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ABSTRACT

STOCHASTIC PROGRAMMING AND AGENT-BASED
SIMULATION APPROACHES FOR EPIDEMICS CONTROL AND

LOGISTICS PLANNING

by
Xuecheng Yin

This dissertation addresses the resource allocation challenges of fighting against

infectious disease outbreaks. The goal of this dissertation is to formulate multi-stage

stochastic programming and agent-based models to address the limitations of

former literature in optimizing resource allocation for preventing and controlling

epidemics and pandemics. In the first study, a multi-stage stochastic programming

compartmental model is presented to integrate the uncertain disease progression

and the logistics of resource allocation to control a highly contagious infectious

disease. The proposed multi-stage stochastic program, which involves various disease

growth scenarios, optimizes the distribution of treatment centers and resources while

minimizing the total expected number of new infections and funerals due to an

epidemic. Two new equity metrics are defined and formulated, namely infection

and capacity equity, to explicitly consider equity for allocating treatment funds and

facilities for fair resource allocation in epidemics control. The multi-stage value of the

stochastic solution (VSS), demonstrating the superiority of the proposed stochastic

programming model over its deterministic counterpart, is studied. The first model

is applied to the Ebola Virus Disease (EVD) case in West Africa, including Guinea,

Sierra Leone, and Liberia. In the following study, the previous model is extended

to a mean-risk multi-stage vaccine allocation model to capture the influence of the

outbreak scenarios with low probability but high impact. The Conditional Value at

Risk (CVaR) measure used in the model enables a trade-off between the weighted

expected loss due to the outbreak and expected risks associated with experiencing

disastrous epidemic scenarios. A method is developed to estimate the migration rate



between each infected region when limited migration data is available. The second

study is applied to the case of EVD in the Democratic Republic of the Congo.

In the third study, a new risk-averse multi-stage stochastic epidemics-ventilator-

logistics compartmental stochastic programming model is developed to address the

resource allocation challenges of mitigating COVID-19. This epidemiological logistics

model involves the uncertainty of untested asymptomatic infections and incorporates

short-term human migration. Disease transmission is also forecasted through deriving

a new formulation of transmission rates that evolve over space and time with respect

to various non-pharmaceutical interventions, such as wearing masks, social distancing,

and lockdown. In the fourth study, a simulation-optimization approach is introduced

to address the vaccination facility location and allocation challenges of the COVID-19

vaccines. A detailed agent-based simulation model of the COVID-19 is extended

and integrated with a new vaccination center and vaccine-allocation optimization

model. The proposed agent-based simulation-optimization framework simulates

the disease transmission first and then minimizes the total number of infections

over all the considered regions by choosing the optimal vaccine center locations

and vaccine allocation to those centers. Specifically, the simulation provides the

number of susceptible and infected individuals in each geographical region for the

current time period as an input into the optimization model. The optimization

model then minimizes the total number of estimated infections and provides the

new vaccine center locations and vaccine allocation decisions for the following time

period. Decisions are made on where to open vaccination centers and how many

people should be vaccinated at each future stage in each region of the considered

geographical location. Then these optimal decision values are imported back into

the simulation model to simulate the number of susceptible and infected individuals

for the subsequent periods. The agent-based simulation-optimization framework is

applied to controlling COVID-19 in the states of New Jersey. The results provide



insights into the optimal vaccine center location and vaccine allocation problem

under varying budgets and vaccine types while foreseeing potential epidemic growth

scenarios over time and spatial locations.
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CHAPTER 1

INTRODUCTION

1.1 Background

Human beings have suffered from epidemic diseases throughout their history. An

epidemic is the rapid spread of an infectious disease that affects a large number of

people. Epidemic diseases can disperse widely in a short time, usually two weeks

or less, such as influenza, meningitis, and cholera, impacting populations either in a

specific area or become a pandemic affecting the lives of millions at a global scale.

The outbreaks ruin the economy and weaken the healthcare systems in the region

where the epidemic locates. The situation can be even worse in impoverished areas

where millions of people do not have an opportunity to receive sufficient treatment.

Thus, the number of deaths and infections in poor regions with the epidemic will be

much higher than that in other regions. Although some countries may have ample

budget to control an outbreak, the shortage of the resource supply during the epidemic

still leads to many deaths, degradation in the quality of human life, and economic

impediments.

Infectious diseases have changed and continue to change the trajectory of

millions of people’s lives in both the short-term and long-term. The country, region,

and the world have more far-reaching impacts, and some are even irreversible. For

example, in 2003, Severe Acute Respiratory Syndrome (SARS) was found to infect

humans in South China. A doctor who was infected with the SARS virus in

Guangdong Province infected many people when he went to Hong Kong in February

2003. The infected people brought SARS to the rest of the world. The statistics show

that the global death toll from SARS is 919, with a fatality rate of nearly 11%. There

are 5,327 cases and 349 deaths in Mainland China; 1,755 cases and 300 deaths in
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Hong Kong; 665 cases and 180 deaths in Taiwan; 251 cases and 41 deaths in Canada;

238 cases and 33 deaths in Singapore; and 63 cases and 5 deaths in Vietnam [Haccp,

2020].

The H1N1 swine flu broke out in the United States in April 2009, and it was the

first outbreak of H1N1 swine flu in a population. The United States is one of the most

developed countries, and its response speed is very rapid. The first sample was found

on April 15, reported to the International Health Organization (WHO) on April 18,

vaccine development began on April 21, and the flue was disclosed to the public on

April 23. On April 25, only 10 days after the first sample was found, WHO declared

that the H1N1 epidemic had become a public health emergency of international

concern. On April 26, 2009, the US government also announced a nationwide public

health emergency, and the Centers for Disease Control and Prevention (CDC) began

to release the national strategic reserve. WHO and the US government attached

great importance to the epidemic. However, the flu epidemic spread rapidly at an

unstoppable rate. About one month after the first sample was discovered, the number

of infections exceeded 10,000 [Sina, 2021].

At the end of 2019, COVID-19 was detected in China, and suddenly, it spread all

over the world. The worldwide spread of COVID-19 caused lots of deaths. Until July

14, 2021, the total number of infections in the world is 188,124,452, and the number

of deaths is 4,053,386 [JHU, 2021]. The pandemic has also had adverse economic

impacts. Globally, more than one-sixth of young people are unemployed due to the

epidemic. Asian Development Bank statistics show that the global economic loss

caused by the epidemic is between 5.8 trillion and 8.8 trillion US dollars [News,

2020]. On the other hand, people who are not infected have suffered from losing their

relatives, and some lost their income due to the indirect economic influence of the

disease.
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Consequently, the high impact of epidemics on human life has motivated

researchers and practitioners to develop new methodologies to prevent and reduce

the effects of infectious diseases. For controlling epidemics, many interventions have

been widely used to treat humans and prevent them from getting infected, such as

contact tracing, isolation, and vaccination.

With the development of vaccines for different epidemics, people can be immune

to the disease, and the health impacts can be significantly reduced. However, for

a newly discovered disease, the production quantity of the treatment resource or

vaccination may not satisfy the high demand in the early period, and it is also difficult

to develop new vaccines. Treatment resources and vaccination supply are almost

always limited. In addition, the uncertainty of the epidemic transmission makes the

resource allocation decision even harder. The resource allocations decisions should be

made ahead of time before knowing the disease’s growth trajectory. Once the disease

transmission is beyond the estimation, the decisions taken in former time periods can

cause a big loss on the number of infections when the resources are limited. Thus,

tackling the resource allocation problem under uncertainty is critical for studying

logistic issues on epidemic control.

1.2 Literature Review

Operations Research (OR) and mathematical modeling methods have been widely

used to determine optimal resource allocation strategies to control an epidemic

disease. Those approaches include simulations [Siettos et al., 2015, Ajelli et al., 2016,

Kurahashi and Terano, 2015, Wells et al., 2015], differential equations [Craft et al.,

2005, Kaplan et al., 2003], network models [Berman and Gavious, 2007, Longini Jr

et al., 2007, Porco et al., 2004, Riley and Ferguson, 2006], resource allocation analysis

[Zaric et al., 2000, Tebbens and Thompson, 2009, Nguyen et al., 2017, Shaw and

Schwartz, 2010], stochastic compartmental models [Lekone and Finkenstädt, 2006,
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Tanner et al., 2008, Funk et al., 2017], and mathematical programming [Coşgun and

Büyüktahtakın, 2018, Büyüktahtakın et al., 2018a, Ren et al., 2013, Tanner et al.,

2008]. The following subsections present a review of the literature in epidemic control

and logistics in major categories and present motivations for this dissertation study.

1.2.1 Simulation, Compartmental, and Network Models

The majority of mathematical models in the epidemiological literature use simulation

methods to study the logistics of controlling epidemics [Meltzer et al., 2014, Dasaklis

et al., 2017, Pandey et al., 2014]. For instance, Rivers et al. [2014] perform simulations

of interventions on Ebola to inform public health efforts. They use existing data

to parameterize an Ebola Virus Disease (EVD) mathematical model that is used to

forecast the progression of the epidemic and the efficacy of several interventions. Their

results suggest that contact tracing and infection control, such as decreasing contact

rates in hospitals and funerals, have a substantial impact on the number of Ebola

cases, but they are not sufficient to halt the spread of the epidemic. On the other

hand, they find that the hypothetical pharmaceutical intervention had a smaller effect

on the forecast trajectory of the epidemic. Siettos et al. [2015] develop an agent-based

simulation model to investigate the dynamics of the Ebola epidemics. The estimated

values of key epidemiological variables are found to be very close to the ones reported

by the WHO Ebola response team. Jalvingh et al. [1999] modify the InterSpread

model for foot-and-mouth (FMD) disease for the case of the classical swine fever

(CSF) to evaluate the impact of control measures by changing the assumptions and

mechanisms for disease spread from FMD to CSF, and including CSF-specific control

measures based on the standard European Union (EU) regulations. They show that

InterSpread was a flexible tool that could be adapted to simulate another disease with

relative ease.
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Several studies have used stochastic compartmental models to analyze different

strategies for controlling epidemic diseases, such as vaccination strategies, behavioral

changes that impact the interaction between different groups, and regional inter-

vention strategies. Lekone and Finkenstädt [2006] use a stochastic discrete-time

approximation to the Susceptible-Exposed-Infectious-Recovered (SEIR) system to

model Ebola epidemics and introduced a Markov Chain Monte Carlo (MCMC)

simulation algorithm for parameter estimation. They find that intervention measures,

such as protective clothing, active surveillance, and community education, have

been successful in controlling the disease, and an earlier onset of the control

intervention could have saved many more lives. Funk et al. [2017] develop a

stochastic compartmental model to analyze the impact of behavior changes on the

elimination of Ebola. They report that the expansion of the Ebola Treatment

Center (ETC) capacity, occasional interruption of transmission, and improvement

in healthcare-seeking behavior contributed to mitigating the epidemic and eventually

stop it. Keeling et al. [2001] present an individual farm-based stochastic model of

the UK foot-and-mouth epidemic. They show that spatial distribution, size, and

species composition of farms influenced the observed pattern and regional variability

of the outbreak. Moreover, they assess the history and possible duration of the

epidemic, the performance of control strategies, such as movement restrictions, and

general implications for disease dynamics in space and time. Onal et al. [2019] present

an integrated simulation-optimization framework, which simulates the growth of an

agricultural epidemic and uses it as an input into the optimization model. The

simulation mimics the growth of an invasive plant over a landscape and multiple years,

while a bio-economic optimization model finds an optimal search and treatment path

to minimize its economic damage to agricultural production. They find that applying

yearly treatment with slow search-and-treatment speed results in the minimum

economic damage under most invasion scenarios.
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Nguyen et al. [2017] use a multi-scale model to explore Ebola vaccination

strategies. They combine a within-host viral dynamics model and a between-host

network model of the Ebola virus infection. Their results suggest that an early,

age-group specific, and high coverage vaccination program is the most beneficial

for controlling the Ebola virus disease. Ball et al. [1997] develop a Susceptible-

InfectedRecovered (SIR) model with both local mixing at the household level and

global mixing at the community level. Their results show that the allocation of

vaccines to those households with the largest number of unvaccinated individuals is

the best strategy for controlling an epidemic, given that the efficiency of the vaccine

is high. Shaw and Schwartz [2010] study vaccine control of disease spread on a new

adaptive network and compare their results with other network models. Their results

suggest that vaccine control is much more effective in their adaptive networks than

in static networks when the vaccination schedule is Poisson distributed.

Kelly et al. [2019a] employ a non-parametrically estimated Hawkes point process

model to generate multiple probabilistic projections of the ongoing 20182019 Ebola

Virus Disease (EVD) outbreak size in the Democratic Republic of the Congo (DRC).

They compare the forecast results with actual outbreak size under thee-, six-, and

nine-week time periods. Their results suggest that the Hawkes point process is an

easily-applied statistical model to predict EVD outbreak trajectories to better inform

decision-making and resource allocation. Dalziel et al. [2018] perform a retrospective

analysis on community deaths during the 2014 − 2016 Ebola epidemic in Sierra

Leone to estimate the number of unreported non-hospitalized cases. Moreover, they

quantify how Ebola reporting rates varied across locations and over time and tested if

variation in reporting rates affected the estimates of disease transmission rates. They

find significant variation in reporting rates among districts and district-specific rates

of increases in reporting over time. Thus, correcting for these reporting variations

improves the accuracy and precision of estimates of transmission patterns.
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Moreover, the literature has often utilized compartmental models with simulations

to study the strategies for controlling the Ebola Virus Disease. For example, Jiang

et al. [2017] construct a mathematical model to devise the optimal EVD eradication

plan. They build a modified epidemic model that takes hospital isolation, Ebola drug,

and vaccine into account and later verify the result with a Monte Carlo Algorithm.

They investigate the numerical spread of Ebola and eradication pathways, further fit

the model against the real total cases data, and calculated infection rate as 1.754.

Their results suggest that Ebola eradication requires systematic thinking, effective

hospital isolation, and effective EVD drug use and vaccination. Mizumoto et al. [2019]

present a quantified effective reproduction number of the ongoing Ebola virus disease

epidemic in the Democratic Republic of the Congo. They use the probability mass

function and cumulative distribution function of the gamma distribution to calculate

the expected number of new incident cases from February 2019 to September 2019.

Moreover, they use the next-generation matrix and Monte Carlo Markov Chain to

forecast the model parameter from September 2019 to October 2019. They suggest

that improving the security situation within the country would reduce the attacks

during the vaccination in the affected health zones and thus would have a positive

impact on the infection control practices. Rachah [2018] presents a deterministic

compartmental model for assessing the impact of isolation to contain the EVD in

Sierra Leone. He uses ordinary differential equations with different isolation strategies

and studied the numerical simulation in several scenarios. According to his results,

the isolation of latent detectable and infectious individuals is the most effective

strategy in curtailing the virus. Hart et al. [2019] consider the variation of symptoms

between different infection stages in the prediction of Ebola epidemics. They compare

the compartmental model that has constant symptoms level to the compartmental

model that accounts for various symptoms during infection and apply the models to

both EVD cases of the 2019 Democratic Republic of Congo (DRC) and 20142016
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Liberia with simulation. According to the results, when the level of surveillance is

increased, the various-symptoms model predicts a smaller number of cases than the

constant-symptoms model. This means that including different levels of symptoms

at different stages of infection in epidemiological models can alter predictions of the

effects of intervention strategies compared with assuming a fixed level of symptoms.

1.2.2 OR Models in Epidemic Resource Allocation

Optimal resource allocation is a core problem in many applications ranging from

epidemic control [Zaric and Brandeau, 2001, Tanner et al., 2008] to agriculture

[Cobuloglu and Büyüktahtakın, 2014, 2015, Kantas et al., 2015], production planning

[Hartman et al., 2010, Büyüktahtakın and Liu, 2016, Büyüktahtakın et al., 2018b],

and asset replacement [Büyüktahtakın et al., 2014b, Büyüktahtakın and Hartman,

2016, des Bordes and Büyüktahtakın, 2017]. Previous mathematical models that

study the epidemic diseases and resource allocation mainly focus on logistics and

operation management to control the disease in optimal ways. For example, Zaric and

Brandeau [2001] present an approximated operation research model for the allocation

of epidemic control resources among a set of interventions. Their results show that

approximations yield reasonable estimates of the objective function values when the

time horizon is on the order of five years or less. On the other hand, their model can

be used as part of effective heuristics for solving large instances of resource allocation.

Ekici et al. [2013] develop a disease spread model to estimate the spread pattern of

the disease and combined it with a facility location and resource allocation network

model for food distribution. They present the estimated number of infections and the

number of meals needed in each census tract for a one-year period.

Considering the capacity of hospitals and logistics issues, Büyüktahtakın et al.

[2018a] develop a new epidemic-logistics mixed-integer programming model of the

epidemic control problem. Their model considers the epidemic spreading over multiple
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regions and the logistics simultaneously in a spatio-temporal setting. Different from

the classical epidemiological models, the transmission rate between the infected and

treated compartment is not constant but instead depended on the treatment capacity

and the number of infected people receiving treatment. Also, their model considers

the migration between regions to explain how movement patterns contribute to the

further spread of an epidemic. The authors further validate the predictions of the

model by demonstrating the impact of actual interventions. In the sensitivity analysis

of Büyüktahtakın et al. [2018a], the disease transmission rate within the community

is found to be the most critical parameter impacting infected and funerals. Later,

Liu et al. [2019] adapt the epidemics-logistics model of Büyüktahtakın et al. [2018a]

to study the control of the 2009 H1N1 outbreak in China and present similar results

for the H1N1 epidemic.

While the disease transmission rates are highly uncertain, relatively fewer

studies in the OR community take into account the uncertain parameters for resource

allocation in an effort to control the disease. Those OR models that integrate

resource allocation with epidemics control use either stochastic dynamic programming

(SDP) or two-stage stochastic programming [Coşgun and Büyüktahtakın, 2018, Long

et al., 2018, Ren et al., 2013, Yarmand et al., 2014, Tanner et al., 2008]. For

example, Coşgun and Büyüktahtakın [2018] propose SDP and approximate dynamic

programming (ADP) algorithms to optimally allocate the limited intervention budget

for resource allocation to control the human immunodeficiency virus (HIV) disease.

They construct the compartmental model as a Markov decision process to capture the

progression of the disease among the highest risk group and compare the performance

of various ADP algorithms with the SDP. Their results show that the “Dynamic

Proportional” strategy that allocates the budget dynamically over a multi-period

planning period as the uncertainty in disease transmission is revealed gives the

best result among nine different heuristic strategies. Tanner et al. [2008] consider
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parameter uncertainty in a two-stage stochastic mixed-integer programming model

with chance constraints for finding the optimal vaccination policy that could be

applied to a wide class of epidemic models. They consider the seasonal variation

of transmission parameters and estimate the parameter distributions for the worst

season so that the reliability requirement is guaranteed to be satisfied throughout the

entire year.

Long et al. [2018] develop a two-stage model for optimizing the allocation

of Ebola treatment units across multiple geographic regions during the outbreak’s

early phases. They introduce an empirically-estimated coefficient for behavioral

adaptation to changing epidemic conditions in the first stage and applied a heuristic,

a greedy policy, a myopic linear program, and an approximate dynamic programming

algorithm on the second stage. Ren et al. [2013] propose an optimization model to

determine efficient distribution strategies of limited resources over multiple locations

to address a smallpox outbreak. They introduce approximate representations

of disease propagation that are reasonable within parameter ranges and build a

large scale multi-city problem. Their results show that for a multi-city outbreak,

the proposed assignment of resources saves more lives than allocating medicine

proportional to population. Yarmand et al. [2014] develop a simulation model to

capture the epidemic dynamics in a region for different vaccination levels and then

use the simulation output to formulate a two-stage stochastic linear program for a

vaccine allocation problem. Their model solution reduces the number of vaccine doses

required to contain the epidemic and allowed for the redistribution of vaccine doses

more efficiently.

Operations research models have also been widely used in the context of plant

and forestry epidemic diseases, namely invasive species [Büyüktahtakin et al., 2014,

Büyüktahtakın et al., 2011, 2014a, 2015, Bushaj et al., 2020b]. For a detailed survey
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of such methods, we refer the reader to the systematic review paper of Büyüktahtakın

and Haight [2018].

1.2.3 Vaccination Models

Due to the high death rate and difficulties in treating Ebola, vaccination is a widely

used strategy that helps control this disease. Thus, many papers have studied various

vaccination strategies for Ebola control. The majority of those studies formulate the

model based on the uncertainty of the disease transmission or the supply of vaccines.

For instance, Kelly et al. [2019b] use a stochastic branching process model to project

the size and duration of the 2018− 2019 Ebola outbreak in the Democratic Republic

of Congo (DRC) under high (62%), low (44%), and zero (0%) estimates of vaccination

coverage. Then they compare the results with the Thiel-Sen regression model. Their

results show that the stochastic model with suspected cases and high vaccine coverage

predicted total outbreak sizes closest to the true outcome, and a relatively simple

mathematical model that is updated in real time may inform outbreak response teams

with projections of total outbreak size and duration.

Worden et al. [2019] use a stochastic branching process to project the short-term

and long-term course of the 2019 Ebola outbreak in the Democratic Republic of

Congo (DRC). They use negative binomial autoregression and Theil-Sen regression

to estimate short- and long-term projections. Moreover, they use Gotts rule to

estimate a baseline minimum-information projection. The authors conclude that

their model generates more accurate short-term forecasts due to the reliable data

source that provided weekly case counts and the real-time validation of their

models. Also, they estimate that transmission rates were higher than would be

expected under target levels of 62% vaccination coverage. Xie [2019] modifies the

Susceptible-Exposed-Infective-Hospitalized-Funeral-Removed model of Legrand et al.

[2007] to examine disease transmission dynamics after vaccination for the 2014 Ebola
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outbreak in Liberia. The author uses a sensitivity analysis of various epidemic

scenarios to estimate the basic reproduction number and investigated how vaccination

can effectively change the course of the epidemic. He concludes that the ring

vaccination strategy would reduce the transmission rate, and the proposed model

may be used to better understand the spread of Ebola and develop corresponding

strategies.

Brettin et al. [2018] construct a game-theoretic model of the EVD incorporating

individual decisions on vaccination to study the effect of a promising Ebola vaccine

(rVSV-ZEBOV). They adopt a susceptible-vaccinated-exposed-infected-recovered

compartmental model and use differential equations to describe the disease trans-

mission among each compartment. Their results show that Ebola can be eradicated

if voluntary vaccination programs are coupled with focused public education efforts.

Area et al. [2017] introduce vaccination of the susceptible population into a compart-

mental model that includes susceptible, infected, exposed, hospitalized, asymptomatic

but still infectious, dead but not buried, and buried compartments to control the

spread of the disease. They first consider the case where the total number of available

vaccines in a fixed period of time is limited and then analyzed the situation where

there is a limited supply of vaccines at each instant of time for a fixed interval

of time. Finally, they use simulations to compare the models with and without

vaccination. They conclude that vaccination of all susceptible individuals at the

beginning of the outbreak would give the best result for controlling Ebola, and

satisfactory results could be attained if the number of available vaccines meets the

needs of the population.

Wells et al. [2019] present a method that can be applied to identify areas at

risk during outbreaks of emerging and reemerging diseases. They use a spatial model

that incorporates human mobility, poverty, and population density, and assess the

effectiveness of the vaccination. As an example, they apply the maximum likelihood
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approach to fit the model to the 2019 EVD case in the Democratic Republic of Congo

(DRC) from April 5 to May 10. Their results demonstrate that even modest delays

in initiating vaccination would have noticeably degraded the impact of the program.

Chowell et al. [2019] employ an individual-level stochastic transmission model to

evaluate ring and community vaccination strategies for the 2018 − 2019 Democratic

Republic of Congo (DRC) Ebola transmission. Their simulation model incorporates

four different situations, including a proportion of the population that is inaccessible

for effective contact tracing and vaccination efforts, two levels of population mixing

resembling household and community transmission, two types of vaccine doses with

different time periods until immunity, and spatial dependence on transmission rates.

Their results indicate that ring vaccination is an effective intervention to contain

Ebola epidemics at low levels of household inaccessibility when vaccinating contacts

is significantly delayed. Moreover, they find the community vaccination strategies that

supplement a ring vaccination strategy could speed up and enhance the probability

of epidemic containment.

Liu et al. [2008] study the vaccination effects via two Susceptible-Vaccinated-

Infected-Recovered (SVIR) models considering continuous vaccination strategy (CVS)

and pulse vaccination strategy (PVS). Their results suggest that vaccination can help

disease control by decreasing the basic reproduction number under a necessary level

to eliminate the disease successfully. If ignoring the time for the vaccines to obtain

immunity, or the possibility for people to be infected before obtaining immunity,

the disease can always be eradicated by some suitable vaccination strategies. This

may lead to over-evaluating the effect of vaccination. Lee et al. [2010] employ an

agent-based computer simulation model to study the vaccine allocation of 2009 H1N1

in the Washington DC region. They compare different vaccination strategies (children

first and recommended at-risk individual first). Their results support adherence to

the at-risk individual first policy (instead of a children-first policy) for the H1N1
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influenza vaccine when the vaccine is in limited supply. Duijzer et al. [2018] study the

relationship between the herd effect and the vaccination fraction for the seminal SIR

compartmental model and define the dose-optimal vaccine coverage using differential

equations. The results indicate the crucial importance of the dose-optimal coverage

of the vaccine. Focusing on a limited number of populations can make a significant

difference, whereas allocating equally to all populations would be substantially less

effective.

Yarmand et al. [2014] present a two-phase stochastic model to study the optimal

vaccine allocation. They use a simulation to forecast the epidemic dynamics in

each region for different vaccination levels. They also present a Newsvendor model

formulation of the problem, which provides a closed-form solution for the optimal

allocation and tests an easy-to-implement heuristic for vaccine allocation. The

results show that the two-phase vaccination policy potentially results in a lower

attack rate of the disease and a considerable saving in vaccine production and

administration cost. Preciado et al. [2013] use an arbitrary contact network to

distribute vaccination resources throughout the network for epidemic control. They

propose a convex framework to find the cost-optimal distribution of vaccination

resources when different levels of vaccination are allowed. They present a greedy

approach with quality guarantees based on Lagrangian duality and illustrate results

using numerical simulations in a real social network.

1.2.4 OR Models for Fair Resource Allocation

Most resource allocation models on epidemic control compute the optimal solution

without considering fairness in resource allocation. Fair resource allocation has been

studied in the literature, but mainly with different applications. For example, Orgut

et al. [2016] consider a food allocation model with equitable and effective distribution

of donated food under capacity constraints. Davis et al. [2015] develop a multi-period

14



linear optimization model for improving geographical equity in kidney allocation while

also respecting transplant system constraints and priorities. Their results show that

enhancing the practice of sharing kidneys may increase geographic equity in kidney

transplantation. Moreover, Lane et al. [2017] give a systematic review of equity in

healthcare resource allocation decision-making. Marsh and Schilling [1994] present

a literature review of various mathematical methods for equity measures in facility-

location decision models. To our knowledge, fairness has not been studied before

within the context of resource allocation for epidemic control over large spatial scales.

1.2.5 Agent-Based Models

Many studies on epidemic control use agent-based simulation models to forecast

the disease transmission and analyze the interventions such as resource allocation

strategies (see, e.g., Müller et al. [2021], Shamil et al. [2021], and Kasaie et al. [2013]).

For example, de Mooij et al. [2021] give a data-driven agent-based simulation model

to address the challenges of modeling social phenomena in the epidemic. The model

incorporates the individual agent’s beliefs, objectives, trust in government, and the

norms imposed by the government to actual data and is applied in the Virginia

state of United States to compare the sensitivity of the COVID-19 outbreak size

to the different normative interventions. Müller et al. [2021] present an approach

that combines transportation modeling with a mechanistic infection model and a

person-centric disease progression model. The model includes various parameters

and is validated against the infection dynamics in Berlin (Germany). Their work

shows that it is possible to build detailed epidemiological simulations from microscopic

mobility models, and the results can be used to inform political decisions. Shamil et al.

[2021] define an agent-based model intending to simulate the disease dynamics and

transmission of COVID-19 among the inhabitants of a city (Ford County and NYC).

They involve the human behavior of different susceptible agents and model how agents
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interact with each other. Their results suggest that contact tracing via smartphones,

with more than 60% of the population owning a smartphone combined with city-wide

lockdown, reduces the effective reproduction number (Rt) below 1 within three weeks

of intervention. Furthermore, contact tracing accompanied with early lockdown can

suppress the epidemic growth of COVID-19 completely with sufficient smartphone

owners. Kasaie et al. [2013] develop an agent-based simulation of a Tuberculosis

epidemic in a single population. They use the parameters from the literature and

consider a hierarchically structured contact network at different levels. They study

the timing of secondary infections from a single source throughout the duration of

the disease. They compare the patterns of transmission among different networks

and discuss implications. In addition, they do the sensitivity analysis of outputs to

illustrate the robustness of the results to variations in the parameter values.

The interventions of disease control have also been incorporated in the agent-

based simulations. For instance, Li et al. [2021] present agent-based simulations to

study the effectiveness of a nationwide vaccine campaign considering different vaccine

efficiencies. The model incorporates the vaccine acceptance rate and different phases

of vaccines to characterize the possible outcomes. The study concludes that vaccines

alone cannot effectively end the pandemic given the current availability estimates and

the adopted vaccination strategy, and thus non-pharmaceutical interventions need to

be continued. Jahn et al. [2021] use a dynamic agent-based population model to

compare different vaccination strategies for different groups. Outcomes are optimized

for an initial number of available vaccines, and optimization is performed deriving a

prioritization sequence to maximize the reduction in total hospitalizations and deaths

compared to no vaccination. They conclude that elderly and vulnerable persons

should be prioritized for vaccination until further vaccines are available. Kerr et al.

[2021] present an agent-based simulation model to estimate COVID-19 transmission

with interventions applied to control the pandemic. The model involves the human
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behaviors and daily activities to simulate the transmission process of the COVID-19

and post different intervention strategies, including testing, treatment, vaccination of

COVID-19. The model is able to provide an accurate estimation of the number of

infections throughout the planning horizon.

Kasaie et al. [2010] develop an agent-based simulation model of epidemics and

study the resource allocation problem by applying response-surface methodology.

They compare the solution of the proposed agent-based simulation model and a

known mathematical solution in an RA example. In addition, they apply the proposed

approach to a more complicated resource allocation problem in which a number of

previous restricting assumptions are relaxed. The results show that the model can

design detailed individual behaviors and their interactions at the microscopic level, so

that the developed models will eventually provide a valid representation of population

dynamics and disease prevalence over the course of time. And the flexibility of

the model can incorporate new assumptions about populations’ characteristics and

disease characteristics. Kasaie and Kelton [2013a] provides an extended discussion of

their former paper on the calibration, analysis, and optimization of an agent-based

simulation model of an epidemic.

The agent-based model is not only used in the epidemic control, but also in

other fields. For instance, Mashhadi et al. [2016] develop an agent-based simulation

(ABS) framework to model the overall product take-back and recovery system. They

consider the Sociodemographic properties of the consumers, attributes of the take-

back programs, specific characteristics of the recovery process, and product life cycle

information. They use a numerical example of an electronic product take-back system

and simulation-based optimization. They notice that the global optima cannot be

guaranteed due to the non-linearity of the problem.
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1.2.6 Simulation-Optimization Models

In recent years, many studies combine simulation and optimization in their own

field. Carson and Maria [1997] review the area of simulation-optimization. They

introduce the basic concept of simulation-optimization and review the methods

and application in this area. In addition, they discuss the corresponding software

tool. April et al. [2003] summarize the most relevant approaches that have been

developed for the purpose of optimizing simulated systems. They concentrate on

the metaheuristic black-box approach used in commercial software. They present an

example of simulation optimization in the context of a simulation model developed

to predict performance and measure risk in a real-world project selection problem.

Xi et al. [2013] develop a simulation-optimization model that determines where to

locate electric vehicle chargers to maximize their use by privately owned electric

vehicles. They explore interactions between the optimization criterion used and

the budget available. The results show that although the optimal location is

sensitive to the specific optimization criterion considered, overall service levels

are less sensitive to the optimization strategy. Nsoesie et al. [2013b] present a

simulation-optimization approach for forecasting the influenza epidemic curve. The

study combines an individual-based model and the Nelder-Mead simplex optimization

method. The results suggest that the peak infected and total infected are also

accurately forecasted for Montgomery County in Virginia within the forecasting

period. Kasaie and Kelton [2013b] propose a simulation-optimization framework

to address a general form of the resource allocation problem on epidemic control.

They discuss implementation steps with application to the control of the influenza

pandemic with several interacting healthcare interventions. Nsoesie et al. [2013a] use

a simulation-optimization approach to forecast influenza epidemics. They combine an

individual-based model and a simple root-finding optimization method for parameter

estimation and forecasting. They use web-based estimates of influenza activity from
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Google Flu Trends (GFT) to forecast seasonal influenza epidemics. The results

indicate that if the overall trend of the epidemic is accurately captured, GFT could be

used for peak forecasts as illustrated, but probably not for forecasting other epidemic

measures such as peak height and attack rate. Ghamizi et al. [2020] propose an

actual data-driven model to enhance epidemiological predictions, which will learn

to fine-tune predictions in different contexts. The model includes deep learning

estimation of the epidemiological parameters and a genetic algorithm component

searching for optimal trade-offs/policies between constraints and objectives. The

results show that the model yields predictions with much lower error rates than pure

epidemiological models.

1.2.7 Literature Focusing on COVID-19 Resource Allocation

Many studies focus on the intervention and its impact on controlling the transmission

of the COVID-19 [Zhang et al., 2020a, Patel et al., 2020, Saldaña et al., 2020,

Ambikapathy and Krishnamurthy, 2020]. Fisman et al. [2020] use a next-generation

matrix approach to estimate the conditions under which masks would reduce the

reproduction number of COVID-19. Their model takes into account the possibility of

assortative mixing, where mask users interact preferentially with other mask users.

They observe that the usage of masks could decrease the reproduction number of

COVID-19 if widely used, and widespread masking may be sufficient to suppress

epidemics when the reproduction number has been brought close to 1 via other

measures. Zhang et al. [2020a] extend a previously established agent-based disease

transmission model and implement non-medical mask-wearing, shelter-in-place, and

case isolation as control measures, and quantify their impact on reducing the attack

rate and adverse clinical outcomes. They find that non-medical mask-wearing by

75% of the population reduced infections, hospitalizations, and deaths by 37.7%. In

addition, sheltering individuals aged 50 to 64 years of age was the most efficient
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strategy. Eikenberry et al. [2020] develop a compartmental model for assessing the

community-wide impact of masks used by the general population. They suggest that

broad adoption of even relatively ineffective face masks may meaningfully reduce

community transmission of COVID-19 and decrease peak hospitalizations and deaths.

Masks are found to be useful with respect to both preventing illness in healthy persons

and preventing asymptomatic transmission.

Optimization Models. Optimization models have also been widely studied

for resource allocation in the fight against COVID-19. Queiroz et al. [2020] provide

a systematic review of various supply chain and logistics approaches for optimizing

the distribution of critical resources amid the COVID-19. To tackle the shortage

of ventilators, Mehrotra et al. [2020] develop a two-stage stochastic programming

model, optimizing ventilator allocation during the pandemic under various demand

scenarios. The authors find that when 60% of the ventilator inventory is allocated to

non-COVID-19 patients, there is no shortfall. In comparison, when 75% of the stock

is allocated to the non-COVID-19 patients, a shortfall in the supply of the ventilators

to the COVID-19 patients occurs. Also, they find that it is essential to ramp up the

production of the ventilators to meet the additional requirements of the ventilators

that might come up during the peak times of the pandemic. Lacasa et al. [2020] come

up with an algorithm for optimizing the allocation of the ventilators and ICU beds

and validate their algorithm during the peak and declining times of the pandemic

based on the data from the United Kingdom and Spain cases.

Bertsimas et al. [2020] develop a four-step approach, combining descriptive,

predictive, and prescriptive analytics and propose an optimization model for the re-

allocation of the ventilators throughout the U.S. during the COVID-19 pandemic.

Blanco et al. [2020] present a two-stage stochastic mixed-integer programming model,

which minimizes the expected non-covered demand, using robust objective functions

of type minmax and maxmin regret. Billingham et al. [2020] present a network
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optimization model to tackle the problem of scarce ventilator distribution. Parker

et al. [2020] develop mixed-integer programming and robust optimization models to

redistribute patients instead of resources, such as ventilators among different hospitals

under demand uncertainty. Govindan et al. [2020] develop a practical decision support

system hinge on the knowledge of the physicians and the fuzzy interference system

(FIS) to help manage the demands of essential hospital services in a healthcare supply

chain, to break down the pandemic propagation chain, and reduce the stress among

the health care workers.

The literature on the optimal allocation of ventilators is not limited to COVID-

19. For example, Zaza et al. [2016] present a conceptual framework that identifies

the steps in planning the distribution of stockpiled mechanical ventilators during

an emergency. Meltzer et al. [2015] develop a spreadsheet model, which estimates

mechanical ventilator demand in the United States during an influenza pandemic.

They estimate a need of 35,000-60,500 additional ventilators to avert 178,000-308,000

deaths in a highly severe pandemic scenario. Huang et al. [2017] introduce a two-

stage method for optimizing stockpiles of mechanical ventilators, which are critical

for treating hospitalized influenza patients in respiratory failure under a pandemic

situation. They also incorporate their model into a web-based decision-support tool

for pandemic preparedness and response.

Vaccine Models. Many articles focus on the vaccine development and

allocation on controlling COVID-19 [Foy et al., 2021, of Sciences Engineering et al.,

2020, Ferranna et al., 2021]. The majority of the vaccine models use the simulation

method to simulate the vaccination results under different intervention strategies

or use the optimization model to generate the optimal vaccine allocation for the

simulation. For instance, Shim [2021] uses an age-structured model to understand the

epidemiological characteristics of COVID-19. The model determines optimal vaccine

allocation for minimizing infections, deaths, and years of life lost while accounting
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for population factors, such as country-specific age distribution and contact structure,

and various levels of vaccine efficacy. The results suggest that a transmission-blocking

vaccine should be prioritized in adults aged between 20 and 49 years old and those

older than 50 years to minimize cumulative incidence and mortality. Leithaeuser

et al. [2020] use mathematical programming for computing an optimal selection of

vaccination sites out of a given set for controlling COVID-19. The model incorporates

the assignments of patients and doctors to facilities, the number of vaccines per site, as

well as maximum travel time. Their results demonstrate that the number of required

physicians can, in most scenarios, be limited to 2,000 in the case of free assignments.

However, when travel distances for the patients are to be minimized, an increased

number of physicians is unavoidable. Rastegar et al. [2021] present an optimization

model for flu vaccine distribution. The model considers the fears of COVID-19 that

have intensified the shortage of flu vaccines in developing countries and utilizes an

equitable objective function to distribute vaccines to high-risk people. The results

demonstrate the applicability of the model proposed in this study for influenza vaccine

distribution during the COVID-19 pandemic.

1.2.8 Mean-Risk Stochastic Programming

Stochastic programming has been widely used in many fields, including but not

limited to healthcare [Yin and Büyüktahtakın, 2021a], agriculture [Cobuloglu and

Büyüktahtakın, 2017], and finance [Birge and Louveaux, 2011]. The expectation is

the most widely-used objective criterion in stochastic programming [Ahmed, 2006].

However, it does not capture the variability in the objective function, in particular,

the situations with high-impact and low-probability. However, when some extreme

cases occur, there could be a big loss when only the expected value over all scenarios

is considered. For example, at the beginning of an epidemic outbreak, disease

characteristics may not be known, and the disease growth could be highly uncertain,
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and thus a large number of infections and losses could happen in shorter time periods

than expected. In order to capture the impact of such events, we will consider a risk

measure in the objective function in addition to the expectation criterion.

Since conditional value-at-risk (CVaR) is a coherent risk measure that can be

used in an optimization model without losing convexity [Rockafellar and Uryasev,

2002], many former studies considered mean-risk models with CVaR in stochastic

programming models [Ahmed, 2006, Rockafellar and Uryasev, 2002, Schultz and

Tiedemann, 2006, Miller and Ruszczyński, 2011]. CVaR-based mean-risk stochastic

programming has been studied in various applications, such as supply chain

management [Alem and Morabito, 2013], reverse logistic network design problem

[Soleimani and Govindan, 2014], water resources allocation [Zhang et al., 2016],

humanitarian relief network [Elçi and Noyan, 2018].

Among the application of mean-CVaR models, Dai et al. [2014] incorporate

the CVaR into a two-stage stochastic model to address the problem of long-term

planning of municipal solid waste management system in the city of Regina, Canada.

While considering the uncertainty of waste-generation rates in the formulation of

the model, they consider a decreasing expansion cost along with the time. Their

results suggest that the model with the mean-CVaR can better quantify the systems’

risk, and it is useful for helping decision maker analyze the trade-offs between cost

and risk. Thus, it would help them identify desired waste management strategies

under complex uncertainties. Soleimani and Govindan [2014] consider a risk-averse

two-stage stochastic programming approach to the design and planning of a reverse

supply chain network. They use CVaR as a risk evaluator and consider return amounts

and prices of second products as two stochastic parameters. Moreover, they compare

the mean-risk model with the risk-neutral model through the mean-risk value of

the stochastic solution (VSS). Their results prove that the model behaves more

conservatively (lower costs) by increasing the weight of the CVaR (λ) in the objective
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function and decreasing the value of α in CVaR. Also, solving the risk-averse model

is shown to be efficient in obtaining more reliable solutions.

Furthermore, many papers proposed methodology and decomposition algorithms

for mean-CVaR stochastic programming models. For example, Zhang et al. [2016]

consider a risk-averse multi-stage stochastic linear programming model with the

application to the water allocation problem under uncertainty. They incorporate

CVaR into the objective function to control high-risk events, supplementing the mean.

To solve the model, they use a nested L-shaped framework to survey different ways

of decomposing the resulting problem. Their results indicate that separated the

approximations of mean and CVaR related expressions generally work better than

combined approximations, and multicut versions work better than single cut versions

within the nested L-shaped method for the problem they studied. On the other

hand, multicut would lower the optimality gap when a unique VaR representative

variable exists. Moreover, both the risk of water shortage and the cost of most

expensive scenarios are lower under a higher level of risk aversion because it saves

more water and uses less of the water supply source. Elçi and Noyan [2018] develop

a two-stage risk-averse model to address the problem of the threat of hurricanes

in the Southeastern part of the United States. They enforce a joint probability

constraint on the feasibility of the second stage problem, and considered CVaR as

the risk measure. In addition, they employ an exact Benders decomposition-based

branch-and-cut algorithm for solving the model. Their results show that the algorithm

can significantly benefit from parallelization, and it can find better initial first stage

decisions. Noyan [2012] specifies the conditional value-at-risk (CVaR) as a risk

measure and applied the proposed model to disaster management. The author

considers the problem of determining the response facility locations and inventory

levels of the relief supplies at each facility in the presence of uncertainty in demand

and the damage level of the disaster network. To solve the model, two decomposition
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algorithms are constructed based on the generic Benders-decomposition, which are

single-cut and multi-cut. Their results suggest that the proposed problem in the

paper could be solved for different risk parameters, and this would help the decision

makers to evaluate different allocation decisions under uncertainty. Homem-de Mello

and Pagnoncelli [2016] discuss the incorporation of risk measures into multi-stage

stochastic programs. They introduce the expected conditional risk measures and

illustrated the idea of a pension fund problem. Their results show that the expected

conditional risk measures (ECMRs) overcome some issues that arise with other

alternative risk measures for multi-stage stochastic programs, such as the time

consistency.

1.3 Motivation

Former studies above have made outstanding contributions to the epidemic control

and logistics planning literature. However, there still exist research gaps in

decision-making for resource allocation on epidemic control. To begin with, the

majority of the studies use simulations and differential equations to forecast the

transmission of the disease, which is hard to incorporate with the optimization

model. In addition, researchers study the uncertainty of resource allocation problems

using the two-stage models, which are unable to capture the changes in the decision

throughout a planning horizon involving multiple time periods. Moreover, none of

the literature has considered fair resource allocation when the resource is limited.

Last but not least, the current researches on the decisions for epidemic control do not

consider the risk of the realization of the extreme scenarios. Once the realization of

the transmission is significantly different from the estimated values, there will be a

huge loss in the number of infections.

The former epidemic-logistics model presented in Büyüktahtakın et al. [2018a]

has incorporated the logistics of treatment into a disease spread model, which foresees
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the disease growth over a spatial scale, and allocates limited resources to control the

spread of the disease. The mathematical model of Büyüktahtakın et al. [2018a] is

deterministic and assumes expected values for disease transmission rates. However, in

reality, the disease transmission rate could be quite uncertain, changing over time and

space under various scenarios. Thus, a stochastic OR model is necessary to represent

the uncertainty in transmission in a more realistic way. In this dissertation, we address

these shortcomings and the research gaps in the literature by formulating multi-stage

stochastic programming models and simulation-optimization models, which optimizes

the resource allocation for the prevention and control of epidemic outbreaks and

pandemics, such as the Ebola Virus Disease (EVD) and the Coronavirus Disease

2019 (COVID-19). A summary of the research objectives and accomplishments of

this dissertation is discussed in the next section.

1.4 Summary of Research Objectives and Accomplishments

Overall, this dissertation develops multi-stage stochastic models and agent-based

models to address the resource allocation issue that lies at the core of epidemic

control and logistic planning. The first study presents a multi-stage stochastic

model and considers fair resource allocation when the resources are limited, such

as in West Africa. The second study extends the model in the first study to a

mean-risk multi-stage stochastic model to address the risk-aversive resource allocation

problem in the Democratic Republic of the Congo (DRC). The ring vaccination and

short-term migration are also considered in this study. The third study involves the

uncertainty of the proportion of untested asymptomatic infections in the transmission

of COVID-19 and government intervention strategies while providing the optimal

ventilator allocation among New York City regions. The fourth study develops

a simulation-optimization model to optimize the vaccination center locations and

vaccine allocation among the counties in New Jersey. The optimization model imports
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the results from the simulation and generates the optimization results that are used

to be sent back to the simulation. The results presented in this dissertation also lead

to important insights into decision-making and policies in epidemic control.

Each subsection below discusses a summary of research goals and accom-

plishments under each chapter of this dissertation. The detailed research contri-

butions of this dissertation and related insights into healthcare decision-making are

discussed in each chapter, respectively, under a subsection titled “Key Contributions

and Insights.”

1.4.1 A Multi-Stage Stochastic Programming Approach to Epidemic
Control with Equity Considerations

Existing compartmental models in epidemiology are limited in terms of optimizing

the resource allocation to control an epidemic outbreak under disease growth

uncertainty. In Chapter 2, we address this core limitation by presenting a multi-stage

stochastic programming compartmental model, which integrates the uncertain disease

progression and resource allocation to control an infectious disease outbreak. The

proposed multi-stage stochastic program involves various disease growth scenarios

and optimizes the distribution of treatment centers and resources while minimizing

the total expected number of new infections and funerals. We define two new equity

metrics, namely infection and capacity equity, and explicitly consider equity for

allocating treatment funds and facilities over multiple time stages. We also study the

multi-stage value of the stochastic solution (VSS), which demonstrates the superiority

of the proposed stochastic programming model over its deterministic counterpart.

We apply the proposed formulation to control the Ebola Virus Disease (EVD) in

Guinea, Sierra Leone, and Liberia of West Africa to determine the optimal and

fair resource-allocation strategies. Our model balances the proportion of infections

over all regions, even without including the infection equity or prevalence equity
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constraints. Model results also show that allocating treatment resources proportional

to population is sub-optimal, and enforcing such a resource allocation policy might

adversely impact the total number of infections and deaths, and thus resulting

in a high cost that we have to pay for the fairness. Our multi-stage stochastic

epidemic-logistics model is practical and can be adapted to control other infectious

diseases in meta-populations and dynamically evolving situations. The work based

on this chapter is published in Yin and Büyüktahtakın [2021a].

1.4.2 Risk-Averse Multi-Stage Stochastic Programming for Vaccine
Allocation and Treatment Logistics for Epidemic Response

Existing compartmental-logistics models in epidemics control lack methods in optimizing

the allocation of vaccines and treatment resources under a risk-averse objective. In

Chapter 3, we present a mean-risk, multi-stage, stochastic epidemics-vaccination-

logistics model that evaluates various disease growth scenarios under the Conditional

Value-at-Risk (CVaR) risk measure to optimize the distribution of treatment centers,

resources, and vaccines, while minimizing the total expected number of infections,

deaths, and close contacts of infected people under a limited budget. We integrate

a new ring vaccination compartment into a Susceptible-Infected-Treated-Recovered-

Funeral-Burial epidemics-logistics model. Our formulation involves uncertainty both

in the vaccine supply and the disease transmission rate. Here, we also consider the

risk of experiencing scenarios that leads to adverse outcomes in terms of the number

of infected and dead people due to the epidemic. Combining the risk-neutral objective

with a risk measure allows for a trade-off between the weighted expected impact of

the outbreak and the expected risks associated with experiencing extremely disastrous

scenarios. We incorporate human mobility into the model and develop a new method

to estimate the migration rate between each region when data on migration rates is not

available. We apply our multi-stage stochastic mixed-integer programming model to
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the case of controlling the 2018-2020 Ebola Virus Disease (EVD) in the Democratic

Republic of the Congo (DRC). Our results show that increasing the risk-aversion

by emphasizing potentially disastrous outbreak scenarios reduces the expected risk

related to adverse scenarios at the price of the increased expected number of infections

and deaths over all possible scenarios. We also find that isolating and treating infected

individuals are the most efficient ways to slow the transmission of the disease, while

vaccination is supplementary to primary interventions on reducing the number of

infections. Furthermore, our analysis indicates that vaccine acceptance rates affect

the optimal vaccine allocation only at the initial stages of the vaccine rollout under

a tight vaccine supply. The work based on this chapter is published in Yin and

Büyüktahtakın [2021b].

1.4.3 COVID-19: Optimal Allocation of Ventilator Supply under
Uncertainty and Risk

Chapter 4 presents a new risk-averse multi-stage stochastic epidemics-ventilator-

logistics compartmental model to address the resource allocation challenges of

mitigating COVID-19. This epidemiological logistics model involves the uncertainty

of untested asymptomatic infections and incorporates short-term human migration.

Disease transmission is also forecast through a new formulation of transmission

rates that evolve over space and time with respect to various non-pharmaceutical

interventions, such as wearing masks, social distancing, and lockdown. The proposed

multi-stage stochastic model overviews different scenarios on the number of asymp-

tomatic individuals while optimizing the distribution of resources, such as ventilators,

to minimize the total expected number of newly infected and deceased people.

The Conditional Value at Risk (CVaR) is also incorporated into the multi-stage

mean-risk model to allow for a trade-off between the weighted expected loss due to

the outbreak and the expected risks associated with experiencing disastrous pandemic
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scenarios. We apply our multi-stage mean-risk epidemics-ventilator-logistics model

to the case of controlling the COVID-19 in highly-impacted counties of New York

and New Jersey. We calibrate, validate, and test our model using actual infection,

population, and migration data. The results indicate that short-term migration

influences the transmission of the disease significantly. The optimal number of

ventilators allocated to each region depends on various factors, including the number

of initial infections, disease transmission rates, initial ICU capacity, the population

of a geographical location, and the availability of ventilator supply. Our data-driven

modeling framework can be adapted to study the disease transmission dynamics and

logistics of other similar epidemics and pandemics. The work based on this chapter

is under review for publication in Yin et al. [2021].

1.4.4 An Agent-Based Simulation-Optimization Vaccine Center Location
Vaccine Allocation Approach to Controlling COVID-19

In Chapter 5, we introduce a simulation-optimization approach to address the

vaccination facility location and allocation challenges of the COVID-19. We extend an

agent-based model of the COVID-19 by adding two new vaccination compartments,

“Vaccinated 1” and “Vaccinated 2”. The “Vaccinated 1” represents the people

who have taken the first shot of the vaccine and the “Vaccinated 2” means the

people who have taken the second shot of the vaccine. In addition, we formulate

a resource allocation optimization model, which can decide the optimal vaccination

center locations for each type of vaccine and generate the optimal vaccine allocation

strategies in each region considered. We combine the agent-based simulation model

with the vaccination center and vaccine-allocation optimization model into one single

simulation-optimization framework. The simulation model forecasts the number of

susceptible individuals and infections for the current period, and the results are

inputted into the optimization model. The optimization model incorporates the
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available budget, the potential vaccination center locations, as well as the available

vaccines to generate the vaccination center locations and optimal vaccine allocation

decisions for the next period. The generated results will be imported back to the

simulation model to estimate the number of infections in the future. We calibrate,

validate, and test our model against real outbreak data. The results show that

more vaccines with lower costs should be allocated under a limited budget level, and

more vaccines with a higher efficiency should be allocated under an ample budget

level. In addition, the regions that have a high population or initial infections should

receive more vaccines compared with those other with a lower population and initial

infections.

1.4.5 Organization of the Dissertation

This Ph.D. dissertation is organized in chapters that correspond to four journal

papers. Chapter 2 presents a multi-stage stochastic programming model and

considers fair resource allocation for epidemic control when the resources are limited.

Chapter 3 extends the model in the first study to a mean-risk multi-stage stochastic

programming model to address the risk-aversive resource allocation problem for

controlling the Ebola virus disease in the Democratic Republic of the Congo (DRC).

Chapter 4 involves the uncertainty of the proportion of untested asymptomatic

infections in the transmission of COVID-19 and government intervention strategies

while providing the optimal ventilator allocation among New York City regions.

Chapter 5 introduces a simulation-optimization approach to addressing the vacci-

nation facility location and allocation challenges of the COVID-19. Finally, in

Chapter 6, we summarize our contributions and future research directions inspired

by this dissertation.
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CHAPTER 2

A MULTI-STAGE STOCHASTIC PROGRAMMING APPROACH TO
EPIDEMIC RESOURCE ALLOCATION WITH EQUITY

CONSIDERATIONS

2.1 Introduction

An epidemic is the rapid spread of an infectious disease that impacts a large number

of people. Epidemic diseases can disperse widely in a short time period, usually, two

weeks or less, such as influenza, meningitis, and cholera, impacting populations either

in a specific area, or become a pandemic affecting the lives of millions at a global scale,

such as the ongoing the coronavirus pandemic. All over the world, outbreaks continue

to take lives, ruin the economy, and weaken the health-care system. Unfortunately,

the toll is higher in the less-developed countries because millions of people in poor

regions of the world do not have the opportunity to receive sufficient treatment in

case of an outbreak.

Ebola virus disease (EVD) is a prime example of a devastating epidemic. The

EVD, also known as Ebola hemorrhagic fever, is a severe, often fatal illness affecting

humans and other primates [WHO, 2019d]. The 2014-2016 outbreak in West Africa

was the biggest Ebola outbreak in history, causing more than 28,600 cases and 11,325

deaths by the end of June 2016 [CDC, 2019b]. The virus started in Guinea, and

then moved across countries to Sierra Leone and Liberia. The tenth outbreak of

the Ebola virus disease has been ongoing in the Democratic Republic of the Congo

(DRC) since August 2018. The outbreak has started from the northeast region of the

country, centered in the North Kivu and Ituri provinces. More than 3000 cases have

been verified by March 2020 [MSF, 2020], and it is the country’s largest-ever Ebola

outbreak.

There are no specific cure or treatment for Ebola-infected individuals. Multiple

investigational Ebola vaccines have been developed and tested in numerous clinical
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trials around the world, some of them have been licensed to prevent the Ebola

virus disease [NIH, 2019]. Short term intervention strategies, including quarantine,

isolation, contact tracing, and safe burial, have been helpful to Ebola control.

Moreover, Ebola treatment centers (ETCs), which mainly isolate and treat infected

individuals, play a significant role in controlling the Ebola virus disease.

The optimization problem of allocating resources to control an epidemic, such

as Ebola, is an immense challenge, especially in the regions where available treatment

facilities and funds are scarce. The decision-maker has to make difficult decisions to

allocate limited resources to the right locations and in the right amount for slowing

down the outbreak and minimize its impacts. Due to the insufficiency of intervention

resources, some regions may not receive their fair share of treatment resources,

compared to other regions that are also impacted by the disease. Furthermore, the

EVD can spread from one individual to another through multiple mechanisms, such

as through person-to person-contact or by touching the dead body infected by the

EVD. The rates of disease transmission can change under various conditions and thus

could be highly unpredictable.

Operations Research (OR) and mathematical modeling methods have been

widely used to determine optimal resource allocation strategies to control an epidemic

disease. Those approaches include simulations [Siettos et al., 2015, Ajelli et al., 2016,

Kurahashi and Terano, 2015, Wells et al., 2015], differential equations [Craft et al.,

2005, Kaplan et al., 2003], network models [Berman and Gavious, 2007, Longini Jr

et al., 2007, Porco et al., 2004, Riley and Ferguson, 2006], resource allocation analysis

[Zaric et al., 2000, Tebbens and Thompson, 2009, Nguyen et al., 2017, Shaw and

Schwartz, 2010], and stochastic compartmental models [Lekone and Finkenstädt,

2006, Tanner et al., 2008, Funk et al., 2017, Kibis et al., 2021].

The majority of previous work focuses on analyzing the impact of different

intervention strategies on disease transmission. Most of those studies consider disease
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growth and resource allocation problems separately in different models or enumerate

each resource allocation policy in a simulation model one by one. Moreover, few

studies incorporate fairness in resource allocation optimization models. The former

epidemic-logistics model presented in Büyüktahtakın et al. [2018a] incorporate the

logistics of treatment into a disease spread model, which foresees the disease growth

over a spatial scale, and at the same time allocates limited resources to control the

spread of the disease. Büyüktahtakın et al. [2018a] consider the varying treatment

capacity based on a limited budget. The mathematical model of Büyüktahtakın et al.

[2018a] is deterministic and assume expected values for disease transmission rates.

However, in reality, the disease transmission rate could be quite uncertain, changing

over time and space under various scenarios. Thus, a stochastic OR model is necessary

to represent the uncertainty in transmission in a more realistic way. Moreover, the

majority of the OR models do not consider equity and fairness in resource allocation,

resulting in solutions that may provide few or no resources to some regions impacted

by the disease, especially when resources are quite limited.

The objective of this chapter is to develop a multi-stage stochastic programming

extension of the deterministic epidemic-logistics model of Büyüktahtakın et al. [2018a]

with equity considerations and present realistic insights into controlling the EVD

under disease transmission uncertainty. Considering different budget levels and

various tightness of the equity constraints, we analyze the optimal resource allocation

strategies in a meta-population over three countries in West Africa. In our paper,

the stochastic program incorporates various scenarios of disease transmission rates

through person-to-person contact, thus capturing the uncertainty and variability

in the infection transmission rate better compared to its deterministic counterpart.

The objective function of our multi-stage stochastic programming epidemic-logistics

model is to minimize the expected number of new infections and deceased individuals

overall scenarios, all time periods, and all regions considered. We study the Value of
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the Stochastic Solution (VSS), a well-known stochastic programming measure that

compares the efficiency of the deterministic and the stochastic models. Furthermore,

we introduce two new equity metrics for fair resource allocation in epidemics control

and analyze the impact of various budget distribution strategies on the number of

infected people and deceased individuals under each of these equity metrics.

2.1.1 Key Contributions and Insights

Former stochastic programming approaches on epidemic control involved a time

domain with only two periods. Furthermore, there is a need for analyzing the

equity and efficiency tradeoff in a mathematical programming formulation when

allotting resources for controlling infectious diseases. Our approach contributes to

the epidemiology and OR literature in the following ways.

Modeling Contributions. Firstly, to the best of our knowledge, our study presents

the first multi-stage stochastic programming (SP) model for infectious disease control,

considering the uncertainty in the disease transmission parameter. Multi-stage SP is

superior over two-stage SP models because disease transmission dynamically changes

over multiple time stages. Our stochastic programming approach is also preferable to

probabilistic sensitivity analysis, which considers a single scenario at a time and also to

robust optimization (RO), which could provide highly conservative results by focusing

on the worst-set of outcomes in a hostile environment [Defourny et al., 2012]. Due

to the temporal and spatial dimensions considered in our resource allocation model,

multi-stage SP is also computationally more amenable to dynamic programming,

which cannot tackle such a high-dimensional problem.

Second, we present the multi-stage VSS, which shows that the proposed

stochastic programming model is superior to its deterministic counterpart.
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Third, we introduce and formulate two new equity metrics and incorporate

equity measures as a constraint in the mathematical formulation to balance efficiency

and equity for fair resource allocation in epidemics control. To our knowledge, this

study is the first one that models equity in a multi-stage stochastic programming

formulation. Our multi-stage model provides an advantage of adjusting the level

of equity over time with respect to evolving disease dynamics, as opposed to using

a standard equity measure, which is not updated over time. Furthermore, unlike

former work, we address equity in both establishing treatment centers and allocating

treatment resources over metapopulations and multiple periods using mathematical

optimization.

The infection equity constraint is also easier to implement than using standard

equity metrics, such as the absolute difference between regional prevalence (cases

per population in a region) and the overall prevalence (cases per population over all

regions), because the absolute gap value using the prevalence metric could be tiny

and difficult to adjust compared with the absolute gap value defined by the infection

equity constraint. Furthermore, computational results imply that our model balances

the proportion of infections in each region, even without including the infection equity

or prevalence equity constraint.

Fourth, while we tailor our epidemics-logistics stochastic programming modeling

framework for the EVD, it can be adapted to study different diseases to determine

the optimal and fair resource-allocation strategies among various regions and multiple

planning periods to curb the spread of an epidemic.

Applied Contributions and Policy Insights: Our mathematical model could be

used as a decision support tool to aid policymakers in understanding disease dynamics

and making the most effective decisions to fight epidemics under uncertainty. In

particular, our model could be used by the stakeholders in epidemic control (e.g.,

governments, UN entities, non-profit organizations) to determine the optimal location
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and timing of ETCs opened and treatment resources allocated to minimize the total

expected infections and deaths over metapopulations in multiple locations and over

multiple time periods.

Our model provides significant insights into the control of the Ebola Virus

Disease in West Africa that would not be possible with existing models and methods in

infectious disease control. Our multi-stage stochastic program foresees various disease

growth scenarios to optimize resource allocation, as opposed to solving the problem

for an average scenario and myopically for one stage at a time with fixed periodic

budgets, which could provide sub-optimal solutions and thus less effective resource

allocation. Specifically, our study provides the following several policy insights and

recommendations to decision-makers:

(i) Our analysis emphasizes that quick response, such as allocating treatment
centers and resources in the early stages of the epidemic, is critical for
minimizing the total number of infected individuals and deaths related to the
disease.

(ii) The value of the stochastic solution demonstrates that the optimal timing and
location of resource allocation vary with respect to the disease transmission
scenario, and thus possible disease growth scenarios should be considered when
planning for an epidemic instead of considering a single scenario of the expected
value.

(iii) Our results show that the infection level (“the number of infected people in a
region” / “the total number of infected people” - “population in a region” /
“total population”) is a key factor for resource allocation.

(iv) Our analysis suggests that the region with the highest infection level has the
priority to receive the majority of the resources at the beginning of the time
horizon to minimize the number of infections and funerals.

(v) Model results also show that allocating treatment resources proportional to
population is sub-optimal.

(vi) While equitable resource allocation is important in decision-making, too much
focus on the equity of resource allocation might adversely impact the total
number of infections and deaths and thus resulting in a high cost that we have
to pay for fairness. Therefore, decision makers are advised to be cautious about
enforcing fairness when allocating resources to multiple regions.
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2.2 Problem Formulation

This section gives the formulation of a multi-stage stochastic programming model,

including the compartmental model, description of the scenario tree, formulation,

equity constraints, and their explanation.

2.2.1 Notation

Model notations that are used throughout the rest of Chapter 2 are presented in

Tables 2.1–2.5 below.

Table 2.1 Sets and Indices

Notation Description

J Set of time periods, J = {0, ..., J}.

A Set of ETC types, A = {1, ..., A}.

R Set of regions, R = {1, ..., R}.

Mr Set of all surrounding regions of region r.

Ω Set of scenarios, Ω = {1, ...,Ω}.

j Index for time period where j ∈ J .

r Index for region where r ∈ R.

a Index defining type of ETC, where a ∈ A.

ω Index for scenario where ω ∈ Ω.
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Table 2.2 Transition Parameters Describing the Rate of Movement between Disease
Compartments

Notation Description

λ1,r Disease fatality rate without treatment in region r.

λ2,r Disease fatality rate while receiving treatment in region r.

λ3,r Disease survival rate without treatment in region r.

λ4,r Disease survival rate with treatment in region r.

λ5,r Safe burial rate of Ebola-related dead bodies in region r.

χω1,r Transmission rate per person due to community interaction in region r

under scenario ω.

χ2,r Transition rate per person during traditional funeral ceremony in region r.

39



Table 2.3 Other Parameters

Notation Description

b1j,r Unit cost of treatment for an infected individual in region r at end of
period j.

b2j,r Unit cost of safe burial for a dead body in region r at end of period j.

gaj,r Fixed cost of establishing type a ETC in region r at end of period j.

ka Capacity (number of beds) of type a ETC.

ur The population in region r.

∆ Total available budget for treatment.

πr Initial number of susceptible individuals in region r.

$r Initial number of infected individuals in region r.

θr Initial number of treated individuals in region r.

ϑr Initial number of recovered individuals in region r.

υr Initial number of unburied dead bodies (funerals) in region r.

τr Initial number of buried dead bodies (safe burials) in region r.

ςr Initial treatment capacity in terms of number of ETC beds in region r.

αl→r Migration rate of susceptible individuals from surrounding regions l ∈Mr

to region r.

φl→r Migration rate of infected individuals from surrounding regions l ∈Mr

to region r.

νr→l Migration rate of susceptible individuals from region r to surrounding
regions l ∈Mr.

ρr→l Migration rate of infected individuals from region r to surrounding
regions l ∈Mr.
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Table 2.4 State Variables

Notation Description

Sωj,r Number of susceptible individuals in region r at end of period j under

scenario ω.

Iωj,r Number of infected individuals in region r at end of period j under

scenario ω.

Tωj,r Number of individuals receiving treatment in region r at end of period j

under scenario ω.

Rωj,r Number of recovered individuals in region r at end of period j

under scenario ω.

Fωj,r Number of deceased individuals due to the epidemic in region r at end of

period j under scenario ω.

Bω
j,r Number of buried individuals in region r at end of period j

under scenario ω.

Ŝωj,r Number of susceptible individuals migrating into region r at end of period j

under scenario ω.

S̃ωj,r Number of susceptible individuals emigrating from region r at end of

period j under scenario ω.

Îωj,r Number of infected individuals migrating into region r at end of period j

under scenario ω.

Ĩωj,r Number of infected individuals emigrating from region r at end of period j

under scenario ω.
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Table 2.5 Decision Variables

Notation Description

Cωj,r Total capacity (number of beds) of established ETCs in region r at end of

period j under scenario ω.

I
ω
j,r Number of infected individuals hospitalized (and quarantined) in region r

at end of period j under scenario ω.

yωaj,r Number of type a ETCs established in region r at end of period j

under scenario ω.

2.2.2 Compartmental Disease Model Description

Figure 2.1 One-step disease compartmental model.

Figure 2.1 shows the transmission dynamics of the Ebola Virus Disease (EVD) in

a region r of a country located in West Africa. The disease spreads among the

susceptible population (S), by either person-to-person contact at a periodic rate of

χω1,r under scenario ω or through touching Ebola-related dead bodies that are not

yet buried during traditional funerals at a periodic rate of χ2,r. Thus, susceptible

individuals (S) are infected and become infected (I) with a rate of χω1,r as a function

of I and with a rate of χ2,r as a function of funerals (F), who represent deceased

but unburied people. Without treatment, some of the infected individuals in the

compartment (I) will die and move to the funeral (F) compartment with the rate of
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λ1,r, while some of the infected individuals will recover with a rate of λ3,r, moving

into the recovered compartment (R). However, the number of individuals that will

be hospitalized for treatment (T) is based on the treatment capacity variable Cω
j,r,

which gives the total available number of beds in the ETCs in region r under scenario

ω in period j. Thus, there is no constant transition rate from I to T . Meanwhile,

individuals who did not receive treatment will remain in the community and continue

to spread the disease. In treated compartment (T), some of the individuals will

recover with a periodic rate of λ4,r, and a fraction of them will die with a periodic

rate of λ2,r. The deceased individuals in the funeral compartment are safely buried at

a rate of λ5,r, moving into the buried compartment (B). Thus, we assume that every

death (F) leads to a safe burial (B). In order to describe the migration of susceptible

and infected individuals within a given country, we define (αl→r, υr→l) as the rates

of migration of susceptible individuals into and out of region r, respectively, and

(ψl→r, ρr→l) as the rates of migration of infected individuals into and out of region

r, respectively. The multi-stage stochastic programming epidemic-logistics model is

defined in detail in the next section.

The latent period for the EVD is highly variable, changing from 2 to 21 days

[WHO, 2020c]. In our model, we assume that each time stage represents two weeks, in

which an infected but asymptomatic individual can become symptomatic and infect

others. For this reason, and to avoid computational complexity, we do not include an

explicit latent compartment in the model; instead, we fit those individuals within the

infected compartment. Similarly, the Ebola modeling literature focusing on logistics

usually omit the latent period to avoid further computational complexity (see, e.g.,

Büyüktahtakın et al. [2018a], Long et al. [2018]).
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2.2.3 Uncertainty Representation and Scenario Tree Generation Scheme

It is beyond the scope of this work to introduce a new methodology for multi-period

scenario tree generation; we refer the reader to Heitsch and Römisch [2009], Leövey

and Römisch [2015], and Pflug and Pichler [2015] for different approaches to generate

scenario trees. To generate the scenario tree for our case, we follow a similar approach

presented in the study of Alonso-Ayuso et al. [2018]. Here, we focus on the most

uncertain parameter: the community transmission rate based on former research

stating that transmission rates impact the infections and deaths the most among all

different input parameters based on sensitivity analysis [Büyüktahtakın et al., 2018a].

We model the future uncertainties regarding the progression of the disease by

a discrete set of scenarios, denoted ω ∈ Ω. Each scenario has a probability, pω,

where
∑

ω∈Ω p
ω = 1. We assume that the uncertain community transmission rate

follows a normal distribution. The data regarding the distribution of the community

transmission rate parameter is not available. Thus, we use the lower and upper bounds

on the transmission rate in the community based on the data gathered from literature

(Table 2.6) to generate the normal distribution function for the transmission rate

parameter at time zero. The upper and lower bounds, thus the distribution functions

for the uncertain parameter, are specified for each country and are different at each

node of the scenario tree. Accordingly, the mean µnr is defined for each region r ∈ R

and node n ∈ N . The lower bound and upper bound are considered as the value

of 0.001- and 0.999-quantiles of the normal distribution, respectively. The standard

deviation σr is defined according to a normal distribution using the initial lower and

upper bounds provided for each region r ∈ R. Also, we use Qh to represent the value

of the h-quantile of the normal distribution.
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Table 2.6 The Range (Lower and Upper Bounds), Mean, and Standard Deviation
of Community Transmission Rate in Each Country

Region Rate Range Mean Standard Deviation

Guinea [0.24, 0.84] 0.54 0.10

Sierra Leone [0.24, 0.88] 0.66 0.07

Liberia [0.24, 0.64] 0.44 0.07

Source: [Althaus, 2014, Towers et al., 2014]

Figure 2.2 Scenario tree generation example for Guinea, where each circle, denoted
by n, n := {0, . . . , 12}, represents a node of the scenario tree.
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As shown in an example scenario tree in Figure 2.2, a particular scenario could

give the community transmission rates (χω1,r) into the future for the next two stages

in all considered regions. In our model, we consider three realizations for each node

of the scenario tree, namely as low, medium, and high. The low and high realizations

have a probability of 0.3, and the medium realization has a probability of 0.4. Each

path from the root node to the leaf node of the scenario tree represents a scenario ω.

In the example shown in Figure 2.2, we have two stages, and thus 32 = 9 scenarios. In

addition, two scenarios are inseparable at stage j if they share the same scenario path

up to that stage. This implication is modeled using non-anticipativity constraints, as

described in Appendix A.1. For example, for scenarios ω1 to ω9, the decision at node

0 should be the same as we do not know the values of the uncertain parameters at

stage 0. Similarly, for scenarios ω1 to ω3, the decision at node 1 should be the same

because these scenarios cannot be differentiated at stage 1 due to uncertainty.

The probability of a scenario ω, pω, is calculated as the multiplication of

probabilities on the scenario path. For example, the probability of scenario ω1, which

corresponds to a low realization in the first and second stages, is 0.09, while the

probability of scenario ω9, which corresponds to a medium realization in the first

stage and a high realization in the second stage, is 0.12.

For each node n ∈ N in the scenario tree, the low realization value of the

random variable ξnr is given by the value of the 0.15-quantile (µnr,low = E(ξnr |Q0.001 ≤

ξnr ≤ Q0.30) = Q0.15), the medium realization is given by the value of the 0.50-quantile

(µnr,medium = E(ξnr |Q0.30 ≤ ξnr ≤ Q0.70) = Q0.50), and the high realization is equal to

the value of the 0.85-quantile of the normal distribution (µnr,high = E(ξnr |Q0.70 ≤ ξnr ≤

Q0.999) = Q0.85). In our example, at node 0 the normal distribution of the uncertain

community transmission rate parameter in Guinea has µ0
r = 0.54 and σ0

r = 0.10. The

low, medium, and high realizations of the uncertain parameter at nodes 0 and 1 are

given in Table 2.7 below.
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Table 2.7 The 0.15-, 0.50-, 0.85-Quantiles of the Normal Distribution of the
Random Variable ξnr at Nodes 0 and 1 of the Scenario Tree in Figure 2.2

Low Medium High

node 0: Q0.15=0.44 Q0.50=0.54 Q0.85=0.64

node 1: Q0.15=0.26 Q0.50=0.44 Q0.85=0.62

The normal distribution of community transmission rate associated with nodes

1, 2, and 3 at stage 1 have a mean of Q0.15 = 0.44, Q0.50 = 0.54, and Q0.85 = 0.64,

respectively. While scenarios ω1, ω2, and ω3 at stage 1 has a single realization value of

0.54 for the random parameter at node 1, the realizations of scenarios ω1, ω2, and ω3

at stage 2 correspond to nodes 4, 5, and 6, with a mean of Q0.15 = 0.26, Q0.50 = 0.44,

and Q0.85 = 0.62, respectively.

2.2.4 Model Features and Assumptions

In this study, we have considered six regions, each consisting of multiple districts, in

the three countries most affected by the 2014-16 EVD. West Africa is poor and the

budget for the Ebola treatment comes from an international consortium of partners,

including governments, international financial Institutions, regional organizations,

and private foundations [United Nations, 2020]. Those funding is either directly

provided to the affected governments or the United Nations (UN) entities. In this

chapter, we took the perspective of the UN entities, such as the World Health

Organization (WHO), where the total funding is collected centrally and allocated

among those three countries to optimize the use of treatment resources and the

donated funding.

The actual capacity of ETCs varies from 20 to 200 operational beds [WHO,

2020d]; however, we used 50 and 100-bed ETCs in our model to reduce the

computational complexity. It is essential to differentiate the small and large ETCs
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in the model because each ETC type has a different setup cost, which impacts the

optimal allocation of resources. We assume that each Ebola patient will receive the

same treatment in either a large or small capacity ETC. The treatment capacity

parameter is cumulative and only reflects total ETC beds.

Furthermore, the cost of burying dead bodies safely is shown to be minor

compared to the ETC and treatment cost [WHO, 2020b, Büyüktahtakın et al., 2018a].

In addition, changing the burial rate into a variable that is optimized in the model

would have complicated the model considerably, and so we only focus on adjusting

the variable values of treatment resources. Thus, we assume that the burial rate is

constant, and burials and treatment are operated separately using different budgets.

2.2.5 Model Formulation

Following the convention of Büyüktahtakın et al. [2018a], the multi-stage stochastic

programming epidemic-logistics model (2.1) can be formulated as follows:

min
∑
j∈J−1

∑
r∈R

∑
ω∈Ω

pω((Iωj+1,r − Iωj,r) + F ω
j+1,r) (2.1a)

s.t. Sω0,r = πr, Iω0,r = $r, T ω0,r = θr, Rω
0,r = ϑr,

F ω
0,r = υr, Bω

0,r = τr, Cω
0,r = ζr, r ∈ R, ∀ω ∈ Ω (2.1b)

Sω(j+1),r = Sωj,r + Ŝωj,r − S̃ωj,r − χω1,rIωj,r − χ2,rF
ω
j,r,

j ∈ J \ {J}, r ∈ R, ∀ω ∈ Ω, (2.1c)

Iω(j+1),r = Iωj,r + Îωj,r − Ĩωj,r + χω1,rI
ω
j,r + χ2,rF

ω
j,r − (λ1,r + λ3,r)I

ω
j,r − I

ω

j,r,

j ∈ J \ {J}, r ∈ R, ∀ω ∈ Ω, (2.1d)

T ω(j+1),r = T ωj,r + I
ω

j,r − (λ2,r + λ4,r)T
ω
j,r,

j ∈ J \ {J}, r ∈ R, ∀ω ∈ Ω, (2.1e)

Rω
(j+1),r = Rω

j,r + λ4,rT
ω
j,r + λ3,rI

ω
j,r,

j ∈ J \ {J}, r ∈ R, ∀ω ∈ Ω, (2.1f)

F ω
(j+1),r = F ω

j,r + λ1,rI
ω
j,r + λ2,rT

ω
j,r − λ5,rF

ω
j,r,
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j ∈ J \ {J}, r ∈ R, ∀ω ∈ Ω, (2.1g)

Bω
(j+1),r = Bω

j,r + λ5,rF
ω
j,r, j ∈ J \ {J}, r ∈ R, ∀ω ∈ Ω, (2.1h)

Ŝωj,r =
∑
l∈Mr

αl→rS
ω
j,l, j ∈ J, r ∈ R, ∀ω ∈ Ω, (2.1i)

Îωj,r =
∑
l∈Mr

φl→rI
ω
j,l, j ∈ J, r ∈ R, ∀ω ∈ Ω, (2.1j)

S̃ωj,r =
∑
l∈Mr

νr→lS
ω
j,r, j ∈ J, r ∈ R, ∀ω ∈ Ω, (2.1k)

Ĩωj,r =
∑
l∈Mr

ρr→lI
ω
j,r, j ∈ J, r ∈ R, ∀ω ∈ Ω, (2.1l)∑

r∈R

(
∑

j∈J\{0,j}

∑
a∈A

gaj,ry
ω
aj,r +

∑
j∈J

b1j,rT
ω
j,r) ≤ ∆ ∀ω ∈ Ω, (2.1m)

Cω
j,r =

j∑
m=1

∑
a∈A

kay
ω
amj,r + C0,r, j ∈ J \ J, r ∈ R, ∀ω ∈ Ω, (2.1n)

I
ω

j,r = min{Iωj,r, Cω
j,r − T ωj,r}, j ∈ J \ J, r ∈ R, ∀ω ∈ Ω, (2.1o)

Sωj,r Iωj,r T ωj,r Rω
j,r F ω

j,r Bω
j,r I

ω

j,r ≥ 0,

j ∈ J, r ∈ R, ∀ω ∈ Ω, (2.1p)

yωaj,r ∈ {0, 1, 2, . . .}; yωaj,r ≤ Iωj,r,

a ∈ A, j ∈ J \ {J}, r ∈ R, ∀ω ∈ Ω, (2.1q)

yωat(n),r − yan,r = 0, I
ω

t(n),r − In,r = 0, Cω
t(n),r − Cn,r = 0,

a ∈ A,∀ω ∈ β(n), ∀n ∈ N, (2.1r)

The objective function (2.1a) minimizes the total expected number of newly

infected individuals plus funerals over all scenarios, in all regions throughout

the planning horizon. Constraints (2.1b) represent the number of individuals in

susceptible, infected, treated, recovered, funeral, and buried compartments and the

total ETC capacity, respectively, in each region r at the beginning of the planning

horizon. Equations (2.1c)–(2.1h) represent the dynamics of the population in each

disease compartment, as shown in Figure 2.1. Specifically, constraint (2.1c) implies

that the number of susceptible individuals in region r at the end of period j+1 under
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scenario ω is equal to the number of susceptible individuals from the previous year

plus the number of susceptible individuals who immigrate into region r minus the

number of susceptible individuals who emigrate from region r and minus the number

of newly infected individuals at the end of period j under scenario ω. Constraint (2.1d)

gives the number of infected individuals at the end of period j + 1 in region r under

scenario ω, which is equal to the number of infected individuals from the previous year

plus immigrated infected individuals minus emigrated infected individuals, plus newly

infected individuals and minus individuals who recovered, died, or were accepted

for treatment at the end of period j under scenario ω. Constraint (2.1e) describes

the total number of treated individuals in region r at the end of time period j + 1

under scenario ω, which is equal to the number of treated individuals at the end of

period j plus infected individuals who accepted treatment based on the availability

of beds minus treated individuals who died or recovered. Constraint (2.1f) ensures

that the cumulative number of recovered individuals in region r at the end of the

period j + 1 under scenario ω is equal to the number of recovered individuals from

the previous year plus newly recovered individuals. Constraint (2.1g) defines the

total number of unburied funerals in region r at the end of time period j + 1 under

scenario ω, which is equal to the infected and treated individuals who moved to

the funeral compartment minus the buried dead bodies. Constraint (2.1h) gives the

cumulative number of buried dead bodies at the end of the period j under scenario ω.

Constraints (2.1i)–(2.1l) present the number of immigrated and emigrated individuals

in susceptible and infected compartments. Specifically, constraints (2.1i) and (2.1j)

give the number of susceptible and infected individuals who immigrated into region

r from region l ∈ Mr under scenario ω. Constraints (2.1k) and (2.1l) represent the

number of susceptible and infected individuals, who emigrated from region r into

neighboring region l ∈Mr under scenario ω. Constraints (2.1m)–(2.1o) represent the

restrictions regarding logistics and operation management. Specifically, constraint
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(2.1m) denotes the budget limitation on the sum of the fixed costs of opening ETCs

and the variable cost of treating infected individuals over all regions r in all periods j

under scenario ω. Constraint (2.1n) shows the total capacity in region r at the end of

period j under scenario ω. Constraint (2.1o) ensures that the number of hospitalized

individuals is limited by the number of available beds in ETCs in region r. In

particular, the number of hospitalized individuals (I) is equal to the minimum of the

number of infected individuals and the capacity available at established ETCs after

considering currently hospitalized individuals in ETCs. Constraints (2.1p) present

non-negativity restrictions on the number of susceptible, infected, treated, funeral,

buried, and recovered individuals, respectively, under scenario ω. Constraints (2.1q)

denote the integer requirements on the number of type-n ETCs to be opened in region

r at the end of period j under scenario ω. In addition, if the number of infected

individuals is less than 1 in a region r, the value of the integer variable corresponding

to opening an n-bed ETC is forced to be zero, and thus no ETC will be opened in

that region. Constraints (2.1r) represent nonanticipativity restrictions, which state

that if two scenarios share the same path up to stage j, the corresponding decisions

should be the same, as described in Appendix A.1.

2.2.6 Equity of ETC and Treatment Resources Distribution

Equitable resource allocation has long been studied in health-care resource allocation

decision-making [Lane et al., 2017]. Some examples include equity in facility

location [Marsh and Schilling, 1994, Ares et al., 2016], organ allocation for kidney

transplantation [Su and Zenios, 2006, Bertsimas et al., 2013], vaccine coverage

[Enayati and Özaltın, 2020], and health-care fleet management [McCoy and Lee,

2014].

In the health-care sector, an equity metric compares two or more populations

based on the service or utility the health system provides to the different populations.
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The comparison of various populations could be based on the health status,

distribution of resources, expenditures, utilization, and access [Goddard and Smith,

2001, Culyer and Wagstaff, 1993].

While it is essential to clearly define equity to be used for fair resource allocation,

there is no universal consensus on the definition and measurement of equity in public

health decision making [Stone, 2002]. Lane et al. [2017] find a large disparity in the

description of equity in health care resource allocation based on their review of the

related literature.

Among numerous definitions of equity, Young [1995] defines three equity

concepts on resource allocation: parity (claimants should be treated equally), propor-

tionality (goods should be divided in proportion to differences among claimants), and

priority (the person with the greatest claim to the good should get it). Savas [1978]

describes equity as fairness, impartiality, or equality of service. Culyer [2001] discusses

utilitarian principles dictating that resources should be allocated in such a way as to

maximize the overall health and wellbeing of a society, and egalitarian principles

dictating that all people are equal and that inequalities between groups should be

removed. McCoy and Lee [2014] use utilitarian, proportionally fair, and egalitarian

principals to incorporate equity into optimal resource allocations.

Marsh and Schilling [1994] present a list of 20 equity measures within the context

of facility location. Among the most commonly-used equity measures are the sum

of absolute deviations (SAD), the mean absolute deviation (MAD), the minimum

effect (ME), and the Gini coefficient (GC). Love-Koh et al. [2020] categorize methods

used to define equity measures into five: 1) gap measures, regression-based measures,

Lorenz and concentration curves, measures incorporating inequality aversion, and

health-related social welfare. The equity measures defined by absolute and relative

gaps are commonly used by international agencies, such as the WHO, to distribute
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resources, such as vaccines and medical treatment, between population groups in low-

and middle-income countries [Casey et al., 2017].

Equitable resource allocation has also been studied considering the tradeoff

between the efficiency and equity in resource allocation for infectious diseases, such

as HIV and influenza (e.g., Mbah and Gilligan [2011], Zaric and Brandeau [2007],

Kaplan and Merson [2002], Enayati and Özaltın [2020]). For example, Earnshaw

et al. [2007] develop a linear programming planning tool to help policymakers

understand the effectiveness of different allocations of HIV prevention funds under

fairness constraints. Enayati and Özaltın [2020] propose an equity constraint in

a mathematical program to help public health authorities consider fairness when

making vaccine distribution decisions. In a food allocation problem, Orgut et al.

[2016] present a deterministic linear programming model to optimize the allocation

of donated food, considering objectives of both equity and effectiveness.

Similar to these works, we will follow an approach that would balance the

efficiency and equity in epidemics resource allocation. Specifically, we will focus on

equity over meta-populations and multiple spatial dimensions. We define our equity

measures within the context of proportionality and priority, as described in Young

[1995]. Our formulations of equity are gap-based, combining absolute and relative

gaps. Our approach is seeking a balance between utilitarian and egalitarian objectives

studied in Culyer and Wagstaff [1993] and McCoy and Lee [2014] by determining a

resource allocation strategy that will minimize total infections and deaths but at the

same time incorporates equality dimensions as a constraint. Unlike former work, we

address equity in the resource allocation for both treatment centers and treatment

resources using mathematical optimization.

Our definition of equity is similar to the descriptions of Mbah and Gilligan

[2011], who defines social equity as the equal opportunity for infected individuals to

access treatment, Marsh and Schilling [1994], who define equity within the context of
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facility location, and Orgut et al. [2016] who study equity in the fair allocation of food.

Specifically, we define equity as the case where each region and country receives its

fair share of the ETCs and medical treatment resources during an epidemic outbreak.

The majority of studies on fair resource allocation define the equity as a

one-period metric, which does not change over time. In our multi-stage stochastic

programming model, the equity standard is adjusted over time with respect to the

changing disease dynamics throughout the planning horizon, increasing the efficiency

of the resource allocation. To the best of our knowledge, our study is the first to

model the fair resource allocation using a multi-stage stochastic programming model.

Infection Equity Constraint In the first formulation, we will address the

objective of equity by limiting the absolute deviation between a regions relative

number of infections and its relative population with respect to all regions, while

effectiveness corresponds to minimizing the expected number of infections and deaths.

In this equity measure, namely infection equity constraint, we consider priority

concerning the proportions of infections and enforce resource allocation to limit the

proportion of infections with respect to the population for each region. The infection

equity constraint is given as follows:

|

∑
j∈J

∑
ω∈W

pωIωj,r∑
j∈J

∑
r∈R

∑
ω∈W

pωIωj,r
− ur∑

r∈R
ur
| ≤ k (2.2)

The infection equity constraint (2.2) gives a bound on the total number of infections

in each region relative to the total infections in all regions. Specifically, constraint

(2.2) implies that the absolute value of the number of infected individuals in region

r divided by the total number of infected individuals over all regions minus the ratio

of the population of region r, ur, over the total population over all regions should be
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less than or equal to a specific value k.

Because the EVD case fatality rate is high [50% on average [WHO, 2020c]]

and the EVD is highly contagious, having the lowest infections system-wide will lead

to the lowest mortality for the EVD. Thus, we consider the number of infections

instead of deaths as the main parameter for resource allocation in our equity metric.

The number of infections in constraint (2) could also be adjusted to the number of

fatalities.

Capacity Equity Constraint In the second formulation, we will formulate equity

by limiting the absolute deviation between the proportion of treatment capacity

established in a region and proportion of the population in a region relative to all

regions while again, effectiveness corresponds to minimizing expected deaths and

infections. The capacity equity constraint enforces allocating resources considering

the proportionality based on the relative population and is formulated as follows:

|

∑
j∈J

∑
ω∈W

pωCω
j,r∑

j∈J

∑
r∈R

∑
ω∈W

pωCω
j,r

− ur∑
r∈R

ur
| ≤ k, (2.3)

Similarly, we define the capacity equity constraint (2.3) to bound the absolute

value of the difference between the proportion of the capacity at region r over the total

capacity with the proportion of the population at region r over the total population

with a predefined parameter k.

Prevalence Equity Constraint We also study a widely-used equity metric, known

as prevalence [Lasry et al., 2008, Kedziora et al., 2019]. Here, we define the prevalence

equity constraint to limit the absolute difference between the regional prevalence
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(cases per population in a region) and the country prevalence (cases per population

over all regions) by the parameter k, and formulate it as follows:

|

∑
j∈J

∑
ω∈W

pωIωj,r

ur
−

∑
j∈J

∑
r∈R

∑
ω∈W

pωIωj,r∑
r∈R

ur
| ≤ k (2.4)

The prevalence equity constraint (2.4) bounds the proportion of infections in

each region relative to the proportion of infections in all regions.

2.2.7 Mixed-Integer Linear Program (MIP) Model

In the mathematical formulation (2.1), we have two types of non-linearity. The first

non-linear equation corresponds to the capacity-availability constraint (2.1o), and

the second corresponds to the equity constraints (2.2) and (2.3) (see Appendix A.2

for linearization of (2.1o), (2.2), and (2.3)). The non-linear multi-stage stochastic

programming epidemiclogistics model (2.1) is converted into an equivalent MIP

formulation by replacing the non-linear capacity availability constraint (2.1o) with

constraints (A.3), (A.4a)-(A.4d) and (A.5a)-(A.5d), the non-linear infection equity

constraint (2.2) with constraints (A.7a) and (A.7b), and the non-linear capacity equity

constraint (2.3) with constraints (A.8a) and (A.8b), as given in Appendix A.2.

We apply the MIP model to a case study involving the control of the 20142015

Ebola outbreak in the three most-affected West African countries, Guinea, Sierra

Leone, and Liberia. The details of the 20142015 Ebola outbreak data used as an input

into the mathematical model, including population and migration data, resource cost

data, and epidemiological data are presented in Appendix A.3.

The MIP model is solved using CPLEX 12.7 on a desktop computer running

with Intel i7 CPU and 64.0 GB of memory. A time limitation of 7,200 CPU seconds

was imposed for solving the test instances without equity constraints, while the time

limit is increased to 72,000 CPU seconds for the instances with equity constraints
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due to their computational difficulty. The multi-stage stochastic model is solved over

eight stages for the base case with each stage representing a 2-week period, thus for

a total of the 16-week planning horizon. Since we consider three outcomes on each

branch of the scenario tree, we solve for 38 = 6561 scenarios in the mathematical

model.

2.3 Results

In this section, we present computational results for the multi-stage stochastic MIP

model presented in Section 2.2 for the considered case study instance in West Africa.

Our goal in this section is to provide insights into the optimal and fair resource

allocation for controlling the Ebola disease outbreak under the uncertainty of disease

transmission.

2.3.1 Model Validation

In this subsection, we validate our model against the real outbreak data [WHO, 2016]

in terms of the cumulative number of infections from August 30, 2014, to December

19, 2014. The values of parameters used in the model are obtained from the literature

[Camacho et al., 2014, WHO E. R. Team, 2014, WHO, 2020c].

We fix the number of ETCs at each stage according to the number and timing of

the ETCs established in reality [Büyüktahtakın et al., 2018a]. For instance, according

to the outbreak data, one 50-bed ETC was established on September 15, 2014, in

northern Liberia, and so the value of the related variable is fixed to one in stage one

in the model. Once the ETCs are fixed in the model based on their opening time and

the capacity throughout the planning horizon, the model is solved and validated by

comparing the predicted number of infections with the real outbreak data given in

the WHO database [WHO, 2016].

57



According to the visual comparison of the predicted results and real outbreak

data in Figure 2.3, our model provides a good fit for the cumulative number of infected

individuals in Guinea, Sierra Leone, and Liberia during the considered time period.

In addition, we apply the paired t-test to analyze the difference between the pairs of

weekly predicted cases and the actual data. As shown in Table 2.8, all p-values are

greater than 0.05, indicating that our model provides statistically similar results to

the real outbreak data from August 30, 2014, to December 19, 2014.

Figure 2.3 Comparison of predicted cases with real outbreak data for cumulative
infections in Guinea, Liberia, and Sierra Leone.

Table 2.8 Statistical Analysis to Compare Bi-weekly Predicted Cases and Real
Outbreak Data

Country Mean Two-tailed paired t-test

Outbreak Predicted t-stat t-critical p-value

Guinea 221.0 266.8 0.41 1.89 0.65

Infections Sierra Leone 866.3 910.1 0.65 0.73

Liberia 471.1 534.5 0.45 0.67
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2.3.2 The Value of Stochastic Solution (VSS)

To demonstrate the value of using a stochastic program over a deterministic (expected

value) model, we use a standard measure in stochastic programming, known as the

value of stochastic solution (VSS) [Birge, 1982]. The VSS gives the expected gain

from solving a stochastic model over its deterministic counterpart, in which random

parameters are replaced by their expected values.

Two-Stage VSS WS is the wait-and-see problem objective value, which is the

expected value of using the optimal solution for each scenario. EEV is the expected

result of using the solution of the deterministic model (EV), which replaces all

uncertain parameters by their expected values, and RP is the optimal value of our

stochastic programming model, i.e., the minimization recourse problem. Then the

following inequalities are satisfied for the minimization problems [Madansky, 1960]:

WS ≤ RP ≤ EEV

The VSS can then be formulated as follows:

V SS = EEV −RP

A large value of the VSS implies that incorporating uncertainty is important to

represent the problem realistically, and the solution of the deterministic problem

is not “so good.” On the other hand, if the VSS value is small, replacing uncertain

parameters with their expected values might be a good choice.

Multi-Stage VSS For the multi-stage problem, the value of the stochastic solution

is introduced as a chain of values V SSt for t = 1, . . . , T , where T is the final period

of the planning horizon [Escudero et al., 2007]. In order to calculate the V SSt, the

solution up to stage t−1 of the associated deterministic model is fixed in the stochastic
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model resulting in the EEVt value, and RP value is subtracted from EEVt. Consider

a stochastic model, which only contains decision variables x and recourse variables y,

and let (x̂t, ŷt) be the optimal solution of the corresponding EV model. The EEVt

can then be formulated as:

EEVt : RP model

s.t. xω1 = x̂1 ∀ω ∈ Ω,

· · ·

xωt−1 = x̂t−1 ∀ω ∈ Ω.

The V SSt for each t = 1, . . . , T is then given as:

V SSt = EEVt −RP

As an example, we calculate the V SSt for an 8-stage problem for t = 1, . . . , 4.

Since EEV1 = RP , the value of the V SS1 is zero. We solve the model under a $24M

budget and present the results in Table 2.9 below.

Table 2.9 V SSt Values up to Four Stages for the 8-Stage Problem with EEVt
Values

V SS1(RP ) V SS2 V SS3 V SS4

0 41 65 69

The RP value for the 8-stage problem is 2207 individuals. The V SSt value is

increasing as the stage t increases, thus a multi-stage stochastic model is needed to

obtain a better result compared to the deterministic problem. We notice that under

the $24M budget level, the model allocates almost all the ETCs in the first stage.

Thus, the V SSt value will not change significantly when t ≥ 3. For varying budget

cases or disease dynamics, we expect that the model will allocate ETCs in the stages
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following the first stage, and thus the V SSt values may become larger than the values

in this instance. The results for solving the 8-stage model highlight the importance

of using a multi-stage stochastic model for the epidemic-logistics problem over its

deterministic counterpart.

2.3.3 Analysis of Budget Allocation

The columns of Table 2.10 present results for each Budget level ($12M, $24M, and

$48M), each Country and Region, Stage-1 Budget allocated, Total Budget

allocated, Stage-1 ETC (50/100) representing the number of 50- and 100-bed

ETCs allocated in the first stage of the planning horizon, and Total ETC (50/100)

indicating the total number of 50- and 100-bed ETCs allocated throughout the

planning horizon. Here, expected values of the optimal budget and the number of

ETCs allocated at the first stage and throughout the planning horizon over 6561

scenarios are presented for each budget level. Correspondingly, the expected values

of the total number of infections and funerals for different budget levels are presented

in Figure 2.6. The CPU time used to solve the model is 7230s for the $12M budget,

7232s for the $24M budget, and 7228s for the $48M budget. The optimality gaps for

all the cases are 0.1%.

The fifth column of Table 2.10 and Figure 2.4 show the allocation of the total

budget among three different countries. Due to the high initial number of infected

individuals, Sierra Leone gets the most budget allocation under all different budget

levels. Although the transmission rate of Guinea is higher than Liberia, the second

highest budget goes to Liberia under the $48M budget case because the initial state

of the infection in this country is high, and thus, the allocated budget will provide a

more significant impact on Liberia compared to Guinea when the budget is ample.

According to the results of ETC allocation at all budget levels, most of the beds

are allocated in the first period (stage-1) of the planning horizon under tight budget
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cases, as shown in Table 2.10. Figure 2.5 shows the total capacity allocation under

different budget levels.

Figure 2.6 shows the total number of infections and funerals in those three

countries under different budget levels. According to the result under the $0M budget

level, the case in which no intervention action is taken, the number of infections and

funerals in Sierra Leone would be extremely large if we do not take any intervention

action. As shown in Figure 2.6, the total number of infections and funerals in all

three countries, especially in Liberia and Sierra Leone, drops significantly from $12M

to $48M budget level.
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Table 2.10 Budget and Bed Allocated under Different Budget Levels

Budget Country Region Stage-1 Total Stage-1 Total

($M) Budget Budget ETC ETC

($M) ($M) (50/100) (50/100)

12

Guinea

UG 0.06 0.13 1/1 1/1

MG 0.01 0.02 1/0 1/0

LG 0.03 0.06 1/0 1/0

Sierra Leone S 4.33 11.67 1/4 1/4

Liberia
NL 0.04 0.09 1/1 1/1

SL 0.01 0.03 1/1 1/1

Total 4.47 11.99 6/7 6/7

24

Guinea

UG 0.72 1.83 1/1 1/1

MG 0.52 1.21 1/0 1/1

LG 0.62 1.53 1/1 1/1

Sierra Leone S 5.35 15.50 1/5 1/5

Liberia
NL 0.83 2.31 1/1 1/1

SL 0.57 1.60 1/1 1/1

Total 8.62 23.98 6/9 6/10

48

Guinea

UG 1.11 2.52 1/1 1/1

MG 0.91 1.91 1/1 1/1

LG 1.01 2.32 1/1 1/1

Sierra Leone S 6.85 18.89 4/5 5/5

Liberia
NL 3.94 10.42 3/3 3/3

SL 2.40 6.03 2/2 2/2

Total 16.22 42.09 12/13 13/13
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Figure 2.4 Total budget allocation under different budget levels.

Figure 2.5 Total capacity allocation under different budget levels.
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Figure 2.6 Total number of infections and funerals under different budget levels.

The results presented in this subsection represent the expected values over all

scenarios. To perform a more detailed analysis, we picked 5 (five) out of 6561 scenarios

and analyzed the corresponding results in the next subsection.

2.3.4 Analysis of Different Scenarios

In this subsection, we present results regarding the budget, and ETC allocation as well

as the corresponding total number of infections and funerals for five specific scenarios

under a budget level of $24M. Those four different scenarios are defined as follows.

The first scenario is the “All Low” case that corresponds to the low realization of the

uncertain community disease transmission rate from stages 1 to 8, the second scenario

is the “All Medium” case that corresponds to the medium realization of the uncertain

community disease transmission rate from stages 1 to 8, the third scenario is the “All

High” case that represents the high realization of the community disease transmission

rate from stages 1 to 8, the fourth scenario is the “Low-High” case that stands for
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the low realization of the disease transmission rate from stages 1 to 4 followed by

its high realization from stages 5 to 8, and the fifth scenario is the “High-Low” case

that represents the high realization of the community disease transmission rate from

stages 1 to 4 followed by a low transmission rate from stages 5 to 8. According to

the results, we divided scenarios into two groups except for the “All Medium” case;

the first one is called the better group, including “All Low” and “Low-High” cases,

on the other hand, the second group is called the worse group, encompassing “All

High” and “High-Low” cases. Similar to Table 2.10, Table 2.11 presents results for

each Scenario defined above under the $24M budget level.

The first-stage budget allocation is presented in the fourth column of Table

2.11, while the total budget is presented in both the fifth column of Table 2.11 and

Figure 2.7. In terms of bed allocation, all the regions have the same number of bed

allocation for stage-1 and for the total stages under all scenarios. This result implies

that it is optimal to open treatment centers early in all the locations, in particular,

in the initial stages.

Figure 2.8 represents the total capacity allocation under different scenarios.

According to the results, the total capacity allocated under the worse scenario group is

higher than the capacity allocated for the better group. This result implies that under

the worse scenario group, more budget is allocated to build new Ebola treatment

centers. In addition, as shown in Figure 2.9, the total number of new infections and

funerals under the “High-Low” case is much higher than the corresponding number

under the “Low-High” case. Thus, a scenario where the disease starts with a low

transmission rate and then progresses fast is better than a scenario in which the

disease progression is fast and then slows down. This may be because diseases that

initially progress less aggressively give us more time to get prepared, establish the

ETCs and treatment resources, and thus reduce the number of infections immediately.
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Table 2.11 Budget and Bed Allocated under Different Scenarios

Scenario Country Region Stage-1 Total Total

($M) Budget Budget Bed

($M) ($M) (50/100)

All Low

Guinea

UG 0.60 1.15 2/0

MG 0.60 1.02 2/0

LG 0.60 1.13 2/0

Sierra Leone S 5.39 12.44 0/5

Liberia
NL 2.15 5.46 0/2

SL 1.08 2.79 0/2

Total 10.41 24.00 6/9

All Medium

Guinea

UG 0.60 1.64 2/0

MG 0.60 1.43 2/0

LG 0.60 1.64 2/0

Sierra Leone S 5.39 16.13 0/5

Liberia
NL 0 0 0/0

SL 1.08 3.16 0/2

Total 8.26 24.00 6/7

All High

Guinea

UG 1.08 2.75 0/2

MG 0.60 1.51 2/0

LG 1.08 2.23 0/2

Sierra Leone S 7.06 17.51 2/7

Liberia
NL 0 0 0/0

SL 0 0 0/0

Total 9.82 24.00 4/11

Low-High

Guinea

UG 0.60 1.44 2/0

MG 0.60 1.18 2/0

LG 0.60 1.34 2/0

Sierra Leone S 4.31 12.02 0/5

Liberia
NL 1.68 4.91 2/2

SL 1.08 3.11 0/2

Total 8.86 24.00 8/9

High-Low

Guinea

UG 1.08 2.44 0/2

MG 0.60 1.29 2/0

LG 1.08 2.23 0/2

Sierra Leone S 6.46 15.47 0/7

Liberia
NL 1.08 2.56 0/2

SL 0 0 0/0

Total 10.29 24.00 2/13
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Figure 2.7 Total budget allocation under different scenarios.

Figure 2.8 Total capacity allocation under different scenarios.
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Figure 2.9 Total number of new infections and funerals under different scenarios.

The results above indicate that if the budget is tight or the disease moves fast,

some countries or regions may not get the ETC allocation or treatment. For example,

under the “All High” scenario, no budget is allocated to Liberia. Therefore, in the

next subsection, we introduce the equity constraint to remedy the problem of not

allocating any ETCs or treatment resources to a single country or some of the regions

of a country.

2.3.5 Impacts of Equity Considerations

In this subsection, we present results by adding each of the three equity constraints

(2.2), (2.3), and (2.4), as introduced in Subsection 2.2.6, separately into the

linearized multi-stage stochastic programming epidemic-logistics model (2.1). Equity

constraints impose a bound on the total number of infections in each region and thus

enforcing that each region considered in West Africa receives a more equitable share
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of resources, including ETCs and treatment funds, while minimizing the total number

of infections and deaths.

According to the results, imposing the infection equity constraint (2.2) or the

prevalence equity constraint (2.4) does not significantly change the optimal budget

allocation or the total number of new infections and funerals (see Appendix A.4

for detailed results). Without introducing the infection equity constraint into the

mathematical model (2.1), the absolute value of the difference between the infection

ratio and the population ratio in Guinea, Sierra Leone, and Liberia is 0.42, 0.04,

and 0.38, respectively, based on the optimal solution value similar to the k values

considered here. This result implies that our model balances the total number

of infections in each region with its population and population, even without the

infection equity constraint.

Similar to the infection equity case, we introduce the capacity equity constraint

(2.3) into the multi-stage stochastic programming epidemic-logistics model (2.1) for

an 8-stage instance with the $24M budget level under different values of k. Table

2.12 represents the run time specifics regarding the mathematical model (2.1) with

the capacity equity constraint (2.3), while Figures 2.10 and 2.11 present the budget

allocation and the total number of infections and funerals over the three considered

countries for varying k values. When k is larger than 0.4, we observe no significant

change in the results. However, a small k value can impact the results significantly.

For example, when k = 0.05, all three regions have a similar budget allocation. If k

increases from 0.05 to 0.2, the total number of infections and funerals in Guinea is

slightly increased, but it is decreased when k is further increased. Thus, allocating the

majority of resources to Guinea may not be necessary, and some of those resources

would be wasted. As we relax the equity capacity constraint by increasing the k

value from 0.05 to 0.4 and above, we observe a significant drop in the number of

infected individuals and funerals in Sierra Leone. The total number of infected people
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and funerals over all three countries is the largest (12,769) when the capacity equity

constraint is strictly enforced, and it is the smallest (10,995) when the capacity equity

constraint is relaxed. This result implies that enforcing a tight equity constraint might

adversely impact the total number of infections and deaths, and thus resulting in a

high cost that we have to pay for fairness.

Table 2.12 Model Run Specifics with the Capacity Equity Constraint (2.3)

k value Solution Time (CPU sec) Optimality Gap (%)

0.05 72,103 7

0.1 72,121 8

0.2 72,053 6

0.4 72,031 2

A large k value
7,232 0

(no-equity-constraint case)

Figure 2.10 Optimal budget allocation under different k values for an 8-stage
problem with $24M budget.
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Figure 2.11 Total number of new infections and funerals under different k values
for an 8-stage problem with $24M budget.

2.4 Discussion and Future Research Directions

In this chapter, we extended the epidemic-logistics model of Büyüktahtakın et al.

[2018a] to study an epidemic control problem in a large-scale population where

the transmission rate of the disease is uncertain. To our knowledge, this is the

first multi-stage stochastic epidemic-logistic model that takes into account both

the uncertain disease growth and equitable resource allocation simultaneously. We

consider various disease progression scenarios resulted from the realization of the

community transmission rates. Our objective is to minimize the total expected

number of infected individuals and funerals over all scenarios, all periods, and all

regions considered. We study the value of the stochastic solution and introduce the

equity constraints to analyze the fair resource allocation among different countries

and multiple regions of a country. Our multi-stage VSS analysis suggests that

the stochastic model considerably improves the solution of the deterministic model,

and the consideration of uncertainty in a multi-stage disease-transmission model is

necessary.

We define the infection level as the difference between the ratio of the number

of infected people in a region to the total number of infected people over all regions
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and the ratio of the population in a region to the total population over all regions.

Under tight budget levels, most of the budget would be allocated to the region that

has the highest initial infection level, while other regions would receive ETCs and

treatment resources according to their infection level as the available budget increases.

This indicates that the initial infection level is a key factor in resource allocation.

Additionally, more 100-bed ETCs would be allocated to the country that has a high

infection level since more capacity will be needed to treat infected people while saving

from the fixed cost of opening new ETCs.

According to the results, our model allocated most of ETCs in the first stage to

provide a quick response to the epidemic and reduce a large number of unnecessary

infections and funerals. Our results showed that the number of untreated infections

dropped quickly when early actions were taken with a sufficiently large budget, and

the disease was controlled much faster than the report date of the World Health

Organization (WHO). The uncertainty in disease transmission is a critical factor that

makes it challenging to manage an outbreak in a real-life situation. To be more

specific, the transmission rate might suddenly become high after a latent period, and

the existing resources may not be sufficient to handle such unexpected situations.

Consequently, a large number of unisolated and untreated individuals could stay in

the community and continue to spread the disease, as in the case of the current

outbreak of Coronavirus (COVID-19) disease [WHO, 2020e]. Thus, the preparedness

and early action to handle the uncertain disease transmission are crucial, and we

would rather “the beds waiting for people” than “people waiting for the beds.” Our

findings are consistent with several other articles that also report the importance

of early action for epidemic control [Lekone and Finkenstädt, 2006, Jacobsen et al.,

2016, Siedner et al., 2015]. The lessons learned from the EVD control in West Africa

by WHO and Centers for Disease Control and Prevention (CDC) also indicate that
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an early action will have a significant improvement in slowing down an epidemic and

eventually stopping it [CDC, 2019b, WHO, 2020c].

Different than the former literature, the solutions of our multi-stage stochastic

programming model show that the optimal timing of the resource allocation might

vary if we have a relatively ample budget. For instance, in both $24M and $48M

budget levels, some resources were allocated throughout the planning horizon in some

locations, such as Guinea and Sierra Leone. This is because we have more budget to

take action when the transmission of the disease gets worse. This result shows that

the timing of the resource allocation should be decided dynamically and based on the

predicted disease growth scenario and budget, and thus implying the superiority of a

multi-stage stochastic programming model over a two-stage or static model again.

We analyze five specific disease growth scenarios and study resource allocation

strategies under each scenario. Under the scenarios in which the disease moves faster,

more number of ETCs are allocated compared to the scenarios in which the disease

moves slower to treat more people. In addition, if the disease moves faster, the

majority of the capacity is allocated to the region that has the highest initial infection

level. If the disease consistently moves at a slow rate, the treatment capacity is

allocated more equally among regions to help fight against the disease. In the “Low-

High” case, in which the disease moves in a slow rate first and then starts to be

more aggressive in the following time stages, the model allocates budget immediately

to the regions with a high infection level and knocks down the number of infected

individuals to low values, which will lessen the impacts of a high disease transmission

rate later in the planning horizon. Because an initially slow-moving disease gives us

more time to get prepared to control the disease spread, the “Low High” case can be

considered as a better scenario compared to the “High-Low” case.

We introduced the infection and capacity equity constraints separately into our

model to analyze the impact of enforcing fairness in resource allocation. Solutions
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obtained with the infection equity constraint imply that the original optimal solution

balances the resource allocation among multiple regions in a similar fashion to the

infection equity constraint. Thus, our model takes into account the ratio of infection

to the total infection level as well as the ratio of the population to the total population

level over all three countries while making the resource allocation decision.

When a tight capacity equity constraint is enforced, the budget is allocated

equally to the three regions. However, in this case, some of the budget may be

wasted, and no obvious effects are brought out by providing additional capacity to

a region based solely on its population. This result shows that allocating treatment

resources proportional to population is sub-optimal, which is also consistent with the

findings of Ren et al. [2013]. When the capacity equity constraint is relaxed, the

number of infections and funerals in Guinea and Liberia is slightly changed, but this

number decreased significantly for Sierra Leone, and the total three countries. For

both tight and ample budget cases, the total number of infections and funerals is much

higher when the capacity equity constraint is strictly forced, resulting in a heavy price

we would have to pay for perfect equity in resource allocation. This result implies

that the decision maker should be cautious about enforcing fairness when allocating

resources to multiple regions.

There are several important future research directions that arise out of this

study. For example, the impact of vaccinations currently used to prevent the spread

of the disease could be analyzed in a future study. The influence of vaccination is

group-specific, and thus susceptible individuals can be divided into different groups

according to their age, sex, race, and health status. Due to the lack of available data,

the transmission rate from susceptible individuals to infected individuals would be

more difficult to predict under vaccination. Furthermore, different kinds of vaccines

used, the amount of vaccine allocated to each region, and the time when vaccination

becomes accessible might impact the disease transmission rate significantly. Our
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model could be extended by adding a compartmental class named as “vaccinated” to

study the various dimensions of vaccination.

Moreover, our multi-stage stochastic program only includes the expectation

criterion in the objective function when it compares random variables to find the best

decisions. Thus, our study provides a risk-neutral approach. In a future extension

of this work, risk measures, such as Conditional Value at Risk (CV aR), could be

incorporated into the objective function to reflect the perspectives of a risk-averse

decision maker.
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CHAPTER 3

RISK-AVERSE MULTI-STAGE STOCHASTIC PROGRAMMING TO
OPTIMIZING VACCINE ALLOCATION AND TREATMENT

LOGISTICS FOR EFFECTIVE EPIDEMIC RESPONSE

3.1 Introduction

Epidemics and pandemics have devastated humanity throughout its existence. One

recent example is the Coronavirus (COVID-19), which has spread all over the world

since its first detection in China at the end of 2019, causing over 33 million cases and

1 million deaths as of October 2020 [JHU, 2021]. The COVID-19 has also resulted in

large economic losses, and the associated damage continues to escalate. For example,

due to the pandemic, 400 million full-time jobs were lost across the world [CNBC,

2020], and consumer spending so far decreased by more than one trillion dollars only

in the U.S. [Routley, 2020]. Another example is the 2014-16 Ebola Virus Disease

(EVD), one of the deadliest viral infections, causing more than ten thousand deaths in

West Africa. Other recent examples include the Severe Acute Respiratory Syndrome

(SARS), which affected 26 countries since its discovery in South China in 2003, and the

novel swine-origin influenza A (H1N1) virus that spread fast in the human population

since its first appearance in 2009, causing tens of millions of cases and 12,469 deaths

only in the U.S. [CDC, 2016, WHO, 2019b, CDC, 2019a]. Such viral diseases causing

lower respiratory infections, such as pneumonia, have remained among the top causes

of death globally including stroke and cancer [WHO, 2021b, Hasan et al., 2019].

Effective and timely allocation of limited resources, such as medical treatment

and vaccination, plays a crucial role in alleviating the ravaging impacts of infectious

disease outbreaks on the human population. This problem has attracted much

attention from academics and practitioners. The vast majority of the research

literature involves simulations and differential equations [Siettos et al., 2015, Ajelli

et al., 2016, Craft et al., 2005, Kaplan et al., 2003] to estimate the transmission of
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the disease and tackle the epidemic resource allocation problem. Other studies use

network models and stochastic compartmental models to analyze various strategies

on the control of an epidemic [Berman and Gavious, 2007, Longini Jr et al., 2007,

Porco et al., 2004, Riley and Ferguson, 2006, Lekone and Finkenstädt, 2006, Tanner

et al., 2008, Funk et al., 2017] as well as resource allocation analysis [Zaric et al.,

2000, Tebbens and Thompson, 2009, Nguyen et al., 2017, Shaw and Schwartz, 2010].

Previous operations research models that study the epidemic diseases and

resource allocation mainly focused on the logistics and operation management to

control the disease in optimal ways [Zaric and Brandeau, 2001, Büyüktahtakın et al.,

2018a, Ekici et al., 2013, Liu et al., 2019, Queiroz et al., 2020]. Only a few of those

OR studies that integrate resource allocation with epidemics control consider the

uncertain parameters for resource allocation to control the disease. Those mainly

use stochastic and approximate dynamic programming [Coşgun and Büyüktahtakın,

2018, Long et al., 2018] and two-stage stochastic programming [Ren et al., 2013,

Yarmand et al., 2014, Tanner et al., 2008]. Because the growth of an infectious

disease dynamically changes over time, Yin and Büyüktahtakın [2021a] present a

multi-stage stochastic programming model to capture the dynamics of an evolving

disease for effective epidemic control under the uncertainty of disease transmission.

Multi-stage stochastic programs typically minimize an expectation criterion,

which calculates the expected cost of all possible scenarios, each of which is mapped

with a certain probability of occurrence. The expectation is the most widely-used

objective criterion in stochastic programming [Ahmed, 2006]. However, it does

not capture the variability in possible scenarios that could arise, in particular, the

situations with high impact and low probability. If some extreme scenarios occur,

there could be a significant loss when only the expected value is considered in resource

allocation decision-making. For example, in a disastrous epidemic outbreak situation,

non-repetitive decisions made at the beginning of the horizon, such as the placement
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of treatment facilities, may result in capacity shortages and unmet demand under

the realization of a severe disease spread scenario. At the beginning of an epidemic

outbreak, disease characteristics, such as the infection or disease transmission rate,

may be unknown, and the disease growth could be highly uncertain due to the lack

of data. Thus a large number of infections and losses could happen in shorter time

periods than expected, as in the case of COVID-19 [Lazzerini and Putoto, 2020,

Li et al., 2020]. The former epidemics control multi-stage stochastic programming

model of Yin and Büyüktahtakın [2021a] only considered an expectation criterion in

the objective function. To alleviate the adverse impacts of experiencing a disastrous

disease transmission scenario, we consider a risk measure in the objective function in

addition to the expectation criterion.

Conditional value-at-risk (CVaR) is a coherent risk measure that can be

used in an optimization model without losing convexity [Rockafellar and Uryasev,

2002]. Therefore, many previous studies considered mean-risk models with CVaR

in stochastic programming models [Ahmed, 2006, Rockafellar and Uryasev, 2002,

Schultz and Tiedemann, 2006, Miller and Ruszczyński, 2011]. CVaR-based mean-risk

stochastic programming has been studied in various applications, such as supply chain

management [Alem and Morabito, 2013], reverse logistic network design problem

[Soleimani and Govindan, 2014], solid waste management system [Dai et al., 2014],

water resources allocation [Zhang et al., 2016], and forestry invasive species control

planning [Bushaj et al., 2020a].

In this chapter, we address the problem of building a mean-CVaR, multi-stage,

stochastic mixed-integer programming epidemics-vaccination-logistics model. Our

model evaluates various scenarios regarding the disease growth and the vaccine

availability to optimize the distribution of treatment centers and vaccines while

minimizing the total expected number of infections, funerals, and close contacts of

infected people under a limited budget. Here, we consider the risk of experiencing
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scenarios that lead to adverse outcomes in terms of the number of infected and dead

people due to the epidemic. Combining the risk-neutral objective with a risk measure

allows for a trade-off between the weighted expected impact of the outbreak and the

expected risks associated with experiencing extremely disastrous scenarios.

For a newly-discovered disease, the invention of a new vaccine is difficult and

typically takes a long time. Even if there is an approved vaccine available, its

production will be short compared to the high demand in the early period of the

outbreak, and thus the availability of the vaccines will be limited. In this study, we

address the optimal distribution of limited vaccine supply in addition to the allocation

of treatment resources to control an epidemic outbreak under the uncertainty in the

vaccine supply and the transmission rate.

To incorporate human mobility within multiple regions of a country, we present

a new formulation to estimate migration rates among various locations. We apply

our model to the case of controlling the 2018-2020 EVD in the Democratic Republic

of the Congo (DRC). We provide insights into the optimal resource allocation among

different regions of DRC in a multi-period planning horizon with and without risk. We

also analyze how risk-aversion affects decision-making, such as the budget allocated

to treatment and vaccination and the number of infections and deaths, compared to

the risk-neutral problem.

3.1.1 Key Contributions and Insights

Former studies on the logistics of epidemics have omitted the risk of experiencing

extreme scenarios when formulating a stochastic optimization model. A risk-neutral

stochastic programming approach, which does not consider variability in possible

scenario outcomes, may perform poorly when there are outliers in the distribution

of the scenarios. Also, existing mathematical programming studies on epidemic

control have not incorporated vaccine allocation into a compartmental-logistics model.
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Furthermore, due to the lack of data, the rates of migration among multiple regions of

DRC are not known. The population is quite mobile within regions and countries in

Africa [Flahaux and De Haas, 2016]. Thus, movement rates are difficult to estimate.

In this chapter, we address those aforementioned limitations existing in both

the epidemiological modeling and healthcare operations research literature. Below,

we present the modeling and applied contributions with key recommendations to

decision makers.

Modeling Contributions. First, to our knowledge, we present the first risk-averse

multi-stage stochastic programming model presented in the research field of infectious

disease control. Different than the former literature, we formulate the uncertainty

in the transmission rate from the close contacts of infected people to the infections

compartment and the uncertainty in total vaccines available as two dependent random

variables in a multi-stage stochastic scenario tree. We then incorporate a nested

CVAR risk measure into the objective function of the formulation while defining

risk-related constraints to alleviate the risk of experiencing scenarios that lead to

adverse outcomes in terms of the number of infected and dead people due to the

epidemic. We also provide insights on how the expected impact and expected risk

in terms of deaths and infections change as the decision maker shifts from being

risk-neutral to risk-averse at varying risk levels.

Second, we address the optimal allocation of vaccines to multiple regions within

a country in addition to the allocation of Ebola Treatment Centers (ETCs) and

treatment resources to control an epidemic outbreak in a multi-stage stochastic

mean-risk model. Specifically, we have extended the Susceptible-Infected-Treated-

Recovered-Funeral-Burial epidemics-logistics model of Büyüktahtakın et al. [2018a]

into an epidemic-vaccination-logistics model by incorporating new ring vaccination

compartment under uncertainty and risk.
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Third, we develop a new formulation to estimate the migration rates between

regions of a country and integrate the impacts of human mobility into our epidemic-

vaccination-logistics model. Thus, our mathematical model captures the influence of

human movement on the transmission of the disease.

Fourth, our risk-averse epidemic-vaccination-logistics model is general and thus

could be adopted to study other epidemic diseases, such as influenza and H1N1, as

well as pandemics, such as the COVID-19.

Applied Contributions and Key Recommendations to Decision Makers.

We implement our multi-stage stochastic mean-risk model to study the case of the

2018-2020 EVD in the DRC. We collect and synthesize epidemiological, population,

and economic data of Ebola infections in the provinces of DRC and organize them

into regional data, using WHO Ebola situation reports [WHO, 2021a, 2020a]. We

perform computational experiments to analyze the impact of treatment budget, risk

parameters, uncertain vaccine availability, and vaccine acceptance and effectiveness

rates on the allocation of resources, such as ETC and vaccines, during an epidemic.

We drive several insights into the optimal resource allocation under various risk levels

that the decision maker is willing to take for controlling an infectious disease. As such,

our mathematical model could be used as a decision support tool to aid policymakers

in determining the optimal risk-averse treatment and vaccine-allocation policies.

Based on our results, we provide the following recommendations to inform the

resource allocation decision making under an epidemic situation:

(i) Regions with a high initial infection level (“the number of infected people in
a region” / “the total number of infected people” - “population in a region” /
“total population over all regions”) get the majority of the resources. While the
ETCs and treatment budget are mainly allocated to highly infected locations,
the model allocates a budget for vaccination to most locations to prevent the
disease’s spread. Our findings also suggest using the budget for vaccination
in regions where the disease has just started, while in regions with high initial
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infections, the model gives priority to build new ETCs and treat infected people
over vaccination.

(ii) The potential risk associated with regions with low or zero initial infection levels
should also be taken into account when making resource allocation decisions.
For instance, a non-infected region nearby a highly-infected location may also be
severely affected by the disease due to human mobility among multiple regions.
Thus, as the risk-averseness level increases, the budget allocated to areas with
the highest initial infection level is decreased by moving the ETC and treatment
budget to neighboring locations under the risk of getting infections.

(iii) A risk-averse decision-maker should expect a possible increase in the number
of infections and deaths while trying to mitigate disastrous outbreak scenarios.
Being risk-averse also increases the expected cost of treatment and vaccination.

(iv) For the considered case of the EVD in DRC, isolating and treating infected
individuals are the most efficient ways to slow the disease’s transmission. When
the supplied vaccines are available but limited, the vaccination is supplementary
to the primary interventions on reducing the number of infections.

(v) While vaccination is supplementary, its delay could cause an exponential
increase in the number of infections and deaths, even under the main inter-
vention measures, such as treatment and isolation. In particular, vaccination
at earlier stages of an epidemic would also help control the disease faster than
immunization at later stages. Thus, if available, vaccination should be applied
as early as possible for effective epidemic response.

(vi) The number of vaccines supplied to Upper North Kivu and Middle North Kivu,
the two most-impacted regions of DRC, has a complementary relationship.
When the vaccine acceptance rate is fixed, the number of vaccines provided
to these two regions only sightly fluctuates under different vaccine effectiveness
rates. Also, the more effective the vaccine is, the fewer vaccines are needed in
highly-impacted areas so that some remaining vaccines could be used in regions
with lower infection.

(vii) When the vaccine effectiveness rate is fixed, vaccine acceptance rates affect
vaccine allocation at the initial stages of the vaccine rollout. Under a very
low vaccine acceptance rate, available vaccines are moved from highly impacted
locations to less affected areas. However, vaccine acceptance rates do not impact
the total number of vaccines distributed throughout the planning horizon under
a limited vaccine supply.
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3.2 Multi-Stage Risk and Time Consistency

Let FZ(·) be the cumulative distribution function of a random variable Z. The α-

quantile of the distribution, infη{η ∈ R : FZ(η) ≥ α}, is defined as the value-at-risk

(VaR) at the confidence level α ∈ [0, 1) and denoted by VaRα(Z).

The mean excess loss or tail VaR, at level α, is called conditional value-at-risk

(CVaR), defined as CVaRα(Z) = E(Z | Z ≥ VaRα(Z)). Specifically, CVaR is the

conditional expected value that exceeds the VaR at the confidence level α. For a

minimization problem, VaRα is the α-quantile of the cost distribution, and it provides

an upper bound on the cost that is exceeded only with a small probability of 1− α.

On the other hand, CVaRα measures an expectation of the cost that is more than

VaRα, the α-quantile of the distribution of costs. The conditional value-at-risk can

be calculated as an optimization problem as follows [Rockafellar and Uryasev, 2002]:

CVaRα(Z) = inf
η∈R
{η +

1

1− α
E([Z − η]+)},

where (a)+ := max(a, 0) for any a ∈ R.

In this chapter, we study a mean-risk minimization problem, as first introduced

in Markowitz [1991]:

min
x∈X
{E(f(x, ω)) + λCVaRα(f(x, ω))}, (3.1)

where E(f(x, ω)) represents the expected cost function of the scenarios ω ∈ Ω,

CVaRα represents the conditional value-at-risk at α ∈ [0, 1), and λ ∈ [0, 1] is a

non-negative coefficient of the risk part. The risk preference parameter λ is the

weight of the risk term in the objective function (3.1), and can be adjusted for a

trade-off between optimizing an expectation value [E(f(x, ω))] and the level of risk

taken [CVaRα(f(x, ω))]. The larger the λ, more risk-averse the decision maker is.

The α parameter, on the other hand, gives the confidence level on the perceived

risky scenarios that exceed the maximum acceptable loss, VaRα. As α increases, the
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probability of exceeding the VaRα reduces, and thus the decision maker becomes more

risk averse. The parameter α ∈ [0, 1) is typically set to a high value, e.g., 0.95. The

parameters λ and α are set by the user to adjust the level of risk averseness and do

not have a direct relationship.

Time Consistency. When modeling a risk-averse multi-stage stochastic program,

time consistency is considered as a critical issue. Time consistency implies that if

you solve a multi-stage stochastic programming model today and find solutions for

each node of a tree, you should get the same solution if you resolve the problem

tomorrow when you are given the information that is observed and decided today. For

a multi-stage stochastic model, risk measures can be applied at every stage additively

or to the complete scenario path or in a nested form similar to dynamic programming.

The nested risk measures are shown to satisfy the time consistency of multi-stage

stochastic programs in the study of [Homem-de Mello and Pagnoncelli, 2016].

We consider a nested risk measure, expected conditional value-at-risk (E-CVaR),

as defined in Homem-de Mello and Pagnoncelli [2016]. The E-CVaR can be linearized

and formulated as a linear stochastic programming model. In the next section, we

will utilize the E-CVaR as a risk measure to formulate our mean-risk multi-stage

stochastic epidemics-vaccination-logistics model.

3.3 Problem Formulation

This section presents the compartmental model description and the mean-risk

formulation of the multi-stage stochastic epidemics-vaccination-logistics model.
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3.3.1 Notation

In this subsection, we describe the model notation that will be used throughout the

rest of this chapter.

Sets and indices:

J : Set of time periods, J = {0, ..., J}.

A : Set of ETC types, A = {1, ..., A}.

R : Set of regions, R = {1, ..., R}.

Mr : Set of all surrounding regions of region r.

Ω : Set of scenarios, Ω = {1, ...,Ω}.

j : Index for time period, where j ∈ J .

r : Index for region where r ∈ R.

a : Index defining type of ETC, where a ∈ A.

ω : Index for scenario, where ω ∈ Ω.

Transition parameters used to describe the rate of movement between disease
compartments:

χ1,r :Disease fatality rate without treatment in region r.

χ2,r :Disease fatality rate while receiving treatment in region r.

χ3,r :Disease survival rate without treatment in region r.

χ4,r :Disease survival rate with treatment in region r.

χ5,r :Safe burial rate of Ebola-related dead bodies in region r.

σr :Transmission rate per person in general community
due to community interaction in region r.

θω1,r :Transmission rate per person of close contacts due to

86



interaction with infected individuals in region r under scenario ω.

θ2,r :Transmission rate per person of close contacts during a traditional funeral
ceremony in region r.

f :Vaccine acceptance rate.

βr :Vaccine effectiveness rate.

εr :Transmission rate per person from successfully vaccinated V (immune)
to general community S (not immune anymore) in region r.

Other parameters:

bj,r :Unit cost of treatment for an infected individual in region r at the end of
period j.

gaj,r :Fixed cost of establishing type a ETC in region r at the end of period j.

ka :Capacity (number of beds) of type a ETC.

ur :The population in region r.

ej,r :Unit cost per vaccine in region r at the end of period j.

∆ :Total available budget for treatment.

πr :Initial number of susceptible individuals in general community in region r.

φr :Initial number of close contacts of infected people in region r.

ϕr :Initial number of vaccinated individuals in region r.

$r :Initial number of infected individuals in region r.

κr :Initial number of treated individuals in region r.

ϑr :Initial number of recovered individuals in region r.

υr :Initial number of unburied dead bodies in region r.

τr :Initial number of buried dead bodies (funerals) in region r.
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ςr :Initial treatment capacity in terms of the number of ETC beds in region r.

il→r :Migration rate of infected individuals from surrounding regions l ∈Mr to
region r.

hl→r :Migration rate of close contacts from surrounding regions l ∈Mr to region r.

ir→l :Migration rate of infected individuals from region r to surrounding
regions l ∈Mr.

hr→l :Migration rate of close contacts from region r to surrounding regions l ∈Mr.

dωj,r :Binary variable for linearization in region r at the end of period j under
scenario ω.

Uω
j,r :Auxiliary variable to be substituted with (Cω

j,r − T ωj,r)dωj,r
in region r at the end of period j under scenario ω.

W ω
j,r :Auxiliary variable to be substituted with Iωj,r(1− dωj,r)

in region r at the end of period j under scenario ω.

QLB :Lower bound for Cω
j,r − T ωj,r.

QUB :Upper bound for Cω
j,r − T ωj,r.

ILB :Lower bound for Iωj,r.

IUB :Upper bound for Iωj,r.

Gω
j :Number of total supplied vaccines at the end of period j under scenario ω.

q :Average number of close contacts per each infected individual.

State variables:

Sωj,r :Number of susceptible individuals in general community
in region r at the end of period j under scenario ω.

Hω
j,r :Number of close contacts of infected people

in region r at the end of period j under scenario ω.

V ω
j,r :Number of successfully vaccinated individuals, who are fully immunized to

disease, in region r at the end of period j under scenario ω.
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Iωj,r :Number of infected individuals in region r at the end of period j under
scenario ω.

T ωj,r :Number of individuals receiving treatment in region r at the end of period j
under scenario ω.

Rω
j,r :Number of recovered individuals in region r at the end of period j under

scenario ω.

F ω
j,r :Number of deceased individuals due to the epidemic in region r at the

end of period j under scenario ω.

Bω
j,r :Number of buried individuals in region r at the end of period j under

scenario ω.

Ĥω
j,r :Number of close contacts of infected people migrating into

region r at the end of period j under scenario ω.

H̃ω
j,r :Number of close contacts of infected people emigrating

from region r at the end of period j under scenario ω.

Îωj,r :Number of infected individuals migrating into region r
at the end of period j under scenario ω.

Ĩωj,r :Number of infected individuals emigrating from region r at the end of
period j under scenario ω.

Decision variables:

Cω
j,r :Total capacity (number of beds) in ETCs to be established in region r at

the end of period j under scenario ω.

I
ω

j,r :Number of infected individuals hospitalized (and quarantined) in region r
at the end of period j under scenario ω.

yωaj,r :Number of type a ETCs established in region r at the end of period j
under scenario ω.

Oω
j,r :Number of vaccines allocated to region r at the end of period j

under scenario ω.

Risk parameters:
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α :Confidence level of value-at-risk, where α ∈ [0, 1).

λ :Non-negative risk preference parameter or mean-risk trade-off coefficient.

Risk variables:

ηωj :Value at risk at the confidence level α for each stage j
under scenario ω.

zωj :Value exceeding the value-at-risk at the confidence level α (ηωj ) at stage j
under scenario ω.

Sets and Parameters related to non-anticipativity:

N :Set of nodes in the scenario tree.

n :The serial number of nodes in the stochastic decision tree.

β(n) :Set of scenarios that pass through node n ∈ N .

t(n) :The corresponding stage that node n marked in the decision tree.

3.3.2 Compartmental Disease Model Description

Figure 3.1 One-Step disease compartmental model.

Figure 3.1 shows the transmission dynamics of the EVD in a region r located

in DRC for each period j. The disease spreads among susceptible individuals (S) as
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well as close contacts of infected (H), by either person-to-person contact at a periodic

rate of θω1,r under scenario ω or through touching Ebola-related dead bodies that are

not yet buried during traditional funerals at a periodic rate of θ2,r in region r. Thus,

once close contacts (H) or susceptible individuals (S) become infected, they move to

the infected (I) compartment. However, individuals in the general community (S) are

infected with a lower rate of σr compared to close contacts (H).

Here, we focus on modeling the ring vaccination, where only close contacts with

infected people can be vaccinated. The quantity of vaccines allocated to region r

under scenario ω at the end of period j under scenario ω is defined by the variable

Oω
j,r. Given the effectiveness rate of vaccination, βr, there will be βrO

ω
j,r people who

are moving from the (H) to (V) compartment in each period j, where (V) represents

the successfully vaccinated individuals, who become fully immunized by vaccination.

Next, due to the time effect, successfully vaccinated individuals (V) become no longer

immune to the disease over time and move to the general community (S) with a

rate of εr in region r. When the number of infected people increases, the close

contacts of infected people will also increase. Thus, the dotted arrow from the general

community (S) to close contacts (H) represent the movement of people from (S) to

(H) as (I) increases. Furthermore, since people are getting vaccinated, the number

of close contacts in (H) being infected and moving into the (I) compartment should

be decreased by
θω1,r
q
βrO

ω
j,r, where q is the average number of close contacts for each

infected individual. The term
θω1,r
q

shows the proportion of close contacts that would

be infected for each infected individual, and because βrO
ω
j,r represents the number of

successfully vaccinated close contacts who become fully immunized by vaccination,

θω1,r
q
βrO

ω
j,r gives the number of close contacts saved by the vaccination.

Without treatment, some of the infected individuals in the compartment (I)

will die and move to the funeral (F) compartment with the rate of χ1,r, while some

of the infected individuals will recover with a rate of χ3,r, moving into the recovered
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compartment (R). However, the number of individuals hospitalized for treatment (T)

is based on the treatment capacity variable Cω
j,r, which gives the available number of

beds in the ETCs in region r under scenario ω in period j. Thus, there is no constant

transition rate from I to T. Meanwhile, individuals who did not receive treatment

will remain in the community and spread the disease. In treated compartment (T),

some individuals will recover with a periodic rate of χ4,r, and a fraction of them will

die with a periodic rate of χ2,r. The deceased individuals in the funeral compartment

are safely buried at a rate of χ5,r, moving into the buried compartment (B).

To describe the migration of infected individuals and close contacts within a

given country, we define il→r and ir→l as the rates of migration of infected individuals

into and out of region r, as shown in dotted arrows going in and out of compartment

(I). Similarly, we define hl→r and hr→l as the rates of migration of close contacts of

infected people (H) into and out of region r.

3.3.3 Uncertainty and Model Assumptions

Modeling Uncertainty. In this chapter, we used a discrete set of scenarios ω ∈ Ω to

model the uncertainties related to the disease–the uncertainty in the transmission rate

from the close contacts of the infected individuals to infections and the uncertainty

in total vaccines supplied (available) at each stage j. Each scenario has a probability

of pω, where
∑
ω∈Ω

pω = 1. We assume that the uncertainty of the transmission rate

is highly dependent on the availability of vaccine supply. If the vaccine supply is

high, we observe a low transmission rate from close contacts to infections, and if

the vaccine supply is low, we will have a high transmission rate instead. For our

multi-stage stochastic model, we have two branches in each node of the scenario tree,

representing the two possible realizations in each stage j: low and high transmission

rates θω1,r corresponding to the high and low levels of vaccines supplied at time j under

scenario ω, Gω
j . The case study values of the uncertain transmission and the vaccine
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availability parameters under two realizations at each branch of the scenario tree are

presented in Table B.7 in Appendix B.1.4.

Assumptions on Model, Data, and Parameters. The transmission of the

EVD is affected by many factors, including damaged public health infrastructures,

cultural beliefs, behavioral practices, and violent events frequently happening in DRC

[Wannier et al., 2019, WHO, 2015]. Due to these issues, data to calibrate some of

the model parameters is either lacking or inaccurate. Data parameters, such as the

transmission rate and the probability of scenarios, are quite difficult to estimate.

Therefore, we make assumptions about some of the parameters used in the model

formulation.

First, in our current model, each infected individual is assumed to have 100

close contacts, including direct close contacts and their close contacts (i.e., contacts

of contacts) [CDC, 2015, Doshi et al., 2020]. Those close contacts (e.g., household

and health care workers) are considered as the high-risk group to be infected. In

contrast, the susceptible people in the general community are considered in the lower

risk group compared to infected people’s close contacts. Due to the nature of the ring

vaccination, we assume that only the close contacts of infected people will get the

vaccination.

Second, in our model, each node of the scenario tree has two realizations of

the transmission rate and vaccine availability, as low and high. Former research has

shown that violent events happening in DRC contribute to the increased transmission

of EVD [Wannier et al., 2019]. During our planning horizon of 15 weeks, from June

25, 2019, to October 8, 2019, seven violent events were reported [Dickey, 2018].

Considering the likelihood of a violent event happening in each period, we assign

a probability of 0.5 to each potential outcome (low and high) of disease transmission

in our scenario tree in each time period. Disease transmission rates under no violent

events are reported to vary between 0.81 and 1.08 [Wannier et al., 2019]. Thus, we
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use a low transmission rate of 0.948 for North Kivu and 0.84 for Ituri based on the

estimations reported in Camacho et al. [2014] and Wannier et al. [2019]. The mean

value of the transmission rate in DRC is 1.11 [Wannier et al., 2019], and the highest

transmission rate in history is 1.83 [Chowell et al., 2004]. In between those two values

of transmission rates in DRC, we consider a high transmission rate of 1.422 for North

Kivu and adjust it proportionally to a high transmission rate of 1.26 for Ituri based

on the ratios of low transmission rates in both locations. Similar to their impacts on

transmission rates, we assume that violent events lead to a low vaccine supply upper

bound due to hindered humanitarian operations and lowered access to the infected

population. Third, the transmission rate defined in our model represents how many

new infections can be generated from the existed infected individuals through a certain

time period. Under the situation of a small population, this value will be influenced

by the total number of susceptible individuals since the total number of infected

individuals will approach the maximum of population. However, our implementation

regions have a large amount of population, it will not be influenced by the total

number of susceptible individuals since the number of infections will never reach

the total number of susceptible individuals under the interventions. In addition, the

dependent relationship between general community and the number of newly infected

individuals will cause a non-linear issue in the optimization model. Thus, the number

of newly infected individuals in our model is independent with the general community

size. Finally, current Ebola vaccines are shown to provide immunization for at least

two years with high and stable levels of antibodies to the Ebola Zaire Virus in the

blood of volunteers who are vaccinated [WHO, 2021a, Branswell, 2018]. Thus, we

assume that recovered individuals will not get infected again within four months of

vaccination or recovering from the disease, which is nearly the planning horizon we

consider in our study.
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3.3.4 Model Formulation

Using the notation defined in Appendix 3.3.1, the mean-risk multi-stage stochastic

epidemic-vaccination-logistics model can be formulated as follows:

min
∑
j∈J

(
∑
ω∈Ω

pω(
∑
r∈R

(Iωj,r + F ω
j,r +Hω

j,r) + λ(ηωj +
1

1− α
zωj )) (3.2a)

s.t. Sω0,r = πr, Iω0,r = $r, T ω0,r = κr, Rω
0,r = ϑr, Hω

0,r = φr,

F ω
0,r = υr, Bω

0,r = τr, V ω
0,r = ϕr, Cω

0,r = ζr, ∀r ∈ R, ∀ω ∈ Ω, (3.2b)

Sω(j+1),r = Sωj,r − σrIωj,r + εrV
ω
j,r − q((σr + θω1,r)I

ω
j,r + θ2,rF

ω
j,r −

θω1,r
q
βrO

ω
j,r),

j ∈ J \ {J},∀r ∈ R, ∀ω ∈ Ω, (3.2c)

Iω(j+1),r = Iωj,r + Îωj,r − Ĩωj,r + (σr + θω1,r)I
ω
j,r + θ2,rF

ω
j,r −

θω1,r
q
βrO

ω
j,r

−(χ1,r + χ3,r)I
ω
j,r − I

ω

j,r, j ∈ J \ {J},∀r ∈ R, ∀ω ∈ Ω, (3.2d)

Hω
(j+1),r = Hω

j,r + Ĥω
j,r − H̃ω

j,r − θω1,rIωj,r − θ2,rF
ω
j,r − βrOω

j,r + q((σr + θω1,r)I
ω
j,r

+θ2,rF
ω
j,r −

θω1,r
q
βrO

ω
j,r) +

θω1,r
q
βrO

ω
j,r, j ∈ J \ {J}, ∀r ∈ R, ∀ω ∈ Ω, (3.2e)

V ω
(j+1),r = V ω

(j+1),r + βrO
ω
j,r − εrV ω

j,r,

j ∈ J \ {J},∀r ∈ R, ∀ω ∈ Ω, (3.2f)

T ω(j+1),r = T ωj,r + I
ω

j,r − (χ2,r + χ4,r)T
ω
j,r,

j ∈ J \ {J},∀r ∈ R, ∀ω ∈ Ω, (3.2g)

Rω
(j+1),r = Rω

j,r + χ3,rI
ω
j,r + χ4,rT

ω
j,r,

j ∈ J \ {J},∀r ∈ R, ∀ω ∈ Ω, (3.2h)

F ω
(j+1),r = F ω

j,r + χ1,rI
ω
j,r + χ2,rT

ω
j,r − χ5,rF

ω
j,r,

j ∈ J \ {J},∀r ∈ R, ∀ω ∈ Ω, (3.2i)

Bω
(j+1),r = Bω

j,r + χ5,rF
ω
j,r, j ∈ J \ {J}, ∀r ∈ R, ∀ω ∈ Ω, (3.2j)

Îωj,r =
∑
l∈Mr

il→rI
ω
j,l, Ĥω

j,r =
∑
l∈Mr

hl→rH
ω
j,l,

j ∈ J,∀r ∈ R, ∀ω ∈ Ω, (3.2k)
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Ĩωj,r =
∑
l∈Mr

ir→lI
ω
j,r, H̃ω

j,r =
∑
l∈Mr

hr→lH
ω
j,r,

j ∈ J,∀r ∈ R, ∀ω ∈ Ω, (3.2l)∑
r∈R

(
∑

j∈J\{0,J}

∑
a∈A

gaj,ry
ω
aj,r +

∑
j∈J

(bj,rT
ω
j,r + ej,rO

ω
j,r)) ≤ ∆ ∀ω ∈ Ω, (3.2m)

Cω
j,r =

j∑
m=1

∑
a∈A

kay
ω
am,r + C0,r, j ∈ J \ {J},∀r ∈ R, ∀ω ∈ Ω, (3.2n)

I
ω

j,r = Uω
j,r +W ω

j,r, j ∈ J \ {J},∀r ∈ R, ∀ω ∈ Ω, (3.2o)

Uω
j,r ≤ QUBd

ω
j,r, Uω

j,r ≥ QLBd
ω
j,r,

Uω
j,r ≤ (Cω

j,r − T ωj,r)−QLB(1− dωj,r), Uω
j,r ≥ (Cω

j,r − T ωj,r)−QUB(1− dωj,r),

j ∈ J \ {J},∀r ∈ R, ∀ω ∈ Ω, (3.2p)

W ω
j,r ≤ IUB(1− dωj,r), W ω

j,r ≥ ILB(1− dωj,r),

W ω
j,r ≤ Iωj,r − ILBdωj,r, W ω

j,r ≥ Iωj,r − IUBdωj,r

j ∈ J \ {J},∀r ∈ R, ∀ω ∈ Ω, (3.2q)

Oω
j,r ≤ Hω

j,r, j ∈ J,∀r ∈ R, ∀ω ∈ Ω, (3.2r)∑
r∈R

Oω
j,r ≤ Gω

j j ∈ J,∀r ∈ R, ∀ω ∈ Ω, (3.2s)

zωj ≥
∑
r∈R

(Iωj,r − Iωj−1,r + F ω
j,r +Hω

j,r)− ηωj , j ∈ J,∀ω ∈ Ω, (3.2t)

zωj ≥ 0, j ∈ J,∀ω ∈ Ω, (3.2u)

yωat(n),r − yan,r = 0, I
ω

t(n),r − In,r = 0, Cω
t(n),r − Cn,r = 0,

Oω
t(n),r −On,r = 0, zωt(n),r − zn,r = 0, ηωt(n) − ηn = 0,

a ∈ A, ∀ω ∈ β(n),∀n ∈ N, (3.2v)

Sωj,r, Oω
j,r, Hω

j,r, V ω
j,r, Iωj,r, T ωj,r, Rω

j,r, F ω
j,r, Bω

j,r, I
ω

j,r ≥ 0,

j ∈ J,∀r ∈ R, ∀ω ∈ Ω, (3.2w)

yωaj,r ∈ {0, 1, 2, . . .}; yωaj,r ≤ Iωj,r,

a ∈ A, j ∈ J \ {J},∀r ∈ R, ∀ω ∈ Ω, (3.2x)

dωj,r ∈ {0, 1}, ∀j ∈ J,∀r ∈ R, ∀ω ∈ Ω. (3.2y)
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The objective function (3.2a) minimizes the total expected number of infected

individuals, funerals, plus the close contacts of infected individuals, plus the

conditional value-at-risk over all scenarios, in all regions throughout the planning

horizon.

Initial Condition Constraints:

Constraints (3.2b) give the initial number of the general community, infected, treated,

recovered, close contacts, funerals, buried, and vaccinated compartments, and the

total ETC capacity, respectively, in each region r at the beginning of the planning

horizon.

Population Dynamics Constraints:

Equations (3.2c)–(3.2j) represent the dynamics of the population in each disease

compartment, which are shown in Figure 3.1. Constraint (3.2c) shows that the

number of susceptible individuals in the community in region r at the end of

period j + 1 under scenario ω is equal to the number of susceptible individuals

from the previous time period minus the number of newly infected individuals,

plus the number of successfully vaccinated individuals who were no longer immune

to the disease at the end of period j under scenario ω. Furthermore, the term

q((σr +θ1,r)I
ω
j,r +θ2,rF

ω
j,r−

θω1,r
q
βrO

ω
j,r) represents the number of susceptible individuals

in the community (S) that transfer to close contacts (H) due to the newly infected

individuals (I), where q is the average number of close contacts of each newly infected

individual.

Constraint (3.2d) implies that the number of infected individuals at the end of

period j+1 in region r under scenario ω is equal to the number of infected individuals

from the previous time period plus the net migrated infected individuals, plus newly

infected individuals from the close contacts, general community, and funerals, minus
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individuals who were saved from infection by vaccination (
θω1,r
q
βrO

ω
j,r) minus recovered,

died, and treated individuals at the end of period j under scenario ω.

Constraints (3.2e) define the number of close contacts at the end of time period

j + 1, which equals the number of close contacts from the previous time period plus

the net migrated close contacts, minus the number of newly infected individuals from

close contacts, minus the number of successfully vaccinated individuals during period

j, and plus the new close contacts and the close contacts saved by the vaccination.

Constraint (3.2f) ensures that the number of successfully vaccinated individuals at

the end of period j + 1 equals the number of successfully vaccinated individuals from

the previous time period plus the number of new successfully vaccinated individuals

and minus the number of individuals who are not immune to the virus anymore.

Constraint (3.2g) describes the total number of treated individuals in region r at the

end of time period j + 1 under scenario ω, which is equal to the number of treated

individuals at the end of period j plus infected individuals who were admitted to

the hospital for treatment based on the availability of beds minus treated individuals

who died or recovered. Constraint (3.2h) implies that the cumulative number of

individuals who recover in region r at the end of the period j + 1 under scenario ω is

equal to the number of individuals who recover from the previous period plus newly

recovered individuals. Constraint (3.2i) ensures the number of unburied funerals in

region r at the end of time period j + 1 under scenario ω is equal to the sum of

infected and treated individuals who died, minus the buried dead people. Constraint

(3.2j) gives the total number of buried dead bodies at the end of the period j under

scenario ω.

Migration Constraints:

Constraints (3.2k) and (3.2l) formulate the number of net immigrated individuals in

infected and close contact compartments, similar to the spatio-temporal reaction-
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diffusion (RD) models [Kıbış and Büyüktahtakın, 2019]. Specifically, constraints

(3.2k) show the number of infected individuals and close contacts migrating into

region r from region l ∈Mr under scenario ω. Constraints (3.2l) represent the number

of infected individuals and close contacts emigrating from region r into neighboring

region l ∈Mr under scenario ω.

Logistics and Operation Management Constraints:

Constraints (3.2m)–(3.2s) show the restrictions regarding logistics and operations

management. Specifically, the inequality (3.2m) represents the budget constraint on

the sum of the fixed costs of opening ETCs and the variable cost of treating infected

individuals, and the cost of allocating vaccines over all regions r in all periods j

under scenario ω. Constraint (3.2n) denotes the total capacity in region r at the

end of period j under scenario ω. Constraint (3.2o)–(3.2q) are linear constraints

that ensure the number of available beds in ETCs limit the number of hospitalized

individuals in region r. Particularly, linear equations (3.2o)–(3.2q) are equivalent to

the non-linear constraints implying that the number of hospitalized individuals (I)

is equal to the minimum number of infected individuals and the capacity available

at established ETCs after considering currently hospitalized individuals in ETCs (see

Yin and Büyüktahtakın [2021a] for the details of the linearization). Constraint (3.2r)

represents that the number of vaccines supplied to region r at period j under scenario

ω is limited by the number of close contacts in region r at period j under scenario ω.

Constraint (3.2s) ensures that the total number of vaccines allocated over all regions

can not exceed the available supply at each time period.

Risk Measure Constraints:

Constraints (3.2t) and (3.2u) represent the risk measure limitations. Constraint (3.2t)

calculates the difference between the objective function value and the value-at-risk
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for each stage under each scenario. Constraint (3.2u) ensures that the loss value

exceeding the value-at-risk is included in the CVaR calculation, and thus zωj should

be greater than or equal to 0.

Non-anticipativity Constraints:

Constraints (3.2v) are non-anticipativity restrictions stating that if two scenarios

share the same path up to stage j, the corresponding decisions will be the same.

Non-negativity Constraints:

Constraints (3.2w) imply non-negativity restrictions on the number of individuals who

are susceptible, being vaccinated, close contacts, successfully vaccinated, infected,

total treated, recovered, funeral, buried, and treated, respectively, under scenario ω.

Constraints (3.2x) represent the integer requirements on the number of type-a ETCs

to be opened in region r at the end of period j under scenario ω. Additionally, if

the number of infected individuals is less than 1 in a region r, the value of integer

variable corresponding to opening an a-bed ETC is forced to be zero, and thus there

will be no ETC opened in that region.

Constraint (3.2y) represents the binary variable dωj,r, which is 1 when the number

of infected individuals to be hospitalized is restricted by the number of available beds

in the ETCs, and 0 when all infected individuals are hospitalized for treatment in the

ETCs due to the available capacity.

3.4 Case Study and Results

3.4.1 Implementation Details

We apply our model 3.2a–3.2y to the case of the 2018-2020 EVD in the Democratic

Republic of the Congo (DRC). The North Kivu and Ituri provinces of the DRC are
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affected by the EVD. We divided these two provinces into six different sub-regions:

Upper (UNK), middle (MNK), and lower (LNK) North Kivu, and upper (UI), middle

(MI), and lower (LI) Ituri. We describe the case study data used to formulate the

model parameters, including population and migration data, resource cost data, and

epidemiological data in Appendix B.1. The details of the mathematical formulation

used to calculate the migration rates are presented in Appendix B.1.2.

We use a nested risk measure in multi-stage stochastic programming, known as

the E-CVaR, in the stochastic model, as described in Section 3.2. We assume that

the vaccines’ availability impacts the transmission rates in community contact, and

thus uncertain transmission rates depend on the uncertain vaccine supply. Hence the

high (low) availability of vaccines implies the low (high) realization of the uncertain

transmission parameter. We present the value of the vaccine availability and uncertain

transmission parameters under two realizations at each branch of the scenario tree,

as shown in Table B.7 in Appendix B.1.4. We solve the model for a 5-stage time

period, where each stage corresponds to three weeks (from June 25, 2019, to October

8, 2019, in total 15 weeks) with high and low vaccine supply under different budget

levels. Because each node of the scenario tree has two branches, each corresponding

to a possible realization of the random parameters, we have 25 = 32 scenarios for

T = 5 stages.

The mathematical model is solved using CPLEX 12.7 on the desktop running

with Intel i7 CPU and 64.0GB of memory. For each run, the time limitation is set

at 72,000 CPU seconds. In the following subsections, we present results from solving

the mean-risk multi-stage stochastic epidemics-vaccination-logistics model.
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3.4.2 Resource Allocation under Different Budget Levels

We test the formulation for each time period under different budget levels: Very Tight

($40M), Tight ($70M), Medium ($100M), and Ample ($130M). The mean-risk

trade-off coefficient λ is set to be 1, and the confidence level α is set to be 0.5.

Figure 3.2 presents the optimal allocation of resources (budget, capacity

[number of beds], and vaccine) for each region under each budget level. According to

the results, the regions with the highest initial infestation levels receive most of the

budget, as in the case of Upper North Kivu and Middle North Kivu (Figure 3.2a).

When the budget increases from very tight to ample, other regions will also get their

share of the budget depending on their initial infection levels and disease-growth

scenarios in the model.

Similar to the total budget allocation, the total capacity is allocated based on

the initial infection levels (Figure 3.2b). However, different from the total budget

allocation, the majority of the ETCs are assigned in the first stage of the 5-stage

planning horizon. For instance, under the $130M budget level, 1450 beds are allocated

to Upper North Kivu in the first stage, while the total number of beds allocated to

Upper North Kivu only increases by 150 by the end of stage five. Therefore, quick

response in terms of allocating most of the treatment centers at the beginning of

the outbreak will help to slow down the spread of the disease, while the majority of

the budget should be allocated to treat infected people in ETCs and vaccine close

contacts over multiple periods throughout the planning horizon.

When the budget level increases, the number of vaccines allocated to each region

does not always increase (Figure 3.2c). For instance, under the $100M budget level,

Lower North Kivu receives 177 vaccines, while this reduces to 128 vaccines under the

$130M budget level. A possible reason for this is that vaccination can prevent more

people from being infected, but it is not the most efficient way to reduce infections.
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(a)

(b)

(c)

Figure 3.2 Budget, capacity (bed), and vaccine allocated to each region (λ = 1
and α = 0.5).
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Thus, the model gives priority to opening new ETCs and treating infected individuals

and then uses the rest of the budget to allocate vaccines.

3.4.3 Analysis of the Risk Trade-off

We perform an analysis of the risk parameters λ and α in terms of their impact

on the objective function values and the resource allocation strategies. Specifically,

under the $70M budget level, we compare four different problems with respect to their

risk-averseness level, adjusting λ and α values accordingly–risk-neutral (λ = 0, α = 0),

weak risk-aversion (λ = 1, α = 0.05), mild risk-aversion (λ = 10, α = 0.5) and strong

risk-aversion (λ = 100, α = 0.95).

Impact, Risk, and Cost under Risk-Neutral and Risk-Averse Policies In

this subsection, we provide insights on the effect of risk parameters λ and α on

the expected impact and expected risk and how those values change as the decision

maker shifts from being risk-neutral to risk-averse at varying risk levels. To analyze

the results with the risk trade-off coefficient, we decompose the objective function

into the expected impact [E(f(x, ω))] and the expected risk [λCVaRα(f(x, ω))], as

demonstrated in Equation (3.1). Specifically, the expected impact represents the

expected value of the total number of infections, funerals, and close contacts of

infected people, and the expected risk corresponds to the expected CV aRα term

in Eq. (3.2a). Table 3.1 presents results for the optimal objective function value

for Eq. (3.2a), expected impact, expected risk, and the expected total cost over the

four different risk-averseness levels described above. We also present values of the

expected impact and expected risk for various combinations of λ = {0, 1, 10, 100} and

α = {0.05, 0.5, 0.95} under the $70M budget level in Table 3.2. In both Tables 3.1

and 3.2, the “Expected Risk” under the risk-neutral model, where λ = 0, is computed

as the expected total number of infections, funerals, and close contacts of infected

people over all periods for the (1− α) worst scenarios.
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Table 3.1 Comparison of Objective Value, Expected Impact, Expected Risk, and
Expected Cost under Various Risk-Averseness Levels

Risk-aversion Risk Neutral Weak Mild Strong

(λ, α) (0, 0.95) (1, 0.05) (10, 0.5) (100, 0.95)

Objective Value a 3,881,046 7,771,744 44,365,553 409,005,446

Expected Impact 3,881,046 3,881,501 3,882,344 3,884,815

Expected Risk b 5,628,125 3,890,243 4,048,321 4,051,206

Expected Cost ($M) 69.70 69.76 69.84 69.85

a The calculation with units is represented as “Expected Impact” + λ * “Expected
Risk”
b The Expected Risk is the CV aRα and does not include preceding λ coefficient

According to Table 3.1, the risk-neutral model has the smallest expected impact

but the largest expected risk compared to all other risk-averseness levels. This

indicates that the risk-neutral model provides the least expected number of infections,

funerals, and close contacts over all scenarios, but once one of the worse-case

scenarios happens, it gives much larger number of infections, funerals, and close

contacts compared to the risk-averse model. When both λ and α increase, the

level of risk-averseness increases. Consequently, the optimal objective function value

significantly increases due to the additional values of risk that are added to the

objective formulation. The expected impact also increases, implying that there is a

price for being risk-averse in terms of the increased number of infections, funerals, and

close contacts under a more risk-averse policy. Moreover, the total cost of allocated

capacity, treatment, and vaccination increase slightly when the risk-averseness level

increases, implying that more budget is needed as the decision maker becomes more

risk-averse.
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Table 3.2 Expected Impact and Expected Risk for Different Risk-averseness Levels

λ\α 0.05 0.5 0.95

Expected Expected Expected Expected Expected Expected

Impact Risk a Impact Risk a Impact Risk a

0 3,881,046 3,957,443 3,881,046 4,512,163 3,881,046 5,628,125

1 3,881,501 3,890,243 3,881,323 4,047,577 3,887,508 4,054,319

10 3,881,053 3,889,802 3,882,344 4,048,321 3,883,418 4,050,082

100 3,883,462 3,892,219 3,881,704 4,047,882 3,884,815 4,051,206

a The Expected Risk is the CV aRα and does not include preceding λ coefficient

Each row of Table 3.2 shows the change of the expected impact and expected

risk when we fix the value of one of the risk parameters (λ = {1, 10, 100} and α =

{0.05, 0.5, 0.95}) and change the other. All optimality gaps for the computational

results in Table 3.2 are between 0.51% and 1.26%. According to the results, the

largest expected risk occurs when λ = 0 for each α value. Similar to Table 3.1,

in Table 3.2 the expected risk is the highest and the expected impact is the lowest

under the risk-neutral model. When we move from risk-neutral (λ = 0) to risk-averse

(λ = {1, 10, 100}), the expected impact always increases. However, changing the λ

parameter have a non-monotonous influence on the expected impact. When fixing the

λ value and increasing the α value, the expected risk increases because we increase

the confidence level for the impact of scenarios that is under the V aR value. When

we increase α from 0.05 to 0.95, the risk-averseness level increases, and the expected

impact also shows an increasing trend for all risk-averse policies (λ ≥ 1).

Resource Allocation under different Risk-Averse Policies Table 3.3 presents

the allocation of the budget over the five stages of the planning horizon. We observe

that the majority of the budget is allocated under stages one, two, and four, while
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as the risk-averseness increases, the budget under stage one is slightly decreased and

moved further into the future to be used later. The total budget used over all stages

increases as the decision-maker becomes more risk-averse.

Table 3.3 The Budget ($M) Allocation at Each Stage over Four Different Risk-
Averseness Levels

Risk-averseness Level Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Total

Risk-neutral 14.0 20.6 8.9 20.6 5.6 69.7

Weak Risk-aversion 12.1 22.4 9.0 20.6 5.6 69.8

Mild Risk-aversion 13.0 22.0 8.8 20.9 5.3 69.8

Strong Risk-aversion 13.8 20.9 9.0 20.8 5.4 69.9

Figure 3.3 Budget allocation over treatment, ETC capacity, and vaccine for four
different risk-averseness.

Figure 3.3 illustrates the budget allocation of treatment, ETC capacity, and

vaccination for different risk-averseness levels. As shown here, the capacity and

treatment budget shows an increasing trend, and the budget allocated to vaccination

shows a decreasing trend when the risk-averseness level increases. This may imply
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that as the decision-maker becomes more risk-averse, more investment is made on

treatment rather than vaccination. It helps reduce variability in the set of scenarios

that results in the highest number of infections and deaths.

The optimal allocation of treatment budget, ETC capacity, and vaccine

allocation under different risk-averseness levels is presented in Figure 3.4. When the

risk-averseness level increases, the budget allocated to Upper North Kivu, which has

the highest initial infection level, is decreased by moving the budget to neighboring

locations with a potential risk of getting infections from Upper North Kivu (Figure

3.4a). For example, under the strong risk-averseness level, the budget allocated to

Middle Ituri and Lower Ituri increases because they are geographically close to Upper

North Kivu and thus are under the risk of getting infections through the large migrant

population from Upper North Kivu.

The total capacity allocation of 1700 beds over all regions under the risk-neutral

and weak risk-averseness cases is increased to 1750 beds under the mild and strong

risk-averseness levels to alleviate adverse outcomes under the worst-case scenarios

exceeding the VaR value (Figure 3.4b). As the risk-averseness level increases, the

model allocates more beds to some regions that have low infection levels, considering

their proximity to highly-infected locations and the risk of getting more infections

from those locations. For example, Lower Ituri, right above the Upper North Kivu,

receives an increased number of beds under the strong risk-averseness level.

The number of vaccines allocated to each region varies under different risk-

averseness levels (Figure 3.4c). The total number of allocated vaccines decreases

when the risk-averseness level increases. Regions that initially have zero infections

get zero bed capacity. However, they still get vaccination due to the migration impact

and the expectation of the disease spread under the risk-neutral and all risk-aversion

cases. Thus, in locations where the disease has just started, the model uses the budget

for vaccination to stop or slow the epidemic’s growth rather than building new ETCs.
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(b)

(c)

Figure 3.4 Treatment budget, capacity (bed), and vaccine allocation under
different risk-averseness levels.
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3.4.4 Analyzing the Impact of Delay in Vaccination

In this subsection, we compare the number of infections and funerals for each stage

for the 5-stage planning horizon with respect to the delay of the vaccine application

in the first stage (Delay 1), first two stages (Delay 2), first three stages (Delay 3),

first four stages (Delay 4) and five stages (Delay 5) under the $70M budget level.

For example, in “Delay 3”, we fix the number of available vaccines in the first three

stages to zero. In those first three stages, we assume a high transmission rate, which

is equivalent to the low vaccine supply, and thus results presented here provide a

lower bound on the number of infections and deaths. Here, we also consider a mild

risk-averseness level by setting λ at 10 and α at 0.5.

The results of the cumulative number of infections and funerals in each type

of delay in vaccines are shown in Figure 3.5, while Figure 3.6 demonstrates the non-

cumulative infections and funerals for each delay option over no delay of vaccines for

five stages. Both figures indicate that the number of infections and funerals increases

exponentially over time for each delay type. The more the vaccination is delayed, the

larger the infections and funerals are. Furthermore, the difference in the number of

infections and funerals between “Delay 1” and “Delay 3” is larger than the difference

between “Delay 3” and “Delay 5.” A possible reason is that the vaccination at the

initial stages of the disease transmission would decrease the transmission rate faster

and cause fewer infections and funerals than vaccination at later stages. These results

indicate that the vaccines should be supplied as soon as possible once the epidemic

breaks out, given the vaccines’ availability.
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Figure 3.5 Cumulative number of infections and funerals for each stage under
different types of delay (λ = 10 and α = 0.5).

Figure 3.6 Non-cumulative number of infections and funerals for each delay option
over no delay (λ = 10 and α = 0.5).

3.5 Analyzing Vaccine Effectiveness and Acceptance Rates

In this section, we perform the sensitivity analysis on vaccination effectiveness and

acceptance rates. Specifically, we adjust the vaccination effectiveness rate and the

proportion of close contacts who are willing to get vaccinated. In WHO [2019c], the
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vaccination effectiveness rate is estimated as 0.975. In our model, we test vaccination

effectiveness rates varying from 0.7 to 0.975 in increments of 0.05. Specifically,

we change the value of the parameter βr from low to high to simulate the impact

of varying vaccination effectiveness rates on the number and location of vaccines

allocated.

Several papers study the willingness of people to be vaccinated. For instance,

Kpanake et al. [2018] find that 38% of people always choose to be immunized for

the Ebola Virus Disease. Mudatsir et al. [2019] conclude that 74% of the people

who participate in the interview express their acceptance for an Ebola vaccine. In

addition, Ughasoro et al. [2015] suggest that 80% of the respondents accept being

vaccinated with the Ebola vaccine. Therefore, we consider four different vaccine

acceptance rates in the sensitivity analysis, which are 0.01, 0.4, 0.8, and 1. In reality,

the vaccine acceptance rate may not be as low as 0.01. However, considering that

the vaccine supply is quite limited, even under a vaccine acceptance rate of 0.4, the

number of people who are willing to get vaccinated is still more than the upper bound

on the vaccine supply. Thus, we use a vaccine acceptance rate of 0.01 to observe the

changes in the vaccine allocation when the upper bound of vaccine supply is larger

than the number of people who are willing to get vaccinated. In particular, we use

a new parameter f to represent the number of close contacts who are willing to be

vaccinated. Thus, Constraint (3.2r) is replaced by:

Oω
j,r ≤ Hω

j,rf, j ∈ J,∀r ∈ R, ∀ω ∈ Ω. (3.3)

Constraint (3.3) implies that the number of successfully vaccinated individuals

at stage j in region r under scenario ω should be less than or equal to the number of

close contacts who are willing to be vaccinated.
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In this section, we assume that the amount of available vaccine supply changes

with respect to the time period. For example, in the initial stages of an epidemic

or a vaccine discovery, it is less likely to make sufficient vaccine supply available

to all demand locations. As time progresses, the vaccine supply upper bound will

also increase. In this section’s analysis, the vaccine supply upper bound under each

scenario is set to be 1000 at stage one, 2000 at stage two, 4000 at stage three, 5000

at stage four, and 6000 at stage five. The budget level for each test instance is set

to be an ample level of $130M . Since the number of people who are willing to get

vaccinated at the initial stages is less than the number of available vaccines, the

remaining vaccines can be allocated in the following stages. Thus, in this analysis,

Constraint (3.2s) is replaced by:

∑
r∈R

Oω
j,r ≤

j∑
m=1

Gω
m −

j−1∑
m=1

∑
r∈R

Oω
m,r, j ∈ J,∀ω ∈ Ω. (3.4)

Constraint (3.4) ensures that the number of vaccines allocated to region r at

stage j under scenario ω should be less than or equal to the total number of available

vaccines up to stage j minus the total number of vaccines that are allocated to various

regions from stage 1 until the end of stage j − 1.

Figure 3.7 shows the optimal number and location of vaccines allocated under

different vaccination effectiveness rates when the vaccine acceptance rate is fixed at

0.8. For all the cases, the Upper North Kivu has most of the vaccines allocated,

followed by Middle North Kivu. Also, the number of vaccines allocated to these two

regions has a complementary relationship. When Upper North Kivu receives more

(fewer) vaccines, Middle North Kivu will get fewer (more) vaccines allocated. This is

because these two regions suffer from Ebola the most. The total number of infections

and deaths does not fluctuate much if the number of vaccines allocated to these two

regions is in a range of 11,000 to 15,000 for Upper North Kivu and 2,000 to 6,000 for
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Middle North Kivu. In addition, the total number of vaccines allocated under each

case is close to the total supply upper bound of 18,000. Thus, we can conclude that,

as long as the vaccine stays effective, no matter what vaccine effectiveness rate is,

the total number of vaccines allocated will not significantly change under a limited

supply of vaccines.

When the vaccination effectiveness rate increases, we also observe some of the

vaccines that are allocated to regions with high levels of infections are moved to regions

with fewer infections. Specifically, 17,670 vaccines allocated to Upper North Kivu and

Middle North Kivu reduce to 16,113 vaccines when the vaccination effectiveness rate

increases from 0.7 to 0.975. This result implies that the more effective the vaccine

is, the fewer vaccines are needed in highly-impacted areas so that regions with lower

infection could benefit from the remaining vaccines.

Figure 3.7 Vaccine allocation under different vaccine effectiveness rates (λ = 10
and α = 0.95).

Figures 3.8a and 3.8b present the results for the first-stage and total vaccine

allocation over all stages, respectively, under different vaccine acceptance rates when

the vaccine effectiveness rate is fixed at 0.975. When the vaccine acceptance rate

is 0.01, fewer vaccines are allocated in the first stage compared to the number of

vaccines allocated under vaccine acceptance rates of 0.4, 0.8, and 1. Upper North
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Kivu is the only region that receives vaccines at the first stage when the vaccine

acceptance rate equals 0.4, 0.8, and 1 because it has the highest number of initial

infections among all regions. However, under the vaccine acceptance rate of 0.01, the

number of close contacts willing to get vaccinated in Upper North Kivu is less than

the supplied vaccines in the first stage. Thus, some vaccines in hand are allocated to

other regions.

Compared to the first stage vaccine allocation, the total vaccine allocation over

all stages shows a similar trend under different vaccine acceptance rates. This is

because as the number of infections increases in the following stages, the number

of close contacts also significantly increases. Therefore, even under the vaccine

acceptance rate of 0.01, the number of close contacts who are willing to get vaccinated

is more than the vaccine supply upper bound when considering the planning horizon

of five stages. Furthermore, remaining vaccines from previous time stages will be

used in the following stages. The total number of vaccines allocated to Upper North

Kivu under the 0.01 vaccine acceptance rate is less than those in other cases. This

is because more vaccines become available under a quite low vaccine acceptance rate,

and those available vaccines are allocated to other regions with infections lower than

that of Upper North Kivu.

3.6 Discussion and Conclusions

This chapter presents a multi-stage mean-risk epidemics-vaccination-logistics model

to address the optimal resource allocation challenges for epidemic control. We apply

our model to the 2018-2020 EVD case in the Democratic Republic of the Congo

(DRC). Because the information regarding the migration rates between regions in

DRC is limited, we develop a method to estimate the transmission rate between each

considered region. In our multi-stage stochastic programming model formulation, we

use the CVaR in a nested form over multiple stages to minimize the total expected
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(b)

Figure 3.8 The first-stage and total vaccine allocation under different vaccine
acceptance rates (λ = 10 and α = 0.95).
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number of infections, funerals, and close contacts of infected people, and a weighted

risk in a five-stage planning horizon, including 15 weeks.

The results regarding the analysis of risk trade-off show that there is a price for

being prepared for the worst set of disease-growth scenarios. In other words, a risk-

averse decision-maker should expect a possible increase in the number of infections

and deaths while trying to mitigate disastrous outbreak scenarios. Thus, when the

mean-risk trade-off coefficient increases, the confidence level in a risk-averse model will

improve while the expected impact on infections and deaths worsens. Furthermore,

the total cost of treatment and vaccination increases as the decision-maker becomes

more risk-averse.

Allocating the resources fully based on the initial infection level will increase

the risk of experiencing more infections and deaths in some disease scenarios. For

example, the initial infection level of Lower Ituri is not high. Still, the model considers

the possible adverse scenarios that may happen in Lower Ituri and allocates more

resources to Lower Ituri under the case of strong risk-aversion. Thus, the potential

risk associated with the disease growth in regions that have low initial infection levels

but are in close proximity to hot spots of infection should also be considered when

making risk-averse decisions on epidemics resource allocation.

The analysis of resource allocation under different budget levels indicates that

the initial infection level is the key parameter that influences the budget and capacity

allocation among each region. The regions with high initial infection levels get more

resources, similar to the findings in Yin and Büyüktahtakın [2021a]. Different from

the former literature, we study the budget allocation trade-off between treatment

and vaccination while also accounting for the disease transmission dynamics. The

results of vaccine allocation under different budget levels suggest that priority must

be given to treat and isolate infected individuals in ETCs, while vaccination is

supplementary to treatment. This has also been justified by the study of Kucharski
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et al. [2016], which states that ring vaccination might be insufficient to contain the

outbreak if standard measures for controlling the transmission are not working, as in

the EVD case in West Africa in early 2014. In another study, Kretzschmar et al.

[2004] state that ring vaccination can contain the smallpox disease provided the

intervention measures are very useful. Being risk-averse reinforces our findings on

the resource-allocation priority of treatment over vaccination.

Our results also show that as the number of stages with no vaccines supplied

increases, the number of infections, funerals, and close contacts exponentially

increases even under other intervention measures, such as treatment and isolation.

This result implies that vaccination is still quite effective when performed in addition

to standard intervention measures, as shown in the studies of Kretzschmar et al.

[2004], Ajelli et al. [2016], and Merler et al. [2016]. Under the same length of delay,

the delay of the vaccine at the early stages will cause more infections and deaths

compared to the delay in the late stages. This proves that when the vaccines are

limited but available, we should supply them as early as possible to minimize the

number of infections at the beginning of an outbreak. Similarly, Wells et al. [2019]

mention that even modest delays in initiating vaccination could noticeably degrade

the impact of the epidemic control.

Interestingly, the model allocates vaccination to regions that get no treatment

resources under a limited budget because it estimates a disease spread to these

locations due to human mobility. Specifically, the model uses the budget for

vaccination in regions where the disease has just started to curb the growth of the

epidemic, while in regions with high initial infections, the model gives priority to

build new ETCs and treat infected people over vaccination.

The sensitivity analysis on the vaccine effectiveness and acceptance rates

indicates that the number of vaccines supplied to Upper North Kivu and Middle

North Kivu has a complementary relationship. The number of vaccines provided
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to these two regions fluctuates under different vaccine effectiveness rates when the

vaccine acceptance rate is fixed. This fluctuation does not influence the number of

infections significantly.

When the vaccine effectiveness rate is fixed, vaccine acceptance rates affect

vaccine allocation in the initial stages. Specifically, available vaccines are moved from

highly impacted locations to less affected areas under a very low vaccine acceptance

rate. In the early stages of an epidemic, there are fewer infections and close contacts,

and the number of close contacts who are willing to get vaccinated is less than the

number of vaccines supplied when the vaccine acceptance rate is very low. However,

in the subsequent stages of an epidemic, the number of infections increases, thus

significantly increasing close contacts. Therefore, even under a low vaccine acceptance

rate, the number of close contacts who are willing to get vaccinated is much more than

the available vaccine supply as the disease progresses over time. Consequently, those

leftover and newly-supplied vaccines are allocated in the stages following the first

stage to locations with both high and low infection levels. Thus, the total number of

vaccines distributed over the whole planning horizon is similar under different vaccine

acceptance rates.

This study leads to a number of important future directions. For example, the

method we present for calculating the migration rate between each region could be

further improved. Human behavior and social effects could be incorporated into the

calculation of migration rates. For instance, Miami is not a metropolis compared to

New York City. However, a substantial amount of people may travel to Miami for

vacation. In our model, we only chose the metropolis of each region as the center

of movement but did not consider other regions that may also have large short-term

population migrations. This research could be extended by improving our estimation

by considering more complicated environments to formulate the migration-estimation

model.
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In our epidemic-vaccination-logistics model, the term “logistics” represents the

spatial and temporal allocation of ETCs, treatment budget used at ETCs as a

function of T (treated) people, and the number of vaccines in region r at the end of

period j under scenario ω. Here logistics do not involve details, such as distributing

vaccines to certain locations within a region and its transportation specifics. A

future extension of this work could investigate the transportation details of both

vaccination and treatment resources, such as distributing those resources to specified

locations within a region and its associated costs. Future work could also specify the

transmission rate parameter, θ1,r, as a function of the vaccines allocated in region

r, converting the model into a stochastic non-linear mixed-integer program. Both

future directions would require the development of advanced solution algorithms,

such as decomposition methods, global optimization, and cutting plane algorithms,

to tackle the increased complexity of the mathematical model.

In this study, we present a general multi-stage mean-risk epidemics-vaccination-

logistics model. This epidemic model could be adopted, for example, in the case of

the COVID-19 pandemic. In such a model, the susceptible individuals can be divided

into multiple sub-compartments based on their risk, demographics, and behaviors.

For example, susceptible individuals can be divided into different sub-groups, such

as people who wear masks and people under quarantine, with each group having a

different infection rate, depending on the intervention measures applied. We can

also analyze specific groups for vaccination, e.g., doctors, nurses, and volunteers

to be injected. Increasing the number of compartments in a heterogenous-mixing

epidemiological model will further complicate the epidemic-vaccination-logistics

optimization model. Thus, the analysis of multiple specified groups can be studied

in a more detailed agent-based simulation rather than a large-scale meta-population

model as in our case.
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For the pandemic control, we should also consider the international imported

infections for the selected regions. Also, the travel patterns of people during the

pandemic might influence the transmission of the disease. Therefore, our future

research would present new mathematical models that will control a pandemic and

help optimize resource allocation decisions.
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CHAPTER 4

COVID-19: OPTIMAL ALLOCATION OF VENTILATOR SUPPLY
UNDER UNCERTAINTY AND RISK

4.1 Introduction

The world is undergoing a major health crisis, which has now eventually turned into a

pandemic. The Coronavirus Disease 2019 (COVID-19), first detected in Wuhan city

of China at the end of 2019, has been creating havoc on human life and economies

in all parts of the world. Countries worldwide enforce lockdown and quarantine rules

to slow down the spread of the virus. The lockdown, imposing travel restrictions,

and social distancing have severely affected the economy, from small-scale industries

to stock prices and international trading. The virus has such a high transmission

rate, causing more than 104.7 million cases globally, out of which 2.3 million people

have succumbed to death by mid-February 2021 [JHU, 2021]. The continuous increase

seen in coronavirus cases has made a worldwide scarcity of essential resources, such as

ventilators, Intensive Care Unit (ICU) beds, Personal Protective Equipment (PPE),

and masks. Effective, sufficient, and timely delivery of those critical resources to

serve the COVID-19 patients has been a major challenge faced by the world countries

during the pandemic.

COVID-19 is primarily an acute respiratory disease. Ventilator incubation

delivers high oxygen concentrations while removing carbon dioxide and reduces the

risk of hypoxia for COVID-19 patients [Meng et al., 2020]. The standard Acute

Respiratory Distress Syndrome protocol mandates that the most severe COVID-19

patients, who constitute 5% of all COVID-19 patients, should receive ventilator

support [Bein et al., 2016]. As a result, the life of many COVID-19 patients depends on

the use of ventilators. The shortage of supplies and uncertainty in disease transmission

has affected the proper allocation of ventilators, causing immense distress on the
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healthcare system. Due to ventilator shortages worldwide during the pandemic’s peak

times, hospital officials have had to make life-altering resource allocation decisions and

prioritized the care of COVID-19 patients [Ranney et al., 2020]. To tackle ventilator

shortages and reduce the number of COVID-related deaths, studies have come up

with new approaches for ventilator distribution. For example, Ranney et al. [2020]

suggest that the demand for ventilators can be fulfilled by the government by allowing

other industries to come together and help medical industries to cater to the needs of

the ventilators. Another study by Castro et al. [2020] suggests that the government in

Brazil should start thinking about expanding the resource capacity rather than only

focusing on the allocation of the available resources for controlling COVID-19. White

and Lo [2020] develop a framework for the distribution of ICU beds and ventilators

depending on the priority scores using a scale of 1 to 8 based on patients’ likelihood

of survival and ethical considerations.

Operations Research (OR) methods have been widely used to determine optimal

resource allocation strategies to control an epidemic or pandemic. Several studies

have used multi-period OR models to optimize the allocation and redistribution of

ventilators (see, e.g., Mehrotra et al. [2020], Bertsimas et al. [2020], and Blanco et al.

[2020]). Other OR research models that study the epidemic diseases and resource

allocation mainly focus on the logistics and operation management to control the

disease in optimal ways [Büyüktahtakın et al., 2018a, Zaric and Brandeau, 2001, Yin

and Büyüktahtakın, 2021a, Kaplan et al., 2003, Tanner et al., 2008, Coşgun and

Büyüktahtakın, 2018]. We refer the reader to excellent reviews of Dasaklis et al.

[2012] and Queiroz et al. [2020] for a discussion of OR models for epidemic resource

allocation.

While OR has been an extremely useful tool for effective and timely allocation

of resources as a response to epidemics, none of the former work has considered

the ventilator allocation problem using a risk-averse spatio-temporal stochastic
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programming model under uncertainty of asymptomatic infections. People move

between regions, states, and countries, which aggravates the disease transmission

to the other areas. Evaluating undetected or asymptomatic individuals is critical

for determining disease dynamics because asymptomatic individuals move around

and unknowingly infect other individuals [McCrimmon, 2021]. Thus, the short-term

migration of people is a critical factor that needs to be considered to forecast the

transmission of the COVID-19 realistically. However, the short-term migration

rate is hard to predict and is affected by interventions and human behaviors.

Furthermore, disease transmission rates are not constant and rather evolve over time

with government interventions, such as the lockdown or social distancing measures.

This change in the transmission rates also should be considered in a realistic model.

To our knowledge, none of the former OR ventilator allocation models have integrated

the epidemiological aspects of the disease and resource allocation challenges in one

optimization model.

In this chapter, we address the limitation of realistically forecasting the

transmission of COVID-19 and build a risk-averse multi-stage stochastic epidemics-

ventilator-logistics programming model to study the ventilator allocation for the

treatment of severe COVID-19 patients. Our model considers the uncertainty of

untested asymptomatic individuals during the transmission of COVID19 and involves

various pandemic scenarios for the proportion of untested infections during each

time stage of the planning horizon. Our model also incorporates the short-term

migration between the highly-impacted regions while using changing transmission

rates under various non-pharmaceutical intervention measures. The model optimizes

the distribution of ventilators while minimizing the total expected number of infected

and deceased people. We calibrate, validate, and test our epidemiological ventilator

allocation model using COVID-19 data collected during the pandemic’s early stages.
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4.1.1 Key Contributions and Insights

In summary, former stochastic programming approaches on ventilator allocation in

a pandemic situation have involved a time domain of only two stages, and have

not integrated an epidemic model within the stochastic program. Furthermore, the

mathematical models on the forecast of the COVID-19 do not include the uncertainty

of untested asymptomatic infections. They do not incorporate the impact of short-

term migrations on COVID-19 transmission in an epidemiological model. Also, former

studies on the COVID-19 modeling and logistics have omitted the time consistency

of the risk for making decisions over multiple stages of a stochastic program under

extreme pandemic scenarios.

Our modeling and applied contributions to the epidemiology and OR literature

are summarized below.

Modeling contributions: First, to our knowledge, this is the first study

that addresses the optimal distribution of ventilators to control a pandemic in a

multi-stage stochastic mean-Conditional Value at Risk (CVaR) model. Considering

multiple stages is essential to capture uncertain disease dynamic over multiple

time periods. This model includes many realistic effects critical in the COVID-19

pandemic, including untested asymptomatic infections, human movement among

multiple regions, and evolving transmission rates under non-pharmaceutical inter-

vention measures. Second, we consider the uncertainty of the proportion of untested

asymptomatic infections at each stage and integrate this unknown dimension of

the pandemic by generating a multi-stage scenario tree. Third, we present a

new susceptible (S)- tested infected (I)- untested asymptomatic (X)- hospitalized

(H)- ICU (C)- recovered (R)- death (D) compartmental disease model specialized

for the COVID-19, and also incorporate the short-term human migration among

multiple regions into this epidemiological model. Fourth, we derive a new time-

and space-varying disease transmission formulation, which takes into account the
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impact of government interventions on transmission rates. Fifth, we formulate a

budget-constrained ventilator allocation logistics model. Sixth, we incorporate a

time-consistent CVaR risk-measure and the expectation criterion in the objective

function to alleviate the impacts of extreme pandemic scenarios. Lastly, we integrate

all those elements into one epidemics-ventilator-logistics mathematical formulation,

which minimizes the number of infections and deceased individuals under different

intervention strategies while determining the optimal timing and location of resources

(ventilators) allocated. Our model combines the forecast of the transmission of

COVID-19 and the determination of optimal ventilator allocation strategies in one

formulation. Accordingly, the decision-maker can evaluate possible outcomes of

wait-and-see decisions while foreseeing how the disease could progress in each time

period.

Applied Contributions: We apply our general multi-stage mean-risk epidemics-

ventilator-logistics model to the case of controlling the COVID-19 in highly-impacted

counties of New York and New Jersey. We collect real data from various resources and

provide researchers with compact epidemiological, population and logistics-capacity

data for COVID-19. Using this data, we calibrate, validate, and test our model,

which could be used as a decision support tool for fighting against the COVID-19.

Our model can also be adapted to study other similar diseases transmission dynamics

and logistics.

Key Recommendations to Decision Makers. This study provides optimal

risk-averse ventilator allocation policies under different risk levels that the decision-

maker can take to control the COVID-19. Based on our results, we offer the following

recommendations to inform resource allocation policies under a pandemic:

(i) The short-term movement of people influences the number of new infections
even if the disease transmission rate stays the same.
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(ii) The number of treated people in the ICU may stay at the capacity limit under
different intervention strategies because this value depends on the minimum
number of patients who require a ventilator for treatment and the scarce
ventilator supply. There is also a lag time to observe the impacts of government
non-pharmaceutical interventions on the number of hospitalized, ICU and
deceased individuals.

(iii) “Lockdown” is the best strategy to control the COVID-19. However, the “Mask
and Social Distance” intervention following a certain period of “Lockdown” is
the second-best choice, considering the need for opening facilities and businesses.

(iv) The region with a high initial transmission rate and low initial ICU capacity
will have more ventilators allocated under a limited budget and low or high
transmission scenarios. Independent from the budget level, the region with a
low initial transmission rate and low initial ICU capacity gets more ventilators
allocated under a medium transmission scenario.

(v) Under a medium and ample budget level, the model allocates more capacity to
the regions with a higher population and a larger initial number of infections
but with a lower transmission rate. A large-enough budget also provides some
flexibility in delaying ventilator allocation to some regions. In contrast, all of
the ventilators are allocated at the first two stages under a limited budget.

(vi) Considering risk in decision-making improves the confidence level for reducing
the loss of lives under risky pandemic scenarios. However, a risk-averse decision-
maker should also expect a possible increase in the number of infections and
deaths while mitigating disastrous outbreak scenarios.

4.2 Problem Formulation

This section presents the description of the notations, compartmental disease model,

the formulation for transmission rates, uncertainty and scenario tree generation

scheme, specific features and assumptions made in the mathematical model, a brief

description of the CVaR, and the formulation for our epidemics-ventilator-logistics

model.

4.2.1 Model Notation and Formulation

Below we provide notations used for the rest of the paper.
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Sets and Indices:

J : Set of time periods, J =
{0, ..., J}.

R: Set of regions, R = {1, ..., R}.

Ω: Set of scenarios, Ω = {1, ...,Ω}.

N : Set of nodes in the scenario tree,
where n ∈ N .

j: Index for time period, where j ∈
J .

r: Index for region where r ∈ R.

ω: Index for scenario, where ω ∈ Ω.

State Variables:

Sωj,r: Susceptible individuals in
region r at stage j under scenario
ω.

Iωj,r: Tested symptomatic infected
individuals in region r at stage j
under scenario ω.

Xω
j,r: Untested asymptomatic

infected individuals in region r at
stage j under scenario ω.

Hω
j,r: Hospitalized individuals in

region r at stage j under scenario
ω.

Cω
j,r: Individuals treated in the

intensive care unit (ICU) in region
r at stage j under scenario ω.

Rω
j,r: Recovered individuals in

region r at stage j under scenario
ω.

F ω
j,r: Deceased individuals in region
r at stage j under scenario ω.

Oω
j,r: Number of tested

symptomatic infected individuals
admitted to the hospital in region r
at stage j under scenario ω.

I
ω

j,r: Number of tested symptomatic
infected individuals who cannot be
admitted to the hospital due to
limited capacity in region r at stage
j under scenario ω.

C
ω

j,r: Number of individuals
admitted to ICU in region r at stage
j under scenario ω.

Kω
j,r: Number of hospitalized

individuals not admitted to the ICU
due to the limited availability of
ventilators in region r at stage j
under scenario ω.

Uω
j,r: Number of cumulative venti-

lators (ICU capacity) in region r at
stage j under scenario ω.

Ĭωj,r: Number of infections caused by
short-term migration in region r at
stage j under scenario ω.

Parameters:

λ1: Recovery rate of tested
symptomatic infected individuals in
region r.

λ2: The death rate of tested
symptomatic infected individuals in
region r.

λ3: Hospitalization requirement
rate of tested symptomatic infected
individuals in region r.

λ4: Recovery rate of the hospi-
talized individuals in region r.

λ5: Death rate of hospitalized
individuals in region r.
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λ6: Ventilator requirement rate of
hospitalized individuals in region r.

λ7: Recovery rate of ICU patients
in region r.

λ8: Death rate of ICU patients in
region r.

λ9: Recovery rate of untested
asymptomatic individuals in region
r.

σ1,j,r: Transmission rate of tested
symptomatic infected individuals in
region r at stage j.

σω2,j,r: Proportion of untested
asymptomatic infections in region r
at stage j under scenario ω.

T ωj,r: Hospital capacity in region r at
stage j under scenario ω.

U0,r: Initial number of ventilators
(ICU capacity) in region r.

e1: Cost of each ventilator.

∆: Total budget for ventilators.

Risk parameters:

α: Confidence level of value-at-risk,
where α ∈ [0, 1).

λ: Non-negative risk preference
parameter or mean-risk trade-off
coefficient.

Risk variables:

ηωj : Value at risk for each stage j
under scenario ω.

zωj : Value exceeding the value-at-
risk at the confidence level α at
stage j under scenario ω.

Non-anticipativity parameters:

n: The serial number of nodes in the
scenario tree, where n ∈ N .

t(n): The corresponding stage that
node n marked in the scenario tree.

β(n): The set of scenarios that pass
through node n.

Decision variables:

yωj,r: Number of ventilators
allocated to region r at the end of
stage j under scenario ω.
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4.2.2 Compartmental Disease Model Description

Figure 4.1 One-step COVID-19 compartmental model.

Figure 4.1 shows the transmission dynamics of COVID-19 in each region r at each time

period j for a particular scenario ω. In this figure, susceptible individuals (S) can be

infected and become infected (either symptomatic or asymptomatic). Asymptomatic

infections (X) may have slight or no symptoms throughout the infection period and

will recover with a rate of λ9. Tested symptomatic infections (I) may recover or

die with rates of λ1 and λ2, respectively, if they are not treated in the hospital

(H). Note that Ĭωj,r with an incoming dashed arc to the I compartment represents

the number of infected people coming into the region r at stage j under scenario ω

from neighboring regions. Tested infected individuals (I) move to the hospital (H)

compartment, depending on the number of tested infections (I) and available hospital

capacity. Some of the treated infected people in the hospital (H) will recover with

a rate of λ4. The situations of some patients in the hospital (H) may get worsen,

and thus they may be transferred into the intensive care unit (we use C to represent

ICU), and those individuals need ventilators for the treatment.
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Similar to the case of admittance into the hospital, the number of hospitalized

patients transferred into ICU at each time period is equal to the minimum of the

number of patients who need to be transferred into ICU and the number of available

ventilators. The patients who are not able to receive the treatment in the ICU due

to the limitation on the number of available ventilators may die at a rate of λ5. After

being treated in the ICU, some of the patients may recover with a rate of λ7, while

others may die with a rate of λ8. Different from a typical compartmental model, the

transfer rate from I to H and H to C is not a constant, and it depends on the available

capacity in the H and C compartments, respectively, as discussed previously.

4.2.3 Time- and Space-Varying Transmission Rate

In this subsection, we formulate the transmission rate σ1,j,r as a time- and space-

varying parameter, which depends on the government interventions taken at time j

and region r. Since the onset of the COVID-19, many governments have imposed

different intervention strategies to reduce the transmission rate. At a certain stage,

each intervention has a different impact on the transmission rate for the next stage.

In this chapter, we incorporate three main non-pharmaceutical interventions to

formulate the time-varying transmission rate — none, mask and social distancing,

and lockdown.

Let x1
j,r, x

2
j,r, and x3

j,r be binary decision variables that correspond to none

(i = 1), mask and social distancing (i = 2), and lockdown (i = 3) interventions,

respectively, taken at stage j and region r. If xij,r takes a value 1, then intervention i

is employed; otherwise, it is not employed, at stage j and region r. The transmission

rate at stage j + 1 in region r is a function of the transmission rate and specific

intervention employed at stage j in the same region, as given in the below equations:

σ1,j+1,r = σ1,j,r(m
1
j,tx

1
j,r +m2

j,tx
2
j,r +m3

j,tx
3
j,r) ∀j ∈ J \ {J}, r ∈ R, (4.1)
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x1
j,r + x2

j,r + x3
j,r = 1 ∀j ∈ J, r ∈ R, (4.2)

x1
j,r, x

2
j,r, x

3
j,r ∈ {0, 1} ∀j ∈ J, r ∈ R, (4.3)

where mi
j,t represents the percent change in the transmission rate with respect to

the binary decision variable xij,r for intervention i = 1, 2, 3 taken at stage j in region

r. Equation (4.1) shows that the transmission rate at stage j + 1 is a function of

the transmission rate at stage j and the intervention strategy i taken at stage j.

Equation (4.2) indicates that only one intervention measure can be taken at each

stage j. Equation (4.3) describes the binary nature of intervention decisions.

The transmission rate in our model is not equal to the basic reproduction

number, R0. It shows how many new tested infections will be caused by the

symptomatic and asymptomatic infections from the previous stage. Since the

number of new asymptomatic infections is uncertain, the number of new infections

(both symptomatic and asymptomatic) changes under different scenarios even if the

transmission rates at each stage j stay the same.

There is a delay in the impact of the government’ interventions on the number

of infections and the reaction to the test results is also slow. Therefore, we calculate

the transmission rate for the first two stages directly using the real data from

JHU [2020], independent from the intervention type. Based on the first two-stage

transmission rates, we calculate the transmission rates from stages three to five using

the formulation (4.1)–(4.3) for each intervention strategy. Also, the values of mi
j,t

are trained using the real data obtained from JHU [2020]. As an example, the initial

transmission rates for the first two stages in New York and New Jersey and the impacts

of government intervention strategies mi
j,t are shown in Table 4.5 under Subsection

4.3.2.
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4.2.4 Uncertainty and Multi-period Scenario Tree

Data regarding undetected or untested asymptomatic cases is lacking and uncertain.

Therefore, we model the uncertainty regarding the proportion of untested asymp-

tomatic infections (σω2,r) by generating a set of scenarios ω ∈ Ω, each representing a

specific realization of the uncertain proportion of untested asymptomatic individuals

over multiple time periods. Our scenario generation approach is similar to Alonso-

Ayuso et al. [2018]’s method developed to model the demand uncertainty in forestry

management. Each scenario has a probability of pω and
∑
ω∈Ω

pω = 1. Since data is not

available to describe the probability distribution of the uncertain variable (σω2,r), we

assume that the uncertain parameter follows a normal distribution. The lower and

upper bounds for the proportion of asymptomatic infections are obtained from the

study of Meller [2020]. The lower bound value for the random variable is considered

as the value of 0.001-quantile and the upper bound is considered as the value of

0.999-quantile of the normal distribution.

As an example, Figure 4.2 shows a particular scenario tree for the proportion of

untested asymptomatic infections (σω2,r) for a two-stage problem. We consider three

realizations at each node of the scenario tree by dividing its normal distribution into

three discrete parts [low (L), medium (M), high (H)]. The low and high realizations

have a probability of 0.3, and the medium realization has a probability of 0.4. Each

path from the root node to the leaf node of the scenario tree represents a scenario ω.

The probability of a scenario ω, pω, is calculated as the multiplication of probabilities

on the path for scenario ω. For two stages, 9 (32) scenarios will be generated in

this instance. The non-anticipativity constraints indicate that two scenarios are

inseparable at a stage j if they share the same scenario path up to that stage. This

means that the corresponding decision made at this stage for those two scenarios

should also be the same.
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The value of the proportion of asymptomatic infections has a mean µjr and

standard deviation σjr at stage j. We use Qh to represent the value of h-quantile in

the normal distribution. For each node n in the scenario tree, the mean value of the

low realization is the value of 0.15-quantile (E(µnr,low|Q0.001 ≤ µnr,low ≤ Q0.30) = Q0.15),

the mean value of medium realization is the value of 0.50-quantile (E(µnr,medium|Q0.30 ≤

µnr,medium ≤ Q0.70) = Q0.50), and the mean value of high realization is the value of

0.85-quantile (E(µnr,high|Q0.70 ≤ µnr,high ≤ Q0.999) = Q0.85). For node 0 in our example,

the proportion of untested asymptomatic infections at stage j = 0 has µ0
r = 0.26 and

σ0
r = 0.05. The low, medium, and high realizations at node 0 in stage j = 0 and nodes

1 and 3 in stage j = 1 are given in Table 4.1 below. According to the distributions

presented in Table 4.1, the proportion of untested asymptomatic infections in stage

1 is realized as 0.21 (Low) at node 1, 0.26 (Medium) at node 2, and 0.31 (High) at

node 3.

Table 4.1 The 0.15-, 0.50-, 0.85-Quantiles of the Normal Distribution at Nodes 0,
1, and 3 of the Scenario Tree in Figure 4.2 and the Associated Node of the Uncertain
Parameter Realization.

Low (realized node) Medium (realized node) High (realized node)

Q0.15 Q0.50 Q0.85

Node 0 0.21 (node 1) 0.26 (node 2) 0.31 (node 3)

Node 1 0.17 (node 4) 0.21 (node 5) 0.25 (node 6)

Node 3 0.12 (node 10) 0.31 (node 11) 0.50 (node 12)

4.2.5 Model Features and Assumptions

Since the transmission of COVID-19 is affected by many factors, data to calibrate

some of the model parameters, such as the impact of human mobility, is either lacking

or inaccurate. Therefore, we incorporate some important features and make some
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Figure 4.2 Multi-stage scenario tree generation example for the uncertain
proportion of untested asymptomatic infections (σω2,r).

assumptions in the model formulation.
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Important features. First, we consider the impact of different intervention

strategies on the disease transmission rate and adjust the short-term migration

population depending on the intervention strategy. For instance, under the lockdown

strategy, we assume that the short-term migration among each county is zero. Under

mask and social distancing strategies, the short-term migration population among

each county is reduced to 60% of the original value, as estimated from the study

of Lee et al. [2020]. Second, we incorporate the cost for purchasing ventilators

to provide a capacity limitation on the total number of ventilators that could be

allocated for treating COVID-19 patients. Since there are significant fluctuations in

the ventilator prices [Glass, 2020], we consider the minimum purchase price for each

ventilator acquired. Third, we train the real data to determine the impact rate of

each intervention strategy on the disease transmission rate. The trained value of the

impact of interventions can only be used in the regions considered in our case study

since all the selected counties in New York and New Jersey are geographically close to

each other, and thus interventions have similar social effects. However, for example,

the impact of intervention strategies in a rural area may be different from those taken

in a city. To estimate the COVID-19 transmission in other regions of the United

States, the model should be re-trained using the associated data.

Assumptions. First, since studied counties in New Jersey and New York are

geographically close to each other, the proportions of untested asymptomatic

infections at each stage j under scenario ω are set to be the same for each region r.

Second, the model considers allocating newly purchased ventilators for the treatment

of COVID-19 patients instead of re-allocating existing ventilators from other counties

or states since the demand for ventilators during the disease’s peak periods is high

for all the counties and states, and there is a lead time for transfer of the ventilators

between the states that are far from each other. Here, we also assume a central
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decision maker entitled to allocate a given supply of ventilators to multiple regions.

Third, the infected individuals who cannot be treated in the hospital (both severe

and less severe) due to the limited capacity have the same death rate as the ICU

patients because some of those infections may worsen without professional treatment.

Fourth, we assume that all symptomatic individuals are tested, and asymptomatic

infected individuals are untested. Fifth, we assume that people react to the pandemic

by anticipating the government’s interventions and may start social distancing and

quarantining days or weeks before an intervention is imposed [Zhang et al., 2020b,

Fischer et al., 2020]. Thus, the transmission rate with either doing nothing or mask

and social distancing shows a decreasing trend in later stages of the pandemic due

to physical distancing among people. Lastly, we use each county’s ICU capacity

from JHU [2020] as the initial ventilator availability. We assume that non-COVID-19

patients use 60% of this capacity [Mehrotra et al., 2020]. Thus, only 40% of the initial

ICUs are available for treating the COVID-19 patients.

4.2.6 Multi-Stage Risk and Time Consistency

The α-quantile of the cumulative distribution of a random variable z, infη{η ∈ R :

Fz(η) ≥ α}, is defined as the value-at-risk (VaR) at the confidence level α ∈ {0, 1}

and denoted by VaRα(z). The conditional expected value that exceeds the VaR at the

confidence level α is called conditional value-at-risk (CVaR), defined as CVaRα(z) =

E(z | z ≥ VaRα(z)). For a minimization problem, VaRα is the α-quantile of the

distribution of the cost, and it provides an upper bound on the cost that is exceeded

only with a small probability of 1 − α. CVaRα measures an expectation of the cost

that is more than VaRα, and can be calculated as an optimization problem as follows

[Rockafellar and Uryasev, 2002]:

CVaRα(z) = inf
η∈R
{η +

1

1− α
E([z − η]+)},
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where (a)+ := max(a, 0) for any a ∈ R.

We formulate our model as a mean-risk minimization problem:

min
x∈X
{E(f(x, ω)) + λCVaRα(f(x, ω))}, (4.4)

where E(f(x, ω)) is the expected cost function over the scenarios ω ∈ Ω, CVaRα

represents the conditional value-at-risk at α, and λ ∈ [0, 1] is a non-negative

weighted risk coefficient and it can be adjusted for a trade-off between optimizing

an expectation value and the level of risk taken.

Time Consistency. Time consistency is considered as a critical issue when modeling

a risk-averse multi-stage stochastic program. Time consistency means that if you

solve a multi-stage stochastic programming model today, you should get the same

solution if you resolve the problem tomorrow given the information that is observed

and decided today. We consider a nested risk measure, expected conditional value-at-

risk (E-CVaR), as defined in Homem-de Mello and Pagnoncelli [2016] since it is shown

to satisfy the time consistency of multi-stage stochastic programs. The E-CVaR

can be linearized and formulated as a linear stochastic programming model. In the

following subsection, we will utilize the E-CVaR as a risk measure in our formulation.

4.2.7 Mathematical Model Formulation and Description

The mathematical formulation for our risk-averse multi-stage stochastic epidemics-

ventilator-logistics model is given below.

Epidemics-Ventilator-Logistics Model Formulation:

min
∑
j∈J

∑
ω∈Ω

pω

(∑
r∈R

(Iωj,r + F ω
j,r) + λ(ηωj +

1

1− α
zωj )

)
(4.5a)
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s.t. Sωj+1,r = Sωj,r − σ1,r(I
ω
j,r +Xω

j,r)− σ1,r(I
ω
j,r +Xω

j,r)
σω2,r

1− σω2,r
j ∈ J \ {J}, r ∈ R, ∀ω ∈ Ω, (4.5b)

Iω(j+1),r = Iωj,r + Ĭω1,j,r + σ1,r(I
ω
j,r +Xω

j,r)− λ1I
ω
j,r − λ2I

ω

j,r −Oω
j,r

j ∈ J \ {J}, r ∈ R, ∀ω ∈ Ω, (4.5c)

Xω
(j+1),r = Xω

j,r + σ1,r(I
ω
j,r +Xω

j,r)
σω2,r

1− σω2,r
− λ9X

ω
j,r

j ∈ J \ {J}, r ∈ R, ∀ω ∈ Ω, (4.5d)

Hω
(j+1),r = Hω

j,r +Oω
j,r − λ4H

ω
j,r − λ5K

ω
j,r − C

ω

j,r

j ∈ J \ {J}, r ∈ R, ∀ω ∈ Ω, (4.5e)

Cω
(j+1),r = Cω

j,r + C
ω

j,r − λ7C
ω
j,r − λ8C

ω
j,r j ∈ J \ {J}, r ∈ R, ∀ω ∈ Ω,(4.5f)

Rω
(j+1),r = Rω

j,r + λ1I
ω
j,r + λ9X

ω
j,r + λ4H

ω
j,r + λ7C

ω
j,r

j ∈ J \ {J}, r ∈ R, ∀ω ∈ Ω, (4.5g)

F ω
(j+1),r = F ω

j,r + λ2I
ω

j,r + λ5K
ω
j,r + λ8C

ω
j,r

j ∈ J \ {J}, r ∈ R, ∀ω ∈ Ω, (4.5h)

Oω
j,r = min{λ3,rI

ω
j,r, T

ω
j,r −Hω

j,r} j ∈ J, r ∈ R, ∀ω ∈ Ω, (4.5i)

C
ω

j,r = min{λ6,rH
ω
j,r, U

ω
j,r − Cω

j,r} j ∈ J, r ∈ R, ∀ω ∈ Ω, (4.5j)

Uω
j,r = U0,r +

j∑
l=1

yωl,r, j ∈ J, r ∈ R, ∀ω ∈ Ω, (4.5k)

I
ω

j,r ≥ λ3I
ω
j,r − (T ωj,r −Hω

j,r) j ∈ J, r ∈ R, ∀ω ∈ Ω, (4.5l)

I
ω

j,r ≥ 0 j ∈ J, r ∈ R, ∀ω ∈ Ω, (4.5m)

Kω
j,r ≥ λ6H

ω
j,r − (Uω

j,r − Cω
j,r) j ∈ J, r ∈ R, ∀ω ∈ Ω, (4.5n)

Kω
j,r ≥ 0 j ∈ J, r ∈ R, ∀ω ∈ Ω, (4.5o)∑

j∈J

∑
r∈R

yωj,re1 ≤ ∆ ∀ω ∈ Ω, (4.5p)

zωj ≥
∑
r∈R

(Iωj,r + F ω
j,r)− ηωj j ∈ J,∀ω ∈ Ω, (4.5q)

zωj ≥ 0 j ∈ J, r ∈ R, ∀ω ∈ Ω, (4.5r)
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yωt(n),r − yn,r = 0, zωt(n) − zn = 0, ηωt(n) − ηn = 0,

∀ω ∈ β(n),∀n ∈ N, (4.5s)

Sωj,r, Iωj,r, T ωj,r, Hω
j,r, Cω

j,r, Rω
j,r, F ω

j,r, Bω
j,r, C

ω

j,r, Oω
j,r ≥ 0,

j ∈ J, r ∈ R, ∀ω ∈ Ω, (4.5t)

yωj,r ∈ {0, 1, 2, . . . ,
∆

e1

} j ∈ J \ {J}, r ∈ R, ∀ω ∈ Ω. (4.5u)

Objective Function (4.5a). The objective function (4.5a) minimizes the total

expected number of tested infected individuals and deaths and the conditional

value-at-risk over all stages j and scenarios ω.

Population Infection Dynamics Constraints (4.5b) - (4.5h). Constraint (4.5b)

represents that the number of susceptible individuals in region r at stage j + 1 under

scenario ω equals the number of susceptible individuals at stage j minus the number of

susceptible individuals who become either tested infected or untested asymptomatic

infected at stage j. In this equation, the number of untested asymptomatic infections

equals the number of tested infections multiplied by the proportion of the untested

asymptomatic infections to the tested infections. Constraint (4.5c) shows that the

number of tested infected individuals in region r at stage j + 1 under scenario

ω equals the number of tested infected individuals at stage j plus the infected

individuals caused by short-term migration, plus the newly tested infections at time

j, minus the recovered and deceased infections of tested individuals at stage j, minus

the hospitalized individuals at stage j. Constraint (4.5d) implies that the number

of untested asymptomatic infections in region r at stage j + 1 under scenario ω

equals the number of untested asymptomatic infections at stage j plus new, untested

asymptomatic infections, minus the recovered untested asymptomatic infections at

stage j. Constraint (4.5e) shows that the hospitalized individuals in region r at

stage j + 1 under scenario ω equals the number of hospitalized individuals at stage j
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plus the newly hospitalized individuals at stage j, minus the recovered and deceased

individuals at stage j, minus the individuals who move to the intensive care unit (ICU)

at stage j. Constraint (4.5f) indicates that the total number of individuals in ICU in

region r at stage j+1 under scenario ω equals the total number of individuals in ICU

at stage j plus the individuals who moved to ICU at stage j, minus the individuals who

are recovered or died at the ICU at stage j. Constraint (4.5g) shows that the number

of recovered individuals in region r at stage j under scenario ω equals the number of

recovered individuals at stage j plus the recovered individuals from tested infected,

untested asymptomatic infected and hospitalized individuals, and ICU patients at

stage j. Constraint (4.5h) indicates that the number of deceased individuals in region

r at stage j + 1 under scenario ω equals the number of deceased individuals at stage

j plus the deceased individuals from tested infected and hospitalized individuals and

ICU patients at stage j.

Ventilator Logistics and Capacity Constraints (4.5i) - (4.5p). Constraint

(4.5i) ensures that the number of individuals admitted to the hospital in region r

at stage j under scenario ω equals the minimum number of individuals who require

hospitalization and the available hospital capacity at stage j. Constraint (4.5j) implies

that the number of individuals admitted to ICU in region r at stage j under scenario

ω equals the minimum number of individuals who require treatment in ICU and

the number of available ventilators at stage j. Constraint (4.5k) represents that the

cumulative number of ICU beds (equivalent to ventilators) in region r at stage j under

scenario ω equals the initial number of ICU beds plus the cumulative number of ICU

beds (new ventilators) allocated from stage 1 to stage j. Constraints (4.5l) - (4.5o)

show that the number of individuals who can not be admitted to the hospital or the

ICU due to limited capacity should be greater than or equal to zero. Constraint (4.5p)

represents that the cost of ventilators allocated over all regions and time stages under
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scenario ω cannot exceed the total budget allocated for ventilators. The budget

here also represents the maximum total ventilator supply that could be available

throughout the planning horizon.

Risk Measure Constraints (4.5q) and (4.5r). Constraint (4.5q) indicates the

difference between the objective function value and the value-at-risk for each stage

j under each scenario ω. Constraint (4.5r) ensures that the loss value exceeding the

value-at-risk is included in the CVaR calculation, and thus zωj should be greater than

or equal to zero.

Non-Anticipativity, Non-Negativity and Integrality Constraints (4.5s) -

(4.5u). Constraint (4.5s) is the non-anticipativity constraint, indicating that the

scenarios that share the same path up to stage j should also have the same

corresponding decisions. Constraint (4.5t) indicates that the number of individuals in

each compartment in region r at stage j under scenario ω should be greater or equal

to zero. Constraint (4.5u) implies that the number of allocated ventilators should be

an integer.

Remark 1. Both (4.5i) and (4.5j) are non-linear, and thus we replace them

with equivalent linear constraints with additional linearization variables, using the

method presented in Yin and Büyüktahtakın [2021a]. Hence, the non-linear multi-

stage stochastic programming epidemics-ventilator-logistics model (4.5a)–(4.5u) is

converted into an equivalent mixed-integer linear programming (MIP) formulation.

We implement this MIP formulation for the rest of the paper.
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4.2.8 Scenario Sub-Problem and Bounds

We implement the scenario sub-problems and lower and upper bounds proposed by

Büyüktahtakın [2020] to reduce the optimality gap of solving our risk-averse multi-

stage stochastic programming problem (4.5a)–(4.5u), while referring to Büyüktahtakın

[2020] for the proofs of those bounds originally driven for the general multi-stage

stochastic programs. The scenario sub-problem and bounds are described below.

Definition 4.2.1 The scenario-ω problem (P ω) is formulated as follows:

Zω = min
∑
j∈J

pω

(∑
r∈R

(Iωj,r + F ω
j,r) + λ(ηωj +

1

1− α
zωj )

)
(4.6a)

s.t. Constraints (4.5b)− (4.5u). (4.6b)

Specifically, in P ω we minimize the objective function value only under scenario ω

while keeping all the variables and the constraints from the original problem (4.5a)–

(4.5u).

Proposition 1 (Lower Bound) Let Z∗ represent the objective function of the

original problem (4.5a)–(4.5u), P . Then we have:

Z∗ ≥
∑
ω∈Ω

Zω. (4.7)

Proposition 2 (Upper Bound) Let ẋω be the optimal solution of scenario-ω

problem, P ω, and Z(ẋω) be the objective value of original problem (4.5a)–(4.5u) where

ẋω is substituted in the original problem objective function (4.5a). Then we have:

Z∗ ≤ min
ω∈Ω

Z(ẋω). (4.8)

4.3 Case Study Data

This section provides the data used to calibrate model parameters and formulate the

model, including population and short-term migration data, transmission parameters,
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as well as the cost of a ventilator. As shown in Figure 4.3, we select eight counties

that are most impacted by the pandemic in the states of New York and New Jersey

for our case study. They are New York County, Kings County, Queens County, Bronx

County, Richmond County, Hudson County, Bergen County, and Essex County. In

our multi-stage model, each stage represents a two-week period. Thus, all the data

regarding the transmission and migration are bi-weekly.

Source: [ESRI, 2020]

Figure 4.3 Counties in New York and New Jersey.

4.3.1 Population and Migration Data

Table 4.2 shows the population data for each considered county in New York and New

Jersey. Population data is obtained from JHU [2020]. The migration rates among

the considered counties, estimated from the data on CENSUS [2020], are presented

in Table 4.3. The blank areas in Table 4.3 represent a zero short-term migration

because the movement among those counties is too small to make an impact on the

model results.
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Table 4.2 Counties and Population Sizes in New York and New Jersey

New York Population New Jersey Population

New York 1,632,480 Hudson 668,631

Kings 2,600,747 Bergen 929,999

Queens 2,298,513 Essex 793,555

Bronx 1,437,872

Richmond 474,101

Total 8,443,713 2,392,185

Table 4.3 Migration Rate Among Counties in New York and New Jersey

To New York Kings Queens Bronx Richmond Hudson Bergen Essex

From

New York 0.015 0.012 0.009 0.006 0.007 0.007 0.007

Kings 0.192 0.038 0.004 0.004

Queens 0.218 0.044 0.009 0.002

Bronx 0.209 0.014 0.028 0.003 0.003

Richmond 0.105 0.105

Hudson 0.040 0.001 0.040 0.040

Bergen 0.126 0.039 0.039

Essex 0.079 0.001 0.057 0.057

4.3.2 Epidemiological Data

Table 4.4 presents the data values for transmission parameters for the studied

counties in New York and New Jersey. The data contains the proportion of untested

asymptomatic infections, recovery rate, and the death rate for tested infections,
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hospitalized infections, and ICU patients. Table 4.5 shows the transmission rate of

each county at the first two stages and the impacts of applying different intervention

strategies, as discussed in Subsection 4.2.3.

Table 4.4 Transmission Parameters and Bi-weekly Rates for the COVID-19

Parameter Description Data Reference

NY NJ

σ2,r Proportion of untested asymptomatic

infections 0.15-0.4 0.15-0.4 Meller [2020]

λ1 Recovery rate without hospitalization 0.69-0.79 0.69-0.79 Hogan [2020]

λ2 Death rate without hospitalization 0.4 0.4 JHU [2020]*

λ3 Hospitalization rate 0.21-0.31 0.21-0.31 Hogan [2020]

λ4 Recovery rate with hospitalization 0.88 0.88 Hogan [2020]

λ5 Death rate with hospitalization

(No ventilators) 0.4 0.4 JHU [2020]*

λ6 Ventilator requirement rate of hospitalized 0.12 0.12 Hogan [2020]

λ7 Recovery rate with ventilator 0.643 0.643 Bernstein [2020]

λ8 Death rate with ventilator 0.357 0.357 Bernstein [2020]

λ9 Recovery rate with asymptomatic infections 1 1 Bertsimas et al. [2020]

* Trained using real data.
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Table 4.5 Transmission Rate (σ1,r) in New York and New Jersey and Impact of
Interventions

County Transmission Rate Transmission Rate Impact of Impact of Impact of

at Stage 1 at Stage 2 None Mask Lockdown

New York 4.5 0.9855 1 0.4 0.6

Kings 9 0.9855 1 0.4 0.6

Queens 10 1.095 1 0.4 0.6

Bronx 12 1.314 1 0.4 0.6

Richmond 12 1.314 1 0.4 0.6

Hudson 22 2.409 1 0.3 0.6

Bergen 11 1.408 1 0.3 0.6

Essex 22 2.409 1 0.3 0.6

4.3.3 Initial Infection, Capacity and Cost Data

Table 4.6 shows the initial number of infections, hospital capacity, and ICU capacity

for each county. The data is obtained from JHU [2020].
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Table 4.6 Initial Number of Infections, Hospital Capacity, and ICU Capacity for
Each County

County Initial Initial Initial

Infections Hospital Capacity ICU Capacity

New York 1200 8650 944

Kings 1300 5838 282

Queens 1100 3210 146

Bronx 554 2816 274

Richmond 206 1177 72

Hudson 66 1764 89

Bergen 249 2874 122

Essex 73 3541 226

Ventilator Cost. The cost of each ventilator ranges from $5000 to $50000 [Glass,

2020]. In our case, we consider a cost of $5000 for each ventilator, and different

budget levels are set to impose different upper bounds on the ventilator supply.

4.4 Results

4.4.1 Model Validation

This subsection presents the validation results of the mathematical model in

Equations (4.5a)–(4.5u) as presented in Subsection 4.2.7 for the 8-stage time period

from April 3, 2020, to July 10, 2020. We consider a medium realization of the

uncertain asymptomatic proportions at each stage of the planning horizon and

compare the number of infections forecasted by our model to the real outbreak data.

The government applied a lockdown strategy from April 3, 2020, to July 10,

2020, at those considered locations in New York and New Jersey. Thus, we use the

lockdown strategy and the corresponding transmission rate at each stage in our model

for validation.
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Figure 4.4 Comparison of predicted cases with real outbreak data for new infections
in New York and New Jersey.

Figure 4.4 shows the comparison between the predicted infections and real

outbreak data. The model’s predictions provide a visually good fit for the actual

number of new infections in each region, implying that the model can capture the

disease transmission dynamics under a lockdown intervention strategy. We also

perform a paired-t-test to analyze the difference between the pairs of predicted new

infections and the actual data in each period. As shown in Table 4.7, all p-values

are greater than 0.05, and thus our model provides statistically similar predictions

with the real outbreak data from April 3, 2020, to July 10, 2020, for each considered

county.
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Table 4.7 Statistical Analysis to Compare the Bi-Weekly Predicted New Cases and
Real Outbreak Data

County Mean Two-tailed paired-t-test

Outbreak Predicted t-stat t-critical p-value

New York 7300 7299 0.20 2.36 0.58

Kings 7413 7754 0.41 0.65

Queens 8138 8751 0.21 0.58

Bronx 5956 6214 0.46 0.67

Richmond 1762 2040 0.04 0.51

Hudson 2455 2806 0.16 0.56

Bergen 2444 2656 0.30 0.61

Essex 2366 2948 0.04 0.51

4.4.2 Case Study Implementation Details

We apply our model described in Section 4.2 to the selected counties in New York and

New Jersey. We first solve the risk-neutral model. We incorporate the uncertainty

of the proportion of untested asymptomatic infections as well as the short-term

migration in the disease transmission and forecast the number of new infections,

deceased individuals, hospitalized individuals, and ICU patients under different

intervention strategies. Also, we solve the model to determine the optimal location

and number of ventilators allocated under different budget levels and scenarios to

provide insights into resource allocation over multiple jurisdictions under uncertainty.

Due to the high complexity of the mathematical formulation, we solve it for a 5-stage

time period. Each stage corresponds to two weeks, resulting in a planning horizon of

ten weeks from March 20, 2020, to May 29, 2020. Because each node of the scenario
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tree has three possible realizations of the random parameters, we solved 243 (35)

scenarios simultaneously.

The mathematical model is solved using CPLEX 12.7.1 on a desktop computer

running with Intel i7 CPU and 64.0 GB of memory. We set the time limit at 7200 CPU

seconds to solve each test instance. We extend running time for specific budget levels

($30 Million) and interventions (“Lockdown”) due to the large optimality gap. In

the following subsections, we present results from solving the multi-stage stochastic

epidemics-ventilator-logistics model with an application to the case of COVID-19

using the data presented in Section 4.3.

4.4.3 Transmission Forecast under Different Intervention Strategies

Here, we present results of our formulation for each time period under different

intervention strategies: No intervention (“None”), mask and social distancing for

all stages (“Mask and Social Distance”), lockdown for all stages (“Lockdown”), mask

and social distancing for the first three stages and lockdown for the following two

stages (“Mask + Lockdown”), lockdown for the first three stages and mask and social

distancing for the following two stages (“Lockdown + Mask”). The model is solved

under the $30 million budget level. The model with the “Lockdown” strategy gives a

4.54% optimality gap after a run time of 43,241 CPU seconds, while the model solved

for all other strategies has a zero optimality gap within 7,200 CPU seconds.

Figure 4.5 presents the number of infections and deceased individuals at each

stage under different intervention strategies. According to the results, short-term

migration influences the number of new infections even under constant transmission

rates. As in the first stage, within the same initial transmission rate, the number

of infections under different intervention strategies is different from each other.

When the stage increases, the difference in the number of new infections among

each intervention strategy becomes more and more significant. The “None” strategy
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has the most infections at each stage, followed by the “Mask and Social Distance”

strategy. The “Lockdown” strategy results in the lowest number of new infections

compared to those under other strategies at each stage. The “Lockdown” strategy

provides a little higher number of infections compared to the actual infection data

since our model slightly (but statistically insignificantly) overestimates the number of

infections. Compared to the “Mask + Lockdown” strategy, the “Lockdown + Mask”

intervention leads to fewer infections. This implies that applying the “Lockdown”

strategy immediately at the onset of the pandemic followed by the “Mask and Social

Distance” intervention is a better strategy than enforcing “Mask and Social Distance”

first and delaying the lockdown.

The intervention strategy does not influence the number of deceased individuals

as quickly as it does impact the number of infections, as shown in Figure 4.5. Here,

the number of deceased individuals at the first two stages is much lower than that of

the last three stages. Starting from stage three, the number of deceased individuals

under different intervention strategies shows a similar trend with the number of

new infections. The influence of interventions is further delayed for those confirmed

infections to be treated in the hospital and ICU (Figure 4.6).

To reduce both the number of new infections and deaths, “Lockdown” is the

best strategy. As shown in Figure 4.5b, the “Lockdown” strategy with the optimal

ventilator allocation further reduces the actual number of deaths. Due to the negative

impact of COVID-19 on employment and its economic burden, governments are often

forced to stop the lockdown and reopen businesses. In such cases, applying “Mask

and Social Distance” after a certain period of “Lockdown” will be the best choice.

Figure 4.6 shows the number of hospitalized individuals and ICU patients at

each stage under different intervention strategies. Similar to the number of deceased

individuals, there are delays in the impact of government interventions on the number

of hospitalized individuals and ICU patients. An infected person may have mild
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symptoms for about one week, then worsen rapidly (School [2021]). Thus, it may

take some time for patients to be admitted to the ICU, so the impact of interventions

on the number of ICU patients is delayed one more stage compared to the hospitalized

cases. As shown in Figure 4.6, more number of hospitalized individuals at stage j

will lead to more ICU patients at stage j + 1.

Figure 4.5 Number of new infections and deaths under different intervention
strategies and actual numbers.

For all the stages, the “Lockdown” strategy has the least number of hospitalized

individuals and the ICU patients, followed by the “Lockdown + Mask” intervention.

The ICU patients of “None,” “Mask and Social Distance,” and “Mask + Lockdown”

are almost the same at stages three to five. This is because under those, the need

for ventilators is large, and the number of treated individuals in ICUs depends on

the minimum number of patients who require ventilators and the ventilator supply

in those ICUs. Thus, the number of treated patients in ICUs is limited by the tight

ventilator availability.
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Figure 4.6 Number of hospitalized individuals and ICU patients under different
intervention strategies.

4.4.4 Optimal Ventilator Allocation

Table 4.8 shows the number of ventilators allocated to each region at stages one

and two and the total number of ventilators allocated throughout the planning

horizon under different budget levels and three select scenarios. The “All Low,”

“All Medium,” and “All High” scenarios represent low, medium, and high realization

of the proportion of untested asymptomatic infections at each stage of a five-stage

planning horizon, respectively. To analyze the impact of budget on the optimal

ventilator allocation decisions, we select $10M as the limited budget level, $20M as

the medium budget level, and $30M as the ample budget level. The model has zero

optimality gap under the $10M budget level, 4.54% optimality gap under the $20M

budget level and 7.77% optimality gap under the $30M budget level within two hours

of solution time.

The results in Table 4.8 demonstrate that the location and number of ventilators

allocated depend on several factors, including the initial and evolving disease
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transmission rates, the population and the number of initial infections in a region,

and the existing ventilator capacity. Thus, the optimal ventilator allocation should

be determined case-by-case.

According to the results, the total number of ventilators allocated increases in

the budget level due to the high need for ventilators. As shown in Table 4.8, under the

limited budget level, some regions with many initial infections, e.g., the New York

County, do not receive ventilators. This situation is because the initial ventilator

capacity of those regions is higher than in other counties. Also, results suggest that

more ventilators should be distributed to other areas with a higher initial transmission

rate than the New York County, such as Kings, Hudson, and Essex, under a very

tight budget. Kings, Queens, and Hudson have higher initial transmission rates and

lower initial ICU capacity than New York. Thus, these regions get more ventilators

allocated under a limited budget level and “All Low” scenario. Also, regions with a

relatively smaller population, such as Hudson and Essex in New Jersey, get a large

share of ventilators with a very tight budget under the “All Low” and “All Medium”

scenarios due to their high transmission rates at the beginning of the pandemic.

Independent from the budget level, some regions with low initial infections and

low initial ICU capacity (e.g., Bronx) will get more ventilators allocated under the

“All Medium” scenario. Under this scenario, the number of infections in regions with

a high initial transmission rate (e.g., Kings and Queens) will not significantly increase

even if they receive a smaller number of ventilators. These regions usually have much

more initial ICU capacity for the treatment because of their large population. On

the contrary, the areas with a lower initial transmission rate but less initial ICU

capacity may benefit more if they receive more ventilators. As a comparison with

the “All Medium” scenario, the number of infections in the region with a low initial

transmission rate will be much smaller under the “All Low” scenario, and the number

of infections in the regions with a high initial transmission rate will be much larger
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under the “All High” scenario. The model gives priority to allocate more ventilators

to the regions with high initial transmission rates for both of the “All Low” and “All

High” scenarios because the benefit of giving resources to those regions is higher than

the regions with low initial disease transmission.

Moreover, the model is forced to make difficult decisions, and some of the regions

may not have any ventilator allocated under a limited ventilator supply. When the

budget is too tight, the regions with a high transmission rate gets the priority. As

the budget increases to medium and ample, the model allocates more capacity to

the regions with a higher population and a larger initial number of infections but

with a lower transmission rate. Also, the stage-wise distribution of ventilators has

a high relationship with the available budget. If the budget is tight, all ventilators

are distributed within the first two stages. As we increase the budget, some of the

ventilators are allocated in stages three and four in addition to stages one and two.

Thus, a higher budget level also provides some flexibility in delaying the ventilator

allocation to some regions.

4.4.5 Risk Analysis

In this subsection, we perform an analysis of the risk parameters λ and α in terms

of their impact on the expected number of infected and deceased people as well as

the CVaR of the impact. Specifically, under the $30M budget level, we compare

four different problems with respect to their risk-averseness level, adjusting λ and α

values accordinglyrisk-neutral (λ = 0, α = 0), weak risk-aversion (λ = 1, α = 0.3),

mild risk-aversion (λ = 10, α = 0.6), and strong risk-aversion (λ = 10, α = 0.95). The

model under the mild risk-aversion results in a high optimality gap (13%) within 7200

CPU seconds running time. Therefore, we solve the scenario-ω problems described

in Subsection 4.2.8 and obtain the lower and upper bounds for the original problem.

For our problem, we select five representative scenarios, and add bounds based on
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the results of those select scenarios in the risk-averse model. After implementing the

scenario bounds, the optimality gaps over all of the risk-averseness levels reduce to

less than 9.13%.

We decompose the objective function (4.5a) into the Expected Impact [E(f(x, ω))]

and the Expected Risk [CVaRα(f(x, ω))], as demonstrated in Equation (4.4), to

analyze the impact of risk trade-off on the results. Table 4.9 presents the value

of the objective function (4.5a), expected impact, and expected risk (without λ)

under different risk-averseness levels. Specifically, the expected impact represents

the expected total number of infections and deceased individuals, and the expected

risk corresponds to the expected CVaR term in Equation (4.5a) without the λ value.

According to Table 4.9, when both λ and α increase, the level of risk-averseness and

the expected risk increase. The optimal objective function value increases due to

the additional risk term added into the objective formulation. The expected impact

also increases, implying the cost of being risk-averse, which is the increased number

of infections and deceased individuals while trying to mitigate specific disastrous

scenarios.

Table 4.9 Comparison of Objective Value, Expected Impact, and Expected Risk
under Various Risk-Averseness Levels

Risk Weak Mild Strong

Neutral Risk-aversion Risk-aversion Risk-aversion

(λ = 0, α = 0) (λ = 1, α = 0.3) (λ = 10, α = 0.6) (λ = 10, α = 0.95)

Objective Value 347,395 721,710 3,997,129 4,011,964

Expected Impact 347,395 360,438 362,559 363,526

Expected Risk - 361,272 363,457 364,844

The expected impact and expected risk (without λ) for various combinations of

λ = {0, 1, 10} and α = {0.3, 0.6, 0.95} under the $30M budget level are presented in

Table 4.10. We observe the change of the expected impact and expected risk when

changing one of the risk parameters and fixing all others’ original values. According
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to the results, fixing the α value, both expected impact and expected risk show an

increasing trend due to the increase of λ. When we move from risk-neutral (λ = 0) to

risk-averse (λ = {1, 10}), the expected impact always increases. Similarly, λ = {1, 10}

increases the expected impact compared to the risk-neutral model. Besides, when

fixing the λ value and increasing the α value, the expected risk increases because

we increase the confidence level for reducing the risk of having an extremely large

number of infections and big losses of lives.

Table 4.10 Expected Impact and Risk for Different Risk-Averseness Levels

λ\α 0.3 0.6 0.95

Expected Expected Expected Expected Expected Expected

Impact Risk Impact Risk Impact Risk

0 347,395 0 347,395 0 347,395 0

1 360,438 361,272 361,950 363,251 363,882 365,236

10 360,880 361,341 362,559 363,457 363,526 364,844

4.5 Discussion and Future Directions

In this chapter, we present a general multi-stage mean-risk epidemics-ventilator-

logistics model and apply this model to control the COVID-19 in select counties

of New York and New Jersey. We first explicitly formulate the uncertainty of

the proportion of untested asymptomatic infections at each stage, generating a

multi-stage scenario tree. We then develop a compartmental disease model and

integrate the short-term human movement among multiple regions into this model.

We also derive a time- and space-varying disease transmission formulation and a

logistics sub-model. We then integrate all those components into one mathematical

formulation, which minimizes the number of infections and deceased individuals under

different intervention strategies.
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We solve the epidemics-ventilator-logistics model under different budget levels

to determine the ventilator-distribution optimal timing and location under various

pandemic scenarios. Next, we apply the CVaR in a nested form over a five-stage

planning horizon to minimize the total expected number of infections and deceased

individuals, as well as the weighted risk of the loss. Finally, we solve the scenario

sub-problems under various scenarios to generate the lower and upper bounds for the

original problem, reducing the optimality gap. Our results provide key insights into

the resource-allocation decisions for controlling the COVID-19 and can be adapted

to study the transmission and logistics of other similar diseases.

According to the results, the number of infections, deceased individuals,

hospitalized individuals, and ICU patients indicates that short-term migration

influences the number of infections, even if the transmission rate is constant

over time. The impacts of government interventions on the number of deceased

individuals, hospitalized individuals, and ICU patients are delayed because deaths

and hospitalization have a lag period compared to zero or a small lag phase in the

growth of infections. Furthermore, the number of ICU patients at each time period

depends on the minimum number of patients who require the ICU and the available

ventilators. Thus, the number of ICU patients might be at the capacity limit even

under different intervention strategies at a particular stage. The “Lockdown” strategy

is the best way to control disease transmission. Nevertheless, “Mask and Social

Distance” applied after the several stages of “Lockdown” is the second-best strategy

to optimistically alleviate the pandemic’s economic impacts.

The ventilator allocation under different budget levels and scenarios indicates

that the number of ventilators allocated to each region depends on various factors,

such as the number of initial infections, initial disease transmission rates, initial ICU

capacity, and the population of a geographical location. The region with a high initial

transmission rate and low initial ICU capacity receives more ventilators under a low
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disease transmission scenario and a limited budget level. This is because, under a

low disease transmission scenario, other regions with low initial transmission rates

have fewer infections, even if they have smaller initial ICU capacity. Independent

from the budget level, the area with a low initial transmission rate and low initial

ICU capacity has more ventilators allocated under the medium transmission scenario.

This is because the number of infections in the region with a high initial transmission

rate and high initial ICU capacity does not significantly increase even if they receive

fewer ventilators under a mild disease transmission scenario. Under a medium and

ample budget level, the model allocates more capacity to the regions with a higher

population and a larger initial number of infections but with a lower transmission

rate. Moreover, when the budget is limited, all of the ventilators are allocated at the

first two stages. When the budget becomes ample, decision-makers would have some

flexibility in delaying ventilator allocation to later stages of the planning horizon.

The increase in the mean-risk trade-off coefficients in the risk-averse model

improves the confidence level, reducing the loss in the right tail of the objective

function values (the number of infected and deceased individuals over highly-adverse

scenarios). However, we should expect more infections and deceased individuals on

average considering all possible scenarios when we want to decrease the impact of

adverse scenarios by increasing the risk-averseness level.

This study leads to several future directions for research. For instance, vaccine

allocation is also essential as it can potentially protect people from being infected. The

combination of vaccine allocation and other interventions will provide more flexible

strategies to prevent and control the disease. For example, for the region with a low

transmission rate and high vaccine coverage, decision-makers could consider lifting

the “Lockdown” earlier to stimulate the economy. Furthermore, the mathematical

model cannot allocate ventilators to some regions under a very tight budget, and so

future research could investigate ethical and fair resource allocation strategies during
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a pandemic. Also, some of the assumptions and inferences made in our model could

be updated in a future study as more data are available.
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Table 4.8 Optimal Ventilators Allocated under Different Scenarios for Budget
Levels

Scenario County Stage Stage Total Stage Stage Total Stage Stage Total

1 2 Ventilator 1 2 Ventilator 1 2 Ventilator

(Budget=$10M) (Budget=$20M) (Budget=$30M)

All Low

New York 0 0 0 721 1 802∗ 2100 0 2100

Kings 119 0 119 1734 0 1736∗ 2222 0 2222

Queens 107 1069 1176 0 0 0 0 0 0

Bronx 28 0 28 1016 1 1017 1016 1 1017

Richmond 18 0 18 0 0 0 0 0 0

Hudson 0 250 250 0 0 0 0 0 2∗

Bergen 187 0 187 12 433 445 0 0 165∗

Essex 218 0 218 0 0 0 0 0 174∗

Total 677 1323 2000 3483 435 4000∗ 5338 1 5680∗

All Medium

New York 0 0 0 721 0 721 2100 0 2101∗

Kings 119 0 119 1734 76 1810 2222 1 2223

Queens 107 0 107 0 0 3∗ 0 0 69∗

Bronx 28 809 837 1016 0 1016 1016 0 1017∗

Richmond 18 0 18 0 0 0 0 0 35∗

Hudson 0 250 250 0 0 0 0 0 53∗

Bergen 187 264 451 12 435 447 0 0 0

Essex 218 0 218 0 0 3∗ 0 0 349∗

Total 677 1323 2000 3483 511 4000∗ 5338 1 5847∗

All High

New York 0 0 0 721 0 721 2100 1 2190∗

Kings 119 0 119 1734 0 1734 2222 0 2222

Queens 107 1055 1162 0 0 2∗ 0 0 451∗

Bronx 28 4 32 1016 0 1016 1016 0 1017∗

Richmond 18 0 18 0 0 78∗ 0 0 0

Hudson 0 0 0 0 0 0 0 0 0

Bergen 187 264 451 12 437 449 0 0 93∗

Essex 218 0 218 0 0 0 0 0 27∗

Total 677 1323 2000 3483 437 4000∗ 5338 1 6000∗

∗ Some of the ventilators are allocated at stages three and four.
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CHAPTER 5

AN AGENT-BASED SIMULATION-OPTIMIZATION VACCINE
CENTER LOCATION VACCINE ALLOCATION APPROACH TO

CONTROLLING COVID-19

5.1 Introduction

The Coronavirus Disease 2019 (COVID-19) has caused around 4 million deaths

worldwide by mid-July 2021 [JHU, 2021] and 607 thousand only in the United

States with the largest death toll in the world (15%). Fast disease spread caused

the collapse of the healthcare system in many countries, forcing them to use other

intervention strategies to slow down the virus spread, such as lockdown, quarantine,

and mandatory mask [Zhang et al., 2020a, Eikenberry et al., 2020]. In some countries,

where people can strictly follow the rules, these strategies are very effective, and the

cases have been reduced significantly. However, for some countries where people have

more social activities, these strategies could not lessen the increasing number of cases

and deaths in the long term.

The most effective way to stop this health crisis is to produce effective vaccines

and let most people be vaccinated [Peter Loftus, 2021b]. On March 11, 2020, World

Health Organization (WHO) declared the COVID-19 as a pandemic making it a global

threat. All countries felt the urgency to invest in the research and development of

a vaccine, especially the Group of Twenty (G20), which has the most to lose from

the COVID-19. The Pfizer/BioNTech (Pfizer) vaccine was the first vaccine listed

for WHO Emergency Use Listing (EUL) on December 31, 2020. On February 16,

2021, the SII/Covishield and AstraZeneca vaccines were given EUL. The Janssen

developed by Johnson & Johnson was listed for EUL on March 12, 2021. The Moderna

vaccine was listed for EUL on 30 April 2021. The Sinopharm vaccine is produced by

China National Biotec Group (CNBG) and was listed on May 7, 2021. The Sinovac-

CoronaVac was listed for EUL on June 1, 2021 [WHO, 2021d]. Among these, we
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consider mainly three vaccines used in the United States, PfizerBioNTech, Moderna,

and Johnson & Johnson (Janssen), in our model.

With more and more people getting vaccinated, the number of cases and

deaths decreased significantly. Until July 2021, there were about 332 million doses

administered in the United States. About 55.3% of US people got at least one dose,

and about 47.8% of people were fully vaccinated by July 2021 [CDC, 2021]. Since

December 2020, when people started to get vaccinated, the number of daily deaths in

the United States has decreased from about 4,000 to only 300, and the number of daily

cases has dropped from about 200,000 to 20,000 by July 9, 2021 [JHU, 2020]. The

dramatic drop in both the number of deaths and the total infections shows that the

vaccines are very effective for controlling the epidemic. Despite this, the vaccination

process differs based on the vaccines available, the total budget, and the logistic

processes. This study aims to develop a mathematical model to use the available

resources under different budgets effectively and provide insights into optimal vaccine

allocation achieving the lowest infection rate.

Human behavior has a significant influence on COVID-19 transmission. If we

can model human interactions and disease transmission realistically, we can accurately

estimate how vaccines reduce the infection numbers. This aspect is also quite

essential to decide where to locate vaccination centers and find the optimal vaccine

allocation. Kerr et al. [2021] propose an agent-based model (Covasim) that simulates

person-to-person contact among different communities. In their Covasim project,

each individual has the probability of being infected in a complicated environment

for the agent-based simulation. For instance, the kids of the family may go to school,

and adults may go to work. Both activities give them a chance to contact infected

individuals. People may also spend time together with their family members and

friends in the community and get infected. We extend the Covasim agent-based

model and incorporate it with an optimization model to optimize vaccine allocation.
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In this chapter, we formulate an optimization model to determine the COVID-

19 optimal vaccine allocation strategies under budget and population dynamics

constraints. Our model extends the agent-based simulation presented by Kerr

et al. [2021] to incorporate different types of vaccines with one or two shots. We

incorporate service center location and service decision for each center, including

the nearby regions served by the center in the optimization model, and the number

of vaccines allocated to each region. We integrate all those elements into one

simulation-optimization model. The optimization model uses the simulation results

as input to generate the optimal vaccine allocation decisions and transfers the optimal

decisions into the simulation model, which populates health states, such as the

number of infections, in the following period. We calibrate, validate, and test our

simulation-optimization vaccine allocation model using JHU [2020] COVID-19 data

collected during the middle stages of the pandemic.

5.2 Key Contributions and Insights

The majority of existing studies only use the simulation or optimization model

separately. In addition, most researches only focus on one side of the epidemic control,

either transmission forecasting or optimizing the resource allocation strategies. To

our best knowledge, none of them consider the agent-based simulation of disease

transmission with the optimal vaccination center location and vaccine allocation

problem together. To address the limitation of the resource allocation and logistic

planning problem on epidemic control, we formulate our model with the following

contributions:

(i) We formulate an optimization model to determine the COVID-19 optimal
vaccine allocation strategies. Besides the simulation model, the optimization
model includes the population dynamics constraints on the susceptible individuals,
infections, vaccinated individuals to project disease growth, and impacts of
optimization decisions under a limited budget.
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(ii) We extend the agent-based simulation presented by Kerr et al. [2021] to
incorporate vaccination compartments and different types of vaccines with one
or two shots.

(iii) In the optimization model, we incorporate service center location and service
decision for each center, including the nearby regions served by the center and
the number of vaccines allocated to each region. We use exponential functions
to generate the lower bound of the number of vaccines allocated, and the vaccine
acceptance rate provides the upper bound of vaccine supply.

(iv) We integrate all those elements mentioned above into one simulation-optimization
model. The optimization model applies the simulation results as the inputs to
generate the optimal vaccine allocation decisions. Then the decision results are
imported into the simulation model, which populates very detailed health states,
such as the number of infections, hospitalized, and deaths, in the following
period.

(v) Our results suggest that the vaccine with a lower cost is recommended to be
allocated more under a limited budget level. Under an ample budget level, the
vaccine with a higher efficiency should be administered more. In addition, the
region that has a high population or initial infections should have more vaccines
allocated.

5.3 Model Description

5.3.1 Agent-based Simulation Model

In this section, we discuss the agent-based simulation and optimization models and

their integration in more detail.
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Source: [Kerr et al., 2021]

Figure 5.1 Covasim simulation.

The Covasim agent-based simulation process is presented in Figure 5.1. Here,

individuals interact with each other increasing the probability of being infected. For

instance, the student of the family may go to school and contact their classmate,

and adults may go to workplaces and contact their colleagues. People may also go

to a public place during daily activities or hang out with their family members and

friends in the community. Both behaviors increase the risks of contracting infections

and being sick.
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Figure 5.2 Compartment model of simulation.

For each individual, the health status can be described in Figure 5.2. In

the Covasim simulation, each individual has the following health statuses: the

Susceptible compartment represents people who can potentially be infected. The

Exposed compartment represents the group of people who are exposed to the virus.

The Asymptomatic compartment denotes the infected people who never develop

symptoms, while the Presymptomatic compartment represents people who are not

yet displaying symptoms of an illness or disease. The Mild compartment indicates

people who have minor symptoms. The Severe compartment means that people have

severe symptoms. The Critical compartment represents people who have even more

severe symptoms and need to be treated in the intensive care unit. The Recovered

compartment shows the recovered people, and the Dead compartment represents

people who are dead from the critical symptoms.

Susceptible individuals can contact the infections and be exposed to the virus.

On the one hand, a proportion of exposed individuals shows no symptoms and

thus become asymptomatic. The asymptomatic infections recover from the disease
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automatically. On the other hand, part of the exposed individuals develops symptoms.

The symptoms can vary from mild to severe and then to critical. The majority of

the people with every degree of symptoms recover. However, some individuals with

critical symptoms may die due to their weak immunity or the delayed treatment

process.

In our model, we extend the compartment model presented by Kerr et al. [2021]

by adding two vaccine compartments. As shown in Figure 5.2, Vaccinated 1 represents

the individuals that have received the first shot of the vaccine, and Vaccinated 2

represents the individuals that have received the second shot of the vaccine. We

incorporate three types of vaccines in the model, which are Pfizer, Moderna, and

Janssen. The Pfizer and Moderna vaccines include two shots, and the Janssen vaccine

only requires one shot. Thus, a proportion of susceptible and recovered individuals

receives the first shot of the vaccine at each period. The individuals who choose

the Pfizer and Moderna vaccines receive the second shot after a few weeks of their

first shot. The people who have received the vaccine can still be infected, but the

probability of being infected is much smaller than the general susceptible individuals.

5.4 Optimization Model Formulation

This section provides the essential features and assumptions of the optimization

model, the notations used in the optimization model, and the mathematical

formulation of the optimization model.

5.4.1 Important Features and Model Assumptions

A few assumptions are made in the formulation of the optimization model. To

begin with, the optimization model includes three types of vaccines, where Pfizer and

Moderna vaccines require two shots and Janssen vaccines come with only one shot.

Second, the Pfizer vaccination center has a 6,000 daily vaccine capacity due to the high
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number of supplies [NJIT, 2021], while the Moderna and Janssen vaccination centers

have 2,000 vaccine capacity [Heffernan, 2021a]. Third, since the human behavior for

the vaccination is hard to predict, we assume the people in each region are served only

by the vaccine centers in the closest nearby region. Fourth, for the new vaccine centers,

we calculate the distribution cost from the warehouse to them. For the existing local

pharmacies and small vaccine sites, since the detailed location and transportation cost

information is limited, we only solve an overall vaccine capacity for each county and do

not specify the vaccine capacity for each small site and the associated transportation

cost. According to the data on Heffernan [2021b], the daily vaccine supply capacity for

local pharmacies and small vaccination sites is set to 10,000, and we assume an ample

total vaccine supply availability at each stage. In addition, we add $1.41 to each of the

vaccines allocated to the local pharmacies and small vaccination sites as a unit cost for

delivery, according to the information obtained from WHO [2021c]. Fifth, the exact

location of the supply warehouse for each type of vaccine is unknown. According to

Pfizer [2021] and Peter Loftus [2021a], the Pfizer and Moderna vaccine manufacturing

center is far from New Jersey. Thus, we assume that the Pfizer and Moderna vaccines

are transported from the manufacturing center to the supply warehouse by air. The

largest port of New Jersey locates in Essex County (Newark Airport), so we assume

the Pfizer and Moderna supply warehouses for New Jersey are in Essex County.

In addition, we observe that the Janssen supply warehouse locates in Somerset

County. Sixth, the vaccine willingness rate is estimated as 0.3% per day using the

information obtained from NJ.GOV [2021]. Seventh, we simulate the compartment

flow in the optimization model in each region at each stage. As shown in Figure 5.3,

S includes the Susceptible compartment in Figure 5.2, which means the susceptible

individuals. People in S can be infected and become infected individuals I, which

includes Asymptomatic and Presymptomatic compartments in Figure 5.2. V1 and

V2 represent the individuals who received the first-dose and second-dose of different

170



types of vaccines, which represent Vaccinated 1 and Vaccinated 2 compartments in

Figure 5.2, respectively. The susceptible individuals can be vaccinated and transfer

to V1 and V2. People in both V1 and V2 can transfer to recovered individuals R

depending on the vaccine type. The results for each compartment in each region at

each stage are only used in the optimization model to generate the vaccine center

location and vaccine allocation decisions, and they will not influence the results of

the agent-based simulation.

Figure 5.3 Compartment model of optimization.

5.4.2 Notation

Below we provide the notations used for the rest of the chapter.

Sets and Indices

J : Set of time periods, J = {0, . . . , J}.

R : Set of regions, R = {0, . . . , R}.

P : Set of vaccine supply warehouse, P = {1, 2, 3}.

N : Set of the number of the days between the first and second shot

171



of type i vaccine, N = {21, 28}.

j : Index for time period, where j ∈ J .

r : Index for region, where r ∈ R.

i : Index for vaccine, where i ∈ {1, 2, 3}.

p : Index for vaccine supply warehouse, where p ∈ P .

n : Index for the number of the days between the first and second shot
of type i vaccine, n ∈ N .

State Variables

Sj,r : Susceptible individuals in region r at stage j.

Ij,r : Infected individuals including both symptomatic and asymptomatic
individuals in region r at stage j.

V 1
j,r : Number of people get the first dose of type i (i ∈ {1, 2}) vaccine

and a single dose of type i (i ∈ {3}) vaccine in region r at stage j.

V 2
j,r : Number of people who get the second dose of

type i (i ∈ {1, 2}) vaccine in region r at stage j.

Other Parameters

bir : Cost of building type i vaccination center in region r.

ci : Purchase cost for each type i vaccine.

dr,l : The distance from the highest populated city in region r to the highest
populated city in region l.

dp,r : The distance from vaccine supply warehouse p to the highest populated
city in region r.

t : Unit transportation cost of vaccines with a truck from the vaccine supply
warehouse to a region.

Gi
j,r : Vaccination capacity for type i vaccination center at stage j in region r.
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H i
j : Vaccine supply upper bound for type i vaccine at stage j.

Ci
j,r : Total existing capacity of the local pharmacies and small vaccination sites

for type i vaccine at stage j in region r.

β1
r : The first shot vaccine acceptance rate, i.e., willingness to get vaccinated,

for a two-dose vaccine in region r.

β2
r : The lower bound of the second shot vaccine acceptance rate for a

two-dose vaccine in region r.

βr : The vaccine acceptance rate for the one-dose vaccine in region r.

α1,i
r : Proportion of individuals who get immunization by the first shot of

type i two-dose vaccine.

α2,i
r : Proportion of individuals who get immunization by the second shot of

type i two-dose vaccine.

αr : Proportion of individuals immune by the one-shot vaccines.

nr : The total number of vaccine centers allocated in region r.

e : Euler’s number.

m : Parameter that is used to change the value of equations (5.1q) and (5.1r).

k : Parameter used to change the value of equations (5.1q) and (5.1r).

πr : The initial number of susceptible individuals in region r, inputted from the
simulation model.

$r : The initial number of infections in region r, inputted from
the simulation model.

θir : The initial number of the individuals who have received the first-dose
type i (i ∈ {1, 2}) vaccine shot in region r.

ϑir : The initial number of the individuals who have received the second-dose
type i (i ∈ {1, 2}) vaccine shot in region r.

σir : The initial number of the individuals who have received the first-dose
type i (i ∈ {3}) vaccine shot in region r.
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Decision variables:

xir :Whether to build type i vaccination center in region r (xir ∈ {0, 1}).

yr,l :Whether vaccination center in region r serves people
in region l (yr,l ∈ {0, 1}).

oi,1j,r :Number of type i (i ∈ {1, 2}) first-dose vaccines allocated to region r
at end of period j for a newly established center.

oi,2j,r :Number of type i (i ∈ {1, 2}) second-dose vaccines allocated to
region r at end of period j for a newly established center.

oij,r :Number of type i (i ∈ {3}) vaccines allocated to
region r at end of period j for a newly established center.

zi,1j,r :Number of type i (i ∈ {1, 2}) first-dose vaccines allocated to region r
at end of period j for existing pharmacies and small vaccination sites.

zi,2j,r :Number of type i (i ∈ {1, 2}) second-dose vaccines allocated to region r
at end of period j for existing pharmacies and small vaccination sites.

zij,r :Number of type i (i ∈ {3}) vaccines allocated to region r at end of
period j for existing pharmacies and small vaccination sites.

5.4.3 Optimization Model Formulation

The mathematical formulation for the optimization model is given below.

min
∑
j∈J

∑
r∈R

Ij,r (5.1a)

s.t. yr,l ≤ xir r ∈ R, i ∈ {1, 2}, (5.1b)∑
r∈R

yr,l = 1 ∀l ∈ R, (5.1c)

xik + yr,l ≤ 1 ∀k, r, l ∈ R, i ∈ {1, 2}

(s.t. dk,l ≤ dr,l), (5.1d)
3∑
i=1

xir ≤ nr ∀r ∈ R, (5.1e)
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Sω0,r = πr, Iω0,r = $r, V i,1
0,r = θir, V i,2

0,r = ϑir r ∈ R, i ∈ {1, 2},

V i
0,r = σir r ∈ R, i ∈ {3}, (5.1f)

Sj+1,r = Sj,r − Îj,r −
∑
i∈{1,2}

(oi,1j,l + zi,1j,l )− (o3
j,l + z3

j,l)

j ∈ J \ {J}, r ∈ R, (5.1g)

Ij+1,r = Ij,r + Îj,r −
∑
i∈{1,2}

(oi,1j,l + zi,1j,l )α
1,i
r −

∑
i∈{1,2}

(oi,2j,l + zi,2j,l )α
2,i
r

−(o3
j,l + z3

j,l)αr j ∈ J \ {J}, r ∈ R, (5.1h)

V 1
j+1,r = V i,1

j,r +
∑
i∈{1,2}

(oi,1j,r + zi,1j,r − o
i,2
j,r − z

i,2
j,r) + (o3

j,r + z3
j,r)

j ∈ J \ {J}, r ∈ R, (5.1i)

V 2
j+1,r = V i,2

j,r + oi,2j,r, j ∈ J \ {J}, r ∈ R, i ∈ {1, 2}, (5.1j)∑
l∈R

(oi,1j,l + oi,2j,l )yr,l ≤ Gi
j,r j ∈ J, r ∈ R, i ∈ {1, 2}, (5.1k)∑

l∈R

oij,lyr,l ≤ Gi
j,r j ∈ J, r ∈ R, i ∈ {3}, (5.1l)∑

l∈R

(zi,1j,l + zi,2j,l ) ≤ Ci
j,r j ∈ J, r ∈ R, i ∈ {1, 2}, (5.1m)∑

l∈R

zij,l ≤ Ci
j,r j ∈ J, r ∈ R, i ∈ {3}, (5.1n)∑

l∈R

(oi,1j,l + oi,2j,l + zi,1j,l + zi,2j,l ) ≤ H i
j ∀j ∈ J, i ∈ {1, 2}, (5.1o)∑

l∈R

(oij,l + zj,l) ≤ H i
j ∀j ∈ J, i ∈ {3}, (5.1p)∑

l∈R

(oi,1j,l + oi,2j,l + zi,1j,l + zi,2j,l ) ≥
m

1 + ekj
∀j ∈ J, i ∈ {1, 2}, (5.1q)∑

l∈R

(oij,l + zj,l) ≥
m

1 + ekj
∀j ∈ J, i ∈ {3}, (5.1r)

oi,1j,l + zi,1j,l ≤ Sj,rβ
1
r j ∈ J, r, l ∈ R, i ∈ {1, 2}, (5.1s)

β2
ro
i,1
j−n,l ≤ oi,2j,l ≤ oi,1j−n,l j ∈ J, r, l ∈ R, i ∈ {1, 2}, n ∈ N, (5.1t)

oij,l + zij,l ≤ Sj,rβr j ∈ J, r, l ∈ R, i ∈ {3}, (5.1u)∑
r∈R

birx
i
r +

∑
j∈J

∑
l∈R

∑
i∈{1,2}

ci(oi,1j,l + oi,2j,l ) +
∑
j∈J

∑
l∈R

∑
i∈{3}

cioij,r
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+
∑
j∈J

∑
l∈R

∑
i∈{1,2}

ci(zi,1j,l + zi,2j,l ) +
∑
j∈J

∑
l∈R

∑
i∈{3}

cizij,r

+
∑

i∈{1,2,3}

∑
p∈P

∑
r∈R

tdp,rx
i
r ≤ ∆ (5.1v)

xir, yr,l ∈ {0, 1} i ∈ I, j ∈ J, r ∈ R, (5.1w)

Sj,r, Gj,r, Cj,r, Ij,r, Îj,r, oi,1j,r, oi,2j,r, oij,r, zi,1j,r, zi,2j,r, zij,r ≥ 0,

i ∈ I,∈ J, r ∈ R. (5.1x)

Objective Function (5.1a). The objective function (5.1a) minimizes the total

number of infections over all the regions throughout the planning horizon.

Vaccination Center Location and Service Constraints (5.1b) - (5.1e).

Constraint (5.1b) ensures that region r cannot serve region l if there is no vaccination

center build in region r. Constraint (5.1c) represents that only one region with a

vaccination center can serve region l. Constraint (5.1d) ensures that the nearest

region with a vaccination center serves region l. Constraint (5.1e) limits the total

number of different types of vaccine centers allocated to region r.

Population Infection Dynamics Constraints (5.1f) - (5.1j). Constraint (5.1f)

gives the initial number of susceptible individuals and infections generated from the

simulation model and the initial number of individuals who have received the first-dose

of type i vaccine, as well as the initial number of individuals who have received the

second-dose of type i (i ∈ {1, 2}) vaccine. Constraint (5.1g) shows that the number

of susceptible individuals in region r at stage j + 1 equals the number of susceptible

individuals from the previous stage minus the number of infected individuals in region

r at stage j and minus the number of susceptible individuals who have received the

first-dose of type i (i ∈ {1, 2}) vaccine in region r at stage j, and minus the number

176



of susceptible individuals who have received a single dose of type i (i ∈ {3}) vaccine

in region r at stage j.

Constraint (5.1h) represents that the number of infected individuals in region r

at stage j + 1 equals the number of infected individuals from the previous stage plus

newly infected individuals, minus the number of individuals saved by the vaccines.

Constraint (5.1i) indicates that the number of people who have received the first-dose

of type i (i ∈ {1, 2, }) vaccine and a single dose of type i (i ∈ {3}) vaccine in region

r at stage j + 1 equals the number of people who have received the first-dose of type

i (i ∈ {1, 2}) vaccine and a single dose of type i (i ∈ {3}) vaccine from the previous

stage plus the newly vaccinated people (first dose and single dose) minus the number

people who have taken the second dose of type i (i ∈ {1, 2, }) vaccine. Constraint

(5.1j) indicates that the number of people who have received the second-dose of type

i (i ∈ {1, 2}) vaccine in region r at stage j + 1 equals the number of people who have

received the second-dose of type i (i ∈ {1, 2}) vaccine from previous stage plus the

newly vaccinated people (second dose).

Vaccines Logistics and Capacity Constraints (5.1k) - (5.1v). Constraints (5.1k)

and (5.1l) ensure that the total number of each type of vaccine allocated to the new

vaccine centers in region r at stage j should be smaller or equal to the vaccine capacity

upper bound of the vaccination center in region r. Constraints (5.1m) and (5.1n)

ensure that the total number of each type of vaccine allocated to local pharmacies

and small vaccine sites in region r at stage j should be smaller than or equal to the

vaccine capacity upper bound (obtained from Heffernan [2021b]). Constraints (5.1o)

and (5.1p) ensure that the total number of each type of vaccine supplied to the new

vaccine centers and local pharmacies (and small vaccination sites) over all regions at

each stage j should be smaller than or equal to the vaccine supply upper bound at

stage j. Constraints (5.1q) and (5.1r) indicate that the total number of each type
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of vaccine supplied to the new vaccine centers and the existed vaccine locations over

all regions at each stage j should be greater than or equal to the vaccination lower

bound at stage j. The vaccination lower bound at each stage j is represented by an

exponential function reaching an asymptote over time. Constraint (5.1s) indicates

that the total number of people who have received the first shot of type i (i ∈ {1, 2})

vaccine should be smaller than or equal to the people who are willing to be vaccinated.

Constraint (5.1t) implies that the total number of people vaccinated by the second

shot of type i (i ∈ {1, 2}) vaccine should be greater than or equal to the lower

bound of the people who are willing to be vaccinated but smaller than or equal to

the people who have received the first shot n (n ∈ N) days before the second shot.

Constraint (5.1u) represents that the total number of people vaccinated by type i

(i ∈ {3}) vaccine should be smaller than or equal to the people who are willing to be

vaccinated.

Constraint (5.1v) represents the budget limitations. Specifically, constraint

(5.1v) ensures that the total vaccination center building cost, plus the cost of vaccines

that are distributed to the newly established vaccine centers and existing pharmacies

and small vaccination sites, plus the logistics distribution cost from the vaccine supply

warehouses to vaccine centers, over all regions throughout the whole planning horizon,

should be smaller than or equal to a certain budget level.

Integrality and Non-Negativity Constraints (5.1w) - (5.1x). Constraints (5.1w)

and (5.1x) are the variable’s restrictions. Specifically, constraint (5.1w) indicates

that xir and yr,l are binary variables. Constraint (5.1x) implies that the number of

susceptible individuals, the vaccine upper bounds, the number of existed infected and

newly infected individuals, the number of each type of vaccine should be greater than

or equals to 0.
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5.4.4 Linearization

Constraint (5.1l) is non-linear. We define two variables U i
j,r,l and oi,UBj,r , where U i

j,r,l =

yr,lo
i
j,r and oi,UBj,r is the upper bound of parameter oij,r. Thus, constraint (5.1l) can be

linearized by the following equations:

U i
j,r,l ≤ oi,UBj,r yr,l j ∈ J, r, l ∈ R, i ∈ {3}, (5.2)

U i
j,r,l ≤ oij,r j ∈ J, r, l ∈ R, i ∈ {3}, (5.3)

U i
j,r,l ≥ oij,r − o

i,UB
j,r (1− yr,l) j ∈ J, r, l ∈ R, i ∈ {3}, (5.4)

0 ≤ U i
j,r,l ≤ oi,UBj,r j ∈ J, r, l ∈ R, i ∈ {3}. (5.5)

Constraint (5.1k) can be linearized by using a similar method.

5.4.5 Simulation-Optimization Model

Figure 5.4 The loop of simulation-optimization model.

In this chapter, we introduce a simulation-optimization approach to address the

vaccination facility location and vaccine allocation challenges of the COVID-19. We

extend the Covasim agent-based model of the COVID-19 and incorporate it with
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a new vaccination center and vaccine-allocation optimization model. As shown in

Figure 5.4, the integrated model runs in a loop, where the simulation model forecasts

the disease transmission and import the results into the optimization model. The

optimization model minimizes the total number of infections throughout the planning

horizon by choosing the optimal vaccination center locations and vaccine allocation

among each region and sends the results back to the simulation model to estimate the

number of infections in the future. Specifically, the simulation model uses the number

of initial susceptible and infected individuals to forecast the number of susceptible

and infected individuals, presymptomatic and asymptomatic individuals, as well as

the mild, severe, critical, recovered, and dead individuals for each stage in the current

planning horizon. The forecast numbers of susceptible and infected individuals

are imported into the optimization model. The optimization model incorporates

the available budget, potential vaccine sites in each region, vaccine capacity for

each site, and total available vaccine supply for each vaccine type to generate the

optimal vaccination center location and vaccine allocation while minimizing the total

number of infections in the considered regions. The optimization results include

the number of people that are supposed to be vaccinated in vaccination centers and

local pharmacies (and small vaccination sites) at each future stage in each region.

Then these parameters are fed into the simulation model to simulate the number of

susceptible and infected individuals for the next periods.

We implement our model to the New Jersey state in the United States; each

stage in the model represents a one-day period. We run the simulation optimization

in three steps. In the first step, the number of initial susceptible individuals and

infections from JHU [2020] is imported into the optimization model to generate the

vaccination center locations and vaccine allocations for the first 30-days period. Then

the results are input in the simulation model to simulate the number of susceptible

individuals and infections for the first 30-days period. In the second step, the
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simulation results of the first 30-days are input into the optimization model, and the

optimization model generates the optimal vaccination center locations and vaccine

allocation decisions for the second 30-days period. The optimization model results

for the second 30-days are combined with the first 30-days together and then imported

into the simulation model to estimate the total number of susceptible individuals and

infections for the first 60-days. In the last step, we repeat the second step and combine

the 90-days vaccine allocation results. Thus, we solve the model for a total 90-days

time period. For step 2 and step 3, the vaccination center allocation variable xir is

fixed to be the same as the solution of step 1. This indicates that the model generates

the vaccine allocation decisions under the same xir values in each loop.
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5.5 Case Study Data

Source: [Aparadinar, 2021]

Figure 5.5 All the counties in New Jersey.

This section presents the data used to formulate and test the model. The data includes

the population for each county in New Jersey State, the number of infections over

time for each county in New Jersey State, the logistics cost, and the cost of vaccines.

In our model, each stage represents a one-day period. In total, we consider a 90-day

planning horizon, which is equal to three months.
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5.5.1 Population and Infection Data

Table 5.1 shows the population and the cumulative number of infections data for each

county in New Jersey state, which is obtained from JHU [2020]. For the number of

infections, we only present three specific days of the total 90 day period, which are

March 1, April 12, and May 24, 2021. The numbers of cumulative infections are

rounded in thousands.
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Table 5.1 Populations and the Number of Infections (in Thousands) for Each
County in New Jersey

County Population March 1, 2021 April 12, 2021 May 24, 2021

Atlantic 274.5 24.9 29.7 31.5

Bergen 905.1 78 96.4 104.1

Burlington 448.7 35.5 41.9 44.1

Camden 513.5 44.3 51.1 55.4

Cape May 97.3 7.3 8.6 9.1

Cumberland 156.6 14.3 15.8 17

Essex 783.9 74 90.1 93.8

Gloucester 288.8 24.2 28.2 30.4

Hudson 634.3 69.6 83.7 87.8

Hunterdon 127.4 7 9 9.8

Mercer 367.5 27.9 32.1 33.8

Middlesex 810.0 72.8 87.8 91.9

Monmouth 630.4 57.2 71.5 75.3

Morris 492.3 37.7 47.4 50

Ocean 576.5 58.9 71.9 75.6

Passaic 501.6 57 67.5 72.7

Salem 66.1 4.7 5.5 6.1

Somerset 323.5 22.9 28.1 30

Sussex 148.9 9.2 12.7 13.9

Union 536.5 57 67.4 71.2

Warren 108.6 7.1 9 9.9

5.5.2 Logistics and Operations Cost Data

Table 5.2 presents the vaccine cost and efficiency data for Pfizer, Moderna, and

Janssen. Table 5.3 shows the logistic and operations cost data. The fixed cost of
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the vaccination center includes planning and coordination cost, training cost, social

mobilization cost, cold chain equipment cost, pharmacovigilance cost, as well as hand

hygiene cost. The recurring cost contains cold chain recurrent cost, vaccination

certificates cost, personal protective equipment (PPE) cost, Hand hygiene cost, and

waste management cost.

Table 5.2 COVID-19 Vaccine Cost ($) and Efficiency [Seladi-Schulman, 2021]

Vaccine Category Cost First Dose Second Dose

per dose Efficiency Efficiency

Pfizer 19.5 80% 95%

Moderna 15 80% 94.1%

Janssen 10 74.4% -

Table 5.3 Logistics Cost ($) for the COVID-19 Vaccines [WHO, 2021c]

Cost Category Fixed Recurring Total

Planning and coordination 30,513 - 30,513

Training 7,629 - 7,629

Social mobilization 137,308 - 137,308

Cold chain equipment 61,026 - 61,026

Cold chain recurrent - 1,447 1,447

Pharmacovigilance 15,257 - 15,257

Vaccination certificates - 4,495 4,495

PPE - 9,745 9,745

Hand hygiene 2,247 13,955 16,202

Waste management - 5,944 5,944
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5.6 Model Validation

In this section, we present the validation results of the simulation-optimization model

shown in Section 5.3. The government set up one Pfizer vaccination center in March

at the New Jersey Institute of Technology in Essex County. The vaccination center

can vaccinate up to 6,000 people each day. Thus, we use this actual vaccination

center location in our model for validation. The number of Pfizer vaccine centers in

our model is set to 1, and the location is in Essex County, while other types of vaccine

centers are set to be 0 in the validation experiments. The optimization model decides

on how many vaccines of each type are allocated to each region and uses these values

as inputs in the simulation model. We present the number of estimated infections

throughout the 90-days planning horizon and compare it with the real outbreak data.

The results of nine counties are shown in Figure 5.6 (the validation results of all the

counties in New Jersey are shown in Figures C.1, C.2, and C.3 in Appendix C).
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Figure 5.6 Model validation against real outbreak data in New Jersey.
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Table 5.4 Statistical Analysis to Compare the Weekly Predicted New Cases and
Real Outbreak Data

County Mean Two-tailed paired-t-test

Outbreak Predicted t-stat t-critical p-value

Atlantic 508 479 0.21 2.20 0.73

Bergen 2008 2030 0.04 0.94

Burlington 662 609 0.28 0.61

Camden 854 860 0.03 0.96

Cape May 138 167 0.60 0.27

Cumberland 208 183 0.46 0.59

Essex 1523 1593 0.14 0.84

Gloucester 477 402 0.69 0.25

Hudson 1400 1391 0.02 0.97

Hunterdon 215 193 0.40 0.56

Mercer 454 449 0.03 0.95

Middlesex 1469 1477 0.02 0.98

Monmouth 1392 1405 0.03 0.96

Morris 946 984 0.14 0.74

Ocean 1285 1318 0.08 0.86

Passaic 1208 1300 0.33 0.62

Salem 108 117 0.40 0.54

Somerset 546 507 0.26 0.64

Sussex 362 484 1.24 0.27

Union 1092 1093 0.00 0.99

Warren 215 188 0.52 0.35
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According to the results, since the model starts from zero infections, but the

real data is in the middle of the pandemic, the model predicts a greater number of

infections at the beginning of the time period than the predicted number becomes

less than the real data in the later periods. Overall, the estimation fits the real data

well. In addition, we perform a paired-t-test to analyze the difference between the

pairs of predicted new infections and the actual data in each period. As shown in

Table 5.4, all p-values are greater than 0.05, and thus our model provides statistically

similar predictions with the real outbreak data from March 1 to May 30, 2021, for

each considered county.

5.7 Case Study Results

We apply our model described in Section 5.3 to all the counties in New Jersey. We

solve the optimization model to generate the results of the optimal vaccination center

locations and vaccines’ allocation, including Pfizer, Moderna, and Janssen. Then we

use the results generated by the optimization model as the inputs of the simulation

model. We incorporate vaccination in the Covasim model. The vaccination includes

the first and second shots for Pfizer and Moderna vaccines and a single shot for the

Janssen vaccine. We solve the model for a 90-days period, a planning horizon from

March 1, 2021, to May 30, 2021. The optimization model is solved using CPLEX

20.1 on a desktop computer running with Intel i7 CPU and 64.0 GB of memory.

The simulation model is run on the same desktop computer in PyCharm Edu (using

python language).

5.7.1 The Number of Cumulative Infections under Different Budget
Levels

We fix only one Pfizer vaccination center in Essex county, similar to the validation

experiments and test our model under different budget levels (from limited to ample).
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We use $5M as a limited budget level, $10M as a medium budget level, and we do not

put a budget restriction under the ample budget scenario. However, under the ample

budget scenario, the number of people being vaccinated is bounded by the number of

people willing to be vaccinated in each region.

Figure 5.7 shows the number of cumulative infections under different budget

levels for nine counties in New Jersey (the number of cumulative infections under

different budget levels for all the counties in New Jersey are shown in Figures C.4,

C.5, and C.6 in Appendix C). According to the results, the number of cumulative

infections stays the same under different budget levels at the initial stages. This is

because it takes time for people to be exposed and develop symptoms after their being

infected. Thus, the difference in the number of cumulative infections becomes more

significant after a certain time period. For almost all the counties shown in Figure 5.7,

the ample budget level generates the least number of cumulative infections due to the

high number of vaccines allocated, followed by the medium budget level. However, for

some of the counties, the cumulative number of infected individuals under different

budget levels are similar, especially for the medium and ample budget levels. Not

surprisingly, we find that these counties either have high populations or high initial

infections. Thus, the model gives priority to allocate more vaccines to these counties

when the budget is not ample. Therefore, the total number of vaccines that these

counties receive under the medium budget level is similar to the number under the

ample budget level, leading to a similar number of cumulative infections.

We find that some counties do not have the lower number of infections under the

ample budget level (e.g., CapeMay and Salem County). This is because we randomly

vaccinate susceptible and recovered individuals in the agent-based simulation model.

Although more people are vaccinated under the medium and ample budget levels,

more recovered people could be vaccinated than susceptible people. Thus, the

190



number of cumulative infections may be higher under medium and ample budget

levels compared with the limited budget level.

Figure 5.7 New Jersey cumulative infections under different budget levels.

5.7.2 The Number of Vaccines Allocated to Each County under Different
Budget Levels

The number of vaccines allocated to each county under different budget levels is

presented in Tables 5.5, 5.6, and 5.7, respectively. Each table presents the population

proportion of each county, the total vaccines allocated to each county, the proportion

of the vaccines allocated to each county, and the number of first and second doses

of each type of vaccine allocated to each county. Figure 5.8 shows the proportion of

each type of vaccine allocated under different budget levels.
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Table 5.5 Vaccine Allocation under Limited Budget Level

County Population Vaccine Total Pfizer Pfizer Moderna Moderna Janssen

Proportion Vaccine First Second First Second

Dose Dose Dose Dose

Atlantic 3.1% 3.6% 38,789 4,500 1,083 6,493 2,676 24,037

Bergen 10.3% 9.5% 103,971 4,500 1,082 12,072 7,138 79,179

Burlington 5.1% 5.1% 56,034 4,502 1,080 6,862 2,970 40,620

Camden 5.8% 5.9% 63,752 4,500 1,080 8,640 4,392 45,140

Cape May 1.1% 1.8% 20,085 4,500 1,080 4,500 1,080 8,925

Cumberland 1.8% 2.4% 25,848 4,500 1,080 4,500 1,080 14,688

Essex 8.9% 7.9% 86,335 4,500 1,080 4,500 1,080 75,175

Gloucester 3.3% 3.6% 38,654 4,500 1,080 4,500 1,080 27,494

Hudson 7.2% 6.6% 71,729 4,500 1,080 4,500 1,080 60,569

Hunterdon 1.4% 2.1% 23,024 4,500 1,080 4,515 1,093 11,836

Mercer 4.2% 4.3% 46,304 4,500 1,080 4,500 1,080 35,144

Middlesex 9.2% 8.2% 88,937 4,500 1,080 4,500 1,080 77,777

Monmouth 7.2% 6.6% 71,448 4,500 1,080 4,500 1,080 60,288

Morris 5.6% 5.3% 58,236 4,500 1,080 4,500 1,080 47,076

Ocean 6.6% 6.1% 66,165 4,500 1,080 4,500 1,080 55,005

Passaic 5.7% 5.4% 59,113 4,500 1,080 4,500 1,080 47,953

Salem 0.8% 1.6% 17,099 4,500 1,080 4,500 1,080 5,939

Somerset 3.7% 4.0% 43,294 4,500 1,080 6,118 2,378 29,218

Sussex 1.7% 2.3% 25,086 4,500 1,080 4,500 1,080 13,926

Union 6.1% 5.8% 63,450 4,500 1,080 5,782 2,106 49,982

Warren 1.2% 2.0% 21,463 4,500 1,080 4,842 1,354 9,687

Total 100.0% 100.0% 1,088,816 94,502 22,685 113,824 38,147 819,658

According to the results, the total number of vaccines allocated increases when

the budget level increases. Under a limited budget level, the majority of the vaccines

are allocated in Janssen, followed by Moderna, while Pfizer has the least number
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of vaccines allocated (Figure 5.8). On the contrary, Pfizer has the highest vaccine

efficiency. This is because the insufficient budget limits the total number of vaccines

purchased. Although Pfizer has the highest efficiency, the cost of each dose of the

Pfizer vaccine is much higher than the others. On the contrary, the Janssen vaccine

has the lowest price, followed by Moderna. Therefore, under the limited budget

level (Table 5.5), the model considers purchasing more doses of vaccines rather than

purchasing the vaccines with the highest efficiency. Thus under a limited budget,

the model chooses to vaccine more people with mainly cheaper vaccines and the

vaccines with a single dose. Compared with the population proportion and vaccine

proportion, the counties with a bigger population are more likely to receive more

vaccines. However, some counties may receive more (or less) vaccines compared with

their population proportion due to their high (or low) number of initial infections.
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Table 5.6 Vaccine Allocation under Medium Budget Level

County Population Vaccine Total Pfizer Pfizer Moderna Moderna Janssen

Proportion Vaccine First Second First Second

Dose Dose Dose Dose

Atlantic 3.1% 3.2% 61,169 4,500 1,080 26,005 13,683 15,901

Bergen 10.3% 9.9% 188,279 4,500 1,080 84,927 47,770 50,002

Burlington 5.1% 5.2% 98,378 4,500 1,080 41,796 22,671 28,331

Camden 5.8% 5.9% 112,200 4,501 1,081 49,253 27,279 30,086

Cape May 1.1% 1.3% 24,961 4,504 1,084 8,905 3,680 6,788

Cumberland 1.8% 1.9% 36,933 4,501 1,080 14,368 6,814 10,170

Essex 8.9% 8.6% 163,455 4,500 1,080 72,965 40,689 44,221

Gloucester 3.3% 3.4% 65,606 4,504 1,084 27,469 14,543 18,006

Hudson 7.2% 7.0% 134,295 4,500 1,080 60,535 33,883 34,297

Hunterdon 1.4% 1.6% 31,162 4,500 1,080 11,837 5,398 8,347

Mercer 4.2% 4.3% 82,226 4,500 1,080 35,112 19,013 22,521

Middlesex 9.2% 9.0% 170,680 4,504 1,084 77,708 43,924 43,460

Monmouth 7.2% 7.0% 133,654 4,500 1,080 60,232 33,703 34,139

Morris 5.6% 5.5% 105,676 4,500 1,080 46,992 25,992 27,112

Ocean 6.6% 6.4% 122,502 4,500 1,080 54,960 30,630 31,332

Passaic 5.7% 5.6% 107,558 4,500 1,080 47,909 26,496 27,573

Salem 0.8% 1.0% 18,657 4,500 1,080 5,932 1,946 5,199

Somerset 3.7% 3.7% 71,320 4,500 1,080 30,800 16,489 18,451

Sussex 1.7% 1.9% 35,542 4,504 1,084 13,902 6,600 9,452

Union 6.1% 6.0% 114,559 4,500 1,080 51,216 28,433 29,330

Warren 1.2% 1.4% 27,316 4,500 1,080 10,020 4,334 7,382

Total 100.0% 100.0% 1,906,128 94,518 22,697 832,843 453,970 502,100

Under the medium budget level (Table 5.6), the total number of Janssen vaccines

allocated is decreased, while more Moderna vaccines are allocated (which is also shown

in Figure 5.8). This is because the model starts to consider the vaccine efficiency when
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the budget increases, and the expected number of people saved by the vaccines with

higher efficiency is more than the number of people saved by the vaccines with lower

efficiency. Nevertheless, since Pfizer is still much more expensive than Moderna and

Janssen, the model allocates more Moderna vaccines instead of Pfizer. Compared with

the population proportion with the vaccine allocation proportion, the counties with

a higher population receive even more vaccines. This is because the total number of

vaccines allocated is still not enough to satisfy the people’s vaccination need, and the

model gives priority to distribute more vaccines to the regions with high population

and initial infections.
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Table 5.7 Vaccine Allocation under Ample Budget Level

County Population Vaccine Total Pfizer Pfizer Moderna Moderna Janssen

Proportion Vaccine First Second First Second

Dose Dose Dose Dose

Atlantic 3.1% 3.1% 88,854 34,143 17,744 29,833 2,634 4,500

Bergen 10.3% 10.3% 294,610 161,094 66,391 58,775 3,850 4,500

Burlington 5.1% 5.1% 145,735 70,577 31,296 36,846 2,514 4,502

Camden 5.8% 5.9% 167,620 104,750 38,124 18,890 1,352 4,504

Cape May 1.1% 1.1% 30,842 13,383 4,596 6,619 1,744 4,500

Cumberland 1.8% 1.8% 50,308 21,690 9,031 13,131 1,956 4,500

Essex 8.9% 8.9% 254,718 136,864 55,362 53,241 4,751 4,500

Gloucester 3.3% 3.3% 93,755 56,344 20,229 11,328 1,352 4,502

Hudson 7.2% 7.2% 205,278 101,315 45,020 51,386 3,057 4,500

Hunterdon 1.4% 1.4% 40,817 18,793 6,749 8,766 2,009 4,500

Mercer 4.2% 4.2% 119,530 56,846 24,608 30,394 3,178 4,504

Middlesex 9.2% 9.3% 264,130 136,834 61,506 59,940 1,350 4,500

Monmouth 7.2% 7.2% 204,867 104,985 42,127 46,883 6,372 4,500

Morris 5.6% 5.6% 160,023 70,210 33,748 47,679 3,886 4,500

Ocean 6.6% 6.5% 186,872 95,527 38,248 42,705 5,892 4,500

Passaic 5.7% 5.7% 162,595 76,867 35,180 43,377 2,671 4,500

Salem 0.8% 0.7% 20,749 6,852 2,420 5,502 1,475 4,500

Somerset 3.7% 3.7% 105,050 47,109 20,604 29,120 3,717 4,500

Sussex 1.7% 1.7% 47,786 19,483 8,233 13,374 2,196 4,500

Union 6.1% 6.1% 174,383 86,554 36,975 42,214 4,140 4,500

Warren 1.2% 1.2% 34,624 13,765 5,579 9,104 1,676 4,500

Total 100.0% 100.0% 2,853,146 1,433,985 603,770 659,107 61,772 94,512

As shown in Table 5.7 and Figure 5.8, the total number of Pfizer vaccines

allocated under the ample budget level increases significantly. Compared with

Moderna and Janssen vaccines, the model gives priority to allocate as many Pfizer
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vaccines as possible. When there is no budget limitation on the vaccine allocation,

vaccine efficiency is the only consideration for the vaccine administration. Thus,

Pfizer vaccines have the priority to be allocated compared with Moderna and Janssen.

Moreover, under the ample budget level, the vaccine allocation proportion is almost

the same as the population proportion. This is because we assume the same vaccine

acceptance rate in each county of New Jersey. Under the ample budget level, the

number of people who receive vaccines reaches the upper bound on the vaccine supply

available. This implies that all the people who are willing to be vaccinated receive the

vaccine shots when the budget is ample and as long as there is sufficient vaccine supply.

Thus, the vaccine allocation proportion is the same as the population proportion for

each county in New Jersey.

Figure 5.8 Proportion of each type of vaccine under different budget levels.

For all the budget levels, the number of the second dose of Pfizer and Moderna

vaccines is much smaller than that of the first dose. This is because when the total

number of vaccine supply is bounded even if the purchasing budget is ample, the

model gives priority to administer as many as the first shots of those vaccines since the

effectiveness of the first shot is high and more people can benefit from the vaccination.
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5.7.3 Vaccination Center Location Decision under Medium Budget Levels
and Number Restrictions

In this subsection, we present the vaccination center location decisions generated

by the model. Specifically, we change the number of vaccine centers that can be

allocated for each type of vaccine and then generate the vaccination center locations

and service decisions for those vaccine centers under medium budget level.

Vaccination Center Locations for Pfizer We fix the Pfizer vaccination center

to one while keeping Moderna and Janssen centers to zero, as shown on the left side

of Figure 5.9. The model allocates the Pfizer center to Essex county, which is the

same decision the government has taken in the real situation.

Figure 5.9 Vaccination center locations for Pfizer.

We then increase the number of Pfizer vaccine centers to two, and the

vaccination center decision is changed. The right side of Figure 5.9 shows that one
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of the vaccination centers is allocated in Essex County, and the other is allocated in

Union County. The vaccination center in Essex County serves Bergen County, Hudson

County, Passaic County, Sussex County, Warren County, and Hunterdon County. The

Union County vaccination center serves the rest of the counties in New Jersey.

Figure 5.10 Vaccination center locations for all types of vaccines.

Vaccination Center Locations for Multiple Types of Vaccines Vaccination

center locations for multiple types of vaccines are studied. Figure 5.10 presents

the vaccination center locations when the numbers of Moderna centers and Janssen

centers are set to one, while the number of Pfizer centers remains to be two. On

the left side of Figure 5.10, we allow each county to have different types of vaccine

centers. On the right side of Figure 5.10, each region can only have one type of vaccine

center. For the first case, Essex County has the Pfizer and Moderna centers allocated,

while Union County has another Pfizer center allocated. This is because the vaccine
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warehouses for Pfizer and Moderna are located in Essex County. Somerset County has

the Janssen vaccination center allocated. When only considering the transportation

cost from the warehouse to the vaccination centers, the distance from the warehouse

to the vaccination centers is the only factor that can influence the vaccination center

locations. Therefore, the model chooses the closest county to the supply warehouse

for each type of vaccine as the corresponding vaccination center. For the second case,

the Moderna vaccination center is moved to Hudson County since each county can

only have one vaccination center and Hudson County is the third closest county to the

warehouse after Essex County and Union County. We do not show the vaccine centers

service decision in Figure 5.10 because the service decision for the Pfizer center is the

same as Figure 5.9. We find that Union County is geographically the closest county

to Essex County, where the Pfizer and Moderna vaccine warehouses are allocated.

Thus, the vaccination center locations for the counties in New Jersey are ordered by

their distance from the warehouse from low to high.

5.7.4 Vaccine Allocation between Vaccination Centers and Local Pharmacies
(and Small Vaccination Sites)

In this subsection, we compare the vaccine allocation between vaccination centers and

local pharmacies (and small vaccination sites) under different budget levels ($5M as

the limited, $10M as the medium, and no budget limitation as to be ample).

Table 5.8 presents the results of vaccine allocation between the vaccination

centers and local pharmacies (and small vaccination sites) when only one Pfizer center

is located. Under the limited budget level, the model allocates all the Pfizer vaccines

to the vaccination centers. This is because vaccines allocated to the vaccination center

cost lower than those allocated to local pharmacies and small vaccination sites. Under

the limited budget level, the model chooses to distribute vaccines to the vaccination

centers because more people benefit from the vaccination. Under the medium budget
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level, the number of vaccines allocated to the vaccination center decreases. However,

the total number of vaccines allocated to the vaccination center is much more than

the local pharmacies and small vaccination sites. Under an ample budget level, the

model allocates the majority of the vaccines to local pharmacies and small vaccination

sites since there is no budget limitation on purchasing vaccines and the vaccination

capacity provided over pharmacies and small vaccination sites in total is larger than

that of the vaccination centers.

Table 5.8 Vaccine Allocation between Vaccination Centers and Local Pharmacies
(and small vaccination sites) with Only One Pfizer Center

Budget Limit Medium Ample

Pfizer

Center 117,180 100.0% 141,959 73.2% 310,134 15.2%

Pharmacy 0 0.0% 51,916 26.8% 1,727,621 84.8%

Total 117,180 100.0% 193,875 100.0% 2,037,755 100.0%

Table 5.9 shows the vaccine allocation results between vaccination centers and

local pharmacies (and small vaccination sites) with different types of vaccination

centers. In this case, the number of Pfizer vaccination centers is fixed to two, and

the number of Moderna and Janssen vaccination centers is set to one each. Similar

to Table 5.8, the number of vaccines allocated to the vaccination centers shows a

decreasing trend for each type of vaccine when the budget is increased from limited

to ample. For the Janssen vaccine, the proportion of the vaccines allocated to the

vaccination center increases under the medium budget level compared with the limited

budget level. One possible reason might be that the total number of Janssen vaccines

allocated decreases significantly under the medium budget level, as we discussed in

Section 5.7.2.
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Table 5.9 Vaccine Allocation between Vaccination Centers and Local Pharmacies
(and small vaccination sites) with Different Types of Vaccination Centers When
Vaccine Center Types and Locations are Fixed a Priori in the Model

Budget Limit Medium Ample

Pfizer

Center 117,180 100.0% 117,173 100.0% 5,310 0.3%

Pharmacy 0 0.0% 19 0.0% 1,657,658 99.7%

Total 117,180 100.0% 117,192 100.0% 1,662,968 100.0%

Moderna

Center 117,180 100.0% 150,834 13.7% 0 0.0%

Pharmacy 0 0.0% 949,523 86.3% 1,098,128 100.0%

Total 117,180 100.0% 1,100,357 100.0% 1,098,128 100.0%

Janssen

Center 120,156 17.9% 122,988 21.4% 0 0.0%

Pharmacy 550,425 82.1% 452,209 78.6% 94,500 100.0%

Total 670,581 100.0% 575,197 100.0% 94,500 100.0%

5.8 Discussion and Future Direction

In this study, we formulate a simulation-optimization model to generate the

vaccination center locations for different types of vaccines and the optimal vaccine

allocation strategies among different regions. We extend the simulation model

presented by Kerr et al. [2021] by adding two vaccination compartments. The

simulation model is able to incorporate the vaccination for the three types of vaccines,

which are the first and second shots for Pfizer and Moderna, and the first shot for

Janssen. The simulation model simulates the number of susceptible individuals and

infections for a certain time period and imports the results into the optimization

model. The optimization model incorporates the available budgets and potential

vaccination center locations as well as the total number of vaccines available to

generate the optimal vaccination center location and vaccine allocation strategies

for each county in the future planning horizon. Then the generated results are used
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as the inputs of the simulation model to estimate the number of infections and various

disease compartmental values with the vaccination strategies for the same period. We

apply our model to the case of vaccine allocation among all the counties in New Jersey

State.

First, we validate our model with the real outbreak data by fixing one Pfizer

vaccination center at Essex County and keep the number of other types of vaccine

centers to zero as in the real-life case. The predicted results fit the real outbreak

data well, and the paired-t-test shows that our predicted results have no significant

difference from the real outbreak data.

We test our model on the cumulative number of infections under different budget

levels. The results indicate that there is at least a month to see the difference in the

number of infections under different budget levels since it takes time for the disease

transmission and infects people. In addition, the county with a high population and

initial infections receives more vaccines allocated.

The number of vaccines allocated to each county under different budget levels

shows that the total number of vaccines allocated increases with the increase in the

available budget. Under a limited budget level, more vaccines with a lower unit cost

should be allocated because the limited budget reduces the number of people being

vaccinated compared with other budget levels. Using a low-cost vaccine, more people

are vaccinated, and the number of infections is minimized. In addition, the counties

with higher population proportions are more likely to have higher vaccine allocation

proportions since the model gives priority to vaccinate people in these regions. Under

the medium budget level, more vaccines with higher costs and higher efficiency are

allocated. The model has the flexibility to allocate those highly efficient vaccines

due to the increased budget, but there is still a limitation on the number of vaccines

distributed since the budget is still not ample enough. The counties with a higher

population will receive even more vaccines due to the high number of infections. Under
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the ample budget level, there is no limitation on the vaccine cost. Two main factors

that can influence vaccine allocation are the vaccine acceptance rate by people and

the available vaccine supply. In this case, the model allocates as many high-efficiency

vaccines as possible to minimize the total number of infections. The population

proportion of each county is almost the same as the vaccine allocation proportion

because the vaccine acceptance rate in our model is the same for each county. The

total number of people being vaccinated under an ample budget level is bounded by

the people who are willing to be vaccinated since the vaccine supply is also relatively

abundant. For all the budget levels, the model allocates more first doses than second

doses for Pfizer and Moderna vaccines. This is because more people benefit from

taking the first shot of the vaccines.

The results of vaccination center locations show that the model gives priority

to allocate vaccine centers to the region that has the closest distance to the vaccine

supply warehouse. When more vaccine centers are included, the centers are located

by order of distance to the vaccine warehouse from the shortest to the longest. When

tightening the center’s location constraint and only allowing one type of vaccination

center allocated in each county, the model prioritizes the type of center with higher

vaccine efficiency and then centers with lower efficiency.

The results of vaccine allocation between the vaccination centers and local

pharmacies (and small vaccination sites) indicate that more vaccines are allocated to

the vaccination centers than local pharmacies under the limited budget level due to

reduced vaccine and logistics costs. When the budget level increases, the proportion

of the vaccines allocated to the local pharmacies and small vaccination sites also

increases to benefit more people from vaccination.

The future work of this model can be described in the following ways. First,

our model considers the potential vaccination center locations and the overall local

pharmacy capacity. The distribution specifics from the warehouse to the local
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pharmacies are not included. In a future study, local pharmacy supply chain can be

incorporated, and the vaccine allocation strategies can be defined with more detailed

information. In addition, our model assumes that the people in each county can only

be served by the vaccine centers located in the closest county. In the real situation,

human behavior is hard to capture, and some of the people may go to further places to

receive the vaccines due to the complex environment. Thus, various human behaviors

on how to take the vaccines could be incorporated into the model. Moreover, we want

to study the specific vaccination strategies in a real application. For instance, one

may fix the number of vaccines but compare vaccination strategies targeting random

people or age-based groups.
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CHAPTER 6

SUMMARY AND FUTURE DIRECTIONS

In summary, this dissertation presents new multi-stage stochastic models and agent-

based simulation-optimization models to simulate the transmission of the disease (e.g.,

Ebola Virus Disease (EVD), COVID-19) and determine the corresponding optimal

resource allocation decisions among different regions of the considered geographical

location. Each integrates models that can simulate the transmission of the disease

and generate the optimal resource allocation over all the regions. In the first study,

we develop a multi-stage stochastic model to simulate the transmission of EVD

and provide corresponding treatment resource allocations. The model considers the

equity of the resource allocation when different budgets are obtained. The second

study extends the previous model to a mean-risk multi-stage stochastic model. The

provided model uses Conditional-value-at-risk to alleviate the impact of the extreme

epidemic scenarios. In addition, the model incorporates the ring vaccination to

prevent people from being infected, which is applied to study the EVD control in

the Democratic Republic of the Congo (DRC). The third study presents a new

compartment model to simulate the transmission of COVID-19 under uncertainty

of untested asymptomatic infections. The proposed multi-stage-mean-risk model

addresses the optimal ventilator allocation during the COVID-19 pandemic. The

fourth study defines a simulation-optimization model to address the location of

vaccine centers and vaccine allocations for the COVID-19 pandemic. The simulation

model estimates the number of infections in the future planning horizon and import

the estimated values into the optimization model. The optimization model generates

the vaccine center location and vaccine allocation decisions and applies them back to

the simulation model to forecast the number of infections for the next period.
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This dissertation opens up many future research directions. The studies on

vaccine allocation provide an overall decision on where to allocate the vaccines to

minimize the total number of infections throughout the planning horizon. When

applying to the vaccine allocations, a more detailed strategy could be performed. For

instance, whether to apply the ring or mass vaccination is dependent on how many

vaccines are allocated to the studied region. Which group of people should be given

priority to vaccinate, and how can we define the group of vaccination candidates (e.g.,

age, sex, and race) is another critical problem in this area.

Moreover, the proposed simulation-optimization model considers the vaccine

center location and local pharmacy capacity, but the distribution of vaccine supply

from the warehouse to the local pharmacy is not included. The transportation of

vaccines to the local pharmacy could contain many problems, including the supply

chain capacity and vehicle routing problem during the supply. Thus, the proposed

model in the last study could be extended to include vaccine distribution specifics. In

addition, the health care problem is not limited to epidemic control but also involves

many treatment processes of different types of diseases. We want to continue our

research on how to optimize the treatment process of those infectious diseases. For

instance, simulating the cells migration of cancer and defining the optimal treatment

process would be one of the future research topics. Last but not least, another topic

could be finding the optimal efficient antibiotics for some diseases. Many diseases have

developed resistance to antibiotics. For example, the gonorrhea treatment process is a

hot topic in recent years. There are different antibiotics that can treat gonorrhea, but

the efficiency of those antibiotics is decreasing over time since the virus has developed

resistance to them. Thus, the treatment of gonorrhea includes the combination of

different antibiotics to alleviate the impact on the virus’s resistance. Therefore,

defining the optimal treatment process of antibiotics on gonorrhea is another example

of potential future directions.
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APPENDIX A

A MULTI-STAGE STOCHASTIC PROGRAMMING APPROACH TO
EPIDEMIC RESOURCE ALLOCATION WITH EQUITY

CONSIDERATIONS

A.1 Non-Anticipativity

Two scenarios should have the same decision variables at a stage j if they share
the same scenario path up to that stage. Corresponding decisions up to stage j
of two inseparable scenarios should be the same. These implications are named as
non-anticipativity constraints, and can be formulated as follows. Consider the node
marked n in the scenario tree, and denote the corresponding stage as t(n). Let the set
of scenarios that pass through node n be β(n). We must ensure that decision variables
at stage t(n) that are associated with node n (for example: xωt(n)) have identical values

for ω ∈ β(n). One way to do this is to add the non-anticipativity constraint as in the
following form:

xωt(n) − xn = 0 ∀ω ∈ β(n).

As an example, consider the first three stages of the multi-stage problem
shown in Figure 2.2. The set of nodes of this scenario tree is given by N =
{0, 1, 2, 3, ..., 13, 14}, where t(0) = 0, t(1) = 1, t(2) = 1, t(3) = 2, t(4) = 2, t(5) =
2, t(6) = 2, t(7) = t(8) = t(9) = t(10) = t(11) = t(12) = t(13) = 3. The set of
scenarios that share node n = 2 is given by β(2) = {5, 6, 7, 8}. Let xωt(2) represent

decision variables for ω ∈ β(2). The non-anticipativity constraint for those variables
can be written as:

xωt(2) − x2 = 0 ∀ω ∈ β(2).

A.2 Linearization
We first linearize the logical constraint that describes the number of hospitalized
individuals in equation (2.1o). Following the method of Kıbış and Büyüktahtakın
[2017], for each j ∈ J \ J , r ∈ R, and ω ∈ Ω, constraint (2.1o) can be written as:

I
ω

j,r = (Cω
j,r − T ωj,r)zωj,r + Iωj,r(1− zωj,r), (A.1)

where zωj,r is a binary variable, which takes the value 1 if the number of infected
individuals to be hospitalized is restricted by the number of available beds in ETCs,
and the value 0 if the number of beds in ETCs is sufficiently large to hospitalize
all infected individuals. In order to ensure that I

ω

j,r takes the minimum value of
(Cω

j,r − T ωj,r) and Iωj,r, we should have the following inequalities satisfied for each j ∈
J \ J , r ∈ R, and ω ∈ Ω:

I
ω

j,r ≤ Cω
j,r − T ωj,r (A.2a)

I
ω

j,r ≤ Iωj,r. (A.2b)
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However, constraint (A.1) is still non-linear due to quadratic terms. Therefore, two
auxiliary variables Uω

j,r and W ω
j,r are introduced to be substituted with (Cω

j,r−T ωj,r)zωj,r
and Iωj,r(1 − zωj,r), respectively. In this case, for each j ∈ J \ J , r ∈ R, and ω ∈ Ω,
constraint (A.1) can be written as:

I
ω

j,r = Uω
j,r +W ω

j,r (A.3)

We then introduce a lower bound (HLB) and upper bound (HUB) for Cω
j,r−T ωj,r,

such that HLB ≤ Cω
j,r − T ωj ≤ HUB and add the following constraints to the model

for each j ∈ J \ J , r ∈ R, and ω ∈ Ω:

Uω
j,r ≤ HUBz

ω
j,r (A.4a)

Uω
j,r ≥ HLBz

ω
j,r (A.4b)

Uω
j,r ≤ (Cω

j,r − T ωj,r)−HLB(1− zωj,r) (A.4c)

Uω
j,r ≥ (Cω

j,r − T ωj,r)−HUB(1− zωj,r). (A.4d)

Similarly, we introduce a lower bound (ILB) and an upper bound (IUB) for Iωj,r,

such that ILB ≤ Iωj,r ≤ IUB, and add the following four constraints for each j ∈ J \ J ,
r ∈ R, and ω ∈ Ω to the model:

W ω
j,r ≤ IUB(1− zωj,r) (A.5a)

W ω
j,r ≥ ILB(1− zωj,r) (A.5b)

W ω
j,r ≤ Iωj,r − ILBzωj,r (A.5c)

W ω
j,r ≥ Iωj,r − IUBzωj,r. (A.5d)

Thus the constraint (2.1o) can be equivalently linearized by replacing it with
constraints (A.3), (A.4a)-(A.4d) and (A.5a)-(A.5d).

We then linearize the equity constraint given by equation (2.2). By multiplying
the two denominators on the left side of (2.2) by each other and multiplying the right
side of (2.2) by

∑
r∈R

ur
∑
j∈J

∑
r∈R

∑
ω∈W

P ωIωj,r, we obtain the following inequality:

|
∑
r∈R

ur
∑
j∈J

∑
ω∈W

P ωIωj,r − ur
∑
j∈J

∑
r∈R

∑
ω∈W

P ωIωj,r| ≤ k
∑
r∈R

ur
∑
j∈J

∑
r∈R

∑
ω∈W

P ωIωj,r (A.6)

The absolute value in inequality (A.6) could be linearized using the following two
constraints: ∑

r∈R

ur
∑
j∈J

∑
ω∈W

P ωIωj,r − ur
∑
j∈J

∑
r∈R

∑
ω∈W

P ωIωj,r

−k
∑
r∈R

ur
∑
j∈J

∑
r∈R

∑
ω∈W

P ωIωj,r ≤ 0 (A.7a)∑
r∈R

ur
∑
j∈J

∑
ω∈W

P ωIωj,r − ur
∑
j∈J

∑
r∈R

∑
ω∈W

P ωIωj,r
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+k
∑
r∈R

ur
∑
j∈J

∑
r∈R

∑
ω∈W

P ωIωj,r ≥ 0 (A.7b)

Therefore, the constraint (2.2) can be equivalently linearized by replacing it with
constraints (A.7a) and (A.7b).

Similarly, we have replaced the non-linear capacity equity constraint (2.3) with
the following two linear constraints:∑

r∈R

ur
∑
j∈J

∑
ω∈W

P ωCω
j,r − ur

∑
j∈J

∑
r∈R

∑
ω∈W

P ωCω
j,r

−k
∑
r∈R

ur
∑
j∈J

∑
r∈R

∑
ω∈W

P ωCω
j,r ≤ 0 (A.8a)∑

r∈R

ur
∑
j∈J

∑
ω∈W

P ωCω
j,r − ur

∑
j∈J

∑
r∈R

∑
ω∈W

P ωCω
j,r

+k
∑
r∈R

ur
∑
j∈J

∑
r∈R

∑
ω∈W

P ωCω
j,r ≥ 0 (A.8b)

The non-linear multi-stage stochastic programming epidemiclogistics model
(2.1) is converted into an equivalent MIP formulation by replacing the non-linear
capacity availability constraint (2.1o) with constraints (A.3), (A.4a)-(A.4d) and
(A.5a)-(A.5d), the non-linear infection equity constraint (2.2) with constraints (A.7a)
and (A.7b), and the non-linear capacity equity constraint (2.3) with constraints (A.8a)
and (A.8b). In the next section, we present a case study involving the control of the
20142015 Ebola outbreak in the three most-affected West African countries, Guinea,
Sierra Leone, and Liberia.

A.3 Ebola Case Study Data
This section presents the data used to formulate the model, including population
and migration data, resource cost data, and epidemiological data. All data provided
in this section was collected using literature resources and given bi-weekly. Data
pertaining to the 2014-2015 Ebola outbreak and the deterministic epidemics-logistics
model have been validated by Büyüktahtakın et al. [2018a].

A.3.1 Population and Migration Data
Table A.1 presents the distribution of the population in Guinea, Liberia, and Sierra
Leone, all located in West Africa. We consider six regions: three of them are located
in Guinea (Upper Guinea (UG), Middle Guinea (MG), and Lower Guinea (LG)), two
of them are in Liberia (Northern Liberia (NL) and Southern Liberia (SL)) and the
last one, Sierra Leone, is a county itself (S). Table A.2 shows the total number of
initial infections in each country. Table A.3 gives the migration rates from each of
the five regions (UG,MG,LG,NL,SL) to the other four regions. There is no migration
in Sierra Leone because it is considered as a region by itself. Rapidly after the initial
recognition of the Ebola outbreak, those three countries closed the national borders,
so we only consider the migration within a country.
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Table A.1 Regions, Population Size and Rate in West Africa

Guinea Population Ratio Liberia Population Ratio Sierra Leone Population Ratio
(millions) (millions) (millions)

UG 4,3 0.41 NL 2,2 0.64 S 4,9 1.00
MG 2,7 0.25 SL 1,2 0.36
LG 3,7 0.34
Total 10,7 1.00 3,4 1.00 4,9 1.00

Table A.2 The Number of Infected People at the Beginning of the Planning Horizon
(August 30, 2014) in West Africa

Guinea Sierra Leone Liberia

218 604 685

Table A.3 Bi-weekly Migration Rate between Regions of Guinea and Liberia,
Original Data Acquired from the study of Wesolowski et al. [2014]

From \ To UG MG LG NL SL

UG 0.0032 0.0010
MG 0.0052 0.0025
LG 0.0012 0.0018
NL 0.0007
SL 0.0011

A.3.2 Resource Allocation Cost Data
The fixed cost of locating Ebola treatment centers (ETCs) and the per-person cost
of Ebola treatment for either 50 or 100-bed ETC are given below in Table A.4. The
treatment cost includes the fixed cost for establishing each type of ETCs, isolation unit
center, and laboratory diagnosis. Additionally, each facility has a variable running
cost mainly composed of treating infected people and contact tracing of the infected
individuals. There is also a safe burial cost for safely burying infected dead bodies.
Fixed costs are one-time; however, all other costs are given for a 2-week period in
Table A.4. For example, the variable cost of the Ebola treatment center represents
the cost of treating one infected individual over two weeks.
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Table A.4 Summary of Ebola Treatment Cost for 50 (100)-bed ETC

Cost description Fixed Cost Variable cost*

Ebola treatment center $386,000 ($694,800) $8,810
Isolation unit center (IUC) $112,500 $1,133
Laboratory diagnosis $100,000 $540
Subnational technical services $2,250
Contact tracing $1,128
Safe burial
Total $598,500 ($1,077,300) $13,860

* Variable and safe burial costs are bi-weekly.

A.3.3 Epidemiological Data
Table A.5 presents the data values for transmission parameters for each of the three
considered countries in West Africa. The data contains the fatality rate with and
without treatment, recovery rate with and without treatment, safe burial rate, and
transmission rates. Because the transmission rate in the community is an uncertain
parameter, we present its value under each of the two realizations as low and high.
Moreover, we considered the expected value of the transmission rate at a traditional
funeral for each country.

Table A.5 Transmission Parameters and Bi-weekly Rates for the Ebola Outbreak

ParameterDescription Data Reference
Guinea Sierra LeoneLiberia

λ1
Rate of fatality

0.428 0.124 0.176
WHO [2020c]

without treatment WHO E. R. Team [2014]

λ2
Rate of fatality

0.350 0.096 0.128
WHO [2020c]

with treatment WHO E. R. Team [2014]

λ3
Rate of recovery

0.240 0.242 0.232
WHO [2020c]

without treatment WHO E. R. Team [2014]

λ4
Rate of recovery

0.416 0.327 0.312
WHO [2020c]

with treatment WHO E. R. Team [2014]

λ5 Safe burial rate 0.730 0.710 0.740
WHO [2020c]
WHO E. R. Team [2014]

χl1,r
Transmission rate

0.660 0.632 0.560 Camacho et al. [2014]in community (Low)

χh1,r
Transmission rate

0.990 0.940 0.840 Camacho et al. [2014]in community (High)

χ2,r
Transmission rate

1.460 1.420 1.480 Camacho et al. [2014]at traditional funeral

A.4 Analysis of Infection and Prevalence Equity Constraints
The infection equity constraint (2.2) limits the difference between the proportion
of infections in each region over the total number of infections and the proportion
of the population at each region over the total population with a specific k value.
Introducing the infection equity constraint to the mathematical model with 8 stages
increased the average CPU solution time from 7200 seconds to 10 hours when k = 0.2,
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and the average optimality gap from 1% to 29%. Table A.6 gives the run time
specifics regarding the mathematical model (2.1) with eight stages and the infection
equity constraint (2.2). As seen in Table A.6, for k values between 0.2 and 0.4,
the computational complexity significantly increases compared to the case where the
infection equity constraint is relaxed, i.e., k is set to a large number.

Figures A.1 and A.2 show the budget allocation and the total number of
infections and funerals over the three considered countries for different k values.
According to the results, varying k values does not significantly change the optimal
budget allocation and the total number of infections and funerals. Without
introducing the infection equity constraint into the mathematical model (2.1), the
absolute value of the difference between the infection ratio and the population ratio
in Guinea, Sierra Leone, and Liberia is 0.42, 0.04, and 0.38, respectively, based on
the optimal solution value similar to the k values considered here.

Table A.6 Model Run Specifics with the Infection Equity Constraint (2.2)

k value Solution Time (CPU sec) Optimality Gap (%)

0.2 36,068 29
0.3 7,213 1
0.4 7,214 1

A large k value
7232 0

(no-equity-constraint case)

Figure A.1 Optimal budget allocation under different k values for an 8-stage
problem with $24M budget.
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Figure A.2 Total number of new infections and funerals under different k values
for an 8-stage problem with $24M budget.

As a comparison, we also test the prevalence equity constraint (2.4) and compare
it to the infection equity constraint (2.2). The prevalence equity constraint bounds
the absolute difference between the regional prevalence (cases per population in a
region) and the country prevalence (cases per population over all regions). Without
the prevalence equity constraint (2.4) constraint, the absolute value of the difference
between the infection ratio over a region and the infection ratio over all regions in
Guinea, Sierra Leone, and Liberia is 4.4×10−4, 8.2×10−5, and 1.2×10−3, respectively,
based on the optimal solution value.

We test the prevalence equity constraint under the $24M budget level. Table
A.7 presents the run-time and optimality gap specifics for each k value in inequality
(2.4) . Figures A.3 and A.4 show the optimal budget allocation and the number of
infections and funerals under different k values, respectively. Note that the k values
used in the prevalence equity constraint (2.4) are much smaller than the k values used
in the infection equity constraint (2.2). Similar to the infection equity constraint,
the optimal budget allocation does not show any significant difference among each
k value, but the number of infections and funerals slightly reduces when we relax
the prevalence equity constraint. These results imply that our model balances the
proportion of infections in each region, even without imposing the infection equity
(2.2) or (2.4) prevalence equity constraints.

Table A.7 Model Run Specifics with the Prevalence Equity Constraint

k value Solution Time (CPU sec) Optimality Gap (%)

3× 10−9 36,041 1
5× 10−9 7,204 1
1× 10−8 7,232 1
2× 10−8 7,231 1

A large k value
7,232 0

(no-equity-constraint case)
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Figure A.3 Optimal budget allocation under different k values for an 8-stage
problem with $24M budget.

Figure A.4 Total number of new infections and funerals under different k values
for an 8-stage problem with $24M budget.
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APPENDIX B

RISK-AVERSE MULTI-STAGE STOCHASTIC PROGRAMMING TO
OPTIMIZING VACCINE ALLOCATION AND TREATMENT

LOGISTICS FOR EFFECTIVE EPIDEMIC RESPONSE

B.1 Ebola Case Study Data
This section presents the data used to formulate the model parameters, including
population and migration data, resource cost data, and epidemiological data, and the
mathematical formulation for estimating the migration rate.

B.1.1 Regional and Population Data

Figure B.1 Region division in North Kivu and Ituri. The map is constructed using
ESRI [2020].

Based on the World Health Organization (WHO) Ebola situation report [WHO,
2020a], we divided North Kivu and Ituri provinces of the Democratic Republic of
Congo that are affected by the EVD into six different sub-regions: Upper (UNK),
middle (MNK), lower (LNK) North Kivu and Upper (UI), middle (MI), lower (LI)
Ituri. In the report of June 25th, 2019, there were almost no cases confirmed in
Upper Ituri and Lower North Kivu; however, in the latest report of December 17th,
2019, some cases were confirmed in these regions. We consider the migration of
people among multiple regions in our model and include these regions to analyze the
influence of immigration on transmitting the disease.
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Table B.1 presents the population as well as the population ratio of each sub-
region presented in Figure B.1, while Table B.2 shows the number of initial infections
in each region on June 25, 2019.

Table B.1 Regions, Population Size, and Rate in West Africa

North Kivu Population Ratio Ituri Population Ratio
(millions) (millions)

UNK 1,9 0.19 UI 2,3 0.42
MNK 2,3 0.23 MI 2,8 0.51
LNK 5,7 0.58 LI 0,4 0.07
Total 9,9 1.00 5,5 1.00

Table B.2 The Number of Infected People at the Beginning of the Planning Horizon
(June 25, 2019)

Upper Middle Lower

North Kivu 380 260 0
Ituri 0 23 74

B.1.2 Migration Estimation Model and Data for Migration Rates
Migration plays a crucial role in disease transmission between regions of a country and
among multiple countries. Because the data regarding the migration of the population
among each region of North Kivu and Ituri is not available, we have driven a new
formula to estimate the rate of movement among multiple regions as described below.
The logical sequence to derive the migration formulation is presented in Figure B.2
and described below.

Figure B.2 Steps of calculating the migration rate.

If no border closure is imposed, some of the infected individuals from the regions
where the disease has originated migrate to other regions during the incubation period
of the virus. When disease symptoms begin to appear, they are discovered as the
first cases in the new region. The Ebola virus average incubation period is around
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2 to 21 days [WHO, 2020c]. Thus, we estimate the migration rate using a cycle
of three weeks, and the migration rate presented below is three-weekly. Let r ∈ R
represents a newly infected region, and l ∈ L = {1, . . . , R̄} stands for the region
where the disease has already existed, and R̄ is the upper bound for the number
of infected regions. Suppose we have a total of six regions as shown in Figure B.1,
r ∈ R = {UNK,MNK,LNK,UI,MI, LI}. For each region r, denote the number
of infections detected in the first period (the first set of infected people) by Ir.

1. Find the First Reported Cases in Region r We first check the WHO case
situation report [WHO, 2020a] and determine the first group of cases discovered in
each defined region.

2. Find Existing Cases in Surrounding Regions at the Same Time Period
We assume that the first group of infected individuals discovered in region r might
have only come from the regions that already have infections at the same time period
or before. Thus, using the WHO situation report [WHO, 2020a], we choose a subset
of regions l ∈ L surrounding region r, which have discovered infections before region
r, as the possible emigration regions, where Il 6= 0. Specifically, since the average
time from infected to either recovered and funeral, with or without treatment, is from
one week to three weeks, we calculate the total confirmed cases in region l within the
three-week interval of the time period where the first infection is seen in region r, Il.

3. Calculate How Many Cases in Region r Might Have Come from Each of
the Surrounding Region In this step, we calculate the distance Drl between each
main region considered in Figure B.1 using Google Maps (Table B.3). We assume that
the number of infected cases migrated from a possible emigration region l to region
r is negatively correlated with Drl. Therefore, we compute the ratio of Drl and the
sum of the distances from region r to all possible emigration regions, and multiply
it with the total migrated infected cases Ir, to calculate the infected population in
region r that resulted from people moving from region l to r, denoted by Îl→r, as
given in below equation:

Îl→r =
Drl∑

l∈L
Drl

Ir, ∀r ∈ R, ∀l ∈ L. (B.1)

4. Calculate the Proportion of Infected Individuals for Each of the
Surrounding Region In this step, we calculate the infection ratio at region l,
i = Il/Ul, where Ul is the population of area l. We also assume that we should have
the same ratio i for the people who immigrate from region l to region r. Then we
have:

i =
Il
Ul

=
Îl→r

Ûl→r
. (B.2)

where Îl→r represents the infected people who immigrate from region l to region r,
as given in Equation (B.1), and Ûl→r stands for the migration population from l to
r, which is the parameter that we want to estimate to calculate the migration rate.
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5. Calculate the Migration Rate Between Each Region Substituting
Equation (B.1) in Equation (B.2) and re-organizing it, the number of people that
migrate from l to r can be calculated by the following equation:

Ûl→r =
Drl∑

l∈L
Drl

Ir
Ul
Il
. (B.3)

Since we formulate the model based on the short-term migration, we assume that
those migration population is temporary (for business travel, cargo delivery, etc.)
and migrated population will come back to the original region. Thus, the number
of immigrated people from new infection regions r to the emigration regions l is
estimated the same as the number of people moving from emigration regions l to the
new infection regions r, i.e., Ûl→r = Ûr→l.

Finally, the migration rate from region l to region r is calculated by dividing
the immigration population from l to r with the total population of each region l, as
given below:

il→r =
Ûl→r
Ul

. (B.4)

Because we have Ûl→r = Ûr→l, similar to Equation (B.4), the migration rate from
region r to region l is calculated by

ir→l =
Ûr→l
Ur

. (B.5)

Additionally, suppose a considered region b ∈ R does not have any existed
infections. In that case, we can estimate the migration rate based on the distance
between region l and region r, for which the migration population from l to r is
defined. Specifically, the migration between region b and region r can be estimated
as:

Ûl→b = Ûl→r
Dlr

Dlb

. (B.6)

Then we can use Equations (B.4) and (B.5) to calculate the migration rate between
region b and region r.

Here, we note that the estimation of the migration rate based on the distance
between each region may not be accurate in some cases due to the popularity of a
region and social effects. For instance, larger short-term migrations occur between
cities rather than a city and a village because of the greater opportunities in urban
locations and the corresponding social behavior. Therefore, to calculate the migration
rates, the locations that have similar social environments should be selected from each
region to minimize the impact of social effects on human mobility. In our case, each
location selected from a region is a metropolitan of that region.

Example. As an example, consider the case of MNK. The WHO report [WHO,
2020a] shows that MNK discovered the first three cases on September 11th, 2018,
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and at this time, only UNK and LI had infected cases. Thus, we assume that newly
infected cases in MNK come from these two regions. The proportion of the distance
from the main cities of UNK and LI to the main city in MNK is 57.5/145. So we
assume that 71.6% (1.86) of the three cases in MNK come from UNK, and 29.4%
(1.14) of them come from LI. The proportion of infections in UNK and LI is 0.00001
(21 over 1861730) and 0.00001 (2 over 148, 387). Using Equation (B.3), the migration

population of UNK and LI to MNK is estimated as ÛUNK→MNK = 164, 896 and
ÛLI→MNK = 84, 581. Then the migration rate from UNK to MNK is calculated
as iUNK→MNK = 0.0886 , and the migration rate from LI to MNK is computed as
iLI→MNK = 0.5700. On the other hand, because we assume that ÛMNK→UNK =
ÛUNK→MNK = 164, 896, the migration rate from MNK to UNK is calculated as
iMNK→UNK = 0.0685, and the migration rate from MNK to LI is given as iMNK→LI =
0.0351.

The estimated migration rates between each region (Figure B.1) are presented
in Table B.4.

Table B.3 Geographical Distance between Regions (KM)

From \ To UNK MNK LNK UI MI LI

UNK 57.5 358 467 202 92.6
MNK 301 523 258 145
MNK 823 558 445
UI 267 483
MI 217
LI

Table B.4 Migration Rate between Regions of North Kivu and Ituri

From \ To UNK MNK LNK UI MI LI

UNK 0.0886 0.0012 0.0016 0.0424 0.0345
MNK 0.0685 0.0059 0.0025 0.0851 0.0351
LNK 0.0081 0.0511 0.0935 0.0062 0.0023
UI 0.0138 0.0283 0.1200 0.0795 0.0088
MI 0.1254 0.0735 0.0050 0.0273 0.0167
LI 0.1456 0.5700 0.0044 0.0129 0.0711

B.1.3 Resource Allocation Cost Data
Table B.5 gives the fixed cost of locating Ebola treatment centers (ETCs) and the
variable or per-person cost of the Ebola treatment. The treatment cost includes the
fixed cost for establishing each type of ETCs (either 50 or 100-bed ETC), isolation
unit center, and laboratory diagnosis. Additionally, each facility has a variable
running cost mainly composed of treating infected people and contact tracing of
the infected individuals. Safe burial cost is also included for safely burying infected
dead bodies. Fixed costs are one-time; however, all other cost values given in Table
B.5 are presented for a three-week period. For example, an Ebola treatment center’s
variable cost represents the cost of treating one infected individual over three weeks.
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Table B.5 Summary of Fixed and Variable Treatment Costs in 50 (100)-Bed ETC

Cost description Fixed Cost Variable cost*

Ebola treatment center $386,000 ($694,800) $13,215
Isolation unit center (IUC) $112,500 $1,699
Laboratory diagnosis $100,000 $810
Subnational technical services $3,375
Contact tracing $1,692
Safe burial
Total $598,500 ($1,077,300) $20,791

* Variable and safe burial costs are given for a period of three weeks.

B.1.4 Epidemiological Data
In this subsection, we present the values of the parameters that describe the disease
transmission among compartments of the EVD that were described in Section 3.3.2
in North Kivu and Ituri of DRC.

Table B.6 Transmission Parameters and Three-Weekly Rates for the Ebola
Outbreak

Parameter Description Data Reference
North Kivu Ituri

χ1 Rate of fatality without treatment 0.527 0.372 WHO [2020c],
WHO E. R. Team [2014]

χ2 Rate of fatality with treatment 0.383 0.288 WHO [2020c],
WHO E. R. Team [2014]

χ3 Rate of recovery without treatment 0.695 0.725 WHO [2020c],
WHO E. R. Team [2014]

χ4 Rate of recovery with treatment 0.937 0.98 WHO [2020c],
WHO E. R. Team [2014]

χ5 Safe burial rate 2.22 2.13 WHO [2020c],
WHO E. R. Team [2014]

σr Transmission rate in the community 0.648 0.54 Camacho et al. [2014]
θ2,r Transmission rate at a traditional funeral 2.04 2.19 Camacho et al. [2014]
βr Vaccination effectiveness rate 0.975 0.975 WHO [2019c]
εr Probability of transition from vaccinated

to susceptibles 0.06 0.06 WHO [2018]

Table B.7 Three-Weekly Values for Vaccine Supply Upper-Bound (Gω
j ) and the

Uncertain Transmission Rate (θω1,r) for the Ebola Outbreak( High (Low) Realization
for Gω

j Implies Low (High) Realization for θω1,r)

Parameter Scenario tree branch Realization Value Reference
North Kivu Ituri

(Gωj , θω1,r)
High (4500, 0.948) (4500, 0.84) Camacho et al. [2014],

WHO [2019a]
Low (3000, 1.422) (3000, 1.26) Camacho et al. [2014]

WHO [2019a]
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APPENDIX C

AN AGENT-BASED VACCINE ALLOCATION MODEL FOR
CONTROLLING COVID-19

Figures C.1, C.2, and C.3 show the results of model validation against the real
outbreak data for all the counties in New Jersey.

Figure C.1 Cumulative infections (thousands) throughout the planning horizon for
New Jersey counties - 1.
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Figure C.2 Cumulative infections (thousands) throughout the planning horizon for
New Jersey counties - 2.
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Figure C.3 Cumulative infections (thousands) throughout the planning horizon for
New Jersey counties - 3.

Figures C.4, C.5, and C.6 show the results of the cumulative number of infections
under different budget levels for all the counties in New Jersey.
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Figure C.4 New Jersey cumulative infections under different budget levels - 1.
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Figure C.5 New Jersey cumulative infections under different budget levels - 2.
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Figure C.6 New Jersey cumulative infections under different budget levels - 3.
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İ Esra Büyüktahtakin, Zhuo Feng, Aaryn D Olsson, George Frisvold, and Ferenc
Szidarovszky. Invasive species control optimization as a dynamic spatial
process: an application to buffelgrass (pennisetum ciliare) in arizona. Invasive
Plant Science and Management, 7(1):132–146, 2014.
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İ Esra Büyüktahtakın, J Cole Smith, and Joseph C Hartman. Partial objective
inequalities for the multi-item capacitated lot-sizing problem. Computers &
Operations Research, 91:132–144, 2018b.

Anton Camacho, AJ Kucharski, S Funk, J Breman, P Piot, and WJ Edmunds.
Potential for large outbreaks of Ebola Virus Disease. Epidemics, 9:70–78,
2014.

Yolanda Carson and Anu Maria. Simulation optimization: methods and applications.
In Proceedings of the 29th Conference on Winter Simulation, pages 118–126,
1997.

Rebecca Mary Casey, Lee McCalla Hampton, Blanche-philomene Melanga Anya,
Marta Gacic-Dobo, Mamadou Saliou Diallo, and Aaron Stuart Wallace. State
of equity: childhood immunization in the world health organization African
region. The Pan African Medical Journal, 27(Suppl 3), 2017.

Marcia C Castro, Lucas Resende de Carvalho, Taylor Chin, Rebecca Kahn,
Giovanny VA Franca, Eduardo Marques Macario, and Wanderson Kleber
de Oliveira. Demand for hospitalization services for COVID-19 patients in
Brazil. MedRxiv, 2020.

CDC. Ebola report: Tracing contacts. https://www.cdc.gov/about/ebola/tracin
g-contacts.html, 2015. Accessed March 28, 2021.

CDC. CDC releases detailed history of the 2014-2016 Ebola response in
MMWR. https://www.cdc.gov/media/releases/2016/p0707-history-eb
ola-response.html, 2016. Accessed November 20, 2019.

230

https://www.cdc.gov/about/ebola/tracing-contacts.html
https://www.cdc.gov/about/ebola/tracing-contacts.html
https://www.cdc.gov/media/releases/2016/p0707-history-ebola-response.html
https://www.cdc.gov/media/releases/2016/p0707-history-ebola-response.html


CDC. 2009 H1N1 pandemic (H1N1pdm09 virus). https://www.cdc.gov/flu/pand
emic-resources/2009-h1n1-pandemic.html, 2019a. Accessed November 20,
2019.

CDC. Covid-19 vaccinations in the United States. https://covid.cdc.gov/covid-
data-tracker/#vaccinations, 2021. Accessed July 10, 2021.

Ebola CDC. 2014-2016 Ebola outbreak in West Africa. https://www.cdc.gov/vh
f/ebola/history/2014-2016-outbreak/index.html, 2019b. Accessed May
30, 2019.

CENSUS. Datasets. https://www.census.gov/data/datasets.html, 2020.
Accessed November 30, 2020.

Gerardo Chowell, Nick W Hengartner, Carlos Castillo-Chavez, Paul W Fenimore,
and Jim Michael Hyman. The basic reproductive number of Ebola and the
effects of public health measures: the cases of Congo and Uganda. Journal of
Theoretical Biology, 229(1):119–126, 2004.

Gerardo Chowell, Amna Tariq, and Maria Kiskowski. Vaccination strategies to control
Ebola epidemics in the context of variable household inaccessibility levels.
ArXiv Preprint ArXiv:1906.04590, 2019.

CNBC. Vicky McKeever,CNBC.the coronavirus is expected to have cost
400 million jobs in the second quarter, un labor agency estimates.
https://www.cnbc.com/2020/06/30/coronavirus-expected-to-cost
-400-million-jobs-in-the-second-quarter.html, 2020. Accessed
September 10, 2020.
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Shakiba Enayati and Osman Y Özaltın. Optimal influenza vaccine distribution with
equity. European Journal of Operational Research, 283(2):714–725, 2020.
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behavioural challenge of the COVID-19 pandemic: Indirect measurements
and personalized attitude changing treatments (impact). Royal Society Open
Science, 7(8):201131, 2020.

David N Fisman, Amy L Greer, and Ashleigh R Tuite. Bidirectional impact of
imperfect mask use on reproduction number of covid-19: A next generation
matrix approach. Infectious Disease Modelling, 5:405–408, 2020.

Marie-Laurence Flahaux and Hein De Haas. African migration: trends, patterns,
drivers. Comparative Migration Studies, 4(1):1–25, 2016.

Brody H Foy, Brian Wahl, Kayur Mehta, Anita Shet, Gautam I Menon, and
Carl Britto. Comparing covid-19 vaccine allocation strategies in india: A
mathematical modelling study. International Journal of Infectious Diseases,
103:431–438, 2021.

Sebastian Funk, Iza Ciglenecki, Amanda Tiffany, Etienne Gignoux, Anton Camacho,
Rosalind M Eggo, Adam J Kucharski, W John Edmunds, Josephus Bolongei,
Phillip Azuma, et al. The impact of control strategies and behavioural
changes on the elimination of Ebola from Lofa County, Liberia. Philosophical
Transactions of the Royal Society B: Biological Sciences, 372(1721):20160302,
2017.

Salah Ghamizi, Renaud Rwemalika, Maxime Cordy, Lisa Veiber, Tegawendé F
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