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ABSTRACT

MODELING AND DESIGN OPTIMIZATION FOR MEMBRANE
FILTERS

by
YiXuan Sun

Membrane filtration is widely used in many applications, ranging from industrial

processes to everyday living activities. With growing interest from both industrial

and academic sectors in understanding the various types of filtration processes in

use, and in improving filter performance, the past few decades have seen significant

research activity in this area. Experimental studies can be very valuable, but

are expensive and time-consuming, therefore theoretical studies offer potential as

a cost-effective and predictive way to improve on current filter designs. In this work,

mathematical models, derived from first principles and simplified using asymptotic

analysis, are proposed for: (1) pleated membrane filters, where the macroscale

flow problem of Darcy flow through a pleated porous medium is coupled to the

microscale fouling problem of particle transport and deposition within individual

pores of the membrane; (2) dead-end membrane filtration with feed containing

multiple species of physicochemically-distinct particles, which interact with the

membrane differently; and (3) filtration with reactive particle removal using porous

media composed of chemically active granular materials. Asymptotically-simplified

models are used to describe and evaluate the membrane performance numerically

and filter design optimization problems are formulated and solved for a number

of industrially-relevant scenarios. This study demonstrates the potential of such

modeling to guide industrial membrane filter design for a range of applications

involving purification and separation.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

At the most basic level, membrane filtration is a process of separation, whereby

undesired/desired particles are removed/retained from a fluid suspension (known as

a feed) by passing through a porous membrane (known as a filter). Membrane filters

are commonly used in many applications and feature in many aspects of daily life,

such as drinking water production [25], beer purification [65], vaccine purification

[16], food and dietary supplement production [69], natural gas purification [44] and

many more. With growing interest from both industrial and academic sectors in

understanding the various types of filtration processes in use, and improving filter

performance, the past few decades have seen many publications in this area, including

excellent review articles that cover various aspects of membrane filtration [27, 62, 64,

66]. Nonetheless, with the majority of publications on the experimental side, simple

and readily-applicable “first principles” mathematical models, which can explain and

predict membrane filter performance, and guide improvements to membrane filter

design, are still lacking.

Since the function of the membrane filter is to remove particles from the feed

suspension, fouling of the membrane is an unavoidable part of successful filtration,

and considerable research effort has been devoted to understanding the fouling mecha-

nisms, with a view to elongating the useful life-span of a filter [7,8,14,17,24,26,45,48].

Four basic fouling mechanisms have been identified in the literature (see, e.g. Grace

[18] or Hermia [21]), often characterized as follows: (i) standard or adsorptive blocking

(particles smaller than membrane pores enter and deposit on the wall to shrink the

pores); (ii) complete blocking (particles larger than pores deposit at a pore entrance

on the membrane surface and block the pore); (iii) intermediate blocking (as for
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complete blocking except that pores are not completely sealed); and (iv) cake filtration

(once the pores on the membrane surface are blocked, further particles stack up on

the membrane surface, forming a “cake layer”). Useful predictive filtration models

must be able to describe satisfactorily one or more of these fouling mechanisms, and

therefore must account for transport and deposition of particles on or within the

membrane pores, either from a continuum (track particle concentrations) or discrete

(track individual particles) perspective.

Thanks to recent advances in the development of fast computational tools,

numerical solution of the full Navier-Stokes equations and tracking of individual

particles in the feed has become a feasible approach for modeling membrane filtration

[37]. Several such computational fluid dynamics (CFD) studies, particularly focusing

on particle deposition (fouling) on the membrane, have been performed [4,37,45,67].

Such models may be very detailed, capable of tracking hundreds of millions of

particles of arbitrary type and able to reproduce certain experimental data well.

However, the computational demand for application-scale scenarios is extremely high;

implementation of the CFD method is highly non-trivial and time consuming, and

development of simpler models, which can treat different particle populations in an

averaged sense, is desirable.

Membrane filter design can vary widely depending on the application, in terms

of both internal pore structure (microscale design), and how the membrane is deployed

(macroscale design). Although design improvements can be arrived at by trial and

error, making prototypes and testing them can be costly and the process can be

hard or impossible to systematize [64]. With this in mind, we are motivated to

derive simplified mathematical models to describe the flow through and fouling of

membrane filters, which can be used to evaluate filtration performance and ultimately

to optimize the filter design. In this study, we focus primarily on the effect that the

membrane’s microstructure has on filtration performance; in particular, the effects of
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varying pore size in the depth of the filter membrane. In order to keep the number of

adjustable parameters to a minimum and to obtain clearer predictions for the impact

of membrane design on filtration performance, we choose to focus on a single fouling

mode: standard (or adsorptive) blocking.

In earlier work [51], Sanaei and Cummings proposed a simplified model for

standard blocking, derived from first principles, and consistent with earlier models

and experiments (e.g., Iwasaki [31] and Ison & Ives [29]). In this dissertation, we

extend that work in several important ways. We study membranes of simple structure,

where pores of circular cross-section connect upstream and downstream membrane

surfaces directly with no branching (so-called “track-etched” type membranes [3]),

and we focus on how axial variations in pore shape (in the direction transverse

to the membrane) influence filtration performance. We model membrane filtration

focusing on standard blocking with quantitative tracking of particle concentration

in the filtrate. This model allows for evaluation of the filtration performance of

a given membrane in terms of its pore shape and particle capture characteristics,

and for optimization of filtration of a homogeneous feed of specified composition. We

study how the feed composition, and the differences in membrane–particle interaction

characteristics, affect the filtration process, and we formulate a range of relevant

optimization problems to determine the optimum pore shape (within a given class of

shape functions) to achieve desired filtration objectives. We also propose a new model

that focuses on reactive particle removal via a chemically-active granular porous

medium, with a feed containing multiple species of particles.

1.2 Outline

The remainder of this dissertation is organized as follows. In Chapter 2, we focus

on membrane filtration using a pleated membrane filter with a homogeneous feed

solution. In Section 2.1 we present a brief overview of the chapter, before describing
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the problem setup in detail in Section 2.2. In Section 2.3, we present the detailed

mathematical model, which couples the macro-scale problem of flow through a pleated

porous membrane to the micro-scale problem of how particles transported by the flow

are deposited within membrane pores, changing the pore structure. In Section 2.4, we

formulate an optimization problem for the microscale (pore-level) membrane design,

also considering the effect of inhomogeities in membrane pore structure (inevitable

in membrane production), and present results; and in Section 2.5, we summarize

our main conclusions and discuss some ideas for future investigation. The material

presented in Chapter 2 was published in Physical Review Fluids [59].

In Chapter 3, we focus on dead-end membrane filtration (all flow perpendicular

to the membrane) with feed containing multiple species of particles that have similar

but differentiable physico-chemical properties. We present a brief overview of the

chapter in Section 3.1 and describe the problem setup in detail in Section 3.2. We

present a detailed two-species filtration model in Section 3.3 focusing attention on the

filtration process within a representative pore of the membrane. We then outline a

number of hypothetical filtration scenarios with two species of particles and formulate

industrially-relevant optimization problems in Section 3.4. Although our optimization

criteria as defined rely on simulating filtration over the entire useful lifetime of the

filter (Section 3.4.3), we are able to demonstrate the feasibility of using data from the

very early stages of our simulations as a reliable predictor of later behavior, offering

a much faster route to optimization, discussed in Section 3.4.4. Sample optimization

results are presented in Section 3.5. The material presented in Chapter 3 has been

submitted for publication [58].

In Chapter 4, we focus on reactive particle removal using a chemically active

porous medium (e.g., chemical coated granular material) as the filter. We describe

the problem setup in Section 4.2 and propose model equations in Section 4.3. We

demonstrate the model’s applicability in Section 4.4 by choosing parameters that
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provide a good fit to experimental data from a study by Acheampong et al. [1]

pertaining to removal of contaminants from gold mining wastewater, which contains

multiple species of toxic heavy metal ions and cyanide. Discussion of these preliminary

results is provided in Section 4.5.

Finally, in Chapter 5 we summarize the main results of this dissertation, the

conclusions to be drawn, and the possible directions for future work.
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CHAPTER 2

MODELING AND DESIGN OPTIMIZATION FOR PLEATED
MEMBRANE FILTERS

2.1 Overview

Pleated membrane filters, which offer larger surface area to volume ratios than

unpleated membrane filters, are used in a wide variety of applications. However, the

performance of the pleated filter, as characterized by a flux-throughput plot, indicates

that the equivalent unpleated filter provides better performance under the same

pressure drop. Earlier work (Sanaei & Cummings 2016 [53]) used a highly-simplified

membrane model to investigate how the pleating effect and membrane geometry

affect this performance differential. In this work, we extend this line of investigation

and use asymptotic methods to couple an outer problem for the flow within the

pleated structure to an inner problem that accounts for the pore structure within the

membrane. We use our new model to formulate and address questions of optimal

membrane design for a given filtration application.

2.2 Introduction

At the most basic level, membrane filtration is a process of separation, whereby

undesired/desired particles are removed from a fluid suspension (known as a feed)

by passing through a porous membrane. Membrane filters are commonly used

in many applications and feature in many aspects of daily life, such as drinking

water production [25], beer purification [65], vaccine purification [16], food and

dietary supplement production [69], natural gas purification [44] and many more.

With growing interest from both industrial and academic sectors in understanding

the various types of filtration processes in use, and improving filter performance,

the past few decades have seen many publications in this area, including excellent
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review articles that cover various aspects of membrane filtration (see, for example,

[27, 62, 64, 66]). Nonetheless, with the majority of publications on the experimental

side, simple and readily-applicable “first principles” mathematical models, that

can explain and predict membrane filter performance, and guide improvements to

membrane filter design, are still lacking.

Since the function of the membrane filter is to remove particles from the feed

suspension, fouling of the membrane is an unavoidable part of successful filtration,

and considerable research effort has been devoted to understanding the fouling

mechanisms (see, for example, [7, 8, 14, 17, 24, 26, 45, 48], among many others), with

a view to elongating the useful life-span of a filter. Four basic fouling mechanisms

have been identified in the literature (see, e.g., [18,21]), often characterized as follows:

(i) standard or adsorptive blocking (particles smaller than membrane pores enter and

deposit on the wall to shrink the pores);(ii) complete blocking (particles larger than

pores deposit at a pore entrance on the membrane surface and block the pore); (iii)

intermediate blocking (as for complete blocking except that pores are not completely

sealed); and (iv) cake filtration (once the pores on the membrane surface are blocked,

further particles stack up on the membrane surface, forming a “cake layer”).

In practice, it is rare that an entire filtration process is described well by a

single fouling mechanism due to the complex composition of the feed and convoluted

interaction between the feed and the porous medium (the filter). Often data

indicate that two or more mechanisms are in operation simultaneously or sequentially

(e.g., [63]), and several authors have proposed models to account for multiple fouling

modes. For example, [24], [7], and [53] each proposed different models to account

for two distinct fouling mechanisms; and [14] published a model to account for three

sequential fouling mechanisms. In this last work [14], the pore is first constricted

by small particles (standard blocking dominates); then, once the pore is sufficiently

small, further particles are sieved out (complete blocking dominates); and finally a
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cake layer is formed that dominates the end stage of the filtration process. For an

appropriate choice of model parameters, a good agreement with experimental results

was obtained.

Although inclusion of more fouling mechanisms may give a more complete

picture, this comes at the expense of a larger number of model parameters that must

be determined and explored. Moreover, it is often the case that a single fouling mode

can dominate the majority of the filtration process, for a sufficiently simple feed.

For example, [5] developed a single-mode fouling model considering only complete

blocking within a membrane modeled as a layered network of pores, connected at

layer junctions. Pore sizes in each layer are drawn from a probability distribution,

and particle transport through the pore network also follows a specified probabilistic

model, with certain (physically-motivated) restrictions. This model shows reasonable

agreement with an experimental dataset. Though a very different model compared

to the type we shall derive and study, it yields results that have certain features in

common with ours, and we will return to this work later.

Membrane filter design can vary widely depending on the application, in terms

of both internal pore structure (microscale design), and how the membrane is deployed

(macroscale design). In many applications it is desirable to have a large membrane

area available to maximize throughput, while simultaneously keeping the volume of

the filtration unit to a minimum. Pleated membrane filters are commonly used to

achieve this tradeoff, and these are the type of filters that we consider in this chapter

(though many aspects of our modeling are more generally applicable). Pleated filters

may have different geometries: some are cylindrical (see Figure 2.1(a)); while some

are rectangular (Figure 2.1(b)). In most cases the membrane is sandwiched between

two supporting layers and the resulting three-layer structure is folded (pleating) and

fixed (e.g., via heating, [10]) to give permanence to the shape and structure of the

pleated filter. Several key design factors used in characterization of pleated filters
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have been identified in the literature, and a detailed description can be found in,

e.g., [34], [66] and [10]. In our study, we focus on pleated filters with high pleat packing

density (PPD), in which it is assumed that air gaps between adjacent pleats are

negligible. Earlier work [53] used a highly-simplified membrane model to investigate

how the pleating effect and membrane geometry affect the performance. In this

work, we extend this line of investigation by using asymptotic methods to couple an

outer problem for the flow within the pleated structure to a detailed inner problem

that accounts for the pore structure (shape) within the membrane, and also by

incorporating a model for the transport of small particles that lead to adsorptive

fouling.

Although design improvements can be arrived at by trial and error, making

prototypes and testing them can be costly and the process can be hard or impossible

to systematize [64]. With this in mind, we are motivated to set up a simplified

mathematical model to describe the flow through and fouling of pleated membrane

filters, which can be used to evaluate filtration performance and ultimately to optimize

the design. In this study, we focus on the effect that the membrane’s microstructure

has on the filtration performance; in particular, the effects of varying pore size in the

depth of the filter membrane. In order to keep the number of adjustable parameters

to a minimum and to obtain clearer predictions for the impact of membrane design

on filtration performance, we choose to focus on a single fouling mode: standard (or

adsorptive) blocking. In Section 2.3, we present the mathematical model; in Section

2.4, we formulate the optimization problem for the microscale membrane design and

present results; and in Section 2.5, we summarize our conclusions and discuss some

ideas for future investigation.
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Figure 2.1 Sketches of (a) a cylindrical pleated membrane filter cartridge; (b) a

rectangular pleated membrane filter cartridge. Blue arrows indicate the flow direction.

2.3 Mathematical Modeling

2.3.1 Modeling assumptions: outline

In this study, we will focus ostensibly on the rectangular pleated membrane filter,

though if one neglects the curvature of the cylindrical filter cartridge then our results

are quite generally applicable. As noted in the Introduction, we consider pleated

filters with high pleat packing density (PPD), so that we may assume that all flow

regions are occupied by either porous support material or filter membrane, with no

air gaps. The pleat tip is defined to be the membrane fold on the inflow side, while

the pleat valley is the fold on the outflow side. Figure 2.2 indicates how we simplify

the geometry, first by neglecting dependence on the coordinate Z that runs parallel

to the pleat tips/valleys; and then (if considering the cylindrical cartridge) neglecting

the curvature of the cylinder. This reduces the problem to 2D in the (X, Y )-plane,

where X is the direction along the pleat (from tip to valley), and Y is perpendicular

to the membrane in each pleat (the azimuthal direction in the cylindrical cartridge).

We further simplify by neglecting the curvature at the pleat tip and valley, which

allows us to view each pleat as one of a periodic array of rectangles, indicated in the
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Figure 2.2 (a) Upper: Schematic, showing a few pleats. The region between the red

dashed lines indicates a single complete pleat, assumed to repeat periodically. The zoom-in

indicates the three-layer structure, with pale grey denoting the support layers and dark

grey the membrane layer (in reality much thinner than the support layers). Blue arrows

indicate the flow direction. Lower: A single pleat period, indicating how the geometry is

idealized in the model, with the same color coding as the zoom-in. (b) Simplified domain

(half the pleat) showing boundary conditions at inlet and outlet and schematic streamlines.

Symmetry is assumed about Y = ±H, and support layer plus membrane occupies the whole

space (no air gap). The zoom-in shows the membrane pore morphology.
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lower part of Figure 2.2(a). Symmetry of each rectangle (pleat) about the centerline

(Y = H) is assumed, which gives our simplified half-pleat domain, indicated in Figure

2.2(b).

We assume that Darcy’s law governs flow in both the support layers and the

filter membrane. Both are porous media, though the support material has a much

higher permeability (K) than that of the membrane (Km): K � Km; this will be

important in our asymptotic analysis later. We further assume a no-flux condition at

pleat tips and valleys, justified on the basis that both the support material and the

membrane there will be tightly compressed if PPD is high, so that these regions will

have much higher resistance than the main length of the pleat. Support permeability

K is assumed to be constant in both space and time, reflecting an assumption that

fouling of support layers (which are not designed to capture particles) does not occur:

the pores of these layers are much larger than those of the membrane filter. In general,

however, Km will vary in both time and space due to fouling: Km(X, T ). The fouling

occurs on a time scale much longer than the membrane transit time for the fluid,

justifying an assumption that the flow problem may be solved quasi-statically for the

instantaneous membrane permeability Km(X, T ). As the fouling progresses the pore

radii shrink and Km decreases (as explained below), which will in turn change the

pressure and velocity fields within the system.

The membrane has thickness D, the supporting layers have thickness H−D/2,

and the length from the pleat tip to pleat valley is L (also referred to as pleat depth in

the literature). The membrane occupies the region 0 ≤ X ≤ L, −D/2 ≤ Y ≤ D/2,

and feed passes through the pores in the negative Y -direction. In pleated filters

used in applications [64], the pleat depth is much larger than the membrane and

support layer thicknesses; and the membrane thickness is often much smaller than

the thickness of the support layer, i.e., L � H � D. We assume that each pore

traverses the membrane from upstream to downstream side without branching, is
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contained within a square prism of dimensions 2W×2W×D, and that the membrane

consists of a periodic array of such prisms (see the zoom-in Figure 2.2(b)). Pores are

modeled as slender tubes of circular cross-section, whose axis coincides with that of

the containing prism. The pore radius is denoted by A(X, Y, T ), allowing for variation

in both the plane (X) and the depth (Y ) of the membrane, as well as time (T ) due

to the fouling. This description is entirely appropriate for “track-etched” membranes

(in which pores are made by etching the nuclear tracks left by radiation [3]), but

may also be considered as a reasonable model for membranes with more general pore

structure in a depth-averaged sense. We also assume the pore-containing prism is

long and thin, i.e., W � D. The lengthscale separations W � D � L justify the

slender pore assumption (with slowly-varying radius in Y ), as well as our assumption

(implicit in the above) that pores are sufficiently numerous in the X direction that

they may be considered as continuously distributed in X, with radius A(X, Y, T ) also

continuously varying in X.

We assume the feed is a dilute suspension, which we treat as an incompressible

Newtonian fluid. We denote the concentration of particles (assumed identical and

much smaller than pore radii) in the fluid by C, with C ≡ C0 in the inflowing feed

solution. Consistent with the assumption of no fouling in the support layers, we take

C = C0 in the whole region [0, L] × [D/2, H]; C will vary in both space and time

within the membrane as adsorptive fouling occurs, as described below.

2.3.2 Governing equations

We study the case where flow through the pleated filter unit is driven by a constant

pressure drop P0, with no-flux conditions at pleat tips and valleys. With the further

assumptions of periodicity and symmetry within each pleat (indicated in Figure 2.2(a)

and outlined in Section 2.3.1), we can simplify the problem domain to be half of

the pleat (Figure 2.2(b)), with no flux (symmetry) boundary conditions imposed at
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Y = ±H. Based on the assumptions set out in Section 2.1, we model the flow in both

the supporting and the membrane layers with Darcy’s law. The velocity U = (U, V )

within the support layers is then given in terms of the pressure P (X, Y ) by

U = (U, V ) = −K

μ
∇P, ∇ = (∂X , ∂Y ), 0 ≤ X ≤ L, D/2 ≤ |Y | ≤ H. (2.1)

Incompressibility of the feed solution requires

∇ ·U = 0 ⇒ ∇2P = 0, 0 ≤ X ≤ L, D/2 ≤ |Y | ≤ H, (2.2)

within the support layers, under the stated assumption that support permeability K

does not vary spatially. We have the following boundary conditions on the pressure

within the support layers:

P+(0, Y ) = P0, P
+
X (L, Y ) = 0, P+

Y (X,H) = 0, (2.3)

P−
X (0, Y ) = 0, P−(L, Y ) = 0, P−

Y (X,−H) = 0, (2.4)

where we use ± superscripts to distinguish between quantities evaluated for Y ≷ 0,

respectively, on either side of the membrane.

As outlined in Section 2.1, we model membrane pores as a distribution of slender

tubes with circular cross-section spanning the membrane, of length D and radius

A(X, Y, T ). For our preliminary investigations, we assume that initially all pores

are identical (homogeneity in the plane of the membrane), with radius varying only

in the Y direction, A(X, Y, 0) = A0(Y ) (note, however, that with the X-dependent

pressure distribution and geometry, fouling will vary with respect to X and thus the

local pore radius A will depend on X for T > 0). With this membrane structure, it

is reasonable to assume that the Darcy flow through the membrane is approximately
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unidirectional, Um = (0, Vm).
1 Incompressibility then gives ∂Vm/∂Y = 0, with

Vm(X, T ) = −Km

μ

∂Pm

∂Y
, −D/2 ≤ Y ≤ D/2. (2.5)

Since the pressure gradient ∂Pm/∂Y is independent of Y , this equation may be

rewritten as

|Vm| = Km

μD

[
P+

∣∣
Y=D/2

− P−∣∣
Y=−D/2

]
, 0 ≤ X ≤ L, (2.6)

where continuity of the pressure between support layer and membrane at the

membrane boundaries was used. Here, the membrane permeability Km is related

to the local pore radius A by

Km(X, Y, T ) =
πA4(X, Y, T )

32W 2
, (2.7)

which follows from the Hagen-Poiseuille formula, see, e.g., [47] (recall that 2W is the

size of the pore-containing period box). Continuity of flux between the support layers

and membrane gives

|Vm| = K

μ

∂P+

∂Y

∣∣∣∣
Y=D/2

=
K

μ

∂P−

∂Y

∣∣∣∣
Y=−D/2

, 0 ≤ X ≤ L. (2.8)

The (cross-sectionally averaged) velocity of the fluid within the pore, Vp(X, Y, T ), is

related to the superficial Darcy velocity within the membrane, Vm(X, T ), by

4W 2Vm = πA2Vp. (2.9)

The local pore radius A (and hence the membrane permeability at that location)

changes in time due to the adsorptive fouling, modeled by accounting for particle

transport and deposition within pores. Following earlier work [51], we propose a

1For membranes that are not of this simple “track-etched” type, our additional lengthscale
assumption D � H � L helps justify this unidirectional flow approximation.
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simple advection and deposition model for the particle concentration C(X, Y, T )

within pores,

Vp
∂C

∂Y
= −Λ

C

A
, C(X,

D

2
, T ) = C0. (2.10)

This model comes from an asymptotic analysis of the full advection and diffusion

equation for a suspension of small particles passing through a slender tube; the

detailed justification can be found in [51]. The dimensional constant Λ measures

the strength of attraction between the particles and the pore wall that gives rise to

the deposition. The pore radius shrinks in response to the deposition: consistent with

Equation (2.10) we propose

∂A(X, Y, T )

∂T
= −ΛαC(X, Y, T ), A(X, Y, 0) = A0(Y ), (2.11)

for some constant α (proportional to the particle volume). This formulation with

A0(Y ) assumes that all pores in the membrane are identical initially. We will later

briefly consider initial pore profiles that can vary in the X-direction also, so as to

allow investigation of the possible effects of nonuniform pore size distribution in the

plane of the membrane.

2.3.3 Nondimensionalization & asymptotic analysis

2.3.3.1 Nondimensionalization. In order to identify and exploit asymp-

totic simplifications, we introduce the following scales and dimensionless variables.

Consideration of the support layers suggests the scales

(X, Y ) = (Lx,Hy), P±(X, Y, T ) = P0p
±(x, y, t), (2.12)
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Table 2.1 Approximate Dimensional Parameter Values [38]

Parameter Description Typical value

L Length of the pleat 1.3 cm

H Support layer thickness 1 mm

D Membrane thickness 300 μm

W Pore prism lateral dimension 2 μm (very variable)

P0 Pressure drop Depends on application

K Support layer permeability 4×10−11 m2 (very variable)

Km0 Representative membrane permeability 4×10−13 m2 (very variable)

Based on the Application, the Pore Size May Vary from 1 nm to 10 μm [66].

Table 2.2 Approximate Dimensionless Parameter Values (from Table 2.1)

Parameter Formula Typical value

ε H/L 0.077

δ D/H 0.3

Γ Km0/(Kε2δ) 5.53
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while consideration of the membrane filter leads to the remaining scalings,

Y = Dỹ, A(X, Y, T ) = Wa(x, ỹ, t), (2.13)

Km(X, Y, T ) = Km0km(x, ỹ, t), Pm(X, Y, T ) = P0pm(x, ỹ, t), (2.14)

Vm(X, T ) =
Km0P0

μD
vm(x, t), C(X, Y, T ) = C0c(x, ỹ, t). (2.15)

Time is scaled on the pore shrinkage timescale,

T =
W

ΛαC0

t. (2.16)

Note that we have introduced two scaled coordinates in the Y -direction: y in Equation

(2.12) and ỹ in Equation (2.13), relevant to the support layer and the membrane,

respectively. The chosen scalings lead naturally to two dimensionless length ratios:

ε = H/L, the aspect ratio of the pleat; and δ = D/H, the ratio of membrane thickness

to support layer thickness. Both will be assumed small in the following: ε � 1, δ � 1

(no further assumption is needed on the relative sizes of ε and δ). In Equation (2.15),

Km0 is a representative value for the initial membrane permeability. For simplicity,

we choose Km0 = πW 2/32, then Equation (2.7) gives the dimensionless membrane

permeability as

km(x, ỹ, t) = a4(x, ỹ, t). (2.17)

2.3.3.2 Darcy flow in supporting layers. The dimensionless governing

equations and boundary conditions in the supporting layers δ/2 ≤ |y| ≤ 1 are

ε2p+xx + p+yy = 0, δ/2 ≤ y ≤ 1, (2.18)

p+(0, y) = 1, p+x (1, y) = 0, p+y (x, 1) = 0, (2.19)

ε2p−xx + p−yy = 0, −1 ≤ y ≤ −δ/2, (2.20)

p−x (0, y) = 0, p−(1, y) = 0, p−y (x,−1) = 0, (2.21)
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where ε and δ are defined in Table 2.2, and we have suppressed the time dependence

with the understanding that the time taken for significant fouling of the membrane

to occur is much longer than that taken for fluid to transit the filter unit (note that

with this assumption, the fouling is the only unsteady process in our model). This

system is closed by enforcing flux continuity across the membrane, Equations (2.6)

and (2.8), giving

p+y |y=δ/2 = p−y |y=−δ/2 = −Γvm, (2.22)

where the dimensionless parameter Γ, defined by

Γ =
Km0

Kε2δ
, (2.23)

captures the relative importance of the resistance (inversely proportional to the

permeability) of the supporting material to that of the membrane, such that if

Γ � 1 the supporting material provides most of the resistance whereas if Γ � 1

the membrane provides most of the resistance. In our analysis we assume Γ is O(1)

(see Table 2.2 for a value for typical pleated filters).

2.3.3.3 Flow and fouling within the membrane. The dimensionless equa-

tion for Darcy flow through the membrane layer, defined by −1/2 ≤ ỹ ≤ 1/2, is:

vm = −km
∂pm
∂ỹ

= −a4
∂pm
∂ỹ

. (2.24)

With the incompressibility condition ∂vm/∂ỹ = 0, and the continuity of pressure at

the membrane surfaces, i.e., pm(x, 1/2) = p+(x, δ/2) and pm(x,−1/2) = p−(x,−δ/2),

we have

vm =
p−(x,− δ

2
)− p+(x, δ

2
)∫ 1

2

− 1
2

dỹ
a4

, (2.25)
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with p−, p+ determined by the support layer model outlined above. Note here the use

of the two different length scales, in the supporting layer (y = Y/H; numerator of

(2.25)) and within the membrane layer (ỹ = Y/D; denominator of (2.25)). Equation

(2.10) for the particle concentration c(x, ỹ, t) within the membrane becomes

vm
∂c

∂ỹ
= −λac, c(x,

1

2
, t) = 1, (2.26)

where the dimensionless deposition coefficient λ is given by

λ =
πμD2Λ

4WKm0P0

. (2.27)

The pore radius evolution Equation (2.11) becomes

∂a(x, ỹ, t)

∂t
= −c(x, ỹ, t), a(x, ỹ, 0) = a0(ỹ). (2.28)

2.3.3.4 Asymptotic solution. We seek asymptotic solutions for p± in the

distinguished limit Γ = O(1), ε � 1 by expanding p± in powers of ε as follows:

p+(x, y) = p+0 (x, y) + ε2p+1 (x, y) + · · · , p−(x, y) = p−0 (x, y) + ε2p−1 (x, y) + · · · , (2.29)

and substituting in Equations (2.18)–(2.21). This gives coupled Equations for p±0 and

p±1 ,

p0
±
yy = 0, (2.30)

p0
±
xx + p1

±
yy = 0, (2.31)

with boundary conditions

p+0 (0, y) = 1, p0
+
x (1, y) = 0, p0

+
y (x, 1) = 0, (2.32)

p−0 (1, y) = 0, p0
−
x (0, y) = 0, p0

−
y (x,−1) = 0, (2.33)

p+1 (0, y) = 0, p1
+
x (1, y) = 0, p1

+
y (x, 1) = 0, (2.34)

p−1 (1, y) = 0, p1
−
x (0, y) = 0, p1

−
y (x,−1) = 0. (2.35)
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From Equations (2.30)–(2.35), we obtain p±0 = p±0 (x) (independent of y but still

unknown), and

p1
+
y = (1− y)p0

+
xx, (2.36)

p1
−
y = −(1 + y)p0

−
xx. (2.37)

From Equations (2.22), (2.25), (2.36) and (2.37), we obtain the following coupled

system for p±0 ,

p0
+
xx(x) =

Γ̃(p+0 (x)− p−0 (x))∫ 1
2

− 1
2

dỹ
a4

, p+0 (0) = 1, p+0x(1) = 0, (2.38)

−p0
−
xx(x) =

Γ̃(p+0 (x)− p−0 (x))∫ 1
2

− 1
2

dỹ
a4

, p−0 (1) = 0, p−0x(0) = 0, (2.39)

where Γ̃ = Γ/(1− δ/2). Note that when we further assume δ � 1, we may drop the

tilde to give the leading order system summarized in §2.3.3.5 below.

2.3.3.5 Model summary. To summarize, we have the following asymptotic

model equations, valid to leading order in ε and δ:

p0
+
xx(x, t) =

Γ(p+0 (x, t)− p−0 (x, t))
rm(x, t)

, p+0 (0, t) = 1, p0
+
x (1, t) = 0, (2.40)

−p0
−
xx(x, t) =

Γ(p+0 (x, t)− p−0 (x, t))
rm(x, t)

, p−0 (1, t) = 0, p0
−
x (0, t) = 0, (2.41)

∂c(x, ỹ, t)

∂ỹ
=

λa(x, ỹ, t)c(x, ỹ, t)rm(x, t)

p+0 (x)− p−0 (x)
, c(x,

1

2
, t) = 1, (2.42)

∂a(x, ỹ, t)

∂t
= −c(x, ỹ, t), a(x, ỹ, 0) = a0(ỹ), (2.43)

where rm(x, t), defined as

rm(x, t) =

∫ 1
2

− 1
2

dỹ

a4(x, ỹ, t)
, (2.44)

represents the dimensionless membrane resistance at location x and time t. Model

parameters Γ and λ are defined in Equations (2.23) and (2.27).
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2.3.3.6 Method of solution. From Equations (2.40) and (2.41), we have

p0
+
xx(x, t) = −p0

−
xx(x, t). Integrating twice with respect to x gives an expression

for p−0 in terms of p+0 ,

p−0 (x, t) = −p+0 (x, t) + c1(t)x+ c2(t), (2.45)

for some c1(t) and c2(t) (which are independent of x, but vary in time as fouling

occurs). By substituting Equation (2.45) into Equation (2.38) we obtain a single

equation for p+0 containing these two arbitrary functions of time,

rm(x, t)p0
+
xx(x, t)− 2Γp+0 (x, t) = −Γ(c1(t)x+ c2(t)), (2.46)

which must be solved subject to the four boundary conditions

p+0 (0, t) = 1, p+0x(0, t) = c1(t), p+0 (1, t) = c1(t) + c2(t), p+0x(1, t) = 0. (2.47)

Hence, with p+0 , c1 and c2 determined, we have the leading-order solution for the

pressure within the support layers (p−0 can then be determined from Equation (2.45)).

To solve the equations numerically, we discretize Equations (2.42), (2.43) and

(2.46) in time and space. At each time step, we need to solve Equation (2.46) subject

to the boundary conditions (2.47). The initial pore profile a0(ỹ) is specified, so we can

calculate the initial membrane resistance rm defined in Equation (2.44), and hence

solve Equation (2.46) at t = 0 to obtain the initial (leading order) pressure distribution

within the support layers. With this and the initial pore profile we can solve Equation

(2.42) to calculate the initial particle concentration c within the membrane, and hence

solve Equation (2.43) to obtain the pore profile a at the next time step. This allows

us to find the membrane resistance rm at the new time step, and the above process

repeats. We continue to solve the system until pore closure occurs at final time tf ,

defined to be when the flux decreases below a preset small number.2

2In the literature, flux falling to 10% of the initial value is commonly used as a stopping
criterion for filtration, on the practical grounds that a filter would be cleaned or discarded
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Note that even though pore profiles are non-uniform in x during the evolution

(due to the pressure gradients in x that lead to differential fouling), pore closure

ultimately occurs uniformly in x along the pleat. This is because if pores at

one x-location experience greater fouling at some time, the membrane resistance

rm at that location will be higher, so that flow is diverted to x-locations with

lower resistance. These locations subsequently undergo increased fouling, leading

to increased resistance. The net effect of this flow redistribution via resistance is that

ultimately pores close uniformly in x along the pleat.

2.4 Results and Performance Optimization

2.4.1 Key definitions for performance evaluation

To evaluate filter performance and to carry out design optimization, we first define

some key quantities:

F(t) :=

∫ 1

0

−vm(x, t)dx , (2.48)

J (t) :=

∫ t

0

F(τ)dτ . (2.49)

F(t) is dimensionless flux, and J (t) is dimensionless throughput. We note for future

reference that the dimensional flux and throughput F and J are related to their

dimensionless equivalents by the following scalings, based on Equations (2.12), (2.15)

and (2.16):

F (T ) =
Km0P0L

μD
F(t), (2.50)

J(T ) =
Km0P0LW

αC0ΛμD
J (t). (2.51)

once the flux drops to this level, see, e.g., [66]. In our simulations and optimization, for
simplicity we run simulations until the dimensionless flux is close to zero (10−3).
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We will return to these definitions when we discuss variation of the deposition

parameter λ. Following earlier work (see, e.g., [24]), we plot F versus J as one

characterization of membrane performance in filtration. In our simple filtration

scenario, it is desirable to keep flux high for as long as possible, while achieving a large

total throughput over the filter lifetime, provided the particle removal requirement

is satisfied. The instantaneous x-averaged particle concentration at the downstream

side of the membrane ỹ = −1/2, cavg(t), another important physical quantity when

considering the particle removal capability of the membrane, is defined as:

cavg(t) =

∫ 1

0
−vm(x, t)c(x,−1

2
, t)dx

F(t)
. (2.52)

This quantity represents the averaged particle concentration in the filtrate3, sampled

at any given time. We also monitor the accumulated particle concentration of the

filtrate, cacm(t), defined as:

cacm(t) =

∫ t

0

∫ 1

0
−vm(x, τ)c(x,−1

2
, τ)dxdτ

J (t)
. (2.53)

This quantity represents the particle concentration of the accumulated filtrate at any

given time (suppose all the filtrate is collected in a well-mixed jar as the filtration

progresses, then cacm(t) is the particle concentration of the collected filtrate in the jar

at time t).

2.4.2 Formulating the optimization problem

Although we can predict the performance for any given initial pore profile distribution

using our model Equations (2.40)–(2.43), a question of greater interest is to find

the optimized pore profile for any given filtration objective and operating conditions

(referred to as the objective or cost function and constraints, respectively, in the

optimization literature). For our case, we consider the optimization process as finding

3Note that “filtrate” here refers to the feed that has passed through the filter.
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the pore profile that gives the highest total throughput J (tf) ((2.49) evaluated at tf)

while maintaining the initial particle removal threshold R above a certain percentage

at time t = 0 (cavg(0) ≤ 1 − R/100). In our example simulations that follow, the

particle removal threshold is set at R = 99%, or R = 99.9%.

The general optimization problem is challenging (it is in general not convex,

and the searching space is infinite dimensional), even for the simple model presented

here. We here present results for optimizing only within the limited class of initial

pore profiles a0(ỹ) represented in terms of (low-degree) polynomials. We vary the

coefficients of polynomials to find the values that maximize J (tf) while satisfying

the particle removal threshold constraint. We used the MultiStart algorithm with

fmincon as local solver from the MATLAB R© Global Optimization toolbox for this

optimization. MultiStart uses uniformly-distributed or user-supplied start points

within the searching domain to perform repeatedly gradient descent to find local

minimizers of the cost function. The user has control over the number of searching

points (start points) the MultiStart algorithm uses for running the local solver.

After MultiStart reaches the stopping criterion, the algorithm creates a vector of

GlobalOptimSolution objects, which contains the global minimum of the objective

(cost) function and the minimizer that gives this global minimum (here, the optimal

coefficients of the polynomial describing the pore profile). In our case, the cost

function is defined as the negative of J (tf) (found by evaluating Equation (2.49)

at the pore closure time tf) provided neither the particle removal threshold constraint

nor the physical constraint (pore size cannot exceed the dimensions of the containing

box or be negative, i.e., 0 < a ≤ 1) is violated; the cost function takes value 1 if the

physical constraint is violated and it takes value 2 if the particle removal threshold
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constraint is violated:4

Cost function =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− J (tf) if no constraint is violated,

1 if physical constraint is violated,

2 if threshold constraint is violated.

(2.54)

2.4.3 Simulation results for the optimization

Since fouling is an integral part of the filtration process, any factors that influence

fouling will automatically impact the optimization. Three principal factors are iden-

tified in the literature as affecting fouling [62]: (i) feed characteristics, (ii) membrane

properties and (iii) operational conditions. These factors are all represented in our

model parameter λ (2.27), which depends on μ (feed viscosity; feed characteristics);

Λ (the particle/pore attraction coefficient, a function of both feed characteristics

and membrane properties); D, W , Km0 (membrane thickness, size of pore-containing

box, membrane permeability; membrane properties); and P0 (applied pressure drop;

operational conditions). Larger values of λ indicate a system with superior particle

capture efficiency: particles are more easily captured by the membrane compared to

systems with smaller λ values. We present results for two values: λ = 0.1 and λ = 1.

The model parameter Γ in Equation (2.23) also characterizes certain membrane

properties, but throughout our simulations we hold its value fixed (Table 2.2).

Depending on which physical quantity induces the change in λ, see Equation

(2.27), a scaling factor for the dimensionless flux and throughput, F and J , may be

necessary to make direct performance comparisons between simulations with different

λ-values, see Equations (2.50), (2.51). For example, if a factor of 10 increase in the

dimensional deposition coefficient Λ induces the change from λ = 0.1 to λ = 1, then

the dimensionless flux for λ = 1 must be decreased by a factor of 10 when comparing

with the dimensionless flux for λ = 0.1 to give a proper comparison. However, if

4The physical constraint is checked first. The threshold constraint will not be checked if
the physical constraint is violated already.
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λ is changed via increasing membrane thickness D and pressure P0 by the same

factor, while keeping Km0P0L/(μD) and Km0P0LW/(μDαC0Λ) constant, then the

dimensionless plots as presented here will be a proper comparison.

Figure 2.3 shows results for the optimization procedure outlined in §2.4.2 above.
Optimization is carried out for initial pore profiles a0(ỹ) within the classes of linear,

quadratic and cubic polynomials in ỹ (distinguished by the linestyles), with the

particle removal threshold constraint fixed at R = 99%. As one would expect,

increasing the order of the polynomial that describes the initial pore profile leads

to increased throughput J , since we are optimizing over a larger function class.

However, gains are minimal between the quadratic and cubic cases, indicating (a)

rapid convergence towards the global optimum, and (b) that optimizing over low-order

polynomials (e.g., quadratics) may be sufficient for practical purposes.

Results for λ = 0.1 (blue curves), and λ = 1 (green curves) are shown, for a total

of six optimized scenarios. Figure 2.3(a) shows the F -J curves for the membrane

with the optimized pore profiles in all six cases. Figure 2.3(b) shows a magnified

version of these plots for λ = 0.1, which are difficult to distinguish in (a). We observe

that for fixed particle removal threshold (R = 99%), increasing the dimensionless

particle retention coefficient λ gives higher total dimensionless throughput. To put

these results in context, consider the two specific scenarios outlined above. In the first,

if λ is changed by changing Λ, then in dimensional terms the two scenarios would

give rather comparable outcomes in terms of J (tf). However, the flux for the larger

λ-value is always significantly higher, indicating that the filtration process would be

of much shorter duration. This can be explained by the fact that a stickier membrane

can remove the same fraction of particles with much larger pores, admitting a larger

flux. The larger flux will lead to faster fouling, leading to a shorter filtration time to

obtain the same total throughput (which in most applications would be considered

desirable). In the second scenario λ is changed by changing both membrane thickness
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D and driving pressure P0 by the same factor. Here the dimensionless F - J plots

may be directly compared, and we see that the larger λ-value is clearly superior. Two

competing factors are at play here: on the one hand driving pressure is higher, which

favors higher flux; but on the other hand the increased membrane thickness imparts

higher system resistance, tending to lower the flux. The increased membrane depth

allows the particle removal requirement to be satisfied with considerably larger pores,

however, so that the net effect of the increased pressure outweighs that of the thicker

membrane, leading to much higher flux and throughput over the filtration duration.

Figures 2.3(c) and (d) show the instantaneous and accumulated particle

concentrations in the filtrate, cavg and cacm, respectively, versus throughput J , for the

corresponding optimized membranes (note that J is a monotonic increasing function

of time t with J (0) = 0, so the same trends will be observed as when cavg is plotted

against time t). These figures confirm that the particle removal constraint is met

precisely at the start of the filtration, as one would expect. However, in Figure 2.3(c)

we observe that the averaged particle concentration for λ = 0.1 (blue curves) increases

for a certain period of time before decreasing again. This concentration increase was

also observed in the corresponding accumulated particle concentration plot in Figure

2.3(d). This behavior is undesirable for particle removal applications: users would like

to be assured that particle retention by the membrane will not deteriorate during the

course of filtration. To the best of our knowledge this phenomenon was not observed

in earlier models of adsorptive fouling; however, it has been reported experimentally

(e.g., [32,41]) and in models of fouling by total blocking [5]. This issue will be further

discussed in the Conclusions. Observe also that the case λ = 1 leads to a much more

dilute concentration of impurities in the filtrate, evidenced by the lower value of cacm

at the conclusion of the filtration (Figure 2.3(d)). Figures 2.3(e) and (f) show the

zoom-in of the λ = 0.1 results from Figures 2.3(c) and (d), respectively, for better

visibility.
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Figure 2.3 Results with particle removal threshold R fixed at 99%, λ = 0.1 in blue, and

λ = 1 in green, for optimal pore profiles from the classes of linear, quadratic and cubic

polynomials: (a) Flux-throughput (F- J ) plots for all cases; (b) Zoomed flux-throughput

(F- J ) plot for λ = 0.1; (c) Instantaneous averaged particle concentration cavg vs.

throughput J ; (d) Accumulated average particle concentration cacm vs. throughput J ;

(e) Zoom of the λ = 0.1 results from (b); (f) Zoom of the λ = 0.1 results from (d).

29



Different applications may require different particle removal thresholds R. In

Figure 2.4 we explore how changing R affects the optimized results, with λ fixed at λ =

1. Figure 2.4(a) shows the F - J plots for three optimized membranes (again with pore

profiles optimized over the classes of linear, quadratic, and cubic polynomials), for

R = 99% (green; these curves are the same as the green curves in Figure 2.3(a)) and

R = 99.9% (black). It is observed that if we insist on removing more particles (R =

99.9%), we reduce the instantaneous flux and total throughput. This makes sense

since the stricter requirement for particle removal (while keeping λ fixed) necessitates

that pores be narrower to reduce the number of particles that can pass through the

membrane, which decreases both F and J (tf). Figure 2.4(b) shows the averaged

instantaneous particle concentration cavg versus throughput J in the filtrate for the

corresponding optimized profiles, showing that again the particle removal thresholds

are met precisely at t = 0 (the green curves for R = 99% are the same as those in

Figure 2.3(c)). Figure 2.4(c) shows the zoom-in of these plots for R = 99.9%, since

these curves are hard to distinguish in Figure 2.4(b). This zoomed plot reveals that

once again cavg may increase over the course of the filtration, suggesting that a high

particle retention requirement may lead to the risk of decreased particle retention

capability later on. Figure 2.4(d) shows the accumulated particle concentration cacm

in the filtrate for the optimized profiles with the higher removal threshold R = 99.9%.

Again, the deterioration in particle retention over time is apparent.

For completeness, Figure 2.5 illustrates typical pore evolution during the

filtration at different x-locations along the pleat, using the optimized linear pore

profile obtained with λ = 1, R = 99%. The evolution of six selected pores is shown, in

cross-section (recall that the pores as modeled are three dimensional; see the schematic

in Figure 2.2(b)). The red dashed line indicates the boundary of the pore-containing

box. The blue lines in Figure 2.2(a) indicate the optimal (linear) pore walls, and in

Figures 2.2(b,c,d) the increasing blue area indicates the particles that have deposited
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(fouling) on the pore walls shrinking the pore radius. As explained earlier, pore

closure is observed to be a self-leveling process: at the final time, all pores close

simultaneously. Figure 2.5(e) shows an experimental image from a real track-etched

membrane, showing good qualitative agreement with our simulations. In addition,

we note that (though it may not be obvious from Figure 2.5) for simulations such

as these, where there is no x-variation in the initial pore profiles, the evolving pore

profiles retain symmetry about x = 1/2 (the point mid-way between pleat tips and

valleys), with a(x, ỹ, t) = a(1 − x, ỹ, t) for 0 ≤ x ≤ 1, −1/2 ≤ ỹ ≤ 1/2, 0 ≤ t ≤ tf .

In Appendix A, we demonstrate that this is true more generally, with initial pore

profile distributions symmetric about x = 1/2 retaining this symmetry throughout

the evolution.

2.4.4 Simulation results: Pore size variability

Our investigations so far have assumed that pore size does not vary along the length

of the pleat, that is, all pores are initially identical (though they evolve differently in

time). In practice, however, some variation of pore size is unavoidable in the process

of membrane manufacture. This motivates us to explore how variation of the initial

pore size distribution in the x-direction affects the filtration performance, to gain

insight into the importance of membrane homogeneity in applications.

To study this in a simple and tractable way, we propose the following initial

pore profile:

a(x, ỹ, 0) = (1 + σ sin(2nπx))A(ỹ), n = 1, 2, 3, . . . , (2.55)

in which σ and n capture the amplitude and spatial frequency of variation,

respectively, and A(ỹ) is a polynomial in ỹ as considered previously. Note that the

x-averaged pore size is the same for all cases. Before conducting any optimizations,

we first explore variations of the form in Equation (2.55) in a membrane with
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Figure 2.4 Results for membranes with optimized pore profiles from the classes of linear,

quadratic and cubic polynomials, with λ = 1 and R = 99% (green curves) or R = 99.9%

(black curves): (a) flux-throughput (F- J ) plot for all cases; (b) Instantaneous averaged

particle concentration cavg vs. throughput J in the filtrate for the optimized profiles;

(c) Zoom of the R = 99.9% results from (b); (d) Accumulated average particle concentration

cacm vs. throughput J in the filtrate for the optimized profiles with R = 99.9%.
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Figure 2.5 (a)–(d): Optimized linear pore profile evolution at different x-locations,

with λ = 1, R = 99%, red dashed line indicating the boundary of the prism containing

each pore, and the solid blue color indicating the cumulative particle deposition on the pore

wall: (a) t = 0, (b) t = tf/4, (c) t = tf/2, (d) t = tf ; (e) experimental result showing

heavily-fouled ultrafiltration membrane in water treatment system. The black pore regions

are clearly visible [56].
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Figure 2.6 Effect of in-plane pore-size variation of the form a(x, ỹ, 0) = 0.799(1 +

σ sin(2nπx)) with λ = 1. (a-c) illustrate variations in σ with n = 10: (a) flux-throughput

( F- J ) plots, (b) cavg (instantaneous average particle concentration in filtrate) vs.

throughput J , and (c) cacm (particle concentration in accumulated filtrate) vs. throughput

J . (d-f) illustrate variations in n with σ = 0.2: (d) F- J , (e) cavg vs. J , (f) cacm vs. J .
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simple cylindrical pores, where A is independent of ỹ. Figures 2.6(a,b,c) show the

flux-throughput (F -J ) graphs, and plot the average particle concentrations cavg, and

the accumulated particle concentrations cacm versus throughput, respectively, as σ

varies from 0 (uniform pores) to 0.25 (25% variations in pore sizes) with n = 10

and λ = 1. We take A = 0.799; this value ensures that the largest pores are (just)

contained within the assumed period-box. Increasing the amplitude σ of the pore

size variation increases total throughput J (tf); however, the particle concentration in

the filtrate increases as well, over the entire duration of filtration. We note that the

differences in J (tf), though measurable, are not highly significant as σ varies ( J (tf)

increases by about 20% as σ increases from 0 to 0.25); however the changes in particle

concentration in the filtrate are significant: both cavg(0) and cacm(0) increase by more

than 300% for the same change in σ. Figures 2.6(d,e,f) show the flux-throughput (

F -J ) graphs, and plot the average particle concentrations cavg, and the accumulated

particle concentrations cacm versus throughput J , respectively, as n, the spatial

frequency of pore-size variations, increases (with σ = 0.2). The same trends are

observed as for the variation of σ: there is a modest increase in total throughput

J (tf) as n increases, and a more significant increase in the particle concentration

in the filtrate. We find that for sufficiently large n (n > 10), its exact value is not

relevant. Since the increase in J (tf) is so modest as both σ and n increase, while

particle retention capability declines significantly, these results suggest that pore-size

variation is unfavorable for effective filtration, and manufacturers should seek to make

their membranes as uniform as possible (with respect to in-plane variations). Future

work is needed to test whether this finding extends to more general pore shapes.

Although uniform pores may well be desirable, some pore-size variation is

unavoidable in manufacturing, thus a natural question to ask is: if the maximum

pore-size variation is known, what is the optimized pore profile that the manufacturer

should aim for? Lacking detailed data on manufacturing pore-size tolerances, we

35



(a)
0 0.02 0.04 0.06 0.08 0.1

throughput

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

flu
x

(b)
0 0.02 0.04 0.06 0.08 0.1

throughput

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

c a
vg

(c)
0 0.02 0.04 0.06 0.08 0.1

throughput

6

6.5

7

7.5

8

8.5

9

9.5

10

c a
cm

10-3

Figure 2.7 Effect of in-plane pore-size variations of the form (2.55) a(x, ỹ, 0) = A(ỹ)(1+

σ sin(2nπx)). Results based on this initial pore profile, optimized with σ = 0.03, n = 10 and

A(ỹ) linear, for λ = 1, R = 99%. (a) Flux-throughput (F-J ) plots, (b) cavg vs. throughput

J , and (c) cacm vs. throughput J ; for σ = 0, 0.005, 0.015, 0.025, 0.03.

36



present some illustrative examples. Suppose that the maximum pore-size variation is

±3%. We set σ = 0.03 and n = 10 initially, in a(x, ỹ, 0) as given in Equation (2.55).

With these parameters fixed, we then find the polynomial profiles A(ỹ) that optimize

a(x, ỹ, 0), using the approach of Section 2.4.2. Figure 2.7 shows selected results,

optimizing over linear A(ỹ) only, with the particle removal threshold R fixed at 99%:

in (a,b,c) the dashed curves represent the optimized results for F - J , cavg- J and cacm-

J , respectively, carried out for λ = 1, n = 10 and σ = 0.03. The remaining curves in

(a-c) show results of simulations for this same optimized pore profile A(ỹ), but taking

other values of σ ∈ (0, 0.03) in Equation (2.55).

The flux-throughput ( F - J ) plots in Figure 2.7(a) show almost no change as σ

is varied. Figures 2.7(b,c) show that, if pore size varies less than the estimated ±3%

used for the optimization, the particle removal requirement will not be violated. Both

cavg(t) and cacm(t) decrease as σ decreases. Figures 2.7(a-c) collectively indicate that

if the manufacturer has a reliable upper bound on the in-plane pore-size variation (x-

direction), they could use the optimized initial pore profile a(x, ỹ, 0) (varying in both

x- and ỹ-directions as per Equation (2.55)) based on this bound. As long as the bound

holds, the resulting profile will yield almost the optimized total throughput, without

violating the particle removal requirement. Though we here considered optimizing

only over the class of linear profiles A(ỹ), results for quadratic and cubic profiles (not

shown here) support the same conclusions.

In addition to in-plane variations in membrane pore size, it is equally inevitable

that pores will deviate from the desired design (in both size and shape) in the depth

of the membrane (ỹ direction). To gain some initial insight into the effects of such

depth-dependent pore profile variation, we consider the following initial pore profile

a(x, ỹ, 0) = A(ỹ) + σ‖A(ỹ)‖L1

Ã(ỹ, n)

‖Ã(ỹ, n)‖L∞
, n = 1, 2, 3, . . . , (2.56)
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Figure 2.8 In-depth pore-size variations (2.56) a(x, ỹ, 0) = A(ỹ) + σ‖A(ỹ)‖L1
Ã(ỹ,n)

‖Ã‖L∞ (n)
:

(a-c) show results with σ = 0.03, and A(ỹ) the linear optimized pore profile for λ = 1,

R = 99.9%. (a) Flux-throughput (F-J ) plots, (b) cavg vs. throughput J , (c) cacm vs.

throughput J , for n = 1, 2, 3, 4, 5, 8, 10. (d-f) show results with n = 2: (d) F-J plots,

(e) cavg vs. J , (f) cacm vs. J , for σ = 0, 0.01, 0.03, 0.05, 0.07.
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in which σ and n capture the amplitude and spatial frequency of variation, A(ỹ) is a

polynomial in ỹ as considered previously, and ‖ · ‖L1 , ‖ · ‖L∞ are the standard L1 and

L∞ (maximum) norms, (respectively) for ỹ ∈ [−1/2, 1/2]. While optimization could

be carried out for higher-order polynomials, the results we present are for profiles

A(ỹ) linear in ỹ. We choose a functional form for Ã(ỹ, n) that permits oscillations of

specified wavenumber in the depth of the membrane, while preserving pore volume

compared with the unperturbed “optimal” pore, which mathematically (to leading

order in small pore-size perturbations σ) reduces to the constraint

∫ 1/2

−1/2

A(ỹ)Ã(ỹ, n)dỹ = 0.

In the linear case A(ỹ) = aỹ + b, Ã(ỹ, n) can take the form

A(ỹ, n) = sin(4nπỹ) +
(4n+ 1)a cos((4n+ 1)πỹ)

8nb
.

The formulation of Equation (2.56) then incorporates the idea that the value of

σ captures the percentage of pore-size amplitude variation from the unperturbed

(optimized) pore profile A(ỹ) (e.g., σ = 0.03 corresponds to approximately 3%

variation from A(ỹ)).

Sample results are shown in Figure 2.8, where the optimization is carried out

with λ = 1, and particle removal threshold R = 99.9% (the optimized result is

indicated by σ = 0 in the legend). Similar to our earlier results of Figure 2.6 for in-

plane pore-size variation, Figures 2.8(a,b,c) show the flux-throughput (F -J ) graphs

for each case, as well as plots of the instantaneous average particle concentrations cavg

and the accumulated particle concentrations cacm in the filtrate versus J , respectively,

as n, the spatial frequency of pore-size variations in depth, increases (with σ = 0.03

fixed for all except the black σ = 0 curves). We find that, for n sufficiently large (n >

8), the effect of the variations is insignificant, with filtration performance approaching

that of the unperturbed, optimal, case. In all cases, there is little effect on F - J
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characteristics, but small values of n (n = 1, 2, 3) can have rather a large effect on

the particle retention capability, leading to as much as 30% more particles evading

capture by the membrane.

Figures 2.8(d,e,f) plot the corresponding graphs as the perturbation amplitude

σ varies from 0 (no variation) to 0.07 (7% variations in pore sizes) with perturbation

wavenumber fixed at n = 2. From Figure 2.8(d) we again observe negligible changes

to the flux and throughput characteristics. Particle removal capability, however,

changes by nearly 20% for a 5% perturbation of pore radius indicated by Figures

2.8(e) and (f). This suggests that particle removal capability is more sensitive to

perturbations of (optimized) pore profiles in the ỹ direction compared to in-plane

variations (see Figure 2.7 (b) and (c)), and maintaining the optimized pore shape (or

more generally, the desired depth permeability gradient of the filter) will be critical to

achieve the maximum total throughput while simultaneously satisfying the particle

removal requirement.

2.5 Conclusion

We have formulated a simple mathematical model for evaluating the performance of a

pleated membrane filter, with variable internal pore structure within the membrane.

In order to obtain a model that is fast to simulate, while still capturing the

permeability gradients that exist in real filtration membranes, we assume that the

membrane pores are tubes of circular cross-section spanning the membrane from

upstream to downstream side, and that the variation in the pore radius models the

variations in permeability. Though clearly an oversimplification for many membranes,

this type of geometrical pore model is frequently used in filtration modeling, and we

expect our results to provide a good guide as to how average pore size should vary in

the depth of the membrane.
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The simplicity of our model allows for quick simulations of filtration all the

way to final pore-blocking, which in turn allows us to carry out the optimization

of the filter pore profile for a common filtration objective (maximizing throughput

over the filter lifetime with a specified partical removal constraint that must be

satisfied) and operating condition (constant pressure); see Section 2.4.2. For this

filtration objective and operating condition, we are able to use our model to find

(numerically) the optimal initial pore shape within a restricted class of such shapes

(which, in the interest of keeping computational time relatively short, we take to be

low-order polynomials in the depth of the membrane). Our results indicate that this

optimization should be sufficient for most practical applications: as the degree of

the polynomial increases from 1 to 3 convergence of the results (presumably to some

global optimum) appears rapid. We are currently working on possible approaches to

solve efficiently the general optimization problem in order to determine the optimum

initial pore profile over all possible shapes.

In Section 2.4.4, we also briefly explored the impact of (unavoidable) in-plane

variations and in-depth variations to the desired (optimal) pore geometry, on filtration

performance. Our initial investigations indicate that, for in-plane variations our

optimization techniques could still be useful if the tolerance in pore-size variation

is well-characterized, and sufficiently small. However our investigation for in-depth

pore-size variation indicates that particle removal can be significantly impacted by

variations, and maintaining the optimized pore shape will be critical to achieve the

highest total throughput J (tf) while simultaneously satisfying the particle removal

requirement.

One significant observation from our simulations is that, under certain condi-

tions, the particle concentration in the filtrate may increase after the filtration starts

— that is, particle removal capability of the membrane may actually deteriorate

in the early stages of the filtration. This phenomenon, which is known to occur
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experimentally [32], has not (to the best of our knowledge) been observed in earlier

theoretical studies of adsorptive fouling. However, the results of [32] in fact show

monotone deterioration in particle retention, unlike our results which indicate an

eventual improvement in retention as significant fouling occurs. This difference

indicates that additional refinements to our model may be needed.

Although we believe that our model represents a valuable step forward in helping

manufacturers identify optimal membrane structures for given filtration scenarios, it

does have several limitations, and there are many potential areas for improvement.

First, we only consider very simple homogeneous feed solutions that contain identical

particles. In most applications there will likely be multiple species in the same feed,

and the objective with respect to which we optimize could also be more complicated:

for example, to remove some species while allowing others to pass through. Future

work will address filtration with more complex feed solutions. Second, in this work

we only consider one fouling mechanism, while in practice there could be multiple

simultaneous mechanisms. It would not be difficult to include multiple fouling

mechanisms in our model; for example following the approach of [53]. We note,

however, that the more mechanisms we include in our model, the more unknown

parameters the model will have and the larger the parameter space to explore. For

applications where standard blocking dominates, our model presented here should

be adequate. Third, even for such applications where standard blocking dominates,

there are further details that could and should be considered. For example, particles

deposited on the clean membrane in the initial stages of filtration could have a

shielding effect, and modify the physico-chemical interactions between particles and

membrane, making it possibly more difficult for particles arriving at a later time to

deposit on the membrane. Again, this is something we plan to address in our future

work. Lastly, though we believe our simple “tubular pore” model should provide

a good guide as to desirable membrane properties, there are certainly other types
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of pore structures that could be considered, e.g., branching pore structures. Some

preliminary studies may be found in [52], and we are currently undertaking more

ambitious studies into how membranes with arbitrary pore networks can be efficiently

modeled.
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CHAPTER 3

FILTRATION WITH MULTIPLE SPECIES OF PARTICLES

3.1 Overview

Filtration of feed containing multiple species of particles is a common process in the

industrial setting. In this work, we propose a model for filtration of a suspension

containing an arbitrary number of particle species, each with different affinities for

the filter membrane. We formulate a number of optimization problems pertaining to

effective separation of desired and undesired particles in the special case of two particle

species and we present results showing how properties such as feed composition affect

the optimal filter design (internal pore structure). In addition, we propose a novel

multi-stage filtration strategy, which provides a significant mass yield improvement

for the desired particles, and surprisingly higher purity of the product as well.

3.2 Introduction

Membrane filtration is widely used in many technological applications [12, 16, 60,

65, 66, 69] and in everyday life, for instance in coffee-making and air conditioning.

Fouling of the membrane by particles in the feed is unavoidable in successful filtration

and understanding of the fouling mechanism(s), critical for improving filtration

performance and preventing filter failure, has therefore been the target of significant

research effort (see for example [27, 28, 30, 55, 62]). Extensive experimental studies

[23, 31, 32, 41–43, 63] have been reported for a range of filtration scenarios, mostly

focusing on a feed consisting of a single type of particle [23, 31, 32, 43, 63], though

possibly with a distribution of particle sizes [41, 42]. In reality however, filtration

typically involves feed containing multiple species of particles (e.g., in gold extraction

from ore [1, 49], vaccine extraction [16], and other bio-product purification after

fermentation [65]), which interact with the membrane differently [11, 13].
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For feed containing multiple particle species, the goal may be to remove all

suspended particles, but there are many applications in which the purpose of the

filtration is to remove some particle species from the feed while recovering other

species in the filtrate. For example, when producing vaccine by fermentation, one

would want to filter the live virus out and retain the vaccine (detached protein

shell of the virus, for example [68]) in the filtrate. To our best knowledge, little

theoretical study has been devoted to feed containing multiple species of particles.

Some experimental results are available [1, 13, 49], though the focus is mostly on

the specific underlying application rather than mechanistic understanding of how the

presence of different particle types affects the filtration process.

Thanks to recent advances in the development of fast computational tools,

numerical solution of the full Navier-Stokes equations and tracking of individual

particles in the feed has become a feasible approach for modeling membrane

filtration [37]. Several such computational fluid dynamics (CFD) studies, particularly

focusing on particle deposition on the membrane, have been performed [4,37,45,67].

Such models may be very detailed, capable of tracking hundreds of millions of

particles of arbitrary type and able to reproduce certain experimental data well.

However, the computational demand for application-scale scenarios is extremely high;

implementation of the CFD method is highly non-trivial and time consuming, and

development of simpler models, which can treat different particle populations in an

averaged sense, is desirable.

In earlier work [51], Sanaei and Cummings proposed a simplified model for

standard blocking (adsorption of particles, much smaller than the filter pores, onto

the internal pore walls), derived from first principles. The model assumes the pore

is of slender shape, with pore aspect ratio ε defined as typical width W divided

by the length D of the pore, ε = W/D � 1, see Figure 3.1. This provides the

basis for an asymptotic analysis of the advection-diffusion equation governing particle
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transport within the continuum framework, valid for a specific asymptotic range of

particle Péclet numbers (details can be found in [51] Appendix A). This model is in

agreement with one proposed earlier by Iwasaki [31] based on experiments involving

water filtration through sand beds, the validity of which was further confirmed in

later experiments by Ison & Ives [29].

Building on that work [51], we recently proposed a model for membrane filtration

focusing on standard blocking with quantitative tracking of particle concentration

in the filtrate. This model allowed for evaluation of the filtration performance of

a given membrane in terms of its pore shape and particle capture characteristics,

and for optimization of filtration of a homogeneous feed containing just one type of

particles [59]. In the present work we extend this approach to filtration with multiple

species of particles in the feed. For simplicity, we consider dead-end filtration using a

track-etched type of membrane. We study how the concentration ratio of the different

types of particles in the feed, and the differences in membrane–particle interaction

characteristics, affect the filtration process and we formulate optimization problems

to determine the optimum pore shape (within a given class of shape functions) to

achieve the desired objectives.

To illustrate our model behavior and its application for design optimization,

we explore some hypothetical scenarios of practical interest, in particular: When

there are two compounds A and B in a mixture, which filter design will produce

the maximum amount of purified compound B before the filter is completely fouled?

Questions such as this lead naturally to constrained optimization problems: how to

design a filter such that a certain large fraction of type A particles is guaranteed to

be removed, while retaining the maximum yield of type B particles in the filtrate,

over the filtration duration?

We propose new fast optimization methods to solve these problems, based on

quantities evaluated at the beginning of the filtration, which are over 10 times faster
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than the method used in our earlier work [59]. Motivated by some of our findings,

we also propose a new multi-stage filtration protocol, which can significantly increase

the mass yield per filter of the desired compound, and simultaneously improve the

purity of the final product.

Many variations on the questions we address could be proposed, and the

methods we present are readily adapted to a wide range of scenarios. For brevity and

simplicity, however, in the present work we focus chiefly on variants of the example

outlined above to illustrate our methods. For the majority of the paper we present

results for the case in which the feed contains just two particle species, noting that

(within the limitations of our modeling assumptions) our model is readily extended

to any number of particle species (some sample results for feed containing more than

two species are included in the Appendix C).

The remainder of this paper is organized as follows. We set up our two-species

filtration model in Section 3.3, focusing attention on the filtration process within

a representative pore of the membrane. We then outline a number of hypothetical

filtration scenarios with multiple species of particles and formulate the corresponding

optimization problems in Section 3.4.1. Although our optimization criteria as defined

rely on simulating filtration over the entire useful lifetime of the filter, we will

demonstrate the feasibility of using data from the very early stages of our simulations

as a reliable predictor of later behavior, offering a much faster route to optimization,

discussed in Section 3.4.2. Sample optimization results will be presented in Section

3.5. Section 3.6 is devoted to the summary and discussion.

3.3 Filtration Modeling with Two Particle Species

In this chapter, we focus on dead-end filtration feed solution, carrying multiple

different particle species, through a membrane filter. We first highlight some key

modeling assumptions: we assume the particles are non-interacting (justifiable if the
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Figure 3.1 Sketch of a cylindrical pore of radius A(X,T ) and length D inside a square

prism, representing a basic building-block of the filter membrane (our model is relevant for

any other regular tesselating prism, e.g., a hexagonal or triangular prism). Blue arrows

indicate the flow direction; colored dots indicate the different particle types present in the

feed, and W represents the maximum possible pore radius.

feed solution is sufficiently dilute); that the particles are much smaller than the pore

radius; and that the pore is of slender shape, with length much larger than its width

(this is the case for “track-etched” type membranes whose pores are straight and form

a direct connection between upstream and downstream sides of the membrane; see,

e.g., Apel [3]). We consider only one type of fouling: the so-called standard blocking

mechanism, in which particles (much smaller than pores) are adsorbed on the pore

wall leading to pore shrinkage; and we inherit all the additional assumptions made

in deriving the standard blocking model proposed by Sanaei and Cummings [51].

Under these assumptions, we set up our model for constant pressure and constant

flux conditions, in Sections 3.3.1 and 3.3.2, respectively.
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3.3.1 Solute at constant driving pressure

We consider a feed solution containing two types (different physicochemical prop-

erties) of particles, type 1 and type 2, through a planar membrane filter under

constant pressure. In the presentation that follows, we use uppercase fonts to denote

dimensional quantities and lower case for nondimensional quantities, which will be

defined in Section 3.3.3 when we introduce appropriate physical scalings. We assume

that the membrane is composed of identical pores of circular cross-section with radius

A(X, T ) (where X is distance along the pore axis), periodically repeating in a regular

(e.g., square or hexagonal) lattice arrangement. Each circular pore is contained within

a regular tesselating polygonal prism, which accommodates a pore of maximum radius

W (0 < A ≤ W ) and height D (see Figure 3.1 for example), where W � D. We

define the representative pore aspect ratio ε = W/D � 1, which will be used in

our particle deposition model discussed below. The incompressible feed (assumed

Newtonian with viscosity μ) flows through the pore with cross-sectionally averaged

axial velocity, Up(X, T ), given in terms of the pressure P (X, T ) by

Up(X, T ) = −Kp(X, T )

μ

∂P

∂X
, (3.1)

where Kp = A2(X, T )/8 is the local permeability of an isolated pore (which follows

from the Hagen-Poiseuille formula, see e.g., Probstein [47], consistent with our pore

shape assumption). This is equivalent to a Darcy flow model with velocity U(T )

within the membrane related to Up(X, T ) via porosity Φm = πA2(X, T )/(2W )2,

U(T ) = ΦmUp(X, T ) = −K(X, T )

μ

∂P

∂X
, (3.2)

where

K(X, T ) =
πA(X, T )4

32W 2
(3.3)
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is the membrane permeability. The flow is driven by constant pressure drop P0 across

the membrane. Conservation of mass then closes the model, giving the equation and

boundary conditions governing the pressure P (X, T ) within the membrane as

∂

∂X

[
K(X, T )

∂P

∂X

]
= 0, 0 ≤ X ≤ D, (3.4)

P (0, T ) = P0, P (D, T ) = 0. (3.5)

Extending the approach of Sanaei & Cummings [51], we propose the following

fouling model equations, which assume that the two particle types are transported

independently by the solvent and do not interact with each other:

Up
∂Ci

∂X
= −Λi

Ci

A
, Ci(0, T ) = C0i, i = 1, 2; (3.6)

∂A

∂T
= −

∑
i=1,2

ΛiαiCi, A(X, 0) = A0(X), (3.7)

where Ci(X, T ) is the concentration (mass per unit volume of solution) of type

i particles; Λi is a particle deposition coefficient for type i particles; and αi is

an unknown (problem-dependent) constant, related inversely to the density of the

material that comprises type i particles. Equation (3.6) follow from a systematic

asymptotic analysis (based on the small parameter ε defined above, see also Table

3.2) of advection-diffusion equations for each particle species. Equation (3.7) assumes

the rate of pore radius shrinkage (due to the particle deposition) is a linear function

of the local particle concentrations at depth X, and derives from a mass-balance of

the particles removed from the feed, consistent with Equation (3.6). Derivations of

these results for filtration of a feed with just one particle type are given in Sanaei &

Cummings [51] Appendix A and [52].

3.3.2 Solute at constant flux

Here we briefly consider how the above model is modified for the same feed solution,

supplied at constant flux U0. As fouling occurs the membrane resistance increases,
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hence the driving pressure must increase to maintain the same flux through the filter.

Equation (3.2) still holds for the superficial Darcy velocity, which is now held at

constant value U0 by adjusting the driving pressure P (0, T ), giving

U = U0 = −K(X, T )

μ

∂P

∂X
, (3.8)

with just one boundary condition at the membrane outlet,

P (D, T ) = 0. (3.9)

In this case, the incompressibility condition is satisfied automatically. Equations

(3.6)-(3.7) then close the model, as in the constant pressure case.

3.3.3 Non-dimensionalization

3.3.3.1 Constant pressure. We non-dimensionalize our model Equations

(3.2)–(3.7) using the following scalings, with lower-case fonts indicating the dimen-

sionless variables:

p =
P

P0

, u = U
32Dμ

πW 2P0

, up = Up
32Dμ

πW 2P0

, (3.10)

c1 =
C1

C01 + C02

, c2 =
C2

C01 + C02

, a =
A

W
, (3.11)

x =
X

D
, t =

T

T0

, with T0 =
W

Λ1α1(C01 + C02)
, (3.12)

where the chosen timescale is based on the deposition rate of particle type 1.

The resulting non-dimensionalized equations are listed below: Equations (3.2)-(3.5)

become

u =
πa2

4
up = −a4

∂p

∂x
, (3.13)

∂

∂x

(
a4

∂p

∂x

)
= 0, (3.14)

p(0, t) = 1, p(1, t) = 0, (3.15)
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Table 3.1 Dimensional Parameters, with Approximate Values (where known) [38]

Parameter Description Typical Value
& Units

D Membrane thickness 300 μm
W Maximum possible pore radius 2 μm (very vari-

able)
P0 Pressure drop unknown N/m2

K Representative membrane permeability 4×10−13 m2

(very variable)
C0i Initial concentration of type i particles in feed unknown kg/m3

Λi Type i particle deposition coefficient unknown m/s
αi Constant related to density of type i particles unknown m3/kg
μ Dynamic viscosity unknown Pa · s

Depending on the Application, Pore Size may Vary from 1 nm to 10 μm [66]. The

Unknown Quantities Are Variable and/or Application Dependent.

so that dimensionless permeability is just a4 with the chosen scalings; and Equations

(3.6)-(3.7) take the form

up
∂c1
∂x

= −λ1
c1
a
, c1(0, t) = ξ, (3.16)

up
∂c2
∂x

= −λ2
c2
a
, c2(0, t) = 1− ξ, (3.17)

∂a

∂t
= −c1 − βc2, a(x, 0) = a0(x), (3.18)

where λi = 32ΛiD
2μ/(πW 3P0) is the deposition coefficient for particle type i, ξ =

C01/(C01 + C02) is the concentration ratio between the two types of particles, β =

Λ2α2/(Λ1α1) is the ratio for effective particle deposition coefficients between the two

types of particles, and 0 < a0(x) ≤ 1 is the pore profile at initial time t = 0. The

model parameters are summarized in Table 3.2 for future reference. Since we consider

scenarios where particle type 1 is to be removed by filtration while type 2 should be

retained in the filtrate, only values β ∈ (0, 1) will be considered in this chapter.
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Table 3.2 Dimensionless Parameters and Descriptions (from Table 3.1)

Parameter Formula Description
λi 32ΛiD

2μ/(πW 3P0) Dimensionless deposition coefficient for
type i particles

ξ C01/(C01 + C02) Initial concentration ratio of type 1
particles in the feed

β Λ2α2/(Λ1α1) Effective deposition coefficient ratio
(assumes β ∈ (0, 1))

ε W/D Typical pore aspect ratio

To solve this system numerically, we first note that Equations (3.13)–(3.15) can

be solved to give

u(t) =
(∫ 1

0

1

a4(x, t)
dx

)−1

. (3.19)

Given a0(x), we compute u(0) via Equation (3.19), which allows us to find up(x, 0) via

Equation (3.13). We then compute c1(x, 0), c2(x, 0) via Equations (3.16) and (3.17)

respectively. With c1, c2 determined, we then compute the pore shape a(x, t) for the

next time step via Equation (3.18), then repeat the above process until the chosen

termination condition (based on flux falling below some minimum threshold) for the

simulation is satisfied.

3.3.3.2 Constant flux. Most scales follow from the constant pressure case of

Subsection 3.3.3.1; here we highlight only the differences for the constant flux scenario,

again with lower case fonts indicating the non-dimensionalized variables:

u =
U

U0

, up =
Up

U0

, p = P
πW 2

32U0Dμ
. (3.20)
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The remaining scalings are as in Equations (3.11) and (3.12), leading to the model

u = 1 = −a4
∂p

∂x
, p(1, t) = 0, (3.21)

up =
4

πa2
, (3.22)

up
∂c1
∂x

= −λ1
c1
a
, c1(0, t) = ξ, (3.23)

up
∂c2
∂x

= −λ2
c2
a
, c2(0, t) = 1− ξ, (3.24)

∂a

∂t
= −c1 − βc2, a(x, 0) = a0(x). (3.25)

To solve these equations numerically, we proceed as in the constant pressure case,

with the simplification that u = 1 and up is a known function of a, see Equation

(3.22). Note that the inlet pressure p(0, t) is given by

p(0, t) =

∫ 1

0

dx

a4(x, t)
, (3.26)

from which it follows that, as the pore radius a(x, t) decreases due to fouling, the

driving pressure must increase to maintain the constant flux. We continue the

simulation until the specified termination condition (based here on exhausting some

fixed amount of feed, subject to a constraint on maximum inlet pressure p(0, t)) is

reached.

3.4 Optimization

In this section, we explore the specific scenarios introduced earlier in Section 3.2 to find

the optimized initial pore shape a0(x) by defining a suitable objective function J(a0)

with corresponding constraints. For the purpose of the mathematical formulation

of the optimization problem, we assume a0(x) ∈ C([0, 1]) (the class of real-valued

functions continuous on the real interval [0, 1]); however, for practical purposes to

obtain solutions within reasonable computing time we restrict the search space for

the optimizer a0(x) to low degree polynomial functions (numerical implementation
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details will be given in Section 3.4.2). In addition, we require 0 < a0(x) ≤ 1 so that

the initial profile is contained within its unit prism (see Figure 3.1).

In Section 3.4.1, we define some key metrics that we use to measure the

performance of the filter design and use these to set up the optimization problems.

Three filtration scenarios will be studied: two under constant pressure conditions

and the third under constant flux. In Section 3.4.2, we outline our optimization

methods: first a “slow method” (described in Section 3.4.3) based directly on the

objective function defined in Section 3.4.1 below; then we propose a “fast method”

(in Section 3.4.4) based on our observations of optimizing with the slow method. We

demonstrate the feasibility of using our model with fast optimization to predict and

optimize for various filtration scenarios with multiple species of particles in the feed.

3.4.1 Definitions and objective functions

Adapting the approach taken in our earlier work [59], we first define some key

(dimensionless) quantities that will be used to measure the performance of the

membrane. We define instantaneous flux through the membrane as u(t), and

cumulative throughput j(t) as the time integral of the flux,

j(t) =

∫ t

0

u(τ)dτ. (3.27)

We denote the instantaneous concentration at the outlet (x = 1) for each particle

type i in the filtrate, ci(1, t) as ci,ins(t), and the accumulative concentrations of each

particle type i in the filtrate, ci,acm as

ci,acm(t) =

∫ t

0
ci,ins(τ)u(τ)dτ

j(t)
. (3.28)

Let tf denote the final time of the filtration process, when the termination condition

is reached. For the constant pressure case, we define this to be when the flux drops

below some specified fraction ϑ of its initial value (throughout our work here ϑ = 0.1,
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based on common industrial practice, see e.g., van Reis & Zydney [66]); for the

constant flux case, we consider tf to be the fixed time at which the specified amount

of feed is exhausted, assuming that the terminal driving pressure p(0, tf) is less than

the maximum operating pressure pmax for all initial pore profile functions a0(x) in the

searching space considered.

To specify the particle removal requirement from the feed for each type of

particles, we define the instantaneous particle removal ratio for type i particles,

Ri(t) ∈ [0, 1], as

Ri(t) = 1− ci,ins(t)

ci(0, t)
, (3.29)

where ci,ins(t) is instantaneous concentration of particle type i at the outlet and ci(0, t)

is the type i particle concentration in the feed at time t.1 Then the initial particle

removal ratio Ri(0) is the fraction of type i particles removed after the feed passes

through the clean filter. We also define the cumulative particle removal ratio for type

i particles, R̄i(t), as

R̄i(t) = 1− ci,acm(t)

ci(0, t)
, i = 1, 2, (3.30)

where ci,acm(t) is defined in Equation (3.28). The final cumulative particle removal

ratios at the end of the filtration are then R̄i(tf).

Preliminary investigations for our multi-species filtration model indicate that

the particle removal capability of the filter improves, for the constant pressure

scenarios, as the filtration proceeds and pores shrink, thus in our optimizations we

impose the particle removal requirement only at the initial step, i.e., we require R1(0)

to be greater than a specified number (R) between 0 and 1. Throughout this work

1In the problems that we consider ci(0, t) = ci0 is fixed (c1(0, t) = c10 = ξ and c2(0, t) =
c20 = 1 − ξ), but if we wish to consider feed with time-varying particle concentrations,
then ci(0, t) in (3.30) should be replaced by appropriate averaged concentrations, c̄i(0, t) :=
(
∫ t
0 ci(0, τ)u(τ)dτ)/j(t).
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Table 3.3 Key Metrics Defined in Section 3.4.1 and Subsection 3.5.1.2 for Measuring

Membrane Performance and Their Ranges, Values (where fixed across all simulations) or

definitions

Metric Description Range/value/definition
u(t) flux ∈ (0,∞)

j(t) throughput =
∫ t

0
u(τ)dτ

j(tf) total throughput at final time tf =
∫ tf
0
u(τ)dτ

ci,ins(t) instantaneous concentration at the outlet
for each particle type i

= ci(1, t) ∈ (0, ci(0, t))

ci,acm(t) accumulative concentrations of each par-
ticle type i in the filtrate

∈ (0, ci(0, t)) (defined in
(3.28))

Ri(t) instantaneous particle removal ratio for
type i particles

∈ [0, 1]

R̄i(t) cumulative particle removal ratio for type
i particles

∈ [0, 1]

R̃ desired final cumulative particle removal
ratio for type 1 particles

0.99

Υ desired fraction of type 2 particles in
filtrate (effective separation)

0.5

ϑ flux fraction at termination (constant
pressure filtration)

0.1

ki purity for type i particles in the filtrate at
the end of filtration

∈ [0, 1]

γ effective physicochemical difference be-
tween the two species

∈ [0, 1]
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we consider the desired final particle removal ratio for type 1 particles to be 0.99 and

denote this fixed value by R̃. Other values of R are used for “intermediate” filtration

stages in our description of multi-stage filtration later, with the understanding that

the final goal is to reach removal ratio R̃ = 0.99. With these definitions, for

the constant pressure case, we illustrate our methods by considering a number of

membrane design optimization scenarios, outlined below.

Problem 1. In many situations there are competing demands and it may be useful

to consider objective functions that assign weights to different quantities of interest.

Suppose we have a feed with known concentrations of type 1 and type 2 particles,

where the goal is to remove type 1 particles from the feed, while retaining type 2

particles in the filtrate and simultaneously collecting as much filtrate as possible,

until the termination time tf := inf
{
t : u(t) ≤ ϑu(0)

}
is reached. Which filter design

a0(x) – the initial pore profile, within our searching space – will remove a specified

fraction R ∈ [0, 1] of type 1 particles and simultaneously maximize the objective

function J(a0) := w1j(tf) + w2c2acm(tf) (where w1 and w2 are weights associated to

the total throughput and final cumulative concentration of type 2 particles in the

filtrate, respectively)? For example, in water purification [25], type 1 particles could

be toxins like lead (which we insist are removed), while type 2 particles are desirable

minerals. In this application, it is of interest to retain type 2 particles, but the

primary concern is to produce the purified water, so a larger value might be assigned

to w1 than w2. This example motivates the following design optimization problem.
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Optimization Problem 1

Maximize

J(a0) := w1j(tf) + w2c2acm(tf) (3.31)

subject to Equations (3.15)-(3.18), and

0 < a0(x) ≤ 1, ∀x ∈ [0, 1],

R1(0) ≥ R,

tf = inf
{
t : u(t) ≤ ϑu(0)

}
.

Here, we seek the optimum pore shape a0(x) to maximize J(a0), a weighted

combination of j(tf) and c2acm(tf), subject to the flow and fouling rules dictated

by our model (Equations (3.15)-(3.18)), and the physical constraints that the pore is

initially contained within the unit prism (so that adjacent pores cannot overlap), and

the desired user-specified fraction R of type 1 particles is removed from the feed at

the start of filtration. For example, if w1 = 1, w2 = 0, R = R̃ then we are maximizing

the total throughput of filtrate, with a hard constraint that at least 99% of type 1

particles are removed initially, and no concern for the proportion of type 2 particles

retained in the filtrate. On the other hand, if w1 = 0.5, w2 = 0.5, R = R̃ then

(assuming the dimensionless quantities j(tf) and c2acm(tf) are of similar magnitude)

we care equally about total throughput and the proportion of type 2 particles retained

in the filtrate, again with a hard constraint on removal of type 1 particles.

Problem 2. Suppose we have a large quantity of feed containing known con-

centrations of type 1 and type 2 particles, where the goal is to remove type 1

particles and collect the maximum quantity of type 2 particles in the filtrate (e.g.,

for vaccine production after fermentation, one would want to filter out the live virus

– type 1 particles – and retain as much vaccine – type 2 particles – as possible in
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the filtrate), until the termination time tf is reached. Which filter design a0(x),

within our searching space, will remove a specified fraction R ∈ [0, 1] of type 1

particles and simultaneously maximize the final yield of type 2 particles in the filtrate,

c2acm(tf)j(tf) =: J(a0)? This question leads to the following design optimization

problem.

Optimization Problem 2

Maximize

J(a0) := c2acm(tf)j(tf) (3.32)

subject to Equations (3.15)-(3.18), and

0 < a0(x) ≤ 1, ∀x ∈ [0, 1],

R1(0) ≥ R,

tf = inf
{
t : u(t) ≤ ϑu(0)

}
.

Here we seek the optimum a0(x) that maximizes objective function J(a0),

representing the final mass of type 2 particles in the filtrate, subject to the flow and

fouling rules of our model, the physical constraints, and the desired particle removal

requirement.

For the case in which constant flux through the filter is specified, we consider

the following illustrative scenario:

Problem 3. Given a fixed amount of feed, what is the best filter design to maximize

the yield of a purified compound of interest (e.g., gold in mining [39], vaccine

extraction [16] or other bio-product purification), while removing an impurity? In

this scenario, we consider the optimization problem as finding the initial pore profile

a0(x) such that the filter removes a certain proportion (R) of type 1 particles from

the feed, while maximizing the amount of type 2 particles collected in the filtrate,
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until the feed is exhausted, i.e., the termination time tf is reached. This problem

statement motivates the following optimization problem:

Optimization Problem 3

Maximize

J(a0) := c2acm(tf)j(tf) (3.33)

subject to Equations (3.21)-(3.25), and

0 < a0(x) ≤ 1, ∀x ∈ [0, 1],

R1(0) ≥ R,

tf specified (time at which feed is exhausted).

The objective function J(a0) in Equation (3.33) represents choosing the optimum

a0(x) to maximize the final mass of purified type 2 particles obtained at the end of

the filtration.

3.4.2 Optimization methodology overview

The design optimization problems outlined above are mathematically challenging

and computationally expensive in general due to non-convexity [9] (of both the

objective function and the constraints), large number of design variables (in our

case the number of possible design variables is infinite, as our searching space for

the pore shape a0(x) is the infinite-dimensional function class C([0, 1])) and the

computational cost of evaluating the objective function (which requires that we

solve the flow and transport equations until the termination time tf). For simplicity

and efficiency, we therefore restrict our searching space for a0(x) to be (low degree)

polynomial functions, the coefficients of which represent our design variables (the class

of searchable functions could be expanded without difficulty but with commensurate

increase in computational cost). In the following two subsections, we outline our
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two optimization routines: first the slow method, which arises naturally from the

problems posed and which relies on running many simulations over the entire lifetime

of the filter; then the proposed new fast method, which uses data from only the very

earliest stages of filtration to predict the optimum over the filter lifetime. The two

methods are compared in Section 3.5.

3.4.3 Slow method

We vary the coefficients of polynomials a0(x) to find the values that maximize the

objective functions defined in Problems 1-3, under the constraints specified in each

case. The polynomial functions in this case are referred to as shape functions in the

shape optimization literature [61]. In the interests of reducing computation time,

for the purpose of the demonstration simulations presented here, we restrict our

searching space to be the linear pore profile, i.e., we consider initial profiles of the

form a0(x) = d1x + d0, where d1, d0 are the design variables to be optimized for

each specific scenario, with searching range for (d1, d0) ∈ [−1, 1] × [0, 1]. We use

the MultiStart method with fmincon as local solver from the MATLAB R© Global

Optimization toolbox for this optimization. Since the routine finds a minimizer

while we want to maximize J(a0), we work with the cost function −J(a0); more

details of the implementation of the cost function and constraints can be found in

our earlier work [59].

We specify a starting point (d01, d
0
0) ∈ [−1, 1] × [0, 1] (initial guess for running

the local solver fmincon), cost function (based on our objective functions and

constraints), design variable searching range, and number of searching points n (the

number of points in (d1, d0)-space that will be explored) for the MultiStart method.

With the user-specifed starting point (d01, d
0
0), an additional (n − 1) starting points

(di1, d
i
0) ∈ [−1, 1]× [0, 1], i = 1, 2, ...n− 1 are generated by the MultiStart algorithm.

The resulting n points are then used to run the local solver fmincon (based on a
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gradient descent method) to find a list of local minimizers. We use the best minimizer

from the list as the coefficients for our optimized linear pore profile. Note that there is

no guarantee the method will find the global minimizer due to the nature of gradient

descent methods applied to non-convex problems (the result found depends on the

starting-points); however, local minimizers can be systematically improved and for

practical purposes may be useful if they provide significant improvement over current

practice (see e.g., the study by Hicks et al. on airfoil design [22]). Simulations using

this method are presented in Figures 3.2, 3.3, 3.4, 3.5, described in Section 3.5 later.

3.4.4 Fast method

The “slow” optimization method described above is straightforward and easy to

implement, but reliable results require that many (n large) individual model

simulations be run through to the termination time tf . The results presented in this

chapter are restricted to optimizing membrane structure within the class of linear pore

profiles only, but in any real application it may be desirable to optimize over wider

function classes, e.g., polynomials of higher order. We find (empirically) that each

unit increase of the degree of polynomial a0(x) requires roughly a 10-fold increase in

the number of searching points to reach the best local optimum, with a corresponding

increase in the run time. Run time will also increase if more than two particle species

are considered, or if some of the constraints are removed or inactive (e.g., a less strict

particle removal requirement) and the feasible region becomes very large. Maximum

computational efficiency in practical situations is therefore critical. Motivated by the

idea that imposing carefully-chosen conditions on the initial state of a system can,

in many cases, guarantee certain features of later states, we propose a fast method

based on simulations of the very early stages of filtration. We note that similar ideas

have been used to estimate filter capacity (the total amount of feed processed during
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a filtration) using a method called Vmax, which essentially predicts the filter capacity

using only the first 10-15 minutes of filtration data [70].

Extensive preliminary simulations for Problem 1 with w2 = 0 2 indicate that

the (u(t), j(t)) flux-throughput graph at optimum is initially flatter and higher (see

Figure 3.3(a) for example), with small gradient |u′(0)| and large vertical intercept u(0),

in comparison with graphs for sub-optimal solutions. Moreover, fouling shrinks the

pore and increases resistance, thus flux decreases in time and u′(0) < 0 for all model

solutions. We therefore expect that, at optimum, u(0) should be as large as possible

and u′(0) as close to zero as possible. Similar ideas apply to the case w2 > 0, where

we wish also to maximize c2acm(tf), the cumulative concentration of type 2 particles

in the feed at the final time: we propose instead to maximize a function based on the

initial state of the system as characterized by c2ins(0) and c′2ins(0) (respectively the

initial concentration and initial concentration gradient, with respect to t, of type 2

particles at the membrane outlet x = 1). Again, preliminary simulations indicate that

at optimum c′2ins(0) is close to zero and negative,3 while c2ins(0) is large, compared to

sub-optimal solutions. With these observations, we expect to maximize c2acm(tf) by

insisting on high initial instantaneous concentration c2ins(0) and small initial gradient

c′2ins(0).

With these motivations, we now define modified objective functions for our fast

method. In place of (3.31) in Optimization Problem 1, we propose the following fast

objective function, which uses data from only the initial stage of the model solution:

J1,fast(a0) = w1u(0) + w1u
′(0) + w2c2ins(0) + w2c

′
2ins(0), (3.34)

2In which we optimize for total throughput only in constant pressure-driven flow for two
particle species with λ1 = 1, β ∈ (0.1, 0.9) and ξ ∈ (0.1, 0.9), using the slow method outlined
above.
3The occasional increase in particle concentration at the membrane outlet that was observed
at early times in our previous work [59] for single-particle-species filtration was never seen
here.
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in which the terms in w1 act to maximize total throughput and those in w2 maximize

concentration of type 2 particles in the filtrate, where w1 and w2 can be tuned

depending on the relative importance of the two quantities. Note that the weights

assigned to u(0) (c2ins(0)) and u′(0) (c′2ins(0)) do not have to be the same; we could

allow four independent weights for the four quantities in (3.34). However, for the

simple application scenarios we considered we found just two independent weights

w1, w2 to be sufficient to give reliable results in an efficient manner.

To replace (3.32) in Optimization Problem 2, we propose the following fast

objective function

J2,fast(a0) = u(0)c2ins(0), (3.35)

in which u(0)c2ins(0) captures the initial collection of the particle 2 in the filtrate.

Other “fast” objective functions involving u′(0) and c′2ins(0) were tested, but found to

confer no improvements, hence we opt for the simplest effective objective function.

In the following section, we demonstrate that our fast optimization method

always gives results at least as good as those for the slow method, and then use it to

investigate various model features and predictions.

3.5 Results

In this section, we present our simulation results for a few two-species filtration

scenarios. We focus on the effects of ξ, the concentration ratio of the two

particle types in the feed, and β = Λ2α2/(Λ1α1), the ratio of the effective particle

deposition coefficients for the two particle types (both these parameters are unique

to multi-species filtration, having no counterparts in single-species models). For most

of our simulations, we fix λ1 = 1 (particle type 1 has fixed affinity for the membrane

throughout) and the initial fraction of type 1 particles to be removed is fixed at R̃.

In Section 3.5.1, we first present sample comparison results between the fast and slow
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methods for Problem 1 and Problem 2, noting that many more tests than are

presented here were conducted to verify that the fast method reliably finds optima

as good as or superior to those found by the slow method, under a wide range of

conditions. We then use the fast method to study the effects of varying parameters β

and ξ for several two-species filtration scenarios under constant pressure conditions.

Based on the results of studying these parameters, we propose a multi-stage filtration

strategy that will increase the mass yield of particle we wish to recover in Section

3.5.1.2. We present sample results for the constant flux case in Section 3.5.2, focusing

on Problem 3.

3.5.1 Optimization of constant pressure filtration

3.5.1.1 Demonstrating the efficacy of the fast optimization method.

We begin by demonstrating both slow and fast optimization methods described in

Section 3.4.2 above. Figure 3.2 shows the fouling evolution of the optimized membrane

pores a0(x) for Problem 1 with w1 = 1, w2 = 0, ξ = 0.5, β = 0.1, α1 = α2, λ1 = 1,

and R1(0) ≥ R̃, using the slow method (left panel) and fast method (right panel). The

top row shows the clean, unfouled optimized pore profiles at t = 0 (Figures 3.2 (a)

and (d)); the center row shows the fouling of these pores at t = tf/2 halfway through

the filtration (Figures 3.2 (b) and (e)); and the bottom row shows the fouled pores

at termination time t = tf (Figures 3.2 (c) and (f)). The gray region is the filter

material, and the dark blue color indicates the fouling (region occupied by deposited

particles). The white area denotes the open pore (void), and the red center line is the

axis of symmetry of the pore (which has circular cross-section). This figure illustrates

that the optima a0(x) found by fast and slow methods are indistinguishable.

Figure 3.3 further compares the slow method (objective function (3.31), dashed

curves) and the corresponding fast method (objective function (3.34), dotted curves)

for Problem 1, with various weights [w1, w2] indicated in the legend (recall that
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Figure 3.2 Fouling evolution of the optimized membrane pore a0(x) for Problem

1 with w1 = 1, w2 = 0, ξ = 0.5, β = 0.1, α1 = α2, λ1 = 1; (a-c) show evolution for

a0(x) = −0.6001x + 0.9998 optimized using slow method and (d-f) show evolution of

a0(x) = −0.6002x+ 0.9999 for the corresponding fast method, at t = 0 (unfouled; (a) and

(d)), t = tf/2 (halfway through filtration; (b) and (e)) and t = tf (end of filtration; (c) and

(f)).
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Figure 3.3 Comparison of slow method J(a0) = w1j(tf) + w2c2acm (dashed curves)

with fast method J1,fast(a0) = w1u(0) + w1u
′(0) + w2c2ins(0) + w2c

′
2ins(0) (dotted curves)

for various weights W= [w1, w2], with β = 0.1, ξ = 0.5, λ1 = 1: (a) flux vs. throughput

(u, j) plot, (b) cumulative concentration of type 1 particles vs. throughput (c1acm, j) plot,

(c) cumulative concentration of type 2 particles vs. throughput (c2acm, j) plot.
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w1 is the weight for the total throughput, j(tf), while w2 weights final cumulative

concentration of type 2 particles, c2acm(tf)). The results presented here for [w1, w2] =

[1, 0] correspond to the optimized profiles presented in Figure 3.2. Results are plotted

as functions of filtrate throughput over the duration of the filtration, 0 ≤ t ≤ tf . The

quantities shown in Figure 3.3, for the optima obtained using both methods, are: (a)

flux vs. throughput (u, j) plot; (b) accumulative concentration of type 1 particles

vs. throughput, (c1acm, j) plot; and (c) accumulative concentration of type 2 particles

vs. throughput, (c2acm, j) plot; all simulated with ξ = 0.5, β = 0.1, α1 = α2, λ1 = 1,

and R1(0) ≥ R̃. The figure shows that for all three sets of weights considered,

[w1, w2] = [1, 0], [0.5, 0.5] and [0, 1], the fast method finds an optimized a0(x) as good

as or better than that found by the slow method (larger or the same values for j(tf)

and c2acm(tf), while always satisfying the removal criterion R̃ for particle type 1).

These results (as well as many others not discussed here) demonstrate that, for

the same number of searching points, the fast method converges to an optimizer

that in all cases is as good as, or slightly better than, that obtained using the

slow method, with considerably shorter running time (a typical optimization for the

slow method takes 40 minutes with 10,000 searching points, while the fast method

takes only 4 minutes). We also observe that varying the weights [w1, w2] does not

change the optimized profile significantly (especially with the fast method), indicating

that maximizations of j(tf) and of c2acm(tf) are correlated for the parameter values

considered. One possible explanation for this correlation is that, provided the type

1 particle removal constraint R1(0) ≥ R̃ is met, the initial concentration of type 2

particles in the filtrate c2(1, 0) should be maximized by maximizing the initial flux

u(0), since the higher the flux, the more type 2 particles will escape capture by the

filter.

Figure 3.4 presents direct comparisons of the slow and fast methods for

Problem 2. Results for the slow method, with objective function (3.32), are
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Figure 3.4 Comparison of slow method with objective function J(a0) = j(tf)c2acm(tf)

(dashed curves) and fast method J2,fast(a0) = u(0)c2ins(0) (dotted curves) (a-c): with ξ =

0.9, 0.5, 0.1 and β = 0.1, α1 = α2, λ1 = 1: (a) (u, j) plot, (b) (c1acm, j) plot, (c) (c2acm, j)

plot. (d-f): with β ∈ [0.1, 0.9] varying and ξ = 0.5, λ1 = 1: (d) (u, j) plot, (e) (c1acm, j)

plot, (f) (c2acm, j) plot.
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indicated by dashed curves; and those for the corresponding fast method, with

objective function (3.35), by dotted curves. The left panel, Figures 3.4 (a-c),

shows results for various feed particle-composition ratios ξ (other parameters as in

Figure 3.3); while the right panel, Figures 3.4 (d-f), compares results for various

effective particle-membrane interaction ratios β, with ξ = 0.5. The flux through

the membrane and the cumulative particle concentrations of each particle type in

the filtrate are plotted as functions of filtrate throughput over the duration of the

filtration, 0 ≤ t ≤ tf . In all cases, for the same number of searching points, the fast

method converges to the same optimal pore profile as the slow method across all ξ

and β values considered (though the optima obtained are different for each parameter

set). Similar to Problem 1, the computational speedup is considerable using the fast

method.

In addition to demonstrating the efficacy of the fast optimization method, the

results also illustrate some general features of the model. When a feed contains a

larger fraction (higher ξ-value) of particles to be removed (type 1 particles here),

our model predicts shorter filter lifetime (due to faster fouling) when compared to a

feed with lower ξ-value, leading to less total throughput and lower final accumulative

particle concentration of type 2 particles in the filtrate, see e.g., Figures 3.4(a) and

(c). This is not desirable if we want to maximize total collection of type 2 particles;

we will present one possible way to circumvent this issue in Subsection 3.5.1.2, where

a multi-stage filtration is proposed.

Figure 3.4(b) is the (c1acm, j) plot. Note that in all cases, the constraint for

removal of particle type 1 is tight at the optimum, with the exact specified proportion

R̃ of particles removed from the feed at time t = 0. Figures 3.4 (d-f) show that larger β

values (meaning that the two particle types are more physicochemically similar; recall

β ∈ (0, 1) throughout our study, and if β = 1 both particle types interact identically

with the membrane) lead to faster fouling of the filter, with lower total throughput
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and lower total yield of type 2 particles in the filtrate. This confirms our expectation

that the more similar the particle types are, the more challenging it is to separate them

by filtration. To achieve effective separation, a sufficient physicochemical difference

γ = 1− β is required.

Encouraged by the excellent results and significant speedup obtained when using

the fast method with the same number of searching points as the slow method, we

next investigate its performance with fewer searching points. Figure 3.5 shows the

comparison between the slow method (dashed curves) with 10,000 searching points

(found, empirically, to be the minimum number required for reliable results) and the

fast method (dotted curves) with decreasing number of search points (10,000, 1,000,

100). Model parameters are fixed at ξ = 0.5 and β = 0.1; other parameters as in

Figure 3.3. These results (as well as many other tests, not shown here) indicate

that the fast method produces reliable results with just 1,000 searching points (blue

dotted curves; this optimum even appears superior to the slow method with 10,000

search points, providing slightly higher total throughput). Even with as few as 100

search-points the fast method produces reasonable (though suboptimal) results (black

dotted curve). In all cases, the particle removal constraint on c1 is again tight at the

optima found. Since run time for the optimization routine appears to scale in direct

proportion to the number of searching points, a 10-fold reduction in the number of

search points needed represents a significant additional computational saving: the

fast method utilizing 1,000 search points is approximately 100 times faster than the

slow method utilizing 10,000 points.

3.5.1.2 Multi-stage filtrations. In Figure 3.4 (a) we observed that, with a

higher concentration ratio (e.g., ξ = 0.9) of type 1 particles in the feed, the optimized

filter for a single-stage filtration tends to be fouled faster, which leads to lower total

throughput per filter. This makes sense as the filter needs to remove a higher mass of
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Figure 3.5 Comparison of slow method Jslow(a0) = j(tf)c2acm(tf) (dashed curves) with

10,000 start points, with fast method Jfast(a0) = u(0)c2ins(0) (dotted curves) using variable

number of searching points, with ξ = 0.5, λ1 = 1 and β = 0.1: (a) (u, j) plot; (b) (c1acm, j)

plot, and (c) (c2acm, j) plot.
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impurity (type 1 particles) to achieve the initial particle removal threshold R1(0) ≥ R̃

when ξ is larger. Our simulations also reveal that the fouling is largely confined to

a narrow region adjacent to the upstream surface of the filter at optimum, with the

majority of the downstream portion of the filter remaining unused (see Figure 3.2).

In this section we propose a multi-stage filtration scenario that has the potential to

alleviate some of these inefficiencies. Heuristically, we would like to process more feed

per filter by increasing the membrane porosity and make more efficient use of the

membrane material by fouling a higher proportion of the pore (void) volume (this

will be discussed further in results corresponding to Figures 3.7 and 3.8); however,

increasing the porosity will in general decrease the particle removal efficiency (due to

higher flux), so the filtrate requires further purification to satisfy the particle removal

requirement. This forms the basic idea of the proposed multi-stage filtration strategy:

we will lower the initial particle removal requirement to increase the amount of feed

processed per filter and try to satisfy the particle removal requirement by filtering

the collected filtrate again, possibly more than once (multi-stage). The multi-stage

filtration will work if the increase in feed processed can offset the increase in the

number of additional filters required to meet the particle removal requirement. From

the optimization point of view, we increase the feasible searching space by relaxing

the initial particle removal constraint so that a better optimizer might be found.

In the following discussion we focus on the optimization Problem 2, where

the goal is to maximize the yield (mass) of type 2 particles per filter used, while

achieving effective separation,4 which for definiteness we here define as removing the

desired fraction R̃ of particle type 1 from the feed (R̄1(tf) ≥ R̃) while simultaneously

recovering a minimum desired yield fraction Υ of type 2 particles in the filtrate

(R̄2(tf) ≤ 1 − Υ). For all of our simulations, R̃ = 0.99 and Υ = 0.5. We define

4The term “effective separation” has been used in the literature, though without clear
quantitative definition, e.g. [33, 46, 54].

74



the purity for type i particles in the filtrate, ki ∈ [0, 1], as

ki =
ci,acm(tf)∑

i=1,2 ci,acm(tf)
, i = 1, 2, (3.36)

where ci,acm(tf) is the accumulative concentration of the type i particle in the filtrate

at the end of the filtration. With our hypothesized scenario of feed containing desired

(type 2) and undesired (type 1) particles in mind, we note a simple relationship

between the purity of type 2 particles and the final cumulative removal ratios:

k2 =
(1− ξ)[1− R̄2(tf)]

ξ[1− R̄1(tf)] + (1− ξ)[1− R̄2(tf)]
. (3.37)

We will return to these definitions later.

The basic idea behind our multi-stage filtration is to first optimize the filter

with a less strict initial type 1 particle removal requirement (i.e., we require R1(0) ≥
R < R̃) and filter the feed solution two or more times to achieve a larger total yield

per filter of purified type 2 particles than in a single-stage filtration, with the effective

separation condition satisfied at the end of the multi-stage filtration. We determine

the stage of filtration by how many times the solution has passed through clean filters:

for example, the clean stage 1 filter will take feed directly and be used to exhaustion;

the filtrate collected from the stage 1 filter will then be sent through a new (clean)

stage 2 filter (which may be used more than once within stage 2).

We propose the following two-stage or multi-stage filtration strategy: 1.Optimize

the filter (for Problem 2) with a less strict initial particle removal requirement

(R1(0) ≥ R < R̃) and denote the optimized filter as FR (e.g., for R = 0.5, we denote

the optimized filter as F0.5). 2. (Stage 1) Run the filtration simulation using FR

until the filter is completely fouled; collect the filtrate. In scenarios to be considered

later we allow stage 1 to use several filters simultaneously. 3. Re-filter the collected

filtrate through another clean FR; collect the new filtrate. 4. Test the filtrate from

step 3. Does it meet required type 1 particle final removal requirement R̄1(tf) ≥ R̃?
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If yes, we are done; if no, repeat step 3 using the same filter until the requirement

is met, or until this FR is completely fouled. 5. (multi-stage) If FR is completely

fouled before the requirement R̄1(tf) ≥ R̃ is met, use another clean FR and repeat

step 3 until R̄1(tf) ≥ R̃ is met. 6. Once the threshold R̄1(tf) ≥ R̃ is met, record

the total mass of compound 2 in the filtrate and the number of FR used, to compute

the mass yield per filter. In order to keep track of the number of filters used and

how many times each is reused, we identify each (stage) filter used by FR,m, e.g., the

second (stage) F0.5 filter will be denoted F0.5,2, and we track how many times each

stage filter has been used by n(m), e.g., n(2) denotes the number of times F0.5,2 is

used. In cases where stage 1 involves more than one clean filter (used simultaneously)

we also use notation lm to denote the total number of mth stage filters used, e.g., l2

is the number of stage 2 filters used; and we denote the total number of filters used

at the end of multi-stage filtration by M =
∑

m lm.

The operating procedure described above is summarized as a flow chart in Figure

3.6. After the multi-stage filtration is concluded we calculate the total mass of type 2

particles collected per filter used, c2acm(tf)j(tf)/M , and compare it with the collected

mass from the filter FR optimized for single-stage filtration. If the mass collected per

filter used is larger for the multi-stage filtration, then the process is deemed more

cost-effective.

In table 3.4, we list results comparing a single-stage filtration using a filter FR̃

(optimized for particle type 1 initial removal threshold set at the desired value R̃), with

two separate two-stage filtrations using filters F0.7 and F0.5 (optimized for lower initial

removal thresholds R = 0.7 and R = 0.5, respectively). Fast optimization was carried

out using objective function J2,fast(a0) = u(0)c2(0) with ξ = 0.9, β = 0.1, α1 = α2,

and λ1 = 1. The quantities listed in table 3.4 are: R, initial type 1 particle removal

threshold; M , total number of filters used in each case; n(2), the number of times the

2nd (stage 2) filter is used; R̄1(tf) and R̄2(tf), the final cumulative particle removal
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Start

Optimize to obtain

FR with R < R̃

Stage 1: set m = 1;

run filtration with FR,m

until termination; collect

filtrate; set n = 1.

Record (m,n); set n = 0,

let m → m + 1; take a new

FR and register it as FR,m.

Filter the filtrate with FR,m;

let n → n+ 1; collect filtrate.

R̄1(tf) ≥ R̃?

Record (m,n),

ci,acm(tf) and j(tf).

End

Is FR,m completely fouled?

yes

no

no

yes

Figure 3.6 Flow chart of multi-stage filtration. FR,m signifies the mth stage filter
used; for each FR,m, n(m) records how many times the filter is used.

77



Table 3.4 Comparisons of Single-stage Filtration (R = R̃) with 2-stage Filtrations (R =

0.7 and R = 0.5)

R M n(2) R̄1(tf) R̄2(tf) k2 j(tf) mass yield/filter

R̃(=
0.99)

1 n/a 0.993 0.404 0.904 0.089 0.00528

0.7 2 3 0.997 0.455 0.954 0.217 0.00591
0.5 2 4 0.995 0.427 0.935 0.316 0.00905

We Record: M , the Total Number of Filters Used for Each Filtration Process; n(2), the
Number of Times the 2nd Filter is Used for Each Multi-stage Filtration Process; R̄1(tf)
and R̄2(tf), the Final Cumulative Particle Removal Ratios for Particle Types 1 and 2
Respectively; k2, the Purity of Type 2 Particles in the Final Filtrate; j(tf), Total

Throughput; and Type 2 Particle Mass Yield per Filter.

ratios for particle types 1 and 2, respectively; k2, the purity of type 2 particles in the

final collected filtrate; j(tf), the total throughput; and the total mass yield of purified

type 2 particles per filter (all relevant quantities are defined in Table 3.3).

These preliminary results show that, when our multi-stage filtration protocol is

applied, we can achieve the same final particle removal requirement R̄1(tf) ≥ R̃ as the

single stage filtration but with much higher yield per filter of particle type 2; e.g., the

third row of Table 3.4 shows that, with R = 0.5 the yield of purified type 2 particles

per filter is almost doubled when compared to the single-stage filtration optimized for

R = R̃. From table 3.4 we also observe that the multi-stage filtrations improve the

purity of the filtrate as indicated by the k2 values. We note that all three filtrations

achieve effective separation according to our (somewhat arbitrary) definition, which

corresponds to purity k2 ≥ 0.847 for the cases considered in Table 3.4, i.e., ξ = 0.9.

If higher purity is desired to consider a separation effective, the removal ratios R̄1(tf)

and R̄2(tf) can be adjusted accordingly based on Equation (3.37).

Figure 3.7 illustrates the results for the three optimized filters summarized in

table 3.4 via the fouling evolution of the filter pores. Figures 3.7(a-c) show the filters

from the first filtration stage, optimized for particle removal thresholds R = R̃ (a),

R = 0.7 (b), and R = 0.5 (c), at time t = tf (when the flux is reduced to the fraction
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Figure 3.7 Comparison of single stage filtration and two-stage filtrations. (a-c) show

completely fouled filters FR,1 optimized for: (a) R = R̃ (single-stage filtration), (b) R = 0.7

and (c) R = 0.5, with other parameters fixed at ξ = 0.9, β = 0.1, α1 = α2, λ1 = 1.

Gray color indicates membrane material, blue is deposited particles, and white is void.

(d, e) show the fouling sequence for the second filtration stages, required when R < R̃:

(d) filtrate from (b) is passed repeatedly through F0.7,2 and (e) filtrate from (c) is passed

repeatedly through F0.5,2, with alternating blue and red indicating deposited particles from

the successive filtrations (filter reuse). Full details in text.
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ϑ = 0.1 of its initial value). Other model parameters are fixed at ξ = 0.9, β =

0.1, α1 = α2, λ1 = 1. The blue and red colors indicate deposited particles; a change

of color indicates reuse of the filter. Figures 3.7(d) and (e) show the fouling of the

second stage filters, F0.7,2 and F0.5,2 respectively. We can see that when the initial

removal threshold R is decreased, the fouling of the pore becomes more uniform along

its depth, and the porosity of the corresponding optimized filter FR increases. For

the case R = 0.5, the optimized pore profile is almost as wide as possible; the gray

colored region corresponding to the membrane material is too thin to be visible. The

high mass yield per filter and small quantity of membrane material (due to high

porosity) required to produce F0.5 indicates that if the membrane material has good

selectivity (i.e., high particle removal capability, greater λ1 value in our model), it

might be advantageous to focus on maximizing the filter porosity as a design approach

to increasing the mass yield per filter, while simultaneously reducing the membrane

material cost per filter and achieving effective separation using multi-stage filtration.

From Figures 3.7(d) and (e), it is clear that in both multi-stage filtration

protocols, the secondary filters F0.7,2 and F0.5,2 are only lightly-used at termination,

and could be used to process more filtrate. Specifically, we could use two or more

first-stage filters FR,1 in order to create sufficient once-filtered fluid to pass through

the second stage filter FR,2 and foul it significantly. We anticipate that increasing the

volume of filtrate collected from stage 1 of the filtration using multiple FR,1 should

lead to higher mass yield per filter by more fully utilizing the filtration capacity of the

stage 2 filter FR,2. Before investigating this idea in detail we first test it using two,

three and four stage-1 filters (l1 = 2, 3, 4), which lead to 2-stage, 2-stage and 3-stage

filtrations, respectively. The results are presented in Figure 3.8, using the filter F0.5

(optimized for R = 0.5 as in Figure 3.7) with parameters as for the simulations of

Figure 3.7.
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(a) (b)

Figure 3.8 Multi-stage filtrations: (a,b) show second stage of 2-stage filtrations;

(c,d) show 2nd and 3rd stages of a 3-stage filtration. (a) fouling of F0.5,2 by filtering

filtrate collected from two F0.5,1 filters. (b) fouling of F0.5,2 by filtering filtrate collected

from three F0.5,1 filters. (c) and (d): 3-stage filtration with (c) fouling of F0.5,2 by filtering

filtrate collected from four F0.5,1 filters; (d) fouling of F0.5,3 by filtering filtrate collected

from F0.5,2 shown in (c).

81



In the first test example, in stage 1 we collect filtrate by exhausting two F0.5,1

filters (l1 = 2; the fouling plot for each of these F0.5,1 is identical to Figure 3.7(c) so is

omitted in Figure 3.8) and then in stage 2, we send the combined filtrate repeatedly

through an initially clean F0.5,2. Figure 3.8(a) shows the subsequent fouling of F0.5,2,

with alternating blue and red color indicating particle deposition and filter reuse as

before. After passing the filtrate through F0.5,2 three times, the final particle 1 removal

requirement is met (so l2 = 1 and M = l1 + l2 = 3).

In the second example, in stage 1 we collect filtrate by exhausting three F0.5,1

filters (l1 = 3; again see Figure 3.7(c) for this stage). In stage 2 we pass the filtrate

from stage 1 through an initially clean F0.5,2. Figure 3.8(b) shows the fouling of

this second-stage filter F0.5,2. It is used twice, but during the second use becomes

completely fouled before all the filtrate can be filtered. Leaving aside for the moment

the question of whether a second stage-2 filter should be introduced to deal with

the leftover twice-filtered fluid, we check the (thrice filtered) filtrate from this second

stage-2 filtration and find that it meets the final particle 1 removal requirement. In

this example, l2 = 1 and M = 11 + l2 = 4.

In the third example, at stage 1 we collect filtrate by exhausting four F0.5,1 filters

(l1 = 4). This combined filtrate is then passed through a clean second-stage filter,

F0.5,2, whose fouling is shown in Figure 3.8(c). This F0.5,2 filter is completely fouled

after one use (l2 = 1). Again, we defer the question of whether a second stage-2 filter

would be cost-effective to deal with the remaining once-filtered feed, and check the

particle-1 removal requirement of the twice-filtered feed. It is not yet satisfied, so

we need a third stage of filtration with a new filter F0.5,3. Figure 3.8(d) shows the

fouling of this F0.5,3 filter, which is used three times before the final particle 1 removal

requirement is satisfied (l3 = 1). Here M = l1 + l2 + l3 = 6.

We find that in the first example, when we collect filtrate from two F0.5,1 filters

(Figure 3.8(a)), the mass yield of type 2 particles per filter is 0.012, which is indeed
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greater than the value 0.0091 obtained with the original two-stage filtration of Figure

3.7. However, with three stage-1 F0.5,1 filters, the second example of Figure 3.8(b), the

mass yield of type 2 particles per filter decreases to 0.0067 (see table B.1), which may

be explained by the fact that the second stage filter F0.5,2 is completely fouled on its

second use before all the filtrate obtained in stage 1 can be processed (the yield loss is

due to the discarded filtrate). Similar loss of filtrate is observed in the third example,

the 3-stage filtration of Figures 3.8(c) and (d), in which filtrate collected from four

F0.5,1 stage 1 filters was sent through a stage-2 filter F0.5,2, which is exhausted before

all of the stage-1 filtrate can be filtered a second time. Despite this loss, the mass yield

per filter is 0.010, nearly as good as the first example of Figure 3.8(a). Additional

simulations of the second and third test scenarios, in which new filters were introduced

to process the discarded filtrate, gave less favorable results than those presented here.

These three multi-stage filtration experiments suggest that a single stage-2 F0.5,2 filter

can process filtrate collected from three to four stage-1 F0.5,1 filters, but no more.

The observations of Figure 3.8, though preliminary, indicate there may be an

optimal ratio between the number of filters to use at different stages, which would

utilize each filter’s filtration capacity as fully as possible, and minimize the loss of

filtrate at each stage, ultimately maximizing the mass yield per filter. We used our

model to conduct such an investigation, the details of which are provided in Appendix

Section B. We find (by trial and error) that the mass yield per filter can be as high

as 0.013 using a four-stage filtration, with the following numbers of filters per stage:

l1 = 18, l2 = 6, l2 = 3, l4 = 1. This four-stage filtration is illustrated schematically in

Figure 3.9.

3.5.2 Optimization of constant flux filtration

In this section we briefly highlight results for the constant flux case, focusing on

optimization Problem 3, with objective function (3.33). We study how the particle
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Figure 3.9 4-stage filtration illustration, with eighteen stage 1 filters, six stage 2 filters,

two stage 3 filters and one stage 4 filter.

composition ratio in the feed (ξ) and the quantity of feed processed affect the

optimization results. In all simulations we impose the additional constraints that

the initial driving pressure p(0, 0) ≤ 100 and the driving pressure at the end of

the filtration should be no greater than 10 times the initial driving pressure, i.e.,

p(0, tf) ≤ 10p(0, 0) (typical driving pressure at termination is about 1.5-2 times the

initial pressure [6, 57]). Simulations of our model at constant flux show that particle

retention typically deteriorates over time, therefore, in addition to the initial particle

removal requirement (R1(0) ≥ R̃) we also impose that the accumulative particle

removal should be greater than a fixed number at the end of the filtration (R̄1(tf) ≥ R̂,

where R̂ ≤ R̃; this requirement also means that no fast optimization method is

practicable for this case). The quantity of feed processed is fixed by specifying the

number of time iterations N (in all simulations presented here N ≤ 1000 and the

time step is fixed).

Figure 3.10 shows the evolution of the optimized pore profiles obtained for the

constant flux case (3.33) with ξ = 0.9, 0.5, 0.1, β = 0.1, λ1 = 10, R̂ = 0.98, N =
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1000. The figure shows: (a) driving pressure vs throughput, (p(0, t), j)-plot; (b)

accumulative type 1 particle concentration in the filtrate vs throughput, (c1acm, j)-

plot; (c) accumulative type 2 particle concentration in the filtrate vs throughput,

(c2acm, j)-plot; and (d-f) show the pore profiles at the termination of the filtration

for the three ξ-values, with blue color indicating deposited particles: (d) ξ = 0.9;

(e) ξ = 0.5; (f) ξ = 0.1. We observe that, as ξ varies, the optimized pore profile

changes significantly. For feed containing less impurity (the smallest value, ξ = 0.1,

Figure 3.10(f)) the optimized pore profile is of Λ shape (instead of the V shape we

observed consistently in the constant pressure case) and the particle deposition is

more evenly distributed over the length of the pore. Also, in contrast to the constant

pressure case, we see that the particle type 1 retention capability of the filter decreases

in time for all three ξ values, with the most significant deterioration observed for the

feed containing the highest fraction of impurity (the largest ξ-value, ξ = 0.9, see

Figure 3.10(b)).

Another question of interest for this constant flux case is: how does the amount

of feed processed affect the optimization result? We illustrate this by considering three

different values of N , the total number of timesteps in our simulations. Figure 3.11

shows the evolution of pore profiles optimized for the constant flux objective function

(3.33), with ξ = 0.9, β = 0.1, λ1 = 10, R = 0.99, R̂ = 0.98 and N = 1000, 500, 100.

The figure shows: (a) (p(0, t), j)-plot; (b) (c1acm, j)-plot; (c) (c2acm, j)-plot; and (d-e)

show the pore profiles at the termination of the filtration, with blue color indicating

particle deposition, for (d) N = 500 and (e) N = 100 (N = 1000 was shown earlier

in Figure 3.10(d)). Collectively, Figures 3.10(d), 3.11(d) and 3.11(e) show that, as

the quantity of feed decreases, the optimized pore profile changes from a V to a Λ

shape. Comparing the optimized pore profiles with Figures 3.11(a-c) we see that the Λ

shape is more prone to driving pressure increase and particle retention deterioration,
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Figure 3.10 (a-c) Shows the evolution of optimized profile obtained for constant flux

case with β = 0.1, λ1 = 10, R̂ = 0.98, N = 1000 and ξ = 0.9, 0.5, 0.1,: (a) driving pressure

vs throughput (p(0, t), j) plot; (b) accumulative type 1 particle concentration in the filtrate

vs throughput, (c1acm, j) plot, and (c) (c2acm, j) plot. (d-f) show the pore profile at the

termination of filtration, with blue color indicating particle deposition: (d) ξ = 0.9; (e) ξ =

0.5; (f) ξ = 0.1.
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Figure 3.11 (a-c) Show the evolution of optimized profile obtained for constant flux

objective function (3.33) with ξ = 0.9, β = 0.1, λ1 = 10, R̂ = 0.98 and N = 1000, 500, 100:

(a) (p(0, t), j) plot (b) (c1acm, j) plot, and (c) (c2acm, j) plot. (d-e) show the pore profiles at

the termination of the filtration, with blue color indicating particle deposition: (d) N = 500;

(d) N = 100.
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as well as the more even distribution of fouling noted earlier; observations that we

now explain.

We deal first with the observation that for pores of Λ shape, particles

deposit more evenly along the pore depth compared to pores of V shape. Particle

concentration is always highest at the pore entrance, which favors a high deposition

rate; however, flux up is also highest here for pores of Λ shape, which is unfavorable

for particle deposition (both observations follow from Equation (3.23)). On the other

hand, at the pore exit, particle concentration is lowest (unfavorable for deposition);

but flux up is also lowest (favorable for particle deposition). Hence, for pores of Λ

shape, there is always a competition between particle concentration and flux, which

leads to the observed even fouling distribution along the pore length.

We next argue heuristically that this more uniform particle deposition is re-

sponsible for the observed particle concentration increase as follows: From Equations

(3.22), (3.23) and (3.24) we obtain

ci(1, t) =

⎧⎪⎨
⎪⎩

ξ

1− ξ

⎫⎪⎬
⎪⎭ exp

[
− λiπ

4

∫ 1

0

a(x, t)dx
]
,

⎧⎪⎨
⎪⎩

i = 1

i = 2

⎫⎪⎬
⎪⎭ , (3.38)

showing that the change in particle concentration at outlet for type i particle depends

on the change of the value of
∫ 1

0
a(x, t)dx. For Λ-shaped pores particle deposition is

more even, thus a(x, t) changes over the entire depth of the pore, with the consequence

that
∫ 1

0
a(x, t)dx changes more significantly than for V-shaped pores, where a(x, t)

changes significantly near the pore entrance, but on a region of small measure. The

net effect for the Λ-shaped pore is the observed particle concentration increase in

time. The same argument may also explain the significant pressure change for pores

of Λ shape compared with pores of V shape, as the pressure change depends on the

change of
∫ 1

0
a−4(x, t)dx, see Equation (3.26).
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Collectively, these arguments suggest the following explanation for why the Λ

shape is selected for lower quantities of feed: For less feed, the filtration duration will

be shorter; the significant particle concentration increase at the beginning of filtration

for type 2 particles (see Figure 3.11(c)) is favorable for increasing the mass yield of

these particles, while the short filtration duration keeps the concentration increase

for type 1 particles within the prescribed removal limit.

The results in Figure 3.11 raise the question of whether the optimized pore

profile will take the Λ shape more generally for sufficiently small feed quantity at

constant flux regardless of particle composition ratio ξ. Figure 3.12 shows a sequence

of simulations with a small quantity of feed characterized by N = 100, for different

feed particle composition ratios ξ = 0.9, 0.5, 0.1, with β = 0.1, λ1 = 10, R̂ = 0.98.

The figure shows: (a) (p(0, t), j)-plot; (b) (c1acm, j)-plot; (c) (c2acm, j)-plot; while (d,e)

show the pore profiles at the termination of the filtration, with blue color indicating

deposited particles, for (d) ξ = 0.5; (e) ξ = 0.1 (the corresponding result for ξ = 0.9

was shown in Figure 3.11(e)). Collectively, Figure 3.11(e) and Figures 3.12(d) and

(e) suggest that, for sufficiently small feed quantity, the optimized pore profile takes a

Λ-shape regardless of feed particle composition. From Figures 3.12(b) and (c) we see

the particle concentration changes are not significant for these short duration cases

(N = 100), and the particle removal requirement for type 1 particles is satisfied for all

three feeds with different particle-composition ratios; however, the pressure increase

is still visible, see Figure 3.12(a).

3.6 Conclusions and Future Study

In this work we proposed a simplified mathematical model for filtration of feed

containing multiple species of particles. Our focus in the main body of the paper was

on a feed that contains just two particle species; a brief discussion of how the model

extends to an arbitrary number of species is given in Appendix C. For the two-species
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Figure 3.12 (a-c) Show the evolution for optimized pore profiles obtained for constant

flux objective function (3.33) with ξ = 0.9, 0.5, 0.1, β = 0.1, λ1 = 10, R̂ = 0.98 and N = 100:

(a)(p(0, t), j) plot (b) (c1acm, j) plot, and (c) (c2acm, j) plot. (d-e) shows the pore profile at

the termination of the filtration, with blue color indicating particle deposition: (d) ξ = 0.5;

(d) ξ = 0.1.
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case, two important model parameters are identified and investigated to elucidate

their effect on separation and optimal filter design: ξ, the concentration ratio of the

two particle types in the feed, and β = Λ2α2/(Λ1α1), the ratio of the effective particle

deposition coefficients for the two particle types. A number of optimization problems

for maximizing the mass yield of one particle species in the feed, while effectively

removing the other, are considered, under both constant pressure and constant flux

driving conditions. For filtration driven by a constant pressure drop, we find that the

optimized pore profile is always of V-shape, which is in agreement with our earlier

findings [59] for single-particle-species filtration (where the goal is to maximize total

throughput of filtrate over the filter lifetime while removing a sufficient fraction of

impurity). For filtration driven by a constant flux, the optimized pore profile may

take either a V-shape or a Λ-shape depending on the particle composition ratio and

the amount of feed considered for the optimization scenarios.

To increase the appeal and utility of our model for filter design applications, we

proposed new objective functions (the fast optimization method) based on evaluating

key quantities at the initial stage of the filtration. Due to the simpler forms of the

proposed objectives, we find empirically that our fast method can be carried out with a

relatively small number of initial search-points in design parameter space (compared

with the slow method, which requires that a large number of simulations be run

through to filter failure time). The proposed fast method is approximately 100 times

faster than the naive slow method. The ideas that motivated our fast method could

potentially be usefully applied to other optimization problems that require evaluation

of quantities at the end of the time evolution, provided those quantities exhibit some

monotonicity over time.

Observing that (based on our model predictions), effective separation in a single-

stage filtration is usually achieved at the expense of short filter lifetime and inefficient

filter use (most of the filter remaining only very lightly fouled), we also proposed an

91



alternative approach for maximizing the mass yield per filter while achieving effective

separation, using multi-stage filtration. Using this approach we find that the mass

yield per filter could be as much as two-and-a-half times that produced by the optimal

single stage filtration, and surprisingly the purity of the final product is higher as well.

In addition to the higher mass yield, the filter optimized for multi-stage filtration also

requires less material to manufacture, due to its higher porosity. Multi-stage filtration

has been utilized in industry [15] and reported experimentally [1,40]; however, to our

best knowledge, little attention has been paid to optimizing this process from the

theoretical side. We hope that our work will inspire further systematic studies into

this promising approach.

92



CHAPTER 4

PRELIMINARY WORK: MODEL FOR REACTIVE PARTICLE
REMOVAL

4.1 Overview

Filtration to remove undesired particles or contaminants is indispensable for many

industrial applications, and in particular for waste water purification. In this chapter,

we present a simple mathematical model for reactive particle removal using a reactive

porous material. We demonstrate the applicability of our model by fitting it to

experimental data using carefully estimated parameter values. Our optimization

routines developed in Chapters 2 and 3 prove useful for finding the parameter values

that provide the best fit to the experimental data.

4.2 Introduction

Filtration to remove undesired particles or contaminants is indispensable for many

industrial applications, and has received significant attention in the scientific

literature [12,16,60,65,66,69]. A majority of studies focus on nondestructive particle

removal via membrane filtration, based on considerations of the particle and pore size

distribution [23, 31, 32, 41–43, 63], with considerable effort devoted to understanding

the inevitable fouling [27, 28, 30, 55, 62]. However, very few studies have considered

mathematical models for the alternative strategy of reactive particle removal using a

chemically-active porous medium [36]: in many industrial settings, it may be possible

to achieve particle removal by destructive means such as chemical reactions. Here,

‘destructive’ is understood to mean that during the filtration the particle and porous

material react irreversibly with each other to form new compound. In this chapter,

we outline a model for such reactive particle removal using dead-end filtration with

feed containing multiple species of particles.
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X = 0

X = D

Figure 4.1 Schematic of unidirectional filtration through a reactive granular porous
medium. Large blue circles represent the granular medium; the red boundary of these
particles indicates the possible presence of a chemically-active coating. Small colored
dots represent contaminant species to be removed via reaction.

We set up our model in Section 4.3, then present preliminary results that

demonstrate its applicability in Section 4.4 by parameter fitting using experimental

data from the study of Acheampong & Lens [1]. Discussion of our results and some

preliminary conclusions will be made in Section 4.5.

4.3 Filtration Modeling with Reactive Particle Removal

We consider dead-end filtration of a feed solution containing two types of particles

(e.g., chemically-distinct ions), type 1 and type 2, through a reactive porous medium

of depth much greater than the typical pore size in the reactive granular material (e.g.,

a packed column of granular material such as chemically coated sand particles); see

Figure 4.1, which shows a small portion of the reactive porous medium. We assume
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that contaminant removal is through chemical reaction between the contaminants

and the porous medium in the column. In addition we assume that the porous

material granule size is much larger than the size of the contaminant particles to

be removed. Considering the scale difference between the particle size in the feed

and the porous material, we assume that the particle reaction with the reactive

granular material, which happens only at the surface of the granular material, will

not change appreciably the permeability of the porous medium while filtration is

taking place. We implicitly assume that contaminant breakthrough — significant

presence of undesirable particles in the filtrate — happens when the porous material

loses its chemical reactive property, rather than due to any significant change in

physical properties of the filter material (e.g., due to pore blocking). With the above

assumption of constant permeability, a constant pressure drop applied across the

porous medium will then generate a constant flux through it: the constant pressure

and constant flux problems are equivalent here.

In setting up our mathematical model we use uppercase fonts to denote

dimensional quantities and lower case for nondimensional quantities, which will be

defined in Section 4.3.1 when we introduce appropriate physical scalings. We consider

unidirectional Darcy flow in the positiveX-direction, driven by constant pressure drop

P0 across the column. We assume the column has depth D (see Figure 4.1), and is of

homogeneous composition (it would be easy to modify the model to allow for depth

variation in the column). With the stated assumptions, the superficial Darcy velocity

U = (U(T ), 0, 0) within the column is given in terms of the pressure P (X, T ) by

U = −K

μ

∂P

∂X
, 0 ≤ X ≤ D, (4.1)

where μ is the viscosity of the incompressible feed solution (assumed Newtonian)

and K is the column permeability. For the preliminary work described here, where

the porous medium is homogeneous, a detailed expression for K in terms of physical
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properties of the medium is not necessary, but if required, it could be modeled with

the Kozeny-Carman formula for granular porous media (see, e.g. Probstein [47]),

K =
φ3

KozS2
cp(1− φ)2

, (4.2)

where φ ∈ (0, 1) is the void fraction or porosity of the porous medium; Scp is the

specific area (the ratio of the surface area to the volume of the solid fraction of the

porous medium); and Koz is the Kozeny constant (Carman proposed a value of 5

for Koz for porous media composed of packed spherical particles [47]). The velocity

within the pores, Up(T ), is related to the superficial Darcy velocity U(T ) via porosity

φ as

U(T ) = φUp(T ). (4.3)

Inspired by a model for so-called “cake filtration”, in which a “caking layer” of sieved

particles forms on the upstream surface of a regular membrane filter acting as an

additional filter in series with the membrane [51], we propose the following simple

fouling model, which assume that removal of each of the impurity species is due to

reaction between impurity particles and the porous medium, and that the reaction

occurs at a rate proportional to the local particle (impurity) concentration and the

local reactive porous material surface concentration. In addition we assume the two

impurity particle types are transported independently by the solvent and do not

interact with each other:

Up
∂Ci

∂X
= −ΓiCiE, Ci(0, T ) = Ci,0, 0 ≤ X ≤ D, T ≥ 0; i = 1, 2, (4.4)

∂E

∂T
= −

2∑
i=1

ΞiCiE, E(X, 0) = E0, 0 ≤ X ≤ D, T ≥ 0, (4.5)

where Ci(X, T ) is the concentration (mass per unit volume of solute) of type i impurity

particles; Γi is a particle deposition coefficient for type i particles; E(X, T ) is the
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concentration of the reagent on the surface of the granular material (e.g., coating on

the sand); and Ξi is the reaction rate between particle type i and the reactive porous

medium. The concentrations of impurity in the feed, Ci,0, and the initial reagent

concentration E0, are assumed to be specified constants. We assume further that the

particle deposition rate is proportional to the rate of particle reaction with the porous

material, i.e. Γ1/Γ2 = Ξ1/Ξ2.

4.3.1 Non-dimensionalization

We assume in the following that feed at constant flux U = U0 is passed through the

column throughout the simulated filtration. We non-dimensionalize the variables in

our model (4.1)–(4.5) using the following scalings, with lower-case fonts indicating

the dimensionless variables:

u =
U

U0

= 1, up = Up
φ

U0

= 1, p = P
K

U0Dμ
, (4.6)

x =
X

D
, c1 =

C1

C10

, c2 =
C2

C10

, (4.7)

e =
E

E0

, t =
T

T0

, with T0 =
1

Ξ1C10

. (4.8)

The resulting non-dimensionalized equations are as below: Equations (4.1)-(4.5)

become

1 =
∂p

∂x
, 0 ≤ x ≤ 1, (4.9)

∂c1
∂x

= −γ1c1e, c1(0, t) = 1, (4.10)

∂c2
∂x

= −γ2c2e, c2(0, t) = ξ, (4.11)

∂e

∂t
= −(c1 +

γ2
γ1

c2)e, e(x, 0) = 1, (4.12)

where ξ = C20/C10 and γi = ΓiE0Dφ/U0.

We explain briefly how we solve this system of equations numerically: at the

initial time step, we know e(x, 0) = 1, so we can solve for c1(x, 0) and c2(x, 0) using
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Figure 4.2 Experimental results from Acheampong & Lens [1]. Reproduced with
permission.

Equations (4.10), and (4.11). We then update e at the next timestep using Equation

(4.12) and c1(x, 0) and c2(x, 0) just found. Then we can solve for c1 and c2 at the

new timestep, and repeat the process until the desired termination time is reached.

4.4 Results

We demonstrate the applicability of our model by parameter fitting to a particular

experimental dataset due to Acheamphong & Lens [1], which investigates the

feasibility of using coconut shell and iron oxide coated sand to filter and purify

gold mining wastewater that contains multiple species of toxic heavy metal ions and

cyanide, before discharging the filtrate to the environment. This study is relevant to

our model as multiple contaminants (different species of particles to be removed) are

present in the feed, and the removal of the contaminant is through reaction between

contaminant (toxic heavy metal ions and cyanide) and reactive porous material

(coconut shell and iron oxide coated sand). The experimental results are reproduced

in Figure 4.2, and show the concentrations of two key contaminants, Cu2+ and Fe3+

98



0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

Figure 4.3 Model simulation with parameter values γ1 = 10, γ2 = 15.

ions, in the filtrate as the filtration progresses. Three sets of experiments are shown,

indicated by Run 1, Run 2 and Run 3, with varying concentrations of contaminants

in the feed. For Run 2, Fe3+ was not detected at the outlet of the filtration column,

and is omitted from the plot.

The remainder of this section is organized as follows: In §4.4.1, we first generate
artificial data using our model, qualitatively similar to the real data in Figure 4.2, to

demonstrate how the optimization routine we developed in our earlier work [58, 59]

can be reliably applied to determine best fit parameter values. We then present

sample results from our model prediction with parameter values optimally fitted to

the real experimental data in §4.4.2.

4.4.1 Parameter fitting using optimization

Before attempting a quantitative fit to real data we first show how our optimization

routines can be used to reliably find parameters that provide the best fit to a given

experimental dataset. Figure 4.3 shows two sets of simulations generated using

our model, in terms of nondimensional quantities. The non-dimensionalized feed
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concentrations c10 and c20 were obtained using the concentration of Cu from Run 1 in

the experiment shown in Figure 4.2 as a base scale. We denote Cu ions as species 1

particles and Fe ions as species 2, in the notation of our model. Values γ1 = 10, γ2 = 15

are used for this simulation, chosen (via trial and error) to give results qualitatively

similar to the real data (note that we purposely chose parameters in the ratios

γ1 : γ2 = 2 : 3, with the consideration that in the experiment, the copper ions contain

2 positive charges (Cu2+) while the iron contains 3 (Fe3+). The qualitative similarity

provides encouragement that our model could be useful for predicting experimental

results if the parameter values γ1 and γ2 are chosen appropriately.

We next demonstrate how our optimization routines developed earlier can be

used to realize the parameter fitting. To do this we generate simulated data by

adding noise to the sample model results shown in Figure 4.3; see Figure 4.4(a). To

test robustness of our parameter fitting routine we use two common types of noise: we

add response-dependent Gaussian noise to the Fe data (noise amplitude proportional

to the data values) and fixed-amplitude Gaussian noise to the Cu data. A successful

parameter fitting routine should be able to fit our model to this simulated noisy data,

and should find values of γ1 and γ2 very close to the values used to generate the initial

simulations of Figure 4.3. We proceed as follows: We set up an objective function

that numerically solves our model for given γ1, γ2 values and the returned value for

the objective function is the squared difference between the solved value and the input

noisy data. The parameter fitting problem can be cast as the following optimization

problem:
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Minimize

J(γ1, γ2) :=

∫ tf

t=0

dt
∑
i=1,2

[ci(1, t)− datai(t)]
2 (4.13)

subject to Equations (4.9)-(4.12), and

γi ≥ 0, i = 1, 2

tf specified,

where ci(1, t) are the concentrations for each type of particles at the filtration column

outlet at each time t, determined from Equations (4.9)-(4.12), datai is the noisy

data for each type of particle i, and tf is the termination time for the filtration. If

the method works, then with a low level of noise added to our model predictions, we

should be able to recover the parameter values used to generate the noisy data. Figure

4.4(b) shows the plot for the parameter values found using our optimization routine

with just 100 searching points. The values found in this test (γ1 = 10.0, γ2 = 15.4)

are indeed very close to the original parameter values used to generate the data

(γ1 = 10, γ2 = 15). We note that the approach is flexible, capable of fitting multiple

data sets with varying size (vector size) in the same run.

4.4.2 Fitting the model to the real data

In this section, we use the optimization approach outlined above to find the best

parameter values to model the experimental results presented by Acheampong &

Lens [1]. When we deal with the real experimental data, there are two additional

points to address: 1) the data are dimensional quantities, which require proper scaling

to be comparable to our dimensionless mathematical model; 2) the data are discrete

and when rescaled, are given at time intervals much larger than our numerical model

computational timestep.
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Figure 4.4 (a) Model prediction with added noise, parameter values fixed at γ1 =
10, γ2 = 15, c10 = 1.41, c20 = 0.37. (b) Parameter fitting for the noisy data using
optimization.
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Table 4.1 Dimensional Parameter Description and Values from Literature [1]

Parameter Description Value & Units
D Depth of filtration column 150 cm
E Reagent concentration on the surface of

granular material
unknown kg/m2

Q Fixed flow rate for operation 150 ml/min
U0 Fixed flux rate based on the fixed

porous medium geometry
0.5 cm/min

K Representative membrane permeability unknown m2 (very variable)
Ci0 Initial concentration of type i particles

in feed
C10 = 5.65 mg/L for Run 1

Γi Type i particle deposition coefficient unknown m2/s
Ξi Reaction rate of type i particles to the

reagents
unknown m3/(kg · s)

For the second issue, one approach is to use matching tools to search the

corresponding model prediction for each data point collected from the experiment.

An alternative is to use interpolation tools to generate a smooth approximation to the

experimental data, and use this function to generate data to compare with our model

prediction. This is the approach we take; the experimental data are interpolated

by polynomial functions of degree 10 using MATLAB R©’s polyfit algorithm as shown

in Figure 4.6(a), indicated by “Polyfit” in the legend. The raw data points were

extracted using the open source software WebPlotDigitizer [50].

For the scaling issue with the raw data, we know the correct scale for the

concentrations as we used the experimental value in the feed for scaling, see table

4.1. However, the time scale implicitly depends on the parameter γ1, which is to be

found using the raw data. Our approach is to take the time scale as an additional

fitting parameter, and modify the objective function, which now simulates our model

for any given time scale T0 and parameter values γ1, γ2, and outputs the summation

of square difference (after proper scaling) between model prediction and raw data

generated by the polyfit function at each time step dictated by the raw data. This

parameter fitting problem can be cast as the following optimization problem:
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Minimize

J(γ1, γ2, T0) :=

∫ tf

t=t1

dt
∑
i=1,2

[ci(1, t)C10 − (polyfit data)i(tT0)]
2 (4.14)

subject to Equations (4.9)-(4.12), and

γi ≥ 0, i = 1, 2

T0 > 0,

t1 = T1/T0, tf = Tf/T0,

T1, Tf specified based on raw data.

Here ci(1, t) are the model-predicted concentrations for each type of particles at the

filter outlet at each time t, which we find from Equations (4.9)-(4.12); (polyfit data)i

are the data values generated by the polynomial function obtained from the raw data

using polyfit for each type of particle i; T0 is the time scale (see Equation (4.8)); and

based on the raw data we determine the fitting range for the starting time T1 and

end time Tf .

The optimization routine is as outlined in Section 4.4.1. In fitting to the

real data we increased the number of searching points to compensate for the

increased number of parameters to be optimized. The model predictions with the

optimized parameters (indicated by legend “Parameter fit”) are shown alongside the

experimental data in Figures 4.5(b) and 4.6(b) for both sets of experimental data

(Run 1 and Run 3). Parameter fit curves are generated using our model (after proper

scaling) with optimized parameter value γ1 = 10.6, γ2 = 13.8, T0 = 261 for Run 1 and

γ1 = 9.7, γ2 = 16.0, T0 = 300 for Run 3. Our parameter fitting indicates the variation

of the porous material in terms of reactivity with the particles is significant, which

may result from difference of porous material properties, such as packing density,

granular size, or coating material, etc.
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We first fit the experimental data from Run 1, in which both Cu and Fe have

lower concentrations in comparison to Run 3. The results show in Figure 4.5 indicate

that for this dataset, the parameter fitting routine achieves excellent agreement

between the experimental results and our model predictions, see Figure 4.5. However,

for data from Run 3, where contaminant concentrations in the filtrate are higher

throughout, we observe that our model predicts the Fe concentration very well, but

does not accurately describe the Cu concentration in the filtrate for a significant

portion of the filtration duration, see Figure 4.6.

Our model is very simple, so there are many possible reasons for the relatively

poor agreement in this case, but one possible explanation may be as follows.

In formulating our model, we assume that at each stage, the available surface

concentration of the reactive porous material is the same for both ion types, which

is reasonable for the early stage of the filtration where we see neither particle type is

detected in the filtrate (e.g., from T = 0 to T = 500), or for dilute ion concentrations.

However, as the filtration proceeds and the reactive material is used up, the surface

concentration may change more significantly after one ion reacts with the porous

material. If there is a preferable ion for the reaction, then the other type of ion

will suffer from the reduced surface concentration, which could be manifested as a

deterioration in retention of the less favored ion (this could be viewed as a type of

‘screening effect’). From the raw data, it seems likely that Fe is preferred for reaction

with the porous material, and we see the retention deterioration shows much earlier

for the Cu ions. This observation indicates that we may need to modify our model

to account for differences in reaction rates between different ion types. For data from

Run 1, since the concentrations for both Cu and Fe are lower in comparison with Run

3, the screening effect may not be appreciable, which leads to much better fitting.
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Figure 4.5 (a) Polynomial fitting for the raw data from experiment [1] Run 1.
(b) Parameter fitting for data from experiment [1] using optimization. Parameter fit
curves are generated with optimized parameter value γ1 = 10.6, γ2 = 13.8, T0 = 261.
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Figure 4.6 (a) Polynomial fitting for the raw data from experiment [1] Run 3.
(b) Parameter fitting for data from experiment [1] using optimization. Parameter fit
curves are generated with optimized parameter value γ1 = 9.7, γ2 = 16.0, T0 = 300.
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4.5 Conclusions and Future Study

In this preliminary work, we presented a simple mathematical model for reactive

particle removal using a chemically reactive porous material. We demonstrated the

applicability of our model by fitting to experimental data using parameter values

estimated from the raw data. Our optimization routines developed in our earlier work

prove to be useful for finding the optimal parameter values to best fit the experimental

data. The discrepancy between our model predictions and the raw data indicates

that we may need to consider taking account of the hypothesized “screening effect”

to make this model more applicable to real situations. In addition, in this model

we assume only simple first-order reaction kinetics, and certainly more complicated

models including higher-order kinetics could be proposed if the experimental data

indicate the necessity for doing so.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this final Chapter we summarize the main findings and insights gained through our

investigations in Section 5.1, with a focus on highlighting those results most relevant

to applications. We then discuss briefly some open questions and possible future work

that we consider is worth pursuing in Section 5.2.

5.1 Summary and Conclusions

In Chapter 2, we formulated a mathematical model for evaluating the performance of

a pleated membrane filter, with variable internal pore structure within the membrane.

The relative simplicity of our model, achieved via asymptotic analysis that couples

a pore-scale model for flow within the membrane to an outer macroscale model for

flow in the region between pleats, allows for quick simulations of filtration all the way

to final pore-blocking, which in turn allows us to carry out the optimization of the

filter pore profile for a common filtration objective (maximizing throughput over the

filter lifetime with a specified particle removal constraint that must be satisfied) and

operating condition (constant driving pressure); see Section 2.4.2. For this filtration

objective and operating condition, we are able to use our model to find (numerically)

the optimal initial pore shape within a restricted class (low-order polynomials) of

such shapes. Our results indicate that this optimization should be sufficient for

most practical applications: as the degree of the polynomial increases from 1 to 3

convergence of the results (presumably to some global optimum) appears rapid.

We also briefly explored, in Section 2.4.4, the impact on filtration performance of

(unavoidable) in-plane and in-depth variations to the desired (optimal) pore geometry.

Our investigations for in-plane variations indicate that our optimization techniques

could still be useful if the tolerance in pore-size variation is well-characterized, and
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sufficiently small. However our investigations of in-depth pore shape variations

indicate that particle removal capability of the membrane can be significantly

impacted, even by quite small variations, and maintaining the optimized pore shape

will be critical for achieving the highest total throughput J (tf) while simultaneously

satisfying the particle removal requirement. Though these conclusions hold strictly

only for membranes with simple “track-etched” pore structure, we anticipate that

they may be generalizable to membranes with more complex pore structure if we

associate pore shape variations with general porosity variations in the membrane’s

cross-section or depth.

A significant observation from our simulations of Chapter 2 is that, under certain

conditions, the concentration of impurity particles in the filtrate may increase after

the filtration starts — that is, particle removal capability of the membrane may

actually deteriorate in the early stages of the filtration. This phenomenon, which is

known to occur experimentally (see, for example, Jackson et al. [32]), has not, to

the best of our knowledge, been observed in earlier theoretical studies of adsorptive

fouling. However, the results of Jackson et al. in fact show monotone deterioration

in particle retention after onset, in contrast to our results which indicate an eventual

improvement in retention as significant fouling occurs and the membrane resistance

increases. This important qualitative difference indicates that additional refinements

to our model may be needed to provide a more complete picture of filter performance.

In Chapter 3, we proposed a simplified mathematical model for filtration of feed

containing multiple species of particles. Here, only “dead-end” filtration, where the

flow of feed is always perpendicular to the planar membrane, is considered. For the

case with just two particle species, two important model parameters are identified

and investigated to elucidate their effect on separation and optimal filter design: ξ,

the concentration ratio of the two particle types in the feed, and β = Λ2α2/(Λ1α1),

the ratio of the effective particle deposition coefficients for the two particle types. A
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number of optimization problems for maximizing the mass yield of one particle species

in the feed, while effectively removing the other, are formulated, under both constant

pressure and constant flux driving conditions. For filtration driven by a constant

pressure drop, we find that the optimized pore profile is always of V-shape (pores

widest at the upstream membrane surface), which is in agreement with our earlier

findings (Chapter 2; [59]) for single-particle-species filtration (where the goal is to

maximize total throughput of filtrate over the filter lifetime while removing a sufficient

fraction of impurity). For filtration driven by a constant flux, the optimized pore

profile may take either a V-shape or a Λ-shape depending on the particle composition

ratio and the amount of feed considered for the optimization scenarios.

To increase the appeal and utility of our model for filter design applications, we

proposed new objective functions (the fast optimization method) based on evaluating

key quantities at the initial stage of the filtration. Due to the simpler forms of the

proposed objectives, we find empirically that our fast method can be carried out

with a relatively small number of initial search-points in design parameter space

(compared with the slow method, which requires that a large number of simulations

be run through to filter failure time). The proposed fast method is approximately

100 times faster than the naive slow method.

Effective separation in a single-stage filtration is typically only achieveable at the

expense of short filter lifetime and inefficient filter use (most of the filter remaining

only very lightly fouled). We were therefore motivated to propose an alternative

multi-stage filtration approach to maximize the mass yield per filter while achieving

effective separation. Using this approach we were able to show that the mass yield

per filter could be as much as two-and-a-half times that produced by the optimal

single stage filtration, with higher product purity also. An additional advantage

is that the filter optimized for multi-stage filtration also requires less material to

manufacture, having higher porosity than one otimized for a single-stage filtration.
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Multi-stage filtration has been utilized in industry [15] and reported experimentally

[1, 40]; however, to our best knowledge, little attention has been paid to optimizing

this process from the theoretical side. We hope that our work will inspire further

systematic studies into this promising approach.

5.2 Future Work

Our results in Chapter 2 indicate that the optimization approach converges quite

rapidly as the degree of the polynomial describing the pore radius depth variation

is increased. In our study we implemented optimization using polynomials of degree

1, 2 and 3, i.e., up to four parameters (the polynomial coefficients) to be optimized;

however, there is no guarantee that the optimization algorithm will converge to the

global optimal solution. In addition, it may be desirable to explore more general

pore shape. With an increasing number of parameters required by more general

pore shape functions, a faster solver becomes necessary to find the optimizer in

reasonable computation time. We are currently working on possible approaches to

solve efficiently the general optimization problem in order to determine the optimum

initial pore profile over all possible shapes (within the class of functions continuous

over the depth of the pore).

Although we believe that our model as implemented in Chapter 2 represents a

valuable step forward in helping manufacturers identify optimal membrane structures

for given filtration scenarios, it does have several limitations, and there are many

potential areas for improvement. First, we only consider very simple homogeneous

feed solutions that contain identical particles. In most applications there will likely

be multiple species in the same feed, and the objective with respect to which we

optimize could also be more complicated: for example, to remove some species

while allowing others to pass through. This question is partially addressed in our

work presented in Chapter 3, though in a simpler flow geometry (dead-end filtration
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rather than the pleated filter). Second, we only consider one fouling mechanism,

while in practice there will often be multiple simultaneous mechanisms operating.

It would not be difficult to include additional fouling mechanisms in our model; for

example following the approach of Sanaei et al. [53]. We note, however, that the

more mechanisms we include in our model, the more unknown parameters there will

be, with correspondingly larger parameter space to be explored. In this case the

optimization problems would need careful reformulation.

Third, even for such applications where standard blocking dominates, where our

presented model should be adequate, there are further details that could and should

be considered. For example, particles deposited on the clean membrane in the initial

stages of filtration could lead to a shielding effect, and modify the physico-chemical

interactions between particles and membrane, making it possibly more difficult for

particles arriving at a later time to deposit on the membrane. We are currently

pursuing this line of research. We hope that such modeling will provide new insights,

in particular regarding the observed discrepancy in particle retention trends between

our existing model predictions and the experimental results of Jackson et al. [32] noted

above. Lastly, though we believe our simple “tubular pore” model should provide a

good guide as to desirable membrane properties, there are certainly other types of pore

structures that could be considered, e.g. regular branching pore structures [20,52] or

more general pore networks [19].

Our model in Chapter 3 extends to an arbitrary number of particle species in

the feed; however, there are several important assumptions made in the model, which

may require further investigation. First, we consider that the feed is sufficiently

dilute and that different species of particles do not interact with each other. This

assumption may not be valid as the number of particle species increases or for a feed

characterized by large particle concentrations, which may require some averaging

procedure for particles of similar but distinct physico-chemical properties. Particle-
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particle interactions, if non-destructive, may be addressed by adding diffusion terms

into the model, see e.g., [35].

In Section 3.4.4, we proposed a fast method for solving the optimization

problems. The fast method shows excellent performance for the two species case

but when the same objective function is used for the three species case, inconsistent

results were observed. The success of the fast method with two species indicates

that the chosen quantities (flux, particle concentration(s) in the filtrate) evaluated at

an early stage of filtration have the potential to predict the final outcome; however,

a better quantitative understanding of how such early-stage indicators signal final

outcome is necessary for a reliable implementation of a fast method for feeds with

more than two species of particles. Such a study may also help us gain more insight

into our model and perhaps reveal some inherent monotonicity, despite the convoluted

flow and fouling process. We intend to pursue this direction as future work.

As a part of our “proof of principle” study of multi-stage filtration, in Appendix

B we present empirical numerical evidence showing that (with the chosen parameters

and operating conditions) the highest yield is obtained using a four-stage filtration.

However, we notice that the highest yield is not found when each stage filter is

completely fouled, see Table B.1 together with Figures 3.8(b) and (c) for example; a

somewhat counterintuitive finding. We believe that a systematic study on multi-stage

filtrations would yield valuable insights into optimal filter usage, which may lead to

some counterintuitive suggestions, such as not running a filtration through to filter

exhaustion, especially for applications involving particles that one wishes to recover

from the feed.

In Chapter 4, we presented our preliminary work for modeling filtration in

reactive granular porous media. We expect this work, when complete, will lead

to models that are much faster for performance prediction than the experimental
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approach to which we compare, and that such models could be used to guide optimal

operating conditions, predictions of filter lifespan, and improved filter design.
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APPENDIX A

SYMMETRY IN THE PORE PROFILE EVOLUTION

In our simulations we observed that if the initial pore profile distribution is symmetric

about x = 1/2 (i.e. a0(x, ỹ) = a0(1 − x, ỹ)), the pores will retain this symmetry for

the entire filtration process (i.e. a(x, ỹ, t) = a(1 − x, ỹ, t), 0 ≤ t ≤ tf), and we here

present a proof for this. This symmetry arises from the coupled ODEs (2.40) and

(2.41), reproduced below:

p0
+
xx(x, t) =

Γ(p+0 (x, t)− p−0 (x, t))
rm(x, t)

, p+0 (0, t) = 1, p0
+
x (1, t) = 0, (A.1)

−p0
−
xx(x, t) =

Γ(p+0 (x, t)− p−0 (x, t))
rm(x, t)

, p−0 (1, t) = 0, p0
−
x (0, t) = 0, (A.2)

(recall that the net membrane resistance rm(x, t) =
∫ 1/2

−1/2
a−4(x, ỹ, t)dỹ). Observe

first that, to show that the pore profile evolution is symmetric about x = 1/2 given

the initial pore profile is symmetric about x = 1/2, is equivalent to showing that

statement (A.3) holds:

rm(x, t) = rm(1− x, t) =⇒ p+0 (x, t)− p−0 (x, t) = p+0 (1− x, t)− p−0 (1− x, t). (A.3)

Note that

a(x, ỹ, t) = a(1− x, ỹ, t) =⇒ rm(x, t) = rm(1− x, t).

At t = 0, we have

a(x, ỹ, 0) = a0(x, ỹ) = a0(1− x, ỹ) = a(1− x, ỹ, 0) =⇒ rm(x, 0) = rm(1− x, 0),
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and c(x, 1/2, 0) = c(1 − x, 1/2, 0) = 1 (in fact, c(x, 1/2, t) = c(1 − x, 1/2, t) = 1 for

0 ≤ t ≤ tf). From equation (2.42), reproduced below:

∂c(x, ỹ, t)

∂ỹ
=

λa(x, ỹ, t)c(x, ỹ, t)rm(x, t)

p+0 (x, t)− p−0 (x, t)
, c(x,

1

2
, t) = 1, (A.4)

we see that if p+0 (x, 0)−p−0 (x, 0) = p+0 (1−x, 0)−p−0 (1−x, 0), then we have c(x, ỹ, 0) =

c(1− x, ỹ, 0). From equation (2.43), also reproduced below:

∂a(x, ỹ, t)

∂t
= −c(x, ỹ, t), a(x, ỹ, 0) = a0(ỹ), (A.5)

we then know that a(x, ỹ,Δt) = a(1−x, ỹ,Δt) for the next time step t = 0+Δt. Thus,

the evolution will not break the symmetry as long as we have p+0 (x, t) − p−0 (x, t) =

p+0 (1 − x, t) − p−0 (1 − x, t) for each t. Hence, in the following we suppress the time

dependence and focus on showing that (A.3) holds.

Proof. To show a function f(x) is symmetric about x = 1/2, we just need to show

f(x) = f(1− x). In our case, f(x) = p+0 (x)− p−0 (x).

Let k(x) = Γ/rm(x) > 0, where we know from the above that k(x) is also

symmetric about x = 1/2 if rm is, i.e. k(x) = k(1−x). The coupled ODEs (A.1) and

(A.2) can then be written in the following form (here we use an overdot to denote

d/dx):

p̈+0 = k(p+0 − p−0 ), (A.6)

p̈−0 = −k(p+0 − p−0 ), (A.7)

p+0 (0) = 1, ṗ+0 (1) = 0, p−0 (1) = 0, ṗ−0 (0) = 0. (A.8)

From (A.6) and (A.7), we obtain the following:

p+0 = −p−0 + Ax+B, (A.9)
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where A, B are arbitrary constants. Equations (A.9) and (A.8) then yield four

conditions in terms of A and B:

p+0 (1) = A+B, ṗ+0 (0) = A, p−0 (0) = B − 1, ṗ−0 (1) = A.

Now let w(x) = [p+0 (x)− p−0 (x)]− [p+0 (1− x)− p−0 (1− x)]. We claim that

w(x) = 0, ∀x ∈ [0, 1].

Checking the boundary conditions for w(x) we find

w(0) = A+ 2B − 2,

w(1) = −A− 2B + 2,

ẇ(0) = A− A = 0,

ẇ(1) = −A+ A = 0.

From the coupled ODEs (A.6), (A.7), (A.8) and the symmetry of k(x), w(x) must

satisfy

ẅ(x) = 2k(x)w(x), (A.10)

ẇ(0) = 0, ẇ(1) = 0. (A.11)

To show w(x) ≡ 0, we use a standard energy argument [2]. Multiplying (A.10) by w

and integrating by parts, with the boundary conditions (A.11) applied, we obtain

∫ 1

0

ẇ2 + 2k(x)w2dx = 0.

Since k(x) > 0, it follows that w ≡ 0 on [0, 1].

118



APPENDIX B

OPTIMAL RATIO FOR MULTI-STAGE FILTRATION

The observations of Figure 3.8 indicate there may be an optimal ratio between the

number of filters to use at different stages of a multi-stage filtration, which would

utilize each filter’s filtration capacity as fully as possible, and minimize the loss of

filtrate at each stage, ultimately maximizing the mass yield per filter. We used

our model to conduct such an investigation, and compiled our findings in table B.1,

which is also presented graphically in Figure B.1. At all filtration stages filters F0.5,

optimized to maximize the mass yield of type 2 particles while meeting a particle

type 1 removal threshold R = 0.5, are used.

Figure B.1 shows, for each multi-stage filtration considered, the total mass yield

per filter (Figure B.1(a)); the final purity k2 of the filtrate (Figure B.1(b)); and

the final cumulative particle removal ratios R̄1(tf), R̄2(tf) for the two particle types.

We find that the maximal mass yield per filter is 0.013; the corresponding (four-

stage) filtration is apparent as the global maximum of the mass yield per filter in

Figure B.1(a). This maximum yield is also indicated in red font in table B.1, and is

almost two and half times the yield obtained with a single-stage filtration optimized

to maximize yield while immediately satisfying the purity constraint.

This four-stage filtration is illustrated schematically in Figure 3.9. We note that

the higher mass yield per filter appears to be achieved at the expense of lowest purity

k2 = 0.873 among other multi-stage filtrations considered, with final cumulative

particle 1 removal ratio R̄1(tf) just above 0.99 (see Figure B.1(b,c)), which makes sense

as optimizers are generally found at the boundary of the feasible search space where

one or more constraints are tight. However, the 2-stage local maximum simultaneously
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(a) (b)

(c) (d)

Figure B.1 (a) Mass yield per filter, (b) purity of type 2 particles (k2), (c,d) final

cumulative particle removal ratios for particle types 1 and 2 (R̄1(tf) and R̄2(tf)) are plotted

against the total number of filters used in each multi-stage filtration. The local maximum

mass yields per filter for 2-stage, 3-stage and 4-stage filtrations are labelled with a list of

values (l
(k)
m ), representing the number of filters lm used for stage m, and the number of

times k each filter is used, listed in order of increasing m.

120



Table B.1 Comparisons of Multi-stage Filtrations (up to four stages are considered) with

Differing Ratios of the Number (lm) of Filters F0.5,m Used at Stage m

l1 l2 l3 l4 c1acm(tf) c2acm(tf) j(tf) Mass Yield/Filter

1 1(4) 0 0 0.00399 0.0573 0.316 0.0090
2 1(3) 0 0 0.00247 0.0546 0.631 0.012
3 1(2) 0 0 0.00321 0.0515 0.519 0.0067
3 1 1(3) 0 0.00380 0.0568 0.947 0.011
4 1 1(3) 0 0.00327 0.0552 1.087 0.010
6 2 1(2) 0 0.00592 0.0592 1.894 0.012
9 3 1 1(2) 0.00343 0.0558 2.841 0.011
12 4 1 12 0.00303 0.0545 3.193 0.0096
18 6 2 1 0.00893 0.0589 5.683 0.013
21 7 2 1 0.00796 0.0600 6.386 0.012
24 8 2 1 0.00796 0.0600 6.386 0.011
27 9 3 1 0.00698 0.0589 8.501 0.012
30 10 3 1 0.00638 0.0579 9.108 0.011

The First Four Columns List Values l
(k)
m , with Superscripts (k) Indicating that Each Filter

Is Used k Times. The Remaining Columns Show Final Cumulative Particle Concentration
for Type 1 and Type 2 Particles, c1acm(tf) and c2acm(tf), Total Throughput j(tf) and
Compound 2 Mass Yield per Filter. The Global Maximum Mass Yield per Filter Is

Highlighted in Red Font.
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achieves high mass yield per filter together with the highest purity, k2 = 0.997,

which indicates that this two-stage filtration may be useful to achieve high mass yield

without sacrificing the purity of the final product.
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APPENDIX C

MULTIPLE SPECIES

In this section, we present some sample results for feed containing more than 2 species

of particles. We non-dimensionalize our model (3.2)–(3.7) using the same scalings as

Section 3.3.3.1 for most quantities, with the following variations:

ci =
Ci∑
i C0i

and t =
T

T0

, with T0 =
W

Λ1α1

∑
i C0i

. (C.1)

Eqns. (3.13)-(3.15) remain unchanged, and Eqns. (3.6)-(3.7) take the form

up
∂ci
∂x

= −λi
ci
a
, ci(0, t) = ξi with

∑
i

ξi = 1, (C.2)

∂a

∂t
= −

∑
i

βici, a(x, 0) = a0(x), (C.3)

where λi = 32ΛiD
2μ/(πW 3P0) is the deposition coefficient for particle type i, ξi =

C0i/
∑

i C0i is the concentration ratio of type i particles, βi = Λiαi/(Λ1α1) is the

effective particle deposition coefficient for particle type i (relative to particle type 1),

and a0(x) is the pore profile at initial time t = 0. To illustrate the model we consider

an optimization problem similar to Problem 2. For definiteness, we consider a feed

containing three species of particles, with type 1 and type 3 the particles to be removed

and type 2 the particles to be recovered from the feed. The goal is again to maximize

the mass yield for type 2 particles (c2acm(tf)j(tf)) while achieving effective separation.

Similar to our earlier approach in Section 3.5.1.2, we could define effective separation

based on the final cumulative particle removal ratios as R̄1(tf) ≥ 0.99, R̄2(tf) ≤ 0.5,

and R̄3(tf) ≥ 0.9. Noticing the definition gets clumsy with increasing number of

particle species, here we propose an alternative way of defining effective separation,
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in observation of close relationship between purity and final particle removal ratios

[see Equation (3.37)], with a focus on the particle that we would like to recover. We

define effective separation for species i (the species we wish to recover) as retaining at

least 50% of particle type i in the final filtrate (i.e., R̄i(tf) ≤ 0.5) with purity of at least

85% (i.e., ki ≥ 0.85). We note here, with this definition, the particle removal ratios

for other particles (to be removed from the feed) can be systematically determined,

when we are given the initial particle concentration for each species, using Equation

(3.37).

In Figure C.1 we present optimization results for three feeds of different particle

composition ratios (indicated by the different ξi values for each curve) with β1 = 1,

β2 = 0.1, β3 = 0.5, λ1 = 1: (a) flux vs throughput, (u, j) plot; (b) accumulative

type 1 particle concentration vs throughput, (c1acm, j) plot; (c) accumulative type 2

particle concentration vs throughput, (c2acm, j) plot; (d) accumulative type 3 particle

concentration vs throughput, (c3acm, j) plot. The optimization was carried out using

the slow method (similar to the slow method outlined forProblem 2 in Section 3.4.3),

and we find that the optimized pore profile takes a V-shape, as observed in our results

for Problem 2 in Section 3.5.1. The different feed composition does not significantly

change the optimized pore profile. For higher concentrations of the heaviest-fouling

particle (type 1 in this case) the pore closes faster with less total throughput observed

in Figure C.1(a). We can see from Figures C.1(b) and (c) that the initial particle

removal requirements are satisfied, though not sharp, in all three cases. We note

in Figure C.1(d) that the particle removal constraint for type 3 particle is tight at

the start of filtration, which indicates that this constraint is the most demanding.

This makes sense as we are requiring a relatively high removal ratio (90%), with a

much lower particle deposition coefficient compared to particle type 1 (λ3 = β3λ1 and

β3 = 0.5; in this simulation αi is the same for each type of particles). In all three cases

shown, effective separation is achieved by our definition, details are provided in Table
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Figure C.1 Evolution of the optimized membrane pore for three different feeds (1)

ξ1 = 0.3, ξ2 = 0.35, ξ3 = 0.35, (2) ξ1 = 0.5, ξ2 = 0.25, ξ3 = 0.25 and (3) ξ1 = 0.7, ξ2 =

0.15, ξ3 = 0.15, with β1 = 1, β2 = 0.1, β3 = 0.5, λ1 = 1, R1(0) ≥ 0.99, R2(0) ≤ 0.5 and

R3(0) ≥ 0.9: (a) (u, j) plot, (b) (c1acm, j) plot, (c) (c2acm, j) plot, (d) (c3acm, j) plot.

C.1. Similar to the two species problem, the slow method for optimization takes about

40 minutes with 10000 searching points. Fast methods based on similar heuristics to

those discussed in Section 3.4.4 were explored but found to give unreliable results for

three particle species; further investigation is needed to speed up the optimization.
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Table C.1 Three species feed filtration.

ξ1 ξ2 ξ3 R̄1(tf) R̄2(tf) R̄3(tf) k2 j(tf)
0.3 0.35 0.35 0.996 0.443 0.939 0.896 0.131
0.5 0.25 0.25 0.995 0.427 0.931 0.879 0.111
0.7 0.15 0.15 0.994 0.416 0.925 0.850 0.096

We record ξi, particle ratios for each type of particles, R̄i(tf) the final cumulative particle
removal ratio for particle type i, k2 purity of type 2 particles in the final filtrate, j(tf)

total throughput.
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