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ABSTRACT

TOWARDS ADVERSARIAL ROBUSTNESS WITH 01 LOSS
MODELS, AND NOVEL CONVOLUTIONAL NEURAL NET

SYSTEMS FOR ULTRASOUND IMAGES

by
Meiyan Xie

This dissertation investigates adversarial robustness with 01 loss models and a novel

convolutional neural net systems for vascular ultrasound images.

In the first part, the dissertation presents stochastic coordinate descent for 01

loss and its sensitivity to adversarial attacks. The study here suggests that 01 loss

may be more resilient to adversarial attacks than the hinge loss and further work is

required.

In the second part, this dissertation proposes sign activation network with a

novel gradient-free stochastic coordinate descent algorithm and its ensembling model.

The study here finds that the ensembling model gives a high minimum distortion (as

measured by HopSkipJump) compared to full precision, binary, and convolutional

neural networks, and explains this phenomenon by measuring the transferability

between networks in an ensemble.

In the last part, this dissertation tackles three important segmentation problems

for vascular ultrasound images with novel convolutional neural networks. More

specifically, these three problems are: (1) vessel segmentation in the internal carotid

artery, (2) vessel segmentation in the entire carotid system, and (3) vessel and

plaque segmentation in the entire carotid system. The study here represents a first

successful step towards the automated segmentation of vessel and plaque in carotid

artery ultrasound images and is an important step in creating a system that can

independently evaluate carotid ultrasounds.
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CHAPTER 1

INTRODUCTION

1.1 Stochastic Coordinate Descent for 01 Loss

The 01 loss while hard to optimize is least sensitive to outliers compared to its

continuous differentiable counterparts, namely hinge and logistic loss. In Chapter

2, we present a stochastic coordinate descent (SCD) heuristic for 01 loss based on

the original stochastic gradient descent method [10]. We implement and study our

heuristic on real datasets from the UCI machine learning archive and find our method

to be comparable to the support vector machine in accuracy and tractable in training

time. We conjecture that the 01 loss may be harder to attack in a black box setting

due to its non-continuity and infinite solution space. We train the linear classifier in

a one-vs-one multi-class strategy on CIFAR10 and STL10 image benchmark datasets.

In both cases we find the classifier to have the same accuracy as the linear support

vector machine but more resilient to black box attacks. On CIFAR10 the linear

support vector machine has 0% on adversarial examples while the 01 loss classifier

hovers about 10% while on STL10 the linear support vector machine has 0% accuracy

whereas 01 loss is at 10%. Our work here suggest that 01 loss may be more resilient

to adversarial attacks than the hinge loss and further work is required.

1.2 Boundary Blackbox Attack

While machine learning models today can achieve high accuracies on classification

tasks, they can be deceived by minor imperceptible distortions to the data. These

are known as adversarial attacks and can be lethal in the black-box setting which

does not require knowledge of the target model type or its parameters. Binary neural

networks that have sign activation and are trained with gradient descent have been

shown to be harder to attack than conventional sigmoid activation networks but their

1



improvements are marginal. In Chapter 3, we instead train sign activation networks

with a novel gradient-free stochastic coordinate descent algorithm and propose an

ensemble of such networks as a defense model. In order to explain our model’s

robustness we show that an adversary targeting a single network in our ensemble

fails to attack (and thus non-transferable to) other networks in the ensemble. Thus,

a datapoint requires a large distortion to fool the majority of networks in our ensemble

and is likely to be detected in advance. This property of non-transferability arises

naturally from the non-convexity of sign activation networks and randomization in

our gradient-free training algorithm without any adversarial defense effort.

1.3 Convolutional Neural Networks for Vascular Ultrasound Images

Stroke is the 5th leading cause of death in the United States [45]. Annually, it

is responsible for billions of dollars in lost income and health care costs. For this

reason, there is significant effort and investment in the prevention of stroke. Ischemic

strokes account for 87% of all strokes. Narrowing and deposition of plaque in the

carotid arteries due to atherosclerosis is the most common cause of ischemic stroke.

Carotid ultrasound is a safe, low-cost procedure that is used as a screening test in

patients with risk factors for atherosclerosis [64]. It allows physicians to stratify the

stroke risk of a patient and identify those patients that will most benefit from medical

therapy or surgical intervention.

During a vascular ultrasound, high-frequency sound waves are transmitted into

your body. The sound waves are reflected back to the probe when they encounter the

boundaries between different tissues in the body. This information is then utilized to

create a 2D image of the vessel and surrounding tissue structures. Physicians utilize

ultrasound images of the carotid artery in stroke prevention. During their evaluation,

physicians must first identify the vessel in the image. They then identify any

atherosclerotic plaque within the wall and lumen of the vessel and finally they evaluate
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the physiologic impact of those plaques on the flow of blood within the vessel. This is

a time intensive and resource intensive process that requires highly skilled technicians

and physicians to perform and interpret the results. As physician workload has

increased and healthcare systems investigate ways to streamline processes and cut

costs, automating the interpretation of vascular ultrasounds has great potential.

Evaluation of a carotid ultrasound requires segmentation of the vessel wall,

lumen, and plaque of the carotid artery.

In Chapter 4, we propose and evaluate single and multi-path convolutional

U-neural networks for vessel lumen segmentation in internal carotid artery ultrasound

images. With a basic simple convolutional U-Net, we obtained a 10-fold cross-

validation accuracy of 95%. We also evaluated a dual-path U-Net where we modified

the original image and used it as a synthetic modality but we found no improvement

in accuracy. We found that the sample size made a considerable difference and thus

expect the accuracy to rise with adding more training samples to the model.

In Chapter 5, we explore a U-Net for the entire carotid artery system that

includes internal, external, and common carotid arteries. We also explore images

containing bifurcations, longitudinal images, and images with ultrasound shadowing,

plaque, and gray shading, all of which make vessel segmentation even harder. With

the convolutional U-Net, we obtained a 10-fold cross-validation accuracy of 94.3%. We

see that the U-Net correctly segments the lumen even in the presence of significant

plaque, calcified wall, and ultrasound shadowing, all of which make it difficult to

outline the vessel. We also see that the common carotid artery vessels are easiest to

segment with a 96.6% cross-validation accuracy whereas internal and external carotid

are harder both with 92.7% and 91.9% cross-validation accuracies, respectively.

In Chapter 6 we consider segmentation of both vessel and plaque. In 10-fold

cross-validation, all models attain over 90% accuracy for vessel segmentation. With a

basic convolutional U-Net, we obtained an accuracy of 66.8% for plaque segmentation.
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With the dual-decoder model, we see an improvement to 68.8% whereas the two-stage

model falls behind at 65.1% accuracy. However, if we gave the two-stage model

the true correct vessel as input its plaque accuracy rises to 81.7% suggesting that

the method has potential and needs more work. We ensemble the U-Net and dual

decoder U-Net models to obtain confidence scores for segmentations. By considering

high confidence outputs above the 60% and 80% thresholds, the accuracy of our dual

decoder U-Net rises to 75.2% and 87.3%, respectively.
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CHAPTER 2

STOCHASTIC COORDINATE DESCENT FOR 01 LOSS

2.1 Background and Related Work

The problem of determining the hyperplane with minimum number of misclassifi-

cations in a binary classification problem is known to be NP-hard [8]. In mainstream

machine learning literature, this is called minimizing the 01 loss [60] as given in

Objective 2.1,

1

2n
arg min

w,w0

∑
i

(1− sign(yi(w
Txi + w0))) (2.1)

where w ∈ Rd, w0 ∈ R is our hyperplane solution, and xi ∈ Rd, yi ∈

{+1,−1}.∀i = 0...n − 1 are our training data. Popular linear classifiers such as

the linear support vector machine, perceptron, and logistic regression [4] can be

considered as convex approximations to this problem that yield fast gradient descent

solutions [7]. However, they are also more sensitive to outliers than the 01 loss [46].

In Figure 2.1, we demonstrate the effect of a single outlier on the hinge, logistic

loss, their regularized versions, and 01 loss. In both cases, we intuitively desire a

vertical hyperplane that divides (1,1), (1,2), and (1,3) from (3,1), (3,2), and (3,3)

since this would likely minimize test error. When the outlier is of the same class as in

Figure 2.1(a) all five objectives give similar vertical hyperplanes. The 0/1 loss alone

has infinite solutions though and we show a single one here.

When we switch the label of the outlier in Figure 2.1(b), both the hinge and

logistic along with their regularized counterparts, give skewed hyperplanes that make

several misclassifications on the training data. This is due to the fact that misclassified

points increase the hinge and logistic objective (the farther misclassified the point

the more the effect); and so in order to lower the objective, the hyperplane is skewed

5



towards it. The 0/1 loss however is not affected by distances of outliers and still gives

a desired hyperplane.

(a)

(b)

Figure 2.1 In (a) we see that an outlier of the same class is not a problem for hinge,
logistic, and 0/1 loss objective. However, when we switch its label it affects hinge and
logistic considerably while the 0/1 loss decision surface remains the same (although
there are an infinite number of solutions we show just one here).

We present here a stochastic coordinate descent (SCD) heuristic for 0/1 loss

based on the original stochastic gradient descent method [10]. While the gradient

gives the direction of best descent here we perform a heuristic coordinate descent

for each stochastic batch. We evaluate our method by comparing it against a cross-

validated linear support vector machine (SVM) on real datasets from the UCI machine
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learning archive [5]. We find that the cross-validated linear SVM performs slightly

better in average and median error but not by a statistically significant margin.

We explore the SCD’s sensitivity to a black-box adversarial attack [27, 51], a

method that treats the classifier to be attacked as a black box whose model and

parameters are unknown. We implement a simple single layer neural network that

we use to estimate the black box’s gradient and to produce adversarial examples

targeting the black box. We perform two separate tests on both SCD 01 loss and the

linear SVM on each CIFAR10 and STL10 image object detection benchmarks. On

CIFAR10, we find that the linear SVM quickly approaches a 0% accuracy after a few

epochs of the black box attack whereas the SCD 01 loss fluctuates and stays above

5%. We see the same on STL10 except there 01 loss stays above 10% accuracy.

While greater exploration is needed, such as a larger neural network as the

gradient approximator and experiments on more image benchmarks, we see that the

01 loss has some potential for defending against adversarial attacks. This may be due

to its discrete search space and (infinite) non-unique solutions.

2.2 Methods

2.2.1 Coordinate descent

We describe in Algorithm 1 our local search based on coordinate descent. In brief, we

start with a random w, make changes to it one coordinate at a time, determine the

optimal w0 for each setting of w, and stop when we reach a local minimum. There

are several aspects of our local search worth discussing here.

First, we cycle the coordinates randomly. Since we modify only a single

coordinate of w at a time, we can update the projection wTxi for all i = 0..n − 1 in

O(n) time — this update is required to determine the optimal w0 and the objective

value. We perform at most ten modifications to a given coordinate (as given by the

loop ‘forj = 1 to 10 do’) before considering the next one. This gives all coordinates
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a fair chance before we reach a local minimum. In the same loop, we also update

the objective if a better one is found and exit if modifying the coordinate does not

improve the objective further. An alternative is to update the objective only after

cycling through all the coordinates. However, we find our approach yields a faster

search than the alternative while giving similar objective values.

Another aspect of our search is the determination of the optimal w0. For each

setting of wi (the ith coordinate of w) we determine the optimal value of w0 by

considering all O(n) settings of w0 between sorted successive projected points wTxk

and wTxk+1 Since we modify w locally the new projection is similar to the previous

(sorted) one and hence insertion sort (that we use for sorting the projection) takes

much less than the worst case O(n2) time.

For an initial w it takes O(n) to determine the optimal w0. After that, as we

change w the new w0 is less likely to be much different than the previous one. And so

we don’t need to consider all O(n) points again to determine the optimal w0. Instead,

if the initial w0 was found right after the projected point i then we only consider the

range of points starting from i− 10 to i+ 10 in the new projection to determine the

new w0. For a visual illustration, see our toy search problem shown in Figure 2.2.

The winc parameter corresponds to the learning rate η in gradient descent

optimizers. We implement a simple adaptive procedure that considers values of winc

from the set {±102,±104,±106} and picks the one with the greatest decrease in our

objective Objective 2.1.

To understand why, we have such large learning rates consider the toy example

shown below in Figure 2.3. With small and constant step sizes, we would be

perpetually stuck in difficult local minima since 01 loss is non-unique and can have

infinite solutions.
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(a)

(b)

Figure 2.2 Illustration of our coordinate search on a toy example. In (a), we show
a hyperplane with an initial random normalized w. The dotted lines show where the
projected points would lie on w. The optimal w0 that minimizes our objective lies
just after the fourth projected point. In (b), we increase the x-coordinate of w thus
modifying the orientation of the plane (we renormalize w after the orientation). In
the new projection, the optimal w0 is also after the fourth projected point. Thus, we
don’t need to perform a full O(n) search after modifying w, but instead considering
just a few projected points around the previous w0 is sufficient as a heuristic.
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Algorithm 1 Coordinate descent (Continued)

Input: Training data xi ∈ Rd for i = 0..n − 1 with labels yi ∈ {+1,−1}, and

winc ∈ R (set to 100 by default)

Output: Vector w ∈ Rd and w0 ∈ R

Procedure:

1. Let each feature wi of w be randomly drawn from [−1, 1]. Set ‖w‖ = 1.

Throughout our search we ensure that ‖w‖ = 1 by renormalizing each time w

changes.

2. Compute data projection wTxi,∀i = 0..n − 1 and determine the optimal

w0. Determining w0 takes O(n) time because we consider mid points between

all projected points wTxi and wTxi+1 as potential candidates.

3. Compute value of objective 2.1

w"
w0/||w||"

x"

Figure 2.3 The hyperplane in solid line is given by w and w0 and it misclassifies the
point x. The dotted hyperplanes are given by a small step size in the two coordinates
of w and insufficient to cross over point x. The dashed hyperplanes are given by a
larger step size that is sufficient to cross over x and give a potentially lower 0/1 loss.

2.2.2 Stochastic coordinate descent

There is no guarantee our local search algorithm will return the global solution. The

global solution may not even be unique. Once we reach a local minima, we may choose

the random restart approach and run the search again. An alternative is rely on

random batches of the training data across many iterations of the coordinate descent

above so as to better explore the search space. We call this stochastic coordinate

descent since this is essentially stochastic gradient descent [10] with the gradient
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Algorithm 1 (Continued) Coordinate descent
4. Set prevobj =∞.

while prevobj − obj > .01 do

Consider a random permutation of the d feature indices.

for i = 0 to d− 1 do

if adding winc to wi (the ith component of w) improves the objective then

sign = 1

else if subtracting winc from wi improves the objective then

sign = −1

else

skip the next loop

end if

for j = 1 to 10 do

wi += sign× winc

Determine the optimal w0. Since we are making local changes to w the new

value of w0 is likely to be not very far from the previous one. Based on this

intuition we avoid expensive O(n) searches and use a constant time heuristic

instead.

if prevobj − obj > .01 then

update the variable obj

Set prevobj = obj.

else

Set j = 10 to exit this loop

end if

end for

end for

end while
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descent replaced by our coordinate descent above. We describe this in detail in

Algorithm 2. For a single run of our heuristic, we save the best solution of w,w0

across all random restarts and use that as the model parameters.

Algorithm 2 Stochastic coordinate descent

Input: Feature vectors xi ∈ Rd with labels yi ∈ {+1,−1}, number of random

restarts rr ∈ N (Natural numbers), number of iterations per random restart it ∈ N

(Natural numbers), batch size as a percent of training data p ∈ [1, 100] , and winc ∈ R

(set to 100 by default)

Output: Total of rr pairs of bestw ∈ Rd,bestw0 ∈ R after each random restart

Procedure:

Set j = 0

while j < rr do

Set bestw = w, bestw0 = w0, bestloss = objective(w,w0)

Run our coordinate descent (Algorithm 1) and output local minimum w and w0

for i = 0 to it do

Randomly pick p percent of rows as input training data to Algorithm 1 and

run it to completion starting with the values of w and w0 from the previous

call to it.

In the next step we calculate objectives on the full input training set

if objective(w,w0) < objective(bestw, bestw0) then

Set bestw = w, bestw0 = w0, and bestloss = objective(w,w0)

end if

end for

Output bestw and bestw0

Set j = j + 1.

end while

We output the best (bestw, bestw0) pair across all random restarts.
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2.2.3 Related work

Our coordinate descent and that of [37] differ in how the coordinates are optimized. In

their case the authors project the data onto the current hyperplane (that is initially

random), scale each projected value by the inverse of its projection on a random

vector r, sort the projected values to determine the value that optimizes the 0/1 loss

(call it α), and update the solution w by adding α × r. This is repeated for a fixed

number of iterations. In our case, we focus on optimizing objective 2.1: we make an

incremental change to a coordinate at a time, project the data onto the hyperplane,

determine the optimal threshold w0 for our objective, and repeat until the objective

converges.

2.2.4 Experimental performance study on UCI datasets

In order to evaluate our stochastic coordinate descent (SCD) algorithm, we study it

on the below datasets in an experimental performance study. Our purpose here is

to demonstrate that our SCD 01 loss works on real data and is comparable to the

popular linear SVM in accuracy. While we omit runtimes here, our program is quite

fast in practice and finishes in tractable times of seconds and minutes as opposed to

hours and days.

Datasets: We obtained 52 datasets from the UCI repository. The datasets include

data from different sources such as biological, medical, robotics, and business. Some

of the datasets are multi-class and since we are studying only binary classification in

this paper we convert them to binary. We label the largest class to be -1 and remaining

as +1. We trim down excessively large datasets and ignore instances with missing

values across the datasets. Thus, the number of instances in some of our datasets are

different from that given in the UCI website https://archive.ics.uci.edu/ml/.

For example the SUSY dataset originally has 5 million entries but we choose the first
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5000 for our study. We provide our cleaned data with labels, splits, and a README

file on the website http://web.njit.edu/~usman/scd01oss.

Programs compared: We compare our SCD 01 loss with random restarts rr =

100, number of iterations per random restart it = 100 and p = 75% against a cross-

validated linear SVM. For cross-validating linear SVM we select values of C from the

set {100, 10, 1, .1, .01, .001, .0001, .00001, .000001}.

Experimental platform: We run our experiments on a cluster of computing nodes

equipped with Intel Xeon E5-2660v2 2.27GHz processors with one method and dataset

exclusively on a processor core.

Train and test splits: For each dataset we create ten random partitions into

training and test datasets in the ratio of 90% to 10%. We run all programs on each

training dataset and predict the labels in the corresponding test set.

Measure of accuracy: We use the number of misclassifications divided by the

number of test datapoints as the measure of error throughout in our study.

2.2.5 Experimental performance study on image benchmarks CIFAR10

and STL10

In order to evaluate the adversarial sensitivity of SCD 01 loss to adversarial attack

we expose it to a black box attack method that we describe below in detail.

Black box adversarial attack A black box adversarial attack approximates the

model by giving it inputs and recording its outputs. It then uses the predictions as

labels to train itself and then use its gradient to produce adversarial examples. We

implement a double layer neural network with 200 hidden nodes in each layer and ten
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nodes in the output one as the adversarial attacker (B). We fully describe our attack

algorithm in Algorithm 3.

Algorithm 3 Shown here is a basic outline of the black box attack method [51]

Input: Model M to be attacked, Adversarial attacker B, Feature vectors xi ∈ Rd

with labels yi ∈ {+1,−1}, number of epochs ep ∈ N (Natural numbers)

Procedure:

Set data D = {xi, yi}

for i = 0 to ep do

Obtain predictions y′i of D from black box model M

Set adversarial training data A to be D except we replace each yi with the

predicted label y′i.

Train attacker B with A as input training data

With B’s gradient we produce adversarial examples.

For each sample ai in A create adversary ai = ai +λ∇f where ∇f is the gradient

of B and λ is randomly chosen from [−.1, .1].

Add new adversarial samples {ai, yi} to D

This effectively doubles the number of adversarial samples after each iteration.

If we instead select 100 random samples from A then we increase the adversarial

size by 100 as opposed to doubling.

end for

Datasets: We study adversarial attacks on two image benchmarks:

• CIFAR10[33]: Object recognition from ten classes in 32 × 32 color images,
training size of 50,000, test size of 10,000

• STL10 [19]: Object recognition from ten classes in 96×96 color images, training
size of 5000, and test size of 8000
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Programs compared:

• Multi-class SCD 01 loss: We implement a one-vs-one [4] multi-class classification
method on top of our SCD 01 loss. In the SCD 01 loss we use the same
parameters as above.

• Multi-class linear SVM: We implement one-vs-all on top of the linear SVM with
C=1.

Experimental platform: We run our experiments on a cluster of computing nodes

equipped with Intel Xeon E5-2660v2 2.27GHz processors with one method and dataset

exclusively on a processor core.

Train and test splits: For the image benchmarks both train and test datasets are

provided in advance.

Measure of accuracy: We use the number of misclassifications divided by the

number of test datapoints as the measure of error throughout in our study.

2.3 Results

2.3.1 Classification on UCI datasets

In Table 2.1, we see the average and median error of SCD 01 loss and the cross-

validated linear SVM. We see the linear SVM is better in both mean and median

but the difference between them is not statistically significant. According to a simple

t-test, the p-values between their errors across the 52 datasets is 0.53 which is far

from significant. This is more evident when we see their errors across all 52 datasets

in Table 2.2.

2.3.2 Black box adversarial attacks

CIFAR10 We generate adversarial samples on the CIFAR10 dataset and study

them on both the multi-class SCD 01 loss and multi-class linear SVM. We also study
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Table 2.1 Mean and Median Error of SCD 01 Loss and Linear SVM

SCD 01 loss Linear SVM

Mean 13.5 13.2

Median 11.8 10.3

a bootstrapped version of both: instead of using a single classifier we take the majority

vote output of each classifier on ten bootstraps. Bootstrapping is a simple powerful

method to boost model accuracy [4, 11]. We study it here to see if bootstrapping can

strengthen defense capabilities of SCD 01 loss.

In Figure 2.4, we see the accuracy of CIFAR10 adversarial samples in both SCD

01 loss and linear SVM as the number of epochs progresses. We see both methods

start losing accuracy as the black box method progresses, but interestingly we find

SCD 01 loss to be relatively less sensitive. Both methods have about 40% accuracy on

CIFAR10 and after epoch 10 both linear SVM and its bootstrapped version are at 0%

accuracy. The SCD 01 loss also loses accuracy but the bootstrapped one demonstrates

a greater defense.

Figure 2.4 CIFAR10 black box attack described in Algorithm 3. We double the
number of adversarial samples per epoch.
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Table 2.2 Mean and Median Error of SCD 01 Loss and Linear SVM (Continued)

Rows (columns) SCD 01 loss Linear SVM

Antivirus 373(531) 1.54 1.03

Bach Choral 5665(148) 3.13 2.66

Banknote 1371(4) 0.72 1.16

Breast-cancer 569(30) 3.1 3.28

Chronic kidney 400(30) 0.75 2.5

Climate 540(18) 5.45 4.73

CNAE9* 1080(856) 2.69 1.85

Default credit card 10000(23) 19.19 20.7

Diabetic retinopathy 1150(19) 25 25.1

EEG eye state 10000(14) 30.9 44.4

Fertility 99(9) 21.82 18.18

Forest* 522(27) 12.08 10.94

Gas-sensor* 6953(128) 1.22 0.45

Gesture* 1743(32) 11.53 11.37

Grammatical facial 4225(300) 9.65 9.76

Heart 267(44) 20.36 23.93

Hepmass 10000(28) 16.34 16.15

Hill-valley 606(100) 6.45 8.55

Indian-liver-patient 579(10) 26.61 28.47

Insurance 5822(85) 6.28 6.00

Ionosphere 351(34) 15.28 13.06

Isolet* 1559(617) 1.67 0.83

Libras* 360(90) 2.43 1.35
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Table 2.2 (Continued) Mean and Median Error of SCD 01 Loss and Linear SVM

Rows (columns) SCD 01 loss Linear SVM

LSVT* 126(310) 22.14 10.00

MFEAT* 2000(649) 0.6 0.25

Mhealth 10000(23) 20.55 22.05

Micromass 931(1300) 8.19 4.57

Musk 476(166) 21.25 13.54

Occupancy 10000(5) 1.42 1.43

Online news popularity 10000(59) 36.26 35.7

Ozone 1847(72) 6.92 6.65

Parkinsons 195(22) 13.5 14.5

Parkinson-speech 1040(26) 37.6 38.56

Phishing websites 2455(30) 5.63 5.38

Planning relax 182(12) 36.84 31.58

Qsar 1055(41) 13.77 14.72

Secom 1567(590) 7.72 7.72

Seeds 210(7) 8.57 7.62

Seismic 2538(18) 6.98 6.56

Smartphone* 7352(561) 0.04 0.05

Sonar 208(60) 22.27 22.27

Spambase 4601(57) 6.29 6.96

Steel-faults* 1941(27) 26.4 26.3

Student alcohol 649(30) 26.06 26.97

SUSY 5000(18) 21.38 21.74
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Table 2.2 (Continued) Mean and Median Error of SCD 01 Loss and Linear SVM

Rows (columns) SCD 01 loss Linear SVM

Theorem-proving* 6118(51) 27.44 27.7

Thoraric 470(16) 17.02 14.89

TV news channel 10000(122) 12.47 10.56

Urban-land 675(147) 9.28 8.55

Vertebral 310(6) 16.77 16.77

Wall-follow* 5455(24) 21.54 24.49

Wilt 4339(5) 1.13 1.31

Average 13.47 13.19

In Figure 2.5, we see the adversarial attack with 100 new adversaries per epoch.

Here too the SCD 01 loss bootstrapped version shows a greater resilience than the

linear SVM.

Figure 2.5 CIFAR10 black box attack: we generate a 100 new adversarial samples
per epoch.

STL10 We generate adversarial samples on the STL10 dataset and study their

accuracy on SCD 01 loss and linear SVM. In Figure 2.6, we see that the linear SVM

reaches 0% accuracy after the fifth epoch while SCD 01 loss remains above 10% at
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that epoch. However, by epoch 15 SCD 01 loss is close to 0% accuracy but the

bootstrapped version is still at 10%.

Figure 2.6 STL10 black box attack: we double the number of adversarial samples
per epoch.

Since these images are larger, all components of the black box are slower and

thus we have fewer epochs if we want to double the adversarial sample size. Thus we

study accuracy on adversaries if we increase them by 100 after each epoch. In this

way we can run the attack for more epochs to see if the accuracy becomes 0 for SCD

01 loss at some point.

In this setting, we see that the bootstrapped SCD 01 loss remains well above

10% accuracy. Thus, for STL10 we need to double adversarial samples after each

epoch if we want to bring down bootstrapped SCD 01 loss, but this requires more

time and computation.

If we increase the number of adversarial samples by only 50 after each epoch,

we see an even smaller effect on SCD 01 loss. In fact in this setting even the linear

SVM does not reach 0% and stays above 5% accuracy. The bootstrapped SCD 01

loss, however, is above 20% accuracy here.

21



Figure 2.7 STL10 black box attack: we generate a 100 new adversarial samples
per epoch.

Figure 2.8 STL10 black box attack: we generate 50 new adversarial samples per
epoch.
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2.4 Conclusion

We present a stochastic coordinate descent heuristic that performs comparably to

a trained cross-validated linear support vector machine but demonstrates greater

defense against a black box adversarial attack on two image benchmarks. We

conjecture this may be due to 01 loss’s non-unique solutions and discrete loss and

further work is required.
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CHAPTER 3

BOUNDARY BLACKBOX ATTACK

3.1 Background and Related Work

State of the art machine learning algorithms can achieve high accuracies in classi-

fication tasks but misclassify minor perturbations in the data known as adversarial

attacks [27, 52, 35, 13, 12]. Adversarial examples have been shown to transfer across

models which makes it possible to perform transfer-based (substitute model) black

box attacks [50]. To counter adversarial attacks many defense methods have been

proposed with adversarial training being the most popular [66, 70]. However, this

tends to lower accuracy on clean test data that has no perturbations [57, 80] and can

still be attacked with better transfer based methods [73, 74, 21]. Many previously

proposed defenses have also been shown to be vulnerable [13, 6, 25] thus leaving

adversarial robustness an open problem in machine learning.

A more lethal and practical attack than substitute model training is a boundary

based one that requires only the prediction of the model [12]. These attacks are aimed

at finding the minimum distortion to an image such that it will fool a classifier.

This is in fact an NP-hard problem for ReLu activated neural networks [32, 61] and

tree ensemble classifiers [30]. Even approximating the minimum distortion for ReLu

activated neural networks is NP-hard [72]. Boundary based black box attacks such

as HopSkipJump [15], Boundary Attack [12] and RayS [14] give an upper bound on

the minimum adversarial distortion.

Binary neural networks that have sign activation and binary weights were

originally proposed as lightweight models. These are trained with gradient descent by

approximating the sign activation. Recent work has shown that they tend to be more
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adversarially robust than full precision networks but the improvements are marginal

(see Tables 4 and 5 in [23] and Table 8 in [48]).

In this research, we propose a gradient free stochastic coordinate descent

algorithm for training sign activation networks with and without binary weights

similar to recent work [79, 78, 76]. While our original intention was to study the

accuracy of a sign activation network trained directly without any approximation

we make an interesting finding on the adversarial robustness of our model. We

find that ensembling our model gives a high minimum distortion (as measured by

HopSkipJump) compared to full precision, binary, and convolutional neural networks.

We explain this phenomena by measuring the transferability between networks in an

ensemble.

In summary, we make the following observations in our paper:

• Our single hidden layer sign activation network has higher minimum distortion
than ensembles of full precision and binary neural networks, than random
forests that have the advantage of bootstrapping and random feature selection,
and than ensembles of convolutional networks that have the advantage of
convolutions and several layers.

• Our model’s robustness stems from non-transferability of adversarial examples
between networks in our ensemble and its robustness increases as we add more
networks to the ensemble.

3.2 Methods

3.2.1 Gradient-free stochastic coordinate decent

Suppose we are given binary class data xi ∈ Rd and yi ∈ {−1,+1} for i = 0...n− 1.

Consider the objective function of a single hidden layer neural network with sign

activation and 01 loss given below. We employ a stochastic coordinate descent

algorithm shown in Algorithm 4 (similar to recent work [79, 78, 76]) to minimize

this objective.
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1

2n
arg min
W,W0,w,w0

∑
i

(1− sign(yi(w
T (sign(W Txi +W0)) + w0))) (3.1)

Algorithm 4 Stochastic Coordinate Descent for Single Hidden Layer Network

Procedure:

1. Initialize all network weights W,w to random values from the Normal

distribution N(0, 1).

2. Set network thresholds W0 to the median projection value on their corresponding

weight vectors and w0 to the projection value that minimizes our network objective.

while i < epochs do

1. Randomly sample a batch of data equally from each class. (We set this to

75% of the training data in image and text data experiments and 25% in the

ECG data.)

2. Perform coordinate descent separately first on the final node w and then a

randomly selected hidden node u (a random column from the hidden layer weight

matrix W )

3. Suppose we are performing coordinate descent on node w. We select a random

set of features (coordinates) from w called F . For each feature wi ∈ F we

add/subtract a learning rate η and then determine the w0 that optimizes the loss

(done in parallel on a GPU). We consider all possible values of w0 = wT xi+wT xi+1

2

for i = 0...n − 2 and select the one that minimizes the loss (also performed in

parallel on a GPU).

4. After making the update above we evaluate the loss on the full dataset

(performed on a GPU for parallel speedups) and accept the change if it improves

the loss.

end while
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We can train sign activation networks with and without binary weights using

our SCD training procedure above. In the case of binary weights we do not need a

learning rate.

3.2.2 Implementation, test accuracy, and runtime

We implement our training procedure in Python, numpy, and Pytorch [54] and make

our code freely available from https://github.com/zero-one-loss/scd_github.

We train three types of sign activation networks with our algorithm: (1) SCD01:

01-loss in the final node, (2) SCDCE: cross-entropy loss in the final node, and

(3) SCDCEBNN: cross-entropy in the final node with binary weights throughout the

model. Since sign activation is non-convex and our training starts from a different

random initialization, we run it 100 times and output the majority vote.

To illustrate our real runtimes and clean test accuracies, we compare our

models with a single hidden layer of 20 nodes to the equivalent network with sigmoid

activation and logistic loss (denoted as MLP) and the binary neural network (denoted

as BNN) [29]. We used the MLPClassifier in scikit-learn [55] to implement MLP and

the Larq library [24] with the approx approximation to the sign activation. This has

shown to achieve a higher test accuracy than the original straight through estimator

(STE) of the sign activation [41].

We perform 1000 iterations of SCD01 and SCDCE and 10000 of SCDCEBNN.

In Table 3.1, we show the runtimes of a single run of all models on CIFAR10 [33]

(32 × 32 × 3, 10K train, 2K test), CelebA facial attributes black hair vs brown hair

[40] (96× 96× 3, 1K train, 1K test), GTSRB street sign recognition 60 vs 120 speed

limit signs [63] (48 × 48 × 3, 2816 train, 900 test), and ImageNet class 0 vs. 1 [59]

(256×256×3, 2580 train, 100 test). Our training runtimes are comparable to gradient

descent in MLP and BNN and thus practically usable. We can trivially parallelize

training an ensemble by doing multiple runs on CPU and GPU cores at the same
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time. We also show test accuracies of 100 vote ensembles of all models and find our

model accuracies to be comparable to MLP and BNN.

Table 3.1 Training Runtimes of Single Run in Seconds and Test Accuracies of 100
Vote Ensembles in Parenthesis for Binary Classification

SCD01 SCDCE SCDCEBNN MLP BNN

CIFAR10 64 (87%) 56 (88%) 422 (87%) 13 (90%) 106 (83%)

CelebA 20 (79%) 18 (81%) 111 (72%) 41 (78%) 32 (76%)

GTSRB 22 (97%) 22 (97%) 92 (98%) 8 (99%) 42 (96%)

ImageNet 77 (72%) 54 (73%) 338 (71%) 115 (72%) 78 (66%)

3.3 Results

Going forward, we compare the adversarial robustness of ensembles of our three

models SCD01, SCDCE, and SCDCEBNN, their full precision and binary gradient

descent trained equivalent counterparts MLP and BNN, two convolutional neural

networks: LeNet [36] and ResNet50 [28], and random forests [11] (denoted as RF).

For each model, we use the majority vote output of 100 votes each with different

initial parameters except for ResNet50 where we use ten votes. In random forest, we

use an ensemble of 100 trees.

We use a single hidden layer of 20 nodes in our three models and in MLP

and BNN throughout the paper. The convolutional networks and random forest

are not a fair comparison to our model since it has fewer parameters and does not

perform bootstrapping or random feature selection as random forest. We include them

nevertheless since convolutional neural networks serve as state of the art references

and random forest serves as an alternative ensemble method.
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3.3.1 Adversarial distortion on image data

The minimum distortion required to make a datapoint adversarial is an indicator of

a model’s adversarial and even corruption/general robustness [26]. We consider ten

randomly selected datapoints from the CIFAR10 benchmark [33] and report their

minimal adversarial distortion as given by HopSkipJump [15], Boundary Attack [12]

and RayS [14].

We use the HopSkipJump and Boundary Attack implementation in the IBM

Adversarial Robustness Toolkit (ART) [47] In order to obtain as accurate an estimate

as possible, we run both methods ten times each with an initial pool size of 1000

random datapoints and maximum iterations of 100 and report the minimum value.

For a single datapoint, this typically takes several hours to finish and thus we are able

to report the distortion of only ten random points in this study. We use the RayS

implementation from their GitHub site https://github.com/uclaml/RayS and run

it with default parameters of 40,000 queries to obtain a distortion estimate.

In Table 3.2 first row, we show the clean test accuracy of all models on CIFAR10

class 0 vs. 1. The convolutional networks LeNet and ResNet50 have higher accuracies

since they have the advantage of convolutions. In the following four rows of Table 3.2,

we see the minimum adversarial distortion of models as estimated by four boundary

attack methods. We were unable to attack some models with HopSkipJump 500 due

to time constraints and mark them as NA. We see that HopSkipJump gives the lowest

distortion for each model except for SCD01 and SCDCE where it is comparable to

RayS.

Amongst HopSkipJump distortions, our sign activation trained models have

the highest adversarial distortion with the binary weights cross-entropy variant as

the winner. All other neural networks lag far behind and have distortion even lower

than random forest. Even though BNN also has sign activations, its distortions are

similar to MLP possibly due to its approximation of the sign activation and gradient
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descent search. If we use the the straight through estimator and swish approximations

[20], the distortions remain similar to what we report here.
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To further validate the distortions above, we run HopSkipJump with ten

maximum iterations on the first 100 CIFAR10 test datapoints. We used a fixed

image as the initial one in these experiments. In Table 3.3, we see that SCDCEBNN

distortions are the highest and the relative ranking is the same as we saw for the ten

images above with 100 maximum iterations of HopSkipJump.
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In Table 3.4, below we show HopSkipJump distortions (min of 10 runs 100

max iterations each) on a single random image from CelebA, GTSRB, and ImageNet

datasets. We find our SCD models to have a higher distortion on both CelebA and

GTSRB but comparable to MLP on ImageNet.

Table 3.4 Minimum L2 Adversarial Distortion of A Single Random Test Image from
CelebA, GTSRB, and ImageNet Class 0 vs. 1. In Bold Are The Largest Distortion
Values for Each Dataset

Celeba

SCD01 SCDCE SCDCEBNN MLP BNN ResNet50 LeNet RF

Image 0 8.77 8.6 14.13 1.02 .22 1.68 3.3 2.82

GTSRB

SCD01 SCDCE SCDCEBNN MLP BNN LeNet RF

Image 0 .6 .82 1.24 .62 .87 .33 .01

ImageNet

SCD01 SCDCE SCDCEBNN MLP BNN ResNet50 RF

Image 0 20.9 16.17 3.26 24.1 5.68 2.01 5.78

3.3.2 Transferability within ensembles and effect of ensemble size

To understand the above phenomena, we estimate the probability that an adversarial

example targeting a single model in the ensemble will also be adversarial to other

models in the ensemble. We can estimate this by first performing a HopSkipJump

attack on each model in the ensemble separately. Let x′i be the adversary obtained by

targeting model mi in the ensemble. Let ki be the number of models in the ensemble

that are also misclassified by the adversary x′i (thus transferable). We sum ki for

i = 0...n − 1 and divide by 9900 which is the maximum value of this sum (obtained

when the adversary attacks all models in the ensemble excluding the target of course).
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We average this probability for Images 0 through 7 for each method. In

Table 3.5, we see that this probability is lowest for our models and highest for MLP

and BNN. The fact that this probability is very low for our models indicates that

for several of the networks in our ensemble the adversary targeting a fixed network

does not transfer to other ones. The low transferability of our models indicates that

a greater distortion is required for an image to be adversarial.

Table 3.5 Estimated Probability That An Adversarial Image Targeting A Single
Model in The Ensemble (of 100 Models) Will Transfer to Other Models. Lowest
Probability in Bold

SCD01 SCDCE SCDCEBNN MLP BNN ResNet50 LeNet RF

Prob .006 .004 .002 .39 .2 .02 .01 .07

In fact, as we see in Figure 3.1, the robustness of our models increases as we

increase the ensemble size to a much larger degree than ensembles of MLP and BNN,

and than RF. We use ensemble sizes of 100 in this study but the figure suggests that

increasing our ensemble size is likely to further increase robustness.

3.3.3 Discussion

Using ensembles of neural networks and promoting diverse ensembles has been

previously proposed as a defense against adversarial attacks. Studies using ensembles

with different initializations (like we do), bootstrapping, and Gaussian noise have

shown robustness but only in the white box setting [65] (which is somewhat unrealistic

since it assumes the attacker has full knowledge of the model and its parameters).

Other studies combine the loss of all models in the classifier and add a regularizer

that promotes diversity.
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Figure 3.1 Minimum L2 image distortion as a function of ensemble size.

For example, we could try to maximize the angle between gradients of models

in the ensemble [31] to make them misaligned. In their diversity training, they use

a Gaussian noise augmented dataset which raises concerns about the effectiveness of

their method since augmentation alone has been shown to be effective in ensemble

training [65]. Another study maximizes diversity between classes [49] and thus does

not apply to our work here that focuses on binary classes only. Even for multiple

classes their method is computationally expensive as it uses a joint loss function.

Other methods inject noise to models in the ensemble [39]; but their evaluation is

only in the white box setting. Various measures for ensemble diversity have been

previously proposed for deep networks [38] and evaluated in the white-box setting.

We can apply all of the above diversity training methods to our ensemble of sign

networks. Our work, however, is not explicitly aimed at enhancing diversity. As we

show it is naturally diverse; and we conjecture this is due to the non-convexity of sign

activation and our randomized training method. Even sigmoid activation networks

have a non-convex search space but we can imagine that sign activation gives a greater

36



degree of freedom. This can easily be seen in the case of a linear classifier with logistic

or hinge loss vs. 01 loss [78].

It is hard to make a general claim of robustness with only 100 images from

CIFAR10. We would need to show more images from CIFAR10 and other image

benchmarks as well but our preliminary experiments on CelebA, GTSRB and

ImageNet (shown in Table 3.4) suggest higher distortion on other image data as

well.

3.3.4 Conclusion

We show that our ensemble of gradient-free sign activation networks are harder to

attack than ensembles of several other networks and random forests on images.
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CHAPTER 4

VESSEL SEGMENTATION IN INTERNAL CAROTID ARTERY
ULTRASOUNDS IMAGES

4.1 Background and Related Work

Carotid ultrasound is a screening modality used by physicians to direct treatment

in the prevention of ischemic stroke in high-risk patients. It is a time intensive

process that requires highly trained technicians and physicians. Evaluation of a

carotid ultrasound requires identification of the vessel wall, lumen, and plaque of the

carotid artery. Prior work in automated approaches to evaluating carotid ultrasounds

is highly limited and does not use modern deep learning methods. Previously

vessel identification in carotid ultrasounds with preprocessing and marker-controlled

watershed transform has been explored [68]. Deep learning solutions have been

proposed for vessel segmentation in liver ultrasounds [44] and for vessel detection

in femoral regions [62]. In the latter study, authors also evaluate their method on

carotid ultrasound images from two individuals, however, their target is detection as

opposed to segmentation that we seek. DeepVesselNet [69] is another deep learning

model designed for vessel detection but in 3D angiographic volumes. A patch-based

deep learning solution has also been proposed for 3D ultrasounds [82]. None of these

are end-to-end systems that are simple to train and implement and none address

vessel lumen segmentation in internal carotid ultrasounds images that we seek here.

We present here a study to evaluate using a basic convolutional U-network to

accurately identify the vessel lumen of internal carotid artery in vascular ultrasound

images. Our network is a simple end-to-end solution and addresses for the first time

the problem of vessel lumen segmentation in internal carotid artery 2D ultrasound

images. These ultrasound images are more affordable and common than 3D ones.
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Such ultrasound images are broadly used in vascular diagnosis and thus our solution

has a broader impact than previous work.

4.2 Methods

4.2.1 Data collection

We obtained IRB approval from Robert Wood Johnson Medical School to use de-

identified images from the Department of Vascular Surgery for this research. We

obtained the carotid ultrasound study of 98 patients. We utilized an automated

script to crop all patient identifiers from the ultrasound images and manually verified

this de-identification. For this study, we focused exclusively on the left and right

internal carotid artery ultrasound images.

We cropped each image to obtain just the ultrasound removing all text and

annotations on the image. Each images was resized to 224× 224 pixels. This gave us

a total of 302 images that we then manually segmented. Using RectLabel software

(https://rectlabel.com/), we manually segmented the vessel lumen for each image

to serve as ground truth for training and validation.

4.2.2 Convolutional neural networks

Convolutional neural networks are the current state of the art in machine learning

for image recognition [36, 34], including for MRI [9]. They are typically composed

of alternating layers for convolution and pooling, followed by a final flattened layer.

A convolution layer is specified by a filter size and the number of filters in the layer.

Briefly, the convolution layer performs a moving dot product against pixels given by

a fixed filter of size k×k (usually 3×3 or 5×5). The dot product is made non-linear

by passing the output to an activation function such as a sigmoid or rectified linear

unit (also called relu or hinge) function. Both are differentiable and thus fit into the

standard gradient descent framework for optimizing neural networks during training.
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The output of applying a k× k convolution against a p× p image is an image of size

(p−k+1)× (p−k+1). In a CNN, the convolution layers just described are typically

alternated with pooling layers. The pooling layers serve to reduce dimensionality,

making it easier to train the network.

4.2.3 Convolutional U-network

After applying a series of convolutional filters, the final layer dimension is usually

much smaller than that of the input images. For the current problem of determining

whether a given pixel in the input image is part of a vessel, the output must be of

the same dimension as the input. This dimensionality problem was initially solved

by taking each pixel in the input image and a localized region around it as input to

a convolutional neural network instead of the entire image [18].

A more powerful recent solution is the Convolutional U-Net (U-Net) [58]. This

has two main features that separate it from traditional CNNs: (a) deconvolution

(upsampling) layers to increase image dimensionality, and (b) connections between

convolution and deconvolution layers.

4.2.4 Basic U-Net for vessel segmentation

We implemented a basic U-Net [58] in the Pytorch library [53] as shown in Figure 4.1.

The U-Net is a popular choice for medical artificial intelligence work and has proven

to be a successful baseline that can be built upon. The input to the model is an

ultrasound image and output is an image of the same dimensions with 0 and 1 pixel

values indicating background and vessel lumen.

Roughly speaking, in our model we first extract features with a series of convo-

lutional kernels and then apply transpose convolutions to increase the dimensionality

of the image up to the original. Thus, we have an end-to-end network that is much
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Figure 4.1 Basic U-Net architecture [58] that we use in our preliminary work.
Shown here are dimensions of our images in each layer and the number of convolutional
and transposed convolutions per layer.

simpler to train than otherwise patch-based approaches that have previously been

used for segmentation.

Inspired by our success in synthetic modalities for brain MRI systems [77] we

utilized a dual-encoder model as well. We modified the original input ultrasound

image by flipping it along the y-axis (called flip) and modifying the brightness and

contrast separately. These modified images were then used the as a second modality.

In Figure 4.2, we see our dual-path encoder model that has a feature fusion for

combining features from the two encoders.

Our feature fusion is a simple concatenation of features from the two encoders.

In order to maintain the correct dimensions for the decoder, we reduced each

downsampling layer’s output channels by half. In this way, the concatenation restores

the original dimensionality that is required by the decoder layer.

4.2.5 Dice loss

The final output from our network is a two-dimensional (2D) predicted image of

dimensions 224 × 224. We convert each pixel value into probabilities with softmax

[4] and call the resulting image p. The target ground truth r is also of the same
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Figure 4.2 Dual-encoder network that treats a modification of the input image as
a synthetic modality.

dimensions as p and contains a 1 if the pixel is within the vessel lumen and 0 otherwise.

We then use the Dice loss to train our model. This is defined to be 1−D where

D(p) =
2
∑

i piri∑
i p

2
i+

∑
i r

2
i

and pi and ri are the ith pixel values of p and r respectively.

4.2.6 Model implementation and training

We implemented our system using Pytorch [53] and ran it on NVIDIA Pascal P100

and NVIDIA Titan RTX GPUs. We trained our model with 20 epochs of stochastic

gradient descent [10], a learning rate of 0.03, decay step of 15, and a batch size of 1.

We did not perform any normalization on the input images.

4.2.7 Post processing

We applied a simple post processing procedure to reduce potential false positives. In

the final predicted segmentation, we remove all disconnected components except for

the largest one that is meant to be the vessel lumen. We found that this improved

accuracy by a moderate margin.

4.2.8 Measure of accuracy: Dice coefficient

The Dice coefficient is typically used to measure the accuracy of predicted segmen-

tations in medical images [84]. We convert the output image of our network into a

binary mask by setting each pixel value to 1 if its softmax output is at least 0.5 and
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0 otherwise. Thus, we use 0.5 as the probability threshold that a pixel value is part

of the vessel lumen or outside it. Starting with the human binary mask as ground

truth, each predicted pixel is determined to be either a true positive (TP, also one in

true mask), false positive (FP, predicted as one but zero in the true mask), or false

negative (FN, predicted as zero but one in the true mask). The Dice coefficient is

formally defined as

DICE =
2TP

2TP + FP + FN
(4.1)

4.2.9 10-fold cross-validation

We performed 10-fold cross-validation experiments on our data. We randomly split

our dataset into ten equal parts and selected one part for validation while the

remaining nine parts were used to train the model. We then rotated the validation

part across the other nine parts giving us a total of ten pairs of training validation

splits. We trained the model on each split and reported the average validation and

training accuracy below.

4.3 Result

4.3.1 Cross-validation on all images

In Table 4.1, we show the average 10-fold Dice values of vessel lumen segmentations

separately for both training and validation samples. The training Dice is typically

higher than validation as we see below and the validation is not far behind which

suggests that our model is generalizing. We ran the 10-fold three times on our model

to check for stability and found that each time our model gives a high training and

validation accuracy.

In Figure 4.3, we see ultrasound images with their ground truth and predicted

segmentations In (a) we see a vessel with no plaque or calcified walls. In (b) we see
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Table 4.1 Average Dice Coefficients of Train and Validation Splits in Our 10-fold
Cross-validation Across Three Different Runs of Our Model

Model train run Vessel train Vessel validation

Sample size of 234 images

1 97.95% 93.96%

2 98.00% 93.73%

3 97.99% 93.67%

Sample size of all 302 images

1 97.83% 94.63%

a vessel with thick calcified walls, in (c) we have a vessel with plaque, and in (d) we

have a vessel with plaque and other regions above that could be mistaken for vessel

lumen. In all four cases our model predicts the vessel lumen accurately as clear from

the predicted segmentations. We found that the plaque and calcified wall does not

affect the model and are contained within and outside the lumen respectively as we

desire. From Figure 4.3(d) we also see that the model can tell the true vessel lumen

from other regions that appear to be the lumen when in fact they are not.

4.3.2 Effect of sample size

We ran the training model with five different sample sizes (25, 50, 100, 234, and

all 302 images). Figure 4.4 demonstrates the average Dice coefficient in our 10-fold

experiment with the respective different sample sizes. We see that both training

and validation accuracies increase as we add more samples. In fact, the validation

accuracy approaches the training one as the sample size increases.
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(a)

(b)

(c)

(d)

Figure 4.3 Examples of ultrasound images with their manual ground truth and
predicted segmentations.

4.3.3 Effect of dual-path encoder

To study the performance of the synthetic modality of our dual-encoder model, we

modified the original input image by flipping it along the y-axis (called flip) and
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Figure 4.4 As our sample size increases we see both training and validation accuracy
in 10-fold cross-validation increases.

adjusting the brightness and contrast separately by a factor of 2 (using functions

implemented in Pytorch and Torchvision). In Table 4.2, we show that all four

synthetic modalities don’t improve the validation accuracy of the single-path model.

Table 4.2 Training and Validation Dice Accuracy of Our Dual-encoder Model with
Different Synthetic Modalities

Synthetic modality Vessel train Vessel validation

Flip 98.46% 91.76%

Brightness 98.48% 93.83%

Contrast 98.39% 93.7%

4.3.4 Effect of modified Dice loss to emphasize recall

While our overall validation accuracy is at 95%, our model still has difficulty in some

cases. In Figure 4.5(a), we see that the predicted segmentation is incomplete for this

image even though the image does not appear to be hard. While there are no false

positives the true positive rate (recall) is low. To fix this, we try a modified Dice loss

below that upweights the recall component by a factor of 4.
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D(p) =
5
∑

i piri∑
i p

2
i+4×

∑
i r

2
i

We evaluate our model with the modified Dice loss on a subset of 234 samples

on which we also report the original model’s accuracy above. In Figure 4.5(b), we

see that the modified loss improves the segmentation of this particular image. We see

it also improves segmentation of the image shown in Figure 4.5(c) with our original

Dice loss to cover the entire vessel with the modified loss in Figure 4.5(d).

While we see an improvement in individual images, our average accuracy with

the modified loss on train and validation is the same as the original one on 234 samples

(see Table 4.3 below). This suggests that the new loss lowers the accuracy of other

images and thus may not be the best solution to improve our recall.

Table 4.3 Average Dice Coefficients of Train and Validation Splits in Our 10-fold
Cross-validation with Our Modified Dice Loss Across Three Different Runs of Our
Model

Model train run Vessel train Vessel validation

1 97.75% 93.7%

2 97.77 % 93.51%

3 97.77 % 93.24%

4.4 Discussion

One of the difficulties that automated systems face in the evaluation of vascular

ultrasounds is that image output and quality is highly dependent upon both technician

technique and the patient’s body habitus and individual anatomy. Plaque and calcium

in the vessel wall can result in acoustic shadows that make it difficult to visualize the

posterior wall. At 95% accuracy, the basic U-Net system that we have developed is

able to adjust for these issues. In Figure 4.6, we present four different images where

the posterior vessel wall is difficult to image and in each of these cases our system is
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(a)

(b)

(c)

(d)

Figure 4.5 Examples of ultrasound images and their manual ground truth and
predicted segmentations obtained from the original Dice loss in (a) and (c) and the
modified loss in (b) and (d).

able to accurately predict the correct vessel segmentation except for minor errors as

in Figure 4.6(b).
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(a)

(b)

(c)

(d)

Figure 4.6 Examples of ultrasound images and their manual ground truth and
predicted segmentations that have part of the vessel missing from the image due to
ultrasound shadowing.

We believe that the strengths of our model will be beneficial as we expand the

scope of our work. While initially we focused on imaging just the internal carotid

artery we next plan to expand this to the entire carotid artery study looking at
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the common carotid artery, external carotid artery and the carotid bifurcation. We

chose the internal carotid artery initially due to the significant amount of plaque

and atherosclerotic disease, making it one of the more difficult areas to get accurate

predictions of the vessel lumen. Due to our successes with the internal carotid artery,

we expect an overall high accuracy on ultrasounds of the entire carotid artery system.

Accurate visualization of the vessel lumen is only the first step in creating a

valid clinical tool that can evaluate vascular ultrasounds. Creating a system that

can also identify and accurately segment atherosclerotic plaque, identify the vessel

wall and accurately measure its width and identify calcification within the wall will

be required. Identifying several regions of the vessel within the ultrasound is more

challenging and falls under multi-class segmentation. Our encouraging results here

suggest we should achieve high accuracy there as well but may need to add more

images from patients just because multi-class classification typically requires more

data than the binary case.

4.5 Conclusion

We evaluated a single and dual path convolutional neural network for vessel lumen

segmentation in carotid artery vascular ultrasounds. In 10-fold cross-validation on

302 images from 98 patients, we obtained 95% accuracy and expect this to rise as we

add more images. Our work shows that vessel lumen segmentation can be achieved

with high accuracy.
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CHAPTER 5

VESSEL SEGMENTATION IN CAROTID ARTERY ULTRASOUNDS
IMAGES

5.1 Background and Related Work

Carotid ultrasound is a screening modality used by physicians to direct treatment

in the prevention of ischemic stroke in high-risk patients. It is a time intensive

process that requires highly trained technicians and physicians. Evaluation of a

carotid ultrasound requires identification of the vessel wall, lumen, and plaque of the

carotid artery. Prior work in automated approaches to evaluating carotid ultrasounds

is highly limited and there are no prior methods for vessel segmentation in carotid

ultrasounds of the entire carotid system. A convolutional U-Net for 2D ultrasounds

like ours was explored in previous work [75] but only for internal carotid artery

ultrasounds. In this work, we explore a U-Net for the entire carotid artery system

that includes internal, external, and common carotid arteries. We also explore images

containing bifurcations, longitudinal images, and images with ultrasound shadowing,

plaque, and gray shading, all of which make vessel segmentation even harder. Thus

our work has a much broader scope than the previous study.

Vessel identification in carotid ultrasounds with preprocessing and marker-

controlled watershed transform has been explored previously [68]. DeepVesselNet [69]

is a deep learning model designed for vessel detection but in 3D magnetic resonance

angiography data unlike the 2D ultrasounds that we consider here. A patch-based

deep learning solution has also been proposed segmenting and measuring plaque for

3D ultrasounds [82]. Of note, 3D ultrasound is available only in research studies

and is not commonly utilized clinically. In contrast, in our study is a full end-to-end

trainable convolutional network that allows for the segmentation of 2D ultrasounds,

the most widely utilized modality.
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5.2 Methods

5.2.1 Data collection

We obtained IRB approval from Robert Wood Johnson Medical School to use de-

identified images from the Department of Vascular Surgery for this research. We

manually downloaded B-mode carotid ultrasound examinations of 226 patients. We

utilized an automated script to crop all patient identities from the ultrasound images

and manually verified this de-identification.

We then cropped each image to obtain just the ultrasound removing all text and

annotations on the image. Each image was resized to 224x224 pixels. This gave us

a total of 2156 images that we then manually segmented. Using RectLabel software

(https://rectlabel.com/) we manually segmented the vessel lumen for each image

to serve as ground truth for training and validation

5.2.2 Background

Convolutional neural networks Convolutional neural networks are the current

state of the art in machine learning for image recognition [36, 34], including for MRI

[9]. They are typically composed of alternating layers for convolution and pooling,

followed by a final flattened layer. A convolution layer is specified by a filter size and

the number of filters in the layer. Briefly, the convolution layer performs a moving

dot product against pixels given by a fixed filter of size k× k (usually 3× 3 or 5× 5).

The dot product is made non-linear by passing the output to an activation function

such as a sigmoid or rectified linear unit (also called relu or hinge) function. Both are

differentiable and thus fit into the standard gradient descent framework for optimizing

neural networks during training. The output of applying a k× k convolution against

a p× p image is an image of size (p− k+ 1)× (p− k+ 1). In a CNN, the convolution

layers just described are typically alternated with pooling layers. The pooling layers

serve to reduce dimensionality, making it easier to train the network.
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Convolutional U-Net After applying a series of convolutional filters, the final

layer dimension is usually much smaller than that of the input images. For the

current problem of determining whether a given pixel in the input image is part of

a vessel or plaque, the output must be of the same dimension as the input. This

dimensionality problem was initially solved by taking each pixel in the input image

and a localized region around it as input to a convolutional neural network instead

of the entire image [18].

A more powerful recent solution is the Convolutional U-Net (U-Net) [58]. This

has two main features that separate it from traditional CNNs: (a) deconvolution

(upsampling) layers to increase image dimensionality, and (b) connections between

convolution and deconvolution layers.

U-Net for vessel segmentation We implemented a basic U-Net [58] in the

Pytorch library [53] as shown in Figure 5.1. The U-Net is a popular choice for medical

artificial intelligence work and has proven to be a successful baseline that can be built

upon. The input to the model is an ultrasound image and output is an image of the

same dimensions with 0 and 1 pixel values indicating background and vessel lumen.

Figure 5.1 U-Net architecture [58] that we use in our preliminary work. Shown
here are dimensions of our images in each layer and the number of convolutional and
transposed convolutions per layer.
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Roughly speaking, in this model we first extract features with a series

of convolutional kernels and then apply transpose convolutions to increase the

dimensionality of the image up to the original. Thus, we have an end-to-end network

that is much simpler to train than otherwise patch-based approaches that have

previously been used for segmentation.

Dice loss The final output from the each of our models is a 2D predicted image of

dimensions 224 × 224. We convert each pixel value into probabilities with softmax

[4] and call the resulting image p. The target ground truth r is also of the same

dimensions as p and contains a 1 if the pixel is within the vessel lumen and 0 otherwise.

We then use the Dice loss to train our model. This is defined to be 1−D where

D(p) =
2
∑

i piri∑
i p

2
i+

∑
i r

2
i

and pi and ri are the ith pixel values of p and r respectively.

5.2.3 Implementation, accuracy, and validation

Implementation We implemented our models using Pytorch [53] and ran them on

NVIDIA Pascal P100 and NVIDIA Titan RTX GPUs. We trained our models with

20 epochs of stochastic gradient descent [10], a learning rate of 0.03, decay step of 15

(with γ = .1), and a batch size of 4. We did not perform any normalization on the

input images.

Post processing We applied a simple post processing procedure to reduce potential

false positives. In the final predicted segmentation, we remove all disconnected

components except for the largest one that is meant to be the vessel lumen. We

found that this improved accuracy by a moderate margin.

Measure of accuracy: Dice coefficient The Dice coefficient is typically used to

measure the accuracy of predicted segmentations in medical images [84]. We convert
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the output image of our network into a binary mask by setting each pixel value to 1 if

its softmax output is at least 0.5 and 0 otherwise. Thus we use 0.5 as the probability

threshold that a pixel value is part of the vessel lumen or outside it.

Starting with the human binary mask as ground truth, each predicted pixel is

determined to be either a true positive (TP, also one in true mask), false positive

(FP, predicted as one but zero in the true mask), or false negative (FN, predicted as

zero but one in the true mask). The Dice coefficient is formally defined as

DICE =
2TP

2TP + FP + FN
(5.1)

10-fold cross-validation We performed 10-fold cross-validation experiments on

our data. We randomly split our dataset into ten equal parts and selected one part

for validation while the remaining nine parts were used to train the model. We then

rotated the validation part across the other nine parts giving us a total of ten pairs

of training validation splits. We trained the model on each split and reported the

average validation and training accuracy below.

5.3 Results

We first perform a 10-fold cross-validation on the entire set of images. In Table 5.1,

we see that we achieve a high training and validation accuracy of 95.1% and 94.3%

respectively. The small difference between our training and validation accuracies

indicates our model is not overfitting and instead is generalizing well.

When we train and test on internal (ICA), external (ECA), and the common

(CCA) carotid artery ultrasounds alone we see varying degrees of accuracy. Both

ICA and ECA images achieve similar and lower train and validation accuracies than

CCA which alone has a 96.6% accuracy (Table 5.1).

55



Table 5.1 Average Accuracy of Training and Validation Splits in Our 10-fold
Experiment

Training Validation

All 95.1% 94.3%

ICA 94.9% 92.7%

ECA 96.2% 91.9%

CCA 97.9% 96.6%

In Figure 5.2, we see that adding more samples increases both the training and

validation accuracy of our model. This is overall encouraging, however, the increase

in accuracy is by small margins and is plateauing at 95% as we add more samples.

Figure 5.2 Training and validation accuracy of our training and validation folds as
a function of sample size.

In Figure 5.3, we see examples of some images with their true and predicted

segmentations (also known as masks). Both Figure 5.3 (a) and (b) show examples

with significant plaque and shadowing that could obfuscate the untrained eye but

56



our model gives a highly correct segmentation. In Figure 5.3 (c) and (d), we have

examples of bifurcated and gray shaded vessels that that are also correctly segmented

by our model.

5.4 Discussion

Medical imaging has become an essential component in modern medicine. It aids

in diagnosis, tracks progression of disease and can be utilized to screen individuals

for cancer and for the prevention of stroke. Numerous studies are looking at using

deep learning methods to increase accuracy of diagnosis and aid in the interpretation

of these studies [43]. As of yet, there are few studies that look at utilizing deep

learning for vessel identification and evaluation with ultrasound images specifically in

the carotid artery system.

Ultrasound images provide a distinct challenge that is different than other

medical imaging modalities. Computed tomography and magnetic resonance imaging

(MRI) have set protocols that control formatting and orientation. For example,

MRI images are typically aligned to a standard reference brain template such as the

Montreal Neurological Institute reference space [22] that makes it easier to compare

different MRI images.

A convolutional neural network was previously proposed for vessel detection in

ultrasounds of femoral regions and also applied to carotid artery ultrasounds [62].

There are several key differences between our study and this previous one. In the

previous study, authors evaluate their method on transverse images of the common

carotid artery. Specifically, they identify the center of the vessel and outline the vessel

with an ellipse that approximates the vessel. To do this, they are using a simplified

version of the AlexNet [34] convolutional neural network. They reduced it to two

convolutional layers, one normalization, two max pooling, and three fully connected.

Their modified network outputs the center and two radii of the ellipse enclosing the
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(a) Shadow and plaque I

(b) Shadow and plaque II

(c) Bifurcation

(d) Gray shading

Figure 5.3 Non-trivial examples of vessels in ultrasound image.
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circular vessel. In contrast, the U-Net that we use outputs a full segmentation of

the vessel that can segment both transverse and longitudinal images of the vessel

(Figure 5.4). Their study also only evaluates the common carotid artery, whereas our

model can also be used to evaluate the internal and external carotid arteries, which is

important because assessment of the carotid bifurcation and internal carotid artery

has the most clinical relevance to stroke prevention. The previous study purely helps

to identify that a vessel is present, it provides little additional input to aid in the

interpretation of the ultrasound.

(a) Vessel identification from a previous study

(b) Our model performs circular segmentation that includes longitudinal images

Figure 5.4 Comparison of vessel identification from previous work to vessel
segmentation in our work.
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5.5 Conclusion

The work that we present above is entirely novel in scope. It is the first step

in attempting to create and implement a neural network that can independently

and accurately identify and segment the lumen of the carotid artery in a vascular

ultrasound. Further studies will be required to advance this model so that it

can handle segmentation of the vessel wall, atherosclerotic plaque and evaluate the

direction of flow and flow velocity within the lumen, before it can provide clinically

relevant interpretations.The model has the potential to be the first step in creating a

complete end-to-end solution for the evaluation of vascular ultrasound images.
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CHAPTER 6

VESSEL AND PLAQUE SEGMENTATION IN CAROTID ARTERY
ULTRASOUNDS IMAGES

6.1 Background and Related Work

Carotid ultrasound is a screening modality used by physicians to direct treatment

in the prevention of ischemic stroke in high-risk patients. It is a time intensive

process that requires highly trained technicians and physicians. Evaluation of a

carotid ultrasound requires identification of the vessel wall, lumen, and plaque of

the carotid artery. Most prior work in automatic vessel and plaque segmentation

consider 3-dimensional (3D) ultrasound images with narrowed regions of interest or

MRI images, and few are based on deep or machine learning methods. For example

convolutional U-Nets have been explored previously on 3D ultrasound images from

the common carotid artery but their data is narrowed to a region of interest and

they examined only images that contain plaque [83]. Traditional machine learning

methods have been applied for plaque segmentation from B-mode ultrasounds of

common carotid arteries [56]. Another study applied basic machine learning methods

for plaque segmentation but on MRI images [81].

Other than the above there are plaque segmentation methods limited to video

and common carotid arteries [42], histogram based methods on combined B-mode

and contrast enhanced ultrasounds of common, internal, and external carotid arteries

[3], and parametric and geometric deformable models followed by Bayesian classifiers

on intravascular ultrasounds [67]. Previous work also includes image intensity and

structure based methods on 3D ultrasounds of common carotid arteries [17], fuzzy

clustering on MRI images for plaque detection only [1, 2], 3D volume-based level-set

method on 3D ultrasounds of common, internal, and external carotid arteries [16],
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and a slice-based semi-automatic method on CTA images of common and internal

carotid arteries [71].

In contrast to the previous work, our work considers raw ultrasound images

without any pre-processing or narrowing the region of interest. These are taken

directly from the hospital ward and are the same images that a trained physician

would be looking at. Of note, 3D ultrasound is available only in research studies

and is not commonly utilized clinically. Our proposed models are full end-to-end

trainable convolutional U-Nets that allow for the segmentation of 2D ultrasounds,

the most widely utilized modality. Deep learning models for vessel segmentation

alone have been proposed previously on 2D and 3D carotid ultrasounds [75, 69, 62];

but in this work, we consider segmentation of both vessel and plaque.

6.2 Methods

6.2.1 Data collection

We obtained IRB approval from Robert Wood Johnson Medical School to use de-

identified images from the Department of Vascular Surgery for this research. We

manually downloaded B-mode carotid ultrasound examinations of 226 patients. We

utilized an automated script to crop all patient identities from the ultrasound images

and manually verified this de-identification.

We then cropped each image to obtain just the ultrasound removing all text and

annotations on the image. Each images was resized to 224x224 pixels. We manually

segmented the vessel lumen and plaque of 500 images using the RectLabel software

(https://rectlabel.com/). These serve as ground truth for training and validation

6.2.2 Background

Convolutional neural networks Convolutional neural networks (CNN) are the

current state of the art in machine learning for image recognition [36, 34], including
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for MRI [9]. They are typically composed of alternating layers for convolution and

pooling, followed by a final flattened layer. A convolution layer is specified by a filter

size and the number of filters in the layer. Briefly, the convolution layer performs a

moving dot product against pixels given by a fixed filter of size k × k (usually 3× 3

or 5× 5). The dot product is made non-linear by passing the output to an activation

function such as a sigmoid or rectified linear unit (also called relu or hinge) function.

Both are differentiable and thus fit into the standard gradient descent framework

for optimizing neural networks during training. The output of applying a k × k

convolution against a p × p image is an image of size (p − k + 1) × (p − k + 1). In

a CNN, the convolution layers just described are typically alternated with pooling

layers. The pooling layers serve to reduce dimensionality, making it easier to train

the network.

Basic convolutional U-Net After applying a series of convolutional filters, the

final layer dimension is usually much smaller than that of the input images. For the

current problem of determining whether a given pixel in the input image is part of

a vessel or plaque, the output must be of the same dimension as the input. This

dimensionality problem was initially solved by taking each pixel in the input image

and a localized region around it as input to a convolutional neural network instead

of the entire image [18].

A more powerful recent solution is the Convolutional U-Net (U-Net) [58]. This

has two main features that separate it from traditional CNNs: (a) deconvolution

(upsampling) layers to increase image dimensionality, and (b) connections between

convolution and deconvolution layers.

We implemented a basic U-Net [58] in the Pytorch library [53] as shown in

Figure 6.1. The U-Net is a popular choice for medical artificial intelligence work and

has proven to be a successful baseline that can be built upon. The input to the model
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is an ultrasound image and output is an image of the same dimensions with 0, 1, and

2 pixel values indicating background, vessel lumen, and plaque.

Figure 6.1 Basic U-Net architecture [58] that we use as a baseline for our work.
Shown here are dimensions of our images in each layer and the number of convolutional
and transposed convolutions per layer.

Roughly speaking, in this model we first extract features with a series

of convolutional kernels and then apply transpose convolutions to increase the

dimensionality of the image up to the original. Thus, we have an end-to-end network

that is much simpler to train than otherwise patch-based approaches that have

previously been used for segmentation.

6.2.3 Our proposed U-Net models

Aside from the basic U-net that we use as a baseline, we investigate two extensions: a

cascaded model with two networks and a dual decoder network with separate decoders

for vessel and plaque.

Two-stage convolutional U-Net In the two-stage approach, we have a cascaded

model of two convolutional U-Nets (as shown in Figure 6.2). In the first model,

we segment the vessel lumen from which we then segment the plaque with a second

U-Net. For training the first network, we manually segment the vessel of an additional

1661 images from our cohort of patients so as to have it be as accurate as possible.
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In fact, we see later that the two-stage model indeed gives a better segmentation of

the vessel lumen than basic U-Net and the dual decoder in the next subsection.

Figure 6.2 Two-stage cascaded model containing two convolutional U-Nets.

Dual decoder convolutional U-Net The basic U-Net is a series of encoders

and decoders with connections between them. In our dual-decoder, we have a pair

decoders in each step of the decoding (see Figure 6.3). In each pair, one decoder is

for segmenting the vessel and the other is for the plaque.

(a)

(b)

Figure 6.3 Dual decoder convolutional U-Net with separate decoders for vessel and
plaque. In (a) is the basic U-Net and in (b) is the dual decoder version.
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Ensemble models and confidence scores We obtain confidence estimates by

running each model 39 times starting with different seeds for the random number

generator. From the outputs of each model, we obtain a confidence estimate based

on pixel frequencies as shown in Figure 6.4. We also obtain a majority vote prediction

from the ensemble output as shown in final prediction in Figure 6.4.

Figure 6.4 Obtaining a confidence score and a final prediction from the outputs of
four U-nets.

Dice loss The final output from the each of our models is a 2D predicted image of

dimensions 224 × 224. We convert each pixel value into probabilities with softmax

[4] and call the resulting image p. The target ground truth r is also of the same

dimensions as p.

In the basic U-Net and our dual decoder, the output is a segmentation of both

the vessel and plaque. In the ground truth pixels, we assign 1 if the pixel is within

the vessel lumen, 2 if it in a plaque region, and 0 otherwise. In the two stage model,

we first output a vessel segmentation followed by a plaque. The ground truth for each

network contains 1 if the pixel is in the vessel or plaque and 0 otherwise.

We then use the Dice loss to train our model. This is defined to be 1−D where
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i p

2
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∑
i r
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and pi and ri are the ith pixel values of p and r respectively.

6.2.4 Implementation, accuracy, and validation

Implementation We implemented our models using Pytorch [53] and ran them on

NVIDIA Pascal P100 and NVIDIA Titan RTX GPUs. We trained our models with

20 epochs of stochastic gradient descent [10], a learning rate of 0.03, decay step of 15

(with γ = .1), and a batch size of 4. We did not perform any normalization on the

input images.

Measure of accuracy: Dice coefficient The Dice coefficient is typically used to

measure the accuracy of predicted segmentations in medical images [84]. The output

from our network is a set of probabilities for each pixel indicating the class it belongs

to. For example, for a given pixel we have probabilities that it is background, vessel,

or plaque. We assign 0, 1, or 2 depending upon the maximum probability. This then

gives us an image with the same pixel values as the ground truth and allows us to

calculate the Dice coefficient separately for vessel and plaque.

For vessel Dice, each predicted pixel is determined to be either a true positive

(TP, also one in ground truth), false positive (FP, predicted as one but zero or two

in the ground truth), or false negative (FN, predicted as zero or two but one in

ground truth). To calculate the plaque Dice coefficient, we follow the same formula

except that positive predictions have value two and negative are zero or one. After

calculating these values, the Dice coefficient is then formally defined as

DICE =
2TP

2TP + FP + FN
(6.1)

10-fold cross-validation We performed 10-fold cross-validation experiments on

our data. We randomly split our dataset into ten equal parts and selected one part
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for validation while the remaining nine parts were used to train the model. We then

rotated the validation part across the other nine parts giving us a total of ten pairs

of training validation splits. We trained the model on each split and reported the

average validation and training accuracy below.

6.3 Results

6.3.1 Vessel and plaque segmentation

In Table 6.1, we see the vessel and plaque segmentation Dice accuracies of our models.

Our dual decoder has the highest plaque accuracy followed by the basic model and

then the two-stage. Interestingly if we were to use the true vessel as input to the

second network in the two-stage model the plaque Dice accuracies increases to 0.82.

This suggests there is room for improvement in this model: if we can get the first

network to produce more accurate vessel segmentations, it would in turn improve the

plaque Dice accuracy of the second network.

Table 6.1 10-fold Dice Coefficients of The Basic U-Net and Our Two Models

Basic U-Net Two stage Dual decoder

Vessel Dice .9 .95 .91

Plaque Dice .67 .65 .69

In Figure 6.5, we see several ultrasound images, their ground truth segmen-

tations, and their predicted segmentations by our dual decoder model. These are

handpicked images where our model produces a visually correct vessel and plaque

segmentation.

In Figure 6.6, we show handpicked images with poorer segmentations. We see

that in some cases our model produces false positives. Even though these images have

low plaque segmentation accuracies, in some cases, the segmentations are still useful

than otherwise.
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Figure 6.5 Examples of ultrasound images and their true and predicted segmen-
tations. In yellow is the vessel and green is the plaque. Our model performs very well
in these handpicked images.

6.3.2 Ensemble and confidence scores

By ensembling, we can obtain confidence scores for each model as described earlier.

In Table 6.2 below we show the plaque Dice coefficients for different confidence score
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Figure 6.6 Examples of ultrasound images and their true and predicted segmen-
tations. In yellow is the vessel and green is the plaque. These are handpicked images
where our model performs relatively poorly compared to images in Figure 6.5.

thresholds. As we raise the confidence threshold, the plaque Dice coefficient increases
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with the dual decoder performing slightly better than the basic model. We get fewer

images at higher thresholds but these are likely to be highly accurate as we see below.

Table 6.2 10-fold Plaque Dice Coefficients of The Basic U-Net and The Dual-
decoder Model for Different Confidence Thresholds

Confidence Basic U-Net Dual decoder

threshold

.5 .728 (34.7) .732 (35.6)

.6 .753 (27.3) .752 (27.9)

.7 .792 (16.2) .795 (15.8)

.8 .859 (6.2) .873 (5.1)

Note: In parenthesis are the average number of images with confidence above the
given threshold across the ten folds.

In an attempt to improve the vessel segmentation in our two-stage model, we

explored ensembling. We used the majority vote output (see Figure 6.4) of 39 models

for vessel segmentation. This improved the plaque segmentation from .65 to .67 but

not near the .82 accuracy we obtain with the true vessel image as input. Upon closer

examination of our predicted vessel segmentations, we may have found the source of

our problem.

Even though vessel segmentations in the two-stage model are highly accurate

(.95 Dice), if the segmentation is missing part of the vessel that contains the plaque

it severely affects the plaque segmentation accuracy (see Figure 6.7). One way to

address this is to expand the vessel segmentation to nearby pixels so that the plaque

is included in the image for the plaque segmentation model. We plan to explore this

in future work.

71



Figure 6.7 Examples of ultrasound images and their true and predicted vessel
segmentations from the two-stage model. Even though the overall vessel is correctly
segmented some parts near the plaque are left out. The plaque segmentation model
can thus never identify the plaque since it is missing altogether from the input. As
a result the plaque segmentation in our two-stage model is lower than the base and
dual decoder model.

6.4 Conclusion

Our work here shows the potential of dual and two-stage methods for vessel and

plaque segmentation in carotid artery ultrasound images. This is an important first

step in creating a system that can independently evaluate carotid ultrasounds.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This dissertation investigates adversarial robustness with 01 loss models and inves-

tigates novel convolutional neural net system for vascular ultrasound images. First the

dissertation presents SCD for 01 loss and its sensitivity to adversarial attacks. Second,

the dissertation presents a sign activation networks with SCD and its ensembling

model, and their sensitivity to boundary blackbox attack. Third, this dissertation

tackles three important segmentation problems for vascular ultrasound images: (1)

vessel segmentation in internal carotid artery, (2) vessel segmentation in the entire

carotid system, and (3) vessel and plaque segmentation in the entire carotid system.

In the future work, further experimental work for SCD 01 loss is required,

such as more experiments on other image benchmarks and more bootstraps. This

dissertation shows the potential of dual and two-stage methods for vessel and plaque

segmentation in carotid artery ultrasound images. In the future, more works will be

investigated, especially the two-stage methods. This dissertation tackles the problems

on vascular ultrasound images. In the future, other medical data will be studied, such

as vascular ultrasound video.
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[70] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. D. McDaniel.
Ensemble adversarial training: Attacks and defenses. In Proceedings of 6th
International Conference on Learning Representations, ICLR, 2018.

[71] D. Vukadinovic, T. van Walsum, S. Rozie, T. de Weert, R. Manniesing, A. van der
Lugt, and W. Niessen. Carotid artery segmentation and plaque quantification
in cta. In Proceedings of IEEE International Symposium on Biomedical
Imaging: From Nano to Macro, pages 835–838, 2009.

[72] L. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, L. Daniel, D. Boning, and
I. Dhillon. Towards fast computation of certified robustness for relu networks.
In Proceedings of International Conference on Machine Learning, pages
5276–5285, 2018.

[73] D. Wu, Y. Wang, S.-T. Xia, J. Bailey, and X. Ma. Skip connections matter: On the
transferability of adversarial examples generated with resnets. arXiv preprint
arXiv:2002.05990, 2020.

[74] C. Xie, Z. Zhang, Y. Zhou, S. Bai, J. Wang, Z. Ren, and A. L. Yuille. Improving
transferability of adversarial examples with input diversity. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
2730–2739, 2019.

[75] M. Xie, Y. Li, Y. Xue, R. Shafritz, S. A. Rahimi, J. W. Ady, and U. W.
Roshan. Vessel lumen segmentation in internal carotid artery ultrasounds with
deep convolutional neural networks. In Proceedings of IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), pages 2393–2398,
2019.

[76] M. Xie, Y. Xue, and U. Roshan. Stochastic coordinate descent for 0/1 loss and its
sensitivity to adversarial attacks. In Proceedings of 18th IEEE International
Conference on Machine Learning and Applications - ICMLA 2019, pages 299–
304, 2019.

[77] Y. Xue, M. Xie, F. G. Farhat, O. Boukrina, A. Barrett, J. R. Binder, U. W. Roshan,
and W. W. Graves. A fully 3d multi-path convolutional neural network with
feature fusion and feature weighting for automatic lesion identification in brain
mri images. Submitted, 2019.

[78] Y. Xue, M. Xie, and U. Roshan. On the transferability of adversarial examples
between convex and 01 loss models. In IEEE International Conference on
Machine Learning and Applications, 2020.

80



[79] Y. Xue, M. Xie, and U. Roshan. Towards adversarial robustness with 01 loss
neural networks. In IEEE International Conference on Machine Learning and
Applications, 2020.

[80] H. Zhang, Y. Yu, J. Jiao, E. Xing, L. El Ghaoui, and M. Jordan. Theoretically
principled trade-off between robustness and accuracy. In Proceedings of
International Conference on Machine Learning, pages 7472–7482, 2019.

[81] Q. Zhang, H. Qiao, J. Dou, B. Sui, X. Zhao, Z. Chen, Y. Wang, S. Chen,
M. Lin, B. Chiu, et al. Plaque components segmentation in carotid artery on
simultaneous non-contrast angiography and intraplaque hemorrhage imaging
using machine learning. Magnetic Resonance Imaging, 60:93–100, 2019.

[82] R. Zhou, A. Fenster, Y. Xia, J. D. Spence, and M. Ding. Deep learning-based
carotid media-adventitia and lumen-intima boundary segmentation from
three-dimensional ultrasound images. Medical Physics, 2019.

[83] R. Zhou, W. Ma, A. Fenster, and M. Ding. U-net based automatic carotid plaque
segmentation from 3d ultrasound images. In Medical Imaging 2019: Computer-
Aided Diagnosis, volume 10950, page 109504F. International Society for Optics
and Photonics, 2019.

[84] A. P. Zijdenbos, B. M. Dawant, R. A. Margolin, and A. C. Palmer. Morphometric
analysis of white matter lesions in mr images: method and validation. IEEE
Transactions on Medical Imaging, 13(4):716–724, 1994.

81


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Stochastic Coordinate Descent For 01 Loss
	Chapter 3: Boundary Blackbox Attack
	Chapter 4: Vessel Segmentation in Internal Carotid Artery Ultrasounds Images
	Chapter 5: Vessel Segmentation in Carotid Artery Ultrasounds Images
	Chapter 6: Vessel and Plaque Segmentation in Carotid Artery Ultrasounds Images
	Chapter 7: Conclusions and Future Work
	References

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)




