions in a PN represent the subprocedures

and the corresponding motion actions respectively. Each transition in the PN features

a relatively coherent motion pattern and can be realized using a single motion/force

control policy. Petri nets are abstract enough to be composed intuitively by humans,

while sufficiently symbolic for machines to parse. Despite being widely used in robotics

(e.g., [25][26]), Petri nets have yet not been used to teach robots dynamic skills.

Due to possible improper human description and very often the physical difference

between the human mentor and the robot learner, modification of the initial definition

is necessary. Starting from an initial definition provided by the human mentor, we use

adaptive measures to enable autonomous correction of the initial definition. Instead of

a standard 4-tuple Petri net %# = (%,), �, "0), we introduce a 6-tuple adaptive Petri

net �%# = (%,), �, "0,Λ, �), where % is the set of places, ) is the set of transitions,

� is the incident matrix that defines the relationship among places and transitions,

"0 is the initial marking, Λ is a set of firing probabilities of transitions, and � is a set

of firing conditions.

An APN allows the robot learner to revise the initial definition through learning

from evaluation (Subsection 2.2.3). By adjusting the % set, ) set and � matrix, places

5



Composite Skill Learning

1 The human mentor gives initial definition of the skill using a Petri net;

2 The human mentor demonstrates the skill for multiple times and

self-evaluates the demonstrations;

3 Starting from the initial definition, the robot uses the demonstration to

learn control policies for each transition and the judging conditions

specified in the definition;

4 The robot also learns the evaluation criteria from the mentor’s self-evaluated

demonstration;

5 The robot tries out the skill and uses the learned criteria to conduct

self-evaluation;

6 Additional human evaluations are optional and might help improve the

fidelity of the evaluation criteria learned by the robot;

7 if evaluated as failure then

8 The robot checks the scores of subprocedures, locates problematic spots,

and modifies the initial definition by creating an adaptive Petri net;

9 Go to 5;

10 else if evaluated as success then

11 The robot weights up the data from the successful trials so as to improve

the learned control policies and conditions;

12 After reaching a stable performance above a certain successful rate, the

skill is considered learned.

6



and transitions can be added or dropped from the initial definition. Our previous

paper [18] presented an inverted pendulum test, in which a transition is added by the

learning agent to recover from a wrong state. In addition, adjustment of the firing

probability set Λ and the condition set � changes the learned skill towards more

suitable to the mechanical characteristics of the robot. Section 2.4 gives an example.

The state equation of the Petri net is

"′ = " + �` (2.1)

where the " is the previous marking, "′ is the marking after a transition fires. ` is a

column vector indicating whether the transitions fire with its boolean elements. It is

controlled by the set of firing probability Λ and the set of conditions �

` =

[
30?0 31?1 32?2 . . .

]T

(2.2)

where 38 is a boolean decision value indicating if the firing condition 28 ∈ � of the 8th

transition is satisfied. ?8 is a boolean random value that follows Bernoulli distribution

Pr(?8 = 1) = _8, where _8 ∈ Λ defines the firing probability of the 8th transition.

Starting from the initial � and Λ specified by the human mentor, the robot

carries out modification through trying out the skill. When a problematic transition

is identified, its firing probability _8 is updated to

_∗8 = ^_8 (2.3)

where ^ < 1. Once _8 drops below a certain level, the corresponding firing condition

28 will be updated to

2+8 =

[
F1 · · · F:

] [
B1
8
· · · B:

8

]T

(2.4)

7



where F 9 is a weight parameter derived from the evaluation of the 9th trial. B 9
8
is the

recorded state when firing the 8th transition at 9th trial. The firing probability resets

when the corresponding condition is updated.

2.2.2 Learning from demonstration with data conditioning

The Petri net definition divides a compound skill in a way that each transition has

a relatively coherent motion pattern and can be governed by a single control policy

regressed from the human demonstration data. To avoid case-specific engineering of

model-based control, we use nonparametric regression methods. Nowadays, more and

more research involving nonparametric learning use deep neural networks (DNNs)

with convolutional or spiking modules, taking the advantage that a large amount of

training parameters (e.g., 18 million parameters in [27]) benefits the approximation of

complicated state-control mappings. The price, however, is the difficulty of executing

the learned control policy in real-time for dynamic actions. [28] combined DNN with

parametrized policy search and obtained a model of relatively smaller scale with

around 92 000 parameters. The reduced size, however, still only allows a control rate

of 20Hz, which is difficult for dynamic actions that usually require a control rate at

several hundreds to over 1000Hz.

Instead of counting on standalone LfD with a huge amount of parameters,

we seek breakthrough from the power of composite learning and turn to the more

computationally efficient Gaussian Process Regression (GPR), aiming at realizing a

high control rate on regular control systems. GPR has a strong history in learning

control of robots. One pioneering work is presented in [29]. In our work, the regression

learns a mapping from the system state G to the control D. The mapping is used as a

motion control policy to realize a specific transition in the PN definition. Consider a

data set
{
(G8, D8) : 8 = 1, 2, . . . , =

}
from human demonstrations. GPR assumes that the

mapping D = D(G) follows a multi-variable joint distribution with certain statistical

8



characteristics. We apply the exponential kernel function in the state space

:
(
G8, G 9 |\

)
= f2 exp

(
− 1
;2
(G8 − G 9 )T(G8 − G 9 )

)
(2.5)

where \ = {f, ;} includes the so-called hyperparameters to be trained, with f being

a covariance scaling factor and ; being a distance scaling factor. Because the whole

skill is divided into multiple subprocedures that each has a relatively simple motion

pattern, there is no need to use advanced kernels (e.g., [30] Subsection 5.4.3 ), which

lead to demanding and case-specific parameter training. The covariance matrix of the

data is

 =


: (G1, G1) · · · : (G1, G=)

...
. . .

...

: (G=, G1) · · · : (G=, G=)


(2.6)

and the covariance matrix relating the queried state G∗ to the data is

 ∗ =

[
: (G∗, G1) · · · : (G∗, G=)

]
(2.7)

The control D∗ for the queried state G∗ can be inferred using the conditional expectation

E [D∗] =  ∗ −1*C (2.8)

where *C is the stack of the controls in the training data. Note that the computation

load of D∗ very much depends on the sizes of  and  ∗, which in turn depend on the

size of the data set. In order to achieve high computing efficiency for real-time control

as well as improve the fidelity of the regressed mapping, we have developed a data

conditioning method [31] using rank-revealing QR (RRQR) factorization. The RRQR

factorization of the stack (C of the states from the data set is in the form of

(CΠ = &


'11 '12

0 '22

 (2.9)

9



where Π is a permutation matrix, & is orthogonal, and '11 ∈ R<×< is well conditioned.

The columns in (C identified by the first < columns of Π form a well conditioned

subset. Various algorithms are available to compute an RRQR factorization, providing

different lower bounds of '11’s smallest singular value [32]. The subset selected features

improved condition number and leads to more reliable regression fidelity, while takes

only a fraction of the original computation.

2.2.3 Learning from evaluation

After acquiring the skill definition and regressing control policies from human

demonstration, we use evaluations to tune the learned skill. The human mentor

and the robot learner often have nontrivial physical difference, and the skills learned

right off the human demonstration are often not optimal or even less feasible to the

robot learner. Learning from evaluation handles this problem. When the robot tries

to carry out a learned skill, both the success of the whole skill and the performance

of each subprocedure are evaluated. In order to avoid case-specific engineering, the

scoring formulae are not explicitly specified by the human mentor. Instead, the human

mentor labels his/her demonstration with success/failure flags and performance scores.

The learning agent learns the scoring criteria from the labeled data and use them to

self-evaluate the robot’s practices, which always have variations due to the dynamic

and compound nature of the skills. The evaluation result is in turn used to refine the

learned skills by taking in the data from more successful practices, while the data

from lower scored demonstrations are less weighted. Examples are discussed at the

end of Section 2.4.

2.3 Inverted Pendulum Swing-up and Balancing

Due to its dynamic nature, the swing-up and balancing of an inverted pendulum

has been a popular test for robot learning strategies. As shown in Figure 2.2, a

10



6-axis AUBO i5 robot manipulator is used to carry an inverted pendulum. The robot

provides an open-architecture control interface driven by a Controller Area Network

(CAN) bus, allowing torque, velocity, or position level control. A National Instruments

CAN PCI interface and MATLAB/Simulink Vehicle Network Toolbox are used to

facilitate a CAN-based real-time control system at a sampling rate of 1 kHz.

Figure 2.1 shows the Petri net definition of the skill, which consists of the

swing-up and balancing phases. %0 denotes the initial state, %1 and %2 represent the

swung-up and balanced states (with success/failure judging conditions) respectively.

%� (success) and %� (failure) are the final success or failure status. The state variables in

the places are the angle \ of the pendulum and its angular velocity l. C0 denotes

the starting move. C1 is the switching action from swing-up to balancing. C2 and C3

are the repeating swing-up and balancing moves respectively. C4 or C5 fires when the

swing-up state or the balanced conditions cannot be reached over time and lead to

the %� (failure) state. The successful stop action C6 fires when the balanced state is

maintained steadily for a certain amount of time. Transitions C4, C5 and C6 all lead to

the end of the maneuver.

Figure 2.1 The skill of swing-up and balancing of an inverted pendulum defined by
a human mentor.

Multiple demonstrations of the skill are performed by a human mentor using

joystick control. The human mentor labels the individual performances in his/her own

demonstrations as success or failure. The control laws of each transition specified in

the Petri net are trained using data from the successful demonstrations. In addition,

11



Figure 2.2 A robot learned to swing up and balance an inverted pendulum.

the learning agent learns the judging criteria from the labeled data and allows the

robot to grade its own performance. Starting from the initial Petri net definition and

demonstration data, the robot attempts repeated trials of the skill. Each time a trial

is completed, the robot grades its own performance using the learned criteria.

Figure 2.3 Motion variables of the robot and the pendulum.

Depending on the trial results, the robot may modify the initial Petri net

definition (Figure 2.1) provided by the human mentor using the APN method

introduced earlier. As an example, in the case that the human mentor defined

12



the condition of firing C1 (swtiching to balancing) to require exact upright position

and absolute zero angle velocity of the pendulum (i.e., a perfect swing-up), the system

would almost never get the chance to proceed to %2, and the process would end

up failing (after repeating C2 a certain number of times) in every trial. Upon the

detection of constant failure, the robot starts to modify the original definition using

the proposed APN. First, the learning agent identifies that transition C1 has never

been fired, the condition to fire it has never been satisfied, and place %2 has never

been visited. As C1 is already defined as the only transition connecting %1 and %2 (as

specified in �), no new transition is added, and adjustment of Λ would induce no

effects. That leaves the learning agent to adjust � by examining the data collected

from human demonstration. In particular, an SVM is used to learn a new condition

(specified by the state variables) by regression from the demonstrated switching action

corresponding to C1. The resulting APN features a feasible definition of � and allows

successful triggering of C1. Figure 2.2 shows a successful performance carried out by

the robot after the learning. Figure 2.3 shows the motion variables of the robot and

the pendulum, in which the transition from swing-up to balancing can be clearly seen.

Figure 2.4 Revised Petri net.

Sometimes the process is also affected by excessive external disturbance and

forced out of a known sub-procedure. In particular, before C6 is fired (upon steady

balancing over a certain amount of time), the balanced status can be broken due to

external disturbance, which might be too intense and the status cannot be recovered by

firing C3. Such a situation is not specified in the initial definition. In order to recover,

13



the learning agent first identifies %2 in the Petri net as where the issue occurs. The

state variables after the incident occurs are examined. Specifically, their correlation

to each place in the Petri net is evaluated, which indicates that the status belongs

to %1. The learning agent then adds a new transition C7 from %2 to %1 as shown in

Figure 2.4, which recovers the process by backing up to the swing-up phase.

2.4 The Nunchaku Flipping Challenge

We hope the composite learning scheme empowers robots to acquire advanced

manipulation skills that require

1. dynamic time-critical compound actions (as opposed to semi-static low-speed
single-stroke actions),

2. contact-rich interaction between the robot and the manipulated objects exceeding
that of firm grasping and requiring control of subtle bumping and sliding, and

3. handling of complex objects consisting of a combination of parts with different
materials and rigidities (as opposed to single rigid or flexible bodies).

So we also introduce the “nunchaku flipping challenge”, an extreme test that includes

hard requirements on all three elements listed above.

2.4.1 Hardware preparation

A robot arm and real-time control system We use a 6-joint AUBO i5 robot

arm. It features a modular design similar to the popular UR series by Universal

Robots, while provides a much simpler open control interface that allows end-users

to fully access real-time position/velocity/torque control. The control deployment

(Figure 2.5) is based on a target computer directly connected to the robot arm via

a Controller Area Network (CAN bus) cable. Other than a National Instruments

PCI-CAN interface, no additional interfacing hardware is used. MATLAB/Simulink

is used to implement sensing, control, and safety algorithms. The MATLAB Vehicle

Network Toolbox is used to facilitate the CAN communication protocol. The sampling

rate of the control system is 1 kHz.

14



Figure 2.5 Control deployment of the test setup.

A bionic robot hand In order to facilitate advanced manipulation skills involving

finger actions, we developed a bionic robot hand with haptic sensors. The hand

features a bionic five-finger design and tendon-driven actuation. The majority of the

hand is 3D-printed, including the palm and finger segments in PET, finger joints in

the rubbery TPU (for auto extension), and a motor pack in stainless steel. TakkTile

sensors developed by Righthand Robotics are used as haptic sensors. They are built

up on the NXP MPL115A2 MEMS barometer by casting a rubber interface [33]. In

addition, an ATI 6-axis load cell is installed at the wrist to perceive the centrifugal

force brought by the motion of any payload manipulated by the hand.

Figure 2.6 A fingered robot hand with tactile sensors.

Motion capture systems Motion capture is used in learning from demonstration.

Accurately capturing a highly dynamic skill is a challenge. It is also important to

provide an intuitive interface for efficient teaching. We have experimented several

options.

15



The Microsoft Kinect seems to be a first choice. It has been recognized as a top

product among commercial camera and image processing-based systems. Not requiring

markers or hand-held gadgets makes it very intuitive for the mentor to demonstrate a

skill. However, such camera-based systems suffer from limited sampling rate (usually

up to 30 frames per second) and considerable delay caused by image processing (usually

takes up to an entire sampling period), plus low accuracy as reported in [34], which in

turn make the velocity estimation difficult. We tried to compensate these problems,

otherwise known as visual sensing dynamics using a predictive filtering technique [35].

First, the position signal B(C) being sensed is decomposed using it’s Taylor expansion

with respect to time

B (C0 + C) =
A∑
2=0

B(2) (C0)
C2

2!
+ B(A+1)

(
C0 + b

) CA+1

(A + 1)! (2.10)

where A is the order of the expansion, and b ∈ (0, C). The expansion can be written

into a state space model:

G (8 + 1) =



1 ) · · · )A

A!

1 · · · )A−1

(A−1)!
. . .

...

1


G (8) +



)A+1

(A+1)!
)A

A!

...

)


D (8) (2.11)

with an output

H
(
9
)
=

[
1 0 · · · 0

]
G
(
9 − !

)
+ E

(
9
)

(2.12)

where the state vector G =
[
B B′ · · · B(A)

]T

contains B and its derivatives. 8 is the

time step index. ) is the algorithm sampling time, which is much shorter than the

camera sampling time. D comes from the residual term in Equation (2.10). It is

treated as an unknown input, and handled using an equivalent noise approach [36]. H

is the position identified by image processing. E is the artifacts and rounding noise.

16



9 = #, 2#, 3#, . . . is the index of the camera sampling actions. ! is the delay caused

by image processing.

A dual-rate adaptive Kalman filter is then applied to Equations (2.11) and (2.12)

to compensate for the delay and recover the information between sampling actions.

Despite reported success of this type of compensation techniques [35], we found that it

still requires the camera to sample at least 15 times faster than the desired bandwidth

of the motions being sensed. For the highly dynamic maneuvers targeted in our work,

such a limit excludes the use of any commercial camera and image processing-based

motion capture systems.

Another type of non-contact motion capture systems is the ones using active

infrared makers and infrared sensors. Consumer level products of such type include the

Nintendo Wii and Sony PS Move, which unfortunately are of very limited accuracy [37].

Meanwhile, the high-end options such as the one introduced in [38] and its commercial

peers (e.g., PhaseSpace and NDI Optotrak), although are capable of obtaining very

high quality measurement, are much beyond the space and cost considerations in our

long term goal of making the technology available to everyday life.

A balanced choice between cost and capability is a mechanical motion capture

system in the form of a passive multi-bar mechanism equipped with rotation sensors at

the joints. Compared to the previous two options, such systems, either the commercial

ones such as Geomagic Touch or a customized design (Figure 2.7 left) provide both an

feasible cost and sufficient capability to our application. Although the usage is not as

intuitive as non-contact motion capture systems, the additional difficulty is acceptable.

In addition, a sensing glove with Flex sensors is used to capture the motion of the

fingers. The glove is also equipped with vibrating motors to provide tactile feedback

to the user (Figure 2.7 right).

17



Figure 2.7 Motion capture gadgets used in the tests.

2.4.2 The experiment

Nunchaku is a traditional Okinawan martial arts weapon widely known due to its

depiction in film and pop culture. It consists of two rigid sticks connected by a chain

or rope. Among the numerous tricks of using nunchaku, the flipping trick as shown

in Figure 2.8 is one that puts hard challenges to all three elements we consider in

advanced manipulation skills, i.e., dynamic maneuver, hand-object contact control,

and handling partly soft partly rigid objects. The trick includes three subprocedures:

swing-up (1–3 in Figure 2.8), chain rolling (4–6), and regrasping (7, 8).

Figure 2.8 The nunchaku flipping trick.

With the composite learning scheme, the nunchaku flipping trick is first described

by a human mentor using an initial Petri net definition. As shown in Figure 2.9, %0 is

the initial state, in which the robot hand holds one of the sticks and is in no motion.

When the start-of-motion transition C0 fires, the robot begins the swing-up procedure.

The swinging C1, the stop motion C6, and the hand-releasing action C2 fire based on

the probability and the judging conditions in %1. If the running time goes beyond

18



a threshold, the action stops by firing the stop motion C6. If the sensor reading is

below a certain level, the swing C1 fires and the amplitude of the swing is increased.

After the sensor reading exceeds the threshold, C2 has a possibility to fire. Similar

to the swing-up procedure, when the hand-releasing action C2 successfully fires, the

robot goes on to chain-rolling. The back palm contact control C3, the stop motion C7,

and the regrasping action C4 fire based on the probability and the judging conditions

in %2. The robot regrasps by firing C4. If the regrasping is successful according to

the condition in %3, stop motion C5 fires and leads to the final success %� (success).

Otherwise, stop motion C8 fires and leads to the final failure %� (fail). The possibilities

and conditions could change during the learning process.

Figure 2.9 Initial Petri net definition of the nunchaku flipping trick.

The bionic robot hand described in Subsection 2.4.1 is installed on the robot

arm to resemble human hand maneuvering. In order to keep a reasonable fidelity

to human sensory control, no sensor is installed on the nunchaku. The motion of

the sticks and the chain is perceived by the haptic sensors and 6-axis load cell in

the robot hand. In addition, without explicit inference of the position, attitude, and

layout of the sticks and the chain, the sensor readings are directly mapped to the

motor controls of the fingers and the arm joints by the learning algorithm. Such an

end-to-end learning scheme has earned increasing preference recently and is believed

to be a good approximation of human neural response (e.g., [28]).

Multiple demonstrations of the nunchaku flipping trick are performed by a

human mentor and recorded by the motion capture systems. The human mentor labels

if each demonstration is a success and scores the performance. The control policies of

19



the transitions and the judging conditions are learned from successful demonstrations

weighted by their scores. The grading criteria for robot self-evaluation are learned

from both successful and failed demonstrations. Starting with the initial definition, the

robot conducts multiple trials. After each trial, the robot grades its own performance

using the learned criteria. The final score and the score of every transition are given to

determine if the trial is a success and which part in the definition should be adjusted.

Such adjustment is important because of the physical differences between the

human mentor and the robot learner. This is especially true for the ending part of

the swing-up which requires certain vertical speed to enter chain-rolling. The human

mentor tends to use a sudden jerk-up to realize this part. Despite being a small move,

this action is at the border of the robot’s mechanical limit. As a result, the learning

agent avoids learning from demonstrations featuring this move because of a low success

rate during the trial runs, while weights up the data form demonstrations with a more

back-and-forth type swing-up, which achieves much more successes in the trial run

evaluations. Similar situation applies to the condition of switching from swing-up to

chain rolling. The initial switching condition learned from human demonstrations is

not the optimal for the robot, which can be adjusted through learning from evaluation

during trial runs.

2.5 Conclusions

This chapter introduces a composite robot learning scheme which integrates adaptive

learning from definition, nonparametric learning from demonstration with data

conditioning, and learning from evaluation. The method tackles advanced motor

skills that require dynamic time-critical maneuver, complex contact control, and

handling partly soft partly rigid objects. We use classic inverted pendulum test to

validate the proposed learning scheme. In addition, we also introduce the “nunchaku

flipping challenge”, an extreme test that puts hard requirements to all these three

20



Figure 2.10 Nunchaku flipping learned by a robot.

aspects. Details of the hardware preparation and control system deployment of a

physical test are explained. The proposed robot learning scheme shows promising

performance in the challenge.

21



CHAPTER 3

ROBOT PHYSICAL INTELLIGENCE POWERED BY

CROWDSOURCED LEARNING

3.1 Introduction

Physical intelligence is of fundamental importance for robots to interact with the real

world. Compared to cognitive intelligence for tasks such as language processing and

image recognition, robot physical intelligence for tasks such as dexterous manipulation

and dynamic mobility is still at an early stage. Methods for enabling robot physical

intelligence generally sit in two categories. The first category is motion planning based

on analytical physics models. Representative work includes the running MIT cheetah

robot [5], the dynamic vision guided baseball [39], and so on. Despite the impressive

motion capabilities, such methods require extensive case-specific engineering that relies

heavily on ad hoc and complex models, which limit ubiquity.

Meanwhile, learning-based methods, such as learning from demonstration [40] and

reinforcement learning [41] allow robots to acquire physical skills through mimicking a

mentor or self-directed trying. Robot learning based on data-driven methods greatly

reduces the reliance on analytical models derived from laws of physics. Nevertheless,

certain limitations exist. Most state-of-the-art methods for robot learning physical

skills follow a “policy search” framework, which instead of recording and replaying

demonstrated/self-explored successful motion, aims at producing a control policy that

can handle the variations when fulfilling the skills. Many of these control policies

are in the form of parameter-heavy structures such as a deep neural network (DNN)

(e.g., [10]). Such control policies require lengthy training of a massive amount of

parameters, which hampers them from handling dynamic manipulation and realizing

online real-time feedback control. The latter is especially necessary to open-loop

unstable tasks such as in-hand manipulation. Another popular practice is to formulate

22



control policies as combinations of a few base elements such as the “motion primitives”

(e.g., [13, 14]). Training such control policies requires significantly less computation,

but the choice of the base elements and the design of the reward function require

very task-specific engineering and jeopardize ubiquity. Recently, deep reinforcement

learning has gained great attention. It provides better ubiquity by approximating the

reward function using a DNN (e.g., [42, 43]). Limitation of such approaches is brought

by the lengthy training curves required by every new task. A representative example

is the recent work by OpenAI on using a Shadow robot hand to learn in-hand rotation

of a cube. Both the heavy training process and the need of task-specific engineering

have been marked by experts [44].

In addition to ubiquity and computation, another consideration is over the data

source of skill acquisition. For complex physical skills, especially those involving

dynamic maneuvers, it is impractical to rely solely on reward-driven self-practice

(i.e., basic reinforcement learning) without advisory from mentors [22]. Over the

past decade, large-scale datasets obtained from a group of mentors (crowdsourced)

have greatly accelerated the advancement of artificial intelligence [45]. Together with

crowdsourcing, human computation [46] has become an increasingly popular way

to provide mentorship to learning agents. The concept is particularly popular in

the field of cognitive machine intelligence such as language processing and image

recognition. A classic example is Google Images, whose AI system is trained using a

massive amount of sample images reviewed and labeled by human participants from

over the world. Other successes include translation, merchandise review, and medical

diagnosis [47, 48, 49, 50].

Despite its promising potentials, replicating the success of crowdsourced human

computation in robot physical intelligence has not been explored much. Challenge

first comes from building intuitive control interfaces. Pioneering work regarding this

topic includes MIT’s Homunculus project [51] that develops a virtual reality remote

23



robot control environment and Stanford’s Roboturk project [52] that uses smartphones

as remote robot controllers. Another challenge is on sustainable management and

efficient utilization of the collected large datasets. Published projects that apply

crowdsourced human computation to generate robot physical skills include grasping

novel objects [53, 54] and assembly [55]. So far, these projects are limited to realizing

semi-static operations by searching for similar or available solutions in the dataset.

Our research on crowdsourced robot learning of physical skills develops a unique

learning scheme that brings contributions with the following capabilities:

1. Allowing robots to learn physical skills from a group of human mentors constantly
through demonstrations.

2. Sustainably managing a large amount of data that is constantly collected from
the crowdsourced mentors.

3. Synthesizing dynamic physical skills that have been never or only partly
demonstrated, without the need of heavy training/re-training.

4. Efficient handling of high-dimensional large datasets.

3.2 A Crowdsourced Learning Scheme

We formulate a physical robot skill as a control action that drives a robot and an object

being manipulated from a given initial state to a desired final state. By including

state variables such as velocity and force, dynamic skills that require time-critical

maneuvers can also be synthesized. Every human demonstration is represented as

a {D(C), G(C)} pair of time sequences, where D(C) is the control action (e.g., robot

joint torque, velocity command) and G(C) is the state response (e.g., the position and

orientation of the object being manipulated). In the state space, a state response starts

from an initial state, goes through a series of via states and arrives at a final state.

Demonstrations covering various areas and transitions in the state space form a map

similar to a bus and train map. Synthesizing a skill becomes similar to finding a

travel plan of buses and trains for going from a starting location to a destination. New

24



skills can be created by cutting and stitching (with additional editing) the control

actions of the demonstrated trajectories.

Three issues need to be addressed first to apply the proposed idea:

1. As new demonstrations are constantly collected from the crowdsourced mentors,
the knowledge library cannot accommodate unlimited number of trajectories.

2. The actual initial state and the desired final state usually do not sit exactly on
any demonstration trajectory.

3. The demonstration trajectories usually do not have exact intersecting points in
the state space (analog of the transfer stations on a bus and train map).

In regard to these issues, we introduce a two-step skill synthesis method using state

space discretization, which discretizes the state space into a finite number of cells.

Figure 3.1 shows the functional block diagram of the method. In the first step, two

states siting in the same cell are considered to be at the same location in the state space.

The demonstrations archived in the library are registered to a graph representation

(Figure 3.2). The nodes in the graph represent the cells in the state space, with

each archived demonstration corresponds to a series of edges connecting multiple

nodes. Maneuver segments from new demonstrations connecting the same cells are

compared, with the optimal one registered to the edge. While new demonstrations

can be collected unlimitedly, the maximum number of maneuver segments archived

in the knowledge library is fixed to = × (= − 1), where = is the total number of cells

and can be as large as the available computation resource allows. In this way, the

maximum load of data handling for skill synthesis is fixed.

The first step of skill synthesis produces a “rough” skill in the form of a series of

edges in the graph representation, starting from the node containing the initial state,

ending at the node containing the final state, and going through a series of via nodes.

In the second step, statistical nonparametric inference is applied to the demonstration

data registered to the edges and produces the control action that drives the robot

and the object being manipulated from the exact initial state to the exact final state

through a series of via states that belong to the via nodes.

25



Figure 3.1 Two-step skill synthesis.

Figure 3.2 An example of state space discretization and its graph representation.

26



3.2.1 An elementary example

To better explain the proposed method, consider an example with a simplified

configuration as shown in Figure 3.2. A two-dimensional state space is discretized to

16 cells. The two state variables, G1 and G2 could be the position and velocity of a

linearly moving object being pulled and pushed by a force (applied by a robot). Three

demonstration trajectories are collected in the library and registered to seven edges in

the graph representation. Note that: a) the edge connecting nodes 13 and 23 comes

from two demonstrations; b) the demonstration trajectories do not exactly intersect

in the state space but are joined in the graph representation; and c) the initial/final

states do not sit on any demonstration trajectory in the state space but do belong to

edge-connected nodes in the graph representation. A rough skill is first found as a

path in the graph representation: 13 → 23 → 33 → 43 . Then, the control action

D(C) is created by applying statistical inference (Subsection 3.2.4) to the demonstration

data pairs {D, G} registered to edge 13 → 23 , 23 → 33 , and 33 → 43 .

In order to extend this elementary example to a practical full solution, several

issues need to be further addressed:

1. The discretization method in the example (a full factorial design) becomes
extremely inefficient when the dimension of the state space increases. We
introduce an efficient discretization scheme using low-discrepancy pseudo-random
sequences (Subsection 3.2.2).

2. A planning method is needed to produce the rough skill from the graph
representation of the knowledge library (Subsection 3.2.3).

3. Statistical inference is needed to produce the final control action (Subsection 3.2.4).

4. New demonstrations need proper processing and registration to the knowledge
library (Subsection 3.2.5).

3.2.2 State space discretization using pseudo-random sequences

In the proposed robot learning scheme, physical skills are defined using state transitions

in the state space. Some state space discretization techniques actually exist for

27



reinforcement learning (RL) [56, 57]. RL applications usually tackle a single control

task and these techniques discretize the state space according to the (one) control

policy for the task. Meanwhile, our proposed learning scheme aims at treating various

control tasks ubiquitously, which allows different control actions to correspond to

the same state. In terms of synthesizing skills of a greater variety, it is desirable to

have data populate the state space thoroughly, which in turn requires a uniform and

thorough discretization of the state space. In addition, for the sake of computational

affordability, the state space should be discretized with as few cells as possible.

The total number of cells of a full factorial design (as used in the elementary

example earlier) increases exponentially as the dimension of state space grows, which

leads to excessive load of data handling. In addition, although a full factorial design

provides a seemingly good uniformity, the coverage is actually quite inefficient. As

illustrated in Figure 3.3 (a), consider a three-dimensional state space discretized by a

four-level full factorial design. The total number of cells is 43 = 64. However, the cells’

projection to a lower-dimensional subspace suffers severe overlapping. In this case, a

two-dimensional subspace has only 42 = 16 cells and a one-dimensional subspace has

only 4 cells.

An intuitive better choice is a random discretization of a uniform distribution.

The randomness minimizes the overlapping in the cells’s projection to lower-dimensional

subspaces. However, governed by the law of large number for random variables,

a good uniformity can hardly appear if only a limited numbers of cells can be

computationally afforded (Figure 3.3 (b)). Inspired by [58], a low-discrepancy

pseudo-random sequence is used to discretize the state space. Compared to

the full factorial design, low-discrepancy pseudo-random sequences ensure the

uniformity through all lower-dimensional subspaces. Low-discrepancy pseudo-random

sequences provide the same excellent uniformity of random distributions, but are

actually deterministic instead of random. Even when the available computing

28



resource only allows a small amount of cells, a discretization created using a

low-discrepancy pseudo-random sequence still provides high uniformity over subspaces

of lower-dimensions (Figure 3.3 (c)). In other words, it gives the most uniform

discretization that can be achieved with a certain computing resource.

Figure 3.3 3D state space discretization using 64 points of different distributions
and their projections to a 2D subspace - (a) full-factorial design, (b) uniform random
numbers, (c) low-discrepancy pseudo-random sequence.

In our work, the Sobol sequence is adopted to discretize the state space. It is a

widely used low-discrepancy pseudo-random sequence [59]. The sequence is generated

using the so-called direction numbers E8, 9 = <8, 9/28, where <8, 9 is an odd integer from

a specific recurrence sequence. The component of the : ’th point in the Sobol sequence

on the 9 ’th dimension is given as B(:)
9
= 11E1, 9 ⊕ 12E2, 9 ⊕ 13E3, 9 ⊕ · · · , where 18 is the

8’th bit of :’s binary code, and ⊕ is the bit-by-bit exclusive-or operator. More details

can be found in [60].

Despite the efficient coverage, use of a pseudo-random sequence to discretize the

state space brings difficulty to registering a state to a cell, which is in essence a nearest

29



neighbors problem. In the case of a full factorial design, thanks to the well-aligned

and naturally sorted distribution, it is easy to locate the cell that a state belongs to.

Meanwhile, the discretization created by a pseudo-random sequence is not aligned.

The order of the cells, though actually deterministic, follows a sophisticated pattern,

and brings a challenge.

To tackle this problem, we make use of the property of a Sobol sequence - that

its uniformity is well preserved in its projection to any lower-dimensional subspace.

As an explanatory example, consider a two-dimensional state space discretized using

a two-dimensional Sobol sequence of 100 points ranging from [0, 0] to [1, 1], and

one would like to locate the cell that the state G = [0.3, 0.2] sits in. Thanks to the

uniformity property of Sobol sequences, if the Sobol sequence is sorted according to the

first state variable, the state should sit closest to the points around the 100×0.3 = 30th

position in the sorted sequence. Then, the cell that the state sits in can be located

quickly by searching in a small range nearby (e.g., the 27th to 33rd points in the

sorted Sobol sequence). An example of a trajectory registered to a discrete state

space formed using a Sobol sequence is shown in Figure 3.4. The pseudo-code below

Figure 3.4 explains the implementation.

Figure 3.4 A trajectory registered to a discrete state space.

30



Registering a state G = [G1, G2, · · · , G# ] to a state space discretized by a

Sobol sequence

1 Discretize the #-dimensional state space using an #-dimensional Sobol

sequence of = points {B(1) B(2) · · · B(=)}.

2 Sort the Sobol sequence in ascending order according to the value of the first

state variable B(:)1 .

3 Calculate the search center as G1 × =.

4 Specify an error boundary 4 = [41, 42, · · · , 4# ]. The search interval is

[(G1 − 41) × =, (G1 + 41) × =].

5 for 8 = (G1 − 41) × = to (G1 + 41) × = do

6 Check if
���B(8)9 − G 9 ��� < 4 9 for 9 = 2 ∼ #;

7 if only one B(8) satisfies the condition then

8 Register G to the point.

9 if more than one B(8) satisfy the condition then

10 Examine the Euclidean distance between the G and the candidate

B(8)’s;

11 Register G to the point of the shortest distance.

3.2.3 Synthesis of the rough skill

With the discretized state space, the knowledge library can be represented as a directed

graph. Rough skills can be synthesized in the form of paths through the nodes of

the graph. This transforms (the first step of) skill synthesis to a classic single-source

shortest-path problem. With every node in the graph representing a small region (cell)

in the state space, an edge connecting two nodes indicates that certain knowledge

of control is available to drive the system from a state in the first cell to a state in

the second cell. A weight can be setup for each edge to mark the merit (e.g., time,

mechanical/electrical load, etc.) that the maneuver takes.

31



In our work, we adopt the well-proven Dijkstra’s algorithm [61] to find a path in

the graph. Dijkstra’s algorithm describes a graph using the adjacent matrix, whose

(8, 9) element is the weight of the edge connecting node 8 and 9 . In our application,

there can be segments from multiple demonstration trajectories connecting the same

cells. The segment carrying the best merit is archived to the knowledge library and

registered in the adjacent matrix.

3.2.4 Generation of the control action

With the rough skill in the form of a series of edges in the graph representation of the

knowledge library, step two of skill synthesis applies statistical inference to produce

the control action. Gaussian Process Regression (GPR) is used. As a nonparametric

learning method (as opposed to regression of structured models), GPR has shown great

potential in robot learning control [29][62]. In our work, GPR is used to learn a control

law D(G) in the form of a mapping from the state G of the robot and/or the object

being manipulated to the control action D of the robot. The {G, D} pairs from the

archived demonstration trajectories are used as the training data. The entire control

action of a synthesized skill can be considered as a series of GPR mappings trained

using data from the selected segments of the demonstration trajectories. During the

execution of the synthesized skill, the control switches from one GPR mapping to

another sequentially.

In order to realize a sustainable management of the knowledge library, instead

of training one GPR mapping for an entire demonstration trajectory, each GPR

mapping is trained only using the data from a trajectory segment connecting two cells

in the state space. In this way, while new demonstration trajectories can be collected

unlimitedly, the maximum number of GPR mappings is fixed to = × (= − 1) where = is

the total number of cells in the discretized state space. Such a strategy is particularly

helpful to crowdsourced learning, whose power comes from a massive and constantly

32



growing amount of demonstrations. It also reduces the computation load of running

a GPR mapping in real-time. Without the need of discussing many details of the

GPR algorithm, a major step in evaluating a GPR mapping requires evaluating and

inverting an < × < data covariance matrix, where < is the number of training data

points. Consider a demonstration trajectory of 1000 data points, a GPR mapping

trained using all of its data would require the evaluation and inversion of a matrix

of the size 1000 × 1000. Assume that a trajectory has ten 100-point segments each

connecting two cells in the discretized state space. A GPR mapping trained from one

of the segments only requires the evaluation and inversion of a 100 × 100 matrix. In

addition, the computation and memory resource required to handle all ten mappings

(assuming that all segments are archived) is only a fraction of that required to handle

a GPR mapping trained from the entire trajectory.

3.2.5 Processing new demonstration trajectories

One goal of processing new demonstration trajectories is to control the volume of the

knowledge library so that its size does not grow unlimitedly as new demonstrations

constantly being collected. When a new demonstration trajectory is collected, its

data points are first indexed to the cells of the discretized state space. Then, every

trajectory segment that connects two cells is examined by a merit criterion, such as

the time consumption, mechanical and electrical load to the robot. If the segment

is better than the one previously archived, it replaces the latter. Otherwise, it is

discarded. Such a scheme avoids comparing a new demonstration to all previously

collected demonstrations and limits the total number of trajectory segments archived

in the library to = × (= − 1), where = is the total number of cells of the discretized

state space and can be as large as the available computation resource allows.

33



3.3 Validation I - The Fidgeting Test

We validate the proposed method using a test of robot in-hand manipulation.

Compared to grasping and picking, in-hand manipulation requires more advanced hand

skills [63]. Lack of such skills has been a bottleneck hampering the use of robots to

automate many operations. An example is the Amazon warehouses. Despite the high

level of warehouse automation, the packaging sections remain manual with extreme

workload [64], partly due to the requirement of advanced hand skills for handling a

large variety of objects. Some most achieved research on learning-based robot in-hand

manipulation includes the use of reinforcement learning to realize robotic in-hand

rolling [65], which requires a trial-and-error improvement process. We believe that

crowdsourced learning provides a chance to realize generic robot in-hand manipulation

of arbitrary objects.

A virtual reality environment A virtual reality (VR) environment is developed

using Unity to facilitate the validation. Over recent years, consumer VR electronics

and development software have advanced quickly and can now provide high quality

motion sensing and real-time human-machine interaction. Compared to other human

demonstration interfaces, such as lead-through teaching, VR-based interfaces have

earned increasing favor in robot teleoperation [51] and robot learning from humans

[66].

In our work, a simulated three-finger robot hand is built in the VR environment

to manipulate an object. The robot hand runs in two modes:

1. Teleoperated mode, in which the robot hand is controlled by a human mentor.
The teleoperated motion and the response of the object being manipulated are
recorded as demonstration data.

2. Autonomous mode, in which the robot hand executes a synthesized skill
autonomously.

34



HTC Vive headsets are used by human mentors to visually access the simulation. A

Leap Motion sensor is mounted on each VR headset to capture the finger motion

(Figure 3.5).

Figure 3.5 VR interface and simulated robot hand.

Test results In our tests, the goal of robot in-hand manipulation is to arbitrarily

change the state of an object that moves on a plane as desired. Two position coordinates

and one orientation coordinate of the object are used as the state variables. A Sobol

sequence of 104 points is used to discretize the state space. 50 volunteers are invited to

provide demonstrations using the VR interface. The human mentors are encouraged

to control the robot hand to manipulate the object in as many ways as possible. Each

mentor provides multiple demonstrations of different lengths, covering various areas

and transitions in the state space. The demonstrations are processed and archived

in the knowledge library as described earlier. Based on the crowdsourced knowledge

library, new skills are generated to manipulate the object from various initial states to

final states.

In order to examine the power of crowdsourcing, the synthesized skills are studied

in two ways. First, the success rate of synthesizing new skills is studied with respect

to the amount of information archived to the knowledge library. The robot hand is

requested to synthesize a certain amount of random new skills when the archived

demonstrations reach different percentages of coverage of the state space. The initial

state and final state of new skills are randomly picked over the state space. Without

35



Figure 3.6 A skill synthesized using a knowledge library that covers (a) 21% of the
state space, (b) 67% of the state space.

much surprise, we have observed that as more demonstrations are archived and their

coverage of the state space increases, the success rate of skill synthesis increases about

proportionally (Figure 3.7). This is mainly because there is little chance that a new

skill can be synthesized with an initial state and/or final state that have never been

covered by any demonstration.

Figure 3.7 Success rate of new skill synthesis.

36



In addition, the performance of a successfully synthesized new skill is studied

with respect to the total amount of demonstrations collected. Figure 3.6 shows the

screenshots of the same skill (same initial state and same final state) synthesized when

the amount of demonstrations collected reaches different levels. The first result is

synthesized when 100 demonstrations are collected, covering 21% of the (discretized)

state space. The second result is synthesized when 500 demonstration trajectories are

collected, covering 67% of the (discretized) state space. Despite both being successful

in terms of manipulating the object from the given initial state to the desired final

state, the manipulation synthesized using a knowledge library with more coverage of

the state space gives a much cleaner process that has little unnecessary maneuver.

3.4 Data-oriented State Space Discretization

The state space discretization method based on low-discrepancy pesudo-random

sequences (Subsection 3.2.2) and the fidgeting test (Section 3.3) are motivated by

the assumption that the robot system needs to visit all kinds of states over an “open”

working region in the state space. Such an assumption is proper for some skills

such as in-hand manipulation (e.g., fidgeting). Meanwhile, for many other skills,

especially those involving the manipulation of multiple bodies, the working region of

the robot in the state space usually spreads through highly irregular areas instead

of a well-conditioned convex region (Figure 3.8). This makes a large portion of cells

being practically empty when a uniform discretization is used. The issue is especially

problematic for systems of high-dimensional state spaces. Our latest work develops

a data-oriented discretization strategy that dynamically adjusts the cell allocation

according to the incoming data so as to achieve efficient data representation [67].

37



Figure 3.8 Open v.s. irregular working regions in the state space.

3.4.1 Dynamic cell allocation

Rather than determining the state space discretization in advance, the data-oriented

method allocates cells dynamically according to the incoming data. First, an initial

discretization is generated by allocating cells along the trajectory of one of the first

demonstrations every certain data points. As new data come in, the same way is used

to generate candidate new cells. Cell allocation is updated based on the comparison

between the candidate new cells and the existing cells. A candidate new cell is adopted

to the state space discretization if the difference is greater than a certain threshold.

Otherwise, it is merged to existing cells that cover (mostly) the same area in the state

space. Compared to a uniform discretization, the data-oriented strategy makes sure

that the cells can represent the collected data efficiently. A (minor) disadvantage of

the new strategy is the increasing total number of cells, which is fixed when using

a pre-allocated discretization. Nevertheless, the issue is bearable - after a certain

amount of data is collected, the chance of needing to add new cells becomes trivial.

This is because there will have been enough cells to cover the system’s working region

in the state space.

3.4.2 Nearest neighbor search for data-oriented discretization

As explained in Subsection 3.2.2, most operations in the proposed learning scheme

require either registering or locating a state at a cell in the discretized state space,

which is in essence a nearest neighbor search problem. In addition to the non-aligned

distribution, the data-oriented discretization strategy does not have the uniformity

38



property of the Sobol sequence. The exact solution of nearest neighbor search would

require enumerating through the distances between the query point to all other

points in the set. For large datasets obtained from crowdsourcing, such computation

is not affordable. Search methods that give approximating solutions generally sit

in four types which use search trees (e.g., KD-tree [68]), hashing (e.g., Locality

Sensitive Hashing [69]), graphs (e.g., HNSW [70]), and quantization (e.g., Product

Quantization [71]) respectively. According to experimental reports [72], graph-based

methods tend to perform better than others.

Graph-based nearest neighbor search indexes the datasets to graphs. In our

application, the update efficiency of the search graphs is of particular importance

since the state space discretization can change frequently which causes new nodes

being added to the search graph constantly. A high recall (i.e., precision), on the

other hand is needed only when a candidate new cell is close to the existing cells. For

ones that are far away from the existing cells, it is not really meaningful to find the

exact nearest neighbor. This is because even the exact nearest neighbor is located,

no effective control signal can be generated (via statistical inference) since the query

point is too different from any data.

Based on the above considerations, a dual-graph search method is developed

to provide nearest neighbor search for the data-oriented state space discretization

method. Two directed graphs are used by the proposed search method. The nodes

of both graphs correspond to the cells of the state space discretization (indexed by

cell ID’s) and the edges represent the neighboring relationships of the cells. Note

that these graphs are constructed for the nearest neighbor search needed by the

data-oriented state space discretization, and are different from the routing graph

discussed in Subsection 3.2.3 for skill synthesis.

The first graph is called an In-Dataset Graph (IDG). This graph utilizes a

particular search-and-build strategy (explained later) that guarantees to return the

39



query candidate cell itself if a same cell is already indexed in the graph (i.e., in-dataset

query). In case that no existing cell overlaps with the candidate new cell, the IDG

returns a relatively nearby existing cell. The result will then be used by the second

graph, called a Diversified Graph (DG) as an initial point to search for a potentially

closer neighbor. If the nearest neighbor found in the DG is too close (under a certain

threshold) to the candidate cell, the candidate will be merged to it. Otherwise, the

candidate new cell will be adopted to the state space discretization as well as indexed

to the two search graphs. Note that the nodes in the IDG and DG are the same

(both representing all the existing cells), whereas the edges of them are different. Both

graphs are structured using “neighbor lists”. In terms of topology, including a node in

the neighbor list of another means the former is connected to the latter with an edge

directing to it.

The two graphs are built and updated as the state space discretization changes

when new data come in and candidate new cells are generated. Algorithm 2 explaines

the search strategy for an IDG. The first node in an IDG is used as the initial base

node. The distance between a query point and a base node is calculated as a baseline.

Then, the nodes in the base node’s neighbor list are checked in the order of when they

were added to the graph. If a node in the list is found closer to the query point, it

becomes a new base node. The search continues until all nodes in a neighbor list are

checked and the base node is still the nearest to the query point. The last base node

will be the returned search result from the IDG. In case of a candidate cell eventually

getting adopted, the update strategy for an IDG is simply registering it as the (new)

last node in the last searched neighbor list. A node newly added to the IDG has an

empty neighbor list. Such a search-and-build strategy ensures that the adoption of a

new node does not alter the search paths of all previously adopted nodes - because

the nodes are always checked following the same orders in the neighbor lists. The

feature guarantees the detection of the situation when a candidate new cell overlaps

40



with an existing cell, which leads to a merge. In other cases, if a query point is close

to an existing node in an IDG, the search also has a great chance to locate that node.

Algorithm 2: Search using an IDG

1 IDG_SEARCH(IDG, @, :);

2 Parameters: the latest IDG (nodes {?1, ?2, ...} and their neighbor lists),

candidate new cell @, initial search node ?: ;

3 Result: ID of the nearest node in IDG;

4 while i ≤ =D<14A_> 5_=486ℎ1>AB(p:) do

5 n = ID of ?: ’s 8’th neighbor;

6 if distance(@, ?=) < distance(@, ?:) then

7 : = =, 8 = 1;

8 else

9 8 = 8 + 1;

10 Return :.

The result from searching over the IDG is passed to the DG as an initial node to

search for a potentially closer neighbor of the candidate new cell. A greedy algorithm

is used to search over a DG (Algorithm 3). Unlike searching over an IDG, all nodes

in a neighbor list in a DG are checked, and the scale of neighbor lists has a major

impact on the search efficiency. In order to limit the scale of the neighbor lists,

the DG adopts a pruning strategy used in many graph-based search methods such

as FANNG [73] and HNSW [70]. For a given node %8 and a distance metric 3,

a new node @ can be adopted to %8’s neighbor list ! = {!1, !2, ...} if and only if

3 (@, %8) < <8=(3 (@, !1), ..., 3 (@, !: )), i.e., @ is closer to %8 than it is to all nodes in the

neighbor list of %8. Refer to Figure 3.9 and consider a base node ? whose neighbor list

has two nodes 0 and 1. A query point @ is adopted to the neighbor list of ? as a new

node if and only if 3 (@, ?) < <8=(3 (@, 0), 3 (@, 1)). The other query point @′ cannot

41



be adopted because 3 (?, @′) > 3 (0, @′). Based on this rule, pruning is performed

to truncate and bound the scale of the neighbor lists. Pruning has been known to

promote the “diversification” of a graph [74], and gives the name of DG.

Figure 3.9 Construction of neighbor lists for DG.

Adding a new node to a complete DG requires enumeration - the new node

should be first added to the DG with all other nodes in its neighbor list; then include

the new node to all other nodes’ neighbor lists; and finally perform pruning to all

nodes’ neighbor lists. The computational complexity for such an update procedure

is O(=�), where = is the total number of nodes and � is the average out-degree

(neighbor list size). For a large DG with a high update frequency required in our

robot learning scheme, such a method is impractical. A reduced DG is constructed

instead (Algorithm 4) to enable efficient DG updating. Although there is a sacrifice

on the recall (precision), a strategy can be used to reduce the impact. Specifically,

the search path of finding a candidate new cell’s nearest neighbor using the DG is

logged. When a new cell is added to the state space discretization and a corresponding

node is added to the DG, its neighbor list will only include the nodes in the search

path (instead of all other nodes). In the meantime, the new node will be adopted

only to the neighbor lists of the nodes in the search path. If any neighbor list’s size

grows beyond the maximum allowed out-degree during the update, pruning will be

performed using Algorithm 5.

In terms of computational efficiency, the monotonic search paths of an IDG give

its search strategy a complexity of $ (;>6(=)) [75], where = is the total number of

nodes. For the search strategy of a DG, our simulation shows an empirical average

42



Algorithm 3: Search using a DG

1 DG_SEARCH(DG, ?, @, :, <);

2 Parameters: the latest DG (nodes {?1, ?2, ...} and their neighbor lists), a

candidate new cell @, initial search node ?: , search memory <, candidate

pool ( = ∅, flag 5 = 0, search path log ! = ∅;

3 Result: ID of the nearest neighbor, search path;

4 Add ?: to (, add ?: to !;

5 while 5 < < do

6 5 = the index of the first unchecked node in (;

7 Mark (( 5 ) as checked;

8 for any neighbor ?= of ?: in DG do

9 if ?= ∉ ! then

10 Add ?= to (;

11 Add ?= to !;

12 Sort the elements of ( according to their distances to @ in ascending

order ;

13 if B8I4(() > < then

14 Truncate ( to keep its first < elements;

15 Return 9 = ID of ((1), search path !.

43



Algorithm 4: Adopting a node to an IDG and a DG

1 REG_NEW_NODE(IDG, DG, @, �);

2 Parameters: the latest IDG and DG (nodes {?1, ?2, ...} and their neighbor

lists), candidate new cell @, initial search node ?: , search memory <,

search path log !, threshold C, maximum out-degree ';

3 Result: updated IDG and DG;

4 : =IDG_SEARCH(IDG, @, :);

5 if 38BC0=24(@, ?: ) < C/2 then

6 @ is virtually the same as ?: . The candidate cell is not adopted;

7 else

8 [ 9 , !] = DG_SEARCH(DG, @, :, <);

9 if 38BC0=24(@, ? 9 ) > C then

10 Add @ to the neighbor list of ? 9 in IDG;

11 Add all nodes in ! to the neighbor list of @ in DG;

12 Add @ to the neighbor lists of all nodes in ! in DG;

13 for any node ?= ∈ ! do

14 if size(?=’s neighbor list) > ' then

15 DG_DIV(DG, ?=, ');

16 if size(@’s neighbor list) > ' then

17 DG_DIV(DG, @, ');

18 else

19 The candidate cell is not adopted.

44



Algorithm 5: Pruning for a DG

1 DG_DIV(DG, @, ');

2 Parameters: the latest DG (nodes {?1, ?2, ...} and their neighbor lists),

base node @, its neighbor list � before pruning, its neighbor list ! = ∅ after

pruning, maximum out-degree ';

3 Result: the selected neighbor list !;

4 Sort the neighbor list C in the ascending order of the distance to q;

5 for i = 1:size(C) do

6 for j = 1:size(L)+1 do

7 if j == size(L)+1 then

8 Add � (8) to !;

9 if distance(q, � (8)) > distance(q, ! ( 9)) then

10 break.

11 if size(L)>R then

12 break.

45



complexity of O( ;>6(=)), where  is related to the search memory and the maximum

out-degree. Such a complexity indicates that the reduced DG preserves the monotonic

search character of a complete DG to some extent. The update strategy for an IDG

takes trivial computation. The update strategy for a DG involves pruning, which is

performed when the size of a neighbor list is greater than the maximum out-degree

'. The total computational complexity for updating a DG is then bounded by

$ ('2;>6(') ;>6(=)). Overall, the proposed dual-graph strategy gives a satisfactory

balance between the recall and search/update efficiency.

3.5 Validation II - The Bottle Puzzle

3.5.1 Simulation

The data-oriented state space discretization is motivated to handle systems of irregular

working regions in high-dimensional state spaces. A “bottle puzzle” that has a

12-dimensional state space is conceived to challenge the method. Figure 3.10 shows

the setup of the test. The goal of the bottle puzzle is to use an T-shaped tool to

retrieve a ball from inside a bottle. The bottle is fixed and has a tight opening, which

makes the only possible way to retrieve the ball being a special maneuver that involves

first managing to place the ball on top of the tool by bumping it against a corner. The

12 state variables of the system include the position and orientation of the T-shaped

tool and the position and velocity of the ball. The control variables are the 6-axis

force/torque applied to the tool. Other than having a high-dimensional state space,

the bottle puzzle bears both “contemporary” and “sequential” characters. A skill is

contemporary if no steps are involved and the control law is relatively time-invariant

(e.g., balancing an inverted pendulum). Such skills often feature strong real-time

dynamics. A skill is sequential if causal steps of specific sequences are needed whereas

dynamical maneuvers are not necessarily involved (e.g., chess games). Skills of either

of the two types have been well tackled separately by many learning methods. The

46



unique skill synthesis function of the proposed learning scheme is expected to allow

robots to handle skills of both contemporary and sequential characters.

The test is first conducted using a simulator [67]. The physical dynamics is

simulated using Unity Physics. Data management and robot learning are implemented

using MATLAB. Similar to the simulation of the fidgeting test, the HTC Vive system

is used to provide a virtual reality (VR) interface for human mentors to intuitively

give demonstrations. The Unity Physics engine, MATLAB, and the VR interface

are bridged using real-time UDP connections. Ten novice participants provided

50 demonstrations by controlling the (virtual) T-shaped tool using the HTC Vive

hand-held controller. The control signals of the mentors and the response signals of

the tool and the ball are collected as the demonstration data. Less than 8000 cells are

created by the data-oriented discretization method. As a comparison, because of the

high dimension of the state space, the method introduced in Subsection 3.2.2 using

pseudo-random sequences can hardly provide satisfactory skill synthesis for this test

even with more than 1020 cells.

Because of the challenging physical interactions involved, majority (43 out of

50) of the demonstrations are unsuccessful. Meanwhile, the few successful ones do

not cover all possible situations. In particular, no successful demonstration has been

collected with the ball initially under the tool, which is set to be the test case in the

autonomous operation. Such a setting challenges the learning scheme on synthesizing

new skills and reacting to unexpected situations that are never demonstrated or

only partly demonstrated. Figure 3.13 shows a successful autonomous solving of the

bottle puzzle. Due to the complicated physical contacts, the ball’s response deviates

from the expected trajectories easily if the control is applied in an open-loop manner

(as opposed to real-time feedback control). Rather than blindly applying an entire

synthesized control sequence from the beginning to the end, as the task goes on, it is

necessary to conduct real-time skill re-synthesis to adjusts the control based on the

47



actual system response. Such a strategy provides closed-loop stability to some extent.

Its successful implementation also approves the real-time computing efficiency of the

proposed algorithms.

Figure 3.10 Successful autonomous solving of the bottle puzzle (simulated).

3.5.2 Physical tests

Our latest development includes a physical test of the bottle puzzle. In the simulated

test, the force and torque applied on the tool are directly controlled. The physical test

uses an AUBO i5 6-axis robot arm and a bionic robot hand [19] to manipulate the tool

(Figure 3.11). Instead of rigidly mounting the tool to the robot, there is nontrivial

looseness between the fingers of the robot hand and the tool. The slack grasping

introduces additional degrees of freedom and causes significant passive movement

of the tool with respect to the hand during the manipulation (Figure 3.11). This

factor makes the task much more difficult than in the simulation, and is kept as a new

challenge to test the potential of the proposed method.

In the physical test, the state of the system, including the motion variables of

the T-shaped tool and the ball, is sensed by a vision system consisted of a high frame

48



Figure 3.11 Physical setup of the bottle puzzle test.

rate camera as well as an embedded image acquisition and processing unit based on

Nvidia’s Jetson TX2 controller. Instead of shape recognition, color recognition is used

to identify objects so as to shorten the sensing latency brought by image processing.

In addition, instead of using simple differentiation to obtain velocity from position

measurement, predictive learning [35] based on a dual-rate Kalman filter framework is

used to enhance the accuracy of estimation and reduce negative effects brought by

sensing latency. The vision acquisition and processing systems run on a standalone

module which only sends the estimated state variables to the robot control console

via UDP connections. The robot arm receives control signals via a Controller Area

Network (CAN) bus. MATLAB is used to implement the learning scheme and generate

control signals.

Unlike in the simulation, much more uncertain factors exist in the physical test,

especially those caused by the slack grasping of the robot hand (which is kept as a

major challenge to test the proposed method). The friction variation and other surface

49



Figure 3.12 Sensing and control deployment of the physical test.

irregularities also contribute to the system uncertainty. These factors cause the system

state to deviate from the expected trajectories and significantly lower the repeatability

of actions. As a countermeasure, online skill re-synthesis is used to provide a form of

state feedback control. In terms of implementation, the measures described earlier

to shorten the sensing latency as well as the real-time capability of communication

protocols all contribute to ensure the effectiveness of online skill re-synthesis.

Figure 3.13 Successful autonomous solving of the bottle puzzle (physical test).

Demonstrations are provided by mentors through teleoperating the robot using

the HTC Vive system. Again, a group of 10 novice human mentors provided 50

demonstrations. In order to make the operation as intuitive as possible, the motion

50



capture interface is configured to map the motion of the handheld controller directly

to the robot hand using velocity tracking. Similar to the simulated test, in order to

validate the synthesis of new skills, the initial conditions (i.e., the tool-ball relative

positions) used in the autonomous tests are designed to be at those where no successful

demonstrations have been provided. Figure 3.13 shows a synthesized successful

autonomous execution of the task. The test results also show that the proposed

learning scheme can handle strong uncertainties (e.g., the uncertain caused by the

slack grasping).

3.6 Conclusions

We introduced a crowdsourced learning scheme for robots to acquire physical skills.

The method allows robots to synthesize new physical skills using knowledge acquired

from crowdsourced human mentors. It also provides a solution to sustainably manage

a continuously growing massive knowledge library. Different methods are described

for low dimension case and high dimension case. The proposed method formulates

robot physical skills as transitions in the state space and the corresponding control

actions. New skills are synthesized using a state space discretization technique and

nonparametric statistical inference. The method has been validated using a simulated

test of robot in-hand manipulation for the low dimension case. Virtual reality has

been used to facilitate the validation with the participation of 50 human mentors. A

study of the success rate of new skill synthesis and the performance of the synthesized

skills has proved the effectiveness of crowdsourced learning. In order to handle

systems with high-dimensional state spaces, a data-oriented state space discretization

method is developed. The method dynamically allocates cells to discretize the state

space based on the changing distribution of the collected data. A dual-graph nearest

neighbor search algorithm is developed to realize computationally efficient dynamic

51



cell allocation. A simulated bottle puzzle experiment and physical experiment are

discussed.

52



CHAPTER 4

CONCLUSIONS

In this dissertation, we mainly focus on the advanced robot physical skill learning

and the ability of a robot to gain physical intelligence ubiquitously. For the first

purpose, a composite robot learning scheme which learning from abstract definition

and autonomous evaluation is proposed. Together, these complementary forms of

robot learning allow humans to teach robots in an intuitive manner that is similar to

teaching humans, where lecturing (of definitions), imitations (to demonstrations), and

grading (of practicing trials) are integrated with school settings. The work aims for

enabling robots to efficiently obtain advanced skills that have been difficult for them

to learn so far, especially those requiring high dynamics, sophisticated contact control,

accurate timing, and handling partly rigid partly soft gadgets. Adaptive approaches

have been proposed to allow the robot to autonomously perceive human intentions

in teaching through the demonstration data and evaluation. The "nunchaku flipping

challenge" is introduced, which is an extreme test that puts hard requirements to all

these three aspects.

For the second purpose, a unique learning scheme is developed to allow robots

to learn from a group of mentors over long terms. State space discretization is used

to sustainably manage constantly collected crowdsourced data and synthesize new

skills. Two types of discretization methods are introduced. Initially, a discretization

method based on pseudo random sequences is developed, featuring superior uniformity

over the state space and a fixed upper bound of the archived data. Such a method

is suitable for applications in which the robot system needs to visit all kinds of

states over an open working region in the state space. For cases where the main

working region of the robot in the state space spreads through highly irregular areas,

a data-oriented state space discretization method is developed. The method aims

53



particularly at handling systems with high-dimensional state spaces. Simulation and

physical tests of a fidgeting challenge and a bottle puzzle are conducted. The test

results validate the proposed learning scheme’s capability on synthesizing new skills,

sustainable management of crowdsourced data, efficient handling of high-order systems,

and tolerating strong system uncertainties.

54



REFERENCES

[1] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fujimura,
“The intelligent asimo: System overview and integration,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, vol. 3, pp. 2478–
2483, 2002.

[2] M. Raibert, K. Blankespoor, G. Nelson, and R. Playter, “Bigdog, the rough-terrain
quadruped robot,” International Federation of Automatic Control(IFAC)
Proceedings Volumes, vol. 41, no. 2, pp. 10822–10825, 2008.

[3] S. Feng, E. Whitman, X. Xinjilefu, and C. G. Atkeson, “Optimization based full body
control for the atlas robot,” in 14th IEEE/RAS International Conference on
Humanoid Robots, pp. 120–127, 2014.

[4] Boston Dynamics: https://www.bostondynamics.com/handle, retrieved on February,
2017.

[5] S. Seok, A. Wang, M. Y. M. Chuah, D. J. Hyun, J. Lee, D. M. Otten, J. H. Lang,
and S. Kim, “Design principles for energy-efficient legged locomotion and
implementation on the mit cheetah robot,” IEEE/ASME Transactions on
Mechatronics, vol. 20, no. 3, pp. 1117–1129, 2015.

[6] N. Furukawa, A. Namiki, S. Taku, and M. Ishikawa, “Dynamic regrasping using
a high-speed multifingered hand and a high-speed vision system,” in IEEE
International Conference on Robotics and Automation, pp. 181–187, 2006.

[7] Y. Yamakawa, A. Namiki, M. Ishikawa, and M. Shimojo, “One-handed knotting of
a flexible rope with a high-speed multifingered hand having tactile sensors,”
in IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 703–708, 2007.

[8] T. Ishihara, A. Namiki, M. Ishikawa, and M. Shimojo, “Dynamic pen spinning
using a high-speed multifingered hand with high-speed tactile sensor,” in 6th
IEEE/RAS International Conference on Humanoid Robots, pp. 258–263, 2006.

[9] A. G. Billard, S. Calinon, and R. Dillmann, “Learning from Humans,” in Springer
Handbook of Robotics, pp. 1995–2014, New York, NY: Springer, 2016.

[10] S. H. Huang, J. Pan, G. Mulcaire, and P. Abbeel, “Leveraging appearance priors in
non-rigid registration, with application to manipulation of deformable objects,”
in IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 878–885, 2015.

[11] S. Calinon, P. Kormushev, and D. G. Caldwell, “Compliant skills acquisition and
multi-optima policy search with em-based reinforcement learning,” Robotics
and Autonomous Systems, vol. 61, no. 4, pp. 369–379, 2013.

55



[12] J. Kober and J. Peters, “Imitation and reinforcement learning,” IEEE Robotics and
Automation Magazine, vol. 17, no. 2, pp. 55–62, 2010.

[13] S. Levine, N. Wagener, and P. Abbeel, “Learning contact-rich manipulation skills
with guided policy search,” in IEEE International Conference on Robotics and
Automation, pp. 156–163, 2015.

[14] J. Fu, S. Levine, and P. Abbeel, “One-shot learning of manipulation skills with online
dynamics adaptation and neural network priors,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 4019–4026, 2016.

[15] M. P. Deisenroth, G. Neumann, J. Peters, et al., “A survey on policy search for
robotics,” Foundations and Trends in Robotics, vol. 2, no. 1–2, pp. 1–142, 2013.

[16] Y. Huang, D. Büchler, O. Koç, B. Schölkopf, and J. Peters, “Jointly learning
trajectory generation and hitting point prediction in robot table tennis,” in
16th IEEE/RAS International Conference on Humanoid Robots, pp. 650–655,
2016.

[17] J. Kober, A. Wilhelm, E. Oztop, and J. Peters, “Reinforcement learning to adjust
parametrized motor primitives to new situations,” Autonomous Robots, vol. 33,
no. 4, pp. 361–379, 2012.

[18] L. Zhao, R. Lawhorn, S. Patil, S. Susanibar, B. Ouyang, L. Lu, and C. Wang,
“Multiform adaptive robot skill learning from humans,” in American Society
of Mechanical Engineers (ASME) Dynamic Systems and Control Conference,
October 2017.

[19] L. Zhao, Y. Zhao, S. Patil, D. Davies, C. Wang, L. Lu, and B. Ouyang, “Robot
composite learning and the nunchaku flipping challenge,” in 2018 IEEE
International Conference on Robotics and Automation, pp. 3160–3165, 2018.

[20] M. Cakmak and A. L. Thomaz, “Designing robot learners that ask good questions,”
in the 7th Annual ACM/IEEE International Conference on Human-Robot
Interaction, pp. 17–24, 2012.

[21] B. Argall, B. Browning, and M. Veloso, “Learning by demonstration with critique from a
human teacher,” in 2nd ACM/IEEE International Conference on Human-Robot
Interaction, pp. 57–64, 2007.

[22] M. K. Johnson and L. Hasher, “Human learning and memory,” Annual Review of
Psychology, vol. 38, no. 1, pp. 631–668, 1987.

[23] C. L. Book, G. G. Duffy, L. R. Roehler, M. S. Meloth, and L. G. Vavrus, “A study
of the relationship between teacher explanation and student metacognitive
awareness during reading instruction,” Communication Education, vol. 34, no. 1,
pp. 29–36, 1985.

56



[24] T. J. Crooks, “The impact of classroom evaluation practices on students,” Review of
Educational Research, vol. 58, no. 4, pp. 438–481, 1988.

[25] S. Y. Chung and D. Y. Lee, “An augmented Petri net for modelling and control
of assembly tasks with uncertainties,” International Journal of Computer
Integrated Manufacturing, vol. 18, no. 2-3, pp. 170–178, 2005.

[26] Q. Zhu, N. Wu, Y. Qiao, and M. Zhou, “Optimal scheduling of complex multi-
cluster tools based on timed resource-oriented petri nets,” IEEE Access, vol. 4,
pp. 2096–2109, 2016.

[27] J. Mahler, M. Matl, X. Liu, A. Li, D. Gealy, and K. Goldberg, “Dex-net 3.0: Computing
robust robot suction grasp targets in point clouds using a new analytic model
and deep learning,” arXiv preprint arXiv:1709.06670, 2017.

[28] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep visuomotor
policies,” Journal of Machine Learning Research, vol. 17, no. 39, pp. 1–40,
2016.

[29] D. Nguyen-Tuong and J. Peters, “Online kernel-based learning for task-space tracking
robot control,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 23, no. 9, pp. 1417–1425, 2012.

[30] C. E. Rasmussen and C. K. Williams, Gaussian processes for machine learning, vol. 1.
Cambridge, MA: MIT press Cambridge, 2006.

[31] C. Wang, Y. Zhao, C.-Y. Lin, and M. Tomizuka, “Fast planning of well conditioned
trajectories for model learning,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 1460–1465, September 2014.

[32] M. Gu and S. C. Eisenstat, “Efficient algorithms for computing a strong rank-revealing
qr factorization,” SIAM Journal on Scientific Computing, vol. 17, no. 4, pp. 848–
869, 1996.

[33] Y. Tenzer, L. P. Jentoft, and R. D. Howe, “The feel of mems barometers: Inexpensive
and easily customized tactile array sensors,” IEEE Robotics Automation
Magazine, vol. 21, pp. 89–95, Sept 2014.

[34] Q. Wang, G. Kurillo, F. Ofli, and R. Bajcsy, “Evaluation of pose tracking accuracy in
the first and second generations of microsoft kinect,” in IEEE International
Conference on Healthcare Informatics, pp. 380–389, 2015.

[35] C. Wang, C.-Y. Lin, and M. Tomizuka, “Statistical learning algorithms to compensate
slow visual feedback for industrial robots,” Journal of Dynamic Systems,
Measurement, and Control, vol. 137, no. 3, p. 031011, 2015.

[36] X. R. Li and V. P. Jilkov, “Survey of maneuvering target tracking. part i. dynamic
models,” IEEE Transactions on Aerospace and Electronic Systems, vol. 39,
no. 4, pp. 1333–1364, 2003.

57



[37] K. Tanaka, J. Parker, G. Baradoy, D. Sheehan, J. R. Holash, and L. Katz, “A
comparison of exergaming interfaces for use in rehabilitation programs and
research,” Loading..., vol. 6, no. 9, 2012.

[38] C. Wang, W. Chen, and M. Tomizuka, “Robot end-effector sensing with position
sensitive detector and inertial sensors,” in IEEE International Conference on
Robotics and Automation, pp. 5252–5257, May 2012.

[39] T. Senoo, A. Namiki, and M. Ishikawa, “High-speed batting using a multi-jointed
manipulator,” in IEEE International Conference on Robotics and Automation,
vol. 2, pp. 1191–1196, 2004.

[40] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot learning from
demonstration,” Robotics and Autonomous Systems, vol. 57, no. 5, pp. 469–483,
2009.

[41] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. Cambridge,
MA: MIT press, 2018.

[42] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level
control through deep reinforcement learning,” Nature, vol. 518, no. 7540, p. 529,
2015.

[43] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in
International Conference on Machine Learning, pp. 1928–1937, 2016.

[44] Will Knight: https://www.technologyreview.com/2018/07/30/240365, retrieved on
July, 2018.

[45] J. Howe, Crowdsourcing: Why the power of the crowd is driving the future of business.
New York, NY: Three River press, 2008.

[46] L. von Ahn, Human Computation. Dissertation, Carnegie Mellon University,
Pittsburgh, PA, December 2005.

[47] A. J. Quinn and B. B. Bederson, “Human computation: a survey and taxonomy of a
growing field,” in The SIGCHI Conference on Human Factors in Computing
Systems, pp. 1403–1412, ACM, 2011.

[48] A. Doan, R. Ramakrishnan, and A. Y. Halevy, “Crowdsourcing systems on the
world-wide web,” Communications of the ACM, vol. 54, no. 4, pp. 86–96, 2011.

[49] D. Geiger, S. Seedorf, T. Schulze, R. C. Nickerson, and M. Schader, “Managing
the crowd: Towards a taxonomy of crowdsourcing processes,” in Americas
Conference on Information Systems, 2011.

58



[50] G. Little, L. B. Chilton, M. Goldman, and R. C. Miller, “Turkit: human computation
algorithms on mechanical turk,” in The 23rd Annual ACM Symposium on User
Interface Software and Technology, pp. 57–66, 2010.

[51] J. I. Lipton, A. J. Fay, and D. Rus, “Baxter’s homunculus: Virtual reality spaces
for teleoperation in manufacturing,” IEEE Robotics and Automation Letters,
vol. 3, no. 1, pp. 179–186, 2018.

[52] A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung, J. Gao, J. Emmons,
A. Gupta, E. Orbay, et al., “Roboturk: A crowdsourcing platform for robotic
skill learning through imitation,” in Proceedings of The 2nd Conference on
Robot Learning, vol. 87, pp. 879–893, 2018.

[53] A. Sorokin, D. Berenson, S. S. Srinivasa, and M. Hebert, “People helping robots helping
people: Crowdsourcing for grasping novel objects,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 2117–2122, October 2010.

[54] M. Forbes, M. Chung, M. Cakmak, and R. Rao, “Robot programming by demonstration
with crowdsourced action fixes,” in Proceedings of the AAAI Conference on
Human Computation and Crowdsourcing, vol. 2, 2014.

[55] M. J.-Y. Chung, M. Forbes, M. Cakmak, and R. P. Rao, “Accelerating imitation
learning through crowdsourcing,” in 2014 IEEE International Conference on
Robotics and Automation, pp. 4777–4784, 2014.

[56] I. S. Lee and H. Y. Lau, “Adaptive state space partitioning for reinforcement learning,”
Engineering Applications of Artificial Intelligence, vol. 17, no. 6, pp. 577–588,
2004.

[57] W. T. Uther and M. M. Veloso, “Tree based discretization for continuous state space
reinforcement learning,” in The Annual Conference on Innovative Applications
of Artificial Intelligence (IAAI), pp. 769–774, 1998.

[58] C. Wang, Y. Zhao, C.-Y. Lin, and M. Tomizuka, “Fast planning of well conditioned
trajectories for model learning,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 1460–1465, 2014.

[59] H. Niederreiter, “Low-discrepancy and low-dispersion sequences,” Journal of Number
Theory, vol. 30, no. 1, pp. 51–70, 1988.

[60] S. Joe and F. Y. Kuo, “Remark on algorithm 659: Implementing sobol’s quasirandom
sequence generator,” ACM Transactions on Mathematical Software, vol. 29,
no. 1, pp. 49–57, 2003.

[61] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

59



[62] C. Wang, Y. Zhao, Y. Chen, and M. Tomizuka, “Nonparametric statistical learning
control of robot manipulators for trajectory or contour tracking,” Robotics and
Computer-Integrated Manufacturing, vol. 35, pp. 96–103, 2015.

[63] R. Humphry, K. Jewell, and R. C. Rosenberger, “Development of in-hand manipulation
and relationship with activities,” American Journal of Occupational Therapy,
vol. 49, no. 8, pp. 763–771, 1995.

[64] Amazon: https://www.seattletimes.com/business/amazon-warehouse-jobs-push-
workers-to-physical-limit, retrieved on January, 2017.

[65] H. Van Hoof, T. Hermans, G. Neumann, and J. Peters, “Learning robot in-hand manip-
ulation with tactile features,” in IEEE/RAS 15th International Conference on
Humanoid Robots, pp. 121–127, 2015.

[66] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and P. Abbeel,
“Deep imitation learning for complex manipulation tasks from virtual reality
teleoperation,” in 2018 IEEE International Conference on Robotics and
Automation, pp. 5628–5635, 2018.

[67] L. Zhao, L. Lu, and C. Wang, “Data-oriented state space discretization for crowdsourced
robot learning of physical skills,” American Society of Mechanical Engineers
(ASME) Letters in Dynamic Systems and Control, vol. 1, no. 2, 2020.

[68] J. L. Bentley, “Multidimensional binary search trees used for associative searching,”
Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[69] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimensions via
hashing,” in Proceedings of the 25th International Conference on Very Large
Data Bases, pp. 518–529, 1999.

[70] Y. A. Malkov and D. A. Yashunin, “Efficient and robust approximate nearest neighbor
search using hierarchical navigable small world graphs,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 42, no. 4, pp. 824–836, 2018.

[71] H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest neighbor
search,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 33, no. 1, pp. 117–128, 2011.

[72] Benchmark of ANN: https://github.com/erikbern/ann-benchmarks, retrieved on
August, 2019.

[73] B. Harwood and T. Drummond, “Fanng: Fast approximate nearest neighbour graphs,”
in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5713–5722, June 2016.

[74] W. Li, Y. Zhang, Y. Sun, W. Wang, M. Li, W. Zhang, and X. Lin, “Approximate
nearest neighbor search on high dimensional data—experiments, analyses, and
improvement,” IEEE Transactions on Knowledge and Data Engineering, vol. 32,
no. 8, pp. 1475–1488, 2019.

60



[75] C. Fu, C. Xiang, C. Wang, and D. Cai, “Fast approximate nearest neighbor search with
the navigating spreading-out graph,” Proceedings of the VLDB Endowment,
vol. 12, no. 5, pp. 461–474, 2019.

61


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Composite Learning Scheme
	Chapter 3: Robot Physical Intelligence Powered By Crowdsourced Learning
	Chapter 4: Conclusions
	References

	List of Figures



