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ABSTRACT

NOVEL STATISTICAL MODELING METHODS FOR TRAFFIC VIDEO
ANALYSIS

by
Hang Shi

Video analysis is an active and rapidly expanding research area in computer vision and

artificial intelligence due to its broad applications in modern society. Many methods have

been proposed to analyze the videos, but many challenging factors remain untackled. In this

dissertation, four statistical modeling methods are proposed to address some challenging

traffic video analysis problems under adverse illumination and weather conditions.

First, a new foreground detection method is presented to detect the foreground objects

in videos. A novel Global Foreground Modeling (GFM) method, which estimates a global

probability density function for the foreground and applies the Bayes decision rule for

model selection, is proposed to model the foreground globally. A Local Background

Modeling (LBM) method is applied by choosing the most significant Gaussian density

in the Gaussian mixture model to model the background locally for each pixel. In addition,

to mitigate the correlation effects of the Red, Green, and Blue (RGB) color space on the

independence assumption among the color component images, some other color spaces

are investigated for feature extraction. To further enhance the discriminatory power of the

input feature vector, the horizontal and vertical Haar wavelet features and the temporal

information are integrated into the color features to define a new 12-dimensional feature

vector space. Finally, the Bayes classifier is applied for the classification of the foreground

and the background pixels.

Second, a novel moving cast shadow detection method is presented to detect and

remove the cast shadows from the foreground. Specifically, a set of new chromatic criteria

is presented to detect the candidate shadow pixels in the Hue, Saturation, and Value (HSV)

color space. A new shadow region detection method is then proposed to cluster the



candidate shadow pixels into shadow regions. A statistical shadow model, which uses a

single Gaussian distribution to model the shadow class, is presented to classify shadow

pixels. Additionally, an aggregated shadow detection strategy is presented to integrate the

shadow detection results and remove the shadows from the foreground.

Third, a novel statistical modeling method is presented to solve the automated road

recognition problem for the Region of Interest (RoI) detection in traffic video analysis.

A temporal feature guided statistical modeling method is proposed for road modeling.

Additionally, a model pruning strategy is applied to estimate the road model. Then, a

new road region detection method is presented to detect the road regions in the video. The

method applies discriminant functions to classify each pixel in the estimated background

image into a road class or a non-road class, respectively. The proposed method provides an

intra-cognitive communication mode between the RoI selection and video analysis systems.

Fourth, a novel anomalous driving detection method in videos, which can detect

unsafe anomalous driving behaviors is introduced. A new Multiple Object Tracking (MOT)

method is proposed to extract the velocities and trajectories of moving foreground objects

in video. The new MOT method is a motion-based tracking method, which integrates

the temporal and spatial features. Then, a novel Gaussian Local Velocity (GLV) modeling

method is presented to model the normal moving behavior in traffic videos. The GLV model

is built for every location in the video frame, and updated online. Finally, a discriminant

function is proposed to detect anomalous driving behaviors.

To assess the feasibility of the proposed statistical modeling methods, several popular

public video datasets, as well as the real traffic videos from the New Jersey Department of

Transportation (NJDOT) are applied. The experimental results show the effectiveness and

feasibility of the proposed methods.
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CHAPTER 1

INTRODUCTION

Video analysis, which has broad applications in surveillance and security, often applies

popular techniques in multidisciplinary fields, such as computer vision, pattern recognition,

machine learning, and artificial intelligence [14], [103]. Many statistical methods are

proposed to analyze the video data, but there are still many challenging problems that

need to be further investigated. Foreground detection is one of the most extensively studied

topics in video analysis. One major problem in foreground detection is that the quality of

some videos is fairly low. Many object detection methods, such as YOLO and mask RCNN

can not detect the foreground objects due to the low resolution and poor quality. Figure. 1.1

shows some example frames from different traffic videos with low video quality. We can

see that the quality of the videos is poor and the vehicles in these videos are hard to be

recognized, which is the reason why most of the foreground detection methods can not

reach high detection accuracy. The second issue of current foreground detection methods

is the detection of the stopped moving foreground objects. Most foreground detection

methods cannot keep detecting the foreground objects when they stop moving, or can only

detect those objects for a short period of time. However, some real world applications

are interested in the stopped moving foreground objects, and need foreground detection

methods to detect them, such as the industrial production line monitoring system, and the

traffic incident detection system.

Another challenging issue in traffic video analysis is the cast shadow detection

problem. The cast shadows are often detected as part of the foreground since the cast

shadows share similar motion patterns to the foreground objects [89], [94], [75]. Figure. 1.2

shows some example frames from different traffic videos with strong cast shadows. These

1



Figure 1.1 Some example frames from traffic videos showing low video quality.

cast shadows sometimes link two objects together and make the detected object’s position

inaccurate. Thus, the performance of video analysis is deteriorated by the cast shadows.

Region of Interest (RoI) detection is also lacking a mature solution. Road region

is a widely used Region of Interest (RoI) in traffic video analysis. Figure. 1.3 shows

some example video frames that the region of interest, which is the road region, only

occupies a small portion of the frame. Detecting the road region ahead may help reduce the

computation complexity of some video analysis applications, such as foreground detection

and object detection because the algorithms do not need to process the areas outside the

road.

Another topic people are also interested in is how to apply AI technologies to improve

traffic safety. Driving in the correct direction is a primary rule to ensure the safety of

the traffic. Therefore, detecting the anomaly in traffic becomes important in traffic video
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Figure 1.2 Some example frames from different traffic videos showing strong cast
shadows.

analysis. Figure. 1.4 shows a vehicle driving in the wrong direction, which is an extremely

dangerous behavior that needs to be detected and stopped.

This dissertation, therefore, focuses on developing novel statistical modeling methods

to solve these problems in traffic video analysis. First, a novel foreground detection method

is presented, which includes a new Global Foreground Modeling (GFM) method, a Local

Background Modeling (LBM) method, and the Bayes decision rule for minimum error.

In the novel foreground detection method, a LBM method is first introduced, which is

derived from the Gaussian mixture model. After that, an innovative GFM method is

presented. The GFM method, which models the foreground pixels globally, is in contrast

to the LBM method, which builds statistical models locally. Then the YIQ, the YCbCr,

and some unconventional color spaces such as the Uncorrelated Color Space (UCS), the

Independent Color Space (ICS), and the Discriminating Color Space (DCS) are investigated

for feature extraction [67], [69]. Additionally, a novel feature vector, which integrates the

color, wavelet, and temporal features, is introduced to increase the discriminatory power of

the feature vector. Finally, the Bayes decision rule for minimum error is applied for final

foreground and background classification.
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Then, a new cast shadow detection method is presented for removing the cast

shadows from the foreground detected by the foreground detection method. The novel

moving cast shadow detection method contains four hierarchical steps. First, a set of new

chromatic criteria is presented to detect the candidate shadow pixels in the HSV color

space. We use the HSV color space for shadow detection due to its property of separating

the chromaticity from intensity [29], [93], [21], [94], [38]. Our new chromatic criteria

are more robust than the criteria used by other popular methods for shadow detection

[94], [38]. Second, a new shadow region detection method is presented to cluster the

candidate shadow pixels into shadow regions. Many shadow detection methods can not

solve the shadow outlines problem: the outlines of the shadow regions are often classified

to the foreground. As a result, after removing the shadow pixels from the foreground, the

shadow regions are only partially removed, and the shadow outlines are often classified to

the foreground. Our new shadow region detection method is able to solve this problem

by applying the prior knowledge that both the foreground objects and their cast shadows

should define continuous regions. Third, a statistical shadow modeling method, which uses

a single Gaussian distribution to model the shadow class, is presented to classify shadow

pixels. The shadow pixels detected by both the new chromatic criteria and the new shadow

region detection method tend to be more reliable shadow pixels, therefore, these shadow

pixels are used to estimate the Gaussian distribution for the shadow class. Finally, an

aggregated shadow detection method is presented to integrate the detection results using

the new chromatic criteria, the new shadow region detection method, and the new statistical

shadow modeling method. A gray scale shadow map is obtained by calculating a weighted

summation of the candidate shadow pixels. A shadow free foreground may be derived by

thresholding the gray scale shadow map.

After that, a novel road detection method is introduced to solve the automated road

recognition problem for the Region of Interest (RoI) detection in traffic video cognition.

First, a temporal feature guided statistical modeling method is proposed for road modeling.
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Figure 1.3 Some example frames showing that the road regions only occupy a small
portion of the frame.

Specifically, a foreground detection method is applied to extract the temporal features

from the video and then to estimate a background image. Furthermore, the temporal

features guide the statistical modeling method to select sample data. Additionally, a

model pruning strategy is applied to estimate the road model. Second, a new road region

detection method is presented to detect the road regions in the video. The method applies

discriminant functions to classify each pixel in the estimated background image into a road

class or a non-road class, respectively. The presented method provides an intra-cognitive

communication mode between the RoI selection and video analysis systems.

Furthermore, a novel anomalous driving behavior detection method is represented for

traffic surveillance video analysis. First, a new Multiple Object Tracking (MOT) method is

proposed to extract the velocities and trajectories of moving foreground objects in video.

The new MOT method is a motion-based tracking method that integrates the temporal

and spatial features. Second, a novel Gaussian Local Velocity (GLV) modeling method

is presented to model the normal moving behavior in traffic videos. Note that the GLV

model is learned and updated for every location in the video frame. Finally, a discriminant

function is proposed to detect anomalous driving behaviors.
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Figure 1.4 An example frame showing that a vehicle is driving in a anomalous direction.

This dissertation is organized as follows. Chapter 2 discusses some related work

by other researchers on foreground detection, shadow removing, road recognition, and

anomaly detection in video analysis. Chapter 3 explains the novel foreground detection

method, which is able to achieve improved foreground detection performance and is

capable of detecting stopped moving objects. Chapter 4 introduces the new cast shadow

detection method, which is used to remove cast shadows from the foreground detection

result and to enhance the video analysis performance. Chapter 5 represents the statistical

modeling method for road recognition, which can automatically recognize the road regions

in traffic videos as RoI. Chapter 6 represents an anomalous driving behavior detection

method, which can detect the anomalies in traffic surveillance videos. Chapters 3, 4,

5, and 6 include detailed experimental results and comparisons between our presented

methods with some popular methods using different video sets and show the advantages

and capability of our methods. Chapter 7 summarizes our work and discusses the future

work for research.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Foreground Detection Methods

Many statistical modeling methods have been proposed for foreground detection [12], [17],

[103], [14], [13]. Most of the statistical modeling methods build the models locally and are

lacking accurate for foreground models [107], [136], [97], [9], [132], [13]. Wang [124]

proposed a low-rank and sparse matrix method to detect foreground objects. Stauffer and

Grimson [107] proposed a Gaussian Mixture Model (GMM) method and they do not apply

any foreground modeling in their method. The GMM method builds one mixture Gaussian

model for each location in a frame and uses a threshold to achieve the foreground and

background classification. Based on the GMM method, Hayman and Eklundh further

applied the Bayes classifier to separate the background and foreground by splitting the

GMM into the background model and the foreground model, respectively [44]. The

foreground model used by Hayman and Eklundh, which is the residual of the background,

is determined locally. Zivkovic presented a background subtraction method that uses the

GMM method to model the background and uses a uniform distribution to model the

foreground for every location [136].

Note that these methods typically use the RGB colors as feature vectors, but the

RGB color space sometimes cannot provide sufficient discriminating power for foreground

detection. Further research indicated that some other color spaces, such as the YIQ and

the YCbCr color spaces, are more powerful than the RGB color space in some visual tasks

[130]. The YIQ and the YCbCr color spaces, which are broadly applied in the TV industry

and in video and image compression [100], are defined by linear transformations of the

RGB color space. Another defect of the RGB color space is that the RGB color values that

are used as features are usually highly correlated [37], while most of the methods assume
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that the feature vectors have independent features. The uncorrelated color space (UCS),

the independent color space (ICS), and the discriminating color space [67], [69] are some

innovated color spaces that can better satisfy this assumption. The UCS is derived from

the RGB color space by using principal component analysis (PCA) [36]. The ICS uses the

independent component analysis (ICA) [28], [54] to get three independent components.

The DCS generates three new component images that are effective for classification by

applying discriminant analysis [36].

As the feature vector that solely uses the color values often does not achieve

sufficient discriminatory power, some foreground objects that have similar color values

to the background may not be detected correctly. In order to increase the discriminatory

power of the input feature vector, a number of region based methods are proposed [125],

[86], [113], [91]. Wren et al. [125] presented a foreground object detection and tracking

method based on blob-based features. Pandey and Lazebnik [86] used a multi-scale feature

pyramid to present a video frame and trained a latent support vector machine (LSVM)

for classification. Varadarajan et al. [113] proposed a region based foreground detection

method, which uses small blocks as feature vectors to separate the foreground and the

background. Qin et al. [91] used a background basis selection method that constructs the

basis matrix of the background. The rationale of the region-based methods is to increase

the discriminatory power of the input feature vector by increasing its size.

Another problem that is not adequately addressed by these foreground detection

approaches is that the foreground objects cannot be detected when they stop moving, such

as the vehicles that are stopped in traffic congestion. Li et al. [63] proposed a statistical

modeling method in complex background environments for foreground object detection.

Huang et al. [50] used a region-level motion-based background modeling method to detect

foreground objects. They pointed out that the stopped foreground objects are always

quickly absorbed by the background in their methods. As a result, these stopped moving

targets are missed in video analysis.
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2.2 Shadow Detection Methods

In video analysis, shadows are often detected as part of the foreground, as they share

similar motion patterns to the foreground objects [89], [94], [75]. These cast shadows often

adversely affect the video analysis performance in various applications, such as tracking

and object detection. Hence shadow detection is a very important step to improve video

analysis performance.

Many methods have been published for moving cast shadow detection [89], [94],

[75]. As color often provides useful information for shadow detection, some methods apply

color information to detect shadows [29], [21], [108], [4]. Many shadow detection methods

assume that the shadow areas are darker in intensity but relatively invariant in chromaticity

[29], [93], [21], [94], [38]. The color spaces that separate chromaticity from intensity are

thus often used for shadow detection. Some example such color spaces are the HSV color

space [29], the c1c2c3 color space [93], and the YUV color space [21]. Some popular

methods apply a set of chromatic criteria by assuming that the cast shadows have a similar

hue to the background, but a lower saturation and a lower value than the background [94],

[38].

Statistical shadow modeling is applied for shadow detection as well [81], [49], [121].

The major assumption of these methods is that the light source is pure white and the

attenuation of the illumination is linear. Generally speaking, these statistical shadow

modeling methods are able to predict color changes of the shadow pixels better than

the color based methods, but the shadow detection accuracy in outdoor scenes tends to

deteriorate.

There are methods that use the shape, size, and orientation information for shadow

detection [48], [34], [20]. These methods are designed to deal with some objects that have

specific shapes. The advantage of these methods is that they do not need to estimate the

background color of the shadow, but the disadvantage is that they have difficulty in dealing

with multiple types of objects in complex scenes.
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There are methods that utilize texture for shadow detection, such as classifying a

region into the shadow region or the object region based on the texture correlation between

the foreground and the background [126], [62], [95], [41], [115]. These methods extract

the texture information in different sizes of the regions. The advantage of these methods

is that they are more robust to illumination changes than the color based methods, but the

disadvantage is that the computation efficiency of matching the texture features is low.

There are also methods that use machine learning techniques for shadow detection: a

paired region based shadow detection algorithm is presented in [41], a kernel least-squares

SVM method is proposed in [116] to separate shadow and non-shadow regions, and a

shadow detection algorithm using a deep neural network is presented in [55]. These

learning based shadow detection methods tend to have high computational complexity and

are usually not for real time video analysis.

2.3 Road Region Detection Methods

Video surveillance cameras are widely deployed in modern society [85]. How to analyze

surveillance videos becomes a very important topic. Traffic surveillance cameras are visible

in our daily life. Automatic road recognition is an important task in analyzing traffic

surveillance videos. Numerous approaches have been taken in order to segment the road

region automatically.

The accumulation of the motion trajectories is widely used in road recognition.

Melo et al. [78] modeled the motion trajectories of tracked vehicles by using low-degree

polynomials and applied a K-means clustering technique on the coefficient space to obtain

approximate lane centers. Lee et al. [61] generated a roadway mask image by accumulating

moving parts in a difference map between two consecutive input frames and then identified

a middle line of the roadway to separate two directions of the traffic. These approaches

depend on the performance of the foreground detection and the tracking methods which

can be affected by the quality of videos, changes in illumination, traffic density, etc.
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Our proposed method, which utilizes the foreground detection result as guidance to build

the statistical model, greatly reduces the inaccuracy caused by the foreground detection

method.

Road markings and lane markings are the most commonly used features for road

recognition [47], [70]. Wang et al. [123] introduced an algorithm called CHEVP to

initialize a B-spline SNAKE algorithm and used the resulting B-spline curve to represent a

curved road. Zhou et al. [134] estimated the lane model parameters (e.g., starting position,

orientation, lane width, etc) and generated several lane model candidates and matched the

best fitted lane model. Aly [3] proposed a real-time algorithm for detecting lane markings

in urban streets by taking a top view of the road image, filtering with Gaussian kernels, line

detection with Hough transformation, and a new RANSAC spline fitting approach. Kong et

al. [57] used the OCR feature to estimate the vanishing point with a clustering method for

road recognition. The vanishing point is estimated based on Gabor filters used to compute

the dominant texture orientation at each pixel and a new edge detection technique to extract

the road boundaries. Son et al. [104] proposed a real-time lane detection method to deal

with illumination variations in lane departure warning system. After using the lane color

properties to detect candidates for lane markers a clustering method was applied to find

the main lane. Helala et al. [46] segmented the road into a number of superpixel regions

and used the contours of these regions to generate several edges which are grouped into

different clusters and the cluster with the highest confidence score was chosen as the road

boundary. However, numerous roads have poor qualities that the markings are not clear

or missing. It becomes difficult to locate the road when the road quality is poor or the

resolution of the video is low.

Most recent studies try to use a combination of low-level and high-level features to

deal with the road recognition problem, especially to overcome the effects of illumination

changes and strong shadows. Wang et al. [119] introduced a close to real-time road

recognition method based on illumination invariant image and quadratic estimation. After
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extracting an illumination invariant image, a manual triangular road region was used as the

color sample to analyze the illumination invariant image to obtain the probability maps.

The combined probability map was resettled based on histogram analysis, and the road

region was estimated for the first time. Then the effective road boundary was extracted

after analyzing the gradient image by the estimated road region and the final more accurate

road region was obtained. This method follows the assumption in [57] and [64] to use a

manual triangular region that is approximated as the initial road estimation model. Tong

et al. [112] used simple statistics to propose effective projection angle calculation methods

in the logarithmic domain to extract the intrinsic images of roads in order to weaken the

shadow effect and eliminate the impact of the direction of camera features. This method

follows a similar approach based on [120] to use a prior triangle region to sample the color

of the road region. Li et al. [65] proposed a road region extraction algorithm based on

vanishing point location. The spatial structure of the road was estimated and color and

edge features of the intrinsic image were extracted based on regression analysis.

Recently, many methods based on convolutional neural networks are proposed to

solve the road detection problem [1], [19], [24], [60], [74], [88]. These methods that

train the deep neural networks to segment the road regions need a huge amount of

labeled training data, but still lack generalization ability. Their performance always drops

significantly due to the impairments, such as different illumination and weather conditions,

low image resolutions, and changes in camera viewing angles.

2.4 Anomalous Driving Detection Methods

Multiple Object Tracking (MOT) is one of the important steps in anomalous driving

detection. Tracking multiple objects in video at the same time involves the detection of

objects in each video frame and the association of the detected objects across multiple

consecutive frames. There has been a significant amount of research conducted on

Multiple Object Tracking (MOT) in recent years. Tang et al. [110] dealt with the MOT
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problem as a Minimum Cost Subgraph Multicut Problem and applied the Kernighan-Lin

algorithm to solve it. A fully differentiable graph-based framework and a Message Passing

Network (MPN) to propagate the node features throughout the graph was proposed in

[15]. Maksai et al. [76] used behavioral patterns to propose a non-Markovian approach

in order to impose global consistency and further improved upon the state-of-the-art

tracking algorithms. A deep prediction-decision network was developed by Ren et al. [92]

using a collaborative deep reinforcement learning (C-DRL) method, which simultaneously

detected and predicted objects under a unified network. With the improvements in object

detection methods in recent years, tracking by detection has been the most studied approach

in multi-target tracking. Kim et al. [56] modeled a multi-object state as a labeled random

finite set, and used the Bayes recursion to reduce false negatives and false positives. The

multi-object filtering density was propagated forward in time. A CNN-based framework

was proposed by Chu et al. [27], which used single object tracking (SOT) to enrich

detections in MOT. Jorquera et al. [53] used the Probability Density Hypothesis (PHD)

filter and Determinantal Point Processes (DPP) to deal with data association uncertainty,

noise, and false alarms and improved the detection accuracy.

Recently, anomaly detection in videos has been an active research area with

applications in intelligent video surveillance and security related video analytic tasks. Since

the occurrence of abnormal actions in real-world video analysis applications is infrequent,

detecting anomalies in videos automatically reduces a significant amount of manual work.

Some of the recent research efforts have tried to detect the anomalies in videos. A deep

CNN was proposed by Nguyen et al. [83], which was a combination of a reconstruction

network that determines the main structures that appear in video frames and an image

translation model which associates motion templates to such structures. Liu et al. [72]

proposed an anomaly detection method in videos with a video prediction framework, which

predicted a future frame based on spatial and temporal constraints and then compared the

predicted frame to its ground truth to detect abnormal incidents. An end-to-end network
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was proposed by Tang et al. [111] that conducts future frame prediction. The network

enlargers the reconstruction errors to help with the identification of abnormal events

followed by reconstruction, which helps enhance the predicted future frames from normal

events. Besides the methods that are aiming at detecting anomalies in general videos, many

methods are proposed to detect anomalies in traffic videos. Doshi and Yasin proposed an

unsupervised method to detect anomalies in traffic videos [32]. A three-stage pipeline for

anomaly detection method was presented by [10].
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CHAPTER 3

A NOVEL FOREGROUND DETECTION METHOD FOR VIDEO ANALYSIS BY
INTEGRATING COLOR, WAVELET, AND TEMPORAL FEATURES

3.1 Introduction

Foreground detection, an important task in computer vision, is usually the first step in video

analysis [12], [17], [35], [103], [14], [68], [99]. In order to detect the foreground objects, a

common approach is to classify the foreground pixels and the background pixels into two

classes.

Many statistical modeling methods have been proposed to address this problem, but

the final solution remains elusive [107], [44], [136], [103], [59], [14], [98], [99]. First,

the statistical modeling of the foreground is still lacking, such as assuming “uniform

distribution for the foreground object appearance” [136] or using one Gaussian to model

the background with the remaining Gaussians to model the foreground [44]. Second,

the independence assumption among the component images in statistical modeling is

not satisfied [98], [99]. Note that the three component images in the RGB color space

are highly correlated. As a result, the statistical modeling methods that apply the RGB

color space often yield sub-optimal, deteriorated foreground detection performance. Third,

the discriminatory power of the input feature vector, which is defined by only the color

information in a specific color space such as the RGB color space, is limited and inadequate

for the complex task of foreground detection in video [98], [99].

In this chapter, we present a novel foreground detection method for video analysis to

solve these problems. First, we present a new foreground detection method that consists

of the Local Background Modeling (LBM) method, a novel Global Foreground Modeling

(GFM) method, and the Bayes decision rule for minimum error. While the LBM models

the background locally, the novel GFM method builds only one global model for the

foreground. As a result, the GFM is a more accurate foreground modeling method when
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compared to the published methods that assume uniform distribution or local foreground

modeling [107], [44], [136], [9], [13]. The Bayes decision rule for minimum error finally

classifies each pixel to the foreground class or the background class, respectively.

Second, in order to satisfy the independence assumption, we investigate the YIQ

color space, the YCbCr color space, and some unconventional color spaces such as

the Uncorrelated Color Space (UCS), the Independent Color Space (ICS), and the

Discriminating Color Space (DCS) for feature extraction [67], [69].

Even though the RGB color space is the most commonly used color space in

background subtraction methods [103], [14], [107], [44], [136], [59], its three color

component images are highly correlated and the independence assumption is not satisfied

[37].

The YIQ and the YCbCr, which are broadly used in the TV industry and in video and

image compression [100], are able to separate the chromatic and the achromatic values. As

a result, these color spaces are better choices than the RGB color space.

The UCS, DCS, and ICS, which are derived using the principal component analysis

or PCA, discriminant analysis, and the independent component analysis or ICA, all have

uncorrelated color component images. Furthermore, the ICS satisfies the independence

assumption due to its independent color component images.

Third, to further enhance the discriminatory power of the input feature vector, we

augment the three-dimensional feature space to define a new 12-dimensional feature vector

space by integrating the horizontal and vertical Haar wavelet features [117], [66] and the

temporal information into the color features. Note that the new color spaces help reduce the

correlation in the RGB color space, and the ICS is able to derive three color components

that are statistically independent. In addition, the 12-dimensional feature vector is able

to increase the discriminatory power [68], which helps our foreground detection method

achieve better performance than other popular statistical modeling methods.
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We implement experiments using the videos from the New Jersey Department

of Transportation (NJDOT) and the public data set CD.net-2014 [122], and compare

the performance of our proposed foreground detection method with some other popular

statistical modeling methods in different feature spaces [107], [44], [136], [137], [106]. We

also show that our proposed method can detect the temporarily stopped moving foreground

objects in video, such as vehicles stopping in front of traffic lights.

3.2 A Novel Foreground Detection Method for Video Analysis

The foreground detection problem is in essence a two-class pattern classification problem,

since if we can correctly classify each pixel into a foreground class or a background class,

we are able to detect the foreground objects. Even though many statistical modeling

methods have been proposed to address the foreground detection problem in video [107],

[44], [136], [103], [59], [14], some challenging problems are still waiting for satisfactory

solutions: (i) more accurate foreground modeling, (ii) the independence assumption among

the color component images, and (iii) the inadequate discriminatory power of the input

feature vector.

To address these challenging problems, we propose a novel foreground detection

method that includes a Local Background Modeling method (LBM), a novel Global

Foreground Modeling (GFM) method, color spaces that better satisfy the independence

assumption, and a new 12-dimensional feature vector space that enhances the discrimi-

natory power of the GFM method.

Specifically, first, the GFM method estimates a global probability density function

for the foreground and applies the Bayes decision rule for model selection, while the LBM

method selects the most significant Gaussian distribution from the Gaussian mixture model

locally as the background. Second, to mitigate the high correlation effects of the RGB color

space on the independence assumption among the color component images, we investigate

the YIQ, the YCbCr, and some unconventional color spaces such as the Uncorrelated Color
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Space (UCS), the Independent Color Space (ICS), and the Discriminating Color Space

(DCS) for feature extraction [67], [69]. Note that the YIQ and the YCbCr separate the

chromatic and the achromatic values, the UCS and DCS further decorrelate the component

images, and the ICS satisfies the independence assumption by deriving the independent

component images. Third, to further enhance the discriminatory power of the feature

vector, we augment the three-dimensional feature space to define a new 12-dimensional

feature vector space by integrating the horizontal and vertical Haar wavelet features [117],

[66] and the temporal information into the color features.

3.2.1 A Local Background Modeling (LBM) Method Using a Single Gaussian
Density

For background modeling, one single Gaussian density is learned in the novel feature vector

space R12 (see 3.2.5) to model the background locally for each pixel. Specifically, the local

background modeling involves a two-step process. First, the probability density function of

the pixel at (i, j) is estimated using the traditional local Gaussian Mixture Model (GMM)

[136], [44], [107]. The constant weight updating scheme [80] is then applied to learn the

parameters of the GMM. Second, according to the weights of the Gaussian densities, we

choose the most significant single Gaussian density to model the background locally for

each pixel.

The feature vector, xi,j ∈ R12, is defined by the three color values of the pixel, the

horizontal and vertical Haar wavelet features, and the temporal difference features. For

notational simplicity and without loss of generality, we will drop the subscripts i, j in the

following equations. The probability density function of the pixel at (i, j) may be estimated

as follows [107]:

p(x) =
L∑
l=1

αlN(Ml,Σl) (3.1)

N(Ml,Σl) =
exp

{
−1

2
(x−Ml)

tΣ−1l (x−Ml)
}

(2π)d/2 | Σl |1/2
(3.2)
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L∑
l=1

αl = 1 (3.3)

where L indicates the number of Gaussian densities in the GMM model, αl is the weight

for each Gaussian density, d is the dimensionality of the feature vector x, and Ml is the

mean vector and Σl is the covariance matrix for the l-th Gaussian density.

For simplicity, we assume that the covariance matrix Σl is diagonal. Note that the

traditional pixel-based background subtraction algorithms use the same assumption as well

[136], [44], [107]. Generally speaking, the GMM is a comprehensive model for describing

complex scenes with various activities. Thus both the background and the various activities

are described by the different Gaussian densities.

Note that the background, which is usually static without many changes, may be

modeled by one Gaussian density with a large weight. We thus choose the most significant

Gaussian density, which is the first density in the GMM, to model the background.

p(x|ωb) = N (M′
1,Σ

′
1) (3.4)

where ωb represents the background class.

3.2.2 A Novel Global Foreground Modeling (GFM) Method

Our novel Global Foreground Modeling (GFM) method, which differs from the LBM

method that builds models locally at each location, constructs a global foreground model

for all the foreground pixels in the whole video frame. Note that a moving foreground

object can exist at any location in the region of interest (ROI). For example, a vehicle can

move along a road. We first use all the foreground information to learn K Gaussian density

functions in order to model the foreground objects. Then for each location, we apply the

Bayes decision rule for minimum error to choose one learned Gaussian density function as

the foreground model.
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Specifically, we define K Gaussian density functions as the conditional density

functions for all the foreground pixels in the GFM method, respectively: p(x|ω1), p(x|ω2),

· · · , p(x|ωK), which are defined as follows:

p(x) =
K∑
k=1

αkp(x|ωk) (3.5)

p(x|ωk) =
exp

{
−1

2
(x−Mk)tΣ−1k (x−Mk)

}
(2π)d/2 | Σk |1/2

(3.6)

K∑
k=1

αk = 1 (3.7)

where x presents the feature vector with a dimensionality of d, Mk, Σk, and αk are the mean

vector, the covariance matrix, and the weight for the k-th Gaussian density, respectively.

For each density p(x|ωk), we define a counter nk for counting the number of input feature

vectors.

Next, we initialize the foreground model. In particular, we apply K Gaussian

distributions for the foreground model, and each distribution is associated with a counter

and a weight. For each pixel, we define a new feature vector x that contains the color

components, the horizontal and vertical Haar wavelet features [117], [66], and the temporal

difference features (see Subsection. 3.2.5 for details). The elements of the mean vector and

the covariance matrix of each Gaussian distribution are first initialized to zero, and so are

the corresponding counter and weight.

Before all the K Gaussian distributions are defined, if x is within the threshold of

the corresponding background density, we classify it as a background pixel and do not

modify the foreground model. Otherwise, if it is within the threshold of any existing

foreground Gaussian distribution, we use that feature vector to update the parameters in

the corresponding Gaussian distribution. The updating strategy is as follows [80]:

M′
k =

nkMk + x

nk + 1
(3.8)
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Σ′k =
nkΣk + (x−Mk)(x−Mk)t

nk + 1
(3.9)

n′k = nk + 1 (3.10)

α′k =
n′k∑K
k=1 n

′
k

(3.11)

where Mk and Σk are the mean vector and covariance matrix for the k-th Gaussian

distribution with the corresponding counter nk and the weight αk. If the feature vector

is not within the threshold of any existing foreground Gaussian distribution, we create a

new Gaussian density function using x as the mean vector and a predefined value σ0 as the

diagonal values in the covariance matrix. We then set the corresponding counter to one and

update the weights of all the K Gaussian distributions using Equation (3.11).

After all the K Gaussian distributions are defined, we apply the Bayes decision rule

for minimum error [5] to assign the input feature vector to one Gaussian distribution.

p(x|ωf )P (ωf ) =
K

max
i=1
{p(x|ωi)P (ωi)} (3.12)

The Gaussian distribution p(x|ωf ) will be used as the foreground conditional

probability density function and x will be used to update the parameters for p(x|ωf ). Note

that ωf represents the foreground class.

3.2.3 Foreground and Background Classification

Finally, we can apply the Bayes decision rule for minimum error to classify the pixels into

a background class and a foreground class.

For a specific location (i, j) at time t, the conditional probability density function

(CPDF) for the foreground and the background, p(x|ωf ) and p(x|ωb), are defined in the

previous sections, respectively. Note that we assume that the background is a static scene

without significant motion, and one Gaussian distribution is sufficient to describe the
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Figure 3.1 A comparison between a single Gaussian density with multiple Gaussian
densities and a uniform distribution in foreground detection. The single Gaussian density
has a smaller overlapping with the background model, which means a lower error rate.

background information. As discussed in Subseection 3.2.1, the first Gaussian density

is chosen as the background model, the prior probability for the background, P (ωb), is

estimated using the weight for this Gaussian density: P (ωb) = α1. The prior probability

for the foreground, P (ωf ), is then estimated as follows: P (ωf ) = 1− α1.

Using the statistical functions estimated above, we can classify each pixel in a video

frame into the background or the foreground class. Given a pixel, we first convert it into a

specific feature space, the RGB, the YIQ, the YCbCr, the UCS, the ICS, the DCS, or the

12-dimensional feature spaces and obtain the input feature vector x. We then apply the

Bayes decision rule for minimum error by means of the following discriminant function:

c(x) = p(x|ωf )P (ωf )− p(x|ωb)P (ωb) (3.13)

The feature vector x is classified to the foreground class if c(x) > 0, and to the background

class otherwise. Therefore, we can detect the foreground objects in the original frame

according to the pixels belonging to the foreground class.

Our novel foreground detection method has the following advantages. First, our GFM

method estimates a global statistical model which includes all the foreground information,
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Figure 3.2 The weight of the background Gaussian density will decrease when an object
stops moving. The background model will be replaced with a new Gaussian distribution
which represents the stopped moving object.

and applies the Bayes decision rule for minimum error to select one single Gaussian

density for foreground classification. In contrast to Hayman and Eklundh’s method [44]

and Zivkovic’s method [136], which use the residual of the GMM background model or a

uniform distribution to model the foreground, our global foreground model is more accurate

for foreground modeling. Figure 3.1 compares a single Gaussian distribution with multiple

Gaussian distributions and a uniform distribution in foreground detection. We can see that

the single Gaussian distribution has a smaller overlapping with the background model,

which means a smaller error. Therefore, our novel foreground model is able to achieve

better foreground detection performance.

Second, our global foreground detection method can detect foreground objects that

stop moving temporarily. Many popular methods fail to detect stopped moving objects

[107], [44], [63], [136], [50], [103], [14]. The main reason is that these methods do

not have an accurate foreground model. When an object stops moving, the background

model will be replaced with a new Gaussian distribution which represents the stopped

moving object. Figure 3.2 shows the change of the background model when a foreground

object stops moving. For Zivkovic’s method, as the foreground is modeled by uniform
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Figure 3.3 In Hayman and Eklundh’s method, after an object stops moving, the
foreground model will no longer remain any information of that foreground object.

distribution, there is no foreground information stored in that model. For Hayman and

Eklundh’s method, when a moving object stops, the background Gaussian distribution for

each location corresponding to that object becomes part of the foreground model and the

Gaussian distribution representing that object becomes the background model. We can

see from Figure 3.3, the foreground model will no longer retain any information of that

foreground object. So the stopped foreground object cannot be detected with these models.

Note also that these methods use the exponential updating scheme to update the background

model, which will cause the background model to change very fast when an object stops.

Our GFM method, however, maintains a foreground model that is not relevant to the

background model. Even the background model may be influenced by the stopped moving

object, our foreground model will keep the correct foreground object information. When

applying the Bayesian decision rule, our method has a better chance to classify a pixel into

its correct class. In addition, we apply the constant weight updating scheme to update the

background model, which can also reduce the influence of the stopped moving object.
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3.2.4 Feature Vectors in Various Color Spaces

Color is broadly applied for feature extraction in computer vision and pattern recognition

[71], [90], [68]. The RGB color space, which contains the red, green and blue color

component images, is a commonly used color space in foreground detection methods [107],

[44], [136], [99], [98]. One common assumption in the statistical modeling methods is

that the color components in the feature vector are independent [107], [44], [136]. This

assumption simplifies statistical modeling because the independent variables lead to a

diagonal covariance matrix. However, this assumption is not satisfied when the RGB color

space is used, as the red, green, and blue color component images are highly correlated

hence not independent in the RGB color space [37]. As a result, the statistical modeling

in the RGB color space by assuming the independence of the color components will not

produce the optimal foreground detection performance.

In order to better satisfy the independence assumption, we apply additional color

spaces, such as the YIQ color space, the YCbCr color space, the uncorrelated color space

(UCS), the independent color space (ICS), and the discriminating color space (DCS) [67],

[69], [101] for improving the foreground detection performance.

The RGB color space is the most widely used color space in foreground detection

methods [107], [44], [136], [14], [103] which has highly correlated components [37]. The

YIQ and YCbCr color spaces separate the chromatic and the achromatic values. The UCS

is derived by de-correlating the three component images in the RGB color space using

principal component analysis (PCA) [36]. The ICS, which applies independent component

analysis (ICA) [28], [54] can further enhance the discriminating power for our foreground

detection task. Furthermore, the ICS derives three color components that are statistically

independent, which satisfies the independence assumption. The DCS generates three new

component images that are effective for classification by applying discriminant analysis

[36]. The rationale of applying these color spaces is to mitigate the correlation effects of

the RGB color space on the independence assumption among the color component images.
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The YIQ color space and the YCbCr color space are defined as follows [39]:
Y

I

Q

 =


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 (3.14)
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For simplicity, we apply the learned transformation matrices in [67] to define the

UCS, ICS, and DCS for statistical modeling. In particular, the transformation matrices for

the UCS, the ICS, and the DCS (WU , WI , and WD) are as follows [67]:

WU =


0.8836 0.3660 0.2922

−0.4574 0.5411 0.7057

−0.1002 0.7572 −0.6455

 (3.16)

WI =


−2.3286 1.1997 0.9774

1.2906 −0.7658 −2.1713

0.4125 −1.2598 0.9212

 (3.17)

WD =


−0.4258 0.7918 −0.4378

0.0440 0.5548 −0.8308

0.1985 −0.9019 0.3835

 (3.18)

Figure 3.4 shows the color component images in the RGB color space, the YIQ color

space, the YCbCr color space, the UCS, the ICS, and the DCS, respectively. The first

row shows the R, G, and B component images in the RGB color space, the second row

shows the Y, I, and Q component images in the YIQ color space, the third row shows the
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Figure 3.4 Color component images in the RGB color space, the YIQ color space, the
YCbCr color space, the UCS, the ICS, and the DCS, respectively. The first row shows
the R, G, and B component images in the RGB color space, the second row displays
the Y, I, and Q component images in the YIQ color space, the third row displays the Y,
Cb, and Cr component images in the YCbCr color space, the fourth row shows the three
uncorrelated component images in the UCS, the fifth row shows the three independent
component images in the ICS, and the sixth row shows the three discriminating component
images in the DCS.
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Y, Cb, and Cr component images in the YCbCr color space, the fourth row shows the three

uncorrelated component images in the UCS, the fifth row shows the three independent

component images in the ICS, and the sixth row shows the three discriminating component

images in the DCS.

Applying the color information solely for foreground detection in videos sometimes

is inadequate, as evidenced by the fact that the color values of the foreground and the

background sometimes are quite similar. To further enhance the discriminatory power

of the feature vectors, we propose to augment the color feature vector with additional

discriminatory information, such as wavelet features and temporal information.

3.2.5 Enhancing Discriminatory Power of the Feature Vector by Integrating Color,
Wavelet, and Temporal Features

Feature representation plays a very important role in pattern classification [68], [71], [90],

[23], [102], [6]. Our recent research shows that the discriminatory power of the feature

vector is enhanced by increasing the dimensionality of the feature vector [22]. The popular

background subtraction algorithms usually apply the red, green, and blue values of a pixel

to define the input vector [14], [103]. As a result, the size of the input vector is limited,

which restricts the discriminatory power of the vector.

To enhance the discriminatory power of the feature vector, we augment the three-

dimensional feature space to define a new 12-dimensional feature vector space by

integrating the color features, the horizontal and vertical Haar wavelet features [117], [66],

as well as the temporal information in the video.

Specifically, first, the new feature vector incorporates the color values of a pixel. The

color values are useful for some simple segmentation tasks as demonstrated in the paper

[42]. Second, the new feature vector integrates the horizontal and vertical Haar wavelet

features. Haar wavelet features have been broadly applied in computer vision and pattern

recognition [66]. Third, the new feature vector combines the temporal difference features.

As temporal information plays a crucial role in motion analysis, the temporal difference
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Figure 3.5 The feature vectors in different color spaces. Each column shows the 12-
dimensional features in one color space, namely, the RGB color space, the YIQ color space,
the YCbCr color space, the UCS, the ICS, and the DCS, respectively. Each column contains
the three color components, the horizontal Haar wavelet features, the vertical Haar wavelet
features, and the temporal difference features in three corresponding colors.
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Table 3.1 The Run Time of the Foreground Detection Method using the Three Types of
the NJDOT Traffic Videos: 352× 240 Video, 704× 480 Video, and 752× 480 Video

video quality resolution run time

high quality 752× 480 82ms/frame

enhanced quality 704× 480 68ms/frame

existing quality 352× 240 15ms/frame

features are added to our new feature vector. Our idea is to compute the temporal difference

between the current frame and the next frame with the goal of distinguishing the moving

objects and the stable background.

In Figure 3.5, each column shows the 12-dimensional features in one color space,

namely, the RGB color space, the YIQ color space, the YCbCr color space, the UCS,

the ICS, and the DCS, respectively. Each column contains the three color components,

the horizontal Haar wavelet features, the vertical Haar wavelet features, and the temporal

difference features in three corresponding color components.

3.3 Experiments

We analyze in this section the foreground detection performance of our proposed method

using video sequences from the New Jersey Department of Transportation (NJDOT), and

the public data set CD.net-2014 [122]. The NJDOT video sequences are real video data

recorded by traffic surveillance cameras. In particular, the NJDOT data set contains various

videos with different spatial resolutions and frame rates, such as 352× 240 with 15 frames

per second (FPS), 704 × 480 with 15 fps, 752 × 480 with 30 fps. We use several dozens

of the NJDOT videos to evaluate the foreground detection performance of our method

and the experimental results show that our proposed method is able to achieve real-time

processing of the videos. The CD.net-2014 data set is a well known public data set for

foreground detection. The dataset contains several simulated video sequences by using the

separate frames, and provides pixel wised foreground mask of each frame for evaluation.
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Figure 3.6 Comparative foreground detection performance of the proposed foreground
detection method in three-dimensional feature paces and 12-dimensional feature spaces.
The First row shows one video frame from an NJDOT traffic video with spatial resolution
of 352 × 240 and the ground truth of the foreground mask. The second and the third rows
show the foreground detection results using the RGB color space, the YIQ color space,
the YCbCr color space, the UCS, the ICS, and the DCS, respectively. The fourth and the
fifth rows show the foreground detection results using the 12-dimensional feature vectors
constructed from the corresponding color spaces, respectively.
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We choose to use the baseline videos in the CD.net-2014 to evaluate our proposed method

and compare the performance with some other recently published unsupervised methods.

We used a DELL XPS 8900 desktop PC with an Intel Core i7-6700 Processor to

implement our global foreground detection method. The parameters we used are as follows:

the number of Gaussian density functions for the GMM is 3, and the number of Gaussian

density functions for the GFM is 5. Table. 3.1 shows the running time of our method on

different videos. These experimental results indicate that our proposed method is able to

process the existing quality videos and the enhanced quality videos in real time on the

DELL XPS 8900 PC with a 3.4 GHz processor. As a matter of fact, the existing quality

videos are currently in use by NJDOT for traffic monitoring. The other two types are

collected using temporary cameras at some experiment zones.

We first evaluate the foreground detection performance of our foreground modeling

method in the proposed 12-dimensional feature spaces corresponding to the RGB color

space, the YIQ color space, the YCbCr color space, the UCS, the ICS, and the DCS,

respectively. Note that for a specific color space, the 12-dimensional feature vector as

shown in Figure 3.5 is defined by the three values of the three color component images

and the nine values of the horizontal, the vertical Haar wavelet features as well as the

temporal difference features of the corresponding color component images, respectively.

The foreground detection performance using different feature vectors and our proposed

foreground detection method is shown in Figure 3.6.

In particular, the first row in Figure 3.6 displays one traffic video frame from the

NJDOT and the ground truth of the foreground mask. The second and third rows show

the foreground detection results using the three-dimensional feature vectors in the RGB

color space, the YIQ color space, the YCbCr color space, the UCS, the ICS, and the DCS,

respectively. The fourth and the fifth rows show the foreground detection results using

the 12-dimensional feature vectors constructed from the RGB color space, the YIQ color

space, the YCbCr color space, the UCS, the ICS, and the DCS, respectively.
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Table 3.2 The Foreground Detection Performance of Our Proposed Foreground Detection
Method using Different Feature Vectors

3-D RGB YIQ YCbCr UCS ICS DCS

Precision 58% 97% 91% 65% 81% 70%

Recall 67% 61% 70% 62% 52% 58%

F-measure 62% 75% 79% 63% 63% 63%

12-D RGB YIQ YCbCr UCS ICS DCS

Precision 71% 95% 95% 80% 89% 84%

Recall 87% 76% 74% 84% 82% 82%

F-measure 78% 84% 83% 82% 85% 83%

Figure 3.6 reveals that the foreground detection results in the 12-dimensional feature

spaces are better than those in the three-dimensional feature spaces. To quantitatively

measure the foreground detection performance of the experimental results in Figure 3.6,

we apply the broadly used metrics precision, recall, and the F-measure, which are defined

as follows [40]:

Precision =
TP

TP + FP
(3.19)

Recall =
TP

TP + FN
(3.20)

F −measure = 2
Precision ·Recall
Precision+Recall

(3.21)

where TP , FP , and FN represent the number of true positive, false positive, and

false negative foreground pixels, respectively.
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Figure 3.7 Comparative performance of the proposed foreground detection method and
other popular methods using the CD.net-2014 videos. Each row represents a different
video. From top to bottom are highway, office, pedestrians, and PETS2006, respectively.
The First column shows some video frames from the data set. The second column shows
the ground truth. The third to the seventh columns display the detection results using
the BMOG method [77], the CL-VID method [73], the PAWCS method [106], the SBBS
method [114], and the SWCD method [51], respectively. The last column displays the
detection results of our proposed method in the ICS.

Table 3.2 shows the precision, recall, and the F-measure scores of the experimental

results in Figure 3.6 corresponding to the three-dimensional feature spaces and the 12-

dimensional feature spaces, respectively.

Specifically, the F-measure scores indicate that (i) the 12-dimensional feature vectors

outperform the three-dimensional feature vectors for foreground detection in video, (ii) the

YIQ color space, the YCbCr color space, the UCS, the ICS, and the DCS outperform the

traditional RGB color space for foreground detection in video, and (iii) the ICS, which

satisfies the independence assumption among the color component images, achieves the

best foreground detection in video.

We then compare our proposed method with some popular foreground detection

methods using the CD.net-2014 videos. Figure 3.7 presents the comparative foreground

detection performance of the BMOG method [77], the CL-VID method [73], the PAWCS

method [106], the SBBS method [114], the SWCD method [51], and the proposed
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foreground detection method using the CD.net-2014 videos. We also quantitatively

compared our proposed method with these methods. From Table. 3.3, we can see that

our proposed method reaches the state-of-art foreground detection accuracy.

Table 3.3 The Foreground Detection Performance of Different Methods using the
CD.NET-2014 Videos

Method BMOG CL-VID PAWCS SBBS SWCD Proposed

Precision 94% 92% 94% 93% 87% 94%

highway Recall 95% 95% 74% 90% 95% 97%

F-measure 95% 95% 94% 92% 91% 95%

Precision 74% 96% 97% 96% 91% 99%

office Recall 55% 95% 91% 97% 97% 93%

F-measure 63% 95% 94% 97% 94% 96%

Precision 87% 91% 93% 89% 90% 96%

pedestrians Recall 98% 99% 99% 83% 96% 92%

F-measure 92% 95% 95% 94% 93% 94%

Precision 74% 85% 92% 81% 86% 89%

PETS2006 Recall 94% 94% 94% 91% 96% 89%

F-measure 83% 89% 93% 86% 91% 89%

Precision 82% 91% 94% 90% 89% 95%

Average Recall 86% 97% 94% 94% 96% 93%

F-measure 83% 94% 94% 92% 92% 94%

In addition, we compare our proposed method with some popular foreground

detection methods, namely, the GMM method [107], the Zivkovic’s method [136], [137],

the Hayman and Eklundh’s method [44], and the Pixel-Based Adaptive Word Consensus

Segmenter (PAWCS) method [106] for foreground detection using the NJDOT traffic

videos. Figure 3.8 shows the comparative foreground detection performance using these
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.8 Comparative foreground detection performance of the proposed foreground
detection method and some popular video analysis methods. (a) One video frame from
an NJDOT traffic video with a spatial resolution of 352 × 240. (b) The ground truth of
the foreground mask. (c)-(h) The foreground masks that are extracted using the proposed
method in the RGB color space, the YIQ color space, the YCbCr color space, the UCS,
the ICS, and the DCS, respectively. (i)-(l) The foreground masks which are extracted using
the GMM method [107], the Zivkovic’s method [136], [137], the Hayman and Eklundh’s
method [44], and the PAWCS method [106], respectively.
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Table 3.4 The Foreground Detection Performance of Different Methods

Method Precision Recall F-measure

GMM [107] 54% 86% 66%

Zivkovic’s [136], [137] 59% 82% 69%

Hayman and Eklundh’s [44] 83% 74% 78%

PAWCS [106] 68% 83% 74%

Proposed Method in ICS 89% 82% 85%

methods. In particular, Figure 3.8 (a) shows a video frame from an NJDOT traffic video

with spatial resolution of 352×240. Figure 3.8 (b) shows the ground truth of the foreground

mask. Figure 3.8 (c)-(h) show the foreground detection results using our proposed method

in the RGB color space, the YIQ color space, the YCbCr color space, the UCS, the ICS,

and the DCS, respectively. Figure 3.8 (i)-(l) show the foreground detection results using

the GMM method [107], the Zivkovic’s method [136], [137], the Hayman and Eklundh’s

method [44], and the PAWCS method [106].

The comparative foreground detection performance in Figure 3.8 reveals that our

proposed method may achieve better foreground detection results than the popular foreground

detection methods. The precision, recall, and the F-measure scores of the experimental

results in Figure 3.8 are shown in Table. 3.4.

Specifically, Table. 3.4 compares the foreground detection performance in video of

our proposed method in the ICS with the other popular foreground detection methods:

the GMM method [107], the Zivkovic’s method [136], [137], the Hayman and Eklundh’s

method [44], and the PAWCS method [106]. The F-measure scores show that our

foreground detection method achieves better foreground detection accuracy than the other

four popular methods.

We finally evaluate our proposed method using video frames that contain temporarily

stopped vehicles. In particular, the first image in Figure 3.9 shows one frame from an
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9 Comparative performance of the proposed foreground detection method and
other popular methods in a scene with some stopped vehicles. The First row shows one
video frame from an NJDOT traffic video with spatial resolution of 704 × 480, and the
detection result of our proposed method. The second row and the third row display the
detection results using the GMM method [107], the Zivkovic’s method [136], [137], the
Hayman and Eklundh’s method [44], and the PAWCS method [106], respectively.

38



(a) normal situation (b) small stopped vehicle

(c) snow weather (d) camera jitter

(e) stopped in a buffer area (f) night video

(g) strong shadow (h) illumination change

Figure 3.10 Some stopped vehicle detection results. The stopped vehicles detected by our
proposed method are marked with the red rectangles.
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NJDOT traffic video with some stopped vehicles, and the second image on the first row in

Figure 3.9 shows the foreground detection result of our method using the 12-dimensional

features constructed from the ICS. The second row and the third row in Figure 3.9 show

the detection results using the GMM method [107], the Zivkovic’s method [136], [137],

the Hayman and Eklundh’s method [44], and the PAWCS method [106], respectively.

Figure 3.9 shows that the four popular methods did not detect the stopped vehicles or could

only detect a little part of the stopped vehicles. Our foreground detection method, however,

is able to correctly detect those temporarily stopped vehicles.

The property of our proposed method for detecting stopped targets has broad

applications in video analysis in general and in traffic incidents detection in particular.

For example, the popular statistical modeling methods usually have difficulty in detecting

traffic incidents such as congestion or stopped vehicles due to the lack of such property

[121], [129]. Our proposed method, in contrast, is capable of detecting these traffic

incidents. Specifically, we have implemented experiments using 30 videos of 30 minutes

or 60 minutes from NJDOT for stopped vehicle detection. These video sequences contain

different real traffic situations and video qualities, such as low video resolution, bad video

quality, camera jitter, and bad weather conditions. Most of these real world videos do not

have good quality, this causes most of the vehicle detection methods can not identify the

vehicles. The detailed description of the video sequences is shown in Table. 3.5. Among

these videos, the stopped vehicle incident occurred 22 times, ranging from 10 seconds to 15

mins. The long stopping time causes some other foreground detection methods cannot keep

detecting the stopped vehicles, even they can detect some temporarily stopped foreground

objects. In contrast, our proposed method is able to detect those stopped vehicles as long as

they are stopping there. Our method is able to detect 21 out of 22 of these stopped vehicle

incidents, and no false positive detection occurred. The only one we miss is because of

the night vision and highly blurred video frames. We show some stopped vehicle detection

results in Figure 3.10. These figures include several challenging conditions in real world
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Table 3.5 The Description of the Video Sequences We used in Experiments

resolution frame rate (fps) duration (mins) bit rate (kbps) condition count

320× 240 15 30 45 to 132 normal 12

320× 240 15 30 41 to 131 night time 4

320× 240 15 30 47 to 176 strong shadow 9

320× 240 15 30 123 fog 1

320× 240 15 30 82 rain 1

640× 480 15 30 1066 snow 1

352× 480 30 60 633 - 839 normal 2

traffic videos, such as low resolution, bad weather conditions, camera jitter, night video,

shadow, etc. We can see that our proposed method can detect the stopped vehicles under

all these conditions without false positive detections.

3.4 Conclusions

We have presented in this chapter a novel foreground detection method for video analysis

by integrating color, wavelet, and temporal features.

First, a local background modeling (LBM) process, which capitalizes on the

traditional Gaussian mixture models, is explained by choosing the most significant single

Gaussian density to model the background locally for each pixel according to the weights

learned for the Gaussian mixture model. Then a novel Global Foreground Modeling (GFM)

method is presented to model the foreground, which estimates a global probability density

function for the foreground and applies the Bayes decision rule for minimum error to

choose one Gaussian density function for a specific time and location. Additionally, the

Bayes classifier is applied for the classification of foreground and background pixels.

Second, to mitigate the correlation effects of the RGB color space on the independence

assumption among the color component images, the YIQ, the YCbCr, and some uncon-
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ventional color spaces such as the Uncorrelated Color Space (UCS), the Independent

Color Space (ICS), and the Discriminating Color Space (DCS) are investigated for feature

extraction. Note that the YIQ and the YCbCr separate the chromatic and the achromatic

values, the UCS and DCS further decorrelate the component images, and the ICS satisfies

the independence assumption by deriving the independent component images.

Third, to further enhance the discriminatory power of the feature vectors, the

horizontal and vertical Haar wavelet features and the temporal difference features are

integrated into the color features to build a new 12-dimensional feature vector. The

12-dimensional feature vector thus is able to increase the discriminatory power, which helps

our foreground detection method achieve better performance than other popular statistical

modeling methods.

As a result, the proposed method is able to address the challenging problems,

such as better satisfying the independence assumption in statistical modeling, insufficient

discriminatory power of the input feature vector in the RGB color space, the inappropriate

statistical modeling of the foreground, and the final classification of the foreground and

background pixels.

Experimental results using videos from the NJDOT and a public video dataset

show that the proposed foreground detection method improves upon the popular statistical

modeling methods for foreground detection and is able to detect stopped moving objects.
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CHAPTER 4

A NEW MOVING CAST SHADOW DETECTION METHOD FOR VIDEO
ANALYSIS USING COLOR AND STATISTICAL MODELING

4.1 Introduction

In video analysis, shadows are often detected as part of the foreground, as they share

similar motion patterns to the foreground objects [89], [94], [75]. These cast shadows

often adversely affect the video analysis performance in various applications, such as

tracking and object detection. Many algorithms have been published to detect the moving

foreground objects in video [107], [44], [136], [103], [59], [128], [14], [13], [11], [98],

[99]. Some methods like the Gaussian Mixture Modeling (GMM) estimate the background

for each pixel using a number of Gaussian distributions [107], [44], [136], [103], [128],

[14]. Other methods apply a classification method, such as the support vector machine

(SVM), to classify the foreground and the background pixels [86], [128], [14]. Yet the

cast shadows are usually classified into the foreground class as they have similar motion

patterns to their foreground objects, which deteriorates video analysis performance.

In this chapter, we present a novel moving cast shadow detection method based on

color and statistical modeling to detect and remove the cast shadows from the foreground

region in order to improve video analysis performance. The novel moving cast shadow

detection method contains four hierarchical steps, whose contributions are summarized

below. First, we present a set of new chromatic criteria to detect the candidate shadow

pixels in the HSV color space. We use the HSV color space for shadow detection due to

its property of separating the chromaticity from intensity [29], [93], [21], [94], [38]. Our

new chromatic criteria are more robust than the criteria used by other popular methods for

shadow detection [94], [38]. Second, we present a new shadow region detection method to

cluster the candidate shadow pixels into shadow regions. Many shadow detection methods

can not solve the shadow outlines problem: the outlines of the shadow regions are often
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classified to the foreground. As a result, after removing the shadow pixels from the

foreground, the shadow regions are only partially removed, and the shadow outlines are

often classified to the foreground. Our new shadow region detection method is able to solve

this problem by applying the prior knowledge that both the foreground objects and their cast

shadows should define continuous regions. Third, we present a statistical shadow modeling

method, which uses a single Gaussian distribution to model the shadow class, to classify

shadow pixels. The shadow pixels detected by both the new chromatic criteria and the new

shadow region detection method tend to be more reliable shadow pixels, we therefore use

these shadow pixels to estimate the Gaussian distribution for the shadow class. Finally, we

present an aggregated shadow detection method that integrates the detection results using

the new chromatic criteria, the new shadow region detection method, and the new statistical

shadow modeling method. A gray scale shadow map is obtained by calculating a weighted

summation of the candidate shadow pixels. A shadow free foreground may be derived by

thresholding the gray scale shadow map.

We implement experiments using the public video data ‘Highway-3’ and the

New Jersey Department of Transportation (NJDOT) traffic video sequences to show the

feasibility of the proposed method. In particular, the experimental results (both qualitative

and quantitative results) show that our proposed method achieves better shadow detection

performance than some popular shadow detection methods [48], [62], [49], [95], [38].

4.2 A Novel Moving Cast Shadow Detection Method

In video analysis, shadows are often detected as part of the foreground, which deteriorates

the performance of many video analysis tasks. We therefore present a novel moving cast

shadow detection method that is able to detect and remove the cast shadows from the

foreground.

In particular, Figure 4.1 shows the system architecture of our proposed moving cast

shadow detection method in video using color and statistical modeling. First, we apply the
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Figure 4.1 The system architecture of our novel moving cast shadow detection method.
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(a)

(b)

(c)

Figure 4.2 (a) A video frame from an NJDOT traffic video. (b) The background
derived using the GMM model. (c) The foreground (with shadow) detected using our new
foreground detection method.
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foreground detection method introduced in the previous chapter to detect the foreground,

which contains both the foreground objects and their cast shadows. Figure 4.2 (a) shows

a video frame from an NJDOT traffic video. The background, which is derived using

the GMM model, is shown in Figure 4.2 (b), and the foreground (with shadow), which is

detected using our new foreground detection method, is displayed in Figure 4.2 (c). As

shown in Figure 4.2, the foreground includes both the foreground objects and their cast

shadows. Second, we present a moving cast shadow detection method with the following

novelties: (i) A new method based on new chromatic criteria is presented for candidate

shadow pixel detection. (ii) A shadow region detection method is proposed to cluster the

candidate shadow pixels into shadow regions. (iii) A statistical shadow model is presented

for classifying shadow pixels. (iv) An aggregated shadow detection method is presented

for final shadow detection.

4.2.1 New Chromatic Criteria for Shadow Pixel Detection

As color provides useful information for shadow detection, we present in this subsection

a new method based on a set of new chromatic criteria for shadow pixel detection. After

foreground detection, we need to detect the cast shadow pixels in the foreground region.

Our new method will apply the new chromatic criteria to detect candidate shadow pixels.

As the HSV color space is widely used in shadow detection due to its property of separating

the chromaticity from intensity, we choose this color space for shadow detection.

As shown in Figure 4.3, the HSV color space can be modeled as a cone in geometry.

Let H, S, and V be the H (hue), S (saturation), and V (value) components in the HSV color

space. H represents color information, which is described by the angular dimension of the

cone. S denotes the concentration of color, increasing from the central vertical axis to the

edge of the cone. V represents the brightness of a pixel, from the darkest at the bottom to

the brightest at the top.
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Figure 4.3 The HSV color space can be modeled as a cone.

Let Sf and Vf be the S and V components of a pixel in the foreground region,

respectively, and Sb and Vb be the S and V components of the same pixel in the background,

respectively. Our new chromatic criteria are defined as follows: τsl < Sf − Sb < τsh

τvl < Vb − Vf < τvh

(4.1)

where τsl, τsh, τvl, and τvh represent the thresholds. If a pixel in the foreground region

satisfies these chromatic criteria, it is classified as a candidate shadow pixel.

To illustrate the rationale of our new chromatic criteria, we show the difference of

the S component between the foreground and the background, and the difference of the

V component between the background and the foreground, respectively. In particular,

Figure 4.4 (a) shows a color video frame, Figure 4.4 (b)-(d) display the H (hue), S

(saturation), and V (value) components in the HSV color space, Figure 4.4 (e) shows the

difference of the S component between the foreground and the background, and Figure 4.4

(f) shows the difference of the V component between the background and the frame.

From Figure 4.4 (e), we can see that for the shadow pixels the difference values of the S

component between the frame and the background are within a range that can be bounded

by two threshold values τsl and τsh as shown in Equation (4.1). From Figure 4.4 (f), we

can see that for the shadow pixels the difference values of the V component between the
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4 (a) The H (hue) component of the video frame. (b) The S (saturation)
component of the video frame. (c) The V (value) component of the video frame. (d) The
difference of the S component between the frame and the background. (e) The difference
of the V component between the background and the frame.
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background and the frame also fall into a range that can be bounded by two threshold values

τvl and τvh as shown in Equation (4.1).

Note that many shadow detection methods assume that the shadow areas are darker

in intensity but relatively invariant in chromaticity [29], [93], [21], [94], [38]. As a result,

some color spaces that separate chromaticity from intensity are applied to detect shadows,

such as the HSV color space [29], the c1c2c3 color space [93], and the YUV color space

[21]. Some popular methods [94], [38] apply a different set of chromatic criteria: |Hf −

Hb| ≤ τH , Sf − Sb ≤ τS , β1 ≤ Vf/Vb ≤ β2, where Hf , Sf , Vf , Hb, Sb and Vb represent

the hue, saturation, and value of a pixel of the frame and the background, respectively. τH ,

τS , β1 and β2 are the thresholds that are chosen empirically. The pixels that satisfy these

three criteria are classified as shadow pixels. These chromatic criteria assume that the cast

shadows have a similar hue to the background, but a lower S (saturation) and a lower V

(value) than the background [94].

In contrast, our new chromatic criteria are more robust than these chromatic criteria.

In our research, we find that the assumption that the cast shadows have a similar hue to the

background is often not satisfied. For example, Figure 4.4 (b) shows that the H values of the

cast shadows are not similar to the background. As a result, in our new chromatic criteria,

the H values are excluded as they vary a lot, especially for the background. The S values,

however, are relatively stable for the background and the cast shadows comparatively, but

vary for the foreground objects. Thus the difference of the S component between the

shadow and the background often falls into a fixed range. Another characteristic of cast

shadows is that the shadows are always darker than the background, but they cannot be

exactly black. Based on these observations, we present our new chromatic criteria for

candidate shadow pixel detection as shown in Equation (4.1).

Figure 4.5 shows the shadow detection results using our new chromatic criteria and

the criteria in [94], [38]. Specifically, Figure 4.5 (a) shows a video frame from an NJDOT

traffic video, Figure 4.5 (b) displays the shadow detection results using the chromatic
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(a)

(b)

(c)

Figure 4.5 (a) A video frame from an NJDOT traffic video. (b) The shadow detection
results (shadow pixels are represented using gray scale value of 128) using the chromatic
criteria in [94], [38]. (c) The shadow detection results using our new chromatic criteria.
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Figure 4.6 The color of the outline is different from that of the main part of the shadow.

criteria in [94], [38], and Figure 4.5 (c) shows the shadow detection results using our new

chromatic criteria. Note that the shadow pixels are represented using gray scale value of

128. We can see from Figure 4.5 (b) and (c) that our proposed method using the new

chromatic criteria is able to detect the shadow pixels more reliably.

4.2.2 A New Shadow Region Detection Method

One inherent problem in shadow detection is that the outlines of the shadow region are often

classified to the foreground class. We can see from Figure 4.6, the color of the outline is

different from that of the main part of the shadow. As a result, after removing the shadow

pixels from the foreground, the shadow regions are only partially removed, and the shadow

outlines are often classified to the foreground. Figure 4.7 (b) and (c) show the partially

removed shadow regions and the shadow outlines that are not removed. These unremoved

shadow regions and outlines often deteriorate the performance of video analysis tasks, such

as video tracking and incident detection.

To solve this problem, we present a new shadow region detection method based on

the prior knowledge that both the foreground objects and their cast shadows should define

continuous regions. Note that in each frame, the detected foreground often consists of

several foreground regions, each of which contains both the foreground objects and their
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(a) (b)

(c) (d)

Figure 4.7 (a) A video frame from an NJDOT traffic video. (b) The shadow detection
results using Huang and Chen’s method [49]. (c) The shadow detection results using our
new chromatic criteria. (d) The shadow detection results using our shadow region detection
method..

cast shadows. In each foreground region, all the shadow pixels are on one side and all

the foreground object pixels are on the other side. As a result, each foreground region

may be divided into two regions: the shadow region and the foreground object region.

As the candidate shadow pixels inside each foreground region are detected using the new

chromatic criteria introduced in subsection 4.2.1, the remaining pixels are the foreground

object pixels.

The idea of our new shadow region detection method is to cluster the shadow pixels

and the foreground object pixels into two classes using the centroids of the two classes.
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Our idea is similar to the K-means clustering algorithm but without any iteration steps.

Specifically, in each foreground region B, we first find the centroid of the candidate

shadow pixels CentS(B) and the centroid of the foreground pixels CentO(B). We then

compute the Euclidean distances between each pixel and the two centroids. We finally

classify the pixel into a foreground object class or a shadow class based on the Euclidean

distances: if the distance to the foreground object class is smaller, the pixel is assigned to

the foreground object class, and vice versa. In particular, for the pixel x at location (i, j)

in each foreground region B, we calculate the distance between the pixel and the shadow

centroidDist(xij, CentS(B)) and the distance between the pixel and the foreground object

centroid Dist(xij, CentO(B)), respectively. If Dist(xij, CentS(B)) is smaller, than we

classify xij into the shadow class. Otherwise, we classify it into the foreground object

class. The new shadow region detection method thus detects the candidate shadow regions.

Figure 4.7 (a) displays a video frame from an NJDOT traffic video, Figure 4.7 (b)

shows the shadow detection results using Huang and Chen’s method [49], Figure 4.7

(c) shows the shadow detection results using the new chromatic criteria introduced in

subsection 4.2.1, and Figure 4.7 (d) shows the shadow detection results using the new

shadow region detection method. Figure 4.7 (b) and (c) reveal that the outlines of the

shadow region are often classified to the foreground class, which leads to an incorrect

shadow detection. In contrast, Figure 4.7 (d) shows that our proposed new shadow region

detection method is able to detect the whole shadow regions including their outlines.

4.2.3 A New Statistical Shadow Modeling and Classification Method

We present in this subsection a new statistical shadow modeling and classification method.

For statistical modeling, we use a single Gaussian distribution to model the shadow class.

In the previous two subsections, our proposed method using the new chromatic criteria

detects candidate shadow pixels and our new shadow region detection method detects the

candidate shadow regions. As the shadow pixels detected in both methods tend to be more
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reliable shadow pixels, we apply these shadow pixels to estimate the Gaussian distribution

for the shadow class.

Specifically, let Sc and Sr be the candidate shadow pixel sets detected by our proposed

method using the new chromatic criteria and our new shadow region detection method,

respectively. For each pixel x in the foreground, if x ∈ Sc and x ∈ Sr, we will use x to

update the Gaussian distribution Ns(M,Σ) as follows:

M′ = M− α(M− x) (4.2)

Σ′ = Σ + α((M− x)(M− x)t − Σ) (4.3)

where M and Σ are the mean vector and the covariance matrix of the shadow Gaussian

distribution, respectively. α is a number between 0 and 1 which influences the model

updating speed.

For shadow pixel classification, we apply the following discriminant function for

each pixel x ∈ Rd in the foreground:

s(vi) = (µi − vi)2 − p σ2
i i ∈ {1, 2, . . . , d} (4.4)

where vi is the i-th element of the input vector x, µi is the i-th element of the mean vector

M, σ2
i is the i-th diagonal element of the covariance matrix Σ, and p is the parameter which

determines the threshold. If s(vi) is greater than zero for any i ∈ {1, 2, . . . , d}, we classify

x into the foreground object class. Otherwise we classify it as a shadow pixel. Our new

statistical shadow modeling and classification method thus detects the candidate shadow

pixels.
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4.2.4 Aggregated Shadow Detection

The final step for cast shadow detection is the aggregated shadow detection that integrates

the detection results using the new chromatic criteria, the new shadow region detection

method, and the new statistical shadow modeling and classification method discussed in

the previous three sections. Specifically, we first assign all the pixels in the shadow class

a gray scale value of 128, and the pixels in the foreground object class a gray scale value

of 255. We then define three weights for the three methods to indicate their significance

for the final cast shadow detection: wc for the new chromatic criteria, wr for the shadow

region detection, and ws for the statistical modeling. The weights are normalized so that

their summation equals one:

wc + wr + ws = 1 (4.5)

Note that the larger a weight is, the greater impact the corresponding method exerts to the

final shadow detection results. These weights may be learned from the data, but without

any prior information, they may be set to equal values.

For each location (i, j) in the foreground, the gray level G(i, j) is calculated as

follows:

G(i, j) = wcC(i, j) + wrR(i, j) + wsS(i, j) (4.6)

where C(i, j), R(i, j) and S(i, j) are the values at location (i, j) derived by using the

new chromatic criteria, the shadow region detection, and the statistical modeling method,

respectively.

In the gray-scale image, the smaller value a pixel has, the more likely it is a shadow

pixel. We use a threshold Ts to generate a shadow free binary foreground mask. Ts can be

determined empirically, and it can also be obtained by training some training samples. The
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.8 (a) A video frame from the NJDOT traffic video. (b) The detected foreground
(with shadow) using the new foreground detection method. (c) The detected shadow pixels
using the new chromatic criteria. (d) The detected shadow regions using the shadow
region detection method. (e) The detected shadow pixels using statistical shadow modeling
and classification. (f) The detected shadow pixels using the aggregated shadow detection
method. (g) The shadow free foreground. (h) The video frame that shows foreground pixels
in red color.
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binary value B(i, j) at location (i, j) is calculated as follows:

B(i, j) =


0, if G(i, j) < Ts

255, otherwise

(4.7)

Figure 4.8 shows the results of our novel cast shadow detection method step by step.

Figure 4.8 (a) is a video frame from an NJDOT traffic video. Figure 4.8 (b) shows the

foreground detected using our new foreground detection method. Figure 4.8 (c)-(e) show

the shadow detection results using the chromatic criteria detection, the shadow regions

detection, and the statistical modeling detection. Note that the shadow pixels are indicated

using the gray scale value of 128. Figure 4.8 (f) shows the gray-scale image generated

by the aggregated shadow detection method. Figure 4.8 (g) shows the foreground after

removing the shadows. Figure 4.8 (h) displays the video frame with the foreground in red

color.

4.3 Experiments

We first show the quantitative evaluation results using a challenging video, the ‘Highway-

3’ video [94]. This video, which is publicly available and broadly used, facilitates

the comparative evaluation of our proposed method with other representative shadow

detection methods published in the literature. We then use the New Jersey Department

of Transportation (NJDOT) traffic video sequences to evaluate our proposed method

qualitatively. Specifically, we apply four NJDOT traffic videos, each of which is 15 minutes

with a frame rate of 15 frames per second or fps. The computer we use is a DELL XPS

8900 PC with a 3.4 GHz processor and 16 GB RAM. The ‘Highway-3’ video has a spatial

resolution of 320 × 240, and it takes 9ms to process each frame using our method. The

NJDOT videos have a spatial resolution of 640 × 482, and it takes 39ms to process each

frame using our method. As a result, our proposed shadow detection method is able to

perform real time analysis of these videos.
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Table 4.1 The Comparative Shadow Detection Performance of Our Proposed Method and
Some Popular Shadow Detection Methods

Methods η ξ F −measure

Bullkich et al. [18] 80% 61% 69%

Lalonde et al. [58] 39% 86% 54%

Guo et al. [41] 42% 82% 55%

Sanin et al. [95] 62% 91% 74%

Gomes et al. [38] 65% 90% 75%

Our Proposed Method 90% 76% 83%

The shadow detection rate η, the shadow discrimination rate ξ, and the F-measure are

popular metrics used to evaluate shadow detection performance quantitatively [52], which

are defined as follows:

η =
TPs

TPs + FNs

(4.8)

ξ =
TPo

TPo + FNo

(4.9)

F −measue =
2ηξ

η + ξ
(4.10)

where TPs and FNs represent the number of true positive and false negative shadow pixels,

respectively, and TPo and FNo stand for the number of true positive and false negative

object pixels, respectively.

Table. 4.1 shows the comparative shadow detection performance of our proposed

method and some popular shadow detection methods using the publicly available challenging

‘Highway-3’ video. In particular, our proposed method achieves the highest shadow

detection rate of 90%, compared with the 80%, 39%, 42%, 62%, and 65% shadow detection

rates by the Bullkich et al. [18] shadow detection method, the Lalonde et al. [58] shadow

detection method, the Guo et al. [41] shadow detection method, the Sanin et al. [95] shadow
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.9 The foreground masks obtained by different methods. (a). One video frame
of ‘Highway-3’ video [94]. (b). The ground truth of the foreground mask. The white parts
are the foreground objects. The gray parts are the cast shadows. (c)-(g) The shadow free
foreground mask of Cucchiara et al.’s method [29], Huang and Chen’s method [49], Hsieh
et al.’s method [48], Leone and Distante’s method [62], and Sanin et al.’s method [95],
respectively. (h)The shadow free foreground mask of our proposed method.
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detection method, and the Gomes et al. [38] shadow detection method, respectively. Our

proposed method also achieves the highest F-measure score of 83%, compared with the

69%, 54%, 55%, 74%, 75% F-measure scores by the Bullkich et al. [18] shadow detection

method, the Lalonde et al. [58] shadow detection method, the Guo et al. [41] shadow

detection method, the Sanin et al. [95] shadow detection method, and the Gomes et al. [38]

shadow detection method, respectively.

Figure 4.9 shows the experimental results using a frame from the ‘Highway-3’ video.

Specifically, Figure 4.9 (a) shows a video frame the ‘Highway-3’ video [94]. Figure 4.9

(b) shows the ground truth of the foreground mask, where the white regions represent the

foreground objects and the gray regions represent the cast shadows. Figure 4.9 (c) shows

the shadow free foreground mask by using Cucchiara et al.’s method [29]. Figure 4.9

(d) shows the shadow free foreground mask by using Huang and Chen’s method [49].

Figure 4.9 (e) shows the shadow free foreground mask by using Hsieh et al.’s method [48].

Figure 4.9 (f) shows the shadow free foreground mask by using Leone and Distante’s

method [62]. Figure 4.9 (g) shows the shadow free foreground mask by using Sanin et al.’s

method [95]. Figure 4.9 (h) shows the shadow free foreground mask by using our proposed

shadow detection method. We can see from Figure 4.9 that our proposed shadow detection

method achieves better shadow detection and removal results than the other popular shadow

detection methods.

Another dataset we apply in our experiments is the NJDOT traffic video sequences.

The videos in this dataset have stronger cast shadows and lower video quality than the

‘Highway-3’ video. Many shadow detection methods fail to detect shadows in these videos,

but our proposed method is able to achieve good shadow detection performance on these

videos as shown in Figure 4.8. The significance of shadow detection in these videos is

to improve the performance of video analysis tasks such as tracking and object detection.

In particular, Figure 4.10 shows comparatively the vehicle tracking performance using the

NJDOT traffic videos: the vehicle tracking results without shadow detection and the vehicle
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(a)

(b)

Figure 4.10 The comparison of vehicle tracking performance using a frame from
the NJDOT traffic videos. (a) The vehicle tracking results without shadow detection.
(b) The vehicle tracking results with shadow detection using our proposed shadow detection
method.
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tracking results with shadow detection using our proposed shadow detection method. We

can see in the Figure 4.10 (a) that two vehicles are connected together by their cast shadows

and fall into one tracking block when no shadow detection algorithm is applied. After

applying our shadow detection algorithm, these two vehicles are separated into two tracking

blocks. As a result, the tracking performance is more accurate.

4.4 Conclusions

We have presented in this chapter a novel moving cast shadow detection method for video

analysis using new chromatic criteria and statistical modeling. The major contributions of

our proposed method are four-fold.

First, we propose a set of new chromatic criteria for shadow pixels differentiation.

Second, we use a shadow region detection method to detect the continuous shadow regions

based on the property of cast shadows. Third, we build a statistical shadow model to

model and classify the shadow pixels with a single Gaussian distribution. The model

keeps learning and updating to adapt to the changes of the environment. Fourth, we use

an aggregated shadow detection method to combine the shadow detection results from the

previous three steps. A weighted summation strategy is used to aggregate the candidate

shadow detection results.

The experimental results using the publicly available ‘Highway-3’ video and the

NJDOT video sequences have shown that (i) our proposed method achieves better shadow

detection performance than other popular shadow detection methods, and (ii) our proposed

method is able to detect cast shadows in low quality videos, such as the NJDOT videos,

while in comparison other methods fail to detect the shadows.
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CHAPTER 5

A STATISTICAL MODELING METHOD FOR ROAD RECOGNITION IN
TRAFFIC VIDEO ANALYTICS

5.1 Introduction

Region of interest (RoI) is a widely used concept in video analysis. A region of interest

is defined by a subspace of the entire video frame, which includes the part that people are

most concerned about. To better recognize the activities in traffic, people always want to

apply the video analysis algorithms within the RoI instead of the whole frame to reduce

the computation complexity of the video analysis tasks [16]. Therefore, inter-cognitive

communication [7], [8] between the human and artificial video analysis systems exists

during the RoI selection. With the development of artificial intelligence and cognitive info-

communications, an intra-cognitive communication mode [7], [8] becomes a more popular

way in RoI detection. The RoI detection system recognizes the RoI and transfers the RoI

information to the video analysis system. The communication between the two artificial

cognitive systems can largely reduce the unbalanced cognitive capabilities between human

beings and video analysis systems.

In traffic surveillance videos, the most widely used RoI is the region of the road.

Because most of the traffic activities have happened in the road area, such as traffic

congestion, wrong way vehicles, and traffic accidents. Manually selecting the RoI is a

common approach when analyzing traffic surveillance videos. However, people need to

select the road region as the RoI for every different camera location, and redefine the

RoI when the camera changes the viewing angle. In order to reduce the manual work

for selecting the RoI, many automatic road recognition methods have been proposed [79].

Some methods try to use vehicle motion information to segment the frame into active and

inactive traffic regions. They estimate the road region by generating a map for active traffic

regions based on the trajectories or foreground masks of the moving vehicles. This kind
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of approach requires a sufficient number of vehicles to pass along the road. Therefore,

the initial time required to gather the required information can vary based on the traffic

flow. Some approaches use single images and try to fit linear or polynomial equations to

the straight or curvy road boundaries and lane marks. These methods perform better in

the case of in-vehicle cameras where the vanishing point is easier to estimate and they are

limited to well-structured roads with visible and distinguishable sign-lines which is not

always the case. Some methods try to estimate the road boundaries by extracting low-level

image features (e.g. color, edge, texture). These methods are usually based on single

images and low-level features analysis to classify the pixels or groups of pixels into road

regions and non-road regions. They do not consider the structure or boundaries of the road

and only tend to estimate the road area based on the color ([109], [2]), edge ([135], [2],

[105]) and texture([96], [133]) of the road surface. Neural networks are also used for road

recognition [82], [74]. This kind of supervised learning method requires numerous labeled

data for the training process, which is hard to achieve.

In this chapter, we propose a statistical modeling method to recognize the road

regions automatically in the traffic video analysis. First, we introduce a temporal feature

guided statistical modeling method to build the road model. We use the temporal features

in videos as guidance to automatically extract some sample data from the estimated

background image. This sample data set mainly contains the features of the road, but

also contains some other features. We build a Gaussian mixture model using this data set

and further prune the model to get a statistical model for the road. Second, we propose a

road recognition method, which can detect the road regions in a video frame. The detected

road regions can be used as the RoI for traffic video analysis tasks. In the end, we use some

real traffic video sequences from the New Jersey Department of Transportation (NJDOT)

to evaluate the performance of our proposed method. The experimental results show that

our method is able to detect the road regions accurately and robustly.
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5.2 A Temporal Feature Guided Statistical Modeling Method for Road Recognition

The RoI selection is a widely used pre-processing technique of many video analysis

methods. Manually selecting the RoI is a complex and tiresome task for human beings.

Therefore, we propose a statistical modeling method for road recognition, which can

detect the region of road automatically without any manual intervention. Our proposed

method mainly has two major contributions: (i) The new temporal feature guided statistical

modeling method can build the model without any label, which can reduce numerous

manual work. (ii) The novel road recognition method can automatically segment the road

region as the RoI for traffic video analysis.

5.2.1 The New Road Model Estimation Method

When building the statistical model for a class of objects, one common approach is to use

some training data that has been labeled as this class to estimate the probability density

function. This labeling work may require numerous efforts and time. Instead of using

manually labeled data, we propose a temporal feature guided model estimation method,

which can extract a sample data set from the video based on the temporal features.

In traffic videos, the region we are interested in is the road, which always has moving

objects on it. One important information the moving objects can provide is temporal

information. In order to utilize the temporal feature, we apply a foreground object detection

method to segment the moving foreground objects and estimate the static background

[99], [98]. The foreground detection method is able to detect the areas where have

moving objects, and estimate a static background image that does not contain the moving

objects. Figure 5.1 (a) shows a video frame from an NJDOT traffic video. Figure 5.1 (b)

displays a binary foreground mask, where white pixels represent the moving foreground

objects. Figure 5.1 (c) shows the estimated background image. Figure 5.1 (d) shows

the corresponding regions of the moving foreground objects projected on the background

image in red color.
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(a) (b)

(c) (d)

Figure 5.1 (a) shows a video frame from an NJDOT traffic video. (b) displays a binary
foreground mask, where white pixels represent the moving foreground objects. (c) shows
the estimated background image. (d) shows the corresponding regions of the moving
foreground objects projected on the background image in red color.

By projecting the moving foreground mask on the background image, we can get

some regions, which contain the temporal features in the original video frame. As shown

in Figure 5.1 (d), the red regions represent the projection of the foreground mask. We can

see that most of these areas are road regions. Therefore, we can extract the feature vectors

in these regions from the background image to build the road model.

For each video, we use the first N frames to build the model. Suppose X =

{ ~x1, ~x2, . . . , ~xn} are the feature vectors we extracted from theN frames. As we only extract

features from the regions corresponding to the foreground mask, X mainly contains the
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features of the road at different locations and different times. However, some other features

are still included in X due to the noises of the binary foreground mask, or overlapping

caused by the viewing angle of the camera. We can use a Gaussian mixture model to

estimate the distribution of sample set X as follows:

p (~x) =
M∑

m=1

αmN (~x; ~µm,Σm) (5.1)

where M is the number of components in the Gaussian mixture model,N (~x; ~µ1,Σ1) , . . . ,

N (~x; ~µM ,ΣM) are the Gaussian components. αm is the weight of the mth Gaussian

components, and the summation of α1, . . . , αM is one. The Gaussian components are sorted

in descending order according to the value of α.

Because the foreground detection result is not 100% accurate, the sample data we

used to build the model is noisy. Some non-road features may also be involved in the

sample data set. Therefore, we need to prune the Gaussian mixture model in order to get

the road model. As we know, the majority of the sample set X is the feature of the road.

The probability of the road features in the sample set is much higher than that of the noises.

Therefore, the Gaussians with large weights can be used to describe the road. We select to

use the first K Gaussians in p (~x) as the road model, which is defined as follows:

p (~x|Road) =

∑K
k=1 αkN (~x; ~µk,Σk)∑K

k=1 αk

(5.2)

K is defined as:

K = arg min
k

(
k∑

m=1

αm > (1− T )

)
(5.3)

where T is a threshold depends on the portion of the non-road features in the sample set

X. For example, if the foreground mask is noisy, we should select a high T value.
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5.2.2 The Novel Road Recognition Method

In this subsection, we introduce a novel road recognition method using the statistical road

model. As we know, the feature of the road is relatively simple. Most of the road regions

look similar. The road model is based on the Gaussian mixture model, which has peaks at

several feature points with the highest probability. If the feature vector of a pixel is close

to any of these peaks, it would have a higher probability to be a road pixel. Otherwise, it

is not a road pixel. By using this property of the road model, we propose a discriminant

function to classify the feature vector ~x of each pixel into a road class and a non-road class.

Suppose the road model contains K Gaussian distributions. The discriminant function is

defined as follows:

R(~x) =


Road, if

∑K
k=1C(~x)k > 0

Non− road, otherwise

(5.4)

C(~x)k =


1, if D(~x)k < 0

0, otherwise

(5.5)

D(~x)k =
d∑

i=1

(~xi − ~µk,i)
2 − σ2

k,i (5.6)

where d represents the dimensionality of the feature vector,σk,i means the i-th diagonal

element of the covariance matrix Σk, k ∈ {1, 2, . . . , K}.

We apply this discriminant function to every pixel in the estimated background

image. We can build a road mask and assign every pixel classified as the road with 255, all

the other pixels with 0. Then we can get a binary road mask showing the road pixels.

As we know, the road region is always a large continuous region in traffic surveillance

videos. However, some pixels on the road may have abnormal features that can not be

described by the road model, such as damaged areas, shadows, lane marks, etc. The miss

classification of these pixels may cause the road mask to have some holes in the road region.
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In addition, some non-road pixels may be detected as the road because they have similar

features as the road. This will cause some noises outside the road region. In order to solve

these issues, we apply a morphological operator on the road mask to further enhance the

road recognition result. The morphological operation is defined as follows:

R′mask = (Rmask 	 E)⊕D (5.7)

where Rmask is the road mask, 	 is the erosion operator, E is the erosion template, ⊕ is

the dilation operator, and D is the dilation template.

5.3 Experiments

In this subsection, we show some experimental results to evaluate our statistical modeling

method for road recognition. The data set we use contains the real traffic surveillance

videos from the New Jersey Department of Transportation (NJDOT). To ensure the

diversity of the videos, this data set includes ten video sequences with several kinds

of resolutions and frame rates, various weather conditions, and different illumination

conditions. One frame of each video is displayed in the first and the fifth rows in Figure 5.2.

The second and the sixth rows in Figure 5.2 show the ground truth road region masks. The

third and the seventh rows in Figure 5.2 present the road recognition result of UFL-HS

method [131]. The fourth and the eighth rows in Figure 5.2 show the road region detected

by our proposed method. We can see from Figure 5.2, our statistical modeling method can

detect the road regions in all the videos accurately.

The feature vector ~x we used in the experiment is the histogram of oriented gradients

(HOG) feature [30] calculated from a 4× 4 cell surrounding each pixel. The number of the

component in the Gaussian mixture model M is 3. The number of frames used for building

the model is 50.

We further compare our method with the UFL-HS method [131] quantitatively. The

precision, recall, and the F-measure score are popular metrics used to evaluate detection
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(a) Video 1 (b) Video 2 (c) Video 3 (d) Video 4 (e) Video 5

(f) Video 6 (g) Video 7 (h) Video 8 (i) Video 9 (j) Video 10

Figure 5.2 The road recognition results. The first and the fifth rows display one video
frame from an NJDOT traffic video. The second and the sixth rows show the ground truth
road regions. The third and the seventh rows present the road recognition result of UFL-HS
method. The fourth and the eighth rows show the road region detected by our proposed
method.
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Table 5.1 The Quantitative Performance of the Proposed Method

Method UFL-HS Method Proposed Method

Video # Precision Recall F-Score Precision Recall F-Score

1 0.41 0.89 0.56 0.94 0.89 0.91

2 0.73 0.79 0.76 0.96 0.86 0.91

3 0.62 0.68 0.65 0.93 0.78 0.85

4 0.82 0.86 0.84 0.85 0.91 0.88

5 0.68 0.81 0.74 0.88 0.94 0.91

6 0.43 0.62 0.50 0.90 0.98 0.94

7 0.71 0.93 0.80 0.95 0.85 0.90

8 0.53 0.91 0.67 0.91 0.92 0.91

9 0.57 0.95 0.71 0.90 0.88 0.89

10 0.91 0.78 0.84 0.89 0.97 0.92

Average 0.64 0.82 0.72 0.91 0.90 0.90

performance, which are defined as follows:

Precision =
TP

TP + FP
(5.8)

Recall =
TP

TP + FN
(5.9)

F −measure = 2× Precision×Recall
Precision+Recall

(5.10)

where TP , FP , and FN represent the number of true positive, false positive, and false

negative detections of the road pixel. In Table. 5.1, we show the quantitative results of

our proposed method. We can see the average accuracy of the road region detected by our

method is our 90%, which is good enough for it to be used as the RoI.
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Figure 5.3 The F-measure score of our proposed road recognition method using different
number of training frames.

We further investigate the influence of the number of frames used for the model

estimation. We change the number of frames used for building the statistical model and

calculate the road recognition accuracy. As shown in Figure 5.3, the F-measure score is

stable around 0.9 when the number of frames is over 20. Hence, our proposed method does

not need to use a large number of frames to build the model, the model estimation process

can be fast enough to perform as a pre-processing step of video analysis.

5.4 Conclusions

In this chapter, we have proposed a statistical modeling road recognition method, which

switches the info-communications between the RoI selection and video analysis systems

from an inter-cognitive communication mode to an intra-cognitive communication mode.

The novel road recognition method uses the temporal features in videos instead of manual

labeling to generate sample data for statistical modeling and recognizes the road regions

which can be used as the RoI in video analysis systems. Our proposed method on one

hand improves the road detection accuracy compared to the state-of-the-art method, on

the other hand, provides another option for the cognitive info-communications between
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the RoI selection and video analysis systems. Our proposed method uses the result of the

GFM foreground detection method as guidance to build a statistical road model, and further

applies a discriminant function to segment the road regions in the video. Our proposed

pruned mixture model is able to correctly segment the shadowed road regions and poor

quality roads. The experimental results using the real traffic video sequences from NJDOT

verify the robustness and accuracy of our proposed method.
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CHAPTER 6

AN INNOVATIVE ANOMALOUS DRIVING DETECTION METHOD IN VIDEO

6.1 Introduction

Traffic video analysis is a compelling topic in computer vision. How to use AI technologies

to improve traffic safety is always a major concern of society. Anomalous driving behaviors

are one of the most dangerous behaviors in traffic. Every year, thousands of lives are lost

in traffic due to anomalous driving. In this chapter, we proposed an anomalous driving

detection method, which can detect anomalous driving behaviors in traffic surveillance

videos fast and accurately.

Anomaly detection is a very important topic in video analysis. Many methods are

proposed to detect the anomalies in videos bases on spatial feature representations [87],

[25], [118]. This kind of approach is generally applied to detect all kinds of anomalies

without specification. People want to utilize anomaly detection methods in real-world

applications. Therefore, more methods are proposed with a specific concentration. To

concentrate the attention on anomalous driving behaviors, we proposed our anomalous

driving detection method, which integrates the MOT method, the GLV model, and the

discriminant function.

We first propose a new multiple object tracking (MOT) method to track the motions

of the vehicles in traffic. Many MOT methods are proposed based on a track-by-detection

procedure, which needs high computational power. Our proposed MOT method is based

on spatial and temporal feature representations, which can process the video frames fast

and accurately. By considering the spatial and temporal distance between the objects in

two adjacent frames, our MOT method can quickly match the same object in two adjacent

frames.
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Figure 6.1 The workflow of our proposed anomalous driving detection method using the
new MOT method and the novel GLV model.

Second, we use a novel Gaussian local velocity (GLV) modeling method to model

the normal driving behaviors in traffic. In order to detect anomalies in traffic, we consider

modeling normal behaviors. Everything that cannot be classified in the normal class is an

anomaly. As we know, the vehicles in traffic should be driving in a queue. Every vehicle

that passes the same location should follow similar speeds and directions, otherwise, traffic

accidents may happen. Therefore, we can use a Gaussian distribution to model the normal

driving speed and direction at a specific time and location. The Gaussian distribution can

be updated online while the speed may change over time.

Third, we use a discriminant function to distinguish the anomalous driving behaviors

in videos. With the GLV model, we are able to describe the normal driving behaviors in

traffic. Then we can use a discriminant function to classify each moving vehicle in traffic

into a normal class or an anomalous class. Figure 6.1 shows the workflow of our proposed

anomalous driving detection method.
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There are three major contributions of our proposed method. First, the method does

not need any training process. The foreground segmentation, MOT process, and GLV

modeling method are all unsupervised methods. The models are built when the video is

processing. The whole process doe not require any manual label work. This can reduce

manual work and increase the general ability of our method. Second, the computational

complexity of our proposed method is low and the processing speed is fast. Recently,

many anomaly detection methods are proposed based on deep neural networks. However,

the implementation of this kind of method requires high-performance GPU, and some

of them still cannot process the video in real-time. Unlike deep neural networks, our

statistical modeling method has low computational complexity. Even on a normal desktop

PC, our method can reach a processing speed of 60 frames per second or faster. Third, our

method is robust and generalized. We tested our method on dozens of real traffic videos

with different illumination conditions, weather, and resolutions. Our method is able to

detect anomalous driving behaviors accurately and robustly. The accuracy is an important

criterion to evaluate an anomalous driving detection method. Our method reaches a 100%

detection rate without a false alert during testing.

6.2 The New Multiple Object Tracking Method Based on Temporal and Spatial
Features

Object tracking is an important topic in video processing. Many methods are proposed to

track the moving objects in videos [33], [127], [84]. Multiple object tracking (MOT), which

is an extension of single object tracking, plays a more important role in AI applications.

People want to catch the trajectories of each individual moving item with MOT, and further

tackle some high-level tasks with the tracking results, such as action recognition [26],

anomaly detection [43], and object counting [31]. In this subsection, we propose a new

MOT method using spatial and temporal information in videos, which can track multiple

objects fast and accurately.
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Figure 6.2 Two adjacent video frames from the NJDOT video and their corresponding
foreground masks.

To utilize the temporal information in videos, we apply the GFM foreground

segmentation method to extract the foreground mask [98], [99]. The GFM method is an

unsupervised foreground segmentation method, which can detect the foreground pixels

fast and accurately. In the GFM method, foreground pixels are detected using the Bayes

decision rule for minimum error, which is described as [5]:

C (xi,j) =


1, p(xi,j|ωf )P (ωf ) > p(xi,j|ωb)P (ωb)

0, Otherwise

(6.1)

where xi,j represents the pixel at location (i, j), p(x|ωf ) and p(x|ωf ) means the conditional

probability density functions (CPDF) for the foreground and background, respectively,
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P (ωf ) and P (ωb) denote the prior probability of the foreground and background, respec-

tively, and C is a binary mask where C (xi,j) = 1 means the pixel at location (i, j) is

classified as foreground. The foreground mask represents the moving components in a

video. For two adjacent frames Fi and Fi+1, we can get the foreground masks using the

GFM method. Figure 6.2 shows two adjacent video frames from an NJDOT traffic video

and the corresponding foreground masks detected by the GFM method.

In each foreground mask, there are some foreground pixels, which can indicate the

moving objects. A connected-component labeling method [45] is applied to the foreground

mask to label every connected region in the foreground mask with a block id. Then we can

get two sets of block Si = {Bi,1, Bi,2, . . . , Bi,m}, and Si+1 = {Bi+1,1, Bi+1,2, . . . , Bi+1,n}

from the two adjacent frames. For every B in set Si, we pair it with one block B′ in set

Si+1, which can minimize the distance function Dist(B,B′).

Dist(B,B′) =
Euc Dist(B,B′)

Cos Dist (B,B′)
(6.2)

Euc Dist(B,B′) = e|CentB−CentB′ | (6.3)

Cos Dist(B,B′) =
fB
||fB||

· fB′

||fB′ ||
(6.4)

where CentB and CentB′ mean the centroids of block B and B′, fB and fB′ mean the

spatial feature vector extracted from the video frame at the corresponding location of block

B and B′. In this dissertation, we select the mean and variance of the block area as the

spatial features. Note that both the mean and variance are non-negative numbers, the feature

vectors are all fall in the same quadrant. Therefore the Cosine similarity is always positive.

The novel distance function Dist(B,B′) on one hand considers the temporal information,

which is the Euclidean distance between the blocks, on the other hand, considers the spatial
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information, which is the Cosine similarity between the blocks. After all the blocks in set

Si have paired with a block in set Si+1, we connect the block pairs to trajectories.

Different from the detection based tracking methods, our proposed MOT method

does not need to detect each individual item, which can save computational power. Our

proposed method is based on a motion-tracking procedure and further involves the spatial

features to define an innovative distance function. The combination of the temporal

and spatial features can improve the tracking performance with a limited computational

requirement.

6.3 The Anomalous Driving Detection using a Novel Gaussian Local Velocity Model

Anomalous driving is one of the most dangerous behaviors in traffic. Many traffic accidents

are caused by anomalous driving behaviors, such as wrong-way driving, sudden lane merge,

and stopped in traffic. To detect anomalous driving behaviors, we propose the novel

Gaussian local velocity (GLV) model to model the normal driving behaviors and use a

discriminant function to identify the anomalies in traffic surveillance videos.

Our proposed GLV model uses an unsupervised online updating strategy to establish

the model. First, we use the velocities achieved from the MOT method in each frame

as input feature vectors to estimate an initial GLV model. The model is updated every

frame to satisfy the speed change of traffic. Finally, we apply the discriminant function

to the trajectories of each individual foreground object achieved from the MOT method to

determine if the driving behavior of that object is anomalous.

Our proposed method is mainly focusing on traffic surveillance video analysis. As

we know, vehicles in traffic are moving along the traffic lanes, every vehicle normally

moves along a similar direction at the same location. Therefore, we can build a Gaussian

distribution for every location in a frame to model the normal velocity. For each location

i, j in a frame, the feature vector xi,j is composed of the magnitude si,j and the angle θi,j .

The GLV model at location i, j can be described as:
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Vi,j =
exp

{
−1

2
(xi,j −Mi,j)

tΣ−1i,j (xi,j −Mi,j)
}

(2π)d/2 | Σi,j |1/2
(6.5)

where d is the dimensionality of the feature vector xi,j , Mi,j is the mean vector, and Σi,j is

the covariance matrix. The GLV model is updated with every moving object passed by the

location.

The GLV model describes the normal moving behaviors in traffic. If the motion

feature of an object is far from the mean vector of the GLV model, it can be considered as

an anomalous motion. We further propose an anomalous driving detection method based

on the GLV model.

As we know, the normal driving vehicles should follow a similar direction of the

traffic flow. If a vehicle drove in the wrong direction that is away from the traffic flow, it

may cause a traffic accident. Our anomalous driving detection is aiming at detecting and

alerting this kind of wrong-way driving behavior. We propose a discriminant function to

identify the anomalous driving based on the GLV model:

D(xi,j) =
xi,j

||xi,j||
· Mi,j

||Mi,j||
(6.6)

where xi,j is the motion feature vector of a vehicle, and Mi,j is the mean vector of the GLV

model at location i, j. If the discriminant function D(xi,j) < 0, we classify that vehicle as

anomalous driving. If the duration of the anomalous driving behavior of a specific vehicle

is longer than the threshold, we identify it as dangerous and send an alert.

6.4 Experiments

To evaluate our proposed anomalous driving detection method, we run experiments on the

real traffic video sequences from the New Jersey Department of Transportation (NJDOT).

We use a desktop with an Intel Core i7-8700 Processor to implement our proposed method.
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Figure 6.3 The moving trajectories detected by our new MOT method. The red lines
indicate the moving trajectories of the vehicles in two seconds.

We first present the results achieved by our proposed MOT method. The processing

speed is a very important factor of an MOT method. For a video frame with a resolution of

352×240, the average processing time of our proposed MOT method is 13 ms, which is 77

frames per second or fps. Figure 6.3 shows the vehicle moving trajectories detected by our

proposed MOT method. The red lines show 2 seconds of the vehicle moving trajectories.

We can see the normal moving vehicles have relatively straight moving trajectories along

the road.

The GLV model is built after the moving trajectories are extracted. By utilizing the

GLV model, we detect anomalous driving behaviors in traffic videos. Our method can

process 65 frames per second (fps) for the videos with the spatial resolution of 352× 240,
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Figure 6.4 The wrong-way driving vehicles detected by our proposed method. The red
rectangles are the wrong-way driving vehicles detected by our proposed method, the areas
in the green lines are the region of interest (ROI).
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which is a general resolution of the traffic surveillance videos. The most commonly seen

anomalous driving in traffic is wrong-way driving. Drivers may back up the vehicles in

traffic due to missing the existing ramp or entering a wrong ramp. Our proposed method is

able to detect these dangerous behaviors in order to minimize traffic accidents happening.

We tested our proposed methods on dozens of different real traffic scenarios, our method

can detect all the wrong-way driving vehicles without a false alert. Figure 6.4 shows some

wrong-way driving vehicles detected by our anomalous driving detection method. The

wrong-way driving vehicles are marked with red rectangles. We can see our method is able

to deal with both the night videos and daytime videos.

6.5 Conclusion

We proposed a novel anomalous driving behavior detection method for traffic surveillance

video analysis in this chapter. The method integrates a new multiple object tracking

(MOT) method, a novel Gaussian local velocity (GLV) model, and an anomalous driving

discriminant function to detect and alert the anomalous driving behaviors. The MOT

method utilizes the spatial and temporal information in video and is able to process the

video fast and accurately. The GLV model is built locally using the Gaussian distributions

and is updated online. The discriminant function can classify each moving vehicle into

a normal driving class or an anomalous driving class. There are three advantages of

our proposed method. First, the method proposed is based on statistical modeling. The

estimation of the statistical models does not require any labeled data. This can reduce

manual labeling work and increase the generalization ability of our method. Second, the

computational complexity of our proposed method is low. The anomalous driving detection

can process over 60 frames per second on a normal PC. Third, the anomalous driving

detection method is accurate and robust to the real-world situation. We tested on dozens

of different traffic video scenarios, all the anomalous drivings can be detected without
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false alerts. The experimental results using the New Jersey Department of Transportation

(NJDOT) real traffic videos show the feasibility of our proposed method.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

All the methods proposed in this dissertation are statistical modeling methods for traffic

video analysis.

Specifically, Chapter 3 presented a novel foreground detection method for video

analysis by integrating color, wavelet, and temporal features. First, a novel Global

Foreground Modeling (GFM) method is presented to model the foreground, which

estimates a global probability density function for the foreground, and the Bayes decision

rule for minimum error is applied to choose one Gaussian density function for a specific

time and location. Additionally, a Local Background Modeling (LBM) method is explained

by choosing the most significant Gaussian density in the Gaussian mixture model to

model the background. Second, the proposed method better satisfies the independence

assumption in statistical modeling by applying the unconventional color spaces, such as

the YIQ color space, the YCbCr color space, the uncorrelated color space, the independent

color space, and the discriminating color space for statistical modeling, in which the

covariance matrix is diagonal. Third, to further enhance the discriminatory power of

the feature vectors, the horizontal and vertical Haar wavelet features and the temporal

difference features are integrated into the color features to build a new 12-dimensional

feature vector. The 12-dimensional feature vector thus is able to increase the discriminatory

power, which helps our foreground detection method achieve better performance than

other popular statistical modeling methods. Finally, the Bayes classifier is applied for the

classification of foreground and background pixels. As a result, the proposed method is able

to address the challenging problems, such as better satisfying the independence assumption

in statistical modeling, insufficient discriminatory power of the input feature vector in the

RGB color space, the inappropriate statistical modeling of the foreground, the detection of
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the temporary stopped foreground objects, and the final classification of the foreground and

background pixels.

In Chapter 4, we proposed a new moving cast shadow detection method using new

chromatic criteria and statistical modeling to enhance the foreground detection results.

First, a set of new chromatic criteria is proposed for candidate shadow pixel detection in

the HSV color space. The new chromatic criteria are more suitable for videos of different

quality. Second, a new shadow region detection method is presented to detect continuous

candidate shadow regions. The shadow region detection method can solve the problem

that the shadow edge is easy to be missed in the pixel-based detection methods. Third,

a statistical shadow model is built using a single Gaussian distribution for shadow pixel

classification. Fourth, an aggregated shadow detection method is presented to generate the

foreground without shadows. By aggregating the shadow detection results of the previous

three methods, we can obtain a more accurate shadow detection result. With the shadow

detection method, we can remove the cast shadows which may influence the video analysis

performance.

Chapter 5 represented a road recognition method using statistical modeling. The

road regions are recognized as the Region of Interest (RoI) for traffic video analysis

systems. Our proposed road recognition method has three major contributions. First,

we introduce a temporal feature guided statistical modeling method. The method uses

temporal features in videos as guidance to automatically extract data to build the statistical

model. Second, we propose a road recognition method, which can detect the road

regions in videos. A discriminant function is applied to segment the road regions based

on their feature representations. Third, the automatic RoI detection procedure switches

the info-communications between the RoI selection and video analysis systems from an

inter-cognitive communication mode to an intra-cognitive communication mode. This

largely reduces the human work and subjective error in the traffic video analysis systems.
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Chapter 6 introduced a novel anomalous driving detection method in videos, which

can detect unsafe anomalous driving behaviors using statistical models. First, a new

Multiple Object Tracking (MOT) method is proposed. The new MOT method can detect

and track the moving foreground objects with low computational complexity. Second, a

novel Gaussian Local Velocity (GLV) modeling method is presented. The GLV model is

used to model the normal driving behaviors in traffic. The advantage of such a model is

that the estimation of the model does not require any labeled data. Third, a discriminant

function is proposed to detect anomalous driving behaviors. By applying the discriminant

function, our novel anomalous driving detection method is able to detect the anomalies in

traffic surveillance videos fast and accurately.

The experimental results using some publicly available videos and the NJDOT videos

have shown that our proposed methods can achieve better performance than the other

popular methods. Our future work will focus on developing more statistical modeling

methods for video analysis applications, and integrate our proposed methods into real world

applications.

88



REFERENCES

[1] Norel Ya Qine Abderrahim, Saadane Abderrahim, and Azmi Rida. Road segmentation
using u-net architecture. In IEEE International conference of Moroccan Geomatics
(Morgeo), May 11-13, 2020, Casablanca, Morocco.
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[39] Rafael C. González and Richard E. Woods. Digital Image Processing, 4th Edition. London,
UK: Pearson Education, 2018.

[40] Nil Goyette, Pierre-Marc Jodoin, Fatih Porikli, Janusz Konrad, and Prakash Ishwar.
Changedetection. net: A new change detection benchmark dataset. In IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
Workshops (CVPR Workshops), June 16-21, 2012, Providence, RI, USA.

[41] Ruiqi Guo, Qieyun Dai, and Derek Hoiem. Paired regions for shadow detection and
removal. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(12):2956–2967, 2013.

[42] Siqiu Guo, Tao Zhang, YuLong Song, and Feng Qian. Color feature-based object tracking
through particle swarm optimization with improved inertia weight. Sensors,
18(4):1292, 2018.

[43] Mei Han and Yihong Gong. Real-time multiple-object tracking and anomaly detection. In
Rainer Lienhart, Noboru Babaguchi, and Edward Y. Chang, editors, Storage and
Retrieval Methods and Applications for Multimedia (SRMAM), January 18, 2005,
San Jose, CA, USA.

[44] Eric Hayman and Jan-Olof Eklundh. Statistical background subtraction for a mobile
observer. In 9th IEEE International Conference on Computer Vision (ICCV),
October 14-17, 2003, Nice, France.

[45] Lifeng He, Yuyan Chao, Kenji Suzuki, and Kesheng Wu. Fast connected-component
labeling. Pattern Recognition, 42(9):1977–1987, 2009.

[46] Mohamed A Helala, Ken Q Pu, and Faisal Z Qureshi. Road boundary detection in
challenging scenarios. In 9th IEEE International Conference on Advanced Video
and Signal-Based Surveillance (AVSS), September 18-21, 2012, Beijing, China.

[47] Aharon Bar Hillel, Ronen Lerner, Dan Levi, and Guy Raz. Recent progress in road and
lane detection: a survey. Machine Vision and Applications, 25(3):727–745, 2014.

[48] Jun-Wei Hsieh, Wen-Fong Hu, Chia-Jung Chang, and Yung-Sheng Chen. Shadow
elimination for effective moving object detection by gaussian shadow modeling.
Image and Vision Computing, 21(6):505–516, 2003.

[49] Jia-Bin Huang and Chu-Song Chen. Moving cast shadow detection using physics-based
features. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 20-25, 2009, Miami, Florida, USA.

92



[50] Shih-Shinh Huang, Li-Chen Fu, and Pei-Yung Hsiao. Region-level motion-based
background modeling and subtraction using mrfs. IEEE Transactions on Image
Processing, 16(5):1446–1456, 2007.
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