

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

ON NON-LINEAR NETWORK EMBEDDING METHODS

by
Huong Yen Le

As a linear method, spectral clustering is the only network embedding algorithm that

offers both a provably fast computation and an advanced theoretical understanding.

The accuracy of spectral clustering depends on Cheeger ratio defined as the ratio

between the graph conductance and the 2nd smallest eigenvalue of its normalized

Laplacian. In several graph families whose Cheeger ratio reaches its upper bound

of Θ(n), the approximation power of spectral clustering is proven to perform poorly.

Moreover, recent non-linear network embedding methods have surpassed spectral

clustering by state-of-the-art performance with little to no theoretical understanding

to back them.

The dissertation includes work that: (1) extends the theory of spectral clustering

in order to address its weakness and provide ground for a theoretical understanding of

existing non-linear network embedding methods.; (2) provides non-linear extensions of

spectral clustering with theoretical guarantees, e.g., via different spectral modification

algorithms; (3) demonstrates the potentials of this approach on different types and

sizes of graphs from industrial applications; and (4) makes a theory-informed use of

artificial networks.

Below is an overview of preliminary work.

1. Spectral Clustering Theory Extension. The proof that every graph G has
a spectral maximizer H such that H is Õ(1)1-cut similar with G. All of the
eigenvalues of H are O(logn) away from the maximum possible by the cuts of G.
The maximizer eliminates elongated features of the graph (i.e. graph with high
diameter) via long-range connections without changing its cuts. H achieves
theoretically optimal Cheeger ratio that improves the cut of the original graph
G .

2. A Non-linear Extension of Spectral Clustering. The developed theory
holds for any graph H̃ which is spectral similar to H. We modify input G
non-linearly into a graph H̃ similar to H and then apply standard spectral
clustering on H̃ to obtain favorable Cheeger Ratio. A framework for
spectral modification is based on a heuristic ‘energy-based’ tree decompo-
sition approach. Construct M from G. M is cut-similar to G and is spectrally
closer to maximizer H of G, relative to G itself. M can be computed in
nearly-linear time.

3. Demonstrate the Potentials of Spectral Modification. Implementing
spectral clustering on the approximation of H and mapping the output back
to G has the potential to ‘discover’ dramatically different and improved
cuts. Interesting enough, experiments have been performed on some popular
networks with already high 2nd eigenvalue in semi-supervised learning for
multi-classification task and still yield very good accuracy scores during
multi-fold cross-validation.

4. Theory-informed Use of Artificial Networks for Network Embedding.
Geometric interpretations of spectral embedding using the baseline spectral
method are demonstrated to reach state-of-the-art performance in semi-supervised
classification tasks when boosted by a variety implementation of neural
networks.

1Õ(1) is used to hide factors algorithmic in n

ON NON-LINEAR NETWORK EMBEDDING METHODS

by
Huong Yen Le

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

August 2021

Copyright © 2021 by Huong Yen Le

ALL RIGHTS RESERVED

APPROVAL PAGE

ON NON-LINEAR NETWORK EMBEDDING METHODS

Huong Yen Le

Dr. Ioannis Koutis, Dissertation Advisor Date
Associate Professor of Computer Science, NJIT

Dr. Ali Mili, Committee Member Date
Professor of Computer Science, NJIT

Dr. Jason T. L. Wang, Committee Member Date
Professor of Computer Science, NJIT

Dr. Mihai Cucuringu, Committee Member Date
Associate Professor of Statistics, University of Oxford, Oxford, United Kingdom

Dr. Senjuti Basu Roy, Committee Member Date
Assistant Professor of Computer Science, NJIT

BIOGRAPHICAL SKETCH

Author: Huong Yen Le

Degree: Doctor of Philosophy

Date: August 2021

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science
New Jersey Institute of Technology, Newark, NJ, 2021

• Bachelor of Science in Finance
Louisiana State University, Baton Rouge, LA, 2005

Major: Computer Science

Presentations and Publications:

Ioannis Koutis and Huong Le. Spectral Modification of Graphs for Improved Spectral
Clustering. In Advances in Neural Information Processing Systems, Vancouver,
BC/Canada: Curran Associates, Inc., Vol 32, 2019. NeurIPS.

iv

‘I hear and I forget. I see and I remember. I do and
I understand.’ An anonymous quote that summarizes
my experience in academia. It has been a rewarding
journey full of exciting surprises in knowledge, discovery
and hard work. I can’t wait to contribute to what lies
ahead, knowing computer science will have such a large
scale impact in our future.

Huong Yen Le

v

ACKNOWLEDGMENT

No words can describe the gratitude for my advisor Dr. Ioannis Koutis in providing

me the guidance I needed to truly appreciate the beauty and necessity of Theoretical

Computer Science, and in giving me the honor to work and study with him.

I also offer my earnest gratitude for the encouragement and guidance that my

dissertation committee: Dr. Ali Mili, Dr. Jason T. L. Wang, Dr. Mihai Cucuringu,

and Dr. Senjuti Basu Roy have given me to continue to explore different frontiers on

my research topic.

My wholehearted thanks to Dr. Vincent Oria for seeing the ability in me and

his initial guiding me to follow my dream to pursue a Ph.D. degree in Computer

Science.

I would also like to express my special thanks to ADP, LLC for their generous

support to my study and research.

This journey has brought me so much realization of how lucky I am to get every

possible support from my wonderful family, especially my mother, Oanh Nguyen, that

allows me to work toward my academic goals and more.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Spectral Modification: High-level Overview and Context 2

1.2.1 Spectral and Cut Similarities 2

1.2.2 Low-diameter Cut Approximators and Spectral Maximizers . . 3

2 RESEARCH CONTRIBUTIONS AND KEY APPLICATIONS 6

2.1 Contributions . 6

2.1.1 Spectral Clustering Theory Extension 6

2.1.2 A Non-linear Extension of Spectral Clustering 6

2.1.3 Theory-informed Use of Neural Networks 8

2.2 Some Key Applications . 8

2.2.1 Improved Cuts with Graph Modification 8

2.2.2 Support for Regularized Spectral Clustering 9

3 BACKGROUND . 10

3.1 Fundamental of Spectral Graph Theory 10

3.1.1 Graph Conductance . 10

3.1.2 The Laplacian Matrix . 11

3.1.3 Cheeger’s Inequality . 13

3.1.4 Network Partitioning . 17

3.2 Relevant Development In Spectral Graph Theory 20

3.2.1 A Generalized Cheeger Inequality 20

3.2.2 Higher-order Cheeger Inequalities 22

3.2.3 Eigenvectors Approximation 22

3.2.4 Network Embedding . 23

3.2.5 Spectral Sparsification . 26

vii

TABLE OF CONTENTS
(Continued)

Chapter Page

4 CHEEGER INEQUALITIES FOR SPECTRAL MAXIMIZERS 29

4.1 Graph Decomposition and Cut Approximators 29

4.2 Properties of Spanners . 30

4.3 Properties of Spectral Maximizers . 32

4.4 Cheeger Inequalities for Spectral maximizers 32

4.5 Proofs . 34

5 A SPECTRAL MODIFICATION ALGORITHM FRAMEWORK 39

5.1 The Tree Decomposition Spectral Modification Framework 39

5.1.1 Intuition . 39

5.1.2 The Tree Decomposition Framework 39

5.2 The First Spectral Modification Algorithm 40

5.3 Algorithm Justification and Running Time 42

6 IMPLEMENTATION AND EXPERIMENTS 45

6.1 Implementation with Different Cut Approximators 45

6.1.1 Cut Approximator using The Top-Down Approach 46

6.1.2 Cut Approximator using the Bottom-up Approach 46

6.1.3 Cut Approximator Generation Performance 47

6.1.4 Graph Bi-partition in Linear Time Using Spanning Tree 48

6.2 Establish Performance Benchmark . 49

6.2.1 Baseline Spectral Method . 49

6.2.2 NetMF and Network Embedding 50

6.3 Empirical Demonstration of Spectral Modification Gains 52

6.3.1 Synthetic DataSets . 52

6.3.2 Social Network Data - Multi-label Classification Task 53

6.3.3 Social Network Data - Single-label Classification Task 55

viii

TABLE OF CONTENTS
(Continued)

Chapter Page

7 SEMI-SUPERVISED SPECTRAL CLUSTERING BOOSTED BY DEEP
NEURAL NETWORK . 60

7.1 Geometric Insight for the k Bottom Eigenvectors 60

7.2 Conic Classifier in IRk . 62

7.3 Correction and Smoothness Algorithms 63

7.4 Social Network Single Classification Task with Conic 67

REFERENCES . 74

ix

LIST OF TABLES

Table Page

6.1 Running Time to Generate One Cut Approximator Tree T from an
‘Energy’ Tree T by Both Top-down and Bottom-up Approaches 48

6.2 Dataset Features Including the Second Eigenvalue λ2 53

6.3 Number of Vertices and Edges in the Largest Connected Component (*)
in Comparison to the Original Data by Dataset 55

6.4 Single-label Classification with LIBLINEAR [13] Solver (Logistic Regression,
One-vs-Rest) . 57

7.1 Single-label Classification Results for Conic and Other Methods 69

x

LIST OF FIGURES

Figure Page

1.1 The unweighted path graph and its cut-approximating binary tree T . . . 3

1.2 Left: Heat map of the log-entries of the adjacency matrix (Darker color
denotes higher value) of the spectral maximizer H. Right: Ratios of
the first 25 normalized eigenvalues of H and G in order. 4

2.1 Top: Input G is a direct graph product of the path graph and a
graph consisting of two binary trees with their roots connected [19].
Two way partitioning results. (a) By baseline spectral clustering (b)
Improved With Graph Modification M of G. Spectral modification
sways the lowest eigenvector away from the cut computed in G. The
asymptotic improvement in the value of the cut is O(n1/4). Bottom:
Two unit-weight cycle joined by n edges of weight 100/n2 [19]. Two
way partitioning results. (c) By baseline spectral clustering which cuts
four unit edges and breaks both circles in half. (d) Modified spectral
clustering cuts the n light edges and separates the two cycles (O(n)
asymptotic improvement). 7

4.1 A visualization of the elimination process of the internal vertices of I
one vertex at a time following Schur complement. An arbitrary root
of the internal set of I will be the first to be eliminated. This creates
a weighted clique among its direct neighbors. From here, among the
vertices of the internal nodes, another vertex is removed and so on. . . 31

5.1 ‘Elongated features’ of the path graph are eliminated via long-range
connections without changing its cuts. 39

5.2 Two weighted trees are generated from a graph G. Each tree will be
used to derive its own cut estimator. Both cut estimators are ‘fused’
together via the sharing of the original vertices of G. This graph will
be added back to G to formM. 40

5.3 Top: A small set of weighted trees composed based on the original graph
G, each of which is used to compute a cut approximator. The spectral
maximizer M is approximated. Bottom: A detailed view of the cut
approximator for two different trees. 41

5.4 Trees that capture a significant fraction Of the ‘energy’ λ2. 43

xi

LIST OF FIGURES
(Continued)

Figure Page

6.1 Top-down tree decomposition. Left: A tree T with each edge of weight
1 exposes the clusters by the top-down tree decomposition algorithm
Using the cheapest normalized cut. Right: A cut approximator tree
T = (V ∩ I, ET) of three levels. The leaf nodes have a one-to-one
relation to V . The edge weights correspond to the cut(S) required to
separate the set of lower Level leaf nodes from T 46

6.2 Bottom-up tree decomposition. Left: A tree T with each edge of weight
1 exposes the clusters by bottom-up tree decomposition algorithm.
Right: Steiner preconditioner of T in the lowest Level (i.e., star
graphs). A cut approximator tree T = (V ∩ I, ET) of three levels.
The leaf nodes have an one-to-one relation to V . The sub-trees of
this spanning tree is constructed based on the split of a forest of trees
formed by perturbing the edges of T 47

6.3 Comparison of different methods of spectral clustering. The ‘4-moons’
example from [10]. (A)RI is the adjusted rand index. 52

6.4 Micro-F1 and macro-F1 performance for multi-label classification using
LIBLINEAR [13] solver (within logistic regression linear Model combined
with one-vs-rest classifier) . 54

6.5 Average accuracy score for single-label classification task (to accompany
table 6.4 - part one) . 58

6.6 Average accuracy score for single-label classification task (to accompany
table 6.4 - part two) . 59

7.1 Left: Spectral embeddings concentrate in three different directions in two
dimensional space. Right: After radial projection, three unit vectors
point in three directions where the normalized eigenvector embeddings
concentrate. Each cone is expected to cover the vertices of the same
class. The sizes of the angles of the cones at the origin can vary. . . . 62

7.2 The basic anatomy of the conic classifier neural network. 63

7.3 Labels resisting metric embedding. 64

7.4 Average accuracy score for single-label classification task of the top
three methods in any training ratio and baseline spectral without
regularization. (to accompany table 7.1 - part one) 72

7.5 Average accuracy score for single-label classification task of the top
three methods in any training ratio and baseline spectral without
regularization. (to accompany table 7.1 - part two) 73

xii

CHAPTER 1

INTRODUCTION

1.1 Motivation

Spectral clustering is a widely known family of algorithms that uses eigenvectors to

partition the vertices of a graph into meaningful clusters. First introduced in the work

of Donath and Hoffman [11] who proved the lower bounds for the bi-partitioning of

random graphs, spectral clustering sees its popularity grow substantially thanks to

Shi and Malik [45], who applied it toward computer vision and machine learning.

While new clustering methods have since emerged including methods based on neural

networks, spectral partitioning methods remain as a frequently used baseline and a

serious contender to start-of-the-art graph embedding methods e.g., [38, 18, 56, 42].

The remarkable performance of spectral clustering outputs are backed by their

approximation properties that are theoretically understood. Cheeger’s inequality

relates the eigenvalue λ2 of the normalized Laplacian matrix to the conductance of

graph G denoted ϕ(G). ϕ(G) is known as the “best threshold cut” and equal to the

minimum value among all possible ratios of the number of edges cut over the volume

of the smaller set after the partition.

Theorem 1.1.1 (Discrete Cheeger’s Inequality [8]). For any graph G,

λ2/2 ≤ ϕ(G) ≤
√

2λ2

Both sides of the above inequality are tight. The left side is tight for the

hypercube {0, 1}k where λ2 ≈ ϕ(G) ≈ k and the right side is tight for a cycle where

λ2 ≈ 1/n2 while ϕ(G) ≈ 1/n.

Theorem 1.1.1 shows that while λ2 is never greater than ϕ, it can be as small as

ϕ2. It also implies that the spectral cut approximation can be a factor of (ϕ/λ2) away

1

from the optimal value, which can be up to Θ(n) on both weighted and unweighted

graphs.

There are known graph families where λ2 is too small which in turn affect the

ability to approximate the optimal cut [19] and thus, yield a cut far away from the

solution. This motivates the work to research for a spectral modification method

to ‘raise’ a graph spectrum (i.e., the set of graph eigenvalues of the Laplacian matrix

of the graph) while preserving its cut structure approximately. In effect, the quality

of spectral clustering is improved via the suppression of the ratio (ϕ/λ2).

1.2 Spectral Modification: High-level Overview and Context

This section puts spectral modification in line with important spectral graph theory

development and discoveries that prime a knowledge baseline for later technical details.

Unless otherwise stated, all graphs discussed in this dissertation are undirected

weighted graphs.

1.2.1 Spectral and Cut Similarities

Let G = (V,E,w) be a graph. |V | = n. A is the n × n adjacency matrix of G such

that each of the matrix entry A(u, v) equal to the weight of the corresponding edge

(u, v) ∈ E and u ̸= v. Let D denote the diagonal matrix with each diagonal entry

equal to the sum of the weights of the adjacent edges incident with the corresponding

vertex. The Laplacian matrix LG of the graph G is defined to be D − A.

A cutG(S) is the total weights of edges crossing two separated vertex sets of V :

the set S and its complement S̄ = V − S s.t. S ∩ S̄ = V and S ∪ S̄ = ∅.

Let R(A,x) = xTAx denote the quadratic form of a semi-positive definite

matrix A. Clearly, the Laplacian LG of a graph is a semi-positive definite matrix

with xTLGx ≥ 0 for any real vectors x ∈ IR|V |. Let G and H be graphs and ρ = α/β.

2

Spectral Similarity G and H are ρ-spectral similar if

α · R(LH ,x) ≤ R(LG,x) ≤ β · R(LH ,x)

Cut Similarity G and H are ρ-cut similar if

α · cutH(S) ≤ cutG(S) ≤ β · cutH(S)

ρ-spectral similarity implies ρ-cut similarity but not vice-versa [48].

1.2.2 Low-diameter Cut Approximators and Spectral Maximizers

Let G = (V,E) be the unweighted path graph on n vertices, and for the sake of

simplicity assume that n is a power of 2. Let T = (V ∪ I, E) be the full binary tree,

where V is the set of leaves being in one-to-one correspondence with the path vertices

as illustrated in Figure 1.1, and I is the set of internal vertices. The weight of each

edge of T is equal to the total weight of all edges that need cutting from the path G

to separate the leaf nodes into separate clusters.

Figure 1.1 The unweighted path graph and its cut-approximating binary tree T .

An interesting feature of T is that it provides a cut approximator for G,

i.e., it contains information that allows estimating all cuts in G, within a factor of

2. Specifically, each edge of T carries the weight equal to the sum of the weights of

crossing edges if the external vertices as part of V are separated in G. Section 4.1

describes how the cut approximator of T gives rise to a weighted complete graph

H = (V,E,w) on the original set of vertices V , via a canonical process of eliminating

the internal vertices of T .

3

Figure 1.2 Left: Heat map of the log-entries of the adjacency matrix (Darker
color denotes higher value) of the spectral maximizer H. Right: Ratios of the first
25 normalized eigenvalues of H and G in order.

Let G be the cross-product of a double binary tree graph with a path graph, the

left of Figure 1.2 provides a glimpse to the edge weights of H in the case the number

of vertices of G |VG| = n = 8196. It can be seen that H is a dense graph that inherits

the tri-diagonal path structure, but also has other long-range edges. H is O(log n)-cut

similar with G, but with a very different eigenvalue distribution, as illustrated on the

right of Figure 1.2. More specifically, H has significantly larger eigenvalues. λ2 of the

normalized Laplacian of G is Θ(1/n2), while that of H is Ω(1/(n log n)), essentially

closing the gap with the conductance ϕ = Θ(1/n). An alternative way of viewing

this is that H has λ2 which – up to an O(log n) factor – is the maximum possible,

since the eigenvalue is always smaller than ϕ. In some sense, the same is true for

all eigenvalues of H, which leads us to call H a spectral maximizer of G. These

properties of H can be proven using only the logarithmic diameter of T and the fact

that T is a cut-approximator.

In [43], Räcke showed that all graphs have low-diameter cut approximators. This

backs the central claim of this thesis that every graph has a spectral maximizer. The

example of the path graph and its cut approximator is a simplest case to demonstrate

this claim while a vast generalization can be done with a small loss. Section 4.4

4

discusses Cheeger inequalities for spectral maximizers and shows that the inequality

applies not only in the standard normalized cuts problem, but also in generalized cut

problems that capture semi-supervised clustering problems.

These observations set the backdrop for the idea of spectral modification, which

aims to modify the input graph G to arrive at its maximizer H. It is worth noting

that, in some sense, the objective of spectral modification counters that of spectral

graph sparsification, which aims to spectrally preserve a graph while approximating

its sparse substitute [4].

5

CHAPTER 2

RESEARCH CONTRIBUTIONS AND KEY APPLICATIONS

2.1 Contributions

The research motivation has allowed three contributions related to spectral graph

theory: (1) Spectral clustering theory extension; (2) A non-linear extension of spectral

clustering as an algorithm framework that modifies the input graph G into a graphM

which is spectrally closer to maximizer H of G, which produces a much more accurate

spectral clustering results; and (3) A theory-informed use of neural networks to boost

the accuracy of spectral clustering.

2.1.1 Spectral Clustering Theory Extension

The spectral partition of a graph G depends on how well λ2 approximate the graph

conductance ϕ. The quality of the cuts deteriorates as the Cheeger ratio ϕ/λ2

increases. This ratio can be up to Θ(n) and leads to poor approximation of spectral

clustering. Certain graph families demonstrates these loose bounds [19]. On the

other hand, a graph H as a spectral maximizer of graph G will allow a tight Cheeger

inequality. All eigenvalues of H are O(log n) away from the maximum allowed by

the cuts of G. A spectral maximizer of a graph eliminates its ‘elongated features’ via

long-range connections without changing its cuts. The proof that every graph has

a spectral maximizer is presented in Section 4.5. The benefit of such tightness is a

suppression in the ratio between ϕ/λ2 to reach the optimal value of O(log n) so that

the accuracy of the baseline spectral clustering method can be realized.

2.1.2 A Non-linear Extension of Spectral Clustering

The developed theory holds for any graph H̃ which is spectral similar to the spectral

maximizer H. Spectral modification is the approach to modify any graph G non-

6

linearly to obtain its corresponding H̃. Due to the bounded spectral similarity, H̃

also has a favorable Cheeger ratio.

(a) Baseline spectral (b) Spectral modification

(c) Baseline spectral (d) Spectral modification
Figure 2.1 Top: Input G is a direct graph product of the path graph and a graph
consisting of two binary trees with their roots connected [19]. Two way partitioning
results. (a) By baseline spectral clustering (b) Improved With Graph Modification
M of G. Spectral modification sways the lowest eigenvector away from the cut
computed in G. The asymptotic improvement in the value of the cut is O(n1/4).
Bottom: Two unit-weight cycle joined by n edges of weight 100/n2 [19]. Two way
partitioning results. (c) By baseline spectral clustering which cuts four unit edges
and breaks both circles in half. (d) Modified spectral clustering cuts the n light edges
and separates the two cycles (O(n) asymptotic improvement).

Spectral modification starts with the construction of cut approximators. While

constructing a cut approximator results in the costs of all possible cuts in a graph, it

is, arguably, a waste if the only objective is to compute a k-clustering. This motivates

the second contribution of a fast algorithm to construct graph maximizers with low

run time and sized output so that any negative impact on the speed of spectral

clustering is minimized.

7

[5][25][37][44] have improved and refined much of the original result of [43]. It

is now possible to compute a cut approximator in nearly-linear time (O(m logcm))

where m is the number of edges in the graph [37]). This implies a similar time

for the construction of a maximizer. H̃ can be constructed efficiently, without

resorting to the single-tree cut approximators used for the proofs via the spectral

modification framework. The non-linear extension has theoretical guarantees via

different spectral modification algorithms discussed in Chapter 5. The framework for

spectral modification is based on a heuristic ‘energy-based’ tree decompositions to

obtain H̃ in nearly linear time.

2.1.3 Theory-informed Use of Neural Networks

Multi-layer convolutional networks have been around since the 70s. Several works

explored conditions that deep networks perform better than shallow ones to reduce the

complexity for approximation and learning [34][35][39]. Nevertheless, it is known that

the approximation power of both shallow and deep networks are at an exponential cost

[40]. While many networks achieve impressive accuracy results in semi-supervision

tasks on standard datasets [38][56][42][18], tt is not well understood why they find

such nice solutions despite the complexity of the loss function landscape. Moreover,

a lack of theory backing makes the adoption of neural networks purely mechanical

and experimental in nature. A shallow neural network coupled with the knowledge

of geometric characteristics of spectral embeddings brings about state-of-the-art

performance in semi-supervision tasks.

2.2 Some Key Applications

2.2.1 Improved Cuts with Graph Modification

Perhaps, the most astonishing benefit of working with graph M which preserves

graph G spectral structure is the potential to correct and improve the answer to the

8

least expensive cut problem. Figure 2.1 shows that performing spectral clustering on

the spectrally modified graph in practice solves graph families that are unsolvable by

baseline spectral clustering [19].

2.2.2 Support for Regularized Spectral Clustering

It has been observed that adding a small copy of the identity matrix or the complete

graph generated based on the input graphG to the input graphG improves the quality

of spectral clustering [2][41]. This graph modification idea is termed as regularized

spectral clustering. [22][57] explain this improved performance for block-stochastic

models and stochastic social network graphs. Specifically, [57] shows that adding a

complete graph suppresses the unbalanced sparse cuts in graph G caused by altering

their cut ratios. The theoretical results of this research dissertation will help shed

additional light on regularized spectral clustering. It is important to note that on its

own, regularized spectral clustering does not improve cut result as shown in Figure

2.1.

9

CHAPTER 3

BACKGROUND

This section discusses fundamental and relevant results in spectral graph theory that

motivates and support non-linear networking embedding via spectral modification.

For more information about spectral graph theory fundamental, the reader is referred

to [8].

3.1 Fundamental of Spectral Graph Theory

3.1.1 Graph Conductance

For a weighted graph G = (V,E), |V | = n, |E| = m,S ∩ S̄ = V , S ∪ S̄ = ∅, |S| ≤ n/2,

the edge boundary of S is defined as the total weight of edges that cross over from set

S to set S̄ is denoted as

cut(S) =
∑

u∈S,v∈S̄

w(u, v)

The total degree of the vertices in S is denoted as

vol(S) =
∑
vi∈S

d(vi)

where d(vi) is the degree of a vertex vi in G and d(vi) =
∑

vj
w(vi, vj). The

conductance of set S (a.k.a., the Cheeger constant) denoted by ϕ(S) reflecting the

sparsity of the cut is defined to be

ϕ(S) :=
cut(S)

min(vol(S), vol(S̄))

For any set S ⊆ V , 0 ≤ ϕ(S) ≤ 1. If ϕ(S) ≈ 0, S represents a cluster in G. the

conductance of G is the smallest conductance among all possible values of ϕ(S) with

10

at most half of the total volume

ϕ(G) = min
S⊂V :vol(S)≤vol(V

2
)
ϕ(S)

The usual way to judge the quality of the split is via the calculation of the cut and

the graph conductance ϕ [23].

3.1.2 The Laplacian Matrix

The adjacency matrix A is defined as a n× n matrix whose entries corresponding to

the weights between adjacent vertices

Au,v =


w(u, v) (u, v) ∈ E

0 otherwise.

D is the diagonal degree matrix satisfying

Du,v =


d(u) u = v

0 otherwise.

L is the Laplacian matrix of G calculated by the subtraction of the adjacency matrix

A from the diagonal degree matrix D.

L = D − A

L is better understood via its quadratic form, for all x ∈ IR|V |

xTLGx =
∑

(u,v)∈E

w(u,v)(x(u)− x(v))2

This form expresses the smoothness of the function x. It will be small if component

values of x do not drastically change between any two vertices of any edge.

A cluster S in V can be represented by a vector χS where χS(u) = 1 if u ∈ S

and χS(u) = 0 otherwise, the total weight crossing from S to S̄ in G can be expressed

11

as follows,

cutG(S, S̄) = χT
SLGχS (3.1)

The normalized Laplacian N of graph G is expressed as

Ni,j := D−1/2LD−1/2 =



1 if i = j, di ̸= 0

−w(vi,vj)√
didj

if i ̸= j, di ̸= 0, dj ̸= 0

0 otherwise

The Rayleigh quotient of a vector x ∈ IR|V | with respect to a matrix A is the ratio

xTAx

xTx

x is an eigenvector of A of eigenvalue λ if and only if

Ax = λx (3.2)

Theorem 3.1.1 (Courant-Fischer). Let A be a symmetric matrix with eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λn. Then,

λk = min
S⊆IRn

dim(S)=k

max
x∈S

xTAx

xTx
= max

T⊆IRn

dim(T)=n−k+1

min
x∈T

xTAx

xTx

The full collection of eigenvalues of a matrix A makes up its spectrum. As x is

an eigenvector of A, the Rayleigh quotient can be understood as

xTAx

xTx
=

xTλx

xTx
=

λxTx

xTx
= λ

Set y = D−1/2x. The generalized Rayleigh quotient for N can be presented as follows

xTNx

xTx
=

xTD−1/2LD−1/2x

xTx
=

yTLy

yTDy
(3.3)

12

3.1.3 Cheeger’s Inequality

In spectral graph theory, the number of connected components in an undirected

graph is equal to the number of zero eigenvalues in the Laplacian matrix. Cheeger’s

inequality and its variants provide an approximate version of such fact, stating that

a sparse cut exists in a graph if and only if there are at least two eigenvalues that are

close to zero.

Let λn ≥ λn−1 ≥ · · · ≥ λ2 ≥ λ1 = 0 denote the eigenvalues of the normalized

Laplacian. The graph conductance ϕG is related to λ2 via the below discrete version

of Cheeger’s inequality,

ϕ2
G/2 ≤ λ2 ≤ 2ϕG (3.4)

Equation (3.4) is equivalent to the expression λ2/2 ≤ ϕG ≤
√
2λ2 [8]. A deeper look

into the proof following [53] that derives (3.4) helps clarify the relationship between

graph conductance and the 2nd smallest eigenvalue λ2.

Let s = vol(S)/vol(V) and χS = {0, 1}|V | s.t. χS(u) = 1 if u ∈ S and χS(u) = 0

otherwise. Set y = χS − s1. For u ∈ S, y(u) = 1− s. In all other cases, y(u) = −s.

d is the vector whose entries denote the degree of the vertices in the graph. By

construction, y is orthogonal to both the constant vector 1 and d

yTd = χT
Sd− s1Td = (vol(S)− (vol(S)/vol(V))vol(V) = 0

The numerator of Equation (3.3) equals to

yTLy =
∑

(u,v)∈E

w(u, v)((χS(u)− s)− (χS(v)− s))2 = cut(S)

13

The denominator of Equation (3.3) is computed as follows

yTDy =
∑
u∈S

d(u)(1− s)2 +
∑
u̸∈S

d(u)s2

= vol(S)(1− s)2 + vol(V − S)s2

= vol(S)− 2vol(S)s+ vol(V)s2

= vol(S)− vol(S)s

= vol(S)vol(V − S)/vol(V)

The larger of (vol(S), vol(V − S)) is at least half of vol(V). The eigenvector of λ2 of

the normalized Laplacian N is given by

λ2 = argminx⊥d1/2

xTNx

xTx
= miny⊥d

yTLy

yTDy
(3.5)

So,

λ2 ≤
yTLy

yTDy
=

cut(S)vol(V)

vol(S)vol(V − S)
≤ 2

cut(S)

min(vol(S), vol(V − S))
= 2ϕS

Thus, the right hand side of Equation (3.4) can be generalized to every subset S of V

ϕS ≥ λ2/2

The left hand side of Equation (3.4) means that there exists a set of small conductance

St such that St = {u : y(u) < t for t ∈ R} satisfies

ϕ(St) ≤
√

2λ2 ≤

√
2
yTLy

yTDy
(3.6)

The eigenvector of eigenvalue λ0 of N is d1/2 since

D−1/2LD−1/2d1/2 = D−1/2L1 = D−1/20 = 0d1/2 = 0

xTd1/2 = yTD1/2d1/2 = yTd

14

Without loss of generality, the vertices can be renumbered so that y(1) ≤ y(2) ≤

· · · ≤ y(n). Let j be the least number for which
j∑

u=1

d(u) ≥ vol(V)/2

Let vector z be centered at j

z = y − y(j)1

The arrangement of y allows the maintance of the relation: z(1) ≤ z(2) ≤ · · · ≤ z(n).

In addition, z(1) ≤ z(j) = 0 ≤ z(n). z is multiplied by a constant so that

z2(1) + z2(n) = 1

To satisfy (3.6), it is necessary to prove the existing of a distribution on t such that

St = {u : z(u) ≤ t}. The value of t is chosen from the probability density function

2|t| so that ∫ z(n)

z(1)

2|t| =
∫ 0

z(1)

2|t|+
∫ z(n)

0

2|t| = z2(1) + z2(n) = 1

An edge (u, v) with z(u) ≤ z(v) is part of the cut(S) if

z(u) ≤ t < z(v)

With z(j) = 0, the probability that t lies in between two vertices (u, v) is

∫ v

u

2|t| =


|z2(u)− z2(v)| if z(u)z(v) ≥ 0

z2(u) + z2(v) if z(v)z(j) < 0

15

The centering by satisfying z(j) = 0 guarantees that

t < 0→ vol(S) = min(vol(S), vol(V − S)), and

t ≥ 0→ vol(V − S) = min(vol(S), vol(V − S))

The expected value of the minimum between the vol(St) and vol(V −St) is the

total sum of the probability of (u) < t < 0 and (v) > t ≥ 0 while u is a vertex that

is either behind or in front of j.

E[min(vol(S), vol(V − S))] =
∑
u<j

Pr[z(u) < t < 0]d(u) +
∑
u≥j

Pr[z(u) > t ≥ 0]d(u)

=
∑
u<j

z2(u)d(u) +
∑
u≥j

z2(u)d(u)

=
∑
u

z2(u)d(u) = zTDz

The expected cut(St) is the sum of the probabilities of choosing t such that t is

in the middle of two vertices (u, v) where only once of such vertex is part of St.

E[cut(St)] =
∑

(u,v)∈E

Prt[(z(u)z(v) < 0)]wu,v ≤
∑

(u,v)∈E

|z(u)− z(v)|(|z(u)|+ |z(v)|)wu,v

≤
√ ∑

(u,v)∈E

wu,v(z(u)− z(v))

√ ∑
(u,v)∈E

wu,v(|z(u)|+ |z(v)| (Cauchy-Schwartz)

≤
√

yTLy

yTDy

∑
u

z2(u)d(u)

√
2
∑
u

z2(u)d(u)

=

√
2
yTLy

yTDy

∑
u

z2(u)d(u)

√∑
u

z2(u)d(u)

=

√
2
yTLy

yTDy
E[min(vol(St), vol(V − St))]

Move the expected value of the minimum of the total degrees E[min(vol(St), vol(V −

St))] to the left hand side of the previous Equation, the conductance of the graph is

shown to meet the Equation ϕG ≤ ϕ(St) ≤
√
2 yTLy
yTDy

.

16

For a path graph Pn of n vertices, ϕP is 1/⌊(n − 1)/2⌋, λ2 ≈ π2

2(n−1)2
. Cheeger

inequality λ2 > ϕ2/2 is best possible up to a constant factor. For a hypercube Qn,

ϕQ is equal to its λ2 = 2/n, which is tight for 2ϕ ≥ λ2.

3.1.4 Network Partitioning

Multiple types of data can be naturally represented as a network (i.e., graph).

Network partitioning is generally understood as the process of decomposing a graph

into mutually exclusive sets of vertices. The partitioning problem may be posed with

or without clustering constraints. As the only input, graph can contain information

of edges, their corresponding weights, and geometric information about the locations

of the vertices. Clustering constraints, if available, reflect domain knowledge under

the form of must-link (ML) indicating certain vertices must belong to the same group

and cannot-link (CL) mapping out which vertices cannot be in the same group [3].

For a balanced partition problem, graph partitioning aims to separate the graph

into pieces of roughly equal number of vertices by removing either edges or vertices

called edge, and vertex separator respectively. The goal is to find small separators

whose cuts are as sparse as possible.

While the problem of bisecting a graph into two halves is NP-complete [15],

graph partitioning as a general problem is NP-hard. Therefore, its solutions are

derived from heuristics and approximation algorithms. Combinatorial or geometric

methods are the two broad categories of algorithms that solve graph partitioning.

Spectral Clustering Spectral clustering [11] belongs to a family of combinatorial

algorithms which perform graph partitioning based on only graph connectivity

information. Spectral partitioning is well-known as the most successful class of

algorithms to the sparsest-cut problem, partitioning graphs and matrices [14][8][47]

utilizing invariant properties of the graph spectrum.

17

Spectral partitioning solves the two-way clustering problem to bisect a graph by

using the 2nd smallest eigenvalue λ2 of the Laplacian, which reveals the connectivity of

the graph. The eigenvector x2 (a.k.a., the Fiedler vector) corresponding to λ2 contains

information about the relative distances between vertices [14]. Spectral clustering is

implemented by calculating x2, sorting the entries, and partitioning the corresponding

vertices about a splitting value s. Popular choices for s includes (i) the median of x2,

(ii) the value that gives the best ratio cut, (iii) 0, and (iv) the value that is equal the

largest gap in the sorted components of x2 [47].

A graph can also be decomposed into more than two subgraphs by using

information of higher order eigenvalues. Throughout this thesis, the standard spectral

partitioning approached is referred to as baseline spectral. While baseline spectral

performs well in practice, it provides a bad separator for several bounded-degree

graph families as shown by Guattery and Miller [19].

Spectral Clustering as a Semi-supervised Method Spectral clustering is

generally viewed as an unsupervised method. However it has been suggested

that it can also work as a semi-supervised algorithm via computing generalized

eigenvectors [10]. Corollary 4.4.1 shows that the theoretical performance of this kind

of semi-supervised spectral clustering has the potential to be much more accurate

than predicted by the generalized inequality of [10] if the input graph is spectrally

close to the maximizer of its cut structure.

Corollary 4.4.1 also has consequences for classical algorithmic problems. For

instance, the isoperimetric number of a graph G is often defined as

h = min
S⊆V

cutG(S)/(|S| · |V − S|).

If B is the complete unweighted graph then h = ϕ(G,B). The isoperimetric number

has a weaker Cheeger inequality, namely λ2(LG) ≥ h2/(2dmax), where dmax is the

18

maximum degree of the graph. Then inequality 4.1 applies directly and gives a

different and usually stronger estimate. A similarly interesting inequality follows for

the minimum s-t cut problem, if B is set to be the graph consisting only of the (s, t)

edge.

One-vs-Rest Classifier for Multi-label Classification Task Most classi-

fication predictive algorithms such as Logistic Regression were designed for binary

classification and do not support classification tasks with more than two classes

natively. The approach chosen for performance checking and reporting follows the

universally accepted approach One-vs-Rest which splits the multi-class classification

datasets into multiple binary classification datasets with one binary classification

problem per class. The returned estimates are marginal probability values from 0

to 100% that a given sample belongs to a class. It is entirely possible that multiple

classes have the same probability for a given sample. During micro score calculation,

the number of classes is determined per sample and the returned probabilities are

sorted which gives the indices of the same number of expected classes with highest

probabilities.

Binary classification with Logistic Regression Logistic Regression is a

linear statistical model estimating the parameters of a logistic function with a common

S-shaped curve

f(x) =
M

1 + e−k(x−x0)

where x is the sample value, x0 is the x value of the sigmoid’s midpoint. M is the

curve’s maximum value and k is the logistic growth rate, also known as the steepness

of the curve. The solver LIBLINEAR uses a coordinate descent algorithm to train

separate binary classifiers for all classes. It can accommodate l1 regularization by

19

solving the optimization problem:

minm,c||w||1 + C
n∑

i=1

log(exp(−yi(XT
i w + c)) + 1)

l2 regularization can also be applied to penalize logistic regression by minimizing the

cost function

minm,c
1

2
wTw + C

n∑
i=1

log(exp(−yi(XT
i w + c)) + 1)

No Regularization While NetMF uses regularization by default for its

embeddings, spectral modification embeddings do not require regularization due to

the radial projection step that places the embedding onto the unit hypersphere [32]

with equal distance from its center.

Geometric Clustering Methods Graph partitioning could also be performed via

geometric methods. Geometric methods slice vertices based on their corresponding

spatial coordinates. Spatial coordinates can be generated via the use of network

embedding algorithms discussed in Section 3.2.4 or through feature engineering

efforts.

Geometric clustering could be viewed as a generalization of spectral clustering.

Section 3.2.4 discusses the geometric properties of spectral eigenvectors when

projected onto a unit sphere [32], the result of which can be instrumental in both

semi-supervised and unsupervised machine learning applications. A combination of

geometric methods and combinatorial algorithm of baseline spectral yields state-of-

the-art result as extended in Chapter 7.

3.2 Relevant Development In Spectral Graph Theory

3.2.1 A Generalized Cheeger Inequality

The problem of graph partitioning with domain knowledge were commonly solved

as extensions and modifications of the basic spectral method [45][36]. It was not

20

until [10] where Cucuringu et al. generalized it as an optimization problem of two

weighted graphs: the ML constraint graph G, and the CL constraint graph H. H does

not have to be connected. This generalization is organic as the basic spectral method

of clustering is shown to be a special case of constrained clustering with implicit

soft ML and CL constraint graphs. Indeed, graph edge data can be viewed as ‘soft’

declaration that two adjacent vertices should be connected rather than disconnected.

The demand graph K derived from G as Kij = didj/vol(V) contains implicit ‘soft’ CL

constraints. It is easy to see that vol(S)vol(S̄)/vol(V) = cutK(S, S̄). Therefore, the

optimization problem in the standard method equates to the objective to minimize

the ratio between weight of cut severing implicit ML constraints and weight of cut

complying with implicit CL constraints as

minS⊆V
cutG(S, S̄)

vol(S)vol(S̄)/vol(V)
= minS⊆V

cutG(S, S̄)

cutK(S, S̄)

Furthermore, if the goal is to partition the vertices into k disjoint clusters Ci where

a partitioned group i shows a cost of

ϕi(G,H) =
cutG(Ci, C̄i)

cutH(Ci, C̄i)
=

xT
Ci
LGxCi

xT
Ci
LHxCi

(Equation (3.1)) (3.7)

it is sensible to make the objective to solve for the optimization problem of minimizing

individual cost ϕi

Φ = min max
i=1,··· ,k

ϕi

In other words, this minimization problem is solved by finding k vectors in {0, 1}n

with disjoint support. To relax this NP-complete problem, the k vectors, which

minimize the maximum among the k Rayleigh quotients (xT
Ci
LGxCi

)/(xT
Ci
LHxCi

),

are the generalized eigenvectors corresponding to the k smallest eigenvalues of the

problem LGx = λLHx. This approach provides a concrete theoretical guarantee for

the two-way constrained partitioning via a generalized Cheeger inequality.

21

Theorem 3.2.1 (Generalized Cheeger Inequality [10]). Let G and H be any two

weighted graphs and d be the vector containing the degrees of the vertices in G. Let

also K be the demand graph and ϕ(G,H) = minS⊂V cutG(S, S̄)/cutH(S, S̄). For all

x ∈ IRn s.t. xTd = 0,
xTLGx

xTLHx
≥ ϕ(G,K)ϕ(G,H)/4

3.2.2 Higher-order Cheeger Inequalities

As the generalized Cheeger inequality states, if the goal is to partition the vertices into

k disjoint clusters Ci where each partitioned group shows a cost ϕi, the partitioning

algorithm optimization needs to solve for minimizing the maximum ϕi [10]. [32] calls

Φk (see Equation (3.7)) as the k-way expansion constant ρG(k) for all collections of k

non-empty, disjoint sub sets {Si ⊆ V } for i = 1, · · · , k.

Theorem 3.2.2. [Higher-order Cheegeer Inequalities[32]] For every graph G and

every k ∈ IN,

λk/2 ≤ Φk ≤ O(k2)
√

λk

Theorem 3.2.2 makes it feasible to find a partition Pi of V into k non empty sets

such that each set has an expansion O(k3)
√
λk. This leads to a theoretical justification

for clustering using the bottom k eigenvector to embed the vertices. See Section 7.1

for the geometric insight about the segregation into k directions.

3.2.3 Eigenvectors Approximation

Equation (3.2) can be written in the form

(A− λI)x = 0 (3.8)

22

Thus, λ is an eigenvalue of A if and only if Equation (3.8) has a nontrivial solution and

the set of solutions to Equation (3.8) is the null space N(A−λI) ̸= {0}. Equivalently,

the nontrivial solution exists if and only if A− λI is singular or that

det(A− λI) = 0 (3.9)

If the determinant in Equation (3.9) is expanded, a nth-polynomial in the variable λ

can be obtained,

p(λ) = det(A− λI)

The roots of this polynomial are the eigenvalues of A. In the case when the exact

value of an eigenvalue λ is not known but a close approximation λ′ is available, the

matrix λ′I − A is nonsingular.

Approximate the eigenvectors for the generalized problem LGx = λLHx requires

the approximation of eigenvalues such that the quotients xTLGx/x
TLHx are close to

their exact eigenvalues [8][32]. The fastest known algorithm runs in O(km log2m)

time by combining the fast Laplacian linear system solver [28] and a standard

power method [16]. In practice, the combinatorial multigrid solver (CMG) [30] is

preferred for its empirical O(m) running time. CMG combines the structure and

operators of multigrid algorithms with powerful and algebraically sound combinatorial

preconditioners based on novel tools from support graph theory. CMG provides an

approximate inverse for LG to be used with the preconditioned eigenvalue solver

LOBPCG[26].

3.2.4 Network Embedding

Network embedding can be understood as the result of learning the graph repre-

sentations in some low dimensional vector space while preserving the relationships

among vertices such as their induced similarity (or distance) function. By itself,

23

the adjacency matrix of a network is a version of network embedding. If a row of

the adjacency matrix represents a vertex, then the similarity with other vertices is

captured by the dot product between itself and other vertex row representations.

However, such embeddings are in very high dimensional space and are subject to the

curse of dimensionality which provides little to no utility.

The result of network embedding is a set of fixed-length vectors ≪ n, each

of which represent a vertex in the graph. These vectors can then be used in various

downstream applications such as link prediction, classification, or other applications of

machine learning techniques designed for vectorial data. In semi-supervision, network

embeddings are the input to produce separable partitions in the vector space of choice

aiming to bring members in the same class close together.

Spectral clustering is a linear method and the only network embedding

method offering both a provably fast computation and an advanced theoretical

understanding. Recently, spectral clustering has been surpassed by state-of-the-art

non-linear network embedding methods whose performance is backed by little to no

theoretical understanding. The solutions to non-linear network embedding (beside

spectral clustering) can be roughly divided into two categories: random walk based

[18][38][52][51][42], and deep neural network based [55].

Spectral Embedding Spectral clustering is often used as a baseline in comparing

network embedding methods. As the spectral partitioning algorithm is broadly

understood as a relaxation of the discrete clustering problem [10], a number of

variants have been proposed [54]. Among those, a variant that leverages the

theoretical understanding of eigenvectors geometric properties [32] is summarized

here as the prime for non-linear embedding method created via implementing the

baseline spectral method boosted by neural network discussed in Chapter 7.

24

• Eigenvector Embedding. Compute the eigenvectors xj belonging to the k
smallest non-zero eigenvalues of the generalized problem LGx = λDGx, under
the constraint that xTd = 0. The eigenvectors are also normalized so that
xT
j Dxj = 1. A graph vertex j is represented by a tuple of the jth values in all

k eigenvectors.

• Radial Projection Embedding. Divide each embedding dimension by its
Euclidean norm to normalize the embedding values onto a unit sphere in IRk.

• Geometric Partitioning. Use some unsupervised geometric clustering algorithm
on the normalized embeddings. (e.g., k-means, or the provable algorithms
presented in [32]) as discussed in Section 3.1.4.

Algorithm 1: Spectral Embedding Computation via Spectral Relaxation
of the Generalized Baseline Spectral Problem [10].

Output: U ∈ IRn×k.
Input: LG, k, LH (optional)

(Step 1) Prepare CL Matrix
1: if ¬LH then
2: LH = D − ddT/(dT1)
3: end if

(Step 2) Estimate k smallest eigenvectors
4: X ∈ IRn×k ← LGx = λLHx

(Step 3) Compute eigenvector embedding
5: u← 1n

6: for i = 1 : k do
7: x = X:,i

8: x = x− (xTd/uTd)u
9: x = x/

√
xTLHx

10: U:,i = x
11: end for

(Step 4) Compute radial projection embedding
12: for i = 1 : n do
13: lj = ||Uj,:||2
14: Uj,: = Uj,:/lj
15: end for

Algorithm 1 details the spectral embedding approach that produces clusters

with approximation guarantees for a two-way cut. Step 3.8 ensures xTd = 0

following the d-orthogonality requirement derived from the proof of Theorem 3.2.1.

25

Step 3.9 normalized x by LH to make the rows of U concentrate in k different

directions following [32]. The radial projection normalizes these row vectors onto

the k-dimensional hypersphere, which can be the input for geometric partitioning

methods.

3.2.5 Spectral Sparsification

The need to design efficient approximation algorithms drives development in graph

sparsification. Its main goal is to approximate a graph by some sparse graph. An

early example of graph sparsification is graph spanners to solve proximity problems

in computational geometry [7]. Graph spanners are sparse graphs which have

approximately a (thresholded) same distance between every pair of vertices as the

original graph such as the shortest-path distance or within some constant factor

obtained systematically.

Motivated by optimization problems in linear algebra and spectral graph theory,

Spielman and Teng introduced spectral sparsification [48]. A spectral sparsifier is a

subgraph of the original whose Laplacian quadratic form is approximately the same

as one of the original graph on all vector inputs in IR|V |.

It is proven that every graph has some spectral sparsifiers with a nearly-linear

number of edges which can be found in nearly-linear time. By viewing the graph as

an electrical resistive network, and defining the effective resistance R of a edge as the

potential difference that must be applied between the end points of an edge to send

one unit of electrical flow through, a graph sparsifier can be computed by sampling

edges with probabilities proportional to their effective resistances.

Given two graphs G, H, and LG denotes the Laplacian matrix of G, the spectral

ordering of these two graphs is defined by the relation ≺ as

G ≺ H ⇐⇒ xTLGx ≤ xTLHx, ∀x ∈ IR|V |

26

Let G associated with an electrical network with link e having conductance we, and

the effective resistance Re being the potential difference induced across an edge e

when a unit current is injected at one of its end and extracted at the other.

Theorem 3.2.3 (Spectral Sparsification [46]). Let H be obtained by sampling edges

of G independently with probability pe = Θ(weRe log n/ϵ
2) for some ϵ > 1/

√
n and

giving each sampled edges weight 1/pe. Then, with high probability

(1− ϵ)G ≺ H ≺ (1 + ϵ)G

Lemma 3.2.1 (Oversampling [29]). Let H be obtained by sampling edges of G with

probability pe ≥ cweRe log n/ϵ
2 for some ϵ > 1/

√
n and a sufficiently large constant

c > 0. When giving each sampled edge weight 1/pe, with high probability

(1− ϵ)G ≺ H ≺ (1 + ϵ)G

Theorem 3.2.4 (Spectral Sparsification via Random Spanners [24]). Let {Gi,j : 1 ≤

i ≤ O(log 1
1−ϵ

(n
4wmax

wmin
), 1 ≤ j ≤ O(log3 n/ϵ3)} be a collection of random subgraphs of G,

where Gi,j is an independent copy of Gp for p = 1
wmin

(1−ϵ)i. Then there is a weighting

of the edges of the subgraph H = ∪i,jS(Gi,j) such that it is a (1∓ ϵ)-sparsifier of G.

Moreover, such a weighting can be constructed in Õ(m) time where m is the number

of edges in G.

Recent efforts aim for simpler algorithms to achieve spectral sparsifiers of similar

results. Inspired by theorem 3.2.4, Koutis [28] showed a closer connection between

spanners and spectral sparsification. In order to reduce the number of edges by a

sparsification factor ρ while being able to preserve the graph spectrum within a

(1 + ϵ/(4logρ)) factor, O(log2nlog2ρ/ϵ2) edge-disjoint spanners of the graph can be

computed in O(mlog2nlog3ρ/ϵ2) time. Such computation certifies upper bounds for

the effective resistances of the rest of the edges. In comparison to earlier approaches,

the development of [28] allows improved efficient construction of spectral sparsifiers

27

with high approximation quality, the ability to be implemented as a stand-alone

sparsification routine, along with the freedom to choose ρ, and a reduction in the

dependency of ϵ (1/ϵ2 vs 1/ϵ4).

Graph Decomposition into High Conductance Clusters Graph sparsification

can be understood as the problem of simplifying linear systems. [27] reduces this

problem to the same one but in a sparser, tree-like, spanning subgraph via the

construction of subgraph preconditioners known as Steiner preconditioners [17][30].

Preconditioned iterative methods allows a faster convergence when solving linear

systems as the ratio of the maximum eigenvalue over the minimum eigenvalue of

a matrix is large. With the creation of a new vertex Ii that connects all vertices in

a disjoint set Si, the [ϕ, ρ]-decomposition gives the sets {Ii ∪ Si} where i = 1, · · · ,m

conductance values bounded below by ϕ and the vertex reduction factor of P being

at least ρ = n/m. Since the clusters can be found independently, such decomposition

can be computed in O(log n) time with linear work in planar graphs.

28

CHAPTER 4

CHEEGER INEQUALITIES FOR SPECTRAL MAXIMIZERS

This chapter explains the anatomy of the spectral maximizers based on multiple

modified trees whose external nodes are the set of vertices V of the original graph,

and whose internal nodes are add to define the level of the external nodes.

4.1 Graph Decomposition and Cut Approximators

Definition 4.1.1 (Hierarchical Cut Decomposition). Denote I as the set of internal

vertices and V as the set of external vertices of a tree T . A hierarchical cut

decomposition for a graph G = (V,E,w) is represented as a rooted tree T =

(V ∪ I, E ′, w′), with the following properties:

(i) Every vertex u of T identifies a set Su ⊆ V .

(ii) If r is the root of T then Sr = V .

(iii) If u has children v1, . . . , vt in T , then Svi ∩ Svj = ∅ for all (i, j).

(iv) If u is the parent of v in T then w′(u, v) = cutG(v).

Definition 4.1.2 (α-Cut Approximator). A hierarchical decomposition T = (V ∪

I, E ′, w′) for G is an α-cut approximator for G if for all S ⊆ V there exists a set

IS ⊆ I such that

cutG(S) ≤ cutT (S ∪ IS) ≤ α · cutG(S).

Definition 4.1.3 (Stretch [31]). Let p be a path joining the two endpoints of an

edge e ∈ E via traversing an ordered set of e′. The stretch of e over a graph H is the

minimum of all stretches stp(e) of e

stH(e) = min
p∈H

stp(e) where stp(e) = we

∑
e′∈p

stp(e
′)

29

Definition 4.1.4 (logn-spanner [31]). A logn-spanner of a graph G is a subgraph H

of G such that for all edges e ∈ E,

stH(e) ≤ 2logn

Definition 4.1.5 (Spectral Maximizers). Let T = (V ∪ I, E ′) be a cut approximator

for a graph G = (V,E,w) and let

LT =

 LI V

V T D


ordered so that its first |I| rows are indexed by I in an arbitrary order, and its last

|V T | rows are indexed by V in the given order. H is defined as the graph with

Laplacian matrix LH = D − V TL−1
I V . H is the spectral maximizer of G given T .

The matrixD−V TL−1
I V in definition 4.1.5 is known as the Schur complement

with respect to the elimination of the vertices in I. The Schur complement summarizes

the interactions between sub components of the graphs. In general, the Schur

complement is dense and computational intensive to be solved directly. Given the

fact that LT is Laplacian, D is well known to be a Laplacian matrix (e.g., see [12]).

Theoretical graph shows that the elimination of a vertex v from a graph introduces a

weighted clique on the neighbors of v. The elimination of the entire set of vertices I

can be performed as a sequence of vertex eliminations in any arbitrary order. Figure

4.1 illustrates the gradual elimination of vertices, each step of which form the weighted

clique on the neighbors of vertex eliminated.

4.2 Properties of Spanners

One of the key assumptions of this thesis relies on the approximation of a spectral

sparsifier of G+H where H is the spectral maximizer of G as mentioned in Section

2.1.

30

(a) Begin schur Complement for
internal Nodes

(b) After eliminating the vertex
having three neighbors

(c) After eliminating the next vertex
having four neighbors

(d) After eliminating another vertex
having five neighbors

Figure 4.1 A visualization of the elimination process of the internal vertices of I
one vertex at a time following Schur complement. An arbitrary root of the internal
set of I will be the first to be eliminated. This creates a weighted clique among its
direct neighbors. From here, among the vertices of the internal nodes, another vertex
is removed and so on.

Spectral sparsifiers are sparse graphs that preserve within an 1 + ϵ factor the

quadratic form xTLGx where ϵ is a parameter of choice. Kapralov et al. [24]

introduced spanners in the context of spectral graph sparsification, proving the

existence of tight upper bounds of the approximate effective resistances on average

via Lemma 3.2.1. The extra sampling can compensate for the lack of accuracy in

the estimates for the effective resistances. These spanners inspires [31] to compute a

small number of edge-disjoint spanners that allow the certification of upper bounds,

which in turn enables uniformly sampling-away about half of the remaining edges

while spectrally preserving the graph within a (1 + ϵ/(4logp)) factor.

31

4.3 Properties of Spectral Maximizers

A triple (G, T (α), H) defines the relationship between a graph G with one of its

associated α-cut approximator T (α), and the spectral maximizer H corresponding to

T . diam(T) is used to denote the diameter of the tree T (i.e., the number of edges

on the longest path in T).

Let G and H be two graphs. G is required to be connected. G and H may

share 0, some or all vertices between them. G is said to spectrally dominate H,

if for all vectors x, R(LG,x) ≥ R(LH ,x). The spectral domination of G over H is

denoted by G ⪰ H. α ·G denotes the graph G with its edges’ weights multiplied by

α individually. The Õ notation is used hide factors logarithmic in n.

Theorem 4.3.1 (Spectral Domination of Cut Structure). Given a triple (G, T (α), H),

let G̃ be an arbitrary graph which is ρ-cut similar to G. Then, diam(T) · ρ ·H ⪰ G̃.

Theorem 4.3.2 (Cut similarity of spectral maximizer). Given a triple (G, T (α), H),

the maximizer H is α · diam(T)-cut similar with G. In particular, cutH(S)/α ≤

cutG(S) ≤ diam(T)cutH(S).

If parameters diam(T) and α are of size Õ(1), theorem 4.3.1 shows that up

to a Õ(1) factor, H spectrally dominates every graph that is Õ(1)-cut similar with

G. This directly implies that up to the same Õ(1) factor, the ith eigenvalue of LH is

greater than that of LG̃, for every graph G̃ which is cut-similar to G. Combined with

Theorem 4.3.2, LH has nearly the maximum possible eigenvalues that any graph with

similar cuts can have. In the particular case of λ2, it is actually within Õ(1) from

the graph conductance. This extends to a generalized notion of conductance with

algorithmic implications for semi-supervised clustering.

4.4 Cheeger Inequalities for Spectral maximizers

Definition 4.4.1 (Generalized Conductance). Let G1 and G2 be two graphs on the

same set of vertices V . The generalized conductance ϕ(G1, G2) of the pair is defined

32

as:

ϕ(G1, G2) = min
S⊆V

cutG1(S)

cutG2(S)

Definition 4.4.2 (Second Generalized Eigenvalue). The smallest generalized eigenvalue

of a pair of graphs (G1, G2) is given by

λ2(G1, G2) = min
x

xTLG1x

xTLG2x

Let K be a complete weighted graph, where the weight of edge (u, v) is set to

be the product of the degrees of u and v in G1

wK(u, v) = volG1(u)volG1(v)

Also let λ2 denote the second eigenvalue of the normalized Laplacian of G1, denoted

by N . Degree normalized Laplacian

N = D− 1
2LG1D

− 1
2

where D is the diagonal matrix of the vertex degrees in G1. It is easy to see that

ϕ(G1, K) = ϕ(G1) = minS⊆V
cutG1(S)

volK(S)volK(V − S)

and

λ2(G1, K) = λ2

Theorem [8] states that λ2 ≥ ϕ2/2. The generalized conductance is known to

have the following relationship following Theorem 3.2.1

λ2(G1, G2) ≥ ϕ(G1, G2)ϕ(G1)/8

The following Theorem is to be proven.

33

Theorem 4.4.1 (Extended Cheeger Inequality for Cut Structure).

For any graph G, there exists a graph H such that (i) H is Õ(1)-cut similar with G,

and (ii) H satisfies the following inequality for all graphs B:

λ2(H,B) ≤ ϕ(H,B) ≤ Õ(1)λ2(H,B).

Theorem 4.4.1 implies that the actual accuracy performance of spectral

clustering on a given graph G ultimately depends on its ‘spectral distance’ from

its maximizer H. This implication is captured in the following corollary.

Corollary 4.4.1 (Actual Cheeger Inequality). Let G be a graph and H be the graph

whose existence is guaranteed by Theorem 4.4.1. Further, suppose that G and H are

δ-spectral similar. Then, for all graphs B, G satisfies the following inequality:

λ2(G,B) ≤ ϕ(G,B) ≤ Õ(δ)λ2(G,B). (4.1)

4.5 Proofs

Depending on the context, the notion of any graph G in this section could be

understood as the graph itself or its corresponding Laplacian LG.

Lemma 4.5.1. (Edge-Path Support [6]) Let P be an unweighted path graph on k

vertices, with endpoints u1, uk. Also let Eu1uk
be the graph consisting only of the

edge (u1, uk). Then kP ⪰ Eu1uk
.

Lemma 4.5.2 (Quadratic form of Schur complement). Let H and T be the graphs

matrices appearing in the definition of spectral maximizers (definition 4.1.5, this

implies

R(H,x) = min
y∈IR|I|,x∈IR|V |

R(T ,

 y

x

).

The following (adjusted) Lemma from [43, 5] is needed to complete the proof:

34

Lemma 4.5.3. Every graph G has an Õ(1) cut-approximator R. The diameter of T

is O(log n), where n is the number of vertices in G.

The following is the proofs of spectral modification:

Proof. (of Theorem 4.3.1) Below is the proof for the intermediate claim that the

product of diameter of T and T spectrally dominates G:

diam(T) · T ⪰ G

The technique uses elements from support theory [6]. Let Euv be an arbitrary

edge of G of weight wuv. Let Puv be the unique path between u and v in R; notice

that by definition, the path has length at most diam(T). By construction of R,

T =
∑

(u,v)∈G

wuvPuv

Let y, x be arbitrary vectors of appropriate dimensions where y ∈ IR|I|, x ∈ IR|V |.

Set z = [y,x]T .

R(T , z)
R(G, z)

=

∑
(u,v)∈GwuvR(Puv, z)∑
(u,v)∈GwuvR(Euv, z)

≥ min
(u,v)∈G

R(Puv, z)

R(Euv,wAz)
≥ 1/diam(T) (4.2)

The first inequality of Equation (4.2) is standard for a ratio of sums of positive

numbers, and the second inequality is an application of lemma 4.5.1. This proves the

intermediate claim. Notice now that since the claim holds for all vectors z = [y,x]T

for arbitrary y, it also holds for vectors where y is defined as in Lemma 4.5.2. That

implies diam(T) ·H ⪰ G

T (H,x) ≥ T (G,x)/diam(T)

To prove the claim for a G′ which is ρ-cut similar to G, the above proof can be

repeated if T is replaced with T ′

T ′ =
∑

(u,v)∈G

w′
uvPuv

35

T ′ has the same edges as T but with different weights. Thus,

diam(T) · T ′ ⪰ G′ (4.3)

Notice that T ′ keeps the same edges of T but with different weights. Observe now

that if v is a vertex in T ′ then the edge to its parent has weight equal to cutG′(Sv),

where Sv is the set identified by v according to the definition of the cut approximator.

However, by the cut similarity of G and G′, it is known that

cutG′(Sv) ≥ cutGSv/ρ

It follows that the edges of T ′ have weight at most ρ times smaller than their

weights in T , which directly implies that T ⪯ ρT ′. Substituting into inequality 4.3

above yields

ρ · diam(T) · T ⪰ G′

Then applying lemma 4.5.2 one more time gives the claim.

Proof. (of Theorem 4.3.2) From Theorem 4.3.1, for all S ⊆ V

cutS(G) ≤ diam(T)cutS(H) (4.4)

xS is defined to be the indicator vector of S with xS(v) = 1 if v ∈ S and xS(v) = 0

otherwise. For any graph G,

R(G, xS) =
∑

u∈S,v ̸∈S

wuv(xu − xv)
2 = cutG(S)

Definition 4.1.2 identifies a set IS ⊂ I of internal nodes of T. Construct vector z =

[yIS ,xS]
T where yIS is the indicator vector for IS. This results in,

cutH(S) = R(H, xS) ≤ R(T , z) = cutT (S ∪ IS) ≤ α · cutG(S) (4.5)

36

where the first inequality comes from lemma 4.5.2 and the second one comes from

definition 4.1.2. Combining Equations 4.4 and 4.5, cutH(S)/α ≤ cutG(S) ≤

diam(T)cutH(S).

Proof. (of Theorem 4.4.1) Let (G, T (α), H) be the given triple. Also, letB = (V,E,w)

be an arbitrary graph. The first part of the inequality is trivial. Let x be the

eigenvector corresponding to the smallest non-zero eigenvalue of the generalized

problem LHx = λLBx. Using the standard Courant-Fischer characterization of

eigenvalues,

λ2(H,B) =
R(LH ,x)

R(LB,x)
=
R(LT , z)

R(LB,x)
, (4.6)

where z is the extension of x described in lemma 4.5.2.

For an edge (u, v), let Puv denote the (unique) path connecting u and v in T .

Following lemma 4.5.1:

R(LB,x) =
∑

(u,v)∈B

wuv(xu − xv)
2 ≤

∑
(u,v)∈B

wuvR(LPuv , z) =
∑

(u,v)∈B

R(wuvLPuv , z)

Note that the current result is the quadratic form of the graph T ′ =
∑

(u,v)∈B wuvPuv.

Because T ′ is a sum of paths on T , it has the same edges with T . Denote by

wT (q, q
′) the weight of the edge (q, q′) on T , where q′ is the parent of q. The inequality

in 4.6 can be continued as follows:

λ2(H,B) ≥ R(LT , z)

R(LT ′ , z)
=

∑
(q,q′)∈T wT (q, q

′)(zq − zq′)
2∑

(q,q′)∈T wT ′(q, q′)(zq − zq′)2
≥ min

q∈T

wT (q, q
′)

wT ′(q, q′)
(4.7)

If Sq ⊆ V is the set identified by q,

wT (q, q) = cutG(Sq) ≥ cutH(Sq)/α,

where the inequality comes from Theorem 4.3.2. Observe now that (q, q′) appears on

T ′ exactly on the paths Puv such u ∈ Sq and v ∈ S ′
q. It follows that the edge (q, q′)

37

receives in T ′ a total weight equal to the total weight of the edges leaving Sq on B,

i.e., wT ′(q, q′) = cutB(Sq).

Further continuing on inequality 4.7 yields

λ2(H,B) ≥ min
q∈T

wT (q, q
′)

wT ′(q, q′)
≥ min

q

cutH(Sq)

α · cutB(Sq)
≥ min

S

cutH(S)

α · cutB(S)
= ϕ(H,B)/α.

The Theorem then follows by invoking Lemma 4.5.3 and Theorem 4.3.2.

38

CHAPTER 5

A SPECTRAL MODIFICATION ALGORITHM FRAMEWORK

5.1 The Tree Decomposition Spectral Modification Framework

5.1.1 Intuition

Given a path graph P , additional edges via long-range connections can be added

to eliminate ‘elongated features’ without changing its cuts. In addition, the path

analysis can be replicated on every graph [44].

Figure 5.1 ‘Elongated features’ of the path graph are eliminated via long-range
connections without changing its cuts.

Suppose the 2nd eigenvector x2 corresponds to a low eigenvalue λ2 where λ2 =

(xT
2Lx2)/(x

T
2Dx2). Empirically speaking, trees Tj that capture ‘elongated features’

of the graph capture a significant fraction of λ2. A combination of these trees is

cut-similar to G can maximize x2 in the spectrum.

The fact that T approximates the cuts of G while it has a logarithmic diameter

is a desirable property: λ2 is within diameter(T) from ϕ. This leads to O(logn)

Cheeger gap.

5.1.2 The Tree Decomposition Framework

Given a graph G = (V,E,w), the framework will generate a small set of weighted

trees Tj on V systematically. For each Tj, a cut approximatorMj on V is computed.

EachMj is spectrally close to M which is close to the maximizer H of G. EachMj

will share the same set of vertices of V as its external leaves and have its own set of

vertices Ij related in a hierarchical way. All Mj will then be combined with G to

39

form M. Figure 5.2 shows the increases in the number of internal nodes by fusing

the cut estimators to the original vertices. The aim is to approximate modifier M

that is the Schur complement of the adjacency matrix ofM by gradually eliminating

vertices in I. By doing this, it is conclusive that M is cut-similar to G and closer to

maximizer H of G, relative to G itself.

Figure 5.2 Two weighted trees are generated from a graph G. Each tree will be
used to derive its own cut estimator. Both cut estimators are ‘fused’ together via the
sharing of the original vertices of G. This graph will be added back to G to formM.

5.2 The First Spectral Modification Algorithm

The goal of the first spectral modification algorithm is not to construct the actual

spectral maximizer H of the input graph G but rather, a graph M that is close to

M which is δ-spectral similar to H. By directly modifying G while maintaining its

spectral structure to arrive at M , this algorithm guarantees the modifier graph M

is cut-similar with the input graph G. Corollary 4.4.1 shows that improved Cheeger

inequalities holds (up to δ) for M . The algorithms are heuristic but guarantee to

construct M with δ = Õ(1).

Algorithm 2 summarizes the four steps involved in performing spectral clustering

on an input graph G via spectral modification. Initially, a number of trees is generated

from working with the original graph G. These trees are then used to generate their

corresponding cut estimators. These cut estimators are then combined with G to

40

Figure 5.3 Top: A small set of weighted trees composed based on the original
graph G, each of which is used to compute a cut approximator. The spectral
maximizer M is approximated. Bottom: A detailed view of the cut approximator
for two different trees.

formM. Upon obtainingM, a fast algorithm by solving a linear systems [48, 33] is

utilized to obtain M . Finally, spectral clustering on M is performed.

Algorithm 2: Overview of the modified spectral clustering algorithm

Output: The approximate maximizer M .
Input: Graph G(V,E,w) where |E| = m and |V | = n.
(Step 1) Compute a small set of spanning trees

1: Choose (small) k ≤ 2⌈m/n⌉
2: Compute weighted trees T1, T2, ..., Tk on V

(Step 2) Compute cut approximators
3: for j = 1 : k do
4: Compute a cut approximatorMj of Tj

5: end for

(Step 3) Approximate graph spectral maximizer
6: M = G +M1 + ... +Mk

7: M ← LMx = b

(Step 4) Perform baseline spectral clustering on M

In step 1, the second eigenvector of LG0x = λDx is approximated where D is

the diagonal of LG0 . G′ = (V,E,w′) is derived where w′
uv = wuv(z(u)− z(v))2. From

G′, a predetermined modified spanning tree structure (MST) denoted R1. The first

tree T1 is obtained by setting each edge of T1 (i.e., a copy of R1) to be equal to the

41

weight of the corresponding edge in the original graph G. The edge weights of edges

corresponding to R1 is discounted by a discount factor of 2 on G′, and continue to

find another MST based on this new G′. This process can be iterated up to 2⌈m/n⌉

times to obtain k trees.

In step 2, the cut approximator for each tree Ti is computed. Essentially, two

algorithms to achieve these cut approximators are identified. The first algorithm

following [43] is a recursive top down analysis of the cut structure of a tree T in

O(nlogn) time. The key to this algorithm is the linear runtime for computing the

sparsest cut on a tree. The costs of cutting a tree at the sparsest cuts are equal to the

costs of removing a segment out of the tree. Simply put, this cost when normalized is

equal to the total weight of edges that are removed to disjoint the tree into separate

connected components over the total weight of the edges within the segment. The

other algorithm uses the decompositions from [27], following a bottom-up approach

with a faster runtime of O(n).

In step 3, all of the cut approximators are combined into the original graph.

This combination forms M, which will then be used in the same manner as in [48,

33] to approximate M being δ-spectral similar to the spectral maximizer H. M is

understood to be the Schur complement ofM with respect to the elimination of all

extra internal vertices outside V . M does not need to be computed explicitly but

by following [48] where linear systems of the form LMx = b are solved using a fast

implementation of the required eigenvector computation.

In step 4, the standard spectral clustering algorithm is run against M .

5.3 Algorithm Justification and Running Time

Step 1 of algorithm 2 is an algebra-based heuristic algorithm that computes k MSTs

on a version of G which is transformed based on the MST found in previous iteration.

These MST trees used the same weights of the edges in the original G. Assume

42

that the graph G is spectrally away from its maximizer H, the second eigenvector

z is expected to be ‘bad’. Step 3 to seven in algorithm 3 find k trees in G that

keep the most“energy” that contributes to the Rayleigh quotient R(G, z). Adding

the maximizers of these trees attempts to increase this Rayleigh quotient higher in

the spectrum of the modified graph M . At the same time, because the trees Ti are

subtrees of G, their maximizers have similar cuts, the modifier M has cuts similar to

those in G.

Algorithm 3: Tree decomposition algorithm

Output: A small set of weighted trees T1, T2, ..., Tk on V .
Input: Graph G(V,E,w) and k
(Step 1) Approximate the 2nd smallest eigenvector

1: z← LGx = λDGx

(Step 2) Generate the energy graph G′

2: w′
uv = wuv(z(u)− z(v))2

3: G′ = (V,E,w′)

(Step 3) Energy tree decomposition
4: 0 < df < 1 as a discount factor
5: for i = 1 : k do
6: Generate modified spanning tree Ri = (V,Ei, w

′
Ei
)

7: Ti = (V,Ei, wEi
)

8: w′[Ei] = w′[Ei]× df
9: end for

Figure 5.4 Trees that capture a significant fraction Of the ‘energy’ λ2.
Note: These trees empirically capture ‘elongated features’ of G. Maximizing the trees
is intended to push the second eigenvector higher in the spectrum.

The modifier M is a dense graph, and only M which is the implementation

following the observation by Spielman and Teng [48] is effectively used, a nearly-

43

linear time implementation of the required eigenvector computation via inverse power

methods to solve near systems of the form LMx = b by solving linear systems of the

form LMx′ = b′ as M is simply the product of Gaussian elimination on M[33].

Specifically, all components of b′ that are mapped to V will have the corresponding

values of components of b on V and be equal to 0 otherwise. Once x′ is finalized,

x is known based on x′. Solving linear systems on LM can be done in O(mlogm),

where m is the number of edges in M using a fast Laplacian solver [28, 29]. The

fastest way as shown in actual experiments is to use the Combinatorial Multigrid

(CMG) solver [30]. The worse-case time required for computing the k vectors used in

the embedding is at most O(kmlog2m) employing a standard inversed power method

[16], and assuming that the running time of the linear system solver is O(mlogm). In

practice the code is much faster due to the faster than worst-case performance of the

linear system solver, and to the used preconditioned eigensolver LOBPCG[26].

44

CHAPTER 6

IMPLEMENTATION AND EXPERIMENTS

6.1 Implementation with Different Cut Approximators

Initially, G needs to be re-weighted to Grw = (V,Erw) so that the majority of

its ‘energy’ become available to construct a set of trees T1, · · · , Tk each of which

represents G well. In the first iteration, each node in Grw is embedded by a value

of the corresponding component of the 2nd smallest eigenvector x of G. The squared

differences between xu and xv where u, and v are the end of an edge in G are the

energy consumption on the edges in G. Thus, the weight of an edge (u, v) ∈ Erw

is determined by scaling the squared result of the difference between the embedding

values of the two end nodes xu, and xv by a factor equals to the original weight of

edge (u, v) ∈ E. This yields the first tree structure T1 whose edges are equal to the

original weight as provided in G. All edges of T1 as appearing in graph Grw will be

scaled down by a pre-determined factor < 1 (defaulted to 1/2). This means Grw has

been re-weighted one more time at the edges chosen for T1 and will be used in the

next iteration to find a different tree structure. This process ends after k iterations

to yield k trees.

Two choices to structure Tk is chosen to claim its 2nd smallest eigenvalue captures

the majority of the ‘energy’ of the 2nd eigenvalue of G. The current choices of T are

the max spanning tree and the low-stretch spanning tree. Two heuristics used to

generate the low-stretch spanning trees including a variant of the algorithm of Alon,

Karp, Peleg, and West [1] and a variant of the Kruskal’s spanning tree algorithm to

add tree edges at random with probability proportional to their weights. Overall, the

difference of the final results between using the max spanning tree and low-stretch

spanning trees are negligible. Below is the detailed implementation to find modified

45

trees Tk acting as G cut approximators based on Tk. The goal is to produce balanced

cuts, which enables the modified tree T to have a diameter of logarithmic height.

6.1.1 Cut Approximator using The Top-Down Approach

This method follows cut-based hierarchical decompositions in almost linear time [44]

which Räcke developed for oblivious routing schemes but has subsequently been used

for a variety of cut-related problems. The hierarchical decomposition tree T closely

approximates the cut-structure of a graph, which is T in our case. The linear tree

partition is performed on T to find the cheapest normalized cut(s). These cuts result

in a set of clusters of small subtrees. The sum of the weights of the edges required to

separate the clusters is then calculated and assigned to the newly created edge that

connect such cluster with an internal node. The loop continues until all vertices in G

have become the leaf nodes of the tree T .

Figure 6.1 Top-down tree decomposition. Left: A tree T with each edge of weight 1
exposes the clusters by the top-down tree decomposition algorithm Using the cheapest
normalized cut. Right: A cut approximator tree T = (V ∩ I, ET) of three levels.
The leaf nodes have a one-to-one relation to V . The edge weights correspond to the
cut(S) required to separate the set of lower Level leaf nodes from T .

6.1.2 Cut Approximator using the Bottom-up Approach

This decomposition follows the approach of [27] which draws techniques from the

construction of preconditioners that use extra Steiner vertices. The clustering can

be found completely in parallel. From T , form another graph T̂ by independently

perturbing each edge in T by a random constant. For each vertex in T , keep its

46

heaviest incident edge as appeared in T̂ . This turns the tree T into a forest of

trees. These trees are known as Steiner trees with asymptotically better condition

numbers relative to subgraph preconditioners. Each tree in this forest will then be

split independently into clusters of size at most α for some constant α.

Figure 6.2 Bottom-up tree decomposition. Left: A tree T with each edge of weight
1 exposes the clusters by bottom-up tree decomposition algorithm. Right: Steiner
preconditioner of T in the lowest Level (i.e., star graphs). A cut approximator tree
T = (V ∩I, ET) of three levels. The leaf nodes have an one-to-one relation to V . The
sub-trees of this spanning tree is constructed based on the split of a forest of trees
formed by perturbing the edges of T .

6.1.3 Cut Approximator Generation Performance

The majority of the running time to modify graph spectrally is spent on the

computation of the eigenvector used to construct the trees T in energy decomposition.

In addition, the total time to construct T drastically improves the overall running

time. The running times are O(n) for the bottom-up approach and O(n log n) for the

top-down one.

Table 6.1 shows that the bottom-up approach outperforms the top-down

approach to generate T using synthetic data with a growth rate of approximately

three times the previous number of vertices and edges. The time difference ratio

grows at a faster rate than that of edge growth. This result in the default choice

to use the bottom-up approach for finding cut approximators although the top-down

approach is a strong contender.

47

Table 6.1 Running Time to Generate One Cut Approximator Tree T from an
‘Energy’ Tree T by Both Top-down and Bottom-up Approaches

|ET | 53 195 599 1,735 5,039 14,223 40,799 114,463 325,313

Bottom-up 0.001 0.002 0.014 0.002 0.006 0.008 0.020 0.049 0.143

Top-down 0.029 0.128 0.453 1.290 4.386 12.733 52.825 216.566 1,545.314

Time Difference Ratio 23.3 76.8 32.9 568.6 700.5 1,538.7 2,603.5 4,443.0 10,806.5

Note: Reported in seconds. The huge running time differences are mostly due to implementation.

6.1.4 Graph Bi-partition in Linear Time Using Spanning Tree

The implementation is to support sweep bi-partition and top-down cheapest normalized

cut to form cut estimator in linear time. Algorithm ?? is used to determine the

normalized cost ϕ of every bi-partition when dissecting a graph G into two sets of

vertices S and S̄ based on its corresponding spanning tree T where S ∪ S̄ = V and

S ∩ S̄ = ∅.

When a branch of the tree is disconnected, the tree T will form two partitions

whose vertices are not overlapped. The algorithm works on every branch of the tree in

one scan throughout and return the normalized cut in O(n). As for the input for the

graph bisection, an arbitrary root is picked to treat the tree as a directed graph and

the degree of every vertex is calculated on the original graph G. Based on depth first

search starting from the arbitrary root, a post order traversal is formed and reversed

such that the the last vertex to be visited during processing is a vertex before the root

in T . The next step is to establish a dictionary to lookup successors of the tree. An

appropriate data structure is used to collect children of a vertex since each node may

have more than one children. In addition, the predecessors of the vertices are also

captured. The raw cost of separating a vertex from the tree is equal to the sum of its

degrees in G. The sum of the degrees of all vertices of the total cluster if this edge is

to be broken in the tree is set to this raw cost initially. The raw cost of each child of

the successors of Vi will be added to the total degree of the cluster. The degrees of

48

the child and its children are also aggregated as the total degree of the cluster. The

normalized cost is the ratio of the raw costs over the total degree of the cluster.

Algorithm 4: Normalized Cut Costs of All Possible Bi-partitions of G
in O(n) Based on A Spanning Tree T .

Output: x ∈ IR(
|V |
|S|) where xi = ϕ(Si, S̄i)

Input: A spanning tree T of G, dG, dicts, dicta

(Step 1) Accumulate cut cost
1: for i = 1 : |V| - 1 do
2: if dicts[Vi] = 0
3: xi = di

4: else
5: u = dicts[Vi]
5: for j = 1 : |u|
6: xi = xi + xuj

7: xi = xi − 2
∑

k∈u xk

7: end for
8: end if
9: end for

(Step 2) Compute min(vol(S), vol(S̄))
10: vol← d
for i = 1 : |V| - 1 do
11: u = dicts[Vi]
12: for j = 1 : |u|
13: voli = voli +

∑
k∈u volk

14: end for
15: end for

(Step 3) Compute normalized cost (Element wise)
16: x = x./vol

Note: Step 1 and 2 can be combined. The outer loop of both steps processed vertices in
post order traversal. dicts: List of successors, dicta: List of ancestor (as in T)

6.2 Establish Performance Benchmark

6.2.1 Baseline Spectral Method

While all other existing clustering algorithms are complicated and far from practical,

spectral algorithms possess significant strengths, which are its speed and quality.

49

Provably fast linear system solvers for graph Laplacians [28][29] empowers the

baseline spectral clustering with even faster speed. A theoretical upper bound for

the computation of k eigenvectors is O(km log2m). In practice, for a graph with

millions of edges, one eigenvector can be computed in mere seconds on standard

hardware. This time would potentially be improved down to milliseconds under

parallel programming. The baseline spectral method is implemented based on [10]. By

solving the eigenvalue problem LGx = λDx, x is retrieved as the standard embedding.

A deviation from the approach of [10] is the further processing of the embedding

by projecting the points onto the unit hypersphere as analyzed in [32]. There is a

significant improvement in performance in the baseline spectral clustering utilizing

this method.

6.2.2 NetMF and Network Embedding

The authors of NetMF algorithm in [42] claimed to discover a theoretical connection

and mechanism between recent research in using deep learning, skip-gram1

powered networks for network embedding (DeepWalk [38], LINE [52], PTE [51] ,

node2Vec [18]). Specifically, they made three claims: First, all aforementioned deep

learning methods are in theory performing implicit matrix factorizations and have

their respective closed forms; Second, some of them are special cases of others [42];

Third, there is a theoretical connection between DeepWalk’s implicit matrix and

graph Laplacians. Based on the third claim, they proposed NetMF to approximate

the closed form of DeepWalk’s implicit matrix. Then, they will explicitly factorize

this matrix using SVD to obtain a network embedding with (relatively up to 50%)

improved prediction performance results compared to ones by DeepWalk and LINE

via semi-supervised training.

1In Natural Language Processing (NPL), skip-gram model aims to learn continuous feature
representations of words by optimizing a neighborhood preserving likelihood objective based on the
distributional hypothesis which states that words in similar contexts tend to have similar meanings
[20]. The deep learning methods to perform network embedding mentioned here utilize an alike
reasoning in term of vertex relations in a graph/network and neighborhood preserving.

50

Connection between DeepWalk Matrix and Normalized Graph Laplacian

Initially, DeepWalk is proven to implicitly approximate and factorize the following

closed form matrix

log(vol(G)(
1

T

T∑
r=1

(D−1A)r)D−1)− logb (6.1)

where A ∈ IR
|V |×|V |
+ is the adjacency matrix of a weighted graph G, D =

diag(d1, · · · , d|V |) where di represents generalized degree of vertex i, volG =
∑

i

∑
j Ai,j =∑

i di is the volume of G, T & b are the context window size and the number of negative

sampling in skip-gram respectively. The connection between Equation (6.1) and the

normalized graph Laplacian of G is established by utilizing eigen-decomposition of G

to characterize the spectrum of the matrix 1
T

∑T
r=1(D

−1A)r)D−1 as followed:

1. Its eigenvalues is always bounded by the magnitude of U(1
T

∑T
r=1 Λ

r)UT where
L = UΛUT such that U orthonormal and Λ = diag(λ1, · · · , λ|V |)

2. Its smallest eigenvalue is bounded by the smallest eigenvalue of U(1
T

∑T
r=1 Λ

r)UT

NetMF Algorithm For large window size, NetMF approximates matrix M by

first performing the eigen-decomposition2 on D−1/2AD−1/2 with its top-h eigenpairs

UhΛhU
T
h then performs a series of matrix multiplications and summations. Once M

is approximated, NetMF explicitly aproximates the log of M . This is followed by

using SVD to approximate rank-d matrices where log(M) = Ud

∑
d V

T
d and d is the

number of desirable dimensions. Finally, the network embeddings are returned being

equal to Ud

√∑
d.

2NetMF for small window size does not require the approximation based on eigen-decomposition
but a direct computation of matrix multiplications.

51

NetMF Weakness In general cases, NetMF makes long range connections by

powering up P = D−1A. Naturally, there is a connection between the graph

Laplacian and the implicit matrixM constructed using P . Even when a good low-rank

approximation of M is achieved, the error for approximating log(M) is bounded by

the error bound for the approximation of M . log is the only non-linear operator in

NetMF. Last but not least, in spite of performing all calculations via approximation,

NetMF is still empirically computation expensive, requiring specialized hardware for

larger networks such as one for the dataset Flickr of over 80 thousand vertices classified

into 195 labels and nearly 5.9 million edges. More detail is discussed in Section 6.3.2.

6.3 Empirical Demonstration of Spectral Modification Gains

6.3.1 Synthetic DataSets

Figure 2.1 demonstrates the ability of spectral modification algorithm that can

provide the correct cut that baseline spectral clustering was not able to do. In

contrast, NetMF embeddings of 128 dimensions do not perform well when coupled

with k-means. In binary classification task for the double binary tree, NetMF returns

100% accuracy at around 3% of training labels for embeddings of eight dimensions.

Figure 6.3 shows a synthetic example taken from [10], where spectral modifi-

cation clearly outperforms even a semi-supervised method.

(a) Baseline spectral (b) Semi-supervised [10] (c) Spectral modification
Figure 6.3 Comparison of different methods of spectral clustering. The ‘4-moons’
example from [10]. (A)RI is the adjusted rand index.

52

6.3.2 Social Network Data - Multi-label Classification Task

Four labeled datasets that have been widely used as benchmarks [38] shows the

performance of spectral modification. Table 6.2 summarizes their features.

Table 6.2 Dataset Features Including the Second Eigenvalue λ2

Dataset BlogCatalog PPI Wikipedia Flickr

|V | 10,312 3,890 4,777 80,513

|E| 333,983 76,584 184,812 5,899,882

Labels 39 50 40 195

λ2 0.4961 0.4316 0.2001 0.0589

The second eigenvalue λ2 of these networks is quite high. The theory developed

is insensitive to Õ(1) factors. Nevertheless, the experiments with the implemented

version of spectral modification follow exactly the methodology of [42]: First

the embeddings are computed and then performed a 10x cross-validation using

LIBLINEAR [13], at various levels of supervision, for the standard Micro-F1 and

Macro-F1 metrics.

The comparison results show:

• The baseline spectral clustering method, implemented with the radial projection
step proposed and analyzed in [32][10] (See 1). The step projects the points onto
the unit hypersphere, then the points are computed by the standard embedding.

• The NetMF network embedding method [42] which has been shown to perform
better than other recent network embedding methods (e.g., DeepWalk [38],
LINE [52]).

53

Figure 6.4 Micro-F1 and macro-F1 performance for multi-label classification using
LIBLINEAR [13] solver (within logistic regression linear Model combined with one-vs-
rest classifier)

For each dataset, the dimension of the embeddings is set to be the number

of clusters. Hardware of 64GB DDR4 2666MHz RAM encountered out of memory

error and was not able to complete the NetMF calculation for the embeddings for

Flickr dataset at any given dimension. Thus, the Flickr result at 128 dimensional

54

embeddings were manually approximated as it was reported in [42]. Figure 7.5

summarizes the experiments. Baseline spectral clustering as discussed in Section

6.2.1 performs much better than the version reported in [42].

6.3.3 Social Network Data - Single-label Classification Task

The results produced by spectral modification are from six labeled datasets that have

been widely used as benchmarks for the single-label classification task. These datasets

have been narrowed down to only include the largest connected component. Data

pre-processing includes the removal of self-loop edges, multiple edges, vertices and

their edges which are not part of the largest connected component. The number of

classes do not change for all datasets after data pre-processing. Table 6.3 summarizes

the number of vertices, edges and classes of these largest connected components.

Table 6.3 Number of Vertices and Edges in the Largest Connected Component
(*) in Comparison to the Original Data by Dataset

Dataset Citeseer Cora WikiCS Pubmed Arxiv Products

|V | 3,327 2,708 11,701 19,717 169,343 2,449,029

|V ∗| 2,120 2,485 11,311 19,717 169,343 2,385,902

Difference 63.72% 91.77% 96.67% 100.00% 100.00% 97.42%

|E| 4,614 6,632 215,863 44,326 2,315,598 123,718,152

|E∗| 3,679 5,069 215,554 44,324 2,315,598 123,612,606

Difference 79.74% 76.43% 99.86% 100.00% 100.00% 99.91%

Labels 6 7 10 3 40 47

For each dataset, the dimension of the embeddings is set to be twice the number

of unique labels. The training ratio is increased by two times from its previous

value for a total of five times starting from 1% to the max of 32%. This setup

55

help estimate the accuracy performance every time the size of the training data

is doubled. To compare to existing benchmark for single-label classification task,

the accuracy score calculation is used instead of using micro-F1 and macro-F1 as

seen in multi-label classification experiments. The major difference between the

accuracy score calculation and the micro-F1 one is that there is only one comparison

between expected class and predicted class per sample while micro-F1 allows multiple

comparisons for a single sample which expects to belong to more than one class. Since

all datasets only have one class per sample, there is no difference between the accuracy

score and micro-F1 score.

Table 6.4 reports 5-fold cross-validation results for all datasets. For the

Citeseer dataset, spectral network embeddings via spectral modification when

coupled with geometric methods produced result not as good as one produced by

baseline spectral.

56

Ta
bl

e
6.

4
Si
ng

le
-la

be
lC

la
ss
ifi
ca
tio

n
w
ith

LI
BL

IN
EA

R
[1
3]

So
lv
er

(L
og

ist
ic

R
eg
re
ss
io
n,

O
ne
-v
s-
R
es
t)

C
it

es
ee

r
C

or
a

W
ik

iC
S

C
la

ss
ifi

er
1%

2%
4%

8%
16

%
32

%
1%

2%
4%

8%
16

%
32

%
1%

2%
4%

8%
16

%
32

%

Sp
ec

tr
al

M
od

if
ie

d
49

.1
51

.8
62

.8
66

.7
67

.6
68

.9
64

.8
64

.6
70

.3
75

.0
77

.8
78

.8
67

.3
69

.7
73

.9
75

.9
77

.0
77

.3

N
et

M
F

39
.4

49
.8

53
.3

54
.5

57
.1

60
.8

61
.2

66
.1

69
.5

71
.6

74
.8

76
.8

70
.3

68
.5

68
.6

69
.5

73
.6

80
.7

B
as

el
in

e
Sp

ec
tr

al
55

.3
64

.4
67

.8
68

.7
69

.8
70

.9
63

.6
68

.8
71

.5
74

.1
75

.0
76

.0
72

.8
73

.0
74

.9
75

.4
76

.1
76

.3
B

as
el

in
e

Sp
ec

tr
al

(N
o

R
eg

ul
ar

iz
at

io
n)

54
.5

56
.7

65
.0

68
.6

70
.4

71
.1

64
.4

65
.1

71
.0

75
.7

78
.2

78
.3

67
.5

71
.0

75
.0

76
.2

76
.9

77
.0

P
ub

m
ed

A
rx

iv
P

ro
du

ct
s

C
la

ss
ifi

er
1%

2%
4%

8%
16

%
32

%
1%

2%
4%

8%
16

%
32

%
1%

2%
4%

8%
16

%
32

%

Sp
ec

tr
al

M
od

if
ie

d
75

.7
76

.4
76

.6
76

.7
76

.8
76

.8
55

.2
59

.2
61

.4
62

.3
62

.6
62

.7
81

.4
81

.5
81

.6
81

.6
81

.6
81

.6
N

et
M

F
75

.7
76

.1
76

.5
76

.6
76

.7
76

.7
-

-
-

-
-

-
-

-
-

-
-

-

B
as

el
in

e
Sp

ec
tr

al
60

.3
60

.6
61

.7
64

.3
67

.1
68

.8
43

.8
45

.4
47

.3
48

.9
50

.2
51

.4
67

.1
69

.4
73

.4
75

.4
76

.5
77

.3
B

as
el

in
e

Sp
ec

tr
al

(N
o

R
eg

ul
ar

iz
at

io
n)

73
.3

73
.4

72
.7

72
.1

71
.6

71
.5

56
.9

58
.7

59
.2

59
.1

59
.2

59
.2

79
.9

79
.9

80
.0

80
.1

80
.1

80
.1

N
ot

e:
By

tr
ai

ni
ng

ra
tio

:
H

ig
he

st
ac

cu
ra

cy
sc

or
e

is
in

bo
ld

fo
nt

.
Fi

ve
-fo

ld
cr

os
s

va
lid

at
io

n
at

20
%

of
tr

ai
ni

ng
da

ta
.

Fo
r

sp
ec

tr
al

m
od

ifi
ca

tio
n,

th
e

nu
m

be
ro

fd
im

en
sio

ns
is

eq
ua

lt
o

on
ly

tw
o

tim
es

th
e

nu
m

be
ro

fc
la

ss
es

by
da

ta
se

t.
N

et
M

F
em

be
dd

in
g

ke
ep

s1
28

di
m

en
sio

ns
by

de
fa

ul
t.

“-
”:

N
ot

av
ai

la
bl

e/
O

ut
-o

f-m
em

or
y.

57

Figure 6.5 Average accuracy score for single-label classification task (to accompany
table 6.4 - part one)

58

Figure 6.6 Average accuracy score for single-label classification task (to accompany
table 6.4 - part two)

59

CHAPTER 7

SEMI-SUPERVISED SPECTRAL CLUSTERING BOOSTED BY DEEP

NEURAL NETWORK

In general, the aim of graph clustering is to embed vertices in a space that distinctly

group vertices of the same kind together and away from others. A recent surge in non-

linear embedding methods has yielded outstanding accuracy in graph clustering for

classification task. However, these come at the expense of increased computationally

complexity. In addition, the main drawback of these heuristic methods stay persistent

in that there is no (if not very limited) theoretical backing.

Under semi-supervised learning setting, the embeddings happen via the compu-

tation of geometric representations of the graph vertices. As aforementioned, spectral

partitioning approaches are combinatorial algorithms which partition graphs and

matrices based on the computation of eigenvectors of a normalized graph Laplacian.

In earlier chapters, eigenvectors as spectral embeddings have been demonstrated their

capacity as the strong contender in semi-supervised learning such as the result shown

in Table 6.4. This chapter explores the use of spectral embeddings with a thorough

understanding of their geometric interpretations to reach state-of-the-art performance

in semi-supervised classification tasks. Non-linearity come from processing the

baseline spectral embeddings through a procedure call ’Correction and Smooth’

implemented by a neural network.

7.1 Geometric Insight for the k Bottom Eigenvectors

The drive behind the connection from eigenvectors to radial projection embedding

before geometric partitioning employs the geometric properties of eigenvectors.

60

Let X ∈ IRn×k denote a matrix whose columns are the k eigenvectors. Thus,

each row of X is the eigenvector embedding of a vertex. Each column of X is then

normalized by its corresponding Euclidean norm following step 4 of Algorithm 1.

This projects all embeddings onto a unit sphere. All generalized eigenvectors are

D-orthogonal [49], so

xT
i Dxj =


0 i ̸= j

1 i = j

This yields, XTDX = I, which means trace(XTDX) = k. Furthermore,

trace(XTDX) = trace(DXXT), thus
n∑

j=1

dj||xj||22 = k (7.1)

Let z be a randomly selected unit vector in IRk. z is in an arbitrary direction. Let

w = Xz. Combining XTDX = I, and zTz = 1 gives the following equation:

zTXTDXz = wTDw =
n∑

j=1

djw
2
j = 1 (7.2)

Equation (7.1) shows that the mass of n embedding points weighted by d is k. On the

other hand, w2
j is the norm of the projection of vertex j onto z. Equation (7.2) proves

that the d-weighted mass of n embedded vertices projected on z is always equal to 1,

for any direction of z.

A further interpretation of these equations is that any given direction z captures

only 1/k fraction of the d-weighted sum of the norms of the n embedding vertices.

Therefore, the d-mass of the projections must concentrate in at least k different

directions. While finding such directions is not straightforward, [32] proves that

radially projecting the eigenvector embeddings allows their concentration in k well-

separated spheres in IRk. This specific geometric arrangement facilitates the design of

61

an unsupervised geometric clustering on the vertices, but it will also guide the design

of semi-supervised geometric clustering model.

7.2 Conic Classifier in IRk

The geometric insight of eigenvector embeddings motivates the design of the conic

classifier to classify all vertices based on their coordinates on a single hypersphere.

Since the normalized vertices will concentrate in k directions, neural network is

utilized to identify these concentrated areas.

In two dimensional space, conic classifier can be visualized as in Figure 7.1

where all points have the same distance from the origin and each conic regions are

dense and well separated. In IRk, there would be k conics that represent how the

vertices would concentrate within.

Figure 7.1 Left: Spectral embeddings concentrate in three different directions in
two dimensional space. Right: After radial projection, three unit vectors point in
three directions where the normalized eigenvector embeddings concentrate. Each cone
is expected to cover the vertices of the same class. The sizes of the angles of the cones
at the origin can vary.

Figure 7.2 depicts the main structure of the conic classifier neural network.

Network input is the spectral embeddings E ∈ IRn×dim. dim signifies a large number

of bottom eigenvectors such as 200. There can be variants from this setup but these

core component remain:

62

Figure 7.2 The basic anatomy of the conic classifier neural network.

• The Reduce Layer. A neural linear layer to reduce the dimensions to a multiple
of the number of distinct classes k {f(E) : IRn×dim → IRn×ck}.

Ê = E · (W T) + b

• Radial Projection Function to normalize all embeddings into a single sphere
{RP (Ê) : IRn×ck → IRn×ck}.

• Net Input z to capture the total of summation between the product of
normalized embeddings with W and β as trainable parameters to capture the
weights W that put normalized embedded values in their (hopefully correct)
territorial cone, and the bias β. While the bias can take any values, it can be
the angle whose cosine expresses the spread of the cone.

• Activation Function ϕ to identify the membership probabilities of a vertex
belonging to a certain cone. In reported experiments, ϕ =log(softmax(z)).

• Loss Function L to calculate the error of the training result for class prediction.
In reported experiments, L is the negative log likelihood loss function.

• Optimizer to adjust all trainable parameters to minimize the loss. In reported
experiments, Adam optimizer is used.

7.3 Correction and Smoothness Algorithms

The embedding process to bring the graph structure down to just points in lower

dimensional space is bound to approximation errors, due to labels that ‘resist’ the

metric embedding. This happens as points are getting metrically closer to a cluster

that it does not belong to. Figure 7.3 gives an example of a tiny sub-cluster C (or

63

Figure 7.3 Labels resisting metric embedding.

part of it) on Arxiv dataset is a subject in the intersection of two areas A and B

and is labeled as a member of B. The metric embedding alone may place C under A.

The training labels for B hopefully contain some nodes in the sub-cluster C to help

correct some neighborhood inside C.

The ‘correct and smooth’ procedure can be understood as a graph-based

correction approach that exploits the correlation in the label structure often referred

to as information regularization by label propagation in semi-supervision [50][9][58].

It is likely that some graphical correction of the baseline model prediction will always

be a step that yield some improvement.

While graph-based regularization framework is normally expressed as a combi-

nation of a loss function and a regularizer, either correction or smoothness procedures

are chosen to be implemented as a post-processing step after geometric clustering

following [58] [21].

Following the generalized embedding case (Algorithm 1), the normal route

of using spectral embeddings includes performing radial projection, then, feeding

them into existing geometric algorithms to obtain final class prediction. Empirical

practice shows that results by conic network classifiers benefit from the ‘correction’ in

Algorithm 5 and ‘smoothness’ in Algorithm 6. In addition, other geometric methods

also show benefits from adopting these procedure as demonstrated in Section 7.4.

For every vertex, the result of the network prediction is under the form of

membership probabilities. Algorithm 5 is used to correct and scale this output

64

based on its difference from the actual labels by a scale rate α through a number

of propagation iter. Thus, uncertainties from the training data are propagated across

the graph to correct the base prediction. Both α and iter are hyper-parameters.

The aim of smoothing as reflected in Algorithm 6 is to replace all prediction

class by the original labels for the training data. Such result is scaled using α and

iter as in the case of correction.

65

Algorithm 5: ‘Correction’ Procedure to Propagate the Uncertainties of
Training Data.

Output: Ŷ ∈ IRn×k

Input: Neural modelM, scale rate α, adjacency matrix A, degree vector
d, iteration iter, train indices id

(Step 1) Normalized Adjacency Matrix
1: D = diag(d−1/2)
2: DAD = D · A ·D
3: DDA = D ·D · A
4: ADD = A ·D ·D

(Step 2) Elect normalized matrix N by network type(M) and dataset
among DAD, DDA, ADD

(Step 3) Correct output of M
5: P̂ ← output(M) ▷ Pi,: ∈ IR1×k membership probabilities
6: for i = 1 : iter do
7: P̂ = αN · P̂
8: if scale outcome correlation do
9: P̂+ = (1− α)P̂
10: end if
11: end for
12: P̂ = clamp(P̂ ,−1, 1)
13: R← 0n×k ▷ residual for training data
14: R[id] = Y [id]− output(M)[id]
15: s =

∑
(|R[id]|)/n/

∑
(|P̂:,|) ▷ scale factor, column wise

16: s[∞|s. > 1000] = 1
17: P̂ = output(M) + s · P̂
18: P̂ [P̂ . == nan] = output(M)[P̂ . == nan]

(Step 4) Assign final predicted values
19: Ŷ ← 0n×k

20: for i = 1 : n do
21: Ŷi,:[argmax P̂i,:] = 1
22: end for

Note: ‘.’: Element-wise notation

66

Algorithm 6: ‘Smoothness’ Procedure by Using Actual Labels of
Training Data.

Output: Ŷ ∈ IRn×k

Input: Neural modelM, scale rate α, adjacency matrix A, degree vector
d, iteration iter, train indices id, expected labels Y

(Step 1 & 2) See Algorithm 5

(Step 3) Smooth output of M
1: P̂ ← output(M)
2: P̂ [id] = Y [id] ▷ expected class for training data
3: for i = 1 : iter
4: P̂ = αN · P̂
5: if scale outcome correlation do
6: P̂+ = (1− α)P̂
7: end if
8: end for
9: P̂ = clamp(P̂ , 0, 1)

(Step 4) See Algorithm 5

7.4 Social Network Single Classification Task with Conic

The results shown in Table 7.1 covers a wide range of experiment result with the

same benchmark datasets used for single-label classification task under five-fold cross-

validation. The training data is combined with a representative set containing one

sample per class. In addition, 20% of the training data is used for validation to pick

the best model. The detailed setups for all methods are as followed

• Conic. Standard anatomy. z = RP (Ê) · (W T)− (||W:,i||2)cos(β).

• Linear. z = RP (Ê) · (W T)− β.

• Linear NRP. Same setup as the Linear model but without radial projection.

• Knn K choice by validation. Knn with k taking one of the following values 2, 4, 9, 14
depending on validation result.

67

All other variations are the combination of the main model with either correction

or smoothness procedures. The overall performance shows a clear improvement versus

the baseline spectral without regularization and NetMF[42].

68

Ta
bl

e
7.

1
Si
ng

le
-la

be
lC

la
ss
ifi
ca
tio

n
R
es
ul
ts

fo
r
C
on

ic
an

d
O
th
er

M
et
ho

ds

C
it

es
ee

r
C

or
a

W
ik

iC
S

C
la

ss
ifi

er
1%

2%
4%

8%
16

%
32

%
1%

2%
4%

8%
16

%
32

%
1%

2%
4%

8%
16

%
32

%

C
on

ic
45

.8
59

.6
64

.6
67

.6
69

.7
70

.7
16

.0
19

.0
19

.0
22

.7
24

.4
26

.7
69

.9
73

.2
75

.0
75

.4
78

.2
78

.7

C
on

ic
+

C
or

re
ct

io
n

54
.5

63
.7

67
.5

70
.0

71
.6

73
.7

57
.5

65
.8

73
.3

79
.7

82
.1

84
.2

71
.2

74
.1

77
.1

78
.1

80
.3

81
.3

C
on

ic
+

Sm
oo

th
ne

ss
55

.9
64

.3
67

.7
70

.2
72

.1
74

.0
64

.9
72

.2
75

.1
80

.1
82

.7
84

.7
71

.1
74

.3
77

.8
78

.6
80

.5
81

.9

Li
ne

ar
49

.0
63

.6
66

.9
68

.9
68

.9
71

.1
18

.9
18

.8
18

.8
17

.5
25

.5
27

.4
69

.4
71

.7
73

.9
74

.8
75

.8
76

.2

Li
ne

ar
+

C
or

re
ct

io
n

56
.8

64
.5

68
.2

70
.1

72
.1

73
.6

65
.5

72
.0

74
.2

78
.1

82
.5

84
.3

69
.4

73
.4

76
.6

77
.7

79
.9

81
.3

Li
ne

ar
+

Sm
oo

th
ne

ss
57

.6
64

.9
68

.7
70

.6
72

.2
74

.1
69

.3
73

.6
75

.2
77

.9
82

.7
84

.8
69

.2
73

.6
76

.9
77

.6
80

.0
81

.8

Li
ne

ar
N

R
P

56
.4

50
.3

51
.0

54
.3

57
.4

58
.4

16
.7

23
.9

25
.7

28
.6

26
.8

29
.0

29
.7

34
.3

35
.0

37
.7

35
.8

35
.9

Li
ne

ar
N

R
P

+
C

or
re

ct
io

n
56

.9
63

.3
68

.9
70

.3
72

.8
74

.2
64

.8
73

.6
75

.6
78

.4
81

.1
82

.3
42

.2
50

.0
54

.2
59

.8
60

.5
70

.3

Li
ne

ar
N

R
P

+
Sm

oo
th

ne
ss

58
.4

64
.5

69
.3

70
.4

72
.9

74
.2

69
.5

74
.2

75
.6

78
.3

81
.4

83
.2

52
.1

52
.2

54
.8

57
.3

60
.0

71
.5

K
nn

(K
ch

oi
ce

by
va

li
da

ti
on

)
57

.7
62

.6
64

.0
68

.8
69

.9
70

.3
61

.7
68

.4
71

.7
73

.1
76

.4
79

.3
71

.6
72

.9
74

.2
76

.7
77

.7
79

.4

K
nn

(K
=

10
)

49
.6

62
.2

67
.3

68
.7

69
.8

70
.7

50
.9

66
.9

70
.7

74
.8

77
.3

78
.9

70
.3

72
.7

74
.6

76
.6

78
.5

79
.5

69

C
it

es
ee

r
C

or
a

W
ik

iC
S

C
la

ss
ifi

er
1%

2%
4%

8%
16

%
32

%
1%

2%
4%

8%
16

%
32

%
1%

2%
4%

8%
16

%
32

%

K
nn

(K
=

10
+

C
or

re
ct

io
n)

56
.6

62
.2

64
.9

66
.8

68
.3

70
.3

68
.3

73
.7

75
.9

79
.4

81
.2

82
.7

72
.4

74
.1

75
.9

78
.0

79
.8

80
.6

K
nn

(K
=

10
+

Sm
oo

th
ne

ss
)

57
.8

62
.9

65
.9

67
.8

69
.5

72
.1

71
.7

75
.2

76
.3

79
.9

82
.4

84
.4

73
.2

74
.6

76
.4

78
.7

80
.4

81
.4

B
as

el
in

e
Sp

ec
tr

al
55

.3
64

.4
67

.8
68

.7
69

.8
70

.9
63

.6
68

.8
71

.5
74

.1
75

.0
76

.0
72

.8
73

.6
74

.9
75

.4
76

.1
76

.3
B

as
el

in
e

Sp
ec

tr
al

(N
o

R
eg

ul
ar

iz
at

io
n)

54
.5

56
.7

65
.0

68
.6

70
.4

71
.1

64
.4

65
.1

71
.0

75
.7

78
.2

78
.3

67
.5

71
.0

75
.0

76
.2

76
.9

77
.0

P
ub

m
ed

A
rx

iv
P

ro
du

ct
s

C
la

ss
ifi

er
1%

2%
4%

8%
16

%
32

%
1%

2%
4%

8%
16

%
32

%
1%

2%
4%

8%
16

%
32

%

C
on

ic
75

.6
75

.4
76

.0
76

.0
76

.6
76

.6
58

.4
60

.5
61

.3
62

.1
62

.4
62

.5
80

.9
80

.9
80

.9
81

.0
-

-

C
on

ic
+

C
or

re
ct

io
n

75
.9

76
.9

78
.2

79
.3

80
.0

80
.9

59
.7

62
.2

64
.5

66
.2

68
.6

70
.4

84
.8

85
.7

86
.3

86
.5

-
-

C
on

ic
+

Sm
oo

th
ne

ss
76

.9
77

.6
78

.8
80

.1
81

.0
82

.3
61

.0
63

.3
65

.4
67

.0
69

.5
71

.3
85

.6
86

.2
86

.8
87

.2
-

-

Li
ne

ar
63

.5
64

.6
63

.4
64

.3
65

.2
64

.0
47

.6
48

.5
49

.0
49

.3
49

.3
49

.4
66

.6
66

.7
66

.6
66

.7
-

-

Li
ne

ar
+

C
or

re
ct

io
n

72
.8

76
.5

79
.0

80
.2

80
.9

81
.6

53
.5

58
.5

63
.2

66
.4

68
.9

70
.7

84
.6

85
.6

86
.6

87
.5

-
-

70

P
ub

m
ed

A
rx

iv
P

ro
du

ct
s

C
la

ss
ifi

er
1%

2%
4%

8%
16

%
32

%
1%

2%
4%

8%
16

%
32

%
1%

2%
4%

8%
16

%
32

%

Li
ne

ar
+

Sm
oo

th
ne

ss
76

.0
77

.7
79

.4
80

.5
81

.4
82

.3
56

.4
61

.0
64

.8
67

.4
69

.6
71

.3
84

.8
85

.7
86

.5
87

.4
-

-

Li
ne

ar
N

R
P

53
.2

53
.6

59
.0

55
.2

58
.8

58
.5

21
.2

26
.5

26
.0

24
.6

25
.8

25
.1

27
.9

28
.7

31
.1

28
.9

-
-

Li
ne

ar
N

R
P

+
C

or
re

ct
io

n
68

.7
75

.9
78

.7
79

.9
80

.7
81

.3
48

.3
57

.4
62

.9
65

.8
68

.1
69

.8
84

.6
85

.3
86

.3
87

.5
-

-

Li
ne

ar
N

R
P

+
Sm

oo
th

ne
ss

76
.0

77
.9

79
.1

80
.0

80
.7

81
.5

53
.2

59
.8

63
.7

66
.0

68
.4

70
.4

83
.7

83
.6

83
.8

85
.0

-
-

K
nn

(K
ch

oi
ce

by
va

li
da

ti
on

)
72

.6
74

.4
74

.8
75

.7
76

.8
77

.9
52

.9
55

.9
58

.5
60

.3
62

.0
63

.6
80

.4
81

.7
82

.8
83

.8
84

.8
85

.8

K
nn

(K
=

10
)

73
.5

74
.7

75
.4

76
.3

77
.3

78
.3

54
.7

57
.3

59
.2

60
.9

62
.6

64
.3

80
.7

81
.9

83
.0

84
.1

85
.0

85
.9

K
nn

(K
=

10
+

C
or

re
ct

io
n)

74
.8

75
.5

76
.8

78
.1

79
.2

80
.2

57
.6

60
.3

62
.7

64
.7

66
.4

68
.2

-
-

-
-

-
-

K
nn

(K
=

10
+

Sm
oo

th
ne

ss
)

76
.0

76
.6

77
.9

79
.4

80
.7

81
.9

59
.5

62
.4

64
.8

66
.8

68
.7

70
.6

-
-

-
-

-
-

B
as

el
in

e
Sp

ec
tr

al
60

.3
60

.6
61

.7
64

.3
67

.1
68

.8
43

.8
45

.4
47

.3
48

.9
50

.2
51

.4
67

.1
69

.4
73

.4
75

.4
76

.5
77

.3
B

as
el

in
e

Sp
ec

tr
al

(N
o

R
eg

ul
ar

iz
at

io
n)

73
.3

73
.4

72
.7

72
.1

71
.6

71
.5

56
.9

58
.7

59
.2

59
.1

59
.2

59
.2

79
.9

79
.9

80
.0

80
.1

80
.1

80
.1

N
ot

e:
T

he
nu

m
be

r
of

di
m

en
sio

ns
is

eq
ua

lt
o

tw
ic

e
th

e
nu

m
be

r
of

cl
as

se
s

by
da

ta
se

t.
By

tr
ai

ni
ng

ra
tio

:
H

ig
he

st
ac

cu
ra

cy
sc

or
e

is
in

bo
ld

fo
nt

,
an

d
to

p
2

to
3

sc
or

es
ar

e
un

de
rli

ne
d.

Fi
ve

-fo
ld

cr
os

s
va

lid
at

io
n

at
20

%
of

tr
ai

ni
ng

da
ta

.
A

re
pr

es
en

ta
tiv

e
se

t
of

a
sin

gl
e

m
em

be
r

fo
r

ea
ch

cl
as

s
is

al
wa

ys
pa

rt
of

tr
ai

ni
ng

da
ta

.
“-

”:
N

ot
av

ai
la

bl
e/

O
ut

-o
f-m

em
or

y.

71

Figure 7.4 Average accuracy score for single-label classification task of the top
three methods in any training ratio and baseline spectral without regularization. (to
accompany table 7.1 - part one)

72

Figure 7.5 Average accuracy score for single-label classification task of the top
three methods in any training ratio and baseline spectral without regularization. (to
accompany table 7.1 - part two)

73

REFERENCES

[1] Noga Alon, Richard M. Karp, David Peleg, and Douglas West. A Graph-Theoretic
Game and its Application to the k-Server Problem. SIAM Journal on
Computing, pages 78–100, 1995.

[2] Arash A. Amini, Aiyou Chen, Peter J. Bickel, and Elizaveta Levina. Pseudo-likelihood
Methods for Community Detection in Large Sparse Networks. Ann. Statist.,
41(4):2097–2122, 2013.

[3] Sugato. Basu, Ian Davidson, and Kiri Lou. Wagstaff. Constrained Clustering:
Advances in Algorithms, Theory, and Applications. Boca Raton, FL: Chapman
& Hall/CRC, 1 edition, 2008.

[4] Joshua Batson, Daniel A. Spielman, Nikhil Srivastava, and Shang-Hua Teng. Spectral
Sparsification of Graphs: Theory and Algorithms. Communications of the
ACM, 56(8):87–94, 8 2013.

[5] Marcin Bienkowski, Miroslaw Korzeniowski, and Harald Räcke. A Practical Algorithm
for Constructing Oblivious Routing Schemes. In Proceedings of the Fifteenth
Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA ’03,
pages 24–33, New York, NY, USA, 2003.

[6] Erik G Boman and Bruce Hendrickson. Support Theory for Preconditioning. SIAM
J. Matrix Anal. Appl., 25(3):694–717, 2003.

[7] Paul L. Chew. There Are Planar Graphs Almost as Good as the Complete Graph.
Journal of Computer and System Sciences, (39):205–219, 1989.

[8] Fan Chung. Spectral Graph Theory. American Mathematical Society, cbms regio
edition, 1997.

[9] Adrian Corduneanu and Tommi Jaakkola. On Information Regularization.
Proceedings of the Nineteenth Conference on Uncertainty in Artificial
Intelligence, pages 151–158, 2003.

[10] Mihai Cucuringu, Ioannis Koutis, Sanjay Chawla, Gary L. Miller, and Richard Peng.
Simple and Scalable Constrained Clustering: A Generalized Spectral Method.
In Proceedings of the 19th International Conference on Artificial Intelligence
and Statistics, AISTATS 2016, pages 445–454, 2016.

[11] Wilm E. Donath and Alan J. Hoffman. Algorithms for Partitioning Graphs and
Computer Logic based on Eigenvectors of Connection Matrices. IBM Technical
Disclosure Bulletin, 15(3):938–944, 1972.

74

[12] David Durfee, Rasmus Kyng, John Peebles, Anup B. Rao, and Sushant Sachdeva.
Sampling Random Spanning Trees Faster Than Matrix Multiplication. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, pages 730–742, New York, NY, USA, 2017. ACM.

[13] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
LIBLINEAR: A Library for Large Linear Classification. 9:1871–1874.

[14] Miroslav Fiedler. Algebraic Connectivity of Graphs. Technical Report 98, 1973.

[15] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., USA, 1990.

[16] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Baltimore, MD:
The Johns Hopkins University Press, 3 edition, 1996.

[17] Keith D. Gremban. Combinatorial Preconditioners for Sparse, Symmetric, Diagonally
Dominant Linear Systems. PhD thesis, 1996.

[18] Aditya Grover and Jure Leskovec. Node2Vec: Scalable Feature Learning for Networks.
In Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16, pages 855–864, New York,
NY, USA, 2016. ACM.

[19] Stephen Guattery and Gary L. Miller. On the Quality of Spectral Separators. SIAM
Journal on Matrix Analysis and Applications, 19(3):701–719, 7 1998.

[20] Zellig S Harris. Distributional Structure. Distributional Structure, WORD, 10(3):146–
162, 1954.

[21] Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R. Benson.
Combining Label Propagation and Simple Models Out-performs Graph Neural
Networks. Computing Research Repository, 2020.

[22] Antony Joseph and Bin Yu. Impact of Regularization on Spectral Clustering. Ann.
Statist., 44(4):1765–1791, 2016.

[23] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On Clusterings: Good, Bad and
Spectral. Journal of the ACM, 51(3):497–515, 2004.

[24] Micahel Kapralov and Rina Panigraphy. Spectral Sparsification via Random Spanners.
In Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference, volume ITCS’12, pages 393–398, New York, New York, USA, 2012.
ACM.

[25] Jonathan A Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An Almost-
linear-time Algorithm for Approximate Max Flow in Undirected Graphs, and
Its Multicommodity Generalizations. In Proceedings of the Twenty-fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’14, pages 217–226,
Philadelphia, PA, USA, 2014. Society for Industrial and Applied Mathematics.

75

[26] Andrew V. Knyazev. Toward the Optimal Preconditioned Eigensolver: Locally
Optimal Block Preconditioned Conjugate Gradient Method. SIAM Journal
on Scientific Computing, 23(2):517–541, 2001.

[27] Ioannis Koutis and Gary L. Miller. Graph Partitioning into Isolated,
High Conductance Clusters: Theory, Computation and Applications to
Preconditioning. In Symposiun on Parallel Algorithms and Architectures
(SPAA), 2008.

[28] Ioannis Koutis, Gary L. Miller, and Richard Peng. A Nearly-m Log N Time Solver
for SDD Linear Systems. In Proceedings of the 2011 IEEE 52Nd Annual
Symposium on Foundations of Computer Science, FOCS ’11, pages 590–598,
Washington, DC, USA, 2011. IEEE Computer Society.

[29] Ioannis Koutis, Gary L. Miller, and Richard Peng. A Fast Solver for a Class of Linear
Systems. Communications of the ACM, 55(10):99–107, 10 2012.

[30] Ioannis Koutis, Gary L. Miller, and David Tolliver. Combinatorial Preconditioners
and Multilevel Solvers for Problems in Computer Vision and Image Processing.
115(12):1638–1646.

[31] Ioannis Koutis and Shen Chen Xu. Simple Parallel and Distributed Algorithms for
Spectral Graph Sparsification. ACM Transactions on Parallel Computing,
3(2):14:1–14:14, 8 2016.

[32] James R. Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway Spectral
Partitioning and Higher-Order Cheeger Inequalities. ACM, 61:37:1–37:30,
2014.

[33] Bruce M. Maggs, Gary L. Miller, Ojas Parekh, R. Ravi, and Shan Leung Maverick
Woo. Finding Effective Support-tree Preconditioners. In Proceedings of the
17th Annual ACM Symposium on Parallel Algorithms, pages 176–185, 2005.

[34] Hrushikesh N. Mhaskar and Tomaso Poggio. Deep vs. Shallow networks: An
Approximation Theory Perspective. Analysis and Applications, 14(6):829–848,
2016.

[35] Guido F. Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On
the Number of Linear Regions of Deep Neural Networks. In Z Ghahramani,
M Welling, C Cortes, N Lawrence, and K Q Weinberger, editors, Advances in
Neural Information Processing Systems, volume 27. Curran Associates, Inc.,
2014.

[36] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On Spectral Clustering: Analysis
and an algorithm. In Advances in Neural Information Processing Systems 14
[Neural Information Processing Systems: Natural and Synthetic, {NIPS} 2001,
December 3-8, 2001, Vancouver, British Columbia, Canada], pages 849–856.

76

[37] Richard Peng. Approximate Undirected Maximum Flows in O(Mpolylog(N)) Time. In
Proceedings of the Twenty-seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’16, pages 1862–1867, Philadelphia, PA, USA, 2016. Society
for Industrial and Applied Mathematics.

[38] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: Online Learning
of Social Representations. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD
’14, pages 701–710, New York, NY, USA, 2014. ACM.

[39] Philipp Petersen and Felix Voigtlaender. Optimal Approximation of Piecewise
Smooth Functions using Deep ReLU Neural Networks. Neural Networks,
108:296–330, 2018.

[40] Tomaso Poggio, Andrzej Banburski, and Qianli Liao. Theoretical Issues in Deep
Networks. Proceedings of the National Academy of Sciences, 117(48):30039–
30045, 2020.

[41] Tai Qin and Karl Rohe. Regularized Spectral Clustering Under the Degree-Corrected
Stochastic Blockmodel. In Proceedings of the 26th International Conference on
Neural Information Processing Systems - Volume 2, NIPS’13, pages 3120–3128,
USA, 2013. Curran Associates Inc.

[42] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network
Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and
node2vec. In Proceedings of the Eleventh {ACM} International Conference on
Web Search and Data Mining, {WSDM} 2018, Marina Del Rey, CA, USA,
February 5-9, 2018, pages 459–467, 2018.

[43] Harald Räcke. Minimizing Congestion in General Networks. In Proceedings of the
43rd Symposium on Foundations of Computer Science, pages 43–52. IEEE,
2002.

[44] Harald Räcke, Chintan Shah, and Hanjo Täubig. Computing Cut-based Hierarchical
Decompositions in Almost Linear Time. In Proceedings of the Twenty-fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’14, pages
227–238, Philadelphia, PA, USA, 2014. Society for Industrial and Applied
Mathematics.

[45] Jianbo Shi and Jitendra Malik. Normalized Cuts and Image Segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 8
2000.

[46] Daniel A. Spielman and Nikhil Srivastava. Graph Sparsification by Effective
Resistances *. Technical report, 2009.

[47] Daniel A. Spielman and Shang-Hua Teng. Spectral Partitioning Works: Planar
Graphs and Finite Element Meshes. Linear Algebra and its Applications,
421:284–305, 2007.

77

[48] Daniel A. Spielman and Shang-Hua Teng. Spectral Sparsification of Graphs. SIAM
Journal on Computing, 40(4):981–1025, 2011.

[49] Gilbert W. Stewart and Ji-Guang Sun. Matrix Perturbation Theory. Academic Press,
1990.

[50] Martin Szummer and Tommi Jaakkola. Information regularization with partially
labeled data. In Advances in Neural Information Processing Systems, 2003.

[51] Jian Tang, Meng Qu, and Qiaozhu Mei. PTE: Predictive Text Embedding through
Large-scale Heterogeneous Text Networks. Computing Research Repository,
abs/1508.0, 2015.

[52] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. LINE:
Large-scale Information Network Embedding. Computing Research Repository,
abs/1503.0, 2015.

[53] Luca Trevisan. Graph Partitioning and Expanders Lecture, 2011.

[54] Ulrike von Luxburg. A Tutorial on Spectral Clustering. Computing Research
Repository, abs/0711.0, 2007.

[55] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural Deep Network Embedding.
In Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, volume 13-17-Augu, pages 1225–1234, 2016.

[56] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised Deep Embedding for
Clustering Analysis. In Proceedings of the 33rd International Conference on
International Conference on Machine Learning - Volume 48, ICML’16, pages
478–487. JMLR.org, 2016.

[57] Yilin Zhang and Karl Rohe. Understanding Regularized Spectral Clustering via
Graph Conductance. In S Bengio, H Wallach, H Larochelle, K Grauman,
N Cesa-Bianchi, and R Garnett, editors, Advances in Neural Information
Processing Systems 31, pages 10631–10640. Curran Associates, Inc., 2018.

[58] Xiaojin Zhu. Semi-Supervised Learning Literature Survey. European Space Agency,
(Special Publication) ESA SP, 2(604):607–608, 2006.

78

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Research Contributions and Key Applications
	Chapter 3: Background
	Chapter 4: Cheeger Inequalities for Spectral Maximizers
	Chapter 5: A Spectral Modification Algorithm Framework
	Chapter 6: Implementation and Experiments
	Chapter 7: Semi-Supervised Spectral Clustering Boosted By Deep Neural Network
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

