
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT

ADVANCES IN MODELING GAS ADSORPTION IN POROUS
MATERIALS FOR THE CHARACTERIZATION APPLICATIONS

by
Max A. Maximov

The dissertation studies methods for mesoporous materials characterization using

adsorption at various levels of scale and complexity. It starts with the topic

introduction, necessary notations and definitions, recognized standards, and a literature

review.

Synthesis of novel materials requires tailoring of the characterization methods

and their thorough testing. The second chapter presents a nitrogen adsorption

characterization study for silica colloidal crystals (synthetic opals). These materials

have cage-like pores in the range of tens of nanometers. The adsorption model can

be described within a macroscopic approach, based on the Derjaguin-Broekhoff-de

Boer (DBdB) theory of capillary condensation. A kernel of theoretical isotherms is

built and applied to the solution of the adsorption integral equation to derive the

pore-size distribution from experimental data. The technique is validated with a

surface modification of the samples so that it changes the interaction but not the pore

size.

The second chapter deals with the characterization of three-dimensional ordered

mesoporous (3DOm) carbons. Similar to opals, these materials have cage-like

mesopores, however, these pores are connected with large windows. These windows

affect the adsorption process and calculated pore-size distributions. The grand

canonical Monte Carlo simulations with derived solid-fluid potentials, which take into

account the 3DOm carbons geometry, confirm the critical role of interconnections,

their size, and number, for correct interpretation of adsorption data for the PSD

calculations.



The fourth chapter discusses a method for the pore size estimation that can serve

as an alternative to the adsorption isotherms analysis. It is based on measurements of

elastic properties of liquid that can be useful for the pore size estimation. A Vycor

glass sample, a disordered mesoporous material with channel-like pores having a

characteristic size of ca. 6-8 nm, is considered. The changes in longitudinal and shear

moduli from the experimental data and molecular simulations are predicted with a

near-quantitative agreement. Then, it follows by their relation of the moduli to the

pore size, which is promising for characterization.

The last fifth chapter considers a promising Monte Carlo method, the Kinetic

Monte Carlo (kMC) algorithm. This method is efficient for the vapor-liquid equilibrium

prediction in dense regions. This chapter shows a benchmark with conventional

Metropolis et al. algorithms as well as a parallelization scheme of the kMC algorithm.
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CHAPTER 1

INTRODUCTION

1.1 Nanoporous Materials

Nanoporous materials, defined as porous materials with a pore size less than 100 nm [2],

are important in various areas and aspects of chemical engineering and nature. They

have unique features, such as a high surface area and porosity. For these reasons, they

are widely used as adsorbents, catalysts, filters, and membranes; they are also used for

drug delivery [3]. These materials also broaden horizons for the development of various

fast response humidity sensors [4], solid natural gas storage [5], supercapacitors [6],

and next-generation non-volatile memory [7, 8].

1.2 Adsorption

Adsorption is defined as the enrichment of molecules in the vicinity of an interface [2].

In the case of gas and liquid adsorption, we consider the solid-fluid interface, where

the solid is called the adsorbent, and the fluid is called adsorptive or adsorbate. The

amount adsorbed depends on the absolute temperature, the vapor pressure, and the

fluid-fluid and solid-fluid interaction potentials, which in turn depend on the choice of

adsorbent and adsorbate, adsorbent geometry (in the case of porous material, pore size),

and other factors [9]. It is worth mentioning the difference between physisorption and

chemisorption. The latter term includes chemical bonding of adsorbed molecules [3].

In this dissertation, chemisorption will not be considered, and the terms physisorption

and adsorption will be used interchangeably. Adsorption is usually described by an

isotherm, which is the amount adsorbed measured as a function of the adsorbate

vapor pressure at a constant temperature. Specific plots and the features for certain

materials will be shown and discussed later.

1



1.3 Characterization of Porous Materials

The overall surface area, pore-size distribution, geometry, and pore connectivity

determine the fluid adsorption and transport [10]. Thus, the materials are routinely

characterized with respect to those properties in order to determine their suitability

for engineering applications. For example, materials with large channels and smaller

pores in the channel walls can have a high surface area and fast transport, whereas

relatively large porous materials typically have fast transport but the lower surface

area, and small pores typically have a high surface area but slow transport.

To facilitate characterization, the International Union of Pure and Applied

Chemistry (IUPAC) [2, 13] standardized the terminology and divided these materials

into three distinct categories by pore size: microporous with the pore size less than

2 nm, mesoporous with the size between 2 and 50 nm, macroporous with the size

between 50 and 1000 nm. In Figure 1.1, it is shown that the pore structure can also be

ordered (e.g., silica colloid crystals [14, 15], CMK-5 [11], or three-dimensional ordered

mesoporous (3DOm) carbons [16, 5]) or disordered (e.g., Vycor glass [17]). Finally, the

pore geometry may fall into one of a few common types convenient to approximate:

Figure 1.1 Reconstructed 3D images of ordered (left) and disordered materials
(right).
Source: Top left: silica opal [4], bottom left: CMK-5 [11], right: Vycor glass [12].
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spherical, cylindrical, or slit. Depending on the model one chose, the pore size, also

sometimes in the literature referred to as the pore width, could be explicitly defined

as the diameter for spherical and cylindrical models, and the distance between the

walls in the slit model.

Figure 1.2 The effect of capillary condensation and evaporation in a cylindrical
mesopore. As relative pressure p/p0 goes up to saturation pressure, the corresponding
adsorption isotherm (A-D) is formed, and as p/p0 goes back, the capillary evaporation
(D-F) forms a desorption isotherm (D-F). Overall, the connected A-F curve form
a hysteresis loop of adsorption and desorption isotherms. Specifically, point A
corresponds to an adsorbed monolayer, B to the multilayer formation, C to the
critical film thickness, D is a point after the condensation, E is a receding meniscus, F
is a point after the evaporation.
Source: [9].

There are many experimental methods to characterize porous materials: X-ray

or neutron scattering, mercury porosimetry, scanning electron microscopy (SEM),

thermoporometry, and NMR [9]. The gas adsorption technique does not have some

drawbacks of SEM and small-angle X-ray diffraction. Specifically, SEM provides

information only about the surface, whereas small-angle X-ray diffraction results

are hard to interpret for disordered materials. A typical adsorption isotherm for a

mesoporous material and its most important features are illustrated in Figure 1.2.

Typically, to simplify the analysis and modeling as well as to improve the penetration

in the pores, adsorption of simple gases like argon, nitrogen, and carbon dioxide is used

for pore characterization. The choice to divide nanoporous materials into micro, meso,
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and macro was made rather arbitrarily based on adsorption isotherm analysis. Most

microporous isotherms show continuous gradual pore filling, while mesoporous show

clear phase transition (capillary condensation) at p < p0, and macroporous ones have

the point of capillary condensation at p ≈ p0, where p is the equilibrium pressure, p0

is the saturation pressure. Adsorption in micropores is mainly governed by solid-fluid

interaction, whereas in mesopores, in addition to solid-fluid, the fluid-fluid interactions

take an important role because of multilayer formation [9]. Representative isotherms

for different systems are shown in Figure 1.3, the dependence of the point of capillary

condensation on pore size is shown in Figure 1.4. Thus, even just by looking at an

isotherm without a sophisticated quantitative analysis, we can often estimate the

sample pore size and extract some information about the isotherm. These and other

deviations can be used for characterization by comparing experimental isotherms for

similar materials or from theory. In this dissertation, we are going to focus on the

retrieval of the pore-size distribution using adsorption isotherms from experimental

data and theoretical methods, including simulations, and propose alternative methods

to extract information about the pore-size distributions.

To predict a theoretical isotherm of a certain pore size, there exist plenty of

techniques: Monte Carlo methods, density functional theory (DFT), the Derjaguin-

Broekhoff-de Boer (DBdB) Theory [19], etc. One of the simplest ways to estimate the

mean pore size is to pick an isotherm from a series of theoretical isotherms, the kernel,

by matching the points of capillary condensation. To obtain pore-size distribution, one

can solve an adsorption integral equation, an approach to solve the equation and the

related issues are thoroughly discussed in Chapter 2. A simplified scheme is described

in Figure 1.5.
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Figure 1.3 Six isotherm types by IUPAC nomenclature. Briefly, type I corresponds to
a typical isotherm on a microporous surface. II is a typical nonporous or macroporous
isotherm. III occurs when the adsorbate-adsorbent interaction is weak in comparison to
adsorbate-adsorbate (no pronounced layer formation). Type IV is a typical mesoporous
isotherm with hysteresis. V is similar to IV, but the adsorption initial part is from
type III. VI corresponds to stepwise adsorption on a highly uniform nonporous surface.
Source: [2, 13].

1.4 Open Questions

Our common goal is to find the answer to the series of questions related to theoretical

methods for pore-size distribution estimation in nanoporous materials. The first open

problem is related to the fact that currently there is a myriad of emerging materials that

require tailored methods and tools for their precise characterization. Unfortunately,

in order to characterize them precisely, there is no generic method that is applicable

in every case. Therefore, one needs to build a series of theoretical isotherms for the

emerging materials (corresponding, for example, to a different pore size), which we call

custom or tailored kernels. A specific example is silica colloidal crystals, commonly

known as opals, covered in Chapter 2. Characterization of these materials can be
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Figure 1.4 Dependence of adsorption isotherms on the pore size for very similar
materials. One can see here that the pore size affects not only in the total amount
adsorbed, but it also results in the shift of points of capillary condensation and
evaporation.
Source: [18].

0 0.2 0.4 0.6 0.8 1
relative pressure p/p0

0

0.2

0.4

0.6

0.8

1

re
la

tiv
e

ad
so

rp
tio

n
n a

ds

experiment
prediction

0 0.2 0.4 0.6 0.8 1
relative pressure p/p0

0

0.2

0.4

0.6

0.8

1

re
la

tiv
e

ad
so

rp
tio

n
n a

ds

10

20

30
40
5060708090100

10 nm
20 nm
30 nm
40 nm
50 nm

60 nm
70 nm
80 nm
90 nm
100 nm

→

0 50 100 150
pore diameter d (nm)

0

0.01

0.02

0.03

P
S

D
f

(n
m

−1
)

Sample 2 (61 nm)

Figure 1.5 Schematic of predicting a pore-size distribution (right) for a given
experimental isotherm (left) and theoretical kernel (middle). The idea of calculation
of a kernel using Derjaguin-Broekhoff-de Boer (DBdB) Theory and numerical solution
of adsorption integral equation is provided in Chapter 2.

challenging because they have pores of roughly tens of nanometers, and the surface is

subject to be modified in certain experiments. The large pore size makes it impossible

to build kernels based on molecular simulations due to a large number of atoms
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required to simulate adsorption in the pore. The surface modification aspect leaves

us the problems for methods like Density Functional Theory (DFT) [2, 20, 21, 3],

which require complex parametrization for every surface. To tackle these issues, we

used a macroscopic Derjaguin-Broekhoff-de Boer (DBdB) Theory [19] lacking these

drawbacks.

Other materials, for example, three-dimensional ordered mesoporous (3DOm)

carbons [16, 5], have complex geometry with features like interconnected windows.

However, if one would try to characterize this kind of materials using a conventional

independent spherical model, the estimates even for the main peak of the pore-size

distribution will not match the expectation. Therefore, the influence of interconnections

must be reflected in the model. Thus, the next open problem is to generate kernels for

materials in which the interconnection between the pores are essential. However, this

geometry is complicated for macroscopic approaches as well as DFT since it becomes

a three-dimensional problem with no cylindrical or spherical symmetry. Based on

that, in Chapter 3, the Grand Canonical Monte Carlo (GCMC) method was utilized.

The idea in this chapter is to extend the system to the one with periodic boundary

conditions by allowing the molecules to pass through the interconnections to a neighbor

simulation cell. Having the simulation run, the new kernels gave notably different

results for pore-size distribution in comparison to the spherical model, which showed

the importance of taking into account the presence of windows for characterization of

3DOm carbons and similar materials with spherical mesopores.

Although the analysis of gas adsorption isotherms is a powerful tool widely

used for characterization, there are other criteria used for determining the pore-size

distribution. These criteria can be experimental properties of fluid in pores, which are

different in confinement and depend on the pore size. As a first example, an alternative

method to the adsorption isotherms is thermoporometry, an approach based on the

deviation of the freezing temperature of a liquid in a pore [22]. Therefore, there is
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a need to identify other properties of fluids, which are related to the pore size and

can readily be measured experimentally. As another example, Chapter 4 explores the

compressibility of nitrogen in the pores. More specifically, we analyzed the ultrasonic

measurements made by Warner and Beamish [1] by calculating elastic properties from

the existing data and then used molecular simulations to provide a quantitative model

for the experiment.

Chapter 5 addresses the question of the efficiency of Monte Carlo methods for

molecular simulation of adsorption. Thus, GCMC simulations executed serially in one

thread are limited to very small pores. One could see this in Chapter 4, where the

simulation results were limited to a pore size of about 10 and we could not simulate

certain trends for larger pores sizes. To support larger systems and improve sampling,

in Chapter 5, we consider a promising kinetic Monte Carlo method for the simulation

of Vapor-liquid Equilibrium (VLE) and adsorption with comparison to GCMC, as

well the parallel version of it optimized for GPU.

1.5 Structure of the Dissertation

This Ph.D. thesis aims to address a broad scope of applied theoretical problems related

to the use of gas adsorption for characterization of porous materials, motivated by

recent development in materials synthesis (Chapters 2 and 3), experimental techniques

for characterization of porous materials (Chapter 4), and molecular simulations

methods (Chapter 5). Addressing the open questions formulated in Section 1.4, this

work will employ existing theoretical methods for characterization of new materials,

propose new theoretical approaches to process experimental data, as well as to extend

and verify recent molecular-level theories and simulation techniques. More specifically,

Chapter 2 demonstrates an example of a development of a theoretical framework for

pore-size distribution calculation tailored for a specific type of porous materials, namely

silica colloidal crystals. Chapter 3 addresses a problem in adsorption modeling and
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the difference in pore-size distributions of interconnected pores beyond the standard

ink-bottle pore model. Chapter 4 is devoted to a study of nitrogen adsorption and

how we can get additional useful data for pore size estimation from ultrasound data

measured complementary to the traditional adsorption measurement techniques. These

three chapters are already published in peer-reviewed journals. Chapter 5, which

is about the kinetic Monte Carlo algorithm, has not been published and contains

benchmark results with the classical MC scheme (the Metropolis et al. algorithm), an

outline for improvement with the parallel version of the algorithm and further delivery

of the results.
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CHAPTER 2

PORE-SIZE DISTRIBUTION OF SILICA COLLOIDAL CRYSTALS
FROM NITROGEN ADSORPTION ISOTHERMS 1

Abstract

Silica colloidal crystals are face-centered cubic structures comprised of silica spheres

with the diameters ranging between tens and hundreds of nanometers. The voids

between the spheres form pores, which can be probed by nitrogen adsorption

porosimetry. Here we 2 prepared two mesoporous samples and a macroporous

reference sample, then measured nitrogen adsorption and desorption isotherms for

further characterization. We proposed a straightforward procedure for calculation of

pore-size distribution of silica colloidal crystals from nitrogen adsorption isotherms.

The procedure is based on the adsorption integral equation solution with a kernel

of theoretical isotherms, consistent with the procedure used for many other porous

materials. The solution is carried out using the non-negative least squares (NNLS)

method with Tikhonov regularization. The kernel of isotherms is build based on the

macroscopic Derjaguin-Broekhoff-de Boer (DBdB) Theory of capillary condensation

considering the voids as a network of spheres. The outcome provides a good agreement

with the single mode estimator, which is consistent with the geometrical estimates for

the voids sizes. Furthermore, we modified the surface of the samples with organics,

and repeated the characterization procedure for the modified samples. The resulting

pore-size distribution for the samples with the modified surface matched the original

one quite closely. It demonstrates the method as a simple and efficient technique to

estimate the pore-size distribution, and justifies the spherical shape approximation for

the voids in the silica colloidal crystals.

1The chapter was published in Maximov MA, Galukhin AV, Gor GY. Pore-Size Distribution of Silica
Colloidal Crystals from Nitrogen Adsorption Isotherms. Langmuir. 2019;35(47):14975–14982
2The experimental part was made by Andrey Galukhin
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2.1 Introduction

Silica colloidal crystals, often referred to as opals, are face-centered closely packed cubic

crystals comprised of silica spheres forming a network of octahedral and tetrahedral

voids [14]. These voids (pores) have sizes that could vary in the range of tens to

hundreds of nanometers [24]. Being ordered transparent materials with the lattice

constants close to the visible light wavelength, opals are widely applied as photonic

structures [25, 26]. However, being ordered nanoporous materials, they also find

applications as membranes for separation processes [27] and sensors [4].

Synthesis of silica colloidal crystals for the applications employing their porous

structure requires reliable methods for characterization of these materials with respect

to the surface area and pore-size distribution (PSD). Microporous and mesoporous

materials, i.e., materials with pores below 50 nm in size, are typically characterized

with nitrogen adsorption [2]. Although the crystals were made using the existing

isothermal heating evaporation-induced self-assembly (IHEISA) method [28], until

recently, mesoporous opals samples have not been synthesized in the form of thin films

with masses sufficient for nitrogen adsorption using standard gravimetric or volumetric

measurements. To our knowledge, nitrogen adsorption has not been carried out on

silica colloidal crystals except for our recent work [14].

Recent paper by Galukhin et al. [14] reported nitrogen adsorption isotherms for

three different opal samples, having similar surface properties but different sizes of

the silica spheres. The work assumed the spherical geometry of the pores, and applied

the Derjaguin-Broekhoff-de Boer Theory [29, 30](DBdB), in its version for spherical

pores [19]. Analysis of the characteristic points on the experimental adsorption

isotherms provided the estimates for the average sizes of the pores between the spheres,

which were consistent with the geometric estimates.

Here we further explore the potential of nitrogen adsorption for characterization

of opals. In addition to the opal samples used in the aforementioned work, we prepared
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the samples with the same sphere sizes but modified surface properties. We measured

the nitrogen adsorption isotherms on these new samples and analyzed those isotherms

along with the isotherms from [14] with respect to the pore-size distribution.

The IUPAC recommendation for the calculation of pore-size distribution from a

nitrogen adsorption isotherm is a combination of Density Functional Theory (DFT)

with integral adsorption equation [2]. Although the density functional theory works

for different pore geometries [21], the libraries available with commercial software are

rather limited, not to mention that the source code for these methods is not open. In

particular, the DFT predictions for nitrogen adsorption on silica surface are based on

one reference silica material. Therefore, the application of this model for deriving the

pore-size distribution of silica materials with modified surfaces can lead to incorrect

PSD. Furthermore, the kernels of DFT isotherms for spherical pore geometry are

limited with ca. 40 nm [31], which is not sufficient to describe the characteristic pores

of silica colloidal crystals samples, estimated to be ca. 60 nm [14].

Here we propose to use the DBdB theory [19], fast and flexible method that is easy

to implement and configure. The advantages of the approach are: 1) requires only two

parameters, has a simple and intuitive physical interpretation; 2) does not require long

optimizations or simulations; 3) can easily be implemented using classical algorithms

available in modern numerical libraries; 4) shown to be consistent with DFT for pores

above 7-8 nm in diameter [32]. We combined the DBdB method for calculation the

adsorption isotherms with the adsorption integral equation solution using the NNLS

method with Tikhonov regularization [33], following the steps described in [34]. We

derived the PSD for our opal samples and showed its consistency with the geometrical

analysis. We also showed that the PSDs derived using our procedure for the original

samples are consistent with the PSDs for the samples with the modified surface.
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2.2 Methods

2.2.1 Experimental 3

Materials and methods. Ammonium hydroxide solution (28-30% of NH3, Sigma-

Aldrich), tetraethylorthosilicate (TEOS, >99.9%, Aldrich), tetrabutylammonium

hydroxide solution (40% in water, Sigma-Aldrich), hexamethyldisilazane (>99%,

Aldrich) were purchased and used without additional purification. Absolute ethanol

was obtained by consecutive distillations of 96% ethanol over CaO and CaH2. Deionized

water (18.2 MΩ) was obtained by the Arium mini instrument (Sartorius).

Scanning electron microscopy (SEM) measurements were carried out using

field-emission high-resolution scanning electron microscope Merlin Carl Zeiss. The

particle size in colloidal crystals was estimated by measuring 100 individual particles.

The UP200Ht ultrasonic homogenizer was used for all sonications. The MF48 centrifuge

(AWEL) was used for all centrifugations. The LOIP LF-7/11-G1 furnace was used

for calcination and sintering. Nitrogen adsorption and desorption measurements at

77 K were carried out with the ASAP 2020 MP instrument (Micromeritics). Before

measurements samples were degassed by heating at 200 ◦C under vacuum (8 µmHg)

for 2 hours. Adsorption and desorption isotherms contained about 200 points for each

colloidal crystal sample. Specific surface areas of the silica colloid crystal samples

were determined by applying the Brunauer-Emmett-Teller (BET) equation in a range

of relative pressure ∼ 0.05 – 0.30. Contact angle measurements were performed with

drop shape analyzer DSA100 (KRÜSS, Germany).

Preparation of silica spheres. Silica spheres with sizes of 93± 5 and 106± 5

nm were prepared by two-step controllable growth technique based on regrowth of silica

seeds [35]. Detailed information on synthesis conditions is described in our previous

study [14]. Silica spheres with size of 565± 25 nm were prepared by classical Stöber

3The experimental part was performed by Andrey Galukhin
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synthesis [14, 36]. All silica particles were isolated by centrifugation and sintered at

600 ◦C for 12 h.

Preparation and morphology examination of silica colloidal crystals.

Silica colloidal crystals were prepared by the modified vertical deposition method based

on the isothermal heating evaporation-induced self-assembly (IHEISA) method [28].

Obtained colloidal crystals were carefully removed from the glass slide and sintered at

800 ◦C for 12 hours, the desired temperature was achieved at a heating rate of 300 ◦C

per hour.

The functionalization of silica colloidal crystals was achieved via consecutive

treatment of silica surface with tetrabutylammonium hydroxide solution in water (pH

= 9.5) at 60 ◦C for 12 h, and a hexamethyldisilazane (HMDS) solution in hexane (1.0

M) at 60 ◦C for 12 h.

2.2.2 Derjaguin-Broekhoff-de Boer Theory

The Derjaguin-Broekhoff-de Boer Theory is a macroscopic approach that describes

adsorption and desorption by considering the adsorbed film layer on a pore wall of

cylindrical [29, 30] or spherical [19] geometry. In this chapter, we consider our system

as a spherical pore with radius R and film thickness h. The model gives the following

prediction for an adsorption isotherm before the point of capillary condensation and

for a desorption isotherm after the evaporation point as:

µ = µ0 +RgT ln(p/p0) = −
(
Π+

2γ

R− h

)
Vl (2.1)

where Π is disjoining pressure, γ is the adsorbate vapor-liquid surface tension, T is

the absolute temperature, Rg is the gas constant, Vl is the molar volume, µ is the

chemical potential, µ0 is the chemical potential of the saturated vapor, which can

put equal zero for simplicity of derivation. The disjoining pressure as a function of

film thickness h (and no dependence on the capillary radius) can be calculated by the
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Frenkel-Halsey-Hill [37] equation

Π =
RgT

Vl

k

(h/h0)m
(2.2)

where k and m are dimensionless empirical parameters, h0 = 1 Å is a constant.

The mesoporous isotherm construction procedure goes in two major steps. First

of all, we find k and m parameters for disjoining pressure described by Equation (2.2)

from a macroporous reference material isotherm, where Equation (2.1) can be

approximated as µ ≈ −ΠVl since the radius in macropores is way larger than in

mesopores. Therefore, these parameters can be estimated from the linear regression.

For some already studied materials like silica, k and m can be accessed from reference

data [38, 39].

The next step is to find a point of capillary condensation or evaporation for

further maximal thickness estimation where Equation (2.1) holds. For the adsorption

branch, the condition on capillary condensation is dµ
dh

∣∣∣
h=hc

= 0. The thickness hc can

be found by calculating the derivative numerically or analytically and solving the

optimization problem. Once it is found, the values below thickness hc are evaluated

using Equation (2.1), the values for the rest of the interval are set to relative adsorption

equal to 1. Similarly, for desorption, the corresponding condition of evaporation is

the zero change of the Gibbs free energy on complete filling ∆Gp,T = 0. The explicit

expression to find film thickness he for spherical pores is given by Equation 17 from [19]:

µ =
−3Vl

R− he

[
γ +

∫ R

he
(R− h)2Π(h)dh

(R− he)2

]
(2.3)

The minimal adsorbed film thickness where the theory is applicable corresponds

to h ' σff , the Lennard-Jones (LJ) fluid-fluid interaction diameter. Finally, one can

build an isotherm in terms of given range of fluid density nads and estimated surface
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area SA by finding thickness h using

nads =
hSA

Vl

(2.4)

Pore-Size Distribution

For a given experimental adsorption or desorption isotherm, the mean pore size can

be estimated using single mode prediction by picking a pore size using the DBdB

theory. A way to implement this is to match the maximum of the slope of the

experimental adsorption or desorption isotherm with the corresponding point of

capillary condensation or evaporation predicted by the DBdB theory for a trial pore

size [14].

In order to extract the pore-size distribution f(d) as a function of the pore size

d for a given experimental adsorption or desorption isotherm nexp(p/p0), one can solve

the adsorption integral equation:

nexp(p/p0) =

∫ dmax

dmin

nkernel(p/p0, d)f(d)dd (2.5)

where nkernel(p/p0, d) is the series of isotherms in the kernel for given relative pressure

p/p0 and diameter, dmin and dmax are the corresponding limits of the kernel. Thus, the

Derjaguin-Broekhoff-de Boer Theory can be used to generate a kernel nkernel(p/p0, d)

using the method described in the previous subsection for both adsorption and

desorption branches by using Equation (2.1). In the discrete case, the equation can

be represented in a matrix form, further solved using the non-negative least squares

(NNLS) algorithm with the Tikhonov (ridge) regularization penalty by Generalized

Cross Validation [34, 33].

Here we briefly summarize how to solve Equation (2.5) in the discrete case. Thus,

the equation can be represented in a form of the regression equation y = Xβ + ε

for dependent variables y and residual ε N -vectors, regression coefficient q-vector

β, independent variables N × q-matrix X as β̂ = argminβ ‖y −Xβ‖22 subject to
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βi ≥ 0 and
∑

β2
i ≤ t constraint, where hat represents the solution vectors given

by the predictor, t is the regularization parameter choice of which will be discussed

later. In our case, y is the experimental isotherm, X is the kernel, β is the pore-size

distribution, N is the number of points on the isotherm, q is the number of trial pore

sizes. Technically, it is convenient to transform the problem by augmenting solution

vector ŷ by a zero vector and kernel X by a unit matrix multiplied by square root of

new regularization parameter λ into

˜̂y =

 ŷ

0q×1

 =

 X
√
λIq×q

 · β̂ = X̃β̂ (2.6)

This way, the Tikhonov NNLS problem for X, y, λ is reduced into the equivalent

NNLS problem for X̃, ỹ and can be solved using the Lawson-Hanson algorithm [40] or

its modifications available in many numerical packages. There are many ways to choose

regularization parameter λ, one of the ways is the leave-one-out cross-validation, which

is the minimization of the error by eliminating one point at a time and using it for

validation. To make the calculations more efficient, the method can be approximated

by the generalized cross-validation criteria [41] as the minimization of

GCV(λ) =
1

N

[∑N
i=1 (yi − ŷi)

1− trH/N

]2
(2.7)

where H = X(XTX + λIq×q)
−1XT is the projection matrix so that ŷ = Hy. Once

regularization parameter λ at which GCV(λ) is at minimum is found, one can get

PSD as β̂, the solution isotherm as ŷ from Equation (2.6).

2.3 Results

Experimental

Among two existing approaches, namely sedimentation and vertical deposition [42, 43],

used for the production of colloidal crystals, we chose the latter one in a form
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Figure 2.1 SEM images of (111) plane of silica colloidal crystals made of 93 ± 5
(A), 106± 5 (B), and 565± 25 (C) nm silica spheres.

of isothermal heating evaporation-induced self-assembly (IHEISA) [28] to prepare

colloidal crystal samples. Compared to the classical vertical deposition method,

IHEISA allows to obtain well-ordered colloidal crystals in a time-saving manner

without any limitations imposed by the size of silica spheres. Figure A.4 shows the

morphology of the synthesized colloidal crystals obtained by SEM. The absence of

cracks as well as the presence of some microscopic defects can be detected on the (111)

plane of the samples made of 93± 5 and 106± 5 nm silica spheres, whereas reference

sample is virtually free of defects.

Surface modification of obtained colloidal crystals was used to change the strength

of adsorbate-adsorbent interaction. Since optimal chemical modification of the silica

surface requires its complete rehydroxylation [44], we used two-step modification

protocol (Figure 2.2). It is expected that such protocol of modification does not affect

the pore-size distribution of porous silica [45]. On the first step, the surface of sintered

colloidal crystal was treated by an aqueous solution of tetrabutylammonium hydroxide

which catalyzes the cleavage of siloxane bonds and the formation of silanol groups. The

rehydroxylation results in surface concentration of silanol groups of ca. 4-5 groups per

1 nm of silica surface [14, 46]. The subsequent treatment of the rehydroxylized silica

surface by HMDS results in transformation of silanols into trimethylsilyl groups. Due

to the bulky nature of the (CH3)3Si group only ∼ 40% of silanols might be converted

by HMDS [47]. Nevertheless, despite of incomplete conversion of silanol groups, the

properties of silica surface are changed dramatically.
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Scheme of opal’s surface modification 

 

 

Results of contact angle measurements. 

Figure 2.2 Surface modification of silica colloidal crystals.

As one can see from Figure 2.3, the water drop contact angle is changed from 24◦

for the non-modified colloidal crystal (hydrophilic surface) to 133◦ after modification

(hydrophobic surface).

Figure 2.3 Water drop contact angle measurements of silica colloidal crystals before
and after modification (the water drop volume is 20 µL).

The resulting experimental adsorption and desorption isotherms before and after

modification are presented in Figure 2.4. The plots in absolute units are provided in

Appendix A. Here and later we will use the M suffix to the sample name to designate

that the surface was modified, e.g., original Sample R will be referred to as Sample

RM after its modification.

Analysis

The first step in the experimental data analysis was to calculate BET surface area

SA and to find Frenkel-Halsey-Hill fitting parameters k and m for the disjoining

pressure from the reference macroporous adsorption isotherms, which are presented

in Table 2.1; the corresponding FHH fit is presented in Figure 2.5. The reference
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Figure 2.4 Experimental nitrogen adsorption isotherms at T = 77 K for Samples 1
and 2 before (circles) and after (squares) modification.

values required for calculation were retrieved from the CoolProp [48] thermophysical

properties database for nitrogen at T = 77 K and P = 1 atm. Molar volume of the

liquid phase Vl was 34.7 mLmol−1 [49], surface tension γ was 8.96 mNm−1 [50]. The

surface area necessary for the film thickness calculation was estimated using the BET

(Brunauer-Emmett-Teller) Theory [51]. For this approach, the effective cross-sectional

area for nitrogen at 77 K was chosen as 0.162 nm2 [2], the relative pressure range was

from 0.05 to 0.31, similarly to the range in [14] and close to the recommended range
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of ∼ 0.05 – 0.30 by IUPAC [2]. The BET plots and FHH fit for all samples available

in Appendix A.

Table 2.1 Parameters of the Samples

Sample dsph, nm k m SA,m2 g−1 C ∆Hads,
J

Kmol
d, nm

Sample R 565± 25 47.17 2.53 5.9± 0.1 192.9 8.96 -

Sample 1 106± 5 - - 31.2± 0.2 104.8 8.57 77

Sample 2 93± 5 - - 33.8± 0.2 102.6 8.56 61

Sample RM 565± 25 38.1 2.3 4.7± 0.1 17.8 7.44 -

Sample 1M 106± 5 - - 24.8± 0.2 15.9 7.36 75

Sample 2M 93± 5 - - 27.7± 0.3 16.0 7.37 61

Note: Diameters of the silica spheres dsph, FHH fitting parameters k and m, BET surface
area SA and C constants, predicted pore sizes d from the adsorption isotherms for reference
and mesoporous samples and its corresponding modifications.

Nitrogen adsorption data also evidence dramatic changes in surface properties:

the values of the C constants of modified samples drop by 7-10 times compared to

non-modified samples (Table 2.1). The C constant in BET equation characterizes the

strength of adsorbate-adsorbent interaction (Equation (2.8)) [51]. The value goes up

with the increase of the difference between the enthalpy of the adsorbate desorption

(∆Hdes) from a monolayer and the enthalpy of vaporization (∆Hvap) of the liquid

adsorbate.

C = exp [(∆Hads −∆Hvap)/RT ] (2.8)

Based on the known value of ∆Hvap for liquid nitrogen (5.6 kJmol−1 at 77 K [49])

one can calculate values ∆Hads for non-modified and modified colloidal crystals,

which turn out to be 8.70(20) kJmol−1 (non-modified samples) and 7.39(7) kJmol−1
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(modified samples) on average. The values of BET constants and ∆Hads for all samples

are given in Table 2.1.

The second step was to make a single mode prediction, at least one the simplest

and easiest ways available for the DBdB method as it only requires to simply scan for

the pore size until the matching isotherm is found. Further, we generated a kernel

for both adsorption and desorption branches for a wide range of pore sizes from 1 to

200 nm in diameter with a 2 nm step. A part of the desorption isotherm kernel for

Sample 1M is visualized in Figure 2.6. The left limit for the relative pressure was

chosen as the point that corresponds to the monolayer film thickness, i.e., when it

equals to the LJ fluid-fluid interaction diameter of 0.36154 nm [52].

Once the kernels were ready, the third step was to solve the integral Equation (2.5)

applying the Tikhonov regularization. The outcome with pore-size distributions for

both samples with original and modified surfaces is presented in Figure 2.7. The

PSD curves peaks provide a good agreement with the pore size estimate for both the

original surface in [14] and the modified surface. The corresponding isotherms to these

distributions, i.e., solutions of the equation, with experimental data are presented in

Figure 2.8. The comparison of the solutions using the integral equation and single

mode predictions is presented in Figure A.3 in Appendix A.

2.4 Discussion

From the isotherm analysis, in Figure 2.4 one can see that for the modified surface,

the isotherms have less amount adsorbed before the capillary condensation and

after capillary evaporation. It signifies weaker adsorption to the modified surface in

comparison to the original one. The point of capillary condensation and evaporation

is almost the same for the isotherm corresponding to Sample 1 but not for Sample 2.

For Sample 2, after the modification we see a slight shift of the points to the right.
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Figure 2.5 Reference macroporous isotherms with the corresponding Frenkel-Halsey-
Hill fits.

The pore-size distributions presented in Figure 2.7 show good agreement of

the peaks before and after the modification, which is expected since the surface

modification should not appreciably affect the sizes of the mesopores. Also, it is worth

noting a good agreement with the single mode solution. However, the different width

of PSD extracted using adsorption and desorption kernels is an additional aspect to

discuss. At least it is simple to explain the behavior mathematically: we have different

isotherm slopes, and therefore, since the slope for desorption is steeper, to satisfy the

equation, the solution would accumulate other pore size weights from the kernel with
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Figure 2.6 A fragment of the desorption isotherms kernel for modified surface plotted
from p/p0 = 0.167 corresponding to the adsorbed monolayer, where this macroscopic
theory is applicable.

vertical points at the points of capillary condensation and evaporation. Often, the

steep desorption branch of the isotherm is related to cavitation or pore blocking [53].

Deeper insight into the physics of desorption branch can be provided from scanning

isotherms [54].

The obtained PSDs justify the single mode results from our previous work [14].

The analysis of the PSD shows that no additional mesoporosity is there (in Figure 2.7

at small values of the pore size). The kernel based on macroscopic DBdB theory

does not allow one to assess microporosity, however a recent study by Farrando et al.

demonstrated that nitrogen adsorption does not probe microporosity of the Stöber

spheres anyway [15]. Therefore, it is likely that our macroscopic model does not lose

much information. If further characterization of silica colloidal crystals with respect

to micropores is needed, it should be performed using carbon dioxide adsorption at

room temperature [15].
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Figure 2.7 Pore-size distribution f predicted by the adsorption and desorption
branches before and after surface modification for Samples 1 and 2 along with
comparison to the single mode pore size estimation.

Our procedure for characterization of silica colloidal crystals form nitrogen

adsorption can be easily applied by experimentalists directly for unmodified opals

surface, or for various surface modifications. In this case it only requires fitting of the

three parameters (k,m, SA) from the reference adsorption data. The Python script

for using the method, is provided. It can be applied for other porous materials, with

the spherical pores.
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Figure 2.8 Solution of the adsorption integral equation (Equation (2.5)) versus
experimental data.

2.5 Conclusion

In this chapter, we revisited applicability of the Derjaguin-Broekhoff-de Boer Theory

for characterization of silica colloidal crystals using nitrogen adsorption. Specifically,

we demonstrated that the approach gives pore-size distributions with a good agreement

for the surfaces before and after modification. Analysis of the PSD from adsorption

and desorption gives different peaks, which correspond to the characteristic sizes of

voids in hexagonal fcc packing.

The method for pore-size distribution estimation is very efficient and straight-

forward for this pore size range, material, and procedure of surface modification in

comparison with the density functional theory. Thus, the method only requires a
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simple fitting procedure of three parameters and numerical solution of an integral

equation. As a result, it gives the result almost instantly and does not require laborious

DFT calculations. Also, we showed the consistency of the integral equation solution

with the single mode estimator from the recent article [14].
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CHAPTER 3

THE EFFECT OF INTERCONNECTIONS ON GAS ADSORPTION
IN MATERIALS WITH SPHERICAL MESOPORES: A MONTE

CARLO SIMULATION STUDY 4

Abstract

Gas adsorption is a standard method for measuring pore-size distributions of

nanoporous materials. This method is often based on assuming the pores as separate

entities of a certain simple shape: slit-like, cylindrical, or spherical. Here, we study the

effect of interconnections on gas adsorption in materials with spherical pores, such as

three-dimensionally ordered mesoporous (3DOm) carbons. We consider interconnected

systems with two, four, and six windows of various sizes. We propose a simple method

based on the integration of solid-fluid interactions to take into account these windows.

We used Monte Carlo simulations to model argon adsorption at the normal boiling

point and obtained adsorption isotherms for the range of systems. For a system

with two windows, we obtained a remarkably smooth transition from the spherical

to cylindrical isotherm. Depending on the size and number of windows, our system

resembles both spherical and cylindrical pores. These windows can drastically shift

the point of capillary condensation and result in pore-size distributions that are very

different from the ones based on a spherical pore model. Our results can be further

used for modeling fluids in a system of interconnected pores using Monte Carlo and

density functional theory methods.

4The chapter was published in Maximov MA, Molina M, Gor GY. The effect of interconnections on
gas adsorption in materials with spherical mesopores: A Monte Carlo simulation study. The Journal
of Chemical Physics. 2021;154(11):114706
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3.1 Introduction

Nanoporous materials, materials with pore sizes below 100 nm, have a myriad of

technological applications. The pore-size distribution (PSD) and specific surface area

are the key parameters for characterization of nanoporous materials. These parameters

are typically calculated from gas adsorption isotherms [2]. To derive a PSD from an

experimental adsorption isotherm, one needs to make many assumptions about the

pores, such as the surface properties (typically carbon or silica) and pore geometry

(typically slits, cylinders, or spheres). Then, a kernel of theoretical adsorption isotherms

for a given solid and pore geometry is used to solve the adsorption integral equation

to get the PSD [33, 56, 21]. In recent years, many of the adsorption isotherm kernels

were calculated using Monte Carlo (MC) simulations [57, 58, 59], density functional

theory (DFT) [60, 61, 62], and macroscopic models [63, 64, 23], some of which are

supplemented with commercial software for porosimeters and some are freely available.

Templated mesoporous silica with well-defined cylindrical pores [65] provided

an excellent opportunity for verification and fine-tuning of theoretical models for

the isotherms [66]. Furthermore, when new families of templated materials emerged,

such models were extended to those new materials. A peculiar example of the

templated nanoporous materials are a family of mesoporous carbons synthesized using

spherical silica nanoparticles, often referred to as 3DOm (three-dimensionally ordered

mesoporous) carbons [16]. 3DOm carbons received much attention for applications

in electrical double-layer capacitors (EDLCs) [67], gas hydrate synthesis [5], and

three-dimensionally ordered mesoporous-imprinted (3DOm-i) zeolites [68]. The SEM

micrographs and adsorption isotherms for those materials suggest a very narrow

pore-size distribution and a near-perfect spherical pore shape [69, 70]. A set of DFT

kernels were developed specifically for the characterization of these types of materials;

the calculations of the pore-size distribution based on these kernels confirmed the

curves; however, the peaks of those PSDs did not match the expectations from the
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sizes of silica particles used for templating. For instance, the average pore diameters

for materials templated from the 10 nm silica particles appeared as 14 nm based

on both argon and nitrogen adsorption isotherms [69]. This mismatch suggests that

some of the assumptions made for modeling adsorption in 3DOm carbons are not

justified. In many different porous materials, the interconnections between the pores

alter the gas adsorption process. Therefore, the pore-size distribution obtained from

the adsorption data can be affected by these interconnections [71, 72, 54]. However,

modern models for PSD calculations, based on DFT or MC kernels, typically neglect

these effects [21, 73, 2]. The synthesis procedure of 3DOm carbons as well as the SEM

micrographs of their samples suggest that the pores are interconnected by several

windows. An attempt to take into account the interconnections between spherical

pores in molecular modeling of gas adsorption was limited to one window connecting

two adjacent pores [74]. The observed difference in isotherms was rather small and

insufficient to explain the significant mismatch in the pore-size distribution [69].

Recently, another work approached this question. Desouza and Monson [75] utilized

lattice gas model DFT to study gas adsorption in 3DOm carbons. They predicted

isotherms which qualitatively matched the experimental data; however, unlike the

off-lattice DFT or MC, this method cannot provide a fully quantitative model and, thus,

cannot be employed for characterization purposes. In this chapter, we investigate the

role of interconnections between adjacent pores in templated materials with spherical

pore geometry: we simulate the systems with two, four, and six windows connecting the

pores. We developed integrated potentials to simulate gas adsorption in such systems

and illustrated with an example of argon adsorption in model carbon mesopores. Our

results demonstrate that the effect of four or six windows on the adsorption isotherms

is significant, even when the window sizes are relatively small. They also suggest

that neglecting interconnections can lead to a mismatch in the pore-size distribution

observed in earlier works. In addition, we demonstrate that interconnections affect
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other thermodynamic properties of adsorbing fluids, e.g., isothermal compressibility,

which can serve as a fingerprint for pore size estimation [76, 77, 78]. The integrated

potentials and the simulation framework developed in our work can be used for Monte

Carlo and off-lattice DFT modeling of adsorption of gases in materials with spherical

pore geometry as well as in materials with corrugated cylindrical pores [79, 80].

3.2 Methods

3.2.1 Integrated Solid-fluid Potentials

When modeling adsorption of simple gases on solid surfaces, such as N2, Ar or CH4

on silica or carbon, both fluid-fluid and solid-fluid interactions can be represented by

the simple Lennard-Jones potential. Furthermore, their interactions with the solid

surfaces are non-site-specific and can be presented as integrated potentials. This

approach allows the pre-calculation of the solid-fluid interaction rather than directly

calculating the solid-fluid pair interaction with each move, thereby reducing the number

of operations. The solid atoms are typically replaced by surface or volumetric density,

and, then, the solid-fluid interactions are integrated over the surface or volume. This

approach allows one to save computational time in Monte Carlo or molecular dynamics

simulations and is especially useful for off-lattice density functional theory modeling,

where the solid is presented as an external potential [21],

Usf (r) = ns

∫∫
∂Γ

u(s)dA, (3.1)

where

u(s) = 4ε

[(σ
s

)12
−
(σ
s

)6]
, (3.2)

Here, r is the radius vector where the potential is calculated, s is the distance to

surface ∂Γ (represents the surface of the pore), dA is the area element, σ = σsf is the
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Lennard-Jones diameter, ε = εsf is the Lennard-Jones energy scale for the solid-fluid

interaction, and ns is the surface number density of the solid Lennard-Jones sites.

The first potential of this kind is the potential by Crowell and Steele [81]. This

potential was later extended to create the famous 10-4-3 Steele potential for a carbon

slit pore [82]. Later, integrated potentials were proposed for cylindrical [83] and

spherical [84] pore models to model adsorption in siliceous materials with channel-like

and cage-like pores. As for simulations of adsorption of simple gases in nanoporous

carbons with different pore structures, the Steele potential has been recently generalized

for different geometries, including spherical, and provided the corresponding analytical

solutions [85].

While for certain materials, such as zeolites, templated silica, and templated

carbons [69, 86, 67], the spherical pore geometry is more suitable, it has a substantial

limitation: it represents the pore as an isolated entity not interacting with neighbors.

An attempt to include an opening between the two adjacent spherical pores in the

integrated potential and molecular simulation based on such potential did not show

an appreciable difference in adsorption isotherms, except when the opening is very

large. The integrated potentials proposed here take into account two, four, and six

interconnections between the system of spherical pores. In the case of a spherical pore

without windows, the analytical form of Equation (3.1) would be the Baksh-Yang

potential [84],

Usf (r, R) = 2πnsεσ
2

×

{
2

5

9∑
i=0

[
σ10

Ri (R− r)10−i +
σ10

Ri (R + r)10−i

]

−
3∑

i=0

[
σ4

Ri (R− r)4−i +
σ4

Ri (R + r)4−i

]}
,

(3.3)

where R is the pore radius corresponding to the external diameter dext (see Section 3.2.6)

and r is the distance from the center of the pore. Potential given by Equation (3.3)
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Figure 3.1 Comparison of the argon adsorption isotherms at 87.3 K for a 5 nm
spherical carbon pore obtained using the “spherical Steele” [85] and Baksh-Yang
potentials [84] in QSDFT data [70, 69], which is considered a standard characterization
method, according to IUPAC.

is frequently used for modeling gas adsorption in silica pores via DFT and MC

methods [66, 52, 76, 78].

Although we consider argon adsorption on the carbon surface, we chose to use the

potential given by Equation (3.3), rather than the “spherical Steele” potentials, which

includes integration over several layers of carbon atoms, proposed recently by Siderius

and Gelb [85]. Figure 3.1 shows the comparison of the adsorption isotherms predicted

by Monte Carlo simulation using the Baksh-Yang potential with the isotherms based

on the spherical Steele potential. The latter appeared to be closer to the isotherms

obtained by the quenched solid DFT (QSDFT) method [70], suggesting the choice

for our simulations. This is different for materials like CMK-3 [58, 87], where the

generalized Steele potential gives a closer match of isotherms.
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3.2.2 Geometry with Two Windows

The simplest case of interconnected spherical pores is the chain of pores with two

windows, arranged along one axis (see Figure. 3.2). At small window sizes, this model

represents a pore system in materials such as 3DOm carbons [16, 5]; at larger window

sizes, when it becomes comparable to the pore size, the system represents a corrugated

cylindrical pore, a model frequently used for SBA-15 silica [79, 80, 88, 62, 89]. We

describe the opening size in terms of polar angle δ (see Figure 3.3). For the two-window

potential, the problem can be generalized in spherical coordinates as follows:

Usf,2win(r, θ) =

∫ 2π

0

∫ π−δ

δ

u (θ′, ϕ′)R2 sin θ′dθ′dϕ′, (3.4)

where s can be explicitly expressed as s2 = R2 + r2 − 2Rr[sin θ sin θ′ cos(ϕ − ϕ′) +

cos θ cos θ′], θ is the polar angle, and ϕ is the azimuthal angle. Primes, here and further,

correspond to auxiliary variables. It is important to note that for the two-window case,

we have cylindrical symmetry; hence, the function is not dependent on the azimuthal

angle.

3.2.3 Periodic Boundary Conditions

An easy way to calculate the contribution from the neighboring images of the cell in

spherical coordinates is to take into account the periodicity of the structure. This can

be done by shifting the fluid atom by the cell z-axis length rather than integrating

over the surface of the neighboring cells,

Usf,PBC(r, θ, ϕ) =

Ncells∑
i=−Ncells

Usf (Tz′=z+iLz(r, θ, ϕ)) , (3.5)

where Lz is the length of the cell (see Figure 3.4), T is the translation of the (r, θ, ϕ)

vector in spherical coordinates by Lz along the z-axis i times in cylindrical coordinates,

Ncells is the number of cells in each direction, and Usf is the target potential we want

to extend. Using this method, we are able to take into account both fluid-fluid and
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Figure 3.4 Periodic image contribution calculation. Digits above indicate the cell
index, Lz = 2R cos δ is the cell z-axis length. The orange circles are the virtual images
of a fluid molecule where the potential should be calculated.

fluid-solid interactions of the neighboring cells. The effect of these interactions is

elaborated in Section 3.3.2.

3.2.4 Integrated Potential with Four and Six Windows

As we increase the number of windows and try to calculate the integral over the surface

directly, we lose the cylindrical symmetry. Instead of calculating the potential utilizing

the cylindrical symmetry, we represent the target surface ∂Γ, which corresponds to

the pore with windows, as a spherical surface complemented by caps (see Figure 3.5).

Due to the additivity property of the integral, this gives a solution equivalent to

Equation (3.4) in the case of two windows,

∫∫
∂Γ

udA =

∫ 2π

0

∫ π

0

uR2 sin θ′dθ′dϕ′−

−
∫ 2π

0

∫ δ

0

uR2 sin θ′dθ′dϕ′ −
∫ 2π

0

∫ π

π−δ

uR2 sin θ′dθ′dϕ′,

(3.6)

Although the expression is analytically correct, the numerical calculation can be a bit
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Figure 3.5 Extension of the model to calculate the potential with two to six windows
in spherical coordinates. First, we calculate the integral over the sphere, and, then,
we subtract the caps corresponding to each window in the pore.

challenging since the values of the constituent integrals can be large, and it requires

calculating the integral with higher precision, which in turn downgrades performance.

The solution here would be an adaptive scheme where one would calculate the integrals

with higher precision if the first integral has a large value. In order to continue with

the calculation of the integrals for other caps, which correspond to other pore windows,

in spherical coordinates, one can transform the coordinate system by rotation and

subtract these two integrals from Equation (3.6) for each window as it is depicted in

Figure 3.5.

3.2.5 Mesh, Interpolation, and Coordinates

Due to cylindrical symmetry, we decided to use cylindrical coordinates for the two-

window system. For this purpose, a mesh with 1000× 1000 layers was generated for

the corresponding axial coordinate z and radial distance ρ. To calculate the potential,

we used bilinear interpolation by z and the closest band by a radial distance ρ.

For the system with four and six windows, we needed to use an alternative

coordinate system. For this purpose, we created a mesh in the Cartesian coordinate

system with 200-350 layers for each axis. We, then, used trilinear interpolation to

calculate the potential. Discussion on the choice of the number of layers is presented

in Appendix B.
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3.2.6 Internal vs External Pore Diameter

The external diameter of a pore is defined as the maximal center-to-center distance

between (solid) atoms within one cell [77]. On the other hand, the internal diameter

is defined as the maximal accessible distance between fluid atoms, i.e., where the

solid-fluid potential is equal to zero. For spherical and cylindrical pores, dint is

estimated as [52, 74]

dint ≈ dext − 1.7168σsf + σff . (3.7)

In the case of a pore with windows, neglecting the periodic boundary conditions,

by geometrical estimates, the formula can remain the same until critical opening

δc = arccos(dint/dext), and the internal volume can be calculated as a volume of

a sphere. Past this angle, the volume should be estimated using the volume with

subtracted caps with the equivalent internal opening angle as

δint = arccos

(
dext
dint

cos δ

)
. (3.8)

The details about volume estimations are provided in Appendix B.

3.2.7 Monte Carlo Simulation and Parameters

Simulations were carried out using the Grand Canonical Monte Carlo (GCMC)

approach by the Norman-Filinov algorithm [90] at fixed chemical potential µ, volume

V , and temperature T with a pre-calculated potential for the solid-fluid interactions.

All simulations were performed using the Chainbuild molecular simulation code [91]

with custom modifications for pore geometry. The parameters for fluid-fluid and

solid-fluid interactions are listed in Table 3.1 and represent the argon-carbon system.

The simulations are performed at argon normal boiling point 87.3K. The relative

pressure p/p0 = exp(µ∗ − µ∗
0)/T

∗ was changed by varying chemical potential from

a small value µ∗ = −17.997, corresponding to p/p0 = 10−5, to saturated chemical
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potential µ∗
0 = −9.5934 calculated using the Johnson et al. equation of state [92]. The

asterisks here and after correspond to the reduced Lennard-Jones units. The partition

first was chosen uniformly at the (0, 1] interval with 21 points, then, uniformly on

(0, 0.1] with 21 points, excluding 0 and replacing it with 10−5. The pore size was

chosen to be 5 nm with opening angles represented in Figure 3.6. The number of

Monte Carlo moves was chosen to be at least 1010 for the isotherms, where the bulk

modulus was calculated (see Figure 3.7), and at least 109 for the rest.

Table 3.1 Lennard-Jones (LJ) Parameters and Relevant Physical Properties for the
Argon-Argon Fluid-Fluid (ff) and Carbon-Argon Solid-Fluid (sf) Interactions

Interaction σ, nm ε/kB, K ns, nm−2 rcut, σff Ref

Ar - Ar 0.34 119.6 - 5 [93]

Carbon - Ar 0.3417 56.43 38.19 [94, 85]

Note: σ is the LJ diameter, ε is the LJ energy scale, ns is the surface number density of solid
LJ sites, rcut is the distance at which the interactions were truncated; no tail corrections are
used.

3.2.8 Isothermal Fluid Modulus

As it was shown in several recent works [95, 76, 77, 78, 96], elastic modulus of a

fluid in a pore depends on the pore size. Therefore, an elastic modulus can serve as

indication of the pore size, consequently, in addition to calculating the adsorption

isotherms, we obtained the isothermal modulus of the fluid in the pores. A detailed

discussion of these effects is given in Chapter 4. One way to calculate the isothermal

fluid modulus KT
f in pore confinement is from fluctuations of the number of particles

using the following formula [97, 76]:

KT
f =

kBT 〈N〉2

V 〈δN2〉
, (3.9)
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Figure 3.6 Argon adsorption isotherms at T = 87.3K for two (upmost), four
(middle), and six (lowest) window carbon pores with different opening polar angles
δ based on a sphere of 5 nm in diameter. Dashed isotherms represent both limiting
cases for two windows, namely, spherical (δ = 0; periodic boundary conditions were
not applied) and cylindrical (δ = π/2) pores.
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Figure 3.7 Isothermal fluid modulus KT
f vs relative pressure in the log scale for

various opening angles in a two-window system and a spherical (δ = 0; periodic
boundary conditions were not applied) pore calculated using Equation (3.9).

where N is the number of particles in the reservoir, kB is the Boltzmann constant, V

is the pore volume, and T is the temperature.

3.3 Results

3.3.1 Effect of the Opening Size for Interconnected Systems

The isotherms were simulated using the grand canonical Monte Carlo method at

T = 87.3K using the integrated potential for opening angles ranging from 0 to 0.49π

and are presented in Figure 3.6. These results are presented along with the limiting

cases of spherical and cylindrical pores.

The combined isotherms with an emphasis on the comparison of different numbers

of windows are depicted in Figure 3.8. For a small opening angle, δ of 0.15π, the shift

of capillary condensation in the case of four windows was 0.05 in terms of relative

pressure, and an extra 0.1 for six windows.
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Figure 3.8 Isotherms with different numbers of windows and opening polar angles
δ. The isotherms for large angles show a drastic difference as we increase the number
of windows.

The comparison with the kernel of isotherms for pores with original sphere

diameter dext = 5nm, a different number of windows, and opening angles are presented

in Figure 3.9. Although the shapes of the isotherms with windows are different from

the shape of the isotherms for purely spherical pores, the main mode of the PSD,

which is often the main outcome of the adsorption characterization, is defined by

the capillary condensation point. In this sense, the pores whose isotherms have the

same capillary condensation points we consider equivalent. By comparing the point

of capillary condensation, the two-window version with opening δ = π/5 corresponds

to an equivalent 5 nm spherical pore, and δ = π/4 corresponds to a 6 nm pore. The

larger pores have a combination of spherical and cylindrical behavior, but in terms of

the point of capillary condensation, the pore with δ = 0.4π is close to an equivalent

6.5 nm spherical pore. For six windows, a closer representation of 3DOm carbons, a

pore with δ = π/5 has a shifted capillary condensation point leading to an equivalent

spherical pore of 7.25 nm in diameter.
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Figure 3.9 Isotherms with different numbers of windows and opening polar angles
δ with comparison to the kernel of spherical isotherms from 5 to 7 nm (and to 8 nm
for six windows) in diameter with 0.25 nm step.
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3.3.2 Role of Periodic Boundary Conditions for the Isotherm

Typically, adsorption in a spherical pore is modeled as an isolated pore. However,

for modeling of interconnections, we need to use the periodic boundary conditions,

both for solid-fluid and fluid-fluid interactions (see Figure 3.10), and they clearly

bring about some effect on the potential. Although technically these are two different

problems, it is important to consider them when we try to compare the transition

from spherical to cylindrical isotherms and use the results for verification. For this

reason, first, we decided to check the potentials. Thus, the upper part of the plot of

Figure 3.10 shows that at the very edge change in the potential is quite large, but it

corresponds to a relatively small area. On the other hand, in the plot of Figure 3.10,

we see that the effect is negligible in terms of a shift of capillary condensation and

equal to about 0.025. This gives us an explanation for the slight shift of the isotherm

for a pore with zero opening angle from the spherical isotherm.
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Figure 3.10 Effects of various types of periodic boundary conditions on isotherm
at δ = 0, in other words, a spherical pore. The upper-left image corresponds to the
potential under solid-fluid and fluid-fluid conditions, the upper-right image shows the
potential not under periodic boundary conditions, and the bottom plot shows the
isotherms. In the simulations of interconnected pores, both solid-fluid and fluid-fluid
conditions were utilized.

3.3.3 Isothermal Fluid Modulus

Earlier works suggested the isothermal bulk modulus of a confined fluid as another

fingerprint of the pore size [76, 77, 78]. Since it does not require any additional

simulations, and can be extracted from GCMC simulations data, we calculated this

property for each of the systems. Figure 3.7 gives a plot of isothermal elastic modulus

vs the relative pressure (in logarithmic scale) depending on the opening angle. The
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points for each opening angle were fit using linear regression. The plot shows that

larger window sizes give a lower modulus, thus, weaker confinement effects. The fluid

in the pore system with the zero window size gives the modulus higher than the simple

spherical pore. This is likely due to the PBC effects discussed in Section 3.3.2. Overall,

this data is in line with what is seen on the isotherms. Note that when the window

size increases, and the resulting system approaches cylindrical geometry, the points

become more scattered. This effect is likely due to ordering effects, which are more

pronounced in the cylindrical pores [77].

3.3.4 Local Density

The local density plot (Figure 3.11) was constructed as a histogram of the number of

particles per volume ∆N/∆V over radial coordinate r by analyzing configurations.

For each pair of particles, the radial coordinate was calculated and, then placed into

bin i corresponding to the [i∆r, (i+1)∆r) interval, where ∆r is the discretization step.

Then, the number of particles was divided by the volume of the shell corresponding to

each bin using the formula for the cylinder. For consistency, we use one formula to

calculate the ∆V for each case in Figure 3.11. The chosen pore opening angles are

similar to a cylindrical pore, hence we chose the formula for the cylinder.
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Figure 3.11 The local density function for various opening angles δ of a two-window
system calculated using the formula for a cylinder. The estimated peaks represent
adsorbed layers of fluid in the pore.

3.3.5 Pore-Size Distribution

Finally, we illustrate how the application of an isotherm kernel corresponding to the

pore model with windows differs compared to the application of a simple spherical

kernel. For this purpose, we generated two test isotherms: isotherm 1 – an isotherm

for a 4.5 nm pore taken from the six-window kernel (“New Kernel”) with δ = π/5

openings, and isotherm 2 – constructed as a linear combination of the isotherms for

4.0, 4.5, and 5.0 nm from the same kernel with the weights of 0.25, 0.5, and 0.25,

respectively. We calculated the PSDs for these isotherms by solving the adsorption

integral equation using non-negative least squares (NNLS) regression with Tikhonov

regularization [23, 34] on the two isotherm kernels: the one used for constructing these

isotherms and a spherical kernel without openings (“Sph. Kernel”). Figure 3.12 shows

the kernels, the test isotherms, and the results of the PSD calculations. While the

first kernel gave the expected “true” PSDs for both isotherm 1 and isotherm 2, the
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spherical kernel predicted much broader distributions, with the peaks shifted to 6 nm.

This difference in the PSD predictions qualitatively (and almost quantitatively) agrees

with the overprediction of the pore sizes in 3DOm carbons from the application of the

simple spherical pore model [70, 69].

3.4 Discussion

Figure 3.2 shows that a system with two connecting windows is an intermediate case

between the spherical and cylindrical pore models. Indeed, in the case of two windows,

we found a gradual and smooth transition of isotherms between the limiting cases:

the spherical and cylindrical cases. Geometrical estimates for the critical angle δc can

be verified by the fact that for small windows with opening polar angle δ < δc, the

isotherms are very close to the spherical pore isotherm. After this angle, the isotherms

are shifted toward the cylinder. An interesting observation is an intermediate case

at δ = π/4, which represents a corrugated cylinder. As shown in the upper panel

of Figure 3.6, the isotherm for this pore behaves like a cylinder before the point of

capillary condensation in terms of the density value; and has almost the same capillary

condensation point. In contrast, after the condensation point, its behavior is similar

to a sphere, namely, the final density after the point of capillary condensation is closer

to the value corresponding to a sphere, only slightly shifted toward the cylindrical

isotherm. The molecular snapshot is rendered in Figure 3.13.

We further investigated the effects of confinement on the fluids quantifying their

local density. The obtained histogram in Figure 3.11 gave us layers, the peaks do not

match the radial coordinate as occurred in one of our previous studies [77]. Although

we admit that the plot shows rather qualitative observation due to the ambiguous

definition of volume slices ∆V , the location of the peaks should not be affected. In the

case of cylindrical-like pores, it is caused by the non-uniform radius of the cylinder-like

shape, so the isotherms represent some sort of averaged behavior.
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features of both a cylinder and a sphere. The color represents the solid-fluid potential
value having the lowest values near the boundary.

In the aspect of isothermal elastic modulus and compressibility, Figure 3.7 shows

the linear behavior with a constant slope, which confirms the expected behavior of the

Tait-Murnaghan equation [98, 99]. The larger windows correspond to lower modulus,

i.e., weaker confinement effects, which is consistent with the isotherms. The only

exception in terms of the trend here is the isotherm corresponding to 0.4π opening,

which is between the π/5 and π/3 curves. We suggest that due to high fluctuation

from the linear regression, it requires more moves to be equilibrated properly.

For greater numbers of windows, the critical opening angle property also holds

true, i.e., when the isotherm for pore with an opening angle δ smaller than δc =

arccos(dint/dext) described in Section 3.2.6, we see little difference from the spherical

isotherm. We also noticed a drastic effect due to the number of windows in Figure 3.8.

If the number of windows is increased, the point of capillary condensation is shifted

to the right. On the other hand, as the opening angle increases, the effect becomes

stronger. Thus, for the opening angle δ = π/4, the point of capillary condensation

is shifted from 4 windows p/p0 = 0.5 to 6 windows p/p0 = 0.8. The full dependence

of the capillary condensation point on the opening angle for different windows is

presented in Figure 3.14. The justification for such a result is that due to the increase

in the opening angle and the number of windows, the pore has a smaller solid surface

the fluid can adsorb to.
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Figure 3.14 Dependence of the capillary condensation point for a single spherical
pore on the pore diameter (hexagons) and for a 5 nm pore with windows on the
opening angle (solid lines). The capillary condensation pressure was calculated as the
argument of maximum of the derivative of density with respect to pressure.

The constructed pore-size distributions tell us that the effect is crucial for

the correct estimation of the pore size and the width of the distribution, albeit we

used model isotherms for the verification. In addition, the shift of the capillary

condensation point we found is consistent with other papers that compared the

experimental isotherms of 3DOm carbons for nitrogen adsorption [69]. In this paper,

for a 3DOm carbon system with 10 nm pores, they obtained an equivalent diameter of

14 nm, which is similar to our simulation results, which mapped to 4.5-6 nm. Although

we admit that the effect should be non-linear and for a different fluid, we see a clear

qualitative agreement.

Our focus here was on the effect of interconnections on the capillary condensation

point, the shape of the adsorption isotherm, and the PSD resulting from such isotherm.

Typically, adsorption isotherms on mesoporous materials (including 3DOm carbons)

have hysteresis loops [100, 73], and the adsorption branch can be used as an additional
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source for PSD analysis [21]. Although we did not consider desorption isotherms here,

the pore models and integrated solid-fluid potentials developed in this study can be

used for these calculations as well as a possible extension of this work.

It is worth noting that even though the calculation of the integrated solid-fluid

potentials presented in this chapter is done numerically, it can still save computational

time for simulations in large mesopores using MC and can be utilized in DFT

calculations, relying on integrated potentials. In recent years, a more rigorous approach

to the calculation of the integrated potentials for molecular modeling of adsorption was

proposed [101]. The idea of this method is to use a temperature-dependent effective

potential based on the free energy calculations, rather than on the configurational

energy. This approach was recently generalized for the 2D geometry [102] and could

be applied for the two-window case of our system. However, the four-window and

six-window cases, which are three-dimensional, could not be described within the 2D

approach. Furthermore, due to the high surface density, the case of adsorption on

3DOm carbons should be satisfactorily described within the conservative integrated

potential approach.

3.5 Conclusion

In this chapter, we proposed a model for a porous material with spherical pores

connected by windows and studied the role of interconnections on the gas adsorption

isotherms. We proposed a simple way to calculate the integrated potential for four

and six windows that utilize only surface integrals in the spherical coordinate system.

For materials with two windows, we obtained the expected smooth transition from

spherical to cylindrical isotherms and studied the dependence of the opening polar

angle on the shift of the capillary point. Then, we extended our problem to four and

six windows, a geometry consistent with that of a real 3DOm carbon system, and

found a drastic difference. We showed that the application of a kernel of spherical
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isotherms for PSD calculation on isotherms for materials with six-windows noticeably

overpredicts the “true” pore size. The mismatch that we demonstrated agrees with the

mismatch seen in PSD of 3DOm carbon materials almost quantitatively. In addition,

we identified and derived analytically the critical angle when isotherms start diverging

from the spherical pore. We also carefully studied and verified the periodic effects,

which we came across during implementation. Our results can be further used for

modeling the adsorption of gases in the system of interconnected pores using Monte

Carlo molecular simulations or off-lattice density functional theory.
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CHAPTER 4

MOLECULAR SIMULATIONS SHED LIGHT ON POTENTIAL USES
OF ULTRASOUND IN NITROGEN ADSORPTION EXPERIMENTS 5

Abstract

Nitrogen adsorption is one of the main characterization techniques for nanoporous

materials. The experimental adsorption isotherm provides information about the

surface area and pore-size distribution (PSD) for a sample. In this chapter we show

that additional insight into PSD can be gained when the speed of sound propagation

through a sample is measured during nitrogen adsorption experiment. We analyzed

published experimental data on ultrasound propagation through a nanoporous Vycor

glass sample during nitrogen adsorption experiment. Next, from the experimental

isotherms from the paper, we calculated the change of the longitudinal and shear

moduli of the sample as a function of relative vapor pressure. From this, we show that

the shear modulus of the sample does not change upon filling the pores, evidencing

that adsorbed nitrogen at 77 K has zero shear modulus 6, similarly to a bulk liquid.

The longitudinal modulus 7 of the sample behaves differently: it changes abruptly at

the capillary condensation and keeps gradually increasing thereafter. We performed

Monte Carlo molecular simulations to predict the compressibility of adsorbed nitrogen

and then calculated the longitudinal modulus of the nitrogen-saturated Vycor using

the Gassmann equation. Our theoretical predictions nicely matched the longitudinal

modulus derived from the experimental data. Additionally, we performed molecular

simulations to model nitrogen adsorbed in silica pores of sizes ranging from 2 to 8 nm,

which is close to the modeled Vycor glass sample with characteristic pore size ca.

5The chapter was published in Maximov MA, Gor GY. Molecular Simulations Shed Light on Potential
Uses of Ultrasound in Nitrogen Adsorption Experiments. Langmuir. 2018;34(51):15650–15657
6Shear modulus is defined as the ratio of shear stress to shear strain [103]
7Longitudinal modulus, also known as P-wave modulus, is defined as the ratio of axial stress to axial
strain [103]
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6-8 nm. We found that the isothermal elastic modulus of adsorbed nitrogen depends

linearly on the inverse pore size. This dependence, along with the proposed recipe

for probing the modulus of adsorbed nitrogen, sets up the grounds for extracting

additional information about the porous samples, when the nitrogen adsorption is

combined with ultrasonic experiments.

4.1 Introduction

Nitrogen adsorption is one of the main characterization techniques for nanoporous

materials; an experimental adsorption isotherm provides information about the BET

surface area and pore-size distribution (PSD) of a sample. Typically, adsorption

isotherms are measured by volumetric or gravimetric methods; however, there could be

various alternatives. In particular, Warner and Beamish proposed to use ultrasound for

this purpose [1]. Their idea was based on experimental measurements of the speed of

sound propagation through a porous sample during nitrogen adsorption at a constant

temperature. The speed of sound in a medium depends on the medium density.

Therefore, the variation of the speed of sound during the adsorption experiment can

be related to the variation of the average density of the sample, i.e. the adsorption

isotherm. Warner and Beamish showed that the adsorption isotherm derived from

ultrasonic measurements is fully consistent with the volumetric one and is applicable

for calculation of the specific surface area.

Instead of using the ultrasonic measurements as an alternative, we propose

interpreting these data as complementary information to adsorption isotherm data.

Knowing the adsorption isotherm from independent (e.g., volumetric) measurements

allows one to predict the change of the elastic moduli (shear and longitudinal) of

the porous sample as a function of nitrogen vapor pressure. On the basis of the

experimental data, we show that the shear modulus of the sample is not changing,

suggesting that, similarly to bulk liquid nitrogen, the shear modulus of the adsorbed
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nitrogen is zero. The longitudinal modulus of the sample, however, behaves differently:

while not changing appreciably at low vapor pressures, it rises abruptly at the capillary

condensation point. This behavior is consistent with the ultrasonic measurements

performed for other adsorbates: n-hexane [104, 105] and argon [106, 107, 108, 109].

In addition to analysis of the experimental data, we performed molecular

simulations of nitrogen adsorption in silica pores of various sizes. Specifically, we

performed Monte Carlo simulations in the grand canonical ensemble, which gives the

isothermal compressibility of the adsorbed fluid from the fluctuations of the number

of molecules in the pore [76]. The results of our simulations combined with the

Gassmann equation [110] demonstrated a good agreement with the experimental data

from [1]. Moreover, the simulations reveal a simple relation between the pore size

and the compressibility of adsorbed nitrogen. This relation further supports that the

ultrasonic experiments can be utilized for the characterization of porous materials,

providing information complementary to adsorption isotherms [95, 76, 77].

4.2 Methods

Measuring the velocity of ultrasonic wave propagation is a routine way to get the

elastic moduli of bulk materials. Ultrasonic methods can be applied to composites as

well, and porous materials in particular [111, 112]. The key equation is the following:

v = (X/ρ)1/2 (4.1)

where v is the velocity of the longitudinal or transverse wave propagation in the sample

and ρ is the mass density of the sample. For transverse waves X = G is the shear

modulus of the sample and for longitudinal waves X = M is the longitudinal modulus

of the sample.
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4.2.1 Calculation of the Porous Sample Modulus from Ultrasonic Data

Although we do not present new experimental data, but rather are focusing on the

theoretical analysis of the data from [1], it is worth briefly summarizing how these

data were obtained. The experiment was performed using a Vycor glass 7930 porous

sample of 1-cm long and 0.3-0.5 cm across with porosity 8 φ = 0.286 ± 0.001 [113].

Vycor glass 7930 is a disordered mesoporous material with long, channel-like pores

having the characteristic size of ca. 6-8 nm in diameter.

The simplified diagram of the original experiment is shown in Figure 4.1. First,

the sound transit time t0 through the dry sample was measured, corresponding to

the dry shear G0 and longitudinal M0 moduli of the porous sample. Thereafter the

vapor pressure was varied, and the corresponding relative transition time change was

measured in this way:

∆t

t0
=

(
v

v0

)−1

− 1 = −
∆v
v0

1 + ∆v
v0

(4.2)

where v0 and v are the speed of sound propagation for the dry and saturated samples,

respectively; ∆v = v − v0; ∆v
v0

= − θ
1+ωt0

, θ is the phase angle; ω is the sound angular

frequency.

Reference [1] reported v/v0 as a function of the relative vapor pressure of nitrogen

p/p0 (p0 is the saturated vapor pressure). The relative change of the longitudinal

modulus can be calculated from the measured relative change of the transit time and

relative change of the mass of the sample [105]. Indeed, Equation (4.1) gives the

longitudinal sound speed v =
√
M/ρ, then using the relation between the sample

length L and time t as t = L/v, one can obtain the expression for density as a function

of time t and longitudinal modulus M as ρ(t,M) = Mt2

L2 . By expanding this function

in the Taylor series and rewriting in terms of the relative change ∆ρ/ρ0, we derive an

expression in terms of ∆M/M0 and ∆t/t0. Then, the replacement of ∆ρ/ρ0 to the

8Porosity is defined as the ratio of the volume of open pores to the total volume of the solid [10]
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Figure 1.1 Schematic experimental setup of simultaneous adsorption measurements
and ultrasonic wave measurements used by Warner and Beamish. Modulating
the temperature and the vapor pressure allows controlling the fluid adsorption
in the nanoporous sample. Ultrasound transducers are bonded to the porous
sample with viscous silicone fluid. Transducers generate the ultrasonic waves
via piezo-electric crystals, which convert the electric signals into mechanical
responses in the crystal. The waves travel through the sample and reflect
off of the edges of the sample producing pulse-echo waveforms. The pulse-
echo waveforms are displayed on the oscilloscope, where the time between
pulse peaks are used to calculate speed of sound via Equation (1.3).
Source: [1].

humidity and compared the results to similar experiments on Massilon sandstone (10 -

100 µm pores). Murphy found that even though the sandstone is 88% quartz and only

4% amorphous silica, is had about 6 times greater losses than compared to attenuation

on Vycor, which is 96% amorphous silica. Murphy attributed this difference due to

differences in surfaces and pore properties of the materials: Massilon sandstone had

flatter pores and rougher surfaces, thus being more compliant and generating more

viscous losses compared to Vycor, which has smooth surfaces and spherically isotropic

pores.

A transformational step was made later in that decade by Warner and Beamish,

who used ultrasonic experiments to investigate fluid adsorption on nanoporous

5

Figure 4.1 Diagram (drawn by Chris Dobrzanski in [114]) of the experiment carried
out by Warner and Beamish [113]. Here the ultrasound transition time at certain at a
range of pressures and constant temperature 77 K was measured and converted to an
adsorption isotherm.

relative change of the sample mass ∆m/m0 gives us

∆M

M0

=

∆m
m0
−
[
2∆t

t0
+
(

∆t
t0

)2]
1 + 2∆t

t0
+
(

∆t
t0

)2 , (4.3)

where m0 and ρ0 are the mass and density of the dry sample respectively. This

equation was proposed by Page et al. (Equation 4 in [105]). In the case of transverse

waves, a similar equation is valid for the shear modulus

∆G

G0

=

∆m
m0
−
[
2∆t

t0
+
(

∆t
t0

)2]
1 + 2∆t

t0
+
(

∆t
t0

)2 (4.4)

where ∆t/t0 is now related to the transverse waves propagation. Equations (4.3) and

(4.4) can be used to extract the moduli of the sample as a function of p/p0.

4.2.2 Predictions of the Fluid-Saturated Sample Modulus Based on the
Gassmann Theory

The ultrasonic measurements on a saturated porous sample provide the moduli M and

G of the composite, which can in turn be related to the moduli of the constituents.

When the pores are filled with fluid, which has zero shear modulus, the shear modulus
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of the saturated sample G is equal to the modulus of the dry material G0:

G = G0. (4.5)

When a porous sample is isotropic, the frequency of the sound wave is low, and the

pores are filled with a fluid (so Equation (4.5) holds), the bulk modulus K of the

saturated porous sample is related to the moduli of the constituents by the Gassmann

equation [110, 115, 116]:

K = K0 +

(
1− K0

Ks

)2
φ
Kf

+ 1−φ
Ks
− K0

K2
s

, (4.6)

where K0 is the dry bulk modulus, Ks is the solid (pore walls) modulus, φ is the

porosity of the sample and Kf is the fluid modulus. Note that ultrasonic measurements

take place at adiabatic conditions so that the fluid modulus is taken at constant entropy.

Discussion of the adiabatic vs isothermal modulus is given below. The low frequency

limit for the experiment can be estimated as fmax = η
πρfδ2max

' 1 GHz [115], where

δmax ≈ 7− 8 nm is the viscous skin depth considered as the maximum pore diameter

for the Vycor sample, ρf = 807 kgm−3 is the fluid density [49], η = 163 µPa s is

the dynamic viscosity for nitrogen at temperature T = 77 K and pressure P =

0.1 MPa [117]. Therefore, the frequencies of 11 and 9.4 MHz, used in [1] for transverse

and longitudinal waves, can be considered low.

Because the experimentally measured quantity is the longitudinal modulus of

the composite, it is convenient to rewrite Equation (4.6) as

M = M0 +
(Ks −K0)

2Kf

φK2
s + [(1− φ)Ks −K0]Kf

. (4.7)

If the properties of the solid and fluid constituents are known, Equation (4.7) predicts

the longitudinal modulus M of the fluid-saturated sample, which is directly measured

in ultrasonic experiments. While the Gassmann theory was originally proposed for
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systems with macroscopic pores, recently it was shown to be applicable for nanoporous

glass filled with adsorbed argon and n-hexane [118]. Parameters of the solid can be

accessed experimentally and do not appreciably change during fluid adsorption [118].

For the data from [1] discussed here, the longitudinal and shear moduli of the dry

Vycor sample were measured using ultrasonic experiments: K0 = 9.56 GPa, and

G0 = 7.47 GPa [113]. The solid wall properties can be estimated based on these values

and porosity φ = 0.286 from the effective medium theory by Kuster and Toksöz [119],

which gives Ks = 18.5 GPa (see the Supporting Information for [118] for details).

Finally, to use the Gassmann equation, the modulus of the adsorbed fluid

has to be known, which, unlike the modulus of the solid, is noticeably affected by

the confinement [95] and cannot be directly probed experimentally. Following our

previous work [76, 99, 77], we calculate the modulus of confined fluid from Monte

Carlo molecular simulations.

4.2.3 Calculation of the Fluid Modulus from Molecular Simulations

Thermodynamic properties of fluids in mesopores noticeably differ from the bulk fluids’

properties [120]. Many of these properties can be readily calculated from molecular

simulations [121]. Monte Carlo simulations in the grand canonical ensemble (GCMC)

provide a direct way to calculate the isothermal compressibility βT
f , or the reciprocal

property – isothermal modulus KT
f , of a fluid through the fluctuation of the number

of molecules 〈δN2〉 [97]:

KT
f =

(
βT
f

)−1
=

kBT 〈N〉2

V 〈δN2〉
, (4.8)

where N is the number of molecules in the system, kB is the Boltzmann constant, V

is the system volume, and T is the absolute temperature. While being derived for a

bulk system, Equation (4.8) is applicable for fluids confined in mesopores also, as long

as the fluctuations obey a Gaussian distribution [76].
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Alternatively, the isothermal modulus can also be calculated from the fluid

number density n = N/V as a function of pressure at the constant temperature:

KT
f ≡ −V

(
∂P

∂V

)
T

= − 1

n

(
∂P

∂( 1
n
)

)
T

, (4.9)

where P is the pressure of the fluid. Equation (4.9) can be directly used for calculation

of the isothermal modulus of a bulk fluid from an equation of state. Moreover, it

can also be applied for the fluid confined in the pore if the fluid is assumed uniform,

so that the Gibbs-Duhem equation applies to it. In this case, the modulus can be

rewritten as [95, 77]

KT
f = n2 kBT

p/p0

(
∂(p/p0)

∂n

)
V,T

, (4.10)

where p/p0 is the relative pressure of the vapor. Note that Equation (4.10) calculates

the modulus directly from the adsorption isotherm, which can be obtained from

Monte Carlo simulations. Therefore, Equation (4.10) can be applied to the same

data as Equation (4.8). Because this method uses macroscopic relations of classical

thermodynamics, as opposed to the statistical mechanics expression Equation (4.8),

we will call it the “macroscopic method” below.

Knowing the heat capacity ratio γ = CP

CV
, it is possible to derive the adiabatic

fluid modulus Kf from Maxwell’s relations [122]:

Kf = γKT
f (4.11)

Following the previous works, where the isothermal modulus of confined argon KT
f

was compared to ultrasonic experimental data, we assume that γ for a confined fluid

equals to γ of the bulk fluid at the same temperature [95, 118].
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4.2.4 Details of Monte Carlo Simulations

We modeled thermodynamic properties of nitrogen adsorbed in spherical silica pores

using the GCMC method, based on the conventional Norman-Filinov algorithm [90].

Both fluid-fluid and solid-fluid interactions were represented by Lennard-Jones (LJ)

potentials, with parameters following [52]. The parameters are summarized in Table 4.1.

When modeling adsorption in Vycor glass, the pores are typically represented by

cylinders [123]. However, calculation of compressibility of fluids adsorbed in cylindrical

pores at low temperatures may encounter artifacts related to the layering of the fluids

along the walls [77]. Because the moduli of argon confined in spherical and cylindrical

pores of the same size do not differ much [124, 77], in the current work we consider

the spherical pores exclusively. The solid-fluid interaction potential for the spherical

pore was calculated as follows [84]:

Usf (r, R) = 2πnsεsfσ
2
sf

×

{
2

5

9∑
i=0

[
σ10
sf

Ri (R− r)10−i +
σ10
sf

Ri (R + r)10−i

]

−
3∑

i=0

[
σ4
sf

Ri (R− r)4−i +
σ4
sf

Ri (R + r)4−i

]}
,

(4.12)

where ns is the surface number density of solid LJ sites, r is the distance from the

center of the pore, and R is the radius of the pore, corresponding to the “external”

diameter dext (the distance between the centers of the furthest solid atoms). The

“internal” diameter, corresponding to the volume V used for density and modulus

calculations, is related to the external diameter dext as [74]:

dint ≈ dext − 1.7168σsf + σff , (4.13)

where σsf and εsf are Lennard-Jones parameters for solid-fluid interactions.

The simulations were run at T = 77 K to match the experimental conditions

of [1]. The simulations carried out for the pores with external diameters of 2− 10 nm
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Table 4.1 Lennard-Jones (LJ) Parameters and Relevant Physical Properties for the
N2-N2 Fluid-Fluid (ff) and SiO2-N2 Solid-Fluid (sf) Interactions

interaction σ (nm) ε/kB (K) ns (nm−2) rcut ( σff)

N2-N2 0.36154 101.5 - 5.0

SiO2-N2 0.317 147.3 15.3 -

Note: σ is the LJ diameter, ε is the LJ energy scale, ns is the surface number density of solid
LJ sites, rcut is the distance at which the interactions were truncated; no tail corrections
were used. All parameters are taken following [52].

with 1 nm step interval. For each pore size, 2.5× 109 equilibration trial moves and

5× 109 production trial moves were performed. The chemical potential at saturation

point µ∗
0 was derived from the Johnson et al. equation of state [92] and equal to

−9.596 (hereinafter the asterisk stands for the reduced LJ units). The reduced chemical

potential was varied from −18.33 to µ∗
0 with a fixed step per pressure. For 7 and 8

nm pores, 11 extra points were calculated for p/p0 from 0.7 to 1.0.

4.3 Results

4.3.1 Fluid Modulus from Molecular Simulations

Figure 4.2 shows the adsorption isotherms of nitrogen at T = 77 K calculated using

GCMC for a series of pore sizes. For each of the isotherms, we identified the points

above the capillary condensation and used them to calculate the isothermal modulus of

the fluid using Equation (4.8) and 4.10. The resulting moduli are shown in Figure 4.3

as a function of relative pressure p/p0. Figure 4.3 demonstrates a good agreement

between the moduli calculated from the fluctuation of the number of particles and

from the slope of the isotherm.

It is instructive to present the calculated moduli as a function of the Laplace

(capillary) pressure in the pores, calculated as

PL =
RgT

Vl

log

(
p

p0

)
. (4.14)
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Here Rg is the gas constant, and Vl = 34.7 mLmol−1 is the molar volume of the liquid

phase. Figure 4.4 shows the isothermal fluid modulus as a function of Laplace pressure

and demonstrates the linear dependence for each of the pore sizes. The corresponding

coefficients for the linear regression for these data, as well as for the reference data

for bulk liquid nitrogen, can be found in Table 4.2. To calculate the adiabatic elastic

modulus from the reference data, we used the relation with the speed of sound v and

the density of the sample ρ, Kf = ρv2, which is then divided by γ to get the isothermal

modulus.

The values of v and ρ at T = 77 K and P between 0.1 and 0.2 MPa were

brought from the reference data [49] and accessed using the CoolProp thermophysical

property database [48]. The heat capacity ratio γ is equal to [49] 1.878. The fluid

modulus-pressure dependence KT
f (P ) was obtained using the relation between pressure

and density P ∗(n∗) in the Johnson equation provided by Equation 7 from [92]. The

saturation pressure corresponds to the liquid phase at the point of saturated liquid

µ∗
ex = −4.181 and n∗ = 0.811.

Each of the last points in the curves shown in Figure 4.4 gives the fluid modulus

at saturation (p/p0 = 1). These points are plotted separately as a function of the pore

size in Figure 4.5. The regression shows the linear trend on the inverse pore diameter

with the intersection with the bulk value at dext ≈ 10 nm.

4.3.2 Analysis of the Ultrasonic Data

Once the properties of confined nitrogen are known, we can combine them with the

properties of the solid using the Gassmann equation and compare to the moduli

derived from the ultrasonic measurements using Equations (4.3) and (4.4). Although

our molecular simulations do not predict the shear modulus of the confined fluid, we

expect it to remain zero taking it as an assumption based on that it is zero for any

bulk fluid [125, 118]. Figure 4.6 shows the relative change of the shear modulus of
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Figure 4.2 Nitrogen adsorption isotherms at T = 77 K for spherical silica pores of
different sizes calculated using GCMC.

the sample, calculated using Equation (4.4), where ∆m/m0 is taken from volumetric

adsorption isotherm and ∆t/t0 from the transverse wave propagation. Although it

deviates from zero, comparison with the change observed for the longitudinal modulus

is drastic.

Figure 4.7 shows the calculations of the longitudinal modulus of the sample as a

function of nitrogen vapor pressure in three different ways. The red solid line shows

the calculations using Equation (4.3) based on ultrasonic data exclusively: ∆m/m0 is

taken based on the transverse wave propagation (assuming the shear modulus constant)

and ∆t/t0 from the longitudinal waves. The black dotted line is also obtained using

Equation (4.3), but is based on both ultrasonic and volumetric data: ∆m/m0 is

taken from volumetric adsorption isotherm and ∆t/t0 from the longitudinal waves.

Lastly, the theoretical values (green dashed line) were calculated using the fluid

modulus predicted by GCMC (Equation (4.8)) and substituted into the Gassmann
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Figure 4.3 Isothermal modulus of nitrogen adsorbed in spherical silica pores of
different diameters as a function of relative gas pressure. The dashed lines show the
calculations based on the macroscopic thermodynamics (Equation (4.10)), and the
solid lines show the calculations based on the statistical mechanics (Equation (4.8))
approach.

equation (Equation (4.6)). Figure 4.7 shows a good agreement between the theoretical

predictions and the experimental data.

4.4 Discussion

The first thing worth discussing is the change of shear and longitudinal moduli of

the porous sample, calculated based on the experimental data from [1] without even

involving any modeling. Bulk fluids have zero shear, however, the shear modulus of a

fluid in nanoconfinement can be nonzero [126]. Yet our analysis of the ultrasonic data

on liquid nitrogen confined in Vycor nanopores suggests that there is no difference

comparing to the bulk fluid behavior. Figure 4.6 shows that the relative change of the

shear modulus does not exceed 1%. Moreover, this plot shows a near-constant shift with

respect to zero, and it does not reveal any specific trend. The origin of this shift could

be due to a small systematic error in the volumetric adsorption measurements; Warner

67



−30 −20 −10 0
PL (MPa)

0.2

0.4

0.6

0.8

1.0

K
T f

(G
P

a)

2 nm

3 nm

4 nm

5 nm

6 nm

7 nm

8 nm

Figure 4.4 Isothermal fluid modulus KT
f of nitrogen in spherical pores of different

sizes calculated using Equation (4.8) as a function of the Laplace pressure. The dashed
lines are their linear regression; see Table 4.2 for the linear regression coefficients.

and Beamish mentioned the relatively low accuracy of their volumetric adsorption

isotherm [1]. This result is consistent with the recent observations by Schappert

and Pelster, who reported a negligible change of the shear modulus of Vycor glass

during adsorption of argon [106, 108, 127] and oxygen [128] near their normal boiling

points. Zero shear of confined fluid is crucial for the data analysis, since then the

experimental data on shear wave propagation can be used as a measure of change of

sample mass. Moreover, zero shear is the necessary condition for using the Gassmann

equation [110]. Finally, the change of the shear modulus of a fluid-saturated sample

with temperature has been often used as an indication of the onset of the solid-liquid

phase transition [129, 130, 131, 132, 133, 134].

We calculated the longitudinal modulus of the sample from the experimental

data in two different ways: first – based on ultrasonic data exclusively (longitudinal

and transverse waves) and, second, based on ultrasonic data for the longitudinal

waves and volumetric adsorption data. The results of these calculations are shown
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Table 4.2 Dependence of Isothermal Fluid Modulus KT
f on PL for Different Pore

Sizes dext

d, nm α KT
i , GPa method

bulk 7.30 0.314 (0.315) reference data [49, 48]

bulk 8.08 0.298 (0.294) Johnson et al. EOS [92]

2 10.64 ± 0.61 0.853 ± 0.009 GCMC

3 9.71 ± 0.73 0.654 ± 0.011 GCMC

4 10.66 ± 0.46 0.499 ± 0.005 GCMC

5 10.45 ± 0.49 0.434 ± 0.004 GCMC

6 9.88 ± 1.20 0.392 ± 0.007 GCMC

7 11.12 ± 2.15 0.371 ± 0.008 GCMC

8 12.07 ± 1.32 0.352 ± 0.003 GCMC

Note: Parameter α is the slope, KT
i is the intercept of the corresponding linear regression

with the related 95% confidence intervals calculated as double standard errors. For bulk,
the value in parentheses is KT

f at 1 atm.

in Figure 4.7 by solid red line and dotted black line respectively. The calculations

based on ultrasonic data exclusively show no change of the longitudinal modulus of

the sample, prior to the vicinity of the capillary condensation point. For the same

range of pressures, the calculations based on volumetric adsorption isotherm show the

increase of the sample modulus by ∼ 0.5%, similar to the apparent increase observed

for the shear modulus in Figure 4.6, which most likely originates from a systematic

error in the volumetric adsorption measurements. Note that the curves corresponding

to volumetric and ultrasonic measurements diverge by a nearly constant shift of less

than 0.01 in the whole range of pressures. However, in contrast to the “volumetric”

line, the “ultrasonic” curve in the pressure range below the capillary condensation is

about zero as expected. This is in line with the main message of the original work by
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Figure 4.5 The green cross marks are the elastic modulus at saturation (p/p0 = 1)
for nitrogen at 77 K in pores of various sizes, calculated from GCMC simulations. The
red dashed line is their linear regression, the black dotted line KT

f = 0.314 GPa is the
elastic modulus calculated from the reference data for the bulk liquid nitrogen [49].

Warner and Beamish: the ultrasonic measurements employed for the calculation of

the sample mass provide higher precision than a conventional volumetric isotherm [1].

The experimental curves show that after the capillary condensation the

longitudinal modulus changes abruptly and then continues to gradually increase,

which is fully consistent with our theoretical interpretation. Moreover, we show a

quantitative agreement between the experimental results and the theoretical predictions

obtained using the Gassmann equation and GCMC simulations (green dashed line in

Figure 4.7). The difference in the capillary condensation point is due to the spherical

pore model used in Monte Carlo simulations, which is known to predict the capillary

condensation at the lower relative pressure than in the cylindrical pores [19, 66]. The

only feature of the experimental curves which is not reproduced here theoretically,

is the small decrease of the longitudinal modulus of the sample below the M0 value

(the negative region in Figure 4.7). The decrease of the modulus below the dry value
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Figure 4.6 Relative change of the shear modulus of a sample during nitrogen
adsorption derived from experimental data using Equation (4.4). The green dashed
line, corresponding to zero change, presents the expected value for fluid.

is not physical within the Gassmann equation. This apparent decrease is likely to

come from assuming the sample always uniform on the wavelength length scale. This

assumption could be violated, at the onset of the capillary condensation, when some

pores remained empty, while others get filled. Note that a similar dip is seen on the

shear modulus data in Figure 4.6. Moreover, this feature was observed for the moduli

of Vycor glass saturated with n-hexane [105] and argon [108].

Good agreement of the theoretical results with the measured longitudinal

modulus supports the chosen model, namely, the applicability of the Gassmann

equation to nanoporous Vycor glass, applicability of the Kuster-Toksöz effective

medium theory for calculation of the solid modulus Ks of Vycor, and calculation of

compressibility of adsorbed nitrogen based on the GCMC simulations. Therefore, it is

worth discussing the rest of the theoretical results, even though not all of them can be

compared to experimental data.
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Figure 4.7 Relative change of the longitudinal modulus of a sample during nitrogen
adsorption. The red solid line gives the modulus calculated based on the ultrasonic
data for longitudinal and shear waves using Equation (4.3). The black dotted line
gives the modulus calculated from the combination of ultrasonic data (for longitudinal
waves) and volumetric data for the mass change. The green dashed line gives the
theoretical predictions. Both experimental curves are calculated based on the data
from [1].

From the consideration of our molecular simulation results, we can first conclude

that the Lennard-Jones model for nitrogen molecules with the same parameters as

established in adsorption literature [135, 52] describes well the compressibility of

bulk liquid nitrogen, with the 7% deviation between the theoretical and experimental

values (see first two rows in Table 4.2). The calculated compressibility (or isothermal

modulus) or nitrogen adsorbed in model silica pores noticeably differ from the bulk.

This difference has two distinct trends that can be seen in Figure 4.3: dependence

on the relative vapor pressure (for each given pore size) and on the pore size (at any

constant vapor pressure).

The physical meaning of the first trend is clear when the data are shown in

logarithmic scale on vapor pressure, or even better as a function of Laplace pressure in
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the pores (see Figure 4.4). The simulation results demonstrate a linear dependence of

isothermal fluid modulus on Laplace pressure in the interval between −30 and 0 MPa.

The linear dependence of the isothermal modulus of bulk fluid on pressure is known

for decades [136], and is often termed the Tait-Murnaghan equation. The results in

Figure 4.4 show that adsorbed nitrogen also satisfies this equation. Table 4.2 shows

that the slope α in the Tait-Murnaghan equation is nearly the same for the simulations

in various pore sizes. Moreover, the slope α calculated for confined nitrogen does not

deviate much from the value of α for the bulk liquid argon. Finally, the slope is close to

the values calculated recently for argon adsorbed in model silica nanopores [99]. This is

in line with the discussion of this slope being the same for most of the bulk liquids [98].

The range of Laplace pressures for these data is quite moderate, being within 10% of

the isothermal fluid modulus, which explains the validity of the linear approximation

for the pressure dependence of the modulus. If higher (by absolute value) Laplace

pressures could be realized, it would be likely to observe the deviation from the linear

behavior. Finally, we should note that we use an intuitive concept of “Laplace pressure”

to be consistent with a classical picture of capillary condensation/evaporation, which

involves meniscus. Strictly speaking, the liquid in the spherical pore in our simulation

does not have a meniscus, and the Laplace pressure should be interpreted as a pressure

difference due to the difference in chemical potential, determined by the Gibbs-Duhem

equation.

The other trend, seen in Figure 4.5, is worth a separate discussion, as it clearly

shows another linear dependence: GCMC simulations predict that the isothermal

modulus of adsorbed nitrogen changes linearly with the inverse pore size. The slope of

this dependence is quite steep, so that the modulus of nitrogen adsorbed in 2 nm pore

exceeds the modulus of the bulk liquid nitrogen almost by a factor of 3. This linear

dependence resembles another well-known linear dependence of a thermodynamic

property on inverse pore size – the temperature of freezing of liquid in a pore, given by
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the Gibbs-Thomson [137] equation. Note that we do not expect that the linear trend

will continue up to macropores, but rather expect it to start flattening around the bulk

value of modulus at the pore sizes > 10 nm. Unfortunately, GCMC simulations in

such large pores become prohibitively slow and do not allow one to get a good-quality

distribution for calculating the isothermal modulus.

The importance of the predicted linear trend for the modulus of nitrogen adsorbed

in the pores stems from the fact that this modulus can be probed experimentally. The

combination of Equations (4.3) and (4.7) allows one to extract the average value of the

modulus of nitrogen within the pores from the experimental values of the transition

times of the ultrasonic waves. Knowing the linear dependence of the modulus in the

pores on the pore size, the extracted value could serve as a basis for calculation of

the pore-size distribution (PSD) of the sample, similarly to the values of capillary

condensation pressures used for calculating the PSD based on nitrogen adsorption

isotherm [2] or depression of the freezing point of confined liquid, used as a basis

of thermoporometry [138]. While the modulus at p = p0 can be used only as an

estimate for the average pore size, the “modulus isotherm”, i.e., the modulus as a

function of p/p0, can be employed to calculate the PSD. This can be done similarly to

a solution of an adsorption integral equation using an adsorption isotherm [139, 140] or

strain isotherm [141, 142]. This task would require calculation of a kernel of modulus

isotherms and testing it on a representative set of experimental data collected for

well-described samples. The experimental data published to date are insufficient for

performing this task.

Notwithstanding a good agreement between our theoretical results and

experimental data, the model can be made more rigorous. The gap between theoretical

and ultrasonic curves was about 15%, which is not negligible. Even the modulus

calculated for the bulk liquid nitrogen based on the EOS for LJ fluid [92] showed 7%

deviation from the experimental value. In contrast, the modulus predicted by the
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same EOS for argon at 87.3 K is 0.479 GPa, which deviates from the argon reference

data [143] by only 3%. Therefore, this discrepancy is a consequence of the single-site

LJ representation of nitrogen molecules. We expect that a more advanced model for

nitrogen molecule, taking into account the diatomic structure, could provide a better

agreement with experimental data. A TraPPE three-site model could be considered

as a potential candidate [144]. However, if nitrogen is represented this way, the pore

structure has to be consistent, requiring detailed atomistic representation of the silica

surface. Such changes of the model are possible; however they would require additional

lengthy simulations, which are beyond the scope of the current work. Finally, further

improvement of the theoretical model can be achieved by a more precise calculation

of the solid modulus Ks used in the Gassmann equation

4.5 Conclusion

In this chapter we revisited the idea of measuring the speed of sound propagation

during nitrogen adsorption experiments. However, unlike Warner and Beamish, who

suggested to use the ultrasonics as an alternative method for measuring the adsorption

isotherm [1], here we propose to extract complementary information from these

measurements. From the experimental data in [1], we calculated the longitudinal

and shear moduli of the porous sample as a function of nitrogen vapor pressure. We

showed that the shear modulus of the sample does not appreciably change when the

pores get filled with nitrogen and thus concluded the adsorbed nitrogen has zero shear

modulus as if it is a bulk liquid. The longitudinal modulus of the sample behaves

differently: while not changing at low relative vapor pressure, it rises abruptly at

the capillary condensation point and continues to gradually increase thereafter. We

proposed a theoretical model that explains this behavior and matches the experimental

curve. Our model is based on the Gassmann equation, in which the compressibility

of adsorbed nitrogen is calculated based on GCMC simulations. Good agreement
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between the model and experimental data justifies the predictions of our molecular

simulation model beyond the system in the considered experiment. Thus, we simulated

nitrogen adsorbed in mesopores of various sizes and calculated its isothermal elastic

modulus. One of the key results of our simulations is the linear dependence of the

isothermal modulus of adsorbed nitrogen on the inverse pore size. This dependence

provides an unambiguous relation between the pore size and the modulus, which can

be probed experimentally using ultrasound. Therefore, our results set up the grounds

for extracting additional information about the porous samples, when the nitrogen

adsorption is combined with ultrasonic experiments.
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CHAPTER 5

KINETIC MONTE CARLO: MAKING MOLECULAR SIMULATIONS
OF ADSORPTION MORE EFFICIENT

5.1 Introduction

Phase equilibrium, and vapor-liquid equilibrium (VLE) in particular, plays an

important role in separation and purification processes in chemical, material, and

pharmaceutical industries, understanding living organisms in biology, and even in

climate modeling [145]. Thus, for a proper design of such processes, one has to provide

theoretical models that give quantitative predictions of thermodynamic data. It is

especially true for the distillation process, which can consume plenty of energy, so

such knowledge of how to separate the mixtures easier could make the distillation

column much more energy-efficient. Another motivation for such methods is that since

there is a significant number of mixtures one can mix, the experimental data can be

unavailable for a specific mixture of species [146]. Therefore, understanding how to

model such processes is of utmost importance for chemical engineers.

There are three requirements for the thermodynamic equilibrium: equality of

temperatures (thermal equilibrium), partial pressures of each component (mechanical

equilibrium), and the Gibbs free energy (chemical equilibrium); see Figure 5.1 as an

illustration. The thermodynamic data for VLE, such as vapor pressure, liquid density,

and fugacity, can be predicted using different equations of state (EOS). The simplest

analytical one is the cubic EOS [147], such as van der Waals, Soave-Redlich-Kwong, and

Peng-Robinson equations. However, despite their relative simplicity, the cubic EOS

cannot give an acceptable prediction for multicomponent mixtures behavior, especially

for Water/Hydrocarbon mixtures [148]. For this reason, more advanced equations

of state, based on statistical mechanics theories (e.g., Statistical Associating Fluid
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Figure 5.1 Vapor-liquid equilibria interface.

Theory (SAFT) [149] and its extension, Perturbation Theory SAFT (PC-SAFT) [150])

were developed.

Alternatively to experiments and related to them the analytical theories,

molecular simulations can provide many advantages. The first advantage of simulations

over experiments is that one can carry out in-silico experiments cheaply and safely,

without involving toxic chemical species. The second advantage is one can scale

computer simulations and adjust many values of different parameters rather than doing

a huge number of experiments or automating the experimental process. Furthermore,

one can generate so-called “pseudo-experimental” data for future research [151]. The

third advantage is that we can test our theory for an experiment that nowadays is

not technically possible. For instance, molecular simulation methods have already

proven themselves in material science and biological research as an apt discovery tool

in nanofabrication processes [151]. In addition to that, simulations can act as a great

tool to verify the hypotheses and assumptions of the theory [152].

Nowadays, due to the advances in hardware and algorithms, molecular

simulations play an important role in many areas of chemical engineering, such

as drug design, the synthesis, design, and characterization of advanced materials,

protein folding and aggregation, and many other areas [153]. Moreover, in some

areas, it has even become a routine tool for chemical engineers. However, since
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the computational complexity, many scientific and engineering problems still remain

unsolved.

The primary goal of molecular simulations is to predict the macroscopic

thermodynamic and transport properties of a system from the given the molecular-level

description as an input. Let us consider some conventional ways to carry out such a

molecular simulation. Nowadays, there are two main methods, which are the Monte

Carlo and molecular dynamics methods. Although they both consider evolution of

a configuration, they handle the evolution of the microstates in different ways. The

molecular dynamics method is based upon solving Newton’s laws of motion, whereas

the Monte Carlo method is based on the importance sampling for the Boltzmann

distribution.

Specifically, this chapter is going to discuss the use of Monte Carlo techniques

for the calculation of vapor-liquid equilibrium and their performance aspects. It

starts with a discussion of conventional canonical ensemble and grand canonical

ensemble Monte Carlo [90, 152]. Later, we discuss the kinetic Monte Carlo algorithm

for vapor-liquid equilibria recently introduced by Ustinov and Do [154]. The main

advantage of this method is that one can calculate certain properties easier and less

computationally expensive. One of the examples where the algorithm has an advantage

is the calculation of chemical potential in the canonical ensemble. In the classical

scheme, for a given configuration, to calculate chemical potential, one needs to utilize

the Widom test particle insertion (or deletion) method [155, 152] or its modifications,

which can be very computationally expensive in the dense states [156]. In the kinetic

Monte Carlo algorithm, on the other hand, it can be calculated at constant time,

meaning that the asymptotic time complexity does not depend on the number of

particles in the system. Other advantage is that the scheme works even with low-dense

liquid since there is no reason to delete or remove particles.

79



The Kinetic Monte Carlo algorithm is aimed to simulate the stochastic evolution

of some process from an initial state by known rates of occurrence of events ri. The

term kinetic Monte Carlo (kMC) was coined in 1993, although the algorithm was

proposed earlier, referred to as the Dynamic Monte Carlo (DMC) method [157]. The

scheme is often applied for stochastic reaction modeling, in particular for problems

of vacancy diffusion, grain growth, film deposition [158], birefringence [159], and

biological pattern formation [160].

5.2 Methods

5.2.1 Calculation of Energy

Let us discuss different molecular-level models. In the ideal world, one would probably

prefer to model taking into account all bonds interaction, many-body interactions,

chemical reactions [97], and other contributions. However, for many problems, it

requires lots of computational resources and with current hardware and algorithms,

the solution to this problem is not always feasible within the reasonable time limit.

However, we can neglect some interactions for certain systems and still obtain an

acceptable model. Depending on what the system is, one can build different molecular-

level models. Let us examine the most conventional models for such interactions and

their assumptions.

In general, an interatomic potential can be represented as a sum of many-body

potentials

U ≈
∑
i

U1(ri) +
∑
i<j

U2(rij) +
∑
i<j<k

U3(rijk) + ...,

where U1 is the one-body potential, U2 is a pairwise potential, U3 represents the energy

of triplets, etc. In this work, only the terms up to third one will be considered.

The first term, i.e., the bonded interactions, is represented as a sum of the

bond, valence angle, and torsional (dihedral) angle deformation energy [161]. Bond
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Figure 5.2 Bond, valence angle and torsion angle deformation energy calculation.

deformation energy is modeled by Hooke’s law Ubond =
∑

kbond
ij (rij − r0)

2, where r0 is

the reference bond length, rij is the distance between atoms (see Figure 5.2). Similarly,

for valence angles θ the potential would be Uangle =
∑

kangle
ijk (θijk − θ0)

2. Finally,

dihedral angles φ energy is represented by Udihedral =
∑

kdihedral
ijkl (1+cos(m(φijkl−φ0))),

where m is a constant called periodicity. Taking these aforementioned terms for energy

related to bond deformation, valence and dihedral angles into account is important

for complex molecules, like alkanes.

For some systems, such as metals [152], it is important to take into account

many-body interactions. In its simplest case, the three-body potential looks like

U ≈
∑

i U1(ri) +
∑

i<j U2(rij) +
∑

i<j<k U3(rijk). However, it drastically increases the

computational cost. Nevertheless, there are some parallel decomposition schemes that

allow calculating the interaction much more efficiently [162]. For most of the other

systems relevant to chemical engineering, such as alkanes, this and further terms can

be neglected, and the pair potentials would be sufficient.

Let us now consider the most commonly used pairwise potential, neglecting the

interaction between triplets, etc.

U ≈
∑
i

U1(ri) +
∑
i<j

U2(rij) (5.1)

Typically, the nonbonded interaction is represented as a sum of electrostatic, London

dispersion, and Pauli repulsion terms. The electrostatic potential can be described
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by Coulomb’s law Uij = const · qiqj
r

, where qi are the corresponding partial charges,

const is a unit system-specific constant. Analyzing the experimental data, a simple

function can fit the interaction between two nonbonded atoms by the Lennard-Jones

(LJ) 12-6 potential:

Uij = 4ε

{(σ
r

)12
−
(σ
r

)6}
, (5.2)

where r is the interaction distance, constant ε is the depth of the potential well,

constant σ is the distance where the potential equals zero. The r−12 term can be

interpreted as a Pauli repulsion term, the r−6 one represents the attraction term,

London dispersion forces. The potential captures the qualitative behavior of interaction

between particles and is consistent with the van der Waals equation of state. However,

for illustrative purposes, here we will limit our consideration with LJ potential only.

In simulations, in order to reduce the computational cost, a fairly common

approach is to truncate the potential in this way:

Uij =


4ε
{(

σ
r

)12 − (σ
r

)6}
, r ≤ rc

0, r > rc,

(5.3)
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Figure 5.4 Illustration of the Metropolis et al. MC scheme. In the NV T ensemble,
an arbitrary particle is chosen and then attempted to be randomly displaced at
r′ = r +∆, ∆ < ∆max.

where rc is the cutoff radius. The potential is plotted in Figure 5.3. Below we focus on

the algorithms for LJ fluids (fluids where the intermolecular interaction is described

using Lennard-Jones potential) for the sake of simplicity and brevity. However, most

of the algorithms described in the report either have been generalized or can be

generalized for more complex molecules.

5.2.2 Basics of MC Algorithm

The original Metropolis et al. MC algorithm [163] lies upon the Boltzmann distribution

and finding the most efficient energy state, i.e., the state with the lowest energy. From

statistical mechanics, for the canonical (NV T ) ensemble and assuming the ergodic

hypothesis, one can estimate an average of a property F using the following ratio:

〈F 〉NV T =

∫
dre−βUF∫
dre−βU

, (5.4)

where β = 1
kBT

is the Boltzmann factor, kB is the Boltzmann constant, T is absolute

temperature.

Metropolis et al. proposed a simple and efficient scheme to calculate this ratio.

Rather than taking the integral by probability density at each point, they proposed

a random walk and proved its correctness. Briefly, the algorithm pseudorandomly

generates a non-overlapping initial configuration of molecules and then iteratively
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changes the position of particles with a certain statistical bias based on Boltzmann

distribution for a large enough number of steps to equilibrate. The schematic is given

in Figure 5.4 and pseudocode is provided in Algorithm 1. After running the algorithm,

one can estimate an average of an arbitrary property F after M moves using a discrete

version of Equation (5.4) :

〈F 〉NV T ≈
1

M

M∑
j=1

Fj. (5.5)

Algorithm 1 The original Metropolis et al. scheme.
1: Choose an arbitrary initial configuration of molecules

2: for each move do

3: Select a particle at random (uniformly)

4: Calculate its energy U(r) using Equation (5.3)

5: Attempt a uniform random displacement r′ = r +∆, ∆ < ∆max

6: Calculate the corresponding energy U(r′) for the new configuration

7: Accept the new configuration with probability min
(
1, e−β[U(r′)−U(r)]

)
8: end for

5.2.3 Grand Canonical Monte Carlo

Many systems cannot be represented by a canonical ensemble due to the necessary

exchange of the molecules. An important example would be an adsorption process

described in Figure 5.5. In this section, a Monte Carlo technique that allows

simulating a system in the grand canonical (µV T ) ensemble will be considered. The

ensemble represents a fixed volume system in contact with a thermostat with constant

temperature T and a particle exchange reservoir with fixed chemical potential µ.
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Figure 5.5 Modeling gas adsorption in a zeolite framework [152], which requires
the exchange of particles with a reservoir. The thermodynamic equilibrium is reached
between the gas in the reservoir and the adsorbed gas. The dots are gas molecules,
the bends represent the geometry of an adsorbent sample.

An average of a property F in this case can be obtained by the following

expression:

〈F 〉µV T =

∑
N,j FN,je

β(µN−UN,j)∑
N,j e

β(µN−UN,j)
. (5.6)

The difference with the previous scheme for the canonical ensemble is that since now

we have the particle exchange, it brings three types of moves instead of one (see details

in Algorithm 2):

• Displacement, new configuration acceptance probability is P disp
acc = min(1,

e−β[U(r′)−U(r)]), no change.

• Removal, acceptance probability P rem
acc = min(1, Λ

3N
V

e−β[U(N)−U(N−1)+µ]), where
U(N)− U(N − 1) is the energy change after the particle removal, Λ = h√

2πkBT
is the de Broglie wavelength.

• Insertion, acceptance probability P ins
acc = min(1, V

Λ3(N+1)
e−β[U(N+1)−U(N)−µ]),

where U(N + 1)− U(N) is the energy change after the particle insertion.
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Algorithm 2 The Grand Canonical Monte Carlo scheme with the highlighted
difference with the NV T ensemble.

1: Choose an arbitrary initial configuration of molecules

2: for each move do

3: Select a particle at random (uniformly)

4: Calculate its energy U(r) using Equation (5.3)

5: Displace the particle r′ = r + ∆, ∆ < ∆max with probability

min
(
1, e−β[U(r′)−U(r)]

)
6: Remove a particle with probability min

(
1, Λ

3N
V

e−β[U(N)−U(N−1)+µ]
)

7: Insert a particle with probability min
(
1, V

Λ3(N+1)
e−β[U(N+1)−U(N)−µ]

)
8: end for

5.2.4 Kinetic Monte Carlo Algorithm

Recently Ustinov and Do proposed to employ the kMC algorithm to simulate VLE of a

simple LJ fluid in canonical [154] and grand canonical [164] ensembles, then extended

it further to two-site LJ model and quadrupole-quadrupole interactions [165]. The

idea behind the algorithm is similar to the conventional algorithm described in the

previous section. Let us consider the canonical ensemble with an initial configuration

of N particles, volume V and temperature T . During the iterative procedure, we

choose a particle among others with statistical weight (event rates in terms of the

original kMC scheme) ri as eβUi , displace it at a uniformly random location within

the periodic boundary conditions no matter whether it overlaps any other molecules.

The iterative procedure of kMC works in such way:

• Choose an event according to its weight in the energy distribution. This can be
done by drawing a random uniform number p, followed by finding the index i of
the next event this way: Ri−1 ≤ pRN−1 < Ri, where Ri is a partial (prefix) sum
Ri =

∑i
j=1 ri

• Update the residence time ∆t of this event as ∆t = 1∑N
i=1

ln 1/pi
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Having done the iteration procedure for enough steps M to equilibrate, for given

density ρ = N
V

, one can calculate the average chemical potential using the following

expression [154]:

µ = kBT ln
(
Λ3/V

)
+ kBT ln

(
1

t

M−1∑
i=0

ln 1/pi

)
, (5.7)

where M is the total number of steps, t total residence time, pi are the drawn

pseudorandom numbers. The final kMC scheme for a single thread with the calculation

of chemical potential is presented in Algorithm 3.

Algorithm 3 The kMC scheme for the vapor-liquid equilibrium calculation. There
are also improvements of the algorithm that mitigate the issue with the numerical
overflow in Ri [166] caused by frequent overlaps through calculation of Xi = lnRi

instead of Ri.
1: Choose an arbitrary initial configuration

2: for each move do

3: p← uniform(0, 1) // Draw pseudorandom number ∈ [0, 1)

4: Ri ←
∑i

j=0 e
βUj // Get partial sums of energy

5: Find i: Ri−1 ≤ pRN−1 < Ri // Find the upper bound

6: Displace ith particle within cell:

7: xi ← uniform(0, Lx)

8: yi ← uniform(0, Ly)

9: zi ← uniform(0, Lz)

10: ∆t← 1
RN−1

log(1/p) // time change

11: t← t+∆t // total time

12: E ← E +RN−1∆t // average energy multiplied by time

13: µ← µ+ log(1/p) // average chemical potential multiplied

14: // by time

15: end for
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Figure 5.6 The overlap case of two molecules 2 and 3 and their corresponding
partial sum of probabilities Ri to be chosen for displacement. As one can see, the
probabilities for molecules 2 and 3 are about 1

2
, for the rest it is almost zero.

One of the key differences with the Metropolis et al. algorithm is related to

the molecule overlap is treated. Thus, it is worth discussing the overlapping in detail

(see Figure 5.6). It can be explained that this overlapping configuration has a short

residence time ∆t and its contribution to property average will be negligible. Another

aspect is that the probability of the fact they would be chosen is very high since

the interaction energy is close to infinity. Therefore, the rates ri, in this case, will

be high and the probability that they will be chosen will dominate on the choice of

other particles. For example, if one has two overlapping particles, one would have the

probability of choosing these two particles the next time approximately equal to 1
2
.

5.2.5 Parallelization Scheme for Graphics Processing Units

One of the improvements can be made here is to parallelize the scheme on one or

many graphics processing units (GPUs). This would make viable to simulate large

systems as in Chapter 4 it was prohibitively slow to model adsorption for pores larger

than 8 nm on a single central processing unit (CPU) core. GPUs are beneficial for
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large systems that have number of particles of about 10000 – 50000, which require

simple operations to be performed. It is possible to parallel the algorithm for multiple

CPU cores, but it is not going to be as beneficial as an optimization on a single GPU

as a GPU has a few thousand cores (as of 2021), although with lower performance. It

results in a bigger latency for a single operation but faster wall time overall.

There are already molecular simulation packages with GPU implementations for

conventional Monte Carlo schemes [167]. In this section, we are going to apply similar

parallelization approaches for the Metropolis algorithm described in the paper. In the

kMC algorithm, the overall idea of the parallel implementation remains similar to the

serial version, except the energy calculation and Rosenbluth sampling are implemented

for execution in multiple threads.

As for the energy calculation, the main idea for parallelization is the same as in

the NVT ensemble [167] using the conventional Metropolis et al. algorithm. First,

the system is divided into many neighbor lists [152]. They represent a division of the

overall box into smaller cells and assigning cell identifiers to each particle in the box.

Then, when we need to calculate the energy, not only do we apply the cutoff potential,

but also avoid the enumeration over the particles that are far away from each other.

This reduces the time complexity significantly as checking neighbor interactions per

particle linearly depends on the number of particles. It is worth mentioning that

this approach is also applicable for a single thread, although it increases software

architecture complexity with little performance benefit. Then, the energy distribution

is calculated in parallel, counting only the particles in neighbor cells.

With Rosenbluth sampling, the situation is more complex. As it was mentioned

before, to map the uniform pseudorandom number to the one from the energy

distribution, one needs to calculate the prefix sums Ri =
∑i

j=0 e
βUj . These sums can

be calculated efficiently by the algorithm originally proposed by Hillis and Steele [168].
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This approach calculates the prefix sums of N elements on k ≤ N processors in

O(N logN
k

) time. Its pseudocode is presented in Algorithm 4.

Algorithm 4 Parallel Rosenbluth sampling scheme
1: for j := 1 to log2N do

2: for each i parallel do

3: if (i+ 1) mod 2j = 0 then

4: Ri = Ri−2j−1 +Ri // contribution from other parts

5: end if

6: end for

7: end for

8: p← uniform(0, 1) // Draw pseudorandom number ∈ [0, 1)

9: Find i: Ri−1 ≤ pRN−1 < Ri // sample from energy distribution

5.3 Results

The first step was to verify the algorithm by reproducing the VLE curve from [154] and [166]

(see Figure 5.7). As one can see, the VLE curve has an excellent agreement with

the original paper for the same system with argon at T = 87.3 K. In addition to

the comparison with the original paper, it was also decided to compare the results

with a theoretical equation of state for LJ fluid by Johnson et al. [92], with which a

quantitative agreement was reached.

The next part was to compare the convergence of chemical potential µ and

total fluid-fluid energy Uff by the number of Monte Carlo steps of the same system

in NV T ensemble at 109 steps. For this reason, two sets of simulations were set up

for certain densities covering gas, liquid, and metastable areas to better understand

the conditions at which either algorithm performs better. For the classical NVT MC

scheme, the Widom test particle insertion method was used to calculate the chemical

potential. Instead of looking at the instantaneous value of the chemical potential, we
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Figure 5.7 Reproduced kMC simulation results for LJ argon at T = 87.3 K
with interaction parameters described in [154] using our own implementation of
the algorithm. The lines with markers correspond to kMC simulations from our code,
the N values correspond to the cubic box size matching σ3N/V = 1, Ustinov 2012
is the curve from [154], the purple solid line is the equilibrium curve obtained using
Johnson et al. EOS [92], the horizontal dashed line correspond to the equilibrium
calculated using the Maxwell rule from the Johnson et al. EOS VLE curve, vertical
dashed lines correspond to the spinodal points. The asterisks here correspond to the
reduced Lennard-Jones units.
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Figure 5.8 Convergence of chemical potential using the classical NVT MC scheme
(“MC” for the current immediate value, “MC mov avg” for 30% moving average) and
kinetic Monte Carlo scheme with the reference to the value calculated using Johnson
equation of state. Four plots correspond to different values of the reduced density of
the fluid specified on the title of each. The asterisks here correspond to the reduced
Lennard-Jones units.

applied a moving average with a dynamic window taking 30% of the whole interval. In

the kMC scheme, chemical potential was calculated using Equation (5.7). The results

are presented in Figure 5.7. The total energy in the kMC scheme was weight-averaged

by time.

5.4 Discussion

The main observation from the benchmark on chemical potential µ calculation was

that kinetic Monte Carlo is more stable and precise in dense regions. Thus, Figure 5.8
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Figure 5.9 Total fluid-fluid energy Uff convergence in a rarefied region at ρ = 0.05
using conventional NVT (“MC” for the current immediate value, “MC mov avg” for
30% moving average) and kinetic Monte Carlo schemes.

predicts the value that is closer to Johnson et al. equation of state. In addition to that,

the chemical potential value converges at 2 ·108 steps at most, whereas for the classical

MC scheme and the Widom test particle insertion method, even dynamic moving

average did not completely rectify the situation. In rarefied regions, the convergence

was similar for both algorithms, and the chemical potential calculation performed

equally well. On the other hand, in rarefied regions, the total energy Uff was calculated

using the kinetic Monte Carlo scheme with less deviation than the classical scheme.

However, during testing properties other than chemical potential, a significant

drawback of the kinetic Monte Carlo scheme was found. In the classical Monte Carlo

scheme, one can calculate the mean value of the property and it can be averaged with

a certain interval, e.g., with every 105 steps. In the kinetic Monte Carlo scheme, to

calculate a property, it should be weighted by time, and excluding the configurations

from the averaging is not an option. Thus, rather than computing the properties

infrequently using their concise definition with negligible performance loss, one should

93



either devise a scheme on how to cheaply calculate the property from the current state

(the case with the total energy) or sacrifice performance on that.

One of the remaining open problems regarding kMC is to simulate real molecules,

such as hydrocarbons and alkanes in particular. The most complex molecule modeled

using the scheme so far is N2 using LJ sites by Transferable Potentials for Phase

Equilibria (TraPPE) [169] molecular force field model [170], which today it is a standard

for VLE calculations. For this purpose, we propose using the similar approach they

did, but for n-alkanes and other complex molecules relevant to chemical engineering

applications, taking into account bending and dihedral (torsion) potentials described

in Section 5.2.1. Our view is that it is a simple united atom model, providing a

reasonable balance between the precision and computational cost.

Using kMC, one also comes across a similar problem one has with the Gibbs

ensemble scheme. If we start simulating long-chain modules (e.g., decane C10), the

configuration sampling would become grossly inefficient. Therefore, a possible solution

to the issue is to try to generalize the configurational-bias Monte Carlo [171] to the

kMC scheme.

5.5 Conclusion

In this chapter, we implemented the kinetic Monte Carlo algorithm and evaluated

its performance. We first compared the VLE curve with the Johnson et al. equation

of state with a quantitative agreement. After it, we found out that the algorithm

is beneficial over the Widom test particle insertion method in dense regions for the

calculation of chemical potential. Although we were limited only by benchmarks of

chemical potential and total energy, the close look at the algorithm also showed that

thermodynamic properties require explicit calculation at each cycle, which can either

bring about complex implementation or performance degradation.

94



Also, we provided a parallelization scheme for graphics processing units, which

would allow us to model large systems. Although the full version with the neighbor

list calculation has not been implemented yet, we showed that the parallel version of

the algorithm in the time complexity asymptote would have a logarithm multiplier of

the number of particles in the neighbor list.
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CHAPTER 6

CONCLUSIONS AND OUTLOOK

This dissertation has tackled problems of characterization of porous materials with

regard to their pore sizes. It considered various techniques for characterization based

on the adsorption data for real materials from microscopic methods to molecular

simulations and benchmarked and introduced improvements to existing methods.

In Chapter 1, we made the introduction to the topic, stated the open problems in

the characterization of porous materials. Specifically, we highlighted the importance of

the techniques for the emerging materials and the absence of a unified generic method

for their characterization, as well as gave examples of materials that are challenging

to characterize.

In Chapter 2, we were the first who characterized silica colloid crystals (commonly

known as opals), using nitrogen adsorption. Also, we revisited and motivated the

applicability of Derjaguin-Broekhoff-de Boer and Frenkel-Halsey-Hill theories and

obtained the pore-size distribution of it. The resulting pore-size distribution showed

the significance of solving the adsorption integral equation rather than a single isotherm

search. In addition to that, the distribution revealed information about the pore

geometry. The method was also validated by surface modification of the samples.

In Chapter 3, we modeled materials in which the interconnections between

the pores are essential. A method to model and calculate the potentials for these

interconnections was proposed. The resulting kernels and the calculated pore-size

distribution showed a significant deviation of the peak in comparison to a simple

spherical model that does not take into account these interconnected windows. Plus,

we carefully studied the influence of various periodic boundary conditions as well as

the number and size of the windows.
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In Chapter 4, thermodynamic properties that affect the pore size other than

density were studied. We considered the elastic properties of nitrogen in the channel-

like pores inside the Vycor glass. We analyzed the experimental data of the ultrasonic

experiment, extracted the longitudinal and shear moduli, and then modeled the

pores using the grand canonical Monte Carlo method. The resulting curves showed a

near-quantitative agreement with the experiment. Then, the relation of the isothermal

elastic bulk modulus to the pore size was shown.

In Chapter 5, we introduced the Kinetic Monte Carlo algorithm for vapor-liquid

equilibria calculation. We made benchmarks on the calculation of chemical potential

and total energy and showed the cases when the method is especially useful. Then,

we highlighted the potential problems with the calculation of various thermodynamic

properties and gave examples of the molecules with which the current implementation

of the algorithm will struggle. Also, we proposed a scheme for graphical processing

unit parallelization, which would allow simulating of large systems.

97



APPENDIX A

SUPPORTING INFORMATION FOR PORE-SIZE
DISTRIBUTION OF SILICA COLLOIDAL CRYSTALS FROM

NITROGEN ADSORPTION ISOTHERMS

This appendix contains BET plots, solution isotherms, and SEM images at different

scales for Chapter 2. The source code, related documentation, and kernel are available

in a Github repository at https://github.com/2xmax/dbdb.
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Figure A.3 Solutions for unmodified sample made by the adsorption integral
equation and the single mode predictors.

Figure A.4 SEM images for Sample 1, 2 and R.
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APPENDIX B

SUPPORTING INFORMATION FOR THE EFFECT OF
INTERCONNECTIONS ON GAS ADSORPTION IN MATERIALS

WITH SPHERICAL MESOPORES: A MONTE CARLO SIMULATION
STUDY

Internal volume calculation

Figure B.1 presents a schematic describing the internal volume calculation for

interconnected pores with one window. R and R′ are the external and internal

radii, δ and δ′ are the external and internal opening angles. The location of the pore

centers depends on both R and δ. We first derive internal opening angle δ′, which

is then used for the derivation of the formula for calculation of the internal volume,

simply reducing it to a problem of calculation of the volume of the sphere without

spherical caps. In this subproblem, there are two cases:

AO O1

R�

δ �δ

R

Figure B.1 Geometric notation for internal volume calculation considering one
window in the middle. The internal volume is the volume of the union of the spheres
of radius R′ per periodic cell. The case R cos δ ≤ R′ is drawn here, i.e., when the
internal spheres intersect.
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1. if R cos δ ≤ R′ (when the internal spheres intersect)

OA = R cos δ = R′ cos δ′

δ′ = arccos
(

R
R′ cos δ

)
Verification of edge cases:

• δ = π
2

=⇒ R cos δ = 0 =⇒ δ′ = π
2

• R cos δ = R′ =⇒ δ′ = arccos(1) = 0

2. Otherwise, in the case of non-intersecting internal spheres, δ′ = 0. The final

expression for the internal opening angle is

δint = δ′ =

 arccos
(

R
R′ cos δ

)
if R cos δ 6 R′

0 otherwise
(B.1)

To illustrate the property, it is also convenient to introduce critical opening

angle δc = arcccos
(
R′

R

)
to distinguish between these two cases in terms of the opening

angle. The plot of the dependence of the internal opening angle versus the external

one is shown in Figure B.2. Then, using Equation (B.1), it is easy to calculate the

pore internal volume for the given number of windows Nwindows:

hcap = R′(1− cos δ′)

Vcap =
πh2

cap

3
(3R′ − hcap)

Vint =
4
3
πR′3 −NwindowsVcap

(B.2)
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Figure B.2 Internal opening angle starts increasing after the critical opening angle
is δc = arccos(dint/dext).

Choice of number of layers

Another technical aspect is the choice of the proper number of mesh layers as for the

cartesian 3D mesh (required for more than two windows) it can be computationally

expensive. We performed simulations for meshes with different numbers of layers, and

identified a threshold number of layers, after which further increase of layers does not

alter the point of capillary condensation as well as the absolute value of density. The

result of these runs is presented in Figure B.3.
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Figure B.3 Verification of a choice of the number of layers for the Cartesian mesh
as a substantial increase in the number of layers does not deviate the isotherms much.
While the isotherms based on the potentials with 100 layers are noticeably different
from the isotherms with a larger number of layers, the isotherms with a larger number
of about 200 layers do not differ much.

104



REFERENCES

[1] Warner KL, Beamish JR. Ultrasonic measurement of the surface area of porous
materials. Journal of Applied Physics. 1988;63(9):4372–4376.

[2] Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J,
Sing KSW. Physisorption of gases, with special reference to the evaluation of
surface area and pore size distribution (IUPAC Technical Report). Pure and
Applied Chemistry. 2015;87(9-10):1051–1069.

[3] Rouquerol J, Rouquerol F, Llewellyn P, Maurin G, Sing KS. Adsorption by powders
and porous solids: principles, methodology and applications. San Diego, CA,
USA: Academic Press. 2013.

[4] Gallego-Gómez F, Morales M, Blanco A, López C. Bare Silica Opals for Real-Time
Humidity Sensing. Advanced Materials Technologies. 2019;4(2):1800493.

[5] Borchardt L, Nickel W, Casco M, Senkovska I, Bon V, Wallacher D, Grimm N, Krause
S, Silvestre-Albero J. Illuminating solid gas storage in confined spaces–methane
hydrate formation in porous model carbons. Physical Chemistry Chemical
Physics. 2016;18(30):20607–20614.

[6] Borchardt L, Oschatz M, Kaskel S. Tailoring porosity in carbon materials for
supercapacitor applications. Materials Horizons. 2014;1(2):157–168.

[7] Wang G, Yang Y, Lee JH, Abramova V, Fei H, Ruan G, Thomas EL, Tour JM.
Nanoporous silicon oxide memory. Nano Letters. 2014;14(8):4694–4699.

[8] Ji Y, Yang Y, Lee SK, Ruan G, Kim TW, Fei H, Lee SH, Kim DY, Yoon J, Tour
JM. Flexible nanoporous WO3–x nonvolatile memory device. ACS Nano. 2016;
10(8):7598–7603.

[9] Lowell S, Shields JE, Thomas MA, Thommes M. Characterization of porous solids
and powders: surface area, pore size and density, vol. 16. New York, NY, USA:
Springer Science & Business Media. 2012.

[10] Gregg SJ, Sing KSW. Adsorption, Surface Area, and Porosity. Suffolk, UK: Academic
Press, 2nd ed. 1982.

[11] Kruk M, Jaroniec M, Kim TW, Ryoo R. Synthesis and characterization of hexagonally
ordered carbon nanopipes. Chemistry of Materials. 2003;15(14):2815–2823.

[12] Bentz DP, Garboczi EJ, Quenard DA. Modelling drying shrinkage in reconstructed
porous materials: application to porous Vycor glass. Modelling and Simulation
in Materials Science and Engineering. 1998;6(3):211.

105



[13] Sing KS. Reporting physisorption data for gas/solid systems with special reference to
the determination of surface area and porosity (Recommendations 1984). Pure
and Applied Chemistry. 1985;57(4):603–619.

[14] Galukhin A, Bolmatenkov D, Emelianova A, Zharov I, Gor GY. Porous Structure of
Silica Colloidal Crystals. Langmuir. 2019;35(6):2230–2235.

[15] Farrando-Pérez J, López C, Silvestre-Albero J, Gallego-Gómez F. Direct Measurement
of Microporosity and Molecular Accessibility in Stöber Spheres by Adsorption
Isotherms. Journal of Physical Chemistry C. 2018;122(38):22008–22017.

[16] Fan W, Snyder MA, Kumar S, Lee PS, Yoo WC, McCormick AV, Penn RL, Stein A,
Tsapatsis M. Hierarchical nanofabrication of microporous crystals with ordered
mesoporosity. Nature Materials. 2008;7(12):984.

[17] Gelb LD, Gubbins K. Characterization of porous glasses: Simulation models,
adsorption isotherms, and the Brunauer- Emmett- Teller analysis method.
Langmuir. 1998;14(8):2097–2111.

[18] JuneáShin H, et al. Modification of SBA-15 pore connectivity by high-temperature calci-
nation investigated by carbon inverse replication. Chemical Communications.
2001;(4):349–350.

[19] Broekhoff JCP, De Boer JH. Studies on pore systems in catalysts: XI. Pore distribution
calculations from the adsorption branch of a nitrogen adsorption isotherm in
the case of “ink-bottle” type pores. Journal of Catalysis. 1968;10(2):153–165.

[20] Roque-Malherbe RM. Adsorption and diffusion in nanoporous materials. Boca Raton,
FL, USA: CRC press. 2018.

[21] Landers J, Gor GY, Neimark AV. Density Functional Theory Methods for
Characterization of Porous Materials. Colloids and Surfaces, A: Physicochemical
and Engineering Aspects. 2013;437:3–32.

[22] Gor GY, Dobrzanski CD, Emelianova A. Thermodynamic fingerprints of nanoporous
materials on the fluids confined in their pores. Soft Matter And Biomaterials
On The Nanoscale: The Wspc Reference On Functional Nanomaterials-Part I
(In 4 Volumes). 2020;20:227.

[23] Maximov MA, Galukhin AV, Gor GY. Pore-Size Distribution of Silica
Colloidal Crystals from Nitrogen Adsorption Isotherms. Langmuir. 2019;
35(47):14975–14982.

[24] Bohaty AK, Smith JJ, Zharov I. Free-standing silica colloidal nanoporous membranes.
Langmuir. 2009;25(5):3096–3101.

[25] Galisteo-López JF, Ibisate M, Sapienza R, Froufe-Pérez LS, Blanco Á, López C.
Self-assembled photonic structures. Advanced Materials. 2011;23(1):30–69.

106



[26] Zhao Y, Xie Z, Gu H, Zhu C, Gu Z. Bio-inspired variable structural color materials.
Chemical Society Reviews. 2012;41(8):3297–3317.

[27] Park SH, Xia Y. Macroporous membranes with highly ordered and three-dimensionally
interconnected spherical pores. Advanced Materials. 1998;10(13):1045–1048.

[28] Wong S, Kitaev V, Ozin GA. Colloidal crystal films: Advances in univer-
sality and perfection. Journal of the American Chemical Society. 2003;
125(50):15589–15598.

[29] Derjaguin B. A theory of capillary condensation in the pores of sorbents and of other
capillary phenomena taking into account the disjoining action of polymolecular
liquid films. Progress in Surface Science. 1992;40(1-4):46–61.

[30] Derjaguin B. A theory of capillary condensation in the pores of sorbents and of other
capillary phenomena taking into account the disjoining action of polymolecular
liquid films. Progress in Surface Science. 1940;12:181–200.

[31] Quantachrome NOVAtouch® brochure. https://www.quantachrome.com/pdf_
brochures/novatouch_rev1.pdf. Retrieved on 5/29/2019.

[32] Neimark AV, Ravikovitch PI, Vishnyakov A. Bridging scales from molecular simulations
to classical thermodynamics: density functional theory of capillary condensation
in nanopores. Journal of Physics: Condensed Matter. 2003;15(3):347.

[33] Szombathely M, Bräuer P, Jaroniec M. The solution of adsorption integral equations
by means of the regularization method. Journal of Computational Chemistry.
1992;13(1):17–32.

[34] Ravikovitch PI. Characterization of nanoporous materials by gas adsorption and
density-functional theory. Ph.D. thesis, Yale Univeristy. 1998.

[35] Giesche H. Synthesis of monodispersed silica powders II. Controlled growth reaction
and continuous production process. Journal of the European Ceramic Society.
1994;14(3):205–214.

[36] Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the
micron size range. Journal of Colloid and Interface Science. 1968;26(1):62–69.

[37] Frenkel J. Kinetic theory of liquids. New York, NY, USA: Dover Publications. 1955.

[38] Gor GY, Neimark AV. Adsorption-induced deformation of mesoporous solids:
Macroscopic approach and density functional theory. Langmuir. 2011;
27(11):6926–6931.

[39] Neimark AV, Ravikovitch PI. Capillary condensation in MMS and pore structure
characterization. Microporous and Mesoporous Materials. 2001;44:697–707.

[40] Lawson CL, Hanson RJ. Solving least squares problems, vol. 15. Philadelphia, PA,
USA: SIAM. 1995.

107

https://www.quantachrome.com/pdf_brochures/novatouch_rev1.pdf
https://www.quantachrome.com/pdf_brochures/novatouch_rev1.pdf


[41] Golub GH, Heath M, Wahba G. Generalized cross-validation as a method for choosing
a good ridge parameter. Technometrics. 1979;21(2):215–223.

[42] Dimitrov AS, Nagayama K. Continuous convective assembling of fine particles into
two-dimensional arrays on solid surfaces. Langmuir. 1996;12(5):1303–1311.

[43] Jiang P, Bertone J, Hwang K, Colvin V. Single-crystal colloidal multilayers of controlled
thickness. Chemistry of Materials. 1999;11(8):2132–2140.

[44] Köhler J, Kirkland J. Improved silica-based column packings for high-performance
liquid chromatography. Journal of Chromatography A. 1987;385:125–150.

[45] Van Le T, Ross EE, Velarde TR, Legg MA, Wirth MJ. Sintered silica colloidal crystals
with fully hydroxylated surfaces. Langmuir. 2007;23(16):8554–8559.

[46] Jal PK, Patel S, Mishra BK. Chemical modification of silica surface by immobilization
of functional groups for extractive concentration of metal ions. Talanta. 2004;
62(5):1005–1028.

[47] Gun’Ko V, Vedamuthu M, Henderson G, Blitz J. Mechanism and kinetics of
hexamethyldisilazane reaction with a fumed silica surface. Journal of Colloid
and Interface Science. 2000;228(1):157–170.

[48] Bell IH, Wronski J, Quoilin S, Lemort V. Pure and Pseudo-pure Fluid Thermophysical
Property Evaluation and the Open-Source Thermophysical Property Library
CoolProp. Industrial & Engineering Chemistry Research. 2014;53(6):2498–2508.

[49] Span R, Lemmon EW, Jacobsen RT, Wagner W, Yokozeki A. A reference equation
of state for the thermodynamic properties of nitrogen for temperatures from
63.151 to 1000 K and pressures to 2200 MPa. Journal of Physical and Chemical
Reference Data. 2000;29(6):1361–1433.

[50] Mulero A, Cachadiña I, Parra M. Recommended correlations for the surface tension
of common fluids. Journal of Physical and Chemical Reference Data. 2012;
41(4):043105.

[51] Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers.
Journal of the American Chemical Society. 1938;60(2):309–319.

[52] Rasmussen CJ, Vishnyakov A, Thommes M, Smarsly BM, Kleitz F, Neimark AV.
Cavitation in metastable liquid nitrogen confined to nanoscale pores. Langmuir.
2010;26(12):10147–10157.

[53] Thommes M. Physical adsorption characterization of nanoporous materials. Chemie
Ingenieur Technik. 2010;82(7):1059–1073.

[54] Cimino R, Cychosz KA, Thommes M, Neimark AV. Experimental and theoretical
studies of scanning adsorption–desorption isotherms. Colloids and Surfaces, A:
Physicochemical and Engineering Aspects. 2013;437:76–89.

108



[55] Maximov MA, Molina M, Gor GY. The effect of interconnections on gas adsorption
in materials with spherical mesopores: A Monte Carlo simulation study. The
Journal of Chemical Physics. 2021;154(11):114706.

[56] Tikhonov AN, Arsenin VY. Solutions of Ill-Posed Problems. New York, NY, USA:
Winston. 1977.

[57] Braida WJ, Pignatello JJ, Lu Y, Ravikovitch PI, Neimark AV, Xing B. Sorption
hysteresis of benzene in charcoal particles. Environmental Science and
Technology. 2003;37(2):409–417.

[58] Yelpo V, Cornette V, Toso JP, López RH. Characterization of Nanostructured Carbon
CMK-3 by means of Monte Carlo Simulations. Carbon. 2017;121:106–113.

[59] Dantas S, Struckhoff KC, Thommes M, Neimark AV. Pore Size Characterization of
Micro-Mesoporous Carbons Using CO2 Adsorption. Carbon. 2021;173:842–848.

[60] Lastoskie C, Gubbins KE, Quirke N. Pore size distribution analysis of microporous
carbons: a density functional theory approach. Journal of Physical Chemistry.
1993;97(18):4786–4796.

[61] Ravikovitch PI, Neimark AV. Characterization of micro-and mesoporosity in SBA-15
materials from adsorption data by the NLDFT method. Journal of Physical
Chemistry B. 2001;105(29):6817–6823.

[62] Jagiello J, Jaroniec M. 2D-NLDFT adsorption models for porous oxides with corrugated
cylindrical pores. Journal of Colloid and Interface Science. 2018;532:588–597.

[63] Jagiełło J, Schwarz JA. Local exact and approximate solutions of the adsorption
integral equation with a kernel of a Langmuir-like isotherm: Determination of
adsorption energy distribution. Journal of Colloid and Interface Science. 1991;
146(2):415–424.

[64] Ravikovitch PI, Vishnyakov A, Neimark AV, Ribeiro Carrott MML, Russo PA, Carrott
PJ. Characterization of micro-mesoporous materials from nitrogen and toluene
adsorption: experiment and modeling. Langmuir. 2006;22(2):513–516.

[65] Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD. Triblock
Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom
Pores. Science. 1998;279(5350):548–552.

[66] Ravikovitch PI, Neimark AV. Density functional theory of adsorption in spherical
cavities and pore size characterization of templated nanoporous silicas
with cubic and three-dimensional hexagonal structures. Langmuir. 2002;
18(5):1550–1560.

[67] Vu A, Li X, Phillips J, Han A, Smyrl WH, Buhlmann P, Stein A. Three-dimensionally
ordered mesoporous (3DOm) carbon materials as electrodes for electrochemical
double-layer capacitors with ionic liquid electrolytes. Chemistry of Materials.
2013;25(21):4137–4148.

109



[68] Wang Z, Dornath P, Chang CC, Chen H, Fan W. Confined synthesis of three-
dimensionally ordered mesoporous-imprinted zeolites with tunable morphology
and Si/Al ratio. Microporous and Mesoporous Materials. 2013;181:8–16.

[69] Cychosz KA, Guo X, Fan W, Cimino R, Gor GY, Tsapatsis M, Neimark AV, Thommes
M. Characterization of the pore structure of three-dimensionally ordered
mesoporous carbons using high resolution gas sorption. Langmuir. 2012;
28(34):12647–12654.

[70] Gor GY, Thommes M, Cychosz KA, Neimark AV. Quenched solid density functional
theory method for characterization of mesoporous carbons by nitrogen
adsorption. Carbon. 2012;50(4):1583–1590.

[71] Zhdanov V. Application of percolation theory to describing kinetic processes in porous
solids. Advances in Catalysis. 1993;39:1–50.

[72] Cordero S, Kornhauser I, Domínguez A, Felipe C, Esparza JM, Rojas F, López
RH, Vidales AM, Riccardo JL, Zgrablich G. Site-Bond Network Modeling
of Disordered Porous Media. Particle & Particle Systems Characterization:
Measurement and Description of Particle Properties and Behavior in Powders
and Other Disperse Systems. 2004;21(2):101–116.

[73] Thommes M, Cychosz KA. Physical adsorption characterization of nanoporous
materials: progress and challenges. Adsorption. 2014;20(2-3):233–250.

[74] Gor GY, Rasmussen CJ, Neimark AV. Capillary condensation hysteresis in
overlapping spherical pores: a Monte Carlo simulation study. Langmuir. 2012;
28(33):12100–12107.

[75] Desouza A, Monson PA. Modeling fluids confined in three-dimensionally ordered
mesoporous carbons. Adsorption. 2021;27:DOI: 10.1007/s10450–020–00285–6.

[76] Gor GY, Siderius DW, Rasmussen CJ, Krekelberg WP, Shen VK, Bernstein N. Relation
Between Pore Size and the Compressibility of a Confined Fluid. Journal of
Chemical Physics. 2015;143:194506.

[77] Dobrzanski CD, Maximov MA, Gor GY. Effect of pore geometry on the compressibility
of a confined simple fluid. Journal of Chemical Physics. 2018;148(5):054503.

[78] Maximov MA, Gor GY. Molecular Simulations Shed Light on Potential Uses
of Ultrasound in Nitrogen Adsorption Experiments. Langmuir. 2018;
34(51):15650–15657.

[79] Gommes CJ, Friedrich H, Wolters M, Jongh PEd, Jong KPd. Quantitative
characterization of pore corrugation in ordered mesoporous materials using
image analysis of electron tomograms. Chemistry of Materials. 2009;
21(7):1311–1317.

110



[80] Gommes CJ. Adsorption, capillary bridge formation, and cavitation in SBA-15
corrugated mesopores: a Derjaguin–Broekhoff–de Boer analysis. Langmuir.
2012;28(11):5101–5115.

[81] Crowell AD, Steele RB. Interaction potentials of simple nonpolar molecules with
graphite. Journal of Chemical Physics. 1961;34(4):1347–1349.

[82] Steele WA. The physical interaction of gases with crystalline solids: I. Gas-solid
energies and properties of isolated adsorbed atoms. Surface Science. 1973;
36(1):317–352.

[83] Tjatjopoulos GJ, Feke DL, Mann Jr JA. Molecule-micropore Interaction Potentials.
Journal of Physical Chemistry. 1988;92(13):4006–4007.

[84] Baksh MSA, Yang RT. Model for spherical cavity radii and potential functions of
sorbates in zeolites. AIChE Journal. 1991;37(6):923–930.

[85] Siderius DW, Gelb LD. Extension of the Steele 10-4-3 potential for adsorption
calculations in cylindrical, spherical, and other pore geometries. Journal of
Chemical Physics. 2011;135(8):084703.

[86] Simaioforidou A, Kostas V, Karakassides MA, Louloudi M. Surface chemical
modification of macroporous and mesoporous carbon materials: Effect on
their textural and catalytic properties. Microporous and Mesoporous Materials.
2019;279:334–344.

[87] Kolesnikov AL, Budkov YA, Gor GY. Density Functional Theory Model for Adsorption-
Induced Deformation of Mesoporous Materials with Nonconvex Pore Geometry.
Journal of Physical Chemistry C. 2020;124(37):20046–20054.

[88] Hofmann T, Wallacher D, Perlich J, Koyiloth Vayalil S, Huber P. Formation of
periodically arranged nanobubbles in mesopores: capillary bridge formation
and cavitation during sorption and solidification in an hierarchical porous
SBA-15 matrix. Langmuir. 2016;32(12):2928–2936.

[89] Kolesnikov AL, Budkov YA, Gor GY. Adsorption-induced deformation of mesoporous
materials with corrugated cylindrical pores. Journal of Chemical Physics. 2020;
153(19):194703.

[90] Norman GE, Filinov VS. Investigations of phase transitions by a Monte-Carlo method.
High Temperature. 1969;7(2):216.

[91] Rasmussen CJ. Molecular simulation of simple fluids and polymers in nanoconfinement.
Ph.D. thesis, Rutgers The State University of New Jersey-New Brunswick. 2012.

[92] Johnson JK, Zollweg JA, Gubbins KE. The Lennard-Jones equation of state revisited.
Molecular Physics. 1993;78(3):591–618.

111



[93] Vishnyakov A, Neimark AV. Studies of Liquid- Vapor Equilibria, Criticality, and
Spinodal Transitions in Nanopores by the Gauge Cell Monte Carlo Simulation
Method. Journal of Physical Chemistry B. 2001;105(29):7009–7020.

[94] Heinbuch U, Fischer J. Liquid argon in a cylindrical carbon pore: molecular dynamics
and Born-Green-Yvon results. Chemical Physics Letters. 1987;135(6):587–590.

[95] Gor GY. Adsorption Stress Changes the Elasticity of Liquid Argon Confined in a
Nanopore. Langmuir. 2014;30(45):13564–13569.

[96] Corrente NJ, Dobrzanski CD, Gor GY. Compressibility of Supercritical Methane
in Nanopores: A Molecular Simulation Study. Energy & Fuels. 2020;
34(2):1506–1513.

[97] Allen MP, Tildesley DJ. Computer Simulation of Liquids. New York, NY, USA:
Clarendon Press. 1989.

[98] Wilhelm E. Pressure dependence of the isothermal compressibility and a modified
form of the Tait equation. Journal of Chemical Physics. 1975;63(8):3379–3381.

[99] Gor GY, Siderius DW, Shen VK, Bernstein N. Modulus–Pressure Equation for
Confined Fluids. Journal of Chemical Physics. 2016;145(16):164505.

[100] Monson PA. Understanding adsorption/desorption hysteresis for fluids in mesoporous
materials using simple molecular models and classical density functional theory.
Microporous and Mesoporous Materials. 2012;160:47–66.

[101] Forte E, Haslam AJ, Jackson G, Müller EA. Effective coarse-grained solid–fluid
potentials and their application to model adsorption of fluids on heterogeneous
surfaces. Physical Chemistry Chemical Physics. 2014;16(36):19165–19180.

[102] Shi K, Santiso EE, Gubbins KE. Bottom-Up Approach to the Coarse-Grained Surface
Model: Effective Solid–Fluid Potentials for Adsorption on Heterogeneous
Surfaces. Langmuir. 2019;35(17):5975–5986.

[103] Mavko G, Mukerji T, Dvorkin J. The rock physics handbook. Cambridge, UK:
Cambridge university press. 2020.

[104] Page JH, Liu J, Abeles B, Deckman HW, Weitz DA. Pore-space correlations in
capillary condensation in Vycor. Physical Review Letters. 1993;71(8):1216.

[105] Page JH, Liu J, Abeles B, Herbolzheimer E, Deckman HW, Weitz DA. Adsorption
and desorption of a wetting fluid in Vycor studied by acoustic and optical
techniques. Physical Review E. 1995;52(3):2763.

[106] Schappert K, Pelster R. Elastic properties and freezing of argon confined in mesoporous
glass. Physical Review B. 2008;78(17):174108.

[107] Schappert K, Pelster R. Elastic properties of liquid and solid argon in nanopores.
Journal of Physics: Condensed Matter. 2013;25(41):415302.

112



[108] Schappert K, Pelster R. Influence of the Laplace pressure on the elasticity of argon in
nanopores. Europhysics Letters. 2014;105(5):56001.

[109] Schappert K, Pelster R. Temperature Dependence of the Longitudinal Modulus
of Liquid Argon in Nanopores. Journal of Physical Chemistry C. 2018;
122(10):5537–5544.

[110] Gassmann F. Über die Elastizität poröser Medien. Vierteljahrsschriften
Naturforschende Gesellschaft Zürich. 1951;96:1–23.

[111] Bourbie T, Coussy O, Zinszner B. Acoustics of porous media. Paris, France: Gulf
Publishing Company. 1987.

[112] Horoshenkov KV. A review of acoustical methods for porous material characterisation.
International Journal of Acoustics and Vibrations. 2017;22:92–103.

[113] Warner KL. Sound Velocity and Attenuation Measurements at Low Temperatures in
Fluid Filled Porous Media. Master’s thesis, University of Delaware. 1986.

[114] Dobrzanski CD, Gurevich B, Gor GY. Elastic properties of confined fluids from
molecular modeling to ultrasonic experiments on porous solids. Applied Physics
Reviews. 2021;8(2):021317.

[115] Biot MA. Theory of propagation of elastic waves in a fluid-saturated porous solid.
I. Low-frequency range. Journal of the Acoustical Society of America. 1956;
28(2):168–178.

[116] Berryman JG. Origin of Gassmann’s equations. Geophysics. 1999;64(5):1627–1629.

[117] Lemmon EW, Jacobsen RT. Viscosity and Thermal Conductivity Equations for
Nitrogen, Oxygen, Argon, and Air. International Journal of Thermophysics.
2004;25(1):21–69.

[118] Gor GY, Gurevich B. Gassmann Theory Applies to Nanoporous Media. Geophysical
Research Letters. 2018;45(1):146–155.

[119] Kuster GT, Toksöz MN. Velocity and attenuation of seismic waves in two-phase media:
Part I. Theoretical formulations. Geophysics. 1974;39:587–606.

[120] Huber P. Soft matter in hard confinement: phase transition thermodynamics, structure,
texture, diffusion and flow in nanoporous media (topical review). Journal of
Physics: Condensed Matter. 2015;27:103102.

[121] Gubbins KE, Liu YC, Moore JD, Palmer JC. The role of molecular modeling in
confined systems: impact and prospects. Physical Chemistry Chemical Physics.
2011;13(1):58–85.

[122] Landau LD, Lifshitz EM. Statistical Physics, vol. 5, vol. 30. New York, NY, USA:
Pergamon. 1980.

113



[123] Thommes M, Smarsly B, Groenewolt M, Ravikovitch PI, Neimark AV. Adsorption
hysteresis of nitrogen and argon in pore networks and characterization of novel
micro-and mesoporous silicas. Langmuir. 2006;22(2):756–764.

[124] Gor GY. Bulk Modulus of Not-So-Bulk Fluid. Poromechanics VI. 2017;pp. 465–472.

[125] Thorne KS, Blandford RD. Modern classical physics: optics, fluids, plasmas, elasticity,
relativity, and statistical physics. Princeton, NJ, USA: Princeton University
Press. 2017.

[126] Granick S. Motions and relaxations of confined liquids. Science. 1991;
253(5026):1374–1379.

[127] Schappert K, Reiplinger N, Pelster R. Correlation between the Sorption-Induced
Deformation of Nanoporous Glass and the Continuous Freezing of Adsorbed
Argon. Langmuir. 2016;32(31):7741–7746.

[128] Schappert K, Naydenov V, Pelster R. Oxygen in Nanopores: A Study on the
Elastic Behavior of Its Solid Phases. Journal of Physical Chemistry C. 2016;
120(45):25990–25995.

[129] Molz E, Wong APY, Chan MHW, Beamish JR. Freezing and melting of fluids in
porous glasses. Physical Review B. 1993;48(9):5741.

[130] Borisov BF, Gartvik AV, Nikulin FV, Charnaya EV. Acoustic study of melting and
freezing of mercury nanoparticles in porous glasses. Acoustical Physics. 2006;
52(2):138–143.

[131] Charnaya EV. Acoustic studies of phase transitions in crystals and nanocomposites.
Acoustical Physics. 2008;54(6):802–813.

[132] Borisov BF, Gartvik AV, Gorchakov AG, Charnaya EV. Acoustic studies of melting
and crystallization of nanostructured decane. Physics of the Solid State. 2009;
51(4):823–828.

[133] Schappert K, Pelster R. Freezing behavior of argon layers confined in mesopores.
Physical Review B. 2011;83(18):184110.

[134] Schappert K, Pelster R. Continuous freezing of argon in completely filled mesopores.
Physical Review Letters. 2013;110(13):135701.

[135] Ravikovitch PI, Vishnyakov A, Russo R, Neimark AV. Unified approach to pore size
characterization of microporous carbonaceous materials from N2, Ar, and CO2

adsorption isotherms. Langmuir. 2000;16(5):2311–2320.

[136] Macdonald JR. Some simple isothermal equations of state. Reviews of Modern Physics.
1966;38(4):669.

[137] Wunderlich B. Macromolecular Physics - Crystal Melting. New York, NY, USA:
Academic Press. 1980.

114



[138] Landry MR. Thermoporometry by differential scanning calorimetry: experimental
considerations and applications. Thermochimica Acta. 2005;433(1):27–50.

[139] Seaton NA, Walton JPRB, Quirke N. A new analysis method for the determination
of the pore size distribution of porous carbons from nitrogen adsorption
measurements. Carbon. 1989;27(6):853–861.

[140] Jagiello J. Stable numerical solution of the adsorption integral equation using splines.
Langmuir. 1994;10(8):2778–2785.

[141] Balzer C, Cimino RT, Gor GY, Neimark AV, Reichenauer G. Deformation of
microporous carbons during N2, Ar, and CO2 adsorption: Insight from the
density functional theory. Langmuir. 2016;32(32):8265–8274.

[142] Siderius DW, Mahynski NA, Shen VK. Relationship between pore-size distribution
and flexibility of adsorbent materials: statistical mechanics and future material
characterization techniques. Adsorption. 2017;23(4):593–602.

[143] Stewart RB, Jacobsen RT. Thermodynamic properties of argon from the triple point
to 1200 K with pressures to 1000 MPa. Journal of Physical and Chemical
Reference Data. 1989;18(2):639–798.

[144] Potoff JJ, Siepmann JI. Vapor–liquid equilibria of mixtures containing alkanes, carbon
dioxide, and nitrogen. AIChE Journal. 2001;47(7):1676–1682.

[145] Panagiotopoulos AZ. Monte Carlo methods for phase equilibria of fluids. Journal of
Physics: Condensed Matter. 2000;12(3):R25.

[146] Fredenslund A, Gmehling J, Rasmussen P. Chapter 1 - Introduction. Vapor-liquid
Equilibria Using UNIFAC. 1977;pp. 1–5.

[147] Abbott MM. Cubic Equations of State: An Interpretive Review. Washington, DC,
USA. 1979.

[148] Economou IG, Tsonopoulos C. Associating models and mixing rules in equations of
state for water/hydrocarbon mixtures. Chemical Engineering Science. 1997;
52(4):511–525.

[149] Chapman W, Gubbins K, Jackson G, Radosz M. SAFT: Equation-of-state solution
model for associating fluids. Fluid Phase Equilibria. 1989;52:31–38.

[150] Gross J, Sadowski G. Application of the Perturbed-Chain SAFT Equation of State
to Associating Systems. Industrial & Engineering Chemistry Research. 2002;
41(22):5510–5515.

[151] de Pablo JJ, Escobedo FA. Molecular simulations in chemical engineering: Present
and future. AIChE Journal. 2004;48(12):2716–2721.

[152] Frenkel D, Smit B. Understanding Molecular Simulation. Orlando, FL, USA: Academic
Press, Inc., 2nd ed. 2001.

115



[153] Palmer JC, Debenedetti PG. Recent advances in molecular simulation: a chemical
engineering perspective. AIChE Journal. 2015;61(2):370–383.

[154] Ustinov EA, Do DD. Application of kinetic Monte Carlo method to equilibrium
systems: Vapour–liquid equilibria. Journal of Colloid and Interface Science.
2012;366(1):216–223.

[155] Widom B. Some topics in the theory of fluids. Journal of Chemical Physics. 1963;
39(11):2808–2812.

[156] Nguyen VT, Fan C, Do D, Nicholson D, Ustinov E, et al. Development of kinetic Monte
Carlo and Bin-Monte Carlo schemes for simulation of mixtures–vapor–liquid
equilibria & adsorption. Chemical Engineering Science. 2013;102:220–226.

[157] Jansen A. An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions.
Lecture Notes in Physics 856. Springer-Verlag Berlin Heidelberg, 1st ed. 2012.

[158] Battaile CC. The kinetic Monte Carlo method: Foundation, implementation, and
application. Computer Methods in Applied Mechanics and Engineering. 2008;
197(41-42):3386–3398.

[159] Tavarone R, Charbonneau P, Stark H. Kinetic Monte Carlo simulations for
birefringence relaxation of photo-switchable molecules on a surface. Journal of
Chemical Physics. 2016;144(10):104703.

[160] Erban R, Chapman J, Maini P. A practical guide to stochastic simulations of
reaction-diffusion processes. ArXiv e-prints. 2007;p. 0704.1908.

[161] Awang M, Mohammadpour E, Muhammad I. Finite Element Modeling of Nanotube
Structures: Linear and Non-linear Models. Engineering Materials. Springer
Cham Heidelberg New York Dordrecht London. 2015.

[162] Nakano A, Vashishta P, Kalia RK. Parallel multiple-time-step molecular dynamics
with three-body interaction. Computer Physics Communications. 1993;
77(3):303–312.

[163] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of
State Calculations by Fast Computing Machines. Journal of Chemical Physics.
1953;21(6):1087–1092.

[164] Ustinov EA, Do D. Simulation of gas adsorption on a surface and in slit pores
with grand canonical and canonical kinetic Monte Carlo methods. Physical
Chemistry Chemical Physics. 2012;14(31):11112–11118.

[165] Ustinov E, Gorbunov V, Akimenko S. From Simulation to Thermodynamics of
Orientational Transitions in Molecular Layers: Nitrogen Contact Layer on
Solids. Journal of Physical Chemistry C. 2018;122(5):2897–2908.

116



[166] Fan C, Do D, Nicholson D, Ustinov E. Chemical potential, Helmholtz free energy
and entropy of argon with kinetic Monte Carlo simulation. Molecular Physics.
2014;112(1):60–73.

[167] Nejahi Y, Barhaghi MS, Mick J, Jackman B, Rushaidat K, Li Y, Schwiebert L, Potoff
J. GOMC: GPU Optimized Monte Carlo for the simulation of phase equilibria
and physical properties of complex fluids. SoftwareX. 2019;9:20–27.

[168] Hillis WD, Steele Jr GL. Data parallel algorithms. Communications of the ACM.
1986;29(12):1170–1183.

[169] Martin MG, Siepmann JI. Transferable Potentials for Phase Equilibria. 1. United-
Atom Description of n-Alkanes. Journal of Physical Chemistry B. 1998;
102(14):2569–2577.

[170] Fan C, Do D, Nicholson D, Ustinov E. A novel application of kinetic Monte Carlo
method in the description of N2 vapour–liquid equilibria and adsorption.
Chemical Engineering Science. 2013;90:161–169.

[171] Siepmann JI, Karaborni S, Smit B. Simulating the critical behaviour of complex fluids.
Nature. 1993;365(6444):330.

117


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Pore-Size Distribution of Silica Colloidal Crystals From Nitrogen Adsorption Isotherms
	Chapter 3: The Effect of Interconnections on Gas Adsorption in Materials with Spherical Mesopores: A Monte Carlo Simulation Study
	Chapter 4: Molecular Simulations Shed Light on Potential Uses of Ultrasound in Nitrogen Adsorption Experiments
	Chapter 5: Kinetic Monte Carlo: Making Molecular Simulations of Adsorption More Efficient
	Chapter 6: Conclusions and Outlook
	Appendix A: Supporting Information for Pore-Size Distribution of Silica Colloidal Crystals From Nitrogen Adsorption Isotherms
	Appendix B: Supporting Information for the Effect of Interconnections on Gas Adsorption in Materials With Spherical Mesopores: A Monte Carlo Simulation Study
	References

	List of Tables
	List of Figures (1 of 6)
	List of Figures (2 of 6)
	List of Figures (3 of 6)
	List of Figures (4 of 6)
	List of Figures (5 of 6)
	List of Figures (6 of 6)




