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ABSTRACT

GRADIENT FREE SIGN ACTIVATION ZERO ONE LOSS NEURAL
NETWORKS FOR ADVERSARIALLY ROBUST CLASSIFICATION

by
Yunzhe Xue

The zero-one loss function is less sensitive to outliers than convex surrogate losses

such as hinge and cross-entropy. However, as a non-convex function, it has a large

number of local minima, and its undifferentiable attribute makes it impossible to use

backpropagation, a method widely used in training current state-of-the-art neural

networks. When zero-one loss is applied to deep neural networks, the entire training

process becomes challenging. On the other hand, a massive non-unique solution

probably also brings different decision boundaries when optimizing zero-one loss,

making it possible to fight against transferable adversarial examples, which is a

common weakness in deep learning neural network models.

This dissertation introduces a stochastic coordinate descent to optimize the

linear classification model based on zero-one loss. Moreover, its variants are

successfully applied to multi-layer neural networks using sign activation and multi-

layer convolutional neural networks to obtain higher image classification performance.

In some image benchmark tests, the stochastic coordinate descent method achieves

accuracy close to that of the stochastic gradient descent method. At the same time,

some heuristic techniques are used, such as random node optimization, feature pool,

warm start, step training, additional backpropagation penetration, and other methods

to speed up training and save memory usage. Furthermore, the model’s adversarial

robustness is analyzed by conducting white-box attacks, decision boundary attacks,

and comparing zero-one loss models to those using more traditional loss functions

such as cross-entropy.
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CHAPTER 1

INTRODUCTION

Machine learning has been widely used in many fields such as image recognition and

detection, face recognition, autonomous driving, speech recognition and translation.

Similar to the situation faced by traditional rule-based programming software systems,

these advanced machine learning applications inevitably have unique loopholes,

namely adversarial examples. Unlike traditional vulnerabilities, these adversarial

examples are not caused by incorrect programming of machine learning models.

Researchers expect that machine learning models can learn potential data rules based

on our given data. Nevertheless, due to the lack of a large amount of training data

and human logical thinking as a guide, it is difficult for machine learning models

and even for deep learning models to obtain human-level thinking modes. In a small

range of data, some interference that would not affect human’s understanding or

recognition of the subject can make a trained machine learning model to conduct

misjudgments, even though its recognition accuracy on clean data has reached the

human level. Based on this phenomenon, we can conclude that in the future, some

groups of people who have a good understanding of machine learning models will be

able to attack commercialized models and gain illegal profits.

Although there are published papers on counter attack defense every year, most

of their algorithms can only play a defensive role against one or a certain type of

attack. With the emergence of new attack methods, the problem of machine learning

model’s weak robustness to adversarial samples has not been fundamentally solved. In

other words, if a model is only trained on clean data, but without having adversarial

training against adversarial samples conducted, it is likely that it will not be resistant

to most attack methods. However, through adversarial training, they are likely to be
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able to defend against a certain type of attack method, and their robustness will be

greatly improved [57, 24].

There are many machine learning algorithms, including but not limited to, linear

regression, logistic regression, support vector machine, multiple layers perceptron,

and tree methods such as decision tree and random forest. Most traditional machine

learning methods do not have complex logical structures and nonlinear mappings. In

recent years, the rapid development of deep learning has enabled multi-layer models

to achieve excellent performance. Such models have complex logical structures and

multiple non-linear mappings.

There are two main common types of adversarial attacks: black-box attacks and

white-box attacks. A white-box attack is an attack ran when all the information of the

target model is available. A black-box attack runs when the target model information

cannot be obtained, and the output can only be obtained through feeding input

data in the model. White-box attacks mainly use the deep learning model mapping

function’s derivability and inject small changes to the source data to increase the

loss function value on the data to obtain incorrect solutions. When the mapping

function is not differentiable, the derivative can be solved by an approximate method.

The mainstream situation of black-box attacks is divided into two categories, one

is related to transferability, and another one is to obtain the minimum distortion

distance or the minimum number of queries. Deep learning models are generally

based on backpropagation methods to solve similar loss functions. If these models are

trained on similar tasks or similar datasets, their adversarial examples are likely to be

transferable between each other. For example, multiple models with similar structures

or different models are trained for the same classification task, and a certain attack

method can be used to synthesize adversarial samples for a certain model. These

adversarial samples can not only deceive the source model, but also are likely to be

effective for other models. The reason is that based on the same loss function, the
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approximate optimal solution obtained by backpropagation is expected to be similar.

That is, the mapping function from the source data to the probability output of

different categories is similar. Based on this assumption, if there is a certain loss

function, or a solution method, by which solving a certain task can result in multiple

inconsistent or dissimilar solutions, then it can alleviate this problem to a certain

extent. 01 loss is such a loss function. For black-box attacks, common attack methods

require constant access to the model to test on the decision boundary. If the mapping

function of the target model is not smooth, it will inevitably increase the difficulty of

the search, so the robustness can be improved [45]. The 01 activation function causes

a large number of local minima in the solving process, and the mapping function is

extremely unsmooth. Based on the speculation mentioned above, the model using

Sign activation function and zero-one loss can naturally possess better robustness

than the derivative activation function and convex function loss model. However,

this combination makes the solving process noticeably difficult, especially when the

deep model is widely used now. Optimizing the deep model to have an accuracy close

to that of the differentiable deep model becomes a challenge.

In the second chapter of this paper, we first introduced several commonly used

loss functions, activation functions, and optimization methods in machine learning

or deep learning. Furthermore, we introduced what adversarial examples and the

definition of model robustness are. Lastly, the classic white-box attack and black-box

attack methods are introduced.

In the third chapter, we discussed the application of 01 loss in linear and

non-linear classifier, and the loss function is solved by stochastic coordinate descent.

In experiments, we evaluated the effect of several hyperparameters on accuracy in the

stochastic coordinate descent experiment. The performance of stochastic coordinate

descent and stochastic gradient descent under the same network structure, and the
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influence of activation on the model are compared. This is a trial of stochastic

coordinate descent on a shallow neural network.

Chapter 4 introduces the problems that arise from directly applying stochastic

coordinate descent to convolutional neural networks (CNN). In response to these

problems, the training method has been improved. The main changes are cancellation

of bias, multi-phase training, and additional backpropagation penetration strategy.

The model performance is shown on CIFAR10 and STL10 datasets. It is verified

that the modified stochastic coordinate descent can be used to optimize deeper

convolutional neural networks.

Chapter 5 shows the robustness of Sign activation Multiple Layers Perceptron

(MLP) and deep CNN optimized by stochastic coordinate descent on image datasets.

Experiments include white-box attacks based on Fast Gradient Sign Method (FGSM)

and Project Gradient Descent (PGD), transferability of adversarial samples from

different models, and decision boundary attacks.

The previous five chapters are summarized in Chapter 6.
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CHAPTER 2

BACKGROUND

A loss function is a kind of function in mathematical optimization theory that maps

one or more value or variables to another real number [49], which intuitively represents

some“cost” associated with the event. “An optimization method seeks to reduce loss

calculated from a given loss function. An objective function can be a loss function (in

a specific domain, it is called a return function, a profit function, a utility function,

a fitness function, etc.). In this case, it is necessary to be maximized.” 1 In machine

learning, the loss function is often used to evaluate the degree of difference between

the predicted value of the model and the true value. The better the loss function, the

stronger the performance of the model will be obtained after training. In classification

tasks, common loss functions and their advantages and disadvantages are as follows.

2.1 Loss Function

2.1.1 Zero-One Loss

zero-one loss means that the loss is 1 when the predicted value is not equal to the

true value, otherwise it is 0. It is often used to directly judge the number of errors in

classification prediction. As a non-convex function, it is very difficult to solve [34].

L(y, f(x)) =


1, y 6= f(x)

0, y = f(x)

(2.1)

2.1.2 Cross Entropy Loss

loss = − 1

n

∑
x

[y ln a+ (1− y) ln(1− a)] (2.2)

1https://en.wikipedia.org/wiki/Loss functioncite note-Raschka 2019 p.-1
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In the standard formula, x represents the sample, y represents the actual

category, a represents the probability predicted by the model, and n represents

the total number of samples. In the binary classification, the probability is usually

obtained by the sigmoid function, in the multi-classification, the probability is usually

obtained by the softmax [17], and the loss function is

loss = − 1

n

∑
i

yi ln ai (2.3)

2.1.3 Hinge Loss

Hinge loss means that if the data is classified correctly, the loss is 0, otherwise it is

1− yf(x). SVM often uses this loss function. Hinge loss formula is below

L(y, f(x)) = max(0, 1− yf(x)) (2.4)

2.2 Activation Function

Activation Function is a function that runs on the neurons of the artificial neural

network and serves to map the input of the neuron to the output.

Figure 2.1 Activation function.
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Activation functions are essential for learning and understanding complex non-

linear functions in artificial neural networks models. Using an activation function is

a major way in which neurons in an artificial neural network roughly approximate

biological neurons. As shown in Figure 2.1, the inputs are weighted and summed in the

neuron, and then a function is applied. This function is the activation function, which

is introduced to increase the nonlinearity of the neural network model. Each layer

without activation function is equivalent to matrix multiplication. If the activation

function is not used, the output of each layer is a linear mapping of the upper layer

input. No matter how many layers of the neural network there are, the output is

a linear combination of inputs. This situation is the most primitive Perceptron. If

used, the activation function introduces a non-linear factor to the neuron. The neural

network can approximate any non-linear function arbitrarily [39].

2.2.1 ReLU (Recitified Linear Unit)

Rectifying activation functions (ReLU) were used to separate specific excitation

and unspecific inhibition in the neural abstraction pyramid, which was trained in

a supervised way to learn several computer vision tasks. In 2011, the apply of

the rectifier as a non-linearity activation has been shown to effectively train deep

supervised neural networks without requiring unsupervised pre-training. Rectified

linear units [26], compared to sigmoid function or similar activation functions, allow

faster and effective training of deep neural architectures on large and complex

datasets. The function is

f(x) =


0, x < 0

x, x ≥ 0

(2.5)

and derivative form is
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f(x) =


0, x < 0

1, x ≥ 0

(2.6)

2.2.2 Sign

Sign function or binary step function is a kind of threshold-based activation function

which activate neuron if projection bigger than a certain threshold and deactivate the

neuron if projection below the threshold [21]. The function is

f(x) =


−1, x < 0

1, x ≥ 0

(2.7)

and derivative form is

f(x) =


0, x 6= 0

?, x = 0

(2.8)

This step function activation can hardly be applied if there are multiple classes

to deal with, but works well in binary classification.

2.3 Optimization Method

2.3.1 Gradient Descent

Gradient descent is one of iterative methods that can be applied to solve linear or

nonlinear least squares problems. When searching the model parameters of machine

learning algorithms, that is, unconstrained optimization problems, Gradient Descent

is widely used, and another commonly used method is the least squares method.

The gradient descent method could be applied to acquire the minimum value of

loss function iteratively, to obtain the minimized loss function and model parameter
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values. Conversely, if we need to achieve the maximum value of loss functions, then

we need to use the gradient ascent method. In machine learning, two gradient descent

methods have been developed based on the basic gradient descent method, namely

stochastic gradient descent method [6, 69] and batch gradient descent method.

2.3.2 Coordinate Descent

Coordinate Descent is a optimization algorithm does not require gradient information.

In each iteration of the optimization process, searching in one dimension is performed

along a coordinate direction at the current position to find a local minimum of a

given function. In the whole process, different coordinate directions are searched

cyclically. For inseparable functions, Coordinate Descent may hardly find the optimal

solution in a small number of iterations. In order to accelerate the convergence, an

appropriate coordinate system can be used. For example, a new coordinate system

with as little correlation as possible between the coordinates is obtained through

principal component analysis [61, 22, 59].

2.4 Adversarial Attack

In recent years, many works [28, 30, 56] shows that deep neural network (DNN) are

vulnerable to adversarial examples, not matter in image, text, audio classification,

or graph application area [18, 33, 70, 52]. As a result, the existence of adversarial

attacks has admonished researchers against directly adopting DNNs in safety-critical

tasks in all machine learning application fields. Meanwhile, many studies tried

to find countermeasures for preventing deep neural network from these adversarial

examples’ threat, such as Gradient Masking [48, 2], Robust Optimization [41, 36],

and Adversary Detection [9, 66]. In other words, studying adversarial examples and

their countermeasures is helpful for us to understand and improve DNN consequently.
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There are works [28, 32] could help us earn more insight into deep neural networks

by explaining and interpreting the existence of adversarial examples of DNNs [65].

2.4.1 Adversarial Examples

Adversarial example is a case with slightly intentional feature perturbations that

cause a machine learning or deep learning model to make incorrect predictions [28].

Adversarial examples could cause deep learning models vulnerable to attacks, as in

the following scenarios: A autonomous car crashed into another vehicle because it

ignored a stop sign. The reason that it was ignored was because a picture was placed

over the sign, which made it look like a little dirt for humans like Figure 2.3 shows, on

the purpose of faking it to appear like a parking prohibition sign in the view of sign

recognition software of the car. A spam detector failed to classify an email as spam.

The spam email was designed to resemble a normal email, but with the intention of

cheating the recipient.

Figure 2.2 An adversarial input, overlaid on a typical image, can cause a classifier
to miscategorize a panda as a gibbon.
Source: [28].

10



Figure 2.3 Sample of physical adversarial examples against deep neural networks.
All the STOP signs were misclassified as speed limit 45 sign, and right turn signs
were misclassified as STOP sign.
Source: [20].

2.4.2 Adversarial Attack

The adversarial attack is injecting small distortion into source data to fool a machine

learning system. Suppose there is a classifier and F represents the projection from

source data x to corresponding output y, as well as F (x) = y. We want to inject

some noise to x, and let the new fake data to be x′. The euclidean distance between

x′ and x should be smaller than a threshold ε to avoid the injection been detected.

Finally, the classifier will predict the data x′ as y‘ but y′ 6= y.

find x′ satisfying ||x′ − x|| ≤ ε

such that F (x′) 6= y

(2.9)

An ideal adversarial attack method could generate a lot of adversarial examples

with minor distortion undetected by the human in a short time [46]. So its properties

should be high attack success rate, fast generating speed, and small distortion.

2.5 Conclusion

In this chapter, we introduced the basic information of loss functions, activation

functions, and optimization methods that will be involved in our experiments in later

chapters. In addition, we described what an adversarial example is and the definition

of the adversarial attack.
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CHAPTER 3

OPTIMIZING LINEAR CLASSIFIER AND MULTIPLE LAYERS
PERCEPTRON BY STOCHASTIC COORDINATE DESCENT

3.1 Loss Function

3.1.1 Loss Function For Linear Classifier

Figure 3.1 Zero-one loss for linear classifier.

To decide the hyperplane with minimum number of misclassifications in a binary

classification task is known to be NP-hard [4]. In mainstream machine learning

literature this is called minimizing the zero-one loss [51] given in Objective 3.1,

1

2n
arg min
w,w0

n∑
i

(1− sign(yi(w
Txi + w0))) (3.1)

where w ∈ Rd, w0 ∈ R is the hyperplane, and xi ∈ Rd, yi ∈ {+1,−1}.∀i =

0...n − 1 are training data. Popular linear classifiers such as the linear support

vector machine, perceptron, and logistic regression [1] can be considered as convex

approximations to this problem that yield fast gradient descent solutions [3]. However,

they are also more sensitive to outliers than the zero-one loss [3, 44, 64] and more

prone to mislabeled data than zero-one loss [42, 25, 40].
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3.1.2 Loss Function For Multiple Layers Perceptron

Figure 3.2 Zero-one loss for two layers neural network.

Here, zero-one loss is extended to a simple two-layer neural network with k

hidden nodes, and sign activation that we call the MLP01loss. This objective for

binary classification can be given as

1

2n
arg min
W,W0,w,w0

n∑
i

(1− sign(yi(w
T (sign(W Txi +W0)) + w0))) (3.2)

where W ∈ Rd×k, W0 ∈ Rk are the hidden layer parameters, w ∈ Rk, w0 ∈ R

are the final layer node parameters, xi ∈ Rd, yi ∈ {+1,−1}.∀i = 0...n − 1 are the

training data, and sign(v ∈ Rk) = (sign(v0), sign(v1), ..., sign(vk−1)). While this

is a straightforward model to define, optimizing it is a different story altogether.

Optimizing even a single node is NP-hard which makes optimizing this network

much harder. Note that our weights are real numbers as opposed to binarized neural

networks whose weights are constrained to be +1 and -1 or 1 and 0 [23, 14, 50].
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3.2 Algorithm Description

3.2.1 Stochastic Coordinate Descent For Linear Classifier

Algorithm 1 is our core coordinate descent algorithm. We perform just one iterative

update instead of convergence. We find this to be more accurate and faster [68].
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Algorithm 1 Stochastic Coordinate Descent
Input: Data (feature vectors) xi ∈ Rd for i = 0..n− 1 with labels yi ∈ {+1,−1}, winc ∈ R, size of pooled features

to update k, vector w ∈ Rd and w0 ∈ R

Output: Vector w ∈ Rd and w0 ∈ R

Procedure:

1. Initialization: If w is null then let each feature wi of w be normally drawn from N(0, 1). We set ‖w‖ = 1 and

throughout our search ensure that ‖w‖ = 1 by renormalizing each time w changes.

2. Let the number of misclassified points with negative wT xi be errorminus = 0 and those with positive wT xi be

errorplus = 0. These are later used in the Optimal Threshold algorithm called Opt (see below) for fast update of

our objective.

3. Compute the initial data projection wT xi, ∀i = 0..n − 1, sort the projection with insertion sort, and initialize

(w0, obj) = Opt(wT x, y, 0, n− 1). We also record the value of j for the optimal w0 = (wT xj + wT xj+1)/2.

4. Set prevobj =∞, done = 0.

while done != 1 do

Set prevobj = obj

Randomly pick k of the d feature indices.

for all selected features wi we update them do

1. Assume the optimal w0 = (wT xj + wT xj+1)/2

2. Set start = wT xj−10 and end = wT xj+10

3. Modify coordinate wi by winc, compute data projection wT xi∀i = 0..n− 1, and sort the projection with

insertion sort

4. Set (w0, obj) = Opt(wT x, y, start, end) and record this value for feature wi

5. Reset w0 to try the next coordinate

end for

Pick the coordinate whose update gives the largest decrease in the objective and set (w0, obj) to the values given

by the best coordinate with ties decided randomly.

Set done = 1

end while=0
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Algorithm 2 Optimal Threshold w0 and Zero-One Loss Objective Value
Input: wT xi ∈ Rd for i = 0..n− 1 with labels yi ∈ {+1,−1}, start, end

Output: Optimal w0 ∈ R with minimum (balanced) 01 loss and the loss value obj

Procedure:

1: for i = start to end− 1 do

2: w′0 =
wT xi+wT xi+1

2

3: if yi(w
T xi + w′0) == 0 then

4: If yi == 1 then errorplus++

5: else if yi(w
T xi + w′0) > 0 then

6: If yi == 1 then errorplus−− else errorminus−−

7: else if yi(w
T xi + w′0) < 0 then

8: If yi == 1 then errorplus++ else errorminus++

9: end if

10: If obj′ = errorplus+errorminus
n

is lower than current best objective obj then obj = obj′ and w0 = w′0.

11: end for

12: return (w0, obj) =0

Algorithm 2 is our fast algorithm to update w0 and the model objective. Once

we have the objective for w0 = wT xi+w
T xi+1

2
we can calculate it for w0 = wT xi+1+wT xi+2

2

in constant time.
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Algorithm 3 Stochastic Coordinate Descent For Linear Zero-One Loss
Input: Data (feature vectors) xi ∈ Rd with labels yi ∈ {+1,−1}, number of votes rr ∈ N (Natural numbers),

number of iterations per votet it ∈ N (Natural numbers), batch size as a percent of training data p ∈ [0, 1], and

winc ∈ R

Output: Total of rr pairs of (bestw ∈ Rd, bestw0 ∈ R) after each vote

Procedure:

Set j = 0

while j < rr do

1. Set bestw = null, bestw0 = null, bestloss =∞

for i = 0 to it do

1. Randomly pick p percent of rows as input training data to the coordinate descent algorithm and run it to

completion starting with the values of w and w0 from the previous call to it (if i == 0 we set w = null, w0 =

null).

2. In the next step we calculate the linear 01 loss objective on the full input training set

if objective(w,w0) < objective(bestw, bestw0) then

Set bestw = w, bestw0 = w0, and bestloss = objective(w,w0)

end if

end for

2. Output bestw and bestw0

3. Set j = j + 1.

end while

We output all (bestw, bestw0) pairs across the votes. We can use the pair with the lowest objective or the majority

vote of all pairs for prediction. =0

Algorithm 3 is our stochastic descent search performs coordinate descent for

the model parameters w,w0. We keep track of the best parameters across iterations

by evaluating the model objective on the full dataset after each iteration.

3.2.2 Stochastic Coordinate Descent For Multiple Layers Perceptron

Algorithm 4 is our method to optimize two layer neural network. Our stochastic

descent search performs coordinate descent on the final node and then a random
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Algorithm 4 Stochastic Coordinate Descent for Two Layer Zero-One Loss Network
Input: Data (feature vectors) xi ∈ Rd with labels yi ∈ {+1,−1}, number of hidden nodes h, number of votes

rr ∈ N (Natural numbers), number of iterations per vote it ∈ N , batch size as a percent of training data p ∈ [0, 1],

winc ∈ R and winc2 ∈ R

Output: Total of rr sets of (bestW ∈ Rk×d, bestW0 ∈ Rk, bestw ∈ Rk, bestw0 ∈ R) after each vote

Procedure:

1. Initialize all network weights W,w to random values from the Normal distribution N(0, 1).

2. Set network thresholds W0 to the median projection value on their corresponding weight vectors and w0 to the

projection value that minimizes our network objective.

while j < rr do

Set bestW = null, bestW0 = null, bestw = null, bestw0 = null, bestloss =∞

for i = 0 to it do

Randomly pick p percent of rows as input training data.

Run the Coordinate Descent Algorithm 1 on the final output node w to completion starting with the values

of w and w0 from the previous call to it (if i == 0 we set w = null). We use learning rate winc2 in the

coordinate descent.

Run the Coordinate Descent Algorithm 1 on a randomly selected hidden node wk (kth column in W ) starting

with the values of wk and wk0 (kth entry in W0) from the previous call to it (if i == 0 we set wk = null).

We use learning rate winc in the coordinate descent for the hidden nodes.

Calculate the two layer network 01 loss objective on the full input training set

if objective(W,W0, w, w0) < objective(bestW, bestW0, bestw, bestw0) then

Set bestW = W , bestW0 = W0, bestw = w, bestw0 = w0, and bestloss =

objective(bestW, bestW0, bestw, bestw0)

end if

end for

Output (bestW , bestW0, bestw, bestw0)

Set j = j + 1.

end while

We output all sets of (bestW, bestW0, bestw, bestw0) across the votes. We can use the first set or the majority vote

of all sets for predictions.

=0
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hidden node in each iteration. We keep track of the best parameters across iterations

by evaluating the model objective on the full dataset after each iteration.

3.3 Experiments

We built a two-layer neural network as a baseline model. This neural network uses

zero-one loss as the loss function and contains 20 nodes in the hidden layer - all

of the nodes use Sign as the activation function. Since image data is currently the

primary research object of machine learning model adversarial robustness, we selected

class 0 and class 1 from CIFAR10 to train our model. We evaluated the impact of

multiple key hyperparameters, such as step size, batch size, pool size, when optimizing

zero-one loss through stochastic gradient descent. Finally, we evaluated the baseline

model’s performance on the CIFAR10 and STL10 data sets, and both are ten class

benchmarks. Our algorithm focuses on solving binary classification problems, so

we split the 10 class datasets into sub-datasets composed of two classes in each of

CIFAR10 and STL10. In other words, each dataset has a total of 45 sub-datasets. In

addition, we also trained a ReLU activation MLP, a Sign activation MLP optimized

using an approximated gradient method, and a ReLU activation MLP optimized using

stochastic coordinate descent as references to evaluate our performance algorithm.

3.3.1 Datasets

CIFAR10 “The CIFAR-10 dataset consists of 60000 32x32 colour images in 10

classes, with 6000 images per class. There are 50000 training images and 10000 test

images. The dataset is divided into five training batches and one test batch, each

with 10000 images. The test batch contains exactly 1000 randomly-selected images

from each class. The training batches contain the remaining images in random order,

but some training batches may contain more images from one class than another.
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Between them, the training batches contain exactly 5000 images from each class”.

1[35].

Figure 3.3 CIFAR10 dataset. Here are the classes in the dataset, as well as 10
random images from each.

STL10 “The STL-10 dataset is an image recognition dataset for developing

unsupervised feature learning, deep learning, self-taught learning algorithms. It is

inspired by the CIFAR-10 dataset but with some modifications. In particular, each

class has fewer labeled training examples than in CIFAR-10, but a very large set of

unlabeled examples is provided to learn image models prior to supervised training.

The primary challenge is to make use of the unlabeled data (which comes from

1see https://www.cs.toronto.edu/ kriz/cifar.html
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a similar but different distribution from the labeled data) to build a useful prior.

We also expect that the higher resolution of this dataset (96x96) will make it a

challenging benchmark for developing more scalable unsupervised learning methods.

[13].10 classes: airplane, bird, car, cat, deer, dog, horse, monkey, ship, truck. Images

are 96x96 pixels, color. 500 training images (10 pre-defined folds), 800 test images

per class. 100000 unlabeled images for unsupervised learning. These examples are

extracted from a similar but broader distribution of images. For instance, it contains

other types of animals (bears, rabbits, etc.) and vehicles (trains, buses, etc.) in

addition to the ones in the labeled set. Images were acquired from labeled examples

on ImageNet”.[15] 2

3.3.2 Hyperparameters

Stochastic Coordinate Descent (SCD) is a heuristic search algorithm. Its purpose

is to update one coordinate, which is the weight corresponding to a feature, at

a time, and obtain the lowest loss value available in each iteration. Therefore,

the choice of hyperparameters will have a significant impact on the search effect.

A good set of parameters can help searching to achieve higher accuracy upper

bound, and bring faster loss convergence speed. Due to significantly different

feature dimensions, distributions, and inconsistent classification difficulties in various

datasets, the optimal parameter set found in one dataset may not be the best in other

datasets. This situation is similar to Stochastic Gradient Descent (the batch size

depends on the size of the entire dataset, batch size and learning rate will affect each

other) [6]. However, the optimal hyperparameters picked from different datasets are

normally similar in our algorithm, saving researchers time spent on tuning parameters.

Step size controls how far each coordinate update moves. From the Figure 3.5

we can see bigger step size achieve higher accuracy/lower loss, 0.2 is a optimal one.

2see https://cs.stanford.edu/ acoates/stl10/
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Figure 3.4 Randomly picked picture samples from STL10 dataset.

Because we normalize weights after each move, the actual step size will be wi+winc

||w|| . wi

is the coordinate to be update, winc is the step size, ||w|| is the length of the weight

vector. Bigger step size will make the overall weights more sparse after normalization.

We recommend smaller step size for higher dimension.

Iterations is the total number of iterations in training. More iterations will

increase the training time linearly. During the training, we reserve the weights to

achieve the highest training accuracy. In Figure 3.6, after 1000 iterations, the training

accuracy is still increasing but the test accuracy curve begins to oscillate. Considering
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Table 3.1 Hyperparameters in Zero-One Loss Stochastic Coordinate Descent

Hyperparameters Description

Step size winc in Algorithm 1

Iterations The number of iterations, it in Algorithm 3

Batch size The ratio of training data sampling in each iteration

Pool size The number of coordinates/features will be considered and

updated in each inner loop

Interval The number of neighbours considered in best bias searching

Votes The number of models used in majority votes

Figure 3.5 Different step size affect training. Step size includes 0.05, 0.1, 0.2, 0.3,
0.4, 0.5. X-axis is iteration, Y-axis is loss or accuracy.
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Figure 3.6 Different iterations affect training process. X-axis is iteration, Y-axis is
loss or accuracy.

that we usually use majority vote on multiple diverse weaker models to obtain a stable

accuracy, We suggest to pick a good checkpoint in an earlier iteration to save time.

In Figure 3.6, we prefer training stop at the 1000 iteration because later ones are not

significantly better than it.

Batch size In each iteration, we pick p of data to train the model. Figure 3.7

shows that bigger batch size bring higher accuracy and more stable converge curve.

This is because a smaller batch can help the searching jump off the local minimum,

but it cannot represent the distribution of the whole dataset. As the sampling ratio

increases, that batch’s data distribution will be more similar to the whole dataset.

In other words, the best weight in a bigger batch has a higher probability of being
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Figure 3.7 Different batch size affect training. Batch size includes 0.05, 0.1, 0.25,
0.5, 0.75, 0.9. X-axis is iteration, Y-axis is loss or accuracy.

the best for the whole dataset. Nevertheless, we cannot use all data in each iteration

because of the local minimum problem. Sampling ratios of 0.5, 0.75, and 0.9 achieve

similar performance because of diminishing marginal effect. We prefer the ratio of

0.75 as an optimal one because it performs better than the ratio of 0.5 in test data,

and takes less time to train the model than the ratio of 0.9.

Pool size is the maximum number of features considered to decide which

coordinate should be updated. Once we have a new batch of data and a corresponding

global bias, we will pick k features from the previous layer and select the best update

on weight coordinate of those features. In general, we would not go through all

features because computing complexity of this part is O(nk). If all features’ dimension
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Figure 3.8 Different pool size affect training. Intervals include 64, 128, 256. X-axis
is iteration, Y-axis is loss or accuracy.

is t and t >> k, the complexity can be approximately treated as O(n). In practice,

selecting a good pool size can save much computing time without losing accuracy. In

Figure 3.8, we see the difference between pool sizes of 64, 128, 256 is small, and the

difference will almost disappear after the majority of votes. CIFAR10 dataset’s image

feature dimension is 3072(=32*32*3). However, if we trained the model on ImageNet

(the general dimension is more than 150,000), we would need to increase pool size

since the dimension is too big.

Interval After we get a global bias for a new batch during the training, we

should review some coordinates updating and their corresponding bias. Nevertheless,

it is unnecessary to search the bias for all unique projections again because the

coordinates updating would not affect most data points’ signs. We only review the
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Figure 3.9 Different intervals affect training. Intervals include 5, 10, 20. X-axis is
iteration, Y-axis is loss or accuracy.

neighbor data points whose projection is around the global bias we found. Interval

decides how many data points we should look at on each side of the global bias. If

the interval is k, and global bias B = pi+pi+1

2
, we will only search the bias b across

projections [pi−k, pi−k+1, ..., pi+k−2, pi+k]. In Figure 3.9, we see there is no significant

difference among intervals of 5, 10, 20. Actually, we found that interval of 20 is more

stable, and it does not take too much longer on computing than interval of 10.

3.3.3 Comparison

We compared our models performance to convex models, and training hyperpa-

rameters are listed in Table 3.2. Image data will be scaled to range [0, 1] by divided

by 255.
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1. MLP-BCE-BP is a binary cross-entropy loss two layer ReLu activation neural
network with 20 hidden nodes optimized by stochastic gradient descent.

2. MLP-BCE-BAN (Binary Activated Network) is a binary cross-entropy
loss two layer sign activation neural network with 20 hidden nodes optimized
by stochastic gradient descent. Because sign activation is non-differentiable,
we approximate the gradient like linear activation, but clip the gradient if the
activation projection value more than mean in this batch.

3. MLP-01-SCD is a zero-one loss two layer Sign activation neural network with
20 hidden nodes optimized by our stochastic coordinate descent.

4. MLP-BCE-SCD is a binary cross-entropy loss two layer ReLu activation
neural network with 20 hidden nodes optimized by our stochastic coordinate
descent. We show that our stochastic coordinate descent can achieve similar
performance when the network structure is the same as MLP-BCE-BP. In
other words, Sign activation is the major reason cause performance dropped
on MLP-01-SCD compared to MLP-BCE-BP.

Table 3.2 Models’ Hyperparameters Setting in Training

Model MLP-BCE-BP/BAN MLP-01/BCE-SCD

Learning rate 0.01 0.17

Batch size 200 0.75

Epoch 200 1000

Optimizer SGD /

weight decay 1.00E-04 /

Nesterov TRUE /

Pool size / 128

Tables 3.3 and 3.4 show the accuracy of the four basic models in the 45

subgroups of CIFAR10 and STL10. Table 3.5 summarizes the results and compares

the performance of the benchmark model with MLP-BCE-BP. We can see that
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Table 3.3 Training Accuracy (Testing Accuracy) of MLP-BCE-BP, MLP-BCE-
BAN, MLP-01-SCD, MLP-BCE-SCD on CIFAR10 and STL10, Each Model is a
Ensembling of Eight Votes (A)

CIFAR10 STL10

classes mlpbcebp mlpbceban mlp01scd mlpbcescd mlpbcebp mlpbceban mlp01scd mlpbcescd

0 vs 1 95.04 (90.75) 97.26 (87.90) 90.24 (85.40) 92.92 (89.45) 92.20 (81.19) 95.50 (81.94) 96.30 (80.19) 100.00 (84.06)

0 vs 2 90.40 (85.25) 92.34 (84.20) 85.52 (80.80) 90.28 (85.25) 96.60 (85.50) 97.20 (83.94) 97.50 (86.81) 100.00 (88.50)

0 vs 3 97.25 (90.35) 95.65 (88.45) 89.56 (85.55) 93.53 (88.95) 93.30 (85.12) 94.10 (84.88) 96.50 (84.81) 100.00 (86.81)

0 vs 4 95.20 (89.80) 94.52 (88.30) 88.87 (86.00) 92.98 (88.70) 92.50 (85.69) 96.30 (85.25) 97.20 (84.81) 100.00 (85.25)

0 vs 5 97.45 (90.90) 97.11 (89.25) 91.02 (86.30) 94.66 (90.65) 91.50 (85.38) 94.70 (84.81) 97.20 (85.81) 100.00 (87.94)

0 vs 6 97.18 (93.40) 97.28 (92.00) 93.51 (90.70) 96.22 (92.70) 94.40 (86.75) 95.20 (86.44) 96.90 (87.56) 100.00 (88.88)

0 vs 7 96.65 (90.25) 97.27 (88.20) 89.90 (85.40) 93.80 (89.65) 93.20 (87.56) 92.10 (87.38) 97.60 (88.19) 100.00 (90.50)

0 vs 8 92.28 (83.25) 92.66 (81.75) 84.27 (78.90) 88.45 (82.95) 86.90 (78.19) 93.20 (78.69) 94.30 (75.44) 100.00 (80.56)

0 vs 9 93.83 (88.55) 96.27 (85.05) 89.69 (84.85) 92.75 (87.25) 95.20 (81.50) 94.90 (80.69) 96.30 (83.38) 100.00 (84.38)

1 vs 2 98.32 (92.25) 98.05 (89.55) 93.67 (89.45) 96.48 (92.00) 97.60 (88.31) 95.60 (86.75) 98.60 (86.94) 100.00 (91.00)

1 vs 3 96.63 (91.10) 98.04 (89.45) 92.00 (87.35) 96.17 (91.15) 77.80 (65.06) 89.80 (66.56) 95.90 (64.75) 100.00 (67.00)

1 vs 4 98.65 (93.85) 98.32 (91.75) 94.37 (90.50) 97.32 (93.50) 78.50 (68.44) 93.00 (70.31) 96.60 (67.94) 100.00 (70.75)

1 vs 5 99.52 (93.10) 98.32 (90.35) 92.64 (88.10) 96.72 (92.50) 72.90 (62.94) 87.70 (64.06) 96.50 (63.69) 100.00 (64.75)

1 vs 6 99.33 (94.60) 98.82 (92.10) 95.66 (92.65) 98.04 (94.50) 82.40 (72.81) 92.50 (73.19) 97.50 (69.75) 100.00 (77.00)

1 vs 7 98.77 (92.65) 98.70 (89.80) 92.16 (88.50) 96.63 (92.55) 77.20 (63.06) 88.90 (62.69) 95.10 (61.12) 100.00 (63.50)

1 vs 8 93.73 (87.40) 96.20 (86.35) 89.44 (84.10) 93.50 (86.95) 97.70 (89.94) 97.20 (88.50) 97.00 (87.81) 100.00 (90.12)

1 vs 9 88.31 (77.50) 91.02 (76.20) 78.70 (70.75) 85.33 (76.60) 98.20 (87.50) 95.90 (85.62) 97.80 (85.62) 100.00 (88.69)

2 vs 3 86.88 (77.20) 87.00 (75.95) 83.73 (74.90) 84.73 (77.65) 98.60 (86.56) 97.00 (84.88) 99.00 (83.44) 100.00 (87.38)

2 vs 4 87.81 (74.25) 88.97 (72.90) 76.51 (66.65) 81.81 (73.40) 99.00 (89.12) 96.70 (87.44) 98.30 (88.75) 100.00 (90.00)

2 vs 5 85.45 (77.95) 90.29 (77.15) 83.10 (73.80) 85.30 (77.65) 98.60 (88.44) 96.60 (86.62) 97.40 (86.06) 100.00 (89.12)

2 vs 6 91.45 (83.20) 92.94 (81.65) 83.16 (76.90) 87.18 (82.25) 98.80 (88.62) 97.00 (87.12) 98.70 (86.12) 100.00 (88.75)

2 vs 7 90.20 (83.95) 93.66 (82.25) 86.27 (79.85) 89.27 (83.45) 99.60 (88.94) 96.50 (86.75) 99.20 (85.88) 100.00 (89.44)

2 vs 8 97.29 (91.65) 97.33 (90.65) 91.70 (86.95) 95.15 (91.75) 94.30 (81.88) 95.80 (81.38) 96.40 (82.94) 100.00 (84.94)

2 vs 9 96.86 (91.80) 97.24 (89.80) 93.02 (89.35) 94.95 (91.85) 84.60 (70.31) 92.20 (70.50) 96.60 (67.75) 100.00 (69.88)

MLP-BCE-BP has the best performance in CIFAR10. The performance of the

equivalent structure network optimized by scd (MLP-BCE-SCD) is very close to

the benchmark model, and the performance loss is as small as 1%. This shows

that using the same loss function, the search accuracy of SCD can be close to

SGD. In STL10, MLP-BCE-SCD is 2% better than MLP-BCE-BP. After replacing

ReLu in the network with Sign, the accurate gradient cannot be obtained due to

non-differentiable activation function. Backpropagation cannot be used directly to

solve the problem, but the approximate gradient can be obtained. Limited by the
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Table 3.4 Training Accuracy (Testing Accuracy) of MLP-BCE-BP, MLP-BCE-
BAN, MLP-01-SCD, MLP-BCE-SCD on CIFAR10 and STL10, Each Model is a
Ensembling of Eight Votes (B)

CIFAR10 STL10

classes mlpbcebp mlpbceban mlp01scd mlpbcescd mlpbcebp mlpbceban mlp01scd mlpbcescd

3 vs 4 92.30 (80.50) 93.13 (79.40) 85.92 (78.85) 88.19 (80.55) 76.70 (68.94) 90.00 (70.50) 97.00 (66.88) 100.00 (68.25)

3 vs 5 79.13 (65.20) 74.02 (63.50) 70.53 (62.60) 76.88 (65.70) 66.80 (59.69) 86.90 (60.25) 97.30 (56.88) 100.00 (58.94)

3 vs 6 85.67 (80.45) 90.05 (79.50) 83.38 (77.80) 86.10 (80.65) 81.60 (70.62) 93.50 (71.44) 96.90 (69.38) 100.00 (72.06)

3 vs 7 92.43 (83.10) 95.59 (81.90) 85.35 (79.25) 89.64 (83.05) 77.60 (64.81) 88.70 (65.81) 95.90 (59.38) 100.00 (63.38)

3 vs 8 95.55 (91.35) 97.32 (89.65) 92.25 (87.55) 95.40 (91.45) 96.00 (89.44) 96.80 (89.44) 96.90 (88.31) 100.00 (90.06)

3 vs 9 97.75 (90.25) 96.82 (87.75) 89.94 (84.55) 93.94 (88.85) 93.10 (86.75) 95.70 (84.88) 97.90 (85.38) 100.00 (87.62)

4 vs 5 91.36 (80.95) 93.27 (78.20) 85.42 (78.45) 88.22 (80.15) 79.70 (68.62) 91.50 (68.50) 95.60 (68.75) 100.00 (70.75)

4 vs 6 92.61 (82.05) 93.63 (80.55) 83.20 (76.20) 87.62 (79.90) 76.80 (68.25) 91.10 (71.38) 96.40 (73.31) 100.00 (77.06)

4 vs 7 90.97 (82.80) 93.21 (80.90) 84.64 (78.45) 89.00 (82.70) 83.50 (71.19) 92.20 (71.62) 96.50 (68.19) 100.00 (73.69)

4 vs 8 94.35 (91.40) 95.86 (90.70) 93.13 (88.65) 95.15 (91.25) 97.50 (90.69) 97.80 (90.75) 97.70 (89.19) 100.00 (91.62)

4 vs 9 97.67 (92.60) 97.33 (90.55) 93.21 (88.65) 95.67 (92.60) 97.60 (88.00) 97.00 (86.69) 98.20 (87.44) 100.00 (89.50)

5 vs 6 94.08 (84.20) 93.14 (81.85) 86.01 (80.30) 89.55 (84.50) 78.30 (65.12) 88.70 (65.50) 96.10 (61.75) 100.00 (66.69)

5 vs 7 90.73 (82.85) 92.64 (80.80) 84.78 (76.70) 88.55 (82.80) 75.40 (62.94) 90.50 (64.81) 95.60 (59.88) 100.00 (64.25)

5 vs 8 98.73 (92.05) 97.65 (90.20) 92.84 (88.50) 96.59 (92.10) 94.50 (91.81) 96.00 (91.44) 97.90 (89.88) 100.00 (91.56)

5 vs 9 96.77 (90.75) 96.52 (89.00) 91.59 (86.70) 95.17 (91.00) 92.70 (87.06) 95.60 (85.94) 97.70 (87.00) 100.00 (88.38)

6 vs 7 96.95 (91.30) 97.60 (89.45) 91.22 (86.40) 94.39 (89.75) 83.00 (70.56) 93.90 (70.81) 96.60 (65.50) 100.00 (72.62)

6 vs 8 98.33 (94.85) 98.36 (93.95) 96.16 (92.70) 97.82 (95.05) 96.40 (91.50) 98.40 (90.94) 97.80 (90.12) 100.00 (90.62)

6 vs 9 99.10 (93.25) 97.89 (90.90) 93.99 (90.15) 96.69 (93.20) 95.70 (86.31) 95.80 (85.69) 97.10 (85.19) 100.00 (87.25)

7 vs 8 97.79 (92.40) 98.23 (90.95) 93.97 (88.95) 96.46 (92.55) 97.60 (91.62) 97.50 (91.31) 97.20 (89.94) 100.00 (92.38)

7 vs 9 96.76 (89.50) 96.28 (87.35) 90.64 (85.70) 93.84 (89.45) 95.10 (87.38) 96.40 (86.69) 97.10 (85.00) 100.00 (89.50)

8 vs 9 95.52 (86.95) 95.89 (86.10) 90.46 (83.15) 92.82 (87.10) 89.60 (74.31) 94.80 (75.06) 96.10 (75.94) 100.00 (77.25)

binary representation of the activation value of 0 and 1, the model performance is

slightly reduced (approximately equal to 2). MLP-01-SCD has the worst performance,

with a performance loss of about 4. We were considering the difficulty of optimization

of zero-one loss and the binary representation of the middle layer. This performance

loss is acceptable considering that training a undifferentiable neural network with

non-convex loss by gradient-free method is much harder than training a differentiable

network by back-propagation.

In the performance part, we pick MLP-BCE-BP’s accuracy in each class pair

as baseline, compare the other three models’ accuracy to MLP-BCE-BP’s, and
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Table 3.5 Summary Results of MLP-BCE-BP, MLP-BCE-BAN, MLP-01-SCD,
MLP-BCE-SCD on CIFAR10 and STL10, Each Model is a Ensembling of Eight Votes

Accuracy (mean of all 45 pairs)

Dataset Model mlpbcebp mlpbceban mlp01scd mlpbcescd

CIFAR10
Train 94.2 94.88 88.6 92.4

Test 87.2 85.42 83.2 86.8

STL10
Train 89.26 94.1 97.02 100

Test 79.65 79.46 78.42 81.17

Performance (mlpbcebp is the baseline)

Dataset Model mlpbcebp mlpbceban mlp01scd mlpbcescd

CIFAR10
Train 100.00% 102.34% 94.18% 97.77%

Test 100.00% 96.86% 94.10% 98.57%

STL10
Train 100.00% 103.58% 104.45% 108.46%

Test 100.00% 100.92% 98.77% 103.54%

Runtime (seconds)

Dataset #Samples mlpbcebp mlpbceban mlp01scd mlpbcescd

CIFAR10 10000 40 46 64 56

STL10 1600 34 39 17.46 17.3

then average the percentage. We can see under the same activation (MLP-01-SCD

compared to MLP-BCE-BAN, MLP-BCE-SCD compared to MLP-BCE-BP), the

performance of models optimized by SCD is about 1% − 3% different from models

optimized by SGD.

In the runtime part, SCD algorithm takes a longer time to train on the CIFAR10

dataset than SGD algorithm, but much faster in the STL10 dataset. The reason is

that SCD always performs better with bigger batch size and more data cost longer
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in computing. STL10 dataset contains only 1600 samples in each subset, which is

smaller than 10000 samples in each subset in CIFAR10.

3.4 Conclusion

This study shows a novel Stochastic Coordinate Descent (SCD) method to optimize

the zero-one loss function. In practice, a fixed step size plus weight normalization

method adjusts the rotation angle of the hyperplane. In addition, the setting of the

feature pool can reduce the number of coordinates to be filtered, and the interval

can help to avoid redundant projection calculations. These modifications can save

calculating time and memory in multi-core parallel operations, and will not cause

excessive adverse effects on the final performance. Finally, we verified the actual

performance of SCD on multiple image data sets and analyzed the impact of different

hyperparameters on training. Objectively speaking, the shortcomings of SCD are

more prominent. As the data dimension increases, SCD often requires many more

iterations to achieve convergence.

Comparing with SGD, our implementation has not been deeply optimized, and

its running time is longer than SGD. We only verified the performance of SCD on the

shallow model network, which does not mean that it can be perfectly applied to the

deep network model. As the network model deepens, the local minimum problem of

zero-one loss will become more significant. Sign activation is not sensitive to input

changes, zero-one loss is challenging to optimize (in the case of no data points passing

through the hyperplane, whether the changed hyperplane is better or worse cannot

be reflected in zero-one loss, but the cross entropy can). In addition, we only change

one coordinate each time, which means the change of the output feature may not

necessarily affect the subsequent network layer, when training a certain layer of the

network. In other words, as the network deepens, SCD is very likely to fall into a
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particular local minimum and not able to escape. Solving this series of problem is

the key to applying SCD to deep neural networks successfully.
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CHAPTER 4

OPTIMIZING CONVOLUTIONAL NEURAL NETWORKS BY
STOCHASTIC COORDINATE DESCENT

4.1 Background

4.1.1 Convolutional Neural Network

A convolutional neural network is an extended form of multiple layers perceptron,

which is a representative neural network architecture of deep learning [27, 29]. The

research on convolutional neural networks began in the 1980s and 1990s. Time delay

neural networks and LeNet-5 were the earliest convolutional neural networks [37].

After the twentieth century, with the introduction of deep learning theory and the

use of enormous computing resources, brain neural networks have been developed

rapidly and widely used in computer vision and natural language processing [29].

In general, the hidden layers of convolutional neural networks include convolu-

tional layers, pooling layers, and fully connected layers [38]. Modern algorithms may

contain residual layers, inception, and other more complex structures [30, 55].

The convolutional layer aims at extracting features from the input data. It

contains multiple convolution kernels. Each convolution kernel contains a weight

coefficient and a bias vector, similar to a neuron in a feedforward neural network.

Each kernel in the convolutional layer connects to multiple kernels in a region close

to the previous layer. The region’s size depends on the size of the convolution kernel,

which is called the ”receptive field” which is compared to the receptive field of visual

cortex cells in the literature [29]. The convolution kernel will scan the input features

regularly, do matrix element multiplication and summation of the input features in

the receptive field and superimpose the deviation [27].

Subsequent to feature extraction in the convolutional layer, the output feature

map will be passed to the pooling layer for feature selection and information filtering.
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The pooling layer contains a preset pooling function, whose function is to replace

the result of a single point in the feature map with the feature map statistics of its

neighboring regions. The pooling layer selects the pooling area in the same steps as

the convolution kernel scanning feature map, which is controlled by the pooling size,

step size, and padding [27, 31, 19, 8].

The fully connected layer in the convolutional neural network is equivalent to

the hidden layer in the traditional feedforward neural network. The fully connected

layer is located at the last part of the hidden layer of the convolutional neural network

and only transmits signals to other fully connected layers. The feature map will lose

the spatial topology in the fully connected layer and will be expanded into a vector

and passed through the activation function [29].

4.1.2 Training Convolutional Neural Network

Although the primary strategy of applying Stochastic Coordinate Descent (SCD)

to Convolutional Neural Network (CNN) and MLP does not differ a lot, it is still

optimized layer by layer, optimizing one node at a time. However, the shared weight

mechanism of CNN and the deeper network structure will significantly impact the

original SCD algorithm, mainly focusing on massive optional biases, which results

to a substantial increase in calculation volume. Furthermore, more layers of sign

activation layers would cause the loss at the back of the network not responding to

weights’ change in the front of the network. In other words, SCD searching falls into

a local minimum.

4.2 Method

4.2.1 CNN01 Architecture

Figure 4.1 shows an example of the structure of the Sign activation convolutional

neural network. This structure consists of three convolutional blocks in which there is
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Figure 4.1 CNN01 architecture for image classification.

a convolutional kernel and an average pooling layer. A fully connected layer followed

the last convolutional block, then an output layer. When the image data passes

through the first convolution module, the convolution kernel scans the entire image

and outputs real-number features. After passing sign activation, the feature consists of

binary values of 0 and 1 only and then feeds into the pooling layer for down-sampling.

After passing through the second and third convolution modules, the features already

contain the high-level semantics of the input image. Finally, after being reshaped into

a flatten vector, the features go through the fully connected layer and then generate

the final prediction. The whole process is no different from being in a typical CNN.

4.2.2 Multiple Phases Training And Temporary Linearization

Directly applying the original training strategy to CNN will easily fall into a local

minimum, and this negative effect will gradually become apparent as the network

deepens. Therefore, how to solve this problem has become the key to applying SCD

to deep neural networks. Our solution is to follow an earlier autoencoder training

method and train the network layer by layer. For the training of the deep model,
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the BP algorithm is usually used to update the network parameters. However, the

network weights need to be initialized very carefully to prevent the network from

falling into a local minimum during the training [54]. Of course, there are already

many ways to initialize network weights or other deep neural network processing

techniques such as ReLU activation function, Batch Normalization, and Residual

Connection, which can avoid the network falling into a local minimum in the training

process or gradient vanishing and degrading problems [55, 30].

No Bias The SCD Algorithm 2 described in the previous chapter mentioned that

when we update a node, whenever we obtain a new batch or update to coordinate

candidates, the bias should be re-calculated based on all unique projections in that

node. Therefore, the time complexity of obtaining bias is O(N), where N is the

number of samples in the batch. However, in calculating the convolution kernel, the

number of unique projections that appear is related to the output feature dimension in

the kernel. Therefore, the time complexity of obtaining the bias will become O(NK),

where K is the output dimension in each kernel. When the batch size remains the

same, the time complexity will be expanded by K times. For example, in a simple

CNN designed for CIFAR10 dataset (image size is 32∗32∗3), the output dimension of

the first convolutional layer (with 16 convolution kernels) is N ∗32∗32∗16. Regardless

of repeated projection values, the number of candidate bias is 32 ∗ 32 = 1024 times

more than the first layer of MLP. When the input image size is larger, each layer’s

feature dimension will also increase. Therefore, the time cost to calculate the bias

will greatly increase. In training, we constantly reduce the amount of calculation and

save space by not including bias. Through experimental observations, even if there

is no bias in CNN, the impact on the final model performance is very small, and the

accuracy loss is < 0.5%.
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Figure 4.2 Three phase training for CNN01. toy3srr100, toy3ssr100, toy3sss100
are models’ name in each phase. In the first phase, model’s weights are initialized
randomly, in the other phases, the model will load weights from previous phase.
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Multi-phase Training and Switch Activation Figure 4.2 shows the process of

training a convolutional neural network in three phases. This network is designed

for training on the CIFAR10 dataset. It includes three convolution modules, each

of which contains three components: a convolution layer, an activation function,

and a pooling layer. Passing through the last convolutional module and then a fully

connected layer, the last layer finally outputs predicted probabilities for each category.

In the first stage, only the first convolutional layer uses Sign activation, and all other

layers use ReLU activation. The weights of all layers are randomly initialized. Then

the network is trained by SCD in reverse order, from the output layer to the first

layer. The main goal of this phase is to train the Sign activated layer, the first layer.

Once the loss is converged, the activation function ReLU in the second layer will be

changed to Sign. Since the first layer has been trained in the previous stage, it is not

involved in training in this second stage. The goal of the second stage is to train the

second layer. The training process of the third stage is similar to that of the second

stage. The activation function of the third layer will be changed to Sign, and then the

second layer trained previously is also frozen in the current round. Since we found that

if we set Sign activation in the fully connected layer, the model’s overall performance

will drop significantly, so the ReLU activation function of the fully connected layer

is retained. After three phases of training, we will get a trained convolutional neural

network, toy3sss100 with three Sign activated convolutional layers. This training

strategy will greatly improve the performance compared to the method of directly

training the same structure, as Figure 4.3 shows. Since we will freeze the trained

layers in the later stages, the training time required in the later stages will be greatly

reduced.

Learning Rate Different from using the same learning rate for each layer when

training MLP, we found that in CNN training, as the training iteration increases, it
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Figure 4.3 Accuracy curve of three-phase training strategy compared to directly
training strategy on CIFAR10 dataset. X-axis is iteration or seconds, Y-axis is
accuracy.

Figure 4.4 Accuracy curve of different batch size setting in three-phase training
strategy. X-axis is iteration or seconds, Y-axis is accuracy.

is better to use a lower learning rate. This situation is similar to conducting learning

rate decay in Backpropagation to obtain lower loss. In SCD training, there are two

main learning rate adjustment strategies: 1. We try different learning rates on models

in each training phase and choose the best one as the final model. 2. Following the

strategy of learning rate decay, we halve the learning rate after a certain number of
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iterations. The result is shown in the Figure 4.3. It would be better to apply a fixed

learning rate at each stage than the learning rate decay strategy.

Batch Size As shown in the Figure 4.4, a model trained with a larger batch size

results in a higher accuracy. But considering that a larger batch size will bring a huge

memory workload and longer training time, we will not always use a large batch size

in actual training. Here we have a strategy: every time 3000 iterations are passed,

the batch size would be doubled. The batch size resets at the beginning of each stage.

In a single-stage with only 15000 iterations, we increase the batch size by up to 8

times, located at 3000th, 6000th, 9000th, and 12000th, respectively. This strategy

can significantly reduce training time. Its success is because the small batch size can

serve as a warm start, and the larger batch size is used to break the convergence

bottleneck of the small batch size training.

4.2.3 Additional Backpropagation Penetration (ABP)

Although multi-phase training can relieve symptoms of SCD search falling into the

local minimum during training multi-layer convolutional neural networks, the extra

training volume greatly extends the training time. In addition, changing only one

coordinate in later layers at a time makes loss finitely propagating back to the current

trained layer. Considering that backpropagation is an effective training method, we

add backpropagation into multi-stage training to better pass the loss back to the

previous layer. We call this method Additional Backpropagation Penetration.

Process The entire process of additional backpropagation penetration (ABP) is

partially similar to the multi-stage training. A three-phase ABP process is shown in

the Figure 4.5. In the first stage, all layers’ weights are initialized randomly. The

first convolutional layer uses Sign activation, and all subsequent layers use ReLU

activation. In each iteration, firstly cross-entropy loss for the second to fifth layers by
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Figure 4.5 Three phase ABP training for CNN01. toy3srr100, toy3ssr100,
toy3sss100 are models’ name in each phase.

backpropagation is optimized, then the loss function is reset to zero-one loss and the

first layer is updated through SCD. After meeting the training iteration threshold,

the second stage begins, and the first layer will no longer participate in subsequent

training phases. In the second stage, the activation function of the second layer is

changed to Sign, and the weight of that layer is reinitialized. In each iteration, we

would use backpropagation to update the third to fifth layers and use SCD to update

the second layer. In the third stage, the second layer is frozen, and the third layer’s

activation function is set to Sign. Backpropagation is applied to update the fourth to

fifth layers and SCD is utilized to optimize the third layer. After these three stages

are completed, we get the final model, toy3sss100.
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Figure 4.6 Two independent data samplers for ABP training process.

Independent Data Sampler As Figure 4.6 shows, there are two independent data

samplers in ABP training process, which is different from general multi-phase training

mentioned above. One sampler is responsible for feeding data for ReLU layers during

Stochastic Gradient Descent (SGD) backpropagation, and the other one provides

data for Sign layers during Stochastic Coordinate Descent (SCD) optimization.

For the SGD backpropagation part, additional data augmentation methods like

mirror flipping and random cropping will be included in the data processing. Data
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augmentation is an effective way of data processing to avoid the overfitting problem

while training deep convolutional neural networks, enabling the model to achieve

much higher level of accuracy in the test dataset. However, data augmentation can

not be as beneficial to our SCD algorithm currently as SGD can, so we only apply

data augmentation in the data sampler in SGD part.

Re-initialization Weights In the ABP training process, we consistently re-

initialize the weights in layers with ReLU activation in the SGD backpropagation

part, as Figure 4.5 shows. In general multi-phase training, we don’t re-initialize the

weights because we use SCD to optimize the whole neural network. Even though the

optimized weights do not work after switching the activation function from ReLU

to Sign, pre-trained weights work better than random initialization. To avoid the

situation that SGD gives similar mapping for the later layers, we would initialize

all layers, where SGD will optimize at the beginning of each round. This operation

would not affect regular training for accuracy but will affect the transferability of the

adversaries during adversary attacks.

4.2.4 Multiple Classes Classification

It is a huge challenge to apply zero-one loss to multi-classification tasks directly. zero-

one loss can only reflect the error rate of a hyperplane but cannot indicate the distance

of a misclassified point from the hyperplane like Cross Entropy does. Therefore, in the

optimization process, multiple classifications will bring more local minima than binary

classification. We cannot apply zero-one loss directly to the last layer as the final

loss function in a multi-class classification task. But we can intergrate zero-one loss

into multi-stage training. While applying Additional Backpropagation Penetration

(ABP), we use zero-one loss as the loss function to train the Sign activation layer

with SCD. However, We switch the loss function back to Cross-Entropy to train the

ReLU activation layer and the last layer by backpropagation.
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4.3 Experiments

4.3.1 Datasets

CIFAR10 “The CIFAR-10 dataset consists of 60000 32x32 colour images in 10

classes, with 6000 images per class. There are 50000 training images and 10000 test

images. The dataset is divided into five training batches and one test batch, each

with 10000 images. The test batch contains exactly 1000 randomly-selected images

from each class. The training batches contain the remaining images in random order,

but some training batches may contain more images from one class than another.

Between them, the training batches contain exactly 5000 images from each class”.

1[35].

STL10 “The STL-10 dataset is an image recognition dataset for developing

unsupervised feature learning, deep learning, self-taught learning algorithms. It is

inspired by the CIFAR-10 dataset but with some modifications. In particular, each

class has fewer labeled training examples than in CIFAR-10, but a very large set of

unlabeled examples is provided to learn image models prior to supervised training.

The primary challenge is to make use of the unlabeled data (which comes from

a similar but different distribution from the labeled data) to build a useful prior.

We also expect that the higher resolution of this dataset (96x96) will make it a

challenging benchmark for developing more scalable unsupervised learning methods.

[13].10 classes: airplane, bird, car, cat, deer, dog, horse, monkey, ship, truck. Images

are 96x96 pixels, color. 500 training images (10 pre-defined folds), 800 test images

per class. 100000 unlabeled images for unsupervised learning. These examples are

extracted from a similar but broader distribution of images. For instance, it contains

other types of animals (bears, rabbits, etc.) and vehicles (trains, buses, etc.) in

1see https://www.cs.toronto.edu/ kriz/cifar.html
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addition to the ones in the labeled set. Images were acquired from labeled examples

on ImageNet”.[15] 2

4.3.2 Models

We built an eight layers convolutional neural network (CNN) for CIFAR10 and a ten

layers convolutional neural network “CNN-01-ABP” for STL10 as baseline models.

Our algorithm focuses on solving binary classification problems, so we split the 10

class datasets into sub-datasets composed of two classes in each of CIFAR10 and

STL10. In other words, each dataset has a total of 45 sub-datasets. In addition,

we also trained a ReLU activation CNN “CNN-BCE-BP” optimized by stochastic

gradient descent, a Sign activation CNN “CNN-BCE-BAN” optimized by using an

approximated gradient methods to evaluate our performance algorithm. Training

details listed in Table 4.2. Image data will be scaled to range [0, 1] by divided by

255.

CNN-BCE-BP is a standard convolutional neural network, using ReLU

activation for each layer, binary cross-entropy as loss function, optimization method

is Stochastic Gradient descent. Parameters list in Table 4.1.

CNN-BCE-BAN is a convolutional neural network, using Sign activation for

convolutional layer and ReLU for fully connected layer, binary cross-entropy as loss

function, optimization method is Stochastic Gradient descent. Because sign activation

is non-differentiable, we approximate the gradient like linear activation, but clip the

gradient if the activation projection value more than quarter of mean in this batch.

Parameters list in Table 4.1.

CNN-01-ABP is a convolutional neural network, using Sign activation for

convolutional layer and ReLU for fully connected layer, zero-one loss as loss function,

2see https://cs.stanford.edu/ acoates/stl10/
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optimization method is stochastic coordinate descent with additional backpropagation

penetration. Parameters list in Table 4.1.

4.3.3 Comparison

Tables 4.3 and 4.4 show the accuracy of the three basic models in the 45 subgroups

of CIFAR10 and STL10. Table 4.5 summarizes the results and compares the

performance of the benchmark model with CNN-BCE-BP. Compared to Table 3.5,

all version of CNN achieve much higher accuracy than MLP in both CIFAR10 and

STL10 datasets.

We can see that CNN-BCE-BP has the best performance in CIFAR10.

After replacing ReLU in convolutional modules in the network with Sign, the

accurate gradient cannot be obtained due to non-differentiable activation function.

Backpropagation cannot be used directly to solve the optimization problem accurately,

but the approximate gradient can be obtained instead. Limited by the binary repre-

sentation of the activation value of 0 and 1, the model performance is slightly reduced

(approximately equal to 0.6%). The performance of the equivalent structure network

(CNN-01-ABP) optimized by SCD with Additional Backpropagation Penetration

(ABP) is very close to the benchmark model, and the performance loss is as small

as 0.8%, compared to CNN-BCE-BAN, the model optimized by backpropagation

with approximating gradient, the accuracy is only 0.2% lower. This reaveals that

SCD does not only work in MLP structure, it could also achieve the same level

accuracy in convolutional neural network, a deeper neural network structure. In

STL10, CNN-01-ABP’s average accuracy is 1.5% lower than CNN-BCE-BP’s.

In the performance part, we pick CNN-BCE-BP’s accuracy in each class pair

as a baseline, compare the other three models’ accuracy to CNN-BCE-BP’s, and

then average the percentage. We can see under the same activation (”CNN-01-ABP”

compared to ”CNN-BCE-BAN”), the performance of models optimized by SCD is
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Table 4.3 Training Accuracy (Testing Accuracy) of CNN-BCE-BP, CNN-BCE-
BAN, CNN-01-ABP on CIFAR10 and STL10, Each Model is a Ensembling of Eight
Votes (A)

CIFAR10 STL10

classes CNN-BCE-BP CNN-BCE-BAN CNN-01-ABP CNN-BCE-BP CNN-BCE-BAN CNN-01-ABP

0 vs 1 98.23 (97.60) 98.00 (96.90) 99.78 (96.45) 100.00 (94.88) 99.90 (95.00) 100.00 (94.38)

0 vs 2 94.39 (92.35) 93.58 (92.75) 99.08 (92.05) 100.00 (95.00) 99.80 (95.50) 100.00 (93.81)

0 vs 3 97.09 (96.00) 96.42 (95.70) 99.87 (95.55) 99.80 (98.19) 99.90 (97.81) 100.00 (97.06)

0 vs 4 97.15 (96.35) 96.89 (96.10) 99.92 (95.80) 100.00 (98.19) 99.80 (97.81) 100.00 (97.19)

0 vs 5 97.95 (97.10) 97.71 (96.80) 99.96 (96.70) 99.90 (98.12) 100.00 (98.50) 100.00 (97.56)

0 vs 6 98.12 (98.05) 97.83 (97.65) 99.98 (97.85) 99.90 (98.62) 100.00 (98.94) 100.00 (97.75)

0 vs 7 97.84 (96.45) 97.22 (96.65) 99.96 (96.20) 99.70 (98.81) 99.80 (98.88) 100.00 (98.31)

0 vs 8 96.63 (94.35) 94.71 (93.25) 99.48 (92.85) 99.90 (93.38) 100.00 (92.50) 100.00 (89.44)

0 vs 9 96.95 (95.55) 96.50 (94.90) 99.80 (95.10) 99.90 (94.12) 99.60 (94.25) 100.00 (92.75)

1 vs 2 98.81 (98.35) 98.67 (98.60) 99.98 (98.25) 100.00 (97.12) 100.00 (96.94) 100.00 (96.00)

1 vs 3 98.40 (97.70) 98.65 (97.95) 99.96 (97.00) 100.00 (86.44) 99.90 (82.44) 100.00 (83.69)

1 vs 4 99.08 (98.70) 99.23 (98.85) 100.00 (98.75) 100.00 (92.12) 99.70 (90.38) 100.00 (88.31)

1 vs 5 98.81 (98.50) 99.23 (99.05) 99.99 (98.45) 99.90 (89.94) 99.90 (88.56) 100.00 (86.81)

1 vs 6 98.77 (98.85) 98.75 (98.55) 99.97 (98.55) 99.90 (94.50) 99.90 (93.62) 100.00 (93.12)

1 vs 7 99.25 (98.95) 99.17 (99.05) 100.00 (98.60) 99.90 (89.44) 99.50 (87.94) 100.00 (85.94)

1 vs 8 97.61 (97.35) 97.35 (96.85) 99.90 (95.40) 100.00 (96.88) 100.00 (97.69) 100.00 (97.00)

1 vs 9 96.13 (94.25) 95.04 (94.10) 99.21 (92.65) 100.00 (96.62) 99.80 (96.56) 100.00 (95.44)

2 vs 3 91.91 (88.65) 89.45 (86.80) 99.05 (87.55) 100.00 (97.25) 100.00 (97.56) 100.00 (96.56)

2 vs 4 93.84 (90.65) 90.26 (87.30) 98.46 (87.95) 100.00 (97.25) 100.00 (98.00) 100.00 (97.19)

2 vs 5 93.41 (90.90) 91.25 (88.85) 99.28 (89.80) 99.60 (97.69) 100.00 (98.06) 100.00 (97.12)

2 vs 6 93.98 (93.25) 92.55 (91.25) 99.07 (92.25) 100.00 (97.00) 100.00 (97.19) 100.00 (96.31)

2 vs 7 95.52 (93.60) 94.56 (92.75) 99.73 (93.60) 100.00 (98.12) 100.00 (98.50) 100.00 (97.75)

2 vs 8 97.96 (96.95) 97.33 (96.45) 99.97 (96.25) 100.00 (95.00) 100.00 (94.88) 100.00 (94.25)

2 vs 9 98.08 (97.45) 98.33 (97.40) 99.93 (96.85) 100.00 (89.50) 99.90 (90.19) 100.00 (88.44)

about 0.4% − 0.5% lower than models optimized by SGD. This indicate that multi-

phase training with ABP redeem the weakness of SCD in training a deep neural

network.

In the runtime part, we see SCD algorithm takes much longer to train the same

network than backpropagation. The main reason is we need to train the network layer

by layer in multi-phase training, time complexity increase as the network structure
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Table 4.4 Training Accuracy (Testing Accuracy) of CNN-BCE-BP, CNN-BCE-
BAN, CNN-01-ABP on CIFAR10 and STL10, Each Model is a Ensembling of Eight
Votes (B)

CIFAR10 STL10

classes CNN-BCE-BP CNN-BCE-BAN CNN-01-ABP CNN-BCE-BP CNN-BCE-BAN CNN-01-ABP

2 vs 9 98.08 (97.45) 98.33 (97.40) 99.93 (96.85) 100.00 (89.50) 99.90 (90.19) 100.00 (88.44)

3 vs 4 93.18 (91.70) 91.82 (90.05) 99.27 (89.95) 98.90 (85.12) 100.00 (84.81) 100.00 (81.44)

3 vs 5 87.58 (83.25) 79.97 (78.65) 96.51 (78.80) 99.50 (80.44) 99.50 (80.56) 100.00 (76.50)

3 vs 6 92.89 (91.90) 91.75 (91.20) 98.72 (92.10) 100.00 (93.38) 100.00 (92.38) 100.00 (91.38)

3 vs 7 95.23 (93.00) 94.10 (92.20) 99.45 (92.35) 99.40 (83.75) 99.70 (84.38) 100.00 (80.06)

3 vs 8 97.82 (96.80) 97.39 (96.90) 99.98 (96.70) 99.80 (97.75) 100.00 (97.56) 100.00 (97.31)

3 vs 9 97.44 (96.40) 97.95 (97.00) 99.77 (95.65) 99.80 (96.12) 99.80 (96.50) 100.00 (95.62)

4 vs 5 93.92 (92.50) 92.02 (90.10) 99.14 (91.30) 99.70 (86.50) 99.90 (84.75) 100.00 (84.62)

4 vs 6 95.93 (94.45) 95.04 (94.50) 99.70 (92.95) 99.90 (90.56) 99.60 (90.38) 100.00 (88.94)

4 vs 7 94.52 (92.10) 92.72 (91.20) 99.07 (91.60) 99.30 (89.06) 100.00 (87.31) 100.00 (86.06)

4 vs 8 98.44 (97.65) 97.98 (97.50) 100.00 (97.30) 100.00 (98.12) 100.00 (98.00) 100.00 (97.75)

4 vs 9 98.78 (98.40) 98.47 (97.80) 99.98 (98.15) 100.00 (96.94) 99.90 (96.62) 100.00 (95.81)

5 vs 6 95.78 (94.90) 95.54 (94.60) 99.62 (94.40) 99.70 (85.50) 100.00 (83.81) 100.00 (81.31)

5 vs 7 94.67 (93.25) 92.87 (91.65) 99.57 (91.15) 99.50 (80.56) 99.70 (79.38) 100.00 (78.25)

5 vs 8 98.56 (97.70) 98.33 (97.60) 100.00 (97.40) 99.80 (98.50) 100.00 (98.44) 100.00 (97.81)

5 vs 9 97.89 (97.85) 98.44 (97.65) 99.93 (97.00) 100.00 (97.25) 99.90 (97.44) 100.00 (96.19)

6 vs 7 98.20 (97.35) 98.42 (97.90) 99.93 (97.35) 100.00 (91.00) 100.00 (90.12) 100.00 (89.19)

6 vs 8 98.70 (98.25) 98.63 (98.15) 100.00 (97.95) 99.80 (98.62) 100.00 (98.12) 100.00 (98.00)

6 vs 9 98.80 (98.85) 98.82 (98.55) 99.93 (98.30) 100.00 (96.62) 100.00 (96.50) 100.00 (95.81)

7 vs 8 99.03 (98.55) 98.52 (98.00) 100.00 (97.90) 99.90 (98.56) 100.00 (98.94) 100.00 (98.50)

7 vs 9 98.46 (98.00) 98.17 (97.90) 99.82 (96.95) 99.90 (97.62) 100.00 (97.88) 100.00 (96.44)

8 vs 9 97.28 (96.30) 97.18 (96.10) 99.89 (95.15) 99.90 (91.50) 99.90 (91.50) 100.00 (89.81)

becomes deeper. Except additional phase training, the SCD search implementation

is not optimized as good as Stochastic Gradient Descent overall.
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Table 4.5 Summary Results of CNN-BCE-BP, CNN-BCE-BAN, CNN-01-ABP on
CIFAR10 and STL10, Each Model is a Ensembling of Eight Votes

Accuracy (mean of 45 pairs)

Dataset Model CNN-BCE-BP CNN-BCE-BAN CNN-01-ABP

CIFAR10
Train 96.64 95.84 99.61

Test 95.49 94.88 94.69

STL10
Train 99.85 99.90 100.00

Test 93.73 93.40 92.20

Performance (CNN-BCE-BP is the baseline)

Dataset Model CNN-BCE-BP CNN-BCE-BAN CNN-01-ABP

CIFAR10
Train 100.00% 99.77% 101.58%

Test 100.00% 99.28% 98.82%

STL10
Train 100.00% 99.90% 100.00%

Test 100.00% 100.13% 99.47%

Runtime (seconds)

Dataset #Samples CNN-BCE-BP CNN-BCE-BAN CNN-01-ABP

CIFAR10 10000 226 242 4285

STL10 1600 269 312 5587
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4.4 Conclusion

Convolutional Neural Network (CNN) is an extension of Multiple Layers Perceptron to

deal with spatial information. CNN could avoid excessive parameters problems under

the shared weights mechanism compared to MLP when the network structure goes

deeper. Moreover, the square kernel helps extract spatial information from the image,

which is more effective and flexible than flattening the source image into a vector and

then feeding it into MLP. Training deep neural network is a big challenge, to overcome

gradient vanishing, exploring, and degrading problems, researchers developed ReLU,

Batch Normalization, Residual connections to make network can be trained easier.

Training deep sign activation neural network with gradient-free optimization

method will meet the similar problems as SGD did. Here, we proposed a multi-phase

methodand, which train the network layer by layer, and additional backpropagation

penetration strategy to solve the problem of that loss can not be passed back well

to the front layers. Through experiments on CIFAR10 and STL10 dataset, we

see our SCD algorithm assisted with training strategies above could achieve similar

accuracy compared to backpropagation. Unfortunately, only update one coordinate

each time and multple phases training makes training takes much longer than SGD,

and applying zero-one loss in multi-class classification is long way to go.

In next chapter, we will discuss the robustness of zero-one loss Sign activated

models.

53



CHAPTER 5

ADVERSARIAL ROBUSTNESS OF ZERO ONE LOSS SIGN
ACTIVATED MODELS

5.1 Introduction

Ever since the first paper introducing the incredible power of adversary examples

was published, the adversarial robustness of machine learning models has gained

widespread attention. The attack methods originated from the gradient-based

white-box attacks, then developed to attacks searching minimum distortion and

black-box attacks based on adversary transferability. In order to evaluate the

adversarial robustness of our zero-one loss neural network, we applied Fast Gradient

Sign Method (FGSM) and Projected Gradient Descent (PGD) for white-box attacks

and evaluated the adversaries’ transferability among the same type of models and

between different types of models. In addition, we conducted minimun distortion

attack such as Decision Boundary Attack to get each model’s l2 minimum distance

between adversaries and clean data. Finally, we compared the adversarial robustness

difference between the zero-one loss neural network optimized by SCD and the

cross-entropy neural network optimized by SGD with the same structure.

5.2 White-box Attack

In a white-box setting, the users have access to all the information of the target neural

network, including its architecture, parameters, gradients. The users can make full

use of the network information to carefully craft adversarial examples. White-box

attacks have been extensively studied because the disclosure of model architecture

and parameters helps people understand the weakness of DNN models clearly, and it

can be analyzed mathematically. As stated by Tram’er et. al. [57], security against

white-box attacks is the property that we desire ML models to have. Commonly used
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white-box attack algorithm includes Biggio’s attack [5], L-BFGS attack [56], Fast

Gradient Sign Method [28], Deep Fool [43], Jacobian-based Saliency Map Attack

[47], Projected Gradient Descent Attack [36], Carlini & Wagner’s Attack, Ground

Truth Attack [10]. Furthermore, other lp attacks try finding the minimum distortion

to fool the model [53]. Here, we only introduce Fast Gradient Sign Method (FGSM)

and Projected Gradient Descent (PGD) attack, which we used in the experiments.

5.2.1 Fast Gradient Sign Method (FGSM)

FGSM [28] is a one-step method introduced to rapidly generate adversarial examples.

The formulation is:

x′ = x+ εsign(∇xL(θ, x, y)) non-target

x′ = x− εsign(∇xL(θ, x, t)) target on t

(5.1)

For non-target attack, x is the source image. ε is the distortion value, we often set ε

as n
256

(n is pixel shifting value, 256 is the maximum value in RGB image). L is the

loss of the model on input x if the target is y, ∇xL(θ, x, y) is x’s gradient based on

the given loss, and we take the sign of the gradient times ε, and add it to x. Before

processing this, we will normalize x to a range of [0, 1]. After injection, we will clip

x′’s range into [0, 1] as well. + will let the distortion to make x move to a place

away from the class y’s region.(After moving, the L(θ, x, y) will increase.) For target

attack, we would replace target class t (the class we hope the model to predict the

x as) to y in the formula. And inverse the + to −, in order to let the x to move to

a place close to class t’s region. (After moving, the L(θ, x, t) will decrease.) Other

processes are the same as in untargeted attack. This formulation can be seen as a

one-step of gradient descent to solve the problem:

minimize L(θ, x′, t)

subject to ||x′ − x||∞ ≤ ε and x′ ∈ [0, 1]m
(5.2)
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The objective function in (5.2) searches the point which has the minimum loss value

to label t in x’s ε-neighbor ball, which is the location where model F is most likely to

predict it to the target class t. In this way, the one-step generated sample x′ is also

likely to fool the model. A toy example of adversarial attack is shown in Figure 5.1.

Figure 5.1 Targeted adversarial attack on multi-class linear classifier.

5.2.2 Results of FGSM Attacks on Baseline Models

Tables 5.1 and 5.2 shows our four baseline models’ performance on their adversaries

generated from the FGSM attack on CIFAR10 and STL10 datasets (test fold). The

number in parenthesis is the accuracy on test data and the number out of parenthesis

is the accuracy on the adversarial version of test data. For example, there are 2000

images in classes pair 0 vs. 1, and MLP-BCE-BP’s original accuracy in this pair is

90.75%. We do the FGSM attack for MLP-BCE-BP and generate adversary for each

image in this pair based on MLP-BCE-BP’s information, and then we get a total

number of 2000 adversaries. The MLP-BCE-BP’s accuracy on these 2000 adversaries
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Table 5.1 MLP-BCE-BP, MLP-BCE-BAN, MLP-01-SCD, MLP-BCE-SCD’s
Accuracy on Adversaries (Accuracy on Clean Data) of Test Dataset of CIFAR10
and STL10 Generated by FGSM Attacks (ε = 16/255), Each Model is a Ensembling
of Eight Votes (A)

CIFAR10 STL10

classes mlpbcebp mlpbceban mlp01scd mlpbcescd mlpbcebp mlpbceban mlp01scd mlpbcescd

0 vs 1 0.4 (90.75) 0.95 (87.90) 36.35 (85.40) 10.3 (89.45) 9 (81.19) 2.75 (81.94) 10.81 (80.19) 33.56 (84.06)

0 vs 2 0.05 (85.25) 0.15 (84.20) 49.05 (80.80) 2.15 (85.25) 13.81 (85.50) 3.5 (83.94) 15.75 (86.81) 39.87 (88.50)

0 vs 3 0.9 (90.35) 2.95 (88.45) 56.6 (85.55) 9.05 (88.95) 29 (85.13) 13.63 (84.88) 17.31 (84.81) 40.13 (86.81)

0 vs 4 0.3 (89.80) 0.5 (88.30) 42.95 (86.00) 4.6 (88.70) 37.75 (85.69) 14.44 (85.25) 20.81 (84.81) 43.94 (85.25)

0 vs 5 0.95 (90.90) 1.55 (89.25) 65.6 (86.30) 13.75 (90.65) 43.12 (85.38) 8.44 (84.81) 8.94 (85.81) 39.19 (87.94)

0 vs 6 0.85 (93.40) 5.6 (92.00) 51.45 (90.70) 17.6 (92.70) 22.5 (86.75) 9.19 (86.44) 20.13 (87.56) 41.62 (88.88)

0 vs 7 0.8 (90.25) 0.35 (88.20) 45.65 (85.40) 10.15 (89.65) 33.69 (87.56) 15.12 (87.38) 7.06 (88.19) 45.37 (90.50)

0 vs 8 0.05 (83.25) 0.05 (81.75) 19.5 (78.90) 1.95 (82.95) 17.94 (78.19) 1.19 (78.69) 12.31 (75.44) 30 (80.56)

0 vs 9 2.8 (88.55) 0.7 (85.05) 47.6 (84.85) 9.45 (87.25) 14.44 (81.50) 1.87 (80.69) 8.87 (83.38) 33.19 (84.38)

1 vs 2 1.05 (92.25) 1.45 (89.55) 39.95 (89.45) 19 (92.00) 15.62 (88.31) 21.06 (86.75) 20.06 (86.94) 42.37 (91.00)

1 vs 3 1.55 (91.10) 1.4 (89.45) 47.6 (87.35) 18.5 (91.15) 2.31 (65.06) 0.06 (66.56) 2.56 (64.75) 14.75 (67.00)

1 vs 4 1.1 (93.85) 0.9 (91.75) 40.2 (90.50) 23.05 (93.50) 11.75 (68.44) 0.19 (70.31) 9.69 (67.94) 14.56 (70.75)

1 vs 5 1.05 (93.10) 1.5 (90.35) 42.9 (88.10) 22.75 (92.50) 5.62 (62.94) 0.25 (64.06) 3.62 (63.69) 12 (64.75)

1 vs 6 0.8 (94.60) 2.5 (92.10) 41.1 (92.65) 28.25 (94.50) 3 (72.81) 0.19 (73.19) 7.37 (69.75) 20.31 (77.00)

1 vs 7 1.5 (92.65) 1.7 (89.80) 42.5 (88.50) 22.2 (92.55) 4.69 (63.06) 0.12 (62.69) 1.69 (61.13) 13.75 (63.50)

1 vs 8 2.3 (87.40) 0.7 (86.35) 46.7 (84.10) 7.45 (86.95) 17.25 (89.94) 10.81 (88.50) 30.88 (87.81) 46.37 (90.13)

1 vs 9 0.1 (77.50) 0 (76.20) 38.95 (70.75) 0.4 (76.60) 15.81 (87.50) 13.5 (85.63) 27.5 (85.63) 47.94 (88.69)

2 vs 3 0.45 (77.20) 1.5 (75.95) 18.95 (74.90) 1.35 (77.65) 8.94 (86.56) 18.63 (84.88) 33.25 (83.44) 41.06 (87.38)

2 vs 4 0.1 (74.25) 0 (72.90) 22.3 (66.65) 0.55 (73.40) 18.37 (89.13) 19.75 (87.44) 39.12 (88.75) 41.44 (90.00)

2 vs 5 0.25 (77.95) 0.35 (77.15) 23.8 (73.80) 1.4 (77.65) 12.87 (88.44) 19.81 (86.63) 34.13 (86.06) 45.19 (89.13)

2 vs 6 0.35 (83.20) 0.25 (81.65) 35.45 (76.90) 2.25 (82.25) 16.5 (88.63) 29 (87.13) 37.56 (86.13) 47 (88.75)

2 vs 7 0.05 (83.95) 0.2 (82.25) 29.35 (79.85) 1.85 (83.45) 18.44 (88.94) 30.06 (86.75) 33.12 (85.88) 42 (89.44)

2 vs 8 0.9 (91.65) 1.35 (90.65) 71.75 (86.95) 10.3 (91.75) 6.44 (81.88) 0.56 (81.38) 24.81 (82.94) 35.25 (84.94)

is 0.4%, more than 90% drops from the accuracy on clean data (90.75%). We do the

same thing for the other three models, MLP-BCE-BAN’s accuracy drops from 87.9%

to 0.95%, MLP-01-SCD’s accuracy drops from 85.4% to 36.35%, MLP-BCE-SCD’s

accuracy drops from 89.45% to 10.3%. We do the attack on all 45 pairs each from

both CIFAR10 and STL10 for the four baseline models and summary results in Tables

5.1 and 5.2.

Figure 5.2 shows the overall adversaries’ accuracy on each pair from CIFAR10

dataset. We can see that MLP-01-SCD (green line) performs much better than the
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Table 5.2 MLP-BCE-BP, MLP-BCE-BAN, MLP-01-SCD, MLP-BCE-SCD’s
Accuracy on Adversaries (Accuracy on Clean Data) of Test Dataset of CIFAR10
and STL10 Generated by FGSM Attacks (ε = 16/255), Each Model is a Ensembling
of Eight Votes (B)

CIFAR10 STL10

classes mlpbcebp mlpbceban mlp01scd mlpbcescd mlpbcebp mlpbceban mlp01scd mlpbcescd

2 vs 9 0.95 (91.80) 1.85 (89.80) 42.7 (89.35) 12.55 (91.85) 2.44 (70.31) 0 (70.50) 6.19 (67.75) 21.44 (69.88)

3 vs 4 0.2 (80.50) 0.45 (79.40) 26.9 (78.85) 2.7 (80.55) 2.56 (68.94) 0.06 (70.50) 1 (66.88) 11.63 (68.25)

3 vs 5 0.05 (65.20) 0.1 (63.50) 20.25 (62.60) 0.1 (65.70) 0.37 (59.69) 0 (60.25) 2.5 (56.88) 8.37 (58.94)

3 vs 6 0.55 (80.45) 0.3 (79.50) 32.05 (77.80) 2.15 (80.65) 2.25 (70.63) 0.12 (71.44) 14.37 (69.38) 17.81 (72.06)

3 vs 7 0.2 (83.10) 0.55 (81.90) 35.05 (79.25) 1.9 (83.05) 0.88 (64.81) 0 (65.81) 2.37 (59.38) 10.31 (63.38)

3 vs 8 2.2 (91.35) 3.2 (89.65) 70.5 (87.55) 14.9 (91.45) 26.62 (89.44) 25.06 (89.44) 48.69 (88.31) 41.44 (90.06)

3 vs 9 0.8 (90.25) 1.3 (87.75) 39.3 (84.55) 11.6 (88.85) 21.19 (86.75) 11.75 (84.88) 23.31 (85.38) 41.25 (87.63)

4 vs 5 0.8 (80.95) 1.3 (78.20) 22.1 (78.45) 4.9 (80.15) 22.25 (68.63) 0.94 (68.50) 4.69 (68.75) 19.25 (70.75)

4 vs 6 0.05 (82.05) 0.2 (80.55) 37.95 (76.20) 1.6 (79.90) 6.5 (68.25) 0.19 (71.38) 8.81 (73.31) 16.37 (77.06)

4 vs 7 0.1 (82.80) 0.2 (80.90) 22.7 (78.45) 2.85 (82.70) 2.62 (71.19) 0.44 (71.63) 10.25 (68.19) 18.63 (73.69)

4 vs 8 1.4 (91.40) 4.4 (90.70) 70.25 (88.65) 8.1 (91.25) 32.5 (90.69) 33.5 (90.75) 45.87 (89.19) 55.5 (91.63)

4 vs 9 1.15 (92.60) 1.95 (90.55) 44.85 (88.65) 13.95 (92.60) 15.5 (88.00) 15.31 (86.69) 26.56 (87.44) 44 (89.50)

5 vs 6 0.2 (84.20) 0.15 (81.85) 37.7 (80.30) 5.55 (84.50) 1.25 (65.13) 0.06 (65.50) 1.31 (61.75) 11.44 (66.69)

5 vs 7 0.05 (82.85) 0.05 (80.80) 40.25 (76.70) 1.2 (82.80) 2.37 (62.94) 0 (64.81) 4.37 (59.88) 9.44 (64.25)

5 vs 8 1.1 (92.05) 3.8 (90.20) 64.25 (88.50) 20 (92.10) 36.06 (91.81) 31.69 (91.44) 65.87 (89.88) 47.94 (91.56)

5 vs 9 1.15 (90.75) 2.5 (89.00) 74.1 (86.70) 15.15 (91.00) 23 (87.06) 14.5 (85.94) 25.5 (87.00) 46 (88.38)

6 vs 7 0.55 (91.30) 0.55 (89.45) 50.7 (86.40) 7.7 (89.75) 5.25 (70.56) 0.19 (70.81) 2 (65.50) 19.37 (72.63)

6 vs 8 3.25 (94.85) 5.85 (93.95) 84.75 (92.70) 25.2 (95.05) 30.56 (91.50) 23.38 (90.94) 69.75 (90.13) 53.31 (90.63)

6 vs 9 0.6 (93.25) 2.15 (90.90) 41.45 (90.15) 19.75 (93.20) 20.81 (86.31) 16.88 (85.69) 30.63 (85.19) 47.56 (87.25)

7 vs 8 1.75 (92.40) 2.25 (90.95) 70.35 (88.95) 12.45 (92.55) 27.69 (91.63) 26.87 (91.31) 55.94 (89.94) 54 (92.38)

7 vs 9 1.1 (89.50) 1.9 (87.35) 59.4 (85.70) 8.25 (89.45) 22.37 (87.38) 20.75 (86.69) 30.63 (85.00) 50.56 (89.50)

8 vs 9 0.35 (86.95) 0.75 (86.10) 44.25 (83.15) 5.9 (87.10) 5.56 (74.31) 0 (75.06) 8.62 (75.94) 21.75 (77.25)

others’ model, MLP-BCE-SCD (yellow line) is the second-best one. MLP-BCE-BP

and MLP-BCE-BAN’s accuracy are close to 0% for each pair. This indicated that the

model optimized by our Stochastic Coordinate Descent (SCD) algorithm could defend

the FGSM attack better than Stochastic Gradient Descent (SGD) in this structure

on CIFAR10 dataset.

Figure 5.3 shows the overall adversaries’ accuracy on each pair from STL10

dataset. The performance difference between SCD models and SGD models is not as

big as in the CIFAR10 dataset, but we can still see that SCD models perform better
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Figure 5.2 MLP-BCE-BP, MLP-BCE-BAN, MLP-01-SCD, MLP-BCE-SCD’s
accuracy on adversaries of CIFAR10 generated by FGSM attack (ε = 16/255). X-axis
is classes pair, Y-axis is accuracy on adversaries.

than SGD models in most cases. MLP-01-SCD performs worse than SGD models

in some pairs, probably because the structure does not fit the data dimension. The

image’s dimension in STL10 is 27,648 (96×96×3), which is much bigger than the

image’s dimension, 3072 (32×32×3) in CIFAR10. The MLP structure with 20 nodes

is hard to handle this kind of big image, especially for MLP-01-SCD, whose activation

function is Sign. Nevertheless, in MLP-BCE-SCD, in which activation is ReLu, it

performs stably better than SGD models.

As we knew, Convolutional Neural Network is a much better structure than

Multiple Layers Perceptron in extracting spatial information from image data. So

we also evaluate our CNN baseline models’ performance on adversaries of CIFAR10

generated by FGSM attack, the results listed in Table 5.3. From Figure 5.4, we can

see FGSM is not powerful enough to attack CNN structure and make their accuracy
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Table 5.3 CNN-BCE-BP, CNN-BCE-BAN, CNN-01-ABP’s Accuracy on
Adversaries (Accuracy on Clean Data) of Test Dataset of CIFAR10 Generated by
FGSM Attacks (ε = 16/255), Each Model is a Ensembling of Eight Votes

classes cnnbcebp cnnbceban cnn01abp classes cnnbcebp cnnbceban cnn01abp

0 vs 1 32.4 (97.60) 53.4 (96.90) 79.15 (96.45) 2 vs 9 22.25 (97.45) 50.35 (97.40) 77.65 (96.85)

0 vs 2 9.35 (92.35) 29.4 (92.75) 54.6 (92.05) 3 vs 4 4.8 (91.70) 15.25 (90.05) 43.35 (89.95)

0 vs 3 24.35 (96.00) 48 (95.70) 74.7 (95.55) 3 vs 5 0.35 (83.25) 2 (78.65) 16.7 (78.80)

0 vs 4 9.7 (96.35) 26.35 (96.10) 62 (95.80) 3 vs 6 5.3 (91.90) 18.1 (91.20) 45.05 (92.10)

0 vs 5 25.85 (97.10) 46.45 (96.80) 78 (96.70) 3 vs 7 2.05 (93.00) 8.05 (92.20) 38.05 (92.35)

0 vs 6 40.45 (98.05) 57.05 (97.65) 82.05 (97.85) 3 vs 8 28.15 (96.80) 46.4 (96.90) 80.25 (96.70)

0 vs 7 19.55 (96.45) 40.95 (96.65) 74.3 (96.20) 3 vs 9 13.65 (96.40) 40.8 (97.00) 67.35 (95.65)

0 vs 8 7.65 (94.35) 19.75 (93.25) 50.6 (92.85) 4 vs 5 9.85 (92.50) 16.95 (90.10) 48.4 (91.30)

0 vs 9 26.7 (95.55) 43.5 (94.90) 73.1 (95.10) 4 vs 6 1.75 (94.45) 8.3 (94.50) 42.1 (92.95)

1 vs 2 27.85 (98.35) 62 (98.60) 80.75 (98.25) 4 vs 7 1.65 (92.10) 8.6 (91.20) 40.2 (91.60)

1 vs 3 24.65 (97.70) 55.05 (97.95) 76.15 (97.00) 4 vs 8 21.3 (97.65) 48.75 (97.50) 74.2 (97.30)

1 vs 4 18.65 (98.70) 47.95 (98.85) 78.35 (98.75) 4 vs 9 16 (98.40) 47.05 (97.80) 74.35 (98.15)

1 vs 5 25.45 (98.50) 57.1 (99.05) 81.75 (98.45) 5 vs 6 9.55 (94.90) 19.05 (94.60) 50.35 (94.40)

1 vs 6 25.25 (98.85) 49.35 (98.55) 81.3 (98.55) 5 vs 7 2.15 (93.25) 7.45 (91.65) 41.95 (91.15)

1 vs 7 25.05 (98.95) 55.15 (99.05) 83.95 (98.60) 5 vs 8 41.1 (97.70) 54.2 (97.60) 83.35 (97.40)

1 vs 8 12.9 (97.35) 32.3 (96.85) 68.25 (95.40) 5 vs 9 22 (97.85) 45.95 (97.65) 75 (97.00)

1 vs 9 4.3 (94.25) 14.35 (94.10) 50.55 (92.65) 6 vs 7 7.45 (97.35) 28.3 (97.90) 62.05 (97.35)

2 vs 3 2.25 (88.65) 9.85 (86.80) 35.9 (87.55) 6 vs 8 40.5 (98.25) 59.05 (98.15) 83 (97.95)

2 vs 4 2.25 (90.65) 6.5 (87.30) 27.6 (87.95) 6 vs 9 19.55 (98.85) 39.8 (98.55) 77.1 (98.30)

2 vs 5 5.05 (90.90) 11.55 (88.85) 43.2 (89.80) 7 vs 8 26.05 (98.55) 53.95 (98.00) 82.25 (97.90)

2 vs 6 6.4 (93.25) 17.5 (91.25) 48.3 (92.25) 7 vs 9 12.6 (98.00) 39.45 (97.90) 73.75 (96.95)

2 vs 7 6.35 (93.60) 18.8 (92.75) 51.3 (93.60) 8 vs 9 15.65 (96.30) 31.95 (96.10) 67 (95.15)

2 vs 8 21.9 (96.95) 43.5 (96.45) 75.7 (96.25)
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Figure 5.3 MLP-BCE-BP, MLP-BCE-BAN, MLP-01-SCD, MLP-BCE-SCD’s
accuracy on adversaries of STL10 generated by FGSM attack (ε = 16/255). X-axis
is classes pair, Y-axis is accuracy on adversaries.

drop to 0% on adversaries. Aleksander Madry [41] claims that FGSM is a one-time

attack method. That is, adding a gradient to data only increases the gradient once.

However, if the target is a complex nonlinear model, such a method may not be able to

attack successfully. Even though the FGSM is not a powerful attack on deep neural

networks or complicated models, we can also see that CNN-01-ABP performs more

robust than CNN-BCE-BP and CNN-BCE-BAN in all pairs. In the next section, we

introduce a stronger gradient-based white-box attack method, PGD attack.

5.2.3 Projected Gradient Descent

The Basic Iterative Method was first introduced by Alexey Kurakin [36]. It is an

iterative version of the one-step attack FGSM. In a non-targeted setting, it gives an
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Figure 5.4 CNN-BCE-BP, CNN-BCE-BAN, CNN-01-ABP’s accuracy on adver-
saries of CIFAR10 generated by FGSM attack (ε = 16/255). X-axis is classes pair,
Y-axis is accuracy on adversaries.

iterative formulation to craft x′:

x0 = x

xt+1 = Clipx,ε(x
t + αsign(∇xL(θ, xt, y)))

(5.3)

Here, Clip restricts the function not passing the surface of x’s ε-neighbor ball

Bε(x) : {x′ : ||x′ − x||∞ ≤ ε}. The step size α usually is a small number (e.g. 1 unit

of pixel change for each step), and step numbers ensure that the distortion can reach

the border (e.g. step = 2×ε/α). Projected Gradient Method (PGD) is a variant of

BIM, where the distortion start from a random projection on x + θ, instead of the

original x [41].

PGD attempts to acquire a perturbation that enlarge the loss of a given model

on a specific data sample, while maintain the distortion smaller than a threshold ε.
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Usually, to make sure the adversary looks imperceptibly different to humans, L2 or

L∞ norm of the distortion will be measured when it adds to the clean sample.

This PGD attack heuristically searches adversary x′ achieves largest loss value

without going out of the l∞ ball limitation. These “most-adversarial” examples are

most aggressive to fool the classifiers, when the perturbation intensity (its lp norm)

is limited. Finding these adversarial examples help researchers to figure out the

weaknesses of machine learning models.

5.2.4 Results of PGD Attacks on Baseline Models

Figure 5.5 MLP-BCE-BP, MLP-BCE-BAN, MLP-01-SCD, MLP-BCE-SCD’s
accuracy on adversaries of CIFAR10 generated by PGD attack (ε = 16/255, α =
2/255, steps = 20). X-axis is classes pair, Y-axis is accuracy on adversaries.

Tables 5.4 and 5.5 shows our four baseline models’ performance on their

adversaries generated from the PGD attack on CIFAR10 and STL10 datasets (test

fold). The number in parenthesis is the accuracy on test data and the number
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Table 5.4 MLP-BCE-BP, MLP-BCE-BAN, MLP-01-SCD, MLP-BCE-SCD’s
Accuracy on Adversaries (Accuracy on Clean Data) of Test Dataset of CIFAR10
and STL10 Generated by PGD Attacks (ε = 16/255, α = 2/255, steps = 20), Each
Model is a Ensembling of Eight Votes (A)

CIFAR10 STL10

classes mlpbcebp mlpbceban mlp01scd mlpbcescd mlpbcebp mlpbceban mlp01scd mlpbcescd

0 vs 1 0.4 (90.75) 0.1 (87.90) 26.9 (85.40) 0.15 (89.45) 3.12 (81.19) 1.25 (81.94) 0.19 (80.19) 0.25 (84.06)

0 vs 2 0 (85.25) 0 (84.20) 34.6 (80.80) 0 (85.25) 5.31 (85.50) 1.81 (83.94) 10.25 (86.81) 0.37 (88.50)

0 vs 3 0.25 (90.35) 0.5 (88.45) 45.6 (85.55) 0.4 (88.95) 15 (85.13) 10.44 (84.88) 5 (84.81) 0.19 (86.81)

0 vs 4 0.1 (89.80) 0.1 (88.30) 40.1 (86.00) 0 (88.70) 19.5 (85.69) 7.12 (85.25) 5.37 (84.81) 2.56 (85.25)

0 vs 5 0.1 (90.90) 0.05 (89.25) 57.4 (86.30) 0.6 (90.65) 24.94 (85.38) 7.69 (84.81) 1.81 (85.81) 0.19 (87.94)

0 vs 6 0.45 (93.40) 0.5 (92.00) 44.55 (90.70) 0.85 (92.70) 13.63 (86.75) 8.69 (86.44) 10.56 (87.56) 0.37 (88.88)

0 vs 7 0.15 (90.25) 0 (88.20) 34.7 (85.40) 0.55 (89.65) 18.25 (87.56) 14.94 (87.38) 1.69 (88.19) 0.62 (90.50)

0 vs 8 0 (83.25) 0 (81.75) 10.55 (78.90) 0 (82.95) 7.37 (78.19) 0.75 (78.69) 1.75 (75.44) 0.5 (80.56)

0 vs 9 0.65 (88.55) 0.1 (85.05) 36.05 (84.85) 0.25 (87.25) 5.75 (81.50) 1.81 (80.69) 2.94 (83.38) 0.12 (84.38)

1 vs 2 0.35 (92.25) 0.1 (89.55) 33.35 (89.45) 0.45 (92.00) 5 (88.31) 5.81 (86.75) 13.12 (86.94) 0.88 (91.00)

1 vs 3 0.4 (91.10) 0.05 (89.45) 30.2 (87.35) 0.15 (91.15) 0.25 (65.06) 0.06 (66.56) 0.06 (64.75) 0.12 (67.00)

1 vs 4 0.35 (93.85) 0 (91.75) 33.9 (90.50) 0.6 (93.50) 3.81 (68.44) 0 (70.31) 1.06 (67.94) 0 (70.75)

1 vs 5 0.55 (93.10) 0.25 (90.35) 33.95 (88.10) 0.6 (92.50) 2.31 (62.94) 0.06 (64.06) 0.12 (63.69) 0 (64.75)

1 vs 6 0.2 (94.60) 0.1 (92.10) 38.8 (92.65) 1.15 (94.50) 0.94 (72.81) 0.12 (73.19) 0.44 (69.75) 0.19 (77.00)

1 vs 7 0.15 (92.65) 0 (89.80) 29.4 (88.50) 0.35 (92.55) 2.25 (63.06) 0 (62.69) 0 (61.13) 0 (63.50)

1 vs 8 1 (87.40) 0.05 (86.35) 25.35 (84.10) 0.2 (86.95) 7.06 (89.94) 9.56 (88.50) 9.56 (87.81) 4 (90.13)

1 vs 9 0 (77.50) 0 (76.20) 12.3 (70.75) 0 (76.60) 6.25 (87.50) 7.56 (85.63) 17.56 (85.63) 4.37 (88.69)

2 vs 3 0.05 (77.20) 0.3 (75.95) 13.4 (74.90) 0.05 (77.65) 3.37 (86.56) 3.5 (84.88) 25.56 (83.44) 0 (87.38)

2 vs 4 0 (74.25) 0 (72.90) 8.45 (66.65) 0 (73.40) 8.44 (89.13) 4.69 (87.44) 23.12 (88.75) 0.06 (90.00)

2 vs 5 0.1 (77.95) 0 (77.15) 16.25 (73.80) 0.05 (77.65) 4.75 (88.44) 4 (86.63) 20.81 (86.06) 0.19 (89.13)

2 vs 6 0.05 (83.20) 0 (81.65) 19.55 (76.90) 0 (82.25) 4.69 (88.63) 6.88 (87.13) 27.31 (86.13) 0 (88.75)

2 vs 7 0 (83.95) 0 (82.25) 19.8 (79.85) 0.05 (83.45) 6.94 (88.94) 7.5 (86.75) 22.12 (85.88) 0.12 (89.44)

2 vs 8 0.3 (91.65) 0.05 (90.65) 44.1 (86.95) 0.05 (91.75) 0.94 (81.88) 0.12 (81.38) 17.62 (82.94) 0.25 (84.94)

out of parenthesis is the accuracy on the adversarial version of test data. For

example, there are 2000 images in classes pair 0 vs. 1, and MLP-BCE-BP’s original

accuracy in this pair is 90.75%. We do the PGD attack for MLP-BCE-BP and

generate adversary for each image in this pair based on MLP-BCE-BP’s information,

and then we get a total number of 2000 adversaries. The MLP-BCE-BP’s accuracy

on these 2000 adversaries is 0.4%, more than 90% drops from the accuracy on clean

data (90.75%). We do the same thing for the other three models, MLP-BCE-BAN’s
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Table 5.5 MLP-BCE-BP, MLP-BCE-BAN, MLP-01-SCD, MLP-BCE-SCD’s
Accuracy on Adversaries (Accuracy on Clean Data) of Test Dataset of CIFAR10
and STL10 Generated by PGD Attacks (ε = 16/255, α = 2/255, steps = 20), Each
Model is a Ensembling of Eight Votes (B)

CIFAR10 STL10

classes mlpbcebp mlpbceban mlp01scd mlpbcescd mlpbcebp mlpbceban mlp01scd mlpbcescd

2 vs 9 0.1 (91.80) 0.05 (89.80) 31.7 (89.35) 0.25 (91.85) 0.31 (70.31) 0 (70.50) 0.19 (67.75) 0.06 (69.88)

3 vs 4 0.05 (80.50) 0.05 (79.40) 19.1 (78.85) 0 (80.55) 0.31 (68.94) 0 (70.50) 0 (66.88) 0 (68.25)

3 vs 5 0 (65.20) 0 (63.50) 8.7 (62.60) 0 (65.70) 0.06 (59.69) 0 (60.25) 0 (56.88) 0 (58.94)

3 vs 6 0.3 (80.45) 0.05 (79.50) 22.1 (77.80) 0.05 (80.65) 0.44 (70.63) 0.12 (71.44) 0.12 (69.38) 0.44 (72.06)

3 vs 7 0.05 (83.10) 0.05 (81.90) 21.2 (79.25) 0.05 (83.05) 0.25 (64.81) 0 (65.81) 0 (59.38) 0 (63.38)

3 vs 8 1.05 (91.35) 0.15 (89.65) 48.6 (87.55) 0.2 (91.45) 13.88 (89.44) 11.19 (89.44) 9.44 (88.31) 2.31 (90.06)

3 vs 9 0.1 (90.25) 0.1 (87.75) 29.75 (84.55) 0.1 (88.85) 11.12 (86.75) 7.19 (84.88) 15.25 (85.38) 3.75 (87.63)

4 vs 5 0.05 (80.95) 0.35 (78.20) 17 (78.45) 0.4 (80.15) 13.88 (68.63) 0.37 (68.50) 0.56 (68.75) 1.12 (70.75)

4 vs 6 0 (82.05) 0.05 (80.55) 9.15 (76.20) 0 (79.90) 2.87 (68.25) 0.06 (71.38) 3.44 (73.31) 0.31 (77.06)

4 vs 7 0 (82.80) 0 (80.90) 16.6 (78.45) 0 (82.70) 1 (71.19) 0.31 (71.63) 2.19 (68.19) 0.69 (73.69)

4 vs 8 0.75 (91.40) 0.55 (90.70) 66.9 (88.65) 0.1 (91.25) 18.81 (90.69) 15.19 (90.75) 18.37 (89.19) 9.31 (91.63)

4 vs 9 0.2 (92.60) 0.05 (90.55) 35.9 (88.65) 0.15 (92.60) 8.56 (88.00) 2.94 (86.69) 21.12 (87.44) 3.37 (89.50)

5 vs 6 0.05 (84.20) 0.05 (81.85) 21.35 (80.30) 0.2 (84.50) 0.12 (65.13) 0.06 (65.50) 0 (61.75) 0.06 (66.69)

5 vs 7 0 (82.85) 0 (80.80) 14.2 (76.70) 0 (82.80) 0.69 (62.94) 0 (64.81) 0.12 (59.88) 0 (64.25)

5 vs 8 0.1 (92.05) 0.3 (90.20) 46.9 (88.50) 0.5 (92.10) 24.31 (91.81) 17 (91.44) 19.44 (89.88) 4.19 (91.56)

5 vs 9 0.35 (90.75) 0.1 (89.00) 67.95 (86.70) 0.1 (91.00) 15.25 (87.06) 5.37 (85.94) 18 (87.00) 4.12 (88.38)

6 vs 7 0.35 (91.30) 0.05 (89.45) 19.75 (86.40) 0.2 (89.75) 2.5 (70.56) 0.12 (70.81) 0.19 (65.50) 0.19 (72.63)

6 vs 8 0.25 (94.85) 0.8 (93.95) 72.75 (92.70) 0.85 (95.05) 22.5 (91.50) 9 (90.94) 15.06 (90.13) 5.62 (90.63)

6 vs 9 0.3 (93.25) 0.2 (90.90) 32.05 (90.15) 0.3 (93.20) 11.44 (86.31) 5.94 (85.69) 11.44 (85.19) 5.19 (87.25)

7 vs 8 0.4 (92.40) 0.25 (90.95) 44.45 (88.95) 0.25 (92.55) 14.69 (91.63) 15.25 (91.31) 19.31 (89.94) 7.25 (92.38)

7 vs 9 0.05 (89.50) 0.15 (87.35) 48.65 (85.70) 0 (89.45) 11.75 (87.38) 5.19 (86.69) 4.56 (85.00) 6.88 (89.50)

8 vs 9 0.1 (86.95) 0.15 (86.10) 29.75 (83.15) 0.15 (87.10) 1.62 (74.31) 0 (75.06) 4.5 (75.94) 0.12 (77.25)

accuracy drops from 87.9% to 0.1%, MLP-01-SCD’s accuracy drops from 85.4% to

26.9%, MLP-BCE-SCD’s accuracy drops from 89.45% to 0.15%. We do the attack

on all 45 pairs each from both CIFAR10 and STL10 for the four baseline models and

summary results in Table 5.4 and 5.5. Compared to Table 5.1 and 5.2, we can see the

overall accuracy on adversaries after PGD attack are lower than FGSM attack, this

means PGD attack is more powerful in non-linear classifier because of multiple steps

gradient is more accurate to approximate the target models’ decision boundary.
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Figure 5.6 MLP-BCE-BP, MLP-BCE-BAN, MLP-01-SCD, MLP-BCE-SCD’s
accuracy on adversaries of STL10 generated by PGD attack (ε = 16/255, α =
2/255, steps = 20). X-axis is classes pair, Y-axis is accuracy on adversaries.

Figure 5.5 shows the overall adversaries’ accuracy on each pair from CIFAR10

dataset. We can see that MLP-01-SCD (green line) performs clearly better than the

others’ model. MLP-BCE-BP, MLP-BCE-BAN, and MLP-BCE-SCD’s accuracy are

close to 0% for each pair.

Figure 5.6 shows the overall adversaries’ accuracy on each pair from STL10

dataset. The performance difference between SCD models and SGD models is not as

big as in the CIFAR10 dataset. Overall speaking the MLP-01-SCD model’s robustness

is not bad.

In the previous section we see FGSM is not very effective in attacking CNN,

becasue one step attack can hardly attack structure with complicated non-linear

projection. After doing PGD attack for all four baseline models, all models’ accuracy
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Table 5.6 CNN-BCE-BP, CNN-BCE-BAN, CNN-01-ABP’s Accuracy on
Adversaries (Accuracy on Clean Data) of Test Dataset of CIFAR10 Generated by
PGD Attacks (ε = 16/255, α = 2/255, steps = 20), Each Model is a Ensembling of
Eight Votes

classes cnnbcebp cnnbceban cnn01abp classes cnnbcebp cnnbceban cnn01abp

0 vs 1 6.95 (97.60) 8.7 (96.90) 19.95 (96.45) 2 vs 9 5.05 (97.45) 4.3 (97.40) 15.5 (96.85)

0 vs 2 0.7 (92.35) 2.1 (92.75) 2.85 (92.05) 3 vs 4 0.35 (91.70) 0.1 (90.05) 0.7 (89.95)

0 vs 3 6.85 (96.00) 10.25 (95.70) 15.05 (95.55) 3 vs 5 0 (83.25) 0 (78.65) 0 (78.80)

0 vs 4 1.15 (96.35) 1.3 (96.10) 3.4 (95.80) 3 vs 6 0.25 (91.90) 0.1 (91.20) 0.4 (92.10)

0 vs 5 6.9 (97.10) 7.4 (96.80) 14.15 (96.70) 3 vs 7 0.7 (93.00) 0.15 (92.20) 0.95 (92.35)

0 vs 6 11.05 (98.05) 21.45 (97.65) 15.9 (97.85) 3 vs 8 7.8 (96.80) 5.8 (96.90) 16.5 (96.70)

0 vs 7 6.45 (96.45) 11.6 (96.65) 15.8 (96.20) 3 vs 9 2.15 (96.40) 0.95 (97.00) 6.2 (95.65)

0 vs 8 1.05 (94.35) 0.75 (93.25) 1.4 (92.85) 4 vs 5 0.65 (92.50) 1.5 (90.10) 1.45 (91.30)

0 vs 9 6.5 (95.55) 8.3 (94.90) 15.65 (95.10) 4 vs 6 0 (94.45) 0 (94.50) 0.35 (92.95)

1 vs 2 8.65 (98.35) 10.55 (98.60) 22.3 (98.25) 4 vs 7 0.2 (92.10) 0.35 (91.20) 1 (91.60)

1 vs 3 6.45 (97.70) 6.25 (97.95) 14.95 (97.00) 4 vs 8 3.55 (97.65) 7.95 (97.50) 15.8 (97.30)

1 vs 4 6.2 (98.70) 5.5 (98.85) 15.35 (98.75) 4 vs 9 3.4 (98.40) 5.75 (97.80) 13.25 (98.15)

1 vs 5 5.75 (98.50) 5.8 (99.05) 16.6 (98.45) 5 vs 6 0.85 (94.90) 0.95 (94.60) 1.25 (94.40)

1 vs 6 7.1 (98.85) 5.05 (98.55) 12.4 (98.55) 5 vs 7 0.2 (93.25) 0.2 (91.65) 0.65 (91.15)

1 vs 7 8.3 (98.95) 5.5 (99.05) 14.65 (98.60) 5 vs 8 12.75 (97.70) 8.7 (97.60) 21.45 (97.40)

1 vs 8 1.9 (97.35) 2 (96.85) 8.7 (95.40) 5 vs 9 2.5 (97.85) 1.15 (97.65) 6.9 (97.00)

1 vs 9 0 (94.25) 0.05 (94.10) 0.45 (92.65) 6 vs 7 1 (97.35) 0.7 (97.90) 2.85 (97.35)

2 vs 3 0.35 (88.65) 0.3 (86.80) 0.5 (87.55) 6 vs 8 11.85 (98.25) 13.8 (98.15) 23.15 (97.95)

2 vs 4 0.05 (90.65) 0 (87.30) 0.05 (87.95) 6 vs 9 2.5 (98.85) 1.15 (98.55) 6.25 (98.30)

2 vs 5 0.5 (90.90) 0.3 (88.85) 1.05 (89.80) 7 vs 8 6.7 (98.55) 15.75 (98.00) 23.95 (97.90)

2 vs 6 0.55 (93.25) 0.4 (91.25) 1.4 (92.25) 7 vs 9 2.35 (98.00) 2.75 (97.90) 8.9 (96.95)

2 vs 7 0.6 (93.60) 0.7 (92.75) 2.1 (93.60) 8 vs 9 1.3 (96.30) 0.7 (96.10) 7.65 (95.15)

2 vs 8 4.15 (96.95) 8.2 (96.45) 14 (96.25)
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Figure 5.7 CNN-BCE-BP, CNN-BCE-BAN, CNN-01-ABP’s accuracy on adver-
saries of CIFAR10 generated by PGD attack (ε = 16/255, α = 2/255, steps = 20).
X-axis is classes pair, Y-axis is accuracy on adversaries.

on adversaries stuck in a position under 20%. But we see CNN-01-ABP is still the

best one.

5.3 Adversaries’ Transferability

Some researchers claimed that there is a large-dimensional continuous subspace in the

adversarial sample space. This subspace is a very important part of the adversarial

space and is shared by different models to achieve mobility. The dimension of the

transferable adversarial subspace means that the learning boundaries learned by

different models are incredibly close in the input domain, and these boundaries are

far away from the data points in the adversarial direction [58]. This phenomenon

happens in object detection [60] also.
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Many works showed that adversaries’ transferability is a key to do black-box

attack successfully. In real world, most application service based on machine learning

or deep learning techniques would not release the model or parameter details to users,

they only allow users access to the input and output. Without the full information

of a target model, powerful white-box attack would not be possibly applied to hack

the system. In other worlds, doing hack on machine learning application through

black-box attack, which a kind of attack not rely on model’s information is more

practical than doing white-box attack in real world. How to increase adversaries’

transferability becomes a hot topic in black-box attack field. As the same time, many

works showed their ability on improving adversaries’ transferability [16, 63, 62].

In this section, we mainly focus on inner transferability and external trans-

ferability. Here, we define inner transferability is the transferability of adversaries

among the same type of structure with the same loss function. These models have

same structure, same optimization method and training detials, except that they

are under different initialization. For example, in previous section we see baseline

model MLP-BCE-BP ’s accuracy on CIFAR10 and STL10. This accuracy is not a

single model’s performance but a majority vote results of 8 models. These eight

models’ training under different random seed setting and different initialized weights,

other training details are the same. We evaluate each single vote’s adversaries’

transferability between each other, and show an example in Table 5.7. For external

transferability, we defined it as the transferability of adversaries from models with

different type of structure or loss function. The external adversaries’ transferability

results example is showed in Table 5.15. These attacks parameters’ setting are the

same as in the previous section.
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Table 5.7 Adversaries’ Transferability of MLP-BCE-BP and MLP-01-SCD on Class
Pair of 2 vs 4 From CIFAR10 Dataset

MLP-BCE-BP

source\target 0 1 2 3 4 5 6 7

0 0.85 2.4 2.7 2.45 2.2 1.7 1.8 3.35

1 2.8 0.95 4.25 3.2 3.4 2.4 2.8 3.8

2 0.9 0.7 0.15 0.6 0.5 0.35 0.35 0.95

3 0.95 0.95 1.3 0.75 0.85 0.65 0.85 1.85

4 0.25 0.1 0.45 0.1 0.1 0.05 0.2 0.55

5 0.35 0.15 0.6 0.1 0.1 0.05 0.25 0.95

6 3.6 4.3 6 3.15 2.7 2.05 0.9 5.7

7 0.85 1.1 0.85 0.9 0.75 0.35 0.6 0.15

MLP-01-SCD

source\target 0 1 2 3 4 5 6 7

0 0.3 61.4 67.8 57.85 60.45 63.3 63.65 57.85

1 65.85 0.3 64.3 61.35 61 64.1 70.85 58.45

2 60.75 62.25 0.15 58.65 60.05 55.95 66.7 57.3

3 59.5 55.2 62.3 0.2 64.6 54.6 65.65 61.9

4 63.1 62.2 60.7 65.2 0 56.15 52.75 60.25

5 61.65 64.65 60.55 58.55 59.5 0 59.65 57.2

6 64.25 70.1 56.9 64.7 58.65 64.1 0.4 57

7 59 69.45 59.15 64.95 60.05 63.9 54.4 0.3
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Table 5.8 Adversaries’ Transferability of CNN-BCE-BP and CNN-01-ABP on Class
Pair of 2 vs 4 From CIFAR10 Dataset

CNN-BCE-BP

source\target 0 1 2 3 4 5 6 7

0 0 3.15 3.35 3.1 2.3 2.85 6.35 3.65

1 2.3 0 3.05 2.1 2 2.25 3.2 1.45

2 5.8 6.95 0 5.1 3.55 7.6 5.2 9.35

3 2.1 1.75 2.15 0 2.1 1.95 3.45 2

4 1.85 2.95 1.95 2.45 0 1.85 2.05 1.7

5 1.4 1.95 2.45 1.75 1.1 0 3.55 1.75

6 4.1 3.65 2.3 3.7 1.3 4.35 0 4.3

7 1.5 1.45 3.2 1.85 1 1.35 3.1 0

CNN-01-ABP

source\target 0 1 2 3 4 5 6 7

0 0 62.75 57.5 59.65 51.65 57.4 60.6 57.15

1 51.2 0 48.8 53.85 50.15 53.95 51.35 53.4

2 50.65 55.2 0 55.25 46.85 51.05 50.25 50.65

3 47.45 53 49.65 0 43.75 52 53.6 51.4

4 57.4 65.75 59 61.35 0 59.55 63.55 59.45

5 51.85 59.4 51.05 55.35 48.5 0 47.6 53.5

6 56.6 59.85 51.9 59.4 53.25 51.05 0 53.6

7 56.1 61.35 57.2 59.15 53.6 58.5 56.25 0
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5.3.1 Adversaries’ Inner Transferability

Table 5.7 and 5.8 is an example of MLP’s and CNN’s inner adversaries’ transferability

on class pair 2 vs 4 of CIFAR10. For example, we trained 8 MLP-BCE-BP models

{M0,M1, ...,M7} on class pair 2 vs 4 of CIFAR10 {X, Y } with different random seed

{rd0, rd1, ..., rd7}, and then do PGD attack for each model to get their adversaries

{adv0, adv1, ..., adv7}. So in the table, we record accuracy Acc at position row i, col j

as Mj’s accuracy on adversaries advi. In other words, we defined the accuracy in

formula,

Accij =
1

n

n∑
k

(Mj(xk) = yk)

subject to xk ∈ advi, yk ∈ Y

(5.4)

In the Table 5.7, for MLP-BCE-BP, M1’s accuracy on M0’s adversaries is 2.4%,

M0’s accuracy on M1’s adversaries is 2.8%, and M0’s accuracy on the adversaries

from itself is 0.85%. This means M0 and M1’s adversaries could be shared between

each other, and this phenomenon is consistent with the argument that the decision

boundaries learned by different models are incredibly close in the input domain [57].

For MLP-01-SCD, M1’s accuracy on M0’s adversaries is 61.4%, M0’s accuracy on

M1’s adversaries is 65.85%, and M0’s accuracy on the adversaries from itself is 0.3%.

Compared to MLP-BCE-BP’s adversaries transferability, we can see MLP-01-SCD’s

adversaries transferability is obviously lower than MLP-BCE-BP’s in this class pair.

Higher accuracy on other models’ adversaries means MLP-01-SCD’s adversaries could

hardly transfer to models with the same structure, indicating that the transferability

attack on MLP-01-SCD would be ineffective.

In the Table 5.8, for CNN-BCE-BP, M1’s accuracy on M0’s adversaries is 3.15%,

M0’s accuracy on M1’s adversaries is 2.3%, and M0’s accuracy on the adversaries from

itself is 0%. For CNN-01-ABP, M1’s accuracy on M0’s adversaries is 62.75%, M0’s
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accuracy on M1’s adversaries is 51.2%, and M0’s accuracy on the adversaries from

itself is 0%. The situation is similar as we see in MLP’s results, which means our

zero-one loss models’ adversarial transferability attribute does not change as network

structure changes from MLP to CNN and even becomes deeper.

5.3.2 Inner Adversarial Transferability Results

We evaluated our baseline models’ inner adversaries transferability under FGSM and

PGD attack, averaged accuracy like in Table 5.7 and 5.8 exclude accuracy on the

diagnoal (white-box attack), averaged accuracy for each class pair and recorded them

in Table 5.8, 5.9, 5.10, 5.12, 5.13, and 5.14 and their corresponding curve in Figures

5.9, 5.10, 5.11, 5.11, 5.12, and 5.13. From these figures we can see MLP-01-SCD

and CNN-01-ABP’s adversaries’ transferability is the weakest in their corresponding

groups. Optimizing zero-one loss will give non-unique solutions or decision boundary,

which makes each models’ adversaries generated by FGSM or PGD can only succeed

in itself rather than other models. This is different from that cross-entropy loss

optimized by SGD probably bring similar decision boundary for models if they are

under the same structure and trained on the same dataset.
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Table 5.9 MLP-BCE-BP, MLP-BCE-BAN, MLP-01-SCD, MLP-BCE-SCD’s
Average Accuracy of Inner Adversarial Transferability Results Under FGSM Attacks
(A)

CIFAR10 STL10

classes mlpbcebp mlpbceban mlp01scd mlpbcescd mlpbcebp mlpbceban mlp01scd mlpbcescd

0 vs 1 6.02 4.98 79.81 69.76 41.08 8.06 70.93 74.74

0 vs 2 1.45 3.35 77.00 56.63 40.91 26.05 81.18 83.11

0 vs 3 4.50 14.43 80.98 70.92 48.80 34.38 78.77 81.10

0 vs 4 0.87 5.32 82.55 63.48 62.91 43.65 77.82 78.90

0 vs 5 3.99 10.82 82.59 72.78 60.59 20.36 79.11 83.12

0 vs 6 3.81 16.30 87.00 73.26 52.71 21.06 79.17 81.62

0 vs 7 1.75 3.52 80.56 63.70 63.93 56.38 77.98 84.08

0 vs 8 1.27 2.29 69.24 44.62 47.49 4.49 71.39 70.48

0 vs 9 10.59 5.27 75.77 62.50 48.98 14.06 69.56 77.63

1 vs 2 3.46 7.62 82.41 72.51 38.69 52.86 78.18 85.11

1 vs 3 6.62 7.68 80.03 71.85 28.94 9.35 58.16 56.52

1 vs 4 2.67 5.29 83.61 75.97 45.95 3.11 58.75 57.83

1 vs 5 2.69 7.03 82.28 74.38 41.59 19.74 55.97 52.03

1 vs 6 1.65 8.60 85.38 76.44 33.04 1.28 61.74 65.57

1 vs 7 3.92 7.03 81.96 72.12 43.04 5.23 56.76 58.30

1 vs 8 6.90 4.05 76.78 57.66 40.58 33.99 72.95 85.17

1 vs 9 0.96 2.89 65.35 42.62 32.34 47.01 75.70 83.63

2 vs 3 3.48 12.05 65.74 51.54 28.26 44.79 77.39 82.73

2 vs 4 0.67 0.87 60.46 32.24 44.22 49.93 82.28 86.33

2 vs 5 3.52 6.32 66.89 48.79 31.96 49.70 74.20 84.69

2 vs 6 1.33 2.44 70.54 43.77 30.88 62.44 76.10 83.35

2 vs 7 0.71 2.37 72.26 45.59 25.89 59.53 78.51 85.01

2 vs 8 2.73 10.21 82.48 67.47 24.81 11.20 73.28 77.53
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Table 5.10 MLP-BCE-BP, MLP-BCE-BAN, MLP-01-SCD, MLP-BCE-SCD’s
Average Accuracy of Inner Adversarial Transferability Results Under FGSM Attacks
(B)

CIFAR10 STL10

classes mlpbcebp mlpbceban mlp01scd mlpbcescd mlpbcebp mlpbceban mlp01scd mlpbcescd

2 vs 9 4.87 11.66 81.88 67.40 26.68 7.72 60.03 60.39

3 vs 4 1.12 3.09 71.33 51.62 44.95 15.51 59.79 53.85

3 vs 5 1.11 12.28 57.94 31.39 38.89 10.90 52.21 50.20

3 vs 6 3.33 4.99 70.36 50.64 28.62 1.50 61.59 60.00

3 vs 7 1.12 1.90 70.47 38.47 19.12 1.81 55.56 52.37

3 vs 8 9.11 14.43 83.17 73.69 52.44 60.33 81.19 85.39

3 vs 9 3.51 8.45 78.61 66.22 46.41 45.93 75.78 80.50

4 vs 5 3.80 6.17 71.23 55.71 53.38 11.08 59.03 59.97

4 vs 6 0.50 2.28 67.41 37.32 45.48 2.57 64.64 63.33

4 vs 7 0.45 1.82 67.09 44.28 34.07 4.06 61.24 62.70

4 vs 8 6.55 16.64 84.29 65.31 49.92 68.37 82.98 87.65

4 vs 9 4.08 10.95 82.44 69.21 30.60 42.87 81.00 84.07

5 vs 6 1.24 3.09 73.55 54.90 33.49 3.69 55.47 51.99

5 vs 7 1.31 3.02 69.91 41.76 29.38 0.62 55.51 52.14

5 vs 8 5.16 16.88 84.06 75.13 59.17 71.89 80.07 86.72

5 vs 9 4.59 13.99 82.22 71.83 47.15 48.44 79.46 82.36

6 vs 7 1.98 2.43 78.11 51.57 34.94 1.96 60.77 61.16

6 vs 8 11.43 19.68 89.06 73.48 59.15 60.18 84.30 86.24

6 vs 9 3.37 10.81 83.52 71.86 39.39 55.69 77.64 81.36

7 vs 8 5.88 8.15 83.90 66.43 50.35 63.09 83.07 88.89

7 vs 9 3.69 9.60 78.68 60.91 46.26 49.90 79.12 84.06

8 vs 9 1.92 4.88 74.90 55.88 42.06 3.69 61.68 67.21
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Figure 5.8 MLP-BCE-BP, MLP-BCE-BAN, MLP-01-SCD, MLP-BCE-SCD’s
average accuracy of inner adversarial transferability results exclude white-box attack
part. Adversaries are test dataset of CIFAR10 by FGSM attacks. X-axis is classes
pair, Y-axis is accuracy.
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Figure 5.9 MLP-BCE-BP, MLP-BCE-BAN, MLP-01-SCD, MLP-BCE-SCD’s
average accuracy of inner adversarial transferability results exclude white-box attack
part. Adversaries are test dataset of STL10 by FGSM attacks. X-axis is classes pair,
Y-axis is accuracy.
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Table 5.11 CNN-BCE-BP, CNN-BCE-BAN, CNN-01-ABP’s Average Accuracy of
Inner Adversarial Transferability Results Under FGSM Attacks

classes cnnbcebp cnnbceban cnn01abp classes cnnbcebp cnnbceban cnn01abp

0 vs 1 57.07 78.99 87.39 2 vs 9 50.7 78.67 85.53

0 vs 2 26.86 62.48 72.08 3 vs 4 18.17 39.12 66.14

0 vs 3 48.28 75.06 84.3 3 vs 5 6.28 21.85 54.58

0 vs 4 25.44 54.68 75.3 3 vs 6 28.31 51.44 66.81

0 vs 5 49.51 73.4 86.52 3 vs 7 9.57 36.73 63.34

0 vs 6 67.58 79.55 86.47 3 vs 8 54.06 74.34 87.26

0 vs 7 39.04 68.86 83.98 3 vs 9 42.83 72.06 79.37

0 vs 8 20.82 51.07 71.73 4 vs 5 28.92 49.71 70.48

0 vs 9 53.12 72.71 83.23 4 vs 6 11.65 42.63 64.32

1 vs 2 51.2 83.75 87.62 4 vs 7 9.08 41.99 65.5

1 vs 3 45.96 80.14 84.54 4 vs 8 46.53 71.59 83.92

1 vs 4 35.86 75.78 86.99 4 vs 9 38.19 76.27 83.66

1 vs 5 48.19 82.31 88.85 5 vs 6 32.54 48.53 69.05

1 vs 6 53.15 78.56 88.8 5 vs 7 13.49 37.94 67.5

1 vs 7 50.08 82.3 89.6 5 vs 8 66.38 78.36 89.74

1 vs 8 31.66 66.79 80.29 5 vs 9 50.91 76.23 83.24

1 vs 9 24.1 53.1 73.26 6 vs 7 24.22 59.97 77.27

2 vs 3 15.27 38.37 62.32 6 vs 8 63.45 79.81 88.81

2 vs 4 9.18 30.16 57.3 6 vs 9 50.93 76.08 86.76

2 vs 5 21.46 43.17 67.41 7 vs 8 50.72 73.3 89.19

2 vs 6 27.12 54.72 69.07 7 vs 9 37.52 69.75 83.7

2 vs 7 22.43 51.53 71.75 8 vs 9 39.1 64.47 77.41

2 vs 8 45.06 73.18 84.27
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Figure 5.10 CNN-BCE-BP, CNN-BCE-BAN, CNN-01-ABP’s average accuracy of
inner adversarial transferability results exclude white-box attack part. Adversaries
are test dataset of CIFAR10 by FGSM attacks. X-axis is classes pair, Y-axis is
accuracy.
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Table 5.12 MLP-BCE-BP, MLP-BCE-BAN, MLP-01-SCD, MLP-BCE-SCD’s
Average Accuracy of Inner Adversarial Transferability Results Under PGD Attacks
(A)

CIFAR10 STL10

classes mlpbcebp mlpbceban mlp01scd mlpbcescd mlpbcebp mlpbceban mlp01scd mlpbcescd

0 vs 1 5.30 2.48 80.04 76.04 50.74 6.10 71.36 78.03

0 vs 2 1.16 1.57 76.48 64.70 53.89 25.42 77.24 84.60

0 vs 3 4.82 8.56 80.58 76.22 53.93 33.79 79.48 83.18

0 vs 4 1.06 1.85 82.09 71.67 68.34 42.14 77.77 81.76

0 vs 5 4.50 6.21 82.57 78.30 67.75 17.39 78.78 84.28

0 vs 6 4.20 11.52 86.15 79.19 64.18 20.27 80.64 84.30

0 vs 7 2.02 1.13 79.57 72.89 76.23 58.84 78.40 85.95

0 vs 8 1.76 1.06 68.79 54.90 54.73 3.18 70.02 75.20

0 vs 9 9.53 2.61 75.38 69.38 58.76 12.63 69.50 79.24

1 vs 2 3.40 3.38 82.14 78.78 51.22 56.87 73.60 86.63

1 vs 3 6.06 3.74 79.52 77.44 38.81 9.99 58.24 61.29

1 vs 4 2.26 1.41 83.96 80.79 54.40 2.76 58.46 63.85

1 vs 5 2.40 2.58 81.74 80.21 50.63 20.83 55.58 58.11

1 vs 6 1.48 2.87 85.37 82.27 46.81 1.00 62.11 69.38

1 vs 7 2.77 1.57 81.44 78.83 52.07 5.67 56.88 60.12

1 vs 8 6.37 2.30 76.31 64.42 51.78 32.39 73.07 86.86

1 vs 9 1.34 2.10 64.70 49.70 42.45 49.24 75.50 85.37

2 vs 3 4.01 10.05 65.05 57.56 37.74 45.12 75.88 84.44

2 vs 4 1.57 0.35 61.29 40.69 51.63 53.06 76.16 87.48

2 vs 5 4.55 5.18 67.25 56.48 35.83 52.35 77.45 86.15

2 vs 6 1.66 1.05 68.91 53.98 33.84 65.61 76.06 85.52

2 vs 7 0.62 1.09 71.19 57.87 34.24 62.50 79.04 86.52

2 vs 8 2.39 4.55 82.09 76.38 33.65 11.20 73.66 80.03
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Table 5.13 MLP-BCE-BP, MLP-BCE-BAN, MLP-01-SCD, MLP-BCE-SCD’s
Average Accuracy of Inner Adversarial Transferability Results Under PGD Attacks
(B)

CIFAR10 STL10

classes mlpbcebp mlpbceban mlp01scd mlpbcescd mlpbcebp mlpbceban mlp01scd mlpbcescd

2 vs 9 4.37 5.79 82.41 76.78 38.11 7.73 60.11 64.23

3 vs 4 1.44 1.62 71.19 57.85 53.34 18.04 59.96 61.09

3 vs 5 2.01 13.69 57.10 36.90 45.04 12.28 53.43 55.23

3 vs 6 3.14 3.53 69.49 56.82 40.44 1.21 60.56 66.00

3 vs 7 0.93 0.36 69.23 52.45 27.08 1.66 55.20 58.10

3 vs 8 8.26 7.52 82.65 79.80 58.47 63.68 81.26 87.14

3 vs 9 3.32 3.71 78.36 74.56 51.67 48.02 76.35 83.04

4 vs 5 4.22 4.63 68.66 64.34 58.02 11.43 58.23 64.94

4 vs 6 0.80 1.22 66.98 50.72 56.90 1.35 63.91 68.96

4 vs 7 0.42 1.15 70.35 58.15 47.70 2.70 61.36 68.01

4 vs 8 5.91 10.13 84.13 74.76 53.66 72.46 81.94 89.13

4 vs 9 4.06 5.39 82.62 78.99 37.01 44.93 81.08 85.95

5 vs 6 1.32 1.73 72.73 61.16 42.98 4.24 55.38 59.28

5 vs 7 1.11 1.32 68.67 53.14 41.35 0.46 56.29 57.48

5 vs 8 4.95 9.00 83.77 81.29 62.84 75.54 82.94 88.52

5 vs 9 3.98 7.49 81.94 78.73 52.88 52.72 77.70 84.43

6 vs 7 1.94 0.49 77.29 67.19 47.72 1.24 59.58 65.79

6 vs 8 10.70 9.56 88.43 82.74 64.07 63.61 84.55 88.50

6 vs 9 3.33 4.96 83.46 81.13 48.91 59.71 76.41 83.35

7 vs 8 5.11 2.02 83.65 75.92 60.09 66.58 82.45 90.01

7 vs 9 3.57 3.89 77.99 70.31 56.72 55.08 79.39 85.88

8 vs 9 1.82 2.35 74.60 66.69 51.97 3.47 62.42 70.75
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Figure 5.11 MLP-BCE-BP, MLP-BCE-BAN, MLP-01-SCD, MLP-BCE-SCD’s
average accuracy of inner adversarial transferability results exclude white-box attack
part. Adversaries are test dataset of CIFAR10 by PGD attacks. X-axis is classes
pair, Y-axis is accuracy.
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Figure 5.12 MLP-BCE-BP, MLP-BCE-BAN, MLP-01-SCD, MLP-BCE-SCD’s
average accuracy of inner adversarial transferability results exclude white-box attack
part. Adversaries are test dataset of STL10 by PGD attacks. X-axis is classes pair,
Y-axis is accuracy.
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Table 5.14 CNN-BCE-BP, CNN-BCE-BAN, CNN-01-ABP’s Average Accuracy of
Inner Adversarial Transferability Results Under PGD Attacks

classes cnnbcebp cnnbceban cnn01abp classes cnnbcebp cnnbceban cnn01abp

0 vs 1 41.79 72.25 89.09 2 vs 9 37.84 74.13 88.27

0 vs 2 16.93 53.52 72.05 3 vs 4 7.21 22.14 66.71

0 vs 3 37.53 65.43 84.76 3 vs 5 2.35 16.82 52.62

0 vs 4 16.09 42.96 78.66 3 vs 6 14.62 39.85 69.73

0 vs 5 37.39 62.75 88.06 3 vs 7 5.34 25.13 66.29

0 vs 6 53.79 72.48 90.17 3 vs 8 42.71 63.09 89.02

0 vs 7 30.86 56.62 86.60 3 vs 9 26.80 69.32 84.24

0 vs 8 12.16 38.48 70.47 4 vs 5 14.35 37.01 69.99

0 vs 9 36.27 65.88 86.04 4 vs 6 4.36 25.83 67.37

1 vs 2 39.78 81.45 88.25 4 vs 7 4.37 35.69 63.99

1 vs 3 31.47 77.80 85.33 4 vs 8 31.97 61.70 84.60

1 vs 4 27.03 70.17 88.32 4 vs 9 26.55 72.34 88.45

1 vs 5 35.35 77.75 90.21 5 vs 6 13.88 36.44 74.48

1 vs 6 35.62 70.96 90.73 5 vs 7 6.30 26.11 69.31

1 vs 7 39.67 75.82 91.12 5 vs 8 53.09 66.72 90.38

1 vs 8 19.98 58.27 82.38 5 vs 9 36.79 72.53 88.42

1 vs 9 12.23 43.94 75.87 6 vs 7 13.40 51.77 78.30

2 vs 3 6.38 23.85 60.74 6 vs 8 50.18 72.07 89.99

2 vs 4 2.97 12.25 54.67 6 vs 9 34.81 68.78 88.67

2 vs 5 12.24 30.98 67.02 7 vs 8 37.29 59.91 89.96

2 vs 6 13.69 44.98 71.40 7 vs 9 27.31 63.14 86.48

2 vs 7 14.60 41.87 72.68 8 vs 9 22.37 55.13 81.85

2 vs 8 30.63 63.53 84.81
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Figure 5.13 CNN-BCE-BP, CNN-BCE-BAN, CNN-01-ABP’s average accuracy of
inner adversarial transferability results exclude white-box attack part. Adversaries
are test dataset of CIFAR10 by PGD attacks. X-axis is classes pair, Y-axis is accuracy.
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5.3.3 Adversaries’ External Transferability

Table 5.15 Adversaries’ Transferability Between MLP-BCE-BP, MLP-BCE-BAN,
MLP-01-SCD, and MLP-BCE-SCD on CIFAR10 Dataset

0 vs 1

model mlpbcebp mlpbceban mlp01scd mlpbcescd

mlpbcebp 0.4 0.45 66.45 3.7

mlpbceban 1.45 0.1 69.95 4.25

mlp01scd 81.95 75.6 26.9 71.5

mlpbcescd 26.05 14.95 65.45 0.15

0 vs 2

model mlpbcebp mlpbceban mlp01scd mlpbcescd

mlpbcebp 0 0 66.2 0.2

mlpbceban 0.15 0 66.45 0.35

mlp01scd 80.35 79.85 34.6 76.6

mlpbcescd 11.95 7.95 61.2 0

Tables 5.16 shows an example of adversaries’ external transferability between

CNN baseline models in class pair 0 vs 1 and class pair 0 vs 2 on the CIFAR10 dataset.

We generate adversaries through PGD attack for models list in the first column and

then evaluate the accuracy of models list in the first row. We only evaluate adversarial

transferability under PGD attacksFor example, in class pair 0 vs 1, MLP-BCE-BAN’s

accuracy on MLP-BCE-BP’s adversaries is 0.45%, almost the same as MLP-BCE-

BP’s. This means MLP-BCE-BP’s adversaries can be transferred to MLP-BCE-

BAN. In other words, if we want to generate adversaries for attacking MLP-BCE-

BAN, we do not need accurate weights’ information from MLP-BCE-BAN. We could

instead generate adversaries for attacking an MLP-BCE-BP model trained on the

same dataset to succeed. However, MLP-01-SCD’s accuracy evaluated on MLP-BCE-

86



Table 5.16 Adversaries’ Transferability Between CNN-BCE-BP, CNN-BCE-BAN,
and CNN-01-ABP on CIFAR10 Dataset

0 vs 1

model cnnbcebp cnnbceban cnn01abp

cnnbcebp 6.95 17.35 47.9

cnnbceban 40.85 8.7 60.8

cnn01abp 83.6 80.15 19.95

0 vs 2

model cnnbcebp cnnbceban cnn01abp

cnnbcebp 0.7 12.8 15.4

cnnbceban 19.8 2.1 22.8

cnn01abp 51.55 51.85 2.85

BP’s adversaries is 66.45%, much higher than 0.45%, indicating adversaries transfer

from model MLP-BCE-BP to MLP-01-SCD is harder than transfer to MLP-BCE-

BAN. MLP-BCE-Bp’s accuracy evaluated on MLP-BCE-BAN’s adversaries is 1.45%,

which is 68% lower than MLP-01-SCD’s accuracy evaluated on the same adversaries

MLP-BCE-BAN’s adversaries are also harder to transfer to MLP-01-SCD than MLP-

BCE-BP. In addition, MLP-01-SCD’s adversaries cannot transfer to either MLP-

BCE-BP (81.95%) or MLP-BCE-BAN (75.6%) means MLP-01-SCD’s adversaries’

transferability are very low. The same phenomenon happens in class pair 0 vs 2.

Tables 5.16 shows an example of adversaries’ external transferability between

MLP baseline models in class pair 0 vs 1 and class pair 0 vs 2 on CIFAR10 dataset. We

generate adversaries through PGD attack for models list in the first column and then

evaluate the accuracy of models list in the first row. For example, in class pair 0 vs 1,

CNN-BCE-BAN’s accuracy on MLP-BCE-BP’s adversaries is 17.35%, which is only

10% higher than MLP-BCE-BP’s but 30% lower than CNN-01-ABP’s. This means
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CNN-BCE-BP’s adversaries can transfer to CNN-BCE-BAN easier than transfer to

CNN-01-ABP. However, CNN-BCE-BP (40.85%) and CNN-01-ABP (60.8%) perform

well in defending adversaries generated from CNN-BCE-BAN. Additionally, CNN-

BCE-BP (83.6%) and CNN-BCE-BAN (80.15%) are robust in defending CNN-01-

ABP’s adversaries. In class pair 0 vs 2, the overall robustness for all models declined,

and CNN-01-ABP does not perform significantly better than the other two models

on defending adversaries.

5.3.4 External Adversarial Transferability Results

Tables 5.17, 5.18, 5.19, and 5.20 show adversaries transferability between MLP

baseline models in each class pair of CIFAR10 and STL10. For defending adver-

saries generated from either MLP-BCE-BP or MLP-BCE-BAN, MLP-01-SCD is

significantly better than another method with p-values below 0.05 (< 0.05) under

Equal Variance T-Test. MLP-BCE-BP and MLP-BCE-BAN are robust on defending

MLP-01-SCD’s adversaries.

Tables 5.21 and 5.22 show adversaries transferability between CNN baseline

models in each class pair of CIFAR10. CNN-01-ABP is more robust than CNN-BCE-

BAN when defending CNN-BCE-BP’s adversaries with p-value of 0.00001 (< 0.05)

under Equal Variance T-Test. However, CNN-01-ABP is not significantly more robust

than CNN-BCE-BP when defending CNN-BCE-BAN’s adversaries with p-value of

0.06 (> 0.05) under Equal Variance T-Test. Both CNN-BCE-BP and CNN-BCE-

BAN are robust in defending CNN-01-ABP’s adversaries.
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Table 5.17 Adversaries’ Transferability Between MLP-BCE-BP, MLP-BCE-BAN,
and MLP-01-SCD on CIFAR10 Dataset Generated by PGD Attack (A)

Source mlpbcebp mlpbceban mlp01scd

target mlpbceban mlp01scd mlpbcebp mlp01scd mlpbcebp mlpbceban

0 vs 1 0.45 66.45 1.45 69.95 81.95 75.6

0 vs 2 0 66.2 0.15 66.45 80.35 79.85

0 vs 3 3 73.45 1.25 72.7 87.4 84.35

0 vs 4 0.55 75.5 0.35 74.9 83.95 83.1

0 vs 5 1.2 73.85 0.75 74.5 89.6 87.1

0 vs 6 1.85 73.15 1.7 72.35 88.4 85.85

0 vs 7 0.15 71.9 0.5 73.8 82.75 80.2

0 vs 8 0 46.7 0.15 52.65 68.25 68.4

0 vs 9 0.45 66.25 2.55 69.1 83.4 78.85

1 vs 2 0.55 70.55 0.9 71.9 87.45 83.25

1 vs 3 0.35 54.1 2.15 60.55 84.25 78.95

1 vs 4 0.35 70.1 1.75 71.8 83.65 75.1

1 vs 5 1.4 70.55 1.2 66.35 86.45 80.8

1 vs 6 1 65.15 1.05 66.6 87.9 82.85

1 vs 7 0.25 63.05 1.35 66.75 87.6 82.45

1 vs 8 0.65 54.45 2.95 61 76.6 71.7

1 vs 9 0 44.1 0.05 46.45 71.05 67.15

2 vs 3 1.35 44.8 0.7 42.45 66.85 61.55

2 vs 4 0 35.2 0 38.65 63.75 61.95

2 vs 5 0.2 44.6 0.25 51.95 71 66.8

2 vs 6 0.2 45.95 0.35 51.35 73.2 70.35

2 vs 7 0 45.65 0.05 48.85 70.75 65.35

2 vs 8 0.55 71.5 0.95 72.2 88.55 86.05
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Table 5.18 Adversaries’ Transferability Between MLP-BCE-BP, MLP-BCE-BAN,
and MLP-01-SCD on CIFAR10 Dataset Generated by PGD Attack (B)

Source mlpbcebp mlpbceban mlp01scd

target mlpbceban mlp01scd mlpbcebp mlp01scd mlpbcebp mlpbceban

2 vs 9 0.35 68.7 0.65 70.55 84.5 80.4

3 vs 4 0.1 47.6 0.2 48.6 66.7 63.5

3 vs 5 0.15 34.65 0.05 35.1 57.9 56.95

3 vs 6 0.1 36.25 0.65 39.7 67.2 62.5

3 vs 7 0.05 38.9 0.1 41.7 70.3 66.55

3 vs 8 1.1 73.95 3.1 76.05 88.2 84.5

3 vs 9 0.65 68 0.85 65.05 79.55 72.9

4 vs 5 0.65 48.4 0.55 52.65 68.8 62.2

4 vs 6 0.1 38.75 0.05 38.95 66.5 62.6

4 vs 7 0.05 45.85 0 44.75 60.25 54.7

4 vs 8 1.45 74.55 2.25 74.3 87.5 85.7

4 vs 9 0.3 69.15 0.75 69.45 85.9 80.55

5 vs 6 0.05 49.2 0.25 50.55 71.15 66.95

5 vs 7 0 44.5 0.05 43.35 73.65 70.2

5 vs 8 2.45 78.85 0.9 76.8 89.25 86.15

5 vs 9 1.05 71.4 1.3 71.4 88.65 85.35

6 vs 7 0.35 46.75 0.3 48.15 73.75 67.75

6 vs 8 2.85 76.9 1.4 81.2 90.9 87.75

6 vs 9 1 74.4 0.4 69.6 86.45 83.1

7 vs 8 0.45 69.55 1.35 71.4 87.5 83.3

7 vs 9 0.65 58.95 0.6 57.55 85.45 82.2

8 vs 9 0.5 61.65 0.2 61.8 77.3 73.6
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Table 5.19 Adversaries’ Transferability Between MLP-BCE-BP, MLP-BCE-BAN,
and MLP-01-SCD on STL10 Dataset Generated by PGD Attack (A)

Source mlpbcebp mlpbceban mlp01scd

target mlpbceban mlp01scd mlpbcebp mlp01scd mlpbcebp mlpbceban

0 vs 1 4.94 54.81 4.19 50.69 80.94 81.69

0 vs 2 5.87 76.5 9.56 76.88 84.94 82.94

0 vs 3 16.19 59 16.12 60 84.25 83.94

0 vs 4 17.56 61.62 27.25 63.62 84.62 84.5

0 vs 5 23.25 61.81 23.75 58 82.94 82.81

0 vs 6 16.81 65.19 10.94 62.31 85.12 84.31

0 vs 7 32.31 67.87 22.19 68.87 86.31 86

0 vs 8 5.5 56 9.75 54.06 77.56 76.5

0 vs 9 7.12 69.37 9.25 68.12 79.06 78.31

1 vs 2 18.69 69.06 12.62 70.06 87.44 85.19

1 vs 3 0.31 25.06 1.56 23.69 64.19 64.88

1 vs 4 3.19 36.5 7.87 33.25 67.62 67.56

1 vs 5 7.69 35.62 6.5 24.69 62.12 62.12

1 vs 6 0.62 36.81 2.19 32.81 71.31 71

1 vs 7 4.25 35.81 4.63 23.12 61.94 60.69

1 vs 8 17.62 69.81 12.62 68.94 89.31 87.62

1 vs 9 15.75 67.44 12.12 68.12 86.87 84.87

2 vs 3 9.69 67.94 8.19 70.31 86 84.25

2 vs 4 14.25 74.31 16.12 78.06 88.31 86.62

2 vs 5 14.75 67.44 14.75 71.75 86.81 85.37

2 vs 6 20.37 66.75 16.62 71.44 87.69 86.37

2 vs 7 23.5 67.56 14.62 69.75 87.81 86.06

2 vs 8 0.88 67.06 1.31 66.31 80.5 78.62
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Table 5.20 Adversaries’ Transferability Between MLP-BCE-BP, MLP-BCE-BAN,
and MLP-01-SCD on STL10 Dataset Generated by PGD Attack (B)

Source mlpbcebp mlpbceban mlp01scd

target mlpbceban mlp01scd mlpbcebp mlp01scd mlpbcebp mlpbceban

2 vs 9 0.12 32.87 1.25 37 68.56 68.44

3 vs 4 2.19 35.56 4.25 26.37 67.12 68.06

3 vs 5 0.56 28.06 2.19 18.63 58.94 58.56

3 vs 6 0.25 27 1.25 25.56 68.94 69.31

3 vs 7 0.06 21.37 1.06 19.94 63.19 61.75

3 vs 8 25.5 69.31 25.87 71.06 89 88.81

3 vs 9 16.62 66.75 20.06 69.94 86 84

4 vs 5 19 48.06 9.06 34 67.62 65.56

4 vs 6 9.81 47.19 6.69 39.5 68 69.62

4 vs 7 2.56 32.81 1.37 22.44 69.19 69.12

4 vs 8 34.25 68.62 32.69 71.63 90.19 90.19

4 vs 9 10.69 69.75 16.88 71.88 87 85.75

5 vs 6 0.44 25.87 1.06 25.69 63.25 63.75

5 vs 7 0.75 28.81 1.06 20.81 61 62.19

5 vs 8 34.56 69.12 39.69 72.94 91.06 90.62

5 vs 9 15 66.62 25.19 69.12 86.44 85

6 vs 7 3.44 28.94 3.25 27.5 68.56 68.75

6 vs 8 22.94 76.44 39 77.56 90.44 89.69

6 vs 9 18.44 67.94 21.69 67.81 85.62 84.56

7 vs 8 30.94 75.94 24.44 74.44 91.12 90.69

7 vs 9 15.31 65.87 19.94 67.87 86.19 85.37

8 vs 9 1.62 55.06 0.31 54.44 72.31 72.37
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Table 5.21 Adversaries’ Transferability Between CNN-BCE-BP, CNN-BCE-BAN,
and CNN-01-ABP on CIFAR10 Dataset Generated by PGD Attack (A)

source cnnbcebp cnnbceban cnn01abp

target cnnbceban cnn01abp cnnbcebp cnn01abp cnnbcebp cnnbceban

0 vs 1 17.35 47.9 40.85 60.8 83.6 80.15

0 vs 2 12.8 15.4 19.8 22.8 51.55 51.85

0 vs 3 25.75 36.25 38.65 41.3 73.3 68.65

0 vs 4 5.35 11.4 10.95 16.95 52.95 48.4

0 vs 5 20.5 32.2 34.3 42.45 76.45 72.55

0 vs 6 29.3 31.85 44.55 43.6 82.8 80.35

0 vs 7 17.35 27.2 23.65 36.1 70.1 68.75

0 vs 8 5.35 13.7 14.15 17.6 52.35 41.9

0 vs 9 17.95 40.9 33.6 49.3 77.35 72.25

1 vs 2 26.1 35.1 56.25 60.15 80.85 76.8

1 vs 3 19.65 31.15 47.9 50.3 74.35 68.95

1 vs 4 14.55 24.8 34.25 41.8 71.8 67.1

1 vs 5 20 31.45 47.75 49.85 77.3 74.65

1 vs 6 13.35 23.85 37.25 39.7 77.1 71.4

1 vs 7 15.65 32.4 46.7 51.5 81.6 77.05

1 vs 8 7.1 20.5 22.55 33.55 65.35 56.95

1 vs 9 1.2 17.6 6.95 29.75 65.1 57.65

2 vs 3 2.1 7.85 4 10.45 38 31.05

2 vs 4 0.1 1.9 2.05 3.4 26.8 17.5

2 vs 5 2.7 9.75 8.05 15.3 45.8 39.05

2 vs 6 3.95 10.55 12.4 20.75 48.55 42.75

2 vs 7 3.55 13.7 15.95 23.05 55.55 43.9

2 vs 8 20.45 32.95 30.3 40.6 73.85 71.45
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Table 5.22 Adversaries’ Transferability Between CNN-BCE-BP, CNN-BCE-BAN,
and CNN-01-ABP on CIFAR10 Dataset Generated by PGD Attack (B)

source cnnbcebp cnnbceban cnn01abp

target cnnbceban cnn01abp cnnbcebp cnn01abp cnnbcebp cnnbceban

2 vs 9 15.75 39.75 45.35 57.25 77.2 69.6

3 vs 4 2.8 8.4 4.9 11.55 37.95 29.55

3 vs 5 1.3 3.8 2.85 4.6 32.3 28

3 vs 6 2.3 7.55 9.9 12.5 45.15 33.7

3 vs 7 0.95 5.75 5.1 9.45 34.95 23.8

3 vs 8 21.05 36.7 39.55 42.55 81.15 73.45

3 vs 9 8.6 23.65 37.7 44.25 66.5 57.75

4 vs 5 5.85 9.5 9.7 13.8 52.2 46.95

4 vs 6 0.2 2.95 3.55 7.75 34.05 25.45

4 vs 7 1.15 6.25 4.35 11.2 38.95 32.35

4 vs 8 17.5 28.6 31.4 37.25 73.05 64.65

4 vs 9 12.55 24.25 31.65 41.55 68.4 63.45

5 vs 6 2.65 6.95 7.75 10.7 44.1 39.95

5 vs 7 1.05 9.25 4.75 10.45 49.7 35.05

5 vs 8 24.8 41.25 46.4 48.6 85.05 79.05

5 vs 9 9.75 27.05 40.05 44.5 75.5 67.9

6 vs 7 2.25 9.85 15.05 21.3 55.85 44.05

6 vs 8 29.45 37.1 46.55 44.1 83.15 78.45

6 vs 9 6 15.75 25.7 25.5 72.45 62.6

7 vs 8 25.05 38 33.5 46.7 78.75 75.95

7 vs 9 8.2 28.3 23.2 39.05 70.35 65.4

8 vs 9 6.8 23.4 23.65 33.4 63.35 54.7
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5.4 Decision Based Attack

Except for transferability attacks, there is another type of black-box attack method,

Decision-based attack. Considering that the users generally can access the neural

networks’ predicted category only, rather than accurate probability in the real world.

score-based attack such as variants of JSMA [47], Carlini & Wagner attack [10], and

ZOO [12] can not be deployed to attack DNN successfully.

Brendel proposed a decision-based adversarial attack, which achieves similar

performance as white-box attack[7]. But relying on the huge number of model queries

prevents it from being practical in real-world applications. Jianbo [11] propose a

query-efficient decision-based attack in 2019, which requires significantly fewer queries

from the target model to acquire competitive performance in attack.

We deployed Decision Based Attack and HopSkipJump Attack to our baseline

models and evaluated their robustness in defending this kind of black-box attack

method in this section.

5.4.1 Decision Based Attack Results

We applied Decision-based Attack1 implemented in IBM Adversarial Robustness

360 Toolbox package2. Hyperparameters setting: untargetted L2 distance attack,

sample size=10000, delta=0.01, epsilon=0.01, step adapt=0.02, num trail=100,

init eval=100, max iters=40, train size=100.

In each class pair from CIFAR10, we randomly pick 100 samples that are

correctly classified by all four baseline models for synthesizing adversaries by

Decision-based Attack. We take the median L2 distance of each pair and record

the results in Tables 5.23 and 5.24. Figures 5.14 and 5.15 show summary curve of

results in Tables 5.23 and 5.24.

1https://adversarial-robustness-toolbox.readthedocs.io/
en/latest/modules/attacks/evasion.htmlDecision-based-attack
2https://github.com/Trusted-AI/adversarial-robustness-toolbox
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For MLP baseline models’ results, MLP-01-SCD’s median L2 distance is not

better than MLP-BCE-BP with p-value of 0.026 (> 0.05) under Equal Variance T-

Test. But MLP-BCE-BAN performs significantly better than MLP-BCE-BP with

p-value of 0.01 (< 0.05) under Equal Variance T-Test.

For CNN baseline models’ results, CNN-01-ABP’s median L2 distance is

significantly better than CNN-BCE-BP with p-value of 0 (< 0.05) under Equal

Variance T-Test. But CNN-BCE-BAN performs similar as CNN-01-ABP with p-value

of 0.93 (> 0.05) under Equal Variance T-Test.

The Sign activation model’s overall L2 distance under Decision-based attack is

larger than ReLU activation models, indicating Sign activation prevents Decision-

based attack from searching a minimum distortion in a few queries. We do not know

if these model will achieve a similar L2 distance after a large number of queries or

iterations run in Decision-based attack, but with limited number of queries available,

Sign activation looks more robust in defending Decision-based attack.
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Table 5.24 Median L2 Distance Between Adversary and Clean Data of Decision-
based Attack for Attacking CNN Baseline Models

class CNN-BCE-BP CNN-BCE-BAN CNN-01-ABP class CNN-BCE-BP CNN-BCE-BAN CNN-01-ABP

0 vs 1 6.871 7.454 7.097 2 vs 9 6.527 7.407 7.484

0 vs 2 5.769 7.478 7.020 3 vs 4 4.059 4.766 5.658

0 vs 3 6.475 8.497 8.799 3 vs 5 3.559 5.656 4.033

0 vs 4 5.220 6.251 6.361 3 vs 6 4.365 5.607 4.551

0 vs 5 6.432 8.298 8.627 3 vs 7 4.221 5.439 6.426

0 vs 6 7.677 8.011 8.287 3 vs 8 6.724 8.592 8.394

0 vs 7 6.825 9.567 8.432 3 vs 9 5.372 7.279 7.020

0 vs 8 5.291 7.717 8.108 4 vs 5 5.938 9.562 8.576

0 vs 9 5.830 5.883 5.655 4 vs 6 4.172 5.147 4.745

1 vs 2 6.458 8.138 7.543 4 vs 7 4.001 6.703 6.402

1 vs 3 5.110 5.770 6.903 4 vs 8 7.523 9.948 8.748

1 vs 4 6.625 7.445 6.745 4 vs 9 6.533 8.031 7.039

1 vs 5 6.246 6.986 6.966 5 vs 6 5.526 5.968 6.475

1 vs 6 7.521 8.286 8.358 5 vs 7 4.388 6.104 5.900

1 vs 7 7.049 8.167 8.077 5 vs 8 7.297 8.056 9.074

1 vs 8 5.687 6.491 6.833 5 vs 9 6.264 7.417 7.258

1 vs 9 4.624 6.485 6.694 6 vs 7 5.710 7.134 6.527

2 vs 3 3.840 5.302 5.658 6 vs 8 7.645 7.940 7.692

2 vs 4 3.259 4.459 8.762 6 vs 9 6.559 7.803 7.780

2 vs 5 4.634 5.323 5.734 7 vs 8 6.601 9.663 9.224

2 vs 6 5.658 5.750 5.355 7 vs 9 5.795 6.970 7.172

2 vs 7 5.452 6.805 6.886 8 vs 9 5.295 5.741 5.699

2 vs 8 6.928 7.839 7.531
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Figure 5.14 Median L2 distance between adversary and clean data of Decision-
based attack for MLP baseline models.

5.4.2 HopSkipJump Attack Results

We applied HopSkipJump Attack3 implemented in IBM Adversarial Robustness

360 Toolbox package4. Hyperparameters setting: untargetted L2 distance attack,

max eval=10000, init eval=100, max iters=40, train size=100.

In each class pair from CIFAR10, we randomly pick 100 samples that are

correctly classified by all four baseline models for synthesizing adversaries by

HopSkipJump Attack. We take the median L2 distance of each pair and record

the results in Tables 5.25 and 5.26. Figures 5.16 and 5.17 show summary curve of

results in Tables 5.25 and 5.26.

For MLP baseline models’ results, MLP-01-SCD’s median L2 distance is

significantly better than MLP-BCE-BP with p-value of 0.026 (< 0.05) under Equal

3https://adversarial-robustness-toolbox.readthedocs.io/
en/latest/modules/attacks/evasion.htmlhopskipjump-attack
4https://github.com/Trusted-AI/adversarial-robustness-toolbox
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Figure 5.15 Median L2 distance between adversary and clean data of Decision-
based attack for CNN baseline models.

Variance T-Test. But MLP-BCE-BAN performs similar as MLP-01-SCD with p-value

of 0.34 (> 0.05) under Equal Variance T-Test.

For CNN baseline models’ results, CNN-01-ABP’s median L2 distance is

significantly better than CNN-BCE-BP with p-value of 0 (< 0.05) under Equal

Variance T-Test. But CNN-BCE-BAN performs similar as CNN-01-ABP with p-value

of 0.09 (> 0.05) under Equal Variance T-Test.

The Sign activation model’s overall L2 distance under HopSkipJump attack is

larger than ReLU activation models, indicating Sign activation prevent HopSkipJump

attack from searching a minimum distortion in a few queries. We do not know if these

model will achieve a similar L2 distance after a large number of queries or iterations

run in HopSkipJump attack, but with limited number of queries available, Sign

activation looks more robust in defending HopSkipJump attack. Another reason is
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each votes’ adversaries could hardly transfer to each other, results that the ensembling

becomes more robust as the number of votes increased [67].

Figure 5.16 Median L2 distance between adversary and clean data of HopSkipJump
attack for MLP baseline models.
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Table 5.26 Median L2 Distance Between Adversary and Clean Data of
HopSkipJump Attack for Attacking CNN Baseline Models

class CNN-BCE-BP CNN-BCE-BAN CNN-01-ABP class CNN-BCE-BP CNN-BCE-BAN CNN-01-ABP

0 vs 1 1.652 5.919 5.167 2 vs 9 1.470 5.972 5.053

0 vs 2 1.109 5.802 5.163 3 vs 4 0.740 3.761 4.044

0 vs 3 1.715 7.043 5.785 3 vs 5 0.583 3.607 2.576

0 vs 4 1.176 5.015 4.464 3 vs 6 0.951 3.486 3.224

0 vs 5 1.570 6.668 6.055 3 vs 7 0.824 4.423 4.682

0 vs 6 1.918 5.655 5.110 3 vs 8 1.806 6.630 5.876

0 vs 7 1.628 7.621 6.627 3 vs 9 1.406 4.986 4.882

0 vs 8 1.038 5.627 5.163 4 vs 5 1.068 4.588 4.357

0 vs 9 1.294 4.607 3.813 4 vs 6 0.781 3.451 3.367

1 vs 2 1.641 5.940 5.048 4 vs 7 0.700 3.845 3.902

1 vs 3 1.387 4.872 5.057 4 vs 8 1.546 6.745 6.611

1 vs 4 1.370 6.207 5.503 4 vs 9 1.365 6.329 5.588

1 vs 5 1.732 5.476 5.197 5 vs 6 0.979 4.039 3.222

1 vs 6 1.810 6.761 6.396 5 vs 7 0.860 4.756 4.590

1 vs 7 1.685 6.385 6.574 5 vs 8 1.918 6.437 5.824

1 vs 8 1.207 5.351 4.907 5 vs 9 1.679 5.410 4.749

1 vs 9 0.907 4.123 3.970 6 vs 7 1.234 4.307 4.049

2 vs 3 0.788 3.600 2.879 6 vs 8 2.008 5.523 5.350

2 vs 4 0.583 3.544 3.211 6 vs 9 1.506 5.225 5.050

2 vs 5 0.792 3.817 3.764 7 vs 8 1.621 6.466 6.460

2 vs 6 0.881 3.388 3.009 7 vs 9 1.159 5.246 5.277

2 vs 7 1.059 4.346 4.673 8 vs 9 1.192 4.180 3.768

2 vs 8 1.606 6.397 5.580
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Figure 5.17 Median L2 distance between adversary and clean data of HopSkipJump
attack for CNN baseline models.
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5.5 Conclusion

This chapter conducted two gradient-based attack methods, FGSM and PGD, for

white-box attacking our MLP and CNN baseline models. After that, we evaluated

the inner and external adversarial transferability between each model.

Based on the observation in white-box attack section, we could say that

Stochatic Coordinate Descent optimization helps model to be more robust in

defending FGSM attacks. Because gradient-free method makes models’ gradient be

hardly estimated for one-step gradient-based attack. After doing PGD attack, a

stronger multiple steps gradient estimating attack, the advantage of SCD disappears

on MLP-BCE-SCD. However, MLP-01-SCD is still performing well, which means

zero-one loss helps defend this kind of white-box attack. The robustness is not

because of Sign activation only, since MLP-BCE-BAN is hard to defend either FGSM

and PGD, even though its activation is Sign. And the adversary attack results of

CNN is consistent with MLP’s. It reveals that zero-one loss works on improving the

robustness of either a shallow model like MLP or a deeper model like CNN. Even

though backpropagation is included in ABP training strategy, backpropagation does

not lower zero-one loss models’ robustness too much in defending white-box attacks.

In adversarial transferability section, we noticed that MLP-01-SCD and CNN-

01-ABP are outstandingly robust in defending inner adversaries, which synthesized

from the network with the same structure and loss function. Benefits from non-unique

solutions for solving zero-one loss problem, zero-one loss models’ hyperplane might

be different in each single run. However, cross-entropy loss optimized by SGD would

results in similar hyperplanes in each run, the main reason that cause adversaries

transfer easily between each other. Nevertheless, zero-one loss does not enable

CNN models robust in external adversarial transferability, even though MLP-01-SCD

performs better than other structures in MLP experiment group.
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Decision-based attack and HopSkipJump attacks’ results reveal that Sign

activation in a neural network might decline these attacks’ power. Nevertheless,

zero-one loss does not affect the robustness clearly.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

This dissertation designed a Sign activation neural network framework, which used

zero-one loss as loss function. This dissertation implemented a novel method,

Stochastic Coordinate Descent (SCD), to optimize zero-one loss function for MLP

structure series. Compared to Stochastic Gradient Descent (SGD), SCD can achieve

similar performance in optimizing the same type of neural network on the CIFAR10

and STL10 datasets. In order to train Convolutional Neural Network (CNN) effec-

tively and efficiently, a variant of SCD that ignoring the bias is developed associated

with corresponding training strategy such as multi-phase training and Additional

Backpropagation Penetration (ABP). These modifications on SCD significantly speed

up the convergence of zero-one loss in training a deep neural network. Lastly, several

commonly used adversarial attack methods are applied to measure the adversarial

robustness differences between zero-one loss model and cross-entropy model, covering

white-box attack, decision-based attack, and adversaries’ transferability.

6.2 Future Work

Even though the SCD algorithm works well on both MLP and CNN structure, it is

necessary to develop a more efficient optimization method for training deeper zero

one loss Sign activated neural network. SCD’s feature that updating one coordinate

in each iteration can hardly bring optimal weights, which are very different from what

they look like initially. Reducing the number of training iterations and making weights

update more effective in each step are keys to the success of training a deeper neural

network. Currently, only binary classification results are showed in this dissertation.

Because of that zero-one loss being directly applied in multi-class problems will result
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in massive local minima during training. Looking forward to finding a better multi-

class version of zero-one loss is an excellent way to solve multi-class classification

problems. This dissertation does not include adversarial training, which is a popular

method to improve deep neural networks’ adversarial robustness. Training on clean

data and adversaries synthesized by gradient-based attacks like FGSM and PGD

makes the model more robust to their adversaries. However, this process does not

work in the SCD algorithm. So developing a new adversarial training method is

worthy to enable zero one loss models to become more robust.
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[6] Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the
Trade, pages 421–436. Springer, 2012.

[7] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial
attacks: Reliable attacks against black-box machine learning models. In
International Conference on Learning Representations, 2018.

[8] Jameson Cahill, Peter G Casazza, Jesse Peterson, and Lindsey Woodland. Phase
retrieval by projections. arXiv preprint arXiv:1305.6226, 2013.

[9] Nicholas Carlini and David Wagner. Adversarial examples are not easily detected:
Bypassing ten detection methods. In 10th ACM Workshop on Artificial
Intelligence and Security, pages 3–14, 2017.

[10] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural
networks. In 2017 IEEE Symposium on Security and Privacy (SP), pages
39–57, 2017.

[11] Jianbo Chen, Michael I Jordan, and Martin J Wainwright. Hopskipjumpattack: A
query-efficient decision-based attack. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 1277–1294, 2020.

[12] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth
order optimization based black-box attacks to deep neural networks without
training substitute models. In 10th ACM Workshop on Artificial Intelligence
and Security, pages 15–26, 2017.

109



[13] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in
unsupervised feature learning. In 14th International Conference on Artificial
Intelligence and Statistics, pages 215–223. JMLR Workshop and Conference
Proceedings, 2011.

[14] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. Binarized neural networks: Training deep neural networks
with weights and activations constrained to+ 1 or-1. arXiv preprint
arXiv:1602.02830, 2016.

[15] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition, 2009.

[16] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and
Jianguo Li. Boosting adversarial attacks with momentum. In 2018 IEEE
Conference on Computer Vision and Pattern Recognition, 2018.

[17] Rob A Dunne and Norm A Campbell. On the pairing of the softmax activation and
cross-entropy penalty functions and the derivation of the softmax activation
function. In 8th Aust. Conf. on the Neural Networks, Melbourne, volume 181,
page 185. Citeseer, 1997.

[18] Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. Hotflip: White-box
adversarial examples for text classification. In 56th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pages
31–36, 2018.

[19] Joan Bruna Estrach, Arthur Szlam, and Yann LeCun. Signal recovery from pooling
representations. In International Conference on Machine Learning, pages 307–
315. PMLR, 2014.

[20] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei
Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. Robust physical-world
attacks on deep learning visual classification. In 2018 IEEE Conference on
Computer Vision and Pattern Recognition, pages 1625–1634, 2018.

[21] Yoav Freund and Robert E Schapire. Large margin classification using the perceptron
algorithm. Machine learning, 37(3):277–296, 1999.

[22] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for
generalized linear models via coordinate descent. Journal of Statistical
Software, 33(1):1, 2010.

[23] Angus Galloway, Graham W Taylor, and Medhat Moussa. Attacking binarized neural
networks. arXiv preprint arXiv:1711.00449, 2017.

110



[24] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle,
François Laviolette, Mario Marchand, and Victor Lempitsky. Domain-
adversarial training of neural networks. The Journal of Machine Learning
Research, 17(1):2096–2030, 2016.

[25] Aritra Ghosh, Naresh Manwani, and PS Sastry. Making risk minimization tolerant
to label noise. Neurocomputing, 160:93–107, 2015.

[26] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural
networks. In 14th International Conference on Artificial Intelligence and
Statistics, pages 315–323. JMLR Workshop and Conference Proceedings, 2011.

[27] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. Cambridge,
MA: MIT Press, 2016.

[28] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[29] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing
Shuai, Ting Liu, Xingxing Wang, Gang Wang, Jianfei Cai, et al. Recent
advances in convolutional neural networks. Pattern Recognition, 77:354–377,
2018.

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016.
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