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ABSTRACT

ELECTRIC FIELD INDUCED SELF-ASSEMBLY OF MESOSCALE
STRUCTURED MATERIALS AND SMART FLUIDS

by
Suchandra Das

This dissertation aims to study the forces that drive self-assembly in binary mixtures

of particles suspended in liquids and on fluid-liquid interfaces when they are subjected

to a uniform electric or magnetic field. Three fluid-particle systems are investigated

experimentally and theoretically : (i) Suspensions of dielectric particles in dielectric

liquids; (ii) Suspensions of ferromagnetic and diamagnetic particles in ferrofluids;

and (iii) Dielectric particles on dielectric fluid-liquid interfaces. The results of these

studies are then used to estimate the parameter values needed to assemble materials

with desired mesoscale microstructures.

The first fluid-particle system studied is an electrorheological (ER) fluid formed

using a mixture of positively and negatively polarizable particles. An important

property of ER fluids is that their rheological properties can be modified on demand,

within a few milliseconds, by applying an external electric field. Then, after the field

is switched off, they go back to their original state. However, if only positively or

negatively polarizable particles are used, the distribution of particles will fragment

into chains and columns. Experimental results show that if a suitable mixture of

positively and negatively polarized particles is used for making the ER fluid, the

particle chains come closer, and the volume they occupy decreases. These results

agree with the direct numerical simulations (DNS) based on the Maxwell Stress Tensor

(MST) and point dipole methods. The application of the electric field results in the

formation of a closely packed three-dimensionally connected structure. The influence

of varying the electric field intensity, particle size, polarizabilities, and number ratio

are characterized in terms of the extent of connected pattern formation which is



obtained numerically and the experimentally measured yield stress. The yield stress

for an ER fluid formed using a particle mixture is larger than that for an ER fluid

containing only one type of particles and is maximum for a critical volume fraction.

The second problem studied is the magnetorheological fluids (MR) formed using

mixtures of micron-sized iron and glass particles in a liquid. The rheological behavior

of MR and ER fluids is similar. For example, when an external magnetic field is

applied to a MR fluid, the particles are magnetized and rearrange relative to one

another, which modifies its rheological properties almost instantly. Also, when only

one type of particles is used to prepare MR fluids, i.e., either positively or negatively

magnetized particles, the particle distribution becomes fragmented into chains and

columns. If a suitable mixture of positively and negatively magnetized particles

is used, individual particle chains of one type attract the other type, creating a

band with no gaps. This results in the formation of a closely packed connected

structure. The MR fluids’ yield stress behavior is experimentally investigated, formed

by suspending mixtures of ferromagnetic and diamagnetic particles in ferrofluids

(FF), which show that the yield stress is maximum when the volume fraction of

ferromagnetic particles is around sixty percent. The rheological response of MR fluids

depends on parameters such as the particles’ concentration, magnetic susceptibilities

of the suspending liquid, and the applied magnetic field intensity.

The third problem investigated is that of making UV-cured thin films with

embedded monolayers of gold particles on their surfaces. This is achieved by self-

assembly of gold nanoparticles on a UV curable liquid’s surface by applying an electric

field normal to the surface. The substrates are then used for Surface-Enhanced Raman

Scattering (SERS) applications. The experimental results show that the substrates’

performance depends on the particle concentration and the inter-particle distance.

The laboratory-built substrates are found to be more efficient than the commercial

SERS substrates.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

This dissertation aims to model the inter-particle forces that drive the self-assembly in

binary mixtures of micron to nano-sized particles in suspensions and on a fluid-liquid

interface when they are subjected to an external electric or magnetic field. The force

models would improve our ability to design the desired microstructural arrangement

and thus help in developing efficient bottom-up approaches to manufacture macroscale

structures from mesoscale particles. Three problems were investigated to model the

interaction amongst particles and manipulate particles’ self-assembly process using

electric and magnetic fields.

When an external electric or magnetic field is applied to a mixture of

positively and negatively polarizable or magnetizable particles in our laboratory-built

fluid-particle suspensions, a closely packed structure was formed due to which the

rheological behavior was modified e.g., the viscosity was increased. Therefore, the

yield stress increased. The increase in the yield stress occurs due to the formation of

a well-connected structure without gaps in between particle chains and is higher

compared to the traditional fluid-particle suspensions studied in literature. The

behavior of the prepared suspensions and a comparison with the already existing

suspensions are discussed under sub-sections 1.1.1-1.1.2.

When an external electric field was applied in a normal direction to a

fluid-liquid interface, gold nanoparticles trapped at the interface self-assembled

to form monolayers. The electric field-induced particle monolayers do not have

shortcomings in comparison to the capillary-induced particle monolayers; there are

no voids, there is long-range order, hierarchical arrangement is possible and the
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interparticle spacing can be adjusted by varying the electric field intensity. In our

experiments, 600 nm gold particles were used for forming monolayers to obtain

different particle arrangements on thin films. The films embedded with gold particle

monolayers were used to prepare substrates for Surface Enhanced Ramana Scattering

(SERS) applications. The experimental results show that the performance of our

laboratory-built substrates containing varying concentrations of gold nanoparticles

was better, indicating a stronger SERS effect than a commercial SERS substrate and

the substrates studied in the past. Our substrates are 6.75 times more efficient per

gold particle compared to the commercial substrates. It is also found that 46% of the

substrates’ surface area was covered with gold particles which is another reason for

the observed enhancement.This is discussed in detail under sub-section 1.1.3.

1.1.1 Electrorheological Fluids

The first problem investigated is to form an improved electrorheological fluid

using a mixture of positively and negatively polarizable particles. ER fluids have

various applications because their rheological properties can be modified almost

instantaneously (within a few milliseconds) by applying an electric field. The

magnitude of the change in properties depends on the electric field’s intensity, and

the properties go back to their original values when the field is switched off; hence

they are called smart fluids. This tunable and quick rheological response on demand

makes them highly desirable in various industrial applications, e.g., valves, clutches,

and damping devices. When an electric field is applied, particles become polarized

and aligned along the electric field direction due to dipole-dipole interaction. This

results in the formation of chain-like structures that increase the ER suspension’s

viscosity. This behavior is shown in Figure 1.1.
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Figure 1.1 ER fluid suspension containing a mixture of dielectric particles (beige
spherical spheres) suspended in a dielectric liquid in a device with top (positive) and
bottom (negative) electrodes when an electric field is applied in a vertical direction.
(a) Initial random distribution of particles before the electric field was applied (b)
Particles aligned and form chain-like structures upon application of an electric field.

The above approach can also be employed to self-assemble materials with

mesoscale patterns from a suspension of microparticles (nano- to micron-sized

particles). The existing bottom-up manufacturing capabilities are limited because

of the absence of inter-particle forces between electrically neutral and nonmagnetic

particles that can cause them to self-assemble. At atomic and molecular scales,

self-assembly is driven by electrostatic charges, which occur spontaneously. However,

the importance of Coulomb forces decreases with increasing particle size—and so an

alternate mechanism is needed to make microparticles self-assemble. Advances in

particle syntheses, microscopy, and parallel computing have allowed us to explore

alternate interaction mechanisms among microparticles, which can be exploited to

guide their self-assembly into macroscopic structures.

In recent years, several mechanisms that give rise to inter-particle forces which

drive the self-assembly process have been considered, such as capillarity, anisotropy in

shape [1, 2, 3], steric [4] and entropic effects [5], and dipolar and magnetic interactions

[6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. This area

of research has attracted enormous interest because the ability to manipulate the

force between micron and nano-sized particles can be exploited to achieve our goal of
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the bottom-up fabrication of materials with organized structures and patterns using

larger microparticles [7, 10, 12]. It would also be helpful in other applications such

as for creating smart materials whose properties can be tuned, on-demand, by an

external stimulus [17, 19].

Inter-particle forces that arise due to the application of an external electric

field [12] have also been considered for self-assembly. In fact, they are routinely

used in electrorheology [6, 8, 9, 11, 13, 15], where the goal is not self-assembly but

rather to obtain changes in rheological properties (suspension viscosity) by modifying

microstructure. Specifically, in response to the applied electric field, the particles of

electrorheological (ER) suspensions polarize, and their dipole moments align with the

field direction, which causes the particles to form chains and columns to resist shear.

The problem in applying the electric field technique to direct self-assembly in

ER fluid mixtures containing only one type of particles is that the dipole-dipole force

is attractive only when the line joining the particle centers is aligned predominantly

along the field direction. When the line joining the particle centers is perpendicular

to the applied field’s direction, the force is repulsive, which causes the particle

distribution to fragment into chains and columns [12], as shown in Figures 1.2 and

1.3. This chain/column formation was first reported by Winslow [20]. A recurring

observation in many subsequent studies has been that particles do not pack closely

in planes normal to the field. Specifically, although particles organize in chains and

columns, there are particle-free regions in between them. This technique, therefore,

does not meet the key requirement of a bottom-up fabrication technique as it cannot

bring the particles together in both the field direction and the perpendicular plane.
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Figure 1.2 Fragmentation in ER Fluid; (a) Top view of the arbitrary initial
configuration of an ER fluid (b) The application of an electric field caused the particles
to form chains and columns. The chains and columns moved away from each other
creating particle-free regions.

Figure 1.3 Fragmentation in a periodic ER Fluid. (a) The dipoles for positively
polarized particles are created in the direction of the electric field when the applied
field is horizontal (b) Attraction and repulsion between particles in the parallel and
perpendicular direction to the field, respectively.
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Our goal is to form an electrorheological fluid consisting of both positively and

negatively polarized particles so that they self-assemble to create a fully connected

structure without the occurrence of particle chain fragmentation when an electric field

is applied. The adopted approach is discussed in detail in Chapter 1.

1.1.2 Magnetorheological Fluids

The second problem studied in this dissertation is that of forming a magnetorhe-

ological fluid (MR) that contains a mixture of positively magnetized micron-sized

iron particles and negatively magnetized glass particles in a ferrofluid. MR Fluids

have diverse applications in the engineering field and in medical, biological, and

technological domains due to their properties of retention in a magnetic field, heat

transfer, capability of reducing friction, and modified physical properties when a

magnetic field is applied. The applications have resulted in the development of

state-of-the-art mechanical devices and opened new research areas. Technological

applications include sealing [27], heat dissipation, and damping [28]. Biomedical

areas can benefit from MR fluid properties in magnetic drug targeting consisting of

carrying medications to exact locations within the body [29], magnetic separation

of cells, and as a contrasting agent for Magnetic Resonance Imaging [30]. When a

magnetic field is applied to an MR fluid, suspending particles acquire a magnetic

moment and align along the magnetic field direction. This causes the particles to

rearrange relative to one another, resulting in the formation of chain- and column-like

structures, which modify their rheological properties. Particle chain formation in a

magnetic field occurs due to magnetic dipole-dipole interaction.

Recent studies show that bidisperse MR fluids present an enhanced viscosity

with increasing particle concentration, and particles show repulsion at closer distances

[31, 32, 33]. Diamagnetic (DM) particles suspended in a ferrofluid, which are

used for forming Inverse Magnetorheological Fluid, shows clusters of ferromagnetic
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(FM) particles around a single particle chain of DM particles and shows particles’

fragmentation into chains and columns. The fact that these field-induced columns do

not combine to form a connected cluster, including when a surface pattern is used to

guide their assembly [23], indicates that the forces among them are not attractive.

Again, as for an electric field, the problem in using a magnetic field to direct

self-assembly in the MR fluid mixtures containing only one type of particles is that

the magnetic dipole-dipole interaction force is attractive only when the line joining

the particle centers is aligned predominantly along the field direction. When the line

joining the particle centers is perpendicular to the applied field’s direction, the force is

repulsive, which causes the particle distribution to fragment into chains and columns,

as shown in Figure 1.4.

Figure 1.4 A sketch showing the behavior of an MR suspension consisting of
ferromagnetic particles in a periodic arrangement under the application of a magnetic
field. Ferromagnetic particles (dark gray spheres) acquire magnetic moments which
are aligned with the magnetic field. Particles attract each other when they aligned
parallel to the field direction and repel, when aligned in perpendicular direction.

Our aim is to investigate the microstructural and the yield stress changes in

MR fluids formed by suspending mixtures of ferromagnetic and diamagnetic particles

in a ferrofluid with varying particle concentrations so that the distribution does not

get fragmented into chains and columns. The adopted approach is discussed in detail

in Chapter 2.
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1.1.3 Particle Embedded Films

The third problem investigated in this dissertation is that of making UV-cured thin

films with embedded monolayers of gold particles on their surfaces. This is achieved

by self-assembly of gold nanoparticles on a UV curable liquid’s surface by applying an

electric field normal to the surface. The substrates are then used for Surface-Enhanced

Raman (SERS) applications.

The phenomenon of self-assembly of particles at fluid-liquid interfaces can be

understood by the simple example of clustering of breakfast cereal flakes on the surface

of milk. When particles are sprinkled on a liquid surface, lateral capillary forces arise,

causing the particles to cluster together. In recent years, clustering of particles in

fluid-liquid interfaces has drawn much attention because the particles’ self-assembly

process can be utilized to form microstructures. This fabrication method of forming

microstructural monolayers possesses the capability to form clusters of hierarchical

patterns which have a range of applications, e.g., pollination in hydrophilous plants

[34], clustering of insect eggs [35, 36], dispersion of proteins [37], and separation of

ink and toner particles [38]. In addition, applications of thin films with embedded

patterns of particles using self-assembly techniques [39] are widespread in industry,

e.g., they are utilized for making photomasks, porous membranes with precise pore

size which can be used for drug delivery, and substrates for SERS. SERS applications

include cell and tissue-based analysis in life sciences, quality control and counterfeit

detection in the pharmaceutical industry, security (detection of explosives), forensics,

food safety, and biomolecular identification [40].

However, capillary-induced monolayers formed this way have defects, lack long-

range order, their lattice spacing is not adjustable, and the formation of hierarchical

structures is not possible, as shown in Figure 1.5. Moreover, lateral capillary forces

are too small to move small micron and nano-sized particles to form self-assembled

patterns.
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Figure 1.5 Top view of a monolayer of a mixture of plastic and glass beads clustered
on a liquid surface. Monolayers by capillary assembled by capillary forces show voids,
the lattice lacks order, and the lattice spacing cannot be adjusted.

We present a technique of formation of monolayers that overcomes the

aforementioned shortcomings. In our technique, an electric field is applied normal to

the interface that drives the self-assembly process of particles to form monolayers. The

monolayers formed using this technique have improved properties such as adjustable

lattice spacing, defect-free, and long-range order. They are then embedded on thin

films which are used as substrates for Surface-Enhanced Raman Scattering (SERS)

technique.

A similar procedure was followed for forming thin films with embedded electric

field-induced self-assembled monolayers of gold nanoparticles. Figure 1.6 shows the

thin films embedded with particles having different arrangements with adjustable

lattice spacing. Our method produces uniform surface patterns of metallic particles,

which is rapid and cost-effective. The experimental results show that the substrates’

performance depends on the particle concentration and the inter-particle distance. We

found that the laboratory-built substrates to be more efficient than the commercial

SERS substrates.
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Figure 1.6 Thin films embedded with micron- and nano-sized particles. Monolayers
formed by self-assembly under the application of electric field enable us to get different
types of particle arrangements with adjustable lattice spacing.

1.2 Background: Self-Assembly and Governing Equations

1.2.1 Electric Field-Induced Forces

In an electric field, dielectric particles suspended in a dielectric liquid interact with

each other by dipole-dipole forces to form clusters of patterns. The dipole-dipole

interaction can be understood by point-dipole (PD) approximation of the forces acting

on particles when a uniform electric field is applied (Figure 1.7). According to this

approximation, the interaction force on a spherical particle i due to another particle

j is given by the following equation [13, 41]:

FD(r, θ) = 12πε0εcβiβjE
2
0

(aiaj)
3

r4
((3 cos2 θ − 1)er + sin 2θeθ) (1.1)

Figure 1.7 Point-dipole (PD) approximation. The angle θ between the electric field
direction and er for two particles i and j under the application of an electric field.

Here, er = rj−ri
|rj−ri| is the unit vector along the line joining the centers of the

spheres, eθ is a unit vector normal to er in the plane containing the electric field
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direction, and θ is the angle between the electric field direction and er. Here r =

|rj − ri| is the distance between the particles, E0 is the electric field intensity, ε0 =

8.8542 × 10−12 F/m is the permittivity of free space, ai and aj are the radii of the

two particles and βi(ω) = Re( ε∗π−ε∗c
ε∗π+2ε∗c

) is the Clausius-Mossotti (CM) factor of the

ith particle. Here ε∗pi and ε∗c are the frequency-dependent complex permittivities of

the ith particle and the suspending liquid, respectively. The complex permittivity is

ε∗ = ε − jσ
ω

, where ε is the permittivity, σ is the conductivity, ω is the frequency of

the applied ac field and j =
√
−1. Chain formation in the presence of an electric field

can be understood by Figure 1.8. Particles attract each other when they are aligned

parallel to the electric field direction, as shown in Figure 1.8(a). However, they repel

when aligned perpendicular to the electric field direction, as shown in Figure 1.8(b).

Figure 1.8 Dipole-dipole interaction between two particles. (a) Particles attract
when θ = 0◦. (b) Particles repel when θ = 90◦.

The point-dipole approximation accuracy decreases when the distance between

particles is small since the model assumes the particle distance to be much larger

than their radii. The direct numerical simulations method based on the Maxwell

stress tensor (MST) approach is adopted to improve accuracy. As per the MST

model, the Maxwell stress tensor is obtained by Equation (1.2). The electric force

acting on a particle is then obtained by integrating MST on the particle surface as

given by Equation (1.3).
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σM = εEE− 1

2
ε(E.E)I (1.2)

FE =
∫
∂Pi

σM .n ds (1.3)

1.2.2 Magnetic Field-Induced Forces

When particles with magnetic properties are suspended in a suitable carrier liquid,

they interact to form clusters because of magnetic dipole-dipole forces which occur

when a magnetic field is applied. In an MR fluid containing a mixture of diamagnetic

and ferromagnetic particles, alternating bands of chains of both types of particles are

formed [11]. In the point dipole limit, the magnetic moment acquired by a particle

of relative permeability µP in an external magnetic field H0 is given by:

m = 3µfβpVH0 (1.4)

where V is the particle volume, µf represents the relative magnetic permeability

of the carrier medium and βP =
µP−µf
µP+2µf

represents the Clausius-Mossotti factor or

the magnetic contrast factor42. For diamagnetic particles, µP = 1, which makes their

β < 0. However, β → 1 for ferromagnetic particles as µP >> 1. µf > 1 for ferrofluids

and can be varied by varying the fluid concentration. Therefore, the diamagnetic

particles have their magnetic moments opposite to the direction of the magnetic field,

and the ferromagnetic particles acquire magnetic moments in the direction of the

field. The dipole-dipole interaction force acting on a particle i due to another particle

j is given by [42]:

Fij =
µ0

4πµf

{
3
mimj

r5
r +

3

r5
[(mi.r)mj + (mj.r)mi]−

15

r7
(mi.r)(mj.r)r

}
(1.5)
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Here, mi and mj are the magnetic moments of particles i and j, respectively,

µ0 is the magnetic permeability of vacuum, and r is a vector connecting the center

of two adjacent particles. When the line joining the particle centers is parallel to

the magnetic field direction, the interaction force is attractive and becomes repulsive

when it is perpendicular to the field as shown in Figure 1.9.

Figure 1.9 MR fluid behavior consisting of ferromagnetic particles under the
application of a magnetic field. (a). The net force between two particles is attractive
when the line joining the particle centers is parallel to the applied magnetic field. (b)
The net force is repulsive when the line joining the particle centers is perpendicular
to the field direction.

1.2.3 Particles at Fluid-Liquid Interfaces

This section describes the self-assembly process of particles at fluid-liquid interfaces.

A particle can float on a fluid-liquid interface because the deformation of the interface

(shown in Figure 1.10) gives rise to a capillary force in the direction normal to the

interface such that it can balance the particle’s buoyant weight. However, for small

particles with a size less than ∼10 microns, only a small deformation of the interface is

sufficient for the capillary force’s vertical component to balance the particle’s buoyant

weight [43]. This results in a very small lateral capillary force which is not large

enough to move the particles.
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Figure 1.10 Deformed interface.

The deformation of the interface gives rise to lateral capillary forces as

well, which causes two neighboring floating particles to form clusters. When two

hydrophobic spheres are close to each other, the deformed interface around the spheres

is not symmetric because the interface height between the spheres is lowered by the

capillary force, as shown in Figure 1.11. The lateral component of the interfacial

tension is attractive, which makes the spheres cluster. The same is true for two

hydrophilic spheres [44].

Figure 1.11 Two particles floating on a liquid surface attract each other because
of lateral capillary forces.

The contact angle at the line of contact of three phases- solid, liquid, and gas

plays a crucial role in determining the vertical force component because of which a

heavier particle is able to float, as shown in Figure 1.12. The contact angle is given

by Young-Dupré equation:
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γ cosα = γPG − γPL (1.6)

Here, γ is the surface tension of the liquid, α is the contact angle, and γPG

and γPL are the interfacial energies between solid and gas, and solid and liquid,

respectively.

Figure 1.12 Schematic of a heavier than liquid hydrophilic (wetting) sphere of
radius a hanging on the contact line at θc. The point of extension of the flat meniscus
on the sphere determines the angle θ1, and h2 is defined as h2 = R(cos θc − cos θ1).
The angle α is fixed by the Young Dupré law and θc by the force balance.

The vertical component of the capillary force is given by:

Fc = −2πRγ sin θc sin(θc + α) (1.7)

Here, R is the particle radius, γ is the surface tension coefficient, θc is the filling

angle, and α is the contact angle. Fc depends on all these parameters. The above

equation is true for hydrophobic and hydrophilic cases, i.e., for all contact angle

values. The buoyant weight of a particle is given by:
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Fb = −gρLR3fb(
ρa
ρL
,
ρp
ρL
, θc,

h2
R

) (1.8)

Here, g is the acceleration due to gravity, ρP is the particle density, ρa is the

density of the upper fluid, ρL is the density of the lower fluid, and fb is a dimensionless

function of ρa
ρL
, ρp
ρL
, θc and h2

a
. For a small particle having radius R, the buoyant weight

becomes negligible as it scales as R3. This means a small interfacial deformation is

required for the vertical capillary force, which scales as R, to balance the buoyant

weight.

In our technique, the application of an electric field normal to the fluid-liquid

interface gives rise to lateral dipole-dipole forces, which can be attractive or repulsive

depending on the particle polarizabilities. These forces can be adjusted by selecting

suitable liquids. When two particles are of the same type having the same sense of

polarizabilities, i.e., both positive or negative, they repel. However, particles attract

each other when they are of different types and have the opposite polarizabilities,

i.e., one positive and one negative. The clustering of particles can be manipulated by

varying the electric field intensity. The electric field gives rise to a vertical electric force

that enhances the buoyant weight, and therefore, the lateral capillary force between

the particles is greater. Consequently, particles come together to form clusters.

Lateral forces on particles. When an electric field is applied normal to a

fluid-liquid interface, the total lateral force Fl between two particles, i and j adsorbed

at the interface, is given by:

Fl = −wiwj
2πγ

1

r
+

3pipj
4πε0εL

1

r4
(1.9)
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Here, wi is the vertical force acting on the ith particle, pj is the induced dipole

moment of jth particle, ε0 is the permittivity of free space, εL is the permittivity of

the lower liquid, g is the interfacial tension, r is the distance between the particles.

The induced moments of the particles, pi and pj can be adjusted by selecting

suitable fluids. The first term in Equation (1.9) shows the lateral capillary force

which arises as a result of the total vertical force acting on the particles, which

includes vertical electric forces and particles’ buoyant weight. The second term is the

attractive or repulsive dipole-dipole force between particles which can be understood

from Figure 1.13. Both of these terms depend on the electric field intensity.

Figure 1.13 Dipole-dipole forces acting between two particles. (a) The force is
repulsive when particles are of the same type having the same polarizabilities. (b)
The force is attractive when particles have opposite polarizabilities.

Vertical forces on a particle. When an electric field is applied normal to a

fluid-liquid interface, the particle’s vertical position in equilibrium is determined by

the condition of the sum of the forces acting on the particle being zero such that the

buoyant force balances the capillary force, i.e., Fc + Fb = 0

1.3 Dissertation Organization

Chapter 2 discusses the self-assembly process of suspensions of dielectric particles

in dielectric liquids. We showed that the problem of fragmentation of particles into

chains and columns can be overcome by using a mixture of positively and negatively

polarized particles, when an electric field was applied.
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In Chapter 3, inter-particle forces that drive self-assembly in suspensions of

ferromagnetic and diamagnetic particles in ferrofluids were studied. The mechanism

that determines particles’ distribution upon application of a magnetic field is

analogous to the fluid-particle system as discussed in Chapter 2.

Chapter 4 investigates the behavior of dielectric particles on dielectric fluid-

liquid interfaces. The problem consists of making UV-cured thin films with embedded

monolayers of self-assembled gold particles on their surfaces. The substrates were then

used for Surface-Enhanced Raman (SERS) applications.

Chapter 5 presents the dissertation summary and conclusion.
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CHAPTER 2

DIRECTED SELF-ASSEMBLY OF SUSPENSIONS INTO COHESIVE
HIERARCHICAL PATTERNS

The ability to create new macroscopic structures by assembling microscopic particles

remains mostly undeveloped in part because of the inability of the currently available

techniques to make assemblies of uncharged nonmagnetic microscopic particles of two

or more different types. It is demonstrated that this shortcoming can be overcome

if the application of an external electric field causes the particles of one kind to

become positively polarized and of the second kind negatively. Experimental and

direct numerical simulation results show that the resulting dipolar forces amongst

the particles can cause them to rearrange to form hierarchical cohesive patterns

spontaneously in which they attract their nearest neighbors. The polarization

requirements can be met by suspending particles in a suitable liquid medium and

selecting an appropriate electric field frequency as the complex permittivities of

different types of particles are different. Furthermore, it is possible to tailor the

assembled hierarchical macrostructure to create materials with new microscopic

patterns by varying parameter values. This inter-particle forces driven assembly,

which is analogous to the process by which complex macromolecules assemble

from atoms, advances our state-of-the-art of bottom-up manufacturing utilizing

microscopic particles.

2.1 Introduction

The existing bottom-up manufacturing capabilities employing nano to micron-sized

particles (microparticles) are limited because of the absence of inter-particle forces

between electrically neutral and nonmagnetic particles that can cause them to

self-assemble. At atomic and molecular scales, self-assembly is driven by electrostatic

charges, which occurs spontaneously. However, the importance of coulomb forces
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decreases with increasing particle size—and so an alternate mechanism is needed

to make microparticles self-assemble. Advances in particle syntheses, microscopy,

and parallel computing have allowed us to explore alternate interaction mechanisms

among microparticles, which can be exploited to guide their self-assembly into

macroscopic structures.

In recent years, several mechanisms that give rise to inter-particle forces have

been considered, such as capillarity, anisotropy in shape [45, 46, 47], steric [48] and

entropic effects [49], and dipolar and magnetic interactions [50, 51, 52, 53, 54, 55, 56,

57, 58, 59, 60, 61, 62, 23, 63, 64, 65, 66]. This area of research has attracted enormous

interest because the ability to manipulate the force between micron and nano-sized

particles can be exploited to achieve our goal of the bottom-up fabrication of materials

with organized structures and patterns using larger microparticles [67, 68, 69, 70]. It

would also be helpful in other applications such as for creating smart materials whose

properties can be tuned, on-demand, by an external stimulus [58, 59].

Inter-particle forces that arise due to the application of an external electric [50]

or magnetic field [51] have also been considered for self-assembly. In fact, they are

routinely used in electro- and magneto-rheology, where the goal is not self-assembly

but rather to obtain changes in rheological properties (suspension viscosity) by

modifying microstructure [52, 53, 54, 55, 56, 57]. Specifically, in response to the

applied electric field, the particles of electrorheological (ER) suspensions polarize and

their dipole moments align with the field direction which causes the particles to form

chains and columns to resist shear.

The problem in applying this technique to direct self-assembly is that the

dipole-dipole force is attractive only when the line joining the particle centers is

aligned predominantly along the field direction (see Supplementary Information for a

detailed discussion). When the line joining the particle centers is perpendicular to the

applied field’s direction, the force is repulsive, which causes the particle distribution
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to fragment into chains and columns [50]. This chain/column formation was first

reported by Winslow [60] (see Figure 2.1a, b). A recurring observation in many

subsequent studies has been that particles do not pack closely in planes normal to

the field. Specifically, although particles organize in chains and columns, there are

particle-free regions in between them. This technique, therefore, does not meet the

key requirement of a bottom-up fabrication technique as it cannot bring the particles

together in both the field direction and the perpendicular plane.

Recent studies show that mixtures containing positively and negatively polarized

particles on a two-dimensional surface self-assemble into the ring, flower-like, and

other periodic arrangements [67, 68, 71]. They form fragmented chain/column-like

patterns in three dimensions, with each column consisting of both types of particles

[61, 23, 64, 72]. Similarly, particles of magnetorheological fluids formed by suspending

diamagnetic (DM) and ferromagnetic (FM) particles in a ferrofluid fragment into

chains and columns [51]. The fact that these field-induced columns do not combine

to form a connected cluster, including when a surface pattern is used to guide their

assembly [23], indicates that the forces among them are not attractive. However,

studies also show that there is yield stress enhancement for certain mixtures of

positively and negatively polarized/magnetized particles, which suggests that there

is increased attraction among the fragmented chains and columns [61, 63, 64, 72].

In this problem, experimental and direct numerical simulation results demon-

strate that there is a range of parameter values for which mixtures containing

positively and negatively polarized particles self-assemble to form connected hierar-

chical clusters. The force between a particle and its nearest neighbor is attractive both

along and normal to the direction of the applied electric field, and that the cluster’s

microstructure can modified be varying parameter values. The technique thus can be

used to form a range of three-dimensionally connected assemblies of microparticles.
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As discussed in Supplementary Information, it is possible to induce positive

polarization in one type of particles and negative polarization in the second type by

selecting a suitable liquid medium since the complex permittivities of different types

of particles are different. We can also vary the frequency of the applied electric field

to change their polarizibilities relative to one another [62, 73].

2.2 Particle Level Interaction Mechanisms

To understand the mechanism that causes the particle distribution to fragment, let us

consider the dipole-dipole forces in the periodic arrangement of monodisperse particles

shown in Figure 2.1c. We choose the periodic arrangement since it helps visualize

why the dipole-dipole forces cannot cause particles to pack together tightly in all

three directions. Notice that the dipole-dipole forces are attractive in the electric

field’s direction, but repulsive in the plane perpendicular to the field. Consequently,

the particles come together and align in the electric field’s direction but move apart

in the perpendicular plane. If the particles’ initial arrangement is not periodic, the

particle pairs are also subjected to electric torques. These basic mechanisms thus

cause particles to arrange into chains and columns [51, 55, 66, 74, 75]. Our direct

numerical simulations (Figure 2.1d-f) show that, as in experiments (Figure 2.1a-b),

the dipole-dipole forces cause particles to fragment into chains and columns that are

aligned parallel to the electric field direction. The forces among the columns are

repulsive, which cause them to move apart, as is the case for experiments.
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Figure 2.1 Electric field-induced rearrangement of positively polarizable particles.
(a) Top view of the arbitrary initial configuration of a suspension of aluminum oxide
(average size 102.5 µm, dielectric constant 9.8) particles in silicone oil (dielectric
constant 6.85). (b) The application of electric field caused the particles to form chains
and columns. The chains and columns moved away from each other creating particle-
free regions. (c) A periodic arrangement of positively polarizable particles. The
direction of polarization is superimposed on the particles to illustrate the compressive
nature of dipole-dipole forces along the electric field direction (E) and repulsive in the
normal direction. (d) The initial periodic arrangement of 216 monodisperse particles
was used in numerical simulation, as viewed along the applied field direction (the
x-axis). (e-f) Snapshots after application of the field, which causes the particles
to form chains and columns. The repulsive dipole-dipole forces caused the chains
and columns to move apart, filling the entire computational domain and creating
particle-free regions.
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2.2.1 Molecular Dipole-Dipole Forces

It is worth noting that such spatial fragmentation does not occur in the materials that

are stabilized by molecular dipole-dipole forces. For example, polar water molecules

can reorient to form a tetrahedral network of hydrogen bonds with each vertex

occupied by a water molecule [76]. This is possible for a water molecule because

its dipole’s spatial direction is determined by its orientation (and not by that of an

externally applied field). However, this is not possible in a dielectrically monodisperse

suspension because the direction of polarization, which is determined by the applied

field’s direction, is the same for all particles (and cannot change for a particle even if

it rotates).

2.2.2 Dielectrically Polydisperse Suspensions

Our goal is to design a suspension in which the particles self-assemble to form a

three-dimensionally connected pattern when an electric field is applied. This can

happen only if the electric field induced forces between a particle and all of its nearest

neighbors are attractive, as is the case for the materials stabilized by molecular dipole-

dipole forces, e.g., water. Such a suspension will be cohesive, as its particles will come

together to form a connected pattern when an electric field is applied.
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Figure 2.2 Electric field-induced rearrangement of a mixture of positively and
negatively polarizable particles. (a) Top view of a suspension of a 50:50 mixture
of aluminum oxide (average size 102.5 µm, dielectric constant 9.8) and calcium
phosphate (average size 101.5 µm, dielectric constant 1.6) particles in silicone oil
(dielectric constant 6.85). (b) The electric field’s application causes the particles
to form a band between the electrodes. Notice that the spatial distribution of
the particles did not fragment into chains and columns and that the particles are
packed tightly in the plane perpendicular to the electric field direction. Some particle
scale gaps formed because of the incomplete mixing of aluminum oxide and calcium
phosphate particles and the non-uniformities in the shape and size of the particles. (c)
A periodic suspension of positively and negatively polarized particles. The direction
of polarization is superimposed on the particles to illustrate the compressive nature of
dipole-dipole forces along the electric field and the perpendicular direction. (d) The
initial periodic arrangement of a 50:50 mixture of positively and negatively polarizable
particles used in numerical simulation. The magnitudes of their polarizabilities are
the same. The electric field is along the x-direction (e) Snapshot after applying the
field; the particles coalesce in the y- and z-directions and align in the x-direction,
decreasing the volume of the region occupied by the particles.
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An electrically cohesive suspension can be formed by suspending a mixture of

positively and negatively polarizable particles in a dielectric liquid. We illustrate this

idea by considering a periodic arrangement of particles in Figure 2.2(c). Notice that

the force between a particle and its nearest neighbors is attractive both in the field

direction and in the perpendicular plane. The dipole-dipole forces cause particles to

come closer, and so their distribution does not fragment into chains and columns.

This was also the case in our experiments where the initial distribution of particles

was not periodic, and the shape of the particles was only approximately spherical.

An arbitrary initial configuration containing a mixture of positively and negatively

polarizable particles (Figure 2.2(a)) did not fragment into chains and columns upon

applying the electric field. Instead, the particles rearranged to form a band parallel to

the electric field direction with tightly packed particles in the plane perpendicular to

the field (Figure 2.2(b)). Tight packing happens because each particle is attracted to

its nearest neighbors in both the parallel and perpendicular directions to the applied

field. The DNS results presented in Figure 2.2(e) show that the particles formed

chains parallel to the electric field direction and packed tightly together on applying

an electric field, leaving about one half of the domain free of particles. The particles

of the same type in the neighboring chains are staggered in the electric field direction,

making their arrangement stable. The staggered chains combine to form sheets that

are sandwiched by similar sheets of the oppositely polarized particles. On the other

hand, as noted earlier, when only positively or negatively polarizable particles are

present, the chains and columns move apart, increasing the volume over which they

are distributed (see Figures 2.1b and 2.2b for comparison). Chain formation in the

field direction is noticeable as the magnitude of forces along the field direction is twice

that of the forces in the perpendicular direction (see SI for details). The assembled

distributions are, therefore, anisotropic.
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In our experiments, the suspensions were formed by thoroughly mixing particles

before applying the electric field, which is essential to ensure that the suspension

properties are uniform since they cannot mix on their own. When particles are not

well mixed before applying the electric field, there are regions where the particle

distribution locally fragments into chains and columns, indicating that particles’

local number ratio is not suitable for forming a connected pattern. This behavior

of suspensions is different from that of molecular systems, where particles can mix

on their own as they are constantly moving and colliding with each other under the

action of thermal forces.

2.2.3 Yield Stress in Dielectrically Polydisperse Suspensions

The formation of a band of closely packed particles without fragmentation in

Figure 2.2(b and f) demonstrates that the suspension particles attract their nearest

neighbors. To show that this change in the microstructure also causes changes in the

suspension’s mechanical properties, we measured its yield stress. For a suspension of

positively (aluminum oxide) and negatively (calcium phosphate) polarizable particles,

the yield stress was measured as a function of the volume fraction of positively

polarized particles at three different electric field intensities (Figure 2.3). The total

mass of particles in these experiments was kept constant while their respective volume

fractions, which changes their number ratio or stoichiometric ratio, were varied. The

figure shows that the yield stress of a mixture of positively and negatively polarizable

particles was consistently greater than that of the suspensions consisting of only one

type of particles, which indicates that the attraction between the particles is increased.

Also, the yield stress increased with increasing electric field intensity. There is a

relatively sharp peak of yield stress for a 40-60% mixture, which corresponds to the

number ratio of 0.65:1 of aluminum oxide to calcium phosphate particles. (Note that

this estimate is based on their average diameters, but in our experiments, the particles
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used were not spherical, and their mean diameters varied). Additional experimental

results are included in Supplementary Information.

Figure 2.3 Yield stress as a function of the percent volume of aluminum oxide
particles for three electric field intensities (see Supplementary Information Section
2). The yield stress was maximum when the volume fraction of aluminum oxide
particles was around 40%.
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We also conducted direct numerical simulations to determine the volume

ratio range for which particles come together to form a connected pattern without

fragmenting into chains and columns. For example, Figures 2.2 and 2.4, where

the magnitudes of polarizabilities of positively and negatively polarized particles are

equal, show that particles continue to form connected patterns even when the volume

(or number) ratio deviates from 1:1. Figure 2.4a shows that there are changes in

the microstructure with the number ratio resulting in a range of arrangements such

as (i) the same type of particles arrange on sheets which sandwich the sheets of

the oppositely polarized particles, (ii) the tubes of one type particles surround the

chains of the oppositely polarized particles, and (iii) the oppositely polarized particles

connect the columns consisting of one type of particle. The staggering of particles in

the field direction makes the formation of sheets possible, and the sheets align so that

their normal vectors are perpendicular to the electric field direction. For unequal sized

particles, a larger number of smaller particles are needed to form a cohesive cluster.

Furthermore, particles self-assemble into connected patterns even when the volume

ratio deviates to 1:0.39. However, as the yield stress data of Figure 2.3 indicates, the

attraction between the particles reduces from the peak value when the volume ratio

deviates from the optimal value (also see Supplementary Information).
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Figure 2.4 Dependence of the microstructural arrangement on the number ratio of
positively and negatively of polarizable particles. (a) The magnitudes of polarizability
and sizes are equal. There is a range of number ratios around 1:1 for which the
particles pack together tightly, but the gaps begin to appear when the ratio deviates
from 1:1. (b) The magnitudes of polarizability are equal, and the size ratio is 0.5.
The arrangement consists of chains of larger particles that are surrounded by smaller
particles. (a) 49-47 (b) 69-27 (c) 90-10

In general, when the sizes of both types of particles vary, and their polar-

izabilities are different, the yield stress data and the DNS results discussed in SI

show that a cohesive pattern is possible only when the volume fraction of weakly

polarizable particles is larger so that Vpβp ≈ −Vnβn. Here βp and βn are, respectively,

the Clausius-Mossotti factors of the positively and negatively polarizable particles,

and Vp and Vn are their respective volume fractions.

Numerical simulations show that these results are also applicable to nanoparticle

mixtures for which Brownian forces are important. However, as expected, the

intensity of electric field required to direct their self-assembly and arrest their

Brownian motion relative to one another is greater (see SI, Section 4). The strength

of inter-particle forces is adjustable—it can be modified by changing the electric field

intensity or frequency, by selecting a different suspending fluid or particles of varying

dielectric constants, and/or by varying the volume fractions and the sizes of the two

types of particles (see Supplementary Information). Furthermore, since it is possible

to have more than two types of particles, with different polarizabilities and sizes, and
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that their volume fractions can be varied, a range of complex arrangements can be

obtained by changing these parameters. A comprehensive study of the roles of these

parameters in self-assembly is beyond the scope of this study.

In conclusion, fragmentation of particles into chains and columns, which

occurs when an electric field is applied, limits our ability to self-assemble cohesive

three-dimensionally connected micro and nanoparticle aggregates in suspensions using

this technique. This problem can be overcome by using a suitable mixture of positively

and negatively polarizable particles for which particles spontaneously rearrange

themselves, such that they attract all of their nearest neighbors and thus come

together. The approach can be used to form a range of three-dimensional hierarchical

patterns that depend on parameters such as their polarizabilities, the size ratio, and

the number ratio of particles. This ability to utilize the dielectric polydispersity to

guide self-assembly is elegant, tunable, and scalable. It is a significant step towards

making engineered micro and nanoscales self-assemblies as ubiquitous as the molecular

self-assembly observed in nature.

2.3 Methods

2.3.1 Experiments

Experiments were conducted in a rectangular prism-shaped device, which was 70

mm long and 24 mm deep. The distance between the device’s sidewalls, where the

electrodes were mounted, was varied between 4 and 7 mm. A variable frequency AC

signal generator (BK Precision Model 4010A) was used along with a high voltage

amplifier (Trek Model 610E) to apply high voltages (see Figure 2.8). The frequency

used for the results reported in this paper was 100 Hz. The arrangement of particles

was recorded using a digital camera connected to a Nikon Metallurgical microscope

(MEC600).
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The yield stress was determined by measuring the force on a thin 1cm x 1cm

glass plate (100 µm thickness) when it is pulled up normal to the applied field

direction, which is similar to the method used in Erb, et al. [67] (see Figure 2.9).

The plate dimensions were much larger than the size of suspended particles, ensuring

that the measured stress was independent of its size. The plate was connected to

a force gage mounted on a vertical slide, which was moved at a constant speed by

a DC motor giving the shear rate of ∼ 0.22s−1. The force initially increased with

time, and then after reaching a maximum value, it decreased to a steady-state value.

The maximum force was used to obtain the yield stress. The top surface of the

fluid in these experiments was a free surface, and so the fluid was not subjected to

any external normal stress, which could increase the yield stress because of particle

jamming. The suspending fluid was silicone oil (FS 1265, Dow Chemicals) with

a dielectric constant of 6.85. The suspensions were formed using aluminum oxide

(Acros Organics, dielectric constant 9.8) and calcium phosphate (dielectric constant

1.6) particles. The mean particle size of aluminum oxide particles was 102.5 µm and of

the calcium phosphate particles was 101.5 µm. As the dielectric constant of aluminum

oxide particles is greater than that of silicone oil and calcium phosphate particles is

smaller than that of silicone oil, the former particles were positively polarized and

the latter negatively. The dielectric constant of the glass plate was approximately

the same as that of silicone oil. This ensured that neither calcium phosphate nor

aluminum oxide particles were strongly attracted or repelled by the glass plate.

The suspensions of particle mixtures were formed by thoroughly mixing

aluminum oxide and calcium phosphate particles before and after they were suspended

in silicone oil. The total mass fraction of particles in the suspension was held constant,

while the volume fractions of the two types of particles were varied. The mixtures

considered contained 0:100, 20:80, 40:60, 60:40, 80:20, 100:0 % fractions by volume

of aluminum oxide and calcium phosphate particles. Since the only parameter varied
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is the relative volume fraction of particles, the yield stress measures how the cohesive

forces vary with the volume fraction. The experimental results in this paper are for

particles about 5 to 100 micrometers in diameter; the results for nanoparticles are

not included as agglomeration made their mixing difficult.

2.3.2 Direct Numerical Simulations (DNS)

A DNS approach based on the finite element method was used to study particle scale

structure evolution in the dielectrically monodisperse and bi-disperse suspensions

[74, 75, 76, 77, 78]. In our code, the governing mass and momentum conservation

equations for the fluid and particles’ motion are solved simultaneously. The rigid

body motion constraint inside the particles is enforced by the distributed Lagrange

multiplier method, and the buoyant weight of particles is neglected due to their

small size. The Maxwell stress tensor approach is used to compute the electric stress

from which the electric forces acting on the particles were computed. The approach,

therefore, incorporates multibody electrostatic interactions among the particles.

The simulations were performed in the rectangular prism-shaped computational

domains. As with the experiments, a uniform electric field was applied using the

electrodes mounted in the domain walls parallel to the yz-coordinate plane. A typical

computational domain size was 16a, where a is the radius of the particle. Initially,

particles were placed on a lattice, and the fluid and particle velocities were assumed to

be zero. For the cases where the initial state was assumed to be randomly mixed, the

particle properties at a given position were selected using a random distribution. For

the cases in which the initial pattern was assumed to be periodic, the properties of a

period cell were selected to be the same as the suspension’s average properties. The

fluid velocity at the domain boundaries was assumed to be zero and when the distance

between the particle surface and the wall is less than 0.05a, a repulsive wall force was

applied to ensure they remain within the domain [74, 75, 76, 77, 78]. The presence
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of the particles made the electric field non-uniform giving rise to the dipole-dipole

forces that caused particles to rearrange. The parameters used for the simulations

described in the paper are stated in Supplementary Information.

2.4 Supplementary Information

2.4.1 Mechanics of Particle Chains and Columns Formation

In this section, we first discuss the point-dipole (PD) approximation of the forces

that act on particles in a uniform electric field and the direct numerical simulation

(DNS) results that were used to describe the mechanism by which the particles

form chains and columns. When a dielectric particle suspension in a dielectric

fluid is subjected to an electric field, the particles become polarized and interact

electrostatically and hydrodynamically with each other. The PD approximation

provides a simple mechanistic explanation for the formation of particle chains and

columns. The interaction force on a spherical particle i due to another particle j in

the point-dipole approximation limit is given by [56, 79]

FD(r, θ) = 12πε0εcβiβjE
2
0

(aiaj)
3

r4
((3 cos2 θ − 1)er + sin 2θeθ) (2.1)

where er = rj−ri
|rj−ri| is the unit vector along the line joining the centers of the

spheres, eθ is a unit vector normal to er in the plane containing the electric field

direction, and θ is the angle between the electric field direction and er. Here r =

|rj − ri| is the distance between the particles, E0 is the electric field intensity, ε0 =

8.8542 × 10−12 F/m is the permittivity of free space, ai and aj are the radii of the

two particles and βi(ω) = Re( ε∗π−ε∗c
ε∗π+2ε∗c

) is the Clausius-Mossotti (CM) factor of the

ith particle. Here ε∗pi and ε∗c are the frequency-dependent complex permittivities of

the ith particle and the suspending liquid, respectively. The complex permittivity is

ε∗ = ε − jσ
ω

, where ε is the permittivity, σ is the conductivity, ω is the frequency of
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the applied ac field and j =
√
−1. The point-dipole approximation assumes that the

distance between the particles is much larger than their radii, and hence its accuracy

decreases when the distance is small. The direct numerical simulations based on the

Maxwell stress tensor approach is used to improve accuracy, as we discuss below.

We first consider the case of two identical particles, i.e., ai = aj = a and

βi = βj = β. Hence, βiβj = β2 > 0. Therefore, the radial component of force is

attractive for θ < cos−1( 1√
3
) =∼ 54.74◦ and repulsive for θ >∼ 54.74◦. The magnitude

of attraction is maximum when θ = 0◦ (the line joining the centers is parallel to the

electric field direction), whereas the magnitude of repulsion is maximum for θ = 90◦

(the line joining the centers is perpendicular to the electric field direction). The

symmetry of the problem implies that it is sufficient to consider the range θ ≤ 90◦.

Therefore, when two particles are aligned so that the line joining their centers is

parallel to the electric field direction, they attract, and when the line joining their

centers is perpendicular, they repel. When θ is different from 0◦ or 90◦ the dipole-

dipole force is not along the line joining the centers, which gives rise to a torque

that causes the particle pair to rotate so that the line joining their centers becomes

parallel to the electric field direction [56]. If θ > 54.74◦ , the particles initially repel

each other while the torque causes θ to decrease and when θ < 54.74◦ they attract and

θ continues to decrease so that the particles align with the line joining their centers

parallel to the electric field.

The mechanisms described above cause nearby particles to form chains parallel

to the electric field direction (see Figure 2.5). The chains are under compression as the

dipole-dipole forces between the particles of a chain are attractive. The interaction

force between the particles of two nearby chains is complex in the sense that it can

cause the chains to repel or merge to form a column. Our experiments and direct

numerical simulations (DNS) show that the chains repel if their particles are aligned

symmetrically, i.e., the line joining the center of a particle of the first chain and the
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center of the nearest particle of the second chain is perpendicular to the electric field,

as described in Figure 2.5. But, if the particles of the chains are staggered, and the

distance between the chains is less than approximately 2.48a, they weakly attract

and join to form a column. Notice that the distance between two staggered chains

in contact is
√

3a. The chains for which the distance is greater than ∼ 2.48a, repel

even when they are staggered. Such repelling chains can rotate and merge to form

a single long chain. The nearby columns also repel, and so, as shown in Figure 2.6,

they move apart, resulting in the formation of particle-free regions.
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Figure 2.5 Forces between particle chains and columns in a uniform electric field.
The applied electric field is in the horizontal direction; it is applied by the electrodes
mounted in the left- and right side walls of the device/computational domain. (a) The
photograph shows three chains of glass particles on the surface of corn oil. The lower
two chains have merged to form a column. Notice that these chains’ particles are
staggered, and so the dipole-dipole force between the chains is attractive. The upper
chain particles are not staggered relative to that of the lower one, so the dipole-dipole
force between the upper and lower chains is repulsive. The images were taken by
a camera mounted above the device. It was difficult to experimentally study the
interaction between isolated chains that were fully immersed in the liquid as they
slowly sedimented to the device’s bottom. Once at the bottom, the chains did not
move freely because of the friction with the bottom surface. Therefore, we studied
the interaction between the particle chains that were trapped on the corn oil surface.
These chains were free to move on the surface and so aligned according to the electric
forces acting on them. (b) The DNS results for the interaction between two chains of
positively polarizable particles. If the chains are aligned symmetrically, as in (i), the
chains’ particles come closer, and the chains move apart. If the chains are staggered,
and the distance between them is smaller than approximately 2.48a, as in (ii), they
merge to form a column. If the distance between the chains is larger than 2.48a, as
in (iii), they repel even when they are staggered. These simulation results are similar
to the experimental results shown in part (a) of this figure.
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Figure 2.6 Formation of particle chains and columns in a dielectrically
monodisperse suspension of calcium phosphate particles which were negatively
polarized. Initially, particles are contained in the approximately oval-shaped regions
at the bottom of the device. The photographs are taken by a camera mounted directly
above the device. The electric field causes particles to form chains and columns, some
of which spanned the gap between the electrodes. The chains and columns move away
from each other, creating regions with no particles.

We next consider the case where the first type of particles are positively

polarized (βi > 0) and the second type are negatively polarized (βj < 0), and so

βiβj < 0. The dipole-dipole force, therefore, is negative (repulsive) for θ < 54.74◦

and positive (attractive) for θ > 54.74◦. The repulsive force is maximum for θ = 0◦,

and the attractive force is maximum for θ = 90◦. The force for any other value of

θ is not directed along the line joining the particle centers, causing the particle pair

to align so that the line joining their centers is perpendicular to the field direction.

This can be seen in Figure 2.7, which shows that a chain of glass particles (positively

polarized) and a chain of polystyrene particles (negatively polarized) attract to form

a two-chain column, in which the line joining the centers of neighboring particles

is perpendicular to the electric field. For this two-chain column, the inter-particle

attractive forces are strong in both the parallel and perpendicular directions to the

electric field. If the chains are initially staggered, they become symmetrically aligned

and come closer to form a column.
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Figure 2.7 Forces between the particle chains of positively polarized (red) and
negatively polarized particles (blue). The electrodes are mounted in the left and
right sidewalls. The applied electric field is horizontal (a) A two-chain column is
formed by the merger of a chain of positively polarized glass particles (radius 71 µm)
and a chain of negatively polarized polystyrene particles (darker colored, radius 64
µm). Notice that the particles of the upper and lower chains are aligned so that the
line joining their centers is perpendicular to the electric field direction. Also, notice
that there is one polystyrene particle in the third row of the left photograph which
is aligned in a staggered arrangement as its polarization is the same as that of the
chain above. (b) The DNS results for the interaction between a chain of positively
polarized particles (red, β1 = 0.25) and a chain of negatively polarized particles
(blue, β2 = −0.25). The electric field causes the particles of the same polarizabilities
to come together along the field direction and those of the opposite polarizabilities
to align so that the line joining the centers of the nearest positively and negatively
polarized particles is perpendicular to the electric field direction. In (i), the chains
were initially symmetrically aligned, and in (ii), they were initially staggered. The
final arrangements were identical. The two types of particles have the same radii.
The electric field applied was 600 V/mm.
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2.4.2 Sample Mixture Preparation and the Role of Various Parameters

on Yield Stress

The spatial distribution of particles shown in Figures 2.1-2.2, the yield stress data

of Figure 2.3, and the DNS results of Figure 2.4 all demonstrate that by mixing

positively and negatively polarizable particles in a suitable proportion, it is possible to

form a suspension whose particles self-assemble themselves into a three-dimensionally

connected pattern when it is subjected to a uniform electric field. In general, particles

of suspensions experience hydrodynamic, buoyancy, Brownian, and electric forces.

The buoyancy force can be neglected when the density differences are small. Also,

in the absence of Brownian motion, which is the case for larger particles, particles’

motion is determined by the balance of electric and hydrodynamic forces. In this case,

the electric field intensity determines the speed with which particles self-assemble,

but not their tendency to self-assemble. For smaller particles, Brownian forces are

important, so self-assembly is possible only when the electric field intensity is large

enough to overcome Brownian forces.
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Figure 2.8 Schematic of the experimental setup. The electrodes are mounted in
the left- and right side walls of the device containing a dielectric liquid. When an
electric field is applied, particle chains are formed between these electrodes and the
images are captured by an overhead camera.
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Figure 2.9 Schematic of the experimental setup used to measure yield stress. The
electrodes are mounted in the left- and right sidewalls. The force acting on the plate
is measured while it is moving in its plane at a constant speed.

(a) Sample preparation: In our experiments, the total mass of mixture

particles in the suspensions were kept constant to ensure that the yield stress in the

absence of the electric field was the same while their relative volume fractions were

varied when the densities of both types of particles were approximately the same.

This is important because the yield stress changes in the electric field’s presence

can be used to determine how the self-assembly behavior of a mixture of two types of

particles depends on their volume fractions. The volume fraction of particles is related

to the number ratio of particles, which, as discussed below, plays an important role

in determining the particle scale arrangement.

To determine particles’ volume fractions in a mixture, we must know the true

volume of particles in each of the powders used for making the mixture. This cannot

be obtained from their apparent volumes, as the powder particles do not pack tightly

due to the presence of air pockets. Furthermore, when the densities of the two types

of particles are different, the ratio of their mass fractions is not the same as the ratio
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of their volume fractions. In this case, both the mass and the true density of particles

must be used for determining the true volume of particles. Let M1, V1, N1andρ1 be

the mass, volume, number, and density, respectively, of the first type of particles, and

M2, V2, N2, andρ2 be the respective values for the second type of particles. Then, the

ratio of their volumes can be obtained using V1
V2

= M1

M2

ρ2
ρ1

.

The particles used in our experiments were not monodispersed. Let R1 and R2

be the average radii of the two types of particles. The average number ratio of the

two types of particles can be obtained from the volume ratio and the average radii.

The number ratio based on the average radii is given by N1

N2
= V1

V2
R2

3

R1
3 . The number

ratio gives the number of negatively polarizable particles per positively polarizable

particle in the mixture, i.e., it determines the mixture’s stoichiometric ratio.

In addition to the aluminum oxide-calcium phosphate mixtures described in

the paper, we considered mixtures of aluminum oxide with several sizes of hollow

and solid glass and other particles. The expressions discussed above were used to

obtain the ratio of volume fractions and the number ratios for these mixtures from

the particles’ radii, masses, and densities.

For hollow glass particles, the permittivity was obtained in terms of the radii

ratio of the cavity and outer shell3, and the actual shell volume was incorporated in

the computation of their effective densities. As the relative size of the cavity in the

hollow glass particles considered in this study decreases with decreasing radius, both

the effective density and permittivity increase with decreasing radius.

(b) Role of particle sizes and polarizability ratios in self-assembly:

In this subsection, we present additional yield stress results in which the particle

sizes and polarizabilities are varied. The aim of this study is to model the role of

these parameters. The yield stress measurements were performed using the procedure

described in the section on Methods.
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Figures 2.10-2.16 show the yield stress as a function of the volume fraction of

aluminum oxide particles for seven dielectrically polydispersed suspensions formed

by mixing 102.5 µm (mean diameter) aluminum oxide particles (Acros Organics

Brockmannn I) with: (i) 90 µm hollow glass spheres (Potters Q-CEL), (ii) 72 µm

hollow glass spheres (Potters Q-CEL), (iii) 50 µm hollow glass spheres (Potters

Q-CEL), (iv) 20 µm hollow glass spheres (Potters SPHERICEL), (v) 100 µm

silica spheres, (vi) 120 µm extendospheres (Sphere One), and (vii) 160 µm exten-

dospheres (Sphere One). Here the percent volume fractions is defined to be

volume of aluminum oxide particles
total volume of particles × 100. The CM factor of the aluminum oxide

particles is 0.11, and of the 90 µm, 72 µm, 50 µm and 20 µm hollow glass particles

are –0.39, –0.38, -0.36 and –0.35, respectively. As the CM factor of the hollow glass

particles considered differs only slightly, these cases allow us to study relative particle

sizes’ role in the self-assembly process. Also, the CM factor of the hollow glass

particles and the calcium phosphate particles are comparable.

The volume fraction of aluminum oxide particles at which the peak yield stress

occurred in Figures 2.10-2.13 varied with the mean diameter of glass particles. There

were two local yield stress peaks at low electric field intensities instead of a single

one, which was the case in Figure 2.3. The presence of two peaks at low electric

field intensities indicates that there are two possible particle scale arrangements,

corresponding to different volume fractions of particles, which enhance the yield stress.

For example, for case (i) shown in Figure 2.10, the peaks were at 30% and 60% volume

fractions of aluminum oxide particles. However, when the electric field intensity was

increased, there was only a single dominant peak at the 30% volume fraction of

aluminum oxide particles. We remind the reader that for the case described in Figure

2.3, the peak yield stress was at around 40% volume fraction of aluminum oxide

particles. The mean diameter of calcium phosphate particles was comparable to that
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of aluminum oxide particles, and the CM factor of calcium phosphate particles was

comparable to that of the hollow glass particles.

In Figure 2.10, the mean diameter of glass particles is about 12% smaller than

that of aluminum oxide particles. Thus, the expressions discussed in the previous

subsection imply that for the 30% volume fraction peak, the number ratio is 1:3. For

the 60% volume fraction peak, which is present at the smaller electric field intensities,

the number ratio is 1:6. For the higher electric field intensities, only the number

ratio of 1:3 enhanced self-assembly. For case (ii) shown in Figure 2.11, where the

average diameter of glass particles is approximately 35% smaller than that of the

aluminum oxide particles, the 60% volume fraction peak emerged as the dominant

peak when the electric field intensity was increased. Similar observations can be

made in Figure 2.13, where the average diameter of glass particles is about 50%

smaller than that of aluminum oxide particles. The experimental results of the particle

mixtures containing a combination of aluminum oxide with silica particles and with

extendospheres are shown in Figures 2.14-2.16.

Our experimental results indicate that when the yield stress of the suspensions

formed using only aluminum oxide particles is comparable to that with only glass

particles, there is a single dominant peak for the electric field intensities considered.

For hollow glass and aluminum oxide particle mixtures, this happened when their

particle sizes were comparable. However, when the yield stress values of the

suspensions with only one type of particles differ substantially, as in Figures 2.10-2.12,

there were two or more peaks at low electric field intensities. One of these peaks

becomes dominant for the higher electric field intensities. We postulate that the

appearance of one or two peaks’ depends on the particle’s’ diameter ratio, which

makes specific number ratios preferred for the particle level arrangements.
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Figure 2.10 The yield stress as a function of the volume fraction of aluminum
oxide particles for five electric field intensities. The sum of the volume fractions of
the aluminum oxide and glass particles (90 µm) to the total volume was held constant
at 0.50. The yield stress was maximal when the volume fraction of aluminum oxide
particles was around 30%.
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Figure 2.11 The yield stress as a function of the volume fraction of aluminum
oxide particles for four electric field intensities. The sum of the volume fractions of
the aluminum oxide and glass particles (72 µm) to the total volume was held constant
at 0.46. The yield stress was maximal when the volume fraction of aluminum oxide
particles was around 30%.
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Figure 2.12 The yield stress as a function of the volume fraction of aluminum oxide
particles for three electric field intensities. The sum of the volume fractions of the
aluminum oxide and glass particles (20 µm) to the total volume was held constant
at 0.46. The yield stress was locally maximal when the volume fraction of aluminum
oxide particles was around 30%.

48



Figure 2.13 The yield stress as a function of the volume fractions of aluminum
oxide and glass particles (50 µm) for five electric field intensities. The disappearance
of secondary peaks can be seen at higher electric field intensities.
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Figure 2.14 The yield stress as a function of the volume fraction of aluminum oxide
particles for three electric field intensities. The sum of the volume fractions of the
aluminum oxide and silica particles (100 µm) to the total volume was held constant
at 0.46. The yield stress was maximal when the volume fraction of aluminum oxide
particles was around 30%.
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Figure 2.15 The yield stress as a function of the volume fraction of aluminum
oxide particles for three electric field intensities. The sum of the volume fractions of
the aluminum oxide and extendospheres particles (120 µm) to the total volume was
held constant at 0.46. The yield stress was maximal when the volume fraction of
aluminum oxide particles was around 30%.
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Figure 2.16 The yield stress as a function of the volume fraction of aluminum
oxide particles for three electric field intensities. The sum of the volume fractions of
the aluminum oxide and extendospheres particles (160 µm) to the total volume was
held constant at 0.46. The yield stress was maximal when the volume fraction of
aluminum oxide particles was around 40%.
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2.4.3 Numerical Simulations

This section discusses the DNS results for the self-assembly behavior of suspensions

of neutrally buoyant particles subjected to a uniform electric field. We first discuss

the case of larger particles of radii 100 µm for which Brownian forces are negligible

compared to electric and hydrodynamic forces. We will assume that in both cases,

initially, particles are a well-mixed state. The electric forces cause particles to self-

assemble, and the hydrodynamic forces resist their motion relative to the fluid during

the self-assembly process. The simulations were stopped after a steady configuration

was reached. The results are used to model the roles of parameters such as the CM

factors and the number and size ratios of positively and negatively polarized particles

on the nature of self-assembled configuration.

The parameter, 12πε0εcβiβjE0
2 aiaj

3

r4
, in Equation (2.1) can be written as

p2a2pβ
′
iβ
′
j

(a′ia
′
j)

3

r′4
. Here p2 = 12πε0εcβp

2E2
0ap

2, and the characteristic parameters are: ap

= radius of positively polarized particles, and βp = CM factor of positively polarized

particles. The dimensionless radii are a′i = ai
ap

and a′j = aj
ap

, the dimensionless

distance r′ = r
ap

, and the dimensionless CM factors are β′i = βi
βp

and β′j = βj
βp

.

For this selection of the characteristic parameters, the dimensionless CM factor of

the positively polarized particles, β′p, is equal to one and of the negatively polarized

particles, β′n, is negative, and its magnitude is varied. The parameter p and the

dimensionless parameters r′ and β′n are used to specify the problem parameters.

For the numerical results reported in this paper for non-Brownian particles, the

diameter of the positively polarized particles is 100 µm, βp is 0.1 and p = 25.42.

The dimensionless CM factor (β′n) and size (r′) of negatively polarized particles

are varied to simulate the role of these parameters. For the cases requiring longer

simulations, the electric forces were computed using the point dipole approximation,

and the hydrodynamic forces were calculated using the Stokes drag formula. We next

describe the role of particle size, polarizability, and number ratios on the assembled
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arrangement. We first consider the case where the size of positively and negatively

polarized particles is equal, and the dimensionless CM factor of negatively polarized

particles is varied.

(a) Relative polarizabilities of positively and negatively polarized

particles: Simulations show that the tendency of particles to self-assemble themselves

into a connected pattern increases as the dimensionless CM factor of the negatively

polarized particles (β′n) is varied from -0.1 to -1.0, while holding all other parameters

fixed. The number of positively and negatively polarized particles and their sizes

are assumed to be equal. As |β′n| is increased, the magnitude of force among the

negatively polarized particles, and the positively and negatively polarized particles

increase, and the force among the positively polarized particles remains the same.

Figure 2.17 shows that the particles come together with increasing |β′n|, but only

when it is between -0.8 and -1.0 that the mixture particles pack together tightly.

We may, therefore, conclude that for the assumed parameter values, the mixture

particles self-assemble themselves into a connected pattern only when the magnitudes

of the CM factors of the negatively (|β′n|) and positively polarized particles (|β′p|) are

comparable.
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Figure 2.17 Steady-state arrangement of a mixture of positively and negatively
polarized particles. 96 particles were initially arranged randomly and subjected to an
electric field in the x-direction. There are equal numbers of positively and negatively
polarized particles and their diameters are equal. The dimensionless CM factor of
the positively polarized particles β′p = 1.0 and of the negatively polarized particles
(|β′n|) is varied. The tendency to self-assemble to form a connected pattern increases
as |βn| increases and becomes equal to βp.
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(b) Number ratio of positively and negatively polarized particles:

Next, we describe how the tendency to self-assemble changes when the number of

oppositely polarized particles is varied while holding their CM factors and sizes fixed.

In Figure 2.18, β′p = 1.0 and β′n = −0.3. The figure shows that when there is an

equal number of positively and negatively polarized particles, the dipolar forces do

not bring them together (Figure 2.18 (a)). Thus, their distribution fragments into

several columns. However, when the number of negatively polarized particles (which

are weakly polarized) increases, as in Figure 2.18 (b), the particle chains merge to

form a connected pattern. On the other hand, they again divide into several columns

that move apart when the number of positively polarized particles (which are more

strongly polarized) is greater than the number of negatively polarized particles, as

shown in Figure 2.18 (c). From these results, we may conclude that if βp > |βn|,

then to form connected self-assembly, the suspension must have a greater number of

particles of negatively polarized particles, and vice versa.

Figure 2.18 Steady-state arrangement of a mixture of positively and negatively
polarized particles. Oppositely polarized particles are initially arranged randomly
and subjected to an electric field in the x-direction. The dimensionless CM factor
of the positively and negatively polarized particles is held constant at 1 and -0.3,
respectively, and their sizes are the same, while their number is varied. (a) An equal
number of oppositely polarized particles. (b) The number of positively polarized
particles is 33, and negatively polarized particles are 63. (c) The number of positively
polarized particles is 69, and negatively polarized particles are 27.
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(c) The size ratio of positively and negatively polarized particles: The

self-assembled arrangement changes when the relative sizes of oppositely polarized

particles are varied while holding their CM factors and number ratio fixed. In Figure

2.19, β′p = 1.0 and β′n = −0.1. The figure shows that when the negatively polarized

particles are four times smaller than the positively polarized particles, the forces

among them cause most of the smaller particles to collect near the larger particle’s

equator (Figure 2.19 (a)). Here the equator is defined as the circle on the sphere’s

surface, which is perpendicular to the electric field direction (i.e., the x-direction).

Also, notice that the smaller particles are arranged in two circular rings in the x-

constant planes slightly offset from the equatorial plane. The particles in the two

rings are staggered relative to one another. However, when the negatively polarized

particles are only two times smaller, as in Figure 2.19 (b), they formed six chains

(of different lengths) and did not collect on the surface of the positively polarized

particle’s equator. Three of these chains are attached to the positively polarized

particle, and the other three chains are independent and away from the positively

polarized particle. One particle from each of the connected chains is attached with

the positively polarized particles at the latter’s equatorial plane. The three attached

particles, one from each chain, are evenly spaced along the equatorial circle.

When the particle sizes are equal, the negatively polarized particles formed two

independent chains and a two-chain column (in which the particles were staggered

relative to one another in the electric field direction), as shown in Figure 2.19 (c).

The positively polarized particle attracted only one of the single-particle chains. This

is due to the repulsive forces among the chains which keep them apart, and so only

one chain came in contact with the positively polarized particle.

We may conclude from these results: (i) When the size ratio is small, the smaller

sized particles collect near the oppositely polarized larger particle’s equator. This

tendency diminishes with increasing size ratio. (ii) When the size ratio approaches
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one, the smaller sized particles form chains that repel each other, and so only one of

the chains attaches to the oppositely polarized particle.
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Figure 2.19 Steady-state rearrangements of a single positively polarized particle
that is initially surrounded by 26 negatively polarized particles. The magnitude of
the dimensionless CM factor of the negatively polarized particles is 0.1, and their size
is varied. The initial and final arrangements are shown. (a) The ratio of the radii of
the particles is 0.25. The negatively polarized (smaller) particles do not form chains;
instead, all particles except for one were captured by the larger positively polarized
particle near its equator. (b) The ratio of the radii of the particles is 0.5. Initially, the
smaller particles formed six chains along the electric field direction. Three of these
chains became attached to the positively polarized particle. (c) The ratio of the radii
of the particles is 1.0. The negatively polarized particles formed two chains and one
two-chain column. One of these chains became attached to the positively polarized
particle.
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(d) Relative polarizabilities of positively and negatively polarized

particles of different sizes: We next consider the case where the particle size

ratio is fixed at 0.5, and the CM factor of negatively polarized particles is varied.

There are 189 negatively polarized particles and 27 positively polarized particles. So,

the volume ratio of positively and negatively polarized particles is 1:0.875. The results

presented in Figure 2.20 show that the polarizability ratio plays an important role

in determining the final arrangement. Also, as is the case when the size ratio is one,

the suspension particles self-assemble into a cohesive cluster when the CM factor of

negatively polarized particles is within a specific range.

For example, 2.20 (b) shows that when the magnitudes of the CM factors of

positively and negatively polarized particles are equal, and the volume ratio is 0.875,

the particles form a cohesive cluster consisting of chains of larger particles. The

chains are sandwiched by smaller oppositely polarized particles, which makes the

cluster cohesive. The shape of the cluster, including the distribution of chains in the

cluster, depends on the initial distribution of particles, but the overall qualitative

arrangement of particles in the cluster remains similar. The cluster volume is smaller

than the volume over which the particles were distributed initially. Simulations also

show that when the magnitude of the CM factor of negatively polarized particles

was between approximately 0.93 and 1.31, the mixture particles self-assembled into

cohesive clusters. The distribution gradually fragments into chains and columns

outside this range.

When the magnitude of the CM factors of the negatively polarized (smaller

particles) is 2.6 (see Figure 2.20 (c)), there are chains of positively and negatively

polarizable particles, some of which combined to form columns. There is a maximum

of three chains of negatively polarized particles surrounding a chain of positively

polarized particles. The remaining chains of negatively polarized particles, which did

not combine with the chains of positively polarized particles, moved apart, leaving
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gaps in-between them. This is due to the increased repulsion between the chains

of negatively polarized particles due to their CM factor’s increased magnitude. The

columns of positively and negatively polarized particles also moved apart, which shows

that the force between them was repulsive. Thus, for these parameter values, the

particle mixture is not cohesive.

On the other hand, when the magnitude of the negatively polarized particles’

CM factor is 0.4 (see Figure 2.20 (d)), their tendency to form chains is diminished,

and so they collect individually around the chains of positively polarized particles

to form columns. The columns, however, move apart, which indicates that the net

force between them is repulsive. This is due to the weaker polarization of negatively

polarized particles, which is not strong enough to make the net force between the

composite columns attractive.

Similarly, when the volume ratio of positively and negatively polarized particles

is 1:3.25 and βp = |βn|, particles do not self-assemble to form a cohesive cluster, as

shown in Figure 2.21. There are 208 negatively polarized particles and eight positively

polarized particles in the figure, and the radii ratio is 0.5. The positively polarized

particles combine with nearby negatively polarized particles to form a cohesive cluster,

but the remaining negatively polarized particles form chains that move apart from

each other.
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Figure 2.20 Steady-state arrangements of the mixtures of positively and negatively
polarized particles for the size ratio of 0.5. There are 27 positively polarized particles
and 189 negatively polarized particles. The initial arrangement is shown in (a). The
dimensionless CM factor of the positively polarized particles is held constant at 1.0,
and of the negatively polarized particles is: -1.0 in (b), -2.6 in (c), and -0.4 in (d).
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Figure 2.21 Steady-state arrangements of the mixtures of positively and negatively
polarized particles for the size ratio of 0.5. There are 8 positively polarized particles
and 208 negatively polarized particles. The initial arrangement is shown in (a), and
the final in (b). The dimensionless CM factor of the positively polarized particles is
1.0, and of the negatively polarized particles is -1.0.

In summary, the simulation results discussed above show that well-mixed

mixtures of positively and negatively polarized particles of different radii can also

self-assemble to form cohesive clusters. This happens when the product of the volume

of positively polarizable particles and their CM factor is comparable to that for the

negatively polarizable particles. However, when this is not the case, although the

oppositely polarized particles come together to form composite columns, the columns

do not come together to form a cohesive cluster as the net forces between them are

repulsive.

2.4.4 Condition for the Formation of Cohesive Mixtures

The results described above and in the main article imply that a suspension

of equal-sized positively and negatively polarizable particles can form connected

self-assembly only if Npβp ≈ −Nnβn, where Np and Nn are the number of positively

and negatively polarizable particles, respectively. When the sizes of positively and

negatively polarizable particles are not equal, this result generalizes to
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Vpβp ≈ −Vnβn (2.2)

Here Vp and Vn are the volumes of the positively and negatively polarizable

particles, respectively. This condition is consistent with the experimental data, which

shows that when βp ≈ |βn|, the peak in the yield stress occurs when Vp ≈ Vn.

2.4.5 Suspensions of Brownian Particles

Nanoparticle suspensions’ behavior differs from that of suspensions with larger sized

particles because nanoparticles are also subjected to Brownian forces, which cause

them to move randomly in the fluid. This continues to be the case unless a sufficiently

strong electric field is applied to arrest particles’ motion relative to one another.

The ratio of the electric and Brownian forces, given by the dimensionless parameter

P7 =
√
3τπa3ε0ε0β2|E0|2

8ξ
√
ηKBT

, determines the relative importance of these two forces [80].

Here, a is the particle radius, η is the dynamic viscosity, τ is the time step used

in the simulations, ξ is the magnitude of a Gaussian random parameter, KB is the

Boltzmann constant and T is the temperature in Kelvin. Particles self-assemble

into patterns similar to those formed in micron-sized particles’ suspensions when the

dipolar forces are strong enough to overcome Brownian forces.

Figure 2.22 shows the DNS results for a mixture of positively and negatively

polarizable nanoparticles. The radii of both positively and negatively polarizable

particles are 100 nm, and the magnitudes of their CM factors is 0.05, i.e., βp = |βn| =

0.05. The initial arrangement of particles is assumed to be random. The figure shows

that the mixtures self-assemble into a cohesive arrangement only when P7 > O(1.0).

When P7 < 1, particles do not tightly pack together because they continue to move

around under Brownian forces’ action. This is also the case for the mixtures in which

particle sizes vary, provided P7 > O(1.0) for the smallest particles, i.e., the electric
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field strength results in the dipolar forces that are large enough to arrest the smallest

particles’ motion.

Figure 2.22 Steady-state arrangement of a mixture of positively and negatively
polarized particles. 96 particles were initially arranged randomly and subjected to a
uniform electric field in the x-direction. There are equal numbers of positively and
negatively polarized particles, and their diameters and the magnitudes of the CM
factors are equal. The electric field strength is varied to change parameter P7, which
is 1.7 in (a), 0.034 in (b), and 0.00034 in (c).
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CHAPTER 3

MAGNETIC FIELD-INDUCED SELF-ASSEMBLY OF
DIAMAGNETIC AND FERROMAGNETIC PARTICLES IN

MAGNETORHEOLOGICAL FLUID

When a magnetorheological (MR) fluid is subjected to a uniform external magnetic

field, the suspended particles become magnetized and rearrange in chains and columns

aligned parallel to the electric field direction, increasing the yield stress. However,

if the MR fluid contains only positively or negatively magnetizable particles, these

chains and columns repel each other, causing them to move apart. Consequently,

the particle distribution gets fragmented into chains and columns. This behavior

of MR fluids is analogous to that of electrorheological (ER) fluids containing only

positively or only negatively polarizable particles. Also, just as for the ER fluids,

the fragmentation problem is overcome when the MR fluid is formed using a suitable

mixture of positively and negatively magnetizable particles. In this work, we study the

yield stress of the MR fluids formed by mixing positively and negatively magnetizable

particles. The MR fluids were prepared by mixing ferromagnetic and diamagnetic

particles in a ferrofluid. The former particles are positively magnetized, and the latter

negatively. In our experiments, the volume fraction of the positively magnetized

particles in the suspensions was varied while holding the total volume fraction of

particles constant. The results show that there is an optimal volume fraction of

positively magnetized particles for which the yield stress is maximum. Also, as for

the ER fluids, when the particle volume fractions are near the optimal values, they

come together to form a cohesive suspension, which increases the yield stress.
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3.1 Introduction

When a magnetic field is applied to a magnetorheological (MR) fluid, a suspension of

micron-sized iron particles in a carrier liquid, its particles rearrange to form chain-like

structures. This happens because the particles acquire magnetic moments, causing

particles to rearrange relative to one another and get aligned along the applied field

direction. The rearrangement of the particles changes the liquid’s free-flowing nature

to a semi-solid one [81], and its rheological properties are also modified, e.g., the

viscosity is increased [82, 83]. Particle chain formation in a magnetic field occurs due

to the magnetic dipole-dipole interactions.

In recent years, magnetic dipole-dipole interactions have been extensively

studied, including the effect of concentration of magnetite particles, core-shell

structure, particle morphology and aggregation, and fluid stability [84, 85, 86, 87, 88].

The problem in applying a magnetic field to an MR fluid containing only one type

of particles, i.e., either positively or negatively magnetized particles, is that the

interaction force between particles is attractive only when the line joining the particle

centers is parallel to the magnetic field direction. The force is repulsive when they

are aligned in a perpendicular direction to the field. Therefore, particles do not come

together in both the parallel and perpendicular plane of the applied field. This causes

the particle distribution to get fragmented into chains and columns with gaps between

the particles. Thus, the particle chains cannot resist shear collectively, and the yield

stress is limited. This behavior is analogous to that of the electrorheological (ER)

fluids containing either positively or negatively polarized particles, which is discussed

in Chapter 2.

Several studies have been conducted in which different combinations of particles

were used for preparing MR fluids and utilizing a ferrofluid (FF) as the suspending

liquid. For example, Erb et al. illustrated the magnetic assembly of a mixture

of paramagnetic and nonmagnetic particles in FF, which showed various structures
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such as ”Saturn rings,” ”flowers,” ”poles,” and ”two-tone” arrangements [67]. Ray

et al. used paramagnetic and diamagnetic particles, which showed colloidal flowers

and strings [89]. Similarly, Lopez-Lopez et al. used diamagnetic and ferromagnetic

particles as the colloidal suspension in FF and studied the rheological behavior

of an Inverse Magnetorheological Fluid [90]. Susan-Resiga et al. formulated

different samples of ferrofluid-based magnetorheological fluids while varying the

nanometer-sized and micrometer-sized iron particles’ volume fractions and the total

volume fractions [91] of particles. They concluded that the dynamic and static yield

stresses increase with iron particle volume fraction and the total volume fraction of

particles. Magnetic susceptibility of particles and the suspending liquid influence the

MR suspension’s rheological properties and determined the self-assembled patterns.

An extremely bidisperse MR fluid presents an enhanced viscosity with increasing

particle concentration, and particles show repulsion at closer distances [31, 32, 92].

A mixture of ferromagnetic (FM) and diamagnetic (DM) particles suspended in a

ferrofluid for forming inverse magnetorheological fluid shows clusters of FM particles

around single particle chains of larger sized DM particles and shows fragmentation

of particles into chains and columns. The fact that these field-induced columns do

not combine to form a connected cluster, including when a surface pattern is used to

guide their assembly [93], indicates that the forces among them are not attractive.

In this work, we experimentally investigated MR fluids’ yield stress behavior

formed by suspending mixtures of ferromagnetic and diamagnetic particles in

ferrofluids (FF), which shows that the yield stress is maximum when the volume

fraction of ferromagnetic particles is around sixty percent. This is because of

the chains’ attraction in both parallel and perpendicular directions to the applied

magnetic field for this critical volume fraction ratio of both types of particles.

Therefore, particles self-assemble to form a cohesive structure which increases the

yield stress of the suspension. It is possible to induce positive polarization in one
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type of particles and negative polarization in the second type by selecting a liquid

medium with a suitable magnetic susceptibility.

Experimental results show an increase in the mixtures’ yield stress, indicating

that the particles form a cohesive structure. We also found that MR fluids’ rheological

response depends on various parameters, including the particles’ concentration,

magnetic susceptibility of the suspending liquid, and the applied magnetic field

intensity.

The MR fluids’ behavior differs from that of the ER fluids because the negative

magnetization of particles in MR fluids is much weaker than of the positively polarized

particles. This is because the magnetic susceptibility of ferrofluids is much smaller

than that of iron particles.

3.1.1 Mechanisms of Interaction of Particles

The mechanism that determines particles’ distribution upon application of a magnetic

field is analogous to that in an electrorheological fluid as discussed in Chapter 2.

Particles attract each other when they are aligned parallel to the field direction, and

they repel when aligned in a perpendicular direction to the field due to dipole-dipole

interaction.

The applied magnetic field causes particles to acquire magnetic moments, due

to which they get aligned along the field direction. The interaction between particles

causes the formation of alternating bands of ferromagnetic and diamagnetic particle

chains in the MR suspension. In an external magnetic field H0, the magnetic moment

acquired by a particle of relative permeability µp is given by:

m = 3µfβpVH0 = χVH0 (3.1)
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where V is the particle volume, µf represents the relative magnetic permeability

of the fluid medium, βp =
µp−µf
µp+2µf

is the magnetic Clausius-Mossotti factor or

the magnetic contrast factor, and χ is the particle’s magnetic susceptibility. For

ferrofluids, µf > 1, which can be varied by varying the particle concentration [67].

For diamagnetic particles, µp ≈ 1, and so β < 0. However, for ferromagnetic particles

µp >> 1. In our experiments, β values for diamagnetic particles were in the range of

-0.26 to -0.31, and that of ferromagnetic particles were 0.997 to 0.998 for suspensions

containing EFH1 and EFH3 ferrofluids, respectively. Therefore, the diamagnetic

particles have their magnetic moments in the opposite direction of the magnetic field,

and the ferromagnetic particles acquire magnetic moments in the direction of the

field. The dipole-dipole interaction force acting on a particle i due to another particle

j is given by:

Fij =
µ0

4πµf

{
3
mimj

r5
r +

3

r5
[(mi.r)mj + (mj.r)mi]−

15

r7
(mi.r)(mj.r)r

}
(3.2)

Here, mi and mj are the magnetic moments of particles i and j, respectively,

µ0 is the magnetic permeability of vacuum and r is a vector connecting the center of

two adjacent particles. When adjacent particles are of the same type, their magnetic

moments are equal and are aligned in the field’s direction. When the line joining

the particle centers is parallel to the magnetic field direction, the interaction force is

attractive and becomes repulsive when it is perpendicular to the field. If the particles

are aligned at an intermediate angle, they experience a magnetic torque that rotates

them to align along the field direction. Consequently, neighboring particles of the

same type come together and form close-packed chains. However, if two particles are

of different types, the force is repulsive when the line joining the particle centers is

parallel to the field direction. The force will be attractive only when the line joining

the centers is perpendicular to the field.
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3.1.2 Experimental

(a) Sample preparation: The MR fluid suspensions were prepared by mixing

micron-sized ferromagnetic and diamagnetic particles in ferrofluids where they

become positively and negatively magnetized, respectively. Iron particles (1-3 µm,

Alfa Aesar) and glass particles (3-6 µm, Cospheric) were selected as ferromagnetic

and diamagnetic particles, respectively. We used two ferrofluids with different

magnetic susceptibilities and magnetic particle concentrations- EFH1 (Magnetic

particle concentration: 7.9% vol., Educational Innovations and Ferrotec) and EFH3

(Magnetic particle concentration: 11.8% vol., Ferrotec). In our experiments, the total

volume fraction of particles in the suspension was held constant while the volume

fractions of positively (iron) and negatively (glass) magnetized particles were varied.

For EFH1 as the suspending liquid, the β values for the diamagnetic and ferromagnetic

particles are -0.26 and 0.998, respectively, and for EFH3 as the suspending liquid,

the β values for the diamagnetic and ferromagnetic particles are -0.31 and 0.997,

respectively.

The MR fluids were formed by first thoroughly mixing iron and glass particles

and then adding the particle mixture to the ferrofluid. The mixture was added

to the suspending fluid in small portions and stirred continuously, which ensured

a homogeneous suspension. The total volume fraction of particles was selected to be

in the range of 30%-53% of the total MR suspensions. We experimentally investigated

the prepared MR fluids’ behavior as a function of the total particle volume fraction,

the relative particle fractions, and the magnetic field intensity.

(b) Yield stress measurement: To quantify the changes in the microstructures

of a MR fluid, we measured its yield stress upon the application of an external

magnetic field. A vane spindle rheometer (YR-1 Yield Stress Rheometer, Brookfield

Engineering) with an accuracy of ±2% was used. The experimental setup is shown

in Figure 3.1. The MR fluid was placed in a 69mm long cylindrical device with
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a diameter of 32mm, which was then placed in a hollow 3-D printed square box,

42mm long, 50mm deep, and 5mm thick, to ensure that the magnitude of the applied

magnetic field was uniform. Two square-shaped ceramic magnets (McMaster-Carr,

USA, 5738K67) having a length of 101.6 mm and the thickness of 6.35 mm and two

disc-shaped magnets (McMaster-Carr, USA, 58605K77) having a diameter of 12.7 mm

and the thickness of 6.35 mm with a maximum pulling capacity of 7 pounds (lbs.) each

were placed touching the device such that the magnetic field lines were perpendicular

to the vane spindle of the rheometer. Two adjoined 3-D printed separators having

a thickness of 12.7 mm were placed between the box and the magnets to vary the

magnetic field intensity. The magnetic field intensity was 35 mT, 23 mT, or 16 mT

at the center of the device containing the MR fluid suspension.
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Figure 3.1 Schematic of the experimental setup used to measure yield stress.
Magnets are placed on the sidewalls of the device containing the MR suspension.
Values are recorded when the vane spindle rotates.

The magnetic field strength was measured using a 3-axis magnetic field sensor

(Go Direct, Vernier Software and Technology). The field strength was in the range

of 23-35 mT, as shown in Figures 3.2-3.4.
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Figure 3.2 Magnetic field strength (mT) as a function of the distance. The field
lines were perpendicular to the surface, and the distance was varied from 0 mm to
40 mm (left to right) when two square-shaped magnets were placed together on one
side of the device. The magnetic field strength in the middle was 23 mT.
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Figure 3.3 Magnetic field strength (mT) as a function of the distance. The field
lines were perpendicular to the surface, and the distance was varied from 0 mm to
40 mm (left to right) between two square-shaped magnets placed on each side of the
device. The magnetic field strength in the middle was 28 mT.
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Figure 3.4 Magnetic field strength (mT) as a function of the distance. The field
lines were perpendicular to the surface, and the distance was varied from 0 mm to 40
mm (left to right) between two circular-shaped magnets placed together on one side
of the device. The magnetic field strength in the middle was 35 mT.
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The rheological measurements were conducted for three different intensities of

the magnetic field. The test parameters were as follows: (i) Spindle 73: medium

vane spindle; (ii) Primary Immersion mark: the vane spindle mark was matched up

to the fluid boundary; (iii) 0 rpm pre-shear speed: the shearing of the sample before

measuring its yield properties; we skipped this step since the fluid was already mixed

for twenty minutes; (iv) 0.5 rpm zero-speed: the rheometer rotates the spindle in

the appropriate direction until 0% torque is achieved (v) 2.5 rpm running speed:

the motor speed at which the material is tested; (vi) 100% Torque Reduction: this

parameter causes the test to stop as soon as there are no torque increases; (vii) 2.32%

Base Increment Calibration: base increment is the amount of time in milliseconds

between data points used for taking torque readings. Next, the vane spindle was

immersed in the suspensions for measuring yield stress. Without changing the

parameters, ten consecutive measurements were performed to ensure reproducibility

of results. A similar procedure was followed with all the MR fluids having different

particle concentrations.

3.1.3 Results and Discussion

This section discusses the measured yield stress results as a function of varying volume

fraction of positively magnetized (iron) particles while holding the total volume

fraction of particles constant. The measurements were performed for three different

magnetic field intensities. For this purpose, three device configurations were used as

shown in Table 3.1.
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Table 3.1 Device Configurations Showing Different Magnetic Field Strengths

Configuration Description Magnetic field strength
(in mT )

1 Circular magnets on each
side

35

2 Two square-shaped
magnets on one side

23

3 Two square-shaped
magnets on one side with

separators

16

(a) Role of particles’ concentration and applied magnetic field

intensity: In this subsection, we present yield stress results in which the concen-

tration of particles and the magnetic field intensity are varied. The aim of this study

is to model the role of these parameters.

Figures 3.6-3.12 show the yield stress as a function of the volume fraction of

iron particles for five MR suspensions formed by mixing iron and glass particles in

ferrofluids. Here the percent volume fractions is defined to be volume of iron particles
total volume of particles×

100. The volume fraction at which the peak yield stress occurred varied with the

magnetic field intensity. Figure 3.5 shows the results for the MR suspensions formed

using the ferrofluid EFH1 with the total particle volume fractions of 0.2 and 0.3. For

a magnetic field strength of 35 mT, we found that the yield stress reached the peak

value at 50% volume fraction of iron particles when the total particle volume fraction

was 0.2. The yield stress for the total volume fraction of 0.3 increased with the

increasing volume fraction of iron particles. In both cases, peaks were not prominent.

The yield stress for 100% iron was higher for 0.3 than 0.2. This behavior shows that

an increase in the total particle concentration enhances the yield stress.
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Figure 3.5 Yield stress versus volume fraction of iron particles for EFH1 containing
a mixture of iron and glass particles under the application of a magnetic field of
intensity 35 mT. The total volume fraction of particles was kept constant at 0.2 or
0.3 while the concentration of iron particles was increased from 0 to 100%. The yield
stress was larger for 0.3.
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In Figure 3.6, the yield stress of the above MR fluid for the total particle volume

fraction of 0.3 is shown. For a magnetic field strength of 23 mT, the yield stress

increased with an increase in the volume fraction of iron particles, and after reaching

a maximum value, it decreased. This indicates that there are critical volume fractions

of both types of particles for which the yield stress is maximum. A sharp peak of 303

Pa was observed at 75% iron. Therefore, applying a magnetic field strength of 23 mT

was selected for conducting additional experimental studies because an intermediate

peak was observed.

Figure 3.6 Yield stress versus volume fraction of iron particles for EFH1 containing
a mixture of iron and glass particles under the application of a magnetic field of
intensity 23 mT. The total volume fraction of particles was kept constant at 0.3. The
yield stress was maximum for 75% volume fraction of iron particles.
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In Figure 3.7, the performance of the MR suspension with EFH1 as the

suspending liquid is shown, for the total particle volume fractions of 0.3 and 0.5 for

a magnetic field strength of 16 mT. A curve was observed for 0.3, with a maximum

value at 100% iron. When the total particle volume fraction was increased to 0.5, the

peak was found at the 75% volume fraction of iron particles.

Figure 3.7 Yield stress versus volume fraction of iron particles for EFH1 containing
a mixture of iron and glass particles under the application of a magnetic field of
intensity 16 mT. The total volume fraction of particles was kept constant at 0.3 and
0.5. The yield stress had a peak of around 75% iron for a total volume fraction of
0.5.

The measurements were repeated for an MR suspension with EFH1 (Ferrotec)

as the suspending liquid and the results were analyzed for a magnetic field strength

of 23 mT and 16 mT. The total particle volume fractions of 0.35, 0.4, 0.5 and 0.53

were considered (Figures 3.8 and 3.9, respectively). In both the figures, a curve was

observed for 0.35 without a major peak. A sharp peak was emerged when the total

particle concentration was increased. For example, both 0.4 and 0.5 cases had a
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greater yield stress value for the 60% volume fraction of iron particles. For the total

particle volume fraction of 0.53, the curve plateaued as the maximum limit of the

Rheometer reached. For a magnetic field strength of 23 mT, the yield stress was

larger than the maximum limit. A comparison of Figures 3.8 and 3.9 shows greater

peak values of 799 Pa for a magnetic field strength of 23 mT as compared to 650 Pa

for a magnetic field strength of 16 mT, for a total particle volume fraction of 0.5.

Figure 3.8 Yield stress versus volume fraction of iron particles for EFH1 (Ferrotec)
containing a mixture of iron and glass particles under the application of a magnetic
field of intensity 16 mT. The total volume fraction of particles was kept constant at
0.4, 0.5 and 0.53. The yield stress showed a sharp peak at 60% iron.
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Figure 3.9 Yield stress versus volume fraction of iron particles for EFH1 (Ferrotec)
containing a mixture of iron and glass particles under the application of a magnetic
field of intensity 23 mT. The yield stress showed an enhanced peak at 60% iron.
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We next present results for the MR fluids formed using the ferrofluid EFH3

(Ferrotec, USA), which contains a larger concentration of magnetic particles than

EFH1. The yield stress curve was nearly flat at lower concentrations of iron as shown

in Figures 3.10 and 3.11. When the applied magnetic field strength is 23 mT, the

yield stress was constant for smaller particle concentrations. However, a sharp peak

emerged for the 60% concentration of iron particles.

Figure 3.10 Yield stress versus volume fraction of iron particles for EFH3 (Ferrotec)
containing a mixture of iron and glass particles under the application of a magnetic
field of intensity 16 mT. The yield stress showed an enhanced peak at 60% iron.
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Figure 3.11 Yield stress versus volume fraction of iron particles for EFH-3
(Ferrotec) containing a mixture of iron and glass particles under the application of a
magnetic field of intensity 23 mT. The yield stress showed an enhanced peak at 60%
iron.
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(b) Role of magnetic susceptibility of the suspending liquid: In this

subsection, we present yield stress results in which the magnetic susceptibility of the

suspending liquids is varied.

As previously discussed, magnetic dipole moments acquired by the particles

depend on the susceptibility of the suspending liquid. By varying the susceptibility

we change the positive and negative magnetization induced on the particles. This

affects the formation of chain-like structures and hence, the yield stress. For example,

comparison of Figures 3.9 and 3.11 shows distinct effects of ferrofluid properties of

EFH1 and EFH3 respectively, on MR fluid behavior when a magnetic field is applied.

For example, for a total particle volume fraction of 0.5 in Figure 3.8, yield stress

reached its peak value of 650 Pa at 60% volume fraction of iron particles when EFH1

was used whereas a value of 800 Pa was reached when EFH3 was used. Therefore,

EFH3 exhibits an enhanced MR effect owing to its higher magnetic susceptibility.

The experimental results show that the tendency of particles to self-assemble

into clusters can be tuned on demand by applying a varying intensity of the magnetic

field. The data also show that MR fluids’ rheological response depends on various

parameters, including the particles’ concentration, magnetic susceptibilities of the

suspending liquid, and the applied magnetic field intensity.

Listed below are the properties of particles and carrier liquid.

Table 3.2 Particle Properties

Name Particle
Diameter (µm)

Relative
Magnetic

Permeability

Magnetic
Susceptibility

Alfa Aesar Iron 1-3 5000 200000

Cospheric Glass 3-6 1 −1× 10−6
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Table 3.3 Suspending Fluid Properties

Name Particle
Diameter

(nm)

Magnetic
Particle
Conc-

entration
(%vol)

Relative
Magnetic

Perm-
eability
at 20 Oe

Viscosity
at 17 ◦C

(cP)

Initial
Magnetic
Suscep-
tibility

Density
(g/cc)

EFH1 10 7.9 2.6 6 0.21 1.21

EFH3 10 11.8 3.4 <12 0.29 1.42

3.1.4 Conclusion

Magnetorheological suspensions prepared using a mixture of ferromagnetic and

diamagnetic particles in ferrofluid as the suspending liquid, with different magnetic

susceptibilities and magnetic particle concentration, exhibited different modifications

in their rheological properties when a magnetic field was applied. The extent of

connected structure formation was quantified by measuring the yield stress, which was

investigated as a function of varying volume fractions of positively polarized particles

while keeping the total particle volume fraction constant. Experimental results show

that the yield stress increased with increasing volume fraction of positively polarized

particles and decreased after reaching a maximum value. This indicates that there

is an optimal volume fraction of particles for which the formation of a connected

pattern is maximum. Also, the yield stress’s peak value increased with an increase in

the total particle volume fraction. We also found that the suspensions prepared using

ferrofluid with greater magnetic susceptibility and magnetic particle concentration

have greater changes in the yield stress.
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CHAPTER 4

THIN FILMS WITH SELF-ASSEMBLED MONOLAYERS
EMBEDDED ON THEIR SURFACES FOR SURFACE ENHANCED

RAMAN SPECTROSCOPY APPLICATIONS

The current work presents a technique for the self-assembly of submicron-sized gold

nanoparticles on a non-conducting film’s surface. This was achieved by placing

particles on a UV curable liquid’s surface, applying an electric field normal to the

surface to conduct self-assembly, enabling control of lattice spacing, and solidifying the

monolayer once a suitable arrangement was formed. This method produces uniform

surface patterns of self-assembled particle monolayers, and is rapid and cost-effective.

The monolayers formed were used to prepare substrates for Surface-Enhanced Raman

Scattering (SERS) applications. Gold particles’ size and inter-particle spacing were

considered for preparing substrates because they can enhance the SERS effect;

namely, larger-sized particles exhibit an increase in wavelength with maximum

absorbance, and a highly ordered arrangement with adjustable inter-particle spacing

provides a larger area of enhancement, respectively. The experimental results show

that the laboratory-built substrates are more efficient and deliver an enhanced SERS

intensity compared to the commercial SERS substrates.

4.1 Introduction

In recent years, techniques employing self-assembly on liquid surfaces have drawn

much attention because they can be used to form periodic monolayers of particles.

One such technique of formation of particle monolayers is capillary-based self-

assembly. Several research studies have been conducted to understand this process

because it has a wide range of applications in technology, e.g., for forming novel micro

and nanostructured materials, for stabilizing emulsions, and separation of ink and

toner particles [94], and it helps in understanding particles’ behavior in fluid-liquid
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interfaces, e.g., pollination in hydrophilous plants [95], dispersion of proteins [96] and

clustering of insect eggs [35, 36].

The phenomenon of naturally occurring capillary-induced self-assembly can be

easily understood by a common example of clustering of cheerios on the surface

of milk. The deformation of the interface by floating particles gives rise to lateral

capillary forces, which cause them to cluster. However, capillary-induced monolayers

formed this way have defects, lack long-range order, lattice spacing is not adjustable,

and hierarchical structures are not possible. Moreover, lateral capillary forces are too

small to move small micron and nano-sized particles to form self-assembled patterns.

We used a technique of applying an electric field to guide the particles’ self-

assembly process to overcome the aforementioned shortcomings. In this technique,

an electric field is applied normal to the interface containing particles which results

in the formation of self-assembled monolayers. The current work focuses on the

self-assembly of submicron-sized gold nanoparticles (600 nm and 50-100 nm diameter)

on a non-conducting film’s surface. This was achieved by placing particles on a UV

curable liquid’s surface, applying an electric field normal to the surface to conduct

self-assembly enabling control of lattice spacing, and solidifying the monolayer once

a suitable arrangement was formed. As shown in Figure 4.1(a), monodisperse glass

particles sprinkled on an air-oil interface self-assembled under capillary forces, but

there were void gaps between them. When an electric field was applied normal to

the interface (Figure 4.1(b)), particles moved away from each other and arranged

themselves in patterns. Experimental results have shown that these electric field-

induced monolayers have long-range order, are defect-free, and their lattice spacing

is adjustable. The interparticle distance can also be varied by varying electric field

strength. The assembled monolayers can be embedded on a thin films’ surface to

create a substrate for Surface-Enhanced Raman Scattering (SERS) technique.
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Figure 4.1 Substrates containing glass particles of radius 40.5 mm at the air-oil
interface. (a) Particles self-assembled under the action of capillary forces when the
electric field was 0 V. Notice that there are lot of void gaps as particles are physically
touching each other. (b) Electric field-induced ordered monolayers are formed when
an electric field of 5000 V was applied.

Surface-enhanced Raman Scattering (SERS) is a surface-sensitive technique

that uses the concept of inelastic light scattering (see Figure 4.2) by molecules

absorbed on rough metal surfaces activated by a laser source resulting in the

enhancement of Raman scattering by factors of 1010 − 1015. As SERS helps in

the structural detection of molecules, this technique has widespread applications in

life sciences for cell and tissue-based analysis, quality control in the pharmaceutical

industry, counterfeit detection, security purposes, including detection of explosives,

forensics, food safety, biomolecular identification [97], single-molecule detection

[98, 99], chemical, and bioanalytical sensing and imaging [100, 101]. The most

commonly used metals for SERS technique are gold, silver, and copper. Gold and

silver have been widely employed because of their unique physical properties such

as air stability, biocompatibility, and optical properties for biomedical applications

[102], while copper is more reactive.
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Figure 4.2 Types of scattering processes when light interacts with a molecule.
Rayleigh scattered light has an energy equal to the incident light (elastic). Stokes
and Anti-Stokes Raman scattering (inelastic) have energies greater than and less than
the incident light, respectively.

The two main contributors to SERS are the electromagnetic and chemical

enhancement mechanisms. However, the electromagnetic mechanism is found to

be a major contributor to most SERS processes [103]. It occurs because of the

interaction between laser radiation and electrons on a metal surface. When an incident

light strikes a metal surface, delocalized electrons of the metal structure undergo

oscillations (surface plasmons) and create a charge motion. This gives rise to an

electromagnetic field outside the metal, as shown in Figure 4.3. When the incident

light’s frequency becomes equal to the oscillation frequency of free electrons in the

metal, surface plasmon resonances (SPRs) occur. The SPRs, which are localized

to a specific location called localized surface plasmon resonances (LSPRs), cause

the energy of the incident light to get scattered or absorbed, which enhances the

electromagnetic field. The field enhancement magnifies the intensity of incident light

which excites the Raman modes of molecules. This excitation causes the Raman

scattering signal to get increased which is further magnified by the metal surface.

The total enhancement obtained is the electric field to the fourth power. The

electromagnetic enhancement for SERS is estimated to reach factors of 1010 − 1011

[104].
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Figure 4.3 Localized surface plasmon resonances in electromagnetic enhancement
mechanism.

The chemical enhancement mechanism involves charge transfer between adsorbed

molecules and the metal surface [105]. This happens when the molecule adsorbs

strongly on the metal’s surface, leading to a change in its polarizability. The

contribution of chemical enhancement to Raman Scattering is found to be 102.

The total SERS enhancement factor is the product of electromagnetic and chemical

enhancement mechanisms.

Since the phenomenon of enhanced Raman spectra of pyridine on roughened

silver was discovered in 1974, researchers have investigated several factors that play a

role in enhancing the Raman signal. Some of the factors are the selection of substrates

and an appropriate excitation source. The enhancement was the largest in the few

nanometers closest to the substrate surface as the maximum SERS enhancing region

decreases with distance [103]. An excitation source is selected such that it enables

efficient excitation of the plasmon resonance. The maximum signal is found when

the laser wavelength is shifted to the blue of the plasmon resonance or the maximum

peak wavelength red-shifts [106]. Local field hotspots [107] around adsorbed metal

nanoparticles [108] and aggregated metallic nanoparticles were other contributing

factors for SERS [109]. The strongest SERS activity occurs in nanoparticles of silver

[110] and gold [111]. Different shapes of gold nanoparticles were also considered, such
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as spheres, triangles, rods, hexagons, and stars for biomedical applications [100]. For

example, Tiwari et al. used silver nano triangles to study the effect of curvature

and estimated enhanced field strength around the vertices [112]. Tian et al. showed

that gold nanosphere aggregations had a local field enhancement [113]. However,

the enhancement exhibited by the substrates was not greater than for commercially

available substrates.

Our aim is to prepare substrates with embedded particle monolayers which

show an optimized SERS performance. For the preparation of such substrates, gold

particles’ size and inter-particle spacing were considered, which play an important

role in obtaining a higher enhancement. This is because the wavelength with

maximum absorbance increases with an increase in particle size20, and ordered

particle arrangements with a high-density of sub-10 nm-interparticle spacing offer

a larger surface area for adsorption of target analytes providing a large density

of local field hotspots [114, 115]. For our experimental studies, substrates were

prepared using spherical gold nanoparticles of sizes 600 nm (diameter) and 50-100

nm. An electric field was applied normal to the interface to obtain self-assembled

particle monolayers. However, the present work will mainly focus on the performance

of substrates containing monolayers of 600 nm gold particles. Figure 4.4 shows

a thin film and monolayers of micron to nano-sized particles assembled under our

technique with different arrangements. Our method produces SERS substrates with

uniform surface patterns of metallic particles, which is rapid and cost-effective. Dr.

Jenny Lockard’s team conducted SERS measurements of the substrates at Rutgers

University. The experimental results show that the substrates’ performance depends

on the particle concentration and the inter-particle distance. We also found that the

laboratory-built substrates are more efficient and show an enhanced SERS intensity

compared to the commercial SERS substrates.
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Figure 4.4 Films with customizable surface patterns. Self-assembled mono- and
poly-dispersed dielectric and metallic particles arranged into a range of hierarchical
patterns. These patterns of micron to nano-sized particles are then embedded on thin
films. The spacing between the particles is adjustable.

4.2 Experimental

In this section, the procedure for preparing SERS substrates using electric field-

induced self-assembly technique and SERS measurements is discussed.

(a) Sample Preparation: The first step in the sample preparation process

is preparing substrates with embedded gold nanoparticles distributed uniformly

throughout the surface. We used our technique to control the lattice spacing and

solidified the monolayer once a suitable arrangement was formed. The experimental

set-up consisted of a device containing two fluids, mounted with electrodes at the

top and the bottom, as shown in Figure 4.5. The top electrode was transparent so

that the monolayer could be seen using a microscope. A uniform electric field in the

direction normal to the interface was obtained by applying a high voltage between

the upper and lower electrodes. For this purpose, a variable frequency ac signal

generator (BK Precision Model 4010A) was used along with a high voltage amplifier
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(Trek Model 610E). The arrangement of particles was recorded using a digital camera

connected to a Nikon Metallurgical microscope (MEC600). In our experiments, the

top fluid was air, and the bottom liquid was a suspension of gold particles (600 nm

and 50-100 nm) in UV adhesive (silicone). When an electric field was applied, the

particles were trapped at the air-liquid interface. The substrate was made by freezing

the UV adhesive to obtain a thin film embedded with trapped gold particles. In this

study, we have prepared substrates with varying concentrations of gold nanoparticles

(600 nm diameter).

Figure 4.5 Experimental set-up.

The substrates embedded with gold nanoparticles’ monolayers need to be

prepared before SERS measurements can be conducted. This is done by adding

an analyte to the particles, which gets adsorbed on the particles’ surfaces (see Figure

4.6). Analytes are important as SERS enhancement is dependent on the number

of molecules getting adsorbed on the substrate surface. In our experiments, DTNB

(Ellman’s Reagent or 5,5-dithio-bis-(2-nitrobenzoic acid)) was used as an analyte.

Samples for SERS measurements were prepared by first adding the analyte, DTNB

(Sigma Aldridge), to the substrate’s surface. For this purpose, the samples were

soaked in a 20 mM DTNB solution of methanol for 24 hours at room temperature

and then washed them with methanol three times to remove excess unreacted DTNB.
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Then the samples were dried in the open air to get the prepared substrates ready for

SERS measurements.

Figure 4.6 SERS Technique. (a) Molecules of the analyte getting adsorbed on the
surface of gold nanoparticles. (b) Detailed SERS Technique.

(b) SERS Measurement: For measuring SERS, high-intensity laser radiation

with wavelengths in either the visible or near-infrared regions is passed through the

SERS substrates. The laser source excites the plasmon resonance, and SERS signals

are generated, as shown in Figure 4.6(b). A filter is used to absorb or reflect any

Rayleigh scattering allowing Raman signal to get transmitted. A spectrograph and a

detector are then used to image Raman spectra across a wide spectral region shown

in Figure 4.7.

Figure 4.7 Raman Microscope components.

In our experiments, Raman spectra were collected at room temperature using

a 785 nm single-frequency diode-pumped solid-state laser (Spectra-Physics) with ∼8

mW power, a triple monochromator, and a 1340×100-pixel liquid nitrogen-cooled
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CCD detector (Princeton Instruments). Samples were spun during data acquisition

and sample alignment to minimize photo- and thermal damage due to exposure to the

laser light. SERS signals collected by the detector were used to observe aggregated

particles by comparing the location of the maximum peak wavelength in the UV-Vis

spectra.

4.3 Results and Discussion

In this section, we discuss our experiments’ results to show self-assembly of

gold nanoparticles under the application of an electric field and evaluate the

SERS performance of thin films embedded with electric field-induced self-assembled

monolayers of gold particles on their surfaces.

4.3.1 Directed Self-Assembly of Gold Nanoparticles

Figure 4.8(b) shows the formation of monolayers of gold nanoparticles when an electric

field was applied. These defect-free monolayers are then used for obtaining SERS

spectra.

Figure 4.8 Gold nanoparticles of diameter 600 nm. (a) Particles self-assembled
under the action of capillary forces when the electric field was 0 V. (b) Electric
field-induced monolayers are formed when an electric field of 5000 V was applied.
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4.3.2 SERS Studies of Silicone Substrates

Raman spectra were recorded to evaluate the degree of enhancement shown by

our laboratory-built silicone-based substrates and compare their performance with

commercially available substrates. For this purpose, we have recorded the perfor-

mances shown by silicone substrates with embedded monolayers of varying concen-

trations of gold particles and by a commercial substrate.

The results are reported by a plot showing Raman radiation’s intensity as a

function of Raman shift calculated in wavenumbers. The horizontal axis of the

Raman spectrum indicates the vibrational information of the adsorbed molecule

and the vertical axis shows the intensity of activity. Figure 4.9 below shows the

enhancement shown by a commercially available gold substrate (G1-102 Q-SERS

Raman Enhancement Substrate). The black- and red-colored traces illustrate the

SERS intensity by a pure gold substrate and when the substrate was treated with

DTNB analyte, respectively. The pink-colored trace shows the pure SERS Signal,

which indicates an enhancement. The pure SERS signal is the extracted SERS after

subtraction of the spectrum of an untreated sample from the spectrum of the treated

sample. The traces clearly show an enhancement of the Raman signal. This occurs

because of the generation of local hotspots by the aggregated gold particles, which

enhances the local electric field. Here, the peaks indicate enhanced vibrational modes.
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Figure 4.9 Intensity of Raman Radiation vs Raman Shift for commercial
SERS substrate. Au-SERS – pure commercial Au substrate, Au-SERS-DTNB -
commercial Au substrate treated with DTNB, pure-SERS-Signal - SERS extracted
after subtraction of spectrum of untreated sample from spectrum of treated sample.

Figures 4.10 and 4.11 show the SERS intensity obtained from the prepared

substrates with low and high concentrations of gold nanoparticles, respectively. We

found that there was a difference in the intensity of the pure SERS signal obtained

from the substrates. This behavior can be explained by the dependency of the SERS

effect on the number of aggregated particles18. Here, the concentrated substrate’s

enhancement containing a greater number of gold particles and particle aggregations

is stronger than the diluted one containing fewer particles.
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Figure 4.10 Intensity of Raman Radiation vs Raman Shift for a sample with a
low concentration of gold nanoparticles. SilSERSDil – pure silicone-based substrate
with low nanoparticle concentration, SilSERSDil -DTNB - silicone-based substrate
treated with DTNB, pure-SERS-from SilSERSDil - SERS extracted after subtraction
of spectrum of untreated sample from the spectrum of treated sample.

Figure 4.11 Intensity of Raman Radiation vs Raman Shift for a sample with
a high concentration of gold nanoparticles. SilSERSConc – pure silicone-based
substrate with high nanoparticle concentration, SilSERSConc -DTNB - silicone-based
substrate treated with DTNB, pure-SERS-from SilSERSConc - SERS extracted after
subtraction of spectrum of untreated sample from the spectrum of treated sample.
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Figure 4.12 shows a comparison between the substrates containing a low

and high concentration of gold nanoparticles and the commercially available gold

substrate. The pink-colored trace illustrates the enhancement by a commercially

available SERS substrate. The green and orange-colored traces show the prepared

substrates’ enhancement having a low and high concentration of gold nanoparticles,

respectively. We found that the enhancement shown by our substrates is greater than

the commercial substrate, which indicates a strong SERS effect.

Figure 4.12 Intensity of Raman Radiation vs Raman Shift. SERS extracted from
a) commercial substrate (Au),b) a silicone-based substrate with low nanoparticle
concentration (Diluted), c) silicone-based substrate with high nanoparticle concen-
tration (Concentrated).

4.3.3 Surface Area of the Substrates Covered with Gold Particles

We have also calculated the total area covered with gold nanoparticles for the highly

concentrated gold nanoparticle substrate and the commercial substrate. Figures 4.13

and 4.14 show a comparison of our laboratory-built substrate’s surface area and the

commercially available ones, respectively. The Integrated Intensity technique was

employed to estimate the enhancement correctly and to calculate the area covered
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with particles. First, each peak was fitted with two pseudo-voigt functions (red and

green dotted traces) in Origin 9.5. Once the fit was complete, reports were generated

showing areas for those components, and their sum is the integrated intensity for

the peak. The area was also calculated using the same technique. The relationship

between the intensity measured on the detector and the integrated intensity is simply

the surface area (in reciprocal space) of the spherical shell of scattering intensity.

The blue-colored trace shows intensity for high gold concentration substrate, and the

black-colored trace shows intensity for commercial SERS substrate. Results show

that the peak intensity for our substrate is higher than the commercial one. We also

found that the highly concentrated substrate is covered over nearly 46% of its surface

area with gold particles and is ∼6.75 times more efficient per gold particle than the

commercial SERS substrate.

Figure 4.13 Surface area of gold nanoparticles on commercial gold substrate
(blank line) Total area of the substrate covered with gold nanoparticles was 22301
(9189+13112).
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Figure 4.14 Surface area of gold nanoparticles on the prepared substrate having
a high concentration of gold nanoparticles (blue line). Total area of the substrate
covered with gold nanoparticles was 105538 (93397+12141).

4.4 Conclusion

Thin films with improved properties were prepared by curing UV-liquid-containing

gold nanoparticle monolayers which were formed when an electric field was applied.

The films were then used as substrates for Surface-Enhanced Raman Scattering

applications. Experiment results show that the performance of the laboratory-built

substrates containing varying concentrations of gold nanoparticles was better,

indicating a stronger SERS effect than a commercial SERS substrate. Our substrates

are 6.75 times more efficient per gold particle compared to the commercial ones. It

is also found that 46% of the substrates’ surface area was covered with gold particles

which is another reason for the observed enhancement.
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CHAPTER 5

DISSERTATION SUMMARY AND CONCLUSION

This dissertation explores the mechanisms that drive self-assembly in binary mixtures

of particles suspended in liquids and on fluid-liquid interfaces when they are subjected

to a uniform electric or magnetic field.

In Chapter 1, the rheological behavior and microstructure of electrorheological

fluids formed by mixing positively and negatively polarized particles are discussed.

Experimental and numerical techniques are used to show that the problem of

fragmentation, which occurs when either positively or negatively polarized particles

are used, is avoided by using suitable mixtures of positively and negatively polarized

particles. In a uniform electric field, particles formed chain-like structures attracting

their nearest neighbors. As a result, a three-dimensional connected structure is

formed. The strength of inter-particle forces that guides the self-assembly process

particles depends on electric field intensity, particle polarizabilities, particles’ size

ratio, and the number ratio. In our experiments, the microstructure modification is

measured in terms of the yield stress as a function of the volume fraction of positively

polarized particles for different electric field intensities. The total mass of particles

was kept constant while their respective volume fractions were varied. Experimental

results show that the yield stress of a mixture of positively and negatively polarizable

particles was consistently greater than that of the suspensions consisting of only one

type of particles, indicating an increased attraction among the particles. A range of

volume fractions exists for which particles come together to form a connected pattern

without fragmentation into chains and columns. Also, the yield stress increased with

increasing electric field intensity. The direct numerical simulation results were in

agreement with the experimental results.
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In chapter 2, a similar approach is used to study the behavior of magne-

torheological fluids formed using mixtures of positively polarized iron particles and

negatively polarized glass particles in a ferrofluid when an external magnetic field

was applied. MR fluids’ rheological response depends on parameters such as the

particles’ concentration, magnetic susceptibilities of the suspending liquid, and the

applied magnetic field intensity. The degree of formation of a connected structure was

investigated in terms of the yield stress and analyzed as a function of varying volume

fractions of positively polarized particles keeping the total particle volume fraction

constant. Experimental results show that the yield stress increased with increased

volume fractions of positively polarized particles and decreased after reaching a

maximum point. This indicates that there is a specific volume fraction of particles

for which a connected pattern forms. In addition, the peak value of the yield stress

increased with an increase in the total particle volume fraction. We also found that

the yield stress increases with increasing susceptibility and concentration of magnetic

particles.

Chapter 3 discusses a technique for the self-assembly of submicron-sized gold

nanoparticles on a non-conducting film’s surface. This was achieved by placing

particles on a UV curable liquid’s surface, applying an electric field normal to the

surface to conduct self-assembly, enabling control of lattice spacing, and solidifying the

monolayer once a suitable arrangement was formed. The monolayers formed were used

to prepare substrates for Surface-Enhanced Raman Scattering (SERS) applications.

The experimental results show that the performance of the laboratory-built substrates

containing varying concentrations of gold nanoparticles was better, indicating a

stronger SERS effect than a commercial SERS substrate. Our substrates are ∼6.75

times more efficient per gold particle compared to the commercial substrates. It is

also found that 46% of the substrates’ surface area was covered with gold particles

which is another reason for the observed enhancement.
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APPENDIX A

PROPERTIES OF PARTICLES AND SUSPENDING LIQUID IN ER

SUSPENSIONS

The properties of particles and suspending liquid for preparing ER fluid suspensions

are shown in the table below:

Table A.1 Physical Properties of Dispersed Phases and Dispersion Medium in an
ER Fluid

Material Density(g/cm3) Dielectric Constant

Al2O3 3.97 9.8

CaP 3.14 1.6

Glass 0.19− 0.6 1.165− 1.56

Silicone Oil 1.27 7.1
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APPENDIX B

CALCULATION OF NUMBER RATIO

The number ratio of both types of particles are calculated for two different cases of

particle densities as shown below:

Density(ρ) =
Mass(M)

V olume(V )

MassGl/Si = M1

MassAl2O3 = M2

M1 = ρ1 × V1

M2 = ρ2 × V2

M1

M2

=
ρ1
ρ2
× V1
V2

Case 1: When

ρ1 = ρ2

M1

M2

=
V1
V2

=
N1

N2

Case 2: When

ρ1 6= ρ2

V1
V2

=
M1

M2

× ρ2
ρ1
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V1
V2

=
N1

N2

=
M1

M2

× ρ2
ρ1

Number ratio=Volume ratio

N1

N2

=
V1
V2

N1

N2

+ 1 =
V1
V2

+ 1 =
(
M1

M2

ρ2
ρ1

)
+ 1

N1 +N2

N2

=
(
M1

M2

ρ2
ρ1

)
+ 1 =

V1 + V2
V2

N2

N1 +N2

=
V2

V1 + V2
=

1(
M1

M2

ρ2
ρ1

)
+ 1

V = N ×
(

4

3
πR3

)

V1
V2

=
N1

N2

R1
3

R2
3

N1

N2

=
V1
V2

R2
3

R1
3
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APPENDIX C

CALCULATION OF EFFECTIVE PERMITTIVITY FOR HOLLOW

PARTICLES

If a layered dielectric particle is spherically symmetric then the original particle is

replaced by an equivalent homogenous sphere of the same radius. The effective

permittivity of this equivalent particle, ε2’, reflects the attributes of the original

particles’ structure. The expression for the effective permittivity ε2’ of the equivalent

particle is given by the following equation:

ε2
′ = ε2 ×

{a3 + 2( ε3−ε2
ε3+2ε2

)

a3 − ( ε3−ε2
ε3+2ε2

)

}
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APPENDIX D

DATA TABLES

The data tables for the ER fluid mixtures are here under:

Table D.1 Data for an ER Fluid Containing a Mixture of Aluminum Oxide and
Glass Particles

Mixt-
ures

Mean
size of
glass
(µm)

Max.
electric
field

intensity
(kV/mm)

Force
(g)

Num-
ber of
Pea-ks

Yield
Stress
(kN/m2)

Vol-
ume
frac-
tions

of
Al2O3 :
Gl

Size
Ratio
MeanAl2O3
MeanGl

Num-
ber

Ratio
NAl2O3
NGl

Al2O3−
Gl

90 1.54 57 1 2.795 30:70 1.13 0.29

Al2O3−
Gl

72 1.54 31,
32.8

2 1.52,
1.61

30:70,
60:40

1.42 0.15,
0.52

Al2O3−
Gl

50 1.54 50 1 2.45 30:70 2.05 0.05

Al2O3−
Gl

20 1.54 32.55 2 1.595,
1.75

30:70,
80:20

5.125 0.003,
0.029
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Table D.2 Data for an ER Fluid Containing a Mixture of Aluminum Oxide and
Calcium Phosphate Particles

Mixt-
ures

Mean
size of
CaP
(µm)

Max.
electric

field
intensity
(kV/mm)

Force
(g)

Num-
ber of
Peaks

Yield
Stress

(kN/m2)

Vol-
ume
frac-

tions of
Al2O3 :
CaP

Num-
ber

Ratio
NAl2O3
NCaP

Al2O3 −
CaP

101.5 1.54 113 1 5.5 40:60 0.65

Table D.3 Data for an ER Fluid Containing a Mixture of Aluminum Oxide and
Silica Particles

Mixt-
ures

Mean
size of
CaP
(µm)

Max.
electric

field
intensity
(kV/mm)

Force
(g)

Num-
ber of
Peaks

Yield
Stress

(kN/m2)

Vol-
ume
frac-

tions of
Al2O3 :
Si

Num-
ber

Ratio
NAl2O3
NSi

Al2O3 −
Si

101 1.54 37.95 1 1.86 20:80 0.232
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Table D.4 Dielectric Mismatch

Particle
Name

Mean Size
(µm)

Effective
density

R1, R2 Effective/
Complex

Permittivity

Dielectric
Mismatch

Al2O3 102.5 - - 9.8 0.1125

CaP 101.5 - - 1.6 -0.35

Gl (solid) - - - 4 -0.17

Gl (Hollow) 90 0.21 45, 43.8 1.178 -0.39

Gl (Hollow) 72 0.19 36, 35.13 1.165 -0.38

Gl (Hollow) 50 0.48 25, 23.42 1.421 -0.36

Gl (Hollow) 20 0.6 10, 9.2 1.56 -0.35

Si 100 - - 2.5 -0.28
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[64] L. Rodŕıguez-Arco, M. T. López-López, A. Y. Zubarev, K. Gdula, and J. D. G. Durán,
“Inverse magnetorheological fluids,” Soft Matter, vol. 10, no. 33, p. 6256, 2014.

[65] P. Sheng and W. Wen, “Electrorheological fluids: Mechanisms, dynamics, and
microfluidics applications,” Annual Review of Fluid Mechanics, vol. 44, no. 1,
p. 143, 2012.

[66] Y. Chen, A. F. Sprecher, and H. Conrad, “Electrostatic particle-particle interactions
in electrorheological fluids,” Journal of Applied Physics, vol. 70, no. 11,
p. 6796, 1991.

[67] R. M. Erb, H. S. Son, B. Samanta, V. M. Rotello, and B. B. Yellen, “Magnetic
assembly of colloidal superstructures with multipole symmetry,” Nature,
vol. 457, no. 7232, p. 999, 2009.

[68] K. S. Khalil, A. Sagastegui, Y. Li, M. A. Tahir, J. E. S. Socolar, B. J. Wiley, and B. B.
Yellen, “Binary colloidal structures assembled through ising interactions,”
Nature Communications, vol. 3, no. 794, 2012.

117



[69] A. Yethiraj, “Tunable colloids: control of colloidal phase transitions with tunable
interactions,” Soft Matter, vol. 3, no. 9, p. 1099, 2007.

[70] E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O’Brien, and C. B. Murray,
“Structural diversity in binary nanoparticle superlattices,” Nature, vol. 439,
no. 7072, p. 55, 2006.

[71] P. Singh, M. S. Hossain, S. k. Gurupatham, K. Shah, E. Amah, D. Ju, M. Janjua,
S. Nudurupati, and I. Fischer, “Molecular-like hierarchical self-assembly of
monolayers of mixtures of particles,” Scientific reports, vol. 4, p. 7427, 2014.

[72] Y. Fu, J. Yao, H. Zhao, G. Zhao, and Y. Qiu, “Simulation of a bidisperse
magnetorheological fluid using the combination of a two-component lattice
boltzmann method and a discrete element approach,” Soft Matter, vol. 15,
no. 34, p. 6867, 2019.

[73] J. Kadaksham, P. Singh, and N. Aubry, “Dielectrophoresis induced clustering regimes
of viable yeast cells,” Electrophoresis, vol. 26, no. 19, p. 3738, 2005.

[74] D. J. Klingenberg, F. v. Swol, and C. F. Zukoski, “Dynamic simulation of electrorheo-
logical suspensions,” The Journal of Chemical Physics, vol. 91, no. 12, p. 7888,
1989.

[75] A. T. J. Kadaksham, P. Singh, and N. Aubry, “Dielectrophoresis of nanoparticles,”
Electrophoresis, vol. 25, no. 21-22, p. 3625, 2004.

[76] M. Chen, H.-Y. Ko, R. C. Remsing, M. F. C. Andrade, B. Santra, Z. Sun, A. Selloni,
R. Car, M. L. Klein, J. P. Perdew, and X. Wu, “Ab initio theory and modeling
of water,” Proceedings of the National Academy of Sciences of the United States
of America, vol. 114, no. 41, p. 10846, 2017.

[77] J. Kadaksham, P. Singh, and N. Aubry, “Dynamics of electrorheological
suspensions subjected to spatially nonuniform electric fields,” Journal of Fluids
Engineering, vol. 126, no. 2, p. 170, 2004.

[78] J. Kadaksham, P. Singh, and N. Aubry, “Manipulation of particles using dielec-
trophoresis,” Mechanics Research Communications, vol. 33, no. 1, p. 108, 2006.

[79] T. B. Jones, Electromechanics of Particles. Cambridge, New York, NY: Cambridge
University Press, 1995.

[80] A. T. J. Kadaksham, P. Singh, and N. Aubry, “Dielectrophoresis of nanoparticles,”
Electrophoresis, vol. 25, no. 21-22, p. 3625, 2004.

[81] S. G.Bossis, O.Volkova and A.Meunier, Ferrofluids: Magnetically Controllable Fluids
and Their Applications. Springer, 2002.

[82] G. Bossis, P. Khuzir, S. Lacis, and O. Volkova, “Yield behavior of magnetorheological
suspensions,” Journal of Magnetism and Magnetic Materials, vol. 258-259,
p. 456, 2003.

118



[83] M. Shliomis, “Effective viscosity of magnetic suspensions,” The Journal of
Experimental and Theoretical Physics, vol. 34, no. 6, p. 1291, 1972.

[84] S. Odenbach and S. Thurm, Magnetoviscous Effects in Ferrofluids, p. 185. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2002.

[85] F. R. Cunha, A. P. Rosa, and N. J. Dias, “Rheology of a very dilute magnetic
suspension with micro-structures of nanoparticles,” Journal of Magnetism and
Magnetic Materials, vol. 397, p. 266, 2016.

[86] D. Borin, A. Zubarev, D. Chirikov, R. Müller, and S. Odenbach, “Ferrofluid with
clustered iron nanoparticles: Slow relaxation of rheological properties under
joint action of shear flow and magnetic field,” Journal of Magnetism and
Magnetic Materials, vol. 323, no. 10, p. 1273, 2011.
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